Sample records for entrainment inherent relationships

  1. Observational study of the relationship between entrainment rate and relative dispersion in deep convective clouds

    NASA Astrophysics Data System (ADS)

    Guo, Xiaohao; Lu, Chunsong; Zhao, Tianliang; Liu, Yangang; Zhang, Guang Jun; Luo, Shi

    2018-01-01

    This study investigates the influence of entrainment rate (λ) on relative dispersion (ε) of cloud droplet size distributions (CDSD) in the 99 growing precipitating deep convective clouds during TOGA-COARE. The results show that entrainment suppresses ε, which is opposite to the traditional understanding that entrainment-mixing broadens CDSD. To examine how the relationship between ε and λ is affected by droplets with different sizes, CDSDs are divided into three portions with droplet radius < 3.75 μm (N1), radius in the range of 3.75-12.75 μm (N2) and 12.75-23.25 μm (N3), respectively. The results indicate that although the droplet concentration at different sizes generally decrease simultaneously as λ increases, the variation of standard deviation (σ) depends mainly on N3, while the mean radius (rm) decreases with decreasing N3, but increases with decreasing N1. So the influence of entrainment on CDSD causes a more dramatical decrease in σ than that in rm, and further leads to the decrease of ε as entrainment enhances. In addition, a conceptual model of CDSD evolution during entrainment-mixing processes is developed to illustrate the possible scenarios entailing different relationships between ε and λ. The number concentration of small droplets and the degree of evaporation of small droplets are found to be key factors that shift the sign (i.e., positive or negative) of the ε-λ relationship.

  2. Observational study of the relationship between entrainment rate and relative dispersion in deep convective clouds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guo, Xiaohao; Lu, Chunsong; Zhao, Tianliang

    We investigate the influence of entrainment rate (λ) on relative dispersion (ε) of cloud droplet size distributions (CDSD) in the 99 growing precipitating deep convective clouds during TOGA-COARE. The results show that entrainment suppresses ε, which is opposite to the traditional understanding that entrainment-mixing broadens CDSD. To examine how the relationship between ε and λ is affected by droplets with different sizes, CDSDs are divided into three portions with droplet radius < 3.75 μm (N 1), radius in the range of 3.75–12.75 μm (N 2) and 12.75–23.25 μm (N 3), respectively. Our results indicate that although the droplet concentration atmore » different sizes generally decrease simultaneously as λ increases, the variation of standard deviation (σ) depends mainly on N 3, while the mean radius (r m) decreases with decreasing N 3, but increases with decreasing N 1. So the influence of entrainment on CDSD causes a more dramatical decrease in σ than that in r m, and further leads to the decrease of ε as entrainment enhances. In addition, a conceptual model of CDSD evolution during entrainment-mixing processes is developed to illustrate the possible scenarios entailing different relationships between ε and λ. The number concentration of small droplets and the degree of evaporation of small droplets are found to be key factors that shift the sign (i.e., positive or negative) of the ε-λ relationship.« less

  3. Observational study of the relationship between entrainment rate and relative dispersion in deep convective clouds

    DOE PAGES

    Guo, Xiaohao; Lu, Chunsong; Zhao, Tianliang; ...

    2017-09-23

    We investigate the influence of entrainment rate (λ) on relative dispersion (ε) of cloud droplet size distributions (CDSD) in the 99 growing precipitating deep convective clouds during TOGA-COARE. The results show that entrainment suppresses ε, which is opposite to the traditional understanding that entrainment-mixing broadens CDSD. To examine how the relationship between ε and λ is affected by droplets with different sizes, CDSDs are divided into three portions with droplet radius < 3.75 μm (N 1), radius in the range of 3.75–12.75 μm (N 2) and 12.75–23.25 μm (N 3), respectively. Our results indicate that although the droplet concentration atmore » different sizes generally decrease simultaneously as λ increases, the variation of standard deviation (σ) depends mainly on N 3, while the mean radius (r m) decreases with decreasing N 3, but increases with decreasing N 1. So the influence of entrainment on CDSD causes a more dramatical decrease in σ than that in r m, and further leads to the decrease of ε as entrainment enhances. In addition, a conceptual model of CDSD evolution during entrainment-mixing processes is developed to illustrate the possible scenarios entailing different relationships between ε and λ. The number concentration of small droplets and the degree of evaporation of small droplets are found to be key factors that shift the sign (i.e., positive or negative) of the ε-λ relationship.« less

  4. The performative pleasure of imprecision: a diachronic study of entrainment in music performance.

    PubMed

    Geeves, Andrew; McIlwain, Doris J; Sutton, John

    2014-01-01

    This study focuses in on a moment of live performance in which the entrainment amongst a musical quartet is threatened. Entrainment is asymmetric in so far as there is an ensemble leader who improvises and expands the structure of a last chorus of a piece of music beyond the limits tacitly negotiated during prior rehearsals and performances. Despite the risk of entrainment being disturbed and performance interrupted, the other three musicians in the quartet follow the leading performer and smoothly transition into unprecedented performance territory. We use this moment of live performance to work back through the fieldwork data, building a diachronic study of the development and bases of entrainment in live music performance. We introduce the concept of entrainment and profile previous theory and research relevant to entrainment in music performance. After outlining our methodology, we trace the evolution of the structure of the piece of music from first rehearsal to final performance. Using video clip analysis, interviews and field notes we consider how entrainment shaped and was shaped by the moment of performance in focus. The sense of trust between quartet musicians is established through entrainment processes, is consolidated via smooth adaptation to the threats of disruption. Non-verbal communicative exchanges, via eye contact, gesture, and spatial proximity, sustain entrainment through phase shifts occurring swiftly and on the fly in performance contexts. These exchanges permit smooth adaptation promoting trust. This frees the quartet members to play with the potential disturbance of equilibrium inherent in entrained relationships and to play with this tension in an improvisatory way that enhances audience engagement and the live quality of performance.

  5. The performative pleasure of imprecision: a diachronic study of entrainment in music performance

    PubMed Central

    Geeves, Andrew; McIlwain, Doris J.; Sutton, John

    2014-01-01

    This study focuses in on a moment of live performance in which the entrainment amongst a musical quartet is threatened. Entrainment is asymmetric in so far as there is an ensemble leader who improvises and expands the structure of a last chorus of a piece of music beyond the limits tacitly negotiated during prior rehearsals and performances. Despite the risk of entrainment being disturbed and performance interrupted, the other three musicians in the quartet follow the leading performer and smoothly transition into unprecedented performance territory. We use this moment of live performance to work back through the fieldwork data, building a diachronic study of the development and bases of entrainment in live music performance. We introduce the concept of entrainment and profile previous theory and research relevant to entrainment in music performance. After outlining our methodology, we trace the evolution of the structure of the piece of music from first rehearsal to final performance. Using video clip analysis, interviews and field notes we consider how entrainment shaped and was shaped by the moment of performance in focus. The sense of trust between quartet musicians is established through entrainment processes, is consolidated via smooth adaptation to the threats of disruption. Non-verbal communicative exchanges, via eye contact, gesture, and spatial proximity, sustain entrainment through phase shifts occurring swiftly and on the fly in performance contexts. These exchanges permit smooth adaptation promoting trust. This frees the quartet members to play with the potential disturbance of equilibrium inherent in entrained relationships and to play with this tension in an improvisatory way that enhances audience engagement and the live quality of performance. PMID:25400567

  6. How to Achieve Fast Entrainment? The Timescale to Synchronization

    PubMed Central

    Granada, Adrián E.; Herzel, Hanspeter

    2009-01-01

    Entrainment, where oscillators synchronize to an external signal, is ubiquitous in nature. The transient time leading to entrainment plays a major role in many biological processes. Our goal is to unveil the specific dynamics that leads to fast entrainment. By studying a generic model, we characterize the transient time to entrainment and show how it is governed by two basic properties of an oscillator: the radial relaxation time and the phase velocity distribution around the limit cycle. Those two basic properties are inherent in every oscillator. This concept can be applied to many biological systems to predict the average transient time to entrainment or to infer properties of the underlying oscillator from the observed transients. We found that both a sinusoidal oscillator with fast radial relaxation and a spike-like oscillator with slow radial relaxation give rise to fast entrainment. As an example, we discuss the jet-lag experiments in the mammalian circadian pacemaker. PMID:19774087

  7. Dispersion of the intrinsic neuronal periods affects the relationship of the entrainment range to the coupling strength in the suprachiasmatic nucleus

    NASA Astrophysics Data System (ADS)

    Gu, Changgui; Yang, Huijie; Wang, Man

    2017-11-01

    Living beings on the Earth are subjected to and entrained (synchronized) to the natural 24-h light-dark cycle. Interestingly, they can also be entrained to an external artificial cycle of non-24-h periods. The range of these periods is called the entrainment range and it differs among species. In mammals, the entrainment range is regulated by a main clock located in the suprachiasmatic nucleus (SCN) which is composed of 10 000 neurons in the brain. Previous works have found that the entrainment range depends on the cellular coupling strength in the SCN. In particular, the entrainment range decreases with the increase of the cellular coupling strength, provided that all the neuronal oscillators are identical. However, the SCN neurons differ in the intrinsic periods that follow a normal distribution in a range from 22 to 28 h. In the present study, taking the dispersion of the intrinsic neuronal periods into account, we examined the relationship between the entrainment range and the coupling strength. Results from numerical simulations and theoretical analyses both show that the relationship is altered to be paraboliclike if the intrinsic neuronal periods are nonidentical, and the maximal entrainment range is obtained with a suitable coupling strength. Our results shed light on the role of the cellular coupling in the entrainment ability of the SCN network.

  8. Rhythm as an affordance for the entrainment of movement.

    PubMed

    Cummins, Fred

    2009-01-01

    A general account of rhythm in human behaviour is provided, according to which rhythm inheres in the affordance that a signal provides for the entrainment of movement on the part of a perceiver. This generic account is supported by an explication of the central concepts of affordance and entrainment. When viewed in this light, rhythm appears as the correct explanandum to account for coordinated behaviour in a wide variety of situations, including such core senses as dance and the production of music. Speech may appear to be only marginally rhythmical under such an account, but several experimental studies reveal that speech, too, has the potential to entrain movement. (c) 2009 S. Karger AG, Basel.

  9. An observational study of entrainment rate in deep convection

    DOE PAGES

    Guo, Xiaohao; Lu, Chunsong; Zhao, Tianliang; ...

    2015-09-22

    This study estimates entrainment rate and investigates its relationships with cloud properties in 156 deep convective clouds based on in-situ aircraft observations during the TOGA-COARE (Tropical Ocean Global Atmosphere Coupled Ocean Atmosphere Response Experiment) field campaign over the western Pacific. To the authors’ knowledge, this is the first study on the probability density function of entrainment rate, the relationships between entrainment rate and cloud microphysics, and the effects of dry air sources on the calculated entrainment rate in deep convection from an observational perspective. Results show that the probability density function of entrainment rate can be well fitted by lognormal,more » gamma or Weibull distribution, with coefficients of determination being 0.82, 0.85 and 0.80, respectively. Entrainment tends to reduce temperature, water vapor content and moist static energy in cloud due to evaporative cooling and dilution. Inspection of the relationships between entrainment rate and microphysical properties reveals a negative correlation between volume-mean radius and entrainment rate, suggesting the potential dominance of homogeneous mechanism in the clouds examined. The entrainment rate and environmental water vapor content show similar tendencies of variation with the distance of the assumed environmental air to the cloud edges. Their variation tendencies are non-monotonic due to the relatively short distance between adjacent clouds.« less

  10. An observational study of entrainment rate in deep convection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guo, Xiaohao; Lu, Chunsong; Zhao, Tianliang

    This study estimates entrainment rate and investigates its relationships with cloud properties in 156 deep convective clouds based on in-situ aircraft observations during the TOGA-COARE (Tropical Ocean Global Atmosphere Coupled Ocean Atmosphere Response Experiment) field campaign over the western Pacific. To the authors’ knowledge, this is the first study on the probability density function of entrainment rate, the relationships between entrainment rate and cloud microphysics, and the effects of dry air sources on the calculated entrainment rate in deep convection from an observational perspective. Results show that the probability density function of entrainment rate can be well fitted by lognormal,more » gamma or Weibull distribution, with coefficients of determination being 0.82, 0.85 and 0.80, respectively. Entrainment tends to reduce temperature, water vapor content and moist static energy in cloud due to evaporative cooling and dilution. Inspection of the relationships between entrainment rate and microphysical properties reveals a negative correlation between volume-mean radius and entrainment rate, suggesting the potential dominance of homogeneous mechanism in the clouds examined. The entrainment rate and environmental water vapor content show similar tendencies of variation with the distance of the assumed environmental air to the cloud edges. Their variation tendencies are non-monotonic due to the relatively short distance between adjacent clouds.« less

  11. Entrainment vs. Dilution in Tropical Deep Convection

    NASA Astrophysics Data System (ADS)

    Hannah, W.

    2017-12-01

    The distinction between entrainment and dilution is investigated with cloud resolving simulations of deep convection in a tropical environment. A method for estimating the rate of dilution by entrainment and detrainment is calculated for a series of bubble simulations with a range of initial radii. Entrainment generally corresponds to dilution of convection, but the two quantities are not well correlated. Core dilution by entrainment is significantly reduced by the presence of a shell of moist air around the core. Entrainment contributes significantly to the total net dilution, but detrainment and the various source/sink terms play large roles depending on the variable in question. Detrainment has a concentrating effect on average that balances out the dilution by entrainment. The experiments are also used to examine whether entrainment or dilution scale with cloud radius. The results support a weak negative relationship for dilution, but not for entrainment. The sensitivity to resolution is briefly discussed. A toy Lagrangian thermal model is used to demonstrate the importance of the cloud shell as a thermodynamic buffer to reduce the dilution of the core by entrainment. The results suggest that explicit cloud heterogeneity may be a useful consideration for future convective parameterization development.

  12. Entrainment versus Dilution in Tropical Deep Convection

    DOE PAGES

    Hannah, Walter M.

    2017-11-01

    In this paper, the distinction between entrainment and dilution is investigated with cloud-resolving simulations of deep convection in a tropical environment. A method for estimating the rate of dilution by entrainment and detrainment is presented and calculated for a series of bubble simulations with a range of initial radii. Entrainment generally corresponds to dilution of convection, but the two quantities are not well correlated. Core dilution by entrainment is significantly reduced by the presence of a shell of moist air around the core. Dilution by entrainment also increases with increasing updraft velocity but only for sufficiently strong updrafts. Entrainment contributesmore » significantly to the total net dilution, but detrainment and the various source/sink terms play large roles depending on the variable in question. Detrainment has a concentrating effect on average that balances out the dilution by entrainment. The experiments are also used to examine whether entrainment or dilution scale with cloud radius. The results support a weak negative relationship for dilution but not for entrainment. The sensitivity to resolution is briefly discussed. A toy Lagrangian thermal model is used to demonstrate the importance of the cloud shell as a thermodynamic buffer to reduce the dilution of the core by entrainment. Finally, the results suggest that explicit cloud heterogeneity may be a useful consideration for future convective parameterization development.« less

  13. Disordered speech disrupts conversational entrainment: a study of acoustic-prosodic entrainment and communicative success in populations with communication challenges

    PubMed Central

    Borrie, Stephanie A.; Lubold, Nichola; Pon-Barry, Heather

    2015-01-01

    Conversational entrainment, a pervasive communication phenomenon in which dialogue partners adapt their behaviors to align more closely with one another, is considered essential for successful spoken interaction. While well-established in other disciplines, this phenomenon has received limited attention in the field of speech pathology and the study of communication breakdowns in clinical populations. The current study examined acoustic-prosodic entrainment, as well as a measure of communicative success, in three distinctly different dialogue groups: (i) healthy native vs. healthy native speakers (Control), (ii) healthy native vs. foreign-accented speakers (Accented), and (iii) healthy native vs. dysarthric speakers (Disordered). Dialogue group comparisons revealed significant differences in how the groups entrain on particular acoustic–prosodic features, including pitch, intensity, and jitter. Most notably, the Disordered dialogues were characterized by significantly less acoustic-prosodic entrainment than the Control dialogues. Further, a positive relationship between entrainment indices and communicative success was identified. These results suggest that the study of conversational entrainment in speech pathology will have essential implications for both scientific theory and clinical application in this domain. PMID:26321996

  14. Characteristics of Air Entrainment in Hydraulic Jump

    NASA Astrophysics Data System (ADS)

    Albarkani, M. S. S.; Tan, L. W.; Al-Gheethi, A.

    2018-04-01

    The characteristics of hydraulic jump, especially the air entrainment within jump is still not properly understood. Therefore, the current work aimed to determine the size and number of air entrainment formed in hydraulic jump at three different Froude numbers and to obtain the relationship between Froude number with the size and number of air entrainment in hydraulic jump. Experiments of hydraulic jump were conducted in a 10 m long and 0.3 m wide Armfield S6MKII glass-sided tilting flume. Hydraulic jumps were produced by flow under sluice gate with varying Froude number. The air entrainment of the hydraulic jump was captured with a Canon Power Shot SX40 HS digital camera in video format at 24 frames per second. Three discharges have been considered, i.e. 0.010 m3/s, 0.011 m3/s, and 0.013 m3/s. For hydraulic jump formed in each discharge, 32 frames were selected for the purpose of analysing the size and number of air entrainment in hydraulic jump. The results revealed that that there is a tendency to have greater range in sizes of air bubbles as Fr1 increases. Experiments with Fr1 = 7.547. 7.707, and 7.924 shown that the number of air bubbles increases exponentially with Fr1 at a relationship of N = 1.3814 e 0.9795Fr1.

  15. Neurobiological foundations of neurologic music therapy: rhythmic entrainment and the motor system

    PubMed Central

    Thaut, Michael H.; McIntosh, Gerald C.; Hoemberg, Volker

    2015-01-01

    Entrainment is defined by a temporal locking process in which one system’s motion or signal frequency entrains the frequency of another system. This process is a universal phenomenon that can be observed in physical (e.g., pendulum clocks) and biological systems (e.g., fire flies). However, entrainment can also be observed between human sensory and motor systems. The function of rhythmic entrainment in rehabilitative training and learning was established for the first time by Thaut and colleagues in several research studies in the early 1990s. It was shown that the inherent periodicity of auditory rhythmic patterns could entrain movement patterns in patients with movement disorders (see for a review: Thaut et al., 1999). Physiological, kinematic, and behavioral movement analysis showed very quickly that entrainment cues not only changed the timing of movement but also improved spatial and force parameters. Mathematical models have shown that anticipatory rhythmic templates as critical time constraints can result in the complete specification of the dynamics of a movement over the entire movement cycle, thereby optimizing motor planning and execution. Furthermore, temporal rhythmic entrainment has been successfully extended into applications in cognitive rehabilitation and speech and language rehabilitation, and thus become one of the major neurological mechanisms linking music and rhythm to brain rehabilitation. These findings provided a scientific basis for the development of neurologic music therapy. PMID:25774137

  16. Neurobiological foundations of neurologic music therapy: rhythmic entrainment and the motor system.

    PubMed

    Thaut, Michael H; McIntosh, Gerald C; Hoemberg, Volker

    2014-01-01

    Entrainment is defined by a temporal locking process in which one system's motion or signal frequency entrains the frequency of another system. This process is a universal phenomenon that can be observed in physical (e.g., pendulum clocks) and biological systems (e.g., fire flies). However, entrainment can also be observed between human sensory and motor systems. The function of rhythmic entrainment in rehabilitative training and learning was established for the first time by Thaut and colleagues in several research studies in the early 1990s. It was shown that the inherent periodicity of auditory rhythmic patterns could entrain movement patterns in patients with movement disorders (see for a review: Thaut et al., 1999). Physiological, kinematic, and behavioral movement analysis showed very quickly that entrainment cues not only changed the timing of movement but also improved spatial and force parameters. Mathematical models have shown that anticipatory rhythmic templates as critical time constraints can result in the complete specification of the dynamics of a movement over the entire movement cycle, thereby optimizing motor planning and execution. Furthermore, temporal rhythmic entrainment has been successfully extended into applications in cognitive rehabilitation and speech and language rehabilitation, and thus become one of the major neurological mechanisms linking music and rhythm to brain rehabilitation. These findings provided a scientific basis for the development of neurologic music therapy.

  17. ENTRAINMENT MODELS

    EPA Science Inventory

    This presentation presented information on entrainment models. Entrainment models use entrainment hypotheses to express the continuity equation. The advantage is that plume boundaries are known. A major disadvantage is that the problems that can be solved are rather simple. The ...

  18. Ethanol consumption in mice: relationships with circadian period and entrainment.

    PubMed

    Trujillo, Jennifer L; Do, David T; Grahame, Nicholas J; Roberts, Amanda J; Gorman, Michael R

    2011-03-01

    A functional connection between the circadian timing system and alcohol consumption is suggested by multiple lines of converging evidence. Ethanol consumption perturbs physiological rhythms in hormone secretion, sleep, and body temperature; and conversely, genetic and environmental perturbations of the circadian system can alter alcohol intake. A fundamental property of the circadian pacemaker, the endogenous period of its cycle under free-running conditions, was previously shown to differ between selectively bred high- (HAP) and low- (LAP) alcohol preferring replicate 1 mice. To test whether there is a causal relationship between circadian period and ethanol intake, we induced experimental, rather than genetic, variations in free-running period. Male inbred C57Bl/6J mice and replicate 2 male and female HAP2 and LAP2 mice were entrained to light:dark cycles of 26 or 22 h or remained in a standard 24 h cycle. On discontinuation of the light:dark cycle, experimental animals exhibited longer and shorter free-running periods, respectively. Despite robust effects on circadian period and clear circadian rhythms in drinking, these manipulations failed to alter the daily ethanol intake of the inbred strain or selected lines. Likewise, driving the circadian system at long and short periods produced no change in alcohol intake. In contrast with replicate 1 HAP and LAP lines, there was no difference in free-running period between ethanol naïve HAP2 and LAP2 mice. HAP2 mice, however, were significantly more active than LAP2 mice as measured by general home-cage movement and wheel running, a motivated behavior implicating a selection effect on reward systems. Despite a marked circadian regulation of drinking behavior, the free-running and entrained period of the circadian clock does not determine daily ethanol intake. Copyright © 2011 Elsevier Inc. All rights reserved.

  19. Ethanol consumption in mice: relationships with circadian period and entrainment

    PubMed Central

    Trujillo, Jennifer L.; Do, David T.; Grahame, Nicholas J.; Roberts, Amanda J.; Gorman, Michael R.

    2011-01-01

    A functional connection between the circadian timing system and alcohol consumption is suggested by multiple lines of converging evidence. Ethanol consumption perturbs physiological rhythms in hormone secretion, sleep and body temperature, and conversely, genetic and environmental perturbations of the circadian system can alter alcohol intake. A fundamental property of the circadian pacemaker, the endogenous period of its cycle under free-running conditions, was previously shown to differ between selectively bred High- (HAP) and Low- (LAP) Alcohol Preferring replicate 1 mice. To test whether there is a causal relationship between circadian period and ethanol intake, we induced experimental, rather than genetic, variations in free-running period. Male inbred C57Bl/6J mice and replicate 2 male and female HAP2 and LAP2 mice were entrained to light:dark cycles of 26 h or 22 h or remained in a standard 24 h cycle. Upon discontinuation of the light:dark cycle, experimental animals exhibited longer and shorter free-running periods, respectively. Despite robust effects on circadian period and clear circadian rhythms in drinking, these manipulations failed to alter the daily ethanol intake of the inbred strain or selected lines. Likewise, driving the circadian system at long and short periods produced no change in alcohol intake. In contrast with replicate 1 HAP and LAP lines, there was no difference in free-running period between ethanol naïve HAP2 and LAP2 mice. HAP2 mice, however, were significantly more active than LAP2 mice as measured by general home-cage movement and wheel running, a motivated behavior implicating a selection effect on reward systems. Despite a marked circadian regulation of drinking behavior, the free-running and entrained period of the circadian clock does not determine daily ethanol intake. PMID:20880659

  20. Cortical entrainment to music and its modulation by expertise

    PubMed Central

    Doelling, Keith B.; Poeppel, David

    2015-01-01

    Recent studies establish that cortical oscillations track naturalistic speech in a remarkably faithful way. Here, we test whether such neural activity, particularly low-frequency (<8 Hz; delta–theta) oscillations, similarly entrain to music and whether experience modifies such a cortical phenomenon. Music of varying tempi was used to test entrainment at different rates. In three magnetoencephalography experiments, we recorded from nonmusicians, as well as musicians with varying years of experience. Recordings from nonmusicians demonstrate cortical entrainment that tracks musical stimuli over a typical range of tempi, but not at tempi below 1 note per second. Importantly, the observed entrainment correlates with performance on a concurrent pitch-related behavioral task. In contrast, the data from musicians show that entrainment is enhanced by years of musical training, at all presented tempi. This suggests a bidirectional relationship between behavior and cortical entrainment, a phenomenon that has not previously been reported. Additional analyses focus on responses in the beta range (∼15–30 Hz)—often linked to delta activity in the context of temporal predictions. Our findings provide evidence that the role of beta in temporal predictions scales to the complex hierarchical rhythms in natural music and enhances processing of musical content. This study builds on important findings on brainstem plasticity and represents a compelling demonstration that cortical neural entrainment is tightly coupled to both musical training and task performance, further supporting a role for cortical oscillatory activity in music perception and cognition. PMID:26504238

  1. Cortical entrainment to music and its modulation by expertise.

    PubMed

    Doelling, Keith B; Poeppel, David

    2015-11-10

    Recent studies establish that cortical oscillations track naturalistic speech in a remarkably faithful way. Here, we test whether such neural activity, particularly low-frequency (<8 Hz; delta-theta) oscillations, similarly entrain to music and whether experience modifies such a cortical phenomenon. Music of varying tempi was used to test entrainment at different rates. In three magnetoencephalography experiments, we recorded from nonmusicians, as well as musicians with varying years of experience. Recordings from nonmusicians demonstrate cortical entrainment that tracks musical stimuli over a typical range of tempi, but not at tempi below 1 note per second. Importantly, the observed entrainment correlates with performance on a concurrent pitch-related behavioral task. In contrast, the data from musicians show that entrainment is enhanced by years of musical training, at all presented tempi. This suggests a bidirectional relationship between behavior and cortical entrainment, a phenomenon that has not previously been reported. Additional analyses focus on responses in the beta range (∼15-30 Hz)-often linked to delta activity in the context of temporal predictions. Our findings provide evidence that the role of beta in temporal predictions scales to the complex hierarchical rhythms in natural music and enhances processing of musical content. This study builds on important findings on brainstem plasticity and represents a compelling demonstration that cortical neural entrainment is tightly coupled to both musical training and task performance, further supporting a role for cortical oscillatory activity in music perception and cognition.

  2. Enhanced entrainability of genetic oscillators by period mismatch

    PubMed Central

    Hasegawa, Yoshihiko; Arita, Masanori

    2013-01-01

    Biological oscillators coordinate individual cellular components so that they function coherently and collectively. They are typically composed of multiple feedback loops, and period mismatch is unavoidable in biological implementations. We investigated the advantageous effect of this period mismatch in terms of a synchronization response to external stimuli. Specifically, we considered two fundamental models of genetic circuits: smooth and relaxation oscillators. Using phase reduction and Floquet multipliers, we numerically analysed their entrainability under different coupling strengths and period ratios. We found that a period mismatch induces better entrainment in both types of oscillator; the enhancement occurs in the vicinity of the bifurcation on their limit cycles. In the smooth oscillator, the optimal period ratio for the enhancement coincides with the experimentally observed ratio, which suggests biological exploitation of the period mismatch. Although the origin of multiple feedback loops is often explained as a passive mechanism to ensure robustness against perturbation, we study the active benefits of the period mismatch, which include increasing the efficiency of the genetic oscillators. Our findings show a qualitatively different perspective for both the inherent advantages of multiple loops and their essentiality. PMID:23389900

  3. Scale-dependent entrainment velocity and scale-independent net entrainment in a turbulent axisymmetric jet

    NASA Astrophysics Data System (ADS)

    Philip, Jimmy; Mistry, Dhiren; Dawson, James; Marusic, Ivan

    2016-11-01

    The net entrainment in a jet is the product of the mean surface area (S ̲) and the mean entrainment velocity, V ̲ S ̲ , where, V ̲ = αUc with α the entrainment coefficient and Uc the mean centreline velocity. Instantaneously, however, entrainment velocity (v) at a point on the interface is the difference between the interface and the fluid velocities, and the total entrainment ∫ vds = VS , where S is the corrugated interface surface area and V the area averaged entrainment velocity. Using time-resolved multi-scale PIV/PLIF measurements of velocity and scalar in an axisymmetric jet at Re = 25000 , we evaluate V and S directly at the smallest resolved scales, and by filtering the data at different scales (Δ) we find their multi-scales counterparts, VΔ and SΔ. We show that V ̲ S ̲ =VΔ SΔ = V S , independent of the scale. Furthermore, S is found to have a fractal dimension D3 2 . 32 +/- 0 . 1 . Independently, we find that VΔ Δ 0 . 31 , indicating increasing entrainment velocity with increasing length scale. This is consistent with a constant net entrainment across scales, and suggests α as a scale-dependent quantity. Engineering and Physical Sciences Research Council (research Grant No. EP/I005879/1), David Crighton Fellowship from the DAMTP, Univ of Cambridge, and the Australian Research Council.

  4. Simple estimate of entrainment rate of pollutants from a coastal discharge into the surf zone.

    PubMed

    Wong, Simon H C; Monismith, Stephen G; Boehm, Alexandria B

    2013-10-15

    Microbial pollutants from coastal discharges can increase illness risks for swimmers and cause beach advisories. There is presently no predictive model for estimating the entrainment of pollution from coastal discharges into the surf zone. We present a novel, quantitative framework for estimating surf zone entrainment of pollution at a wave-dominant open beach. Using physical arguments, we identify a dimensionless parameter equal to the quotient of the surf zone width l(sz) and the cross-flow length scale of the discharge la = M(j) (1/2)/U(sz), where M(j) is the discharge's momentum flux and U(sz) is a representative alongshore velocity in the surf zone. We conducted numerical modeling of a nonbuoyant discharge at an alongshore uniform beach with constant slope using a wave-resolving hydrodynamic model. Using results from 144 numerical experiments we develop an empirical relationship between the surf zone entrainment rate α and l(sz)/(la). The empirical relationship can reasonably explain seven measurements of surf zone entrainment at three diverse coastal discharges. This predictive relationship can be a useful tool in coastal water quality management and can be used to develop predictive beach water quality models.

  5. Improving Parameterization of Entrainment Rate for Shallow Convection with Aircraft Measurements and Large-Eddy Simulation

    DOE PAGES

    Lu, Chunsong; Liu, Yangang; Zhang, Guang J.; ...

    2016-02-01

    This work examines the relationships of entrainment rate to vertical velocity, buoyancy, and turbulent dissipation rate by applying stepwise principal component regression to observational data from shallow cumulus clouds collected during the Routine AAF [Atmospheric Radiation Measurement (ARM) Aerial Facility] Clouds with Low Optical Water Depths (CLOWD) Optical Radiative Observations (RACORO) field campaign over the ARM Southern Great Plains (SGP) site near Lamont, Oklahoma. The cumulus clouds during the RACORO campaign simulated using a large eddy simulation (LES) model are also examined with the same approach. The analysis shows that a combination of multiple variables can better represent entrainment ratemore » in both the observations and LES than any single-variable fitting. Three commonly used parameterizations are also tested on the individual cloud scale. A new parameterization is therefore presented that relates entrainment rate to vertical velocity, buoyancy and dissipation rate; the effects of treating clouds as ensembles and humid shells surrounding cumulus clouds on the new parameterization are discussed. Physical mechanisms underlying the relationships of entrainment rate to vertical velocity, buoyancy and dissipation rate are also explored.« less

  6. PDF as a coupling mediator between the light-entrainable and temperature-entrainable clocks in Drosophila melanogaster.

    PubMed

    Tomioka, K; Miyasako, Y; Umezaki, Y

    2008-01-01

    Drosophila shows bimodal circadian locomotor rhythms with peaks around light-on (morning peak) and before light-off (evening peak). The rhythm synchronizes to light and temperature cycles and the synchronization is achieved by two sets of clocks: one entrains to light cycles and the other to temperature cycles. The light-entrainable clock consists of the clock neurons located in the lateral protocerebrum (LNs) and the temperature-entrainable clock involves those located in the dorsal protocerebrum (DNs) and the cells located in the posterior lateral protocerebrum (LPNs). To understand the interaction between the light-entrainable and the temperature-entrainable clock neurons, locomotor rhythms of the mutant flies lacking PDF or PDF-positive clock neurons were examined. Under the light cycles, they showed altered phase of the evening peak. When exposed to temperature cycles of lower temperature levels, the onset of evening peak showed larger advance in contrast to those of wild-type flies. The termination of the peak also advanced while that of wild-type flies remained almost at the same phase as in the constant temperature. These results support our hypothesis that the PDF-positive light entrainable cells regulate the phase of the temperature entrainable cells to be synchronized to their own phase using PDF as a coupling mediator.

  7. Individual Differences in Rhythmic Cortical Entrainment Correlate with Predictive Behavior in Sensorimotor Synchronization

    PubMed Central

    Nozaradan, Sylvie; Peretz, Isabelle; Keller, Peter E.

    2016-01-01

    The current study aims at characterizing the mechanisms that allow humans to entrain the mind and body to incoming rhythmic sensory inputs in real time. We addressed this unresolved issue by examining the relationship between covert neural processes and overt behavior in the context of musical rhythm. We measured temporal prediction abilities, sensorimotor synchronization accuracy and neural entrainment to auditory rhythms as captured using an EEG frequency-tagging approach. Importantly, movement synchronization accuracy with a rhythmic beat could be explained by the amplitude of neural activity selectively locked with the beat period when listening to the rhythmic inputs. Furthermore, stronger endogenous neural entrainment at the beat frequency was associated with superior temporal prediction abilities. Together, these results reveal a direct link between cortical and behavioral measures of rhythmic entrainment, thus providing evidence that frequency-tagged brain activity has functional relevance for beat perception and synchronization. PMID:26847160

  8. Individual Differences in Rhythmic Cortical Entrainment Correlate with Predictive Behavior in Sensorimotor Synchronization.

    PubMed

    Nozaradan, Sylvie; Peretz, Isabelle; Keller, Peter E

    2016-02-05

    The current study aims at characterizing the mechanisms that allow humans to entrain the mind and body to incoming rhythmic sensory inputs in real time. We addressed this unresolved issue by examining the relationship between covert neural processes and overt behavior in the context of musical rhythm. We measured temporal prediction abilities, sensorimotor synchronization accuracy and neural entrainment to auditory rhythms as captured using an EEG frequency-tagging approach. Importantly, movement synchronization accuracy with a rhythmic beat could be explained by the amplitude of neural activity selectively locked with the beat period when listening to the rhythmic inputs. Furthermore, stronger endogenous neural entrainment at the beat frequency was associated with superior temporal prediction abilities. Together, these results reveal a direct link between cortical and behavioral measures of rhythmic entrainment, thus providing evidence that frequency-tagged brain activity has functional relevance for beat perception and synchronization.

  9. Partial entrainment of gravel bars during floods

    USGS Publications Warehouse

    Konrad, Christopher P.; Booth, Derek B.; Burges, Stephen J.; Montgomery, David R.

    2002-01-01

    Spatial patterns of bed material entrainment by floods were documented at seven gravel bars using arrays of metal washers (bed tags) placed in the streambed. The observed patterns were used to test a general stochastic model that bed material entrainment is a spatially independent, random process where the probability of entrainment is uniform over a gravel bar and a function of the peak dimensionless shear stress τ0* of the flood. The fraction of tags missing from a gravel bar during a flood, or partial entrainment, had an approximately normal distribution with respect to τ0* with a mean value (50% of the tags entrained) of 0.085 and standard deviation of 0.022 (root‐mean‐square error of 0.09). Variation in partial entrainment for a given τ0* demonstrated the effects of flow conditioning on bed strength, with lower values of partial entrainment after intermediate magnitude floods (0.065 < τ0*< 0.08) than after higher magnitude floods. Although the probability of bed material entrainment was approximately uniform over a gravel bar during individual floods and independent from flood to flood, regions of preferential stability and instability emerged at some bars over the course of a wet season. Deviations from spatially uniform and independent bed material entrainment were most pronounced for reaches with varied flow and in consecutive floods with small to intermediate magnitudes.

  10. Visual cortex entrains to sign language.

    PubMed

    Brookshire, Geoffrey; Lu, Jenny; Nusbaum, Howard C; Goldin-Meadow, Susan; Casasanto, Daniel

    2017-06-13

    Despite immense variability across languages, people can learn to understand any human language, spoken or signed. What neural mechanisms allow people to comprehend language across sensory modalities? When people listen to speech, electrophysiological oscillations in auditory cortex entrain to slow ([Formula: see text]8 Hz) fluctuations in the acoustic envelope. Entrainment to the speech envelope may reflect mechanisms specialized for auditory perception. Alternatively, flexible entrainment may be a general-purpose cortical mechanism that optimizes sensitivity to rhythmic information regardless of modality. Here, we test these proposals by examining cortical coherence to visual information in sign language. First, we develop a metric to quantify visual change over time. We find quasiperiodic fluctuations in sign language, characterized by lower frequencies than fluctuations in speech. Next, we test for entrainment of neural oscillations to visual change in sign language, using electroencephalography (EEG) in fluent speakers of American Sign Language (ASL) as they watch videos in ASL. We find significant cortical entrainment to visual oscillations in sign language <5 Hz, peaking at [Formula: see text]1 Hz. Coherence to sign is strongest over occipital and parietal cortex, in contrast to speech, where coherence is strongest over the auditory cortex. Nonsigners also show coherence to sign language, but entrainment at frontal sites is reduced relative to fluent signers. These results demonstrate that flexible cortical entrainment to language does not depend on neural processes that are specific to auditory speech perception. Low-frequency oscillatory entrainment may reflect a general cortical mechanism that maximizes sensitivity to informational peaks in time-varying signals.

  11. A comparative efficacy study of photic driving brainwave entrainment technology with a novel form of more direct entrainment

    NASA Astrophysics Data System (ADS)

    Knowles, Richard Thomas

    This exploratory study compared the efficacy of a novel brainwave electromagnetic (EM) entrainment technology against a more conventional technology utilizing the photic-driving technique. Both experimental conditions were also compared with a 7-minute control session that took place immediately before each stimulation session. The Schumann Resonance (SR) frequency was selected as the delivery signal and was chosen because of previous findings suggesting that entrainment to this frequency can often produce transpersonal if not paranormal, experiences in the entrainee, which sometimes resemble remote viewing or out-of-body experiences. A pilot study determined which of two novel entrainment modalities (a copper coil or a 16-solenoid headset) worked most effectively for use with the rest of the study. In the main study, an artificial SR signal at 7.8Hz was delivered during the photic-driving sessions, but a recording of the real-time SR was used to deliver the entrainment signal during sessions devoted to the electromagnetic entrainment modality. Sixteen participants were recruited from the local area, and EEG recordings were acquired via a 32-channel Deymed electroencephalography system. Comparative analyses were performed between the control and experimental portions of each session to assess for efficacy of the novel entrainment modality used, and, in the main study, between the electromagnetic and photic-driving sessions, to assess for differential entrainment efficacy between these groups. A follow-up study was additionally performed primarily to determine whether responders could replicate their entrainment effect from the main study. Results showed that EM entrainment appeared to be possible but is not nearly as robust or reliable as photic driving. Additionally, no profound transpersonal or paranormal experiences were elicited during the course of the study, and, when asked, participants were not able to determine with any degree of success, when the

  12. Cloud microphysical relationships and their implication on entrainment and mixing mechanism for the stratocumulus clouds measured during the VOCALS project

    DOE PAGES

    Yum, Seong Soo; Wang, Jian; Liu, Yangang; ...

    2015-05-27

    Cloud microphysical data obtained from G-1 aircraft flights over the southeastern pacific during the VOCALS-Rex field campaign were analyzed for evidence of entrainment mixing of dry air from above cloud top. Mixing diagram analysis was made for the horizontal flight data recorded at 1 Hz and 40 Hz. The dominant observed feature, a positive relationship between cloud droplet mean volume (V) and liquid water content (L), suggested occurrence of homogeneous mixing. On the other hand, estimation of the relevant scale parameters (i.e., transition length scale and transition scale number) consistently indicated inhomogeneous mixing. Importantly, the flight altitudes of the measurementsmore » were significantly below cloud top. We speculate that mixing of the entrained air near the cloud top may have indeed been inhomogeneous; but due to vertical circulation mixing, the correlation between V and L became positive at the measurement altitudes in mid-level of clouds, because during their descent, cloud droplets evaporate, faster in more diluted cloud parcels, leading to a positive correlation between V and L regardless of the mixing mechanism near the cloud top.« less

  13. Neural entrainment to rhythmic speech in children with developmental dyslexia

    PubMed Central

    Power, Alan J.; Mead, Natasha; Barnes, Lisa; Goswami, Usha

    2013-01-01

    A rhythmic paradigm based on repetition of the syllable “ba” was used to study auditory, visual, and audio-visual oscillatory entrainment to speech in children with and without dyslexia using EEG. Children pressed a button whenever they identified a delay in the isochronous stimulus delivery (500 ms; 2 Hz delta band rate). Response power, strength of entrainment and preferred phase of entrainment in the delta and theta frequency bands were compared between groups. The quality of stimulus representation was also measured using cross-correlation of the stimulus envelope with the neural response. The data showed a significant group difference in the preferred phase of entrainment in the delta band in response to the auditory and audio-visual stimulus streams. A different preferred phase has significant implications for the quality of speech information that is encoded neurally, as it implies enhanced neuronal processing (phase alignment) at less informative temporal points in the incoming signal. Consistent with this possibility, the cross-correlogram analysis revealed superior stimulus representation by the control children, who showed a trend for larger peak r-values and significantly later lags in peak r-values compared to participants with dyslexia. Significant relationships between both peak r-values and peak lags were found with behavioral measures of reading. The data indicate that the auditory temporal reference frame for speech processing is atypical in developmental dyslexia, with low frequency (delta) oscillations entraining to a different phase of the rhythmic syllabic input. This would affect the quality of encoding of speech, and could underlie the cognitive impairments in phonological representation that are the behavioral hallmark of this developmental disorder across languages. PMID:24376407

  14. Exploring Entrainment Patterns of Human Emotion in Social Media.

    PubMed

    He, Saike; Zheng, Xiaolong; Zeng, Daniel; Luo, Chuan; Zhang, Zhu

    2016-01-01

    Emotion entrainment, which is generally defined as the synchronous convergence of human emotions, performs many important social functions. However, what the specific mechanisms of emotion entrainment are beyond in-person interactions, and how human emotions evolve under different entrainment patterns in large-scale social communities, are still unknown. In this paper, we aim to examine the massive emotion entrainment patterns and understand the underlying mechanisms in the context of social media. As modeling emotion dynamics on a large scale is often challenging, we elaborate a pragmatic framework to characterize and quantify the entrainment phenomenon. By applying this framework on the datasets from two large-scale social media platforms, we find that the emotions of online users entrain through social networks. We further uncover that online users often form their relations via dual entrainment, while maintain it through single entrainment. Remarkably, the emotions of online users are more convergent in nonreciprocal entrainment. Building on these findings, we develop an entrainment augmented model for emotion prediction. Experimental results suggest that entrainment patterns inform emotion proximity in dyads, and encoding their associations promotes emotion prediction. This work can further help us to understand the underlying dynamic process of large-scale online interactions and make more reasonable decisions regarding emergency situations, epidemic diseases, and political campaigns in cyberspace.

  15. Entrainment and capture by swimming cells

    NASA Astrophysics Data System (ADS)

    Mathijssen, Arnold; Jeanneret, Raphael; Polin, Marco

    Floating particles that collide with a micro-swimmer can be entrained for long distances, which provides an opportunity for numerous biological processes to occur with prolonged contact times, including the capture of nutrients and virus infection. Here, we show that the entrainment mechanism is universal for different organisms, C. reinhardtii, T. subcordiforms and O. marina, regardless of diversity in propulsion mechanism and hydrodynamic signature. The flows generated near these microbes are simulated throughout the swimming stroke, and the resulting entrainment lengths compared with our experiments. We find a series of compromises: Flagella can reduce contact times with less tidy interactions, but the entrainment frequency increases as flagella pull particles towards the body. The contact time grows quadratically with swimmer size, but decreases with swimming speed or encounter rate. With the inclusion of Brownian noise, there is an optimal particle size for each swimmer and, conversely, there is an optimal organism for each floating object. We analyse the features of the entrainment mechanism with a Taylor-dispersion theory, and demonstrate how the presented trade-offs may be tuned quantitatively in various biological situations.

  16. Ground-Based Remote Retrievals of Cumulus Entrainment Rates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wagner, Timothy J.; Turner, David D.; Berg, Larry K.

    2013-07-26

    While fractional entrainment rates for cumulus clouds have typically been derived from airborne observations, this limits the size and scope of available data sets. To increase the number of continental cumulus entrainment rate observations available for study, an algorithm for retrieving them from ground-based remote sensing observations has been developed. This algorithm, called the Entrainment Rate In Cumulus Algorithm (ERICA), uses the suite of instruments at the Southern Great Plains (SGP) site of the United States Department of Energy's Atmospheric Radiation Measurement (ARM) Climate Research Facility as inputs into a Gauss-Newton optimal estimation scheme, in which an assumed guess ofmore » the entrainment rate is iteratively adjusted through intercomparison of modeled liquid water path and cloud droplet effective radius to their observed counterparts. The forward model in this algorithm is the Explicit Mixing Parcel Model (EMPM), a cloud parcel model that treats entrainment as a series of discrete entrainment events. A quantified value for measurement uncertainty is also returned as part of the retrieval. Sensitivity testing and information content analysis demonstrate the robust nature of this method for retrieving accurate observations of the entrainment rate without the drawbacks of airborne sampling. Results from a test of ERICA on three months of shallow cumulus cloud events show significant variability of the entrainment rate of clouds in a single day and from one day to the next. The mean value of 1.06 km-¹ for the entrainment rate in this dataset corresponds well with prior observations and simulations of the entrainment rate in cumulus clouds.« less

  17. Exploring Entrainment Patterns of Human Emotion in Social Media

    PubMed Central

    Luo, Chuan; Zhang, Zhu

    2016-01-01

    Emotion entrainment, which is generally defined as the synchronous convergence of human emotions, performs many important social functions. However, what the specific mechanisms of emotion entrainment are beyond in-person interactions, and how human emotions evolve under different entrainment patterns in large-scale social communities, are still unknown. In this paper, we aim to examine the massive emotion entrainment patterns and understand the underlying mechanisms in the context of social media. As modeling emotion dynamics on a large scale is often challenging, we elaborate a pragmatic framework to characterize and quantify the entrainment phenomenon. By applying this framework on the datasets from two large-scale social media platforms, we find that the emotions of online users entrain through social networks. We further uncover that online users often form their relations via dual entrainment, while maintain it through single entrainment. Remarkably, the emotions of online users are more convergent in nonreciprocal entrainment. Building on these findings, we develop an entrainment augmented model for emotion prediction. Experimental results suggest that entrainment patterns inform emotion proximity in dyads, and encoding their associations promotes emotion prediction. This work can further help us to understand the underlying dynamic process of large-scale online interactions and make more reasonable decisions regarding emergency situations, epidemic diseases, and political campaigns in cyberspace. PMID:26953692

  18. Cloud-Top Entrainment in Stratocumulus Clouds

    NASA Astrophysics Data System (ADS)

    Mellado, Juan Pedro

    2017-01-01

    Cloud entrainment, the mixing between cloudy and clear air at the boundary of clouds, constitutes one paradigm for the relevance of small scales in the Earth system: By regulating cloud lifetimes, meter- and submeter-scale processes at cloud boundaries can influence planetary-scale properties. Understanding cloud entrainment is difficult given the complexity and diversity of the associated phenomena, which include turbulence entrainment within a stratified medium, convective instabilities driven by radiative and evaporative cooling, shear instabilities, and cloud microphysics. Obtaining accurate data at the required small scales is also challenging, for both simulations and measurements. During the past few decades, however, high-resolution simulations and measurements have greatly advanced our understanding of the main mechanisms controlling cloud entrainment. This article reviews some of these advances, focusing on stratocumulus clouds, and indicates remaining challenges.

  19. Entraining the topology and the dynamics of a network of phase oscillators

    NASA Astrophysics Data System (ADS)

    Sendiña-Nadal, I.; Leyva, I.; Buldú, J. M.; Almendral, J. A.; Boccaletti, S.

    2009-04-01

    We show that the topology and dynamics of a network of unsynchronized Kuramoto oscillators can be simultaneously controlled by means of a forcing mechanism which yields a phase locking of the oscillators to that of an external pacemaker in connection with the reshaping of the network’s degree distribution. The entrainment mechanism is based on the addition, at regular time intervals, of unidirectional links from oscillators that follow the dynamics of a pacemaker to oscillators in the pristine graph whose phases hold a prescribed phase relationship. Such a dynamically based rule in the attachment process leads to the emergence of a power-law shape in the final degree distribution of the graph whenever the network is entrained to the dynamics of the pacemaker. We show that the arousal of a scale-free distribution in connection with the success of the entrainment process is a robust feature, characterizing different networks’ initial configurations and parameters.

  20. Investigation of Turbulent Entrainment-Mixing Processes With a New Particle-Resolved Direct Numerical Simulation Model

    DOE PAGES

    Gao, Zheng; Liu, Yangang; Li, Xiaolin; ...

    2018-02-19

    Here, a new particle-resolved three dimensional direct numerical simulation (DNS) model is developed that combines Lagrangian droplet tracking with the Eulerian field representation of turbulence near the Kolmogorov microscale. Six numerical experiments are performed to investigate the processes of entrainment of clear air and subsequent mixing with cloudy air and their interactions with cloud microphysics. The experiments are designed to represent different combinations of three configurations of initial cloudy area and two turbulence modes (decaying and forced turbulence). Five existing measures of microphysical homogeneous mixing degree are examined, modified, and compared in terms of their ability as a unifying measuremore » to represent the effect of various entrainment-mixing mechanisms on cloud microphysics. Also examined and compared are the conventional Damköhler number and transition scale number as a dynamical measure of different mixing mechanisms. Relationships between the various microphysical measures and dynamical measures are investigated in search for a unified parameterization of entrainment-mixing processes. The results show that even with the same cloud water fraction, the thermodynamic and microphysical properties are different, especially for the decaying cases. Further analysis confirms that despite the detailed differences in cloud properties among the six simulation scenarios, the variety of turbulent entrainment-mixing mechanisms can be reasonably represented with power-law relationships between the microphysical homogeneous mixing degrees and the dynamical measures.« less

  1. Investigation of Turbulent Entrainment-Mixing Processes With a New Particle-Resolved Direct Numerical Simulation Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Zheng; Liu, Yangang; Li, Xiaolin

    Here, a new particle-resolved three dimensional direct numerical simulation (DNS) model is developed that combines Lagrangian droplet tracking with the Eulerian field representation of turbulence near the Kolmogorov microscale. Six numerical experiments are performed to investigate the processes of entrainment of clear air and subsequent mixing with cloudy air and their interactions with cloud microphysics. The experiments are designed to represent different combinations of three configurations of initial cloudy area and two turbulence modes (decaying and forced turbulence). Five existing measures of microphysical homogeneous mixing degree are examined, modified, and compared in terms of their ability as a unifying measuremore » to represent the effect of various entrainment-mixing mechanisms on cloud microphysics. Also examined and compared are the conventional Damköhler number and transition scale number as a dynamical measure of different mixing mechanisms. Relationships between the various microphysical measures and dynamical measures are investigated in search for a unified parameterization of entrainment-mixing processes. The results show that even with the same cloud water fraction, the thermodynamic and microphysical properties are different, especially for the decaying cases. Further analysis confirms that despite the detailed differences in cloud properties among the six simulation scenarios, the variety of turbulent entrainment-mixing mechanisms can be reasonably represented with power-law relationships between the microphysical homogeneous mixing degrees and the dynamical measures.« less

  2. Entrainment Zone Characteristics and Entrainment Rates in Cloud-Topped Boundary Layers from DYCOMS-II

    DTIC Science & Technology

    2012-03-01

    water and ozone across the EIL. The scalar variables from this flight (not shown) suggest significant horizontal variation in the free- troposphere ...near the cloud top where mixing occurs between dry free- troposphere air and moist turbulent air. Although the concept of the entrainment zone is...mixing occurs between dry free- troposphere air and moist turbulent air. Although the concept of the entrainment zone is clear, defining the top and

  3. ENTRAINMENT BY LIGAMENT-CONTROLLED EFFERVESCENT ATOMIZER-PRODUCED SPRAYS

    EPA Science Inventory

    Entrainment of ambient air into sprays produced by a new type of effervescent atomizer is reported. Entrainment data were obtained using a device similar to that described by Ricou & Spalding (1961). Entrainment data were analyzed using the model of Bush & Sojka (1994), in concer...

  4. Role of entrainment in convectively-coupled equatorial waves in an aquaplanet model

    NASA Astrophysics Data System (ADS)

    Peatman, Simon; Methven, John; Woolnough, Steve

    2016-04-01

    Equatorially-trapped waves are known to be one of the key phenomena in determining the distribution of convective precipitation in the tropics as well as being crucial to the dynamics of the Madden-Julian Oscillation. However, numerical weather prediction models struggle to sustain such waves for a realistic length of time, which has a significant impact on forecasting precipitation for regions such as equatorial Africa. It has been found in the past that enhancing the rate of moisture entrainment can improve certain aspects of parametrized tropical convection in climate models. A parameter F controls the rate of entrainment into the convective plume for deep- and mid-level convection, with F = 1 denoting the control case. Here it is found in an aquaplanet simulation that F > 1 produces more convective precipitation at all zonal wavenumbers. Furthermore, Kelvin wave activity increases for waves with low frequency and zonal wavenumber but is slightly suppressed for shorter, higher-frequency waves, and vice versa for westward-propagating waves. A change in entrainment rate also brings about a change in the basic state wind and humidity fields. Therefore, the question arises as to whether changes in wave activity are due directly to changes in the coupling to the humidity in the waves by entrainment or due to changes in the basic state. An experiment was devised in which the convective parametrization scheme is allowed to entrain a weighted sum of the environmental humidity and a prescribed zonally-symmetric climatology, with a parameter α controlling the extent of the decoupling from the environment. Experiments with this new mechanism in the parametrization scheme reveal a complex relationship. For long waves at low frequency (period > ˜13 days), removing zonal asymmetry in the humidity seen by the entrainment scheme has very little influence on the ratio of eastward- to westward-propagating power. At higher frequencies and zonal wavenumbers, removing this zonal

  5. Rhythmic entrainment as a musical affect induction mechanism.

    PubMed

    J Trost, W; Labbé, C; Grandjean, D

    2017-02-01

    One especially important feature of metrical music is that it contains periodicities that listeners' bodily rhythms can adapt to. Recent psychological frameworks have introduced the notion of rhythmic entrainment, among other mechanisms, as an emotion induction principle. In this review paper, we discuss rhythmic entrainment as an affect induction mechanism by differentiating four levels of entrainment in humans-perceptual, autonomic physiological, motor, and social-all of which could contribute to a subjective feeling component. We review the theoretical and empirical literature on rhythmic entrainment to music that supports the existence of these different levels of entrainment by describing the phenomena and characterizing the associated underlying brain processes. The goal of this review is to present the theoretical implications and empirical findings about rhythmic entrainment as an important principle at the basis of affect induction via music, since it rests upon the temporal dimension of music, which is a specificity of music as an affective stimulus. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Alignment strategies for the entrainment of music and movement rhythms.

    PubMed

    Moens, Bart; Leman, Marc

    2015-03-01

    Theories of entrainment assume that spontaneous entrainment emerges from dynamic laws that operate via mediators on interactions, whereby entrainment is facilitated if certain conditions are fulfilled. In this study, we show that mediators can be built that affect the entrainment of human locomotion to music. More specifically, we built D-Jogger, a music player that functions as a mediator between music and locomotion rhythms. The D-Jogger makes it possible to manipulate the timing differences between salient moments of the rhythms (beats and footfalls) through the manipulation of the musical period and phase, which affect the condition in which entrainment functions. We conducted several experiments to explore different strategies for manipulating the entrainment of locomotion and music. The results of these experiments showed that spontaneous entrainment can be manipulated, thereby suggesting different strategies on how to embark. The findings furthermore suggest a distinction among different modalities of entrainment: finding the beat (the most difficult part of entrainment), keeping the beat (easier, as a temporal scheme has been established), and being in phase (no entrainment is needed because the music is always adapted to the human rhythm). This study points to a new avenue of research on entrainment and opens new perspectives for the neuroscience of music. © 2014 New York Academy of Sciences.

  7. Air entrainment in hairy surfaces

    NASA Astrophysics Data System (ADS)

    Nasto, Alice; Regli, Marianne; Brun, P.-T.; Alvarado, José; Clanet, Christophe; Hosoi, A. E.

    2016-07-01

    Motivated by diving semiaquatic mammals, we investigate the mechanism of dynamic air entrainment in hairy surfaces submerged in liquid. Hairy surfaces are cast out of polydimethylsiloxane elastomer and plunged into a fluid bath at different velocities. Experimentally, we find that the amount of air entrained is greater than what is expected for smooth surfaces. Theoretically, we show that the hairy surface can be considered as a porous medium and we describe the air entrainment via a competition between the hydrostatic forcing and the viscous resistance in the pores. A phase diagram that includes data from our experiments and biological data from diving semiaquatic mammals is included to place the model system in a biological context and predict the regime for which the animal is protected by a plastron of air.

  8. Estimating Bulk Entrainment With Unaggregated and Aggregated Convection

    NASA Astrophysics Data System (ADS)

    Becker, Tobias; Bretherton, Christopher S.; Hohenegger, Cathy; Stevens, Bjorn

    2018-01-01

    To investigate how entrainment is influenced by convective organization, we use the ICON (ICOsahedral Nonhydrostatic) model in a radiative-convective equilibrium framework, with a 1 km spatial grid mesh covering a 600 by 520 km2 domain. We analyze two simulations, with unaggregated and aggregated convection, and find that, in the lower free troposphere, the bulk entrainment rate increases when convection aggregates. The increase of entrainment rate with aggregation is caused by a strong increase of turbulence in the close environment of updrafts, masking other effects like the increase of updraft size and of static stability with aggregation. Even though entrainment rate increases with aggregation, updraft buoyancy reduction through entrainment decreases because aggregated updrafts are protected by a moist shell. Parameterizations that wish to represent mesoscale convective organization would need to model this moist shell.

  9. Entrainment to an auditory signal: Is attention involved?

    PubMed

    Kunert, Richard; Jongman, Suzanne R

    2017-01-01

    Many natural auditory signals, including music and language, change periodically. The effect of such auditory rhythms on the brain is unclear however. One widely held view, dynamic attending theory, proposes that the attentional system entrains to the rhythm and increases attention at moments of rhythmic salience. In support, 2 experiments reported here show reduced response times to visual letter strings shown at auditory rhythm peaks, compared with rhythm troughs. However, we argue that an account invoking the entrainment of general attention should further predict rhythm entrainment to also influence memory for visual stimuli. In 2 pseudoword memory experiments we find evidence against this prediction. Whether a pseudoword is shown during an auditory rhythm peak or not is irrelevant for its later recognition memory in silence. Other attention manipulations, dividing attention and focusing attention, did result in a memory effect. This raises doubts about the suggested attentional nature of rhythm entrainment. We interpret our findings as support for auditory rhythm perception being based on auditory-motor entrainment, not general attention entrainment. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  10. Dryout-type critical heat flux in vertical upward annular flow: effects of entrainment rate, initial entrained fraction and diameter

    NASA Astrophysics Data System (ADS)

    Wu, Zan; Wadekar, Vishwas; Wang, Chenglong; Sunden, Bengt

    2018-01-01

    This study aims to reveal the effects of liquid entrainment, initial entrained fraction and tube diameter on liquid film dryout in vertical upward annular flow for flow boiling. Entrainment and deposition rates of droplets were included in mass conservation equations to estimate the local liquid film mass flux in annular flow, and the critical vapor quality at dryout conditions. Different entrainment rate correlations were evaluated using flow boiling data of water and organic liquids including n-pentane, iso-octane and R134a. Effect of the initial entrained fraction (IEF) at the churn-to-annular flow transition was also investigated. A transitional Boiling number was proposed to separate the IEF-sensitive region at high Boiling numbers and the IEF-insensitive region at low Boiling numbers. Besides, the diameter effect on dryout vapor quality was studied. The dryout vapor quality increases with decreasing tube diameter. It needs to be pointed out that the dryout characteristics of submillimeter channels might be different because of different mechanisms of dryout, i.e., drying of liquid film underneath long vapor slugs and flow boiling instabilities.

  11. Robust Entrainment of Circadian Oscillators Requires Specific Phase Response Curves

    PubMed Central

    Pfeuty, Benjamin; Thommen, Quentin; Lefranc, Marc

    2011-01-01

    The circadian clocks keeping time in many living organisms rely on self-sustained biochemical oscillations entrained by external cues, such as light, to the 24-h cycle induced by Earth's rotation. However, environmental cues are unreliable due to the variability of habitats, weather conditions, or cue-sensing mechanisms among individuals. A tempting hypothesis is that circadian clocks have evolved so as to be robust to fluctuations in the signal that entrains them. To support this hypothesis, we analyze the synchronization behavior of weakly and periodically forced oscillators in terms of their phase response curve (PRC), which measures phase changes induced by a perturbation applied at different times of the cycle. We establish a general relationship between the robustness of key entrainment properties, such as stability and oscillator phase, on the one hand, and the shape of the PRC as characterized by a specific curvature or the existence of a dead zone, on the other hand. The criteria obtained are applied to computational models of circadian clocks and account for the disparate robustness properties of various forcing schemes. Finally, the analysis of PRCs measured experimentally in several organisms strongly suggests a case of convergent evolution toward an optimal strategy for maintaining a clock that is accurate and robust to environmental fluctuations. PMID:21641300

  12. Spontaneous motor entrainment to music in multiple vocal mimicking species.

    PubMed

    Schachner, Adena; Brady, Timothy F; Pepperberg, Irene M; Hauser, Marc D

    2009-05-26

    The human capacity for music consists of certain core phenomena, including the tendency to entrain, or align movement, to an external auditory pulse [1-3]. This ability, fundamental both for music production and for coordinated dance, has been repeatedly highlighted as uniquely human [4-11]. However, it has recently been hypothesized that entrainment evolved as a by-product of vocal mimicry, generating the strong prediction that only vocal mimicking animals may be able to entrain [12, 13]. Here we provide comparative data demonstrating the existence of two proficient vocal mimicking nonhuman animals (parrots) that entrain to music, spontaneously producing synchronized movements resembling human dance. We also provide an extensive comparative data set from a global video database systematically analyzed for evidence of entrainment in hundreds of species both capable and incapable of vocal mimicry. Despite the higher representation of vocal nonmimics in the database and comparable exposure of mimics and nonmimics to humans and music, only vocal mimics showed evidence of entrainment. We conclude that entrainment is not unique to humans and that the distribution of entrainment across species supports the hypothesis that entrainment evolved as a by-product of selection for vocal mimicry.

  13. Fluvial entrainment of low density peat blocks (block carbon)

    NASA Astrophysics Data System (ADS)

    Warburton, Jeff

    2014-05-01

    In many fluvial environments low density materials are transported in significant quantities and these form an important part of the stream load and /or have a distinct impact on sedimentation in these environments. However, there are significant gaps in understanding of how these materials are entrained and transported by streams and rivers. Eroding upland peatland environments in particular, frequently have fluvial systems in which large eroded peat blocks, often exceeding 1 m in length; form an important component of the stream material flux. Transport of this material is significant in determining rates of erosion but also has important impacts in terms of damage to infrastructure and carbon loss. This paper describes a field experiment designed to establish for the first time the conditions under which large peat blocks (c. > 0.1 m b axis) are initially entrained from a rough gravel bed. The field site is Trout Beck, in the North Pennines, Northern England which is an upland wandering river channel with occasional lateral and mid channel bars. Mean low flow stage is typically 0.2 m but during flood can rapidly rise, in one to two hours, to over 1.5 m. To study peat block entrainment a bespoke data acquisition system consisting of two pressure transducers, four release triggers and time lapse camera was set up. The pressure transducers provided a record of local depth and the release triggers were embedded in peat blocks to record initial motion and arranged on the rough stream bed. The time lapse camera provided verification of timing of block entrainment (during daylight hours) and also provided information on the mechanism of initial movement. Peat blocks were cut from a local source and were equidimensional, ranging in size from 0.1 to 0.7 m. The derived entrainment function is related to a critical depth of entrainment. Results demonstrate that peat blocks are entrained when the local depth approximates the height of the peat block. Blocks frequently shift

  14. Air Entrainment in Steady Breaking Waves

    NASA Astrophysics Data System (ADS)

    Li, C. Y.; Duncan, J. H.; Wenz, A.; Full, O. E.

    1997-11-01

    Air entrainment due to steady breaking waves generated by fully submerged hydrofoils moving at constant speed and angle of attack is investigated experimentally. Three hydrofoils with the same shape (NACA 0012) but different chords (15, 20 and 30 cm) are used with Froude scaled operating conditions to generate the breaking waves. In this way, the effect of scale due to the combined influence of surface tension and viscosity on the bubble entrainment process is investigated. The bubbles are measured from plan-view and side-view 35-mm photographs of the wake. It is found that the number and average size of the bubbles increases dramatically with scale. High-speed movies of the turbulent breaking region that rides on the forward face of the wave are also used to observe bubble entrainment events. It is found that the bubbles are entrained periodically when the leading edge of the breaking region rushes forward and plunges over a pocket of air. This plunging process appears to become more frequent and more violent as the scale of the breaker increases.

  15. Nonphotic entrainment of the human circadian pacemaker

    NASA Technical Reports Server (NTRS)

    Klerman, E. B.; Rimmer, D. W.; Dijk, D. J.; Kronauer, R. E.; Rizzo, J. F. 3rd; Czeisler, C. A.

    1998-01-01

    In organisms as diverse as single-celled algae and humans, light is the primary stimulus mediating entrainment of the circadian biological clock. Reports that some totally blind individuals appear entrained to the 24-h day have suggested that nonphotic stimuli may also be effective circadian synchronizers in humans, although the nonphotic stimuli are probably comparatively weak synchronizers, because the circadian rhythms of many totally blind individuals "free run" even when they maintain a 24-h activity-rest schedule. To investigate entrainment by nonphotic synchronizers, we studied the endogenous circadian melatonin and core body temperature rhythms of 15 totally blind subjects who lacked conscious light perception and exhibited no suppression of plasma melatonin in response to ocular bright-light exposure. Nine of these fifteen blind individuals were able to maintain synchronization to the 24-h day, albeit often at an atypical phase angle of entrainment. Nonphotic stimuli also synchronized the endogenous circadian rhythms of a totally blind individual to a non-24-h schedule while living in constant near darkness. We conclude that nonphotic stimuli can entrain the human circadian pacemaker in some individuals lacking ocular circadian photoreception.

  16. Entrainment of Dungeness Crab in the Desdemona Shoals Reach of the Lower Columbia River Navigation Channel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pearson, Walter H.; Kohn, Nancy P.; Skalski, J. R.

    2006-09-30

    whether the high age 1+ entrainment rate at Desdemona Shoals in June 2002 unusual, or would it be observed again under similar conditions? PNNL and USACE personnel directly measured crab entrainment by the USACE hopper dredge Essayons working in Desdemona Shoals in June 2006. In addition to quantifying crab entrainment of all age classes, bottom salinity was directly measured in as many samples as possible, so that the relationship between crab entrainment and salinity could be further evaluated. All 2006 data were collected and analyzed in a manner consistent with the previous entrainment studies (Pearson et al. 2002, 2003, 2005).« less

  17. Entrainment and mixing in thrust augmenting ejectors

    NASA Technical Reports Server (NTRS)

    Bernal, L.; Sarohia, V.

    1983-01-01

    An experimental investigation of two-dimensional thrust augmenting ejector flows has been conducted. Measurements of the shroud surface pressure distribution, mean velocity, turbulent intensities and Reynolds stresses were made in two shroud geometries at various primary nozzle pressure ratios. The effects of shroud geometry and primary nozzle pressure ratio on the shroud surface pressure distribution, mean flow field and turbulent field were determined. From these measurements the evolution of mixing within the shroud of the primary flow and entrained fluid was obtained. The relationship between the mean flow field, the turbulent field and the shroud surface pressure distribution is discussed.

  18. The ecology of entrainment: Foundations of coordinated rhythmic movement.

    PubMed

    Phillips-Silver, Jessica; Aktipis, C Athena; Bryant, Gregory A

    2010-09-01

    Entrainment has been studied in a variety of contexts including music perception, dance, verbal communication and motor coordination more generally. Here we seek to provide a unifying framework that incorporates the key aspects of entrainment as it has been studied in these varying domains. We propose that there are a number of types of entrainment that build upon pre-existing adaptations that allow organisms to perceive stimuli as rhythmic, to produce periodic stimuli, and to integrate the two using sensory feedback. We suggest that social entrainment is a special case of spatiotemporal coordination where the rhythmic signal originates from another individual. We use this framework to understand the function and evolutionary basis for coordinated rhythmic movement and to explore questions about the nature of entrainment in music and dance. The framework of entrainment presented here has a number of implications for the vocal learning hypothesis and other proposals for the evolution of coordinated rhythmic behavior across an array of species.

  19. The ecology of entrainment: Foundations of coordinated rhythmic movement

    PubMed Central

    Phillips-Silver, Jessica; Aktipis, C. Athena; Bryant, Gregory A.

    2011-01-01

    Entrainment has been studied in a variety of contexts including music perception, dance, verbal communication and motor coordination more generally. Here we seek to provide a unifying framework that incorporates the key aspects of entrainment as it has been studied in these varying domains. We propose that there are a number of types of entrainment that build upon pre-existing adaptations that allow organisms to perceive stimuli as rhythmic, to produce periodic stimuli, and to integrate the two using sensory feedback. We suggest that social entrainment is a special case of spatiotemporal coordination where the rhythmic signal originates from another individual. We use this framework to understand the function and evolutionary basis for coordinated rhythmic movement and to explore questions about the nature of entrainment in music and dance. The framework of entrainment presented here has a number of implications for the vocal learning hypothesis and other proposals for the evolution of coordinated rhythmic behavior across an array of species. PMID:21776183

  20. Projected entrainment of fish resulting from aggregate dredging.

    PubMed

    Drabble, Ray

    2012-02-01

    Previous research to assess impacts from aggregate dredging has focussed on infaunal species with few studies made of fish entrainment. Entrainment evidence from hydraulic dredging studies is reviewed to develop a sensitivity index for benthic fish. Environmental monitoring attendant with the granting of new licences in the Eastern Channel Region (ECR) in 2006 offers a unique opportunity to assess the effects of dredging upon fish. Projected theoretical fish entrainment rates are calculated based upon: abundance data from 4m beam trawl sampling of fish species over the period 2005-2008; sensitivity data; and dredging activity and footprint derived from Electronic monitoring System (EMS) data. Results have been compared with actual entrainment rates and also against summary results from independent analysis of the changes in fish population over the period 2005-2008 (Drabble, 2012). The case is made for entrainment surveys to form part of impact monitoring for marine aggregate dredging. Copyright © 2011 Elsevier Ltd. All rights reserved.

  1. Percentage entrainment of constituent loads in urban runoff, south Florida

    USGS Publications Warehouse

    Miller, R.A.

    1985-01-01

    Runoff quantity and quality data from four urban basins in south Florida were analyzed to determine the entrainment of total nitrogen, total phosphorus, total carbon, chemical oxygen demand, suspended solids, and total lead within the stormwater runoff. Land use of the homogeneously developed basins are residential (single family), highway, commercial, and apartment (multifamily). A computational procedure was used to calculate, for all storms that had water-quality data, the percentage of constituent load entrainment in specified depths of runoff. The plot of percentage of constituent load entrained as a function of runoff is termed the percentage-entrainment curve. Percentage-entrainment curves were developed for three different source areas of basin runoff: (1) the hydraulically effective impervious area, (2) the contributing area, and (3) the drainage area. With basin runoff expressed in inches over the contributing area, the depth of runoff required to remove 90 percent of the constituent load ranged from about 0.4 inch to about 1.4 inches; and to remove 80 percent, from about 0.3 to 0.9 inch. Analysis of variance, using depth of runoff from the contributing area as the response variable, showed that the factor 'basin' is statistically significant, but that the factor 'constituent' is not statistically significant in the forming of the percentage-entrainment curve. Evidently the sewerage design, whether elongated or concise in plan dictates the shape of the percentage-entrainment curve. The percentage-entrainment curves for all constituents were averaged for each basin and plotted against basin runoff for three source areas of runoff-the hydraulically effective impervious area, the contributing area, and the drainage area. The relative positions of the three curves are directly related to the relative sizes of the three source areas considered. One general percentage-entrainment curve based on runoff from the contributing area was formed by averaging across

  2. Examination of turbulent entrainment-mixing mechanisms using a combined approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, C.; Liu, Y.; Niu, S.

    2011-10-01

    Turbulent entrainment-mixing mechanisms are investigated by applying a combined approach to the aircraft measurements of three drizzling and two nondrizzling stratocumulus clouds collected over the U.S. Department of Energy's Atmospheric Radiation Measurement Southern Great Plains site during the March 2000 cloud Intensive Observation Period. Microphysical analysis shows that the inhomogeneous entrainment-mixing process occurs much more frequently than the homogeneous counterpart, and most cases of the inhomogeneous entrainment-mixing process are close to the extreme scenario, having drastically varying cloud droplet concentration but roughly constant volume-mean radius. It is also found that the inhomogeneous entrainment-mixing process can occur both near the cloudmore » top and in the middle level of a cloud, and in both the nondrizzling clouds and nondrizzling legs in the drizzling clouds. A new dimensionless number, the scale number, is introduced as a dynamical measure for different entrainment-mixing processes, with a larger scale number corresponding to a higher degree of homogeneous entrainment mixing. Further empirical analysis shows that the scale number that separates the homogeneous from the inhomogeneous entrainment-mixing process is around 50, and most legs have smaller scale numbers. Thermodynamic analysis shows that sampling average of filament structures finer than the instrumental spatial resolution also contributes to the dominance of inhomogeneous entrainment-mixing mechanism. The combined microphysical-dynamical-thermodynamic analysis sheds new light on developing parameterization of entrainment-mixing processes and their microphysical and radiative effects in large-scale models.« less

  3. Controls on sediment entrainment shear stress determined from X-Ray CT scans and a 3D moment-balance model

    NASA Astrophysics Data System (ADS)

    Hodge, R. A.; Voepel, H.; Leyland, J.; Sear, D. A.; Ahmed, S. I.

    2017-12-01

    The shear stress at which a grain is entrained is determined by the balance between the applied fluid forces, and the resisting forces of the grain. Recent research has tended to focus on the applied fluid forces; calculating the resisting forces requires measurement of the geometry of in-situ sediment grains which has previously been very difficult to measure. We have used CT scanning to measure the grain geometry of in-situ water-worked grains, and from these data have calculated metrics that are relevant to grain entrainment. We use these metrics to parameterise a new, fully 3D, moment-balance model of grain entrainment. Inputs to the model are grain dimensions, exposed area, elevation relative to the velocity profile, the location of grain-grain contact points, and contact area with fine matrix sediment. The new CT data and model mean that assumptions of previous grain-entrainment models (e.g. spherical grains, 1D measurements of protrusion, entrainment in the downstream direction) are no longer necessary. The model calculates the critical shear stress for each possible set of contact points, and outputs the lowest value. Consequently, metrics including pivot angle and the direction of grain entrainment are now model outputs, rather than having to be pre-determined. We use the CT data and model to calculate the critical shear stress of 1092 in-situ grains from baskets that were buried and water-worked in a flume prior to scanning. We find that there is no consistent relationship between relative grain size (D/D50) and pivot angle, whereas there is a negative relationship between D/D50 and protrusion. Out of all measured metrics, critical shear stress is most strongly controlled by protrusion. This finding suggests that grain-scale topographic data could be used to estimate grain protrusion and hence improve estimates of critical shear stress.

  4. Entrainment and high-density three-dimensional mapping in right atrial macroreentry provide critical complementary information: Entrainment may unmask "visual reentry" as passive.

    PubMed

    Pathik, Bhupesh; Lee, Geoffrey; Nalliah, Chrishan; Joseph, Stephen; Morton, Joseph B; Sparks, Paul B; Sanders, Prashanthan; Kistler, Peter M; Kalman, Jonathan M

    2017-10-01

    With the recent advent of high-density (HD) 3-dimensional (3D) mapping, the utility of entrainment is uncertain. However, the limitations of visual representation and interpretation of these high-resolution 3D maps are unclear. The purpose of this study was to determine the strengths and limitations of both HD 3D mapping and entrainment mapping during mapping of right atrial macroreentry. Fifteen patients were studied. The number and type of circuits accounting for ≥90% of the tachycardia cycle length using HD 3D mapping were verified using systematic entrainment mapping. Entrainment sites with an unexpectedly long postpacing interval despite proximity to the active circuit were evaluated. Based on HD 3D mapping, 27 circuits were observed: 12 peritricuspid, 2 upper loop reentry, 10 lower loop reentry, and 3 lateral wall circuits. With entrainment, 17 of the 27 circuits were active: all 12 peritricuspid and 2 upper loop reentry. However, lower loop reentry was confirmed in only 3 of 10, and none of the 3 lateral wall circuits were present. Mean percentage of tachycardia cycle length covered by active circuits was 98% ± 1% vs 97% ± 2% for passive circuits (P = .09). None of the 345 entrainment runs terminated tachycardia or changed tachycardia mechanism. In 8 of 15 patients, 13 examples of unexpectedly long postpacing interval were observed at entrainment sites located distal to localized zones of slow conduction seen on HD 3D mapping. Using HD 3D mapping, "visual reentry" may be due to passive circuitous propagation rather than a critical reentrant circuit. HD 3D mapping provides new insights into regional conduction and helps explain unusual entrainment phenomena. Copyright © 2017 Heart Rhythm Society. Published by Elsevier Inc. All rights reserved.

  5. Flowmeter for gas-entrained solids flow

    DOEpatents

    Porges, Karl G.

    1990-01-01

    An apparatus and method for the measurement of solids feedrate in a gas-entrained solids flow conveyance system. The apparatus and method of the present invention include a vertical duct connecting a source of solids to the gas-entrained flow conveyance system, a control valve positioned in the vertical duct, and a capacitive densitometer positioned along the duct at a location a known distance below the control valved so that the solid feedrate, Q, of the gas entrained flow can be determined by Q=S.rho..phi.V.sub.S where S is the cross sectional area of the duct, .rho. is the density of the solid, .phi. is the solid volume fraction determined by the capacitive densitometer, and v.sub.S is the local solid velocity which can be inferred from the konown distance of the capacitive densitometer below the control valve.

  6. Freeze-thaw durability of microwave cured air-entrained concrete

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pheeraphan, T.; Leung, C.K.Y.

    1997-03-01

    The strength development of concrete can be greatly accelerated by curing with microwave energy. Microwave curing can therefore be beneficial to construction operations such as concrete precasting and repair. To provide freeze-thaw durability for infrastructure applications, air entrainment has to be introduced. In this investigation, the freeze-thaw resistance of microwave cured air-entrained concrete is measured, and compared to that of air-entrained concrete under normal curing. Their compressive strength at 14 days and air-void characteristics are also measured and compared. The test results indicate that microwave curing can impair the freeze-thaw durability of high w/c concrete but not for low w/cmore » concrete. Also, under microwave curing, the decrease in strength due to air entrainment becomes more significant. Based on these observations, it is recommended that for microwave cured air-entrained concrete, a low w/c ratio should be employed.« less

  7. Timescales of Massive Human Entrainment

    PubMed Central

    Fusaroli, Riccardo; Perlman, Marcus; Mislove, Alan; Paxton, Alexandra; Matlock, Teenie; Dale, Rick

    2015-01-01

    The past two decades have seen an upsurge of interest in the collective behaviors of complex systems composed of many agents entrained to each other and to external events. In this paper, we extend the concept of entrainment to the dynamics of human collective attention. We conducted a detailed investigation of the unfolding of human entrainment—as expressed by the content and patterns of hundreds of thousands of messages on Twitter—during the 2012 US presidential debates. By time-locking these data sources, we quantify the impact of the unfolding debate on human attention at three time scales. We show that collective social behavior covaries second-by-second to the interactional dynamics of the debates: A candidate speaking induces rapid increases in mentions of his name on social media and decreases in mentions of the other candidate. Moreover, interruptions by an interlocutor increase the attention received. We also highlight a distinct time scale for the impact of salient content during the debates: Across well-known remarks in each debate, mentions in social media start within 5–10 seconds after it occurs; peak at approximately one minute; and slowly decay in a consistent fashion across well-known events during the debates. Finally, we show that public attention after an initial burst slowly decays through the course of the debates. Thus we demonstrate that large-scale human entrainment may hold across a number of distinct scales, in an exquisitely time-locked fashion. The methods and results pave the way for careful study of the dynamics and mechanisms of large-scale human entrainment. PMID:25880357

  8. Doing Duo - a case study of entrainment in William Forsythe's choreography "Duo".

    PubMed

    Waterhouse, Elizabeth; Watts, Riley; Bläsing, Bettina E

    2014-01-01

    Entrainment theory focuses on processes in which interacting (i.e., coupled) rhythmic systems stabilize, producing synchronization in the ideal sense, and forms of phase related rhythmic coordination in complex cases. In human action, entrainment involves spatiotemporal and social aspects, characterizing the meaningful activities of music, dance, and communication. How can the phenomenon of human entrainment be meaningfully studied in complex situations such as dance? We present an in-progress case study of entrainment in William Forsythe's choreography Duo, a duet in which coordinated rhythmic activity is achieved without an external musical beat and without touch-based interaction. Using concepts of entrainment from different disciplines as well as insight from Duo performer Riley Watts, we question definitions of entrainment in the context of dance. The functions of chorusing, turn-taking, complementary action, cues, and alignments are discussed and linked to supporting annotated video material. While Duo challenges the definition of entrainment in dance as coordinated response to an external musical or rhythmic signal, it supports the definition of entrainment as coordinated interplay of motion and sound production by active agents (i.e., dancers) in the field. Agreeing that human entrainment should be studied on multiple levels, we suggest that entrainment between the dancers in Duo is elastic in time and propose how to test this hypothesis empirically. We do not claim that our proposed model of elasticity is applicable to all forms of human entrainment nor to all examples of entrainment in dance. Rather, we suggest studying higher order phase correction (the stabilizing tendency of entrainment) as a potential aspect to be incorporated into other models.

  9. A New Approach for Estimating Entrainment Rate in Cumulus Clouds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu C.; Liu, Y.; Yum, S. S.

    2012-02-16

    A new approach is presented to estimate entrainment rate in cumulus clouds. The new approach is directly derived from the definition of fractional entrainment rate and relates it to mixing fraction and the height above cloud base. The results derived from the new approach compare favorably with those obtained with a commonly used approach, and have smaller uncertainty. This new approach has several advantages: it eliminates the need for in-cloud measurements of temperature and water vapor content, which are often problematic in current aircraft observations; it has the potential for straightforwardly connecting the estimation of entrainment rate and the microphysicalmore » effects of entrainment-mixing processes; it also has the potential for developing a remote sensing technique to infer entrainment rate.« less

  10. Broadening of cloud droplet spectra through turbulent entrainment and eddy hopping

    NASA Astrophysics Data System (ADS)

    Abade, Gustavo; Grabowski, Wojciech; Pawlowska, Hanna

    2017-11-01

    This work discusses the effect of cloud turbulence and turbulent entrainment on the evolution of the cloud droplet-size spectrum. We simulate an ensemble of idealized turbulent cloud parcels that are subject to entrainment events, modeled as a random Poisson process. Entrainment events, subsequent turbulent mixing inside the parcel, supersaturation fluctuations, and the resulting stochastic droplet growth by condensation are simulated using a Monte Carlo scheme. Quantities characterizing the turbulence intensity, entrainment rate and the mean fraction of environmental air entrained in an event are specified as external parameters. Cloud microphysics is described by applying Lagrangian particles, the so-called superdroplets. They are either unactivated cloud condensation nuclei (CCN) or cloud droplets that form from activated CCN. The model accounts for the transport of environmental CCN into the cloud by the entraining eddies at the cloud edge. Turbulent mixing of the entrained dry air with cloudy air is described using a linear model. We show that turbulence plays an important role in aiding entrained CCN to activate, providing a source of small cloud droplets and thus broadening the droplet size distribution. Further simulation results will be reported at the meeting.

  11. Turbulent entrainment across turbulent-nonturbulent interfaces in stably stratified mixing layers

    NASA Astrophysics Data System (ADS)

    Watanabe, T.; Riley, J. J.; Nagata, K.

    2017-10-01

    The entrainment process in stably stratified mixing layers is studied in relation to the turbulent-nonturbulent interface (TNTI) using direct numerical simulations. The statistics are calculated with the interface coordinate in an Eulerian frame as well as with the Lagrangian fluid particles entrained from the nonturbulent to the turbulent regions. The characteristics of entrainment change as the buoyancy Reynolds number Reb decreases and the flow begins to layer. The baroclinic torque delays the enstrophy growth of the entrained fluids at small Reb, while this effect is less efficient for large Reb. The entrained particle movement within the TNTI layer is dominated by the small dissipative scales, and the rapid decay of the kinetic energy dissipation rate due to buoyancy causes the entrained particle movement relative to the interface location to become slower. Although the Eulerian statistics confirm that there exists turbulent fluid with strong vorticity or with large buoyancy frequency near the TNTI, the entrained fluid particles circumvent these regions by passing through the TNTI in strain-dominant regions or in regions with small buoyancy frequency. The multiparticle statistics show that once the nonturbulent fluid volumes are entrained, they are deformed into flattened shapes in the vertical direction and diffuse in the horizontal direction. When Reb is large enough for small-scale turbulence to exist, the entrained fluid is able to penetrate into the turbulent core region. Once the flow begins to layer with decreasing Reb, however, the entrained fluid volume remains near the outer edge of the turbulent region and forms a stably stratified layer without vertical overturning.

  12. Selective Entrainment of Theta Oscillations in the Dorsal Stream Causally Enhances Auditory Working Memory Performance.

    PubMed

    Albouy, Philippe; Weiss, Aurélien; Baillet, Sylvain; Zatorre, Robert J

    2017-04-05

    The implication of the dorsal stream in manipulating auditory information in working memory has been recently established. However, the oscillatory dynamics within this network and its causal relationship with behavior remain undefined. Using simultaneous MEG/EEG, we show that theta oscillations in the dorsal stream predict participants' manipulation abilities during memory retention in a task requiring the comparison of two patterns differing in temporal order. We investigated the causal relationship between brain oscillations and behavior by applying theta-rhythmic TMS combined with EEG over the MEG-identified target (left intraparietal sulcus) during the silent interval between the two stimuli. Rhythmic TMS entrained theta oscillation and boosted participants' accuracy. TMS-induced oscillatory entrainment scaled with behavioral enhancement, and both gains varied with participants' baseline abilities. These effects were not seen for a melody-comparison control task and were not observed for arrhythmic TMS. These data establish theta activity in the dorsal stream as causally related to memory manipulation. VIDEO ABSTRACT. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Effect of particle entrainment on the runout of pyroclastic density currents

    NASA Astrophysics Data System (ADS)

    Fauria, Kristen E.; Manga, Michael; Chamberlain, Michael

    2016-09-01

    Pyroclastic density currents (PDCs) can erode soil and bedrock, yet we currently lack a mechanistic understanding of particle entrainment that can be incorporated into models and used to understand how PDC bulking affects runout. Here we quantify how particle splash, the ejection of particles due to impact by a projectile, entrains particles into dilute PDCs. We use scaled laboratory experiments to measure the mass of sand ejected by impacts of pumice, wood, and nylon spheres. We then derive an expression for particle splash that we validate with our experimental results as well as results from seven other studies. We find that the number of ejected particles scales with the kinetic energy of the impactor and the depth of the crater generated by the impactor. Last, we use a one-dimensional model of a dilute, compressible density current—where runout distance is controlled by air entrainment and particle exchange with the substrate—to examine how particle entrainment by splash affects PDC density and runout. Splash-driven particle entrainment can increase the runout distance of dilute PDCs by an order of magnitude. Furthermore, the temperature of entrained particles greatly affects runout and PDCs that entrain ambient temperature particles runout farther than those that entrain hot particles. Particle entrainment by splash therefore not only increases the runout of dilute PDCs but demonstrates that the temperature and composition of the lower boundary have consequences for PDC density, temperature, runout, hazards and depositional record.

  14. Activating and relaxing music entrains the speed of beat synchronized walking.

    PubMed

    Leman, Marc; Moelants, Dirk; Varewyck, Matthias; Styns, Frederik; van Noorden, Leon; Martens, Jean-Pierre

    2013-01-01

    Inspired by a theory of embodied music cognition, we investigate whether music can entrain the speed of beat synchronized walking. If human walking is in synchrony with the beat and all musical stimuli have the same duration and the same tempo, then differences in walking speed can only be the result of music-induced differences in stride length, thus reflecting the vigor or physical strength of the movement. Participants walked in an open field in synchrony with the beat of 52 different musical stimuli all having a tempo of 130 beats per minute and a meter of 4 beats. The walking speed was measured as the walked distance during a time interval of 30 seconds. The results reveal that some music is 'activating' in the sense that it increases the speed, and some music is 'relaxing' in the sense that it decreases the speed, compared to the spontaneous walked speed in response to metronome stimuli. Participants are consistent in their observation of qualitative differences between the relaxing and activating musical stimuli. Using regression analysis, it was possible to set up a predictive model using only four sonic features that explain 60% of the variance. The sonic features capture variation in loudness and pitch patterns at periods of three, four and six beats, suggesting that expressive patterns in music are responsible for the effect. The mechanism may be attributed to an attentional shift, a subliminal audio-motor entrainment mechanism, or an arousal effect, but further study is needed to figure this out. Overall, the study supports the hypothesis that recurrent patterns of fluctuation affecting the binary meter strength of the music may entrain the vigor of the movement. The study opens up new perspectives for understanding the relationship between entrainment and expressiveness, with the possibility to develop applications that can be used in domains such as sports and physical rehabilitation.

  15. Speech Entrainment Compensates for Broca's Area Damage

    PubMed Central

    Fridriksson, Julius; Basilakos, Alexandra; Hickok, Gregory; Bonilha, Leonardo; Rorden, Chris

    2015-01-01

    Speech entrainment (SE), the online mimicking of an audiovisual speech model, has been shown to increase speech fluency in patients with Broca's aphasia. However, not all individuals with aphasia benefit from SE. The purpose of this study was to identify patterns of cortical damage that predict a positive response SE's fluency-inducing effects. Forty-four chronic patients with left hemisphere stroke (15 female) were included in this study. Participants completed two tasks: 1) spontaneous speech production, and 2) audiovisual SE. Number of different words per minute was calculated as a speech output measure for each task, with the difference between SE and spontaneous speech conditions yielding a measure of fluency improvement. Voxel-wise lesion-symptom mapping (VLSM) was used to relate the number of different words per minute for spontaneous speech, SE, and SE-related improvement to patterns of brain damage in order to predict lesion locations associated with the fluency-inducing response to speech entrainment. Individuals with Broca's aphasia demonstrated a significant increase in different words per minute during speech entrainment versus spontaneous speech. A similar pattern of improvement was not seen in patients with other types of aphasia. VLSM analysis revealed damage to the inferior frontal gyrus predicted this response. Results suggest that SE exerts its fluency-inducing effects by providing a surrogate target for speech production via internal monitoring processes. Clinically, these results add further support for the use of speech entrainment to improve speech production and may help select patients for speech entrainment treatment. PMID:25989443

  16. Entrainment of Air into Vertical Jets in a Crosswind

    NASA Astrophysics Data System (ADS)

    Roberts, K. K.; Solovitz, S.; Freedland, G.; Camp, E.; Cal, R. B.; Mastin, L. G.

    2015-12-01

    During volcanic eruptions, ash concentration must be determined for aviation safety, but the limiting threshold is difficult to distinguish visually. Computational models are typically used to predict ash concentrations, using inputs such as plume height, eruptive duration, and wind speeds. The models also depend on empirical parameters, such as the entrainment of atmospheric air as a ratio of the air inflow speed and the jet speed. Entrainment of atmospheric air plays a critical role in the behavior of volcanic plumes in the atmosphere, impacting the mass flow rate, buoyancy, and particle concentration of the plume. This process is more complex in a crosswind, leading to greater uncertainty in the model results. To address these issues, a laboratory-scale study has been conducted to improve the entrainment models. Observations of a vertical, unconfined jet are performed using Particle Image Velocimetry, while varying jet density using different compressed gases and Reynolds number. To test the effects of a crosswind on plume entrainment rates, these are then compared with similar jet experiments in a wind tunnel. A series of jet geometries, jet speeds and tunnel speeds are considered. The measured velocities are used to determine the entrainment response, which can be used to determine ash concentration over time as atmospheric air is entrained into the plume. We also quantify the mean and the fluctuations in flow velocity.

  17. Viscous entrainment on hairy surfaces

    NASA Astrophysics Data System (ADS)

    Nasto, Alice; Brun, P.-T.; Hosoi, A. E.

    2018-02-01

    Nectar-drinking bats and honeybees have tongues covered with hairlike structures, enhancing their ability to take up viscous nectar by dipping. Using a combination of model experiments and theory, we explore the physical mechanisms that govern viscous entrainment in a hairy texture. Hairy surfaces are fabricated using laser cut molds and casting samples with polydimethylsiloxane (PDMS) elastomer. We model the liquid trapped within the texture using a Darcy-Brinkmann-like approach and derive the drainage flow solution. The amount of fluid that is entrained is dependent on the viscosity of the fluid, the density of the hairs, and the withdrawal speed. Both experiments and theory reveal an optimal hair density to maximize fluid uptake.

  18. Experimental study of near-field entrainment of moderately overpressured jets

    USGS Publications Warehouse

    Solovitz, S.A.; Mastin, L.G.; Saffaraval, F.

    2011-01-01

    Particle image velocimetry (PIV) experiments have been conducted to study the velocity flow fields in the developing flow region of high-speed jets. These velocity distributions were examined to determine the entrained mass flow over a range of geometric and flow conditions, including overpressured cases up to an overpressure ratio of 2.83. In the region near the jet exit, all measured flows exhibited the same entrainment up until the location of the first shock when overpressured. Beyond this location, the entrainment was reduced with increasing overpressure ratio, falling to approximately 60 of the magnitudes seen when subsonic. Since entrainment ratios based on lower speed, subsonic results are typically used in one-dimensional volcanological models of plume development, the current analytical methods will underestimate the likelihood of column collapse. In addition, the concept of the entrainment ratio normalization is examined in detail, as several key assumptions in this methodology do not apply when overpressured.

  19. Irregular Speech Rate Dissociates Auditory Cortical Entrainment, Evoked Responses, and Frontal Alpha

    PubMed Central

    Kayser, Stephanie J.; Ince, Robin A.A.; Gross, Joachim

    2015-01-01

    The entrainment of slow rhythmic auditory cortical activity to the temporal regularities in speech is considered to be a central mechanism underlying auditory perception. Previous work has shown that entrainment is reduced when the quality of the acoustic input is degraded, but has also linked rhythmic activity at similar time scales to the encoding of temporal expectations. To understand these bottom-up and top-down contributions to rhythmic entrainment, we manipulated the temporal predictive structure of speech by parametrically altering the distribution of pauses between syllables or words, thereby rendering the local speech rate irregular while preserving intelligibility and the envelope fluctuations of the acoustic signal. Recording EEG activity in human participants, we found that this manipulation did not alter neural processes reflecting the encoding of individual sound transients, such as evoked potentials. However, the manipulation significantly reduced the fidelity of auditory delta (but not theta) band entrainment to the speech envelope. It also reduced left frontal alpha power and this alpha reduction was predictive of the reduced delta entrainment across participants. Our results show that rhythmic auditory entrainment in delta and theta bands reflect functionally distinct processes. Furthermore, they reveal that delta entrainment is under top-down control and likely reflects prefrontal processes that are sensitive to acoustical regularities rather than the bottom-up encoding of acoustic features. SIGNIFICANCE STATEMENT The entrainment of rhythmic auditory cortical activity to the speech envelope is considered to be critical for hearing. Previous work has proposed divergent views in which entrainment reflects either early evoked responses related to sound encoding or high-level processes related to expectation or cognitive selection. Using a manipulation of speech rate, we dissociated auditory entrainment at different time scales. Specifically, our

  20. Tuning Neural Phase Entrainment to Speech.

    PubMed

    Falk, Simone; Lanzilotti, Cosima; Schön, Daniele

    2017-08-01

    Musical rhythm positively impacts on subsequent speech processing. However, the neural mechanisms underlying this phenomenon are so far unclear. We investigated whether carryover effects from a preceding musical cue to a speech stimulus result from a continuation of neural phase entrainment to periodicities that are present in both music and speech. Participants listened and memorized French metrical sentences that contained (quasi-)periodic recurrences of accents and syllables. Speech stimuli were preceded by a rhythmically regular or irregular musical cue. Our results show that the presence of a regular cue modulates neural response as estimated by EEG power spectral density, intertrial coherence, and source analyses at critical frequencies during speech processing compared with the irregular condition. Importantly, intertrial coherences for regular cues were indicative of the participants' success in memorizing the subsequent speech stimuli. These findings underscore the highly adaptive nature of neural phase entrainment across fundamentally different auditory stimuli. They also support current models of neural phase entrainment as a tool of predictive timing and attentional selection across cognitive domains.

  1. Sensory Entrainment Mechanisms in Auditory Perception: Neural Synchronization Cortico-Striatal Activation.

    PubMed

    Sameiro-Barbosa, Catia M; Geiser, Eveline

    2016-01-01

    The auditory system displays modulations in sensitivity that can align with the temporal structure of the acoustic environment. This sensory entrainment can facilitate sensory perception and is particularly relevant for audition. Systems neuroscience is slowly uncovering the neural mechanisms underlying the behaviorally observed sensory entrainment effects in the human sensory system. The present article summarizes the prominent behavioral effects of sensory entrainment and reviews our current understanding of the neural basis of sensory entrainment, such as synchronized neural oscillations, and potentially, neural activation in the cortico-striatal system.

  2. Modeling of neutral entrainment in an FRC thruster

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brackbill, Jeremiah; Gimelshein, Natalia; Gimelshein, Sergey

    2012-11-27

    Neutral entrainment in a field reversed configuration thruster is modeled numerically with an implicit PIC code extended to include thermal and chemical interactions between plasma and neutral particles. The contribution of charge exchange and electron impact ionization reactions is analyzed, and the sensitivity of the entrainment efficiency to the plasmoid translation velocity and neutral density is evaluated.

  3. Investigating the Sensitivity of Model Intraseasonal Variability to Minimum Entrainment

    NASA Astrophysics Data System (ADS)

    Hannah, W. M.; Maloney, E. D.

    2008-12-01

    Previous studies have shown that using a Relaxed Arakawa-Schubert (RAS) convective parameterization with appropriate convective triggers and assumptions about rain re-evaporation produces realistic intraseasonal variability. RAS represents convection with an ensemble of clouds detraining at different heights, each with different entrainment rate, the highest clouds having the lowest entrainment rates. If tropospheric temperature gradients are weak and boundary layer moist static energy is relatively constant, then by limiting the minimum entrainment rate deep convection is suppressed in the presence of dry tropospheric air. This allows moist static energy to accumulate and be discharged during strong intraseasonal convective events, which is consistent with the discharge/recharge paradigm. This study will examine the sensitivity of intra-seasonal variability to changes in minimum entrainment rate in the NCAR-CAM3 with the RAS scheme. Simulations using several minimum entrainment rate thresholds will be investigated. A frequency-wavenumber analysis will show the improvement of the MJO signal as minimum entrainment rate is increased. The spatial and vertical structure of MJO-like disturbances will be examined, including an analysis of the time evolution of vertical humidity distribution for each simulation. Simulated results will be compared to observed MJO events in NCEP-1 reanalysis and CMAP precipitation.

  4. Elementary theory of bed-sediment entrainment by debris flows and avalanches

    USGS Publications Warehouse

    Iverson, Richard M.

    2012-01-01

    Analyses of mass and momentum exchange between a debris flow or avalanche and an underlying sediment layer aid interpretations and predictions of bed-sediment entrainment rates. A preliminary analysis assesses the behavior of a Coulomb slide block that entrains bed material as it descends a uniform slope. The analysis demonstrates that the block's momentum can grow unstably, even in the presence of limited entrainment efficiency. A more-detailed, depth-integrated continuum analysis of interacting, deformable bodies identifies mechanical controls on entrainment efficiency, and shows that entrainment rates satisfy a jump condition that involves shear-traction and velocity discontinuities at the flow-bed boundary. Explicit predictions of the entrainment rateEresult from making reasonable assumptions about flow velocity profiles and boundary shear tractions. For Coulomb-friction tractions, predicted entrainment rates are sensitive to pore fluid pressures that develop in bed sediment as it is overridden. In the simplest scenario the bed sediment liquefies completely, and the entrainment-rate equation reduces toE = 2μ1gh1 cos θ(1 − λ1)/ , where θ is the slope angle, μ1 is the flow's Coulomb friction coefficient, h1 is its thickness, λ1 is its degree of liquefaction, and is its depth-averaged velocity. For values ofλ1ranging from 0.5 to 0.8, this equation predicts entrainment rates consistent with rates of 0.05 to 0.1 m/s measured in large-scale debris-flow experiments in which wet sediment beds liquefied almost completely. The propensity for bed liquefaction depends on several factors, including sediment porosity, permeability, and thickness, and rates of compression and shear deformation that occur when beds are overridden.

  5. Entrainment of spontaneously hypertensive rat fibroblasts by temperature cycles.

    PubMed

    Sládek, Martin; Sumová, Alena

    2013-01-01

    The functional state of the circadian system of spontaneously hypertensive rats (SHR) differs in several characteristics from the functional state of normotensive Wistar rats. Some of these changes might be due to the compromised ability of the central pacemaker to entrain the peripheral clocks. Daily body temperature cycles represent one of the important cues responsible for the integrity of the circadian system, because these cycles are driven by the central pacemaker and are able to entrain the peripheral clocks. This study tested the hypothesis that the aberrant peripheral clock entrainment of SHR results from a compromised peripheral clock sensitivity to the daily temperature cycle resetting. Using cultured Wistar rat and SHR fibroblasts transfected with the circadian luminescence reporter Bmal1-dLuc, we demonstrated that two consecutive square-wave temperature cycles with amplitudes of 2.5 °C are necessary and sufficient to restart the dampened oscillations and entrain the circadian clocks in both Wistar rat and SHR fibroblasts. We also generated a phase response curve to temperature cycles for fibroblasts of both rat strains. Although some of the data suggested a slight resistance of SHR fibroblasts to temperature entrainment, we concluded that the overall effect it too weak to be responsible for the differences between the SHR and Wistar in vivo circadian phenotype.

  6. Review Article: Advances in modeling of bed particle entrainment sheared by turbulent flow

    NASA Astrophysics Data System (ADS)

    Dey, Subhasish; Ali, Sk Zeeshan

    2018-06-01

    Bed particle entrainment by turbulent wall-shear flow is a key topic of interest in hydrodynamics because it plays a major role to govern the planetary morphodynamics. In this paper, the state-of-the-art review of the essential mechanisms governing the bed particle entrainment by turbulent wall-shear flow and their mathematical modeling is presented. The paper starts with the appraisal of the earlier multifaceted ideas in modeling the particle entrainment highlighting the rolling, sliding, and lifting modes of entrainment. Then, various modeling approaches of bed particle entrainment, such as deterministic, stochastic, and spatiotemporal approaches, are critically analyzed. The modeling criteria of particle entrainment are distinguished for hydraulically smooth, transitional, and rough flow regimes. In this context, the responses of particle size, particle exposure, and packing condition to the near-bed turbulent flow that shears the particles to entrain are discussed. From the modern experimental outcomes, the conceptual mechanism of particle entrainment from the viewpoint of near-bed turbulent coherent structures is delineated. As the latest advancement of the subject, the paper sheds light on the origin of the primitive empirical formulations of bed particle entrainment deriving the scaling laws of threshold flow velocity of bed particle motion from the perspective of the phenomenological theory of turbulence. Besides, a model framework that provides a new look on the bed particle entrainment phenomenon stemming from the stochastic-cum-spatiotemporal approach is introduced. Finally, the future scope of research is articulated with open questions.

  7. EEG oscillations entrain their phase to high-level features of speech sound.

    PubMed

    Zoefel, Benedikt; VanRullen, Rufin

    2016-01-01

    Phase entrainment of neural oscillations, the brain's adjustment to rhythmic stimulation, is a central component in recent theories of speech comprehension: the alignment between brain oscillations and speech sound improves speech intelligibility. However, phase entrainment to everyday speech sound could also be explained by oscillations passively following the low-level periodicities (e.g., in sound amplitude and spectral content) of auditory stimulation-and not by an adjustment to the speech rhythm per se. Recently, using novel speech/noise mixture stimuli, we have shown that behavioral performance can entrain to speech sound even when high-level features (including phonetic information) are not accompanied by fluctuations in sound amplitude and spectral content. In the present study, we report that neural phase entrainment might underlie our behavioral findings. We observed phase-locking between electroencephalogram (EEG) and speech sound in response not only to original (unprocessed) speech but also to our constructed "high-level" speech/noise mixture stimuli. Phase entrainment to original speech and speech/noise sound did not differ in the degree of entrainment, but rather in the actual phase difference between EEG signal and sound. Phase entrainment was not abolished when speech/noise stimuli were presented in reverse (which disrupts semantic processing), indicating that acoustic (rather than linguistic) high-level features play a major role in the observed neural entrainment. Our results provide further evidence for phase entrainment as a potential mechanism underlying speech processing and segmentation, and for the involvement of high-level processes in the adjustment to the rhythm of speech. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Photic Resetting and Entrainment in CLOCK-Deficient Mice

    PubMed Central

    Dallmann, Robert; DeBruyne, Jason P.; Weaver, David R.

    2012-01-01

    Mice lacking CLOCK protein have a relatively subtle circadian phenotype, including a slightly shorter period in constant darkness, differences in phase resetting after 4-hr light pulses in the early and late night, and a variably advanced phase angle of entrainment in a light-dark (LD) cycle (DeBruyne et al., Neuron 50:465–477, 2006). The present series of experiments was conducted to more fully characterize the circadian phenotype of Clock−/− mice under various lighting conditions. A phase-response curve (PRC) to 4-hour light pulses in free-running mice was conducted; the results confirm that Clock−/− mice exhibit very large phase advances after 4 hrs light pulses in the late subjective night, but have relatively normal responses to light at other phases. The abnormal shape of the PRC to light may explain the tendency of CLOCK-deficient mice to begin activity before lights-out when housed in a 12 hrs light: 12 hrs dark lighting schedule. To assess this relationship further, Clock−/− and wild-type control mice were entrained to skeleton lighting cycles (1L:23D, and 1L:10D:1L:12D). Comparing entrainment under the two types of skeleton photoperiods revealed that exposure to 1 hr light in the morning leads to a phase advance of activity onset (expressed the following afternoon) in Clock−/− mice, but not in the controls. Constant light typically causes an intensity-dependent increase in circadian period in mice, but this did not occur in CLOCK-deficient mice. The failure of Clock−/− mice to respond to the period-lengthening effect of constant light likely results from the increased functional impact of light falling in the phase advance zone of the PRC. Collectively, these experiments reveal that alterations in the response of CLOCK-deficient mice to light in several paradigms are likely due to an imbalance in the shape of the PRC to light. PMID:21921293

  9. A study on the entrainment and mixing process in the continental stratocumulus clouds measured during the RACORO campaign

    DOE PAGES

    Yeom, Jae Min; Yum, Seong Soo; Liu, Yangang; ...

    2017-04-20

    Entrainment and mixing processes and their effects on cloud microphysics in the continental stratocumulus clouds observed in Oklahoma during the RACORO campaign are analyzed in the frame of homogeneous and inhomogeneous mixing concepts by combining the approaches of microphysical correlation, mixing diagram, and transition scale (number). A total of 110 horizontally penetrated cloud segments is analyzed in this paper. Mixing diagram and cloud microphysical relationship analyses show homogeneous mixing trait of positive relationship between liquid water content (L) and mean volume of droplets (V) (i.e., smaller droplets in more diluted parcel) in most cloud segments. Relatively small temperature and humiditymore » differences between the entraining air from above the cloud top and cloudy air and relatively large turbulent dissipation rate are found to be responsible for this finding. The related scale parameters (i.e., transition length and transition scale number) are relatively large, which also indicates high likelihood of homogeneous mixing. Finally, clear positive relationship between L and vertical velocity (W) for some cloud segments is suggested to be evidence of vertical circulation mixing, which may further enhance the positive relationship between L and V created by homogeneous mixing.« less

  10. A study on the entrainment and mixing process in the continental stratocumulus clouds measured during the RACORO campaign

    NASA Astrophysics Data System (ADS)

    Yeom, Jae Min; Yum, Seong Soo; Liu, Yangang; Lu, Chunsong

    2017-09-01

    Entrainment and mixing processes and their effects on cloud microphysics in the continental stratocumulus clouds observed in Oklahoma during the RACORO campaign are analyzed in the frame of homogeneous and inhomogeneous mixing concepts by combining the approaches of microphysical correlation, mixing diagram, and transition scale (number). A total of 110 horizontally penetrated cloud segments is analyzed. Mixing diagram and cloud microphysical relationship analyses show homogeneous mixing trait of positive relationship between liquid water content (L) and mean volume of droplets (V) (i.e., smaller droplets in more diluted parcel) in most cloud segments. Relatively small temperature and humidity differences between the entraining air from above the cloud top and cloudy air and relatively large turbulent dissipation rate are found to be responsible for this finding. The related scale parameters (i.e., transition length and transition scale number) are relatively large, which also indicates high likelihood of homogeneous mixing. Clear positive relationship between L and vertical velocity (W) for some cloud segments is suggested to be evidence of vertical circulation mixing, which may further enhance the positive relationship between L and V created by homogeneous mixing.

  11. A study on the entrainment and mixing process in the continental stratocumulus clouds measured during the RACORO campaign

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yeom, Jae Min; Yum, Seong Soo; Liu, Yangang

    Entrainment and mixing processes and their effects on cloud microphysics in the continental stratocumulus clouds observed in Oklahoma during the RACORO campaign are analyzed in the frame of homogeneous and inhomogeneous mixing concepts by combining the approaches of microphysical correlation, mixing diagram, and transition scale (number). A total of 110 horizontally penetrated cloud segments is analyzed in this paper. Mixing diagram and cloud microphysical relationship analyses show homogeneous mixing trait of positive relationship between liquid water content (L) and mean volume of droplets (V) (i.e., smaller droplets in more diluted parcel) in most cloud segments. Relatively small temperature and humiditymore » differences between the entraining air from above the cloud top and cloudy air and relatively large turbulent dissipation rate are found to be responsible for this finding. The related scale parameters (i.e., transition length and transition scale number) are relatively large, which also indicates high likelihood of homogeneous mixing. Finally, clear positive relationship between L and vertical velocity (W) for some cloud segments is suggested to be evidence of vertical circulation mixing, which may further enhance the positive relationship between L and V created by homogeneous mixing.« less

  12. No Time To Kill: Entrainment and Accelerating Courseware Development.

    ERIC Educational Resources Information Center

    Millington, Paula Crnkovich

    This paper examines the concept of time in multimedia, World Wide Web-based courseware development. The biological concept of entrainment (the alignment of rhythms within and between systems) to accelerate courseware development is explored. The discussion begins with the foundational concepts of entrainment from biological systems and social…

  13. Activating and Relaxing Music Entrains the Speed of Beat Synchronized Walking

    PubMed Central

    Leman, Marc; Moelants, Dirk; Varewyck, Matthias; Styns, Frederik; van Noorden, Leon; Martens, Jean-Pierre

    2013-01-01

    Inspired by a theory of embodied music cognition, we investigate whether music can entrain the speed of beat synchronized walking. If human walking is in synchrony with the beat and all musical stimuli have the same duration and the same tempo, then differences in walking speed can only be the result of music-induced differences in stride length, thus reflecting the vigor or physical strength of the movement. Participants walked in an open field in synchrony with the beat of 52 different musical stimuli all having a tempo of 130 beats per minute and a meter of 4 beats. The walking speed was measured as the walked distance during a time interval of 30 seconds. The results reveal that some music is ‘activating’ in the sense that it increases the speed, and some music is ‘relaxing’ in the sense that it decreases the speed, compared to the spontaneous walked speed in response to metronome stimuli. Participants are consistent in their observation of qualitative differences between the relaxing and activating musical stimuli. Using regression analysis, it was possible to set up a predictive model using only four sonic features that explain 60% of the variance. The sonic features capture variation in loudness and pitch patterns at periods of three, four and six beats, suggesting that expressive patterns in music are responsible for the effect. The mechanism may be attributed to an attentional shift, a subliminal audio-motor entrainment mechanism, or an arousal effect, but further study is needed to figure this out. Overall, the study supports the hypothesis that recurrent patterns of fluctuation affecting the binary meter strength of the music may entrain the vigor of the movement. The study opens up new perspectives for understanding the relationship between entrainment and expressiveness, with the possibility to develop applications that can be used in domains such as sports and physical rehabilitation. PMID:23874469

  14. The Stochastic Parcel Model: A deterministic parameterization of stochastically entraining convection

    DOE PAGES

    Romps, David M.

    2016-03-01

    Convective entrainment is a process that is poorly represented in existing convective parameterizations. By many estimates, convective entrainment is the leading source of error in global climate models. As a potential remedy, an Eulerian implementation of the Stochastic Parcel Model (SPM) is presented here as a convective parameterization that treats entrainment in a physically realistic and computationally efficient way. Drawing on evidence that convecting clouds comprise air parcels subject to Poisson-process entrainment events, the SPM calculates the deterministic limit of an infinite number of such parcels. For computational efficiency, the SPM groups parcels at each height by their purity, whichmore » is a measure of their total entrainment up to that height. This reduces the calculation of convective fluxes to a sequence of matrix multiplications. The SPM is implemented in a single-column model and compared with a large-eddy simulation of deep convection.« less

  15. Entrainment of Spontaneously Hypertensive Rat Fibroblasts by Temperature Cycles

    PubMed Central

    Sládek, Martin; Sumová, Alena

    2013-01-01

    The functional state of the circadian system of spontaneously hypertensive rats (SHR) differs in several characteristics from the functional state of normotensive Wistar rats. Some of these changes might be due to the compromised ability of the central pacemaker to entrain the peripheral clocks. Daily body temperature cycles represent one of the important cues responsible for the integrity of the circadian system, because these cycles are driven by the central pacemaker and are able to entrain the peripheral clocks. This study tested the hypothesis that the aberrant peripheral clock entrainment of SHR results from a compromised peripheral clock sensitivity to the daily temperature cycle resetting. Using cultured Wistar rat and SHR fibroblasts transfected with the circadian luminescence reporter Bmal1-dLuc, we demonstrated that two consecutive square-wave temperature cycles with amplitudes of 2.5°C are necessary and sufficient to restart the dampened oscillations and entrain the circadian clocks in both Wistar rat and SHR fibroblasts. We also generated a phase response curve to temperature cycles for fibroblasts of both rat strains. Although some of the data suggested a slight resistance of SHR fibroblasts to temperature entrainment, we concluded that the overall effect it too weak to be responsible for the differences between the SHR and Wistar in vivo circadian phenotype. PMID:24116198

  16. Accuracy of entrainment coefficients in one-dimensional volcanic plume models

    NASA Astrophysics Data System (ADS)

    McNeal, J. S.; Freedland, G.; Cal, R. B.; Mastin, L. G.; Solovitz, S.

    2017-12-01

    During and after volcanic eruptions, ash clouds can present a danger to human activities, notably to air travel. Ash dispersal models can forecast the location and downwind path of the ash cloud, which are critical for mitigating potential threats. The accuracy of the ash dispersal model depends on the reliability of input parameters, one of which is the mass eruption rate (MER). Uncertainties in MER translate to uncertainties in forecasts of ash-cloud concentration. One-dimensional plume models can quickly estimate the MER from plume height, relying on empirical entrainment coefficients, α and β, which describe air inflow perpendicular and parallel to the centerline of the plume, respectively. While much work has been done to quantify α for strong plumes (0.06-0.09 in most cases), consensus has not been reached for α and β in moderate to weak plumes (i.e. plumes bent over by the wind). We conducted high precision jet entrainment measurements in a wind tunnel using particle image velocimetry (PIV). Observed centerline trajectories were compared to modeled ones using the one-dimensional plume model Plumeria. Test conditions produced Reynolds numbers (Re) on the order of 103 to 105 and jet-to-cross flow velocity ratios (Vr) from 6 to 34. Over this range, α and β were adjusted to match the modeled trajectories with measured ones. Additionally, we compared historical observations of plume height and MER during volcanic eruptions against Plumeria predictions. Uncertainties in MER were considered with additional model simulations to quantify their impact on the optimal entrainment coefficients. Our comparisons reveal a clear linear α-β relationship, where multiple α and β values could be found that produced accurate plume height predictions. For example, similar accuracy was found using both (α,β) = (0.07,0.35) and (α,β) = (0.04,0.95) for the test case based on the 2002 eruption of Reventador volcano in Ecuador. However, in some cases that we studied, the

  17. Entrainment of a Bacterial Synthetic Gene Oscillator through Proteolytic Queueing.

    PubMed

    Butzin, Nicholas C; Hochendoner, Philip; Ogle, Curtis T; Mather, William H

    2017-03-17

    Internal chemical oscillators (chemical clocks) direct the behavior of numerous biological systems, and maintenance of a given period and phase among many such oscillators may be important for their proper function. However, both environmental variability and fundamental molecular noise can cause biochemical oscillators to lose coherence. One solution to maintaining coherence is entrainment, where an external signal provides a cue that resets the phase of the oscillators. In this work, we study the entrainment of gene networks by a queueing interaction established by competition between proteins for a common proteolytic pathway. Principles of queueing entrainment are investigated for an established synthetic oscillator in Escherichia coli. We first explore this theoretically using a standard chemical reaction network model and a map-based model, both of which suggest that queueing entrainment can be achieved through pulsatile production of an additional protein competing for a common degradation pathway with the oscillator proteins. We then use a combination of microfluidics and fluorescence microscopy to verify that pulse trains modulating the production rate of a fluorescent protein targeted to the same protease (ClpXP) as the synthetic oscillator can entrain the oscillator.

  18. The neural basis of audiomotor entrainment: an ALE meta-analysis

    PubMed Central

    Chauvigné, Léa A. S.; Gitau, Kevin M.; Brown, Steven

    2014-01-01

    Synchronization of body movement to an acoustic rhythm is a major form of entrainment, such as occurs in dance. This is exemplified in experimental studies of finger tapping. Entrainment to a beat is contrasted with movement that is internally driven and is therefore self-paced. In order to examine brain areas important for entrainment to an acoustic beat, we meta-analyzed the functional neuroimaging literature on finger tapping (43 studies) using activation likelihood estimation (ALE) meta-analysis with a focus on the contrast between externally-paced and self-paced tapping. The results demonstrated a dissociation between two subcortical systems involved in timing, namely the cerebellum and the basal ganglia. Externally-paced tapping highlighted the importance of the spinocerebellum, most especially the vermis, which was not activated at all by self-paced tapping. In contrast, the basal ganglia, including the putamen and globus pallidus, were active during both types of tapping, but preferentially during self-paced tapping. These results suggest a central role for the spinocerebellum in audiomotor entrainment. We conclude with a theoretical discussion about the various forms of entrainment in humans and other animals. PMID:25324765

  19. Pulse and Entrainment to Non-Isochronous Auditory Stimuli: The Case of North Indian Alap

    PubMed Central

    Will, Udo; Clayton, Martin; Wertheim, Ira; Leante, Laura; Berg, Eric

    2015-01-01

    Pulse is often understood as a feature of a (quasi-) isochronous event sequence that is picked up by an entrained subject. However, entrainment does not only occur between quasi-periodic rhythms. This paper demonstrates the expression of pulse by subjects listening to non-periodic musical stimuli and investigates the processes behind this behaviour. The stimuli are extracts from the introductory sections of North Indian (Hindustani) classical music performances (alap, jor and jhala). The first of three experiments demonstrates regular motor responses to both irregular alap and more regular jor sections: responses to alap appear related to individual spontaneous tempi, while for jor they relate to the stimulus event rate. A second experiment investigated whether subjects respond to average periodicities of the alap section, and whether their responses show phase alignment to the musical events. In the third experiment we investigated responses to a broader sample of performances, testing their relationship to spontaneous tempo, and the effect of prior experience with this music. Our results suggest an entrainment model in which pulse is understood as the experience of one’s internal periodicity: it is not necessarily linked to temporally regular, structured sensory input streams; it can arise spontaneously through the performance of repetitive motor actions, or on exposure to event sequences with rather irregular temporal structures. Greater regularity in the external event sequence leads to entrainment between motor responses and stimulus sequence, modifying subjects’ internal periodicities in such a way that they are either identical or harmonically related to each other. This can be considered as the basis for shared (rhythmic) experience and may be an important process supporting ‘social’ effects of temporally regular music. PMID:25849357

  20. Pulse and entrainment to non-isochronous auditory stimuli: the case of north Indian alap.

    PubMed

    Will, Udo; Clayton, Martin; Wertheim, Ira; Leante, Laura; Berg, Eric

    2015-01-01

    Pulse is often understood as a feature of a (quasi-) isochronous event sequence that is picked up by an entrained subject. However, entrainment does not only occur between quasi-periodic rhythms. This paper demonstrates the expression of pulse by subjects listening to non-periodic musical stimuli and investigates the processes behind this behaviour. The stimuli are extracts from the introductory sections of North Indian (Hindustani) classical music performances (alap, jor and jhala). The first of three experiments demonstrates regular motor responses to both irregular alap and more regular jor sections: responses to alap appear related to individual spontaneous tempi, while for jor they relate to the stimulus event rate. A second experiment investigated whether subjects respond to average periodicities of the alap section, and whether their responses show phase alignment to the musical events. In the third experiment we investigated responses to a broader sample of performances, testing their relationship to spontaneous tempo, and the effect of prior experience with this music. Our results suggest an entrainment model in which pulse is understood as the experience of one's internal periodicity: it is not necessarily linked to temporally regular, structured sensory input streams; it can arise spontaneously through the performance of repetitive motor actions, or on exposure to event sequences with rather irregular temporal structures. Greater regularity in the external event sequence leads to entrainment between motor responses and stimulus sequence, modifying subjects' internal periodicities in such a way that they are either identical or harmonically related to each other. This can be considered as the basis for shared (rhythmic) experience and may be an important process supporting 'social' effects of temporally regular music.

  1. Doing Duo – a case study of entrainment in William Forsythe’s choreography “Duo”

    PubMed Central

    Waterhouse, Elizabeth; Watts, Riley; Bläsing, Bettina E.

    2014-01-01

    Entrainment theory focuses on processes in which interacting (i.e., coupled) rhythmic systems stabilize, producing synchronization in the ideal sense, and forms of phase related rhythmic coordination in complex cases. In human action, entrainment involves spatiotemporal and social aspects, characterizing the meaningful activities of music, dance, and communication. How can the phenomenon of human entrainment be meaningfully studied in complex situations such as dance? We present an in-progress case study of entrainment in William Forsythe’s choreography Duo, a duet in which coordinated rhythmic activity is achieved without an external musical beat and without touch-based interaction. Using concepts of entrainment from different disciplines as well as insight from Duo performer Riley Watts, we question definitions of entrainment in the context of dance. The functions of chorusing, turn-taking, complementary action, cues, and alignments are discussed and linked to supporting annotated video material. While Duo challenges the definition of entrainment in dance as coordinated response to an external musical or rhythmic signal, it supports the definition of entrainment as coordinated interplay of motion and sound production by active agents (i.e., dancers) in the field. Agreeing that human entrainment should be studied on multiple levels, we suggest that entrainment between the dancers in Duo is elastic in time and propose how to test this hypothesis empirically. We do not claim that our proposed model of elasticity is applicable to all forms of human entrainment nor to all examples of entrainment in dance. Rather, we suggest studying higher order phase correction (the stabilizing tendency of entrainment) as a potential aspect to be incorporated into other models. PMID:25374522

  2. Impact of Air Entraining Method on the Resistance of Concrete to Internal Cracking

    NASA Astrophysics Data System (ADS)

    Wawrzeńczyk, Jerzy; Molendowska, Agnieszka

    2017-10-01

    This paper presents the test results of air entrained concrete mixtures made at a constant W/C ratio of 0.44. Three different air entraining agents were used: polymer microspheres, glass microspheres and a conventional air entraining admixture. The aim of this study was to compare the effectiveness of the air entraining methods. Concrete mixture tests were performed for consistency (slump test), density and, in the case of AEA series, air content by pressure method. Hardened concrete tests were performed for compressive strength, water absorption, resistance to chloride ingress, and freeze-thaw durability - resistance to internal cracking tests were conducted in accordance with PN-88/B-06250 on cube specimens and with the modified ASTM C666 A test method on beam specimens; porosity characteristics (A, A300, \\bar L) were determined to PN-EN 480-11:1998. No significant mass and length changes were recorded for the concrete air entrained with the conventional methods or with polymer microspheres. The results indicate that polymer microspheres are a very good alternative to traditional air entraining methods for concrete, providing effective air entrainment and protection from freezing and thawing. The glass microsphere-based concretes showed insufficient freeze-thaw resistance. The test results indicate that both the conventional methods (AEA) and the air entrainment by polymer microspheres are effective air entraining methods. It has to be noted that in the case of the use of polymer microspheres, a comparable value of \\bar L and a very good freeze-thaw resistance can be achieved at a noticeably lower air and micropore contents and at lower strength loss.

  3. Oscillation of a polymer gel entrained with a periodic force.

    PubMed

    Shiota, Takaya; Ikura, Yumihiko S; Nakata, Satoshi

    2013-02-21

    The oscillation of a polymer gel induced by the Belousov-Zhabotinsky (BZ) reaction was investigated under an external force composed of a square wave. The oscillation of the BZ reaction entrained to the periodic force and the features of this entrainment changed depending on the period and duty cycle of the square wave. The experimental results suggest that the change in the volume of the gel also gave feedback to the BZ reaction. The mechanism of entrainment is discussed in relation to the compression of the gel and the reaction-diffusion system in the BZ reaction.

  4. Tagging the neuronal entrainment to beat and meter.

    PubMed

    Nozaradan, Sylvie; Peretz, Isabelle; Missal, Marcus; Mouraux, André

    2011-07-13

    Feeling the beat and meter is fundamental to the experience of music. However, how these periodicities are represented in the brain remains largely unknown. Here, we test whether this function emerges from the entrainment of neurons resonating to the beat and meter. We recorded the electroencephalogram while participants listened to a musical beat and imagined a binary or a ternary meter on this beat (i.e., a march or a waltz). We found that the beat elicits a sustained periodic EEG response tuned to the beat frequency. Most importantly, we found that meter imagery elicits an additional frequency tuned to the corresponding metric interpretation of this beat. These results provide compelling evidence that neural entrainment to beat and meter can be captured directly in the electroencephalogram. More generally, our results suggest that music constitutes a unique context to explore entrainment phenomena in dynamic cognitive processing at the level of neural networks.

  5. Speech Rate Entrainment in Children and Adults With and Without Autism Spectrum Disorder.

    PubMed

    Wynn, Camille J; Borrie, Stephanie A; Sellers, Tyra P

    2018-05-03

    Conversational entrainment, a phenomenon whereby people modify their behaviors to match their communication partner, has been evidenced as critical to successful conversation. It is plausible that deficits in entrainment contribute to the conversational breakdowns and social difficulties exhibited by people with autism spectrum disorder (ASD). This study examined speech rate entrainment in children and adult populations with and without ASD. Sixty participants including typically developing children, children with ASD, typically developed adults, and adults with ASD participated in a quasi-conversational paradigm with a pseudoconfederate. The confederate's speech rate was digitally manipulated to create slow and fast speech rate conditions. Typically developed adults entrained their speech rate in the quasi-conversational paradigm, using a faster rate during the fast speech rate conditions and a slower rate during the slow speech rate conditions. This entrainment pattern was not evident in adults with ASD or in children populations. Findings suggest that speech rate entrainment is a developmentally acquired skill and offers preliminary evidence of speech rate entrainment deficits in adults with ASD. Impairments in this area may contribute to the conversational breakdowns and social difficulties experienced by this population. Future work is needed to advance this area of inquiry.

  6. Entrainment and cloud evaporation deduced from the stable isotope chemistry of clouds during ORACLES

    NASA Astrophysics Data System (ADS)

    Noone, D.; Henze, D.; Rainwater, B.; Toohey, D. W.

    2017-12-01

    The magnitude of the influence of biomass burning aerosols on cloud and rain processes is controlled by a series of processes which are difficult to measure directly. A consequence of this limitation is the emergence of significant uncertainty in the representation of cloud-aerosol interactions in models and the resulting cloud radiative forcing. Interaction between cloud and the regional atmosphere causes evaporation, and the rate of evaporation at cloud top is controlled in part by entrainment of air from above which exposes saturated cloud air to drier conditions. Similarly, the size of cloud droplets also controls evaporation rates, which in turn is linked to the abundance of condensation nuclei. To quantify the dependence of cloud properties on biomass burning aerosols the dynamic relationship between evaporation, drop size and entrainment on aerosol state, is evaluated for stratiform clouds in the southeast Atlantic Ocean. These clouds are seasonally exposed to biomass burning plumes from agricultural fires in southern Africa. Measurements of the stable isotope ratios of cloud water and total water are used to deduce the disequilibrium responsible for evaporation within clouds. Disequilibrium is identified by the relationship between hydrogen and oxygen isotope ratios of water vapor and cloud water in and near clouds. To obtain the needed information, a custom-built, dual inlet system was deployed alongside isotopic gas analyzers on the NASA Orion aircraft as part of the Observations of Aerosols above Clouds and their Interactions (ORACLES) campaign. The sampling system obtains both total water and cloud liquid content for the population of droplets above 7 micrometer diameter. The thermodynamic modeling required to convert the observed equilibrium and kinetic isotopic is linked to evaporation and entrainment is described, and the performance of the measurement system is discussed.

  7. What's All the Talc About? Air Entrainment in Dilute Pyroclastic Density Currents

    NASA Astrophysics Data System (ADS)

    Marshall, B. J.; Andrews, B. J.; Fauria, K.

    2015-12-01

    A quantitative understanding of air entrainment is critical to predicting the behaviors of dilute Pyroclastic Density Currents (PDCs), including runout distance, liftoff, and mass fractionation into co-PDC plumes. We performed experiments in an 8.5x6x2.6 meter tank using 20 micron talc powder over a range of conditions to describe air entrainment as a function of temperature, duration and mass flux. The experiments are reproducible and are scaled with respect to the densimetric and thermal Richardson numbers (Ri and RiT), Froude number, thermal to kinetic energy density ratio (TEb/KE), Stokes number, and Settling number, such that they are dynamically similar to natural dilute PDCs. Experiments are illuminated with a swept laser sheet and imaged at 1000 Hz to create 3D reconstructions of the currents, with ~1-2 cm resolution, at up to 1.5 Hz. An array of 30 high-frequency thermocouples record the precise temperature in the currents at 3 Hz. Bulk entrainment rates are calculated based on measured current volumes, surface areas, temperatures and velocities. Entrainment rates vary from ~0-0.9 and do not show simple variation with TEb/KE, Ri, or RiT. Entrainment does, however, increase with decreasing eruption duration and increasing mass flux. Our results suggest that current heads entrain air more efficiently than current bodies (>0.5 compared to ~0.1). Because shorter duration currents have proportionally larger heads, their bulk entrainment rates are controlled by those heads, whereas longer duration currents are dominated by their bodies. Our experiments demonstrate that air entrainment, which exerts a fundamental control on PDC runout and liftoff, varies spatially and temporally within PDCs.

  8. Observation and analysis of water inherent optical properties

    NASA Astrophysics Data System (ADS)

    Sun, Deyong; Li, Yunmei; Le, Chengfeng; Huang, Changchun

    2008-03-01

    Inherent optical property is an important part of water optical properties, and is the foundation of water color analytical model establishment. Through quantity filter technology (QFT) and backscattering meter BB9 (WETlabs Inc), absorption coefficients of CDOM, total suspended minerals and backscattering coefficients of total suspended minerals had been observed in Meiliang Bay of Taihu lake at summer and winter respectively. After analyzing the spectral characteristics of absorption and backscattering coefficients, the differences between two seasons had been illustrated adequately, and the reasons for the phenomena, which are related to the changes of water quality coefficient, had also been explained. So water environment states can be reflected by inherent optical properties. In addition, the relationship models between backscattering coefficients and suspended particle concentrations had been established, which can support coefficients for analytical models.

  9. Queueing-Based Synchronization and Entrainment for Synthetic Gene Oscillators

    NASA Astrophysics Data System (ADS)

    Mather, William; Butzin, Nicholas; Hochendoner, Philip; Ogle, Curtis

    Synthetic gene oscillators have been a major focus of synthetic biology research since the beginning of the field 15 years ago. They have proven to be useful both for biotechnological applications as well as a testing ground to significantly develop our understanding of the design principles behind synthetic and native gene oscillators. In particular, the principles governing synchronization and entrainment of biological oscillators have been explored using a synthetic biology approach. Our work combines experimental and theoretical approaches to specifically investigate how a bottleneck for protein degradation, which is present in most if not all existing synthetic oscillators, can be leveraged to robustly synchronize and entrain biological oscillators. We use both the terminology and mathematical tools of queueing theory to intuitively explain the role of this bottleneck in both synchronization and entrainment, which extends prior work demonstrating the usefulness of queueing theory in synthetic and native gene circuits. We conclude with an investigation of how synchronization and entrainment may be sensitive to the presence of multiple proteolytic pathways in a cell that couple weakly through crosstalk. This work was supported by NSF Grant #1330180.

  10. Is the food-entrainable circadian oscillator in the digestive system?

    NASA Technical Reports Server (NTRS)

    Davidson, A. J.; Poole, A. S.; Yamazaki, S.; Menaker, M.

    2003-01-01

    Food-anticipatory activity (FAA) is the increase in locomotion and core body temperature that precedes a daily scheduled meal. It is driven by a circadian oscillator but is independent of the suprachiasmatic nuclei. Recent results that reveal meal-entrained clock gene expression in rat and mouse peripheral organs raise the intriguing possibility that the digestive system is the site of the feeding-entrained oscillator (FEO) that underlies FAA. We tested this possibility by comparing FAA and Per1 rhythmicity in the digestive system of the Per1-luciferase transgenic rat. First, rats were entrained to daytime restricted feeding (RF, 10 days), then fed ad libitum (AL, 10 days), then food deprived (FD, 2 days). As expected FAA was evident during RF and disappeared during subsequent AL feeding, but returned at the correct phase during deprivation. The phase of Per1 in liver, stomach and colon shifted from a nocturnal to a diurnal peak during RF, but shifted back to nocturnal phase during the subsequent AL and remained nocturnal during food deprivation periods. Second, rats were entrained to two daily meals at zeitgeber time (ZT) 0400 and ZT 1600. FAA to both meals emerged after about 10days of dual RF. However, all tissues studied (all five liver lobes, esophagus, antral stomach, body of stomach, colon) showed entrainment consistent with only the night-time meal. These two results are inconsistent with the hypothesis that FAA arises as an output of rhythms in the gastrointestinal (GI) system. The results also highlight an interesting diversity among peripheral oscillators in their ability to entrain to meals and the direction of the phase shift after RF ends.

  11. Complete or partial circadian re-entrainment improves performance, alertness, and mood during night-shift work.

    PubMed

    Crowley, Stephanie J; Lee, Clara; Tseng, Christine Y; Fogg, Louis F; Eastman, Charmane I

    2004-09-15

    To assess performance, alertness, and mood during the night shift and subsequent daytime sleep in relation to the degree of re-alignment (re-entrainment) of circadian rhythms with a night-work, day-sleep schedule. Subjects spent 5 consecutive night shifts (11:00 pm-7:00 am) in the lab and slept at home in darkened bedrooms (8:30 am-3:30 pm). Subjects were categorized by the degree of re-entrainment attained after the 5 night shifts. Completely re-entrained: temperature minimum in the second half of daytime sleep; partially re-entrained: temperature minimum in the first half of daytime sleep; not re-entrained: temperature minimum did not delay enough to reach daytime sleep. See above. Young healthy adults (n = 67) who were not shift workers. Included bright light during the night shifts, sunglasses worn outside, a fixed dark daytime sleep episode, and melatonin. The effects of various combinations of these interventions on circadian re-entrainment were previously reported. Here we report how the degree of re-entrainment affected daytime sleep and measures collected during the night shift. Salivary melatonin was collected every 30 minutes in dim light (<20 lux) before and after the night shifts to determine the dim light melatonin onset, and the temperature minimum was estimated by adding a constant (7 hours) to the dim light melatonin onset. Subjects kept sleep logs, which were verified by actigraphy. The Neurobehavioral Assessment Battery was completed several times during each night shift. Baseline sleep schedules and circadian phase differed among the 3 re-entrainment groups, with later times resulting in more re-entrainment. The Neurobehavioral Assessment Battery showed that performance, sleepiness, and mood were better in the groups that re-entrained compared to the group that did not re-entrain, but there were no significant differences between the partial and complete re-entrainment groups. Subjects slept almost all of the allotted 7 hours during the day, and

  12. The Impact of Rhythmic Entrainment on a Person with Autism.

    ERIC Educational Resources Information Center

    Orr, Tracy Jo; Myles, Brenda Smith; Carlson, Judith K.

    1998-01-01

    A study investigated the impact of rhythmic entrainment on an 11-year-old girl with autism who engaged in head jerking and screaming. Rhythmic entrainment intervention was more effective when she exhibited behavior that resulted from a moderate level of stress and less effective when stressors were more severe. (CR)

  13. Primordial helium entrained by the hottest mantle plumes

    NASA Astrophysics Data System (ADS)

    Jackson, M. G.; Konter, J. G.; Becker, T. W.

    2017-02-01

    Helium isotopes provide an important tool for tracing early-Earth, primordial reservoirs that have survived in the planet’s interior. Volcanic hotspot lavas, like those erupted at Hawaii and Iceland, can host rare, high 3He/4He isotopic ratios (up to 50 times the present atmospheric ratio, Ra) compared to the lower 3He/4He ratios identified in mid-ocean-ridge basalts that form by melting the upper mantle (about 8Ra; ref. 5). A long-standing hypothesis maintains that the high-3He/4He domain resides in the deep mantle, beneath the upper mantle sampled by mid-ocean-ridge basalts, and that buoyantly upwelling plumes from the deep mantle transport high-3He/4He material to the shallow mantle beneath plume-fed hotspots. One problem with this hypothesis is that, while some hotspots have 3He/4He values ranging from low to high, other hotspots exhibit only low 3He/4He ratios. Here we show that, among hotspots suggested to overlie mantle plumes, those with the highest maximum 3He/4He ratios have high hotspot buoyancy fluxes and overlie regions with seismic low-velocity anomalies in the upper mantle, unlike plume-fed hotspots with only low maximum 3He/4He ratios. We interpret the relationships between 3He/4He values, hotspot buoyancy flux, and upper-mantle shear wave velocity to mean that hot plumes—which exhibit seismic low-velocity anomalies at depths of 200 kilometres—are more buoyant and entrain both high-3He/4He and low-3He/4He material. In contrast, cooler, less buoyant plumes do not entrain this high-3He/4He material. This can be explained if the high-3He/4He domain is denser than low-3He/4He mantle components hosted in plumes, and if high-3He/4He material is entrained from the deep mantle only by the hottest, most buoyant plumes. Such a dense, deep-mantle high-3He/4He domain could remain isolated from the convecting mantle, which may help to explain the preservation of early Hadean (>4.5 billion years ago) geochemical anomalies in lavas sampling this reservoir.

  14. Searching for roots of entrainment and joint action in early musical interactions.

    PubMed

    Phillips-Silver, Jessica; Keller, Peter E

    2012-01-01

    When people play music and dance together, they engage in forms of musical joint action that are often characterized by a shared sense of rhythmic timing and affective state (i.e., temporal and affective entrainment). In order to understand the origins of musical joint action, we propose a model in which entrainment is linked to dual mechanisms (motor resonance and action simulation), which in turn support musical behavior (imitation and complementary joint action). To illustrate this model, we consider two generic forms of joint musical behavior: chorusing and turn-taking. We explore how these common behaviors can be founded on entrainment capacities established early in human development, specifically during musical interactions between infants and their caregivers. If the roots of entrainment are found in early musical interactions which are practiced from childhood into adulthood, then we propose that the rehearsal of advanced musical ensemble skills can be considered to be a refined, mimetic form of temporal and affective entrainment whose evolution begins in infancy.

  15. Searching for Roots of Entrainment and Joint Action in Early Musical Interactions

    PubMed Central

    Phillips-Silver, Jessica; Keller, Peter E.

    2012-01-01

    When people play music and dance together, they engage in forms of musical joint action that are often characterized by a shared sense of rhythmic timing and affective state (i.e., temporal and affective entrainment). In order to understand the origins of musical joint action, we propose a model in which entrainment is linked to dual mechanisms (motor resonance and action simulation), which in turn support musical behavior (imitation and complementary joint action). To illustrate this model, we consider two generic forms of joint musical behavior: chorusing and turn-taking. We explore how these common behaviors can be founded on entrainment capacities established early in human development, specifically during musical interactions between infants and their caregivers. If the roots of entrainment are found in early musical interactions which are practiced from childhood into adulthood, then we propose that the rehearsal of advanced musical ensemble skills can be considered to be a refined, mimetic form of temporal and affective entrainment whose evolution begins in infancy. PMID:22375113

  16. Bed-material entrainment potential, Roaring Fork River at Basalt, Colorado

    USGS Publications Warehouse

    Elliott, John G.

    2002-01-01

    The Roaring Fork River at Basalt, Colorado, has a frequently mobile streambed composed of gravel, cobbles, and boulders. Recent urban and highway development on the flood plain, earlier attempts to realign and confine the channel, and flow obstructions such as bridge openings and piers have altered the hydrology, hydraulics, sediment transport, and sediment deposition areas of the Roaring Fork. Entrainment and deposition of coarse sediment on the streambed and in large alluvial bars have reduced the flood-conveying capacity of the river. Previous engineering studies have identified flood-prone areas and hazards related to inundation and high streamflow velocity, but those studies have not evaluated the potential response of the channel to discharges that entrain the coarse streambed. This study builds upon the results of earlier flood studies and identifies some potential areas of concern associated with bed-material entrainment. Cross-section surveys and simulated water-surface elevations from a previously run HEC?RAS model were used to calculate the boundary shear stress on the mean streambed, in the thalweg, and on the tops of adjacent alluvial bars for four reference streamflows. Sediment-size characteristics were determined for surficial material on the streambed, on large alluvial bars, and on a streambank. The median particle size (d50) for the streambed samples was 165 millimeters and for the alluvial bars and bank samples was 107 millimeters. Shear stresses generated by the 10-, 50-, and 100-year floods, and by a more common flow that just inundated most of the alluvial bars in the study reach were calculated at 14 of the cross sections used in the Roaring Fork River HEC?RAS model. The Shields equation was used with a Shields parameter of 0.030 to estimate the critical shear stress for entrainment of the median sediment particle size on the mean streambed, in the thalweg, and on adjacent alluvial bar surfaces at the 14 cross sections. Sediment-entrainment

  17. Freeze-thaw durability of air-entrained concrete.

    PubMed

    Shang, Huai-Shuai; Yi, Ting-Hua

    2013-01-01

    One of the most damaging actions affecting concrete is the abrupt temperature change (freeze-thaw cycles). The types of deterioration of concrete structures by cyclic freeze-thaw can be largely classified into surface scaling (characterized by the weight loss) and internal crack growth (characterized by the loss of dynamic modulus of elasticity). The present study explored the durability of concrete made with air-entraining agent subjected to 0, 100, 200, 300, and 400 cycles of freeze-thaw. The experimental study of C20, C25, C30, C40, and C50 air-entrained concrete specimens was completed according to "the test method of long-term and durability on ordinary concrete" GB/T 50082-2009. The dynamic modulus of elasticity and weight loss of specimens were measured after different cycles of freeze-thaw. The influence of freeze-thaw cycles on the relative dynamic modulus of elasticity and weight loss was analyzed. The findings showed that the dynamic modulus of elasticity and weight decreased as the freeze-thaw cycles were repeated. They revealed that the C30, C40, and C50 air-entrained concrete was still durable after 300 cycles of freeze-thaw according to the experimental results.

  18. Non-parametric entrainment by natural twilight in the microchiropteran bat, Hipposideros speoris inside a cave.

    PubMed

    Joshi, D S; Vanlalnghaka, C

    2005-01-01

    The study aimed to determine the influence of repeated natural dawn and dusk twilight pulses in entraining the circadian flight activity rhythm of the microchiropteran bat, Hipposideros speoris, free-running in constant darkness in a natural cave. The bats were exposed to repeated dawn or dusk twilight pulses at eight circadian phases. All bats exposed to dawn twilight pulses were entrained by advancing transients, and the stable entrainment was reached when the onset of activity occurred about 12 h before the lights-on of the pulses, irrespective of the initial phase at which the bats were exposed to twilight. All bats exposed to dusk twilight pulses, however, were entrained by delaying transients, and the stable entrainment was reached when the onset of activity occurred about 1.6 h after the lights-on of the pulses. The entrainment caused by dawn and dusk twilight pulses is discussed in the context of the postulated two photoreceptors: the short wavelength sensitive (S) photoreceptors mediating entrainment via dusk twilight, and the medium wavelength sensitive (M) photoreceptors mediating entrainment via dawn twilight.

  19. The role of the endocrine system in feeding-induced tissue-specific circadian entrainment.

    PubMed

    Sato, Miho; Murakami, Mariko; Node, Koichi; Matsumura, Ritsuko; Akashi, Makoto

    2014-07-24

    The circadian clock is entrained to environmental cycles by external cue-mediated phase adjustment. Although the light input pathway has been well defined, the mechanism of feeding-induced phase resetting remains unclear. The tissue-specific sensitivity of peripheral entrainment to feeding suggests the involvement of multiple pathways, including humoral and neuronal signals. Previous in vitro studies with cultured cells indicate that endocrine factors may function as entrainment cues for peripheral clocks. However, blood-borne factors that are well characterized in actual feeding-induced resetting have yet to be identified. Here, we report that insulin may be involved in feeding-induced tissue-type-dependent entrainment in vivo. In ex vivo culture experiments, insulin-induced phase shift in peripheral clocks was dependent on tissue type, which was consistent with tissue-specific insulin sensitivity, and peripheral entrainment in insulin-sensitive tissues involved PI3K- and MAPK-mediated signaling pathways. These results suggest that insulin may be an immediate early factor in feeding-mediated tissue-specific entrainment. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  20. Suppression of competing speech through entrainment of cortical oscillations

    PubMed Central

    D'Zmura, Michael; Srinivasan, Ramesh

    2013-01-01

    People are highly skilled at attending to one speaker in the presence of competitors, but the neural mechanisms supporting this remain unclear. Recent studies have argued that the auditory system enhances the gain of a speech stream relative to competitors by entraining (or “phase-locking”) to the rhythmic structure in its acoustic envelope, thus ensuring that syllables arrive during periods of high neuronal excitability. We hypothesized that such a mechanism could also suppress a competing speech stream by ensuring that syllables arrive during periods of low neuronal excitability. To test this, we analyzed high-density EEG recorded from human adults while they attended to one of two competing, naturalistic speech streams. By calculating the cross-correlation between the EEG channels and the speech envelopes, we found evidence of entrainment to the attended speech's acoustic envelope as well as weaker yet significant entrainment to the unattended speech's envelope. An independent component analysis (ICA) decomposition of the data revealed sources in the posterior temporal cortices that displayed robust correlations to both the attended and unattended envelopes. Critically, in these components the signs of the correlations when attended were opposite those when unattended, consistent with the hypothesized entrainment-based suppressive mechanism. PMID:23515789

  1. Turbulence and entrainment length scales in large wind farms.

    PubMed

    Andersen, Søren J; Sørensen, Jens N; Mikkelsen, Robert F

    2017-04-13

    A number of large wind farms are modelled using large eddy simulations to elucidate the entrainment process. A reference simulation without turbines and three farm simulations with different degrees of imposed atmospheric turbulence are presented. The entrainment process is assessed using proper orthogonal decomposition, which is employed to detect the largest and most energetic coherent turbulent structures. The dominant length scales responsible for the entrainment process are shown to grow further into the wind farm, but to be limited in extent by the streamwise turbine spacing, which could be taken into account when developing farm layouts. The self-organized motion or large coherent structures also yield high correlations between the power productions of consecutive turbines, which can be exploited through dynamic farm control.This article is part of the themed issue 'Wind energy in complex terrains'. © 2017 The Author(s).

  2. Turbulence and entrainment length scales in large wind farms

    PubMed Central

    2017-01-01

    A number of large wind farms are modelled using large eddy simulations to elucidate the entrainment process. A reference simulation without turbines and three farm simulations with different degrees of imposed atmospheric turbulence are presented. The entrainment process is assessed using proper orthogonal decomposition, which is employed to detect the largest and most energetic coherent turbulent structures. The dominant length scales responsible for the entrainment process are shown to grow further into the wind farm, but to be limited in extent by the streamwise turbine spacing, which could be taken into account when developing farm layouts. The self-organized motion or large coherent structures also yield high correlations between the power productions of consecutive turbines, which can be exploited through dynamic farm control. This article is part of the themed issue ‘Wind energy in complex terrains’. PMID:28265028

  3. Fish entrainment rates through towboat propellers in the Upper Mississippi and Illinois rivers

    USGS Publications Warehouse

    Jack, Killgore K.; Miranda, L.E.; Murphy, C.E.; Wolff, D.M.; Hoover, J.J.; Keevin, T.M.; Maynord, S.T.; Cornish, M.A.

    2011-01-01

    Aspecially designed netwas used to study fish entrainment and injury through towboat propellers in 13 pools of the Upper Mississippi and Illinois rivers. The net was attached to the stern of a 48.8-m-long towboat with twin propellers (in Kort propulsion nozzles), and sampling typically took place while the towboat pushed 15 loaded barges upstream at a time. In total, 254 entrainment samples over 894 km of the 13 study pools were collected. The sampling efforts produced 16,005 fish representing 15 families and at least 44 species; fish ranged in total length from 3 to 123 cm, but only 12.5-cm or longer fish were analyzed because smaller fish could escape through the mesh of the trawl. Clupeidae (68% of total catch) and Sciaenidae (21%) were the dominant families. We detected no effects of towboat operation variables (speed and engine [i.e., propeller] revolutions per minute [RPM]) on entrainment rate (i.e., fish/km), but entrainment rate showed a wedge-shaped distribution relative to hydraulic and geomorphic characteristics of the channel. Entrainment rate was low (30 fish/km). Although total entrainment rate was not related to engine RPM, the probability of being struck by a propeller increased with fish length and engine RPM. Limits on engine RPM in narrow, shallow, and sluggish reaches could reduce entrainment impact, particularly for large-bodied fish. ?? American Fisheries Society 2011.

  4. Measurements of near-bed intra-wave sediment entrainment above vortex ripples

    NASA Astrophysics Data System (ADS)

    Thorne, Peter D.; Davies, Alan G.; Williams, Jon J.

    2003-10-01

    In general, descriptions of suspended sediment transport beneath surface waves are based on the turbulent diffusion concept. However, it is recognised that this approach is questionable for the suspension of sediment when the seabed is rippled. In this case, at least if the ripples are sufficiently steep, the entrainment process is likely to be well organised, and associated with vortex formation and shedding from the ripples. To investigate the entrainment process above ripples, a study was carried out in a large-scale wave flume facility. Utilising acoustic techniques, visualisations of the intra-wave sediment entrainment above vortex ripples have been generated. The observations provide a detailed description of entrainment, which is interpreted here in relation to the process of vortex formation and shedding. It is anticipated that such measurements will contribute to the development of improved physical process models of sediment transport in the rippled bed regime.

  5. Entrainment of Juvenile and Adult American Shad at a Pumped Storage Facility

    DOE PAGES

    Mathur, Dilip; Heisey, Paul G.; Royer, Doug D.; ...

    2017-12-13

    The American Shad Alosa sapidissima has been targeted for restoration to the upper Susquehanna River, and entrainment losses at hydroelectric facilities on the river, including the Muddy Run Pumped Storage Facility, are of concern for the potential growth of the American Shad population. Based on the integration of pumping volume, time of entrainment, and literature–reported diel emigration of juvenile American Shad, the entrainment rate (N = 145; 53 exposed to pumping) was estimated at 3.5%. The entrainment rate for adults (N = 507) was estimated at 0.3–3.9%. Using multistate mark–recapture models, the estimated entrainment probabilities (Ψ) of radio–tagged juveniles weremore » higher during periods of extended pumping (>1 h; Ψ = 0.093; 95% confidence interval [CI] = 0.054–0.156) than at periods of no pumping or short–duration pumping (<1 h; Ψ < 0.0001; 95% CI = 0.0–0.001); the high extended pumping occurred between 2300 and 0600 hours. Entrainment probabilities for adults were low (Ψ < 0.02); the highest probability occurred for fish detected downstream of the intake during the peak portion of the run (Ψ = 0.015; 95% CI = 0.004–0.047). Entrainment probability for most adult fish did not differ from zero. The low values of Ψ for both life stages were attributed to (1) the deep location of the intake (intake ceiling >11.7 m below the water surface), (2) the surface orientation of American Shad (upper 3.1 m), (3) the low overlap between high–volume pumping and peak emigration/migration times, (4) the pumping volume relative to prevailing river flows, and (5) the prolonged, robust swimming speed of American Shad, particularly that of adults (>2.2 m/s), which exceeded the intake velocity (0.2–0.9 m/s). Entrainment of juveniles increased with co–occurrence of low incoming river flows, high pumping volume, and peak emigration times. Furthermore, quantification of migratory species’ entrainment at pumped storage facilities requires

  6. Entrainment of Juvenile and Adult American Shad at a Pumped Storage Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mathur, Dilip; Heisey, Paul G.; Royer, Doug D.

    The American Shad Alosa sapidissima has been targeted for restoration to the upper Susquehanna River, and entrainment losses at hydroelectric facilities on the river, including the Muddy Run Pumped Storage Facility, are of concern for the potential growth of the American Shad population. Based on the integration of pumping volume, time of entrainment, and literature–reported diel emigration of juvenile American Shad, the entrainment rate (N = 145; 53 exposed to pumping) was estimated at 3.5%. The entrainment rate for adults (N = 507) was estimated at 0.3–3.9%. Using multistate mark–recapture models, the estimated entrainment probabilities (Ψ) of radio–tagged juveniles weremore » higher during periods of extended pumping (>1 h; Ψ = 0.093; 95% confidence interval [CI] = 0.054–0.156) than at periods of no pumping or short–duration pumping (<1 h; Ψ < 0.0001; 95% CI = 0.0–0.001); the high extended pumping occurred between 2300 and 0600 hours. Entrainment probabilities for adults were low (Ψ < 0.02); the highest probability occurred for fish detected downstream of the intake during the peak portion of the run (Ψ = 0.015; 95% CI = 0.004–0.047). Entrainment probability for most adult fish did not differ from zero. The low values of Ψ for both life stages were attributed to (1) the deep location of the intake (intake ceiling >11.7 m below the water surface), (2) the surface orientation of American Shad (upper 3.1 m), (3) the low overlap between high–volume pumping and peak emigration/migration times, (4) the pumping volume relative to prevailing river flows, and (5) the prolonged, robust swimming speed of American Shad, particularly that of adults (>2.2 m/s), which exceeded the intake velocity (0.2–0.9 m/s). Entrainment of juveniles increased with co–occurrence of low incoming river flows, high pumping volume, and peak emigration times. Furthermore, quantification of migratory species’ entrainment at pumped storage facilities requires

  7. Cyclonic entrainment of preconditioned shelf waters into a frontal eddy

    NASA Astrophysics Data System (ADS)

    Everett, J. D.; Macdonald, H.; Baird, M. E.; Humphries, J.; Roughan, M.; Suthers, I. M.

    2015-02-01

    The volume transport of nutrient-rich continental shelf water into a cyclonic frontal eddy (entrainment) was examined from satellite observations, a Slocum glider and numerical simulation outputs. Within the frontal eddy, parcels of water with temperature/salinity signatures of the continental shelf (18-19°C and >35.5, respectively) were recorded. The distribution of patches of shelf water observed within the eddy was consistent with the spiral pattern shown within the numerical simulations. A numerical dye tracer experiment showed that the surface waters (≤50 m depth) of the frontal eddy are almost entirely (≥95%) shelf waters. Particle tracking experiments showed that water was drawn into the eddy from over 4° of latitude (30-34.5°S). Consistent with the glider observations, the modeled particles entrained into the eddy sunk relative to their initial position. Particles released south of 33°S, where the waters are cooler and denser, sunk 34 m deeper than their release position. Distance to the shelf was a critical factor in determining the volume of shelf water entrained into the eddy. Entrainment reduced to 0.23 Sv when the eddy was furthest from the shelf, compared to 0.61 Sv when the eddy was within 10 km of the shelf. From a biological perspective, quantifying the entrainment of shelf water into frontal eddies is important, as it is thought to play a significant role in providing an offshore nursery habitat for coastally spawned larval fish.

  8. Neural entrainment to the rhythmic structure of music.

    PubMed

    Tierney, Adam; Kraus, Nina

    2015-02-01

    The neural resonance theory of musical meter explains musical beat tracking as the result of entrainment of neural oscillations to the beat frequency and its higher harmonics. This theory has gained empirical support from experiments using simple, abstract stimuli. However, to date there has been no empirical evidence for a role of neural entrainment in the perception of the beat of ecologically valid music. Here we presented participants with a single pop song with a superimposed bassoon sound. This stimulus was either lined up with the beat of the music or shifted away from the beat by 25% of the average interbeat interval. Both conditions elicited a neural response at the beat frequency. However, although the on-the-beat condition elicited a clear response at the first harmonic of the beat, this frequency was absent in the neural response to the off-the-beat condition. These results support a role for neural entrainment in tracking the metrical structure of real music and show that neural meter tracking can be disrupted by the presentation of contradictory rhythmic cues.

  9. Freeze-Thaw Durability of Air-Entrained Concrete

    PubMed Central

    Shang, Huai-Shuai; Yi, Ting-Hua

    2013-01-01

    One of the most damaging actions affecting concrete is the abrupt temperature change (freeze-thaw cycles). The types of deterioration of concrete structures by cyclic freeze-thaw can be largely classified into surface scaling (characterized by the weight loss) and internal crack growth (characterized by the loss of dynamic modulus of elasticity). The present study explored the durability of concrete made with air-entraining agent subjected to 0, 100, 200, 300, and 400 cycles of freeze-thaw. The experimental study of C20, C25, C30, C40, and C50 air-entrained concrete specimens was completed according to “the test method of long-term and durability on ordinary concrete” GB/T 50082-2009. The dynamic modulus of elasticity and weight loss of specimens were measured after different cycles of freeze-thaw. The influence of freeze-thaw cycles on the relative dynamic modulus of elasticity and weight loss was analyzed. The findings showed that the dynamic modulus of elasticity and weight decreased as the freeze-thaw cycles were repeated. They revealed that the C30, C40, and C50 air-entrained concrete was still durable after 300 cycles of freeze-thaw according to the experimental results. PMID:23576906

  10. In-Roll Stress Analysis Considering Air-Entrainment at the Roll-Inlet with the Effect of Grooves on Nip Roll Surface

    NASA Astrophysics Data System (ADS)

    Sasaki, Masashi; Tanimoto, Koshi; Kohno, Kazukiyo; Takahashi, Sadamu; Kometani, Hideo; Hashimoto, Hiromu

    High-speed winding of paper web sometimes leads the winding system into unstable states, interlayer slippage of wound roll, paper breakage and so on, due to the excessive air-entrainment at the roll-inlet of nip contact region. These phenomena are more frequently observed on coated paper or plastic film comparing with newspaper, because the former allows little permeation of air and their surface roughness is small. Therefore, it is of vital importance to clarify the in-roll stress of wound roll considering the effect of air-entrainment. Generally, it is known that the amount of air-entrainment is affected by grooving shape of nip roll surface. In this paper, we focused on the grooving shape and investigated the relationship with the air-entrainment into two rolls being pressed each other and the grooving shape in order to achieve stable winding at high speed. We conducted experiments using small sized test machine. Entrained air-film thickness was evaluated applying the solution of the elasto-hydrodynamic lubrication for foil bearing with the consideration of nip profile at the grooved area. Air film thickness was measured to ensure the applicability of the above theory. Consequently, we found that the air film thickness can be estimated considering the effect of grooves on the nip roll surface, and that the validity of the above estimations was ensured from experimental investigations. Furthermore, it became to be able to propose the optimal shape of grooves on nip roll surface to maintain the stable winding at high speed and at large-diameter in reel.

  11. Analysis and numerical simulation of a laboratory analog of radiatively induced cloud-top entrainment.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kerstein, Alan R.; Sayler, Bentley J.; Wunsch, Scott Edward

    2010-11-01

    Numerical simulations using the One-Dimensional-Turbulence model are compared to water-tank measurements [B. J. Sayler and R. E. Breidenthal, J. Geophys. Res. 103 (D8), 8827 (1998)] emulating convection and entrainment in stratiform clouds driven by cloud-top cooling. Measured dependences of the entrainment rate on Richardson number, molecular transport coefficients, and other experimental parameters are reproduced. Additional parameter variations suggest more complicated dependences of the entrainment rate than previously anticipated. A simple algebraic model indicates the ways in which laboratory and cloud entrainment behaviors might be similar and different.

  12. Neural Entrainment to Rhythmically Presented Auditory, Visual, and Audio-Visual Speech in Children

    PubMed Central

    Power, Alan James; Mead, Natasha; Barnes, Lisa; Goswami, Usha

    2012-01-01

    Auditory cortical oscillations have been proposed to play an important role in speech perception. It is suggested that the brain may take temporal “samples” of information from the speech stream at different rates, phase resetting ongoing oscillations so that they are aligned with similar frequency bands in the input (“phase locking”). Information from these frequency bands is then bound together for speech perception. To date, there are no explorations of neural phase locking and entrainment to speech input in children. However, it is clear from studies of language acquisition that infants use both visual speech information and auditory speech information in learning. In order to study neural entrainment to speech in typically developing children, we use a rhythmic entrainment paradigm (underlying 2 Hz or delta rate) based on repetition of the syllable “ba,” presented in either the auditory modality alone, the visual modality alone, or as auditory-visual speech (via a “talking head”). To ensure attention to the task, children aged 13 years were asked to press a button as fast as possible when the “ba” stimulus violated the rhythm for each stream type. Rhythmic violation depended on delaying the occurrence of a “ba” in the isochronous stream. Neural entrainment was demonstrated for all stream types, and individual differences in standardized measures of language processing were related to auditory entrainment at the theta rate. Further, there was significant modulation of the preferred phase of auditory entrainment in the theta band when visual speech cues were present, indicating cross-modal phase resetting. The rhythmic entrainment paradigm developed here offers a method for exploring individual differences in oscillatory phase locking during development. In particular, a method for assessing neural entrainment and cross-modal phase resetting would be useful for exploring developmental learning difficulties thought to involve temporal

  13. Validation of CTF Droplet Entrainment and Annular/Mist Closure Models using Riso Steam/Water Experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wysocki, Aaron J.; Salko, Robert K.

    This report summarizes the work done to validate the droplet entrainment and de-entrainment models as well as two-phase closure models in the CTF code by comparison with experimental data obtained at Riso National Laboratory. The Riso data included a series of over 250 steam/water experiments that were performed in both tube and annulus geometries over a range of various pressures and outlet qualities. Experimental conditions were set so that the majority of cases were in the annular/mist ow regime. Measurements included liquid lm ow rate, droplet ow rate, lm thickness, and two-phase pressure drop. CTF was used to model 180more » of the tubular geometry cases, matching experimental geometry, outlet pressure, and outlet ow quality to experimental values. CTF results were compared to the experimental data at the outlet of the test section in terms of vapor and entrained liquid ow fractions, pressure drop per unit length, and liquid lm thickness. The entire process of generating CTF input decks, running cases, extracting data, and generating comparison plots was scripted using Python and Matplotlib for a completely automated validation process. All test cases and scripting tools have been committed to the COBRA-TF master repository and selected cases have been added to the continuous testing system to serve as regression tests. The dierences between the CTF- and experimentally-calculated ow fraction values were con- sistent with previous calculations by Wurtz, who applied the same entrainment correlation to the same data. It has been found that CTF's entrainment/de-entrainment predictive capability in the annular/mist ow regime for this particular facility is comparable to the licensed industry code, COBRAG. While lm and droplet predictions are generally good, it has been found that accuracy is diminished at lower ow qualities. This nding is consistent with the noted deciencies in the Wurtz entrainment model employed by CTF. The CTF predicted two-phase pressure drop

  14. Passive scalar entrainment and mixing in a forced, spatially-developing mixing layer

    NASA Technical Reports Server (NTRS)

    Lowery, P. S.; Reynolds, W. C.; Mansour, N. N.

    1987-01-01

    Numerical simulations are performed for the forced, spatially-developing plane mixing layer in two and three dimensions. Transport of a passive scalar field is included in the computation. This, together with the allowance for spatial development in the simulations, affords the opportunity for study of the asymmetric entrainment of irrotational fluid into the layer. The inclusion of a passive scalar field provides a means for simulating the effect of this entrainment asymmetry on the generation of 'products' from a 'fast' chemical reaction. Further, the three-dimensional simulations provide useful insight into the effect of streamwise structures on these entrainment and 'fast' reaction processes. Results from a two-dimensional simulation indicate 1.22 parts high-speed fluid are entrained for every one part low-speed fluid. Inclusion of streamwise vortices at the inlet plane of a three-dimensional simulation indicate a further increase in asymmetric entrainment - 1.44:1. Results from a final three-dimensional simulation are presented. In this case, a random velocity perturbation is imposed at the inlet plane. The results indicate the 'natural' development of the large spanwise structures characteristic of the mixing layer.

  15. Getting the beat: entrainment of brain activity by musical rhythm and pleasantness.

    PubMed

    Trost, Wiebke; Frühholz, Sascha; Schön, Daniele; Labbé, Carolina; Pichon, Swann; Grandjean, Didier; Vuilleumier, Patrik

    2014-12-01

    Rhythmic entrainment is an important component of emotion induction by music, but brain circuits recruited during spontaneous entrainment of attention by music and the influence of the subjective emotional feelings evoked by music remain still largely unresolved. In this study we used fMRI to test whether the metric structure of music entrains brain activity and how music pleasantness influences such entrainment. Participants listened to piano music while performing a speeded visuomotor detection task in which targets appeared time-locked to either strong or weak beats. Each musical piece was presented in both a consonant/pleasant and dissonant/unpleasant version. Consonant music facilitated target detection and targets presented synchronously with strong beats were detected faster. FMRI showed increased activation of bilateral caudate nucleus when responding on strong beats, whereas consonance enhanced activity in attentional networks. Meter and consonance selectively interacted in the caudate nucleus, with greater meter effects during dissonant than consonant music. These results reveal that the basal ganglia, involved both in emotion and rhythm processing, critically contribute to rhythmic entrainment of subcortical brain circuits by music. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. Changes in music tempo entrain movement related brain activity.

    PubMed

    Daly, Ian; Hallowell, James; Hwang, Faustina; Kirke, Alexis; Malik, Asad; Roesch, Etienne; Weaver, James; Williams, Duncan; Miranda, Eduardo; Nasuto, Slawomir J

    2014-01-01

    The neural mechanisms of music listening and appreciation are not yet completely understood. Based on the apparent relationship between the beats per minute (tempo) of music and the desire to move (for example feet tapping) induced while listening to that music it is hypothesised that musical tempo may evoke movement related activity in the brain. Participants are instructed to listen, without moving, to a large range of musical pieces spanning a range of styles and tempos during an electroencephalogram (EEG) experiment. Event-related desynchronisation (ERD) in the EEG is observed to correlate significantly with the variance of the tempo of the musical stimuli. This suggests that the dynamics of the beat of the music may induce movement related brain activity in the motor cortex. Furthermore, significant correlations are observed between EEG activity in the alpha band over the motor cortex and the bandpower of the music in the same frequency band over time. This relationship is observed to correlate with the strength of the ERD, suggesting entrainment of motor cortical activity relates to increased ERD strength.

  17. microRNA modulation of circadian clock period and entrainment

    PubMed Central

    Cheng, Hai-Ying M.; Papp, Joseph W.; Varlamova, Olga; Dziema, Heather; Russell, Brandon; Curfman, John P.; Nakazawa, Takanobu; Shimizu, Kimiko; Okamura, Hitoshi; Impey, Soren; Obrietan, Karl

    2007-01-01

    microRNAs (miRNAs) are a class of small, non-coding, RNAs that regulate the stability or translation of mRNA transcripts. Although recent work has implicated miRNAs in development and in disease, the expression and function of miRNAs in the adult mammalian nervous system has not been extensively characterized. Here, we examine the role of two brain-specific miRNAs, miR-219 and miR-132, in modulating the circadian clock located in the suprachiasmatic nucleus. miR-219 is a target of the CLOCK/BMAL1 complex, exhibits robust circadian rhythms of expression and the in vivo knockdown of miR-219 lengthens the circadian period. miR-132 is induced by photic entrainment cues via a MAPK/CREB-dependent mechanism, modulates clock gene expression, and attenuates the entraining effects of light. Collectively, these data reveal miRNAs as clock- and light-regulated genes and provide a mechanistic examination of their roles as effectors of pacemaker activity and entrainment. PMID:17553428

  18. Speech entrainment enables patients with Broca’s aphasia to produce fluent speech

    PubMed Central

    Hubbard, H. Isabel; Hudspeth, Sarah Grace; Holland, Audrey L.; Bonilha, Leonardo; Fromm, Davida; Rorden, Chris

    2012-01-01

    A distinguishing feature of Broca’s aphasia is non-fluent halting speech typically involving one to three words per utterance. Yet, despite such profound impairments, some patients can mimic audio-visual speech stimuli enabling them to produce fluent speech in real time. We call this effect ‘speech entrainment’ and reveal its neural mechanism as well as explore its usefulness as a treatment for speech production in Broca’s aphasia. In Experiment 1, 13 patients with Broca’s aphasia were tested in three conditions: (i) speech entrainment with audio-visual feedback where they attempted to mimic a speaker whose mouth was seen on an iPod screen; (ii) speech entrainment with audio-only feedback where patients mimicked heard speech; and (iii) spontaneous speech where patients spoke freely about assigned topics. The patients produced a greater variety of words using audio-visual feedback compared with audio-only feedback and spontaneous speech. No difference was found between audio-only feedback and spontaneous speech. In Experiment 2, 10 of the 13 patients included in Experiment 1 and 20 control subjects underwent functional magnetic resonance imaging to determine the neural mechanism that supports speech entrainment. Group results with patients and controls revealed greater bilateral cortical activation for speech produced during speech entrainment compared with spontaneous speech at the junction of the anterior insula and Brodmann area 47, in Brodmann area 37, and unilaterally in the left middle temporal gyrus and the dorsal portion of Broca’s area. Probabilistic white matter tracts constructed for these regions in the normal subjects revealed a structural network connected via the corpus callosum and ventral fibres through the extreme capsule. Unilateral areas were connected via the arcuate fasciculus. In Experiment 3, all patients included in Experiment 1 participated in a 6-week treatment phase using speech entrainment to improve speech production

  19. Experimental study of near-field air entrainment by subsonic volcanic jets

    USGS Publications Warehouse

    Solovitz, Stephen A.; Mastin, Larry G.

    2009-01-01

    The flow structure in the developing region of a turbulent jet has been examined using particle image velocimetry methods, considering the flow at steady state conditions. The velocity fields were integrated to determine the ratio of the entrained air speed to the jet speed, which was approximately 0.03 for a range of Mach numbers up to 0.89 and Reynolds numbers up to 217,000. This range of experimental Mach and Reynolds numbers is higher than previously considered for high-accuracy entrainment measures, particularly in the near-vent region. The entrainment values are below those commonly used for geophysical analyses of volcanic plumes, suggesting that existing 1-D models are likely to understate the tendency for column collapse.

  20. Positive feedback and momentum growth during debris-flow entrainment of wet bed sediment

    USGS Publications Warehouse

    Iverson, R.M.; Reid, M.E.; Logan, M.; LaHusen, R.G.; Godt, J.W.; Griswold, J.P.

    2011-01-01

    Debris flows typically occur when intense rainfall or snowmelt triggers landslides or extensive erosion on steep, debris-mantled slopes. The flows can then grow dramatically in size and speed as they entrain material from their beds and banks, but the mechanism of this growth is unclear. Indeed, momentum conservation implies that entrainment of static material should retard the motion of the flows if friction remains unchanged. Here we use data from large-scale experiments to assess the entrainment of bed material by debris flows. We find that entrainment is accompanied by increased flow momentum and speed only if large positive pore pressures develop in wet bed sediments as the sediments are overridden by debris flows. The increased pore pressure facilitates progressive scour of the bed, reduces basal friction and instigates positive feedback that causes flow speed, mass and momentum to increase. If dryer bed sediment is entrained, however, the feedback becomes negative and flow momentum declines. We infer that analogous feedbacks could operate in other types of gravity-driven mass flow that interact with erodible beds. ?? 2011 Macmillan Publishers Limited. All rights reserved.

  1. Scale dependence of entrainment-mixing mechanisms in cumulus clouds

    DOE PAGES

    Lu, Chunsong; Liu, Yangang; Niu, Shengjie; ...

    2014-12-17

    This work empirically examines the dependence of entrainment-mixing mechanisms on the averaging scale in cumulus clouds using in situ aircraft observations during the Routine Atmospheric Radiation Measurement Aerial Facility Clouds with Low Optical Water Depths Optical Radiative Observations (RACORO) field campaign. A new measure of homogeneous mixing degree is defined that can encompass all types of mixing mechanisms. Analysis of the dependence of the homogenous mixing degree on the averaging scale shows that, on average, the homogenous mixing degree decreases with increasing averaging scales, suggesting that apparent mixing mechanisms gradually approach from homogeneous mixing to extreme inhomogeneous mixing with increasingmore » scales. The scale dependence can be well quantified by an exponential function, providing first attempt at developing a scale-dependent parameterization for the entrainment-mixing mechanism. The influences of three factors on the scale dependence are further examined: droplet-free filament properties (size and fraction), microphysical properties (mean volume radius and liquid water content of cloud droplet size distributions adjacent to droplet-free filaments), and relative humidity of entrained dry air. It is found that the decreasing rate of homogeneous mixing degree with increasing averaging scales becomes larger with larger droplet-free filament size and fraction, larger mean volume radius and liquid water content, or higher relative humidity. The results underscore the necessity and possibility of considering averaging scale in representation of entrainment-mixing processes in atmospheric models.« less

  2. Laboratory simulations of cumulus cloud flows explain the entrainment anomaly

    NASA Astrophysics Data System (ADS)

    Narasimha, Roddam; Diwan, Sourabh S.; Subrahmanyam, Duvvuri; Sreenivas, K. R.; Bhat, G. S.

    2010-11-01

    In the present laboratory experiments, cumulus cloud flows are simulated by starting plumes and jets subjected to off-source heat addition in amounts that are dynamically similar to latent heat release due to condensation in real clouds. The setup permits incorporation of features like atmospheric inversion layers and the active control of off-source heat addition. Herein we report, for the first time, simulation of five different cumulus cloud types (and many shapes), including three genera and three species (WMO Atlas 1987), which show striking resemblance to real clouds. It is known that the rate of entrainment in cumulus cloud flows is much less than that in classical plumes - the main reason for the failure of early entrainment models. Some of the previous studies on steady-state jets and plumes (done in a similar setup) have attributed this anomaly to the disruption of the large-scale turbulent structures upon the addition of off-source heat. We present estimates of entrainment coefficients from these measurements which show a qualitatively consistent variation with height. We propose that this explains the observed entrainment anomaly in cumulus clouds; further experiments are planned to address this question in the context of starting jets and plumes.

  3. Entrainment at a sediment concentration interface in turbulent channel flow

    NASA Astrophysics Data System (ADS)

    Salinas, Jorge; Shringarpure, Mrugesh; Cantero, Mariano; Balachandar, S.

    2016-11-01

    In this work we address the role of turbulence on entrainment at a sediment concentration interface. This process can be conceived as the entrainment of sediment-free fluid into the bottom sediment-laden flow, or alternatively, as the entrainment of sediment into the top sediment-free flow. We have performed direct numerical simulations for fixed Reynolds and Schmidt numbers while varying the values of Richardson number and particle settling velocity. The analysis performed shows that the ability of the flow to pick up a given sediment size decreases with the distance from the bottom, and thus only fine enough sediment particles are entrained across the sediment concentration interface. For these cases, the concentration profiles evolve to a final steady state in good agreement with the well-known Rouse profile. The approach towards the Rouse profile happens through a transient self-similar state. Detailed analysis of the three dimensional structure of the sediment concentration interface shows the mechanisms by which sediment particles are lifted up by tongues of sediment-laden fluid with positive correlation between vertical velocity and sediment concentration. Finally, the mixing ability of the flow is addressed by monitoring the center of mass of the sediment-laden layer. With the support of ExxonMobil, NSF, ANPCyT, CONICET.

  4. The neurochemical basis of photic entrainment of the circadian pacemaker

    NASA Technical Reports Server (NTRS)

    Rea, Michael A.; Buckley, Becky; Lutton, Lewis M.

    1992-01-01

    Circadian rhythmicity in mammals is controlled by the action of a light-entrainable hypothalamus, in association with two cell clusters known as the supra chiasmatic nuclei (SCN). In the absence of temporal environmental clues, this pacemaker continues to measure time by an endogenous mechanism (clock), driving biochemical, physiological, and behavioral rhythms that reflect the natural period of the pacemaker oscillation. This endogenous period usually differs slightly from 24 hours (i.e., circadian). When mammals are maintained under a 24 hour light-dark (LD) cycle, the pacemaker becomes entrained such that the period of the pacemaker oscillation matches that of the LD cycle. Potentially entraining photic information is conveyed to the SCN via a direct retinal projection, the retinohypothalamic tract (RHT). RHT neurotransmission is thought to be mediated by the release of excitatory amino acids (EAA) in the SCN. In support of this hypothesis, recent experiments using nocturnal rodents have shown that EAA antagonists block the effects of light on pacemaker-driven behavioral rhythms, and attenuate light induced gene expression in SCN cells. An understanding of the neurochemical basis of the photic entrainment process would facilitate the development of pharmacological strategies for maintaining synchrony among shift workers in environments, such as the Space Station, which provide unreliable or conflicting temporal photic clues.

  5. Uncertainty associated with convective wet removal of entrained aerosols in a global climate model

    NASA Astrophysics Data System (ADS)

    Croft, B.; Pierce, J. R.; Martin, R. V.; Hoose, C.; Lohmann, U.

    2012-11-01

    The uncertainties associated with the wet removal of aerosols entrained above convective cloud bases are investigated in a global aerosol-climate model (ECHAM5-HAM) under a set of limiting assumptions for the wet removal of the entrained aerosols. The limiting assumptions for the wet removal of entrained aerosols are negligible scavenging and vigorous scavenging (either through activation, with size-dependent impaction scavenging, or with the prescribed fractions of the standard model). To facilitate this process-based study, an explicit representation of cloud-droplet-borne and ice-crystal-borne aerosol mass and number, for the purpose of wet removal, is introduced into the ECHAM5-HAM model. This replaces and is compared with the prescribed cloud-droplet-borne and ice-crystal-borne aerosol fraction scavenging scheme of the standard model. A 20% to 35% uncertainty in simulated global, annual mean aerosol mass burdens and optical depth (AOD) is attributed to different assumptions for the wet removal of aerosols entrained above convective cloud bases. Assumptions about the removal of aerosols entrained above convective cloud bases control modeled upper tropospheric aerosol concentrations by as much as one order of magnitude. Simulated aerosols entrained above convective cloud bases contribute 20% to 50% of modeled global, annual mean aerosol mass convective wet deposition (about 5% to 10% of the total dry and wet deposition), depending on the aerosol species, when including wet scavenging of those entrained aerosols (either by activation, size-dependent impaction, or with the prescribed fraction scheme). Among the simulations, the prescribed fraction and size-dependent impaction schemes yield the largest global, annual mean aerosol mass convective wet deposition (by about two-fold). However, the prescribed fraction scheme has more vigorous convective mixed-phase wet removal (by two to five-fold relative to the size-dependent impaction scheme) since nearly all

  6. AW-101 entrained solids - Solubility versus temperature

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    GJ Lumetta; RC Lettau; GF Piepel

    This report describes the results of a test conducted by Battelle to assess the solubility of the solids entrained in the diluted AW-101 low-activity waste (LAW) sample. BNFL requested Battelle to dilute the AW-1-1 sample using de-ionized water to mimic expected plant operating conditions. BNFL further requested Battelle to assess the solubility of the solids present in the diluted AW-101 sample versus temperature conditions of 30, 40, and 50 C. BNFL requested these tests to assess the composition of the LAW supernatant and solids versus expected plant-operating conditions. The work was conducted according to test plan BNFL-TP-29953-7, Rev. 0, Determinationmore » of the Solubility of LAW Entrained Solids. The test went according to plan, with no deviations from the test plan.« less

  7. Effect of fast freeze-thaw cycles on mechanical properties of ordinary-air-entrained concrete.

    PubMed

    Shang, Huai-shuai; Cao, Wei-qun; Wang, Bin

    2014-01-01

    Freezing-thawing resistance is a very significant characteristic for concrete in severe environment (such as cold region with the lowest temperature below 0°C). In this study, ordinary-air-entrained (O-A-E) concrete was produced in a laboratory environment; the compressive strength, cubic compressive strength of C50, C40, C30, C25, and C20 ordinary-air-entrained concrete, tensile strength, and cleavage strength of C30 ordinary-air-entrained concrete were measured after fast freeze-thaw cycles. The effects of fast freeze-thaw cycles on the mechanical properties (compressive strength and cleavage strength) of ordinary-air-entrained concrete materials are investigated on the basis of the experimental results. And the concise mathematical formula between mechanical behavior and number of fast freeze-thaw cycles was established. The experiment results can be used as a reference in design, maintenance, and life prediction of ordinary-air-entrained concrete structure (such as dam, offshore platform, etc.) in cold regions.

  8. Effect of Fast Freeze-Thaw Cycles on Mechanical Properties of Ordinary-Air-Entrained Concrete

    PubMed Central

    Shang, Huai-shuai; Cao, Wei-qun; Wang, Bin

    2014-01-01

    Freezing-thawing resistance is a very significant characteristic for concrete in severe environment (such as cold region with the lowest temperature below 0°C). In this study, ordinary-air-entrained (O-A-E) concrete was produced in a laboratory environment; the compressive strength, cubic compressive strength of C50, C40, C30, C25, and C20 ordinary-air-entrained concrete, tensile strength, and cleavage strength of C30 ordinary-air-entrained concrete were measured after fast freeze-thaw cycles. The effects of fast freeze-thaw cycles on the mechanical properties (compressive strength and cleavage strength) of ordinary-air-entrained concrete materials are investigated on the basis of the experimental results. And the concise mathematical formula between mechanical behavior and number of fast freeze-thaw cycles was established. The experiment results can be used as a reference in design, maintenance, and life prediction of ordinary-air-entrained concrete structure (such as dam, offshore platform, etc.) in cold regions. PMID:24895671

  9. Validating Variance Similarity Functions in the Entrainment Zone

    NASA Astrophysics Data System (ADS)

    Osman, M.; Turner, D. D.; Heus, T.; Newsom, R. K.

    2017-12-01

    In previous work, the water vapor variance in the entrainment zone was proposed to be proportional to the convective velocity scale, gradient water vapor mixing ratio and the Brunt-Vaisala frequency in the interfacial layer, while the variance of the vertical wind at in the entrainment zone was defined in terms of the convective velocity scale. The variances in the entrainment zone have been hypothesized to depend on two distinct functions, which also depend on the Richardson number. To the best of our knowledge, these hypotheses have never been tested observationally. Simultaneous measurements of the Eddy correlation surface flux, wind shear profiles from wind profilers, and variance profile measurements of vertical motions and water vapor by Doppler and Raman lidars, respectively, provide a unique opportunity to thoroughly examine the functions used in defining the variances and validate them. These observations were made over the Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP) site. We have identified about 30 cases from 2016 during which the convective boundary layer (CBL) is quasi-stationary and well mixed for at least 2 hours. The vertical profiles of turbulent fluctuations of the vertical wind and water vapor have been derived using an auto covariance technique to separate out the instrument random error to a set of 2-h period time series. The error analysis of the lidars observations demonstrates that the lidars are capable of resolving the vertical structure of turbulence around the entrainment zone. Therefore, utilizing this unique combination of observations, this study focuses on extensively testing the hypotheses that the second-order moments are indeed proportional to the functions which also depend on Richardson number. The coefficients that are used in defining the functions will also be determined observationally and compared against with the values suggested by Large eddy simulation (LES) studies.

  10. Exploring how musical rhythm entrains brain activity with electroencephalogram frequency-tagging.

    PubMed

    Nozaradan, Sylvie

    2014-12-19

    The ability to perceive a regular beat in music and synchronize to this beat is a widespread human skill. Fundamental to musical behaviour, beat and meter refer to the perception of periodicities while listening to musical rhythms and often involve spontaneous entrainment to move on these periodicities. Here, we present a novel experimental approach inspired by the frequency-tagging approach to understand the perception and production of rhythmic inputs. This approach is illustrated here by recording the human electroencephalogram responses at beat and meter frequencies elicited in various contexts: mental imagery of meter, spontaneous induction of a beat from rhythmic patterns, multisensory integration and sensorimotor synchronization. Collectively, our observations support the view that entrainment and resonance phenomena subtend the processing of musical rhythms in the human brain. More generally, they highlight the potential of this approach to help us understand the link between the phenomenology of musical beat and meter and the bias towards periodicities arising under certain circumstances in the nervous system. Entrainment to music provides a highly valuable framework to explore general entrainment mechanisms as embodied in the human brain. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  11. Exploring how musical rhythm entrains brain activity with electroencephalogram frequency-tagging

    PubMed Central

    Nozaradan, Sylvie

    2014-01-01

    The ability to perceive a regular beat in music and synchronize to this beat is a widespread human skill. Fundamental to musical behaviour, beat and meter refer to the perception of periodicities while listening to musical rhythms and often involve spontaneous entrainment to move on these periodicities. Here, we present a novel experimental approach inspired by the frequency-tagging approach to understand the perception and production of rhythmic inputs. This approach is illustrated here by recording the human electroencephalogram responses at beat and meter frequencies elicited in various contexts: mental imagery of meter, spontaneous induction of a beat from rhythmic patterns, multisensory integration and sensorimotor synchronization. Collectively, our observations support the view that entrainment and resonance phenomena subtend the processing of musical rhythms in the human brain. More generally, they highlight the potential of this approach to help us understand the link between the phenomenology of musical beat and meter and the bias towards periodicities arising under certain circumstances in the nervous system. Entrainment to music provides a highly valuable framework to explore general entrainment mechanisms as embodied in the human brain. PMID:25385771

  12. Entrainment range of nonidentical circadian oscillators by a light-dark cycle

    NASA Astrophysics Data System (ADS)

    Gu, Changgui; Xu, Jinshan; Liu, Zonghua; Rohling, Jos H. T.

    2013-08-01

    The suprachiasmatic nucleus (SCN) is a principal circadian clock in mammals, which controls physiological and behavioral daily rhythms. The SCN has two main features: Maintaining a rhythmic cycle of approximately 24 h in the absence of a light-dark cycle (free-running period) and the ability to entrain to external light-dark cycles. Both free-running period and range of entrainment vary from one species to another. To understand this phenomenon, we investigated the diversity of a free-running period by the distribution of coupling strengths in our previous work [Phys. Rev. EPLEEE81539-375510.1103/PhysRevE.80.030904 80, 030904(R) (2009)]. In this paper we numerically found that the dispersion of intrinsic periods among SCN neurons influence the entrainment range of the SCN, but has little influence on the free-running periods under constant darkness. This indicates that the dispersion of coupling strengths determines the diversity in free-running periods, while the dispersion of intrinsic periods determines the diversity in the entrainment range. A theoretical analysis based on two coupled neurons is presented to explain the results of numerical simulations.

  13. HYDRODYNAMIC SIMULATIONS OF H ENTRAINMENT AT THE TOP OF He-SHELL FLASH CONVECTION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woodward, Paul R.; Lin, Pei-Hung; Herwig, Falk, E-mail: paul@lcse.umn.edu, E-mail: fherwig@uvic.ca

    2015-01-01

    We present the first three-dimensional, fully compressible gas-dynamics simulations in 4π geometry of He-shell flash convection with proton-rich fuel entrainment at the upper boundary. This work is motivated by the insufficiently understood observed consequences of the H-ingestion flash in post-asymptotic giant branch (post-AGB) stars (Sakurai's object) and metal-poor AGB stars. Our investigation is focused on the entrainment process at the top convection boundary and on the subsequent advection of H-rich material into deeper layers, and we therefore ignore the burning of the proton-rich fuel in this study. We find that for our deep convection zone, coherent convective motions of nearmore » global scale appear to dominate the flow. At the top boundary convective shear flows are stable against Kelvin-Helmholtz instabilities. However, such shear instabilities are induced by the boundary-layer separation in large-scale, opposing flows. This links the global nature of thick shell convection with the entrainment process. We establish the quantitative dependence of the entrainment rate on grid resolution. With our numerical technique, simulations with 1024{sup 3} cells or more are required to reach a numerical fidelity appropriate for this problem. However, only the result from the 1536{sup 3} simulation provides a clear indication that we approach convergence with regard to the entrainment rate. Our results demonstrate that our method, which is described in detail, can provide quantitative results related to entrainment and convective boundary mixing in deep stellar interior environments with very stiff convective boundaries. For the representative case we study in detail, we find an entrainment rate of 4.38 ± 1.48 × 10{sup –13} M {sub ☉} s{sup –1}.« less

  14. Exploring Stratocumulus Cloud-Top Entrainment Processes and Parameterizations by Using Doppler Cloud Radar Observations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Albrecht, Bruce; Fang, Ming; Ghate, Virendra

    2016-02-01

    Observations from an upward-pointing Doppler cloud radar are used to examine cloud-top entrainment processes and parameterizations in a non-precipitating continental stratocumulus cloud deck maintained by time varying surface buoyancy fluxes and cloud-top radiative cooling. Radar and ancillary observations were made at the Atmospheric Radiation Measurement (ARM)’s Southern Great Plains (SGP) site located near Lamont, Oklahoma of unbroken, non-precipitating stratocumulus clouds observed for a 14-hour period starting 0900 Central Standard Time on 25 March 2005. The vertical velocity variance and energy dissipation rate (EDR) terms in a parameterized turbulence kinetic energy (TKE) budget of the entrainment zone are estimated using themore » radar vertical velocity and the radar spectrum width observations from the upward-pointing millimeter cloud radar (MMCR) operating at the SGP site. Hourly averages of the vertical velocity variance term in the TKE entrainment formulation correlates strongly (r=0.72) to the dissipation rate term in the entrainment zone. However, the ratio of the variance term to the dissipation decreases at night due to decoupling of the boundary layer. When the night -time decoupling is accounted for, the correlation between the variance and the EDR term increases (r=0.92). To obtain bulk coefficients for the entrainment parameterizations derived from the TKE budget, independent estimate of entrainment were obtained from an inversion height budget using ARM SGP observations of the local time derivative and the horizontal advection of the cloud-top height. The large-scale vertical velocity at the inversion needed for this budget from EMWF reanalysis. This budget gives a mean entrainment rate for the observing period of 0.76±0.15 cm/s. This mean value is applied to the TKE budget parameterizations to obtain the bulk coefficients needed in these parameterizations. These bulk coefficients are compared with those from previous and are used to in

  15. Tracing the neural basis of auditory entrainment.

    PubMed

    Lehmann, Alexandre; Arias, Diana Jimena; Schönwiesner, Marc

    2016-11-19

    Neurons in the auditory cortex synchronize their responses to temporal regularities in sound input. This coupling or "entrainment" is thought to facilitate beat extraction and rhythm perception in temporally structured sounds, such as music. As a consequence of such entrainment, the auditory cortex responds to an omitted (silent) sound in a regular sequence. Although previous studies suggest that the auditory brainstem frequency-following response (FFR) exhibits some of the beat-related effects found in the cortex, it is unknown whether omissions of sounds evoke a brainstem response. We simultaneously recorded cortical and brainstem responses to isochronous and irregular sequences of consonant-vowel syllable /da/ that contained sporadic omissions. The auditory cortex responded strongly to omissions, but we found no evidence of evoked responses to omitted stimuli from the auditory brainstem. However, auditory brainstem responses in the isochronous sound sequence were more consistent across trials than in the irregular sequence. These results indicate that the auditory brainstem faithfully encodes short-term acoustic properties of a stimulus and is sensitive to sequence regularity, but does not entrain to isochronous sequences sufficiently to generate overt omission responses, even for sequences that evoke such responses in the cortex. These findings add to our understanding of the processing of sound regularities, which is an important aspect of human cognitive abilities like rhythm, music and speech perception. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  16. Impact of reduced near-field entrainment of overpressured volcanic jets on plume development

    USGS Publications Warehouse

    Saffaraval, Farhad; Solovitz, Stephen A.; Ogden, Darcy E.; Mastin, Larry G.

    2012-01-01

    Volcanic plumes are often studied using one-dimensional analytical models, which use an empirical entrainment ratio to close the equations. Although this ratio is typically treated as constant, its value near the vent is significantly reduced due to flow development and overpressured conditions. To improve the accuracy of these models, a series of experiments was performed using particle image velocimetry, a high-accuracy, full-field velocity measurement technique. Experiments considered a high-speed jet with Reynolds numbers up to 467,000 and exit pressures up to 2.93 times atmospheric. Exit gas densities were also varied from 0.18 to 1.4 times that of air. The measured velocity was integrated to determine entrainment directly. For jets with exit pressures near atmospheric, entrainment was approximately 30% less than the fully developed level at 20 diameters from the exit. At pressures nearly three times that of the atmosphere, entrainment was 60% less. These results were introduced into Plumeria, a one-dimensional plume model, to examine the impact of reduced entrainment. The maximum column height was only slightly modified, but the critical radius for collapse was significantly reduced, decreasing by nearly a factor of two at moderate eruptive pressures.

  17. Relationships between gastric slow wave frequency, velocity, and extracellular amplitude studied by a joint experimental-theoretical approach.

    PubMed

    Wang, T H-H; Du, P; Angeli, T R; Paskaranandavadivel, N; Erickson, J C; Abell, T L; Cheng, L K; O'Grady, G

    2018-01-01

    Gastric slow wave dysrhythmias are accompanied by deviations in frequency, velocity, and extracellular amplitude, but the inherent association between these parameters in normal activity still requires clarification. This study quantified these associations using a joint experimental-theoretical approach. Gastric pacing was conducted in pigs with simultaneous high-resolution slow wave mapping (32-256 electrodes; 4-7.6 mm spacing). Relationships between period, velocity, and amplitude were quantified and correlated for each wavefront. Human data from two existing mapping control cohorts were analyzed to extract and correlate these same parameters. A validated biophysically based ICC model was also applied in silico to quantify velocity-period relationships during entrainment simulations and velocity-amplitude relationships from membrane potential equations. Porcine pacing studies identified positive correlations for velocity-period (0.13 mm s -1 per 1 s, r 2 =.63, P<.001) and amplitude-velocity (74 μV per 1 mm s -1 , r 2 =.21, P=.002). In humans, positive correlations were also quantified for velocity-period (corpus: 0.11 mm s -1 per 1 s, r 2 =.16, P<.001; antrum: 0.23 mm s -1 per 1 s, r 2 =.55; P<.001), and amplitude-velocity (94 μV per 1 mm s -1 , r 2 =.56; P<.001). Entrainment simulations matched the experimental velocity-period relationships and demonstrated dependence on the slow wave recovery phase. Simulated membrane potential relationships were close to these experimental results (100 μV per 1 mm s -1 ). These data quantify the relationships between slow wave frequency, velocity, and extracellular amplitude. The results from both human and porcine studies were in keeping with biophysical models, demonstrating concordance with ICC biophysics. These relationships are important in the regulation of gastric motility and will help to guide interpretations of dysrhythmias. © 2017 John Wiley & Sons Ltd.

  18. Aging affects the balance of neural entrainment and top-down neural modulation in the listening brain

    PubMed Central

    Henry, Molly J.; Herrmann, Björn; Kunke, Dunja; Obleser, Jonas

    2017-01-01

    Healthy aging is accompanied by listening difficulties, including decreased speech comprehension, that stem from an ill-understood combination of sensory and cognitive changes. Here, we use electroencephalography to demonstrate that auditory neural oscillations of older adults entrain less firmly and less flexibly to speech-paced (∼3 Hz) rhythms than younger adults’ during attentive listening. These neural entrainment effects are distinct in magnitude and origin from the neural response to sound per se. Non-entrained parieto-occipital alpha (8–12 Hz) oscillations are enhanced in young adults, but suppressed in older participants, during attentive listening. Entrained neural phase and task-induced alpha amplitude exert opposite, complementary effects on listening performance: higher alpha amplitude is associated with reduced entrainment-driven behavioural performance modulation. Thus, alpha amplitude as a task-driven, neuro-modulatory signal can counteract the behavioural corollaries of neural entrainment. Balancing these two neural strategies may present new paths for intervention in age-related listening difficulties. PMID:28654081

  19. Familiarity Affects Entrainment of EEG in Music Listening.

    PubMed

    Kumagai, Yuiko; Arvaneh, Mahnaz; Tanaka, Toshihisa

    2017-01-01

    Music perception involves complex brain functions. The relationship between music and brain such as cortical entrainment to periodic tune, periodic beat, and music have been well investigated. It has also been reported that the cerebral cortex responded more strongly to the periodic rhythm of unfamiliar music than to that of familiar music. However, previous works mainly used simple and artificial auditory stimuli like pure tone or beep. It is still unclear how the brain response is influenced by the familiarity of music. To address this issue, we analyzed electroencelphalogram (EEG) to investigate the relationship between cortical response and familiarity of music using melodies produced by piano sounds as simple natural stimuli. The cross-correlation function averaged across trials, channels, and participants showed two pronounced peaks at time lags around 70 and 140 ms. At the two peaks the magnitude of the cross-correlation values were significantly larger when listening to unfamiliar and scrambled music compared to those when listening to familiar music. Our findings suggest that the response to unfamiliar music is stronger than that to familiar music. One potential application of our findings would be the discrimination of listeners' familiarity with music, which provides an important tool for assessment of brain activity.

  20. The entrainment rate for a row of turbulent jets. M.S. Thesis Final Report

    NASA Technical Reports Server (NTRS)

    Gordon, Eliott B.; Greber, Isaac

    1990-01-01

    Entrainment rates for a row of isothermal circular air jets issuing into a quiescent environment are found by integrating velocity distributions measured by a linearized hot-wire anemometer. Jet spacing to jet diameter ratios of 2.5, 5, 10, and 20 are studied at jet Reynold's numbers ranging from 5110 to 12070. Velocity distributions are determined at regular downstream intervals at axial distances equal to 16.4 to 164 jet diameters from the jet source. The entrainment rates for the four spacing configurations vary monotonically with increasing spacing/diameter between the limiting case of the slot jet entrainment rate (where the jet spacing to diameter ratio is zero) and the circular jet entrainment rate (in which the spacing to diameter ratio is infinity).

  1. Presence of strong harmonics during visual entrainment: a magnetoencephalography study.

    PubMed

    Heinrichs-Graham, Elizabeth; Wilson, Tony W

    2012-09-01

    Visual neurons are known to synchronize their firing with stimuli that flicker at a constant rate (e.g. 12Hz). These so-called visual steady-state responses (VSSR) are a well-studied phenomenon, yet the underlying mechanisms are widely disagreed upon. Furthermore, there is limited evidence that visual neurons may simultaneously synchronize at harmonics of the stimulation frequency. We utilized magnetoencephalography (MEG) to examine synchronization at harmonics of the visual stimulation frequency (18Hz). MEG data were analyzed for event-related-synchronization (ERS) at the fundamental frequency, 36, 54, and 72Hz. We found strong ERS in all bands. Only 31% of participants showed maximum entrainment at the fundamental; others showed stronger entrainment at either 36 or 54Hz. The cortical foci of these responses indicated that the harmonics involved cortices that were partially distinct from the fundamental. These findings suggest that spatially-overlapping subpopulations of neurons are simultaneously entrained at different harmonics of the stimulus frequency. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. Numerical Modeling of Deep Mantle Flow: Thermochemical Convection and Entrainment

    NASA Astrophysics Data System (ADS)

    Mulyukova, Elvira; Steinberger, Bernhard; Dabrowski, Marcin; Sobolev, Stephan

    2013-04-01

    One of the most robust results from tomographic studies is the existence of two antipodally located Large Low Shear Velocity Provinces (LLSVPs) at the base of the mantle, which appear to be chemically denser than the ambient mantle. Results from reconstruction studies (Torsvik et al., 2006) infer that the LLSVPs are stable, long-lived, and are sampled by deep mantle plumes that rise predominantly from their margins. The origin of the dense material is debated, but generally falls within three categories: (i) a primitive layer that formed during magma ocean crystallization, (ii) accumulation of a dense eclogitic component from the recycled oceanic crust, and (iii) outer core material leaking into the lower mantle. A dense layer underlying a less dense ambient mantle is gravitationally stable. However, the flow due to thermal density variations, i.e. hot rising plumes and cold downwelling slabs, may deform the layer into piles with higher topography. Further deformation may lead to entrainment of the dense layer, its mixing with the ambient material, and even complete homogenisation with the rest of the mantle. The amount of the anomalous LLSVP-material that gets entrained into the rising plumes poses a constraint on the survival time of the LLSVPs, as well as on the plume buoyancy, on the lithospheric uplift associated with plume interaction and geochemical signature of the erupted lavas observed at the Earth's surface. Recent estimates for the plume responsible for the formation of the Siberian Flood Basalts give about 15% of entrained dense recycled oceanic crust, which made the hot mantle plume almost neutrally buoyant (Sobolev et al., 2011). In this numerical study we investigate the mechanics of entrainment of a dense basal layer by convective mantle flow. We observe that the types of flow that promote entrainment of the dense layer are (i) upwelling of the dense layer when it gets heated enough to overcome its stabilizing chemical density anomaly, (ii

  3. Better estimates of Entrainment Mixing, Subsidence, and Photochemical Ozone Production using Aircraft and WRF data during the California Baseline Ozone Transport Study (CABOTS)

    NASA Astrophysics Data System (ADS)

    Trousdell, J.; Faloona, I. C.

    2017-12-01

    In situ flight data collected in the San Joaquin Valley of California during the summer of 2016 is used to measure boundary layer entrainment rates, ozone photochemical production, regional methane and NOx emissions. The San Joaquin Valley is plagued with air quality issues including a high frequency of ozone exceedances in the summer and an aerosol issue in the winter exacerbated by a complex mesoscale environment with a different mountain range on three sides creating an effective cul-de-sac which limits outflow and ventilation. In addition, higher elevation air brought over top of the valley can influence the valley air by entrainment at the top of the turbulent daytime atmospheric boundary layer. The flights were conducted during the California Baseline Ozone Transport Study (CABOTS). Flights are valley wide between the cities of Fresno and Visalia with a thorough probing of the atmospheric boundary layer (ABL) including vertical profiling to diagnose the ABL height and its growth rate. Entrainment velocities, which are the parameterized mixing of free tropospheric air into the boundary layer, are determined by a detailed budget equation of the inversion height. A novel scalar budgeting technique is then applied to expose residual terms of individual equations that amount to ozone photochemical production and emission rates, including; NOx and methane. The budget equations are closed out by our predicted entrainment velocities, time rate of change and horizontal advection all determined via flight data. The results of our NOx budget suggests that the California Air Resources Board emission estimates for soil NOx is grossly underestimated. A strong relationship between entrainment rates and vertical wind shear has been observed, suggesting a significant contribution to entrainment driven by vertical shear compared to the surface buoyancy flux which drives the turbulent vertical motions in the boundary layer.

  4. First UAV Measurements of Entrainment Layer Fluxes with Coupled Cloud Property Measurements

    NASA Astrophysics Data System (ADS)

    Thomas, R. M.; Praveen, P. S.; Wilcox, E. M.; Pistone, K.; Bender, F.; Ramanathan, V.

    2012-12-01

    This study details entrainment flux measurements made from a lightweight unmanned aerial vehicle (UAV) containing turbulent water vapor flux instrumentation (Thomas et al., 2012). The system was flown for 26 flights during the Cloud, Aerosol, Radiative forcing, Dynamics EXperiment (CARDEX) in the Maldives in March 2012 to study interrelationships between entrainment, aerosols, water budget, cloud microphysics and radiative fluxes in a trade wind cumulus cloud regime. A major advantage of using this lightweight, precision autopiloted UAV system with scientific telemetry is the ability to target small-scale features in the boundary layer, such as an entrainment layer, with minimal aircraft induced disruption. Results are presented from two UAVs flown in stacked formation: one UAV situated in-cloud measuring cloud-droplet size distribution spectra and liquid water content, and another co-located 100m above measuring turbulent properties and entrainment latent heat flux (λEE). We also show latent heat flux and turbulence measurements routinely made at the entrainment layer base and altitudes from the surface up to 4kft. Ratios of λEE to corresponding surface tower values (λES) display a bimodal frequency distribution with ranges 0.22-0.53 and 0.79-1.5, with occasional events >7. Reasons for this distribution are discussed drawing upon boundary layer and free tropospheric dynamics and meteorology, turbulence length scales, surface conditions, and cloud interactions. Latent heat flux profiles are combined with in-cloud UAV Liquid Water Content (LWC) data and surface based Liquid Water Path (LWP) and Precipitable Water Vapor (PWV) measurements to produce observationally constrained vertical water budgets, providing insights into diurnal coupling of λEE and λES. Observed λEE, λES, water budgets, and cloud microphysical responses to entrainment are then contextualized with respect to measured aerosol loading profiles and airmass history.

  5. Laboratory experiments on stability and entrainment of oceanic stratocumulus. Part 1: Instability experiment

    NASA Technical Reports Server (NTRS)

    Shy, Shenqyang S.

    1990-01-01

    The existence and persistence of marine stratocumulus play a significant role in the overall energy budget of the earth. Their stability and entrainment process are important in global climate studies, as well as for local weather forecasting. The purposes of the experimental simulations are to study this process and to address this paradox. The effects of buoyancy reversal is investigated, followed by two types of experiments. An instability experiment involves the behavior of a fully turbulent wake near the inversion generated by a sliding plate. Due to buoyancy reversal, the heavy, mixed fluid starts to sink, turning the potential energy created by the mixing process into kinetic energy, thereby increasing the entrainment rate. An entrainment experiment, using a vertically oscillating grid driven by a controllable speed motor, produces many eddy-induced entrainments at a surface region on scales much less than the depth of the layer.

  6. The CRTC1-SIK1 Pathway Regulates Entrainment of the Circadian Clock

    PubMed Central

    Jagannath, Aarti; Butler, Rachel; Godinho, Sofia I.H.; Couch, Yvonne; Brown, Laurence A.; Vasudevan, Sridhar R.; Flanagan, Kevin C.; Anthony, Daniel; Churchill, Grant C.; Wood, Matthew J.A.; Steiner, Guido; Ebeling, Martin; Hossbach, Markus; Wettstein, Joseph G.; Duffield, Giles E.; Gatti, Silvia; Hankins, Mark W.; Foster, Russell G.; Peirson, Stuart N.

    2013-01-01

    Summary Retinal photoreceptors entrain the circadian system to the solar day. This photic resetting involves cAMP response element binding protein (CREB)-mediated upregulation of Per genes within individual cells of the suprachiasmatic nuclei (SCN). Our detailed understanding of this pathway is poor, and it remains unclear why entrainment to a new time zone takes several days. By analyzing the light-regulated transcriptome of the SCN, we have identified a key role for salt inducible kinase 1 (SIK1) and CREB-regulated transcription coactivator 1 (CRTC1) in clock re-setting. An entrainment stimulus causes CRTC1 to coactivate CREB, inducing the expression of Per1 and Sik1. SIK1 then inhibits further shifts of the clock by phosphorylation and deactivation of CRTC1. Knockdown of Sik1 within the SCN results in increased behavioral phase shifts and rapid re-entrainment following experimental jet lag. Thus SIK1 provides negative feedback, acting to suppress the effects of light on the clock. This pathway provides a potential target for the regulation of circadian rhythms. PMID:23993098

  7. Stochastic entrainment of a stochastic oscillator.

    PubMed

    Wang, Guanyu; Peskin, Charles S

    2015-01-01

    In this work, we consider a stochastic oscillator described by a discrete-state continuous-time Markov chain, in which the states are arranged in a circle, and there is a constant probability per unit time of jumping from one state to the next in a specified direction around the circle. At each of a sequence of equally spaced times, the oscillator has a specified probability of being reset to a particular state. The focus of this work is the entrainment of the oscillator by this periodic but stochastic stimulus. We consider a distinguished limit, in which (i) the number of states of the oscillator approaches infinity, as does the probability per unit time of jumping from one state to the next, so that the natural mean period of the oscillator remains constant, (ii) the resetting probability approaches zero, and (iii) the period of the resetting signal approaches a multiple, by a ratio of small integers, of the natural mean period of the oscillator. In this distinguished limit, we use analytic and numerical methods to study the extent to which entrainment occurs.

  8. Synchrony and entrainment properties of robust circadian oscillators

    PubMed Central

    Bagheri, Neda; Taylor, Stephanie R.; Meeker, Kirsten; Petzold, Linda R.; Doyle, Francis J.

    2008-01-01

    Systems theoretic tools (i.e. mathematical modelling, control, and feedback design) advance the understanding of robust performance in complex biological networks. We highlight phase entrainment as a key performance measure used to investigate dynamics of a single deterministic circadian oscillator for the purpose of generating insight into the behaviour of a population of (synchronized) oscillators. More specifically, the analysis of phase characteristics may facilitate the identification of appropriate coupling mechanisms for the ensemble of noisy (stochastic) circadian clocks. Phase also serves as a critical control objective to correct mismatch between the biological clock and its environment. Thus, we introduce methods of investigating synchrony and entrainment in both stochastic and deterministic frameworks, and as a property of a single oscillator or population of coupled oscillators. PMID:18426774

  9. Interpretations of Frequency Domain Analyses of Neural Entrainment: Periodicity, Fundamental Frequency, and Harmonics.

    PubMed

    Zhou, Hong; Melloni, Lucia; Poeppel, David; Ding, Nai

    2016-01-01

    Brain activity can follow the rhythms of dynamic sensory stimuli, such as speech and music, a phenomenon called neural entrainment. It has been hypothesized that low-frequency neural entrainment in the neural delta and theta bands provides a potential mechanism to represent and integrate temporal information. Low-frequency neural entrainment is often studied using periodically changing stimuli and is analyzed in the frequency domain using the Fourier analysis. The Fourier analysis decomposes a periodic signal into harmonically related sinusoids. However, it is not intuitive how these harmonically related components are related to the response waveform. Here, we explain the interpretation of response harmonics, with a special focus on very low-frequency neural entrainment near 1 Hz. It is illustrated why neural responses repeating at f Hz do not necessarily generate any neural response at f Hz in the Fourier spectrum. A strong neural response at f Hz indicates that the time scales of the neural response waveform within each cycle match the time scales of the stimulus rhythm. Therefore, neural entrainment at very low frequency implies not only that the neural response repeats at f Hz but also that each period of the neural response is a slow wave matching the time scale of a f Hz sinusoid.

  10. Entrainment of coarse grains using a discrete particle model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Valyrakis, Manousos, E-mail: Manousos.Valyrakis@glasgow.ac.uk; Arnold, Roger B. Jr.

    2014-10-06

    Conventional bedload transport models and incipient motion theories relying on a time-averaged boundary shear stress are incapable of accounting for the effects of fluctuating near-bed velocity in turbulent flow and are therefore prone to significant errors. Impulse, the product of an instantaneous force magnitude and its duration, has been recently proposed as an appropriate criterion for quantifying the effects of flow turbulence in removing coarse grains from the bed surface. Here, a discrete particle model (DPM) is used to examine the effects of impulse, representing a single idealized turbulent event, on particle entrainment. The results are classified according to themore » degree of grain movement into the following categories: motion prior to entrainment, initial dislodgement, and energetic displacement. The results indicate that in all three cases the degree of particle motion depends on both the force magnitude and the duration of its application and suggest that the effects of turbulence must be adequately accounted for in order to develop a more accurate method of determining incipient motion. DPM is capable of simulating the dynamics of grain entrainment and is an appropriate tool for further study of the fundamental mechanisms of sediment transport.« less

  11. Free-surface entrainment into a rimming flow containing surfactants

    NASA Astrophysics Data System (ADS)

    Thoroddsen, S. T.; Tan, Y.-K.

    2004-02-01

    We study experimentally the free-surface entrainment of tubes into a steady rimming flow formed inside a partially filled horizontally rotating cylinder. The liquid consists of a glycerin-water mixture containing surfactants (fatty acids). The phenomenon does not occur without the surfactants and the details are sensitive to their concentration. The entrainment of numerous closely spaced air tubes and/or surfactant columns can start intermittently along a two-dimensional stagnation line, but is usually associated with the appearance of an axially periodic vortex structure, the so-called shark teeth, which fixes the spanwise location of these tubes. The number of tubes is governed by the three-dimensional shape of the free surface, reducing from more than 10 to only two in each trough, as the rotation rate is increased. The tubes vary in diameter from 10-30 μm and can extend hundreds of diameters into the liquid layer before breaking up into a continuous stream of bubbles and/or drops. The tubes are driven through the stagnation line by the strong viscous shear and are stretched in the downstream direction. The entrainment starts when the Capillary number Ca=μωR/σ≃0.4.

  12. Entrainment of oviposition in the fowl using bright and dim light cycles.

    PubMed

    Morris, T R; Bhatti, B M

    1978-05-01

    1. Nine short trial, involving 96 different treatments, were used to investigate the critical intensities and duration of bright and dim periods of lighting needed to entrain oviposition in cycles ranging from 21 to 30 h. 2. Entrainment was shown to depend upon the contrast between bright and dim lighting, and to be independent of the absolute light intensity. 3. A bright: dim ratio of 13:1 fully entrained oviposition in cycles of 25 h and 27 h. For 23-h and 28-h cycles a 30:1 ratio was required. Twenty-one-hour cycles required a ratio of 300:1 and with 30-h cycles a ratio of 1000:1 was needed to achieve full entrainment of oviposition. 4. In 24-h cycles, 1 h of bright lighting at 02.00 h was sufficient to override other environmental signals and cause eggs to be laid in the late evening, but a minimum bright period of 6 h was needed to cause full phase setting with 21-h cycles. 5. Circadian periodicity can easily be imposed on hens by providing a short exposure to bright light with a background of continuous dim light; but the signal must be increased (by providing a greater contrast between bright and dim lights and/or a longer period of bright lighting) to entrain oviposition when the cycle deviates markedly from the natural period of 24 h.

  13. Optimal entrainment of circadian clocks in the presence of noise

    NASA Astrophysics Data System (ADS)

    Monti, Michele; Lubensky, David K.; ten Wolde, Pieter Rein

    2018-03-01

    Circadian clocks are biochemical oscillators that allow organisms to estimate the time of the day. These oscillators are inherently noisy due to the discrete nature of the reactants and the stochastic character of their interactions. To keep these oscillators in sync with the daily day-night rhythm in the presence of noise, circadian clocks must be coupled to the dark-light cycle. In this paper, we study the entrainment of phase oscillators as a function of the intrinsic noise in the system. Using stochastic simulations, we compute the optimal coupling strength, intrinsic frequency, and shape of the phase-response curve, that maximize the mutual information between the phase of the clock and time. We show that the optimal coupling strength and intrinsic frequency increase with the noise, but that the shape of the phase-response curve varies nonmonotonically with the noise: in the low-noise regime, it features a dead zone that increases in width as the noise increases, while in the high-noise regime, the width decreases with the noise. These results arise from a tradeoff between maximizing stability—noise suppression—and maximizing linearity of the input-output, i.e., time-phase, relation. We also show that three analytic approximations—the linear-noise approximation, the phase-averaging method, and linear-response theory—accurately describe different regimes of the coupling strength and the noise.

  14. Experimental Study of Load Carrying Capacity of Point Contacts at Zero Entrainment Velocity

    NASA Technical Reports Server (NTRS)

    Shogin, B. A.; Jones, W. R., Jr.; Kingsbury, E. P.; Jansen, M. J.; Prahl, J. M.

    1998-01-01

    A capacitance technique was used to monitor the film thickness separating two steel balls while subjecting the ball-ball contact to highly stressed, zero entrainment velocity conditions. Tests were performed in a nitrogen atmosphere and utilized 52100 steel balls and a polyalphaolefin lubricant. Capacitance to film thickness accuracy was verified under pure rolling conditions using established EHL theory. Zero entrainment velocity tests were performed at sliding speeds from 6.0 to 10.0 m/s and for sustained amounts of time to 28.8 min. The protective lubricant film separating the specimens at zero entrainment velocity had a film thickness between 0.10 to 0.14 microns (4 to 6 micro in.), which corresponded to a k value of 4. The formation of an immobile surface film formed by lubricant entrapment is discussed as an explanation of the load carrying capacity at zero entrainment velocity conditions, relevant to the ball-ball contacts occurring in retainerless ball bearings.

  15. Forced rather than voluntary exercise entrains peripheral clocks via a corticosterone/noradrenaline increase in PER2::LUC mice

    PubMed Central

    Sasaki, Hiroyuki; Hattori, Yuta; Ikeda, Yuko; Kamagata, Mayo; Iwami, Shiho; Yasuda, Shinnosuke; Tahara, Yu; Shibata, Shigenobu

    2016-01-01

    Exercise during the inactive period can entrain locomotor activity and peripheral circadian clock rhythm in mice; however, mechanisms underlying this entrainment are yet to be elucidated. Here, we showed that the bioluminescence rhythm of peripheral clocks in PER2::LUC mice was strongly entrained by forced treadmill and forced wheel-running exercise rather than by voluntary wheel-running exercise at middle time during the inactivity period. Exercise-induced entrainment was accompanied by increased levels of serum corticosterone and norepinephrine in peripheral tissues, similar to the physical stress-induced response. Adrenalectomy with norepinephrine receptor blockers completely blocked the treadmill exercise-induced entrainment. The entrainment of the peripheral clock by exercise is independent of the suprachiasmatic nucleus clock, the main oscillator in mammals. The present results suggest that the response of forced exercise, but not voluntary exercise, may be similar to that of stress, and possesses the entrainment ability of peripheral clocks through the activation of the adrenal gland and the sympathetic nervous system. PMID:27271267

  16. A Quantitative Investigation of Entrainment and Detrainment in Numerically Simulated Convective Clouds. Pt. 2; Simulations of Cumulonimbus Clouds

    NASA Technical Reports Server (NTRS)

    Cohen, Charles

    1998-01-01

    Deep cumulonimbus clouds are simulated using a model that makes accurate diagnoses of entrainment and detrainment rates and of the properties of entrained and detrained air. Clouds generated by a variety of initial thermodynamic soundings are compared. In the simulations, updraft entrainment rates are large near and above cloud base, through the entire depth of the conditionally unstable layer. Stronger updrafts in a more unstable environment are better able to entrain relatively undisturbed environmental air, while weaker updrafts can entrain only air that has been modified by the clouds. When the maximum buoyancy is large, the updraft includes parcels with a wide range of buoyancies, while weaker clouds are more horizontally uniform. Strong downdrafts originate from levels at which updrafts detrain, and their mass flux depends on the mass flux of the updraft. The magnitude of mixing between cloud and environment, not the entrainment rate, varies inversely with the cloud radius. How much of the mixed air is entrained depends on the buoyancy.

  17. Are non-human primates capable of rhythmic entrainment? Evidence for the gradual audiomotor evolution hypothesis.

    PubMed

    Merchant, Hugo; Honing, Henkjan

    2013-01-01

    We propose a decomposition of the neurocognitive mechanisms that might underlie interval-based timing and rhythmic entrainment. Next to reviewing the concepts central to the definition of rhythmic entrainment, we discuss recent studies that suggest rhythmic entrainment to be specific to humans and a selected group of bird species, but, surprisingly, is not obvious in non-human primates. On the basis of these studies we propose the gradual audiomotor evolution hypothesis that suggests that humans fully share interval-based timing with other primates, but only partially share the ability of rhythmic entrainment (or beat-based timing). This hypothesis accommodates the fact that non-human primates (i.e., macaques) performance is comparable to humans in single interval tasks (such as interval reproduction, categorization, and interception), but show differences in multiple interval tasks (such as rhythmic entrainment, synchronization, and continuation). Furthermore, it is in line with the observation that macaques can, apparently, synchronize in the visual domain, but show less sensitivity in the auditory domain. And finally, while macaques are sensitive to interval-based timing and rhythmic grouping, the absence of a strong coupling between the auditory and motor system of non-human primates might be the reason why macaques cannot rhythmically entrain in the way humans do.

  18. Light-driven changes in energy metabolism directly entrain the cyanobacterial circadian oscillator

    PubMed Central

    Rust, Michael J.; Golden, Susan S.; O'Shea, Erin K.

    2012-01-01

    Circadian clocks are self-sustained biological oscillators that can be entrained by environmental cues. Though this phenomenon has been studied in many organisms, the molecular mechanisms of entrainment remain unclear. Three cyanobacterial proteins and ATP are sufficient to generate oscillations in phosphorylation in vitro. We show that changes in illumination that induce a phase shift in cultured cyanobacteria also cause changes in the ATP/ADP ratio. When these nucleotide changes are simulated in the in vitro oscillator, they cause phase shifts similar to those observed in vivo. Physiological concentrations of ADP inhibit kinase activity in the oscillator and a mathematical model constrained by data shows that this effect is sufficient to quantitatively explain entrainment of the cyanobacterial circadian clock. PMID:21233390

  19. Comparison of entrainment in constant volume and constant flux dense currents over sloping bottoms

    NASA Astrophysics Data System (ADS)

    Bhaganagar, K.; Nayamatullah, M.; Cenedese, C.

    2014-12-01

    Three dimensional high resolution large eddy simulations (LES) are employed to simulate lock-exchange and constant flux dense flows over inclined surface with the aim of investigating, visualizing and describing the turbulent structure and the evolution of bottom-propagating compositional density current at the channel bottom. The understanding of dynamics of density current is largely determined by the amount of interfacial mixing or entrainment between the ambient and dense fluids. No previous experimental or numerical studies have been done to estimate entrainment in classical lock-exchange system. The differences in entrainment between the lock-exchange and constant flux are explored. Comparing the results of flat bed with inclined surface results, flow exhibits significant differences near the leading edge or nose of the front of the density currents due to inclination of surface. Further, the instabilities are remarkably enhanced resulting Kelvin-Helmholtz and lobe-cleft type of instabilities arises much earlier in time. In this study, a brief analysis of entrainment on lock-exchange density current is presented using different bed slopes and a set of reduced gravity values (g'). We relate the entrainment value with different flow parameters such as Froude number (Fr) and Reynolds number (Re).

  20. Concrete deck performance relative to air entrainment.

    DOT National Transportation Integrated Search

    2009-12-01

    Damage to concrete due to freeze-thaw (F-T) action is a serious concern for agencies in cold regions of the United : States. The most effective method to protect concrete from F-T damage is through the addition of an air entraining : agent as an admi...

  1. Food plant toxicants and safety Risk assessment and regulation of inherent toxicants in plant foods.

    PubMed

    Essers, A J; Alink, G M; Speijers, G J; Alexander, J; Bouwmeister, P J; van den Brandt, P A; Ciere, S; Gry, J; Herrman, J; Kuiper, H A; Mortby, E; Renwick, A G; Shrimpton, D H; Vainio, H; Vittozzi, L; Koeman, J H

    1998-05-01

    The ADI as a tool for risk management and regulation of food additives and pesticide residues is not readily applicable to inherent food plant toxicants: The margin between actual intake and potentially toxic levels is often small; application of the default uncertainty factors used to derive ADI values, particularly when extrapolating from animal data, would prohibit the utilisation of the food, which may have an overall beneficial health effect. Levels of inherent toxicants are difficult to control; their complete removal is not always wanted, due to their function for the plant or for human health. The health impact of the inherent toxicant is often modified by factors in the food, e.g. the bioavailability from the matrix and interaction with other inherent constituents. Risk-benefit analysis should be made for different consumption scenarios, without the use of uncertainty factors. Crucial in this approach is analysis of the toxicity of the whole foodstuff. The relationship between the whole foodstuff and the pure toxicant is expressed in the `product correction factor' (PCF). Investigations in humans are essential so that biomarkers of exposure and for effect can be used to analyse the difference between animals and humans and between the food and the pure toxicant. A grid of the variables characterising toxicity is proposed, showing their inter-relationships. A flow diagram for risk estimate is provided, using both toxicological and epidemiological studies.

  2. Cortical oscillations and entrainment in speech processing during working memory load.

    PubMed

    Hjortkjaer, Jens; Märcher-Rørsted, Jonatan; Fuglsang, Søren A; Dau, Torsten

    2018-02-02

    Neuronal oscillations are thought to play an important role in working memory (WM) and speech processing. Listening to speech in real-life situations is often cognitively demanding but it is unknown whether WM load influences how auditory cortical activity synchronizes to speech features. Here, we developed an auditory n-back paradigm to investigate cortical entrainment to speech envelope fluctuations under different degrees of WM load. We measured the electroencephalogram, pupil dilations and behavioural performance from 22 subjects listening to continuous speech with an embedded n-back task. The speech stimuli consisted of long spoken number sequences created to match natural speech in terms of sentence intonation, syllabic rate and phonetic content. To burden different WM functions during speech processing, listeners performed an n-back task on the speech sequences in different levels of background noise. Increasing WM load at higher n-back levels was associated with a decrease in posterior alpha power as well as increased pupil dilations. Frontal theta power increased at the start of the trial and increased additionally with higher n-back level. The observed alpha-theta power changes are consistent with visual n-back paradigms suggesting general oscillatory correlates of WM processing load. Speech entrainment was measured as a linear mapping between the envelope of the speech signal and low-frequency cortical activity (< 13 Hz). We found that increases in both types of WM load (background noise and n-back level) decreased cortical speech envelope entrainment. Although entrainment persisted under high load, our results suggest a top-down influence of WM processing on cortical speech entrainment. © 2018 The Authors. European Journal of Neuroscience published by Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  3. Auditory priming improves neural synchronization in auditory-motor entrainment.

    PubMed

    Crasta, Jewel E; Thaut, Michael H; Anderson, Charles W; Davies, Patricia L; Gavin, William J

    2018-05-22

    Neurophysiological research has shown that auditory and motor systems interact during movement to rhythmic auditory stimuli through a process called entrainment. This study explores the neural oscillations underlying auditory-motor entrainment using electroencephalography. Forty young adults were randomly assigned to one of two control conditions, an auditory-only condition or a motor-only condition, prior to a rhythmic auditory-motor synchronization condition (referred to as combined condition). Participants assigned to the auditory-only condition auditory-first group) listened to 400 trials of auditory stimuli presented every 800 ms, while those in the motor-only condition (motor-first group) were asked to tap rhythmically every 800 ms without any external stimuli. Following their control condition, all participants completed an auditory-motor combined condition that required tapping along with auditory stimuli every 800 ms. As expected, the neural processes for the combined condition for each group were different compared to their respective control condition. Time-frequency analysis of total power at an electrode site on the left central scalp (C3) indicated that the neural oscillations elicited by auditory stimuli, especially in the beta and gamma range, drove the auditory-motor entrainment. For the combined condition, the auditory-first group had significantly lower evoked power for a region of interest representing sensorimotor processing (4-20 Hz) and less total power in a region associated with anticipation and predictive timing (13-16 Hz) than the motor-first group. Thus, the auditory-only condition served as a priming facilitator of the neural processes in the combined condition, more so than the motor-only condition. Results suggest that even brief periods of rhythmic training of the auditory system leads to neural efficiency facilitating the motor system during the process of entrainment. These findings have implications for interventions

  4. A simulation method for combining hydrodynamic data and acoustic tag tracks to predict the entrainment of juvenile salmonids onto the Yolo Bypass under future engineering scenarios

    USGS Publications Warehouse

    Blake, Aaron R.; Stumpner, Paul; Burau, Jon R.

    2017-01-01

    During water year 2016 the U.S. Geological Survey California Water Science Center (USGS) collaborated with the California Department of Water Resources (DWR) to conduct a joint hydrodynamic and fisheries study to acquire data that could be used to evaluate the effects of proposed modifications to the Fremont Weir on outmigrating juvenile Chinook salmon. During this study the USGS surgically implanted acoustic tags in juvenile late fall run Chinook salmon from the Coleman National Fish Hatchery, released the acoustically tagged juvenile salmon into the Sacramento River upstream of the Fremont Weir, and tracked their movements as they emigrated past the western end of the Fremont Weir.The USGS analyzed tracking data from the acoustically tagged juvenile salmon along with detailed hydrodynamic data collected in the Sacramento River during the winter/spring of water year 2016 in the vicinity of the western end of the Fremont Weir to assess the potential for enhancing the entrainment of Sacramento River Chinook salmon onto the Yolo Bypass under six different Fremont Weir modification scenarios. Each modification scenario consists of a notch or multiple notches in the Fremont Weir which are designed to divert a portion of the Sacramento River onto the Yolo Bypass when the Sacramento River is below the crest of the Fremont Weir. The primary goal of this entrainment analysis was to investigate how the location of the notch or notches in each scenario affected the entrainment of juvenile Chinook salmon onto the Yolo Bypass, and to predict the notch location or locations that would result in maximum entrainment under each modification scenario. Stumpner et al.’s (in review) analysis of hydraulic data collected during the 2016 study period showed that backwater effects in the Sacramento River created significant variability in the relationship between Sacramento River stage and the proportion of the Sacramento River flow that we expect to be diverted onto the Yolo Bypass

  5. Experimental Exploration of Scale Effects and Factors Controlling Bed Load Sediment Entrainment

    NASA Astrophysics Data System (ADS)

    Fathel, S. L.; Furbish, D. J.; Schmeeckle, M. W.

    2015-12-01

    Detailed measurements of individual sand grains moving on a streambed allow us to obtain a deeper understanding of the characteristics of incipient motion and evaluate spatial and temporal trends in particle entrainment. We use bed load particle motions measured from high-speed imaging (250 Hz) of uniform, coarse grained sand from two flume experiments, which have different mean fluid velocities near the bed. Particle tracking reveals more than 6,000 entrainment events in 5 seconds (Run 1) and over 5,000 events in 2 seconds (Run 2). We manually track particles, at sub-pixel resolution, from entrainment to either disentrainment or until the particle leaves the frame. Within these experiments we find that over 90% of all initial motions contain a cross-stream component of motion where approximately a third of the motions may be cross-stream dominated, and furthermore, up to 7% of the motions may be negative (i.e. move backwards). We propose that the variability in the direction of initial motion is, in part, a product of the bed topography, where we find that with increasing mean fluid velocity, the initial motion of the sand particles are less sensitive to bed topography, and are more likely to be dominated by the fluid. The high resolution of this data set, containing positions of particles measured start-to-stop, allows us to calculate the characteristic timescale required for a particle to become streamwise, or fluid, dominated in these systems. We also evaluate these data to further show whether the nature of entrainment is a memoryless, uncorrelated process, a correlated process related to the number of particles already in motion (i.e., possibly reflecting collective entrainment), or some combination of the two. This work suggests that the probability of entrainment depends on physical factors such as bed microtopography and the magnitude of the fluid velocity, in addition to varying with space and time scales.

  6. Frequency modulation entrains slow neural oscillations and optimizes human listening behavior

    PubMed Central

    Henry, Molly J.; Obleser, Jonas

    2012-01-01

    The human ability to continuously track dynamic environmental stimuli, in particular speech, is proposed to profit from “entrainment” of endogenous neural oscillations, which involves phase reorganization such that “optimal” phase comes into line with temporally expected critical events, resulting in improved processing. The current experiment goes beyond previous work in this domain by addressing two thus far unanswered questions. First, how general is neural entrainment to environmental rhythms: Can neural oscillations be entrained by temporal dynamics of ongoing rhythmic stimuli without abrupt onsets? Second, does neural entrainment optimize performance of the perceptual system: Does human auditory perception benefit from neural phase reorganization? In a human electroencephalography study, listeners detected short gaps distributed uniformly with respect to the phase angle of a 3-Hz frequency-modulated stimulus. Listeners’ ability to detect gaps in the frequency-modulated sound was not uniformly distributed in time, but clustered in certain preferred phases of the modulation. Moreover, the optimal stimulus phase was individually determined by the neural delta oscillation entrained by the stimulus. Finally, delta phase predicted behavior better than stimulus phase or the event-related potential after the gap. This study demonstrates behavioral benefits of phase realignment in response to frequency-modulated auditory stimuli, overall suggesting that frequency fluctuations in natural environmental input provide a pacing signal for endogenous neural oscillations, thereby influencing perceptual processing. PMID:23151506

  7. Large Eddy Simulation of Heat Entrainment Under Arctic Sea Ice

    NASA Astrophysics Data System (ADS)

    Ramudu, Eshwan; Gelderloos, Renske; Yang, Di; Meneveau, Charles; Gnanadesikan, Anand

    2018-01-01

    Arctic sea ice has declined rapidly in recent decades. The faster than projected retreat suggests that free-running large-scale climate models may not be accurately representing some key processes. The small-scale turbulent entrainment of heat from the mixed layer could be one such process. To better understand this mechanism, we model the Arctic Ocean's Canada Basin, which is characterized by a perennial anomalously warm Pacific Summer Water (PSW) layer residing at the base of the mixed layer and a summertime Near-Surface Temperature Maximum (NSTM) within the mixed layer trapping heat from solar radiation. We use large eddy simulation (LES) to investigate heat entrainment for different ice-drift velocities and different initial temperature profiles. The value of LES is that the resolved turbulent fluxes are greater than the subgrid-scale fluxes for most of our parameter space. The results show that the presence of the NSTM enhances heat entrainment from the mixed layer. Additionally there is no PSW heat entrained under the parameter space considered. We propose a scaling law for the ocean-to-ice heat flux which depends on the initial temperature anomaly in the NSTM layer and the ice-drift velocity. A case study of "The Great Arctic Cyclone of 2012" gives a turbulent heat flux from the mixed layer that is approximately 70% of the total ocean-to-ice heat flux estimated from the PIOMAS model often used for short-term predictions. Present results highlight the need for large-scale climate models to account for the NSTM layer.

  8. Rhythm as a Coordinating Device: Entrainment With Disordered Speech

    PubMed Central

    Borrie, Stephanie A.; Liss, Julie M.

    2014-01-01

    Purpose The rhythmic entrainment (coordination) of behavior during human interaction is a powerful phenomenon, considered essential for successful communication, supporting social and emotional connection, and facilitating sense-making and information exchange. Disruption in entrainment likely occurs in conversations involving those with speech and language impairment, but its contribution to communication disorders has not been defined. As a first step to exploring this phenomenon in clinical populations, the present investigation examined the influence of disordered speech on the speech production properties of healthy interactants. Method Twenty-nine neurologically healthy interactants participated in a quasi-conversational paradigm, in which they read sentences (response) in response to hearing prerecorded sentences (exposure) from speakers with dysarthria (n = 4) and healthy controls (n = 4). Recordings of read sentences prior to the task were also collected (habitual). Results Findings revealed that interactants modified their speaking rate and pitch variation to align more closely with the disordered speech. Production shifts in these rhythmic properties, however, remained significantly different from corresponding properties in dysarthric speech. Conclusion Entrainment offers a new avenue for exploring speech and language impairment, addressing a communication process not currently explained by existing frameworks. This article offers direction for advancing this line of inquiry. PMID:24686410

  9. Entrainment and phase-shifting by centrifugation abolished in mice lacking functional vestibular input

    NASA Astrophysics Data System (ADS)

    Fuller, Charles; Ringgold, Kristyn

    The circadian pacemaker can be phase shifted and entrained by appropriately timed locomotor activity, however the mechanism(s) involved remain poorly understood. Recent work in our lab has suggested the involvement of the vestibular otolith organs in activity-induced changes within the circadian timing system (CTS). For example, we have shown that changes in circa-dian period and phase in response to locomotion (wheel running) require functional macular gravity receptors. We believe the neurovestibular system is responsible for the transduction of gravitoinertial input associated with the types of locomotor activity that are known to af-fect the pacemaker. This study investigated the hypothesis that daily, timed gravitoinertial stimuli, as applied by centrifugation. would induce entrainment of circadian rhythms in only those animals with functional afferent vestibular input. To test this hypothesis, , chemically labyrinthectomized (Labx) mice, mice lacking macular vestibular input (head tilt or hets) and wildtype (WT) littermates were implanted i.p. with biotelemetry and individually housed in a 4-meter diameter centrifuge in constant darkness (DD). After 2 weeks in DD, the mice were exposed daily to 2G via centrifugation from 1000-1200 for 9 weeks. Only WT mice showed entrainment to the daily 2G pulse. The 2G pulse was then re-set to occur at 1200-1400 for 4 weeks. Only WT mice demonstrated a phase shift in response to the re-setting of the 2G pulse and subsequent re-entrainment to the new centrifugation schedule. These results provide further evidence that gravitoinertial stimuli require a functional vestibular system to both en-train and phase shift the CTS. Entrainment among only WT mice supports the role of macular gravity receptive cells in modulation of the CTS while also providing a functional mechanism by which gravitoinertial stimuli, including locomotor activity, may affect the pacemaker.

  10. Temporal Organization of the Sleep-Wake Cycle under Food Entrainment in the Rat

    PubMed Central

    Castro-Faúndez, Javiera; Díaz, Javier; Ocampo-Garcés, Adrián

    2016-01-01

    Study Objectives: To analyze the temporal organization of the sleep-wake cycle under food entrainment in the rat. Methods: Eighteen male Sprague-Dawley rats were chronically implanted for polysomnographic recording. During the baseline (BL) protocol, rats were recorded under a 12:12 light-dark (LD) schedule in individual isolation chambers with food and water ad libitum. Food entrainment was performed by means of a 4-h food restriction (FR) protocol starting at photic zeitgeber time 5. Eight animals underwent a 3-h phase advance of the FR protocol (A-FR). We compared the mean curves and acrophases of wakefulness, NREM sleep, and REM sleep under photic and food entrainment and after a phase advance in scheduled food delivery. We further evaluated the dynamics of REM sleep homeostasis and the NREM sleep EEG delta wave profile. Results: A prominent food-anticipatory arousal interval was observed after nine or more days of FR, characterized by increased wakefulness and suppression of REM sleep propensity and dampening of NREM sleep EEG delta activity. REM sleep exhibited a robust nocturnal phase preference under FR that was not explained by a nocturnal REM sleep rebound. The mean curve of sleep-wake states and NREM sleep EEG delta activity remained phase-locked to the timing of meals during the A-FR protocol. Conclusions: Our results support the hypothesis that under food entrainment, the sleep-wake cycle is coupled to a food-entrainable oscillator (FEO). Our findings suggest an unexpected interaction between FEO output and NREM sleep EEG delta activity generators. Citation: Castro-Faúndez J, Díaz J, Ocampo-Garcés A. Temporal organization of the sleep-wake cycle under food entrainment in the rat. SLEEP 2016;39(7):1451–1465. PMID:27091526

  11. Endogenous Delta/Theta Sound-Brain Phase Entrainment Accelerates the Buildup of Auditory Streaming.

    PubMed

    Riecke, Lars; Sack, Alexander T; Schroeder, Charles E

    2015-12-21

    In many natural listening situations, meaningful sounds (e.g., speech) fluctuate in slow rhythms among other sounds. When a slow rhythmic auditory stream is selectively attended, endogenous delta (1‒4 Hz) oscillations in auditory cortex may shift their timing so that higher-excitability neuronal phases become aligned with salient events in that stream [1, 2]. As a consequence of this stream-brain phase entrainment [3], these events are processed and perceived more readily than temporally non-overlapping events [4-11], essentially enhancing the neural segregation between the attended stream and temporally noncoherent streams [12]. Stream-brain phase entrainment is robust to acoustic interference [13-20] provided that target stream-evoked rhythmic activity can be segregated from noncoherent activity evoked by other sounds [21], a process that usually builds up over time [22-27]. However, it has remained unclear whether stream-brain phase entrainment functionally contributes to this buildup of rhythmic streams or whether it is merely an epiphenomenon of it. Here, we addressed this issue directly by experimentally manipulating endogenous stream-brain phase entrainment in human auditory cortex with non-invasive transcranial alternating current stimulation (TACS) [28-30]. We assessed the consequences of these manipulations on the perceptual buildup of the target stream (the time required to recognize its presence in a noisy background), using behavioral measures in 20 healthy listeners performing a naturalistic listening task. Experimentally induced cyclic 4-Hz variations in stream-brain phase entrainment reliably caused a cyclic 4-Hz pattern in perceptual buildup time. Our findings demonstrate that strong endogenous delta/theta stream-brain phase entrainment accelerates the perceptual emergence of task-relevant rhythmic streams in noisy environments. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. The radiative versus entraining effects of overlying humidity on the Lagrangian evolution of subtropical stratocumulus

    NASA Astrophysics Data System (ADS)

    Eastman, R. M.; Wood, R.

    2017-12-01

    This study observes the 24-hour Lagrangian evolution of stratocumulus cloud amount and PBL depth in four eastern subtropical ocean basins: the NE Pacific, SE Pacific, SE Atlantic, and E Indian. Nearly 170,000 trajectories are computed using the 2-D wind field at 925mb and cloud properties are sampled along these trajectories twice daily as the A-Train satellite constellation passes overhead. Concurrent measurements of the overlying humidity and temperature profiles are interpolated from the ERA-Interim reanalysis grids. Cloud properties are sampled by MODIS and a measure of planetary boundary layer (PBL) depth is calculated using MODIS cloud top temperatures, CALIPSO lidar observations of cloud top heights, and ERA-Interim sea surface temperatures. High humidity overlying the PBL can reduce cloud top cooling by counteracting radiative cooling and by reducing evaporation within the entrainment zone. Both of these effects can slow the entrainment rate and change cloud evolution. To discern which effect is more important the humidity profile is broken into two distinct components: the specific humidity directly above the inversion, which is entraining into the boundary layer, and the column of specific humidity above that layer, which is radiatively interacting with the PBL, but not directly entraining. These two measures of humidity are compared in the Lagrangian framework. Results suggest that humidity above the PBL has a stronger effect on the Lagrangian PBL deepening rate compared to lower tropospheric stability. A comparison of PBL deepening rates driven by the entraining humidity versus the radiating humidity shows that the radiative effects of overlying humidity are dominant with respect to entrainment. However, the entraining effects of humidity are more important in prolonging cloud lifetime.

  13. Auditory-motor entrainment and phonological skills: precise auditory timing hypothesis (PATH).

    PubMed

    Tierney, Adam; Kraus, Nina

    2014-01-01

    Phonological skills are enhanced by music training, but the mechanisms enabling this cross-domain enhancement remain unknown. To explain this cross-domain transfer, we propose a precise auditory timing hypothesis (PATH) whereby entrainment practice is the core mechanism underlying enhanced phonological abilities in musicians. Both rhythmic synchronization and language skills such as consonant discrimination, detection of word and phrase boundaries, and conversational turn-taking rely on the perception of extremely fine-grained timing details in sound. Auditory-motor timing is an acoustic feature which meets all five of the pre-conditions necessary for cross-domain enhancement to occur (Patel, 2011, 2012, 2014). There is overlap between the neural networks that process timing in the context of both music and language. Entrainment to music demands more precise timing sensitivity than does language processing. Moreover, auditory-motor timing integration captures the emotion of the trainee, is repeatedly practiced, and demands focused attention. The PATH predicts that musical training emphasizing entrainment will be particularly effective in enhancing phonological skills.

  14. On the role and origin of isochrony in human rhythmic entrainment.

    PubMed

    Merker, Bjorn H; Madison, Guy S; Eckerdal, Patricia

    2009-01-01

    Wherever human beings live, and however they may organise their affairs, they gather from time to time to sing and dance together, often in a ritual setting. In doing so they synchronise their voices and bodily movements to a shared, repeating interval of time, the musical pulse, beat or tactus. We take this capacity to "entrain" to an evenly paced stimulus (isochrony) so much for granted that it may come as a surprise to learn that from a biological point of view such behaviour is exceptional. But it is not altogether unique. There are a number of other species, none of them closely related to humans, that also engage in group synchrony of behaviour through entrainment to an isochronous pulse. Despite their evolutionary distance from us their life circumstances throw an interesting light on the possible origin and nature of our own entrainment capacity. Here we consider this capacity in terms of its possible origin, functional mechanisms, and ontogenetic development.

  15. Entrainment and thrust augmentation in pulsatile ejector flows

    NASA Technical Reports Server (NTRS)

    Sarohia, V.; Bernal, L.; Bui, T.

    1981-01-01

    This study comprised direct thrust measurements, flow visualization by use of a spark shadowgraph technique, and mean and fluctuating velocity measurements with a pitot tube and linearized constant temperature hot-wire anemometry respectively. A gain in thrust of as much as 10 to 15% was observed for the pulsatile ejector flow as compared to the steady flow configuration. From the velocity profile measurements, it is concluded that this enhanced augmentation for pulsatile flow as compared to a nonpulsatile one was accomplished by a corresponding increased entrainment by the primary jet flow. It is also concluded that the augmentation and total entrainment by a constant area ejector critically depends upon the inlet geometry of the ejector. Experiments were performed to evaluate the influence of primary jet to ejector area ratio, ejector length, and presence of a diffuser on pulsatile ejector performance.

  16. The controls and consequences of substrate entrainment by pyroclastic density currents at Mount St Helens, Washington (USA)

    NASA Astrophysics Data System (ADS)

    Pollock, N. M.; Brand, B. D.; Roche, O.

    2016-10-01

    Evidence in the deposits from the May 18, 1980 eruption at Mount St Helens demonstrates that pyroclastic density currents (PDCs) produced during the afternoon of the eruption became intermittently erosive. Using detailed componentry and granulometry we constrain the sources for lithic blocks in the deposits and identify deposits from PDCs that became locally erosive. The componentry of the lithics in the fall deposits is used as a proxy for vent erosion and assumed to represent the starting componentry for PDCs prior to entrainment from any other source. We find little evidence in the PDC deposits nearest to the base of the volcano for entrainment from the steep flanks; however, significant evidence indicates that PDCs eroded into the debris avalanche hummocks, suggesting that entrainment is favored as PDCs interact with highly irregular topography. Evidence for locally entrained material downstream from debris avalanche hummocks decreases with height in the outcrop, suggesting that less entrainment occurs as local relief decreases and upstream topography is buried. The prevalence of lithofacies containing locally entrained material at the base of unit contacts and only 10s of meters downstream from debris avalanche hummocks suggests that the majority of entrainment occurs at or near the head of the current. Occasionally, entrained material is located high above unit contacts and deposited well after the initial head of the current is inferred to have passed, indicating that entrainment can occur during periods of non-deposition either from the semi-sustained body of the current or from a pulsating current. Additionally, self-channelization of PDCs, either by levee deposition or scouring into earlier PDC deposits, occurs independently of interaction with topographic obstacles and can affect carrying capacity and runout distance. While we begin to explore the mechanisms and effects of erosion on current dynamics, additional laboratory and numerical studies are

  17. Assessment of the Effects of Entrainment and Wind Shear on Nuclear Cloud Rise Modeling

    NASA Astrophysics Data System (ADS)

    Zalewski, Daniel; Jodoin, Vincent

    2001-04-01

    Accurate modeling of nuclear cloud rise is critical in hazard prediction following a nuclear detonation. This thesis recommends improvements to the model currently used by DOD. It considers a single-term versus a three-term entrainment equation, the value of the entrainment and eddy viscous drag parameters, as well as the effect of wind shear in the cloud rise following a nuclear detonation. It examines departures from the 1979 version of the Department of Defense Land Fallout Interpretive Code (DELFIC) with the current code used in the Hazard Prediction and Assessment Capability (HPAC) code version 3.2. The recommendation for a single-term entrainment equation, with constant value parameters, without wind shear corrections, and without cloud oscillations is based on both a statistical analysis using 67 U.S. nuclear atmospheric test shots and the physical representation of the modeling. The statistical analysis optimized the parameter values of interest for four cases: the three-term entrainment equation with wind shear and without wind shear as well as the single-term entrainment equation with and without wind shear. The thesis then examines the effect of cloud oscillations as a significant departure in the code. Modifications to user input atmospheric tables are identified as a potential problem in the calculation of stabilized cloud dimensions in HPAC.

  18. Entrainment to the CIECAM02 and CIELAB colour appearance models in the human cortex.

    PubMed

    Thwaites, Andrew; Wingfield, Cai; Wieser, Eric; Soltan, Andrew; Marslen-Wilson, William D; Nimmo-Smith, Ian

    2018-04-01

    In human visual processing, information from the visual field passes through numerous transformations before perceptual attributes such as colour are derived. The sequence of transforms involved in constructing perceptions of colour can be approximated by colour appearance models such as the CIE (2002) colour appearance model, abbreviated as CIECAM02. In this study, we test the plausibility of CIECAM02 as a model of colour processing by looking for evidence of its cortical entrainment. The CIECAM02 model predicts that colour is split in to two opposing chromatic components, red-green and cyan-yellow (termed CIECAM02-a and CIECAM02-b respectively), and an achromatic component (termed CIECAM02-A). Entrainment of cortical activity to the outputs of these components was estimated using measurements of electro- and magnetoencephalographic (EMEG) activity, recorded while healthy subjects watched videos of dots changing colour. We find entrainment to chromatic component CIECAM02-a at approximately 35 ms latency bilaterally in occipital lobe regions, and entrainment to achromatic component CIECAM02-A at approximately 75 ms latency, also bilaterally in occipital regions. For comparison, transforms from a less physiologically plausible model (CIELAB) were also tested, with no significant entrainment found. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Comparison of entrainment rates from a tank experiment with results using the one-dimensional turbulence model.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kerstein, Alan R.; Sayler, B. J.; Wunsch, S.

    2010-05-01

    Recent work suggests that cloud effects remain one of the largest sources of uncertainty in model-based estimates of climate sensitivity. In particular, the entrainment rate in stratocumulus-topped mixed layers needs better models. More than thirty years ago a clever laboratory experiment was conducted by McEwan and Paltridge to examine an analog of the entrainment process at the top of stratiform clouds. Sayler and Breidenthal extended this pioneering work and determined the effect of the Richardson number on the dimensionless entrainment rate. The experiments gave hints that the interaction between molecular effects and the one-sided turbulence seems to be crucial formore » understanding entrainment. From the numerical point of view large-eddy simulation (LES) does not allow explicitly resolving all the fine scale processes at the entrainment interface. Direct numerical simulation (DNS) is limited due to the Reynolds number and is not the tool of choice for parameter studies. Therefore it is useful to investigate new modeling strategies, such as stochastic turbulence models which allow sufficient resolution at least in one dimension while having acceptable run times. We will present results of the One-Dimensional Turbulence stochastic simulation model applied to the experimental setup of Sayler and Breidenthal. The results on radiatively induced entrainment follow quite well the scaling of the entrainment rate with the Richardson number that was experimentally found for a set of trials. Moreover, we investigate the influence of molecular effects, the fluids optical properties, and the artifact of parasitic turbulence experimentally observed in the laminar layer. In the simulations the parameters are varied systematically for even larger ranges than in the experiment. Based on the obtained results a more complex parameterization of the entrainment rate than currently discussed in the literature seems to be necessary.« less

  20. Entrainment and motor emulation approaches to joint action: Alternatives or complementary approaches?

    PubMed

    Colling, Lincoln J; Williamson, Kellie

    2014-01-01

    Joint actions, such as music and dance, rely crucially on the ability of two, or more, agents to align their actions with great temporal precision. Within the literature that seeks to explain how this action alignment is possible, two broad approaches have appeared. The first, what we term the entrainment approach, has sought to explain these alignment phenomena in terms of the behavioral dynamics of the system of two agents. The second, what we term the emulator approach, has sought to explain these alignment phenomena in terms of mechanisms, such as forward and inverse models, that are implemented in the brain. They have often been pitched as alternative explanations of the same phenomena; however, we argue that this view is mistaken, because, as we show, these two approaches are engaged in distinct, and not mutually exclusive, explanatory tasks. While the entrainment approach seeks to uncover the general laws that govern behavior the emulator approach seeks to uncover mechanisms. We argue that is possible to do both and that the entrainment approach must pay greater attention to the mechanisms that support the behavioral dynamics of interest. In short, the entrainment approach must be transformed into a neuroentrainment approach by adopting a mechanistic view of explanation and by seeking mechanisms that are implemented in the brain.

  1. Entrainment of bed sediment by debris flows: results from large-scale experiments

    USGS Publications Warehouse

    Reid, Mark E.; Iverson, Richard M.; Logan, Matthew; LaHusen, Richard G.; Godt, Jonathan W.; Griswold, Julie P.

    2011-01-01

    When debris flows grow by entraining sediment, they can become especially hazardous owing to increased volume, speed, and runout. To investigate the entrainment process, we conducted eight largescale experiments in the USGS debris-flow flume. In each experiment, we released a 6 m3 water-saturated debris flow across a 47-m long, ~12-cm thick bed of partially saturated sediment lining the 31º flume. Prior to release, we used low-intensity overhead sprinkling and real-time monitoring to control the bed-sediment wetness. As each debris flow descended the flume, we measured the evolution of flow thickness, basal total normal stress, basal pore-fluid pressure, and sediment scour depth. When debris flows traveled over relatively dry sediment, net scour was minimal, but when debris flows traveled over wetter sediment (volumetric water content > 0.22), debris-flow volume grew rapidly and flow speed and runout were enhanced. Data from scour sensors showed that entrainment occurred by rapid (5-10 cm/s), progressive scour rather than by mass failure at depth. Overriding debris flows rapidly generated high basal pore-fluid pressures when they loaded and deformed bed sediment, and in wetter beds these pressures approached lithostatic levels. Reduction of intergranular friction within the bed sediment thereby enhanced scour efficiency, entrainment, and runout.

  2. Crustal entrainment and pulsar glitches.

    PubMed

    Chamel, N

    2013-01-04

    Large pulsar frequency glitches are generally interpreted as sudden transfers of angular momentum between the neutron superfluid permeating the inner crust and the rest of the star. Despite the absence of viscous drag, the neutron superfluid is strongly coupled to the crust due to nondissipative entrainment effects. These effects are shown to severely limit the maximum amount of angular momentum that can possibly be transferred during glitches. In particular, it is found that the glitches observed in the Vela pulsar require an additional reservoir of angular momentum.

  3. Entrainment of prefrontal beta oscillations induces an endogenous echo and impairs memory formation.

    PubMed

    Hanslmayr, Simon; Matuschek, Jonas; Fellner, Marie-Christin

    2014-04-14

    Brain oscillations across all frequency bands play a key role for memory formation. Specifically, desynchronization of local neuronal assemblies in the left inferior prefrontal cortex (PFC) in the beta frequency (∼18 Hz) has been shown to be central for encoding of verbal memories. However, it remains elusive whether prefrontal beta desynchronization is causally relevant for memory formation and whether these endogenous beta oscillations can be entrained by external stimulation. By using combined EEG-TMS (transcranial magnetic stimulation), we here address these fundamental questions in human participants performing a word-list learning task. Confirming our predictions, memory encoding was selectively impaired when the left inferior frontal gyrus (IFG) was driven at beta (18.7 Hz) compared to stimulation at other frequencies (6.8 Hz and 10.7 Hz) and to ineffective sham stimulation (18.7 Hz). Furthermore, a sustained oscillatory "echo" in the left IFG, which outlasted the stimulation period by approximately 1.5 s, was observed solely after beta stimulation. The strength of this beta echo was related to memory impairment on a between-subjects level. These results show endogenous oscillatory entrainment effects and behavioral impairment selectively in beta frequency for stimulation of the left IFG, demonstrating an intimate causal relationship between prefrontal beta desynchronization and memory formation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Discussion: Numerical study on the entrainment of bed material into rapid landslides

    USGS Publications Warehouse

    Iverson, Richard M.

    2013-01-01

    A paper recently published in this journal (Pirulli & Pastor, 2012) uses numerical modelling to study the important problem of entrainment of bed material by landslides. Unfortunately, some of the basic equations employed in the study are flawed, because they violate the principle of linear momentum conservation. Similar errors exist in some other studies of entrainment, and the errors appear to stem from confusion about the role of bed-sediment inertia in differing frames of reference.

  5. Fish-protection devices at unscreened water diversions can reduce entrainment: evidence from behavioural laboratory investigations

    PubMed Central

    Poletto, Jamilynn B.; Cocherell, Dennis E.; Mussen, Timothy D.; Ercan, Ali; Bandeh, Hossein; Kavvas, M. Levent; Cech, Joseph J.; Fangue, Nann A.

    2015-01-01

    Diversion (i.e. extraction) of water from rivers and estuaries can potentially affect native wildlife populations if operation is not carefully managed. For example, open, unmodified water diversions can act as a source of injury or mortality to resident or migratory fishes from entrainment and impingement, and can cause habitat degradation and fragmentation. Fish-protection devices, such as exclusion screens, louvres or sensory deterrents, can physically or behaviourally deter fish from approaching or being entrained into water diversions. However, empirical assessment of their efficacy is often lacking or is investigated only for particular economically or culturally important fishes, such as salmonids. The Southern population of anadromous green sturgeon (Acipenser medirostris) is listed as threatened in California, and there is a high density of water diversions located within their native range (the Sacramento–San Joaquin watershed). Coupled with their unique physiology and behaviour compared with many other fishes native to California, the green sturgeon is susceptible to entrainment into diversions and is an ideal species with which to study the efficacy of mitigation techniques. Therefore, we investigated juvenile green sturgeon (188–202 days post-hatch) in the presence of several fish-protection devices to assess behaviour and entrainment risk. Using a large experimental flume (∼500 kl), we found that compared with an open diversion pipe (control), the addition of a trash-rack box, louvre box, or perforated cylinder on the pipe inlet all significantly reduced the proportion of fish that were entrained through the pipe (P = 0.03, P = 0.028, and P = 0.028, respectively). Likewise, these devices decreased entrainment risk during a single movement past the pipe by between 60 and 96%. These fish-protection devices should decrease the risk of fish entrainment during water-diversion activities. PMID:27293725

  6. Entrainment and mixing in lock-exchange gravity currents using simultaneous velocity-density measurements

    NASA Astrophysics Data System (ADS)

    Balasubramanian, Sridhar; Zhong, Qiang

    2018-05-01

    Gravity currents modify their flow characteristics by entraining ambient fluid, which depends on a variety of governing parameters such as the initial density, Δρ, the total initial height of the fluid, H, and the slope of the terrain, α, from where it is released. It is imperative to study the entrainment dynamics of a gravity current in order to have a clear understanding of mixing transitions that govern the flow physics, the velocity mixing layer thickness, δu, and the density mixing layer thickness, δρ. Experiments were conducted in a lock-exchange facility in which the dense fluid was separated from the ambient lighter fluid using a gate. As the gate is released instantaneously, an energy conserving gravity current is formed, for which the only governing parameter is the Reynolds number defined as R e =U/h ν , where U is the front velocity of the gravity current and h is the height of the current. In our study, the bulk Richardson number (inverse of Froude number, Fr), Rib = g/'H Ub2 = 1, takes a constant value for all the experiments, with Ub being the bulk velocity of the current defined as Ub = √{g'H }. Simultaneous particle image velocimetry and planar laser induced fluorescence measurement techniques are employed to get the velocity and density statistics. Using the buoyancy conservation equation, a new flux-based method was formulated for calculating the entrainment coefficient, EF, near the front and head of the propagating gravity current for a Reynolds number range of Re ≈ 485-12 270 used in our experiments. At the head of the current, the results show a mixing transition at Re ≈ 2700 that is attributed to the flow transitioning from weak Holmboe waves to Kelvin-Helmholtz instabilities, in the form of Kelvin-Helmholtz vortex rolls. Following this mixing transition, the entrainment coefficient continued to increase with increasing Reynolds number owing to the occurrence of three-dimensional Kelvin-Helmholtz billows that promote further

  7. Lidar measurements of the atmospheric entrainment zone and the potential temperature jump across the top of the mixed layer

    NASA Technical Reports Server (NTRS)

    Boers, R.; Eloranta, E. W.

    1986-01-01

    Lidar data of the atmospheric entrainment zone from six days of clear air convection obtained in central Illinois during July 1979 are presented. A new method to measure the potential temperature jump across the entrainment zone based on only one temperature sounding and continuous lidar measurements of the mixed layer height is developed. An almost linear dependence is found between the normalized entrainment rate and the normalized thickness of the entrainment zone.

  8. Quantifying entrainment in pyroclastic density currents from the Tungurahua eruption, Ecuador: Integrating field proxies with numerical simulations

    NASA Astrophysics Data System (ADS)

    Benage, M. C.; Dufek, J.; Mothes, P. A.

    2016-07-01

    The entrainment of air into pyroclastic density currents (PDCs) impacts the dynamics and thermal history of these highly mobile currents. However, direct measurement of entrainment in PDCs is hampered due to hazardous conditions and opaqueness of these flows. We combine three-dimensional multiphase Eulerian-Eulerian-Lagrangian calculations with proxies of thermal conditions preserved in deposits to quantify air entrainment in PDCs at Tungurahua volcano, Ecuador. We conclude that small-volume PDCs develop a particle concentration gradient that results in disparate thermal characteristics for the concentrated bed load (>600 to ~800 K) and the overlying dilute suspended load (~300-600 K). The dilute suspended load has effective entrainment coefficients 2-3 times larger than the bed load. This investigation reveals a dichotomy in entrainment and thermal history between two regions in the current and provides a mechanism to interpret the depositional thermal characteristics of small-volume but frequently occurring PDCs.

  9. Estimating mortality rates of adult fish from entrainment through the propellers of river towboats

    USGS Publications Warehouse

    Gutreuter, S.; Dettmers, J.M.; Wahl, David H.

    2003-01-01

    We developed a method to estimate mortality rates of adult fish caused by entrainment through the propellers of commercial towboats operating in river channels. The method combines trawling while following towboats (to recover a fraction of the kills) and application of a hydrodynamic model of diffusion (to estimate the fraction of the total kills collected in the trawls). The sampling problem is unusual and required quantifying relatively rare events. We first examined key statistical properties of the entrainment mortality rate estimators using Monte Carlo simulation, which demonstrated that a design-based estimator and a new ad hoc estimator are both unbiased and converge to the true value as the sample size becomes large. Next, we estimated the entrainment mortality rates of adult fishes in Pool 26 of the Mississippi River and the Alton Pool of the Illinois River, where we observed kills that we attributed to entrainment. Our estimates of entrainment mortality rates were 2.52 fish/km of towboat travel (80% confidence interval, 1.00-6.09 fish/km) for gizzard shad Dorosoma cepedianum, 0.13 fish/km (0.00-0.41) for skipjack herring Alosa chrysochloris, and 0.53 fish/km (0.00-1.33) for both shovelnose sturgeon Scaphirhynchus platorynchus and smallmouth buffalo Ictiobus bubalus. Our approach applies more broadly to commercial vessels operating in confined channels, including other large rivers and intracoastal waterways.

  10. ENTRAINED-FLOW ADSORPTION OF MERCURY USING ACTIVATED CARBON

    EPA Science Inventory

    Bench-scale experiments were conducted in a flow reactor to simulate entrained-flow capture of elemental mercury (Hg) by activated carbon. Adsorption of Hg by several commercial activated carbons was examined at different carbon-to-mercury (C:Hg) ratios (by weight) (600:1 - 29000...

  11. Modeling Two-Oscillator Circadian Systems Entrained by Two Environmental Cycles

    PubMed Central

    Oda, Gisele A.; Friesen, W. Otto

    2011-01-01

    Several experimental studies have altered the phase relationship between photic and non-photic environmental, 24 h cycles (zeitgebers) in order to assess their role in the synchronization of circadian rhythms. To assist in the interpretation of the complex activity patterns that emerge from these “conflicting zeitgeber” protocols, we present computer simulations of coupled circadian oscillators forced by two independent zeitgebers. This circadian system configuration was first employed by Pittendrigh and Bruce (1959), to model their studies of the light and temperature entrainment of the eclosion oscillator in Drosophila. Whereas most of the recent experiments have restricted conflicting zeitgeber experiments to two experimental conditions, by comparing circadian oscillator phases under two distinct phase relationships between zeitgebers (usually 0 and 12 h), Pittendrigh and Bruce compared eclosion phase under 12 distinct phase relationships, spanning the 24 h interval. Our simulations using non-linear differential equations replicated complex non-linear phenomena, such as “phase jumps” and sudden switches in zeitgeber preferences, which had previously been difficult to interpret. Our simulations reveal that these phenomena generally arise when inter-oscillator coupling is high in relation to the zeitgeber strength. Manipulations in the structural symmetry of the model indicated that these results can be expected to apply to a wide range of system configurations. Finally, our studies recommend the use of the complete protocol employed by Pittendrigh and Bruce, because different system configurations can generate similar results when a “conflicting zeitgeber experiment” incorporates only two phase relationships between zeitgebers. PMID:21886835

  12. A Neural Network Underlying Circadian Entrainment and Photoperiodic Adjustment of Sleep and Activity in Drosophila.

    PubMed

    Schlichting, Matthias; Menegazzi, Pamela; Lelito, Katharine R; Yao, Zepeng; Buhl, Edgar; Dalla Benetta, Elena; Bahle, Andrew; Denike, Jennifer; Hodge, James John; Helfrich-Förster, Charlotte; Shafer, Orie Thomas

    2016-08-31

    A sensitivity of the circadian clock to light/dark cycles ensures that biological rhythms maintain optimal phase relationships with the external day. In animals, the circadian clock neuron network (CCNN) driving sleep/activity rhythms receives light input from multiple photoreceptors, but how these photoreceptors modulate CCNN components is not well understood. Here we show that the Hofbauer-Buchner eyelets differentially modulate two classes of ventral lateral neurons (LNvs) within the Drosophila CCNN. The eyelets antagonize Cryptochrome (CRY)- and compound-eye-based photoreception in the large LNvs while synergizing CRY-mediated photoreception in the small LNvs. Furthermore, we show that the large LNvs interact with subsets of "evening cells" to adjust the timing of the evening peak of activity in a day length-dependent manner. Our work identifies a peptidergic connection between the large LNvs and a group of evening cells that is critical for the seasonal adjustment of circadian rhythms. In animals, circadian clocks have evolved to orchestrate the timing of behavior and metabolism. Consistent timing requires the entrainment these clocks to the solar day, a process that is critical for an organism's health. Light cycles are the most important external cue for the entrainment of circadian clocks, and the circadian system uses multiple photoreceptors to link timekeeping to the light/dark cycle. How light information from these photorecptors is integrated into the circadian clock neuron network to support entrainment is not understood. Our results establish that input from the HB eyelets differentially impacts the physiology of neuronal subgroups. This input pathway, together with input from the compound eyes, precisely times the activity of flies under long summer days. Our results provide a mechanistic model of light transduction and integration into the circadian system, identifying new and unexpected network motifs within the circadian clock neuron network

  13. The Importance of Stochastic Effects for Explaining Entrainment in the Zebrafish Circadian Clock.

    PubMed

    Heussen, Raphaela; Whitmore, David

    2015-01-01

    The circadian clock plays a pivotal role in modulating physiological processes and has been implicated, either directly or indirectly, in a range of pathological states including cancer. Here we investigate how the circadian clock is entrained by external cues such as light. Working with zebrafish cell lines and combining light pulse experiments with simulation efforts focused on the role of synchronization effects, we find that even very modest doses of light exposure are sufficient to trigger some entrainment, whereby a higher light intensity or duration correlates with strength of the circadian signal. Moreover, we observe in the simulations that stochastic effects may be considered an essential feature of the circadian clock in order to explain the circadian signal decay in prolonged darkness, as well as light initiated resynchronization as a strong component of entrainment.

  14. Low-Frequency Cortical Oscillations Entrain to Subthreshold Rhythmic Auditory Stimuli

    PubMed Central

    Schroeder, Charles E.; Poeppel, David; van Atteveldt, Nienke

    2017-01-01

    Many environmental stimuli contain temporal regularities, a feature that can help predict forthcoming input. Phase locking (entrainment) of ongoing low-frequency neuronal oscillations to rhythmic stimuli is proposed as a potential mechanism for enhancing neuronal responses and perceptual sensitivity, by aligning high-excitability phases to events within a stimulus stream. Previous experiments show that rhythmic structure has a behavioral benefit even when the rhythm itself is below perceptual detection thresholds (ten Oever et al., 2014). It is not known whether this “inaudible” rhythmic sound stream also induces entrainment. Here we tested this hypothesis using magnetoencephalography and electrocorticography in humans to record changes in neuronal activity as subthreshold rhythmic stimuli gradually became audible. We found that significant phase locking to the rhythmic sounds preceded participants' detection of them. Moreover, no significant auditory-evoked responses accompanied this prethreshold entrainment. These auditory-evoked responses, distinguished by robust, broad-band increases in intertrial coherence, only appeared after sounds were reported as audible. Taken together with the reduced perceptual thresholds observed for rhythmic sequences, these findings support the proposition that entrainment of low-frequency oscillations serves a mechanistic role in enhancing perceptual sensitivity for temporally predictive sounds. This framework has broad implications for understanding the neural mechanisms involved in generating temporal predictions and their relevance for perception, attention, and awareness. SIGNIFICANCE STATEMENT The environment is full of rhythmically structured signals that the nervous system can exploit for information processing. Thus, it is important to understand how the brain processes such temporally structured, regular features of external stimuli. Here we report the alignment of slowly fluctuating oscillatory brain activity to

  15. Viscous-inviscid calculations of jet entrainment effects on the subsonic flow over nozzle afterbodies

    NASA Technical Reports Server (NTRS)

    Wilmoth, R. G.

    1980-01-01

    A viscous-inviscid interaction model was developed to account for jet entrainment effects in the prediction of the subsonic flow over nozzle afterbodies. The model is based on the concept of a weakly interacting shear layer in which the local streamline deflections due to entrainment are accounted for by a displacement-thickness type of correction to the inviscid plume boundary. The entire flow field is solved in an iterative manner to account for the effects on the inviscid external flow of the turbulent boundary layer, turbulent mixing and chemical reactions in the shear layer, and the inviscid jet exhaust flow. The components of the computational model are described, and numerical results are presented to illustrate the interactive effects of entrainment on the overall flow structure. The validity of the model is assessed by comparisons with data obtained form flow-field measurements on cold-air jet exhausts. Numerical results and experimental data are also given to show the entrainment effects on nozzle boattail drag under various jet exhaust and free-stream flow conditions.

  16. Fish Oil Accelerates Diet-Induced Entrainment of the Mouse Peripheral Clock via GPR120

    PubMed Central

    Itokawa, Misa; Nagahama, Hiroki; Ohtsu, Teiji; Furutani, Naoki; Kamagata, Mayo; Yang, Zhi-Hong; Hirasawa, Akira; Tahara, Yu; Shibata, Shigenobu

    2015-01-01

    The circadian peripheral clock is entrained by restricted feeding (RF) at a fixed time of day, and insulin secretion regulates RF-induced entrainment of the peripheral clock in mice. Thus, carbohydrate-rich food may be ideal for facilitating RF-induced entrainment, although the role of dietary oils in insulin secretion and RF-induced entrainment has not been described. The soybean oil component of standard mouse chow was substituted with fish or soybean oil containing docosahexaenoic acid (DHA) and/or eicosapentaenoic acid (EPA). Tuna oil (high DHA/EPA), menhaden oil (standard), and DHA/EPA dissolved in soybean oil increased insulin secretion and facilitated RF-induced phase shifts of the liver clock as represented by the bioluminescence rhythms of PER2::LUCIFERASE knock-in mice. In this model, insulin depletion blocked the effect of tuna oil and fish oil had no effect on mice deficient for GPR120, a polyunsaturated fatty acid receptor. These results suggest food containing fish oil or DHA/EPA is ideal for adjusting the peripheral clock. PMID:26161796

  17. Listeners feel the beat: entrainment to English and French speech rhythms.

    PubMed

    Lidji, Pascale; Palmer, Caroline; Peretz, Isabelle; Morningstar, Michele

    2011-12-01

    Can listeners entrain to speech rhythms? Monolingual speakers of English and French and balanced English-French bilinguals tapped along with the beat they perceived in sentences spoken in a stress-timed language, English, and a syllable-timed language, French. All groups of participants tapped more regularly to English than to French utterances. Tapping performance was also influenced by the participants' native language: English-speaking participants and bilinguals tapped more regularly and at higher metrical levels than did French-speaking participants, suggesting that long-term linguistic experience with a stress-timed language can differentiate speakers' entrainment to speech rhythm.

  18. Developing a model for hospital inherent safety assessment: Conceptualization and validation.

    PubMed

    Yari, Saeed; Akbari, Hesam; Gholami Fesharaki, Mohammad; Khosravizadeh, Omid; Ghasemi, Mohammad; Barsam, Yalda; Akbari, Hamed

    2018-01-01

    Paying attention to the safety of hospitals, as the most crucial institute for providing medical and health services wherein a bundle of facilities, equipment, and human resource exist, is of significant importance. The present research aims at developing a model for assessing hospitals' safety based on principles of inherent safety design. Face validity (30 experts), content validity (20 experts), construct validity (268 examples), convergent validity, and divergent validity have been employed to validate the prepared questionnaire; and the items analysis, the Cronbach's alpha test, ICC test (to measure reliability of the test), composite reliability coefficient have been used to measure primary reliability. The relationship between variables and factors has been confirmed at 0.05 significance level by conducting confirmatory factor analysis (CFA) and structural equations modeling (SEM) technique with the use of Smart-PLS. R-square and load factors values, which were higher than 0.67 and 0.300 respectively, indicated the strong fit. Moderation (0.970), simplification (0.959), substitution (0.943), and minimization (0.5008) have had the most weights in determining the inherent safety of hospital respectively. Moderation, simplification, and substitution, among the other dimensions, have more weight on the inherent safety, while minimization has the less weight, which could be due do its definition as to minimize the risk.

  19. Influences of the chemical structure of entrainers on the activity coefficients in presence of biodiesel

    NASA Astrophysics Data System (ADS)

    Mäder, A.; Fleischmann, A.; Fang, Ye; Ruck, W.; Krahl, J.

    2012-05-01

    In this work we analyzed the strength of the intermolecular forces between biodiesel and the entrainer and their influence on the entrainer's ability to interact with biodiesel. Furthermore we investigated the influence of the chemical structure of an entrainer to the interaction with biodiesel. For this purpose the activity coefficients γ∞ at infinite dilution of acids, aldehydes, ketones and alcohols in biodiesel were measured with the method of headspace gas chromatography (HSGC). Short-chained acids showed the highest interaction of the analyzed entrainers caused by their ability to build hydrogen bonds with biodiesel. Increased chain length of the acids cause reduced interaction with biodiesel, which is mainly due to the higher obstruction of the acid molecule and therefore the reduced ability to build hydrogen bonds with biodiesel. Aldehydes, ketones and alcohols showed lower interaction with biodiesel compared to the acids. Longer-chained alcohols showed increased interaction with biodiesel due to the raised London Forces and an inductive +I effect of the molecule chain.

  20. Sediment entrainment by debris flows: In situ measurements from the headwaters of a steep catchment

    USGS Publications Warehouse

    McCoy, S.W.; Kean, Jason W.; Coe, Jeffrey A.; Tucker, G.E.; Staley, Dennis M.; Wasklewicz, T.A.

    2012-01-01

    Debris flows can dramatically increase their volume, and hence their destructive potential, by entraining sediment. Yet quantitative constraints on rates and mechanics of sediment entrainment by debris flows are limited. Using an in situ sensor network in the headwaters of a natural catchment we measured flow and bed properties during six erosive debris-flow events. Despite similar flow properties and thicknesses of bed sediment entrained across all events, time-averaged entrainment rates were significantly faster for bed sediment that was saturated prior to flow arrival compared with rates for sediment that was dry. Bed sediment was entrained from the sediment-surface downward in a progressive fashion and occurred during passage of dense granular fronts as well as water-rich, inter-surge flow.En massefailure of bed sediment along the sediment-bedrock interface was never observed. Large-magnitude, high-frequency fluctuations in total normal basal stress were dissipated within the upper 5 cm of bed sediment. Within this near surface layer, concomitant fluctuations in Coulomb frictional resistance are expected, irrespective of the influence of pore fluid pressure or fluctuations in shear stress. If the near-surface sediment was wet as it was overridden by a flow, additional large-magnitude, high-frequency pore pressure fluctuations were measured in the near-surface bed sediment. These pore pressure fluctuations propagated to depth at subsonic rates and in a diffusive manner. The depth to which large excess pore pressures propagated was typically less than 10 cm, but scaled as (D/fi)0.5, in which D is the hydraulic diffusivity and fi is the frequency of a particular pore pressure fluctuation. Shallow penetration depths of granular-normal-stress fluctuations and excess pore pressures demonstrate that only near-surface bed sediment experiences the full dynamic range of effective-stress fluctuations, and as a result, can be more easily entrained than deeper sediment

  1. The in vitro real-time oscillation monitoring system identifies potential entrainment factors for circadian clocks

    PubMed Central

    Nakahata, Yasukazu; Akashi, Makoto; Trcka, Daniel; Yasuda, Akio; Takumi, Toru

    2006-01-01

    Background Circadian rhythms are endogenous, self-sustained oscillations with approximately 24-hr rhythmicity that are manifested in various physiological and metabolic processes. The circadian organization of these processes in mammals is governed by the master oscillator within the suprachiasmatic nuclei (SCN) of the hypothalamus. Recent findings revealed that circadian oscillators exist in most organs, tissues, and even in immortalized cells, and that the oscillators in peripheral tissues are likely to be coordinated by SCN, the master oscillator. Some candidates for endogenous entrainment factors have sporadically been reported, however, their details remain mainly obscure. Results We developed the in vitro real-time oscillation monitoring system (IV-ROMS) by measuring the activity of luciferase coupled to the oscillatory gene promoter using photomultiplier tubes and applied this system to screen and identify factors able to influence circadian rhythmicity. Using this IV-ROMS as the primary screening of entrainment factors for circadian clocks, we identified 12 candidates as the potential entrainment factor in a total of 299 peptides and bioactive lipids. Among them, four candidates (endothelin-1, all-trans retinoic acid, 9-cis retinoic acid, and 13-cis retinoic acid) have already been reported as the entrainment factors in vivo and in vitro. We demonstrated that one of the novel candidates, 15-deoxy-Δ12,14-prostaglandin J2 (15d-PGJ2), a natural ligand of the peroxisome proliferator-activated receptor-γ (PPAR-γ), triggers the rhythmic expression of endogenous clock genes in NIH3T3 cells. Furthermore, we showed that 15d-PGJ2 transiently induces Cry1, Cry2, and Rorα mRNA expressions and that 15d-PGJ2-induced entrainment signaling pathway is PPAR-γ – and MAPKs (ERK, JNK, p38MAPK)-independent. Conclusion Here, we identified 15d-PGJ2 as an entrainment factor in vitro. Using our developed IV-ROMS to screen 299 compounds, we found eight novel and four known

  2. Entrainment, transport and deposition of sediment by saline gravity currents

    NASA Astrophysics Data System (ADS)

    Zordan, Jessica; Juez, Carmelo; Schleiss, Anton J.; Franca, Mário J.

    2018-05-01

    Few studies have addressed simultaneously the feedback between the hydrodynamics of a gravity current and the geomorphological changes of a mobile bed. Hydrodynamic quantities such as turbulent and mean velocities, bed shear stress and turbulent stresses undoubtedly govern the processes of entrainment, transport and deposition. On the other hand, the incorporation of entrained sediment in the current may change its momentum by introducing extra internal stresses, introducing thus a feedback process. These two main questions are here investigated. Laboratory experiments of saline gravity currents, produced by lock-exchange, flowing over a mobile bed channel reach, are here reported. Different initial buoyancies of the current in the lock are tested together with three different grain sizes of the non-coherent sediment that form the erodible bed. Results from velocity measurements are combined with the visualization of the sediment movement in the mobile reach and with post-test topographic and photo surveys of the geomorphology modifications of the channel bed. Mean and turbulent velocities are measured and bed shear stress and Reynolds stresses are estimated. We show that the mean vertical component of the velocity and bed shear stress are highly correlated with the first instants of sediment entrainment. Vertical turbulent velocity is similarly related to entrainment, although with lower correlation values, contributing as well to the sediment movement. Bed shear stress and Reynolds shear stress measured near the bed are correlated with sediment entrainment for longer periods, indicating that these quantities are associated to distal transport as well. Geomorphological changes in the mobile bed are strongly related to the impulse caused by the bed shear stress on the sediment. On the other hand, we show that the nature of the grain of the mobile bed reach influences the hydrodynamics of the current which means that a feedback mechanisms between both occurs during

  3. Time-dependent effects of dim light at night on re-entrainment and masking of hamster activity rhythms.

    PubMed

    Frank, David W; Evans, Jennifer A; Gorman, Michael R

    2010-04-01

    Bright light has been established as the most ubiquitous environmental cue that entrains circadian timing systems under natural conditions. Light equivalent in intensity to moonlight (<1 lux), however, also strongly modulates circadian function in a number of entrainment paradigms. For example, compared to completely dark nights, dim nighttime illumination accelerated re-entrainment of hamster activity rhythms to 4-hour phase advances and delays of an otherwise standard laboratory photocycle. The purpose of this study was to determine if a sensitive period existed in the night during which dim illumination had a robust influence on speed of re-entrainment. Male Siberian hamsters were either exposed to dim light throughout the night, for half of the night, or not at all. Compared to dark nights, dim illumination throughout the entire night decreased by 29% the time for the midpoint of the active phase to re-entrain to a 4-hour phase advance and by 26% for a 4-hour delay. Acceleration of advances and delays were also achieved with 5 hours of dim light per night, but effects depended on whether dim light was present in the first half, second half, or first and last quarters of the night. Both during phase shifting and steady-state entrainment, partially lit nights also produced strong positive and negative masking effects, as well as entrainment aftereffects in constant darkness. Thus, even in the presence of a strong zeitgeber, light that might be encountered under a natural nighttime sky potently modulates the circadian timing system of hamsters.

  4. Turbulent entrainment in a strongly stratified barrier layer

    NASA Astrophysics Data System (ADS)

    Pham, H. T.; Sarkar, S.

    2017-06-01

    Large-eddy simulation (LES) is used to investigate how turbulence in the wind-driven ocean mixed layer erodes the stratification of barrier layers. The model consists of a stratified Ekman layer that is driven by a surface wind. Simulations at a wide range of N0/f are performed to quantify the effect of turbulence and stratification on the entrainment rate. Here, N0 is the buoyancy frequency in the barrier layer and f is the Coriolis parameter. The evolution of the mixed layer follows two stages: a rapid initial deepening and a late-time growth at a considerably slower rate. During the first stage, the mixed layer thickens to the depth that is proportional to u∗/fN0 where u∗ is the frictional velocity. During the second stage, the turbulence in the mixed layer continues to deepen further into the barrier layer, and the turbulent length scale is shown to scale with u∗/N0, independent of f. The late-time entrainment rate E follows the law of E=0.035Ri∗-1/2 where Ri∗ is the Richardson number. The exponent of -1/2 is identical but the coefficient of 0.035 is much smaller relative to the value of 2-3/2 for the nonrotating boundary layer. Simulations using the KPP model (version applicable to this simple case without additional effects of Langmuir turbulence or surface buoyancy flux) also yield the entrainment scaling of E∝Ri∗-1/2; however, the proportionality coefficient varies with the stratification. The structure of the Ekman current is examined to illustrate the strong effect of stratification in the limit of large N0/f.

  5. The roles of convective entrainment in spatial distributions and temporal variations of precipitation over tropical oceans

    NASA Astrophysics Data System (ADS)

    Hirota, N.; Takayabu, Y. N.; Watanabe, M.; Kimoto, M.; Chikira, M.

    2013-12-01

    This study shows that a proper treatment of convective entrainment is essential in determining spatial distributions and temporal variations of precipitation by numerical experiments. They have performed and compared four experiments with different entrainment characteristics: a control (Ctl), no entrainment (NoEnt), original Arakawa Schubert (AS), and AS with simple empirical suppression of convection (ASRH). The fractional entrainment rate of AS and ASRH are constant for each cloud type and are very small near cloud base compared to Ctl, in which half of buoyancy-generated energy is consumed by the entrainment. Ctl well reproduces the spatial and temporal variations, whereas NoEnt and AS, which are very similar to each other, significantly underestimated the variations with the so-called the double ITCZ problem. The enhanced variations in Ctl are due to the larger entrainment that strengthens the coupling of convection and free tropospheric humidity. Time variations are also more realistic in Ctl; mid-height convection moistens mid-troposphere and large precipitation events occur after sufficient moisture is available. In contrast, deep convection is more frequent but with smaller precipitation amount in NoEnt and AS. ASRH shows smaller spatial but excessive temporal variations suggesting that its empirical suppression condition is too simple and a more sophisticated formulation is required for more realistic precipitation variations. This study was supported by the Ministry of Education, Culture, Sports, Science and Technology (GRENE), and by the Ministry of the Environment (2A-1201), Japan.

  6. Optimizing the Entrainment Geometry of a Dry Powder Inhaler: Methodology and Preliminary Results.

    PubMed

    Kopsch, Thomas; Murnane, Darragh; Symons, Digby

    2016-11-01

    For passive dry powder inhalers (DPIs) entrainment and emission of the aerosolized drug dose depends strongly on device geometry and the patient's inhalation manoeuvre. We propose a computational method for optimizing the entrainment part of a DPI. The approach assumes that the pulmonary delivery location of aerosol can be determined by the timing of dose emission into the tidal airstream. An optimization algorithm was used to iteratively perform computational fluid dynamic (CFD) simulations of the drug emission of a DPI. The algorithm seeks to improve performance by changing the device geometry. Objectives were to achieve drug emission that was: A) independent of inhalation manoeuvre; B) similar to a target profile. The simulations used complete inhalation flow-rate profiles generated dependent on the device resistance. The CFD solver was OpenFOAM with drug/air flow simulated by the Eulerian-Eulerian method. To demonstrate the method, a 2D geometry was optimized for inhalation independence (comparing two breath profiles) and an early-bolus delivery. Entrainment was both shear-driven and gas-assisted. Optimization for a delay in the bolus delivery was not possible with the chosen geometry. Computational optimization of a DPI geometry for most similar drug delivery has been accomplished for an example entrainment geometry.

  7. Stratocumulus Precipitation and Entrainment Experiment (SPEE) Field Campaign Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Albrecht, Bruce; Ghate, Virendra; CADeddu, Maria

    2016-06-01

    The scientific focus of this project was to examine precipitation and entrainment processes in marine stratocumulus clouds. The entrainment studies focused on characterizing cloud turbulence at cloud top using Doppler cloud radar observations. The precipitation studies focused on characterizing the precipitation and the macroscopic properties (cloud thickness, and liquid water path) of the clouds. This project will contribute to the U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Climate Research Facility’s overall objective of providing the remote-sensing observations needed to improve the representation of key cloud processes in climate models. It will be of direct relevance to the componentsmore » of ARM dealing with entrainment and precipitation processes in stratiform clouds. Further, the radar observing techniques that will be used in this study were developed using ARM Southern Great Plains (SGP) facility observations under Atmospheric System Research (ASR) support. The observing systems operating automatously from a site located just north of the Center for Interdisciplinary Remotely-Piloted Aircraft Studies (CIRPAS) aircraft hangar in Marina, California during the period of 1 May to 4 November 2015 included: 1. Microwave radiometer: ARM Microwave Radiometer, 3-Channel (MWR3C) with channels centered at 23.834, 30, and 89 GHz; supported by Dr. Maria Cadeddu. 2. Cloud Radar: CIRPAS 95 GHz Frequency Modulated Continuous Wave (FMCW) Cloud Radar (Centroid Frequency Chirp Rate [CFCR]); operations overseen by Drs. Ghate and Albrecht. 3. Ceilometer: Vaisala CK-14; operations overseen by Drs. Ghate and Albrecht.« less

  8. Measurements of air entrainment by vertical plunging liquid jets

    NASA Astrophysics Data System (ADS)

    El Hammoumi, M.; Achard, J. L.; Davoust, L.

    2002-06-01

    This paper addresses the issue of the air-entrainment process by a vertical plunging liquid jet. A non-dimensional physical analysis, inspired by the literature on the stability of free jets submitted to an aerodynamic interaction, was developed and yielded two correlation equations for the laminar and the turbulent plunging jets. These correlation equations allow the volumetric flow rate of the air carryunder represented by the Weber number of entrainment We n to be predicted. The plunging jets under consideration issued from circular tubes long enough to achieve a fully developed flow at the outlet. A sensitive technique based on a rising soap meniscus was developed to measure directly the volumetric flow rate of the air carryunder. Our data are compared with other experimental data available in the literature; they also stand as a possible database for future theoretical modelling.

  9. Spontaneous Entrainment of Running Cadence to Music Tempo.

    PubMed

    Van Dyck, Edith; Moens, Bart; Buhmann, Jeska; Demey, Michiel; Coorevits, Esther; Dalla Bella, Simone; Leman, Marc

    Since accumulating evidence suggests that step rate is strongly associated with running-related injuries, it is important for runners to exercise at an appropriate running cadence. As music tempo has been shown to be capable of impacting exercise performance of repetitive endurance activities, it might also serve as a means to (re)shape running cadence. The aim of this study was to validate the impact of music tempo on running cadence. Sixteen recreational runners ran four laps of 200 m (i.e. 800 m in total); this task was repeated 11 times with a short break in between each four-lap sequence. During the first lap of a sequence, participants ran at a self-paced tempo without musical accompaniment. Running cadence of the first lap was registered, and during the second lap, music with a tempo matching the assessed cadence was played. In the final two laps, the music tempo was either increased/decreased by 3.00, 2.50, 2.00, 1.50, or 1.00 % or was kept stable. This range was chosen since the aim of this study was to test spontaneous entrainment (an average person can distinguish tempo variations of about 4 %). Each participant performed all conditions. Imperceptible shifts in musical tempi in proportion to the runner's self-paced running tempo significantly influenced running cadence ( p  < .001). Contrasts revealed a linear relation between the tempo conditions and adaptation in running cadence ( p  < .001). In addition, a significant effect of condition on the level of entrainment was revealed ( p  < .05), which suggests that maximal effects of music tempo on running cadence can only be obtained up to a certain level of tempo modification. Finally, significantly higher levels of tempo entrainment were found for female participants compared to their male counterparts ( p  < .05). The applicable contribution of these novel findings is that music tempo could serve as an unprompted means to impact running cadence. As increases in step rate may prove

  10. Inclined gravity currents filling basins: The influence of Reynolds number on entrainment into gravity currents

    NASA Astrophysics Data System (ADS)

    Hogg, Charlie A. R.; Dalziel, Stuart B.; Huppert, Herbert E.; Imberger, Jörg

    2015-09-01

    In many important natural and industrial systems, gravity currents of dense fluid feed basins. Examples include lakes fed by dense rivers and auditoria supplied with cooled air by ventilation systems. As we will show, the entrainment into such buoyancy driven currents can be influenced by viscous forces. Little work, however, has examined this viscous influence and how entrainment varies with the Reynolds number, Re. Using the idea of an entrainment coefficient, E, we derive a mathematical expression for the rise of the front at the top of the dense fluid ponding in a basin, where the horizontal cross-sectional area of the basin varies linearly with depth. We compare this expression to experiments on gravity currents with source Reynolds numbers, Res, covering the broad range 100 < Res < 1500. The form of the observed frontal rises was well approximated by our theory. By fitting the observed frontal rises to the theoretical form with E as the free parameter, we find a linear trend for E(Res) over the range 350 < Res < 1100, which is in the transition to turbulent flow. In the experiments, the entrainment coefficient, E, varied from 4 × 10-5 to 7 × 10-2. These observations show that viscous damping can be a dominant influence on gravity current entrainment in the laboratory and in geophysical flows in this transitional regime.

  11. Seizure entrainment with polarizing low-frequency electric fields in a chronic animal epilepsy model

    NASA Astrophysics Data System (ADS)

    Sunderam, Sridhar; Chernyy, Nick; Peixoto, Nathalia; Mason, Jonathan P.; Weinstein, Steven L.; Schiff, Steven J.; Gluckman, Bruce J.

    2009-08-01

    Neural activity can be modulated by applying a polarizing low-frequency (Lt100 Hz) electric field (PLEF). Unlike conventional pulsed stimulation, PLEF stimulation has a graded, modulatory effect on neuronal excitability, and permits the simultaneous recording of neuronal activity during stimulation suitable for continuous feedback control. We tested a prototype system that allows for simultaneous PLEF stimulation with minimal recording artifact in a chronic tetanus toxin animal model (rat) of hippocampal epilepsy with spontaneous seizures. Depth electrode local field potentials recorded during seizures revealed a characteristic pattern of field postsynaptic potentials (fPSPs). Sinusoidal voltage-controlled PLEF stimulation (0.5-25 Hz) was applied in open-loop cycles radially across the CA3 of ventral hippocampus. For stimulated seizures, fPSPs were transiently entrained with the PLEF waveform. Statistical significance of entrainment was assessed with Thomson's harmonic F-test, with 45/132 stimulated seizures in four animals individually demonstrating significant entrainment (p < 0.04). Significant entrainment for multiple presentations at the same frequency (p < 0.01) was observed in three of four animals in 42/64 stimulated seizures. This is the first demonstration in chronically implanted freely behaving animals of PLEF modulation of neural activity with simultaneous recording.

  12. Analysis of an entrainment model of the jet in a crossflow

    NASA Technical Reports Server (NTRS)

    Chang, H. S.; Werner, J. E.

    1972-01-01

    A theoretical model has been proposed for the problem of a round jet in an incompressible cross-flow. The method of matched asymptotic expansions has been applied to this problem. For the solution to the flow problem in the inner region, the re-entrant wake flow model was used with the re-entrant flow representing the fluid entrained by the jet. Higher order corrections are obtained in terms of this basic solution. The perturbation terms in the outer region was found to be a line distribution of doublets and sources. The line distribution of sources represents the combined effect of the entrainment and the displacement.

  13. Near-field entrainment in black smoker plumes

    NASA Astrophysics Data System (ADS)

    Smith, J. E.; Germanovich, L. N.; Lowell, R. P.

    2013-12-01

    In this work, we study the entrainment rate of the ambient fluid into a plume in the extreme conditions of hydrothermal venting at ocean floor depths that would be difficult to reproduce in the laboratory. Specifically, we investigate the flow regime in the lower parts of three black smoker plumes in the Main Endeavour Field on the Juan de Fuca Ridge discharging at temperatures of 249°C, 333°C, and 336°C and a pressure of 21 MPa. Such flow conditions are typical for ocean floor hydrothermal venting but would be difficult to reproduce in the laboratory. The centerline temperature was measured at several heights in the plume above the orifice. Using a previously developed turbine flow meter, we also measured the mean flow velocity at the orifice. Measurements were conducted during dives 4452 and 4518 on the submersible Alvin. Using these measurements, we obtained a range of 0.064 - 0.068 for values of the entrainment coefficient α, which is assumed constant near the orifice. This is half the value of α ≈ 0.12 - 0.13 that would be expected for plume flow regimes based on the existing laboratory results and field measurements in lower temperature and pressure conditions. In fact, α = 0.064 - 0.068 is even smaller than the value of α ≈ 0.075 characteristic of jet flow regimes and appears to be the lowest reported in the literature. Assuming that the mean value α = 0.066 is typical for hydrothermal venting at ocean floor depths, we then characterized the flow regimes of 63 black smoker plumes located on the Endeavor Segment of the Juan de Fuca Ridge. Work with the obtained data is ongoing, but current results indicate that approximately half of these black smokers are lazy in the sense that their plumes exhibit momentum deficits compared to the pure plume flow that develops as the plume rises. The remaining half produces forced plumes that show the momentum excess compared to the pure plumes. The lower value of the entrainment coefficient has important

  14. Bed particle entrainment and motion in turbulent open-channel flows: a high-resolution experimental study

    NASA Astrophysics Data System (ADS)

    Nikora, Vladimir; Cameron, Stuart; Amir, Mohammad; Stewart, Mark; Witz, Matthew

    2015-04-01

    In spite of significant efforts of geoscientists and engineers, the exact mechanics of sediment entrainment and transport by turbulent flows remains unclear and continues to be the focus of many research groups worldwide. The talk outlines current developments in this direction at the University of Aberdeen, where an extensive experimental programme has recently been completed. The experiments were conducted in the Aberdeen Open Channel Facility (AOCF, 20 m long, 1.18 m wide) over wide ranges of flow submergence (1.9-8.0), bulk Reynolds number (4400-83000), and channel aspect ratio (9-39). The flume bed was covered by hexagonally-packed glass beads 16 mm in diameter. For entrainment experiments, selected glass particles were replaced with lighter particles (nylon and delrin). Instantaneous velocity fields before, during, and after entrainment were measured with an advanced multi-mode Particle Image Velocimetry (PIV) system developed by S. Cameron. This system was also used for 3D particle tracking in the entrainment experiments. The main types of experiments included: (1) multi-mode turbulence measurements with fixed-bed conditions to assess the background flow structure (10 min to 120 min duration of velocity records); (2) simultaneous measurements of fluctuating differential pressure acting on 23 fixed particles with in-built pressure sensors, synchronously with PIV; (3) measurements of waiting times for particle entrainment, employing a specially designed system (SMC-1) for automatic placement of the particles on the bed and subsequent measurement of the time before entrainment; (4) long-term direct measurements of the instantaneous drag force acting on a single particle (attached to the bed) at different protrusions, synchronously with PIV; and (5) synchronous measurements of the flow field around a particle before, at, and during entrainment, supplemented with 3D particle tracking. The key results include: (1) the refined turbulence structure of a rough

  15. Entrainment to periodic initiation and transition rates in a computational model for gene translation.

    PubMed

    Margaliot, Michael; Sontag, Eduardo D; Tuller, Tamir

    2014-01-01

    Periodic oscillations play an important role in many biomedical systems. Proper functioning of biological systems that respond to periodic signals requires the ability to synchronize with the periodic excitation. For example, the sleep/wake cycle is a manifestation of an internal timing system that synchronizes to the solar day. In the terminology of systems theory, the biological system must entrain or phase-lock to the periodic excitation. Entrainment is also important in synthetic biology. For example, connecting several artificial biological systems that entrain to a common clock may lead to a well-functioning modular system. The cell-cycle is a periodic program that regulates DNA synthesis and cell division. Recent biological studies suggest that cell-cycle related genes entrain to this periodic program at the gene translation level, leading to periodically-varying protein levels of these genes. The ribosome flow model (RFM) is a deterministic model obtained via a mean-field approximation of a stochastic model from statistical physics that has been used to model numerous processes including ribosome flow along the mRNA. Here we analyze the RFM under the assumption that the initiation and/or transition rates vary periodically with a common period T. We show that the ribosome distribution profile in the RFM entrains to this periodic excitation. In particular, the protein synthesis pattern converges to a unique periodic solution with period T. To the best of our knowledge, this is the first proof of entrainment in a mathematical model for translation that encapsulates aspects such as initiation and termination rates, ribosomal movement and interactions, and non-homogeneous elongation speeds along the mRNA. Our results support the conjecture that periodic oscillations in tRNA levels and other factors related to the translation process can induce periodic oscillations in protein levels, and may suggest a new approach for re-engineering genetic systems to obtain a

  16. A Balanced Diet Is Necessary for Proper Entrainment Signals of the Mouse Liver Clock

    PubMed Central

    Hirao, Akiko; Tahara, Yu; Kimura, Ichiro; Shibata, Shigenobu

    2009-01-01

    Background The peripheral circadian clock in mice is entrained not only by light-dark cycles but also by daily restricted feeding schedules. Behavioral and cell culture experiments suggest an increase in glucose level as a factor in such feeding-induced entrainment. For application of feeding-induced entrainment in humans, nutrient content and dietary variations should be considered. Principal Finding To elucidate the food composition necessary for dietary entrainment, we examined whether complete or partial substitution of dietary nutrients affected phase shifts in liver clocks of mice. Compared with fasting mice or ad libitum fed mice, the liver bioluminescence rhythm advanced by 3–4 h on the middle day in Per2::luciferase knock-in mice that were administered a standard mouse diet, i.e. AIN-93M formula [0.6–0.85 g/10 g mouse BW] (composition: 14% casein, 47% cornstarch, 15% gelatinized cornstarch, 10% sugar, 4% soybean oil, and 10% other [fiber, vitamins, minerals, etc.]), for 2 days. When each nutrient was tested alone (100% nutrient), an insignificant weak phase advance was found to be induced by cornstarch and soybean oil, but almost no phase advance was induced by gelatinized cornstarch, high-amylose cornstarch, glucose, sucrose, or casein. A combination of glucose and casein without oil, vitamin, or fiber caused a significant phase advance. When cornstarch in AIN-93M was substituted with glucose, sucrose, fructose, polydextrose, high-amylose cornstarch, or gelatinized cornstarch, the amplitude of phase advance paralleled the increase in blood glucose concentration. Conclusions Our results strongly suggest the following: (1) balanced diets containing carbohydrates/sugars and proteins are good for restricted feeding-induced entrainment of the peripheral circadian clock and (2) a balanced diet that increases blood glucose, but not by sugar alone, is suitable for entrainment. These findings may assist in the development of dietary recommendations for on

  17. Numerical investigation of the entrainment and mixing processes in neutral and stably-stratified mixing layers

    NASA Astrophysics Data System (ADS)

    Cortesi, A. B.; Smith, B. L.; Yadigaroglu, G.; Banerjee, S.

    1999-01-01

    The direct numerical simulation (DNS) of a temporally-growing mixing layer has been carried out, for a variety of initial conditions at various Richardson and Prandtl numbers, by means of a pseudo-spectral technique; the main objective being to elucidate how the entrainment and mixing processes in mixing-layer turbulence are altered under the combined influence of stable stratification and thermal conductivity. Stratification is seen to significantly modify the way by which entrainment and mixing occur by introducing highly-localized, convective instabilities, which in turn cause a substantially different three-dimensionalization of the flow compared to the unstratified situation. Fluid which was able to cross the braid region mainly undisturbed (unmixed) in the unstratified case, pumped by the action of rib pairs and giving rise to well-formed mushroom structures, is not available with stratified flow. This is because of the large number of ribs which efficiently mix the fluid crossing the braid region. More efficient entrainment and mixing has been noticed for high Prandtl number computations, where vorticity is significantly reinforced by the baroclinic torque. In liquid sodium, however, for which the Prandtl number is very low, the generation of vorticity is very effectively suppressed by the large thermal conduction, since only small temperature gradients, and thus negligible baroclinic vorticity reinforcement, are then available to counterbalance the effects of buoyancy. This is then reflected in less efficient entrainment and mixing. The influence of the stratification and the thermal conductivity can also be clearly identified from the calculated entrainment coefficients and turbulent Prandtl numbers, which were seen to accurately match experimental data. The turbulent Prandtl number increases rapidly with increasing stratification in liquid sodium, whereas for air and water the stratification effect is less significant. A general law for the entrainment

  18. RE-ENTRAINMENT AND DISPERSION OF EXHAUSTS FROM INDOOR RADON REDUCTION SYSTEMS: ANALYSIS OF TRACER GAS DATA

    EPA Science Inventory

    Tracer gas studies were conducted around four model houses in a wind tunnel, and around one house in the field, to quantify re-entrainment and dispersion of exhaust gases released from residential indoor radon reduction systems. Re-entrainment tests in the field suggest that acti...

  19. Laboratory Studies of Anomalous Entrainment in Cumulus Cloud Flows

    NASA Astrophysics Data System (ADS)

    Diwan, Sourabh S.; Narasimha, Roddam; Bhat, G. S.; Sreenivas, K. R.

    2011-12-01

    Entrainment in cumulus clouds has been a subject of investigation for the last sixty years, and continues to be a central issue in current research. The development of a laboratory facility that can simulate cumulus cloud evolution enables us to shed light on the problem. The apparatus for the purpose is based on a physical model of cloud flow as a plume with off-source diabatic heating that is dynamically similar to the effect of latent-heat release in natural clouds. We present a critical review of the experimental data so far obtained in such facilities on the variation of the entrainment coefficient in steady diabatic jets and plumes. Although there are some unexplained differences among different data sets, the dominant trend of the results compares favourably with recent numerical simulations on steady-state deep convection, and helps explain certain puzzles in the fluid dynamics of clouds.

  20. The effects of non-self-sustained oscillators on the en-trainment ability of the suprachiasmatic nucleus

    NASA Astrophysics Data System (ADS)

    Gu, Changgui; Tang, Ming; Rohling, Jos H. T.; Yang, Huijie

    2016-11-01

    In mammals, the circadian rhythms of behavioral and physiological activities are regulated by an endogenous clock located in the suprachiasmatic nucleus (SCN). The SCN is composed of ~20,000 neurons, of which some are capable of self-sustained oscillations, while the others do not oscillate in a self-sustainable manner, but show arrhythmic patterns or damped oscillations. Thus far, the effects of these non-self-sustained oscillatory neurons are not fully explored. Here, we examined how the proportion of the non-self-sustained oscillators affects the free running period under constant darkness and the ability to entrain to the light-dark cycle. We find that the proportion does not affect the free running period, but plays a significant role in the range of entrainment. We also find that its effect on the entrainment range depends on the region where the non-self-sustained oscillators are located. If the non-self-sustained oscillatory neurons are situated in the light-sensitive subregion, the entrainment range narrows when the proportion increases. If they are situated in the light-insensitive subregion, however, the entrainment range broadens with the increase of the proportion. We suggest that the heterogeneity within the light-sensitive and light-insensitive subregions of the SCN has important consequences for how the clock works.

  1. Overview of physical models of liquid entrainment in annular gas-liquid flow

    NASA Astrophysics Data System (ADS)

    Cherdantsev, Andrey V.

    2018-03-01

    A number of recent papers devoted to development of physically-based models for prediction of liquid entrainment in annular regime of two-phase flow are analyzed. In these models shearing-off the crests of disturbance waves by the gas drag force is supposed to be the physical mechanism of entrainment phenomenon. The models are based on a number of assumptions on wavy structure, including inception of disturbance waves due to Kelvin-Helmholtz instability, linear velocity profile inside liquid film and high degree of three-dimensionality of disturbance waves. Validity of the assumptions is analyzed by comparison to modern experimental observations. It was shown that nearly every assumption is in strong qualitative and quantitative disagreement with experiments, which leads to massive discrepancies between the modeled and real properties of the disturbance waves. As a result, such models over-predict the entrained fraction by several orders of magnitude. The discrepancy is usually reduced using various kinds of empirical corrections. This, combined with empiricism already included in the models, turns the models into another kind of empirical correlations rather than physically-based models.

  2. Inherent uncertainties in meteorological parameters for wind turbine design

    NASA Technical Reports Server (NTRS)

    Doran, J. C.

    1982-01-01

    Major difficulties associated with meteorological measurments such as the inability to duplicate the experimental conditions from one day to the next are discussed. This lack of consistency is compounded by the stochastic nature of many of the meteorological variables of interest. Moreover, simple relationships derived in one location may be significantly altered by topographical or synoptic differences encountered at another. The effect of such factors is a degree of inherent uncertainty if an attempt is made to describe the atmosphere in terms of universal laws. Some of these uncertainties and their causes are examined, examples are presented and some implications for wind turbine design are suggested.

  3. Transition from Selective Withdrawal to Light Layer Entrainment in an Oil-Water System

    NASA Astrophysics Data System (ADS)

    Hartenberger, Joel; O'Hern, Timothy; Webb, Stephen; James, Darryl

    2010-11-01

    Selective withdrawal refers to the selective removal of fluid of one density without entraining an adjacent fluid layer of a different density. Most prior literature has examined removal of the lower density fluid and the transition to entraining the higher density fluid. In the present experiments, a higher density liquid is removed through a tube that extends just below its interface with a lower density fluid. The critical depth for a given flow rate at which the liquid-liquid interface transitions to entrain the lighter fluid was measured. Experiments were performed for a range of different light layer silicone oils and heavy layer water or brine, covering a range of density and viscosity ratios. Applications include density-stratified reservoirs and brine removal from oil storage caverns. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  4. Statistical analysis of kinetic energy entrainment in a model wind turbine array boundary layer

    NASA Astrophysics Data System (ADS)

    Cal, Raul Bayoan; Hamilton, Nicholas; Kang, Hyung-Suk; Meneveau, Charles

    2012-11-01

    For large wind farms, kinetic energy must be entrained from the flow above the wind turbines to replenish wakes and enable power extraction in the array. Various statistical features of turbulence causing vertical entrainment of mean-flow kinetic energy are studied using hot-wire velocimetry data taken in a model wind farm in a scaled wind tunnel experiment. Conditional statistics and spectral decompositions are employed to characterize the most relevant turbulent flow structures and determine their length-scales. Sweep and ejection events are shown to be the largest contributors to the vertical kinetic energy flux, although their relative contribution depends upon the location in the wake. Sweeps are shown to be dominant in the region above the wind turbine array. A spectral analysis of the data shows that large scales of the flow, about the size of the rotor diameter in length or larger, dominate the vertical entrainment. The flow is more incoherent below the array, causing decreased vertical fluxes there. The results show that improving the rate of vertical kinetic energy entrainment into wind turbine arrays is a standing challenge and would require modifying the large-scale structures of the flow. This work was funded in part by the National Science Foundation (CBET-0730922, CBET-1133800 and CBET-0953053).

  5. Seizure entrainment with polarizing low frequency electric fields in a chronic animal epilepsy model

    PubMed Central

    Sunderam, Sridhar; Chernyy, Nick; Peixoto, Nathalia; Mason, Jonathan P.; Weinstein, Steven L.; Schiff, Steven J.; Gluckman, Bruce J.

    2009-01-01

    Neural activity can be modulated by applying a polarizing low frequency (≪ 100 Hz) electric field (PLEF). Unlike conventional pulsed stimulation, PLEF stimulation has a graded, modulatory effect on neuronal excitability, and permits the simultaneous recording of neuronal activity during stimulation suitable for continuous feedback control. We tested a prototype system that allows for simultaneous PLEF stimulation with minimal recording artifact in a chronic tetanus toxin animal model (rat) of hippocampal epilepsy with spontaneous seizures. Depth electrode local field potentials recorded during seizures revealed a characteristic pattern of field postsynaptic potentials (fPSPs). Sinusoidal voltage-controlled PLEF stimulation (0.5–25 Hz) was applied in open-loop cycles radially across the CA3 of ventral hippocampus. For stimulated seizures, fPSPs were transiently entrained with the PLEF waveform. Statistical significance of entrainment was assessed with Thomson’s harmonic F-test, with 45/132 stimulated seizures in 4 animals individually demonstrating significant entrainment (p < 0.04). Significant entrainment for multiple presentations at the same frequency (p < 0.01) was observed in 3 of 4 animals in 42/64 stimulated seizures. This is the first demonstration in chronically implanted freely behaving animals of PLEF modulation of neural activity with simultaneous recording. PMID:19602730

  6. PTV analysis of the entrained air into the diesel spray at high-pressure injection

    NASA Astrophysics Data System (ADS)

    Toda, Naoki; Yamashita, Hayato; Mashida, Makoto

    2014-08-01

    In order to clarify the effect of high-pressure injection on soot reduction in terms of the air entrainment into spray, the air flow surrounding the spray and set-off length indicating the distance from the nozzle tip to the flame region in diffusion diesel combustion were investigated using 300MPa injection of a multi-hole injector. The measurement of the air entrainment flow was carried out at non-evaporating condition using consecutive PTV (particle tracking velocimetry) method with a high-speed camera and a high-frequency pulse YAG laser. The set-off length was measured at highpressure and high-temperature using the combustion bomb of constant volume and optical system of shadow graph method. And the amount of air entrainment into spray until reaching set-off length in diffusion combustion was studied as a factor of soot formation.

  7. The Role of Oscillatory Phase in Determining the Temporal Organization of Perception: Evidence from Sensory Entrainment.

    PubMed

    Ronconi, Luca; Melcher, David

    2017-11-01

    Recent behavioral, neuroimaging, and neurophysiological studies have renewed the idea that the information processing within different temporal windows is linked to the phase and/or frequency of the ongoing oscillations, predominantly in the theta/alpha band (∼4-7 and 8-12 Hz, respectively). However, being correlational in nature, this evidence might reflect a nonfunctional byproduct rather than having a causal role. A more direct link can be shown with methods that manipulate oscillatory activity. Here, we used audiovisual entrainment at different frequencies in the prestimulus period of a temporal integration/segregation task. We hypothesized that entrainment would align ongoing oscillations and drive them toward the stimulation frequency. To reveal behavioral oscillations in temporal perception after the entrainment, we sampled the segregation/integration performance densely in time. In Experiment 1, two groups of human participants (both males and females) received stimulation either at the lower or the upper boundary of the alpha band (∼8.5 vs 11.5 Hz). For both entrainment frequencies, we found a phase alignment of the perceptual oscillation across subjects, but with two different power spectra that peaked near the entrainment frequency. These results were confirmed when perceptual oscillations were characterized in the time domain with sinusoidal fittings. In Experiment 2, we replicated the findings in a within-subject design, extending the results for frequencies in the theta (∼6.5 Hz), but not in the beta (∼15 Hz), range. Overall, these findings show that temporal segregation can be modified by sensory entrainment, providing evidence for a critical role of ongoing oscillations in the temporal organization of perception. SIGNIFICANCE STATEMENT The continuous flow of sensory input is not processed in an analog fashion, but rather is grouped by the perceptual system over time. Recent studies pinpointed the phase and/or frequency of the neural

  8. Universal entrainment mechanism controls contact times with motile cells

    NASA Astrophysics Data System (ADS)

    Mathijssen, Arnold J. T. M.; Jeanneret, Raphaël; Polin, Marco

    2018-03-01

    Contact between particles and motile cells underpins a wide variety of biological processes, from nutrient capture and ligand binding to grazing, viral infection, and cell-cell communication. The window of opportunity for these interactions depends on the basic mechanism determining contact time, which is currently unknown. By combining experiments on three different species—Chlamydomonas reinhardtii, Tetraselmis subcordiforms, and Oxyrrhis marina—with simulations and analytical modeling, we show that the fundamental physical process regulating proximity to a swimming microorganism is hydrodynamic particle entrainment. The resulting distribution of contact times is derived within the framework of Taylor dispersion as a competition between advection by the cell surface and microparticle diffusion, and predicts the existence of an optimal tracer size that is also observed experimentally. Spatial organization of flagella, swimming speed, and swimmer and tracer size influence entrainment features and provide tradeoffs that may be tuned to optimize the estimated probabilities for microbial interactions like predation and infection.

  9. Can the circadian system of a diurnal and a nocturnal rodent entrain to ultraviolet light?

    PubMed

    Hut, R A; Scheper, A; Daan, S

    2000-01-01

    Spectral measurements of sunlight throughout the day show close correspondence between the timing of above ground activity of the European ground squirrel and the presence of ultraviolet light in the solar spectrum. However, in a standard entrainment experiment ground squirrels show no entrainment to ultraviolet light, while Syrian hamsters do entrain under the same protocol. Presented transmittance spectra for lenses, corneas, and vitreous bodies may explain the different results of the entrainment experiment. We found ultraviolet light transmittance in the colourless hamster lens (50% cut-off at 341 nm), but not in the yellow ground squirrel lens (50% cut-off around 493 nm). Ultraviolet sensitivity in the ground squirrels based upon possible fluorescence mechanisms was not evident. Possible functions of ultraviolet lens filters in diurnal mammals are discussed, and compared with nocturnal mammals and diurnal birds. Species of the latter two groups lack ultraviolet filtering properties of their lenses and their circadian system is known to respond to ultraviolet light, a feature that does not necessarily has to depend on ultraviolet photoreceptors. Although the circadian system of several species responds to ultraviolet light, we argue that the role of ultraviolet light as a natural Zeitgeber is probably limited.

  10. Lexical Entrainment and Lexical Differentiation in Reference Phrase Choice

    ERIC Educational Resources Information Center

    Van Der Wege, Mija M.

    2009-01-01

    Speakers reuse prior references to objects when choosing reference phrases, a phenomenon known as lexical entrainment. One explanation is that speakers want to maintain a set of previously established referential precedents. Speakers may also contrast any new referents against this previously established set, thereby avoiding applying the same…

  11. Neural Entrainment in Drum Rhythms with Silent Breaks: Evidence from Steady-state Evoked and Event-related Potentials.

    PubMed

    Stupacher, Jan; Witte, Matthias; Hove, Michael J; Wood, Guilherme

    2016-12-01

    The fusion of rhythm, beat perception, and movement is often summarized under the term "entrainment" and becomes obvious when we effortlessly tap our feet or snap our fingers to the pulse of music. Entrainment to music involves a large network of brain structures, and neural oscillations at beat-related frequencies can help elucidate how this network is connected. Here, we used EEG to investigate steady-state evoked potentials (SSEPs) and event-related potentials (ERPs) during listening and tapping to drum clips with different rhythmic structures that were interrupted by silent breaks of 2-6 sec. This design allowed us to address the question of whether neural entrainment processes persist after the physical presence of musical rhythms and to link neural oscillations and event-related neural responses. During stimulus presentation, SSEPs were elicited in both tasks (listening and tapping). During silent breaks, SSEPs were only present in the tapping task. Notably, the amplitude of the N1 ERP component was more negative after longer silent breaks, and both N1 and SSEP results indicate that neural entrainment was increased when listening to drum rhythms compared with an isochronous metronome. Taken together, this suggests that neural entrainment to music is not solely driven by the physical input but involves endogenous timing processes. Our findings break ground for a tighter linkage between steady-state and transient evoked neural responses in rhythm processing. Beyond music perception, they further support the crucial role of entrained oscillatory activity in shaping sensory, motor, and cognitive processes in general.

  12. Inherent Anticipation in the Pharmaceutical and Biotechnology Industries.

    PubMed

    Goldman, Michael; Evans, Georgia; Zappia, Andrew

    2015-04-15

    Pharmaceutical and biotech research often involves discovering new properties of, or new methods to use, existing compositions. The doctrine of inherent anticipation, however, prevents the issuance and/or validity of a patent for discoveries deemed to have been implicitly disclosed in the prior art. This can be a barrier to patent rights in these technologies. Inherent anticipation therefore creates uncertainty for patent protection in the pharmaceutical and biotech sciences. Despite this uncertainty, Federal Circuit jurisprudence provides guidance on the boundaries of the inherent anticipation doctrine. In view of the case law, certain strategies may be employed to protect inventions that may potentially be viewed as inherent in the prior art. Copyright © 2015 Cold Spring Harbor Laboratory Press; all rights reserved.

  13. Material Properties Governing Co-Current Flame Spread: The Effect of Air Entrainment

    NASA Technical Reports Server (NTRS)

    Coutin, Mickael; Rangwala, Ali S.; Torero, Jose L.; Buckley, Steven G.

    2003-01-01

    A study on the effects of lateral air entrainment on an upward spreading flame has been conducted. The fuel is a flat PMMA plate of constant length and thickness but variable width. Video images and surface temperatures have allowed establishing the progression of the pyrolyis front and on the flame stand-off distance. These measurements have been incorporated into a theoretical formulation to establish characteristic mass transfer numbers ("B" numbers). The mass transfer number is deemed as a material related parameter that could be used to assess the potential of a material to sustain co-current flame spread. The experimental results show that the theoretical formulation fails to describe heat exchange between the flame and the surface. The discrepancies seem to be associated to lateral air entrainment that lifts the flame off the surface and leads to an over estimation of the local mass transfer number. Particle Image Velocimetry (PIV) measurements are in the process of being acquired. These measurements are intended to provide insight on the effect of air entrainment on the flame stand-off distance. A brief description of the methodology to be followed is presented here.

  14. Light entrainment of the murine intraocular pressure circadian rhythm utilizes non-local mechanisms.

    PubMed

    Tsuchiya, Shunsuke; Buhr, Ethan D; Higashide, Tomomi; Sugiyama, Kazuhisa; Van Gelder, Russell N

    2017-01-01

    Intraocular pressure (IOP) is known to have a strong circadian rhythm, yet how light/dark cycles entrain this rhythm is unknown. The purpose of this study was to assess whether, like the retina, the mammalian ciliary body and IOP clocks have an intrinsic ability to entrain to light/dark cycles. Iris-ciliary body complexes were obtained from period2:luciferase (PER2::LUC) mice and cultured to measure bioluminescence rhythmicity. Pairs of the iris-ciliary body complex were exposed to antiphasic 9:15 h light/dark cycle in vitro. After 4 days of exposure to light/dark cycles, bioluminescence was recorded to establish their circadian phases. In addition, pairs of the iris-ciliary body complex co-cultured with the retinas or corneas of wild-type mice were also investigated. The IOP circadian changes of free-running Opn4-/-;rd1/rd1 mice whose behavior was antiphasic to wild-type were measured by a rebound tonometry, and compared with wild-type mice. Opn3, Opn4, and Opn5 mRNA expression in the iris-ciliary body were analyzed using RT-PCR. The iris/ciliary body complex expressed Opn3, Opn4, and Opn5 mRNA; however, unlike in retina and cornea, neither the iris-CB complex nor the co-cultured complex was directly entrained by light-dark cycle in vitro. The diurnal IOP change of Opn4-/-;rd1/rd1 mice showed an antiphasic pattern to wild-type mice and their rhythms followed the whole-animal behavioral rhythm. Despite expressing mRNA for several non-visual opsins, circadian rhythms of the iris-ciliary body complex of mice do not entrain directly to light-dark cycles ex vivo. Unlike retina, the iris/ciliary body clocks of blind mice remain synchronized to the organismal behavioral rhythm rather than local light-dark cycles. These results suggest that IOP rhythm entrainment is mediated by a systemic rather than local signal in mice.

  15. Light entrainment of the murine intraocular pressure circadian rhythm utilizes non-local mechanisms

    PubMed Central

    Tsuchiya, Shunsuke; Buhr, Ethan D.; Higashide, Tomomi; Sugiyama, Kazuhisa

    2017-01-01

    Purpose Intraocular pressure (IOP) is known to have a strong circadian rhythm, yet how light/dark cycles entrain this rhythm is unknown. The purpose of this study was to assess whether, like the retina, the mammalian ciliary body and IOP clocks have an intrinsic ability to entrain to light/dark cycles. Methods Iris-ciliary body complexes were obtained from period2:luciferase (PER2::LUC) mice and cultured to measure bioluminescence rhythmicity. Pairs of the iris-ciliary body complex were exposed to antiphasic 9:15 h light/dark cycle in vitro. After 4 days of exposure to light/dark cycles, bioluminescence was recorded to establish their circadian phases. In addition, pairs of the iris-ciliary body complex co-cultured with the retinas or corneas of wild-type mice were also investigated. The IOP circadian changes of free-running Opn4-/-;rd1/rd1 mice whose behavior was antiphasic to wild-type were measured by a rebound tonometry, and compared with wild-type mice. Opn3, Opn4, and Opn5 mRNA expression in the iris-ciliary body were analyzed using RT-PCR. Results The iris/ciliary body complex expressed Opn3, Opn4, and Opn5 mRNA; however, unlike in retina and cornea, neither the iris-CB complex nor the co-cultured complex was directly entrained by light-dark cycle in vitro. The diurnal IOP change of Opn4-/-;rd1/rd1 mice showed an antiphasic pattern to wild-type mice and their rhythms followed the whole-animal behavioral rhythm. Conclusions Despite expressing mRNA for several non-visual opsins, circadian rhythms of the iris-ciliary body complex of mice do not entrain directly to light-dark cycles ex vivo. Unlike retina, the iris/ciliary body clocks of blind mice remain synchronized to the organismal behavioral rhythm rather than local light-dark cycles. These results suggest that IOP rhythm entrainment is mediated by a systemic rather than local signal in mice. PMID:28934261

  16. Vitamin B12 affects non-photic entrainment of circadian locomotor activity rhythms in mice.

    PubMed

    Ebihara, S; Mano, N; Kurono, N; Komuro, G; Yoshimura, T

    1996-07-15

    Administration of vitamin B12 (VB12) has been reported to normalize human sleep-wake rhythm disorders such as non-24-h sleep-wake syndrome (HNS), delayed sleep phase syndrome (DSPS) or insomnia. However, the mechanisms of the action of VB12 on the rhythm disorders are unknown. In the present study, therefore, effects of VB12 on circadian rhythms of locomotor activity were examined in mice. In the first experiment, CBA/J mice were maintained under continuous light condition (LL) or blinded, and after free-running rhythms became stable, the mice were intraperitoneally injected with either VB12 or saline at a fixed time every day. In all the mice with tau > 24 h, saline injections resulted in entrainment of circadian rhythms, whereas not all the mice with tau < 24 h entrained to the injection. In contrast to saline injections, VB12 injections did not always induce entrainment and about half of the mice with tau > 24 h free-ran during the injection. In the second experiment, the amount of phase advances of circadian rhythms induced by a single injection of saline at circadian time (CT) 11 under LL was compared between the mice with and without VB12 silastic tubes. The results showed that the amplitude of phase advances was smaller in the mice with VB12 than those without VB12. In the third experiment, daily injections of saline were given to the mice with VB12 silastic tubes maintained under LL. In this chronic treatment of VB12 as well, attenuating effects of VB12 on saline-induced entrainment were observed. These results suggest that VB12 affects the mechanisms implicated in non-photic entrainment of circadian rhythms in mice.

  17. Drinking with a hairy tongue: viscous entrainment by dipping hairy surfaces

    NASA Astrophysics Data System (ADS)

    Nasto, Alice; Brun, Pierre-Thomas; Alvarado, José; Bush, John; Hosoi, Anette

    2016-11-01

    Nectar-drinking bats have tongues covered with hair-like papillae, enhancing their ability to take up viscous nectar by dipping. Using a combination of model experiments and theory reminiscent of Landau-Levich-Derjaguin dip coating, we rationalize this mechanism of viscous entrainment in a hairy texture. For the model experiments, hairy surfaces are fabricated using laser cut molds and casting samples with PDMS elastomer. Modeling the liquid trapped within the texture using a Darcy-Brinkman like approach, we derive the drainage flow solution. The amount of fluid that is entrained is dependent on the viscosity of the fluid, the density of the hairs, and the dipping speed. We find that there is an optimal hair density to maximize fluid uptake.

  18. Duration and mutual entrainment of changes in parenting practices engendered by behavioral parent training targeting recently separated mothers.

    PubMed

    Reed, Andrea; Snyder, James; Staats, Sarah; Forgatch, Marion S; Degarmo, David S; Patterson, Gerald R; Low, Sabina; Sinclair, Ryan; Schmidt, Nicole

    2013-06-01

    Parent management training (PMT) has beneficial effects on child and parent adjustment that last for 5 to 10 years. Short-term changes in parenting practices have been shown to mediate these effects, but the manner in which changes in specific components of parenting are sequenced and become reciprocally reinforcing (or mutually entrained) to engender and sustain the cascade of long-term beneficial effects resulting from PMT has received modest empirical attention. Long-term changes in parenting resulting from the Oregon model of PMT (PMTO) over a 2-year period were examined using data from the Oregon Divorce Study-II in which 238 recently separated mothers and their 6- to 10-year-old sons were randomly assigned to PMTO or a no treatment control (NTC) group. Multiple indicators of observed parenting practices were used to define constructs for positive parenting, monitoring and discipline at baseline, and at 6-, 12-, 18- and 30-months postbaseline. PMTO relative to NTC resulted in increased positive parenting and prevented deterioration in discipline and monitoring over the 30-month period. There were reliable sequential, transactional relationships among parenting practices; positive parenting supported better subsequent monitoring, and positive parenting and better monitoring supported subsequent effective discipline. Small improvements in parenting resulting from PMTO and small deteriorations in parenting in the NTC group may be sustained and amplified by mutually entrained relationships among parenting practices. These data about the change processes engendered by PMTO may provide information needed to enhance the power, effectiveness, and efficiency of behavioral parent training interventions.

  19. Numerically modeling oxide entrainment in the filling of castings: The effect of the webber number

    NASA Astrophysics Data System (ADS)

    Cuesta, Rafael; Delgado, Angel; Maroto, Antonio; Mozo, David

    2006-11-01

    In the casting of aluminum alloys and, in general, in the casting of film-forming alloys, the entrainment of oxides into the bulk liquid severely reduces the strength of the cast part. To avoid this, the melt velocity must be kept below a certain value, namely critical velocity, which is widely assumed to be 0.5 m/s. In this paper the authors investigate, by means of fluid-dynamic computer simulation, the dependence of critical veiocity on geometrical features of the running channels and thermophysical properties of the molten metal. For each of the geometries studied, once the critical velocity is exceeded, the amount of oxide entrained in the liquid is quantified. The analysis of the results reveals that surface entrainment is much more related to the non-dimensional Webber number than to melt velocity.

  20. Entrainment in the master equation.

    PubMed

    Margaliot, Michael; Grüne, Lars; Kriecherbauer, Thomas

    2018-04-01

    The master equation plays an important role in many scientific fields including physics, chemistry, systems biology, physical finance and sociodynamics. We consider the master equation with periodic transition rates. This may represent an external periodic excitation like the 24 h solar day in biological systems or periodic traffic lights in a model of vehicular traffic. Using tools from systems and control theory, we prove that under mild technical conditions every solution of the master equation converges to a periodic solution with the same period as the rates. In other words, the master equation entrains (or phase locks) to periodic excitations. We describe two applications of our theoretical results to important models from statistical mechanics and epidemiology.

  1. Entrainment in the master equation

    PubMed Central

    Grüne, Lars; Kriecherbauer, Thomas

    2018-01-01

    The master equation plays an important role in many scientific fields including physics, chemistry, systems biology, physical finance and sociodynamics. We consider the master equation with periodic transition rates. This may represent an external periodic excitation like the 24 h solar day in biological systems or periodic traffic lights in a model of vehicular traffic. Using tools from systems and control theory, we prove that under mild technical conditions every solution of the master equation converges to a periodic solution with the same period as the rates. In other words, the master equation entrains (or phase locks) to periodic excitations. We describe two applications of our theoretical results to important models from statistical mechanics and epidemiology. PMID:29765669

  2. Can the inherence heuristic explain vitalistic reasoning?

    PubMed

    Bastian, Brock

    2014-10-01

    Inherence is an important component of psychological essentialism. By drawing on vitalism as a way in which to explain this link, however, the authors appear to conflate causal explanations based on fixed features with those based on general causal forces. The disjuncture between these two types of explanatory principles highlights potential new avenues for the inherence heuristic.

  3. Hydrodynamic entrainment in micro-confined suspensions and its implications for two-point microrheology

    NASA Astrophysics Data System (ADS)

    Aponte-Rivera, Christian; Zia, Roseanna N.

    2017-11-01

    We study hydrodynamic entrainment in spherically confined colloidal suspensions of hydrodynamically interacting particles as a model system for intracellular and other micro-confined biophysical transport. Modeling of transport and rheology in such materials requires an accurate description of the microscopic forces driving particle motion and of particle interactions with nearby boundaries. We carry out dynamic simulations of concentrated, spherically confined colloids as a model system to study the effect of 3D confinement on entrainment and rheology. We show that entrainment between two tracer particles exhibits qualitatively different functional dependence on inter-particle separation as compared to an unbound suspension, and develop a scaling theory that collapses the concentrated mobility of spherically confined suspensions for all volume fractions and particle to cavity size ratios onto a master curve. For widely separated particles, the master curve can be predicted via a Green's function, which suggests a framework with which to conduct two-point microrheology measurements near confining boundaries. The implications of these results for experiments in micro-confined biophysical systems, such as the interior of eukaryotic cells, are discussed.

  4. Development of physiotherapy inherent requirement statements - an Australian experience.

    PubMed

    Bialocerkowski, Andrea; Johnson, Amanda; Allan, Trevor; Phillips, Kirrilee

    2013-04-16

    The United Nations Convention on the Rights of People with Disabilities promotes equal rights of people with a disability in all aspects of their life including their education. In Australia, Disability Discrimination legislation underpins this Convention. It mandates that higher education providers must demonstrate that no discrimination has occurred and all reasonable accommodations have been considered and implemented, to facilitate access and inclusion for a student with a disability. The first step to meeting legislative requirements is to provide students with information on the inherent requirements of a course. This paper describes the steps which were taken to develop inherent requirement statements for a 4-year entry-level physiotherapy program at one Australian university. Inherent requirement statements were developed using an existing framework, which was endorsed and mandated by the University. Items which described inherencies were extracted from Australian physiotherapy professional standards and statutory regulatory requirements, and units contained in the physiotherapy program. Data were integrated into the 8 prescribed domains: ethical behaviour, behavioural stability, legal, communication, cognition, sensory abilities, strength and mobility, and sustainable performance. Statements for each domain were developed using a 5-level framework (introductory statement, description of the inherent requirement, justification for inherency, characteristics of reasonable adjustments and exemplars) and reviewed by a University Review Panel. Refinement of statements continued until no further changes were required. Fifteen physiotherapy inherent requirement statements were developed. The eight domains identified in the existing framework, developed for Nursing, were relevant to the study of physiotherapy. The inherent requirement statements developed in this study provide a transparent, defensible position on the current requirements of physiotherapy study at

  5. Entraining IDyOT: Timing in the Information Dynamics of Thinking

    PubMed Central

    Forth, Jamie; Agres, Kat; Purver, Matthew; Wiggins, Geraint A.

    2016-01-01

    We present a novel hypothetical account of entrainment in music and language, in context of the Information Dynamics of Thinking model, IDyOT. The extended model affords an alternative view of entrainment, and its companion term, pulse, from earlier accounts. The model is based on hierarchical, statistical prediction, modeling expectations of both what an event will be and when it will happen. As such, it constitutes a kind of predictive coding, with a particular novel hypothetical implementation. Here, we focus on the model's mechanism for predicting when a perceptual event will happen, given an existing sequence of past events, which may be musical or linguistic. We propose a range of tests to validate or falsify the model, at various different levels of abstraction, and argue that computational modeling in general, and this model in particular, can offer a means of providing limited but useful evidence for evolutionary hypotheses. PMID:27803682

  6. Increasing jet entrainment, mixing and spreading

    DOEpatents

    Farrington, Robert B.

    1994-01-01

    A free jet of air is disturbed at a frequency that substantially matches natural turbulences in the free jet to increase the entrainment, mixing, and spreading of air by the free jet, for example in a room or other enclosure. The disturbances are created by pulsing the flow of air that creates the free jet at the desired frequency. Such pulsing of the flow of air can be accomplished by sequentially occluding and opening a duct that confines and directs the flow of air, such as by rotating a disk on an axis transverse to the flow of air in the duct.

  7. Entrainment of the Circadian Rhythm in Egg Hatching of the Crab Dyspanopeus sayi by Chemical Cues from Ovigerous Females.

    PubMed

    Forward, Richard B; Sanchez, Kevin G; Riley, Paul P

    2016-02-01

    The subtidal crab Dyspanopeus sayi has a circadian rhythm in larval release with a free-running period of 24.1 h. Under constant conditions, eggs hatch primarily in the 4-h interval after the time of sunset. The study tested the new model for entrainment in subtidal crabs, which proposes that the female perceives the environmental cycles and entrains the endogenous rhythm in the embryos. Results verified the model for D. sayi. Hatching by embryos collected from the field when they had not yet developed eye pigments, and were kept in constant conditions attached to their mother, exhibited the circadian hatching rhythm. Attached embryos could also be entrained to a new photoperiod in the laboratory before they developed eye pigments. Further, mature embryos removed from the female hatched rhythmically, indicating that a circadian rhythm resides in the embryos. However, if mature embryos with eye pigments were removed from the female and exposed to a new light-dark cycle, they could not be entrained to the new cycle; rather, they hatched according to the timing of the original light-dark cycle. Nevertheless, detached, mature embryos would entrain to a new light-dark cycle if they were in chemical, but not physical, contact with the female. Thus, the female perceives the light-dark cycle, and uses chemical cues to entrain the circadian rhythm of hatching by the embryos. © 2016 Marine Biological Laboratory.

  8. Monitoring bedload entrainment and transport in snowmelt-dominated forest streams of the Columbia Mountains, Canada

    NASA Astrophysics Data System (ADS)

    Green, Kim; Brardinoni, Francesco; Alila, Younes

    2014-05-01

    We monitor bedload transport and water discharge at six stations in two forested headwater streams of the Columbia Mountains, Canada. The monitoring network of sediment traps is designed to examine the effects of channel bed texture, and the influence of alluvial (i.e., step pools, and riffle pools) and semi-alluvial morphologies (i.e., boulder cascades and forced step pools) on bedload entrainment and transport. Results suggest that patterns of bedload entrainment are influenced by flow resistance while the value of the critical dimensionless shear stress for mobilization of the surface D50 varies due to channel gradient, grain sheltering effects and, to a less extent, flow resistance. Regardless of channel morphology we observe: (i) equal-threshold entrainment for all mobile grains in channels with high grain and/or form resistance; and (ii) initial equal-threshold entrainment of calibers ≤ 22mm, and subsequent size-selective entrainment of coarser material in channels with low form resistance (e.g. riffle pool). Scaled fractional analysis reveals that in reaches with high flow resistance most bedload transport occurs in partial mobility fashion relative to the available bed material and that only material finer than 16mm attains full mobility during over-bank flows. Equal mobility transport for a wider range of grain sizes is achieved in reaches with reduced flow resistance. Evaluation of bedload rating curves across sites identifies that grain effects predominate with respect to bedload flux whereas morphological effects (i.e. form resistance) play a secondary role. Application of selected empirical formulae developed in steep alpine channels present variable success in predicting transport rates in the study reaches.

  9. Neural Entrainment to Polyrhythms: A Comparison of Musicians and Non-musicians.

    PubMed

    Stupacher, Jan; Wood, Guilherme; Witte, Matthias

    2017-01-01

    Music can be thought of as a dynamic path over time. In most cases, the rhythmic structure of this path, such as specific sequences of strong and weak beats or recurring patterns, allows us to predict what and particularly when sounds are going to happen. Without this ability we would not be able to entrain body movements to music, like we do when we dance. By combining EEG and behavioral measures, the current study provides evidence illustrating the importance of ongoing neural oscillations at beat-related frequencies-i.e., neural entrainment-for tracking and predicting musical rhythms. Participants (13 musicians and 13 non-musicians) listened to drum rhythms that switched from a quadruple rhythm to a 3-over-4 polyrhythm. After a silent period of ~2-3 s, participants had to decide whether a target stimulus was presented on time with the triple beat of the polyrhythm, too early, or too late. Results showed that neural oscillations reflected the rhythmic structure of both the simple quadruple rhythm and the more complex polyrhythm with no differences between musicians and non-musicians. During silent periods, the observation of time-frequency plots and more commonly used frequency spectra analyses suggest that beat-related neural oscillations were more pronounced in musicians compared to non-musicians. Neural oscillations during silent periods are not driven by an external input and therefore are thought to reflect top-down controlled endogenous neural entrainment. The functional relevance of endogenous neural entrainment was demonstrated by a positive correlation between the amplitude of task-relevant neural oscillations during silent periods and the number of correctly identified target stimuli. In sum, our findings add to the evidence supporting the neural resonance theory of pulse and meter. Furthermore, they indicate that beat-related top-down controlled neural oscillations can exist without external stimulation and suggest that those endogenous oscillations

  10. Intrinsic near-24-h pacemaker period determines limits of circadian entrainment to a weak synchronizer in humans

    NASA Technical Reports Server (NTRS)

    Wright, K. P. Jr; Hughes, R. J.; Kronauer, R. E.; Dijk, D. J.; Czeisler, C. A.

    2001-01-01

    Endogenous circadian clocks are robust regulators of physiology and behavior. Synchronization or entrainment of biological clocks to environmental time is adaptive and important for physiological homeostasis and for the proper timing of species-specific behaviors. We studied subjects in the laboratory for up to 55 days each to determine the ability to entrain the human clock to a weak circadian synchronizing stimulus [scheduled activity-rest cycle in very dim (approximately 1.5 lux in the angle of gaze) light-dark cycle] at three approximately 24-h periods: 23.5, 24.0, and 24.6 h. These studies allowed us to test two competing hypotheses as to whether the period of the human circadian pacemaker is near to or much longer than 24 h. We report here that imposition of a sleep-wake schedule with exposure to the equivalent of candle light during wakefulness and darkness during sleep is usually sufficient to maintain circadian entrainment to the 24-h day but not to a 23.5- or 24.6-h day. Our results demonstrate functionally that, in normally entrained sighted adults, the average intrinsic circadian period of the human biological clock is very close to 24 h. Either exposure to very dim light and/or the scheduled sleep-wake cycle itself can entrain this near-24-h intrinsic period of the human circadian pacemaker to the 24-h day.

  11. [Differences of inherent optical properties of inland lake water body in typical seasons].

    PubMed

    Sun, De-Yong; Li, Yun-Mei; Wang, Qiao; Le, Cheng-Fen; Huang, Chang-Chun; Wang, Li-Zhen

    2008-05-01

    Inherent optical property is one of the important properties of water body, which lays the foundation for the establishment of water color analytical models. By using quantity filter technology (QFT) and BB9 backscattering meter, the absorption coefficients of chromophoric dissolved organic matter (CDOM) and total suspended matters (TSM) and the backscattering coefficient of TSM in the water body at Meiliang Bay of Taihu Lake were measured in summer and winter. Based on the spectral comparison of the absorption and backscattering coefficients, their differences between the two seasons were demonstrated, and the reasons that caused these differences were also explored in the context of their relations to the changes in water quality. Consequently, water environment condition could be revealed by using the inherent optical property. The relationship between the backscattering coefficient and the TSM concentration was established, which could provide supporting coefficients to the analytical models to be developed.

  12. Twilight and photoperiod affect behavioral entrainment in the house mouse (Mus musculus).

    PubMed

    Comas, M; Hut, R A

    2009-10-01

    The effect of twilight transitions on entrainment of C57BL/6JOlaHsd mice (Mus musculus) was studied using light-dark cycles of different photoperiods (6, 12, and 18 h) and twilight transitions of different durations (0, 1, and 2 h). Phase angle differences of the onset, center of gravity, and offset of activity, activity duration (alpha), as well as free-running period (tau) in continuous darkness were analyzed. The main finding was that for all conditions the onset of activity was close to dusk or lights-off except for the short photoperiod with 2 h of twilight where activity onset was on average 5.3 (SEM 1.07) h after lights-off. This finding contrasts with the results of Boulos and Macchi for Syrian hamsters where a 5.9-h earlier activity onset was observed when similar photoperiod and twilight conditions are compared with a rectangular LD cycle. The authors suggest the opposite effects of 2 h of twilight in the 2 species may be related to their different free-running periods under DD conditions following entrainment to short photoperiod with 2-h twilight conditions. Since the authors observed larger variation in phase angle of entrainment in longer twilight conditions, twilight does not necessarily form a stronger zeitgeber.

  13. Mechanisms of Sediment Entrainment and Transport in Rotorcraft Brownout

    DTIC Science & Technology

    2009-01-01

    understanding of the temporal evolution of the rotor wake in ground effect simultaneously with the processes of sediment entrainment and transport by the rotor ...14 1.8 Schematic and smoke flow visualization of a rotor flow during out-of- ground- effect ...operations. . . . . . . . . . . . . . . . . . . . . . . . . . . 19 1.9 Schematic and smoke flow visualization of a rotor flow during in-ground- effect

  14. Modeling temperature entrainment of circadian clocks using the Arrhenius equation and a reconstructed model from Chlamydomonas reinhardtii.

    PubMed

    Heiland, Ines; Bodenstein, Christian; Hinze, Thomas; Weisheit, Olga; Ebenhoeh, Oliver; Mittag, Maria; Schuster, Stefan

    2012-06-01

    Endogenous circadian rhythms allow living organisms to anticipate daily variations in their natural environment. Temperature regulation and entrainment mechanisms of circadian clocks are still poorly understood. To better understand the molecular basis of these processes, we built a mathematical model based on experimental data examining temperature regulation of the circadian RNA-binding protein CHLAMY1 from the unicellular green alga Chlamydomonas reinhardtii, simulating the effect of temperature on the rates by applying the Arrhenius equation. Using numerical simulations, we demonstrate that our model is temperature-compensated and can be entrained to temperature cycles of various length and amplitude. The range of periods that allow entrainment of the model depends on the shape of the temperature cycles and is larger for sinusoidal compared to rectangular temperature curves. We show that the response to temperature of protein (de)phosphorylation rates play a key role in facilitating temperature entrainment of the oscillator in Chlamydomonas reinhardtii. We systematically investigated the response of our model to single temperature pulses to explain experimentally observed phase response curves.

  15. Design of a Film-Cooled Entraining Diffuser.

    DTIC Science & Technology

    1980-04-01

    AD-A783 951 DEFENCE RESEARCH ESTABLISHMENT SUFFIELD RALSTON (ALBERTA) FIG 20/4 NL3 DESIGN OF A FILM-COOLED ENTRAINING DIFFUSER. 1U) APR 80 S B MURRAY...S.B. Murray C PCN 27C01 April 1980 80 4 29 004 DEFENCE RESEARCH ESTABLISHMENT SUFFIELD: RALSTON: ALBERTA WARNING rht ... , i. to - °aton is per lle...ulje(f to -ogoltio • IIl proprieh’~ra~r ind wtent it hh , i j l - UNCLASS I FI ED Li m DEFENCE RESEARCH ESTABLISHMENT SUFFIELD RALSTON ALBERTA

  16. Influence of surfactant upon air entrainment hysteresis in curtain coating

    NASA Astrophysics Data System (ADS)

    Marston, J. O.; Hawkins, V.; Decent, S. P.; Simmons, M. J. H.

    2009-03-01

    The onset of air entrainment for curtain coating onto a pre-wetted substrate was studied experimentally in similar parameter regimes to commercial coating ( Re = ρ Q/μ = O(1), We = ρ Q u c /σ = O(10), Ca = μ U/σ = O(1)). Impingement speed and viscosity were previously shown to be critical parameters in correlating air entrainment data with three qualitatively different regimes of hydrodynamic assist identified (Marston et al. in Exp Fluids 42(3):483-488, 2007a). The interaction of the impinging curtain with the pre-existing film also led to a significant hysteretic effect throughout the flow rate-substrate speed parameter space. For the first time, results considering the influence of surfactants are presented in attempt to elucidate the relative importance of surface tension in this inertia-dominated system. The results show quantitative and qualitative differences to previous results with much more complex hysteretic behaviour which has only been reported previously for rough surfaces.

  17. Effect of tides, river flow, and gate operations on entrainment of juvenile salmon into the interior Sacramento–San Joaquin River Delta

    USGS Publications Warehouse

    Perry, Russell W.; Brandes, Patricia L.; Burau, Jon R.; Sandstrom, Philip T.; Skalski, John R.

    2015-01-01

    Juvenile Chinook Salmon Oncorhynchus tshawytscha emigrating from natal tributaries of the Sacramento River, California, must negotiate the Sacramento-San Joaquin River Delta (hereafter, the Delta), a complex network of natural and man-made channels linking the Sacramento River with San Francisco Bay. Fish that enter the interior and southern Delta—the region to the south of the Sacramento River where water pumping stations are located—survive at a lower rate than fish that use alternative migration routes. Consequently, total survival decreases as the fraction of the population entering the interior Delta increases, thus spurring management actions to reduce the proportion of fish that are entrained into the interior Delta. To better inform management actions, we modeled entrainment probability as a function of hydrodynamic variables. We fitted alternative entrainment models to telemetry data that identified when tagged fish in the Sacramento River entered two river channels leading to the interior Delta (Georgiana Slough and the gated Delta Cross Channel). We found that the probability of entrainment into the interior Delta through both channels depended strongly on the river flow and tidal stage at the time of fish arrival at the river junction. Fish that arrived during ebb tides had a low entrainment probability, whereas fish that arrived during flood tides (i.e., when the river's flow was reversed) had a high probability of entering the interior Delta. We coupled our entrainment model with a flow simulation model to evaluate the effect of nighttime closures of the Delta Cross Channel gates on the daily probability of fish entrainment into the interior Delta. Relative to 24-h gate closures, nighttime closures increased daily entrainment probability by 3 percentage points on average if fish arrived at the river junction uniformly throughout the day and by only 1.3 percentage points if 85% of fish arrived at night. We illustrate how our model can be used to

  18. Toward better assessment of tornado potential in typhoons: Significance of considering entrainment effects for CAPE

    NASA Astrophysics Data System (ADS)

    Sueki, Kenta; Niino, Hiroshi

    2016-12-01

    The characteristics of typhoons that spawned tornadoes (tornadic typhoons: TTs) in Japan from 1991 to 2013 were investigated by composite analysis using the Japanese 55 year Reanalysis and compared with those of typhoons that did not spawn tornadoes (nontornadic typhoons: NTs). We found that convective available potential energy (CAPE), which considers the effects of entrainment (entraining CAPE: E-CAPE), and storm-relative environmental helicity (SREH) are significantly large in the northeast quadrant of TTs where tornadoes frequently occur and that E-CAPE and SREH in that quadrant for TTs are larger than those for NTs. On the other hand, ordinary CAPE without entrainment does not account for the spatial distribution of tornado occurrences nor does it distinguish TTs from NTs. E-CAPE is sensitive to humidity in the midtroposphere; thus, it is effective for detecting a conditionally unstable layer up to about 550 hPa, which is distinctive of TTs.

  19. Using Neutron Radiography to Quantify Water Transport and the Degree of Saturation in Entrained Air Cement Based Mortar

    NASA Astrophysics Data System (ADS)

    Lucero, Catherine L.; Bentz, Dale P.; Hussey, Daniel S.; Jacobson, David L.; Weiss, W. Jason

    Air entrainment is commonly added to concrete to help in reducing the potential for freeze thaw damage. It is hypothesized that the entrained air voids remain unsaturated or partially saturated long after the smaller pores fill with water. Small gel and capillary pores in the cement matrix fill quickly on exposure to water, but larger pores (entrapped and entrained air voids) require longer times or other methods to achieve saturation. As such, it is important to quantitatively determine the water content and degree of saturation in air entrained cementitious materials. In order to further investigate properties of cement-based mortar, a model based on Beer's Law has been developed to interpret neutron radiographs. This model is a powerful tool for analyzing images acquired from neutron radiography. A mortar with a known volume of aggregate, water to cement ratio and degree of hydration can be imaged and the degree of saturation can be estimated.

  20. Entrainment of the Mammalian Cell Cycle by the Circadian Clock: Modeling Two Coupled Cellular Rhythms

    PubMed Central

    Gérard, Claude; Goldbeter, Albert

    2012-01-01

    The cell division cycle and the circadian clock represent two major cellular rhythms. These two periodic processes are coupled in multiple ways, given that several molecular components of the cell cycle network are controlled in a circadian manner. For example, in the network of cyclin-dependent kinases (Cdks) that governs progression along the successive phases of the cell cycle, the synthesis of the kinase Wee1, which inhibits the G2/M transition, is enhanced by the complex CLOCK-BMAL1 that plays a central role in the circadian clock network. Another component of the latter network, REV-ERBα, inhibits the synthesis of the Cdk inhibitor p21. Moreover, the synthesis of the oncogene c-Myc, which promotes G1 cyclin synthesis, is repressed by CLOCK-BMAL1. Using detailed computational models for the two networks we investigate the conditions in which the mammalian cell cycle can be entrained by the circadian clock. We show that the cell cycle can be brought to oscillate at a period of 24 h or 48 h when its autonomous period prior to coupling is in an appropriate range. The model indicates that the combination of multiple modes of coupling does not necessarily facilitate entrainment of the cell cycle by the circadian clock. Entrainment can also occur as a result of circadian variations in the level of a growth factor controlling entry into G1. Outside the range of entrainment, the coupling to the circadian clock may lead to disconnected oscillations in the cell cycle and the circadian system, or to complex oscillatory dynamics of the cell cycle in the form of endoreplication, complex periodic oscillations or chaos. The model predicts that the transition from entrainment to 24 h or 48 h might occur when the strength of coupling to the circadian clock or the level of growth factor decrease below critical values. PMID:22693436

  1. Noninvasive CPAP with face mask: comparison among new air-entrainment masks and the Boussignac valve.

    PubMed

    Mistraletti, Giovanni; Giacomini, Matteo; Sabbatini, Giovanni; Pinciroli, Riccardo; Mantovani, Elena S; Umbrello, Michele; Palmisano, Debora; Formenti, Paolo; Destrebecq, Anne L L; Iapichino, Gaetano

    2013-02-01

    The performances of 2 noninvasive CPAP systems (high flow and low flow air-entrainment masks) were compared to the Boussignac valve in 3 different scenarios. Scenario 1: pneumatic lung simulator with a tachypnea pattern (tidal volume 800 mL at 40 breaths/min). Scenario 2: Ten healthy subjects studied during tidal breaths and tachypnea. Scenario 3: Twenty ICU subjects enrolled for a noninvasive CPAP session. Differences between set and effective CPAP level and F(IO(2)), as well as the lowest airway pressure and the pressure swing around the imposed CPAP level, were analyzed. The lowest airway pressure and swing were correlated to the pressure-time product (area of the airway pressure curve below the CPAP level) measured with the simulator. P(aO(2)) was a subject's further performance index. Lung simulator: Boussignac F(IO(2)) was 0.54, even if supplied with pure oxygen. The air-entrainment masks had higher swing than the Boussignac (P = .007). Pressure-time product correlated better with pressure swing (Spearman correlation coefficient [ρ] = 0.97) than with lowest airway pressure (ρ = 0.92). In healthy subjects, the high-flow air-entrainment mask showed lower difference between set and effective F(IO(2)) (P < .001), and lowest airway pressure (P < .001), compared to the Boussignac valve. In all measurements the Boussignac valve showed higher than imposed CPAP level (P < .001). In ICU subjects the high-flow mask had lower swing than the Boussignac valve (P = .03) with similar P(aO(2)) increase. High-flow air-entrainment mask showed the best performance in human subjects. During high flow demand, the Boussignac valve delivered lower than expected F(IO(2)) and showed higher dynamic hyper-pressurization than the air-entrainment masks. © 2013 Daedalus Enterprises.

  2. Entrainment effects in periodic forcing of the flow over a backward-facing step

    NASA Astrophysics Data System (ADS)

    Berk, T.; Medjnoun, T.; Ganapathisubramani, B.

    2017-07-01

    The effect of the Strouhal number on periodic forcing of the flow over a backward-facing step (height, H ) is investigated experimentally. Forcing is applied by a synthetic jet at the edge of the step at Strouhal numbers ranging from 0.21 entrainment of momentum into the recirculation region rather than on specific frequencies. The reattachment length is shown to decrease linearly with entrainment of momentum. Vertical momentum flux is driven by vortices generated by the forcing, and locally vertical momentum flux is shown to be qualitatively similar to circulation for all cases considered. Total circulation (and therewith entrainment of momentum and the effect on the reattachment length) is shown to decrease with Strouhal number, whereas this is not predicted by models based on specific low and high frequencies. An empirical model for the (decay of) circulation is derived by tracking vortices in phase-locked data. This model is used to decipher relevant scaling parameters that explain the variations in circulation, entrainment of momentum, and reattachment length. Three regimes of Strouhal number are identified. A low-Strouhal-number regime is observed for which vortices are formed at a late stage relative to the recirculation region, causing a decrease in effectiveness. For high Strouhal numbers, vortices are being reingested into the actuator or are packed so close together that they cancel each other, both decreasing the effectiveness of forcing. In the intermediate regime a vortex train is formed of which the decay of circulation increases for increasing Strouhal number. The scaling of this

  3. Extemporaneous Speaking: Organization Which Inheres

    ERIC Educational Resources Information Center

    Benson, James A.

    1978-01-01

    An approach to organizing extemporaneous speeches based on questions inherent in the nature of explanation and speculation is described and recommended as an alternative to the superimposition on a topic of prescribed organizational patterns. (JF)

  4. Prediction of nearfield jet entrainment by an interactive mixing/afterburning model

    NASA Technical Reports Server (NTRS)

    Dash, S. M.; Pergament, H. S.; Wilmoth, R. G.

    1978-01-01

    The development of a computational model (BOAT) for calculating nearfield jet entrainment, and its application to the prediction of nozzle boattail pressures, is discussed. BOAT accounts for the detailed turbulence and thermochemical processes occurring in the nearfield shear layers of jet engine (and rocket) exhaust plumes while interfacing with the inviscid exhaust and external flowfield regions in an overlaid, interactive manner. The ability of the model to analyze simple free shear flows is assessed by detailed comparisons with fundamental laboratory data. The overlaid methodology and the entrainment correction employed to yield the effective plume boundary conditions are assessed via application of BOAT in conjunction with the codes comprising the NASA/LRC patched viscous/inviscid model for determining nozzle boattail drag for subsonic/transonic external flows. Comparisons between the predictions and data on underexpanded laboratory cold air jets are presented.

  5. The entrainment matrix of a superfluid nucleon mixture at finite temperatures

    NASA Astrophysics Data System (ADS)

    Leinson, Lev B.

    2018-06-01

    It is considered a closed system of non-linear equations for the entrainment matrix of a non-relativistic mixture of superfluid nucleons at arbitrary temperatures below the onset of neutron superfluidity, which takes into account the essential dependence of the superfluid energy gap in the nucleon spectra on the velocities of superfluid flows. It is assumed that the protons condense into the isotropic 1S0 state, and the neutrons are paired into the spin-triplet 3P2 state. It is derived an analytic solution to the non-linear equations for the entrainment matrix under temperatures just below the critical value for the neutron superfluidity onset. In general case of an arbitrary temperature of the superfluid mixture the non-linear equations are solved numerically and fitted by simple formulas convenient for a practical use with an arbitrary set of the Landau parameters.

  6. On-line ultrasonic gas entrainment monitor

    DOEpatents

    Day, Clifford K.; Pedersen, Herbert N.

    1978-01-01

    Apparatus employing ultrasonic energy for detecting and measuring the quantity of gas bubbles present in liquids being transported through pipes. An ultrasonic transducer is positioned along the longitudinal axis of a fluid duct, oriented to transmit acoustic energy radially of the duct around the circumference of the enclosure walls. The back-reflected energy is received centrally of the duct and interpreted as a measure of gas entrainment. One specific embodiment employs a conical reflector to direct the transmitted acoustic energy radially of the duct and redirect the reflected energy back to the transducer for reception. A modified embodiment employs a cylindrical ultrasonic transducer for this purpose.

  7. Increasing jet entrainment, mixing and spreading

    DOEpatents

    Farrington, R.B.

    1994-08-16

    A free jet of air is disturbed at a frequency that substantially matches natural turbulences in the free jet to increase the entrainment, mixing, and spreading of air by the free jet, for example in a room or other enclosure. The disturbances are created by pulsing the flow of air that creates the free jet at the desired frequency. Such pulsing of the flow of air can be accomplished by sequentially occluding and opening a duct that confines and directs the flow of air, such as by rotating a disk on an axis transverse to the flow of air in the duct. 11 figs.

  8. A California sea lion (Zalophus californianus) can keep the beat: motor entrainment to rhythmic auditory stimuli in a non vocal mimic.

    PubMed

    Cook, Peter; Rouse, Andrew; Wilson, Margaret; Reichmuth, Colleen

    2013-11-01

    Is the ability to entrain motor activity to a rhythmic auditory stimulus, that is "keep a beat," dependent on neural adaptations supporting vocal mimicry? That is the premise of the vocal learning and synchronization hypothesis, recently advanced to explain the basis of this behavior (A. Patel, 2006, Musical Rhythm, Linguistic Rhythm, and Human Evolution, Music Perception, 24, 99-104). Prior to the current study, only vocal mimics, including humans, cockatoos, and budgerigars, have been shown to be capable of motoric entrainment. Here we demonstrate that a less vocally flexible animal, a California sea lion (Zalophus californianus), can learn to entrain head bobbing to an auditory rhythm meeting three criteria: a behavioral response that does not reproduce the stimulus; performance transfer to a range of novel tempos; and entrainment to complex, musical stimuli. These findings show that the capacity for entrainment of movement to rhythmic sounds does not depend on a capacity for vocal mimicry, and may be more widespread in the animal kingdom than previously hypothesized.

  9. Entrainment of lactose inhalation powders: a study using laser diffraction.

    PubMed

    Watling, C P; Elliott, J A; Cameron, R E

    2010-07-11

    We have investigated the mechanism of entrainment of lactose inhalation blends released from a dry powder inhaler using a diffraction particle size analyser (Malvern Spraytec). Whether a powder blend entrains as a constant stream of powder (the "erosion" mechanism) or as a few coarse plugs (the "fracture" mechanism) was found by comparing transmission data with particle size information. This technique was then applied to a lactose grade with 0, 5 and 10wt% added fine particles. As the wt% fines increased, the entrainment mechanism was found to change from a mild fracture, consisting of multiple small plugs, to more severe fracture with fewer plugs. The most severe fracture mechanism consisted of either the powder reservoir emptying as a single plug, or of the reservoir emptying after a delay of the order of 0.1s due to the powder sticking to its surroundings. Further to this, three different inhalation grades were compared, and the severity of the fracture was found to be inversely proportional to the flowability of the powder (measured using an annular ring shear tester). By considering the volume of aerosolised fine particles in different blends it was determined that the greater the volume of fines added to a powder, the smaller the fraction of fines that were aerosolised. This was attributed to different behaviour when fines disperse from carrier particles compared with when they disperse from agglomerates of fines. In summary, this paper demonstrates how laser diffraction can provide a more detailed analysis of an inhalation powder than just its size distribution. 2010. Published by Elsevier B.V. All rights reserved.

  10. Parameterization of a numerical 2-D debris flow model with entrainment: a case study of the Faucon catchment, Southern French Alps

    NASA Astrophysics Data System (ADS)

    Hussin, H. Y.; Luna, B. Quan; van Westen, C. J.; Christen, M.; Malet, J.-P.; van Asch, Th. W. J.

    2012-10-01

    The occurrence of debris flows has been recorded for more than a century in the European Alps, accounting for the risk to settlements and other human infrastructure that have led to death, building damage and traffic disruptions. One of the difficulties in the quantitative hazard assessment of debris flows is estimating the run-out behavior, which includes the run-out distance and the related hazard intensities like the height and velocity of a debris flow. In addition, as observed in the French Alps, the process of entrainment of material during the run-out can be 10-50 times in volume with respect to the initially mobilized mass triggered at the source area. The entrainment process is evidently an important factor that can further determine the magnitude and intensity of debris flows. Research on numerical modeling of debris flow entrainment is still ongoing and involves some difficulties. This is partly due to our lack of knowledge of the actual process of the uptake and incorporation of material and due the effect of entrainment on the final behavior of a debris flow. Therefore, it is important to model the effects of this key erosional process on the formation of run-outs and related intensities. In this study we analyzed a debris flow with high entrainment rates that occurred in 2003 at the Faucon catchment in the Barcelonnette Basin (Southern French Alps). The historic event was back-analyzed using the Voellmy rheology and an entrainment model imbedded in the RAMMS 2-D numerical modeling software. A sensitivity analysis of the rheological and entrainment parameters was carried out and the effects of modeling with entrainment on the debris flow run-out, height and velocity were assessed.

  11. Local entrainment of oscillatory activity induced by direct brain stimulation in humans

    PubMed Central

    Amengual, Julià L.; Vernet, Marine; Adam, Claude; Valero-Cabré, Antoni

    2017-01-01

    In a quest for direct evidence of oscillation entrainment, we analyzed intracerebral electroencephalographic recordings obtained during intracranial electrical stimulation in a cohort of three medication-resistant epilepsy patients tested pre-surgically. Spectral analyses of non-epileptogenic cerebral sites stimulated directly with high frequency electrical bursts yielded episodic local enhancements of frequency-specific rhythmic activity, phase-locked to each individual pulse. These outcomes reveal an entrainment of physiological oscillatory activity within a frequency band dictated by the rhythm of the stimulation source. Our results support future uses of rhythmic stimulation to elucidate the causal contributions of synchrony to specific aspects of human cognition and to further develop the therapeutic manipulation of dysfunctional rhythmic activity subtending the symptoms of some neuropsychiatric conditions. PMID:28256510

  12. Dynamic Analysis of a Rotor System Supported on Squeeze Film Damper with Air Entrainment

    NASA Astrophysics Data System (ADS)

    Zhang, Wei; Han, Bingbing; Zhang, Kunpeng; Ding, Qian

    2017-12-01

    Squeeze film dampers (SFDs) are widely used in compressors and turbines to suppress the vibration while traversing critical speeds. In practical applications, air ingestion from the outside environment and cavitation may lead to a foamy lubricant that weakens oil film damping and dynamic performance of rotor system. In this paper, a rigid rotor model is established considering both lateral and pitching vibration under different imbalance excitations to evaluate the effect of air entrainment on rotor system. Tests with three different imbalances are carried out on a rotor-SFD apparatus. Volume controlled air in mixture ranging from pure oil to all air are supplied to the SFD. The transient response of rotor is measured in the experiments. The results show that two-phase flow produces significant influence on the system stability and dynamical response. The damping properties are weakened by entrained air, such as the damping on high frequency components of rolling ball bearing. Super-harmonic resonance and bifurcation are observed, as well as the low frequency components due to air entrainment.

  13. Influence of bed material entrainment and non-Newtonian rheology on turbulent geophysical flows dynamics. Numerical study

    NASA Astrophysics Data System (ADS)

    Eglit, M. E.; Yakubenko, A. E.; Yakubenko, T. A.

    2017-10-01

    This paper deals with the mathematical and numerical modeling of the propagation stage of geophysical gravity-driven flows, such as snow avalanches, mudflows, and rapid landslides. New mathematical models are presented which are based on full, not-depth-averaged equations of mechanics of continuous media. The models account for three important issues: non-Newtonian rheology of the moving material, entrainment of the bed material by the flow, and turbulence. The main objective is to investigate the effect of these three factors on the flow dynamics and on the value of the entrainment rate. To exclude the influence of many other factors, e.g., the complicated slope topography, only the motion down a long uniform slope with a constant inclination angle is studied numerically. Moreover, the entire flow from the front to the rear area was not modeled, but only its middle part where the flow is approximately uniform in length. One of the qualitative results is that in motion along homogeneous slope the mass entrainment increases the flow velocity and depth while the entrainment rate at large time tends to become constant which depends on the physical properties of the flow and the underlying material but not on the current values of the flow velocity and depth.

  14. Dynamical entrainment of corticospinal excitability during rhythmic movement observation: a Transcranial Magnetic Stimulation study.

    PubMed

    Varlet, Manuel; Novembre, Giacomo; Keller, Peter E

    2017-06-01

    Spontaneous modulations of corticospinal excitability during action observation have been interpreted as evidence for the activation of internal motor representations equivalent to the observed action. Alternatively or complementary to this perspective, growing evidence shows that motor activity during observation of rhythmic movements can be modulated by direct visuomotor couplings and dynamical entrainment. In-phase and anti-phase entrainment spontaneously occur, characterized by cyclic movements proceeding simultaneously in the same (in-phase) or opposite (anti-phase) direction. Here we investigate corticospinal excitability during the observation of vertical oscillations of an index finger using Transcranial Magnetic Stimulation (TMS). Motor-evoked potentials (MEPs) were recorded from participants' flexor and extensor muscles of the right index finger, placed in either a maximal steady flexion or extension position, with stimulations delivered at maximal flexion, maximal extension or mid-trajectory of the observed finger oscillations. Consistent with the occurrence of dynamical motor entrainment, increased and decreased MEP responses - suggesting the facilitation of stable in-phase and anti-phase relations but not an unstable 90° phase relation - were found in participants' flexors. Anti-phase motor facilitation contrasts with the activation of internal motor representation as it involves activity in the motor system opposite from activity required for the execution of the observed movement. These findings demonstrate the relevance of dynamical entrainment theories and methods for understanding spontaneous motor activity in the brain during action observation and the mechanisms underpinning coordinated movements during social interaction. © 2017 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  15. Entrainment range of the suprachiasmatic nucleus affected by the difference in the neuronal amplitudes between the light-sensitive and light-insensitive regions.

    PubMed

    Gu, Changgui; Yang, Huijie; Ruan, Zhongyuan

    2017-04-01

    Mammals not only can be synchronized to the natural 24-h light-dark cycle, but also to a cycle with a non-24-h period. The range of the period of the external cycle, for which the animals can be entrained to, is called the entrainment range, which differs among species. The entrainment range as a characteristic of the animal is determined by the main circadian clock, i.e., the suprachiasmatic nucleus (SCN) in the brain. The SCN is composed of ∼10000 heterogeneous neurons, which can be divided into two subgroups, i.e., the ventrolateral subgroup (VL) directly receiving the light information from the retina and relaying the information to the dorsomedial subgroup (DM). Among the SCN neurons, the amplitudes are different; however, it is unclear that the amplitude is related to the location of the neurons in experiments. In the present study, we examined the effect of the difference in the neuronal amplitude between the VL and the DM on the entrainment range of the SCN, based on a mathematical model, i.e., the Poincaré model, which is used to describe the circadian clock. We find that the maximal entrainment range is obtained when the difference is equal to a critical point. If the difference of the amplitudes of the VL neurons to the amplitudes of the DM neurons is smaller than a critical point, with the increase of the difference, the entrainment range of the SCN increases, while if the difference is larger than the critical point, the entrainment range decreases with the increase of the difference. Our finding may give a potential explanation for the diversity of the entrainment range among species.

  16. Entrainment range of the suprachiasmatic nucleus affected by the difference in the neuronal amplitudes between the light-sensitive and light-insensitive regions

    NASA Astrophysics Data System (ADS)

    Gu, Changgui; Yang, Huijie; Ruan, Zhongyuan

    2017-04-01

    Mammals not only can be synchronized to the natural 24-h light-dark cycle, but also to a cycle with a non-24-h period. The range of the period of the external cycle, for which the animals can be entrained to, is called the entrainment range, which differs among species. The entrainment range as a characteristic of the animal is determined by the main circadian clock, i.e., the suprachiasmatic nucleus (SCN) in the brain. The SCN is composed of ˜10 000 heterogeneous neurons, which can be divided into two subgroups, i.e., the ventrolateral subgroup (VL) directly receiving the light information from the retina and relaying the information to the dorsomedial subgroup (DM). Among the SCN neurons, the amplitudes are different; however, it is unclear that the amplitude is related to the location of the neurons in experiments. In the present study, we examined the effect of the difference in the neuronal amplitude between the VL and the DM on the entrainment range of the SCN, based on a mathematical model, i.e., the Poincaré model, which is used to describe the circadian clock. We find that the maximal entrainment range is obtained when the difference is equal to a critical point. If the difference of the amplitudes of the VL neurons to the amplitudes of the DM neurons is smaller than a critical point, with the increase of the difference, the entrainment range of the SCN increases, while if the difference is larger than the critical point, the entrainment range decreases with the increase of the difference. Our finding may give a potential explanation for the diversity of the entrainment range among species.

  17. Experimental Determination of Load Carrying Capacity of Point Contacts at Zero Entrainment Velocity

    NASA Technical Reports Server (NTRS)

    Shogrin, Bradley A.; Jones, William R., Jr.; Kingsbury, Edward P.; Prahl, Joseph M.

    1999-01-01

    A capacitance technique was used to monitor the film thickness separating two steel balls of a unique tribometer while subjecting the ball-ball contact to highly stressed, zero entrainment velocity (ZEV) conditions. All tests were performed under a N2 purge (R.H. < 1.0%) and utilized 52100 steel balls (R(sub a) = 0.02 mm). Tribometer operations and capacitance-to-film-thickness accuracy were verified by comparing the film thickness approximations to established theoretical predictions for test conditions involving pure rolling. Pure rolling experiments were performed under maximum contact stresses and entrainment velocities of 1.0 GPa and 1.0 m/s to 3.0 m/s, respectively. All data from these baseline tests conformed to theory. ZEV tests were initiated after calibration of the tribometer and verification of film thickness approximation accuracy. Maximum contact stresses up to 0.57 GPa were supported at zero entrainment velocity with sliding speeds from 6.0 to 10.0 m/s for sustained amounts of time up to 28.8 minutes. The protective lubricating film separating the specimens at ZEV had a thickness between 0.10 and 0.14 mm (4 to 6 min), which corresponds to an approximate L-value of 4. The film thickness did not have a strong dependence upon variations of load or speed. Decreasing the sliding speed from 10.0 m/s to 1 m/s revealed a rapid loss in load support between 3.0 and 1.0 m/s. The formation of an immobile film formed by lubricant entrapment is discussed as an explanation of the load carrying capacity at these zero entrainment velocity conditions, relevant to the ball-ball contact application in retainerless ball bearings.

  18. Simulations of solid-fluid coupling with application to crystal entrainment in vigorous convection

    NASA Astrophysics Data System (ADS)

    Suckale, J.; Elkins-Tanton, L. T.; Sethian, J.; Yu, J.

    2009-12-01

    Many problems in computational geophysics require the accurate coupling of a solid body to viscous flow. Examples range from understanding the role of highly crystalline magma for the dynamic of volcanic eruptions to crystal entrainment in magmatic flow and the emplacement of xenoliths. In this paper, we present and validate a numerical method for solid-fluid coupling. The algorithm relies on a two-step projection scheme: In the first step, we solve the multiple-phase Navier-Stokes or Stokes equation in both domains. In the second step, we project the velocity field in the solid domain onto a rigid-body motion by enforcing that the deformation tensor in the respective domain is zero. This procedure is also used to enforce the no-slip boundary condition on the solid-fluid interface. We perform several benchmark computations to validate our computations. More precisely, we investigate the formation of a wake behind both fixed and mobile cylinders and cuboids with and without imposed velocity fields in the fluid. These preliminary tests indicate that our code is able to simulate solid-fluid coupling for Reynolds numbers of up to 1000. Finally, we apply our method to the problem of crystal entrainment in vigorous convection. The interplay between sedimentation and re-entrainment of crystals in convective flow is of fundamental importance for understanding the compositional evolution of magmatic reservoirs of various sizes from small lava ponds to magma oceans at the planetary scale. Previous studies of this problem have focused primarily on laboratory experiments, often with conflicting conclusions. Our work is complementary to these prior studies as we model the competing processes of gravitational sedimentation and entrainment of crystals at the length scale of the size of the crystals.

  19. Accelerated re-entrainment to advanced light cycles in BALB/cJ mice.

    PubMed

    Legates, Tara A; Dunn, Danielle; Weber, E Todd

    2009-10-19

    Circadian rhythms in mammals are coordinated by the suprachiasmatic nuclei (SCN) of the hypothalamus, which are most potently synchronized to environmental light-dark cycles. Large advances in the light-dark cycle typically yield gradual advances in activity rhythms on the order of 1-2h per day until re-entrainment is complete due to limitations on the circadian system which are not yet understood. In humans, this delay until re-entrainment is accomplished is experienced as jetlag, with accompanying symptoms of malaise, decreased cognitive performance, sleep problems and gastrointestinal distress. In these experiments, locomotor rhythms of BALB/cJ mice monitored by running wheels were shown to re-entrain to large 6- or 8-hour shifts of the light-dark cycle within 1-2 days, as opposed to the 5-7 days required for C57BL/6J mice. A single-day 6-hour advance of the LD cycle followed by release to constant darkness yielded similar phase shifts, demonstrating that exaggerated re-entrainment is not explained by masking of activity by the light-dark cycle. Responses in BALB/cJ mice were similar when monitored instead by motion detectors, indicating that wheel-running exercise does not influence the magnitude of responses. Neither brief (15 min) light exposure late during subjective nighttime nor 6-hour delays of the light-dark cycle produced exaggerated locomotor phase shifts, indicating that BALB/cJ mice do not merely experience enhanced sensitivity to light. Fos protein was expressed in cells of the SCN following acute light exposure at ZT10 of their previous light-dark cycle, a normally non-responsive time in the circadian cycle, but only in BALB/cJ (and not C57BL/6J) mice that had been subjected two days earlier to a single-day 6-hour advance of the light-dark cycle, indicating that their SCN had been advanced by that treatment. BALB/cJ mice may thus serve as a useful comparative model for studying molecular and physiological processes that limit responsiveness of

  20. The mammalian circadian clock and its entrainment by stress and exercise.

    PubMed

    Tahara, Yu; Aoyama, Shinya; Shibata, Shigenobu

    2017-01-01

    The mammalian circadian clock regulates day-night fluctuations in various physiological processes. The circadian clock consists of the central clock in the suprachiasmatic nucleus of the hypothalamus and peripheral clocks in peripheral tissues. External environmental cues, including light/dark cycles, food intake, stress, and exercise, provide important information for adjusting clock phases. This review focuses on stress and exercise as potent entrainment signals for both central and peripheral clocks, especially in regard to the timing of stimuli, types of stressors/exercises, and differences in the responses of rodents and humans. We suggest that the common signaling pathways of clock entrainment by stress and exercise involve sympathetic nervous activation and glucocorticoid release. Furthermore, we demonstrate that physiological responses to stress and exercise depend on time of day. Therefore, using exercise to maintain the circadian clock at an appropriate phase and amplitude might be effective for preventing obesity, diabetes, and cardiovascular disease.

  1. Spinal and pontine relay pathways mediating respiratory rhythm entrainment by limb proprioceptive inputs in the neonatal rat.

    PubMed

    Giraudin, Aurore; Le Bon-Jégo, Morgane; Cabirol, Marie-Jeanne; Simmers, John; Morin, Didier

    2012-08-22

    The coordination of locomotion and respiration is widespread among mammals, although the underlying neural mechanisms are still only partially understood. It was previously found in neonatal rat that cyclic electrical stimulation of spinal cervical and lumbar dorsal roots (DRs) can fully entrain (1:1 coupling) spontaneous respiratory activity expressed by the isolated brainstem/spinal cord. Here, we used a variety of preparations to determine the type of spinal sensory inputs responsible for this respiratory rhythm entrainment, and to establish the extent to which limb movement-activated feedback influences the medullary respiratory networks via direct or relayed ascending pathways. During in vivo overground locomotion, respiratory rhythm slowed and became coupled 1:1 with locomotion. In hindlimb-attached semi-isolated preparations, passive flexion-extension movements applied to a single hindlimb led to entrainment of fictive respiratory rhythmicity recorded in phrenic motoneurons, indicating that the recruitment of limb proprioceptive afferents could participate in the locomotor-respiratory coupling. Furthermore, in correspondence with the regionalization of spinal locomotor rhythm-generating circuitry, the stimulation of DRs at different segmental levels in isolated preparations revealed that cervical and lumbosacral proprioceptive inputs are more effective in this entraining influence than thoracic afferent pathways. Finally, blocking spinal synaptic transmission and using a combination of electrophysiology, calcium imaging and specific brainstem lesioning indicated that the ascending entraining signals from the cervical or lumbar limb afferents are transmitted across first-order synapses, probably monosynaptic, in the spinal cord. They are then conveyed to the brainstem respiratory centers via a brainstem pontine relay located in the parabrachial/Kölliker-Fuse nuclear complex.

  2. The behaviour of entrainment defects formed in commercial purity Mg alloy cast under a cover gas of SF6

    NASA Astrophysics Data System (ADS)

    Li, T.; Griffiths, W. D.

    2016-03-01

    In the casting of light alloys, the oxidised film on the melt surface can be folded due to surface turbulence, thus forming entrainment defects that have a significant negative effect on the mechanical properties of castings. Previous researchers reported that the surface film of Mg alloys formed in an atmosphere containing SF6 had a complicated structure composed of MgO and MgF2. The work reported here aims to investigate the behaviour of entrainment defects formed in magnesium alloys protected by SF6-containing atmospheres. Tensile test bars of commercial purity Mg were cast in an unsealed environment under a cover gas of pure SF6. 34Scanning electron microscopy (SEM) of the fracture surface of the test bars indicated entrainment defects that consisted of symmetrical films containing MgO, but also sulphur and fluorine. The results of these examinations of the symmetrical films were used to infer the potential formation and development of entrainment defects in commercial purity Mg alloy.

  3. Altered entrainment to the day/night cycle attenuates the daily rise in circulating corticosterone in the mouse.

    PubMed

    Sollars, Patricia J; Weiser, Michael J; Kudwa, Andrea E; Bramley, Jayne R; Ogilvie, Malcolm D; Spencer, Robert L; Handa, Robert J; Pickard, Gary E

    2014-01-01

    The suprachiasmatic nucleus (SCN) is a circadian oscillator entrained to the day/night cycle via input from the retina. Serotonin (5-HT) afferents to the SCN modulate retinal signals via activation of 5-HT1B receptors, decreasing responsiveness to light. Consequently, 5-HT1B receptor knockout (KO) mice entrain to the day/night cycle with delayed activity onsets. Since circulating corticosterone levels exhibit a robust daily rhythm peaking around activity onset, we asked whether delayed entrainment of activity onsets affects rhythmic corticosterone secretion. Wheel-running activity and plasma corticosterone were monitored in mice housed under several different lighting regimens. Both duration of the light:dark cycle (T cycle) and the duration of light within that cycle was altered. 5-HT1B KO mice that entrained to a 9.5L:13.5D (short day in a T = 23 h) cycle with activity onsets delayed more than 4 h after light offset exhibited a corticosterone rhythm in phase with activity rhythms but reduced 50% in amplitude compared to animals that initiated daily activity <4 h after light offset. Wild type mice in 8L:14D (short day in a T = 22 h) conditions with highly delayed activity onsets also exhibited a 50% reduction in peak plasma corticosterone levels. Exogenous adrenocorticotropin (ACTH) stimulation in animals exhibiting highly delayed entrainment suggested that the endogenous rhythm of adrenal responsiveness to ACTH remained aligned with SCN-driven behavioral activity. Circadian clock gene expression in the adrenal cortex of these same animals suggested that the adrenal circadian clock was also aligned with SCN-driven behavior. Under T cycles <24 h, altered circadian entrainment to short day (winter-like) conditions, manifest as long delays in activity onset after light offset, severely reduces the amplitude of the diurnal rhythm of plasma corticosterone. Such a pronounced reduction in the glucocorticoid rhythm may alter rhythmic gene expression in the central

  4. Altered Entrainment to the Day/Night Cycle Attenuates the Daily Rise in Circulating Corticosterone in the Mouse

    PubMed Central

    Sollars, Patricia J.; Weiser, Michael J.; Kudwa, Andrea E.; Bramley, Jayne R.; Ogilvie, Malcolm D.; Spencer, Robert L.; Handa, Robert J.; Pickard, Gary E.

    2014-01-01

    The suprachiasmatic nucleus (SCN) is a circadian oscillator entrained to the day/night cycle via input from the retina. Serotonin (5-HT) afferents to the SCN modulate retinal signals via activation of 5-HT1B receptors, decreasing responsiveness to light. Consequently, 5-HT1B receptor knockout (KO) mice entrain to the day/night cycle with delayed activity onsets. Since circulating corticosterone levels exhibit a robust daily rhythm peaking around activity onset, we asked whether delayed entrainment of activity onsets affects rhythmic corticosterone secretion. Wheel-running activity and plasma corticosterone were monitored in mice housed under several different lighting regimens. Both duration of the light∶dark cycle (T cycle) and the duration of light within that cycle was altered. 5-HT1B KO mice that entrained to a 9.5L:13.5D (short day in a T = 23 h) cycle with activity onsets delayed more than 4 h after light offset exhibited a corticosterone rhythm in phase with activity rhythms but reduced 50% in amplitude compared to animals that initiated daily activity <4 h after light offset. Wild type mice in 8L:14D (short day in a T = 22 h) conditions with highly delayed activity onsets also exhibited a 50% reduction in peak plasma corticosterone levels. Exogenous adrenocorticotropin (ACTH) stimulation in animals exhibiting highly delayed entrainment suggested that the endogenous rhythm of adrenal responsiveness to ACTH remained aligned with SCN-driven behavioral activity. Circadian clock gene expression in the adrenal cortex of these same animals suggested that the adrenal circadian clock was also aligned with SCN-driven behavior. Under T cycles <24 h, altered circadian entrainment to short day (winter-like) conditions, manifest as long delays in activity onset after light offset, severely reduces the amplitude of the diurnal rhythm of plasma corticosterone. Such a pronounced reduction in the glucocorticoid rhythm may alter rhythmic gene expression in the

  5. Rhythmic Larval Release in the Crab Dyspanopeus sayi: Entrainment by Light:Dark and Temperature Cycles

    NASA Astrophysics Data System (ADS)

    Sanchez, K.

    2016-02-01

    The release of larvae from the abdomen of the common subtidal crab Dyspanopeus sayi is not random, but instead is associated with several environmental rhythms, in particular light:dark rhythms. Previous work has given us a model which suggests the mother perceives the light:dark cycle and entrains this rhythm upon the embryos, which then stimulate release when the time is right. For this project the light:dark cycle and 24-hour temperature cycle were investigated. Crabs placed in constant conditions were able to display an endogenous circadian rhythm, with release occurring in the hours after sunset and with a period of 24.1 hours. Crabs with embryos of all stages without eye-slits were placed in a reversed light:dark cycle, and they were able to reset the entrainment and release in the hours following 06:00 hrs., the new sunset. The difference between the crabs in the altered cycle and the crabs in the field is significant. Finally, crabs placed in a reversed 24-hour temperature cycle were able to reset the entrainment after 4-5 days in the altered cycle, such that they also released in the hours after 06:00. The fact that the temperature is enough to cause entrainment suggests that maybe the female or embryos do not need to perceive the light in order to know when to induce larval release. In any event, this result opens up new areas of research involving decapod reproduction, in particular D. sayi.

  6. Fluid forces or impacts: What governs the entrainment of soil particles in sediment transport mediated by a Newtonian fluid?

    NASA Astrophysics Data System (ADS)

    Pähtz, Thomas; Durán, Orencio

    2017-07-01

    In steady sediment transport, the deposition of transported particles is balanced by the entrainment of soil bed particles by the action of fluid forces or particle-bed impacts. Here we propose a proxy to determine the role of impact entrainment relative to entrainment by the mean turbulent flow: the "bed velocity" Vb, which is an effective near-bed-surface value of the average horizontal particle velocity that generalizes the classical slip velocity, used in studies of aeolian saltation transport, to sediment transport in an arbitrary Newtonian fluid. We study Vb for a wide range of the particle-fluid-density ratio s , Galileo number Ga , and Shields number Θ using direct sediment transport simulations with the numerical model of Durán et al. [Phys. Fluids 24, 103306 (2012), 10.1063/1.4757662], which couples the discrete element method for the particle motion with a continuum Reynolds-averaged description of hydrodynamics. We find that transport is fully sustained through impact entrainment (i.e., Vb is constant in natural units) when the "impact number" Im =Ga √{s +0.5 }≳20 or Θ ≳5 /Im . These conditions are obeyed for the vast majority of transport regimes, including steady turbulent bedload, which has long been thought to be sustained solely through fluid entrainment. In fact, we find that transport is fully sustained through fluid entrainment (i.e., Vb scales with the near-bed horizontal fluid velocity) only for sufficiently viscous bedload transport at grain scale (i.e., for Im ≲20 and Θ ≲1 /Im ). Finally, we do not find a strong correlation between Vb, or the classical slip velocity, and the transport-layer-averaged horizontal particle velocity vx¯, which challenges the long-standing consensus that predominant impact entrainment is responsible for a linear scaling of the transport rate with Θ . For turbulent bedload in particular, vx¯ increases with Θ despite Vb remaining constant, which we propose is linked to the formation of a liquidlike

  7. Investigation of the Relationship between Organizational Trust and Organizational Commitment

    ERIC Educational Resources Information Center

    Bastug, Gülsüm; Pala, Adem; Kumartasli, Mehmet; Günel, Ilker; Duyan, Mehdi

    2016-01-01

    Organizational trust and organizational commitment are considered as the most important entraining factors for organizational success. The most important factor in the formation of organizational commitment is trust that employees have in their organizations. In this study, the relationship between organizational trust and organizational…

  8. Assessment of rhythmic entrainment at multiple timescales in dyslexia: evidence for disruption to syllable timing.

    PubMed

    Leong, Victoria; Goswami, Usha

    2014-02-01

    Developmental dyslexia is associated with rhythmic difficulties, including impaired perception of beat patterns in music and prosodic stress patterns in speech. Spoken prosodic rhythm is cued by slow (<10 Hz) fluctuations in speech signal amplitude. Impaired neural oscillatory tracking of these slow amplitude modulation (AM) patterns is one plausible source of impaired rhythm tracking in dyslexia. Here, we characterise the temporal profile of the dyslexic rhythm deficit by examining rhythmic entrainment at multiple speech timescales. Adult dyslexic participants completed two experiments aimed at testing the perception and production of speech rhythm. In the perception task, participants tapped along to the beat of 4 metrically-regular nursery rhyme sentences. In the production task, participants produced the same 4 sentences in time to a metronome beat. Rhythmic entrainment was assessed using both traditional rhythmic indices and a novel AM-based measure, which utilised 3 dominant AM timescales in the speech signal each associated with a different phonological grain-sized unit (0.9-2.5 Hz, prosodic stress; 2.5-12 Hz, syllables; 12-40 Hz, phonemes). The AM-based measure revealed atypical rhythmic entrainment by dyslexic participants to syllable patterns in speech, in perception and production. In the perception task, both groups showed equally strong phase-locking to Syllable AM patterns, but dyslexic responses were entrained to a significantly earlier oscillatory phase angle than controls. In the production task, dyslexic utterances showed shorter syllable intervals, and differences in Syllable:Phoneme AM cross-frequency synchronisation. Our data support the view that rhythmic entrainment at slow (∼5 Hz, Syllable) rates is atypical in dyslexia, suggesting that neural mechanisms for syllable perception and production may also be atypical. These syllable timing deficits could contribute to the atypical development of phonological representations for spoken words

  9. Timed feeding of mice modulates light-entrained circadian rhythms of reticulated platelet abundance and plasma thrombopoietin and affects gene expression in megakaryocytes.

    PubMed

    Hartley, Paul S; Sheward, John; Scholefield, Emma; French, Karen; Horn, Jacqueline M; Holmes, Megan C; Harmar, Anthony J

    2009-07-01

    Circadian (c. 24 h) rhythms of physiology are entrained to either the environmental light-dark cycle or the timing of food intake. In the current work the hypothesis that rhythms of platelet turnover in mammals are circadian and entrained by food intake was explored in mice. Mice were entrained to 12 h light-dark cycles and given either ad libitum (AL) or restricted access (RF) to food during the light phase. Blood and megakaryocytes were then collected from mice every 4 h for 24 h. It was found that total and reticulated platelet numbers, plasma thrombopoietin (TPO) concentration and the mean size of mature megakaryocytes were circadian but not entrained by food intake. In contrast, a circadian rhythm in the expression of Arnt1 in megakaryocytes was entrained by food. Although not circadian, the expression in megakaryocytes of Nfe2, Gata1, Itga2b and Tubb1 expression was downregulated by RF, whereas Ccnd1 was not significantly affected by the feeding protocol. It is concluded that circadian rhythms of total platelet number, reticulated platelet number and plasma TPO concentration are entrained by the light-dark cycle rather than the timing of food intake. These findings imply that circadian clock gene expression regulates platelet turnover in mammals.

  10. 76 FR 6328 - Official Release of the January 2011 AP-42 Method for Estimating Re-Entrained Road Dust From...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-04

    ... Nonattainment and Maintenance Areas'' (EPA-420-B-10-040, December 2010). \\2\\ For estimating road dust from... maintenance areas and any PM 2.5 nonattainment and maintenance areas where re-entrained road dust is a... January 2011 AP-42 Method for Estimating Re-Entrained Road Dust From Paved Roads AGENCY: Environmental...

  11. Development of physiotherapy inherent requirement statements – an Australian experience

    PubMed Central

    2013-01-01

    Background The United Nations Convention on the Rights of People with Disabilities promotes equal rights of people with a disability in all aspects of their life including their education. In Australia, Disability Discrimination legislation underpins this Convention. It mandates that higher education providers must demonstrate that no discrimination has occurred and all reasonable accommodations have been considered and implemented, to facilitate access and inclusion for a student with a disability. The first step to meeting legislative requirements is to provide students with information on the inherent requirements of a course. This paper describes the steps which were taken to develop inherent requirement statements for a 4-year entry-level physiotherapy program at one Australian university. Case presentation Inherent requirement statements were developed using an existing framework, which was endorsed and mandated by the University. Items which described inherencies were extracted from Australian physiotherapy professional standards and statutory regulatory requirements, and units contained in the physiotherapy program. Data were integrated into the 8 prescribed domains: ethical behaviour, behavioural stability, legal, communication, cognition, sensory abilities, strength and mobility, and sustainable performance. Statements for each domain were developed using a 5-level framework (introductory statement, description of the inherent requirement, justification for inherency, characteristics of reasonable adjustments and exemplars) and reviewed by a University Review Panel. Refinement of statements continued until no further changes were required. Fifteen physiotherapy inherent requirement statements were developed. The eight domains identified in the existing framework, developed for Nursing, were relevant to the study of physiotherapy. Conclusions The inherent requirement statements developed in this study provide a transparent, defensible position on the

  12. Role of tempo entrainment in psychophysiological differentiation of happy and sad music?

    PubMed

    Khalfa, Stéphanie; Roy, Mathieu; Rainville, Pierre; Dalla Bella, Simone; Peretz, Isabelle

    2008-04-01

    Respiration rate allows to differentiate between happy and sad excerpts which may be attributable to entrainment of respiration to the rhythm or the tempo rather than to emotions [Etzel, J.A., Johnsen, E.L., Dickerson, J., Tranel, D., Adolphs, R., 2006. Cardiovascular and respiratory responses during musical mood induction. Int. J. Psychophysiol. 61(1), 57-69]. In order to test for this hypothesis, this study intended to verify whether fast and slow rhythm, and/or tempo alone are sufficient to induce differential physiological effects. Psychophysiological responses (electrodermal responses, facial muscles activity, blood pressure, heart and respiration rate) were then measured in fifty young adults listening to fast/happy and slow/sad music, and to two control versions of these excerpts created by removing pitch variations (rhythmic version) and both pitch and temporal variations (beat-alone). The results indicate that happy and sad music are significantly differentiated (happy>sad) by diastolic blood pressure, electrodermal activity, and zygomatic activity, while the fast and slow rhythmic and tempo control versions did not elicit such differentiations. In contrast, respiration rate was faster with stimuli presented at fast tempi relative to slow stimuli in the beat-alone condition. It was thus demonstrated that the psychophysiological happy/sad distinction requires the tonal variations and cannot be explained solely by entrainment to tempo and rhythm. The tempo entrainment exists in the tempo alone condition but our results suggest this effect may disappear when embedded in music or with rhythm.

  13. Entrainment of Breast Cell Lines Results in Rhythmic Fluctuations of MicroRNAs

    PubMed Central

    Chacolla-Huaringa, Rafael; Trevino, Victor; Scott, Sean-Patrick

    2017-01-01

    Circadian rhythms are essential for temporal (~24 h) regulation of molecular processes in diverse species. Dysregulation of circadian gene expression has been implicated in the pathogenesis of various disorders, including hypertension, diabetes, depression, and cancer. Recently, microRNAs (miRNAs) have been identified as critical modulators of gene expression post-transcriptionally, and perhaps involved in circadian clock architecture or their output functions. The aim of the present study is to explore the temporal expression of miRNAs among entrained breast cell lines. For this purpose, we evaluated the temporal (28 h) expression of 2006 miRNAs in MCF-10A, MCF-7, and MDA-MB-231 cells using microarrays after serum shock entrainment. We noted hundreds of miRNAs that exhibit rhythmic fluctuations in each breast cell line, and some of them across two or three cell lines. Afterwards, we validated the rhythmic profiles exhibited by miR-141-5p, miR-1225-5p, miR-17-5p, miR-222-5p, miR-769-3p, and miR-548ay-3p in the above cell lines, as well as in ZR-7530 and HCC-1954 using RT-qPCR. Our results show that serum shock entrainment in breast cells lines induces rhythmic fluctuations of distinct sets of miRNAs, which have the potential to be related to endogenous circadian clock, but extensive investigation is required to elucidate that connection. PMID:28704935

  14. Conversational Entrainment of Vocal Fry in Young Adult Female American English Speakers.

    PubMed

    Borrie, Stephanie A; Delfino, Christine R

    2017-07-01

    Conversational entrainment, the natural tendency for people to modify their behaviors to more closely match their communication partner, is examined as one possible mechanism modulating the prevalence of vocal fry in the speech of young American women engaged in spoken dialogue. Twenty young adult female American English speakers engaged in two spoken dialogue tasks-one with a young adult female American English conversational partner who exhibited substantial vocal fry and one with a young adult female American English conversational partner who exhibited quantifiably less vocal fry. Dialogues were analyzed for proportion of vocal fry, by speaker, and two measures of communicative success (efficiency and enjoyment). Participants employed significantly more vocal fry when conversing with the partner who exhibited substantial vocal fry than when conversing with the partner who exhibited quantifiably less vocal fry. Further, greater similarity between communication partners in their use of vocal fry tracked with higher scores of communicative efficiency and communicative enjoyment. Conversational entrainment offers a mechanistic framework that may be used to explain, to some degree, the frequency with which vocal fry is employed by young American women engaged in spoken dialogue. Further, young American women who modulated their vocal patterns during dialogue to match those of their conversational partner gained more efficiency and enjoyment from their interactions, demonstrating the cognitive and social benefits of entrainment. Copyright © 2017 The Voice Foundation. Published by Elsevier Inc. All rights reserved.

  15. Entrainment in an electrochemical forced oscillator as a method of classification of chemical species-a new strategy to develop a chemical sensor

    NASA Astrophysics Data System (ADS)

    Nakata, S.; Yoshikawa, K.; Kawakami, H.

    1992-10-01

    We propose a new sensing method of varios chemical species based on information on the mode of entrainment in an electrochemically forced oscillator. It is demonstrated that the presence of one of the four basic taste compounds (salty, sweet, bitter, and sour) changes the mode of entrainment in a unique way. Thus a characteristics change of the entrainment allows us to obtain information on the properties of the electrochemical system. The response of the mode of entrainment to the taste compounds is related to the nonlinear properties of the studied electrochemical system, i.e., its voltage dependent capacitance and conductance. The experimental results are compared with computer simulations of a model system in which the capacitance is a nonlinear function of the voltage.

  16. Sequential behavior and its inherent tolerance to memory faults.

    NASA Technical Reports Server (NTRS)

    Meyer, J. F.

    1972-01-01

    Representation of a memory fault of a sequential machine M by a function mu on the states of M and the result of the fault by an appropriately determined machine M(mu). Given some sequential behavior B, its inherent tolerance to memory faults can then be measured in terms of the minimum memory redundancy required to realize B with a state-assigned machine having fault tolerance type tau and fault tolerance level t. A behavior having maximum inherent tolerance is exhibited, and it is shown that behaviors of the same size can have different inherent tolerance.

  17. The representation of inherent properties.

    PubMed

    Prasada, Sandeep

    2014-10-01

    Research on the representation of generic knowledge suggests that inherent properties can have either a principled or a causal connection to a kind. The type of connection determines whether the outcome of the storytelling process will include intuitions of inevitability and a normative dimension and whether it will ground causal explanations.

  18. Functions of corazonin and histamine in light entrainment of the circadian pacemaker in the Madeira cockroach, Rhyparobia maderae.

    PubMed

    Arendt, Andreas; Baz, El-Sayed; Stengl, Monika

    2017-04-01

    The circadian pacemaker of the Madeira cockroach, Rhyparobia (Leucophaea) maderae, is located in the accessory medulla (AME). Ipsi- and contralateral histaminergic compound eyes are required for photic entrainment. Light pulses delay locomotor activity rhythm during the early night and advance it during the late night. Thus, different neuronal pathways might relay either light-dependent delays or advances to the clock. Injections of neuroactive substances combined with running-wheel assays suggested that GABA, pigment-dispersing factor, myoinhibitory peptides (MIPs), and orcokinins (ORCs) were part of both entrainment pathways, whereas allatotropin (AT) only delayed locomotor rhythms at the early night. To characterize photic entrainment further, histamine and corazonin were injected. Histamine injections resulted in light-like phase delays and advances, indicating that the neurotransmitter of the compound eyes participates in both entrainment pathways. Because injections of corazonin only advanced during the late subjective night, it was hypothesized that corazonin is only part of the advance pathway. Multiple-label immunocytochemistry in combination with neurobiotin backfills demonstrated that a single cell expressed corazonin in the optic lobes that belonged to the group of medial AME interneurons. It colocalized GABA and MIP but not AT or ORC immunoreactivity. Corazonin-immunoreactive (-ir) terminals overlapped with projections of putatively light-sensitive interneurons from the ipsi- and contralateral compound eye. Thus, we hypothesize that the corazonin-ir medial neuron integrates ipsi- and contralateral light information as part of the phase-advancing light entrainment pathway to the circadian clock. J. Comp. Neurol. 525:1250-1272, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  19. Electrification of particulate entrained fluid flows-Mechanisms, applications, and numerical methodology

    NASA Astrophysics Data System (ADS)

    Wei, Wei; Gu, Zhaolin

    2015-10-01

    Particulates in natural and industrial flows have two basic forms: liquid (droplet) and solid (particle). Droplets would be charged in the presence of the applied electric field (e.g. electrospray). Similar to the droplet charging, particles can also be charged under the external electric field (e.g. electrostatic precipitator), while in the absence of external electric field, tribo-electrostatic charging is almost unavoidable in gas-solid two-phase flows due to the consecutive particle contacts (e.g. electrostatic in fluidized bed or wind-blown sand). The particle charging may be beneficial, or detrimental. Although electrostatics in particulate entrained fluid flow systems have been so widely used and concerned, the mechanisms of particulate charging are still lack of a thorough understanding. The motivation of this review is to explore a clear understanding of particulate charging and movement of charged particulate in two-phase flows, by summarizing the electrification mechanisms, physical models of particulate charging, and methods of charging/charged particulate entrained fluid flow simulations. Two effective methods can make droplets charged in industrial applications: corona charging and induction charging. The droplet charge to mass ratio by corona charging is more than induction discharge. The particle charging through collisions could be attributed to electron transfer, ion transfer, material transfer, and/or aqueous ion shift on particle surfaces. The charges on charged particulate surface can be measured, nevertheless, the charging process in nature or industry is difficult to monitor. The simulation method might build a bridge of investigating from the charging process to finally charged state on particulate surface in particulate entrained fluid flows. The methodology combining the interface tracking under the action of the applied electric with the fluid flow governing equations is applicable to the study of electrohydrodynamics problems. The charge

  20. Physics of Particle Entrainment Under the Influence of an Impinging Jet

    DTIC Science & Technology

    2008-12-01

    Approved for public release; distribution unlimited 1 PHYSICS OF PARTICLE ENTRAINMENT UNDER THE INFLUENCE OF AN IMPINGING JET Robert Haehnel...Ing. Wesen. Heft 361). Phares, D.J., Smedley , G.T. and Flagan, R.C. (2000) "The wall shear stress produced by the normal impingement of a jet on a

  1. Morphodynamic Modeling of the Lower Yellow River, China: Flux (Equilibrium) Form or Entrainment (Nonequilibrium) Form of Sediment Mass Conservation?

    NASA Astrophysics Data System (ADS)

    An, C.; Parker, G.; Ma, H.; Naito, K.; Moodie, A. J.; Fu, X.

    2017-12-01

    Models of river morphodynamics consist of three elements: (1) a treatment of flow hydraulics, (2) a formulation relating some aspect of sediment transport to flow hydraulics, and (3) a description of sediment conservation. In the case of unidirectional river flow, the Exner equation of sediment conservation is commonly described in terms of a flux-based formulation, in which bed elevation variation is related to the streamwise gradient of sediment transport rate. An alternate formulation of the Exner equation, however, is the entrainment-based formulation in which bed elevation variation is related to the difference between the entrainment rate of bed sediment into suspension and the deposition rate of suspended sediment onto the bed. In the flux-based formulation, sediment transport is regarded to be in a local equilibrium state (i.e., sediment transport rate locally equals sediment transport capacity). However, the entrainment-based formulation does not require this constraint; the sediment transport rate may lag in space and time behind the changing flow conditions. In modeling the fine-grained Lower Yellow River, it is usual to treat sediment conservation in terms of an entrainment-based (nonequilibrium) rather than a flux-based (equilibrium) formulation with the consideration that fine-grained sediment may be entrained at one place but deposited only at some distant location downstream. However, the differences in prediction between the two formulations are still not well known, and the entrainment formulation may not always be necessary for the Lower Yellow River. Here we study this problem by comparing the results of flux-based and entrainment-based morphodynamics under conditions typical of the Yellow River, using sediment transport equations specifically designed for the Lower Yellow River. We find, somewhat unexpectedly, that in a treatment of a 200-km reach using uniform sediment, there is little difference between the two formulations unless the

  2. Development of a custom-made "smart-sphere" to assess incipient entrainment by rolling

    NASA Astrophysics Data System (ADS)

    Valyrakis, Manousos; Kitsikoudis, Vasileios; Alexakis, Athanasios; Trinder, Jon

    2017-04-01

    The most widely applied criterion for sediment incipient motion in engineering applications is the time- and space-averaged approach of critical Shields shear stress. Nonetheless, in the recent years published research has highlighted the importance of turbulence fluctuations in sediment incipient motion and its stochastic character. The present experimental study investigates statistically the link of the response of a "smart-pebble" to hydrodynamics in near-critical flow conditions and discusses how such a device can be utilized in engineering design. A set of specifically designed fluvial experiments monitoring the entrainment conditions for a "smart-pebble", were carried out in a tilting, recirculating flume in turbulent flow conditions while three-dimensional flow measurements were obtained with an acoustic Doppler velocimeter. The "smart-pebble" employed herein is a custom-made instrumented sphere with 7 cm diameter, which has a number of sensors embedded within its waterproof 3D-printed plastic shell. Specifically, the "smart-pebble" is equipped with miniaturized, off the shelf, low-cost, three-dimensional acceleration, orientation and angular displacement sensors. A 3D-printed local micro topography of known geometry was installed in the flume's test section and the "smart-pebble" was placed there in order to facilitate the analysis. Every time the "smart-sphere" is displaced by the flow a downstream located pin blocks its full entrainment. This allows for continuous recording of the entrainment events due to the passage of energetic events, after which the "smart-pebble" returns to its resting pocket. The "smart-pebble" device under such a configuration allows the recording of normally indiscernible (with the naked eye) vibrations, twitching motions, and full entrainments for the studied particle, allowing its analysis from a Langrangian framework. During the incipient motion experiments the retrieved data are stored in an internal memory unit or

  3. Assessment of rhythmic entrainment at multiple timescales in dyslexia: Evidence for disruption to syllable timing☆

    PubMed Central

    Leong, Victoria; Goswami, Usha

    2014-01-01

    Developmental dyslexia is associated with rhythmic difficulties, including impaired perception of beat patterns in music and prosodic stress patterns in speech. Spoken prosodic rhythm is cued by slow (<10 Hz) fluctuations in speech signal amplitude. Impaired neural oscillatory tracking of these slow amplitude modulation (AM) patterns is one plausible source of impaired rhythm tracking in dyslexia. Here, we characterise the temporal profile of the dyslexic rhythm deficit by examining rhythmic entrainment at multiple speech timescales. Adult dyslexic participants completed two experiments aimed at testing the perception and production of speech rhythm. In the perception task, participants tapped along to the beat of 4 metrically-regular nursery rhyme sentences. In the production task, participants produced the same 4 sentences in time to a metronome beat. Rhythmic entrainment was assessed using both traditional rhythmic indices and a novel AM-based measure, which utilised 3 dominant AM timescales in the speech signal each associated with a different phonological grain-sized unit (0.9–2.5 Hz, prosodic stress; 2.5–12 Hz, syllables; 12–40 Hz, phonemes). The AM-based measure revealed atypical rhythmic entrainment by dyslexic participants to syllable patterns in speech, in perception and production. In the perception task, both groups showed equally strong phase-locking to Syllable AM patterns, but dyslexic responses were entrained to a significantly earlier oscillatory phase angle than controls. In the production task, dyslexic utterances showed shorter syllable intervals, and differences in Syllable:Phoneme AM cross-frequency synchronisation. Our data support the view that rhythmic entrainment at slow (∼5 Hz, Syllable) rates is atypical in dyslexia, suggesting that neural mechanisms for syllable perception and production may also be atypical. These syllable timing deficits could contribute to the atypical development of phonological representations for

  4. An Investigation into the Mechanics of Windblown Dust Entrainment from Nickel Slag Surfaces Resembling Armoured Desert Pavements

    NASA Astrophysics Data System (ADS)

    Sanderson, Robert Steven

    The purpose of this thesis is to investigate the dynamics of PM 10 emission from a nickel slag stockpile that closely resembles a desert pavement in physical characteristics. In the field, it was observed that slag surfaces develop by natural processes into a well-armoured surface over some period of time. The surface then consists of two distinct layers; a surficial armour layer containing only non-erodible gravel and cobble-sized clasts, and an underlying dust-laden layer, which contains a wide size range of slag particles, from clay-sized to cobble-sized. This surficial armour layer protects the underlying fines from wind entrainment, at least under typical wind conditions; however, particle emissions still do occur under high wind speeds. The dynamics of particle entrainment from within these surfaces are investigated herein. It is shown that the dynamics of the boundary layer flow over these lag surfaces are influenced by the inherent roughness and permeability of the surficial armour layer, such that the flow resembles those observed over and within vegetation canopies, and those associated with permeable gravel-bed river channels. Restriction of air flow within the permeable surface produces a high-pressure zone within the pore spaces, resulting in a Kelvin-Helmholtz shear instability, which triggers coherent motions in the form of repeating burst-sweep cycles. Using Laser Doppler Anemometry (LDA), it is demonstrated that the lower boundary layer is characterized by both Q4 sweeping motions and Q2 bursting motions, while the upper boundary layer is dominated by Q2 bursts. Pore air motions within the slag material were measured using buried pressure ports. It is shown that the mean pressure gradient which forms within the slag material results in net upward displacement of air, or wind pumping. However, this net upward motion is a result of rapid oscillatory motions which are directly driven by coherent boundary layer motions. It is also demonstrated that

  5. Can tasks be inherently boring?

    PubMed

    Charney, Evan

    2013-12-01

    Kurzban et al. argue that the experiences of "effort," "boredom," and "fatigue" are indications that the costs of a task outweigh its benefits. Reducing the costs of tasks to "opportunity costs" has the effect of rendering tasks costless and of denying that they can be inherently boring or tedious, something that "vigilance tasks" were intentionally designed to be.

  6. Estaurine Freshwater Entrainment By Oyster Reefs: Quantifying A Keystone Ecosystem Service

    NASA Astrophysics Data System (ADS)

    Kaplan, D. A.; Olabarrieta, M.; Frederick, P.; Valle-Levinson, A.; Seavey, J.

    2014-12-01

    Oyster reefs have been shown to provide myriad critical ecosystem services, however their role in directing flow and currents during non-storm conditions has been largely neglected. In many regions, oyster reefs form as linear structures perpendicular to the coast and across the path of streams and rivers, potentially entraining large volumes of freshwater flow and altering nearshore mixing. We hypothesize that these reefs have the potential to influence salinity over large areas, providing a "keystone" ecosystem service by supporting multiple estuarine functions. Here we present results from a field and modeling study to quantify the effects of reef extent and elevation on estuarine salinities under varying river discharge. We found salinity differences ranging from 2 to 16 g/kg between inshore and offshore sides of degraded oyster reefs in the Suwannee Sound (FL, USA), supporting the role of reefs as local-scale freshwater dams. Moreover, differences between inshore and offshore salinities were correlated with flow, with the most marked differences during periods of low flow. Hydrodynamic modeling using the 3-D Regional Ocean Modeling System (ROMS) suggests that the currently degraded reef system entrained greater volumes of freshwater in the past, buffering the landward advance of high salinities, particularly during low flow events related to droughts. Using ROMS, we also modeled a variety of hypothetical oyster bar morphology scenarios (historical, current, and "restored") to understand how changes in reef structure (elevation, extent, and completeness) impact estuarine mixing and near-shore salinities. Taken together, these results serve to: 1) elucidate a poorly documented ecosystem service of oyster reefs; 2) provide an estimate of the magnitude and sptial extent of the freshwater entrainment effect; and 3) offer quantitative information to managers and restoration specialists interested in restoring oyster habitat.

  7. Planktic foraminiferal production stimulated by chlorophyll redistribution and entrainment of nutrients

    NASA Astrophysics Data System (ADS)

    Schiebel, Ralf; Waniek, Joanna; Bork, Matthias; Hemleben, Christoph

    2001-03-01

    During September and October 1996 planktic foraminifers and pteropods were sampled from the upper 2500 m of the water column in the BIOTRANS area (47°N, 20°W), eastern North Atlantic, as part of the JGOFS program. Hydrography, chlorophyll fluorescence, and nutrient content were recorded at high spatial and temporal resolution providing detailed information about the transition time between summer and fall. At the beginning of the cruise a shallow pycnocline was present and oligotrophic conditions prevailed. Over the course of the cruise, the mixed layer depth increased and surface water temperature decreased by 1.5°C. Both chlorophyll- a dispersed in the upper 50 m by vertical mixing and chlorophyll- a concentrations at the sea surface increased. The nitracline shoaled and nutrient enriched waters were entrained into the mixed layer. Planktic foraminifers and pteropods closely reflected the changes in the hydrography by increased growth rates and changes in species composition. Three main groups of planktic foraminiferal species were recognized: (1) a temperate and low-productivity group dominated by Neogloboquadrina incompta characterized the shallow mixed layer depths. (2) A temperate and high-productivity group dominated by Globigerina bulloides characterized the period with wind-induced dispersal of chlorophyll- a and entrainment of nutrient-enriched waters. (3) A warm water group containing Globigerinoides sacculifer, Orbulina universa, Globigerinoides ruber (white), and Globigerinella siphonifera was most common during the first days of sampling. Synchronous with the hydrographic change from summer to fall, planktic foraminiferal and pteropod growth was stimulated by redistribution of chlorophyll- a and entrainment of nutrient-enriched waters into the mixed layer. In addition, the seasonal change in the eastern North Atlantic resulted in a transition of the epipelagic faunal composition and an increased calcareous particle flux, which could be used to

  8. Synthetic orocutaneous stimulation entrains preterm infants with feeding difficulties to suck

    PubMed Central

    Barlow, SM; Finan, DS; Lee, J; Chu, S

    2013-01-01

    Background Prematurity can disrupt the development of a specialized neural circuit known as suck central pattern generator (sCPG), which often leads to poor feeding skills. The extent to which suck can be entrained using a synthetically patterned orocutaneous input to promote its development in preterm infants who lack a functional suck is unknown. Objective To evaluate the effects of a new motorized ‘pulsating’ pacifier capable of entraining the sCPG in tube-fed premature infants who lack a functional suck and exhibit feeding disorders. Methods Prospective cohort study of 31 preterm infants assigned to either the oral patterned entrainment intervention (study) or non-treated (controls) group, matched by gestational age, birth weight, oxygen supplementation history, and oral feed status. Study infants received a daily regimen of orocutaneous pulse trains through a pneumatically-controlled silicone pacifier concurrent with gavage feeds. Results The patterned orocutaneous stimulus was highly effective in accelerating the development of NNS in preterm infants. A repeated-measure multivariate analysis of covariance revealed significant increases in minute-rates for total oral compressions, NNS bursts, and NNS cycles, suck cycles per burst, and the ratiometric measure of NNS cycles as a percentage of total ororhythmic output. Moreover, study infants also manifest significantly greater success at achieving oral feeds, surpassing their control counterparts by a factor of 3.1× (72.8% daily oral feed versus 23.3% daily oral feed, respectively). Conclusion Functional expression of the sCPG among preterm infants who lack an organized suck can be induced through the delivery of synthetically patterned orocutaneous pulse trains. The rapid emergence of NNS in treated infants is accompanied by a significant increase in the proportion of nutrient taken orally. PMID:18548084

  9. Does the inherence heuristic take us to psychological essentialism?

    PubMed

    Marmodoro, Anna; Murphy, Robin A; Baker, A G

    2014-10-01

    We argue that the claim that essence-based causal explanations emerge, hydra-like, from an inherence heuristic is incomplete. No plausible mechanism for the transition from concrete properties, or cues, to essences is provided. Moreover, the fundamental shotgun and storytelling mechanisms of the inherence heuristic are not clearly enough specified to distinguish them, developmentally, from associative or causal networks.

  10. Entrainment, retention, and transport of freely swimming fish in junction gaps between commercial barges operating on the Illinois Waterway

    USGS Publications Warehouse

    Davis, Jeremiah J.; Jackson, P. Ryan; Engel, Frank; LeRoy, Jessica Z.; Neeley, Rebecca N.; Finney, Samuel T.; Murphy, Elizabeth A.

    2016-01-01

    Large Electric Dispersal Barriers were constructed in the Chicago Sanitary and Ship Canal (CSSC) to prevent the transfer of invasive fish species between the Mississippi River Basin and the Great Lakes Basin while simultaneously allowing the passage of commercial barge traffic. We investigated the potential for entrainment, retention, and transport of freely swimming fish within large gaps (> 50 m3) created at junction points between barges. Modified mark and capture trials were employed to assess fish entrainment, retention, and transport by barge tows. A multi-beam sonar system enabled estimation of fish abundance within barge junction gaps. Barges were also instrumented with acoustic Doppler velocity meters to map the velocity distribution in the water surrounding the barge and in the gap formed at the junction of two barges. Results indicate that the water inside the gap can move upstream with a barge tow at speeds near the barge tow travel speed. Water within 1 m to the side of the barge junction gaps was observed to move upstream with the barge tow. Observed transverse and vertical water velocities suggest pathways by which fish may potentially be entrained into barge junction gaps. Results of mark and capture trials provide direct evidence that small fish can become entrained by barges, retained within junction gaps, and transported over distances of at least 15.5 km. Fish entrained within the barge junction gap were retained in that space as the barge tow transited through locks and the Electric Dispersal Barriers, which would be expected to impede fish movement upstream.

  11. Assessing the inherent uncertainty of one-dimensional diffusions

    NASA Astrophysics Data System (ADS)

    Eliazar, Iddo; Cohen, Morrel H.

    2013-01-01

    In this paper we assess the inherent uncertainty of one-dimensional diffusion processes via a stochasticity classification which provides an à la Mandelbrot categorization into five states of uncertainty: infra-mild, mild, borderline, wild, and ultra-wild. Two settings are considered. (i) Stopped diffusions: the diffusion initiates from a high level and is stopped once it first reaches a low level; in this setting we analyze the inherent uncertainty of the diffusion's maximal exceedance above its initial high level. (ii) Stationary diffusions: the diffusion is in dynamical statistical equilibrium; in this setting we analyze the inherent uncertainty of the diffusion's equilibrium level. In both settings general closed-form analytic results are established, and their application is exemplified by stock prices in the stopped-diffusions setting, and by interest rates in the stationary-diffusions setting. These results provide a highly implementable decision-making tool for the classification of uncertainty in the context of one-dimensional diffusions.

  12. Potential for bed-material entrainment in selected streams of the Edwards Plateau - Edwards, Kimble, and Real Counties, Texas, and vicinity

    USGS Publications Warehouse

    Heitmuller, Franklin T.; Asquith, William H.

    2008-01-01

    The Texas Department of Transportation spends considerable money for maintenance and replacement of low-water crossings of streams in the Edwards Plateau in Central Texas as a result of damages caused in part by the transport of cobble- and gravel-sized bed material. An investigation of the problem at low-water crossings was made by the U.S. Geological Survey in cooperation with the Texas Department of Transportation, and in collaboration with Texas Tech University, Lamar University, and the University of Houston. The bed-material entrainment problem for low-water crossings occurs at two spatial scales - watershed scale and channel-reach scale. First, the relative abundance and activity of cobble- and gravel-sized bed material along a given channel reach becomes greater with increasingly steeper watershed slopes. Second, the stresses required to mobilize bed material at a location can be attributed to reach-scale hydraulic factors, including channel geometry and particle size. The frequency of entrainment generally increases with downstream distance, as a result of decreasing particle size and increased flood magnitudes. An average of 1 year occurs between flows that initially entrain bed material as large as the median particle size, and an average of 1.5 years occurs between flows that completely entrain bed material as large as the median particle size. The Froude numbers associated with initial and complete entrainment of bed material up to the median particle size approximately are 0.40 and 0.45, respectively.

  13. The frequency of hippocampal theta rhythm is modulated on a circadian period and is entrained by food availability.

    PubMed

    Munn, Robert G K; Tyree, Susan M; McNaughton, Neil; Bilkey, David K

    2015-01-01

    The hippocampal formation plays a critical role in the generation of episodic memory. While the encoding of the spatial and contextual components of memory have been extensively studied, how the hippocampus encodes temporal information, especially at long time intervals, is less well understood. The activity of place cells in hippocampus has previously been shown to be modulated at a circadian time-scale, entrained by a behavioral stimulus, but not entrained by light. The experimental procedures used in the previous study of this phenomenon, however, necessarily conflated two alternative entraining stimuli, the exposure to the recording environment and the availability of food, making it impossible to distinguish between these possibilities. Here we demonstrate that the frequency of theta-band hippocampal EEG varies with a circadian period in freely moving animals and that this periodicity mirrors changes in the firing rate of hippocampal neurons. Theta activity serves, therefore, as a proxy of circadian-modulated hippocampal neuronal activity. We then demonstrate that the frequency of hippocampal theta driven by stimulation of the reticular formation also varies with a circadian period. Because this effect can be observed without having to feed the animal to encourage movement we were able to identify what stimulus entrains the circadian oscillation. We show that with reticular-activated recordings started at various times of the day the frequency of theta varies quasi-sinusoidally with a 25 h period and phase-aligned when referenced to the animal's regular feeding time, but not the recording start time. Furthermore, we show that theta frequency consistently varied with a circadian period when the data obtained from repeated recordings started at various times of the day were referenced to the start of food availability in the recording chamber. This pattern did not occur when data were referenced to the start of the recording session or to the actual time of day

  14. The Amount of Time Dilation for Visual Flickers Corresponds to the Amount of Neural Entrainments Measured by EEG.

    PubMed

    Hashimoto, Yuki; Yotsumoto, Yuko

    2018-01-01

    The neural basis of time perception has long attracted the interests of researchers. Recently, a conceptual model consisting of neural oscillators was proposed and validated by behavioral experiments that measured the dilated duration in perception of a flickering stimulus (Hashimoto and Yotsumoto, 2015). The model proposed that flickering stimuli cause neural entrainment of oscillators, resulting in dilated time perception. In this study, we examined the oscillator-based model of time perception, by collecting electroencephalography (EEG) data during an interval-timing task. Initially, subjects observed a stimulus, either flickering at 10-Hz or constantly illuminated. The subjects then reproduced the duration of the stimulus by pressing a button. As reported in previous studies, the subjects reproduced 1.22 times longer durations for flickering stimuli than for continuously illuminated stimuli. The event-related potential (ERP) during the observation of a flicker oscillated at 10 Hz, reflecting the 10-Hz neural activity phase-locked to the flicker. Importantly, the longer reproduced duration was associated with a larger amplitude of the 10-Hz ERP component during the inter-stimulus interval, as well as during the presentation of the flicker. The correlation between the reproduced duration and the 10-Hz oscillation during the inter-stimulus interval suggested that the flicker-induced neural entrainment affected time dilation. While the 10-Hz flickering stimuli induced phase-locked entrainments at 10 Hz, we also observed event-related desynchronizations of spontaneous neural oscillations in the alpha-frequency range. These could be attributed to the activation of excitatory neurons while observing the flicker stimuli. In addition, neural activity at approximately the alpha frequency increased during the reproduction phase, indicating that flicker-induced neural entrainment persisted even after the offset of the flicker. In summary, our results suggest that the

  15. Variations in grain-scale sediment structure and entrainment force in a gravel-bed channel as a function of fine sediment content and morphological location

    NASA Astrophysics Data System (ADS)

    Voepel, Hal; Ahmed, Sharif; Hodge, Rebecca; Leyland, Julian; Sear, David

    2017-04-01

    One of the major causes of uncertainty in estimates of bedload transport rates in gravel-bed rivers is a lack of understanding of grain-scale sediment structure, and the impact that this structure has on the force required to entrain sediment. There are at least two factors that standard entrainment models do not consider. The first is the way in which the spatial arrangement and orientation of grains and the resultant forces varies throughout a channel and over time, ways that have yet to be fully quantified. The second is that sediment entrainment is a 3D process, yet calculations of entrainment thresholds for sediment grains are typically based on 2D diagrams where we calculate static moments of force vectors about a pivot angle, represented as a single point rather than as a more realistic axis of rotation. Our research addresses these limitations by quantifying variations in 3D sediment structure and entrainment force requirements across two key parameters: morphological location within a riffle-pool sequence (reflecting variation in hydraulic conditions), and the fine sediment content of the gravel-bed (sand and clay). We report results from a series of flume experiments in which we water-worked a gravel-bed with a riffle-pool morphology containing varying amounts of fine sediment. After each experimental run intact samples of the bed at different locations were extracted and the internal structure of the bed was measured using non-destructive, micro-focus X-ray computed tomography (CT) imaging. The CT images were processed to measure the properties of individual grains, including volume, center of mass, dimension, and contact points. From these data we were able to quantify the sediment structure and entrainment force requirements through measurement of 3D metrics including grain pivot angles, grain exposure and protrusion. Comparison of the metrics across different morphological locations and fine sediment content demonstrates how these factors affect the

  16. Discrete Element Method Modeling of Bedload Transport: Towards a physics-based link between bed surface variability and particle entrainment statistics

    NASA Astrophysics Data System (ADS)

    Ghasemi, A.; Borhani, S.; Viparelli, E.; Hill, K. M.

    2017-12-01

    The Exner equation provides a formal mathematical link between sediment transport and bed morphology. It is typically represented in a discrete formulation where there is a sharp geometric interface between the bedload layer and the bed, below which no particles are entrained. For high temporally and spatially resolved models, this is strictly correct, but typically this is applied in such a way that spatial and temporal fluctuations in the bed surface (bedforms and otherwise) are not captured. This limits the extent to which the exchange between particles in transport and the sediment bed are properly represented, particularly problematic for mixed grain size distributions that exhibit segregation. Nearly two decades ago, Parker (2000) provided a framework for a solution to this dilemma in the form of a probabilistic Exner equation, partially experimentally validated by Wong et al. (2007). We present a computational study designed to develop a physics-based framework for understanding the interplay between physical parameters of the bed and flow and parameters in the Parker (2000) probabilistic formulation. To do so we use Discrete Element Method simulations to relate local time-varying parameters to long-term macroscopic parameters. These include relating local grain size distribution and particle entrainment and deposition rates to long- average bed shear stress and the standard deviation of bed height variations. While relatively simple, these simulations reproduce long-accepted empirically determined transport behaviors such as the Meyer-Peter and Muller (1948) relationship. We also find that these simulations reproduce statistical relationships proposed by Wong et al. (2007) such as a Gaussian distribution of bed heights whose standard deviation increases with increasing bed shear stress. We demonstrate how the ensuing probabilistic formulations provide insight into the transport and deposition of both narrow and wide grain size distribution.

  17. The Effect of an Increased Convective Entrainment Rate on Indian Monsoon Biases in the Met Office Unified Model

    NASA Astrophysics Data System (ADS)

    Bush, Stephanie; Turner, Andrew; Woolnough, Steve; Martin, Gill

    2013-04-01

    Global circulation models (GCMs) are a key tool for understanding and predicting monsoon rainfall, now and under future climate change. However, many GCMs show significant, systematic biases in their simulation of monsoon rainfall and dynamics that spin up over very short time scales and persist in the climate mean state. We describe several of these biases as simulated in the Met Office Unified Model and show they are sensitive to changes in the convective parameterization's entrainment rate. To improve our understanding of the biases and inform efforts to improve convective parameterizations, we explore the reasons for this sensitivity. We show the results of experiments where we increase the entrainment rate in regions of especially large bias: the western equatorial Indian Ocean, western north Pacific and India itself. We use the results to determine whether improvements in biases are due to the local increase in entrainment or are the remote response of the entrainment increase elsewhere in the GCM. We find that feedbacks usually strengthen the local response, but the local response leads to a different mean state change in different regions. We also show results from experiments which demonstrate the spin-up of the local response, which we use to further understand the response in complex regions such as the Western North Pacific. Our work demonstrates that local application of parameterization changes is a powerful tool for understanding their global impact.

  18. Use of conventional fishery models to assess entrainment and impingement of three Lake Michigan fish species

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jensen, A.L.; Spigarelli, J.A.; Thommes, M.M.

    1982-01-01

    Two conventional fishery stock assessment models, the surplus-production model and the dynamic-pool model, were applied to assess the impacts of water withdrawals by electricity-generating plants, industries, and municipalities on the standing stocks and yields of alewife Alosa pseudoharengus, rainbow smelt Osmerus mordax, and yellow perch Perca flavescens in Lake Michigan. Impingement and entrainment estimates were based on data collected at 15 power plants. The surplus-production model was fitted to the three populations with catch and effort data from the commercial fisheries. Dynamic-pool model parameters were estimated from published data. The numbers entrained and impinged are large, but the proportions ofmore » the standing stocks impinged and the proportions of the eggs and larvae entrained are small. The reductions in biomass of the stocks and in maximum sustainable yields are larger than the proportions impinged. The reductions in biomass, based on 1975 data and an assumed full water withdrawal, are 2.86% for alewife, 0.76% for rainbow smelt, and 0.28% for yellow perch. Fishery models are an economical means of impact assessment in situations where catch and effort data are available for estimation of model parameters.« less

  19. Posttest analysis of the FFTF inherent safety tests

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Padilla, A. Jr.; Claybrook, S.W.

    Inherent safety tests were performed during 1986 in the 400-MW (thermal) Fast Flux Test Facility (FFTF) reactor to demonstrate the effectiveness of an inherent shutdown device called the gas expansion module (GEM). The GEM device provided a strong negative reactivity feedback during loss-of-flow conditions by increasing the neutron leakage as a result of an expanding gas bubble. The best-estimate pretest calculations for these tests were performed using the IANUS plant analysis code (Westinghouse Electric Corporation proprietary code) and the MELT/SIEX3 core analysis code. These two codes were also used to perform the required operational safety analyses for the FFTF reactormore » and plant. Although it was intended to also use the SASSYS systems (core and plant) analysis code, the calibration of the SASSYS code for FFTF core and plant analysis was not completed in time to perform pretest analyses. The purpose of this paper is to present the results of the posttest analysis of the 1986 FFTF inherent safety tests using the SASSYS code.« less

  20. Selective neuronal entrainment to the beat and meter embedded in a musical rhythm.

    PubMed

    Nozaradan, Sylvie; Peretz, Isabelle; Mouraux, André

    2012-12-05

    Fundamental to the experience of music, beat and meter perception refers to the perception of periodicities while listening to music occurring within the frequency range of musical tempo. Here, we explored the spontaneous building of beat and meter hypothesized to emerge from the selective entrainment of neuronal populations at beat and meter frequencies. The electroencephalogram (EEG) was recorded while human participants listened to rhythms consisting of short sounds alternating with silences to induce a spontaneous perception of beat and meter. We found that the rhythmic stimuli elicited multiple steady state-evoked potentials (SS-EPs) observed in the EEG spectrum at frequencies corresponding to the rhythmic pattern envelope. Most importantly, the amplitude of the SS-EPs obtained at beat and meter frequencies were selectively enhanced even though the acoustic energy was not necessarily predominant at these frequencies. Furthermore, accelerating the tempo of the rhythmic stimuli so as to move away from the range of frequencies at which beats are usually perceived impaired the selective enhancement of SS-EPs at these frequencies. The observation that beat- and meter-related SS-EPs are selectively enhanced at frequencies compatible with beat and meter perception indicates that these responses do not merely reflect the physical structure of the sound envelope but, instead, reflect the spontaneous emergence of an internal representation of beat, possibly through a mechanism of selective neuronal entrainment within a resonance frequency range. Taken together, these results suggest that musical rhythms constitute a unique context to gain insight on general mechanisms of entrainment, from the neuronal level to individual level.

  1. Impact of entrainment on cloud droplet spectra: theory, observations, and modeling

    NASA Astrophysics Data System (ADS)

    Grabowski, W.

    2016-12-01

    Understanding the impact of entrainment and mixing on microphysical properties of warm boundary layer clouds is an important aspect of the representation of such clouds in large-scale models of weather and climate. Entrainment leads to a reduction of the liquid water content in agreement with the fundamental thermodynamics, but its impact on the droplet spectrum is difficult to quantify in observations and modeling. For in-situ (e.g., aircraft) observations, it is impossible to follow air parcels and observe processes that lead to changes of the droplet spectrum in different regions of a cloud. For similar reasons traditional modeling methodologies (e.g., the Eulerian large eddy simulation) are not useful either. Moreover, both observations and modeling can resolve only relatively narrow range of spatial scales. Theory, typically focusing on differences between idealized concepts of homogeneous and inhomogeneous mixing, is also of a limited use for the multiscale turbulent mixing between a cloud and its environment. This presentation will illustrate the above points and argue that the Lagrangian large-eddy simulation with appropriate subgrid-scale scheme may provide key insights and eventually lead to novel parameterizations for large-scale models.

  2. Airborne observation of mixing across the entrainment zone during PARADE 2011

    NASA Astrophysics Data System (ADS)

    Berkes, Florian; Hoor, Peter; Bozem, Heiko; Kunkel, Daniel; Sprenger, Michael; Henne, Stephan

    2016-05-01

    This study presents the analysis of the structure and air mass characteristics of the lower atmosphere during the field campaign PARADE (PArticles and RAdicals: Diel observations of the impact of urban and biogenic Emissions) on Mount Kleiner Feldberg in southwestern Germany during late summer 2011. We analysed measurements of meteorological variables (temperature, moisture, pressure, wind speed and direction) from radio soundings and of chemical tracers (carbon dioxide, ozone) from aircraft measurements. We focus on the thermodynamic and dynamic properties that control the chemical distribution of atmospheric constituents in the boundary layer. We show that the evolution of tracer profiles of CO2 and O3 indicate mixing across the inversion layer (or entrainment zone). This finding is supported by the analysis of tracer-tracer correlations which are indicative for mixing and the relation of tracer profiles in relation to the evolution of the boundary layer height deduced from radio soundings. The study shows the relevance of entrainment processes for the lower troposphere in general and specifically that the tracer-tracer correlation method can be used to identify mixing and irreversible exchange processes across the inversion layer.

  3. Out-of-synchrony speech entrainment in developmental dyslexia.

    PubMed

    Molinaro, Nicola; Lizarazu, Mikel; Lallier, Marie; Bourguignon, Mathieu; Carreiras, Manuel

    2016-08-01

    Developmental dyslexia is a reading disorder often characterized by reduced awareness of speech units. Whether the neural source of this phonological disorder in dyslexic readers results from the malfunctioning of the primary auditory system or damaged feedback communication between higher-order phonological regions (i.e., left inferior frontal regions) and the auditory cortex is still under dispute. Here we recorded magnetoencephalographic (MEG) signals from 20 dyslexic readers and 20 age-matched controls while they were listening to ∼10-s-long spoken sentences. Compared to controls, dyslexic readers had (1) an impaired neural entrainment to speech in the delta band (0.5-1 Hz); (2) a reduced delta synchronization in both the right auditory cortex and the left inferior frontal gyrus; and (3) an impaired feedforward functional coupling between neural oscillations in the right auditory cortex and the left inferior frontal regions. This shows that during speech listening, individuals with developmental dyslexia present reduced neural synchrony to low-frequency speech oscillations in primary auditory regions that hinders higher-order speech processing steps. The present findings, thus, strengthen proposals assuming that improper low-frequency acoustic entrainment affects speech sampling. This low speech-brain synchronization has the strong potential to cause severe consequences for both phonological and reading skills. Interestingly, the reduced speech-brain synchronization in dyslexic readers compared to normal readers (and its higher-order consequences across the speech processing network) appears preserved through the development from childhood to adulthood. Thus, the evaluation of speech-brain synchronization could possibly serve as a diagnostic tool for early detection of children at risk of dyslexia. Hum Brain Mapp 37:2767-2783, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  4. The inherence heuristic: an intuitive means of making sense of the world, and a potential precursor to psychological essentialism.

    PubMed

    Cimpian, Andrei; Salomon, Erika

    2014-10-01

    We propose that human reasoning relies on an inherence heuristic, an implicit cognitive process that leads people to explain observed patterns (e.g., girls wear pink) predominantly in terms of the inherent features of their constituents (e.g., pink is a delicate color). We then demonstrate how this proposed heuristic can provide a unified account for a broad set of findings spanning areas of research that might at first appear unrelated (e.g., system justification, nominal realism, is-ought errors in moral reasoning). By revealing the deep commonalities among the diverse phenomena that fall under its scope, our account is able to generate new insights into these phenomena, as well as new empirical predictions. A second main goal of this article, aside from introducing the inherence heuristic, is to articulate the proposal that the heuristic serves as a foundation for the development of psychological essentialism. More specifically, we propose that essentialism - which is the common belief that natural and social categories are underlain by hidden, causally powerful essences - emerges over the first few years of life as an elaboration of the earlier, and more open-ended, intuitions supplied by the inherence heuristic. In the final part of the report, we distinguish our proposal from competing accounts (e.g., Strevens's K-laws) and clarify the relationship between the inherence heuristic and related cognitive tendencies (e.g., the correspondence bias). In sum, this article illuminates a basic cognitive process that emerges early in life and is likely to have profound effects on many aspects of human psychology.

  5. Inherent work suit buoyancy distribution: effects on lifejacket self-righting performance.

    PubMed

    Barwood, Martin J; Long, Geoffrey M; Lunt, Heather; Tipton, Michael J

    2014-09-01

    Accidental immersion in cold water is an occupational risk. Work suits and life jackets (LJ) should work effectively in combination to keep the airway clear of the water (freeboard) and enable self-righting. We hypothesized that inherent buoyancy, in the suit or LJ, would be beneficial for enabling freeboard, but its distribution may influence LJ self-righting. Six participants consented to complete nine immersions. Suits and LJ tested were: flotation suit (FLOAT; 85 N inherent buoyancy); oilskins 1 (OS-1) and 2 (OS-2), both with no inherent buoyancy; LJs (inherent buoyancy/buoyancy after inflation/total buoyancy), LJ-1 50/150/200 N, LJ-2 0/290/290 N, LJ-3 80/190/270 N. Once dressed, the subject entered an immersion pool where uninflated freeboard, self-righting performance, and inflated freeboard were measured. Data were compared using Friedman's test to the 0.05 alpha level. All suits and LJs enabled uninflated and inflated freeboard, but differences were seen between the suits and LJs. Self-righting was achieved on 43 of 54 occasions, irrespective of suit or LJ. On all occasions that self-righting was not achieved, this occurred in an LJ that included inherent buoyancy (11/54 occasions). Of these 11 failures, 8 occurred (73% of occasions) when the FLOAT suit was being worn. LJs that included inherent buoyancy, that are certified as effective on their own, worked less effectively from the perspective of self-righting in combination with a work suit that also included inherent buoyancy. Equipment that is approved for use in the workplace should be tested in combination to ensure adequate performance in an emergency scenario.

  6. Contrasting Inherent Optical Properties and Carbon Metabolism Between Five Northeastern (USA) Estuary-plume Systems

    NASA Technical Reports Server (NTRS)

    Vandemark, Doug; Salisbury, Joe; Hunt, Chris; McGillis, Wade R.

    2004-01-01

    We have recently developed the ability to rapidly assess Surface inherent optical properties (IOP), oxygen concentration and pCO2 in estuarine-plume systems using flow-through instrumentation. During the summer of 2004, several estuarine-plume systems were surveyed which include the Pleasant (ME), Penobscot (ME), Kennebec-Androscoggin (ME), Merrimack (NH-MA) and Hudson (NY). Continuous measurements of surface chlorophyll and colored dissolved organic carbon (CDOM) fluorescence, beam attenuation, temperature, salinity, oxygen and pC02 were taken at each system along a salinity gradient from fresh water to near oceanic endmembers. CTD and IOP profiles were also taken at predetermined surface salinity intervals. These were accompanied by discrete determinations of chlorophyll (HPLC and fluorometric), total suspended solids (TSS), dissolved organic carbon (DOC) and alkalinity. IOP data were calibrated using chlorophyll, DOC and TSS data to enable the retrieval of these constituents from IOP data. Considerable differences in the data sets were observed between systems. These ranged from the DOC-enriched, strongly heterotrophic Pleasant River System to the high-chlorophyll autotrophic Merrimack River System. Using pCO2 and oxygen saturation measurements as proxies for water column metabolism, distinct relationships were found between trophic status and inherent optical properties. The nature of these relationships varies between systems and is likely a function of watershed and estuarine attributes including carbon and nutrient loading, in-situ production and related autochthonous inputs of DOC and alkalinity. Our results suggest that IOP data may contain significant information about the trophic status of estuarine and plume systems.

  7. Fentanyl, but not haloperidol, entrains persisting circadian activity episodes when administered at 24- and 31-hour intervals

    PubMed Central

    Leffel, Joseph K.; Kosobud, Ann E; Timberlake, William

    2009-01-01

    Administration of several drugs of abuse on a 24-hour schedule has been shown to entrain both pre-drug (anticipatory) and post-drug (evoked) circadian activity episodes that persist for several days when the drug is withheld. The present tested the entrainment effects of fentanyl, an opioid agonist with a noted abuse liability, and haloperidol, an antipsychotic dopamine antagonist without apparent abuse liability. Adult female Sprague-Dawley rats housed under constant light in cages with attached running wheels received repeated low, medium, or high doses of either fentanyl or haloperidol on a 24-hour administration schedule followed by a 31-hour schedule (Experiment 1) or solely on a 31-hour schedule (Experiment 2). The results showed that all three doses of fentanyl entrained both pre-drug and post-drug episodes of wheel running when administered every 24░hours, and the combined pre- and post-fentanyl activity episodes persist for at least 3 days when the drug is withheld during test days. On the 31-hour schedule, fentanyl produced an ``ensuing" activity episode approximately 24░hours post-administration, but failed to produce an anticipatory episode 29–31░hours post-administration. In contrast, haloperidol injections failed to produce both pre-drug episodes on the 24-hour schedule and circadian ensuing episodes on the 31-hour schedule, and post-haloperidol suppression of activity appeared to mask the freerunning activity rhythm. Taken together, these results provide additional evidence that drugs of abuse share a common ability to entrain circadian activity episodes. PMID:19595707

  8. Entrainment and Control of Bacterial Populations: An in Silico Study over a Spatially Extended Agent Based Model.

    PubMed

    Mina, Petros; Tsaneva-Atanasova, Krasimira; Bernardo, Mario di

    2016-07-15

    We extend a spatially explicit agent based model (ABM) developed previously to investigate entrainment and control of the emergent behavior of a population of synchronized oscillating cells in a microfluidic chamber. Unlike most of the work in models of control of cellular systems which focus on temporal changes, we model individual cells with spatial dependencies which may contribute to certain behavioral responses. We use the model to investigate the response of both open loop and closed loop strategies, such as proportional control (P-control), proportional-integral control (PI-control) and proportional-integral-derivative control (PID-control), to heterogeinities and growth in the cell population, variations of the control parameters and spatial effects such as diffusion in the spatially explicit setting of a microfluidic chamber setup. We show that, as expected from the theory of phase locking in dynamical systems, open loop control can only entrain the cell population in a subset of forcing periods, with a wide variety of dynamical behaviors obtained outside these regions of entrainment. Closed-loop control is shown instead to guarantee entrainment in a much wider region of control parameter space although presenting limitations when the population size increases over a certain threshold. In silico tracking experiments are also performed to validate the ability of classical control approaches to achieve other reference behaviors such as a desired constant output or a linearly varying one. All simulations are carried out in BSim, an advanced agent-based simulator of microbial population which is here extended ad hoc to include the effects of control strategies acting onto the population.

  9. Scalar entrainment in the mixing layer

    NASA Technical Reports Server (NTRS)

    Sandham, N. D.; Mungal, M. G.; Broadwell, J. E.; Reynolds, W. C.

    1988-01-01

    New definitions of entrainment and mixing based on the passive scalar field in the plane mixing layer are proposed. The definitions distinguish clearly between three fluid states: (1) unmixed fluid, (2) fluid engulfed in the mixing layer, trapped between two scalar contours, and (3) mixed fluid. The difference betwen (2) and (3) is the amount of fluid which has been engulfed during the pairing process, but has not yet mixed. Trends are identified from direct numerical simulations and extensions to high Reynolds number mixing layers are made in terms of the Broadwell-Breidenthal mixing model. In the limit of high Peclet number (Pe = ReSc) it is speculated that engulfed fluid rises in steps associated with pairings, introducing unmixed fluid into the large scale structures, where it is eventually mixed at the Kolmogorov scale. From this viewpoint, pairing is a prerequisite for mixing in the turbulent plane mixing layer.

  10. 16 CFR 1211.13 - Inherent force activated secondary door sensors.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 16 Commercial Practices 2 2010-01-01 2010-01-01 false Inherent force activated secondary door... § 1211.13 Inherent force activated secondary door sensors. (a) Normal operation test. (1) A force... when the door applies a 15 pound (66.7 N) or less force in the down or closing direction and when the...

  11. Inherent limitations of probabilistic models for protein-DNA binding specificity

    PubMed Central

    Ruan, Shuxiang

    2017-01-01

    The specificities of transcription factors are most commonly represented with probabilistic models. These models provide a probability for each base occurring at each position within the binding site and the positions are assumed to contribute independently. The model is simple and intuitive and is the basis for many motif discovery algorithms. However, the model also has inherent limitations that prevent it from accurately representing true binding probabilities, especially for the highest affinity sites under conditions of high protein concentration. The limitations are not due to the assumption of independence between positions but rather are caused by the non-linear relationship between binding affinity and binding probability and the fact that independent normalization at each position skews the site probabilities. Generally probabilistic models are reasonably good approximations, but new high-throughput methods allow for biophysical models with increased accuracy that should be used whenever possible. PMID:28686588

  12. Lip movements entrain the observers’ low-frequency brain oscillations to facilitate speech intelligibility

    PubMed Central

    Park, Hyojin; Kayser, Christoph; Thut, Gregor; Gross, Joachim

    2016-01-01

    During continuous speech, lip movements provide visual temporal signals that facilitate speech processing. Here, using MEG we directly investigated how these visual signals interact with rhythmic brain activity in participants listening to and seeing the speaker. First, we investigated coherence between oscillatory brain activity and speaker’s lip movements and demonstrated significant entrainment in visual cortex. We then used partial coherence to remove contributions of the coherent auditory speech signal from the lip-brain coherence. Comparing this synchronization between different attention conditions revealed that attending visual speech enhances the coherence between activity in visual cortex and the speaker’s lips. Further, we identified a significant partial coherence between left motor cortex and lip movements and this partial coherence directly predicted comprehension accuracy. Our results emphasize the importance of visually entrained and attention-modulated rhythmic brain activity for the enhancement of audiovisual speech processing. DOI: http://dx.doi.org/10.7554/eLife.14521.001 PMID:27146891

  13. 40 CFR 88.312-93 - Inherently Low-Emission Vehicle labeling.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... stroke width not less than 0.5 inches (1.3 centimeters). In addition, the words “INHERENTLY LOW-EMISSION... inches (3.8 centimeters) wide with a stroke width not less than 0.4 inches (1.0 centimeter). In addition...) wide with a stroke width not less than 0.3 inches (0.8 centimeter). In addition, the words “INHERENTLY...

  14. 40 CFR 88.312-93 - Inherently Low-Emission Vehicle labeling.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... stroke width not less than 0.5 inches (1.3 centimeters). In addition, the words “INHERENTLY LOW-EMISSION... inches (3.8 centimeters) wide with a stroke width not less than 0.4 inches (1.0 centimeter). In addition...) wide with a stroke width not less than 0.3 inches (0.8 centimeter). In addition, the words “INHERENTLY...

  15. 40 CFR 88.312-93 - Inherently Low-Emission Vehicle labeling.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... stroke width not less than 0.5 inches (1.3 centimeters). In addition, the words “INHERENTLY LOW-EMISSION... inches (3.8 centimeters) wide with a stroke width not less than 0.4 inches (1.0 centimeter). In addition...) wide with a stroke width not less than 0.3 inches (0.8 centimeter). In addition, the words “INHERENTLY...

  16. 40 CFR 88.312-93 - Inherently Low-Emission Vehicle labeling.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... stroke width not less than 0.5 inches (1.3 centimeters). In addition, the words “INHERENTLY LOW-EMISSION... inches (3.8 centimeters) wide with a stroke width not less than 0.4 inches (1.0 centimeter). In addition...) wide with a stroke width not less than 0.3 inches (0.8 centimeter). In addition, the words “INHERENTLY...

  17. A Large Eddy Simulation Study of Heat Entrainment under Sea Ice in the Canadian Arctic Basin

    NASA Astrophysics Data System (ADS)

    Ramudu, E.; Yang, D.; Gelderloos, R.; Meneveau, C. V.; Gnanadesikan, A.

    2016-12-01

    Sea ice cover in the Arctic has declined rapidly in recent decades. The much faster than projected retreat suggests that climate models may be missing some key processes, or that these processes are not accurately represented. The entrainment of heat from the mixed layer by small-scale turbulence is one such process. In the Canadian Basin of the Arctic Ocean, relatively warm Pacific Summer Water (PSW) resides at the base of the mixed layer. With an increasing influx of PSW, the upper ocean in the Canadian Basin has been getting warmer and fresher since the early 2000s. While studies show a correlation between sea ice reduction and an increase in PSW temperature, others argue that PSW intrusions in the Canadian Basin cannot affect sea ice thickness because the strongly-stratified halocline prevents heat from the PSW layer from being entrained into the mixed layer and up to the basal ice surface. In this study, we try to resolve this conundrum by simulating the turbulent entrainment of heat from the PSW layer to a moving basal ice surface using large eddy simulation (LES). The LES model is based on a high-fidelity spectral approach on horizontal planes, and includes a Lagrangian dynamic subgrid model that reduces the need for empirical inputs for subgrid-scale viscosities and diffusivities. This LES tool allows us to investigate physical processes in the mixed layer at a very fine scale. We focus our study on summer conditions, when ice is melting, and show for a range of ice-drift velocities, halocline temperatures, and halocline salinity gradients characteristic of the Canadian Basin how much heat can be entrained from the PSW layer to the sea ice. Our results can be used to improve parameterizations of vertical heat flux under sea ice in coarse-grid ocean and climate models.

  18. Ichthyoplankton entrainment study at the SRS Savannah River water intakes for Westinghouse Savannah River Company

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paller, M.

    1992-03-26

    Cooling water for L and K Reactors and makeup water for Par Pond is pumped from the Savannah River at the 1G, 3G, and 5G pump houses. Ichthyoplankton (drifting fish larvae and eggs) from the river are entrained into the reactor cooling systems with the river water and passed through the reactor's heat exchangers where temperatures may reach 70[degrees]C during full power operation. Ichthyoplankton mortality under such conditions is assumed to be 100 percent. The number of ichthyoplankton entrained into the cooling system depends on a variety of variables, including time of year, density and distribution of ichthyoplankton in themore » river, discharge levels in the river, and the volume of water withdrawn by the pumps. Entrainment at the 1 G pump house, which is immediately downstream from the confluence of Upper Three Runs Creek and the Savannah River, is also influenced by discharge rates and ichthyoplankton densities in Upper Three Runs Creek. Because of the anticipated restart of several SRS reactors and the growing concern surrounding striped bass and American shad stocks in the Savannah River, the Department of Energy requested that the Environmental Sciences Section (ESS) of the Savannah River Laboratory sample ichthyoplankton at the SRS Savannah River intakes. Dams Moore, Inc., under a contract with Westinghouse Savannah River Company performed the sampling and data analysis for the ESS.« less

  19. Large eddy simulation study of the kinetic energy entrainment by energetic turbulent flow structures in large wind farms

    NASA Astrophysics Data System (ADS)

    VerHulst, Claire; Meneveau, Charles

    2014-02-01

    In this study, we address the question of how kinetic energy is entrained into large wind turbine arrays and, in particular, how large-scale flow structures contribute to such entrainment. Previous research has shown this entrainment to be an important limiting factor in the performance of very large arrays where the flow becomes fully developed and there is a balance between the forcing of the atmospheric boundary layer and the resistance of the wind turbines. Given the high Reynolds numbers and domain sizes on the order of kilometers, we rely on wall-modeled large eddy simulation (LES) to simulate turbulent flow within the wind farm. Three-dimensional proper orthogonal decomposition (POD) analysis is then used to identify the most energetic flow structures present in the LES data. We quantify the contribution of each POD mode to the kinetic energy entrainment and its dependence on the layout of the wind turbine array. The primary large-scale structures are found to be streamwise, counter-rotating vortices located above the height of the wind turbines. While the flow is periodic, the geometry is not invariant to all horizontal translations due to the presence of the wind turbines and thus POD modes need not be Fourier modes. Differences of the obtained modes with Fourier modes are documented. Some of the modes are responsible for a large fraction of the kinetic energy flux to the wind turbine region. Surprisingly, more flow structures (POD modes) are needed to capture at least 40% of the turbulent kinetic energy, for which the POD analysis is optimal, than are needed to capture at least 40% of the kinetic energy flux to the turbines. For comparison, we consider the cases of aligned and staggered wind turbine arrays in a neutral atmospheric boundary layer as well as a reference case without wind turbines. While the general characteristics of the flow structures are robust, the net kinetic energy entrainment to the turbines depends on the presence and relative

  20. Large Eddy Simulations of sediment entrainment induced by a lock-exchange gravity current

    NASA Astrophysics Data System (ADS)

    Kyrousi, Foteini; Leonardi, A.; Roman, F.; Armenio, V.; Zanello, F.; Zordan, J.; Juez, C.; Falcomer, L.

    2018-04-01

    Large Eddy simulations of lock-exchange gravity currents propagating over a mobile reach are presented. The numerical setting allows to investigate the sediment pick up induced by the currents and to study the underlying mechanisms leading to sediment entrainment for different Grashof numbers and grain sizes. First, the velocity field and the bed shear-stress distribution are investigated, along with turbulent structures formed in the flow, before the current reaches the mobile bed. Then, during the propagation of the current above the erodible section of the bed the contour plots of the entrained material are presented as well as the time evolution of the areas covered by the current and by the sediment at this section. The numerical outcomes are compared with experimental data showing a very good agreement. Overall, the study confirms that sediment pick up is prevalent at the head of the current where the strongest turbulence occurs. Further, above the mobile reach of the bed, settling process seems to be of minor importance, with the entrained material being advected downstream by the current. Additionally, the study shows that, although shear stress is the main mechanism that sets particles in motion, turbulent bursts as well as vertical velocity fluctuations are also necessary to counteract the falling velocity of the particles and maintain them into suspension. Finally, the analysis of the stability conditions of the current shows that, from one side, sediment concentration gives a negligible contribution to the stability of the front of the current and from the other side, the stability conditions provided by the current do not allow sediments to move into the ambient fluid.

  1. An algorithm for modeling entrainment and naturally and chemically dispersed oil droplet size distribution under surface breaking wave conditions.

    PubMed

    Li, Zhengkai; Spaulding, Malcolm L; French-McCay, Deborah

    2017-06-15

    A surface oil entrainment model and droplet size model have been developed to estimate the flux of oil under surface breaking waves. Both equations are expressed in dimensionless Weber number (We) and Ohnesorge number (Oh, which explicitly accounts for the oil viscosity, density, and oil-water interfacial tension). Data from controlled lab studies, large-scale wave tank tests, and field observations have been used to calibrate the constants of the two independent equations. Predictions using the new algorithm compared well with the observed amount of oil removed from the surface and the sizes of the oil droplets entrained in the water column. Simulations with the new algorithm, implemented in a comprehensive spill model, show that entrainment rates increase more rapidly with wind speed than previously predicted based on the existing Delvigne and Sweeney's (1988) model, and a quasi-stable droplet size distribution (d<~50μm) is developed in the near surface water. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Neural mechanisms of rhythm-based temporal prediction: Delta phase-locking reflects temporal predictability but not rhythmic entrainment.

    PubMed

    Breska, Assaf; Deouell, Leon Y

    2017-02-01

    Predicting the timing of upcoming events enables efficient resource allocation and action preparation. Rhythmic streams, such as music, speech, and biological motion, constitute a pervasive source for temporal predictions. Widely accepted entrainment theories postulate that rhythm-based predictions are mediated by synchronizing low-frequency neural oscillations to the rhythm, as indicated by increased phase concentration (PC) of low-frequency neural activity for rhythmic compared to random streams. However, we show here that PC enhancement in scalp recordings is not specific to rhythms but is observed to the same extent in less periodic streams if they enable memory-based prediction. This is inconsistent with the predictions of a computational entrainment model of stronger PC for rhythmic streams. Anticipatory change in alpha activity and facilitation of electroencephalogram (EEG) manifestations of response selection are also comparable between rhythm- and memory-based predictions. However, rhythmic sequences uniquely result in obligatory depression of preparation-related premotor brain activity when an on-beat event is omitted, even when it is strategically beneficial to maintain preparation, leading to larger behavioral costs for violation of prediction. Thus, while our findings undermine the validity of PC as a sign of rhythmic entrainment, they constitute the first electrophysiological dissociation, to our knowledge, between mechanisms of rhythmic predictions and of memory-based predictions: the former obligatorily lead to resonance-like preparation patterns (that are in line with entrainment), while the latter allow flexible resource allocation in time regardless of periodicity in the input. Taken together, they delineate the neural mechanisms of three distinct modes of preparation: continuous vigilance, interval-timing-based prediction and rhythm-based prediction.

  3. Neural mechanisms of rhythm-based temporal prediction: Delta phase-locking reflects temporal predictability but not rhythmic entrainment

    PubMed Central

    Deouell, Leon Y.

    2017-01-01

    Predicting the timing of upcoming events enables efficient resource allocation and action preparation. Rhythmic streams, such as music, speech, and biological motion, constitute a pervasive source for temporal predictions. Widely accepted entrainment theories postulate that rhythm-based predictions are mediated by synchronizing low-frequency neural oscillations to the rhythm, as indicated by increased phase concentration (PC) of low-frequency neural activity for rhythmic compared to random streams. However, we show here that PC enhancement in scalp recordings is not specific to rhythms but is observed to the same extent in less periodic streams if they enable memory-based prediction. This is inconsistent with the predictions of a computational entrainment model of stronger PC for rhythmic streams. Anticipatory change in alpha activity and facilitation of electroencephalogram (EEG) manifestations of response selection are also comparable between rhythm- and memory-based predictions. However, rhythmic sequences uniquely result in obligatory depression of preparation-related premotor brain activity when an on-beat event is omitted, even when it is strategically beneficial to maintain preparation, leading to larger behavioral costs for violation of prediction. Thus, while our findings undermine the validity of PC as a sign of rhythmic entrainment, they constitute the first electrophysiological dissociation, to our knowledge, between mechanisms of rhythmic predictions and of memory-based predictions: the former obligatorily lead to resonance-like preparation patterns (that are in line with entrainment), while the latter allow flexible resource allocation in time regardless of periodicity in the input. Taken together, they delineate the neural mechanisms of three distinct modes of preparation: continuous vigilance, interval-timing-based prediction and rhythm-based prediction. PMID:28187128

  4. Efficacy of a sensory deterrent and pipe modifications in decreasing entrainment of juvenile green sturgeon (Acipenser medirostris) at unscreened water diversions

    PubMed Central

    Poletto, Jamilynn B.; Cocherell, Dennis E.; Mussen, Timothy D.; Ercan, Ali; Bandeh, Hossein; Levent Kavvas, M.; Cech, Joseph J.; Fangue, Nann A.

    2014-01-01

    Water projects designed to extract fresh water for local urban, industrial and agricultural use throughout rivers and estuaries worldwide have contributed to the fragmentation and degradation of suitable habitat for native fishes. The number of water diversions located throughout the Sacramento–San Joaquin watershed in California's Central Valley exceeds 3300, and the majority of these are unscreened. Many anadromous fish species are susceptible to entrainment into these diversions, potentially impacting population numbers. In the laboratory, juvenile green sturgeon (Acipenser medirostris) have been shown to have high entrainment rates into unscreened diversions compared with those of other native California fish species, which may act as a significant source of mortality for this already-threatened species. Therefore, we tested the efficacy of a sensory deterrent (strobe light) and two structural pipe modifications (terminal pipe plate and upturned pipe configuration) in decreasing the entrainment of juvenile green sturgeon (mean mass ± SEM = 162.9 ± 4.0 g; mean fork length = 39.4 ± 0.3 cm) in a large (>500 kl) outdoor flume fitted with a water-diversion pipe 0.46 m in diameter. While the presence of the strobe light did not affect fish entrainment rates, the terminal pipe plate and upturned pipe modifications significantly decreased the proportion of fish entrained out of the total number tested relative to control conditions (0.13 ± 0.02 and 0.03 ± 0.02 vs. 0.44 ± 0.04, respectively). These data suggest that sensory deterrents using visual stimuli are not an effective means to reduce diversion pipe interactions for green sturgeon, but that structural alterations to diversions can successfully reduce entrainment for this species. Our results are informative for the development of effective management strategies to mitigate the impacts of water diversions on sturgeon populations and suggest that effective restoration

  5. New insights on entrainment and condensation in volcanic plumes: Constraints from independent observations of explosive eruptions and implications for assessing their impacts

    NASA Astrophysics Data System (ADS)

    Aubry, Thomas J.; Jellinek, A. Mark

    2018-05-01

    The turbulent entrainment of atmosphere and the condensation of water vapor govern the heights of explosive volcanic plumes. These processes thus determine the delivery and the lifetime of volcanic ash and aerosols into the atmosphere. Predictions of plume heights using one-dimensional "integral" models of volcanic plumes, however, suffer from very large uncertainties, related to parameterizations for entrainment and condensation. In particular, the wind entrainment coefficient β, which governs the contribution of crosswinds to turbulent entrainment, is subject to uncertainties of one order of magnitude, leading to relative uncertainties of the order of 50% on plume height. In this study, we use a database of 94 eruptive phases with independent estimates of mass eruption rate and plume height to constrain and evaluate four popular 1D models. We employ re-sampling methods to account for observational uncertainties. We show that plume height predictions are significantly improved when: i) the contribution of water vapor condensation to the plume buoyancy flux is excluded; and ii) the wind entrainment coefficient β is held constant between 0.1 and 0.4. We explore implications of these results for predicting the climate impacts of explosive eruptions and the likelihood that eruptions will form stable umbrella clouds or devastating pyroclastic flows. Last, we discuss the sensitivity of our results to the definition of plume height in the model in light of a recent set of laboratory experiments and draw conclusions for improving future databases of eruption parameters.

  6. ENTRAINMENT AND EFFICIENCY STUDIES IN A SMALL DIAMETER BUBBLECAP PLATE COLUMN

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chrones, J.

    1952-07-01

    Efficiency and entrainment studies were made in a 4inch diameter bubblecap plate column using a plate spacing of 4 inches. The plates contained one bubblecap each, and were designed so taat they could be easily inserted in a single length of 4 inch OD stainless steel tubing. An entrainment of 10% was obtained for the water-steam system at a column vapor velocity of 1.9 fps or a vapor mass rate of 255 pounds of steam per hour per square foot. This entraimnent value is gener ally accepted as the maximum allowable without impairing the plate efficiency appreciably. This low entrainmentmore » may be partly due to the small column diameter with the walls acting as entrainanent separators. The Murphree vapor plate efficiency, as measured for alcohol-water, was found to depend on the slope of the equilibrium line and the mass velocity factor V / sub v//sup 0.5/. An empirical equation was developed relating these factors. Fow low values of the slope of the equilibrium line (2 or less it was noted, that for practical purposes, the actual point efficiency on the plates was equal to the measured Murphree vapor plate efficiency regardless of the degree of mixing on the plate. (auth)« less

  7. The effects of chronic marijuana use on circadian entrainment.

    PubMed

    Whitehurst, Lauren N; Fogler, Kethera; Hall, Kate; Hartmann, Matthew; Dyche, Jeff

    2015-05-01

    Animal literature suggests a connection between marijuana use and altered circadian rhythms. However, the effect has not yet been demonstrated in humans. The present study examined the effect of chronic marijuana use on human circadian function. Participants consisted of current users who reported smoking marijuana daily for at least a year and non-marijuana user controls. Participants took a neurocognitive assessment, wore actigraphs and maintained sleep diaries for three weeks. While no significant cognitive changes were found between groups, data revealed that chronic marijuana use may act as an additional zeitgeber and lead to increased entrainment in human users.

  8. Coiling, Entrainment, and Hydrodynamic Coupling of Decelerated Fluid Jets

    NASA Astrophysics Data System (ADS)

    Dombrowski, Christopher; Lewellyn, Braddon; Pesci, Adriana I.; Restrepo, Juan M.; Kessler, John O.; Goldstein, Raymond E.

    2005-10-01

    From algal suspensions to magma upwellings, one finds jets which exhibit complex symmetry-breaking instabilities as they are decelerated by their surroundings. We consider here a model system—a saline jet descending through a salinity gradient—which produces dynamics unlike those of standard momentum jets or plumes. The jet coils like a corkscrew within a conduit of viscously entrained fluid, whose upward recirculation braids the jet, and nearly confines transverse mixing to the narrow conduit. We show that the underlying jet structure and certain scaling relations follow from similarity solutions to the fluid equations and the physics of Kelvin-Helmholtz instabilities.

  9. Bayesian estimation inherent in a Mexican-hat-type neural network

    NASA Astrophysics Data System (ADS)

    Takiyama, Ken

    2016-05-01

    Brain functions, such as perception, motor control and learning, and decision making, have been explained based on a Bayesian framework, i.e., to decrease the effects of noise inherent in the human nervous system or external environment, our brain integrates sensory and a priori information in a Bayesian optimal manner. However, it remains unclear how Bayesian computations are implemented in the brain. Herein, I address this issue by analyzing a Mexican-hat-type neural network, which was used as a model of the visual cortex, motor cortex, and prefrontal cortex. I analytically demonstrate that the dynamics of an order parameter in the model corresponds exactly to a variational inference of a linear Gaussian state-space model, a Bayesian estimation, when the strength of recurrent synaptic connectivity is appropriately stronger than that of an external stimulus, a plausible condition in the brain. This exact correspondence can reveal the relationship between the parameters in the Bayesian estimation and those in the neural network, providing insight for understanding brain functions.

  10. Inherent Safety Characteristics of Advanced Fast Reactors

    NASA Astrophysics Data System (ADS)

    Bochkarev, A. S.; Korsun, A. S.; Kharitonov, V. S.; Alekseev, P. N.

    2017-01-01

    The study presents SFR transient performance for ULOF events initiated by pump trip and pump seizure with simultaneous failure of all shutdown systems in both cases. The most severe cases leading to the pin cladding rupture and possible sodium boiling are demonstrated. The impact of various features on SFR inherent safety performance for ULOF events was analysed. The decrease in hydraulic resistance of primary loop and increase in primary pump coast down time were investigated. Performing analysis resulted in a set of recommendations to varying parameters for the purpose of enhancing the inherent safety performance of SFR. In order to prevent the safety barrier rupture for ULOF events the set of thermal hydraulic criteria defining the ULOF transient processes dynamics and requirements to these criteria were recommended based on achieved results: primary sodium flow dip under the natural circulation asymptotic level and natural circulation rise time.

  11. A Quantitative Investigation of Entrainment and Detrainment in Numerically Simulated Convective Clouds. Pt. 1; Model Development

    NASA Technical Reports Server (NTRS)

    Cohen, Charles

    1998-01-01

    A method is developed which uses numerical tracers to make accurate diagnoses of entraimnent and detrainment rates and of the properties of the entrained and detrained air in numerically simulated clouds. The numerical advection scheme is modified to make it nondispersive, as required by the use of the tracers. Tests of the new method are made, and an appropriate definition of clouds is selected. Distributions of mixing fractions in the model consistently show maximums at the end points, for nearly undilute environmental air or nearly undilute cloud air, with a uniform distribution between. The cumulonimbus clouds simulated here entrain air that had been substantially changed by the clouds, and detrained air that is not necessarily representative of the cloud air at the same level.

  12. Explicit solutions of normal form of driven oscillatory systems in entrainment bands

    NASA Astrophysics Data System (ADS)

    Tsarouhas, George E.; Ross, John

    1988-11-01

    As in a prior article (Ref. 1), we consider an oscillatory dissipative system driven by external sinusoidal perturbations of given amplitude Q and frequency ω. The kinetic equations are transformed to normal form and solved for small Q near a Hopf bifurcation to oscillations in the autonomous system. Whereas before we chose irrational ratios of the frequency of the autonomous system ωn to ω, with quasiperiodic response of the system to the perturbation, we now choose rational coprime ratios, with periodic response (entrainment). The dissipative system has either two variables or is adequately described by two variables near the bifurcation. We obtain explicit solutions and develop these in detail for ωn/ω=1; 1:2; 2:1; 1:3; 3:1. We choose a specific dissipative model (Brusselator) and test the theory by comparison with full numerical solutions. The analytic solutions of the theory give an excellent approximation for the autonomous system near the bifurcation. The theoretically predicted and calculated entrainment bands agree very well for small Q in the vicinity of the bifurcation (small μ); deviations increase with increasing Q and μ. The theory is applicable to one or two external periodic perturbations.

  13. Resistance to Internal Damage and Scaling of Concrete Air Entrained By Microspheres

    NASA Astrophysics Data System (ADS)

    Molendowska, Agnieszka; Wawrzenczyk, Jerzy

    2017-10-01

    This paper report the test results of high strength concrete produced with slag cement and air entrained with polymer microspheres in three diameters. The study focused on determining the effects of the microsphere size and quantity on the air void structure and resistance to internal cracking and scaling of the concrete. The resistance to internal cracking was determined in compliance with the requirements of the modified ASTM C666 A method on beam specimens. The scaling resistance in a 3% NaCl solution was determined using the slab test in accordance with PKN-CEN/TS 12390-9:2007. The air void structure parameters were determined to PN-EN 480-11:1998. The study results indicate that the use of microspheres is an effective air entrainment method providing very good air void structure parameters. The results show high freeze-thaw durability of polymer microsphere-based concrete in exposure class XF3. The scaling resistance test confirms that it is substantially more difficult to protect concrete against scaling in the presence of the 3% NaCl solution (exposure class XF4). Concrete scaling is a complex phenomenon controlled by a number of independent factors.

  14. Mechanisms of basal ice formation in polar glaciers: An evaluation of the apron entrainment model

    NASA Astrophysics Data System (ADS)

    Fitzsimons, Sean; Webb, Nicola; Mager, Sarah; MacDonell, Shelley; Lorrain, Regi; Samyn, Denis

    2008-06-01

    Previous studies of polar glaciers have argued that basal ice can form when these glaciers override and entrain ice marginal aprons that accumulate adjacent to steep ice cliffs. To test this idea, we have studied the morphology, structure, composition, and deformation of the apron and basal ice at the terminus of Victoria Upper Glacier in the McMurdo dry valleys, which are located on the western coast of the Ross Sea at 77°S in southern Victoria Land, Antarctica. Our results show that the apron has two structural elements: an inner element that consists of strongly foliated ice that has a steep up-glacier dip, and an outer element that lacks a consistent foliation and has a down-glacier, slope-parallel dip. Although strain measurements show that the entire apron is deforming, the inner element is characterized by high strain rates, whereas relatively low rates of strain characterize the outer part of the apron. Co-isotopic analyses of the ice, together with analysis of solute chemistry and sedimentary characteristics, show that the apron is compositionally different from the basal ice. Our observations show that aprons may become deformed and partially entrained by advancing glaciers. However, such an ice marginal process does not provide a satisfactory explanation for the origin of basal ice observed at the ice margin. Our interpretation of the origin of basal ice is that it is formed by subglacial processes, which are likely to include deformation and entrainment of subglacial permafrost.

  15. Large eddy simulation of heat entrainment under Arctic sea ice

    NASA Astrophysics Data System (ADS)

    Ramudu, Eshwan; Gelderloos, Renske; Yang, Di; Meneveau, Charles; Gnanadesikan, Anand

    2017-11-01

    Sea ice cover in the Arctic has declined rapidly in recent decades. To better understand ice loss through bottom melting, we choose to study the Canada Basin of the Arctic Ocean, which is characterized by a perennial anomalously warm Pacific Summer Water (PSW) layer residing at the base of the mixed layer and a summertime Near-Surface Temperature Maximum (NSTM) layer trapping heat from solar radiation. The interaction of these warm layers with a moving ice basal surface is investigated using large eddy simulation. We find that the presence of the NSTM enhances heat entrainment from the mixed layer. Another conclusion from our work is that there is no heat entrained from the PSW layer, even at the largest ice-drift velocity of 0.3 m s-1 considered. We propose a scaling law for the heat flux at the ice basal surface which depends on the initial temperature anomaly in the NSTM layer and the ice-drift velocity. A case study of `The Great Arctic Cyclone of 2012' gives a turbulent heat flux from the mixed layer that is approximately 70% of the total ocean-to-ice heat flux estimated from the PIOMAS model often used for short-term predictions. Present results highlight the need for large-scale climate models to account for the NSTM layer. We acknowledge funding from NOAA Grant NA15OAR4310172, the NSF, and the University of Houston start-up fund.

  16. Non-slag co-gasification of biomass and coal in entrained-bed furnace

    NASA Astrophysics Data System (ADS)

    Itaya, Yoshinori; Suami, Akira; Kobayashi, Nobusuke

    2018-02-01

    Gasification is a promising candidate of processes to upgrade biomass and to yield clean gaseous fuel for utilization of renewable energy resources. However, a sufficient amount of biomass is not always available to operate a large scale of the plant. Co-gasification of biomass with coal is proposed as a solution of the problem. Tar emission is another subject during operation in shaft or kiln type of gasifiers employed conventionally for biomass. The present authors proposed co-gasification of biomass and coal in entrained-bed furnace, which is a representative process without tar emission under high temperature, but operated so to collect dust as flyash without molten slag formation. This paper presents the works performed on co-gasification performance of biomass and pulverized coal to apply to entrained-bed type of furnaces. At first, co-gasification of woody powder and pulverized coal examined using the lab-scale test furnace of the down-flow entrained bed showed that the maximum temperatures in the furnace was over 1500 K and the carbon conversion to gas achieved at higher efficiency than 80-90 percent although the residence time in the furnace was as short as a few seconds. Non-slag co-gasification was carried out successfully without slag formation in the furnace if coal containing ash with high fusion temperature was employed. The trend suggesting the effect of reaction rate enhancement of co-gasification was also observed. Secondary, an innovative sewage sludge upgrading system consisting of self-energy recovery processes was proposed to yield bio-dried sludge and to sequentially produce char without adding auxiliary fuel. Carbonization behavior of bio-dried sludge was evaluated through pyrolysis examination in a lab-scale quartz tube reactor. The thermal treatment of pyrolysis of sludge contributed to decomposition and removal of contaminant components such as nitrogen and sulfur. The gasification kinetics of sludge and coal was also determined by a

  17. Effect of Various Parameters on Evolution of 2D Free Jets and their Associated Entrainment Rates

    NASA Astrophysics Data System (ADS)

    Amin, Mazyar; Dabiri, Dana; Navaz, Homayun

    2006-11-01

    Refrigerated vertical display cases are extensively used in supermarkets and grocery stores. Cold air is supplied vertically across the open face of the display case from the top, creating a cold air curtain acting as a barrier to separate the cold air within the case from the warm ambient air. Typically, 70-80% of the load on these vertical display cases is due to cooling of infiltrated warm ambient air. Our goal is to understand parameters affecting warm air infiltration into the case so as to minimize the cooling load. Towards this end, steady state behavior of 2D vertical air jets at Reynolds numbers 2,000 to 10,000 with low and high turbulence intensities (0% &10%) at the nozzle exit are experimentally and computationally investigated both within a quiescent ambient and next to an open cavity. Four different velocity profile shapes (top-hat, parabola, skewed parabola and linear) at the jet exit are also studied to determine profile effects on the evolution of and entrainment into the jet. Results will be presented to show the effect of these parameters on the total entrainment into the jet, as well as the variation of entrainment across the jet at different downstream locations. The results of this work can help better understand how to design air curtains as a buffer to minimize infiltration into open refrigerated vertical display cases.

  18. Students' Perception of Live Lectures' Inherent Disadvantages

    ERIC Educational Resources Information Center

    Petrovic, Juraj; Pale, Predrag

    2015-01-01

    This paper aims to provide insight into various properties of live lectures from the perspective of sophomore engineering students. In an anonymous online survey conducted at the Faculty of Electrical Engineering and Computing, University of Zagreb, we investigated students' opinions regarding lecture attendance, inherent disadvantages of live…

  19. The asymmetry of the entrainment range induced by the difference in intrinsic frequencies between two subgroups within the suprachiasmatic nucleus

    NASA Astrophysics Data System (ADS)

    Gu, Changgui; Yang, Huijie

    2017-06-01

    The rhythms of physiological and behavioral activities in mammals, which are regulated by the main clock suprachiasmatic nucleus (SCN) in the brain, can not be only synchronized to the natural 24 h light-dark cycle, but also to cycles with artificial periods. The range of the artificial periods that the animal can be synchronized to is called entrainment range. In the absence of the light-dark cycle, the animal can also maintain the circadian rhythm with an endogenous period close to 24 h. Experiments found that the entrainment range is not symmetrical with respect to the endogenous period. In the present study, an explanation is given for the asymmetry based on a Kuramoto model which describes the neuronal network of the SCN. Our numerical simulations and theoretical analysis show that the asymmetry results from the difference in the intrinsic frequencies between two subgroups of the SCN, as well as the entrainment range is affected by the difference.

  20. Beneficial effects of environmental enrichment and food entrainment in the R6/2 mouse model of Huntington's disease.

    PubMed

    Skillings, Elizabeth A; Wood, Nigel I; Morton, A Jennifer

    2014-09-01

    In addition to their cognitive and motor deficits, R6/2 mice show a progressive disintegration in circadian rhythms that mirrors the problems associated with sleep-wake disturbances experienced by patients with Huntington's disease (HD). It has been shown previously that motor and cognitive performance, as well as survival, can be improved in transgenic mouse models of HD through the provision of environmental enrichment. We compared the effect of two different overnight entrainment paradigms presented either separately or in combination. The first was environmental enrichment, the second was temporal food-entrainment. Environmental enrichment was provided in the dark period (the natural active period for mice) in the form of access to a Perspex playground containing running wheels, tunnels, climbing frame, ropes and chew blocks. Food entrainment was imposed by allowing access to food only during the dark period. We assessed a number of different aspects of function in the mice, measuring general health (by SHIRPA testing, body temperature and body weight measurements), cognitive performance in the touchscreen and locomotor behavior in the open field. There were no significant differences in cognitive performance between groups on different schedules. Environmental enrichment delayed the onset of general health deterioration, while food entrainment slowed the loss of body weight, aided the maintenance of body temperature and improved locomotor behavior. Effects were limited however, and in combination had deleterious effects on survival. Our results support previous studies showing that environmental enrichment can be beneficial and might be used to enhance the quality of life of HD patients. However, improvements are selective and 'enrichment' per se is likely to only be useful as an adjunct to a more direct therapy.

  1. Mice lacking the PACAP type I receptor have impaired photic entrainment and negative masking.

    PubMed

    Hannibal, Jens; Brabet, Philippe; Fahrenkrug, Jan

    2008-12-01

    The retinohypothalamic tract (RHT) is a retinofugal neuronal pathway which, in mammals, mediates nonimage-forming vision to various areas in the brain involved in circadian timing, masking behavior, and regulation of the pupillary light reflex. The RHT costores the two neurotransmitters glutamate and pituitary adenylate cyclase activating peptide (PACAP), which in a rather complex interplay are mediators of photic adjustment of the circadian system. To further characterize the role of PACAP/PACAP receptor type 1 (PAC1) receptor signaling in light entrainment of the clock and in negative masking behavior, we extended previous studies in mice lacking the PAC1 receptor (PAC1 KO) by examining their phase response to single light pulses using Aschoff type II regime, their ability to entrain to non-24-h light-dark (LD) cycles and large phase shifts of the LD cycle (jet lag), as well as their negative masking response during different light intensities. A prominent finding in PAC1 KO mice was a significantly decreased phase delay of the endogenous rhythm at early night. In accordance, PAC1 KO mice had a reduced ability to entrain to T cycles longer than 26 h and needed more time to reentrain to large phase delays, which was prominent at low light intensities. The data obtained at late night indicated that PACAP/PAC1 receptor signaling is less important during the phase-advancing part of the phase-response curve. Finally, the PAC1 KO mice showed impaired negative masking behavior at low light intensities. Our findings substantiate a role for PACAP/PAC1 receptor signaling in nonimage-forming vision and indicate that the system is particularly important at lower light intensities.

  2. Photogrammetric technique for in-flight ranging of trailing vortices using entrained balloons

    NASA Technical Reports Server (NTRS)

    Snow, Walter L.; Burner, Alpheus W.; Goad, William K.

    1989-01-01

    A method for experimentally determining the radial distance of a probe aircraft from a trailing vortex is described. The method relies on photogrammetric triangulation of targets entrained in the vortex core. The theory and preliminary testing were described using laboratory mock-ups. Solid state video cameras were to provide data at 300 Hz rates. Practical methods for seeding the vortex are under separate investigation and are not addressed.

  3. Critical Social Theory: Core Tenets, Inherent Issues

    ERIC Educational Resources Information Center

    Freeman, Melissa; Vasconcelos, Erika Franca S.

    2010-01-01

    This chapter outlines the core tenets of critical social theory and describes inherent issues facing evaluators conducting critical theory evaluation. Using critical pedagogy as an example, the authors describe the issues facing evaluators by developing four of the subtheories that comprise a critical social theory: (a) a theory of false…

  4. Phase-selective entrainment of nonlinear oscillator ensembles

    NASA Astrophysics Data System (ADS)

    Zlotnik, Anatoly; Nagao, Raphael; Kiss, István Z.; Li-Shin, Jr.

    2016-03-01

    The ability to organize and finely manipulate the hierarchy and timing of dynamic processes is important for understanding and influencing brain functions, sleep and metabolic cycles, and many other natural phenomena. However, establishing spatiotemporal structures in biological oscillator ensembles is a challenging task that requires controlling large collections of complex nonlinear dynamical units. In this report, we present a method to design entrainment signals that create stable phase patterns in ensembles of heterogeneous nonlinear oscillators without using state feedback information. We demonstrate the approach using experiments with electrochemical reactions on multielectrode arrays, in which we selectively assign ensemble subgroups into spatiotemporal patterns with multiple phase clusters. The experimentally confirmed mechanism elucidates the connection between the phases and natural frequencies of a collection of dynamical elements, the spatial and temporal information that is encoded within this ensemble, and how external signals can be used to retrieve this information.

  5. Surf zone entrainment, along-shore transport, and human health implications of pollution from tidal outlets

    NASA Astrophysics Data System (ADS)

    Grant, S. B.; Kim, J. H.; Jones, B. H.; Jenkins, S. A.; Wasyl, J.; Cudaback, C.

    2005-10-01

    Field experiments and modeling studies were carried out to characterize the surf zone entrainment and along-shore transport of pollution from two tidal outlets that drain into Huntington Beach and Newport Beach, popular public beaches in southern California. The surf zone entrainment and near-shore transport of pollutants from these tidal outlets appears to be controlled by prevailing wave conditions and coastal currents, and fine-scale features of the flow field around the outlets. An analysis of data from dye experiments and fecal indicator bacteria monitoring studies reveals that the along-shore flux of surf zone water is at least 50 to 300 times larger than the cross-shore flux of surf zone water. As a result, pollutants entrained in the surf zone hug the shore, where they travel significant distances parallel to the beach before diluting to extinction. Under the assumption that all surf zone pollution at Huntington Beach originates from two tidal outlets, the Santa Ana River and Talbert Marsh outlets, models of mass and momentum transport in the surf zone approximately capture the observed tidal phasing and magnitude of certain fecal indicator bacteria groups (total coliform) but not others (Escherichia coli and enterococci), implying the existence of multiple sources of, and/or multiple transport pathways for, fecal pollution at this site. The intersection of human recreation and near-shore pollution pathways implies that, from a human health perspective, special care should be taken to reduce the discharge of harmful pollutants from land-side sources of surface water runoff, such as tidal outlets and storm drains.

  6. Entrainment to feeding but not to light: circadian phenotype of VPAC2 receptor-null mice.

    PubMed

    Sheward, W John; Maywood, Elizabeth S; French, Karen L; Horn, Jacqueline M; Hastings, Michael H; Seckl, Jonathan R; Holmes, Megan C; Harmar, Anthony J

    2007-04-18

    The master clock driving mammalian circadian rhythms is located in the suprachiasmatic nuclei (SCN) of the hypothalamus and entrained by daily light/dark cycles. SCN lesions abolish circadian rhythms of behavior and result in a loss of synchronized circadian rhythms of clock gene expression in peripheral organs (e.g., the liver) and of hormone secretion (e.g., corticosterone). We examined rhythms of behavior, hepatic clock gene expression, and corticosterone secretion in VPAC2 receptor-null (Vipr2-/-) mice, which lack a functional SCN clock. Unexpectedly, although Vipr2-/- mice lacked robust circadian rhythms of wheel-running activity and corticosterone secretion, hepatic clock gene expression was strongly rhythmic, but advanced in phase compared with that in wild-type mice. The timing of food availability is thought to be an important entrainment signal for circadian clocks outside the SCN. Vipr2-/- mice consumed food significantly earlier in the 24 h cycle than wild-type mice, consistent with the observed timing of peripheral rhythms of circadian gene expression. When restricted to feeding only during the daytime (RF), mice develop rhythms of activity and of corticosterone secretion in anticipation of feeding time, thought to be driven by a food-entrainable circadian oscillator, located outside the SCN. Under RF, mice of both genotypes developed food-anticipatory rhythms of activity and corticosterone secretion, and hepatic gene expression rhythms also became synchronized to the RF stimulus. Thus, food intake is an effective zeitgeber capable of coordinating circadian rhythms of behavior, peripheral clock gene expression, and hormone secretion, even in the absence of a functional SCN clock.

  7. Entrainment of circadian rhythms to irregular light/dark cycles: a subterranean perspective

    PubMed Central

    Flôres, Danilo E. F. L.; Jannetti, Milene G.; Valentinuzzi, Veronica S.; Oda, Gisele A.

    2016-01-01

    Synchronization of biological rhythms to the 24-hour day/night has long been studied with model organisms, under artificial light/dark cycles in the laboratory. The commonly used rectangular light/dark cycles, comprising hours of continuous light and darkness, may not be representative of the natural light exposure for most species, including humans. Subterranean rodents live in dark underground tunnels and offer a unique opportunity to investigate extreme mechanisms of photic entrainment in the wild. Here, we show automated field recordings of the daily light exposure patterns in a South American subterranean rodent, the tuco-tuco (Ctenomys aff. knighti ). In the laboratory, we exposed tuco-tucos to a simplified version of this natural light exposure pattern, to determine the minimum light timing information that is necessary for synchronization. As predicted from our previous studies using mathematical modeling, the activity rhythm of tuco-tucos synchronized to this mostly simplified light/dark regimen consisting of a single light pulse per day, occurring at randomly scattered times within a day length interval. Our integrated semi-natural, lab and computer simulation findings indicate that photic entrainment of circadian oscillators is robust, even in face of artificially reduced exposure and increased phase instability of the synchronizing stimuli. PMID:27698436

  8. Saltation thresholds and entrainment of fine particles at Earth and Martian pressures

    NASA Technical Reports Server (NTRS)

    Leach, Rodman; Greeley, Ronald; Pollack, James

    1989-01-01

    An open circuit wind tunnel designed to operate in a large vacuum chamber was built at NASA-Ames to investigate saltation threshold, flux, deflation rates, and other aeolian phenomena on the planet Mars. The vacuum chamber will operate at pressures as low as 4 mbar, and the tunnel operates at windspeeds as high as 150 m/sec. Either air or CO2 can be used as a working fluid. It was found that, to a first order approximation, the same dynamic pressure was required at Martian pressure to entrain or saltate particles as was required on Earth, although wind and particle speed are considerably higher at Martian pressure. A 2nd wind tunnel, designed to operate aboard the NASA KC-135 0-g aircraft to obtain information on the effect of gravity on saltation threshold and the interparticle force at 0-g, is also described and test data presented. Some of the experiments are summarized and various aspects of low pressure aeolian entrainment for particles 12 to 100 micron in diameter are discussed, some of them unique to low pressure testing and some common in Earth pressure particle transport testing. The facility, the modes of operation, and the materials used are described.

  9. Air Entrainment and Surface Ripples in a Turbulent Ship Hull Boundary Layer

    NASA Astrophysics Data System (ADS)

    Masnadi, Naeem; Erinin, Martin; Duncan, James H.

    2017-11-01

    The air entrainment and free-surface fluctuations caused by the interaction of a free surface and the turbulent boundary layer of a vertical surface-piercing plate is studied experimentally. In this experiment, a meter-wide stainless steel belt travels horizontally in a loop around two rollers with vertically oriented axes. This belt device is mounted inside a large water tank with the water level set just below the top edge of the belt. The belt, rollers, and supporting frame are contained within a sheet metal box to keep the device dry except for one 6-meter-long straight test section. The belt is accelerated suddenly from rest until reaching constant speed in order to create a temporally evolving boundary layer analogous to the spatially evolving boundary layer that would exist along a surface-piercing towed flat plate. Surface ripples are measured using a cinematic laser-induced fluorescence technique with the laser sheet oriented parallel or normal to the belt surface. Air entrainment events and bubble motions are recorded from underneath the water surface using a stereo imaging system. Measurements of small bubbles, that tend to stay submerged for a longer time, are planned via a high-speed digital in-line holographic system. The support of the Office of Naval Research is gratefully acknowledged.

  10. Long range stress correlations in the inherent structures of liquids at rest

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chowdhury, Sadrul; Abraham, Sneha; Hudson, Toby

    2016-03-28

    Simulation studies of the atomic shear stress in the local potential energy minima (inherent structures) are reported for binary liquid mixtures in 2D and 3D. These inherent structure stresses are fundamental to slow stress relaxation and high viscosity in supercooled liquids. We find that the atomic shear stress in the inherent structures (IS’s) of both liquids at rest exhibits slowly decaying anisotropic correlations. We show that the stress correlations contribute significantly to the variance of the total shear stress of the IS configurations and consider the origins of the anisotropy and spatial extent of the stress correlations.

  11. 40 CFR 88.311-98 - Emissions standards for Inherently Low-Emission Vehicles.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Emissions standards for Inherently Low-Emission Vehicles. 88.311-98 Section 88.311-98 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... standards for Inherently Low-Emission Vehicles. Section 88.311-98 includes text that specifies requirements...

  12. Daily Scheduled High Fat Meals Moderately Entrain Behavioral Anticipatory Activity, Body Temperature, and Hypothalamic c-Fos Activation

    PubMed Central

    Gallardo, Christian M.; Gunapala, Keith M.; King, Oliver D.; Steele, Andrew D.

    2012-01-01

    When fed in restricted amounts, rodents show robust activity in the hours preceding expected meal delivery. This process, termed food anticipatory activity (FAA), is independent of the light-entrained clock, the suprachiasmatic nucleus, yet beyond this basic observation there is little agreement on the neuronal underpinnings of FAA. One complication in studying FAA using a calorie restriction model is that much of the brain is activated in response to this strong hunger signal. Thus, daily timed access to palatable meals in the presence of continuous access to standard chow has been employed as a model to study FAA in rats. In order to exploit the extensive genetic resources available in the murine system we extended this model to mice, which will anticipate rodent high fat diet but not chocolate or other sweet daily meals (Hsu, Patton, Mistlberger, and Steele; 2010, PLoS ONE e12903). In this study we test additional fatty meals, including peanut butter and cheese, both of which induced modest FAA. Measurement of core body temperature revealed a moderate preprandial increase in temperature in mice fed high fat diet but entrainment due to handling complicated interpretation of these results. Finally, we examined activation patterns of neurons by immunostaining for the immediate early gene c-Fos and observed a modest amount of entrainment of gene expression in the hypothalamus of mice fed a daily fatty palatable meal. PMID:22815954

  13. Ichthyoplankton entrainment study at the SRS Savannah River water intakes for Westinghouse Savannah River Company. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paller, M.

    1992-03-26

    Cooling water for L and K Reactors and makeup water for Par Pond is pumped from the Savannah River at the 1G, 3G, and 5G pump houses. Ichthyoplankton (drifting fish larvae and eggs) from the river are entrained into the reactor cooling systems with the river water and passed through the reactor`s heat exchangers where temperatures may reach 70{degrees}C during full power operation. Ichthyoplankton mortality under such conditions is assumed to be 100 percent. The number of ichthyoplankton entrained into the cooling system depends on a variety of variables, including time of year, density and distribution of ichthyoplankton in themore » river, discharge levels in the river, and the volume of water withdrawn by the pumps. Entrainment at the 1 G pump house, which is immediately downstream from the confluence of Upper Three Runs Creek and the Savannah River, is also influenced by discharge rates and ichthyoplankton densities in Upper Three Runs Creek. Because of the anticipated restart of several SRS reactors and the growing concern surrounding striped bass and American shad stocks in the Savannah River, the Department of Energy requested that the Environmental Sciences Section (ESS) of the Savannah River Laboratory sample ichthyoplankton at the SRS Savannah River intakes. Dams & Moore, Inc., under a contract with Westinghouse Savannah River Company performed the sampling and data analysis for the ESS.« less

  14. Laboratory investigation of air-void systems produced by air-entraining admixtures in fresh and hardened mortar.

    DOT National Transportation Integrated Search

    2006-01-01

    The air-void systems produced by two commercially available air-entraining admixtures (AEA), one a vinsol resin formulation and the other a tall oil formulation, were studied in mortars. Mortars were composed of four different portland cements and tw...

  15. Numerical simulation for the air entrainment of aerated flow with an improved multiphase SPH model

    NASA Astrophysics Data System (ADS)

    Wan, Hang; Li, Ran; Pu, Xunchi; Zhang, Hongwei; Feng, Jingjie

    2017-11-01

    Aerated flow is a complex hydraulic phenomenon that exists widely in the field of environmental hydraulics. It is generally characterised by large deformation and violent fragmentation of the free surface. Compared to Euler methods (volume of fluid (VOF) method or rigid-lid hypothesis method), the existing single-phase Smooth Particle Hydrodynamics (SPH) method has performed well for solving particle motion. A lack of research on interphase interaction and air concentration, however, has affected the application of SPH model. In our study, an improved multiphase SPH model is presented to simulate aeration flows. A drag force was included in the momentum equation to ensure accuracy of the air particle slip velocity. Furthermore, a calculation method for air concentration is developed to analyse the air entrainment characteristics. Two studies were used to simulate the hydraulic and air entrainment characteristics. And, compared with the experimental results, the simulation results agree with the experimental results well.

  16. STUDY OF MERCURY OXIDATION BY SCR CATALYST IN AN ENTRAINED-FLOW REACTOR UNDER SIMULATED PRB CONDITIONS

    EPA Science Inventory

    A bench-scale entrained-flow reactor system was constructed for studying elemental mercury oxidation under selective catalytic reduction (SCR) reaction conditions. Simulated flue gas was doped with fly ash collected from a subbituminous Powder River Basin (PRB) coal-fired boiler ...

  17. The effect of entrainment through atmospheric boundary layer growth on observed and modeled surface ozone in the Colorado Front Range

    NASA Astrophysics Data System (ADS)

    Kaser, L.; Patton, E. G.; Pfister, G. G.; Weinheimer, A. J.; Montzka, D. D.; Flocke, F.; Thompson, A. M.; Stauffer, R. M.; Halliday, H. S.

    2017-06-01

    Ozone concentrations at the Earth's surface are controlled by meteorological and chemical processes and are a function of advection, entrainment, deposition, and net chemical production/loss. The relative contributions of these processes vary in time and space. Understanding the relative importance of these processes controlling surface ozone concentrations is an essential component for designing effective regulatory strategies. Here we focus on the diurnal cycle of entrainment through atmospheric boundary layer (ABL) growth in the Colorado Front Range. Aircraft soundings and surface observations collected in July/August 2014 during the DISCOVER-AQ/FRAPPÉ (Deriving Information on Surface conditions from Column and Vertically Resolved Observations Relevant to Air Quality/Front Range Air Pollution and Photochemistry Éxperiment) campaigns and equivalent data simulated by a regional chemical transport model are analyzed. Entrainment through ABL growth is most important in the early morning, fumigating the surface at a rate of 5 ppbv/h. The fumigation effect weakens near noon and changes sign to become a small dilution effect in the afternoon on the order of -1 ppbv/h. The chemical transport model WRF-Chem (Weather Research and Forecasting Model with chemistry) underestimates ozone at all altitudes during this study on the order of 10-15 ppbv. The entrainment through ABL growth is overestimated by the model in the order of 0.6-0.8 ppbv/h. This results from differences in boundary layer growth in the morning and ozone concentration jump across the ABL top in the afternoon. This implicates stronger modeled fumigation in the morning and weaker modeled dilution after 11:00 LT.

  18. Phase-selective entrainment of nonlinear oscillator ensembles

    DOE PAGES

    Zlotnik, Anatoly V.; Nagao, Raphael; Kiss, Istvan Z.; ...

    2016-03-18

    The ability to organize and finely manipulate the hierarchy and timing of dynamic processes is important for understanding and influencing brain functions, sleep and metabolic cycles, and many other natural phenomena. However, establishing spatiotemporal structures in biological oscillator ensembles is a challenging task that requires controlling large collections of complex nonlinear dynamical units. In this report, we present a method to design entrainment signals that create stable phase patterns in ensembles of heterogeneous nonlinear oscillators without using state feedback information. We demonstrate the approach using experiments with electrochemical reactions on multielectrode arrays, in which we selectively assign ensemble subgroups intomore » spatiotemporal patterns with multiple phase clusters. As a result, the experimentally confirmed mechanism elucidates the connection between the phases and natural frequencies of a collection of dynamical elements, the spatial and temporal information that is encoded within this ensemble, and how external signals can be used to retrieve this information.« less

  19. Phase-selective entrainment of nonlinear oscillator ensembles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zlotnik, Anatoly V.; Nagao, Raphael; Kiss, Istvan Z.

    The ability to organize and finely manipulate the hierarchy and timing of dynamic processes is important for understanding and influencing brain functions, sleep and metabolic cycles, and many other natural phenomena. However, establishing spatiotemporal structures in biological oscillator ensembles is a challenging task that requires controlling large collections of complex nonlinear dynamical units. In this report, we present a method to design entrainment signals that create stable phase patterns in ensembles of heterogeneous nonlinear oscillators without using state feedback information. We demonstrate the approach using experiments with electrochemical reactions on multielectrode arrays, in which we selectively assign ensemble subgroups intomore » spatiotemporal patterns with multiple phase clusters. As a result, the experimentally confirmed mechanism elucidates the connection between the phases and natural frequencies of a collection of dynamical elements, the spatial and temporal information that is encoded within this ensemble, and how external signals can be used to retrieve this information.« less

  20. Is the Inherent Potential of Maize Roots Efficient for Soil Phosphorus Acquisition?

    PubMed Central

    Deng, Yan; Chen, Keru; Teng, Wan; Zhan, Ai; Tong, Yiping; Feng, Gu; Cui, Zhenling; Zhang, Fusuo; Chen, Xinping

    2014-01-01

    Sustainable agriculture requires improved phosphorus (P) management to reduce the overreliance on P fertilization. Despite intensive research of root adaptive mechanisms for improving P acquisition, the inherent potential of roots for efficient P acquisition remains unfulfilled, especially in intensive agriculture, while current P management generally focuses on agronomic and environmental concerns. Here, we investigated how levels of soil P affect the inherent potential of maize (Zea mays L.) roots to obtain P from soil. Responses of root morphology, arbuscular mycorrhizal colonization, and phosphate transporters were characterized and related to agronomic traits in pot and field experiments with soil P supply from deficiency to excess. Critical soil Olsen-P level for maize growth approximated 3.2 mg kg−1, and the threshold indicating a significant environmental risk was about 15 mg kg−1, which represented the lower and upper levels of soil P recommended in current P management. However, most root adaptations involved with P acquisition were triggered when soil Olsen-P was below 10 mg kg−1, indicating a threshold for maximum root inherent potential. Therefore, to maintain efficient inherent potential of roots for P acquisition, we suggest that the target upper level of soil P in intensive agriculture should be reduced from the environmental risk threshold to the point maximizing the inherent potential of roots. PMID:24594677

  1. Is the inherent potential of maize roots efficient for soil phosphorus acquisition?

    PubMed

    Deng, Yan; Chen, Keru; Teng, Wan; Zhan, Ai; Tong, Yiping; Feng, Gu; Cui, Zhenling; Zhang, Fusuo; Chen, Xinping

    2014-01-01

    Sustainable agriculture requires improved phosphorus (P) management to reduce the overreliance on P fertilization. Despite intensive research of root adaptive mechanisms for improving P acquisition, the inherent potential of roots for efficient P acquisition remains unfulfilled, especially in intensive agriculture, while current P management generally focuses on agronomic and environmental concerns. Here, we investigated how levels of soil P affect the inherent potential of maize (Zea mays L.) roots to obtain P from soil. Responses of root morphology, arbuscular mycorrhizal colonization, and phosphate transporters were characterized and related to agronomic traits in pot and field experiments with soil P supply from deficiency to excess. Critical soil Olsen-P level for maize growth approximated 3.2 mg kg(-1), and the threshold indicating a significant environmental risk was about 15 mg kg(-1), which represented the lower and upper levels of soil P recommended in current P management. However, most root adaptations involved with P acquisition were triggered when soil Olsen-P was below 10 mg kg(-1), indicating a threshold for maximum root inherent potential. Therefore, to maintain efficient inherent potential of roots for P acquisition, we suggest that the target upper level of soil P in intensive agriculture should be reduced from the environmental risk threshold to the point maximizing the inherent potential of roots.

  2. Rescuing Stimuli from Invisibility: Inducing a Momentary Release from Visual Masking with Pre-Target Entrainment

    ERIC Educational Resources Information Center

    Mathewson, Kyle E.; Fabiani, Monica; Gratton, Gabriele; Beck, Diane M.; Lleras, Alejandro

    2010-01-01

    At near-threshold levels of stimulation, identical stimulus parameters can result in very different phenomenal experiences. Can we manipulate which stimuli reach consciousness? Here we show that consciousness of otherwise masked stimuli can be experimentally induced by sensory entrainment. We preceded a backward-masked stimulus with a series of…

  3. The Effect of Music Therapy Entrainment on Physiologic Measures of Infants in the Cardiac Intensive Care Unit: Single Case Withdrawal Pilot Study.

    PubMed

    Yurkovich, Jennifer; Burns, Debra S; Harrison, Tondi

    2018-03-09

    Although evidence suggests music therapy lowers the heart rate of ill adults undergoing painful procedures and premature infants in the NICU, the effect of music therapy interventions on physiologic response in infants with congenital heart disease (CHD) being cared for in the cardiac intensive care unit (CICU) has not been explored. The purpose of this study was to explore the effect of the music therapy entrainment on physiologic responses of infants with CHD in the CICU. Five infants in the CICU received music therapy entrainment 3-5 times per week for up to 3 weeks. Sessions took place both prior to and after the infant's surgical cardiac repair. Heart rate, respiratory rate, blood pressure, and oxygen saturations were recorded every 15 seconds for 20 minutes prior to the intervention (baseline), during the 20-minute music therapy entrainment (intervention), and for 20 minutes after the intervention (return to baseline). Comparisons of baseline to intervention measures were based on means, standard deviations, and derivatives of the signal. Four of 5 infants experienced a decrease in average heart and respiratory rates as well as improvement in the derivative of the heart rate signal. Greater improvements were found when infants were located in the open bay and were receiving sedatives or narcotics. Our findings provide initial evidence that music therapy entrainment may be a valuable intervention to support improved physiologic stability in infants with CHD.

  4. On Which Microphysical Time Scales to Use in Studies of Entrainment-Mixing Mechanisms in Clouds

    DOE PAGES

    Lu, Chunsong; Liu, Yangang; Zhu, Bin; ...

    2018-03-23

    The commonly used time scales in entrainment-mixing studies are examined in this paper to seek the most appropriate one, based on aircraft observations of cumulus clouds from the RACORO campaign and numerical simulations with the Explicit Mixing Parcel Model. The time scales include: τ evap, the time for droplet complete evaporation; τ phase, the time for saturation ratio deficit (S) to reach 1/e of its initial value; τ satu, the time for S to reach -0.5%; τ react, the time for complete droplet evaporation or S to reach -0.5%. It is found that the proper time scale to use dependsmore » on the specific objectives of entrainment-mixing studies. First, if the focus is on the variations of liquid water content (LWC) and S, then τ react for saturation, τ satu and τ phase are almost equivalently appropriate, because they all represent the rate of dry air reaching saturation or of LWC decrease. Second, if one focuses on the variations of droplet size and number concentration, τ react for complete evaporation and τ evap are proper because they characterize how fast droplets evaporate and whether number concentration decreases. Moreover, τ react for complete evaporation and τ evap are always positively correlated with homogeneous mixing degree (ψ), thus the two time scales, especially τ evap, are recommended for developing parameterizations. However, ψ and the other time scales can be negatively, positively, or not correlated, depending on the dominant factors of the entrained air (i.e., relative humidity or aerosols). Third and finally, all time scales are proportional to each other under certain microphysical and thermodynamic conditions.« less

  5. On Which Microphysical Time Scales to Use in Studies of Entrainment-Mixing Mechanisms in Clouds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Chunsong; Liu, Yangang; Zhu, Bin

    The commonly used time scales in entrainment-mixing studies are examined in this paper to seek the most appropriate one, based on aircraft observations of cumulus clouds from the RACORO campaign and numerical simulations with the Explicit Mixing Parcel Model. The time scales include: τ evap, the time for droplet complete evaporation; τ phase, the time for saturation ratio deficit (S) to reach 1/e of its initial value; τ satu, the time for S to reach -0.5%; τ react, the time for complete droplet evaporation or S to reach -0.5%. It is found that the proper time scale to use dependsmore » on the specific objectives of entrainment-mixing studies. First, if the focus is on the variations of liquid water content (LWC) and S, then τ react for saturation, τ satu and τ phase are almost equivalently appropriate, because they all represent the rate of dry air reaching saturation or of LWC decrease. Second, if one focuses on the variations of droplet size and number concentration, τ react for complete evaporation and τ evap are proper because they characterize how fast droplets evaporate and whether number concentration decreases. Moreover, τ react for complete evaporation and τ evap are always positively correlated with homogeneous mixing degree (ψ), thus the two time scales, especially τ evap, are recommended for developing parameterizations. However, ψ and the other time scales can be negatively, positively, or not correlated, depending on the dominant factors of the entrained air (i.e., relative humidity or aerosols). Third and finally, all time scales are proportional to each other under certain microphysical and thermodynamic conditions.« less

  6. Toxic release consequence analysis tool (TORCAT) for inherently safer design plant.

    PubMed

    Shariff, Azmi Mohd; Zaini, Dzulkarnain

    2010-10-15

    Many major accidents due to toxic release in the past have caused many fatalities such as the tragedy of MIC release in Bhopal, India (1984). One of the approaches is to use inherently safer design technique that utilizes inherent safety principle to eliminate or minimize accidents rather than to control the hazard. This technique is best implemented in preliminary design stage where the consequence of toxic release can be evaluated and necessary design improvements can be implemented to eliminate or minimize the accidents to as low as reasonably practicable (ALARP) without resorting to costly protective system. However, currently there is no commercial tool available that has such capability. This paper reports on the preliminary findings on the development of a prototype tool for consequence analysis and design improvement via inherent safety principle by utilizing an integrated process design simulator with toxic release consequence analysis model. The consequence analysis based on the worst-case scenarios during process flowsheeting stage were conducted as case studies. The preliminary finding shows that toxic release consequences analysis tool (TORCAT) has capability to eliminate or minimize the potential toxic release accidents by adopting the inherent safety principle early in preliminary design stage. 2010 Elsevier B.V. All rights reserved.

  7. Flame deformation and entrainment associated with an isothermal transverse fuel jet

    NASA Technical Reports Server (NTRS)

    Jenkins, D. W.; Karagozian, A. R.

    1992-01-01

    This paper describes an analytical model of an incompressible, isothermal reacting jet in crossflow. The model represents the flow in the jet cross-section by a counter rotating vortex pair, a flow structure that has been observed to dominate the jet behavior. The reaction surface surrounding the fuel jet is represented as a composite of strained diffusion flames that are stretched and deformed by the vortex pair flow. The results shed new light on the interaction between the vortex pair circulation and flame structure evolution and their relation to the concept of entrainment.

  8. VORTEX CREEP AGAINST TOROIDAL FLUX LINES, CRUSTAL ENTRAINMENT, AND PULSAR GLITCHES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gügercinoğlu, Erbil; Alpar, M. Ali, E-mail: egugercinoglu@gmail.com, E-mail: alpar@sabanciuniv.edu

    2014-06-10

    A region of toroidally oriented quantized flux lines must exist in the proton superconductor in the core of the neutron star. This region will be a site of vortex pinning and creep. Entrainment of the neutron superfluid with the crustal lattice leads to a requirement of superfluid moment of inertia associated with vortex creep in excess of the available crustal moment of inertia. This will bring about constraints on the equation of state. The toroidal flux region provides the moment of inertia necessary to complement the crust superfluid with postglitch relaxation behavior fitting the observations.

  9. Single-trial Phase Entrainment of Theta Oscillations in Sensory Regions Predicts Human Associative Memory Performance.

    PubMed

    Wang, Danying; Clouter, Andrew; Chen, Qiaoyu; Shapiro, Kimron L; Hanslmayr, Simon

    2018-06-13

    Episodic memories are rich in sensory information and often contain integrated information from different sensory modalities. For instance, we can store memories of a recent concert with visual and auditory impressions being integrated in one episode. Theta oscillations have recently been implicated in playing a causal role synchronizing and effectively binding the different modalities together in memory. However, an open question is whether momentary fluctuations in theta synchronization predict the likelihood of associative memory formation for multisensory events. To address this question we entrained the visual and auditory cortex at theta frequency (4 Hz) and in a synchronous or asynchronous manner by modulating the luminance and volume of movies and sounds at 4 Hz, with a phase offset at 0° or 180°. EEG activity from human subjects (both sexes) was recorded while they memorized the association between a movie and a sound. Associative memory performance was significantly enhanced in the 0° compared to the 180° condition. Source-level analysis demonstrated that the physical stimuli effectively entrained their respective cortical areas with a corresponding phase offset. The findings suggested a successful replication of a previous study (Clouter et al., 2017). Importantly, the strength of entrainment during encoding correlated with the efficacy of associative memory such that small phase differences between visual and auditory cortex predicted a high likelihood of correct retrieval in a later recall test. These findings suggest that theta oscillations serve a specific function in the episodic memory system: Binding the contents of different modalities into coherent memory episodes. SIGNIFICANCE STATEMENT How multi-sensory experiences are bound to form a coherent episodic memory representation is one of the fundamental questions in human episodic memory research. Evidence from animal literature suggests that the relative timing between an input and theta

  10. Combatting Inherent Vulnerabilities of CFAR Algorithms and a New Robust CFAR Design

    DTIC Science & Technology

    1993-09-01

    elements of any automatic radar system. Unfortunately, CFAR systems are inherently vulnerable to degradation caused by large clutter edges, multiple ...edges, multiple targets, and electronic countermeasures (ECM) environments. 20 Distribution, Availability of Abstract 21 Abstract Security...inherently vulnerable to degradation caused by large clutter edges, multiple targets and jamming environments. This thesis presents eight popular and studied

  11. Caffeine does not entrain the circadian clock but improves daytime alertness in blind patients with non-24-hour rhythms

    PubMed Central

    St. Hilaire, Melissa A.; Lockley, Steven W.

    2015-01-01

    Objective/Background Totally blind individuals are highly likely to suffer from Non-24-Hour Sleep-Wake Disorder due to a failure of light to reset the circadian pacemaker in the suprachiasmatic nuclei. In this outpatient case series, we investigated whether daily caffeine administration could entrain the circadian pacemaker in non-entrained blind patients to alleviate symptoms of non-24-hour sleep–wake disorder. Patients/Methods Three totally blind males (63.0 ± 7.5 years old) were studied at home over ~4 months. Urinary 6-sulphatoxymelatonin (aMT6s) rhythms were measured for 48 h every 1–2 weeks. Participants completed daily sleep–wake logs, and rated their alertness and mood using nine-point scales every ~2–4 h while awake on urine sampling days. Caffeine capsules (150 mg per os) were self-administered daily at 10 a.m. for approximately one circadian beat cycle based on each participant's endogenous circadian period τ and compared to placebo (n = 2) or no treatment (n = 1) in a single-masked manner. Results Non-24-h aMT6s rhythms were confirmed in all three participants (τ range = 24.32–24.57 h). Daily administration of 150 mg caffeine did not entrain the circadian clock. Caffeine treatment significantly improved daytime alertness at adverse circadian phases (p < 0.0001) but did not decrease the occurrence of daytime naps compared with placebo. Conclusions Although caffeine was able to improve daytime alertness acutely and may therefore provide temporary symptomatic relief, the inability of caffeine to correct the underlying circadian disorder means that an entraining agent is required to treat Non-24-Hour Sleep–Wake Disorder in the blind appropriately. PMID:25891543

  12. Caffeine does not entrain the circadian clock but improves daytime alertness in blind patients with non-24-hour rhythms.

    PubMed

    St Hilaire, Melissa A; Lockley, Steven W

    2015-06-01

    Totally blind individuals are highly likely to suffer from Non-24-Hour Sleep-Wake Disorder due to a failure of light to reset the circadian pacemaker in the suprachiasmatic nuclei. In this outpatient case series, we investigated whether daily caffeine administration could entrain the circadian pacemaker in non-entrained blind patients to alleviate symptoms of non-24-hour sleep-wake disorder. Three totally blind males (63.0 ± 7.5 years old) were studied at home over ~4 months. Urinary 6-sulphatoxymelatonin (aMT6s) rhythms were measured for 48 h every 1-2 weeks. Participants completed daily sleep-wake logs, and rated their alertness and mood using nine-point scales every ~2-4 h while awake on urine sampling days. Caffeine capsules (150 mg per os) were self-administered daily at 10 a.m. for approximately one circadian beat cycle based on each participant's endogenous circadian period τ and compared to placebo (n = 2) or no treatment (n = 1) in a single-masked manner. Non-24-h aMT6s rhythms were confirmed in all three participants (τ range = 24.32-24.57 h). Daily administration of 150 mg caffeine did not entrain the circadian clock. Caffeine treatment significantly improved daytime alertness at adverse circadian phases (p <0.0001) but did not decrease the occurrence of daytime naps compared with placebo. Although caffeine was able to improve daytime alertness acutely and may therefore provide temporary symptomatic relief, the inability of caffeine to correct the underlying circadian disorder means that an entraining agent is required to treat Non-24-Hour Sleep-Wake Disorder in the blind appropriately. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  13. Is it about "pink" or about "girls"? The inherence heuristic across social and nonsocial domains.

    PubMed

    Kinzler, Katherine D; Sullivan, Kathleen R

    2014-10-01

    The inherence heuristic provides an intriguing and novel explanation for early thought in a variety of domains. Exploring similarities and differences in inherent reasoning across social and nonsocial domains can help us understand the role that inherent thinking plays in the development of human reasoning and the process by which more elaborate essentialist reasoning develops.

  14. Large Field of View PIV Measurements of Air Entrainment by SLS SMAT Water Sound Suppression System

    NASA Astrophysics Data System (ADS)

    Stegmeir, Matthew; Pothos, Stamatios; Bissell, Dan

    2015-11-01

    Water-based sound suppressions systems have been used to reduce the acoustic impact of space vehicle launches. Water flows at a high rate during launch in order to suppress Engine Generated Acoustics and other potentially damaging sources of noise. For the Space Shuttle, peak flow rates exceeded 900,000 gallons per minute. Such large water flow rates have the potential to induce substantial entrainment of the surrounding air, affecting the launch conditions and generating airflow around the launch vehicle. Validation testing is necessary to quantify this impact for future space launch systems. In this study, PIV measurements were performed to map the flow field above the SMAT sub-scale launch vehicle scaled launch stand. Air entrainment effects generated by a water-based sound suppression system were studied. Mean and fluctuating fluid velocities were mapped up to 1m above the test stand deck and compared to simulation results. Measurements performed with NASA MSFC.

  15. Mass entrainment and turbulence-driven acceleration of ultra-high energy cosmic rays in Centaurus A

    NASA Astrophysics Data System (ADS)

    Wykes, Sarka; Croston, Judith H.; Hardcastle, Martin J.; Eilek, Jean A.; Biermann, Peter L.; Achterberg, Abraham; Bray, Justin D.; Lazarian, Alex; Haverkorn, Marijke; Protheroe, Ray J.; Bromberg, Omer

    2013-10-01

    Observations of the FR I radio galaxy Centaurus A in radio, X-ray, and gamma-ray bands provide evidence for lepton acceleration up to several TeV and clues about hadron acceleration to tens of EeV. Synthesising the available observational constraints on the physical conditions and particle content in the jets, inner lobes and giant lobes of Centaurus A, we aim to evaluate its feasibility as an ultra-high-energy cosmic-ray source. We apply several methods of determining jet power and affirm the consistency of various power estimates of ~1 × 1043 erg s-1. Employing scaling relations based on previous results for 3C 31, we estimate particle number densities in the jets, encompassing available radio through X-ray observations. Our model is compatible with the jets ingesting ~3 × 1021 g s-1 of matter via external entrainment from hot gas and ~7 × 1022 g s-1 via internal entrainment from jet-contained stars. This leads to an imbalance between the internal lobe pressure available from radiating particles and magnetic field, and our derived external pressure. Based on knowledge of the external environments of other FR I sources, we estimate the thermal pressure in the giant lobes as 1.5 × 10-12 dyn cm-2, from which we deduce a lower limit to the temperature of ~1.6 × 108 K. Using dynamical and buoyancy arguments, we infer ~440-645 Myr and ~560 Myr as the sound-crossing and buoyancy ages of the giant lobes respectively, inconsistent with their spectral ages. We re-investigate the feasibility of particle acceleration via stochastic processes in the lobes, placing new constraints on the energetics and on turbulent input to the lobes. The same "very hot" temperatures that allow self-consistency between the entrainment calculations and the missing pressure also allow stochastic UHECR acceleration models to work.

  16. Entrainment of the circadian clock by daily ambient temperature cycles in the camel (Camelus dromedarius).

    PubMed

    El Allali, Khalid; Achaâban, Mohamed R; Bothorel, Béatrice; Piro, Mohamed; Bouâouda, Hanan; El Allouchi, Morad; Ouassat, Mohammed; Malan, André; Pévet, Paul

    2013-06-01

    In mammals the light-dark (LD) cycle is known to be the major cue to synchronize the circadian clock. In arid and desert areas, the camel (Camelus dromedarius) is exposed to extreme environmental conditions. Since wide oscillations of ambient temperature (Ta) are a major factor in this environment, we wondered whether cyclic Ta fluctuations might contribute to synchronization of circadian rhythms. The rhythm of body temperature (Tb) was selected as output of the circadian clock. After having verified that Tb is synchronized by the LD and free runs in continuous darkness (DD), we submitted the animals to daily cycles of Ta in LL and in DD. In both cases, the Tb rhythm was entrained to the cycle of Ta. On a 12-h phase shift of the Ta cycle, the mean phase shift of the Tb cycle ranged from a few hours in LD (1 h by cosinor, 4 h from curve peaks) to 7-8 h in LL and 12 h in DD. These results may reflect either true synchronization of the central clock by Ta daily cycles or possibly a passive effect of Ta on Tb. To resolve the ambiguity, melatonin rhythmicity was used as another output of the clock. In DD melatonin rhythms were also entrained by the Ta cycle, proving that the daily Ta cycle is able to entrain the circadian clock of the camel similar to photoperiod. By contrast, in the presence of a LD cycle the rhythm of melatonin was modified by the Ta cycle in only 2 (or 3) of 7 camels: in these specific conditions a systematic effect of Ta on the clock could not be evidenced. In conclusion, depending on the experimental conditions (DD vs. LD), the daily Ta cycle can either act as a zeitgeber or not.

  17. A Probabilistic Model for Sediment Entrainment: the Role of Bed Irregularity

    NASA Astrophysics Data System (ADS)

    Thanos Papanicolaou, A. N.

    2017-04-01

    A generalized probabilistic model is developed in this study to predict sediment entrainment under the incipient motion, rolling, and pickup modes. A novelty of the proposed model is that it incorporates in its formulation the probability density function of the bed shear stress, instead of the near-bed velocity fluctuations, to account for the effects of both flow turbulence and bed surface irregularity on sediment entrainment. The proposed model incorporates in its formulation the collective effects of three parameters describing bed surface irregularity, namely the relative roughness, the volumetric fraction and relative position of sediment particles within the active layer. Another key feature of the model is that it provides a criterion for estimating the lift and drag coefficients jointly based on the recognition that lift and drag forces acting on sediment particles are interdependent and vary with particle protrusion and packing density. The model was validated using laboratory data of both fine and coarse sediment and was compared with previously published models. The study results show that for the fine sediment data, where the sediment particles have more uniform gradation and relative roughness is not a factor, all the examined models perform adequately. The proposed model was particularly suited for the coarse sediment data, where the increased bed irregularity was captured by the new parameters introduced in the model formulations. As a result, the proposed model yielded smaller prediction errors and physically acceptable values for the lift coefficient compared to the other models in case of the coarse sediment data.

  18. Experimental evidence for inherent Lévy search behaviour in foraging animals.

    PubMed

    Kölzsch, Andrea; Alzate, Adriana; Bartumeus, Frederic; de Jager, Monique; Weerman, Ellen J; Hengeveld, Geerten M; Naguib, Marc; Nolet, Bart A; van de Koppel, Johan

    2015-05-22

    Recently, Lévy walks have been put forward as a new paradigm for animal search and many cases have been made for its presence in nature. However, it remains debated whether Lévy walks are an inherent behavioural strategy or emerge from the animal reacting to its habitat. Here, we demonstrate signatures of Lévy behaviour in the search movement of mud snails (Hydrobia ulvae) based on a novel, direct assessment of movement properties in an experimental set-up using different food distributions. Our experimental data uncovered clusters of small movement steps alternating with long moves independent of food encounter and landscape complexity. Moreover, size distributions of these clusters followed truncated power laws. These two findings are characteristic signatures of mechanisms underlying inherent Lévy-like movement. Thus, our study provides clear experimental evidence that such multi-scale movement is an inherent behaviour rather than resulting from the animal interacting with its environment. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  19. Experimental evidence for inherent Lévy search behaviour in foraging animals

    PubMed Central

    Kölzsch, Andrea; Alzate, Adriana; Bartumeus, Frederic; de Jager, Monique; Weerman, Ellen J.; Hengeveld, Geerten M.; Naguib, Marc; Nolet, Bart A.; van de Koppel, Johan

    2015-01-01

    Recently, Lévy walks have been put forward as a new paradigm for animal search and many cases have been made for its presence in nature. However, it remains debated whether Lévy walks are an inherent behavioural strategy or emerge from the animal reacting to its habitat. Here, we demonstrate signatures of Lévy behaviour in the search movement of mud snails (Hydrobia ulvae) based on a novel, direct assessment of movement properties in an experimental set-up using different food distributions. Our experimental data uncovered clusters of small movement steps alternating with long moves independent of food encounter and landscape complexity. Moreover, size distributions of these clusters followed truncated power laws. These two findings are characteristic signatures of mechanisms underlying inherent Lévy-like movement. Thus, our study provides clear experimental evidence that such multi-scale movement is an inherent behaviour rather than resulting from the animal interacting with its environment. PMID:25904671

  20. Effect of free stream turbulence on the entrainment characteristics of jets

    NASA Astrophysics Data System (ADS)

    Watanabe, Tomoaki; B. da Silva, Carlos; Sakai, Yasuhiko; Nagata, Kouji; Nagoya University Team; Lasef Team

    2014-11-01

    Direct numerical simulations of turbulent planar jets are used to analyze the effects of free stream turbulence on the entrainment characteristics and enstrophy dynamics near the turbulent/turbulent interface (TTI) that separates strong turbulence (inside the jet shear layer) from weaker turbulence outside of the jet. The higher the integral scales and turbulence intensities in the free stream the more effects it has on the jet shear layer, and for strong free stream turbulence the viscous superlayer is absent from the jet edges. Part of this work was supported by JSPS KAKENHI Grant Number 25002531 and MEXT KAKENHI Grant Numbers 25289030, 25289031, 2563005.

  1. The Entrainment Rate for Buoyant Plumes in a Crossflow

    NASA Astrophysics Data System (ADS)

    Devenish, B. J.; Rooney, G. G.; Webster, H. N.; Thomson, D. J.

    2010-03-01

    We consider large-eddy simulations (LES) of buoyant plumes from a circular source with initial buoyancy flux F 0 released into a stratified environment with constant buoyancy frequency N and a uniform crossflow with velocity U. We make a systematic comparison of the LES results with the mathematical theory of plumes in a crossflow. We pay particular attention to the limits {tilde{U}≪1} and {tilde{U}≫ 1}, where {tilde{U}=U/(F_0 N)^{1/4}}, for which analytical results are possible. For {tilde{U}≫ 1}, the LES results show good agreement with the well-known two-thirds law for the rise in height of the plume. Sufficiently far above the source, the centreline vertical velocity of the LES plumes is consistent with the analytical z -1/3 and z -1/2 scalings for respectively {tilde{U}≪ 1} and {tilde{U}≫ 1}. In the general case, where the entrainment is assumed to be the sum of the contributions from the horizontal and vertical velocity components, we find that the discrepancy between the LES data and numerical solutions of the plume equations is largest for {tilde{U}=O(1)}. We propose a modified additive entrainment assumption in which the contributions from the horizontal and vertical velocity components are not equally weighted. We test this against observations of the plume generated by the Buncefield fire in the U.K. in December 2005 and find that the results compare favourably. We also show that the oscillations of the plume as it settles down to its final rise height may be attenuated by the radiation of gravity waves. For {tilde{U}≪ 1} the oscillations decay rapidly due to the transport of energy away from the plume by gravity waves. For {tilde{U}>rsim 1} the gravity waves travel in the same direction and at the same speed as the flow. In this case, the oscillations of the plume do not decay greatly by radiation of gravity waves.

  2. Circadian discrimination of reward: evidence for simultaneous yet separable food- and drug-entrained rhythms in the rat.

    PubMed

    Jansen, Heiko T; Sergeeva, Anna; Stark, Gemaine; Sorg, Barbara A

    2012-05-01

    A unique extra-suprachiasmatic nucleus (SCN) oscillator, operating independently of the light-entrainable oscillator, has been hypothesized to generate feeding and drug-related rhythms. To test the validity of this hypothesis, sham-lesioned (Sham) and SCN-lesioned (SCNx) rats were housed in constant dim-red illumination (LL(red)) and received a daily cocaine injection every 24 h for 7 d (Experiment 1). In a second experiment, rats underwent 3-h daily restricted feeding (RF) followed 12 d later by the addition of daily cocaine injections given every 25 h in combination with RF until the two schedules were in antiphase. In both experiments, body temperature and total activity were monitored continuously. Results from Experiment 1 revealed that cocaine, but not saline, injections produced anticipatory increases in temperature and activity in SCNx and Sham rats. Following withdrawal from cocaine, free-running temperature rhythms persisted for 2-10 d in SCNx rats. In Experiment 2, robust anticipatory increases in temperature and activity were associated with RF and cocaine injections; however, the feeding periodicity (23.9 h) predominated over the cocaine periodicity. During drug withdrawal, the authors observed two free-running rhythms of temperature and activity that persisted for >14 d in both Sham and SCNx rats. The periods of the free-running rhythms were similar to the feeding entrainment (period = 23.7 and 24.0 h, respectively) and drug entrainment (period = 25.7 and 26.1 h, respectively). Also during withdrawal, the normally close correlation between activity and temperature was greatly disrupted in Sham and SCNx rats. Taken together, these results do not support the existence of a single oscillator mediating the rewarding properties of both food and cocaine. Rather, they suggest that these two highly rewarding behaviors can be temporally isolated, especially during drug withdrawal. Under stable dual-entrainment conditions, food reward appears to exhibit a

  3. Theta band oscillations reflect more than entrainment: behavioral and neural evidence demonstrates an active chunking process.

    PubMed

    Teng, Xiangbin; Tian, Xing; Doelling, Keith; Poeppel, David

    2017-10-17

    Parsing continuous acoustic streams into perceptual units is fundamental to auditory perception. Previous studies have uncovered a cortical entrainment mechanism in the delta and theta bands (~1-8 Hz) that correlates with formation of perceptual units in speech, music, and other quasi-rhythmic stimuli. Whether cortical oscillations in the delta-theta bands are passively entrained by regular acoustic patterns or play an active role in parsing the acoustic stream is debated. Here, we investigate cortical oscillations using novel stimuli with 1/f modulation spectra. These 1/f signals have no rhythmic structure but contain information over many timescales because of their broadband modulation characteristics. We chose 1/f modulation spectra with varying exponents of f, which simulate the dynamics of environmental noise, speech, vocalizations, and music. While undergoing magnetoencephalography (MEG) recording, participants listened to 1/f stimuli and detected embedded target tones. Tone detection performance varied across stimuli of different exponents and can be explained by local signal-to-noise ratio computed using a temporal window around 200 ms. Furthermore, theta band oscillations, surprisingly, were observed for all stimuli, but robust phase coherence was preferentially displayed by stimuli with exponents 1 and 1.5. We constructed an auditory processing model to quantify acoustic information on various timescales and correlated the model outputs with the neural results. We show that cortical oscillations reflect a chunking of segments, > 200 ms. These results suggest an active auditory segmentation mechanism, complementary to entrainment, operating on a timescale of ~200 ms to organize acoustic information. © 2017 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  4. Organic Entrainment and Preservation in Volcanic Glasses

    NASA Technical Reports Server (NTRS)

    Wilhelm, Mary Beth; Ojha, Lujendra; Brunner, Anna E.; Dufek, Josef D.; Wray, James Joseph

    2014-01-01

    Unaltered pyroclastic deposits have previously been deemed to have "low" potential for the formation, concentration and preservation of organic material on the Martian surface. Yet volcanic glasses that have solidified very quickly after an eruption may be good candidates for containment and preservation of refractory organic material that existed in a biologic system pre-eruption due to their impermeability and ability to attenuate UV radiation. Analysis using NanoSIMS of volcanic glass could then be performed to both deduce carbon isotope ratios that indicate biologic origin and confirm entrainment during eruption. Terrestrial contamination is one of the biggest barriers to definitive Martian organic identification in soil and rock samples. While there is a greater potential to concentrate organics in sedimentary strata, volcanic glasses may better encapsulate and preserve organics over long time scales, and are widespread on Mars. If volcanic glass from many sites on Earth could be shown to contain biologically derived organics from the original environment, there could be significant implications for the search for biomarkers in ancient Martian environments.

  5. KINETIC STUDY OF ADSORPTION AND TRANSFORMATION OF MERCURY ON FLY ASH PARTICLES IN AN ENTRAINED FLOW REACTOR

    EPA Science Inventory

    Experimental studies were performed to investigate the interactions of elemental mercury vapor with entrained fly ash particles from coal combustion in a flow reactor. The rate of transformation of elemental mercury on fly ash particles was evauated over the temperature range fro...

  6. Assessing the role of large wood entrained in the 2013 Colorado Front Range flood in ongoing channel response and reservoir management

    NASA Astrophysics Data System (ADS)

    Bennett, Georgina; Rathburn, Sara; Ryan, Sandra; Wohl, Ellen; Blair, Aaron

    2016-04-01

    Considerable quantities of large wood (LW) may be entrained during floods with long lasting impacts on channel morphology, sediment and LW export, and downstream reservoir management. Here we present an analysis of LW entrained by an extensive flood in Colorado, USA. Over a 5 day period commencing 9th September 2013, up to 450 mm of rain, or ~1000% of the monthly average, fell in catchments spanning a 100-km-wide swath of the Colorado Front Range resulting in major flooding. Catchment response was dramatic, with reports of 100s - 1000s of years of erosion, destruction of infrastructure and homes, and sediment and LW loading within reservoirs. One heavily impacted catchment is the North St Vrain, draining 250km2 of the South Platte drainage basin. In addition to widespread channel enlargement, remote imagery reveals hundreds of landslides that delivered sediment and LW to the channel and ultimately to Ralph Price Reservoir, which provides municipal water to Longmont. The City of Longmont facilitated the removal of ~1050 m3 of wood deposited at the reservoir inlet by the flood but the potential for continued movement of large wood in the catchment presents an on-going concern for reservoir management. In collaboration with the City of Longmont, our objectives are (1) to quantify the volume of wood entrained by the flood and still stored along the channel, (2) characterize the size and distribution of LW deposits and (3) determine their role in ongoing catchment flood response and recovery. We utilize freely available pre and post flood NAIP 4-band imagery to calculate a normalized differential vegetation index (NDVI) difference map with which we calculate the area of vegetation entrained by the flood. We combine this with field assessments and a map of vegetation type automatically classified from optical satellite imagery to estimate the total flood-entrained volume of wood. Preliminary testing of 'stream selfies' - structure from motion imaging of LW deposits using

  7. Spontaneous eye blinks are entrained by finger tapping.

    PubMed

    Cong, D-K; Sharikadze, M; Staude, G; Deubel, H; Wolf, W

    2010-02-01

    We studied the mutual cross-talk between spontaneous eye blinks and continuous, self-paced unimanual and bimanual tapping. Both types of motor activities were analyzed with regard to their time-structure in synchronization-continuation tapping tasks which involved different task instructions, namely "standard" finger tapping (Experiment 1), "strong" tapping (Experiment 2) requiring more forceful finger movements, and "impulse-like" tapping (Experiment 3) where upward-downward finger movements had to be very fast. In a further control condition (Experiment 4), tapping was omitted altogether. The results revealed a prominent entrainment of spontaneous blink behavior by the manual tapping, with bimanual tapping being more effective than unimanual tapping, and with the "strong" and "impulse-like" tapping showing the largest effects on blink timing. Conversely, we found no significant effects of the tapping on the timing of the eye blinks across all experiments. The findings suggest a functional overlap of the motor control structures responsible for voluntary, rhythmic finger movements and eye blinking behavior.

  8. Dependence of stratocumulus-topped boundary-layer entrainment on cloud-water sedimentation: Impact on global aerosol indirect effect in GISS ModelE3 single column model and global simulations

    NASA Astrophysics Data System (ADS)

    Ackerman, A. S.; Kelley, M.; Cheng, Y.; Fridlind, A. M.; Del Genio, A. D.; Bauer, S.

    2017-12-01

    Reduction in cloud-water sedimentation induced by increasing droplet concentrations has been shown in large-eddy simulations (LES) and direct numerical simulation (DNS) to enhance boundary-layer entrainment, thereby reducing cloud liquid water path and offsetting the Twomey effect when the overlying air is sufficiently dry, which is typical. Among recent upgrades to ModelE3, the latest version of the NASA Goddard Institute for Space Studies (GISS) general circulation model (GCM), are a two-moment stratiform cloud microphysics treatment with prognostic precipitation and a moist turbulence scheme that includes an option in its entrainment closure of a simple parameterization for the effect of cloud-water sedimentation. Single column model (SCM) simulations are compared to LES results for a stratocumulus case study and show that invoking the sedimentation-entrainment parameterization option indeed reduces the dependence of cloud liquid water path on increasing aerosol concentrations. Impacts of variations of the SCM configuration and the sedimentation-entrainment parameterization will be explored. Its impact on global aerosol indirect forcing in the framework of idealized atmospheric GCM simulations will also be assessed.

  9. DIMENSIONS OF THE COUNSELOR'S RELATIONSHIPS.

    ERIC Educational Resources Information Center

    KACZKOWSKI, HENRY R.

    THE PUPIL PERSONNEL SERVICES CONCEPT EMPHASIZES A TEAM APPROACH. AN INHERENT WEAKNESS IN THIS CONCEPT IS THE TENDENCY TOWARD COMPARTMENTALIZATION OF THE INDIVIDUAL. A NATURAL RELATIONSHIP EXISTS BETWEEN GUIDANCE AND INSTRUCTION BECAUSE BOTH DEAL WITH THE PUPIL, GUIDANCE WITH CONATIVE ASPECTS AND INSTRUCTION WITH COGNITIVE ASPECTS. THE STRATEGIES…

  10. The nature of inherent bactericidal activity: insights from the nanotopology of three species of dragonfly

    NASA Astrophysics Data System (ADS)

    Mainwaring, David E.; Nguyen, Song Ha; Webb, Hayden; Jakubov, Timur; Tobin, Mark; Lamb, Robert N.; Wu, Alex H.-F.; Marchant, Richard; Crawford, Russell J.; Ivanova, Elena P.

    2016-03-01

    While insect wings are widely recognised as multi-functional, recent work showed that this extends to extensive bactericidal activity brought about by cell deformation and lysis on the wing nanotopology. We now quantitatively show that subtle changes to this topography result in substantial changes in bactericidal activity that are able to span an order of magnitude. Notably, the chemical composition of the lipid nanopillars was seen by XPS and synchrotron FTIR microspectroscopy to be similar across these activity differences. Modelling the interaction between bacterial cells and the wing surface lipids of 3 species of dragonflies, that inhabit similar environments, but with distinctly different behavioural repertoires, provided the relationship between surface structure and antibacterial functionality. In doing so, these principal behavioural patterns correlated with the demands for antimicrobial efficiency dictated by differences in their foraging strategies. This work now reveals a new feature in the design elegance of natural multi-functional surfaces as well providing insights into the bactericidal mechanism underlying inherently antimicrobial materials, while suggesting that nanotopology is related to the evolutionary development of a species through the demands of its behavioural repertoire. The underlying relationship between the processes of wetting, adhesion and capillarity of the lipid nanopillars and bactericidal efficiency suggests new prospects for purely mechano-responsive antibacterial surfaces.While insect wings are widely recognised as multi-functional, recent work showed that this extends to extensive bactericidal activity brought about by cell deformation and lysis on the wing nanotopology. We now quantitatively show that subtle changes to this topography result in substantial changes in bactericidal activity that are able to span an order of magnitude. Notably, the chemical composition of the lipid nanopillars was seen by XPS and synchrotron

  11. Effects of synthetic air entraining agents on compressive strength of Portland cement concrete : mechanism of interaction and remediation strategy

    DOT National Transportation Integrated Search

    1999-07-01

    This document reports the results of a comprehensive study pertaining to the determination of causes and mechanisms resulting in a reduction strength in concrete mixtures containing synthetic air entraining admixtures. The study involved experimentat...

  12. The discovery of human auditory-motor entrainment and its role in the development of neurologic music therapy.

    PubMed

    Thaut, Michael H

    2015-01-01

    The discovery of rhythmic auditory-motor entrainment in clinical populations was a historical breakthrough in demonstrating for the first time a neurological mechanism linking music to retraining brain and behavioral functions. Early pilot studies from this research center were followed up by a systematic line of research studying rhythmic auditory stimulation on motor therapies for stroke, Parkinson's disease, traumatic brain injury, cerebral palsy, and other movement disorders. The comprehensive effects on improving multiple aspects of motor control established the first neuroscience-based clinical method in music, which became the bedrock for the later development of neurologic music therapy. The discovery of entrainment fundamentally shifted and extended the view of the therapeutic properties of music from a psychosocially dominated view to a view using the structural elements of music to retrain motor control, speech and language function, and cognitive functions such as attention and memory. © 2015 Elsevier B.V. All rights reserved.

  13. Experimental and computational study and development of the bituminous coal entrained-flow air-blown gasifier for IGCC

    NASA Astrophysics Data System (ADS)

    Abaimov, N. A.; Osipov, P. V.; Ryzhkov, A. F.

    2016-10-01

    In the paper the development of the advanced bituminous coal entrained-flow air- blown gasifier for the high power integrated gasification combined cycle is considered. The computational fluid dynamics technique is used as the basic development tool. The experiment on the pressurized entrained-flow gasifier was performed by “NPO CKTI” JSC for the thermochemical processes submodel verification. The kinetic constants for Kuznetsk bituminous coal (flame coal), obtained by thermal gravimetric analysis method, are used in the model. The calculation results obtained by the CFD model are in satisfactory agreements with experimental data. On the basis of the verified model the advanced gasifier structure was suggested which permits to increase the hydrogen content in the synthesis gas and consequently to improve the gas turbine efficiency. In order to meet the specified requirements vapor is added on the second stage of MHI type gasifier and heat necessary for air gasification is compensated by supplemental heating of the blasting air.

  14. Entrainment in nerve by a ferroelectric model (II): Quasi-periodic oscillation and the phase locking

    NASA Astrophysics Data System (ADS)

    Shirane, Kotaro; Tokimoto, Takayuki; Kushibe, Hiroyuki

    1997-09-01

    A nonlinear state equation for membrane excitation can be simplified by Leuchtag's ferroelectric model which is applied to a chemical network theory. A dissipative structure of such a membrane is described by an equilibrium space, η 3 + aη + b = 0, giving a cusp catastrophe, and the membrane is self-organized in the resting state under the condition, a < 0( T < Tc), where η corresponds to the membrane potential, and a and b imply dipole-dipole and dipole-ion interactions of channel proteins embedded in the membrane, respectively. As well known, a specific characteristic of nonlinear electrical phenomena in the membrane is a limit cycle arising through the entrainment by periodical stimuli or chaos. A phase transition between the equilibrium and the non-equilibrium states (a dissipative structure without the resting state) is described by a parameter giving the difference from thermal equilibrium. In this dynamic system, quasi-periodic oscillations which arise in periodic external fields and the phase locking, that is, entrainment, caused by changing I0 at ω ≠ ω n (ω n - the natural frequency of the membrane) are studied with parameters introduced into Zeeman's formulas of ȧ and ḃ.

  15. Cycles of circadian illuminance are sufficient to entrain and maintain circadian locomotor rhythms in Drosophila

    NASA Astrophysics Data System (ADS)

    Cho, Eunjoo; Oh, Ji Hye; Lee, Euna; Do, Young Rag; Kim, Eun Young

    2016-11-01

    Light at night disrupts the circadian clock and causes serious health problems in the modern world. Here, we show that newly developed four-package light-emitting diodes (LEDs) can provide harmless lighting at night. To quantify the effects of light on the circadian clock, we employed the concept of circadian illuminance (CIL). CIL represents the amount of light weighted toward the wavelengths to which the circadian clock is most sensitive, whereas visual illuminance (VIL) represents the total amount of visible light. Exposure to 12 h:12 h cycles of white LED light with high and low CIL values but a constant VIL value (conditions hereafter referred to as CH/CL) can entrain behavioral and molecular circadian rhythms in flies. Moreover, flies re-entrain to phase shift in the CH/CL cycle. Core-clock proteins are required for the rhythmic behaviors seen with this LED lighting scheme. Taken together, this study provides a guide for designing healthful white LED lights for use at night, and proposes the use of the CIL value for estimating the harmful effects of any light source on organismal health.

  16. Space Transportation System Availability Requirements and Its Influencing Attributes Relationships

    NASA Technical Reports Server (NTRS)

    Rhodes, Russel E.; Adams, TImothy C.

    2008-01-01

    It is essential that management and engineering understand the need for an availability requirement for the customer's space transportation system as it enables the meeting of his needs, goal, and objectives. There are three types of availability, e.g., operational availability, achieved availability, or inherent availability. The basic definition of availability is equal to the mean uptime divided by the sum of the mean uptime plus the mean downtime. The major difference is the inclusiveness of the functions within the mean downtime and the mean uptime. This paper will address tIe inherent availability which only addresses the mean downtime as that mean time to repair or the time to determine the failed article, remove it, install a replacement article and verify the functionality of the repaired system. The definitions of operational availability include the replacement hardware supply or maintenance delays and other non-design factors in the mean downtime. Also with inherent availability the mean uptime will only consider the mean time between failures (other availability definitions consider this as mean time between maintenance - preventive and corrective maintenance) that requires the repair of the system to be functional. It is also essential that management and engineering understand all influencing attributes relationships to each other and to the resultant inherent availability requirement. This visibility will provide the decision makers with the understanding necessary to place constraints on the design definition for the major drivers that will determine the inherent availability, safety, reliability, maintainability, and the life cycle cost of the fielded system provided the customer. This inherent availability requirement may be driven by the need to use a multiple launch approach to placing humans on the moon or the desire to control the number of spare parts required to support long stays in either orbit or on the surface of the moon or mars. It is

  17. 40 CFR 88.313-93 - Incentives for the purchase of Inherently Low-Emission Vehicles.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Incentives for the purchase of Inherently Low-Emission Vehicles. 88.313-93 Section 88.313-93 Protection of Environment ENVIRONMENTAL...-93 Incentives for the purchase of Inherently Low-Emission Vehicles. (a) Administration. (1) The...

  18. Warm Water Entrainment Impacts and Environmental Life Cycle Assessment of a Proposed Ocean Thermal Energy Conversion Pilot Plant Offshore Oahu, Hawaii

    NASA Astrophysics Data System (ADS)

    Hauer, Whitney Blanchard

    Ocean thermal energy conversion (OTEC) is a marine renewable energy technology that uses the temperature difference of large volumes of cold deep and warm surface seawater in tropical regions to generate electricity. One anticipated environmental impact of OTEC operations is the entrainment and subsequent mortality of ichthyoplankton (fish eggs and larvae) from the withdrawal of cold and warm seawater. The potential ichthyoplankton loss from the warm water intake was estimated for a proposed 10 MW OTEC pilot plant offshore Oahu, HI based on ambient vertical distribution data. The estimated losses due to entrainment from the warm water intake were 8.418E+02 larvae/1000 m3, 3.26E+06 larvae/day, and 1.19E+09 larvae/year. The potential entrained larvae/year is 1.86 X greater than at the Kahe Generating Station (Kapolei, HI), a 582 MW oil-fired power plant. Extrapolating to age-1 equivalence (9.2E+02 and 2.9E+02 yellowfin and skipjack tuna, respectively), the estimated yearly losses from warm water entrainment of yellowfin and skipjack tuna fish eggs and larvae represent 0.25-0.26 % and 0.09-0.11 % of Hawaii's commercial yellowfin and skipjack tuna industry in 2011 and 2012. An environmental life cycle assessment (LCA) was developed for the proposed OTEC plant operating for 20 and 40 years with availability factors of 0.85, 0.95, and 1.0 to determine the global warming potential (GWP) and cumulative energy demand (CED) impacts. For a 20 year operational OTEC plant, the GWP, CED, energy return on investment (EROI), and energy payback time (EPBT) ranged from 0.047 to 0.055 kg CO2eq/kWh, 0.678 to 0.798 MJ/kWh, 4.51 to 5.31 (unitless), and 3.77 to 4.43 years, respectively. For a 40 year operational OTEC plant, the GWP, CED, EROI, and EBPT ranged from 0.036 to 0.043 kg CO2eq/kWh, 0.527 to 0.620 MJ/kWh, 5.81 to 6.83 (unitless), and 5.85 to 6.89 years, respectively. The GWP impacts are within the range of renewable energy technologies and less than conventional electricity

  19. The Blaine Game: Are Public Schools Inherently Anti-Catholic?

    ERIC Educational Resources Information Center

    Justice, Benjamin

    2007-01-01

    Background/Context: Conservative jurists and scholars have reached the conclusion that the traditional separation of public funding from religious organizations in K-12 education was "born of bigotry," and inherently anti-Catholic. This claim rests on the misuse of revisionist historical interpretations that emphasize ethno-cultural…

  20. Contracting for Independent Evaluation: Approaches to an Inherent Tension

    ERIC Educational Resources Information Center

    Klerman, Jacob Alex

    2010-01-01

    There has recently been discussion of whether independent contract evaluation is possible. This article acknowledges the inherent tension in contract evaluation and in response suggests a range of constructive approaches to improving the independence of contract evaluation. In particular, a clear separation between the official evaluation report…

  1. A computational model for the prediction of jet entrainment in the vicinity of nozzle boattails (the BOAT code)

    NASA Technical Reports Server (NTRS)

    Dash, S. M.; Pergament, H. S.

    1978-01-01

    The development of a computational model (BOAT) for calculating nearfield jet entrainment, and its incorporation in an existing methodology for the prediction of nozzle boattail pressures, is discussed. The model accounts for the detailed turbulence and thermochemical processes occurring in the mixing layer formed between a jet exhaust and surrounding external stream while interfacing with the inviscid exhaust and external flowfield regions in an overlaid, interactive manner. The ability of the BOAT model to analyze simple free shear flows is assessed by comparisons with fundamental laboratory data. The overlaid procedure for incorporating variable pressures into BOAT and the entrainment correction employed to yield an effective plume boundary for the inviscid external flow are demonstrated. This is accomplished via application of BOAT in conjunction with the codes comprising the NASA/LRC patched viscous/inviscid methodology for determining nozzle boattail drag for subsonic/transonic external flows.

  2. Liver-inherent immune system: its role in blood-stage malaria

    PubMed Central

    Wunderlich, Frank; Al-Quraishy, Saleh; Dkhil, Mohamed A.

    2014-01-01

    The liver is well known as that organ which is obligately required for the intrahepatocyte development of the pre-erythrocytic stages of the malaria-causative agent Plasmodium. However, largely neglected is the fact that the liver is also a central player of the host defense against the morbidity- and mortality-causing blood stages of the malaria parasites. Indeed, the liver is equipped with a unique immune system that acts locally, however, with systemic impact. Its main “antipodal” functions are to recognize and to generate effective immunoreactivity against pathogens on the one hand, and to generate tolerance to avoid immunoreactivity with “self” and harmless substances as dietary compounds on the other hand. This review provides an introductory survey of the liver-inherent immune system: its pathogen recognition receptors including Toll-like receptors (TLRs) and its major cell constituents with their different facilities to fight and eliminate pathogens. Then, evidence is presented that the liver is also an essential organ to overcome blood-stage malaria. Finally, we discuss effector responses of the liver-inherent immune system directed against blood-stage malaria: activation of TLRs, acute phase response, phagocytic activity, cytokine-mediated pro- and anti-inflammatory responses, generation of “protective” autoimmunity by extrathymic T cells and B-1 cells, and T cell-mediated repair of liver injuries mainly produced by malaria-induced overreactions of the liver-inherent immune system. PMID:25408684

  3. Kinematics of flow and sediment particles at entrainment and deposition

    NASA Astrophysics Data System (ADS)

    Antico, Federica; Sanches, Pedro; Aleixo, Rui; Ferreira, Rui M. L.

    2015-04-01

    A cohesionless granular bed subjected to a turbulent open-channel flow is analysed. The key objective is to clarify the kinematics of entrainment and deposition of individual sediment particles. In particular, we quantify a) the turbulent flow field in the vicinity of particles at the instants of their entrainment and of their deposition; b) the initial particle velocity and the particle velocity immediately before returning to rest. The experimental work was performed at the Hydraulics Laboratory of IST-UL in a 12.5 m long, 0.405 m wide glass-walled flume recirculating water and sediment through independent circuits. The granular bed was a 4.0 m long and 2.5 cm deep reach filled with 5 mm diameter glass beads packed (with some vibration) to a void fraction of 0.356, typical of random packing. Upstream the mobile bed reach the bed was composed of glued particles to ensure the development of a boundary layer with the same roughness. Laboratory tests were run under conditions of weak beadload transport with Shields parameters in the range 0.007 to 0.03. Froude numbers ranged from 0.63 to 0.95 while boundary Reynolds numbers were in the range 130 to 300. It was observed that the bed featured patches of regular arrangements: face centered cubic (fcc) or hexagonal close packing (hcp) blocks alternate with and body centered cubic (bcc) blocks. The resulting bed surface exhibits cleavage lines between blocks and there are spatial variations of bed elevation. The option for artificial sediment allowed for a simplified description of particle positioning at the instant of entrainment. In particular support and pivoting angles are found analytically. Skin friction angles were determind experimentally. The only relevant variables are exposure (defined as the ratio of the actual frontal projection of the exposed area to the area of a circle with 5 mm diameter) and protrusion (defined as the vertical distance between the apex of the particle and the mean local bed elevation

  4. Role of dissolved organic carbon upon re-entrainment and surface properties of aquifer bacteria and bacteria-sized microspheres during subsurface transport (Invited)

    NASA Astrophysics Data System (ADS)

    Harvey, R. W.; Metge, D. W.; Mohanram, A.; Gao, X.; Chorover, J.

    2010-12-01

    Susceptibilities for in-situ re-entrainment of attached 0.2 and 1.0 μm (diameter) microspheres and groundwater bacteria (Pseudomonas stuzeri and uncultured, native bacteria) were assessed during transport studies involving an organically contaminated, sandy aquifer in Cape Cod, MA. Aquifer sediments between pairs of injection and sampling wells were initially loaded with fluorescently labeled, carboxylated microspheres and bacteria that had been stained with the DNA-specific fluorochrome 4',6-diamidino-2-phenylindole. In response to subsequent hydrodynamic perturbations and injections of deionized water (ionic strength reduction), anionic surfactants (77 μM linear alkylbenzene sulfonates, LAS) and non-ionic surfactant (76 μM polyoxyethylene sorbitan monooleate, Tween 80), differing patterns of re-entrainment were evident for the two colloids. Injections of anionic surfactant and deionized water were the most efficient in causing detachment of the highly hydrophilic and negatively charged microspheres, but largely ineffective in causing re-entrainment of bacteria. In contrast, the nonionic surfactant was highly effective in re-entraining bacteria, but not microspheres. The hydrophobicities and zeta potentials of the indigenous bacteria were highly sensitive to modest concentration changes (0.6 to 1.3 mg L-1) in groundwater dissolved organic carbon (DOC), whereas the microspheres were largely unaffected. The most hydrophilic and negatively charged bacterial community was isolated from groundwater having the lowest DOC. FTIR spectra indicated that the community from the lowest DOC groundwater also had the highest average density of surface carboxyl groups. This indicates that DOC may have a biological effect on native bacteria resulting in changes to surface structures or changes in the makeup of the bacterial community.

  5. DE-ENTRAINMENT COLUMN

    DOEpatents

    Mooradian, A.J.

    1958-07-01

    A de-entrainnnent colunnn is described for removing substances from a stream of vapor coming from a distillation apparatus. The device comprises a hollow cylindrical body mounted with its axis vertical on a flange on the upper slde of a vaporizing vessel; two sintered metal circular discs through which all the vapor passes mounted in axially spaced relationship in the cylindrical body; and two semi-circular baffle plates mounted in spaced relationship between the discs.

  6. Music and emotions: from enchantment to entrainment.

    PubMed

    Vuilleumier, Patrik; Trost, Wiebke

    2015-03-01

    Producing and perceiving music engage a wide range of sensorimotor, cognitive, and emotional processes. Emotions are a central feature of the enjoyment of music, with a large variety of affective states consistently reported by people while listening to music. However, besides joy or sadness, music often elicits feelings of wonder, nostalgia, or tenderness, which do not correspond to emotion categories typically studied in neuroscience and whose neural substrates remain largely unknown. Here we review the similarities and differences in the neural substrates underlying these "complex" music-evoked emotions relative to other more "basic" emotional experiences. We suggest that these emotions emerge through a combination of activation in emotional and motivational brain systems (e.g., including reward pathways) that confer its valence to music, with activation in several other areas outside emotional systems, including motor, attention, or memory-related regions. We then discuss the neural substrates underlying the entrainment of cognitive and motor processes by music and their relation to affective experience. These effects have important implications for the potential therapeutic use of music in neurological or psychiatric diseases, particularly those associated with motor, attention, or affective disturbances. © 2015 New York Academy of Sciences.

  7. Scheduled meal accelerates entrainment to a 6-h phase advance by shifting central and peripheral oscillations in rats.

    PubMed

    Ubaldo-Reyes, L M; Buijs, R M; Escobar, C; Ángeles-Castellanos, M

    2017-08-01

    Travelling across several time zones requires a fast adjustment of the circadian system and the differential adjustment speeds of organs and systems results in what is commonly referred as jet lag. During this transitory state of circadian disruption, individuals feel discomfort, appetite loss, fatigue, disturbed sleep and deficient performance of multiple tasks. We have demonstrated that after a 6-h phase advance of the light-dark cycle (LD) scheduled food in phase with the new night onset can speed up re-entrainment. In this study, we explored the possible mechanisms underlying the fast re-entrainment due to the feeding schedule. We focused on first- and second-order structures that provide metabolic information to the suprachiasmatic nucleus (SCN). We compared (i) control rats without change in LD cycle; (ii) rats exposed to a 6-h phase advance of the LD cycle with food ad libitum; and (iii) rats exposed to the 6-h phase advance combined with food access in phase with the new night. We found an immediate synchronizing effect of food on stomach distention and on c-Fos expression in the nucleus of the solitary tract, arcuate nucleus of the hypothalamus, dorsomedial hypothalamic nucleus and paraventricular nucleus. These observations indicate that in a model of jet lag, scheduled feeding can favour an immediate shift in first- and second-order relays to the SCN and that by keeping feeding schedules coupled to the new night, a fast re-entrainment may be achieved by shifting peripheral and extra-SCN oscillations. © 2017 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  8. The inherent metastasis of leukaemia and its exploitation by sonodynamic therapy.

    PubMed

    Trendowski, Matthew

    2015-05-01

    Nearly all cancers are linked by the inexorable phenotype of metastasis as malignant growths have the capability to spread from their place of origin to distant sites throughout the body. While different cancers may have various propensities to migrate towards specific locations, they are all linked by this unifying principal. Unlike most neoplasms, leukaemia has inherent cell motility as leukocytes are required to move throughout the vascular system, suggesting that no mutations are required for anchorage independent growth. As such, it seems likely that leukaemias are inherently metastatic, endowed with the deadliest phenotype of cancer simply due to cell of origin. This article presents the biology of metastasis development and how leukaemia cells are inherently provided these phenotypic characteristics. It is then proposed how clinicians may be able to exploit the motility of leukaemia and metastatic emboli of other cancer types through an approach known as sonodynamic therapy (SDT), a treatment modality that combines chemotherapeutic agents with ultrasound to preferentially damage malignant cells. As experimental evidence has indicated, SDT is a promising therapeutic approach in need of clinical testing for further validation. Copyright © 2014 The Author. Published by Elsevier Ireland Ltd.. All rights reserved.

  9. Dry powder aerosols generated by standardized entrainment tubes from alternative sugar blends: 3. Trehalose dihydrate and D-mannitol carriers.

    PubMed

    Mansour, Heidi M; Xu, Zhen; Hickey, Anthony J

    2010-08-01

    The relationship between physicochemical properties of drug/carrier blends and aerosol drug powder delivery was evaluated. Four pulmonary drugs each representing the major pulmonary therapeutic classes and with a different pharmacological action were employed. Specifically, the four pulmonary drugs were albuterol sulfate, ipratropium bromide monohydrate, disodium cromoglycate, and fluticasone propionate. The two carrier sugars, each representing a different sugar class, were D-mannitol and trehalose dihydrate. Dry powder aerosols (2%, w/w, drug in carrier) delivered using standardized entrainment tubes (SETs) were characterized by twin-stage liquid impinger. The fine particle fraction (FPF) was correlated with SET shear stress, tau(s), and the maximum fine particle fraction (FPF(max)) was correlated with a deaggregation constant, k(d), by using a powder aerosol deaggregation equation (PADE) by nonlinear and linear regression analyses applied to pharmaceutical inhalation aerosol systems in the solid state. For the four pulmonary drugs representing the major pulmonary therapeutic classes and two chemically distinct pulmonary sugar carriers (non-lactose types) aerosolized with SETs having well-defined shear stress values, excellent correlation and predictive relationships were demonstrated for the novel and rigorous application of PADE for dry powder inhalation aerosol dispersion within a well-defined shear stress range, in the context of pulmonary drug/sugar carrier physicochemical and interfacial properties. (c) 2010 Wiley-Liss, Inc. and the American Pharmacists Association

  10. Final Report - "Foaming and Antifoaming and Gas Entrainment in Radioactive Waste Pretreatment and Immobilization Processes"

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wasan, Darsh T.

    2007-10-09

    The Savannah River Site (SRS) and Hanford site are in the process of stabilizing millions of gallons of radioactive waste slurries remaining from production of nuclear materials for the Department of Energy (DOE). The Defense Waste Processing Facility (DWPF) at SRS is currently vitrifying the waste in borosilicate glass, while the facilities at the Hanford site are in the construction phase. Both processes utilize slurry-fed joule-heated melters to vitrify the waste slurries. The DWPF has experienced difficulty during operations. The cause of the operational problems has been attributed to foaming, gas entrainment and the rheological properties of the process slurries.more » The rheological properties of the waste slurries limit the total solids content that can be processed by the remote equipment during the pretreatment and meter feed processes. Highly viscous material can lead to air entrainment during agitation and difficulties with pump operations. Excessive foaming in waste evaporators can cause carryover of radionuclides and non-radioactive waste to the condensate system. Experimental and theoretical investigations of the surface phenomena, suspension rheology and bubble generation of interactions that lead to foaming and air entrainment problems in the DOE High Level and Low Activity Radioactive Waste separation and immobilization processes were pursued under this project. The first major task accomplished in the grant proposal involved development of a theoretical model of the phenomenon of foaming in a three-phase gas-liquid-solid slurry system. This work was presented in a recently completed Ph.D. thesis (9). The second major task involved the investigation of the inter-particle interaction and microstructure formation in a model slurry by the batch sedimentation method. Both experiments and modeling studies were carried out. The results were presented in a recently completed Ph.D. thesis. The third task involved the use of laser confocal microscopy to

  11. Integral Inherently Safe Light Water Reactor (I 2S-LWR)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Petrovic, Bojan; Memmott, Matthew; Boy, Guy

    This final report summarizes results of the multi-year effort performed during the period 2/2013- 12/2016 under the DOE NEUP IRP Project “Integral Inherently Safe Light Water Reactors (I 2S-LWR)”. The goal of the project was to develop a concept of a 1 GWe PWR with integral configuration and inherent safety features, at the same time accounting for lessons learned from the Fukushima accident, and keeping in mind the economic viability of the new concept. Essentially (see Figure 1-1) the project aimed to implement attractive safety features, typically found only in SMRs, to a larger power (1 GWe) reactor, to addressmore » the preference of some utilities in the US power market for unit power level on the order of 1 GWe.« less

  12. Cancer (stem) cell differentiation: An inherent or acquired property?

    PubMed

    Mohr, Marieke; Zänker, Kurt S; Dittmar, Thomas

    2015-12-01

    There is a growing list of data indicating that cancer (stem) cells could functionally adapt foreign tissue features, such as endothelial-like cells or neuroendocrine cells, express lineage markers or could differentiate into various lineages in response to appropriate differentiation criteria. The finding that cancer (stem) cells may possess some kind of differentiation capacity poses the question whether this might be an inherent or acquired property. Cancer stem cells share stem cell characteristics and may thus possess an inherent differentiation capacity enabling the cells to respond to various differentiation stimuli. Considering the plasticity of cancer (stem) cells, even non-tumorigenic (and putatively non-differentiable) tumor cells could give rise to tumorigenic tumor stem cells, exhibiting stem cell characteristics including an inherent differentiation capacity. On the contrary, cancer (stem) cells may have acquired differentiation capacity as a consequence of a previous cell fusion event with cell types exhibiting differentiation potential and being fusogenic, such as macrophages or stem cells. Of pivotal interest in a tumor context are macrophages, which chiefly foster the chronically inflamed tumor microenvironment. Because chronically inflamed tissue is a well-known trigger for cell fusion and both macrophages and stem cells are highly fusogenic we conclude that cell fusion events between these cell types and cancer (stem) cells should frequently occur, thereby giving rise to hybrid cells exhibiting not only novel properties, like an enhanced metastatogenic phenotype, but also parental characteristics, such as differentiation capacity. Conceivably, the combination of both properties might be advantageous for metastasizing cancer (stem) cells to adapt better and faster to a foreign organ tissue environment. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Visual analytics of inherently noisy crowdsourced data on ultra high resolution displays

    NASA Astrophysics Data System (ADS)

    Huynh, Andrew; Ponto, Kevin; Lin, Albert Yu-Min; Kuester, Falko

    The increasing prevalence of distributed human microtasking, crowdsourcing, has followed the exponential increase in data collection capabilities. The large scale and distributed nature of these microtasks produce overwhelming amounts of information that is inherently noisy due to the nature of human input. Furthermore, these inputs create a constantly changing dataset with additional information added on a daily basis. Methods to quickly visualize, filter, and understand this information over temporal and geospatial constraints is key to the success of crowdsourcing. This paper present novel methods to visually analyze geospatial data collected through crowdsourcing on top of remote sensing satellite imagery. An ultra high resolution tiled display system is used to explore the relationship between human and satellite remote sensing data at scale. A case study is provided that evaluates the presented technique in the context of an archaeological field expedition. A team in the field communicated in real-time with and was guided by researchers in the remote visual analytics laboratory, swiftly sifting through incoming crowdsourced data to identify target locations that were identified as viable archaeological sites.

  14. The dependence of entrainment and drizzle in marine stratiform clouds on biomass burning aerosols derived from stable isotope and thermodynamic profiles

    NASA Astrophysics Data System (ADS)

    Henze, D.; Noone, D.

    2017-12-01

    A third of the world's biomass burning aerosol (BBA) particles are generated in southern Africa, and these particles are swept into the midlevel troposphere over the southeast Atlantic Ocean. The presence of these aerosols over the marine environment of the south east Atlantic offers a unique natural laboratory for studying aerosol effects on climate, and specifically a modification to the hydrologic cycle and microphysical characteristics of clouds. Different rates of condensation with high aerosol numbers change the precipitation rates in drizzling stratiform clouds, while the mixing of aerosols into the cloud layer is synonymous with entrainment from above cloud top near the top of the subtropical inversion. To better understanding the magnitude of the aerosol influence on southeast Atlantic boundary layer clouds we analyze the cloud-top entrainment and drizzle as a function of aerosol loading to determine the impact of BBA. Entrainment was determined from mixing line analysis based on profile measurements of moist static energy, total water, and the two most common heavy isotopes of water - HDO and H218O. Data was collected on the P-3 Orion aircraft during the NASA 2017 ORACLES campaign. Using these measurements, a box model was constructed using the combined conservation laws associated with all four of these quantities to estimate the entrainment and rainout of cloud liquid. The population of profiles sampled by the aircraft over the course of the 30 day mission spans varying concentrations of BBA. Initial plots of the water isotope mixing lines show where and to what degree the BBA air mass has mixed into the boundary layer air mass from above. This is demonstrated by the fact that the mixing end-members are the same for the different areas sampled, but the rate at which the various mixing lines are traversed as a function of altitude varies. Further, the mixing lines as a function of height traverse back and forth between end members multiple times over one

  15. Neural Entrainment to the Beat: The "Missing-Pulse" Phenomenon.

    PubMed

    Tal, Idan; Large, Edward W; Rabinovitch, Eshed; Wei, Yi; Schroeder, Charles E; Poeppel, David; Zion Golumbic, Elana

    2017-06-28

    Most humans have a near-automatic inclination to tap, clap, or move to the beat of music. The capacity to extract a periodic beat from a complex musical segment is remarkable, as it requires abstraction from the temporal structure of the stimulus. It has been suggested that nonlinear interactions in neural networks result in cortical oscillations at the beat frequency, and that such entrained oscillations give rise to the percept of a beat or a pulse. Here we tested this neural resonance theory using MEG recordings as female and male individuals listened to 30 s sequences of complex syncopated drumbeats designed so that they contain no net energy at the pulse frequency when measured using linear analysis. We analyzed the spectrum of the neural activity while listening and compared it to the modulation spectrum of the stimuli. We found enhanced neural response in the auditory cortex at the pulse frequency. We also showed phase locking at the times of the missing pulse, even though the pulse was absent from the stimulus itself. Moreover, the strength of this pulse response correlated with individuals' speed in finding the pulse of these stimuli, as tested in a follow-up session. These findings demonstrate that neural activity at the pulse frequency in the auditory cortex is internally generated rather than stimulus-driven. The current results are both consistent with neural resonance theory and with models based on nonlinear response of the brain to rhythmic stimuli. The results thus help narrow the search for valid models of beat perception. SIGNIFICANCE STATEMENT Humans perceive music as having a regular pulse marking equally spaced points in time, within which musical notes are temporally organized. Neural resonance theory (NRT) provides a theoretical model explaining how an internal periodic representation of a pulse may emerge through nonlinear coupling between oscillating neural systems. After testing key falsifiable predictions of NRT using MEG recordings, we

  16. Investigations of protostellar outflow launching and gas entrainment: Hydrodynamic simulations and molecular emission

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Offner, Stella S. R.; Arce, Héctor G., E-mail: stella.offner@yale.edu

    2014-03-20

    We investigate protostellar outflow evolution, gas entrainment, and star formation efficiency using radiation-hydrodynamic simulations of isolated, turbulent low-mass cores. We adopt an X-wind launching model, in which the outflow rate is coupled to the instantaneous protostellar accretion rate and evolution. We vary the outflow collimation angle from θ = 0.01-0.1 and find that even well-collimated outflows effectively sweep up and entrain significant core mass. The Stage 0 lifetime ranges from 0.14-0.19 Myr, which is similar to the observed Class 0 lifetime. The star formation efficiency of the cores spans 0.41-0.51. In all cases, the outflows drive strong turbulence in themore » surrounding material. Although the initial core turbulence is purely solenoidal by construction, the simulations converge to approximate equipartition between solenoidal and compressive motions due to a combination of outflow driving and collapse. When compared to simulation of a cluster of protostars, which is not gravitationally centrally condensed, we find that the outflows drive motions that are mainly solenoidal. The final turbulent velocity dispersion is about twice the initial value of the cores, indicating that an individual outflow is easily able to replenish turbulent motions on sub-parsec scales. We post-process the simulations to produce synthetic molecular line emission maps of {sup 12}CO, {sup 13}CO, and C{sup 18}O and evaluate how well these tracers reproduce the underlying mass and velocity structure.« less

  17. Research Challenges Inherent in Determining Improvement in University Teaching

    ERIC Educational Resources Information Center

    Devlin, Marcia

    2008-01-01

    Using a recent study that examined the effectiveness of a particular approach to improving individual university teaching as a case study, this paper examines some of the challenges inherent in educational research, particularly research examining the effects of interventions to improve teaching. Aspects of the research design and methodology and…

  18. Stability of entrainment of a continuum of coupled oscillators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Snyder, Jordan; Zlotnik, Anatoly; Hagberg, Aric

    Complex natural and engineered systems are ubiquitous, and their behavior is challenging to characterize and control. Here, we examine the design of the entrainment process for an uncountably infinite collection of coupled phase oscillators that are all subject to the same periodic driving signal. In the absence of coupling, an appropriately designed input can result in each oscillator attaining the frequency of the driving signal, with a phase offset determined by its natural frequency. We also consider a special case of interacting oscillators in which the coupling tends to destabilize the phase configuration to which the driving signal would sendmore » the collection in the absence of coupling. In this setting, we derive stability results that characterize the trade-off between the effects of driving and coupling, and compare these results to the well-known Kuramoto model of a collection of free-running coupled oscillators.« less

  19. Stability of entrainment of a continuum of coupled oscillators

    DOE PAGES

    Snyder, Jordan; Zlotnik, Anatoly; Hagberg, Aric

    2017-10-05

    Complex natural and engineered systems are ubiquitous, and their behavior is challenging to characterize and control. Here, we examine the design of the entrainment process for an uncountably infinite collection of coupled phase oscillators that are all subject to the same periodic driving signal. In the absence of coupling, an appropriately designed input can result in each oscillator attaining the frequency of the driving signal, with a phase offset determined by its natural frequency. We also consider a special case of interacting oscillators in which the coupling tends to destabilize the phase configuration to which the driving signal would sendmore » the collection in the absence of coupling. In this setting, we derive stability results that characterize the trade-off between the effects of driving and coupling, and compare these results to the well-known Kuramoto model of a collection of free-running coupled oscillators.« less

  20. Remote Sensing Reflectance and Inherent Optical Properties in the Mid-mesohaline Chesapeake Bay

    NASA Technical Reports Server (NTRS)

    Tzortziou, Maria; Subramaniam, Ajit; Herman, Jay R.; Gallegos, Charles L.; Neal, Patrick J.; Harding, Lawrence W., Jr.

    2006-01-01

    We used an extensive set of bio-optical data and radiative transfer (RT) model simulations of radiation fields to investigate relationships between inherent optical properties and remotely sensed quantities in the optically complex, mid-mesohaline Chesapeake Bay waters. Field observations showed that the chlorophyll algorithms used by the MODIS (MODerate resolution Imaging Spectroradiometer) ocean color sensor (i.e. Chlor_a, chlor_MODIS, chlor_a_3 products) do not perform accurately in these Case 2 waters. This is because, when applied to waters with high concentrations of chlorophyll, all MODIS algorithms are based on empirical relationships between chlorophyll concentration and blue-green wavelength remote sensing reflectance (Rrs) ratios that do not account for the typically strong blue-wavelength absorption by non-covarying, dissolved and non-algal particulate components. Stronger correlation was observed between chlorophyll concentration and Rrs ratios in the red (i.e. Rrs(677)/Rrs(554)) where dissolved and non-algal particulate absorption become exponentially smaller. Regionally-specific algorithms that are based on the phytoplankton optical properties in the red wavelength region provide a better basis for satellite monitoring of phytoplankton blooms in these Case 2 waters. Good optical closure was obtained between independently measured Rrs spectra and the optical properties of backscattering, b(sub b), and absorption, a, over the wide range of in-water conditions observed in the Chesapeake Bay. Observed variability in the quantity f/Q (proportionality factor in the relationship between Rrs and the water inherent optical properties ratio b(sub b)/(a+b(sub b)) was consistent with RT model calculations for the specific measurement geometry and water bio-optical characteristics. Data and model results showed that f/Q values in these Case 2 coastal waters are not considerably different from those estimated in previous studies for Case 1 waters. Variation in

  1. Dynamic and Inherent B0 Correction for DTI Using Stimulated Echo Spiral Imaging

    PubMed Central

    Avram, Alexandru V.; Guidon, Arnaud; Truong, Trong-Kha; Liu, Chunlei; Song, Allen W.

    2013-01-01

    Purpose To present a novel technique for high-resolution stimulated echo (STE) diffusion tensor imaging (DTI) with self-navigated interleaved spirals (SNAILS) readout trajectories that can inherently and dynamically correct for image artifacts due to spatial and temporal variations in the static magnetic field (B0) resulting from eddy currents, tissue susceptibilities, subject/physiological motion, and hardware instabilities. Methods The Hahn spin echo formed by the first two 90° radio-frequency pulses is balanced to consecutively acquire two additional images with different echo times (TE) and generate an inherent field map, while the diffusion-prepared STE signal remains unaffected. For every diffusion-encoding direction, an intrinsically registered field map is estimated dynamically and used to effectively and inherently correct for off-resonance artifacts in the reconstruction of the corresponding diffusion-weighted image (DWI). Results After correction with the dynamically acquired field maps, local blurring artifacts are specifically removed from individual STE DWIs and the estimated diffusion tensors have significantly improved spatial accuracy and larger fractional anisotropy. Conclusion Combined with the SNAILS acquisition scheme, our new method provides an integrated high-resolution short-TE DTI solution with inherent and dynamic correction for both motion-induced phase errors and off-resonance effects. PMID:23630029

  2. Realignment of Nanocrystal Aggregates into Single Crystals as a Result of Inherent Surface Stress

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Zhaoming; Pan, Haihua; Zhu, Genxing

    2016-07-19

    Assembly of nanoparticles building blocks during single crystal growth is widely observed in both natural and synthetic environments. Although this form of non-classical crystallization is generally described by oriented attachment, random aggregation of building blocks leading to single crystal products is also observed, but the mechanism of crystallographic realignment is unknown. We herein reveal that random attachment during aggregation-based growth initially produces a non-oriented growth front. Subsequent evolution of the orientation is driven by the inherent surface stress applied by the disordered surface layer and results in single crystal formation via grain boundary migration. This mechanism is corroborated by measurementsmore » of orientation rate vs external stress, demonstrating a predictive relationship between the two. These findings advance our understanding of aggregation-based growth of natural minerals by nanocrystals, and suggest an approach to material synthesis that takes advantage of stress induced co-alignment.« less

  3. Oil production by entrained pyrolysis of biomass and processing of oil and char

    DOEpatents

    Knight, James A.; Gorton, Charles W.

    1990-01-02

    Entrained pyrolysis of lignocellulosic material proceeds from a controlled pyrolysis-initiating temperature to completion of an oxygen free environment at atmospheric pressure and controlled residence time to provide a high yield recovery of pyrolysis oil together with char and non-condensable, combustible gases. The residence time is a function of gas flow rate and the initiating temperature is likewise a function of the gas flow rate, varying therewith. A controlled initiating temperature range of about 400.degree. C. to 550.degree. C. with corresponding gas flow rates to maximize oil yield is disclosed.

  4. Inherent structures of crystalline pentacene

    NASA Astrophysics Data System (ADS)

    Della Valle, Raffaele Guido; Venuti, Elisabetta; Brillante, Aldo; Girlando, Alberto

    2003-01-01

    Using a quasi-Monte Carlo scheme, we search the potential energy surface of crystalline pentacene to sample its local minima, which represent the "inherent" structures, i.e., the possible configurations of mechanical equilibrium. The system is described in terms of rigid molecules interacting through a standard atom-atom potential model. Several hundreds of distinct minima are encountered, with a surprising variety of structural arrangements. We find that deep minima are easily accessible because they exhibit a favorable energy distribution and their attraction basins tend to be wide. Thanks to these features of the potential surface, the localization the global minimum becomes entirely feasible, allowing reliable a priori predictions of the crystallographic structures. The results for pentacene are very satisfactory. In fact, the two deepest minima correspond to the structures of the two known experimental polymorphs, which are described correctly. Further polymorphs are also likely to exist.

  5. Finding the Beat: From Socially Coordinated Vocalizations in Songbirds to Rhythmic Entrainment in Humans.

    PubMed

    Benichov, Jonathan I; Globerson, Eitan; Tchernichovski, Ofer

    2016-01-01

    Humans and oscine songbirds share the rare capacity for vocal learning. Songbirds have the ability to acquire songs and calls of various rhythms through imitation. In several species, birds can even coordinate the timing of their vocalizations with other individuals in duets that are synchronized with millisecond-accuracy. It is not known, however, if songbirds can perceive rhythms holistically nor if they are capable of spontaneous entrainment to complex rhythms, in a manner similar to humans. Here we review emerging evidence from studies of rhythm generation and vocal coordination across songbirds and humans. In particular, recently developed experimental methods have revealed neural mechanisms underlying the temporal structure of song and have allowed us to test birds' abilities to predict the timing of rhythmic social signals. Surprisingly, zebra finches can readily learn to anticipate the calls of a "vocal robot" partner and alter the timing of their answers to avoid jamming, even in reference to complex rhythmic patterns. This capacity resembles, to some extent, human predictive motor response to an external beat. In songbirds, this is driven, at least in part, by the forebrain song system, which controls song timing and is essential for vocal learning. Building upon previous evidence for spontaneous entrainment in human and non-human vocal learners, we propose a comparative framework for future studies aimed at identifying shared mechanism of rhythm production and perception across songbirds and humans.

  6. Entrainment in Laboratory Simulations of Cumulus Cloud Flows

    NASA Astrophysics Data System (ADS)

    Narasimha, R.; Diwan, S.; Subrahmanyam, D.; Sreenivas, K. R.; Bhat, G. S.

    2010-12-01

    A variety of cumulus cloud flows, including congestus (both shallow bubble and tall tower types), mediocris and fractus have been generated in a water tank by simulating the release of latent heat in real clouds. The simulation is achieved through ohmic heating, injected volumetrically into the flow by applying suitable voltages between diametral cross-sections of starting jets and plumes of electrically conducting fluid (acidified water). Dynamical similarity between atmospheric and laboratory cloud flows is achieved by duplicating values of an appropriate non-dimensional heat release number. Velocity measurements, made by laser instrumentation, show that the Taylor entrainment coefficient generally increases just above the level of commencement of heat injection (corresponding to condensation level in the real cloud). Subsequently the coefficient reaches a maximum before declining to the very low values that characterize tall cumulus towers. The experiments also simulate the protected core of real clouds. Cumulus Congestus : Atmospheric cloud (left), simulated laboratory cloud (right). Panels below show respectively total heat injected and vertical profile of heating in the laboratory cloud.

  7. What is the mechanism of soap film entrainment?

    PubMed

    Saulnier, Laurie; Restagno, Frédéric; Delacotte, Jérôme; Langevin, Dominique; Rio, Emmanuelle

    2011-11-15

    Classical Frankel's law describes the formation of soap films and their evolution upon pulling, a model situation of film dynamics in foams (formation, rheology, and destabilization). With the purpose of relating film pulling to foam dynamics, we have built a new setup able to give an instantaneous measurement of film thickness, thus allowing us to determine film thickness profile during pulling. We found that only the lower part of the film is of uniform thickness and follows Frankel's law, provided the entrainment velocity is small. We show that this is due to confinement effects: there is not enough surfactant in the bulk to fully cover the newly created surfaces which results in immobile film surfaces. At large velocities, surfaces become mobile and then Frankel's law breaks down, leading to a faster drainage and thus to a nonstationary thickness at the bottom of the film. These findings should help in understanding the large dispersion of previous experimental data reported during the last 40 years and clarifying the pulling phenomenon of thin liquid films.

  8. Selective entrainment of brain oscillations drives auditory perceptual organization.

    PubMed

    Costa-Faidella, Jordi; Sussman, Elyse S; Escera, Carles

    2017-10-01

    Perceptual sound organization supports our ability to make sense of the complex acoustic environment, to understand speech and to enjoy music. However, the neuronal mechanisms underlying the subjective experience of perceiving univocal auditory patterns that can be listened to, despite hearing all sounds in a scene, are poorly understood. We hereby investigated the manner in which competing sound organizations are simultaneously represented by specific brain activity patterns and the way attention and task demands prime the internal model generating the current percept. Using a selective attention task on ambiguous auditory stimulation coupled with EEG recordings, we found that the phase of low-frequency oscillatory activity dynamically tracks multiple sound organizations concurrently. However, whereas the representation of ignored sound patterns is circumscribed to auditory regions, large-scale oscillatory entrainment in auditory, sensory-motor and executive-control network areas reflects the active perceptual organization, thereby giving rise to the subjective experience of a unitary percept. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Entrained-flow gasifier and fluidized-bed combustor temperature monitoring using arrays of fs-IR written fiber Bragg gratings

    NASA Astrophysics Data System (ADS)

    Walker, Robert B.; Ding, Huimin; Coulas, David; Grobnic, Dan; Mihailov, Stephen J.; Duchesne, Marc A.; Hughes, Robin W.; McCalden, David J.; Burchat, Ryan

    2015-09-01

    Femtosecond written fiber Bragg gratings, have shown great potential for sensing in extreme environments. This paper discusses the fabrication and deployment of several fs-IR written FBG arrays, for monitoring main-spool skin temperatures of an entrained-flow gasifier, as well as the internal temperature gradient of a fluidized bed combustor.

  10. Development of an inherently digital transducer

    NASA Technical Reports Server (NTRS)

    Richard, R. R.

    1972-01-01

    The term digital transducer normally implies the combination of conventional analog sensors with encoders or analog-to-digital converters. Because of the objectionable characteristics of most digital transducers, a program was instituted to investigate the possibility of producing a transducer that is inherently digital, instead of a transducer that is digital in the usual sense. Such a device would have improved accuracy and reliability and would have reduced power and bulk requirements because two processes, sensing and conditioning, would be combined into one processes. A Curie-point-temperature sensor is described that represents realization of the stated goal. Also, a metal-insulator semiconductor is described that does not conform precisely to the program goals but that appears to have applications as a new and interesting transduction device.

  11. Combustion Model of Supersonic Rocket Exhausts in an Entrained Flow Enclosure

    NASA Technical Reports Server (NTRS)

    Vu, Bruce; Oliveira, Justin

    2011-01-01

    This paper describes the Computation Fluid Dynamics (CFD) model developed to simulate the supersonic rocket exhaust in an entrained flow cylinder. The model can be used to study the plume-induced environment due to static firing test of the Taurus II launch vehicle. The finite rate chemistry is used to model the combustion process involving rocket propellant (RP 1) and liquid oxidizer (LOX). A similar chemical reacting model is also used to simulate the mixing of rocket plume and ambient air. The model provides detailed information on the gas concentration and other flow parameters within the enclosed region thus allowing different operating scenarios to be examined in an efficient manner. It is shown that the real gas influence is significant and yields better agreement with the theory.

  12. Combustion Model of Supersonic Rocket Exhausts in an Entrained Flow Enclosure

    NASA Technical Reports Server (NTRS)

    Vu, Bruce T.; Oliveira, Justin

    2011-01-01

    This paper describes the Computational Fluid Dynamics (CFD) model developed to simulate the supersonic rocket exhaust in an entrained flow cylinder. The model can be used to study the plume-induced environment due to static firing tests of the Taurus-II launch vehicle. The finite-rate chemistry is used to model the combustion process involving rocket propellant (RP-1) and liquid oxidizer (LOX). A similar chemical reacting model is also used to simulate the mixing of rocket plume and ambient air. The model provides detailed information on the gas concentration and other flow parameters within the enclosed region, thus allowing different operating scenarios to be examined in an efficient manner. It is shown that the real gas influence is significant and yields better agreement with the theory.

  13. Exploring Familial Relationship Growth and Negotiation: A Case Study of Outward Bound Family Courses

    ERIC Educational Resources Information Center

    Overholt, Jillisa R.

    2013-01-01

    This study explored the phenomenon of father-child relationship development within the context of an Outward Bound (OB) family course, an environment that may both disrupt the ordinary aspects of an established relationship, and provide activities to purposefully encourage relationship development through a variety of aspects inherent to the…

  14. Entrainment sampling at the Savannah River Site (SRS) Savannah River water intakes (1991)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paller, M.

    1990-11-01

    Cooling water for the Westinghouse Savannah River Company (WSRC) L-Reactor, K-Reactor, and makeup water for Par Pond is pumped from the Savannah River at the 1G, 3G, and 5G pumphouses. Ichthyoplankton (drifting fish larvae and eggs) from the river are entrained into the reactor cooling systems with the river water. They are passed through the reactor heat exchangers where temperatures may reach 70{degree}C during full power operation. Ichthyoplankton mortality under such conditions is presumably 100%. Apart from a small pilot study conducted in 1989, ichthyoplankton samples have not been collected from the vicinity of the SRS intake canals since 1985.more » The Department of Energy (DOE) has requested that the Environmental Sciences Section (ESS) of the Savannah River Laboratory (SRL) resume ichthyoplankton sampling for the purpose of assessing entrainment at the SRS Savannah River intakes. This request is due to the anticipated restart of several SRS reactors and the growing concern surrounding striped bass and American shad stocks in the Savannah River. The following scope of work presents a sampling plan that will collect information on the spatial and temporal distribution of fish eggs and larvae near the SRS intake canal mouths. This data will be combined with information on water movement patterns near the canal mouths in order to determine the percentage of ichthyoplankton that are removed from the Savannah River by the SRS intakes. The following sampling plan incorporates improvements in experimental design that resulted from the findings of the 1989 pilot study. 1 fig.« less

  15. ACHP | ACHP Policy Statement Regarding ACHP's Relationship with Indian

    Science.gov Websites

    acknowledges Indian tribes as sovereign nations with inherent powers of self-governance. This relationship has of self-governance (Cherokee Nation vs. Georgia, 30 U.S. (5 Pet.) 1 (1831)). The ACHP, recognizing

  16. 16 CFR 1211.13 - Inherent force activated secondary door sensors.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... sensors. 1211.13 Section 1211.13 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION CONSUMER PRODUCT... § 1211.13 Inherent force activated secondary door sensors. (a) Normal operation test. (1) A force activated door sensor of a door system installed according to the installation instructions shall actuate...

  17. 16 CFR 1211.13 - Inherent force activated secondary door sensors.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... sensors. 1211.13 Section 1211.13 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION CONSUMER PRODUCT... § 1211.13 Inherent force activated secondary door sensors. (a) Normal operation test. (1) A force activated door sensor of a door system installed according to the installation instructions shall actuate...

  18. 16 CFR 1211.13 - Inherent force activated secondary door sensors.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... sensors. 1211.13 Section 1211.13 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION CONSUMER PRODUCT... § 1211.13 Inherent force activated secondary door sensors. (a) Normal operation test. (1) A force activated door sensor of a door system installed according to the installation instructions shall actuate...

  19. A pulsed supersonic entrainment reactor for the rational preparation of cold ionic complexes

    NASA Astrophysics Data System (ADS)

    Robertson, W. H.; Kelley, J. A.; Johnson, M. A.

    2000-12-01

    We describe an ion source for the efficient preparation of cold ion-molecule complexes, X-ṡM. The method relies on condensation of solvent molecules, M, onto argon-solvated ions, X-ṡArm, where the X-ṡArm species are formed in a primary expansion and the molecular partner, M, is interfaced to this flow in the hydrodynamic region by supersonic entrainment. This hybrid "supersonic afterglow" reactor provides a clean synthetic approach for both bare and argon-solvated complexes, where the latter are particularly useful since their structures can be characterized by "nanomatrix" infrared predissociation spectroscopy.

  20. Chimera Type Behavior in Nonlocal Coupling System with Two Different Inherent Frequencies

    NASA Astrophysics Data System (ADS)

    Lin, Larry; Li, Ping-Cheng; Tseng, Hseng-Che

    2014-03-01

    From the research of Kuramoto and Strogatz, arrays of identical oscillators can display a remarkable pattern, named chimera state, in which phase-locked oscillators coexist with drifting ones in nonlocal coupling oscillator system. We consider further in this study, two groups of oscillators with different inherent frequencies and arrange them in a ring. When the difference of the inherent frequencies is within some specific parameter range, oscillators of nonlocal coupling system show two distinct chimera states. When the parameter value exceeds some threshold value, two chimera states disappear. They show different features. The statistical dynamic behavior of the system can be described by Kuramoto theory.

  1. Unusually conductive carbon-inherently conducting polymer (ICP) composites: Synthesis and characterization

    NASA Astrophysics Data System (ADS)

    Bourdo, Shawn Edward

    Two groups of materials that have recently come to the forefront of research initiatives are carbon allotropes, especially nanotubes, and conducting polymers-more specifically inherently conducting polymers. The terms conducting polymers and inherently conducting polymers sometimes are used interchangeably without fully acknowledging a major difference in these terms. Conducting polymers (CPs) and inherently conducting polymers (ICPs) are both polymeric materials that conduct electricity, but the difference lies in how each of these materials conducts electricity. For CPs of the past, an electrically conductive filler such as metal particles, carbon black, or graphite would be blended into a polymer (insulator) allowing for the CP to carry an electric current. An ICP conducts electricity due to the intrinsic nature of its chemical structure. The two materials at the center of this research are graphite and polyaniline. For the first time, a composite between carbon allotropes (graphite) and an inherently conducting polymer (PANI) has exhibited an electrical conductivity greater than either of the two components. Both components have a plethora of potential applications and therefore the further investigation could lead to use of these composites in any number of technologies. Touted applications that use either conductive carbons or ICPs exist in a wide range of fields, including electromagnetic interference (EMI) shielding, radar evasion, low power rechargeable batteries, electrostatic dissipation (ESD) for anti-static textiles, electronic devices, light emitting diodes (LEDs), corrosion prevention, gas sensors, super capacitors, photovoltaic cells, and resistive heating. The main motivation for this research has been to investigate the connection between an observed increase in conductivity and structure of composites. Two main findings have resulted from the research as related to the observed increase in conductivity. The first was the structural evidence from

  2. Capturing with EEG the neural entrainment and coupling underlying sensorimotor synchronization to the beat.

    PubMed

    Nozaradan, Sylvie; Zerouali, Younes; Peretz, Isabelle; Mouraux, André

    2015-03-01

    Synchronizing movements with rhythmic inputs requires tight coupling of sensory and motor neural processes. Here, using a novel approach based on the recording of steady-state-evoked potentials (SS-EPs), we examine how distant brain areas supporting these processes coordinate their dynamics. The electroencephalogram was recorded while subjects listened to a 2.4-Hz auditory beat and tapped their hand on every second beat. When subjects tapped to the beat, the EEG was characterized by a 2.4-Hz SS-EP compatible with beat-related entrainment and a 1.2-Hz SS-EP compatible with movement-related entrainment, based on the results of source analysis. Most importantly, when compared with passive listening of the beat, we found evidence suggesting an interaction between sensory- and motor-related activities when subjects tapped to the beat, in the form of (1) additional SS-EP appearing at 3.6 Hz, compatible with a nonlinear product of sensorimotor integration; (2) phase coupling of beat- and movement-related activities; and (3) selective enhancement of beat-related activities over the hemisphere contralateral to the tapping, suggesting a top-down effect of movement-related activities on auditory beat processing. Taken together, our results are compatible with the view that rhythmic sensorimotor synchronization is supported by a dynamic coupling of sensory and motor related activities. © The Author 2013. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  3. Development of a Cl-impregnated activated carbon for entrained-flow capture of elemental mercury.

    PubMed

    Ghorishi, S Behrooz; Keeney, Robert M; Serre, Shannon D; Gullett, Brian K; Jozewicz, Wojciech S

    2002-10-15

    Efforts to discern the role of an activated carbon's surface functional groups on the adsorption of elemental mercury (Hg0) and mercuric chloride demonstrated that chlorine (Cl) impregnation of a virgin activated carbon using dilute solutions of hydrogen chloride leads to increases (by a factor of 2-3) in fixed-bed capture of these mercury species. A commercially available activated carbon (DARCO FGD, NORITAmericas Inc. [FGD])was Cl-impregnated (Cl-FGD) [5 lb (2.3 kg) per batch] and tested for entrained-flow, short-time-scale capture of Hg0. In an entrained flow reactor, the Cl-FGD was introduced in Hg0-laden flue gases (86 ppb of Hg0) of varied compositions with gas/solid contact times of about 3-4 s, resulting in significant Hg0 removal (80-90%), compared to virgin FGD (10-15%). These levels of Hg0 removal were observed across a wide range of very low carbon-to-mercury weight ratios (1000-5000). Variation of the natural gas combustion flue gas composition, by doping with nitrogen oxides and sulfur dioxide, and the flow reactor temperature (100-200 degrees C) had minimal effects on Hg0 removal bythe Cl-FGD in these carbon-to-mercury weight ratios. These results demonstrate significant enhancement of activated carbon reactivity with minimal treatment and are applicable to combustion facilities equipped with downstream particulate matter removal such as an electrostatic precipitator.

  4. Quantitative Relationships Involving Additive Differences: Numerical Resilience

    ERIC Educational Resources Information Center

    Ramful, Ajay; Ho, Siew Yin

    2014-01-01

    This case study describes the ways in which problems involving additive differences with unknown starting quantities, constrain the problem solver in articulating the inherent quantitative relationship. It gives empirical evidence to show how numerical reasoning takes over as a Grade 6 student instantiates the quantitative relation by resorting to…

  5. SU-F-T-113: Inherent Functional Dependence of Spinal Cord Doses of Variable Irradiated Volumes in Spine SBRT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, L; Braunstein, S; Chiu, J

    2016-06-15

    Purpose: Spinal cord tolerance for SBRT has been recommended for the maximum point dose level or at irradiated volumes such as 0.35 mL or 10% of contoured volumes. In this study, we investigated an inherent functional relationship that associates these dose surrogates for irradiated spinal cord volumes of up to 3.0 mL. Methods: A hidden variable termed as Effective Dose Radius (EDR) was formulated based on a dose fall-off model to correlate dose at irradiated spinal cord volumes ranging from 0 mL (point maximum) to 3.0 mL. A cohort of 15 spine SBRT cases was randomly selected to derive anmore » EDR-parameterized formula. The mean prescription dose for the studied cases was 21.0±8.0 Gy (range, 10–40Gy) delivered in 3±1 fractions with target volumes of 39.1 ± 70.6 mL. Linear regression and variance analysis were performed for the fitting parameters of variable EDR values. Results: No direct correlation was found between the dose at maximum point and doses at variable spinal cord volumes. For example, Pearson R{sup 2} = 0.643 and R{sup 2}= 0.491 were obtained when correlating the point maximum dose with the spinal cord dose at 1 mL and 3 mL, respectively. However, near perfect correlation (R{sup 2} ≥0.99) was obtained when corresponding parameterized EDRs. Specifically, Pearson R{sup 2}= 0.996 and R{sup 2} = 0.990 were obtained when correlating EDR (maximum point dose) with EDR (dose at 1 mL) and EDR(dose at 3 mL), respectively. As a result, high confidence level look-up tables were established to correlate spinal cord doses at the maximum point to any finite irradiated volumes. Conclusion: An inherent functional relationship was demonstrated for spine SBRT. Such a relationship unifies dose surrogates at variable cord volumes and proves that a single dose surrogate (e.g. point maximum dose) is mathematically sufficient in constraining the overall spinal cord dose tolerance for SBRT.« less

  6. Inherently safe in situ uranium recovery

    DOEpatents

    Krumhansl, James L; Brady, Patrick V

    2014-04-29

    An in situ recovery of uranium operation involves circulating reactive fluids through an underground uranium deposit. These fluids contain chemicals that dissolve the uranium ore. Uranium is recovered from the fluids after they are pumped back to the surface. Chemicals used to accomplish this include complexing agents that are organic, readily degradable, and/or have a predictable lifetime in an aquifer. Efficiency is increased through development of organic agents targeted to complexing tetravalent uranium rather than hexavalent uranium. The operation provides for in situ immobilization of some oxy-anion pollutants under oxidizing conditions as well as reducing conditions. The operation also artificially reestablishes reducing conditions on the aquifer after uranium recovery is completed. With the ability to have the impacted aquifer reliably remediated, the uranium recovery operation can be considered inherently safe.

  7. Landslide Hazard Probability Derived from Inherent and Dynamic Determinants

    NASA Astrophysics Data System (ADS)

    Strauch, Ronda; Istanbulluoglu, Erkan

    2016-04-01

    Landslide hazard research has typically been conducted independently from hydroclimate research. We unify these two lines of research to provide regional scale landslide hazard information for risk assessments and resource management decision-making. Our approach combines an empirical inherent landslide probability with a numerical dynamic probability, generated by combining routed recharge from the Variable Infiltration Capacity (VIC) macro-scale land surface hydrologic model with a finer resolution probabilistic slope stability model run in a Monte Carlo simulation. Landslide hazard mapping is advanced by adjusting the dynamic model of stability with an empirically-based scalar representing the inherent stability of the landscape, creating a probabilistic quantitative measure of geohazard prediction at a 30-m resolution. Climatology, soil, and topography control the dynamic nature of hillslope stability and the empirical information further improves the discriminating ability of the integrated model. This work will aid resource management decision-making in current and future landscape and climatic conditions. The approach is applied as a case study in North Cascade National Park Complex, a rugged terrain with nearly 2,700 m (9,000 ft) of vertical relief, covering 2757 sq km (1064 sq mi) in northern Washington State, U.S.A.

  8. A simple graphical method for measuring inherent safety.

    PubMed

    Gupta, J P; Edwards, David W

    2003-11-14

    Inherently safer design (ISD) concepts have been with us for over two decades since their elaboration by Kletz [Chem. Ind. 9 (1978) 124]. Interest has really taken off globally since the early nineties after several major mishaps occurred during the eighties (Bhopal, Mexico city, Piper-alfa, Philips Petroleum, to name a few). Academic and industrial research personnel have been actively involved into devising inherently safer ways of production. The regulatory bodies have also shown deep interest since ISD makes the production safer and hence their tasks easier. Research funding has also been forthcoming for new developments as well as for demonstration projects.A natural question that arises is as to how to measure ISD characteristics of a process? Several researchers have worked on this [Trans. IChemE, Process Safety Environ. Protect. B 71 (4) (1993) 252; Inherent safety in process plant design, Ph.D. Thesis, VTT Publication Number 384, Helsinki University of Technology, Espoo, Finland, 1999; Proceedings of the Mary Kay O'Connor Process Safety Center Symposium, 2001, p. 509]. Many of the proposed methods are very elegant, yet too involved for easy adoption by the industry which is scared of yet another safety analysis regime. In a recent survey [Trans. IChemE, Process Safety Environ. Prog. B 80 (2002) 115], companies desired a rather simple method to measure ISD. Simplification is also an important characteristic of ISD. It is therefore desirable to have a simple ISD measurement procedure. The ISD measurement procedure proposed in this paper can be used to differentiate between two or more processes for the same end product. The salient steps are: Consider each of the important parameters affecting the safety (e.g., temperature, pressure, toxicity, flammability, etc.) and the range of possible values these parameters can have for all the process routes under consideration for an end product. Plot these values for each step in each process route and compare. No

  9. Nasal Respiration Entrains Human Limbic Oscillations and Modulates Cognitive Function

    PubMed Central

    Jiang, Heidi; Zhou, Guangyu; Arora, Nikita; Schuele, Stephan; Rosenow, Joshua; Gottfried, Jay A.

    2016-01-01

    The need to breathe links the mammalian olfactory system inextricably to the respiratory rhythms that draw air through the nose. In rodents and other small animals, slow oscillations of local field potential activity are driven at the rate of breathing (∼2–12 Hz) in olfactory bulb and cortex, and faster oscillatory bursts are coupled to specific phases of the respiratory cycle. These dynamic rhythms are thought to regulate cortical excitability and coordinate network interactions, helping to shape olfactory coding, memory, and behavior. However, while respiratory oscillations are a ubiquitous hallmark of olfactory system function in animals, direct evidence for such patterns is lacking in humans. In this study, we acquired intracranial EEG data from rare patients (Ps) with medically refractory epilepsy, enabling us to test the hypothesis that cortical oscillatory activity would be entrained to the human respiratory cycle, albeit at the much slower rhythm of ∼0.16–0.33 Hz. Our results reveal that natural breathing synchronizes electrical activity in human piriform (olfactory) cortex, as well as in limbic-related brain areas, including amygdala and hippocampus. Notably, oscillatory power peaked during inspiration and dissipated when breathing was diverted from nose to mouth. Parallel behavioral experiments showed that breathing phase enhances fear discrimination and memory retrieval. Our findings provide a unique framework for understanding the pivotal role of nasal breathing in coordinating neuronal oscillations to support stimulus processing and behavior. SIGNIFICANCE STATEMENT Animal studies have long shown that olfactory oscillatory activity emerges in line with the natural rhythm of breathing, even in the absence of an odor stimulus. Whether the breathing cycle induces cortical oscillations in the human brain is poorly understood. In this study, we collected intracranial EEG data from rare patients with medically intractable epilepsy, and found evidence

  10. Nasal Respiration Entrains Human Limbic Oscillations and Modulates Cognitive Function.

    PubMed

    Zelano, Christina; Jiang, Heidi; Zhou, Guangyu; Arora, Nikita; Schuele, Stephan; Rosenow, Joshua; Gottfried, Jay A

    2016-12-07

    The need to breathe links the mammalian olfactory system inextricably to the respiratory rhythms that draw air through the nose. In rodents and other small animals, slow oscillations of local field potential activity are driven at the rate of breathing (∼2-12 Hz) in olfactory bulb and cortex, and faster oscillatory bursts are coupled to specific phases of the respiratory cycle. These dynamic rhythms are thought to regulate cortical excitability and coordinate network interactions, helping to shape olfactory coding, memory, and behavior. However, while respiratory oscillations are a ubiquitous hallmark of olfactory system function in animals, direct evidence for such patterns is lacking in humans. In this study, we acquired intracranial EEG data from rare patients (Ps) with medically refractory epilepsy, enabling us to test the hypothesis that cortical oscillatory activity would be entrained to the human respiratory cycle, albeit at the much slower rhythm of ∼0.16-0.33 Hz. Our results reveal that natural breathing synchronizes electrical activity in human piriform (olfactory) cortex, as well as in limbic-related brain areas, including amygdala and hippocampus. Notably, oscillatory power peaked during inspiration and dissipated when breathing was diverted from nose to mouth. Parallel behavioral experiments showed that breathing phase enhances fear discrimination and memory retrieval. Our findings provide a unique framework for understanding the pivotal role of nasal breathing in coordinating neuronal oscillations to support stimulus processing and behavior. Animal studies have long shown that olfactory oscillatory activity emerges in line with the natural rhythm of breathing, even in the absence of an odor stimulus. Whether the breathing cycle induces cortical oscillations in the human brain is poorly understood. In this study, we collected intracranial EEG data from rare patients with medically intractable epilepsy, and found evidence for respiratory entrainment

  11. Spontaneous tempo and rhythmic entrainment in a bonobo (Pan paniscus).

    PubMed

    Large, Edward W; Gray, Patricia M

    2015-11-01

    The emergence of speech and music in the human species represent major evolutionary transitions that enabled the use of complex, temporally structured acoustic signals to coordinate social interaction. While the fundamental capacity for temporal coordination with complex acoustic signals has been shown in a few distantly related species, the extent to which nonhuman primates exhibit sensitivity to auditory rhythms remains controversial. In Experiment 1, we assessed spontaneous motor tempo and tempo matching in a bonobo (Pan paniscus), in the context of a social drumming interaction. In Experiment 2, the bonobo spontaneously entrained and synchronized her drum strikes within a range around her spontaneous motor tempo. Our results are consistent with the hypothesis that the evolution of acoustic communication builds upon fundamental neurodynamic mechanisms that can be found in a wide range of species, and are recruited for social interactions. (c) 2015 APA, all rights reserved).

  12. Inherent losses induced absorptive acoustic rainbow trapping with a gradient metasurface

    NASA Astrophysics Data System (ADS)

    Liu, Tuo; Liang, Shanjun; Chen, Fei; Zhu, Jie

    2018-03-01

    Acoustic rainbow trapping represents the phenomenon of strong acoustic dispersion similar to the optical "trapped rainbow," which allows spatial-spectral modulation and broadband trapping of sound. It can be realized with metamaterials that provide the required strong dispersion absent in natural materials. However, as the group velocity cannot be reduced to exactly zero before the forward mode being coupled to the backward mode, such trapping is temporary and the local sound oscillation ultimately radiates backward. Here, we propose a gradient metasurface, a rigid surface structured with gradient perforation along the wave propagation direction, in which the inherent thermal and viscous losses inside the holes are considered. We show that the gradually diminished group velocity of the structure-induced surface acoustic waves (SSAWs) supported by the metasurface becomes anomalous at the trapping position, induced by the existence of the inherent losses, which implies that the system's absorption reaches its maximum. Together with the progressively increased attenuation of the SSAWs along the gradient direction, reflectionless spatial-spectral modulation and sound enhancement are achieved in simulation. Such phenomenon, which we call as absorptive trapped rainbow, results from the balanced interplay among the local resonance inside individual holes, the mutual coupling of adjacent unit cells, and the inherent losses due to thermal conductivity and viscosity. This study deepens the understanding of the SSAWs propagation at a lossy metasurface and may contribute to the practical design of acoustic devices for high performance sensing and filtering.

  13. Disease resistance is related to inherent swimming performance in Atlantic salmon

    PubMed Central

    2013-01-01

    Background Like humans, fish can be classified according to their athletic performance. Sustained exercise training of fish can improve growth and physical capacity, and recent results have documented improved disease resistance in exercised Atlantic salmon. In this study we investigated the effects of inherent swimming performance and exercise training on disease resistance in Atlantic salmon. Atlantic salmon were first classified as either poor or good according to their swimming performance in a screening test and then exercise trained for 10 weeks using one of two constant-velocity or two interval-velocity training regimes for comparison against control trained fish (low speed continuously). Disease resistance was assessed by a viral disease challenge test (infectious pancreatic necrosis) and gene expression analyses of the host response in selected organs. Results An inherently good swimming performance was associated with improved disease resistance, as good swimmers showed significantly better survival compared to poor swimmers in the viral challenge test. Differences in mortalities between poor and good swimmers were correlated with cardiac mRNA expression of virus responsive genes reflecting the infection status. Although not significant, fish trained at constant-velocity showed a trend towards higher survival than fish trained at either short or long intervals. Finally, only constant training at high intensity had a significant positive effect on fish growth compared to control trained fish. Conclusions This is the first evidence suggesting that inherent swimming performance is associated with disease resistance in fish. PMID:23336751

  14. Disease resistance is related to inherent swimming performance in Atlantic salmon.

    PubMed

    Castro, Vicente; Grisdale-Helland, Barbara; Jørgensen, Sven M; Helgerud, Jan; Claireaux, Guy; Farrell, Anthony P; Krasnov, Aleksei; Helland, Ståle J; Takle, Harald

    2013-01-21

    Like humans, fish can be classified according to their athletic performance. Sustained exercise training of fish can improve growth and physical capacity, and recent results have documented improved disease resistance in exercised Atlantic salmon. In this study we investigated the effects of inherent swimming performance and exercise training on disease resistance in Atlantic salmon.Atlantic salmon were first classified as either poor or good according to their swimming performance in a screening test and then exercise trained for 10 weeks using one of two constant-velocity or two interval-velocity training regimes for comparison against control trained fish (low speed continuously). Disease resistance was assessed by a viral disease challenge test (infectious pancreatic necrosis) and gene expression analyses of the host response in selected organs. An inherently good swimming performance was associated with improved disease resistance, as good swimmers showed significantly better survival compared to poor swimmers in the viral challenge test. Differences in mortalities between poor and good swimmers were correlated with cardiac mRNA expression of virus responsive genes reflecting the infection status. Although not significant, fish trained at constant-velocity showed a trend towards higher survival than fish trained at either short or long intervals. Finally, only constant training at high intensity had a significant positive effect on fish growth compared to control trained fish. This is the first evidence suggesting that inherent swimming performance is associated with disease resistance in fish.

  15. Inherent flexibility determines the transition mechanisms of the EF-hands of calmodulin.

    PubMed

    Tripathi, Swarnendu; Portman, John J

    2009-02-17

    We explore how inherent flexibility of a protein molecule influences the mechanism controlling allosteric transitions by using a variational model inspired from work in protein folding. The striking differences in the predicted transition mechanism for the opening of the two domains of calmodulin (CaM) emphasize that inherent flexibility is key to understanding the complex conformational changes that occur in proteins. In particular, the C-terminal domain of CaM (cCaM), which is inherently less flexible than its N-terminal domain (nCaM), reveals "cracking" or local partial unfolding during the open/closed transition. This result is in harmony with the picture that cracking relieves local stresses caused by conformational deformations of a sufficiently rigid protein. We also compare the conformational transition in a recently studied even-odd paired fragment of CaM. Our results rationalize the different relative binding affinities of the EF-hands in the engineered fragment compared with the intact odd-even paired EF-hands (nCaM and cCaM) in terms of changes in flexibility along the transition route. Aside from elucidating general theoretical ideas about the cracking mechanism, these studies also emphasize how the remarkable intrinsic plasticity of CaM underlies conformational dynamics essential for its diverse functions.

  16. The inherent catastrophic traps in retrograde CTO PCI.

    PubMed

    Wu, Eugene B; Tsuchikane, Etsuo

    2018-05-01

    When we learn to drive, our driving instructor tells us how to check the side mirror and turn your head to check the blind spot before changing lanes. He tells us how to stop at stop signs, how to drive in slippery conditions, the safe stopping distances, and these all make our driving safe. Similarly, when we learn PCI, our mentors teach us to seat the guiding catheter co-axially, to wire the vessel safely, to deliver balloon and stents over the wire, to watch the pressure of the guiding, in order that we perform PCI safely and evade complications. In retrograde CTO PCI, there is no such published teaching. Also many individual mentors have not had the wide experience to see all the possible complications of retrograde CTO PCI and, therefore, may not be able to warn their apprentice. As the number of retrograde procedures increase worldwide, there is a corresponding increase in catastrophic complications, many of which, we as experts, can see are easily avoidable. To breach this gap in knowledge, this article describes 12 commonly met inherent traps in retrograde CTO PCI. They are inherent because by arranging our equipment in the manner to perform retrograde CTO PCI, these complications are either induced directly or happen easily. We hope this work will enhance safety of retrograde CTO PCI and avoid many catastrophic complications for our readers and operators. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  17. Means and method for the destruction of particles entrained in a gas stream

    DOEpatents

    Botts, Thomas E.; Powell, James R.

    1980-01-01

    An apparatus and method for the destruction of particles entrained in a gas stream are disclosed. Destruction in the context of the subject invention means the fragmentation and/or vaporization of particles above a certain size limit. The subject invention contemplates destroying such particles by exposing them to intense bursts of laser light, such light having a frequency approximately equal to or less than the mean size of such particles. This invention is particularly adopted to the protection of turbine blades in open cycle coal-fired turbine systems. Means for introducing various chemical species and activating them by exposure to laser light are also disclosed.

  18. Sensors and actuators inherent in biological species

    NASA Astrophysics Data System (ADS)

    Taya, Minoru; Stahlberg, Rainer; Li, Fanghong; Zhao, Ying Joyce

    2007-04-01

    This paper addresses examples of sensing and active mechanisms inherent in some biological species where both plants and animals cases are discussed: mechanosensors and actuators in Venus Fly Trap and cucumber tendrils, chemosensors in insects, two cases of interactions between different kingdoms, (i) cotton plant smart defense system and (ii) bird-of-paradise flower and hamming bird interaction. All these cases lead us to recognize how energy-efficient and flexible the biological sensors and actuators are. This review reveals the importance of integration of sensing and actuation functions into an autonomous system if we make biomimetic design of a set of new autonomous systems which can sense and actuate under a number of different stimuli and threats.

  19. The inherent limits of predicting school violence.

    PubMed

    Mulvey, E P; Cauffman, E

    2001-10-01

    The recent media hype over school shootings has led to demands for methods of identifying school shooters before they act. Despite the fact that schools remain one of the safest places for youths to be, schools are beginning to adopt identification systems to determine which students could be future killers. The methods used to accomplish this not only are unproven but are inherently limited in usefulness and often do more harm than good for both the children and the school setting. The authors' goals in the present article are to place school shootings in perspective relative to other risks of violence that children face and to provide a reasonable and scientifically defensible approach to improving the safety of schools.

  20. Magnetic latch trigger for inherent shutdown assembly

    DOEpatents

    Sowa, Edmund S.

    1976-01-01

    An inherent shutdown assembly for a nuclear reactor is provided. A neutron absorber is held ready to be inserted into the reactor core by a magnetic latch. The latch includes a magnet whose lines of force are linked by a yoke of material whose Curie point is at the critical temperature of the reactor at which the neutron absorber is to be inserted into the reactor core. The yoke is in contact with the core coolant or fissionable material so that when the coolant or the fissionable material increase in temperature above the Curie point the yoke loses its magnetic susceptibility and the magnetic link is broken, thereby causing the absorber to be released into the reactor core.