Science.gov

Sample records for entre diferentes doses

  1. Diferentes Metodologias Aplicadas ao Ensino de Astronomia

    NASA Astrophysics Data System (ADS)

    Albrecht, E.; Voelzke, M. R.

    2007-08-01

    Espera-se que o educando ao final da educação básica, adquira uma compreensão atualizada das hipóteses, modelos e formas de investigação sobre a origem e evolução do Universo em que vive. O presente trabalho tem como principal objetivo compreender dentre três práticas pedagógicas adotadas no Ensino de Astronomia, na terceira série do Ensino Médio, da Escola Estadual Colônia dos Pescadores, qual melhor cumpre o papel de formação e aprendizagem para vida. A pesquisa preliminar foi através de um questionário onde o intuito foi diagnosticar o conhecimento já existente acerca do tema em questão. O questionário é composto de vinte questões dissertativas e objetivas, onde os educandos das três turmas envolvidas o responderam. Este trabalho utiliza as seguintes metodologias: a tradicional, onde o professor é um repassador de informações, fazendo uso exclusivo de lousa e giz; a segunda também de forma tradicional, porém com auxílio de multimídia para desenvolvimento das aulas e aterceira sob forma de seminários, elaborados e apresentados pelos educandos, no qual o educador faz apenas as intervenções necessárias. Ao final do trabalho os alunos responderão novamente o questionário inicial para diagnosticar dentre as três metodologias utilizadas qual apresentou melhor resultado. Os resultados preliminares obtidos, já podem ser observados e, dos 119 alunos entrevistados, as respostas obtidas são as mais diversas e evidenciam que a grande maioria nunca teve em sua vida escolar o tema Astronomia. Ao serem questionados se já haviam estudado Astronomia as respostas foram: turma A: sim 43%; turma B: sim: 21%; turma C: sim: 24%. Porém quando questionados a respeito do significado de Astronomia observou-se que: turma A: 100% de acertos; turma B: 64% acertos; turma C: 84% de acertos, demonstrando claramente a aprendizagem em diferentes esferas, não dependendo unicamente da escola. Até o presente momento, verificou-se que há interesse em

  2. Acoustic dose and acoustic dose-rate.

    PubMed

    Duck, Francis

    2009-10-01

    Acoustic dose is defined as the energy deposited by absorption of an acoustic wave per unit mass of the medium supporting the wave. Expressions for acoustic dose and acoustic dose-rate are given for plane-wave conditions, including temporal and frequency dependencies of energy deposition. The relationship between the acoustic dose-rate and the resulting temperature increase is explored, as is the relationship between acoustic dose-rate and radiation force. Energy transfer from the wave to the medium by means of acoustic cavitation is considered, and an approach is proposed in principle that could allow cavitation to be included within the proposed definitions of acoustic dose and acoustic dose-rate.

  3. Absorbed Dose and Dose Equivalent Calculations for Modeling Effective Dose

    NASA Technical Reports Server (NTRS)

    Welton, Andrew; Lee, Kerry

    2010-01-01

    While in orbit, Astronauts are exposed to a much higher dose of ionizing radiation than when on the ground. It is important to model how shielding designs on spacecraft reduce radiation effective dose pre-flight, and determine whether or not a danger to humans is presented. However, in order to calculate effective dose, dose equivalent calculations are needed. Dose equivalent takes into account an absorbed dose of radiation and the biological effectiveness of ionizing radiation. This is important in preventing long-term, stochastic radiation effects in humans spending time in space. Monte carlo simulations run with the particle transport code FLUKA, give absorbed and equivalent dose data for relevant shielding. The shielding geometry used in the dose calculations is a layered slab design, consisting of aluminum, polyethylene, and water. Water is used to simulate the soft tissues that compose the human body. The results obtained will provide information on how the shielding performs with many thicknesses of each material in the slab. This allows them to be directly applicable to modern spacecraft shielding geometries.

  4. Effets Josephson generalises entre antiferroaimants et entre supraconducteurs antiferromagnetiques

    NASA Astrophysics Data System (ADS)

    Chasse, Dominique

    L'effet Josephson est generalement presente comme le resultat de l'effet tunnel coherent de paires de Cooper a travers une jonction tunnel entre deux supraconducteurs, mais il est possible de l'expliquer dans un contexte plus general. Par exemple, Esposito & al. ont recemment demontre que l'effet Josephson DC peut etre decrit a l'aide du boson pseudo-Goldstone de deux systemes couples brisant chacun la symetrie abelienne U(1). Puisque cette description se generalise de facon naturelle a des brisures de symetries continues non-abeliennes, l'equivalent de l'effet Josephson devrait donc exister pour des types d'ordre a longue portee differents de la supraconductivite. Le cas de deux ferroaimants itinerants (brisure de symetrie 0(3)) couples a travers une jonction tunnel a deja ete traite dans la litterature Afin de mettre en evidence la generalite du phenomene et dans le but de faire des predictions a partir d'un modele realiste, nous etudions le cas d'une jonction tunnel entre deux antiferroaimants itinerants. En adoptant une approche Similaire a celle d'Ambegaokar & Baratoff pour une jonction Josephson, nous trouvons un courant d'aimantation alternee a travers la jonction qui est proportionnel a sG x sD ou fG et sD sont les vecteurs de Neel de part et d'autre de la jonction. La fonction sinus caracteristique du courant Josephson standard est donc remplacee.ici par un produit vectoriel. Nous montrons que, d'un point de vue microscopique, ce phenomene resulte de l'effet tunnel coherent de paires particule-trou de spin 1 et de vecteur d'onde net egal au vecteur d'onde antiferromagnetique Q. Nous trouvons egalement la dependance en temperature de l'analogue du courant critique. En presence d'un champ magnetique externe, nous obtenons l'analogue de l'effet Josephson AC et la description complete que nous en donnons s'applique aussi au cas d'une jonction tunnel entre ferroaimants (dans ce dernier cas, les traitements anterieurs de cet effet AC s'averent incomplets). Nous

  5. Dose optimization tool

    NASA Astrophysics Data System (ADS)

    Amir, Ornit; Braunstein, David; Altman, Ami

    2003-05-01

    A dose optimization tool for CT scanners is presented using patient raw data to calculate noise. The tool uses a single patient image which is modified for various lower doses. Dose optimization is carried out without extra measurements by interactively visualizing the dose-induced changes in this image. This tool can be used either off line, on existing image(s) or, as a pre - requisite for dose optimization for the specific patient, during the patient clinical study. The algorithm of low-dose simulation consists of reconstruction of two images from a single measurement and uses those images to create the various lower dose images. This algorithm enables fast simulation of various low dose (mAs) images on a real patient image.

  6. Neutron dose equivalent meter

    DOEpatents

    Olsher, Richard H.; Hsu, Hsiao-Hua; Casson, William H.; Vasilik, Dennis G.; Kleck, Jeffrey H.; Beverding, Anthony

    1996-01-01

    A neutron dose equivalent detector for measuring neutron dose capable of accurately responding to neutron energies according to published fluence to dose curves. The neutron dose equivalent meter has an inner sphere of polyethylene, with a middle shell overlying the inner sphere, the middle shell comprising RTV.RTM. silicone (organosiloxane) loaded with boron. An outer shell overlies the middle shell and comprises polyethylene loaded with tungsten. The neutron dose equivalent meter defines a channel through the outer shell, the middle shell, and the inner sphere for accepting a neutron counter tube. The outer shell is loaded with tungsten to provide neutron generation, increasing the neutron dose equivalent meter's response sensitivity above 8 MeV.

  7. Calculation of effective dose.

    PubMed

    McCollough, C H; Schueler, B A

    2000-05-01

    The concept of "effective dose" was introduced in 1975 to provide a mechanism for assessing the radiation detriment from partial body irradiations in terms of data derived from whole body irradiations. The effective dose is the mean absorbed dose from a uniform whole-body irradiation that results in the same total radiation detriment as from the nonuniform, partial-body irradiation in question. The effective dose is calculated as the weighted average of the mean absorbed dose to the various body organs and tissues, where the weighting factor is the radiation detriment for a given organ (from a whole-body irradiation) as a fraction of the total radiation detriment. In this review, effective dose equivalent and effective dose, as established by the International Commission on Radiological Protection in 1977 and 1990, respectively, are defined and various methods of calculating these quantities are presented for radionuclides, radiography, fluoroscopy, computed tomography and mammography. In order to calculate either quantity, it is first necessary to estimate the radiation dose to individual organs. One common method of determining organ doses is through Monte Carlo simulations of photon interactions within a simplified mathematical model of the human body. Several groups have performed these calculations and published their results in the form of data tables of organ dose per unit activity or exposure. These data tables are specified according to particular examination parameters, such as radiopharmaceutical, x-ray projection, x-ray beam energy spectra or patient size. Sources of these organ dose conversion coefficients are presented and differences between them are examined. The estimates of effective dose equivalent or effective dose calculated using these data, although not intended to describe the dose to an individual, can be used as a relative measure of stochastic radiation detriment. The calculated values, in units of sievert (or rem), indicate the amount of

  8. Electron beam dose calculations.

    PubMed

    Hogstrom, K R; Mills, M D; Almond, P R

    1981-05-01

    Electron beam dose distributions in the presence of inhomogeneous tissue are calculated by an algorithm that sums the dose distribution of individual pencil beams. The off-axis dependence of the pencil beam dose distribution is described by the Fermi-Eyges theory of thick-target multiple Coulomb scattering. Measured square-field depth-dose data serve as input for the calculations. Air gap corrections are incorporated and use data from'in-air' measurements in the penumbra of the beam. The effective depth, used to evaluate depth-dose, and the sigma of the off-axis Gaussian spread against depth are calculated by recursion relations from a CT data matrix for the material underlying individual pencil beams. The correlation of CT number with relative linear stopping power and relative linear scattering power for various tissues is shown. The results of calculations are verified by comparison with measurements in a 17 MeV electron beam from the Therac 20 linear accelerator. Calculated isodose lines agree nominally to within 2 mm of measurements in a water phantom. Similar agreement is observed in cork slabs simulating lung. Calculations beneath a bone substitute illustrate a weakness in the calculation. Finally a case of carcinoma in the maxillary antrum is studied. The theory suggests an alternative method for the calculation of depth-dose of rectangular fields.

  9. Utirik Atoll Dose Assessment

    SciTech Connect

    Robison, W.L.; Conrado, C.L.; Bogen, K.T

    1999-10-06

    On March 1, 1954, radioactive fallout from the nuclear test at Bikini Atoll code-named BRAVO was deposited on Utirik Atoll which lies about 187 km (300 miles) east of Bikini Atoll. The residents of Utirik were evacuated three days after the fallout started and returned to their atoll in May 1954. In this report we provide a final dose assessment for current conditions at the atoll based on extensive data generated from samples collected in 1993 and 1994. The estimated population average maximum annual effective dose using a diet including imported foods is 0.037 mSv y{sup -1} (3.7 mrem y{sup -1}). The 95% confidence limits are within a factor of three of their population average value. The population average integrated effective dose over 30-, 50-, and 70-y is 0.84 mSv (84, mrem), 1.2 mSv (120 mrem), and 1.4 mSv (140 mrem), respectively. The 95% confidence limits on the population-average value post 1998, i.e., the 30-, 50-, and 70-y integral doses, are within a factor of two of the mean value and are independent of time, t, for t > 5 y. Cesium-137 ({sup 137}Cs) is the radionuclide that contributes most of this dose, mostly through the terrestrial food chain and secondarily from external gamma exposure. The dose from weapons-related radionuclides is very low and of no consequence to the health of the population. The annual background doses in the U. S. and Europe are 3.0 mSv (300 mrem), and 2.4 mSv (240 mrem), respectively. The annual background dose in the Marshall Islands is estimated to be 1.4 mSv (140 mrem). The total estimated combined Marshall Islands background dose plus the weapons-related dose is about 1.5 mSv y{sup -1} (150 mrem y{sup -1}) which can be directly compared to the annual background effective dose of 3.0 mSv y{sup -1} (300 mrem y{sup -1}) for the U. S. and 2.4 mSv y{sup -1} (240 mrem y{sup -1}) for Europe. Moreover, the doses listed in this report are based only on the radiological decay of {sup 137}Cs (30.1 y half-life) and other

  10. Dose Reduction Techniques

    SciTech Connect

    WAGGONER, L.O.

    2000-05-16

    As radiation safety specialists, one of the things we are required to do is evaluate tools, equipment, materials and work practices and decide whether the use of these products or work practices will reduce radiation dose or risk to the environment. There is a tendency for many workers that work with radioactive material to accomplish radiological work the same way they have always done it rather than look for new technology or change their work practices. New technology is being developed all the time that can make radiological work easier and result in less radiation dose to the worker or reduce the possibility that contamination will be spread to the environment. As we discuss the various tools and techniques that reduce radiation dose, keep in mind that the radiological controls should be reasonable. We can not always get the dose to zero, so we must try to accomplish the work efficiently and cost-effectively. There are times we may have to accept there is only so much you can do. The goal is to do the smart things that protect the worker but do not hinder him while the task is being accomplished. In addition, we should not demand that large amounts of money be spent for equipment that has marginal value in order to save a few millirem. We have broken the handout into sections that should simplify the presentation. Time, distance, shielding, and source reduction are methods used to reduce dose and are covered in Part I on work execution. We then look at operational considerations, radiological design parameters, and discuss the characteristics of personnel who deal with ALARA. This handout should give you an overview of what it takes to have an effective dose reduction program.

  11. Dose Calculation Spreadsheet

    SciTech Connect

    Simpkins, Ali

    1997-06-10

    VENTSAR XL is an EXCEL Spreadsheet that can be used to calculate downwind doses as a result of a hypothetical atmospheric release. Both building effects and plume rise may be considered. VENTSAR XL will run using any version of Microsoft EXCEL version 4.0 or later. Macros (the programming language of EXCEL) was used to automate the calculations. The user enters a minimal amount of input and the code calculates the resulting concentrations and doses at various downwind distances as specified by the user.

  12. Relaciones entre el sueño y la adicción

    PubMed Central

    Cañellas, Francesca; de Lecea, Luis

    2016-01-01

    Resumen La interacción entre los trastornos del sueño y el abuso de sustancias es ya conocida, pero seguramente más compleja de lo que se pensaba. Existe tanto una relación positiva entre tener un trastorno por uso de substancias y sufrir un trastorno de sueño, como viceversa. Los efectos sobre el sueño dependen de la substancia utilizada, pero se ha demostrado que tanto durante su uso como en período de abstinencia los consumidores tienen diferentes problemas de sueño y fundamentalmente un sueño más fragmentado. Sabemos que hay que tener en cuenta los problemas de sueño para evitar recaídas en la adicción. Investigaciones recientes indican que el sistema hipocretinérgico definido por el neuropéptido hipocretina/orexina (Hcrt/ox), localizado en el hipotálamo lateral e implicado entre otros en la regulación del ciclo sueño-vigilia, jugaría un papel importante en las conductas adictivas. Diferentes estudios han demostrado interacciones entre el sistema hipocretinérgico, los circuitos de respuesta aguda al estrés y los sistemas de recompensa. También sabemos que la activación optogenética selectiva del sistema hipocretinérgico incrementa la probabilidad de la transición del sueño a la vigilia, y también es suficiente para iniciar un comportamiento compulsivo de recaída adictiva. La activación del sistema hipocretinérgico podría explicar la hipervigilia asociada al estrés y a la adicción. El mayor conocimiento de esta interacción permitiría entender mejor los mecanismos de la adicción y encontrar nuevas estrategias para el tratamiento de las adicciones. PMID:23241715

  13. When is a dose not a dose

    SciTech Connect

    Bond, V.P.

    1991-01-01

    Although an enormous amount of progress has been made in the fields of radiation protection and risk assessment, a number of significant problems remain. The one problem which transcends all the rest, and which has been subject to considerable misunderstanding, involves what has come to be known as the 'linear non-threshold hypothesis', or 'linear hypothesis'. Particularly troublesome has been the interpretation that any amount of radiation can cause an increase in the excess incidence of cancer. The linear hypothesis has dominated radiation protection philosophy for more than three decades, with enormous financial, societal and political impacts and has engendered an almost morbid fear of low-level exposure to ionizing radiation in large segments of the population. This document presents a different interpretation of the linear hypothesis. The basis for this view lies in the evolution of dose-response functions, particularly with respect to their use initially in the context of early acute effects, and then for the late effects, carcinogenesis and mutagenesis. 11 refs., 4 figs. (MHB)

  14. Religiosidade, juventude e sexualidade: entre a autonomia e a rigidez1

    PubMed Central

    Silva, Cristiane Gonçalves da; Santos, Alessandro Oliveira; Licciardi, Daniele Carli; Paiva, Vera; Parker, Richard

    2009-01-01

    Esse artigo descreve como jovens religiosos e autoridades religiosas de sua comunidade compreendem a sexualidade, considerando suas experiências pessoais e como membros de comunidades religiosas. A análise pretende contribuir para que políticas públicas dedicadas à promoção da saúde sexual da juventude considerem a religiosidade, no contexto de um estado laico e da promoção do direito à prevenção. Foram realizadas 26 entrevistas abertas e semidirigidas em diferentes comunidades da região metropolitana da cidade de São Paulo (comunidades católicas, da umbanda, do candomblé e de diferentes denominações evangélicas) sobre iniciação sexual, casamento, gravidez, contracepção e prevenção das DST/Aids, homossexualidade, aborto e direitos humanos. Observou-se como jovens e autoridades religiosas convivem com a tensão entre tradição e modernidade e os distintos discursos sobre a sexualidade. Como sujeitos religiosos (do discurso religioso) e sujeitos sexuais (de discursos sobre sexualidade), devem ser incorporados pelos programas como sujeitos de direito nos termos de sua religiosidade. PMID:21886456

  15. Low-Dose Carcinogenicity Studies

    EPA Science Inventory

    One of the major deficiencies of cancer risk assessments is the lack of low-dose carcinogenicity data. Most assessments require extrapolation from high to low doses, which is subject to various uncertainties. Only 4 low-dose carcinogenicity studies and 5 low-dose biomarker/pre-n...

  16. Diferentes metodologias aplicadas ao ensino de astronomia no Ensino Médio

    NASA Astrophysics Data System (ADS)

    Albrecht, E.; Voelzke, M. R.

    2009-03-01

    O presente trabalho de intervenção foi realizado junto à Escola Estadual Colònia dos Pescadores na cidade de Caraguatatuba, com très turmas do terceiro ano do Ensino Médio, envolvendo 119 alunos com idades entre 16 e 19 anos. A fase inicial foi composta de um questionário de vinte questíes dissertativas e objetivas, aplicado pelo professor titular da sala, que era o mesmo nas très turmas, para diagnosticar nos educandos os conceitos prévios sobre Astronomia e, partindo destes realizar um trabalho de intervenção nas classes envolvidas utilizando, em cada uma, metodologias diferentes: (A) sob forma de seminários, elaborados e apresentados pelos educandos, no qual o educador faz apenas as intervençíes necessárias; (B) de forma tradicional, com auxílio de multimídias para desenvolvimento das aulas e a terceira (C) tradicional, fazendo uso exclusivo de lousa e giz. Ao final do trabalho os alunos responderam novamente o questionário inicial para diagnosticar dentre as très metodologias utilizadas qual apresentou melhores aplicaçíes, os resultados iniciais foram comparados com os finais. Quando questionados a respeito do significado de Astronomia observou-se inicialmente que os acertos na turma A foram de 100%, turma B: 64%, turma C: 84%, após a intervenção os acertos foram: 100%, 97% e 85% respectivamente, demonstrando que houve um avanço significativo na turma B, a turma A manteve seu índice e a turma C evoluiu, porém não tanto quanto a B. Quando interrogados sobre quantos planetas vocè acha que existem em nosso Sistema Solar? os acertos foram: turma A: 39%, turma B: 48% e turma C: 46%, após o desenvolvimento do trabalho os acertos foram 94%, 97% e 90% respectivamente. Dentro das respostas obtidas observa-se que a metodologia tradicional com o auxílio de multimeios, aplicada na turma B, demonstrou melhores resultados, sendo a mais significativa. Outra conclusão muito importante é que apesar de o tema Astronomia ser amplamente

  17. On Ensino da Astronomia no Ensino Médio sob Diferentes Abordagens Metodológicas

    NASA Astrophysics Data System (ADS)

    Voelzke, Marcos Rincon; Albrecht, Evonir

    2011-12-01

    O presente trabalho, sobre a intervenção de metodologias de ensino, foi desenvolvido na Escola Estadual Colônia dos Pescadores, na cidade de Caraguatatuba - SP, em três turmas do terceiro ano do Ensino Médio, perfazendo um total de 119 educandos, entre 16 e 19 anos. Antes de iniciar-se a intervenção, um questionário de vinte perguntas objetivas e dissertativas foi desenvolvido, aplicado pelo professor da classe, que ministrou as aulas correspondentes. Este questionário foi o mesmo em todas as três classes com o objetivo de diagnosticar o conhecimento prévio dos alunos sobre Astronomia. Começando a intervenção nas turmas, o professor envolvido usou três diferentes metodologias de ensino: (A) em forma de seminários, elaborados e apresentados pelos alunos, nos quais o professor fazia apenas as intervenções necessárias, (B) na forma tradicional, com a ajuda de multimídia para o desenvolvimento das aulas e a terceira (C) a tradicional, fazendo uso exclusivo de lousa e giz. No final do trabalho os alunos responderam o mesmo questionário novamente, de modo que os três métodos utilizados puderam ser comparados. Os resultados apresentados após a intervenção foram melhores que os resultados iniciais indicando a ocorrência de uma aprendizagem significativa. Quando os estudantes foram inicialmente questionados sobre quantos planetas existem no nosso sistema solar, a classe A obteve 39% de respostas certas, a classe B 48% e a classe C 46%, mas após o desenvolvimento das atividades, as classes obtiveram respectivamente 94%, 97 % e 90% de aproveitamento. No término do bimestre, foi sugerido aos educandos que elaborassem uma história em quadrinhos, a qual serviu para averiguar se os conceitos inicialmente observados foram alterados e se novos foram agregados. A análise das histórias foi dividida em três partes: Criatividade; Temas abordados; Emprego correto dos conceitos estudados. Ao final quatorze histórias foram confeccionadas. O aprendizado

  18. Estimation of the Dose and Dose Rate Effectiveness Factor

    NASA Technical Reports Server (NTRS)

    Chappell, L.; Cucinotta, F. A.

    2013-01-01

    Current models to estimate radiation risk use the Life Span Study (LSS) cohort that received high doses and high dose rates of radiation. Transferring risks from these high dose rates to the low doses and dose rates received by astronauts in space is a source of uncertainty in our risk calculations. The solid cancer models recommended by BEIR VII [1], UNSCEAR [2], and Preston et al [3] is fitted adequately by a linear dose response model, which implies that low doses and dose rates would be estimated the same as high doses and dose rates. However animal and cell experiments imply there should be curvature in the dose response curve for tumor induction. Furthermore animal experiments that directly compare acute to chronic exposures show lower increases in tumor induction than acute exposures. A dose and dose rate effectiveness factor (DDREF) has been estimated and applied to transfer risks from the high doses and dose rates of the LSS cohort to low doses and dose rates such as from missions in space. The BEIR VII committee [1] combined DDREF estimates using the LSS cohort and animal experiments using Bayesian methods for their recommendation for a DDREF value of 1.5 with uncertainty. We reexamined the animal data considered by BEIR VII and included more animal data and human chromosome aberration data to improve the estimate for DDREF. Several experiments chosen by BEIR VII were deemed inappropriate for application to human risk models of solid cancer risk. Animal tumor experiments performed by Ullrich et al [4], Alpen et al [5], and Grahn et al [6] were analyzed to estimate the DDREF. Human chromosome aberration experiments performed on a sample of astronauts within NASA were also available to estimate the DDREF. The LSS cohort results reported by BEIR VII were combined with the new radiobiology results using Bayesian methods.

  19. Dose esclation in radioimmunotherapy based on projected whole body dose

    SciTech Connect

    Wahl, R.L.; Kaminski, M.S.; Regan, D.

    1994-05-01

    A variety of approaches have been utilized in conducting phase I radioimmunotherapy dose-escalation trials. Escalation of dose has been based on graded increases in administered mCi; mCi/kg; or mCi/m2. It is also possible to escalate dose based on tracer-projected marrow, blood or whole body radiation dose. We describe our results in performing a dose-escalation trial in patients with non-Hodgkin lymphoma based on escalating administered whole-body radiation dose. The mCi dose administered was based on a patient-individualized tracer projected whole-body dose. 25 patients were entered on the study. RIT with 131 I anti-B-1 was administered to 19 patients. The administered dose was prescribed based on the projected whole body dose, determined from patient-individualized tracer studies performed prior to RIT. Whole body dose estimates were based on the assumption that the patient was an ellipsoid, with 131 antibody kinetics determined using a whole-body probe device acquiring daily conjugate views of 1 minute duration/view. Dose escalation levels proceeded with 10 cGy increments from 25 cGy whole-body and continues, now at 75 cGy. The correlation among potential methods of dose escalation and toxicity was assessed. Whole body radiation dose by probe was strongly correlated with the blood radiation dose determined from sequential blood sampling during tracer studies (r=.87). Blood radiation dose was very weakly correlated with mCi dose (r=.4) and mCi/kg (r=.45). Whole body radiation dose appeared less well-correlated with injected dose in mCi (r=.6), or mCi/kg (r=.64). Toxicity has been infrequent in these patients, but appears related to increasing whole body dose. Non-invasive determination of whole-body radiation dose by gamma probe represents a non-invasive method of estimating blood radiation dose, and thus of estimating bone marrow radiation dose.

  20. Hanford Environmental Dose Reconstruction Project

    SciTech Connect

    Finch, S.M.; McMakin, A.H.

    1992-01-01

    The objective of the Hanford Environmental Dose Reconstruction Project is to estimate the radiation doses that individuals and populations could have received from nuclear operations at Hanford since 1944. The project is divided into the following technical tasks. These tasks correspond to the path radionuclides followed, from release to impact on humans (dose estimates): Source Terms, Environmental Transport, Environmental Monitoring Data, Demography, Food Consumption, and Agriculture, and Environmental Pathways and Dose Estimates.

  1. Hanford Environmental Dose Reconstruction Project

    SciTech Connect

    Finch, S.M.; McMakin, A.H.

    1991-01-01

    The objective of the Hanford Environmental Dose Reconstruction Project is to estimate the radiation doses that individuals and populations could have received from nuclear operations at Hanford since 1944. The project is divided into the following technical tasks. These tasks correspond to the path radionuclides followed, from release to impact on humans (dose estimates): Source terms; environmental transport environmental monitoring data; demographics, agriculture, food habits; environmental pathways and dose estimates.

  2. Hanford Environmental Dose Reconstruction Project

    SciTech Connect

    Finch, S.M.; McMakin, A.H.

    1992-02-01

    The objective of the Hanford Environmental Dose Reconstruction Project is to estimate the radiation doses that individuals and populations could have received from nuclear operations at Hanford since 1944. The project is divided into the following technical tasks. These tasks correspond to the path radionuclides followed, from release to impact on humans (dose estimates): source terms; environmental transport; environmental monitoring data; demography, food consumption, and agriculture; environmental pathways and dose estimates.

  3. Hanford Environmental Dose Reconstruction Project

    SciTech Connect

    Cannon, S.D.; Finch, S.M.

    1992-10-01

    The objective of the Hanford Environmental Dose Reconstruction (HEDR) Project is to estimate the radiation doses that individuals and populations could have received from nuclear operations at Hanford since 1944. The independent Technical Steering Panel (TSP) provides technical direction. The project is divided into the following technical tasks. These tasks correspond to the path radionuclides followed from release to impact on humans (dose estimates):Source Terms, Environmental Transport, Environmental Monitoring Data, Demography, Food Consumption, and Agriculture, and Environmental Pathways and Dose Estimates.

  4. Survey of computed tomography scanners in Taiwan: Dose descriptors, dose guidance levels, and effective doses

    SciTech Connect

    Tsai, H. Y.; Tung, C. J.; Yu, C. C.; Tyan, Y. S.

    2007-04-15

    The IAEA and the ICRP recommended dose guidance levels for the most frequent computed tomography (CT) examinations to promote strategies for the optimization of radiation dose to CT patients. A national survey, including on-site measurements and questionnaires, was conducted in Taiwan in order to establish dose guidance levels and evaluate effective doses for CT. The beam quality and output and the phantom doses were measured for nine representative CT scanners. Questionnaire forms were completed by respondents from facilities of 146 CT scanners out of 285 total scanners. Information on patient, procedure, scanner, and technique for the head and body examinations was provided. The weighted computed tomography dose index (CTDI{sub w}), the dose length product (DLP), organ doses and effective dose were calculated using measured data, questionnaire information and Monte Carlo simulation results. A cost-effective analysis was applied to derive the dose guidance levels on CTDI{sub w} and DLP for several CT examinations. The mean effective dose{+-}standard deviation distributes from 1.6{+-}0.9 mSv for the routine head examination to 13{+-}11 mSv for the examination of liver, spleen, and pancreas. The surveyed results and the dose guidance levels were provided to the national authorities to develop quality control standards and protocols for CT examinations.

  5. Collective dose-practical ways to estimate a dose matrix.

    PubMed

    Simmonds, Jane; Sihra, Kamaljit; Bexon, Antony

    2006-06-01

    It has been suggested that collective doses should be presented in the form of a 'dose matrix' giving information on the breakdown of collective dose in space and time and by population group. This paper is an initial attempt to provide such a breakdown by geographic region and time, and to give an idea of associated individual doses for routine discharges to atmosphere. This is done through the use of representative per-caput individual doses but these need to be supplemented by information on the individual doses received by the critical group for a full radiological impact assessment. The results show that it is important to distinguish between the different population groups for up to a few hundred years following the discharge. However, beyond this time the main contribution is from global circulation and this distinction is less important. The majority of the collective dose was found to be delivered at low levels of individual doses; the estimated per-caput dose rates were significantly less than 10(-5) Sv y(-1), a level of dose felt to give rise to a trivial risk to the exposed individual.

  6. Standardized radiological dose evaluations

    SciTech Connect

    Peterson, V.L.; Stahlnecker, E.

    1996-05-01

    Following the end of the Cold War, the mission of Rocky Flats Environmental Technology Site changed from production of nuclear weapons to cleanup. Authorization baseis documents for the facilities, primarily the Final Safety Analysis Reports, are being replaced with new ones in which accident scenarios are sorted into coarse bins of consequence and frequency, similar to the approach of DOE-STD-3011-94. Because this binning does not require high precision, a standardized approach for radiological dose evaluations is taken for all the facilities at the site. This is done through a standard calculation ``template`` for use by all safety analysts preparing the new documents. This report describes this template and its use.

  7. Dose refinement. ARAC's role

    SciTech Connect

    Ellis, J. S.; Sullivan, T. J.; Baskett, R. L.

    1998-06-01

    The Atmospheric Release Advisory Capability (ARAC), located at the Lawrence Livermore National Laboratory, since the late 1970's has been involved in assessing consequences from nuclear and other hazardous material releases into the atmosphere. ARAC's primary role has been emergency response. However, after the emergency phase, there is still a significant role for dispersion modeling. This work usually involves refining the source term and, hence, the dose to the populations affected as additional information becomes available in the form of source term estimates release rates, mix of material, and release geometry and any measurements from passage of the plume and deposition on the ground. Many of the ARAC responses have been documented elsewhere. 1 Some of the more notable radiological releases that ARAC has participated in the post-emergency phase have been the 1979 Three Mile Island nuclear power plant (NPP) accident outside Harrisburg, PA, the 1986 Chernobyl NPP accident in the Ukraine, and the 1996 Japan Tokai nuclear processing plant explosion. ARAC has also done post-emergency phase analyses for the 1978 Russian satellite COSMOS 954 reentry and subsequent partial burn up of its on board nuclear reactor depositing radioactive materials on the ground in Canada, the 1986 uranium hexafluoride spill in Gore, OK, the 1993 Russian Tomsk-7 nuclear waste tank explosion, and lesser releases of mostly tritium. In addition, ARAC has performed a key role in the contingency planning for possible accidental releases during the launch of spacecraft with radioisotope thermoelectric generators (RTGs) on board (i.e. Galileo, Ulysses, Mars-Pathfinder, and Cassini), and routinely exercises with the Federal Radiological Monitoring and Assessment Center (FRMAC) in preparation for offsite consequences of radiological releases from NPPs and nuclear weapon accidents or incidents. Several accident post-emergency phase assessments are discussed in this paper in order to illustrate

  8. In defence of collective dose.

    PubMed

    Fairlie, I; Sumner, D

    2000-03-01

    Recent proposals for a new scheme of radiation protection leave little room for collective dose estimations. This article discusses the history and present use of collective doses for occupational, ALARA, EIS and other purposes with reference to practical industry papers and government reports. The linear no-threshold (LNT) hypothesis suggests that collective doses which consist of very small doses added together should be used. Moral and ethical questions are discussed, particularly the emphasis on individual doses to the exclusion of societal risks, uncertainty over effects into the distant future and hesitation over calculating collective detriments. It is concluded that for moral, practical and legal reasons, collective dose is a valid parameter which should continue to be used.

  9. Dose from slow negative muons.

    PubMed

    Siiskonen, T

    2008-01-01

    Conversion coefficients from fluence to ambient dose equivalent, from fluence to maximum dose equivalent and quality factors for slow negative muons are examined in detail. Negative muons, when stopped, produce energetic photons, electrons and a variety of high-LET particles. Contribution from each particle type to the dose equivalent is calculated. The results show that for the high-LET particles the details of energy spectra and decay yields are important for accurate dose estimates. For slow negative muons the ambient dose equivalent does not always yield a conservative estimate for the protection quantities. Especially, the skin equivalent dose is strongly underestimated if the radiation-weighting factor of unity for slow muons is used. Comparisons to earlier studies are presented.

  10. Dose to medium versus dose to water as an estimator of dose to sensitive skeletal tissue

    NASA Astrophysics Data System (ADS)

    Walters, B. R. B.; Kramer, R.; Kawrakow, I.

    2010-08-01

    The purpose of this study is to determine whether dose to medium, Dm, or dose to water, Dw, provides a better estimate of the dose to the radiosensitive red bone marrow (RBM) and bone surface cells (BSC) in spongiosa, or cancellous bone. This is addressed in the larger context of the ongoing debate over whether Dm or Dw should be specified in Monte Carlo calculated radiotherapy treatment plans. The study uses voxelized, virtual human phantoms, FAX06/MAX06 (female/male), incorporated into an EGSnrc Monte Carlo code to perform Monte Carlo dose calculations during simulated irradiation by a 6 MV photon beam from an Elekta SL25 accelerator. Head and neck, chest and pelvis irradiations are studied. FAX06/MAX06 include precise modelling of spongiosa based on µCT images, allowing dose to RBM and BSC to be resolved from the dose to bone. Modifications to the FAX06/MAX06 user codes are required to score Dw and Dm in spongiosa. Dose uncertainties of ~1% (BSC, RBM) or ~0.5% (Dm, Dw) are obtained after up to 5 days of simulations on 88 CPUs. Clinically significant differences (>5%) between Dm and Dw are found only in cranial spongiosa, where the volume fraction of trabecular bone (TBVF) is high (55%). However, for spongiosa locations where there is any significant difference between Dm and Dw, comparisons of differential dose volume histograms (DVHs) and average doses show that Dw provides a better overall estimate of dose to RBM and BSC. For example, in cranial spongiosa the average Dm underestimates the average dose to sensitive tissue by at least 5%, while average Dw is within ~1% of the average dose to sensitive tissue. Thus, it is better to specify Dw than Dm in Monte Carlo treatment plans, since Dw provides a better estimate of dose to sensitive tissue in bone, the only location where the difference is likely to be clinically significant.

  11. REMEDIATION FACILITY WORKER DOSE ASSESSMENT

    SciTech Connect

    V. Arakali; E. Faillace

    2004-02-27

    The purpose of this design calculation is to estimate radiation doses received by personnel in the Remediation Facility performing operations to receive, prepare, open, repair, recover, disposition, and correct off-normal and non-standard conditions with casks, canisters, spent nuclear fuel (SNF) assemblies, and waste packages (WP). The specific scope of work contained in this calculation covers both collective doses and individual worker group doses on an annual basis, and includes the contributions due to external and internal radiation. The results of this calculation will be used to support the design of the Remediation Facility and provide occupational dose estimates for the License Application.

  12. Hanford Environmental Dose Reconstruction Project

    SciTech Connect

    Finch, S.M.; McMakin, A.H.

    1992-06-01

    The objective of the Hanford Environmental Dose Reconstruction Project is to estimate the radiation doses that individuals and populations could have received from nuclear operations at Hanford since 1944. The project is being managed and conducted by the Battelle Pacific Northwest Laboratories under contract with the Centers for Disease Control. The independent Technical Steering Panel (TSP) provides technical direction. The project is divided into the following technical tasks. These tasks correspond to the path radionuclides followed, from release to impact on humans (dose estimates): source terms; environmental transport; environmental monitoring data; demography, food consumption, and agriculture; environmental pathways and dose estimates.

  13. Psychotropic dose equivalence in Japan.

    PubMed

    Inada, Toshiya; Inagaki, Ataru

    2015-08-01

    Psychotropic dose equivalence is an important concept when estimating the approximate psychotropic doses patients receive, and deciding on the approximate titration dose when switching from one psychotropic agent to another. It is also useful from a research viewpoint when defining and extracting specific subgroups of subjects. Unification of various agents into a single standard agent facilitates easier analytical comparisons. On the basis of differences in psychopharmacological prescription features, those of available psychotropic agents and their approved doses, and racial differences between Japan and other countries, psychotropic dose equivalency tables designed specifically for Japanese patients have been widely used in Japan since 1998. Here we introduce dose equivalency tables for: (i) antipsychotics; (ii) antiparkinsonian agents; (iii) antidepressants; and (iv) anxiolytics, sedatives and hypnotics available in Japan. Equivalent doses for the therapeutic effects of individual psychotropic compounds were determined principally on the basis of randomized controlled trials conducted in Japan and consensus among dose equivalency tables reported previously by psychopharmacological experts. As these tables are intended to merely suggest approximate standard values, physicians should use them with discretion. Updated information of psychotropic dose equivalence in Japan is available at http://www.jsprs.org/en/equivalence.tables/. [Correction added on 8 July 2015, after first online publication: A link to the updated information has been added.].

  14. A dose error evaluation study for 4D dose calculations

    NASA Astrophysics Data System (ADS)

    Milz, Stefan; Wilkens, Jan J.; Ullrich, Wolfgang

    2014-10-01

    Previous studies have shown that respiration induced motion is not negligible for Stereotactic Body Radiation Therapy. The intrafractional breathing induced motion influences the delivered dose distribution on the underlying patient geometry such as the lung or the abdomen. If a static geometry is used, a planning process for these indications does not represent the entire dynamic process. The quality of a full 4D dose calculation approach depends on the dose coordinate transformation process between deformable geometries. This article provides an evaluation study that introduces an advanced method to verify the quality of numerical dose transformation generated by four different algorithms. The used transformation metric value is based on the deviation of the dose mass histogram (DMH) and the mean dose throughout dose transformation. The study compares the results of four algorithms. In general, two elementary approaches are used: dose mapping and energy transformation. Dose interpolation (DIM) and an advanced concept, so called divergent dose mapping model (dDMM), are used for dose mapping. The algorithms are compared to the basic energy transformation model (bETM) and the energy mass congruent mapping (EMCM). For evaluation 900 small sample regions of interest (ROI) are generated inside an exemplary lung geometry (4DCT). A homogeneous fluence distribution is assumed for dose calculation inside the ROIs. The dose transformations are performed with the four different algorithms. The study investigates the DMH-metric and the mean dose metric for different scenarios (voxel sizes: 8 mm, 4 mm, 2 mm, 1 mm 9 different breathing phases). dDMM achieves the best transformation accuracy in all measured test cases with 3-5% lower errors than the other models. The results of dDMM are reasonable and most efficient in this study, although the model is simple and easy to implement. The EMCM model also achieved suitable results, but the approach requires a more complex

  15. Helical tomotherapy superficial dose measurements

    SciTech Connect

    Ramsey, Chester R.; Seibert, Rebecca M.; Robison, Benjamin; Mitchell, Martha

    2007-08-15

    Helical tomotherapy is a treatment technique that is delivered from a 6 MV fan beam that traces a helical path while the couch moves linearly into the bore. In order to increase the treatment delivery dose rate, helical tomotherapy systems do not have a flattening filter. As such, the dose distributions near the surface of the patient may be considerably different from other forms of intensity-modulated delivery. The purpose of this study was to measure the dose distributions near the surface for helical tomotherapy plans with a varying separation between the target volume and the surface of an anthropomorphic phantom. A hypothetical planning target volume (PTV) was defined on an anthropomorphic head phantom to simulate a 2.0 Gy per fraction IMRT parotid-sparing head and neck treatment of the upper neck nodes. A total of six target volumes were created with 0, 1, 2, 3, 4, and 5 mm of separation between the surface of the phantom and the outer edge of the PTV. Superficial doses were measured for each of the treatment deliveries using film placed in the head phantom and thermoluminescent dosimeters (TLDs) placed on the phantom's surface underneath an immobilization mask. In the 0 mm test case where the PTV extends to the phantom surface, the mean TLD dose was 1.73{+-}0.10 Gy (or 86.6{+-}5.1% of the prescribed dose). The measured superficial dose decreases to 1.23{+-}0.10 Gy (61.5{+-}5.1% of the prescribed dose) for a PTV-surface separation of 5 mm. The doses measured by the TLDs indicated that the tomotherapy treatment planning system overestimates superficial doses by 8.9{+-}3.2%. The radiographic film dose for the 0 mm test case was 1.73{+-}0.07 Gy, as compared to the calculated dose of 1.78{+-}0.05 Gy. Given the results of the TLD and film measurements, the superficial calculated doses are overestimated between 3% and 13%. Without the use of bolus, tumor volumes that extend to the surface may be underdosed. As such, it is recommended that bolus be added for these

  16. Single daily dosing of aminoglycosides.

    PubMed

    Preston, S L; Briceland, L L

    1995-01-01

    To evaluate the rationale behind dosing aminoglycosides as a single daily dose versus traditional dosing approaches, we conducted a MEDLINE search to identify all pertinent articles, and also reviewed the references of all articles. Single daily dosing of aminoglycosides is not a new concept, having been examined since 1974. The advantages of this regimen include optimum concentration-dependent bactericidal activity, longer dosing intervals due to the postantibiotic effect (PAE), and prevention of bacterial adaptive resistance. Because of longer dosing intervals, toxicity may also be delayed or reduced. Costs may be reduced due to decreased monitoring and administration. Clinically, the regimen has been implemented in various patient populations with reported success. Questions remain, however, about optimum dose, peak and trough serum concentrations, and dose adjustment in patients with renal impairment or neutropenia. More clinical experience with this method in large numbers of patients has to be published. Pharmacists can be instrumental in monitoring patients receiving once-daily therapy and by educating health care professionals as to the rationale behind the therapy.

  17. Bayesian estimation of dose thresholds

    NASA Technical Reports Server (NTRS)

    Groer, P. G.; Carnes, B. A.

    2003-01-01

    An example is described of Bayesian estimation of radiation absorbed dose thresholds (subsequently simply referred to as dose thresholds) using a specific parametric model applied to a data set on mice exposed to 60Co gamma rays and fission neutrons. A Weibull based relative risk model with a dose threshold parameter was used to analyse, as an example, lung cancer mortality and determine the posterior density for the threshold dose after single exposures to 60Co gamma rays or fission neutrons from the JANUS reactor at Argonne National Laboratory. The data consisted of survival, censoring times and cause of death information for male B6CF1 unexposed and exposed mice. The 60Co gamma whole-body doses for the two exposed groups were 0.86 and 1.37 Gy. The neutron whole-body doses were 0.19 and 0.38 Gy. Marginal posterior densities for the dose thresholds for neutron and gamma radiation were calculated with numerical integration and found to have quite different shapes. The density of the threshold for 60Co is unimodal with a mode at about 0.50 Gy. The threshold density for fission neutrons declines monotonically from a maximum value at zero with increasing doses. The posterior densities for all other parameters were similar for the two radiation types.

  18. Hanford Environmental Dose Reconstruction Project

    SciTech Connect

    Finch, S.M.

    1990-09-01

    This monthly report summarizes the technical progress and project status for the Hanford Environmental Dose Reconstruction (HEDR) Project being conducted at the Pacific Northwest Laboratory (PNL) under the direction of a Technical Steering Panel (TSP). The TSP is composed of experts in numerous technical fields related to this project and represents the interests of the public. The objective of the Hanford Environmental Dose Reconstruction Project is to estimate the radiation doses that populations could have received from nuclear operations at Hanford since 1944. The project is divided into the following technical tasks. These tasks correspond to the path radionuclides followed, from release to impact on humans (dose estimates): source terms, environmental transport, environmental monitoring data, demographics, agriculture, food habits, environmental pathways and dose estimates. 3 figs.

  19. Exercise Dose in Clinical Practice.

    PubMed

    Wasfy, Meagan M; Baggish, Aaron L

    2016-06-07

    There is wide variability in the physical activity patterns of the patients in contemporary clinical cardiovascular practice. This review is designed to address the impact of exercise dose on key cardiovascular risk factors and on mortality. We begin by examining the body of literature that supports a dose-response relationship between exercise and cardiovascular disease risk factors, including plasma lipids, hypertension, diabetes mellitus, and obesity. We next explore the relationship between exercise dose and mortality by reviewing the relevant epidemiological literature underlying current physical activity guideline recommendations. We then expand this discussion to critically examine recent data pertaining to the impact of exercise dose at the lowest and highest ends of the spectrum. Finally, we provide a framework for how the key concepts of exercise dose can be integrated into clinical practice.

  20. Optimization of dosing regimens and dosing in special populations.

    PubMed

    Sime, F B; Roberts, M S; Roberts, J A

    2015-10-01

    Treatment of infectious diseases is becoming increasingly challenging with the emergence of less-susceptible organisms that are poorly responsive to existing antibiotic therapies, and the unpredictable pharmacokinetic alterations arising from complex pathophysiologic changes in some patient populations. In view of this fact, there has been a progressive work on novel dose optimization strategies to renew the utility of forgotten old antibiotics and to improve the efficacy of those currently in use. This review summarizes the different approaches of optimization of antibiotic dosing regimens and the special patient populations which may benefit most from these approaches. The existing methods are based on monitoring of antibiotic concentrations and/or use of clinical covariates. Measured concentrations can be correlated with predefined pharmacokinetic/pharmacodynamic targets to guide clinicians in predicting the necessary dose adjustment. Dosing nomograms are also available to relate observed concentrations or clinical covariates (e.g. creatinine clearance) with optimal dosing. More precise dose prediction based on observed covariates is possible through the application of population pharmacokinetic models. However, the most accurate estimation of individualized dosing requirements is achieved through Bayesian forecasting which utilizes both measured concentration and clinical covariates. Various software programs are emerging to ease clinical application. Whilst more studies are warranted to clarify the clinical outcomes associated with the different dose optimization approaches, severely ill patients in the course of marked infections and/or inflammation including those with sepsis, septic shock, severe trauma, burns injury, major surgery, febrile neutropenia, cystic fibrosis, organ dysfunction and obesity are those groups which may benefit most from individualized dosing.

  1. Radiation dose estimates for radiopharmaceuticals

    SciTech Connect

    Stabin, M.G.; Stubbs, J.B.; Toohey, R.E.

    1996-04-01

    Tables of radiation dose estimates based on the Cristy-Eckerman adult male phantom are provided for a number of radiopharmaceuticals commonly used in nuclear medicine. Radiation dose estimates are listed for all major source organs, and several other organs of interest. The dose estimates were calculated using the MIRD Technique as implemented in the MIRDOSE3 computer code, developed by the Oak Ridge Institute for Science and Education, Radiation Internal Dose Information Center. In this code, residence times for source organs are used with decay data from the MIRD Radionuclide Data and Decay Schemes to produce estimates of radiation dose to organs of standardized phantoms representing individuals of different ages. The adult male phantom of the Cristy-Eckerman phantom series is different from the MIRD 5, or Reference Man phantom in several aspects, the most important of which is the difference in the masses and absorbed fractions for the active (red) marrow. The absorbed fractions for flow energy photons striking the marrow are also different. Other minor differences exist, but are not likely to significantly affect dose estimates calculated with the two phantoms. Assumptions which support each of the dose estimates appears at the bottom of the table of estimates for a given radiopharmaceutical. In most cases, the model kinetics or organ residence times are explicitly given. The results presented here can easily be extended to include other radiopharmaceuticals or phantoms.

  2. ORGAN DOSES AND EFFECTIVE DOSE FOR FIVE PET RADIOPHARMACEUTICALS.

    PubMed

    Andersson, Martin; Johansson, Lennart; Mattsson, Sören; Minarik, David; Leide-Svegborn, Sigrid

    2016-06-01

    Diagnostic investigations with positron-emitting radiopharmaceuticals are dominated by (18)F-fluorodeoxyglucose ((18)F-FDG), but other radiopharmaceuticals are also commercially available or under development. Five of them, which are all clinically important, are (18)F-fluoride, (18)F-fluoroethyltyrosine ((18)F-FET), (18)F-deoxyfluorothymidine ((18)F-FLT), (18)F-fluorocholine ((18)F-choline) and (11)C-raclopride. To estimate the potential risk of stochastic effects (mainly lethal cancer) to a population, organ doses and effective dose values were updated for all five radiopharmaceuticals. Dose calculations were performed using the computer program IDAC2.0, which bases its calculations on the ICRP/ICRU adult reference voxel phantoms and the tissue weighting factors from ICRP publication 103. The biokinetic models were taken from ICRP publication 128. For organ doses, there are substantial changes. The only significant change in effective dose compared with previous estimations was a 46 % reduction for (18)F-fluoride. The estimated effective dose in mSv MBq(-1) was 1.5E-02 for (18)F-FET, 1.5E-02 for (18)F-FLT, 2.0E-02 for (18)F-choline, 9.0E-03 for (18)F-fluoride and 4.4E-03 for (11)C-raclopride.

  3. Hanford Environmental Dose Reconstruction Project

    SciTech Connect

    McMakin, A.H.; Cannon, S.D.; Finch, S.M.

    1992-07-01

    The objective of the Hanford Environmental Dose Reconstruction (HEDR) Project is to estimate the radiation doses that individuals and populations could have received from nuclear operations at Hanford since 1944. The TSP consists of experts in environmental pathways, epidemiology, surface-water transport, ground-water transport, statistics, demography, agriculture, meteorology, nuclear engineering, radiation dosimetry, and cultural anthropology. Included are appointed technical members representing the states of Oregon, Washington, and Idaho, a representative of Native American tribes, and an individual representing the public. The project is divided into the following technical tasks. These tasks correspond to the path radionuclides followed from release to impact on humans (dose estimates): Source terms, environmental transport, environmental monitoring data, demography, food consumption, and agriculture, and environmental pathways and dose estimates. Progress is discussed.

  4. Hanford Environmental Dose Reconstruction Project

    SciTech Connect

    Finch, S.M.; McMakin, A.H.

    1991-01-01

    The objective of the Hanford Environmental Dose Reconstruction Project is to estimate the radiation doses that individuals and populations could have received from nuclear operations at Hanford since 1944. The project is being managed and conducted by the Pacific Northwest Laboratory (PNL) under the direction of an independent Technical Steering Panel (TSP). The TSP consists of experts in environmental pathways, epidemiology, surface-water transport, ground-water transport, statistics, demography, agriculture, meteorology, nuclear engineering, radiation dosimetry, and cultural anthropology. Included are appointed technical members representing the states of Oregon and Washington, a representative of Native American tribes, and an individual representing the public. The project is divided into the following technical tasks. These tasks correspond to the path radionuclides followed, from release to impact on human (dose estimates): Source Terms; Environmental Transport; Environmental Monitoring Data; Demographics, Agriculture, Food Habits and; Environmental Pathways and Dose Estimates.

  5. Gamma Radiation Doses In Sweden

    SciTech Connect

    Almgren, Sara; Isaksson, Mats; Barregaard, Lars

    2008-08-07

    Gamma dose rate measurements were performed in one urban and one rural area using thermoluminescence dosimeters (TLD) worn by 46 participants and placed in their dwellings. The personal effective dose rates were 0.096{+-}0.019(1 SD) and 0.092{+-}0.016(1 SD){mu}Sv/h in the urban and rural area, respectively. The corresponding dose rates in the dwellings were 0.11{+-}0.042(1 SD) and 0.091{+-}0.026(1 SD){mu}Sv/h. However, the differences between the areas were not significant. The values were higher in buildings made of concrete than of wood and higher in apartments than in detached houses. Also, {sup 222}Rn measurements were performed in each dwelling, which showed no correlation with the gamma dose rates in the dwellings.

  6. Weldon Spring historical dose estimate

    SciTech Connect

    Meshkov, N.; Benioff, P.; Wang, J.; Yuan, Y.

    1986-07-01

    This study was conducted to determine the estimated radiation doses that individuals in five nearby population groups and the general population in the surrounding area may have received as a consequence of activities at a uranium processing plant in Weldon Spring, Missouri. The study is retrospective and encompasses plant operations (1957-1966), cleanup (1967-1969), and maintenance (1969-1982). The dose estimates for members of the nearby population groups are as follows. Of the three periods considered, the largest doses to the general population in the surrounding area would have occurred during the plant operations period (1957-1966). Dose estimates for the cleanup (1967-1969) and maintenance (1969-1982) periods are negligible in comparison. Based on the monitoring data, if there was a person residing continually in a dwelling 1.2 km (0.75 mi) north of the plant, this person is estimated to have received an average of about 96 mrem/yr (ranging from 50 to 160 mrem/yr) above background during plant operations, whereas the dose to a nearby resident during later years is estimated to have been about 0.4 mrem/yr during cleanup and about 0.2 mrem/yr during the maintenance period. These values may be compared with the background dose in Missouri of 120 mrem/yr.

  7. Technical basis for dose reconstruction

    SciTech Connect

    Anspaugh, L.R.

    1996-01-31

    The purpose of this paper is to consider two general topics: technical considerations of why dose-reconstruction studies should or should not be performed and methods of dose reconstruction. The first topic is of general and growing interest as the number of dose-reconstruction studies increases, and one asks the question whether it is necessary to perform a dose reconstruction for virtually every site at which, for example, the Department of Energy (DOE) has operated a nuclear-related facility. And there is the broader question of how one might logically draw the line at performing or not performing dose-reconstruction (radiological and chemical) studies for virtually every industrial complex in the entire country. The second question is also of general interest. There is no single correct way to perform a dose-reconstruction study, and it is important not to follow blindly a single method to the point that cheaper, faster, more accurate, and more transparent methods might not be developed and applied.

  8. BENCHMARK DOSE TECHNICAL GUIDANCE DOCUMENT ...

    EPA Pesticide Factsheets

    The U.S. EPA conducts risk assessments for an array of health effects that may result from exposure to environmental agents, and that require an analysis of the relationship between exposure and health-related outcomes. The dose-response assessment is essentially a two-step process, the first being the definition of a point of departure (POD), and the second extrapolation from the POD to low environmentally-relevant exposure levels. The benchmark dose (BMD) approach provides a more quantitative alternative to the first step in the dose-response assessment than the current NOAEL/LOAEL process for noncancer health effects, and is similar to that for determining the POD proposed for cancer endpoints. As the Agency moves toward harmonization of approaches for human health risk assessment, the dichotomy between cancer and noncancer health effects is being replaced by consideration of mode of action and whether the effects of concern are likely to be linear or nonlinear at low doses. Thus, the purpose of this project is to provide guidance for the Agency and the outside community on the application of the BMD approach in determining the POD for all types of health effects data, whether a linear or nonlinear low dose extrapolation is used. A guidance document is being developed under the auspices of EPA's Risk Assessment Forum. The purpose of this project is to provide guidance for the Agency and the outside community on the application of the benchmark dose (BMD) appr

  9. Peripheral doses from pediatric IMRT

    SciTech Connect

    Klein, Eric E.; Maserang, Beth; Wood, Roy; Mansur, David

    2006-07-15

    Peripheral dose (PD) data exist for conventional fields ({>=}10 cm) and intensity-modulated radiotherapy (IMRT) delivery to standard adult-sized phantoms. Pediatric peripheral dose reports are limited to conventional therapy and are model based. Our goal was to ascertain whether data acquired from full phantom studies and/or pediatric models, with IMRT treatment times, could predict Organ at Risk (OAR) dose for pediatric IMRT. As monitor units (MUs) are greater for IMRT, it is expected IMRT PD will be higher; potentially compounded by decreased patient size (absorption). Baseline slab phantom peripheral dose measurements were conducted for very small field sizes (from 2 to 10 cm). Data were collected at distances ranging from 5 to 72 cm away from the field edges. Collimation was either with the collimating jaws or the multileaf collimator (MLC) oriented either perpendicular or along the peripheral dose measurement plane. For the clinical tests, five patients with intracranial or base of skull lesions were chosen. IMRT and conventional three-dimensional (3D) plans for the same patient/target/dose (180 cGy), were optimized without limitation to the number of fields or wedge use. Six MV, 120-leaf MLC Varian axial beams were used. A phantom mimicking a 3-year-old was configured per Center for Disease Control data. Micro (0.125 cc) and cylindrical (0.6 cc) ionization chambers were appropriated for the thyroid, breast, ovaries, and testes. The PD was recorded by electrometers set to the 10{sup -10} scale. Each system set was uniquely calibrated. For the slab phantom studies, close peripheral points were found to have a higher dose for low energy and larger field size and when MLC was not deployed. For points more distant from the field edge, the PD was higher for high-energy beams. MLC orientation was found to be inconsequential for the small fields tested. The thyroid dose was lower for IMRT delivery than that predicted for conventional (ratio of IMRT/cnventional ranged

  10. Hanford Environmental Dose Reconstruction Project

    SciTech Connect

    Finch, S.M.

    1990-01-01

    The objective of the Hanford Environmental Dose Reconstruction Project is to estimate the radiation doses that populations could have received from nuclear operations at Hanford since 1944. The project is being managed and conducted by the Pacific Northwest Laboratory (PNL) under the direction of an independent Technical Steering Panel (TSP). The project is divided into the following technical tasks. These tasks correspond to the path radionuclides followed, from release to impact on humans (dose estimates). The Source Terms Task develops estimates of radioactive emissions from Hanford facilities since 1944. The Environmental Transport Task reconstructs the movement of radioactive materials from the areas of release to populations. The Environmental Monitoring Data Task assembles, evaluates, and reports historical environmental monitoring data. The Demographics, Agriculture, Food Habits Task develops the data needed to identify the populations that could have been affected by the releases. In addition to population and demographic data, the food and water resources and consumption patterns for populations are estimated because they provide a primary pathway for the intake of radionuclides. The Environmental Pathways and Dose Estimates Task use the information produced by the other tasks to estimate the radiation doses populations could have received from Hanford radiation. Project progress is documented in this monthly report, which is available to the public. 3 figs., 3 tabs.

  11. AGING FACILITY WORKER DOSE ASSESSMENT

    SciTech Connect

    R.L. Thacker

    2005-03-24

    The purpose of this calculation is to estimate radiation doses received by personnel working in the Aging Facility performing operations to transfer aging casks to the aging pads for thermal and logistical management, stage empty aging casks, and retrieve aging casks from the aging pads for further processing in other site facilities. Doses received by workers due to aging cask surveillance and maintenance operations are also included. The specific scope of work contained in this calculation covers both collective doses and individual worker group doses on an annual basis, and includes the contributions due to external and internal radiation from normal operation. There are no Category 1 event sequences associated with the Aging Facility (BSC 2004 [DIRS 167268], Section 7.2.1). The results of this calculation will be used to support the design of the Aging Facility and to provide occupational dose estimates for the License Application. The calculations contained in this document were developed by Environmental and Nuclear Engineering of the Design and Engineering Organization and are intended solely for the use of the Design and Engineering Organization in its work regarding facility operation. Yucca Mountain Project personnel from the Environmental and Nuclear Engineering should be consulted before use of the calculations for purposes other than those stated herein or use by individuals other than authorized personnel in Environmental and Nuclear Engineering.

  12. Hanford Environmental Dose Reconstruction Project

    SciTech Connect

    Finch, S. M.; McMakin, A. H.

    1991-09-01

    The objective of the Hanford Environmental Dose Reconstruction Project is to estimate the radiation dose that individuals and populations could have received from nuclear operations at Hanford since 1944. The project is divided into five technical tasks. These tasks correspond to the path radionuclides followed, from release to impact on humans (i.e., dose estimates). The Source Terms Task develops estimates of radioactive emissions from Hanford facilities since 1944. The Environmental Transport Task reconstructs the movements of radioactive particles from the areas of release to populations. The Environmental Monitoring Data Task assemblies, evaluates and reports historical environmental monitoring data. The Demographics, Agriculture and Food Habits Task develops the data needed to identify the populations that could have been affected by the releases. The Environmental Pathways and Dose Estimates Task used the information derived from the other Tasks to estimate the radiation doses individuals could have received from Hanford radiation. This document lists the progress on this project as of September 1991. 3 figs., 2 tabs.

  13. Work function analysis of vegetarian entrée production.

    PubMed

    Maloney, S; Zolber, K; Burke, K; Connell, B; Shavlik, G

    1986-02-01

    Data on labor time for food production can be used as an effective management tool. It is essential for foodservice managers to know how labor time is being used (1). A continuous time study was conducted to determine total labor time for the production of eight vegetarian entrées in a hospital foodservice system. Two work areas were observed: the ingredient assembly area and the cooks' production area. Times were recorded by work function to identify how labor time was distributed. Results showed (a) observed frequency for each work function, (b) time expended in seconds per portion for each work function, (c) percentage distribution of labor time by work function, (d) total time for each employee involved in entrée production, and (e) percentage of total time in which each employee was involved in the production of each entrée. Total labor time varied by type of entrée, ranging from 39.97 to 19.33 seconds per portion. Entrées with the highest labor time required the largest amount of hand labor. A one-way analysis of variance indicated significant differences in mean labor time among the eight vegetarian entrées for direct labor time (p = .0009), and total labor time (p = .0018). No significant differences were found among entrées for indirect labor or delay time.

  14. Radiation Dose from Reentrant Electrons

    NASA Technical Reports Server (NTRS)

    Badhwar, G.D.; Cleghorn, T. E.; Watts, J.

    2003-01-01

    In estimating the crew exposures during an EVA, the contribution of reentrant electrons has always been neglected. Although the flux of these electrons is small compared to the flux of trapped electrons, their energy spectrum extends to several GeV compared to about 7 MeV for trapped electrons. This is also true of splash electrons. Using the measured reentrant electron energy spectra, it is shown that the dose contribution of these electrons to the blood forming organs (BFO) is more than 10 times greater than that from the trapped electrons. The calculations also show that the dose-depth response is a very slowly changing function of depth, and thus adding reasonable amounts of additional shielding would not significantly lower the dose to BFO.

  15. Parameterization of solar flare dose

    SciTech Connect

    Lamarche, A.H.; Poston, J.W.

    1996-12-31

    A critical aspect of missions to the moon or Mars will be the safety and health of the crew. Radiation in space is a hazard for astronauts, especially high-energy radiation following certain types of solar flares. A solar flare event can be very dangerous if astronauts are not adequately shielded because flares can deliver a very high dose in a short period of time. The goal of this research was to parameterize solar flare dose as a function of time to see if it was possible to predict solar flare occurrence, thus providing a warning time. This would allow astronauts to take corrective action and avoid receiving a dose greater than the recommended limit set by the National Council on Radiation Protection and Measurements (NCRP).

  16. Distribución espacial de cúmulos y asociaciones estelares con diferentes edades en la Nube Mayor de Magallanes

    NASA Astrophysics Data System (ADS)

    Bica, E.; Clariá, J. J.; Dottori, H.; Santos, J. F. C.; Piatti, A. E.

    Sobre la base de observaciones realizadas en Cerro Tololo y el Casleo, se presenta un catálogo con fotometría UBV integrada de 504 cúmulos y 120 asociaciones estelares en la Nube Mayor de Magallanes. Se determinan edades en términos de los tipos SWB y se identifican 38 cúmulos tipo VII, muchos de los cuales pueden ser cúmulos globulares clásicos. El tamaño de las distribuciones espaciales crece uniformemente con la edad (tipo SWB), en tanto que existe una diferencia en el cociente axial entre los grupos más jóvenes y más viejos que 30 millones de años, lo que implica una orientación aproximadamente de frente para los primeros y una posición inclinada ~ 45o para el segundo grupo. Las asimetrías en las distribuciones espaciales, juntamente con la falta de coincidencia de los centroides de los diferentes grupos de edad, sugiere que el disco de la Nube Mayor de Magallanes fue severamente perturbado en el pasado.

  17. Automated Gamma Knife dose planning

    NASA Astrophysics Data System (ADS)

    Leichtman, Gregg S.; Aita, Anthony L.; Goldman, H. W.

    1998-06-01

    The Gamma Knife (Elekta Instruments, Inc., Atlanta, GA), a neurosurgical, highly focused radiation delivery device, is used to eradicate deep-seated anomalous tissue within the human brain by delivering a lethal dose of radiation to target tissue. This dose is the accumulated result of delivering sequential `shots' of radiation to the target where each shot is approximately 3D Gaussian in shape. The size and intensity of each shot can be adjusted by varying the time of radiation exposure and by using one of four collimator sizes ranging from 4 - 18 mm. Current dose planning requires that the dose plan be developed manually to cover the target, and only the target, with a desired minimum radiation intensity using a minimum number of shots. This is a laborious and subjective process which typically leads to suboptimal conformal target coverage by the dose. We have used adaptive simulated annealing/quenching followed by Nelder-Mead simplex optimization to automate the selection and placement of Gaussian-based `shots' to form a simulated dose plane. In order to make the computation of the problem tractable, the algorithm, based upon contouring and polygon clipping, takes a 2 1/2-D approach to defining the cost function. Several experiments have been performed where the optimizers have been given the freedom to vary the number of shots and the weight, collimator size, and 3D location of each shot. To data best results have been obtained by forcing the optimizers to use a fixed number of unweighted shots with each optimizer set free to vary the 3D location and collimator size of each shot. Our preliminary results indicate that this technology will radically decrease planning time while significantly increasing accuracy of conformal target coverage and reproducibility over current manual methods.

  18. The Dose Makes the Poison.

    ERIC Educational Resources Information Center

    Ottoboni, Alice

    1992-01-01

    A Toxicologist discusses common misconception that all chemicals are poisonous to people and the environment and how these misconceptions are perpetuated. Describes what makes a chemical toxic. Defines related concepts including dose, acute and chronic toxicity, and natural verses synthetic chemicals. (MCO)

  19. EXOMARS IRAS (DOSE) radiation measurements.

    NASA Astrophysics Data System (ADS)

    Federico, C.; Di Lellis, A. M.; Fonte, S.; Pauselli, C.; Reitz, G.; Beaujean, R.

    The characterization and the study of the radiations on their interaction with organic matter is of great interest in view of the human exploration on Mars. The Ionizing RAdiation Sensor (IRAS) selected in the frame of the ExoMars/Pasteur ESA mission is a lightweight particle spectrometer combining various techniques of radiation detection in space. It characterizes the first time the radiation environment on the Mars surface, and provide dose and dose equivalent rates as precursor information absolutely necessary to develop ways to mitigate the radiation risks for future human exploration on Mars. The Martian radiation levels are much higher than those found on Earth and they are relatively low for space. Measurements on the surface will show if they are similar or not to those seen in orbit (modified by the presence of ``albedo'' neutrons produced in the regolith and by the thin Martian atmosphere). IRAS consists of a telescope based on segmented silicon detectors of about 40\\userk\\milli\\metre\\user;k diameter and 300\\user;k\\micro\\metre\\user;k thickness, a segmented organic scintillator, and of a thermoluminescence dosimeter. The telescope will continuously monitor temporal variation of the particle count rate, the dose rate, particle and LET (Linear Energy Transfer) spectra. Tissue equivalent BC430 scintillator material will be used to measure the neutron dose. Neutrons are selected by a criteria requiring no signal in the anti-coincidence. Last, the passive thermoluminescence dosimeter, based on LiF:Mg detectors, regardless the on board operation timing, will measure the total dose accumulated during the exposure period and due to beta and gamma radiation, with a responsivity very close to that of a human tissue.

  20. [Absorbed doses in dental radiology].

    PubMed

    Bianchi, S D; Roccuzzo, M; Albrito, F; Ragona, R; Anglesio, S

    1996-01-01

    The growing use of dento-maxillo-facial radiographic examinations has been accompanied by the publication of a large number of studies on dosimetry. A thorough review of the literature is presented in this article. Most studies were carried out on tissue equivalent skull phantoms, while only a few were in vivo. The aim of the present study was to evaluate in vivo absorbed doses during Orthopantomography (OPT). Full Mouth Periapical Examination (FMPE) and Intraoral Tube Panoramic Radiography (ITPR). Measurements were made on 30 patients, reproducing clinical conditions, in 46 anatomical sites, with 24 intra- and 22 extra-oral thermoluminiscent dosimeters (TLDS). The highest doses were measured, in orthopantomography, at the right mandibular angle (1899 mu Gy) in FMPE on the right naso-labial fold (5640 mu Gy and in ITPR on the palatal surface of the left second upper molar (1936 mu Gy). Intraoral doses ranged from 21 mu Gy, in orthopantomography, to 4494 mu Gy in FMPE. Standard errors ranged from 142% in ITPR to 5% in orthopantomography. The highest rate of standard errors was found in FMPE and ITPR. The data collected in this trial are in agreement with others in major literature reports. Disagreements are probably due to different exam acquisition and data collections. Such differences, presented comparison in several sites, justify lower doses in FMPE and ITPR. Advantages and disadvantages of in vivo dosimetry of the maxillary region are discussed, the former being a close resemblance to clinical conditions of examination and the latter the impossibility of collecting values in depth of tissues. Finally, both ITPR and FMPE required lower doses than expected, and can be therefore reconsidered relative to their radiation risk.

  1. A MULTIMODEL APPROACH FOR CALCULATING BENCHMARK DOSE

    EPA Science Inventory


    A Multimodel Approach for Calculating Benchmark Dose
    Ramon I. Garcia and R. Woodrow Setzer

    In the assessment of dose response, a number of plausible dose- response models may give fits that are consistent with the data. If no dose response formulation had been speci...

  2. Tank Z-361 dose rate calculations

    SciTech Connect

    Richard, R.F.

    1998-09-30

    Neutron and gamma ray dose rates were calculated above and around the 6-inch riser of tank Z-361 located at the Plutonium Finishing Plant. Dose rates were also determined off of one side of the tank. The largest dose rate 0.029 mrem/h was a gamma ray dose and occurred 76.2 cm (30 in.) directly above the open riser. All other dose rates were negligible. The ANSI/ANS 1991 flux to dose conversion factor for neutrons and photons were used in this analysis. Dose rates are reported in units of mrem/h with the calculated uncertainty shown within the parentheses.

  3. Online measurement of dose and dose distribution at bremsstrahlung facilities

    NASA Astrophysics Data System (ADS)

    Auslender, V. L.; Bryazgin, A. A.; Bukin, A. D.; Voronin, L. A.; Lukin, A. N.; Sidorov, A. V.

    2004-09-01

    A real-time measurement system of the spatial dose distribution is developed and realized for monitoring the bremsstrahlung flow generated on X-ray target by 5 MeV 50 kW electron accelerator. The sensors of the system consist of semiconductor diodes. The beam target and electron accelerator (ILU-10) are briefly described. The practice of using the system in the experimental and start-up procedure is included.

  4. Prenatal radiation exposure: dose calculation.

    PubMed

    Scharwächter, C; Röser, A; Schwartz, C A; Haage, P

    2015-05-01

    The unborn child requires special protection. In this context, the indication for an X-ray examination is to be checked critically. If thereupon radiation of the lower abdomen including the uterus cannot be avoided, the examination should be postponed until the end of pregnancy or alternative examination techniques should be considered. Under certain circumstances, either accidental or in unavoidable cases after a thorough risk assessment, radiation exposure of the unborn may take place. In some of these cases an expert radiation hygiene consultation may be required. This consultation should comprise the expected risks for the unborn while not perturbing the mother or the involved medical staff. For the risk assessment in case of an in-utero x-ray exposition deterministic damages with a defined threshold dose are distinguished from stochastic damages without a definable threshold dose. The occurrence of deterministic damages depends on the dose and the developmental stage of the unborn at the time of radiation. To calculate the risks of an in-utero radiation exposure a three-stage concept is commonly applied. Depending on the amount of radiation, the radiation dose is either estimated, roughly calculated using standard tables or, in critical cases, accurately calculated based on the individual event. The complexity of the calculation thereby increases from stage to stage. An estimation based on stage one is easily feasible whereas calculations based on stages two and especially three are more complex and often necessitate execution by specialists. This article demonstrates in detail the risks for the unborn child pertaining to its developmental phase and explains the three-stage concept as an evaluation scheme. It should be noted, that all risk estimations are subject to considerable uncertainties. • Radiation exposure of the unborn child can result in both deterministic as well as stochastic damage und hitherto should be avoided or reduced to a minimum

  5. Derivation of Human Lethal Doses

    DTIC Science & Technology

    2006-01-19

    emergency medicine, pharmacology, forensic medicine, and industrial chemical toxicology, in addition to a poison information center. The authors presented...Meditsinskaya Ekspeertiza. Forensic Medical Examination, 26(2), 48, 1983 (as cited in Sax’s). This reference is not available for review. Rat – LD50...mg/kg No LDLo, MLD, or lethal dose for humans Rat – LD50 (Bulletin of the Entomological Society of America, 1969) (as cited in Sax’s). This

  6. Radiation Dose from Cigarette Tobacco

    NASA Astrophysics Data System (ADS)

    Papastefanou, C.

    2008-08-01

    The radioactivity in tobacco leaves collected from 15 different regions of Greece before cigarette production was studied in order to estimate the effective dose from cigarette tobacco due to the naturally occurring primordial radionuclides, such as 226Ra and 210Pb of the uranium series and 228Ra of the thorium series and/or man-made produced radionuclides, such as 137Cs of Chernobyl origin. Gamma-ray spectrometry was applied using Ge planar and coaxial type detectors of high resolution and high efficiency. It was concluded that the annual effective dose due to inhalation for adults (smokers) for 226Ra varied from 42.5 to 178.6 μSv y-1 (average 79.7 μSv y-1), while for 228Ra from 19.3 to 116.0 μSv y-1 (average 67.1 μSv y-1) and for 210Pb from 47.0 to 134.9 μSv y-1 (average 104.7 μSv y-1), that is the same order of magnitude for each radionuclide. The sum of the effective dose of the three natural radionuclides varied from 151.9 to 401.3 μSv y-1 (average 251.5 μSv y-1). The annual effective dose from 137Cs of Chernobyl origin was three orders of magnitude lower as it varied from 70.4 to 410.4 nSv y-1 (average 199.3 nSv y-1).

  7. Radiation dose from cigarette tobacco

    SciTech Connect

    Papastefanou, C.

    2008-08-07

    The radioactivity in tobacco leaves collected from 15 different regions of Greece before cigarette production was studied in order to estimate the effective dose from cigarette tobacco due to the naturally occurring primordial radionuclides, such as {sup 226}Ra and {sup 210}Pb of the uranium series and {sup 228}Ra of the thorium series and/or man-made produced radionuclides, such as {sup 137}Cs of Chernobyl origin. Gamma-ray spectrometry was applied using Ge planar and coaxial type detectors of high resolution and high efficiency. It was concluded that the annual effective dose due to inhalation for adults (smokers) for {sup 226}Ra varied from 42.5 to 178.6 {mu}Sv y{sup -1} (average 79.7 {mu}Sv y{sup -1}), while for {sup 228}Ra from 19.3 to 116.0 {mu}Sv y{sup -1} (average 67.1 {mu}Sv y{sup -1}) and for {sup 210}Pb from 47.0 to 134.9 {mu}Sv y{sup -1} (average 104.7 {mu}Sv y{sup -1}), that is the same order of magnitude for each radionuclide. The sum of the effective dose of the three natural radionuclides varied from 151.9 to 401.3 {mu}Sv y{sup -1} (average 251.5 {mu}Sv y{sup -1}). The annual effective dose from {sup 137}Cs of Chernobyl origin was three orders of magnitude lower as it varied from 70.4 to 410.4 nSv y{sup -1} (average 199.3 nSv y{sup -1})

  8. Atmospheric radiation flight dose rates

    NASA Astrophysics Data System (ADS)

    Tobiska, W. K.

    2015-12-01

    Space weather's effects upon the near-Earth environment are due to dynamic changes in the energy transfer processes from the Sun's photons, particles, and fields. Of the domains that are affected by space weather, the coupling between the solar and galactic high-energy particles, the magnetosphere, and atmospheric regions can significantly affect humans and our technology as a result of radiation exposure. Space Environment Technologies (SET) has been conducting space weather observations of the atmospheric radiation environment at aviation altitudes that will eventually be transitioned into air traffic management operations. The Automated Radiation Measurements for Aerospace Safety (ARMAS) system and Upper-atmospheric Space and Earth Weather eXperiment (USEWX) both are providing dose rate measurements. Both activities are under the ARMAS goal of providing the "weather" of the radiation environment to improve aircraft crew and passenger safety. Over 5-dozen ARMAS and USEWX flights have successfully demonstrated the operation of a micro dosimeter on commercial aviation altitude aircraft that captures the real-time radiation environment resulting from Galactic Cosmic Rays and Solar Energetic Particles. The real-time radiation exposure is computed as an effective dose rate (body-averaged over the radiative-sensitive organs and tissues in units of microsieverts per hour); total ionizing dose is captured on the aircraft, downlinked in real-time, processed on the ground into effective dose rates, compared with NASA's Langley Research Center (LaRC) most recent Nowcast of Atmospheric Ionizing Radiation System (NAIRAS) global radiation climatology model runs, and then made available to end users via the web and smart phone apps. Flight altitudes now exceed 60,000 ft. and extend above commercial aviation altitudes into the stratosphere. In this presentation we describe recent ARMAS and USEWX results.

  9. Tolerance doses for treatment planning

    SciTech Connect

    Lyman, J.T.

    1985-10-01

    Data for the tolerance of normal tissues or organs to (low-LET) radiation has been compiled from a number of sources which are referenced at the end of this document. This tolerance dose data are ostensibly for uniform irradiation of all or part of an organ, and are for either 5% (TD/sub 5/) or 50% (TD/sub 50/) complication probability. The ''size'' of the irradiated organ is variously stated in terms of the absolute volume or the fraction of the organ volume irradiated, or the area or the length of the treatment field. The accuracy of these data is questionable. Much of the data represents doses that one or several experienced therapists have estimated could be safely given rather than quantitative analyses of clinical observations. Because these data have been obtained from multiple sources with possible different criteria for the definition of a complication, there are sometimes different values for what is apparently the same endpoint. The data from some sources shows a tendancy to be quantized in 5 Gy increments. This reflects the size of possible round off errors. It is believed that all these data have been accumulated without the benefit of 3-D dose distributions and therefore the estimates of the size of the volume and/or the uniformity of the irradiation may be less accurate than is now possible. 19 refs., 4 figs.

  10. Dose rate mapping of VMAT treatments

    NASA Astrophysics Data System (ADS)

    Podesta, Mark; Antoniu Popescu, I.; Verhaegen, Frank

    2016-06-01

    Human tissues exhibit a varying response to radiation dose depending on the dose rate and fractionation scheme used. Dose rate effects have been reported for different radiations, and tissue types. The literature indicates that there is not a significant difference in response for low-LET radiation when using dose rates between 1 Gy min-1 and 12 Gy min-1 but lower dose rates have an observable sparing effect on tissues and a differential effect between tissues. In intensity-modulated radiotherapy such as volumetric modulated arc therapy (VMAT) the dose can be delivered with a wide range of dose rates. In this work we developed a method based on time-resolved Monte Carlo simulations to quantify the dose rate frequency distribution for clinical VMAT treatments for three cancer sites, head and neck, lung, and pelvis within both planning target volumes (PTV) and normal tissues. The results show a wide range of dose rates are used to deliver dose in VMAT and up to 75% of the PTV can have its dose delivered with dose rates  <1 Gy min-1. Pelvic plans on average have a lower mean dose rate within the PTV than lung or head and neck plans but a comparable mean dose rate within the organs at risk. Two VMAT plans that fulfil the same dose objectives and constraints may be delivered with different dose rate distributions, particularly when comparing single arcs to multiple arc plans. It is concluded that for dynamic plans, the dose rate range used varies to a larger degree than previously assumed. The effect of the dose rate range in VMAT on clinical outcome is unknown.

  11. Dose rate mapping of VMAT treatments.

    PubMed

    Podesta, Mark; Popescu, I Antoniu; Verhaegen, Frank

    2016-06-07

    Human tissues exhibit a varying response to radiation dose depending on the dose rate and fractionation scheme used. Dose rate effects have been reported for different radiations, and tissue types. The literature indicates that there is not a significant difference in response for low-LET radiation when using dose rates between 1 Gy min(-1) and 12 Gy min(-1) but lower dose rates have an observable sparing effect on tissues and a differential effect between tissues. In intensity-modulated radiotherapy such as volumetric modulated arc therapy (VMAT) the dose can be delivered with a wide range of dose rates. In this work we developed a method based on time-resolved Monte Carlo simulations to quantify the dose rate frequency distribution for clinical VMAT treatments for three cancer sites, head and neck, lung, and pelvis within both planning target volumes (PTV) and normal tissues. The results show a wide range of dose rates are used to deliver dose in VMAT and up to 75% of the PTV can have its dose delivered with dose rates  <1 Gy min(-1). Pelvic plans on average have a lower mean dose rate within the PTV than lung or head and neck plans but a comparable mean dose rate within the organs at risk. Two VMAT plans that fulfil the same dose objectives and constraints may be delivered with different dose rate distributions, particularly when comparing single arcs to multiple arc plans. It is concluded that for dynamic plans, the dose rate range used varies to a larger degree than previously assumed. The effect of the dose rate range in VMAT on clinical outcome is unknown.

  12. Personalised dosing: Printing a dose of one's own medicine.

    PubMed

    Alomari, Mustafa; Mohamed, Fatima H; Basit, Abdul W; Gaisford, Simon

    2015-10-30

    Ink-jet printing is a versatile, precise and relatively inexpensive method of depositing small volumes of solutions with remarkable accuracy and repeatability. Although developed primarily as a technology for image reproduction, its areas of application have expanded significantly in recent years. It is particularly suited to the manufacture of low dose medicines or to short production runs and so offers a potential manufacturing solution for the paradigm of personalised medicines. This review discusses the technical and clinical aspects of ink-jet printing that must be considered in order for the technology to become widely adopted in the pharmaceutical arena and considers applications in the literature.

  13. Fewer Doses of HPV Vaccine Result in Immune Response Similar to Three-Dose Regimen

    MedlinePlus

    ... Releases NCI News Note Fewer doses of HPV vaccine result in immune response similar to three-dose ... that two doses of a human papillomavirus (HPV) vaccine, trademarked as Cervarix, resulted in similar serum antibody ...

  14. Dose-structured population dynamics.

    PubMed

    Ginn, Timothy R; Loge, Frank J

    2007-07-01

    Applied population dynamics modeling is relied upon with increasing frequency to quantify how human activities affect human and non-human populations. Current techniques include variously the population's spatial transport, age, size, and physiology, but typically not the life-histories of exposure to other important things occurring in the ambient environment, such as chemicals, heat, or radiation. Consequently, the effects of such 'abiotic' aspects of an ecosystem on populations are only currently addressed through individual-based modeling approaches that despite broad utility are limited in their applicability to realistic ecosystems [V. Grimm, Ten years of individual-based modeling in ecology: what have we learned and what could we learn in the future? Ecol. Model. 115 (1999) 129-148][1]. We describe a new category of population dynamics modeling, wherein population dynamical states of the biotic phases are structured on dose, and apply this framework to demonstrate how chemical species or other ambient aspects can be included in population dynamics in three separate examples involving growth suppression in fish, inactivation of microorganisms with ultraviolet irradiation, and metabolic lag in population growth. Dose-structuring is based on a kinematic approach that is a simple generalization of age-structuring, views the ecosystem as a multi-component mixture with reacting biotic/abiotic components. The resulting model framework accommodates (a) different memories of exposure as in recovery from toxic ambient conditions, (b) differentiation between exogenous and endogenous sources of variation in population response, and (c) quantification of acute or sub-acute effects on populations arising from life-history exposures to abiotic species. Classical models do not easily address the very important fact that organisms differ and have different experiences over their life cycle. The dose structuring is one approach to incorporate some of these elements into the

  15. Antimicrobial Dose in Obese Patient

    PubMed Central

    Kassab, Sawsan; Syed Sulaiman, Syed Azhar; Abdul Aziz, Noorizan

    2007-01-01

    Introduction Obesity is a chronic disease that has become one of major public health issue in Malaysia because of its association with other disease states including cardiovascular disease and diabetes. Despite continuous efforts to educate the public about the health risks associated with obesity, prevalence of the disease continues to increase. Dosing of many medications are based on weight, limited data are available on how antimicrobial agents should be dosed in obesity. The aim of this case presentation is to discuss dose of antibiotic in obese patient. Case report: Patient: GMN, Malay, Female, 45 year old, 150kg, transferred from medical ward to ICU with problems of fever, orthopnea, sepsis secondary to nosocomial pneumonia. She was admitted to hospital a week ago for SOB on exertion, cyanosis, mildly dyspneic, somasthenia, bilateral ankle swelling. There was no fever, cough, chest pain, clubbing, flapping tremor. Her grand father has pre-morbid history of obesity, HPT, DM and asthma. She was non alcoholic, smoker, and not on diet control. The diagnosis Pickwickian syndrome was made. Patient was treated with IV Dopamine 11mcg/kg/min, IV Morphine 4mg/h. IV GTN 15mcg/min, IV Ca gluconate 10g/24h for 3/7, IV Zantac 50mg tds, IV Augmentin 1.2g tds, IV Lasix 40mg od, IV Plasil 10mg tds, S.c heparin 5000IU bd. patient become stable and moved to medical ward to continue her treatment. Discussion: The altered physiologic function seen in obese patients is a concern in patients receiving antimicrobial agents because therapeutic outcomes depend on achieving a minimum inhibitory concentration (MIC). The therapeutic effect of any drug can be altered when any of the 4 pharmacokinetic processes (absorption, distribution, metabolism, or elimination) are altered. Decreased blood flow rates and increased renal clearance in obese patients can affect drug distribution and elimination. Changes in serum protein levels can change the metabolism and distribution of drugs that are

  16. Exploring the dose response of radiochromic dosimeters

    NASA Astrophysics Data System (ADS)

    Skyt, P. S.; Wahlstedt, I.; Yates, E. S.; Muren, L. P.; Petersen, J. B. B.; Balling, P.

    2013-06-01

    The aim of this study was to explore the dose response of a newly developed radio-chromic hydrogel dosimeter based on leuco malachite green dye in a gelatine matrix. The original dosimeter composition was first investigated in terms of dose response and dose-rate dependence. In addition, the initiating compounds producing chlorine radicals were substituted with compounds producing fluorine radicals, oxygen-centered radicals, carbon-centered radicals and bromine radicals. Also the surfactant was substituted by other compounds of different molecular size and charge. The original composition gave a dose response of 3.5·10-3 Gy-1cm-1 at 6 Gy/min with a dose rate dependence giving a 27 % increase when decreasing the dose rate to 1 Gy/min. None of the substituted initiating components contributed to an increase in dose response while only one surfactant increased the dose response slightly.

  17. How to Use Metered-Dose Inhalers

    MedlinePlus

    ... inhaler the right way so that the full dose of medication reaches your lungs. You can use ... inhaler.These directions explain how to use metered-dose inhalers. If you are using a different type ...

  18. Radiation dose measurements in coronary CT angiography

    PubMed Central

    Sabarudin, Akmal; Sun, Zhonghua

    2013-01-01

    Coronary computed tomography (CT) angiography is associated with high radiation dose and this has raised serious concerns in the literature. Awareness of various parameters for dose estimates and measurements of coronary CT angiography plays an important role in increasing our understanding of the radiation exposure to patients, thus, contributing to the implementation of dose-saving strategies. This article provides an overview of the radiation dose quantity and its measurement during coronary CT angiography procedures. PMID:24392190

  19. Hanford Environmental Dose Reconstruction Project Monthly Report

    SciTech Connect

    Finch, S.M.; McMakin, A.H.

    1992-03-01

    The objective of the Hanford Environmental Dose Reconstruction Project is to estimate the radiation doses that individuals and populations could have received from nuclear operations at Hanford since 1944. The project is divided into the following technical tasks. These tasks correspond to the path radionuclides followed, from release to impact on humans (dose estimates): Source Terms, Environmental Transport, Environmental Monitoring Data, Demography, Food Consumption, and Agriculture, and Environmental Pathways and Dose Estimates.

  20. Hanford Environmental Dose Reconstruction Project. Monthly report

    SciTech Connect

    Cannon, S.D.; Finch, S.M.

    1992-10-01

    The objective of the Hanford Environmental Dose Reconstruction (HEDR) Project is to estimate the radiation doses that individuals and populations could have received from nuclear operations at Hanford since 1944. The independent Technical Steering Panel (TSP) provides technical direction. The project is divided into the following technical tasks. These tasks correspond to the path radionuclides followed from release to impact on humans (dose estimates):Source Terms, Environmental Transport, Environmental Monitoring Data, Demography, Food Consumption, and Agriculture, and Environmental Pathways and Dose Estimates.

  1. Multiple anatomy optimization of accumulated dose

    SciTech Connect

    Watkins, W. Tyler Siebers, Jeffrey V.; Moore, Joseph A.; Gordon, James; Hugo, Geoffrey D.

    2014-11-01

    Purpose: To investigate the potential advantages of multiple anatomy optimization (MAO) for lung cancer radiation therapy compared to the internal target volume (ITV) approach. Methods: MAO aims to optimize a single fluence to be delivered under free-breathing conditions such that the accumulated dose meets the plan objectives, where accumulated dose is defined as the sum of deformably mapped doses computed on each phase of a single four dimensional computed tomography (4DCT) dataset. Phantom and patient simulation studies were carried out to investigate potential advantages of MAO compared to ITV planning. Through simulated delivery of the ITV- and MAO-plans, target dose variations were also investigated. Results: By optimizing the accumulated dose, MAO shows the potential to ensure dose to the moving target meets plan objectives while simultaneously reducing dose to organs at risk (OARs) compared with ITV planning. While consistently superior to the ITV approach, MAO resulted in equivalent OAR dosimetry at planning objective dose levels to within 2% volume in 14/30 plans and to within 3% volume in 19/30 plans for each lung V20, esophagus V25, and heart V30. Despite large variations in per-fraction respiratory phase weights in simulated deliveries at high dose rates (e.g., treating 4/10 phases during single fraction beams) the cumulative clinical target volume (CTV) dose after 30 fractions and per-fraction dose were constant independent of planning technique. In one case considered, however, per-phase CTV dose varied from 74% to 117% of prescription implying the level of ITV-dose heterogeneity may not be appropriate with conventional, free-breathing delivery. Conclusions: MAO incorporates 4DCT information in an optimized dose distribution and can achieve a superior plan in terms of accumulated dose to the moving target and OAR sparing compared to ITV-plans. An appropriate level of dose heterogeneity in MAO plans must be further investigated.

  2. Chemical Dosing and First-Order Kinetics

    ERIC Educational Resources Information Center

    Hladky, Paul W.

    2011-01-01

    College students encounter a variety of first-order phenomena in their mathematics and science courses. Introductory chemistry textbooks that discuss first-order processes, usually in conjunction with chemical kinetics or radioactive decay, stop at single, discrete dose events. Although single-dose situations are important, multiple-dose events,…

  3. A dose monitoring system for dental radiography

    PubMed Central

    Lee, Chena; Kim, Jo-Eun; Symkhampha, Khanthaly; Lee, Woo-Jin; Huh, Kyung-Hoe; Yi, Won-Jin; Heo, Min-Suk; Choi, Soon-Chul; Yeom, Heon-Young

    2016-01-01

    Purpose The current study investigates the feasibility of a platform for a nationwide dose monitoring system for dental radiography. The essential elements for an unerring system are also assessed. Materials and Methods An intraoral radiographic machine with 14 X-ray generators and five sensors, 45 panoramic radiographic machines, and 23 cone-beam computed tomography (CBCT) models used in Korean dental clinics were surveyed to investigate the type of dose report. A main server for storing the dose data from each radiographic machine was prepared. The dose report transfer pathways from the radiographic machine to the main sever were constructed. An effective dose calculation method was created based on the machine specifications and the exposure parameters of three intraoral radiographic machines, five panoramic radiographic machines, and four CBCTs. A viewing system was developed for both dentists and patients to view the calculated effective dose. Each procedure and the main server were integrated into one system. Results The dose data from each type of radiographic machine was successfully transferred to the main server and converted into an effective dose. The effective dose stored in the main server is automatically connected to a viewing program for dentist and patient access. Conclusion A patient radiation dose monitoring system is feasible for dental clinics. Future research in cooperation with clinicians, industry, and radiologists is needed to ensure format convertibility for an efficient dose monitoring system to monitor unexpected radiation dose. PMID:27358817

  4. Occupational eye dose in interventional cardiology procedures.

    PubMed

    Haga, Yoshihiro; Chida, Koichi; Kaga, Yuji; Sota, Masahiro; Meguro, Taiichiro; Zuguchi, Masayuki

    2017-04-03

    It is important to measure the radiation dose [3-mm dose equivalent, Hp(3)] in the eye. This study was to determine the current occupational radiation eye dose of staff conducting interventional cardiology procedures, using a novel direct eye dosimeter. We measured the occupational eye dose [Hp(3)] in physicians and nurses in a catheterization laboratory for 6-months. The eye doses [Hp(3)] of 12 physicians (9 with Pb glasses, 3 without), and 11 nurses were recorded using a novel direct eye dosimeter, the DOSIRIS(TM). We placed dosimeters above and under the glasses. We also estimated the eye dose [0.07-mm dose equivalent] using a neck personal dosimeter. The eye doses among interventional staff ranked in the following order: physicians without Pb glasses > physicians with Pb glasses > nurses. The shielding effect of the glasses (0.07-mm Pb) in a clinical setting was approximately 60%. In physicians who do not wear Pb glasses, the eye dose may exceed the new regulatory limit for IR staff. We found good correlations between the neck dosimeter dose and eye dosimeter dose (inside or outside glasses, R(2) = 0.93 and R(2) = 0.86, respectively) in physicians. We recommend that interventional physicians use an eye dosimeter for correct evaluation of the lens dose.

  5. Calculation of dose conversion factors for doses in the fingernails to organ doses at external gamma irradiation in air

    PubMed Central

    Khailov, A.M.; Ivannikov, A. I.; Skvortsov, V.G.; Stepanenko, V.F.; Orlenko, S.P.; Flood, A.B.; Williams, B.B.; Swartz, H.M.

    2015-01-01

    Absorbed doses to fingernails and organs were calculated for a set of homogenous external gamma-ray irradiation geometries in air. The doses were obtained by stochastic modeling of the ionizing particle transport (Monte Carlo method) for a mathematical human phantom with arms and hands placed loosely along the sides of the body. The resulting dose conversion factors for absorbed doses in fingernails can be used to assess the dose distribution and magnitude in practical dose reconstruction problems. For purposes of estimating dose in a large population exposed to radiation in order to triage people for treatment of acute radiation syndrome, the calculated data for a range of energies having a width of from 0.05 to 3.5 MeV were used to convert absorbed doses in fingernails to corresponding doses in organs and the whole body as well as the effective dose. Doses were assessed based on assumed rates of radioactive fallout at different time periods following a nuclear explosion. PMID:26347593

  6. Isobio software: biological dose distribution and biological dose volume histogram from physical dose conversion using linear-quadratic-linear model

    PubMed Central

    Jaikuna, Tanwiwat; Khadsiri, Phatchareewan; Chawapun, Nisa; Saekho, Suwit

    2017-01-01

    Purpose To develop an in-house software program that is able to calculate and generate the biological dose distribution and biological dose volume histogram by physical dose conversion using the linear-quadratic-linear (LQL) model. Material and methods The Isobio software was developed using MATLAB version 2014b to calculate and generate the biological dose distribution and biological dose volume histograms. The physical dose from each voxel in treatment planning was extracted through Computational Environment for Radiotherapy Research (CERR), and the accuracy was verified by the differentiation between the dose volume histogram from CERR and the treatment planning system. An equivalent dose in 2 Gy fraction (EQD2) was calculated using biological effective dose (BED) based on the LQL model. The software calculation and the manual calculation were compared for EQD2 verification with pair t-test statistical analysis using IBM SPSS Statistics version 22 (64-bit). Results Two and three-dimensional biological dose distribution and biological dose volume histogram were displayed correctly by the Isobio software. Different physical doses were found between CERR and treatment planning system (TPS) in Oncentra, with 3.33% in high-risk clinical target volume (HR-CTV) determined by D90%, 0.56% in the bladder, 1.74% in the rectum when determined by D2cc, and less than 1% in Pinnacle. The difference in the EQD2 between the software calculation and the manual calculation was not significantly different with 0.00% at p-values 0.820, 0.095, and 0.593 for external beam radiation therapy (EBRT) and 0.240, 0.320, and 0.849 for brachytherapy (BT) in HR-CTV, bladder, and rectum, respectively. Conclusions The Isobio software is a feasible tool to generate the biological dose distribution and biological dose volume histogram for treatment plan evaluation in both EBRT and BT. PMID:28344603

  7. The Issue of Motivating Entre(Intra)Preneurial Behavior.

    ERIC Educational Resources Information Center

    Winslow, Erik K.

    1990-01-01

    Six principles of motivating entre(intra)preneurial behavior are considered including the climate must allow the expression of such activity; motivation is broadly distributed in the general population; behavior is a function of its consequences; and motivating environments have an aura of excitement and experimentation. (DB)

  8. Hanford Environmental Dose Reconstruction Project: Monthly Report

    SciTech Connect

    Finch, S.M.

    1990-07-01

    This monthly report summarizes the technical progress and project status for the Hanford Environmental Dose Reconstruction (HEDR) Project being conducted at the Pacific Northwest Laboratory (PNL) under the direction of a Technical Steering Panel (TSP). The objective of the Hanford Environmental Dose Reconstruction Project is to estimate the radiation doses that populations could have received from nuclear operations at Hanford since 1944. The project is divided into the following technical tasks. These tasks correspond to the path radionuclides followed, from release to impact on humans (dose estimates): Source Terms, Environmental Transport, Environmental Monitoring Data, Demographics, Agriculture, Food Habits, and Environmental Pathways and Dose Estimates. 3 figs.

  9. Dose Rate Effects in Linear Bipolar Transistors

    NASA Technical Reports Server (NTRS)

    Johnston, Allan; Swimm, Randall; Harris, R. D.; Thorbourn, Dennis

    2011-01-01

    Dose rate effects are examined in linear bipolar transistors at high and low dose rates. At high dose rates, approximately 50% of the damage anneals at room temperature, even though these devices exhibit enhanced damage at low dose rate. The unexpected recovery of a significant fraction of the damage after tests at high dose rate requires changes in existing test standards. Tests at low temperature with a one-second radiation pulse width show that damage continues to increase for more than 3000 seconds afterward, consistent with predictions of the CTRW model for oxides with a thickness of 700 nm.

  10. Dose rate assessment in tooth enamel

    NASA Astrophysics Data System (ADS)

    Wieser, A.; Göksu, H. Y.; Regulla, D. F.; Vogenauer, A.

    A mammoth found in the southern part of Germany was dated by ESR spectroscopy. This dating method is based on the measurement of the accumulated dose in tooth enamel and assessment of the annual dose. The accumulated dose is obtained from the radiation induced ESR signal at g = 2.0018 of the enamel. The annual dose was first determined by measuring the 238U, 232Th and 40K content of the tooth and of the surrounding soil. As a crosscheck, the dose rate from the tooth was measured by inserting TL dosimeters in the dentine and storing them at 'zero' background in a salt mine. The cosmic dose rate and the gamma dose rate from the soil was evaluated from TL dosimeters buried at the excavation site. The results are discussed with respect to the applicability of ESR dating on teeth.

  11. Matching target dose to target organ

    PubMed Central

    Bannon, Desmond I.; Williams, Marc A.

    2016-01-01

    In vitro assays have become a mainstay of modern approaches to toxicology with the promise of replacing or reducing the number of in vivo tests required to establish benchmark doses, as well as increasing mechanistic understanding. However, matching target dose to target organ is an often overlooked aspect of in vitro assays, and the calibration of in vitro exposure against in vivo benchmark doses is often ignored, inadvertently or otherwise.  An example of this was recently published in Environmental Health Perspectives by Wagner et al., where neural stems cells were used to model the molecular toxicity of lead.  On closer examination of the in vitro work, the doses used in media reflected in vivo lead doses that would be at the highest end of lead toxicity, perhaps even lethal.  Here we discuss the doses used and suggest more realistic doses for future work with stem cells or other neuronal cell lines. PMID:28163899

  12. Dose banding as an alternative to body surface area-based dosing of chemotherapeutic agents

    PubMed Central

    Chatelut, E; White-Koning, M L; Mathijssen, R HJ; Puisset, F; Baker, S D; Sparreboom, A

    2012-01-01

    Background: Dose banding is a recently suggested dosing method that uses predefined ranges (bands) of body surface area (BSA) to calculate each patient's dose by using a single BSA-value per band. Thus, drugs with sufficient long-term stability can be prepared in advance. The main advantages of dose banding are to reduce patient waiting time and improve pharmacy capacity planning; additional benefits include reduced medication errors, reduced drug wastage, and prospective quality control. This study compares dose banding with individual BSA dosing and fixed dose according to pharmacokinetic criteria. Methods: Three BSA bands were defined: BSA<1.7 m2, 1.7 m2⩽BSA<1.9 m2, BSA⩾1.9 m2 and each patient dose was calculated based on a unique BSA-value per band (1.55, 1.80, and 2.05 m2, respectively). By using individual clearance values of six drugs (cisplatin, docetaxel, paclitaxel, doxorubicin, irinotecan, and topotecan) from 1012 adult cancer patients in total, the AUCs corresponding to three dosing methods (BSA dosing, dose banding, and fixed dose) were compared with a target AUC for each drug. Results: For all six drugs, the per cent variation in individual dose obtained with dose banding compared with BSA dosing ranged between −14% and +22%, and distribution of AUC values was very similar with both dosing methods. In terms of reaching the target AUC, there was no significant difference in precision between dose banding and BSA dosing, except for paclitaxel (32.0% vs 30.7%, respectively; P<0.05). However, precision was significantly better for BSA dosing compared with fixed dose for four out of six drugs. Conclusion: For the studied drugs, implementation of dose banding should be considered as it entails no significant increase in interindividual plasma exposure. PMID:22929884

  13. Assessing dose rate distributions in VMAT plans

    NASA Astrophysics Data System (ADS)

    Mackeprang, P.-H.; Volken, W.; Terribilini, D.; Frauchiger, D.; Zaugg, K.; Aebersold, D. M.; Fix, M. K.; Manser, P.

    2016-04-01

    Dose rate is an essential factor in radiobiology. As modern radiotherapy delivery techniques such as volumetric modulated arc therapy (VMAT) introduce dynamic modulation of the dose rate, it is important to assess the changes in dose rate. Both the rate of monitor units per minute (MU rate) and collimation are varied over the course of a fraction, leading to different dose rates in every voxel of the calculation volume at any point in time during dose delivery. Given the radiotherapy plan and machine specific limitations, a VMAT treatment plan can be split into arc sectors between Digital Imaging and Communications in Medicine control points (CPs) of constant and known MU rate. By calculating dose distributions in each of these arc sectors independently and multiplying them with the MU rate, the dose rate in every single voxel at every time point during the fraction can be calculated. Independently calculated and then summed dose distributions per arc sector were compared to the whole arc dose calculation for validation. Dose measurements and video analysis were performed to validate the calculated datasets. A clinical head and neck, cranial and liver case were analyzed using the tool developed. Measurement validation of synthetic test cases showed linac agreement to precalculated arc sector times within  ±0.4 s and doses  ±0.1 MU (one standard deviation). Two methods for the visualization of dose rate datasets were developed: the first method plots a two-dimensional (2D) histogram of the number of voxels receiving a given dose rate over the course of the arc treatment delivery. In similarity to treatment planning system display of dose, the second method displays the dose rate as color wash on top of the corresponding computed tomography image, allowing the user to scroll through the variation over time. Examining clinical cases showed dose rates spread over a continuous spectrum, with mean dose rates hardly exceeding 100 cGy min-1 for conventional

  14. A Simple Low-dose X-ray CT Simulation from High-dose Scan.

    PubMed

    Zeng, Dong; Huang, Jing; Bian, Zhaoying; Niu, Shanzhou; Zhang, Hua; Feng, Qianjin; Liang, Zhengrong; Ma, Jianhua

    2015-10-01

    Low-dose X-ray computed tomography (CT) simulation from high-dose scan is required in optimizing radiation dose to patients. In this study, we propose a simple low-dose CT simulation strategy in sinogram domain using the raw data from high-dose scan. Specially, a relationship between the incident fluxes of low- and high- dose scans is first determined according to the repeated projection measurements and analysis. Second, the incident flux level of the simulated low-dose scan is generated by properly scaling the incident flux level of high-dose scan via the determined relationship in the first step. Third, the low-dose CT transmission data by energy integrating detection is simulated by adding a statistically independent Poisson noise distribution plus a statistically independent Gaussian noise distribution. Finally, a filtered back-projection (FBP) algorithm is implemented to reconstruct the resultant low-dose CT images. The present low-dose simulation strategy is verified on the simulations and real scans by comparing it with the existing low-dose CT simulation tool. Experimental results demonstrated that the present low-dose CT simulation strategy can generate accurate low-dose CT sinogram data from high-dose scan in terms of qualitative and quantitative measurements.

  15. Patient radiation doses for electron beam CT

    SciTech Connect

    Castellano, Isabel A.; Dance, David R.; Skinner, Claire L.; Evans, Phil M.

    2005-08-15

    A Monte Carlo based computer model has been developed for electron beam computed tomography (EBCT) to calculate organ and effective doses in a humanoid hermaphrodite phantom. The program has been validated by comparison with experimental measurements of the CT dose index in standard head and body CT dose phantoms; agreement to better than 8% has been found. The robustness of the model has been established by varying the input parameters. The amount of energy deposited at the 12:00 position of the standard body CT dose phantom is most susceptible to rotation angle, whereas that in the central region is strongly influenced by the beam quality. The program has been used to investigate the changes in organ absorbed doses arising from partial and full rotation about supine and prone subjects. Superficial organs experience the largest changes in absorbed dose with a change in subject orientation and for partial rotation. Effective doses for typical clinical scan protocols have been calculated and compared with values obtained using existing dosimetry techniques based on full rotation. Calculations which make use of Monte Carlo conversion factors for the scanner that best matches the EBCT dosimetric characteristics consistently overestimate the effective dose in supine subjects by typically 20%, and underestimate the effective dose in prone subjects by typically 13%. These factors can therefore be used to correct values obtained in this way. Empirical dosimetric techniques based on the dose-length product yield errors as great as 77%. This is due to the sensitivity of the dose length product to individual scan lengths. The magnitude of these errors is reduced if empirical dosimetric techniques based on the average absorbed dose in the irradiated volume (CTDI{sub vol}) are used. Therefore conversion factors specific to EBCT have been calculated to convert the CTDI{sub vol} to an effective dose.

  16. Simulation of dose reduction in tomosynthesis

    SciTech Connect

    Svalkvist, Angelica; Baath, Magnus

    2010-01-15

    Purpose: Methods for simulating dose reduction are valuable tools in the work of optimizing radiographic examinations. Using such methods, clinical images can be simulated to have been collected at other, lower, dose levels without the need of additional patient exposure. A recent technology introduced to healthcare that needs optimization is tomosynthesis, where a number of low-dose projection images collected at different angles is used to reconstruct section images of an imaged object. The aim of the present work was to develop a method of simulating dose reduction for digital radiographic systems, suitable for tomosynthesis. Methods: The developed method uses information about the noise power spectrum (NPS) at the original dose level and the simulated dose level to create a noise image that is added to the original image to produce an image that has the same noise properties as an image actually collected at the simulated dose level. As the detective quantum efficiency (DQE) of digital detectors operating at the low dose levels used for tomosynthesis may show a strong dependency on the dose level, it is important that a method for simulating dose reduction for tomosynthesis takes this dependency into account. By applying an experimentally determined relationship between pixel mean and pixel variance, variations in both dose and DQE in relevant dose ranges are taken into account. Results: The developed method was tested on a chest tomosynthesis system and was shown to produce NPS of simulated dose-reduced projection images that agreed well with the NPS of images actually collected at the simulated dose level. The simulated dose reduction method was also applied to tomosynthesis examinations of an anthropomorphic chest phantom, and the obtained noise in the reconstructed section images was very similar to that of an examination actually performed at the simulated dose level. Conclusions: In conclusion, the present article describes a method for simulating dose

  17. Extremity model for neutron dose calculations

    SciTech Connect

    Sattelberger, J. A.; Shores, E. F.

    2001-01-01

    In personnel dosimetry for external radiation exposures, health physicists tend to focus on measurement of whole body dose, where 'whole body' is generally regarded as the torso on which the dosimeter is placed.' Although a variety of scenarios exist in which workers must handle radioactive materials, whole body dose estimates may not be appropriate when assessing dose, particularly to the extremities. For example, consider sources used for instrument calibration. If such sources are in a contact geometry (e.g. held by fingers), an extremity dose estimate may be more relevant than a whole body dose. However, because questions arise regarding how that dose should be calculated, a detailed extremity model was constructed with the MCNP-4Ca Monte Carlo code. Although initially intended for use with gamma sources, recent work by Shores2 provided the impetus to test the model with neutrons.

  18. Practical applications of internal dose calculations

    SciTech Connect

    Carbaugh, E.H.

    1994-06-01

    Accurate estimates of intake magnitude and internal dose are the goal for any assessment of an actual intake of radioactivity. When only one datum is available on which to base estimates, the choices for internal dose assessment become straight-forward: apply the appropriate retention or excretion function, calculate the intake, and calculate the dose. The difficulty comes when multiple data and different types of data become available. Then practical decisions must be made on how to interpret conflicting data, or how to adjust the assumptions and techniques underlying internal dose assessments to give results consistent with the data. This article describes nine types of adjustments which can be incorporated into calculations of intake and internal dose, and then offers several practical insights to dealing with some real-world internal dose puzzles.

  19. Dynamically accumulated dose and 4D accumulated dose for moving tumors

    SciTech Connect

    Li Heng; Li Yupeng; Zhang Xiaodong; Li Xiaoqiang; Liu Wei; Gillin, Michael T.; Zhu, X. Ronald

    2012-12-15

    Purpose: The purpose of this work was to investigate the relationship between dynamically accumulated dose (dynamic dose) and 4D accumulated dose (4D dose) for irradiation of moving tumors, and to quantify the dose uncertainty induced by tumor motion. Methods: The authors established that regardless of treatment modality and delivery properties, the dynamic dose will converge to the 4D dose, instead of the 3D static dose, after multiple deliveries. The bounds of dynamic dose, or the maximum estimation error using 4D or static dose, were established for the 4D and static doses, respectively. Numerical simulations were performed (1) to prove the principle that for each phase, after multiple deliveries, the average number of deliveries for any given time converges to the total number of fractions (K) over the number of phases (N); (2) to investigate the dose difference between the 4D and dynamic doses as a function of the number of deliveries for deliveries of a 'pulsed beam'; and (3) to investigate the dose difference between 4D dose and dynamic doses as a function of delivery time for deliveries of a 'continuous beam.' A Poisson model was developed to estimate the mean dose error as a function of number of deliveries or delivered time for both pulsed beam and continuous beam. Results: The numerical simulations confirmed that the number of deliveries for each phase converges to K/N, assuming a random starting phase. Simulations for the pulsed beam and continuous beam also suggested that the dose error is a strong function of the number of deliveries and/or total deliver time and could be a function of the breathing cycle, depending on the mode of delivery. The Poisson model agrees well with the simulation. Conclusions: Dynamically accumulated dose will converge to the 4D accumulated dose after multiple deliveries, regardless of treatment modality. Bounds of the dynamic dose could be determined using quantities derived from 4D doses, and the mean dose difference

  20. Evaluation of Rectal Dose During High-Dose-Rate Intracavitary Brachytherapy for Cervical Carcinoma

    SciTech Connect

    Sha, Rajib Lochan; Reddy, Palreddy Yadagiri; Rao, Ramakrishna; Muralidhar, Kanaparthy R.; Kudchadker, Rajat J.

    2011-01-01

    High-dose-rate intracavitary brachytherapy (HDR-ICBT) for carcinoma of the uterine cervix often results in high doses being delivered to surrounding organs at risk (OARs) such as the rectum and bladder. Therefore, it is important to accurately determine and closely monitor the dose delivered to these OARs. In this study, we measured the dose delivered to the rectum by intracavitary applications and compared this measured dose to the International Commission on Radiation Units and Measurements rectal reference point dose calculated by the treatment planning system (TPS). To measure the dose, we inserted a miniature (0.1 cm{sup 3}) ionization chamber into the rectum of 86 patients undergoing radiation therapy for cervical carcinoma. The response of the miniature chamber modified by 3 thin lead marker rings for identification purposes during imaging was also characterized. The difference between the TPS-calculated maximum dose and the measured dose was <5% in 52 patients, 5-10% in 26 patients, and 10-14% in 8 patients. The TPS-calculated maximum dose was typically higher than the measured dose. Our study indicates that it is possible to measure the rectal dose for cervical carcinoma patients undergoing HDR-ICBT. We also conclude that the dose delivered to the rectum can be reasonably predicted by the TPS-calculated dose.

  1. Hanford Environmental Dose Reconstruction Project monthly report

    SciTech Connect

    Finch, S.M.

    1991-10-01

    The objective of the Hanford Environmental Dose Reconstruction Project is to estimate the radiation doeses that individuals and populations could have received from nuclear operations at Hanford since 1944. The project is divided into the following technical tasks. These tasks correspond to the path radionuclides followed, from release to impact on humans (dose estimates): Source terms; environmental transport; environmental monitoring data; demographics, agriculture, food habits; environmental pathways and dose estimates.

  2. Dose estimates of alternative plutonium pyrochemical processes.

    SciTech Connect

    Kornreich, D. E.; Jackson, J. W.; Boerigter, S. T.; Averill, W. A.; Fasel, J. H.

    2002-01-01

    We have coupled our dose calculation tool Pandemonium with a discrete-event, object-oriented, process-modeling system ProMosO to analyze a set of alternatives for plutonium purification operations. The results follow expected trends and indicate, from a dose perspective, that an experimental flowsheet may warrant further research to see if it can be scaled to industrial levels. Flowsheets that include fluoride processes resulted in the largest doses.

  3. There is no safe dose of prions.

    PubMed

    Fryer, Helen R; McLean, Angela R

    2011-01-01

    Understanding the circumstances under which exposure to transmissible spongiform encephalopathies (TSEs) leads to infection is important for managing risks to public health. Based upon ideas in toxicology and radiology, it is plausible that exposure to harmful agents, including TSEs, is completely safe if the dose is low enough. However, the existence of a threshold, below which infection probability is zero has never been demonstrated experimentally. Here we explore this question by combining data and mathematical models that describe scrapie infections in mice following experimental challenge over a broad range of doses. We analyse data from 4338 mice inoculated at doses ranging over ten orders of magnitude. These data are compared to results from a within-host model in which prions accumulate according to a stochastic birth-death process. Crucially, this model assumes no threshold on the dose required for infection. Our data reveal that infection is possible at the very low dose of a 1000 fold dilution of the dose that infects half the challenged animals (ID50). Furthermore, the dose response curve closely matches that predicted by the model. These findings imply that there is no safe dose of prions and that assessments of the risk from low dose exposure are right to assume a linear relationship between dose and probability of infection. We also refine two common perceptions about TSE incubation periods: that their mean values decrease linearly with logarithmic decreases in dose and that they are highly reproducible between hosts. The model and data both show that the linear decrease in incubation period holds only for doses above the ID50. Furthermore, variability in incubation periods is greater than predicted by the model, not smaller. This result poses new questions about the sources of variability in prion incubation periods. It also provides insight into the limitations of the incubation period assay.

  4. Fetal dose estimates for CT pelvimetry

    SciTech Connect

    Moore, M.M.; Shearer, D.R.

    1989-04-01

    Fetal and maternal dose estimates for computed tomographic pelvimetry have been obtained from phantom measurements. Use of routine abdomen imaging techniques may result in localized fetal doses in excess of 13 mGy (1.3 rad). With the use of a low-exposure (40-mAs) technique, it is possible to obtain images of acceptable quality for the necessary measurements. The resulting dose to the fetus is approximately 2.3 mGy (0.23 rad).

  5. Sodium cromoglycate: spincaps or metered dose aerosol.

    PubMed Central

    Robson, R A; Taylor, B J; Taylor, B

    1981-01-01

    1 Sodium cromoglycate administered as a dry powder inhalation (20 mg/dose) via the Spinhaler was compared with a metered dose aerosol (2 mg/dose) in an eight week double dummy double blind crossover trial in 29 asthmatic children. 2 The powder formulation was associated with significantly less symptoms (night wheeze, night cough, day wheeze, day cough, activity) and bronchodilator intake; and significantly greater weight gain than aerosol therapy. There were no significant differences in morning or evening peak flow measurements on the two treatments. 3 The powder may be more effectively inhaled than the aerosol or the dose of the aerosol may not be large enough. PMID:6789851

  6. Internal dose following a major nuclear war

    SciTech Connect

    Peterson, K.R.; Shapiro, C.S. )

    1992-01-01

    The PATHWAY model results were used, in conjunction with a hypothetical major nuclear attack on the U.S., to arrive at the ratio of internal to external dose for humans from early (48 h) fallout. Considered were the four nuclides (137Cs, 89Sr, 90Sr, 131I) that account for most of the reconstructed whole-body committed equivalent dose from internal radiation in people who lived downwind of the Nevada Test Site during atmospheric tests. Effects of climate perturbations (the 'nuclear winter' effect) on food crops were considered. These could increase internal dose estimates, depending on the severity of the climate perturbations. Internal and external doses to humans for 10 locations within the U.S. have been calculated, with varying local conditions and varying assumption about their shelters. The estimated 50-y internal dose commitment ranged from 0.0-0.17 Sv, the 48-h external dose from 0.15-4.6 Sv. The resultant ratios of internal to external committed dose received in the first months (until food transport was restored) varied from less than 0.01 to about 0.2. In all cases examined, the total dose from early fallout was found to be dominated by the external dose.

  7. Internal dose following a major nuclear war.

    PubMed

    Peterson, K R; Shapiro, C S

    1992-01-01

    The PATHWAY model results were used, in conjunction with a hypothetical major nuclear attack on the U.S., to arrive at the ratio of internal to external dose for humans from early (48 h) fallout. Considered were the four nuclides (137Cs, 89Sr, 90Sr, 131I) that account for most of the reconstructed whole-body committed equivalent dose from internal radiation in people who lived downwind of the Nevada Test Site during atmospheric tests. Effects of climate perturbations (the "nuclear winter" effect) on food crops were considered. These could increase internal dose estimates, depending on the severity of the climate perturbations. Internal and external doses to humans for 10 locations within the U.S. have been calculated, with varying local conditions and varying assumption about their shelters. The estimated 50-y internal dose commitment ranged from 0.0-0.17 Sv, the 48-h external dose from 0.15-4.6 Sv. The resultant ratios of internal to external committed dose received in the first months (until food transport was restored) varied from less than 0.01 to about 0.2. In all cases examined, the total dose from early fallout was found to be dominated by the external dose.

  8. Hanford Environmental Dose Reconstruction Project Monthly Report

    SciTech Connect

    Finch, S.M.; McMakin, A.H.

    1991-04-01

    The objective of the Hanford Environmental Dose Reconstruction Project is to estimate the radiation doses that populations could have received from nuclear operations at Hanford since 1944. The project is being managed and conducted by the Pacific Northwest Laboratory (PNL) under the direction of an independent Technical Steering Panel (TSP). The project is divided into the following technical tasks. These tasks correspond to the path radionuclides followed, from released to impact on humans (dose estimates): source terms; environmental transport; environmental monitoring data; demographics, agriculture, food habits; and, environmental pathways and dose estimates.

  9. Hanford Environmental Dose Reconstruction Project Monthly Report

    SciTech Connect

    Finch, S.M.

    1991-07-01

    The objective of the Hanford Environmental Dose Reconstruction Project is to estimate the radiation doses that individuals and populations could have received from nuclear operations at Hanford since 1944. The project is being managed and conducted by the Pacific Northwest Laboratory (PNL) under the direction of an independent Technical Steering Panel (TSP). The project is divided into the following technical tasks. These tasks correspond to the path radionuclides followed, from release to impact on humans (dose estimates): Source terms; environmental transport; environmental monitoring data; demographics, agriculture, food habits; and environmental pathways and dose estimates. 2 figs., 2 tabs.

  10. Hanford Environmental Dose Reconstruction Project Monthly Report

    SciTech Connect

    Finch, S.M.

    1990-01-01

    The objective of the Hanford Environmental Dose Reconstruction Project is to estimate the radiation doses that populations could have received from nuclear operations at Hanford since 1944. The project is being managed and conducted by the Pacific Northwest Laboratory (PNL) under the direction of an independent Technical Steering Panel (TSP). The project is divided into the following technical tasks. These tasks correspond to the path radionuclides followed, from release to impact on humans (dose estimates): source terms; environmental transport; environmental monitoring data; demographics; agriculture; food habits; and environmental pathways and dose estimates. 3 figs.

  11. Hanford Environmental Dose Reconstruction Project Monthly Report

    SciTech Connect

    Finch, S.M.; McMakin, A.H.

    1991-05-01

    The objective of the Hanford Environmental Dose Reconstruction Project is to estimate the radiation doses that individuals and populations could have received from nuclear operations at Hanford since 1944. The project is being managed and conducted by the Pacific Northwest Laboratory (PNL) under the direction of an independent Technical Steering Panel (TSP). The project is divided into the following technical tasks. These tasks correspond to the path radionuclides followed, from release to impact on humans (dose estimates): Source Terms, Environmental Transport, Environmental Monitoring Data, Demographics, Agriculture, Food Habits, Environmental Pathways and Dose Estimates. 2 figs., 1 tab.

  12. Hanford Environmental Dose Reconstruction Project monthly report

    SciTech Connect

    Finch, S.M.

    1990-12-01

    The objective of the Hanford Environmental Dose Reconstruction Project is to estimate the radiation doses that populations could have been have received from nuclear operations at Hanford since 1944. The project is being managed and conducted by the Pacific Northwest Laboratory (PNL) under the direction of an independent Technical Steering Panel (TSP). The project is divided into the following technical tasks. These tasks correspond to the path radionuclides followed, from release to impact on humans (dose estimates): source terms; environmental transport; environmental monitoring data; demographics, agriculture, food habits; and environmental pathways and dose estimates. 3 figs., 3 tabs.

  13. Hanford Environmental Dose Reconstruction Project Monthly Report

    SciTech Connect

    Finch, S.M.

    1991-03-01

    The objective of the Hanford Environmental Dose Reconstruction Project is to estimate the radiation doses that populations could have received from nuclear operations at Hanford since 1944. The project is being managed and conducted by the Pacific Northwest Laboratory (PNL) under the direction of an independent Technical Steering Panel (TSP). The project is divided into the technical tasks which correspond to the path radionuclides followed, from release to impact on humans (dose estimates): source terms; environmental transport; environment monitoring data; demographics, agriculture, food habits; and environmental pathways and dose estimates. 3 figs., 2 tabs.

  14. Skin dose measurement with MICROSPEC-2{trademark}

    SciTech Connect

    Hsu, H.H.; Chen, J.; Ing, H.; Clifford, E.T.H.; McLean, T.

    1997-10-01

    For many years, the Eberline HP-260{trademark} beta detectors were used for skin dose measurements at Los Alamos National Laboratory. This detector does not measure the beta spectrum and the skin dose can only be determined if the contaminating radioactive isotope is known. A new product MICROSPEC-2{trademark}, has been developed which consists of a small portable computer with a multichannel analyzer and a beta probe consisting of a phoswich detector. The system measures the beta spectrum and automatically folds in the beta fluence-to-dose conversion function to yield the skin dose.

  15. Dose rate in brachytherapy using after-loading machine: pulsed or high-dose rate?

    PubMed

    Hannoun-Lévi, J-M; Peiffert, D

    2014-10-01

    Since February 2014, it is no longer possible to use low-dose rate 192 iridium wires due to the end of industrial production of IRF1 and IRF2 sources. The Brachytherapy Group of the French society of radiation oncology (GC-SFRO) has recommended switching from iridium wires to after-loading machines. Two types of after-loading machines are currently available, based on the dose rate used: pulsed-dose rate or high-dose rate. In this article, we propose a comparative analysis between pulsed-dose rate and high-dose rate brachytherapy, based on biological, technological, organizational and financial considerations.

  16. Determination of radionuclides and pathways contributing to cumulative dose. Hanford Environmental Dose Reconstruction Project: Dose code recovery activities, Calculation 004

    SciTech Connect

    Napier, B.A.

    1992-12-01

    A series of scoping calculations has been undertaken to evaluate the absolute and relative contributions of different radionuclides and exposure pathways to doses that may have been received by individuals living in the vicinity of the Hanford Site. This scoping calculation (Calculation 004) examined the contributions of numerous radionuclides to cumulative dose via environmental exposures and accumulation in foods. Addressed in this calculation were the contributions to organ and effective dose of infants and adults from (1) air submersion and groundshine external dose, (2) inhalation, (3) ingestion of soil by humans, (4) ingestion of leafy vegetables, (5) ingestion of other vegetables and fruits, (6) ingestion of meat, (7) ingestion of eggs, and (8) ingestion of cows` milk from Feeding Regime 1, as described in calculation 002. This calculation specifically addresses cumulative radiation doses to infants and adults resulting from releases occurring over the period 1945 through 1972.

  17. The Dose Response Relationship for Radiation Carcinogenesis

    NASA Astrophysics Data System (ADS)

    Hall, Eric

    2008-03-01

    Recent surveys show that the collective population radiation dose from medical procedures in the U.S. has increased by 750% in the past two decades. It would be impossible to imagine the practice of medicine today without diagnostic and therapeutic radiology, but nevertheless the widespread and rapidly increasing use of a modality which is a known human carcinogen is a cause for concern. To assess the magnitude of the problem it is necessary to establish the shape of the dose response relationship for radiation carcinogenesis. Information on radiation carcinogenesis comes from the A-bomb survivors, from occupationally exposed individuals and from radiotherapy patients. The A-bomb survivor data indicates a linear relationship between dose and the risk of solid cancers up to a dose of about 2.5 Sv. The lowest dose at which there is a significant excess cancer risk is debatable, but it would appear to be between 40 and 100 mSv. Data from the occupation exposure of nuclear workers shows an excess cancer risk at an average dose of 19.4 mSv. At the other end of the dose scale, data on second cancers in radiotherapy patients indicates that cancer risk does not continue to rise as a linear function of dose, but tends towards a plateau of 40 to 60 Gy, delivered in a fractionated regime. These data can be used to estimate the impact of diagnostic radiology at the low dose end of the dose response relationship, and the impact of new radiotherapy modalities at the high end of the dose response relationship. In the case of diagnostic radiology about 90% of the collective population dose comes from procedures (principally CT scans) which involve doses at which there is credible evidence of an excess cancer incidence. While the risk to the individual is small and justified in a symptomatic patient, the same is not true of some screening procedures is asymptomatic individuals, and in any case the huge number of procedures must add up to a potential public health problem. In the

  18. Case Example of Dose Optimization Using Data From Bortezomib Dose-Finding Clinical Trials

    PubMed Central

    Backenroth, Daniel; Cheung, Ying Kuen Ken; Hershman, Dawn L.; Vulih, Diana; Anderson, Barry; Ivy, Percy; Minasian, Lori

    2016-01-01

    Purpose The current dose-finding methodology for estimating the maximum tolerated dose of investigational anticancer agents is based on the cytotoxic chemotherapy paradigm. Molecularly targeted agents (MTAs) have different toxicity profiles, which may lead to more long-lasting mild or moderate toxicities as well as to late-onset and cumulative toxicities. Several approved MTAs have been poorly tolerated during long-term administration, leading to postmarketing dose optimization studies to re-evaluate the optimal treatment dose. Using data from completed bortezomib dose-finding trials, we explore its toxicity profile, optimize its dose, and examine the appropriateness of current designs for identifying an optimal dose. Patients and Methods We classified the toxicities captured from 481 patients in 14 bortezomib dose-finding studies conducted through the National Cancer Institute Cancer Therapy Evaluation Program, computed the incidence of late-onset toxicities, and compared the incidence of dose-limiting toxicities (DLTs) among groups of patients receiving different doses of bortezomib. Results A total of 13,008 toxicities were captured: 46% of patients’ first DLTs and 88% of dose reductions or discontinuations of treatment because of toxicity were observed after the first cycle. Moreover, for the approved dose of 1.3 mg/m2, the estimated cumulative incidence of DLT was > 50%, and the estimated cumulative incidence of dose reduction or treatment discontinuation because of toxicity was nearly 40%. Conclusions When considering the entire course of treatment, the approved bortezomib dose exceeds the conventional ceiling DLT rate of 20% to 33%. Retrospective analysis of trial data provides an opportunity for dose optimization of MTAs. Future dose-finding studies of MTAs should take into account late-onset toxicities to ensure that a tolerable dose is identified for future efficacy and comparative trials. PMID:26926682

  19. DICOM organ dose does not accurately represent calculated dose in mammography

    NASA Astrophysics Data System (ADS)

    Suleiman, Moayyad E.; Brennan, Patrick C.; McEntee, Mark F.

    2016-03-01

    This study aims to analyze the agreement between the mean glandular dose estimated by the mammography unit (organ dose) and mean glandular dose calculated using Dance et al published method (calculated dose). Anonymised digital mammograms from 50 BreastScreen NSW centers were downloaded and exposure information required for the calculation of dose was extracted from the DICOM header along with the organ dose estimated by the system. Data from quality assurance annual tests for the included centers were collected and used to calculate the mean glandular dose for each mammogram. Bland-Altman analysis and a two-tailed paired t-test were used to study the agreement between calculated and organ dose and the significance of any differences. A total of 27,869 dose points from 40 centers were included in the study, mean calculated dose and mean organ dose (+/- standard deviation) were 1.47 (+/-0.66) and 1.38 (+/-0.56) mGy respectively. A statistically significant 0.09 mGy bias (t = 69.25; p<0.0001) with 95% limits of agreement between calculated and organ doses ranging from -0.34 and 0.52 were shown by Bland-Altman analysis, which indicates a small yet highly significant difference between the two means. The use of organ dose for dose audits is done at the risk of over or underestimating the calculated dose, hence, further work is needed to identify the causal agents for differences between organ and calculated doses and to generate a correction factor for organ dose.

  20. Estimating thyroid dose in pediatric CT exams from surface dose measurement

    NASA Astrophysics Data System (ADS)

    Al-Senan, Rani; Mueller, Deborah L.; Hatab, Mustapha R.

    2012-07-01

    The purpose of this study was to investigate the possibility of estimating pediatric thyroid doses from CT using surface neck doses. Optically stimulated luminescence dosimeters were used to measure the neck surface dose of 25 children ranging in ages between one and three years old. The neck circumference for each child was measured. The relationship between obtained surface doses and thyroid dose was studied using acrylic phantoms of various sizes and with holes of different depths. The ratios of hole-to-surface doses were used to convert patients' surface dose to thyroid dose. ImPACT software was utilized to calculate thyroid dose after applying the appropriate age correction factors. A paired t-test was performed to compare thyroid doses from our approach and ImPACT. The ratio of thyroid to surface dose was found to be 1.1. Thyroid doses ranged from 20 to 80 mGy. Comparison showed no statistical significance (p = 0.18). In addition, the average of surface dose variation along the z-axis in helical scans was studied and found to range between 5% (in 10 cm diameter phantom/24 mm collimation/pitch 1.0) and 8% (in 16 cm diameter phantom/12 mm collimation/pitch 0.7). We conclude that surface dose is an acceptable predictor for pediatric thyroid dose from CT. The uncertainty due to surface dose variability may be reduced if narrower collimation is used with a pitch factor close to 1.0. Also, the results did not show any effect of thyroid depth on the measured dose.

  1. Comparison of TID Effects in Space-Like Variable Dose Rates and Constant Dose Rates

    NASA Technical Reports Server (NTRS)

    Harris, Richard D.; McClure, Steven S.; Rax, Bernard G.; Evans, Robin W.; Jun, Insoo

    2008-01-01

    The degradation of the LM193 dual voltage comparator has been studied at different TID dose rate profiles, including several different constant dose rates and a variable dose rate that simulates the behavior of a solar flare. A comparison of results following constant dose rate vs. variable dose rates is made to explore how well the constant dose rates used for typical part testing predict the performance during a simulated space-like mission. Testing at a constant dose rate equal to the lowest dose rate seen during the simulated flare provides an extremely conservative estimate of the overall amount of degradation. A constant dose rate equal to the average dose rate is also more conservative than the variable rate. It appears that, for this part, weighting the dose rates by the amount of total dose received at each rate (rather than the amount of time at each dose rate) results in an average rate that produces an amount of degradation that is a reasonable approximation to that received by the variable rate.

  2. Impact of Drug Therapy, Radiation Dose, and Dose Rate on Renal Toxicity Following Bone Marrow Transplantation

    SciTech Connect

    Cheng, Jonathan C.; Schultheiss, Timothy E. Wong, Jeffrey Y.C.

    2008-08-01

    Purpose: To demonstrate a radiation dose response and to determine the dosimetric and chemotherapeutic factors that influence the incidence of late renal toxicity following total body irradiation (TBI). Methods and Materials: A comprehensive retrospective review was performed of articles reporting late renal toxicity, along with renal dose, fractionation, dose rate, chemotherapy regimens, and potential nephrotoxic agents. In the final analysis, 12 articles (n = 1,108 patients), consisting of 24 distinct TBI/chemotherapy conditioning regimens were included. Regimens were divided into three subgroups: adults (age {>=}18 years), children (age <18 years), and mixed population (both adults and children). Multivariate logistic regression was performed to identify dosimetric and chemotherapeutic factors significantly associated with late renal complications. Results: Individual analysis was performed on each population subgroup. For the purely adult population, the only significant variable was total dose. For the mixed population, the significant variables included total dose, dose rate, and the use of fludarabine. For the pediatric population, only the use of cyclosporin or teniposide was significant; no dose response was noted. A logistic model was generated with the exclusion of the pediatric population because of its lack of dose response. This model yielded the following significant variables: total dose, dose rate, and number of fractions. Conclusion: A dose response for renal damage after TBI was identified. Fractionation and low dose rates are factors to consider when delivering TBI to patients undergoing bone marrow transplantation. Drug therapy also has a major impact on kidney function and can modify the dose-response function.

  3. Multicriteria optimization of the spatial dose distribution

    SciTech Connect

    Schlaefer, Alexander; Viulet, Tiberiu; Muacevic, Alexander; Fürweger, Christoph

    2013-12-15

    Purpose: Treatment planning for radiation therapy involves trade-offs with respect to different clinical goals. Typically, the dose distribution is evaluated based on few statistics and dose–volume histograms. Particularly for stereotactic treatments, the spatial dose distribution represents further criteria, e.g., when considering the gradient between subregions of volumes of interest. The authors have studied how to consider the spatial dose distribution using a multicriteria optimization approach.Methods: The authors have extended a stepwise multicriteria optimization approach to include criteria with respect to the local dose distribution. Based on a three-dimensional visualization of the dose the authors use a software tool allowing interaction with the dose distribution to map objectives with respect to its shape to a constrained optimization problem. Similarly, conflicting criteria are highlighted and the planner decides if and where to relax the shape of the dose distribution.Results: To demonstrate the potential of spatial multicriteria optimization, the tool was applied to a prostate and meningioma case. For the prostate case, local sparing of the rectal wall and shaping of a boost volume are achieved through local relaxations and while maintaining the remaining dose distribution. For the meningioma, target coverage is improved by compromising low dose conformality toward noncritical structures. A comparison of dose–volume histograms illustrates the importance of spatial information for achieving the trade-offs.Conclusions: The results show that it is possible to consider the location of conflicting criteria during treatment planning. Particularly, it is possible to conserve already achieved goals with respect to the dose distribution, to visualize potential trade-offs, and to relax constraints locally. Hence, the proposed approach facilitates a systematic exploration of the optimal shape of the dose distribution.

  4. Biodosimetry and assessment of radiation dose

    PubMed Central

    Crespo, Rafael Herranz; Domene, Mercedes Moreno; Rodríguez, María Jesús Prieto

    2011-01-01

    Aim When investigating radiation accidents, it is very important to determine the exposition dose to the individuals. In the case of exposures over 1 Gy, clinicians may expect deterministic effects arising the following weeks and months, in these cases dose estimation will help physicians in the planning of therapy. Nevertheless, for doses below 1 Gy, biodosimetry data are important due to the risk of developing late stochastic effects. Finally, some accidental overexposures are lack of physical measurements and the only way of quantifying dose is by biological dosimetry. Background The analysis of chromosomal aberrations by different techniques is the most developed method of quantifying dose to individuals exposed to ionising radiations.1,2 Furthermore, the analysis of dicentric chromosomes observed in metaphases from peripheral lymphocytes is the routine technique used in case of acute exposures to assess radiation doses. Materials and methods Solid stain of chromosomes is used to determine dicentric yields for dose estimation. Fluorescence in situ hybridization (FISH) for translocations analysis is used when delayed sampling or suspected chronically irradiation dose assessment. Recommendations in technical considerations are based mainly in the IAEA Technical Report No. 405.2 Results Experience in biological dosimetry at Gregorio Marañón General Hospital is described, including own calibration curves used for dose estimation, background studies and real cases of overexposition. Conclusion Dose assessment by biological dosimeters requires a large previous standardization work and a continuous update. Individual dose assessment involves high qualification professionals and its long time consuming, therefore requires specific Centres. For large mass casualties cooperation among specialized Institutions is needed. PMID:24376970

  5. 32 CFR 218.4 - Dose estimate reporting standards.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., and neutron doses, when applicable. In determining the veteran's dose, initial neutron, initial gamma..., doses will be reported as gamma dose, neutron dose, and internal dose. To the extent to which the... of a neutron or internal exposure? What is the reconstruction? Upon request, the participant or...

  6. 32 CFR 218.4 - Dose estimate reporting standards.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., and neutron doses, when applicable. In determining the veteran's dose, initial neutron, initial gamma..., doses will be reported as gamma dose, neutron dose, and internal dose. To the extent to which the... of a neutron or internal exposure? What is the reconstruction? Upon request, the participant or...

  7. 32 CFR 218.4 - Dose estimate reporting standards.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., and neutron doses, when applicable. In determining the veteran's dose, initial neutron, initial gamma..., doses will be reported as gamma dose, neutron dose, and internal dose. To the extent to which the... of a neutron or internal exposure? What is the reconstruction? Upon request, the participant or...

  8. 32 CFR 218.4 - Dose estimate reporting standards.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., and neutron doses, when applicable. In determining the veteran's dose, initial neutron, initial gamma..., doses will be reported as gamma dose, neutron dose, and internal dose. To the extent to which the... of a neutron or internal exposure? What is the reconstruction? Upon request, the participant or...

  9. 32 CFR 218.4 - Dose estimate reporting standards.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., and neutron doses, when applicable. In determining the veteran's dose, initial neutron, initial gamma..., doses will be reported as gamma dose, neutron dose, and internal dose. To the extent to which the... of a neutron or internal exposure? What is the reconstruction? Upon request, the participant or...

  10. Fewer doses of HPV vaccine result in immune response similar to three-dose regimen

    Cancer.gov

    NCI scientists report that two doses of a human papillomavirus (HPV) vaccine, trademarked as Cervarix, resulted in similar serum antibody levels against two of the most carcinogenic types of HPV (16 and 18), compared to a standard three dose regimen.

  11. Adaptive dose finding based on t-statistic for dose-response trials.

    PubMed

    Ivanova, Anastasia; Bolognese, James A; Perevozskaya, Inna

    2008-05-10

    The goals of phase II dose-response studies are to prove that the treatment is effective and to choose the dose for further development. Randomized designs with equal allocation to either a high dose and placebo or to each of several doses and placebo are typically used. However, in trials where response is observed relatively quickly, adaptive designs might offer an advantage over equal allocation. We propose an adaptive design for dose-response trials that concentrates the allocation of subjects in one or more areas of interest, for example, near a minimum clinically important effect level, or near some maximal effect level, and also allows for the possibility to stop the trial early if needed. The proposed adaptive design yields higher power to detect a dose-response relationship, higher power in comparison with placebo, and selects the correct dose more frequently compared with a corresponding randomized design with equal allocation to doses.

  12. An updated dose assessment for Rongelap Island

    SciTech Connect

    Robison, W.L.; Conrado, C.L.; Bogen, K.T.

    1994-07-01

    We have updated the radiological dose assessment for Rongelap Island at Rongelap Atoll using data generated from field trips to the atoll during 1986 through 1993. The data base used for this dose assessment is ten fold greater than that available for the 1982 assessment. Details of each data base are presented along with details about the methods used to calculate the dose from each exposure pathway. The doses are calculated for a resettlement date of January 1, 1995. The maximum annual effective dose is 0.26 mSv y{sup {minus}1} (26 mrem y{sup {minus}1}). The estimated 30-, 50-, and 70-y integral effective doses are 0.0059 Sv (0.59 rem), 0.0082 Sv (0.82 rem), and 0.0097 Sv (0.97 rem), respectively. More than 95% of these estimated doses are due to 137-Cesium ({sup 137}Cs). About 1.5% of the estimated dose is contributed by 90-Strontium ({sup 90}Sr), and about the same amount each by 239+240-Plutonium ({sup 239+240}PU), and 241-Americium ({sup 241}Am).

  13. Low Dose Risk, Decisions, and Risk Communication

    SciTech Connect

    Flynn, James

    2002-09-14

    The overall research objective was to establish new levels of information about how people, groups, and communities respond to low dose radiation exposure. This is basic research into the social psychology of individual, group, and community responses to radiation exposures. The results of this research are directed to improving risk communication and public participation in management of environmental problems resulting from low dose radiation.

  14. Dose Response Data for Hormonally Active Chemicals ...

    EPA Pesticide Factsheets

    The shape of the dose response curve in the low dose region has been debated since the late 1940s. The debate originally focused on linear no threshold (LNT) vs threshold responses in the low dose range for cancer and noncancer related effects. For noncancer effects the default assumption is that noncancer effects generally display threshold rather than LNT responses. More recently, claims have arisen that the chemicals, like endocrine disrupters (EDS), which act via high affinity, low capacity nuclear receptors, may display LNT or nonmonotonic low dose responses: responses that could be missed in multigenerational guideline toxicity testing. This presentation will discuss LNT, threshold and nonmonotonic dose response relationships from case studies of chemicals that disrupt reproductive development and function via the ER, AR and AhR pathways and will include in vitro and in vivo multigenerational data. The in vivo studies in this discussion include only robust, well designed, comprehensive studies that administered the chemical via a relevant route(s) of exposure over a broad dose response range, including low dose(s) in the microgram/kg/d range. The chemicals include ethinyl estradiol, estradiol, genistein, bisphenol a, trenbolone, finasteride, flutamide, phthalate esters and 2,3,7,8 TCDD. The objective is to critically evaluate the data from well done studies in this field to address concerns that current multigenerational reproductive test gui

  15. Mass versus molar doses, similarities and differences.

    PubMed

    Chmielewska, A; Lamparczyk, H

    2008-11-01

    Generally, they are two systems expressing the amounts of active substance in a given drug product, i.e. mass and molar dose. Currently, the dose system based on the mass is widely used in which doses are expressed in grams or milligrams. On the other hand, the molar dose system is in direct relation to the number of molecules. Hence, the objective of this work was to compare both systems in order to find their advantages and disadvantages. Active substances belonging to the groups of antibiotics, nootropic agents, beta-blockers, vitamins, GABA-analog, COX-2 inhibitors, calcium channel antagonists, benzodiazepine receptor agonists, lipid-modifying agents (fibrates), non-steroidal anti-inflammatory drugs (profens), estrogens, neuroleptics, analgesics and benzodiazepines were considered. Moreover, products containing two active substances were also taken into account. These are mixtures of hydrochlorothiazide with active substances influencing the renin-angiotensin system and combined oral contraceptives. For each active substance, belonging to the groups mentioned above molar doses were calculated from mass doses and molar mass. Hence, groups of drugs with a single active substance, drugs with similar pharmacological activities, pharmaceutical alternatives, and drugs with a single active ingredient manufactured in different doses were compared in order to find which dose system describes more adequately differences between and within the groups mentioned above. Comparisons were supported by a number of equations, which theoretically justify the data, and relationships derived from calculations.

  16. Single-Dose Therapy of Infectious Diseases

    PubMed Central

    Fong, I.W.

    1987-01-01

    Single-dose antimicrobial therapy has clear advantages over multiple-dose therapy. Long-acting penicillins have been used for many years in single doses for treatment of streptococcal pharyngitis and early syphilis. More recently, shorter-acting agents are used for non-invasive mucosal infections. In trichomonas vaginitis, for instance, a 2g single dose of metronidazole is approximately 92% effective and is considered the treatment of choice. Controversy still exists about the value of single-dose therapy in women who have bacterial cystitis. However, there is good evidence that 2 or 3 double-strength tablets of co-trimoxazole are very effective and safe in the treatment of uncomplicated cystitis in healthy women. PMID:21263934

  17. Occupational radiation doses during interventional procedures

    NASA Astrophysics Data System (ADS)

    Nuraeni, N.; Hiswara, E.; Kartikasari, D.; Waris, A.; Haryanto, F.

    2016-03-01

    Digital subtraction angiography (DSA) is a type of fluoroscopy technique used in interventional radiology to clearly visualize blood vessels in a bony or dense soft tissue environment. The use of DSA procedures has been increased quite significantly in the Radiology departments in various cities in Indonesia. Various reports showed that both patients and medical staff received a noticeable radiation dose during the course of this procedure. A study had been carried out to measure these doses among interventionalist, nurse and radiographer. The results show that the interventionalist and the nurse, who stood quite close to the X-ray beams compared with the radiographer, received radiation higher than the others. The results also showed that the radiation dose received by medical staff were var depending upon the duration and their position against the X-ray beams. Compared tothe dose limits, however, the radiation dose received by all these three medical staff were still lower than the limits.

  18. Dose reduction at nuclear power plants

    SciTech Connect

    Baum, J.W.; Dionne, B.J.

    1983-01-01

    The collective dose equivalent at nuclear power plants increased from 1250 rem in 1969 to nearly 54,000 rem in 1980. This rise is attributable primarily to an increase in nuclear generated power from 1289 MW-y to 29,155 MW-y; and secondly, to increased average plant age. However, considerable variation in exposure occurs from plant to plant depending on plant type, refueling, maintenance, etc. In order to understand the factors influencing these differences, an investigation was initiated to study dose-reduction techniques and effectiveness of as low as reasonably achievable (ALARA) planning at light water plants. Objectives are to: identify high-dose maintenance tasks and related dose-reduction techniques; investigate utilization of high-reliability, low-maintenance equipment; recommend improved radioactive waste handling equipment and procedures; examine incentives for dose reduction; and compile an ALARA handbook.

  19. Mapping of cosmic radiation dose in Croatia.

    PubMed

    Poje, M; Vuković, B; Radolić, V; Miklavčić, I; Faj, D; Varga Pajtler, M; Planinić, J

    2012-01-01

    The Earth is continually bombarded by high-energy particles coming from the outer space and the sun. These particles, termed cosmic radiation, interact with nuclei of atmospheric constituents and decrease in intensity with depth in the atmosphere. Measurements of photon and gamma radiation, performed with a Radiameter at 1 m above the ground, indicated dose rates of 50-100 nSv/h. The neutron dose rate was measured with the CR-39 track etch detector calibrated by the CERN-EU high-energy Reference Field (CERF) facility. Correlation between neutron dose rates and altitudes at 36 sites was examined in order to obtain a significant positive correlation coefficient; the resulting linear regression enabled estimation of a neutron dose at particular altitude. The measured neutron dose rate in Osijek (altitude of 89 m, latitude of 45.31° N) was 110 nSv/h.

  20. Hanford Environmental Dose Reconstruction Project Monthly Report

    SciTech Connect

    Finch, S.M.

    1990-06-01

    This monthly report summarizes the technical progress and project status for the Hanford Environmental Dose Reconstruction (HEDR) Project being conducted at Pacific Northwest Laboratory (PNL) under the direction of a Technical Steering Panel (TSP). The TSP is composed of experts in numerous technical fields related to this project and represents the interests of the public. The objective of the Hanford Environmental Dose Reconstruction Project is to estimate the radiation doses that populations could have received from nuclear operations at Hanford since 1944. The project is divided into technical tasks which address each of the primary steps in the path from radioactive releases to dose estimates: source terms, environmental transport, environmental monitoring data, demographics, agriculture, and food habits, and environmental pathways and dose estimates.

  1. Hanford Environmental Dose Reconstruction Project Monthly Report

    SciTech Connect

    Finch, S.M.

    1990-05-01

    This monthly report summarizes the technical progress and project status for the Hanford Environmental Dose Reconstruction (HEDR) Project being conducted at Pacific Northwest Laboratory (PNL) under the direction of a Technical Steering Panel (TSP). The TSP is composed of experts in numerous technical fields related to this project and represents the interests of the public. The US Department of Energy (DOE) funds the project. The objective of the Hanford Environmental Dose Reconstruction Project is to estimate the radiation doses that populations could have received from nuclear operations at Hanford since 1944. The project is divided into the following technical tasks. These tasks address each of the primary steps in the path from radioactive releases to dose estimates source terms, environmental transport, environmental monitoring data, demographics, agriculture, and food habits, and environmental pathways and dose estimates.

  2. Whatever happened to cassette-dosing pharmacokinetics?

    PubMed

    Manitpisitkul, Prasarn; White, Ronald E

    2004-08-01

    Cassette dosing is a procedure that is used for rapidly assessing the pharmacokinetics of a series of discovery drug candidates by dosing a mixture of compounds rather than a single compound. Cassette dosing has advantages and disadvantages associated with its use, which leads to controversy about how and if it should be used. To assess the current practices of the pharmaceutical industry regarding cassette dosing, a survey of several pharmaceutical companies was conducted. Analysis of the survey revealed that opinion on this subject is divided within the pharmaceutical industry. In addition, it was determined that approximately only a half of those companies that perform in vivo pharmacokinetic screening use cassette dosing for this purpose.

  3. Absorbed doses from temporomandibular joint radiography

    SciTech Connect

    Brooks, S.L.; Lanzetta, M.L.

    1985-06-01

    Thermoluminescent dosimeters were used in a tissue-equivalent phantom to measure doses of radiation absorbed by various structures in the head when the temporomandibular joint was examined by four different radiographic techniques--the transcranial, transorbital, and sigmoid notch (Parma) projections and the lateral tomograph. The highest doses of radiation occurred at the point of entry for the x-ray beam, ranging from 112 mrad for the transorbital view to 990 mrad for the sigmoid notch view. Only the transorbital projection a radiation dose to the lens of the eye. Of the four techniques evaluated, the lateral tomograph produced the highest doses to the pituitary gland and the bone marrow, while the sigmoid notch radiograph produced the highest doses to the parotid gland.

  4. Hanford Environmental Dose Reconstruction Project Monthly Report

    SciTech Connect

    Finch, S.M.

    1990-10-01

    This monthly report summarizes the technical progress and project status for the Hanford Environmental Dose Reconstruction (HEDR) Project being conducted at the Pacific Northwest Laboratory (PNL) under the direction of a Technical Steering Panel (TSP). The TSP is composed of experts in numerous technical fields related to this project and represents the interests of the public. The objective of the Hanford Environmental Dose Reconstruction Project is to estimate the radiation doses that populations could have received from nuclear operations at Hanford since 1944. The project is being managed and conducted by the Pacific Northwest Laboratory (PNL) under the direction of an independent Technical Steering Panel (TSP). The project is divided into the following technical tasks. These tasks correspond to the path radionuclides followed, from release to impact on humans (dose estimates): source terms, environmental transport, environmental monitoring data, demographics, agriculture, food habits, and environmental pathways and dose estimates. 3 figs., 3 tabs.

  5. Antimicrobial Doses in Continuous Renal Replacement Therapy: A Comparison of Dosing Strategies

    PubMed Central

    Kempke, Anna P.; Daneshvar, Farzad

    2016-01-01

    Purpose. Drug dose recommendations are not well defined in patients undergoing continuous renal replacement therapy (CRRT) due to limited published data. Several guidelines and pharmacokinetic equations have been proposed as tools for CRRT drug dosing. Dose recommendations derived from these methods have yet to be compared or prospectively evaluated. Methods. A literature search of PubMed, Micromedex, and Embase was conducted for 40 drugs commonly used in the ICU to gather pharmacokinetic data acquired from patients with acute and chronic kidney disease as well as healthy volunteers. These data and that obtained from drug package inserts were gathered for use in three published CRRT drug dosing equations. Doses calculated for a model patient using each method were compared to doses suggested in a commonly used dosing text. Results. Full pharmacokinetic data was available for 18, 31, and 40 agents using acute kidney injury, end stage renal disease, and normal patient data, respectively. On average, calculated doses differed by 30% or more from the doses recommended by the renal dosing text for >50% of the medications. Conclusion. Wide variability in dose recommendations for patients undergoing CRRT exists when these equations are used. Alternate, validated dosing methods need to be developed for this at-risk patient population. PMID:27433357

  6. Antimicrobial Doses in Continuous Renal Replacement Therapy: A Comparison of Dosing Strategies.

    PubMed

    Kempke, Anna P; Leino, Abbie S; Daneshvar, Farzad; Lee, John Andrew; Mueller, Bruce A

    2016-01-01

    Purpose. Drug dose recommendations are not well defined in patients undergoing continuous renal replacement therapy (CRRT) due to limited published data. Several guidelines and pharmacokinetic equations have been proposed as tools for CRRT drug dosing. Dose recommendations derived from these methods have yet to be compared or prospectively evaluated. Methods. A literature search of PubMed, Micromedex, and Embase was conducted for 40 drugs commonly used in the ICU to gather pharmacokinetic data acquired from patients with acute and chronic kidney disease as well as healthy volunteers. These data and that obtained from drug package inserts were gathered for use in three published CRRT drug dosing equations. Doses calculated for a model patient using each method were compared to doses suggested in a commonly used dosing text. Results. Full pharmacokinetic data was available for 18, 31, and 40 agents using acute kidney injury, end stage renal disease, and normal patient data, respectively. On average, calculated doses differed by 30% or more from the doses recommended by the renal dosing text for >50% of the medications. Conclusion. Wide variability in dose recommendations for patients undergoing CRRT exists when these equations are used. Alternate, validated dosing methods need to be developed for this at-risk patient population.

  7. GENERAL CONSIDERATIONS OF DOSE-EFFECT AND DOSE-RESPONSE RELATIONSHIPS

    EPA Science Inventory

    ABSTRACT In 2003, the International Union of Pure and Applied chemistry (IUPAC) issued a glossary of terms that included the defi nition of dose-effect and doseresponse relationships (Nordberg et al., 2004). Dose effect relationship is defined as an association between dose and...

  8. A novel dose uncertainty model and its application for dose verification.

    PubMed

    Jin, Hosang; Chung, Heetaek; Liu, Chihray; Palta, Jatinder; Suh, Tae-Suk; Kim, Siyong

    2005-06-01

    Based on statistical approach, a novel dose uncertainty model was introduced considering both nonspatial and spatial dose deviations. Non-space-oriented uncertainty is mainly caused by dosimetric uncertainties, and space-oriented dose uncertainty is the uncertainty caused by all spatial displacements. Assuming these two parts are independent, dose difference between measurement and calculation is a linear combination of nonspatial and spatial dose uncertainties. Two assumptions were made: (1) the relative standard deviation of nonspatial dose uncertainty is inversely proportional to the dose standard deviation sigma, and (2) the spatial dose uncertainty is proportional to the gradient of dose. The total dose uncertainty is a quadratic sum of the nonspatial and spatial uncertainties. The uncertainty model provides the tolerance dose bound for comparison between calculation and measurement. In the statistical uncertainty model based on a Gaussian distribution, a confidence level of 3sigma theoretically confines 99.74% of measurements within the bound. By setting the confidence limit, the tolerance bound for dose comparison can be made analogous to that of existing dose comparison methods (e.g., a composite distribution analysis, a gamma test, a chi evaluation, and a normalized agreement test method). However, the model considers the inherent dose uncertainty characteristics of the test points by taking into account the space-specific history of dose accumulation, while the previous methods apply a single tolerance criterion to the points, although dose uncertainty at each point is significantly different from others. Three types of one-dimensional test dose distributions (a single large field, a composite flat field made by two identical beams, and three-beam intensity-modulated fields) were made to verify the robustness of the model. For each test distribution, the dose bound predicted by the uncertainty model was compared with simulated measurements. The simulated

  9. Hormones and Endocrine-Disrupting Chemicals: Low-Dose Effects and Nonmonotonic Dose Responses

    PubMed Central

    Colborn, Theo; Hayes, Tyrone B.; Heindel, Jerrold J.; Jacobs, David R.; Lee, Duk-Hee; Shioda, Toshi; Soto, Ana M.; vom Saal, Frederick S.; Welshons, Wade V.; Zoeller, R. Thomas

    2012-01-01

    For decades, studies of endocrine-disrupting chemicals (EDCs) have challenged traditional concepts in toxicology, in particular the dogma of “the dose makes the poison,” because EDCs can have effects at low doses that are not predicted by effects at higher doses. Here, we review two major concepts in EDC studies: low dose and nonmonotonicity. Low-dose effects were defined by the National Toxicology Program as those that occur in the range of human exposures or effects observed at doses below those used for traditional toxicological studies. We review the mechanistic data for low-dose effects and use a weight-of-evidence approach to analyze five examples from the EDC literature. Additionally, we explore nonmonotonic dose-response curves, defined as a nonlinear relationship between dose and effect where the slope of the curve changes sign somewhere within the range of doses examined. We provide a detailed discussion of the mechanisms responsible for generating these phenomena, plus hundreds of examples from the cell culture, animal, and epidemiology literature. We illustrate that nonmonotonic responses and low-dose effects are remarkably common in studies of natural hormones and EDCs. Whether low doses of EDCs influence certain human disorders is no longer conjecture, because epidemiological studies show that environmental exposures to EDCs are associated with human diseases and disabilities. We conclude that when nonmonotonic dose-response curves occur, the effects of low doses cannot be predicted by the effects observed at high doses. Thus, fundamental changes in chemical testing and safety determination are needed to protect human health. PMID:22419778

  10. Derivation of dose conversion factors for tritium

    SciTech Connect

    Killough, G. G.

    1982-03-01

    For a given intake mode (ingestion, inhalation, absorption through the skin), a dose conversion factor (DCF) is the committed dose equivalent to a specified organ of an individual per unit intake of a radionuclide. One also may consider the effective dose commitment per unit intake, which is a weighted average of organ-specific DCFs, with weights proportional to risks associated with stochastic radiation-induced fatal health effects, as defined by Publication 26 of the International Commission on Radiological Protection (ICRP). This report derives and tabulates organ-specific dose conversion factors and the effective dose commitment per unit intake of tritium. These factors are based on a steady-state model of hydrogen in the tissues of ICRP's Reference Man (ICRP Publication 23) and equilibrium of specific activities between body water and other tissues. The results differ by 27 to 33% from the estimate on which ICRP Publication 30 recommendations are based. The report also examines a dynamic model of tritium retention in body water, mineral bone, and two compartments representing organically-bound hydrogen. This model is compared with data from human subjects who were observed for extended periods. The manner of combining the dose conversion factors with measured or model-predicted levels of contamination in man's exposure media (air, drinking water, soil moisture) to estimate dose rate to an individual is briefly discussed.

  11. Patient Dose Management: Focus on Practical Actions

    PubMed Central

    2016-01-01

    Medical radiation is a very important part of modern medicine, and should be only used when needed and optimized. Justification and optimization of radiation examinations must be performed. The first step of reduction of medical exposure is to know the radiation dose in currently performed examinations. This review covers radiation units, how various imaging modalities report dose, and the current status of radiation dose reports and legislation. Also, practical tips that can be applied to clinical practice are introduced. Afterwards, the importance of radiology exposure related education is emphasized and the current status of education for medical personal and the public is explained, and appropriate education strategies are suggested. Commonly asked radiation dose related example questions and answers are provided in detail to allow medical personnel to answer patients. Lastly, we talk about computerized programs that can be used in medical facilities for managing patient dose. While patient dose monitoring and management should be used to decrease and optimize overall radiation dose, it should not be used to assess individual cancer risk. One must always remember that medically justified examinations should always be performed, and unneeded examinations should be avoided in the first place. PMID:26908988

  12. Radiation dose optimization in thoracic imaging.

    PubMed

    Tack, D

    2010-01-01

    Guidelines for reduction of CT radiation dose were introduced in 1997 and are now more than 12 years old. The process initiated by the European Regulatory authorities to reduce the excess of radiation from CT has however not produced the expected results. Reference diagnostic levels (DRL) from surveys are still twice as high as needed in most European countries and were not significantly reduced as compared to the initial European ones. Many factors may at least explain partially the lack of dose reduction. One of them is the complexity of the dose optimization process while maintaining image quality at a diagnostically acceptable level. Chest is an anatomical region where radiation dose could be substantially reduced because of high natural contrasts between structures, such as air in the lungs and fat in the mediastinum. In this article, the concept of CT radiation dose optimization and the factors that contribute to maintain global excess in radiation dose are reviewed and a brief summary of results from research in the field of chest CT radiation dose is given.

  13. Comparison of high dose inhaled steroids, low dose inhaled steroids plus low dose theophylline, and low dose inhaled steroids alone in chronic asthma in general practice

    PubMed Central

    Lim, S.; Jatakanon, A.; Gordon, D.; Macdonald, C.; Chung, K. F.; Barnes, P.

    2000-01-01

    BACKGROUND—Theophylline is widely used in the treatment of asthma, and there is evidence that theophylline has anti-inflammatory or immunomodulatory effects. A study was undertaken to determine whether theophylline added to low dose inhaled steroids would be as efficacious as high dose inhaled steroids in asthma.
METHODS—In a study in general practice of 155 recruited asthmatic patients with continuing symptomatic asthma while on 400 µg beclomethasone dipropionate (BDP) daily and inhaled β2 agonist as required, the effect of (1) continuing low dose inhaled steroids alone (LDS, 200 µg BDP twice daily), (2) low dose inhaled steroids plus low dose theophylline (LDT, 400 mg daily), or (3) high dose inhaled steroids (HDS, 500 µg BDP) over a six month period was examined.
RESULTS—One hundred and thirty patients completed the study. Between group comparison using analysis of variance showed no overall differences in peak flow measurements, diurnal variation, and symptom scores. Changes in evening peak flows approached significance at the 5% level (p=0.077). The mean improvement in evening peak flow in the LDT compared with the LDS group was 20.6 l/min (95% confidence interval (CI) -2.5 to 38.8). In the LDT group there was an increase in evening peak flows at the end of the study compared with entry values (22.5 l/min), while in the LDS and HDS groups evening peak flows increased by 1.9 and 8.3 l/min, respectively. There was no significant difference in exacerbations or in side effects.
CONCLUSION—There were no overall significant differences between the low dose steroid, low dose steroid with theophylline, and the high dose steroid groups. The greatest within-group improvement in evening peak flows was found after theophylline. A larger study may be necessary to show significant effects.

 PMID:10992535

  14. Eye lens dose in interventional cardiology.

    PubMed

    Principi, S; Delgado Soler, C; Ginjaume, M; Beltran Vilagrasa, M; Rovira Escutia, J J; Duch, M A

    2015-07-01

    The ICRP has recently recommended reducing the occupational exposure dose limit for the lens of the eye to 20 mSv y(-1), averaged over a period of 5 y, with no year exceeding 50 mSv, instead of the current 150 mSv y(-1). This reduction will have important implications for interventional cardiology and radiology (IC/IR) personnel. In this work, lens dose received by a staff working in IC is studied in order to determine whether eye lens dose monitoring or/and additional radiological protection measures are required. Eye lens dose exposure was monitored in 10 physicians and 6 nurses. The major IC procedures performed were coronary angiography and percutaneous transluminal coronary angioplasty. The personnel were provided with two thermoluminescent dosemeters (TLDs): one calibrated in terms of Hp(3) located close to the left ear of the operator and a whole-body dosemeter calibrated in terms of Hp(10) and Hp(0.07) positioned on the lead apron. The estimated annual eye lens dose for physicians ranged between 8 and 60 mSv, for a workload of 200 procedures y(-1). Lower doses were collected for nurses, with estimated annual Hp(3) between 2 and 4 mSv y(-1). It was observed that for nurses the Hp(0.07) measurement on the lead apron is a good estimate of eye lens dose. This is not the case for physicians, where the influence of both the position and use of protective devices such as the ceiling shield is very important and produces large differences among doses both at the eyes and on the thorax. For physicians, a good correlation between Hp(3) and dose area product is shown.

  15. A Meta-Analysis of Retention in Methadone Maintenance by Dose and Dosing Strategy

    PubMed Central

    Bao, Yan-ping; Liu, Zhi-min; Epstein, David H.; Du, Cun; Shi, Jie; Lu, Lin

    2013-01-01

    Objective To estimate, via meta-analysis, the influence of different methadone dose ranges and dosing strategies on retention rates in methadone maintenance treatment (MMT). Methods A systematic literature search identified 18 randomized controlled trials (RCTs) evaluating methadone dose and retention. Retention was defined as the percentage of patients remaining in treatment at a specified time point. After initial univariate analyses of retention by Pearson chi-squares, we used multilevel logistic regression to calculate summary odds ratios (ORs) and 95% confidence intervals for the effects of methadone dose (above or below 60 mg/day), flexible vs. fixed dosing strategy, and duration of follow-up. Results The total number of opioid-dependent participants in the 18 studies was 2831, with 1797 in MMT and 1034 receiving alternative mediations or placebo. Each variable significantly predicted retention with the other variables controlled for. Retention was greater with methadone doses ≥ 60 than with doses <60 (OR: 1.74, 95% CI: 1.43–2.11). Similarly, retention was greater with flexible-dose strategies than with fixed-dose strategies (OR: 1.72, 95% CI: 1.41–2.11). Conclusions Higher doses of methadone and individualization of doses are each independently associated with better retention in MMT. PMID:19152203

  16. Absorbed dose thresholds and absorbed dose rate limitations for studies of electron radiation effects on polyetherimides

    NASA Technical Reports Server (NTRS)

    Long, Edward R., Jr.; Long, Sheila Ann T.; Gray, Stephanie L.; Collins, William D.

    1989-01-01

    The threshold values of total absorbed dose for causing changes in tensile properties of a polyetherimide film and the limitations of the absorbed dose rate for accelerated-exposure evaluation of the effects of electron radiation in geosynchronous orbit were studied. Total absorbed doses from 1 kGy to 100 MGy and absorbed dose rates from 0.01 MGy/hr to 100 MGy/hr were investigated, where 1 Gy equals 100 rads. Total doses less than 2.5 MGy did not significantly change the tensile properties of the film whereas doses higher than 2.5 MGy significantly reduced elongation-to-failure. There was no measurable effect of the dose rate on the tensile properties for accelerated electron exposures.

  17. CANISTER HANDLING FACILITY WORKER DOSE ASSESSMENT

    SciTech Connect

    D.T. Dexheimer

    2004-02-27

    The purpose of this calculation is to estimate radiation doses received by personnel working in the Canister Handling Facility (CHF) performing operations to receive transportation casks, transfer wastes, prepare waste packages, perform associated equipment maintenance. The specific scope of work contained in this calculation covers individual worker group doses on an annual basis, and includes the contributions due to external and internal radiation. The results of this calculation will be used to support the design of the CHF and provide occupational dose estimates for the License Application.

  18. Hanford Environmental Dose Reconstruction Project Monthly Report

    SciTech Connect

    Dennis, B.S.

    1990-04-01

    This monthly report summarizes the technical progress and project status for the Hanford Environmental Dose Reconstruction (HEDR) Project being conducted at Pacific Northwest Laboratory (PNL) under the direction of a Technical Steering Panel (TSP). The project is divided into the following technical tasks. These tasks address each of the primary steps in the path from radioactive releases to dose estimates: source terms, environmental transport, environmental monitoring data, demographics, agriculture, and food habits, and environmental pathways and dose estimates. The source terms task will develop estimates for radioactive emissions from Hanford facilities since 1944. These estimates will be based on historical measurements and production information. 1 fig., 1 tab.

  19. User instructions for the CIDER Dose Code

    SciTech Connect

    Eslinger, P.W.; Lessor, K.S.; Ouderkirk, S.J.

    1994-05-01

    This document provides user instructions for the CIDER (Calculation of Individual Doses from Environmental Radionuclides) computer code. The CIDER code computes estimates of annual doses estimated for both reference individuals with a known residence and food consumption history. This document also provides user instructions for four utility codes used to build input data libraries for CIDER. These utility codes are ENVFAC (environmental factors), FOOFAC (food factors), LIFFAC (lifestyle factors), and ORGFAC (organ factors). Finally, this document provides user instructions for the EXPAND utility code. The EXPAND code processes a result file from CIDER and extracts a summary of the dose information for reporting or plotting purposes.

  20. Developing population estimates for dose reconstruction projects

    SciTech Connect

    Beck, D.M. )

    1991-01-01

    The Hanford Environmental Dose Reconstruction (HEDR) Project was established in 1987 to estimate radiation doses that people received from nuclear operations at the Hanford site since 1944. To achieve this objective, demographic information was developed that describes the study population in enough detail to allow researchers to identify potentially exposed groups and the number of people in each of those groups. This type of information is central to most dose reconstruction projects. The purpose of this paper is to detail how historical population estimates can be reconstructed in a reliable manner by comparing results using three different estimation methods.

  1. Photon doses in NPL standard neutron fields.

    PubMed

    Roberts, N J; Horwood, N A; McKay, C J

    2014-10-01

    Standard neutron fields are invariably accompanied by a photon component due to the neutron-generating reactions and secondary neutron interactions in the surrounding environment. A set of energy-compensated Geiger-Müller (GM) tubes and electronic personal dosemeters (EPDs) have been used to measure the photon dose rates in a number of standard radionuclide and accelerator-based neutron fields. The GM tubes were first characterised in standard radioisotope and X-ray photon fields and then modelled using MCNP to determine their photon dose response as a function of energy. Values for the photon-to-neutron dose equivalent ratios are presented and compared with other published values.

  2. Potencial de Seqüestro de Carbono Atmosférico entre Diferentes Cultivares de Milho (Zea mays L.) sob Condiç o de Déficit Hídrico

    Technology Transfer Automated Retrieval System (TEKTRAN)

    There is a question concerning the role of agricultural practices on carbon sequestration enhancement. By producing biomass with agricultural crops and adding this residue to soil, it should act on the mitigation process of the greenhouse effect, especially CO2. The objectives of this study were to ...

  3. Estimated radiation dose from timepieces containing tritium

    SciTech Connect

    McDowell-Boyer, L M

    1980-01-01

    Luminescent timepieces containing radioactive tritium, either in elemental form or incorporated into paint, are available to the general public. The purpose of this study was to estimate potential radiation dose commitments received by the public annually as a result of exposure to tritium which may escape from the timepieces during their distribution, use, repair, and disposal. Much uncertainty is associated with final dose estimates due to limitations of empirical data from which exposure parameters were derived. Maximum individual dose estimates were generally less than 3 ..mu..Sv/yr, but ranged up to 2 mSv under worst-case conditions postulated. Estimated annual collective (population) doses were less than 5 person/Sv per million timepieces distributed.

  4. Determination of dose distributions and parameter sensitivity

    SciTech Connect

    Napier, B.A.; Farris, W.T.; Simpson, J.C.

    1992-12-01

    A series of scoping calculations has been undertaken to evaluate the absolute and relative contribution of different radionuclides and exposure pathways to doses that may have been received by individuals living in the vicinity of the Hanford site. This scoping calculation (Calculation 005) examined the contributions of numerous parameters to the uncertainty distribution of doses calculated for environmental exposures and accumulation in foods. This study builds on the work initiated in the first scoping study of iodine in cow's milk and the third scoping study, which added additional pathways. Addressed in this calculation were the contributions to thyroid dose of infants from (1) air submersion and groundshine external dose, (2) inhalation, (3) ingestion of soil by humans, (4) ingestion of leafy vegetables, (5) ingestion of other vegetables and fruits, (6) ingestion of meat, (7) ingestion of eggs, and (8) ingestion of cows' milk from Feeding Regime 1 as described in Calculation 001.

  5. Simplified Warfarin Dose-response Pharmacodynamic Models

    PubMed Central

    Kim, Seongho; Gaweda, Adam E.; Wu, Dongfeng; Li, Lang; Rai, Shesh N.; Brier, Michael E.

    2014-01-01

    Warfarin is a frequently used oral anticoagulant for long-term prevention and treatment of thromboembolic events. Due to its narrow therapeutic range and large inter-individual dose-response variability, it is highly desirable to personalize warfarin dosing. However, the complexity of the conventional kinetic-pharmacodynamic (K-PD) models hampers the development of the personalized dose management. To avert this challenge, we propose simplified PD models for warfarin dose-response relationship, which is motivated by ideas from control theory. The simplified models were further applied to longitudinal data of 37 patients undergoing anticoagulation treatment using the standard two-stage approach and then compared with the conventional K-PD models. Data analysis shows that all models have a similar predictive ability, but the simplified models are most parsimonious. PMID:25750489

  6. Hanford Environmental Dose Reconstruction Project. Monthly report

    SciTech Connect

    McMakin, A.H.; Cannon, S.D.; Finch, S.M.

    1992-07-01

    The objective of the Hanford Environmental Dose Reconstruction (HEDR) Project is to estimate the radiation doses that individuals and populations could have received from nuclear operations at Hanford since 1944. The TSP consists of experts in environmental pathways, epidemiology, surface-water transport, ground-water transport, statistics, demography, agriculture, meteorology, nuclear engineering, radiation dosimetry, and cultural anthropology. Included are appointed technical members representing the states of Oregon, Washington, and Idaho, a representative of Native American tribes, and an individual representing the public. The project is divided into the following technical tasks. These tasks correspond to the path radionuclides followed from release to impact on humans (dose estimates): Source terms, environmental transport, environmental monitoring data, demography, food consumption, and agriculture, and environmental pathways and dose estimates. Progress is discussed.

  7. Hanford Environmental Dose Reconstruction Project monthly report

    SciTech Connect

    McMakin, A.H., Cannon, S.D.; Finch, S.M.

    1992-09-01

    The objective of the Hanford Environmental Dose Reconstruction MDR) Project is to estimate the radiation doses that individuals and populations could have received from nuclear operations at Hanford since 1944. The TSP consists of experts in envirorunental pathways. epidemiology, surface-water transport, ground-water transport, statistics, demography, agriculture, meteorology, nuclear engineering. radiation dosimetry. and cultural anthropology. Included are appointed members representing the states of Oregon, Washington, and Idaho, a representative of Native American tribes, and an individual representing the public. The project is divided into the following technical tasks. These tasks correspond to the path radionuclides followed from release to impact on humans (dose estimates): Source Terms; Environmental Transport; Environmental Monitoring Data Demography, Food Consumption, and Agriculture; and Environmental Pathways and Dose Estimates.

  8. Dose response signal detection under model uncertainty.

    PubMed

    Dette, Holger; Titoff, Stefanie; Volgushev, Stanislav; Bretz, Frank

    2015-12-01

    We investigate likelihood ratio contrast tests for dose response signal detection under model uncertainty, when several competing regression models are available to describe the dose response relationship. The proposed approach uses the complete structure of the regression models, but does not require knowledge of the parameters of the competing models. Standard likelihood ratio test theory is applicable in linear models as well as in nonlinear regression models with identifiable parameters. However, for many commonly used nonlinear dose response models the regression parameters are not identifiable under the null hypothesis of no dose response and standard arguments cannot be used to obtain critical values. We thus derive the asymptotic distribution of likelihood ratio contrast tests in regression models with a lack of identifiability and use this result to simulate the quantiles based on Gaussian processes. The new method is illustrated with a real data example and compared to existing procedures using theoretical investigations as well as simulations.

  9. [Hopes of high dose-rate radiotherapy].

    PubMed

    Fouillade, Charles; Favaudon, Vincent; Vozenin, Marie-Catherine; Romeo, Paul-Henri; Bourhis, Jean; Verrelle, Pierre; Devauchelle, Patrick; Patriarca, Annalisa; Heinrich, Sophie; Mazal, Alejandro; Dutreix, Marie

    2017-03-07

    In this review, we present the synthesis of the newly acquired knowledge concerning high dose-rate irradiations and the hopes that these new radiotherapy modalities give rise to. The results were presented at a recent symposium on the subject.

  10. Radiation dose to the global flying population.

    PubMed

    Alvarez, Luis E; Eastham, Sebastian D; Barrett, Steven R H

    2016-03-01

    Civil airliner passengers and crew are exposed to elevated levels of radiation relative to being at sea level. Previous studies have assessed the radiation dose received in particular cases or for cohort studies. Here we present the first estimate of the total radiation dose received by the worldwide civilian flying population. We simulated flights globally from 2000 to 2013 using schedule data, applying a radiation propagation code to estimate the dose associated with each flight. Passengers flying in Europe and North America exceed the International Commission on Radiological Protection annual dose limits at an annual average of 510 or 420 flight hours per year, respectively. However, this falls to 160 or 120 h on specific routes under maximum exposure conditions.

  11. Uncertainties on lung doses from inhaled plutonium.

    PubMed

    Puncher, Matthew; Birchall, Alan; Bull, Richard K

    2011-10-01

    In a recent epidemiological study, Bayesian uncertainties on lung doses have been calculated to determine lung cancer risk from occupational exposures to plutonium. These calculations used a revised version of the Human Respiratory Tract Model (HRTM) published by the ICRP. In addition to the Bayesian analyses, which give probability distributions of doses, point estimates of doses (single estimates without uncertainty) were also provided for that study using the existing HRTM as it is described in ICRP Publication 66; these are to be used in a preliminary analysis of risk. To infer the differences between the point estimates and Bayesian uncertainty analyses, this paper applies the methodology to former workers of the United Kingdom Atomic Energy Authority (UKAEA), who constituted a subset of the study cohort. The resulting probability distributions of lung doses are compared with the point estimates obtained for each worker. It is shown that mean posterior lung doses are around two- to fourfold higher than point estimates and that uncertainties on doses vary over a wide range, greater than two orders of magnitude for some lung tissues. In addition, we demonstrate that uncertainties on the parameter values, rather than the model structure, are largely responsible for these effects. Of these it appears to be the parameters describing absorption from the lungs to blood that have the greatest impact on estimates of lung doses from urine bioassay. Therefore, accurate determination of the chemical form of inhaled plutonium and the absorption parameter values for these materials is important for obtaining reliable estimates of lung doses and hence risk from occupational exposures to plutonium.

  12. Respirators, internal dose, and Oyster Creek

    SciTech Connect

    Michal, R.

    1996-06-01

    This article looks at the experience of Oyster Creek in relaxing the requirements for the use of respirators in all facets of plant maintenance, on the overall dose received by plant maintenance personnel. For Roger Shaw, director of radiological controls for three years at GPU Nuclear Corporation`s Oyster Creek nuclear plant the correct dose balance is determined on a job-by-job basis: Does the job require a respirator, which is an effective means of decreasing worker inhalation of airborne radioactive particles? Will wearing a respirator slow down a worker, consequently increasing whole body radiation exposure by prolonging the time spent in fields of high external radiation? How does respiratory protection affect worker safety and to what degree? While changes to the Nuclear Regulatory Commission`s 10CFR20 have updated the radiation protection requirements for the nuclear industry, certain of the revisions have been directed specifically at reducing worker dose, Shaw said. {open_quotes}It basically delineates that dose is dose,{close_quotes} Shaw said, {open_quotes}regardless of whether it is acquired externally or internally.{close_quotes} The revision of Part 20 changed the industry`s attitude toward internal dose, which had always been viewed negatively. {open_quotes}Internal dose was always seen as preventable by wearing respirators and by using engineering techniques such as ventilation control and decontamination,{close_quotes} Shaw said, {open_quotes}whereas external dose, although reduced where practical, was seen as a fact of the job.{close_quotes}

  13. Enhancing acupuncture by low dose naltrexone.

    PubMed

    Hesselink, Jan M Keppel; Kopsky, David J

    2011-06-01

    To find appropriate and effective treatment options for chronic pain syndromes is a challenging task. Multimodal treatment approach has been gaining acceptance for chronic pain. However, combining treatments, such as acupuncture, with rational pharmacology is still in its infancy. Acupuncture influences the opioid and cannabinoid system through releasing endogenous receptor ligands. Low dose naltrexone also acts on both these systems, and upregulates the opioid and cannabinoid receptors. The authors hypothesise that low dose naltrexone could enhance the pain-relieving effect of acupuncture.

  14. Patterns of Ketorolac dosing by emergency physicians

    PubMed Central

    Soleyman-Zomalan, Emil; Motov, Sergey; Likourezos, Antonios; Cohen, Victor; Pushkar, Illya; Fromm, Christian

    2017-01-01

    BACKGROUND: Ketorolac tromethamine is a non-steroidal anti-inflammatory drug (NSAIDs) that is widely used in the emergency department (ED) for the treatment of moderate-to-severe pain. Ketorolac, like other NSAIDs, exhibits an analgesic ceiling effect and previous research suggests that 10 mg is possibly the ceiling dose. Do the patterns of ketorolac dosing by emergency physicians follow its analgesic ceiling dose? METHODS: This was a single center retrospective, descriptive study to characterize patterns of ketorolac administration in ED patients. Data for all patients who received ketorolac during the ten year study period from January 1, 2003 to January 1, 2013 were collected from the electronic medical record of an urban community ED with an annual volume of 116 935 patients. RESULTS: There were 49 605 ketorolac administrations during the study period; 38 687 (78%) were given intravenously, 9 916 (20%) intramuscularly, and 1 002 (2%) orally. Through the intravenous route, 5 288 (13.7%) were 15 mg, 32 715 (84.6%) were 30 mg, 15 (0.03%) were 60 mg, and 669 (1.7%) were other varying doses. Through the intramuscular route, 102 (1.0%) were 15 mg, 4 916 (49.6%) were 30 mg, 4 553 (45.9%) were 60 mg, and 345 (3.5%) were other varying doses. The most common diagnoses at discharge were renal colic (21%), low back pain (17%) and abdominal pain (11%). CONCLUSION: The data show that ketorolac was prescribed above its ceiling dose of 10 mg in 97% of patients who received intravenous doses and in 96% of patients receiving intramuscular doses. PMID:28123620

  15. Potential radiation doses from 1994 Hanford Operations

    SciTech Connect

    Soldat, J.K.; Antonio, E.J.

    1995-06-01

    This section of the 1994 Hanford Site Environmental Report summarizes the potential radiation doses to the public from releases originating at the Hanford Site. Members of the public are potentially exposed to low-levels of radiation from these effluents through a variety of pathways. The potential radiation doses to the public were calculated for the hypothetical MEI and for the general public residing within 80 km (50 mi) of the Hanford Site.

  16. Relationship between dose and health effects

    SciTech Connect

    Kimbrough, R.D.

    1984-09-01

    The health effects produced by chemicals depend on the inherent toxicity of the chemical and the dose received by the exposed individual. Health effects are modified by genetic make-up, life style, nutrition, and interaction with other chemicals. In some situations it may be difficult to impossible to determine through epidemiologic studies whether exposure to chemicals (naturally occurring or synthetic) has caused harm. For all practical purposes, the risk associated with minuscule doses of most chemicals is negligible.

  17. Single-dose versus multi-dose vaccine vials for immunization programmes in developing countries.

    PubMed Central

    Drain, Paul K.; Nelson, Carib M.; Lloyd, John S.

    2003-01-01

    Excessive vaccine wastage and safety concerns have prompted the international health community to develop and supply vaccines in formats other than the standard multi-dose vial. This article presents a programmatic and economic comparison of the major differences between the multi-dose vials and single-dose formats used for immunization services in developing countries. Multi-dose vials, in general, sell at a lower per-dose price and occupy less cold-chain capacity than single-dose formats. However, higher wastage rates may offset these benefits, especially for more expensive vaccines. Single-dose formats offer several important programmatic benefits, such as increased vaccination opportunities and improved vaccine safety. One single-dose format, the prefilled auto-disable (AD) device, provides additional injection safety and convenience features because it physically combines the vaccine and AD syringe. Selecting the appropriate vaccine presentation will depend on many factors. However, multi-dose vials are likely to be most appropriate for cheaper vaccines and in settings where cold-chain storage capacity is restricted. Single-dose formats will be most appropriate for more expensive vaccines and where there are problems with unsafe injection practices. Prefilled AD injection devices will be particularly useful in expanding outreach services while eliminating the possibility of needle reuse. PMID:14758432

  18. Independent dose calculations for commissioning, quality assurance and dose reconstruction of PBS proton therapy.

    PubMed

    Meier, G; Besson, R; Nanz, A; Safai, S; Lomax, A J

    2015-04-07

    Pencil beam scanning proton therapy allows the delivery of highly conformal dose distributions by delivering several thousand pencil beams. These beams have to be individually optimised and accurately delivered requiring a significant quality assurance workload. In this work we describe a toolkit for independent dose calculations developed at Paul Scherrer Institut which allows for dose reconstructions at several points in the treatment workflow. Quality assurance based on reconstructed dose distributions was shown to be favourable to pencil beam by pencil beam comparisons for the detection of delivery uncertainties and estimation of their effects. Furthermore the dose reconstructions were shown to have a sensitivity of the order of or higher than the measurements currently employed in the clinical verification procedures. The design of the independent dose calculation tool allows for a high modifiability of the dose calculation parameters (e.g. depth dose profiles, angular spatial distributions) allowing for a safe environment outside of the clinical treatment planning system for investigating the effect of such parameters on the resulting dose distributions and thus distinguishing between different contributions to measured dose deviations. The presented system could potentially reduce the amount of patient-specific quality assurance measurements which currently constitute a bottleneck in the clinical workflow.

  19. Modeling Dose-response at Low Dose: A Systems Biology Approach for Ionization Radiation.

    PubMed

    Zhao, Yuchao; Ricci, Paolo F

    2010-03-18

    For ionization radiation (IR) induced cancer, a linear non-threshold (LNT) model at very low doses is the default used by a number of national and international organizations and in regulatory law. This default denies any positive benefit from any level of exposure. However, experimental observations and theoretical biology have found that both linear and J-shaped IR dose-response curves can exist at those very low doses. We develop low dose J-shaped dose-response, based on systems biology, and thus justify its use regarding exposure to IR. This approach incorporates detailed, molecular and cellular descriptions of biological/toxicological mechanisms to develop a dose-response model through a set of nonlinear, differential equations describing the signaling pathways and biochemical mechanisms of cell cycle checkpoint, apoptosis, and tumor incidence due to IR. This approach yields a J-shaped dose response curve while showing where LNT behaviors are likely to occur. The results confirm the hypothesis of the J-shaped dose response curve: the main reason is that, at low-doses of IR, cells stimulate protective systems through a longer cell arrest time per unit of IR dose. We suggest that the policy implications of this approach are an increasingly correct way to deal with precautionary measures in public health.

  20. Revisiting Warfarin Dosing Using Machine Learning Techniques

    PubMed Central

    Sharabiani, Ashkan; Bress, Adam; Douzali, Elnaz; Darabi, Houshang

    2015-01-01

    Determining the appropriate dosage of warfarin is an important yet challenging task. Several prediction models have been proposed to estimate a therapeutic dose for patients. The models are either clinical models which contain clinical and demographic variables or pharmacogenetic models which additionally contain the genetic variables. In this paper, a new methodology for warfarin dosing is proposed. The patients are initially classified into two classes. The first class contains patients who require doses of >30 mg/wk and the second class contains patients who require doses of ≤30 mg/wk. This phase is performed using relevance vector machines. In the second phase, the optimal dose for each patient is predicted by two clinical regression models that are customized for each class of patients. The prediction accuracy of the model was 11.6 in terms of root mean squared error (RMSE) and 8.4 in terms of mean absolute error (MAE). This was 15% and 5% lower than IWPC and Gage models (which are the most widely used models in practice), respectively, in terms of RMSE. In addition, the proposed model was compared with fixed-dose approach of 35 mg/wk, and the model proposed by Sharabiani et al. and its outperformance were proved in terms of both MAE and RMSE. PMID:26146514

  1. Radiation Leukemogenesis at Low Dose Rates

    SciTech Connect

    Weil, Michael; Ullrich, Robert

    2013-09-25

    The major goals of this program were to study the efficacy of low dose rate radiation exposures for the induction of acute myeloid leukemia (AML) and to characterize the leukemias that are caused by radiation exposures at low dose rate. An irradiator facility was designed and constructed that allows large numbers of mice to be irradiated at low dose rates for protracted periods (up to their life span). To the best of our knowledge this facility is unique in the US and it was subsequently used to study radioprotectors being developed for radiological defense (PLoS One. 7(3), e33044, 2012) and is currently being used to study the role of genetic background in susceptibility to radiation-induced lung cancer. One result of the irradiation was expected; low dose rate exposures are ineffective in inducing AML. However, another result was completely unexpected; the irradiated mice had a very high incidence of hepatocellular carcinoma (HCC), approximately 50%. It was unexpected because acute exposures are ineffective in increasing HCC incidence above background. This is a potential important finding for setting exposure limits because it supports the concept of an 'inverse dose rate effect' for some tumor types. That is, for the development of some tumor types low dose rate exposures carry greater risks than acute exposures.

  2. Low-dose radiation exposure and carcinogenesis.

    PubMed

    Suzuki, Keiji; Yamashita, Shunichi

    2012-07-01

    Absorption of energy from ionizing radiation by the genetic material in the cell leads to damage to DNA, which in turn leads to cell death, chromosome aberrations and gene mutations. While early or deterministic effects result from organ and tissue damage caused by cell killing, latter two are considered to be involved in the initial events that lead to the development of cancer. Epidemiological studies have demonstrated the dose-response relationships for cancer induction and quantitative evaluations of cancer risk following exposure to moderate to high doses of low-linear energy transfer radiation. A linear, no-threshold model has been applied to assessment of the risks resulting from exposure to moderate and high doses of ionizing radiation; however, a statistically significant increase has hardly been described for radiation doses below 100 mSv. This review summarizes our current knowledge of the physical and biological features of low-dose radiation and discusses the possibilities of induction of cancer by low-dose radiation.

  3. 10 CFR 835.207 - Occupational dose limits for minors.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Exposure § 835.207 Occupational dose limits for minors. The dose limits for minors occupationally exposed... 10 Energy 4 2010-01-01 2010-01-01 false Occupational dose limits for minors. 835.207 Section 835... dose in a year and 10 percent of the occupational dose limits specified at § 835.202(a)(3) and (a)(4)....

  4. Intensity-modulated radiosurgery: improving dose gradients and maximum dose using post inverse-optimization interactive dose shaping.

    PubMed

    Fuss, Martin; Salter, Bill J

    2007-06-01

    Intensity-modulated radiosurgery (IMRS) for brain metastases and arterio-venous malformations (AVM) using a serial tomotherapy system (Nomos Corp., Cranberry Township, PA) has been delivered in >150 cases over the last 5 years. A new software tool provided within the Corvus inverse planning software (ActiveRx) allows for post inverse planning re-optimization and individualization of the dose distribution. We analyzed this tool with respect to increasing the steepness of the dose gradient and in-target dose inhomogeneity while maintaining conformity. Fifteen clinically delivered IMRS plans for solitary brain metastases provided the basis for this analysis. The clinical IMRS plans were copied and the ActiveRx module was opened. The toolset in ActiveRx includes a hot spot eraser, a pencil tool to redefine isodose lines and a drag and drop tool, allowing reshaping of existing isodose lines. To assess changes in the steepness of the dose gradient and dose homogeneity, the 100%, 90%, 50% and 25% isodose volume, the volume of the target, maximum dose and mean dose to the target were recorded. We also recorded total monitor units and calculated treatment delivery times. Target volumes ranged from 0.6 to 14.1 cm(3) (mean/median 3.9/1.8 cm(3)). Mean RTOG conformity index (CI) of plans clinically delivered was 1.23+/-0.31; mean homogeneity index (HI) was 115+/-5%. After using the ActiveRx tool-set, the mean CI was slightly improved to 1.14+/-0.1, with an associated increase in HI to 141+/-10%. The average, respective Ian Paddick CI for the 100%, 90% 50% and 25% isodose lines were 0.79 vs. 0.83, 0.44 vs. 0.59, 0.12 vs. 0.19, and 0.04 vs. 0.07, representing significant improvements after using ActiveRx post-optimization. Total MU were reduced by a mean of 12.3% using ActiveRx, shortening estimated treatment delivery times by 3.2 minutes on average. A post inverse planning optimization tool for IMRS plans allowed for statistically significant improvements in the steepness of the

  5. Skin dose mapping for fluoroscopically guided interventions

    SciTech Connect

    Johnson, Perry B.; Borrego, David; Balter, Stephen; Johnson, Kevin; Siragusa, Daniel; Bolch, Wesley E.

    2011-10-15

    Purpose: To introduce a new skin dose mapping software system for interventional fluoroscopy dose assessment and to analyze the benefits and limitations of patient-phantom matching. Methods: In this study, a new software system was developed for visualizing patient skin dose during interventional fluoroscopy procedures. The system works by translating the reference point air kerma to the location of the patient's skin, which is represented by a computational model. In order to orient the model with the x-ray source, geometric parameters found within the radiation dose structured report (RDSR) are used along with a limited number of in-clinic measurements. The output of the system is a visual indication of skin dose mapped onto an anthropomorphic model at a resolution of 5 mm. In order to determine if patient-dependent and patient-sculpted models increase accuracy, peak skin dose was calculated for each of 26 patient-specific models and compared with doses calculated using an elliptical stylized model, a reference hybrid model, a matched patient-dependent model and one patient-sculpted model. Results were analyzed in terms of a percent difference using the doses calculated using the patient-specific model as the true standard. Results: Anthropometric matching, including the use of both patient-dependent and patient-sculpted phantoms, was shown most beneficial for left lateral and anterior-posterior projections. In these cases, the percent difference using a reference model was between 8 and 20%, using a patient-dependent model between 7 and 15%, and using a patient-sculpted model between 3 and 7%. Under the table tube configurations produced errors less than 5% in most situations due to the flattening affects of the table and pad, and the fact that table height is the main determination of source-to-skin distance for these configurations. In addition to these results, several skin dose maps were produced and a prototype display system was placed on the in

  6. Skin dose mapping for fluoroscopically guided interventions

    PubMed Central

    Johnson, Perry B.; Borrego, David; Balter, Stephen; Johnson, Kevin; Siragusa, Daniel; Bolch, Wesley E.

    2011-01-01

    Purpose: To introduce a new skin dose mapping software system for interventional fluoroscopy dose assessment and to analyze the benefits and limitations of patient-phantom matching. Methods: In this study, a new software system was developed for visualizing patient skin dose during interventional fluoroscopy procedures. The system works by translating the reference point air kerma to the location of the patient’s skin, which is represented by a computational model. In order to orient the model with the x-ray source, geometric parameters found within the radiation dose structured report (RDSR) are used along with a limited number of in-clinic measurements. The output of the system is a visual indication of skin dose mapped onto an anthropomorphic model at a resolution of 5 mm. In order to determine if patient-dependent and patient-sculpted models increase accuracy, peak skin dose was calculated for each of 26 patient-specific models and compared with doses calculated using an elliptical stylized model, a reference hybrid model, a matched patient-dependent model and one patient-sculpted model. Results were analyzed in terms of a percent difference using the doses calculated using the patient-specific model as the true standard. Results: Anthropometric matching, including the use of both patient-dependent and patient-sculpted phantoms, was shown most beneficial for left lateral and anterior–posterior projections. In these cases, the percent difference using a reference model was between 8 and 20%, using a patient-dependent model between 7 and 15%, and using a patient-sculpted model between 3 and 7%. Under the table tube configurations produced errors less than 5% in most situations due to the flattening affects of the table and pad, and the fact that table height is the main determination of source-to-skin distance for these configurations. In addition to these results, several skin dose maps were produced and a prototype display system was placed on the in

  7. Total ionizing dose effects of domestic SiGe HBTs under different dose rates

    NASA Astrophysics Data System (ADS)

    Liu, Mo-Han; Lu, Wu; Ma, Wu-Ying; Wang, Xin; Guo, Qi; He, Cheng-Fa; Jiang, Ke; Li, Xiao-Long; Xun, Ming-Zhu

    2016-03-01

    The total ionizing radiation (TID) response of commercial NPN silicon germanium hetero-junction bipolar transistors (SiGe HBTs) produced domestically are investigated under dose rates of 800 mGy(Si)/s and 1.3 mGy(Si)/s with a Co-60 gamma irradiation source. The changes of transistor parameters such as Gummel characteristics, and excess base current before and after irradiation, are examined. The results of the experiments show that for the KT1151, the radiation damage is slightly different under the different dose rates after prolonged annealing, and shows a time dependent effect (TDE). For the KT9041, however, the degradations of low dose rate irradiation is higher than for the high dose rate, demonstrating that there is a potential enhanced low dose rate sensitivity (ELDRS) effect for the KT9041. The possible underlying physical mechanisms of the different dose rates responses induced by the gamma rays are discussed.

  8. External dose-rate conversion factors for calculation of dose to the public

    SciTech Connect

    Not Available

    1988-07-01

    This report presents a tabulation of dose-rate conversion factors for external exposure to photons and electrons emitted by radionuclides in the environment. This report was prepared in conjunction with criteria for limiting dose equivalents to members of the public from operations of the US Department of Energy (DOE). The dose-rate conversion factors are provided for use by the DOE and its contractors in performing calculations of external dose equivalents to members of the public. The dose-rate conversion factors for external exposure to photons and electrons presented in this report are based on a methodology developed at Oak Ridge National Laboratory. However, some adjustments of the previously documented methodology have been made in obtaining the dose-rate conversion factors in this report. 42 refs., 1 fig., 4 tabs.

  9. SCCT guidelines on radiation dose and dose-optimization strategies in cardiovascular CT.

    PubMed

    Halliburton, Sandra S; Abbara, Suhny; Chen, Marcus Y; Gentry, Ralph; Mahesh, Mahadevappa; Raff, Gilbert L; Shaw, Leslee J; Hausleiter, Jörg

    2011-01-01

    Over the last few years, computed tomography (CT) has developed into a standard clinical test for a variety of cardiovascular conditions. The emergence of cardiovascular CT during a period of dramatic increase in radiation exposure to the population from medical procedures and heightened concern about the subsequent potential cancer risk has led to intense scrutiny of the radiation burden of this new technique. This has hastened the development and implementation of dose reduction tools and prompted closer monitoring of patient dose. In an effort to aid the cardiovascular CT community in incorporating patient-centered radiation dose optimization and monitoring strategies into standard practice, the Society of Cardiovascular Computed Tomography has produced a guideline document to review available data and provide recommendations regarding interpretation of radiation dose indices and predictors of risk, appropriate use of scanner acquisition modes and settings, development of algorithms for dose optimization, and establishment of procedures for dose monitoring.

  10. SCCT guidelines on radiation dose and dose-optimization strategies in cardiovascular CT

    PubMed Central

    Halliburton, Sandra S.; Abbara, Suhny; Chen, Marcus Y.; Gentry, Ralph; Mahesh, Mahadevappa; Raff, Gilbert L.; Shaw, Leslee J.; Hausleiter, Jörg

    2012-01-01

    Over the last few years, computed tomography (CT) has developed into a standard clinical test for a variety of cardiovascular conditions. The emergence of cardiovascular CT during a period of dramatic increase in radiation exposure to the population from medical procedures and heightened concern about the subsequent potential cancer risk has led to intense scrutiny of the radiation burden of this new technique. This has hastened the development and implementation of dose reduction tools and prompted closer monitoring of patient dose. In an effort to aid the cardiovascular CT community in incorporating patient-centered radiation dose optimization and monitoring strategies into standard practice, the Society of Cardiovascular Computed Tomography has produced a guideline document to review available data and provide recommendations regarding interpretation of radiation dose indices and predictors of risk, appropriate use of scanner acquisition modes and settings, development of algorithms for dose optimization, and establishment of procedures for dose monitoring. PMID:21723512

  11. A review of uncertainties in radiotherapy dose reconstruction and their impacts on dose-response relationships.

    PubMed

    Vũ Bezin, Jérémi; Allodji, Rodrigue S; Mège, Jean-Pierre; Beldjoudi, Guillaume; Saunier, Fleur; Chavaudra, Jean; Deutsch, Eric; de Vathaire, Florent; Bernier, Valérie; Carrie, Christian; Lefkopoulos, Dimitri; Diallo, Ibrahima

    2017-03-20

    Proper understanding of the risk of radiation-induced late effects for patients receiving external photon beam radiotherapy requires the determination of reliable dose-response relationships. Although significant efforts have been devoted to improving dose estimates for the study of late effects, the most often questioned explanatory variable is still the dose. In this work, based on a literature review, we provide an in-depth description of the radiotherapy dose reconstruction process for the study of late effects. In particular, we focus on the identification of the main sources of dose uncertainty involved in this process and summarise their impacts on the dose-response relationship for radiotherapy late effects. We provide a number of recommendations for making progress in estimating the uncertainties in current studies of radiotherapy late effects and reducing these uncertainties in future studies.

  12. Butaclamol in newly admitted chronic schizophrenic patients: a modified fixed-dose dose-range design.

    PubMed

    Clark, M L; Costiloe, J P; Wood, F; Paredes, A; Fulkerson, F G

    1977-11-01

    In a double-blind placebo controlled study of newly admitted chronic schizophrenics, an attempt was made to further evaluate the safety, acceptability, and effectiveness of BT in doses of 10, 20, and 40 mg. Significant dose related responses occurred on several behavioral variables by the first week of treatment. Maximum clinical response appeared to be at the 20-40 mg. dose level. Extrapyramidal signs occurred at all doses, but with greater severity at higher doses. Excessive daytime drowsiness occurred in all groups but with longer duration and greater intensity in the 20 mg. group. Rebound insomnia occurred after the abrupt withdrawal of BT at all dose levels suggesting the desirability of further study of its hypnotic properties.

  13. Strategy for stochastic dose-rate induced enhanced elimination of malignant tumour without dose escalation.

    PubMed

    Paul, Subhadip; Roy, Prasun Kumar

    2016-09-01

    The efficacy of radiation therapy, a primary modality of cancer treatment, depends in general upon the total radiation dose administered to the tumour during the course of therapy. Nevertheless, the delivered radiation also irradiates normal tissues and dose escalation procedure often increases the elimination of normal tissue as well. In this article, we have developed theoretical frameworks under the premise of linear-quadratic-linear (LQL) model using stochastic differential equation and Jensen's inequality for exploring the possibility of attending to the two therapeutic performance objectives in contraposition-increasing the elimination of prostate tumour cells and enhancing the relative sparing of normal tissue in fractionated radiation therapy, within a prescribed limit of total radiation dose. Our study predicts that stochastic temporal modulation in radiation dose-rate appreciably enhances prostate tumour cell elimination, without needing dose escalation in radiation therapy. However, constant higher dose-rate can also enhance the elimination of tumour cells. In this context, we have shown that the sparing of normal tissue with stochastic dose-rate is considerably more than the sparing of normal tissue with the equivalent constant higher dose-rate. Further, by contrasting the stochastic dose-rate effects under LQL and linear-quadratic (LQ) models, we have also shown that the LQ model over-estimates stochastic dose-rate effect in tumour and under-estimates the stochastic dose-rate effect in normal tissue. Our study indicates the possibility of utilizing stochastic modulation of radiation dose-rate for designing enhanced radiation therapy protocol for cancer.

  14. Detailed dose distribution prediction of Cf-252 brachytherapy source with boron loading dose enhancement.

    PubMed

    Ghassoun, J; Mostacci, D; Molinari, V; Jehouani, A

    2010-02-01

    The purpose of this work is to evaluate the dose rate distribution and to determine the boron effect on dose rate distribution for (252)Cf brachytherapy source. This study was carried out using a Monte Carlo simulation. To validate the Monte Carlo computer code, the dosimetric parameters were determined following the updated TG-43 formalism and compared with current literature data. The validated computer code was then applied to evaluate the neutron and photon dose distribution and to illustrate the boron loading effect.

  15. Dose-response-a challenge for allelopathy?

    PubMed

    Belz, Regina G; Hurle, Karl; Duke, Stephen O

    2005-04-01

    The response of an organism to a chemical depends, among other things, on the dose. Nonlinear dose-response relationships occur across a broad range of research fields, and are a well established tool to describe the basic mechanisms of phytotoxicity. The responses of plants to allelochemicals as biosynthesized phytotoxins, relate as well to nonlinearity and, thus, allelopathic effects can be adequately quantified by nonlinear mathematical modeling. The current paper applies the concept of nonlinearity to assorted aspects of allelopathy within several bioassays and reveals their analysis by nonlinear regression models. Procedures for a valid comparison of effective doses between different allelopathic interactions are presented for both, inhibitory and stimulatory effects. The dose-response applications measure and compare the responses produced by pure allelochemicals [scopoletin (7-hydroxy-6-methoxy-2H-1-benzopyran-2-one); DIBOA (2,4-dihydroxy-2H-1,4-benzoxaxin-3(4H)-one); BOA (benzoxazolin-2(3H)-one); MBOA (6-methoxy-benzoxazolin-2(3H)-one)], involved in allelopathy of grain crops, to demonstrate how some general principles of dose responses also relate to allelopathy. Hereupon, dose-response applications with living donor plants demonstrate the validity of these principles for density-dependent phytotoxicity of allelochemicals produced and released by living plants (Avena sativa L., Secale cereale L., Triticum L. spp.), and reveal the use of such experiments for initial considerations about basic principles of allelopathy. Results confirm that nonlinearity applies to allelopathy, and the study of allelopathic effects in dose-response experiments allows for new and challenging insights into allelopathic interactions.

  16. Low dose neutron late effects: Cataractogenesis

    SciTech Connect

    Worgul, B.V.

    1991-12-01

    The work is formulated to resolve the uncertainty regarding the relative biological effectiveness (RBE) of low dose neutron radiation. The study exploits the fact that cataractogenesis is sensitive to the inverse dose-rate effect as has been observed with heavy ions and was an endpoint considered in the follow-up of the A-bomb survivors. The neutron radiations were initiated at the Radiological Research Accelerator facility (RARAF) of the Nevis Laboratory of Columbia University. Four week old ({plus minus} 1 day) rats were divided into eight dose groups each receiving single or fractionated total doses of 0.2, 1.0, 5.0 and 25.0 cGy of monoenergetic 435 KeV neutrons. Special restraining jigs insured that the eye, at the midpoint of the lens, received the appropriate energy and dose with a relative error of {plus minus}5%. The fractionation regimen consisted of four exposures, each administered at three hour ({plus minus}) intervals. The neutron irradiated groups are being compared to rats irradiated with 250kVp X-rays in doses ranging from 0.5 to 7 Gy. The animals are being examined on a biweekly basis utilizing conventional slit-lamp biomicroscopy and the Scheimpflug Slit Lamp Imaging System (Zeiss). The follows-ups, entering their second year, will continue throughout the life-span of the animals. This is essential inasmuch as given the extremely low doses which are being utilized clinically detectable opacities were not anticipated until a significant fraction of the life span has lapsed. Current data support this contention. At this juncture cataracts in the irradiated groups are beginning to exceed control levels.

  17. Interplanetary crew doses and dose equivalents: variations among different bone marrow and skin sites

    NASA Astrophysics Data System (ADS)

    Hoff, J. L.; Townsend, L. W.; Zapp, E. N.

    2004-01-01

    Previously, calculations of bone marrow dose from the large solar particle event (SPE) of July 2000 were carried out using the BRYNTRN space radiation transport code and the computerized anatomical man (CAM) model. Results indicated that the dose for a bone marrow site in the mid-thigh might be twice as large as the dose for a site in the pelvis. These large variations may be significant for space radiation protection purposes, which traditionally use an average of many (typically 33) sites throughout the body. Other organs that cover large portions of the body, such as the skin, may also exhibit similar variations with doses differing from site to site. The skin traditionally uses an average of 32 sites throughout the body. Variations also occur from site to site among the dose equivalents, which may be important in determining stochastic effects. In this work, the magnitudes of dose and dose equivalent variations from site to site are investigated. The BRYNTRN and HZETRN transport codes and the CAM model are used to estimate bone marrow and skin doses and dose equivalents as a function of position in the body for several large solar particle events and annual galactic cosmic ray spectra from throughout the space era. These position-specific results are compared with the average values usually used for radiation protection purposes. Various thicknesses of aluminum shielding, representative of nominal spacecraft, are used in the analyses.

  18. Interplanetary Crew Doses and Dose Equivalents: Variations among Different Bone Marrow and Skin Sites

    NASA Astrophysics Data System (ADS)

    Hoff, J.; Townsend, L.; Zapp, E.

    Previously, calculations of bone marrow dose from the large solar particle event (SPE) of July 2000 were carried out using the BRYNTRN space radiation transport code and the Computerized Anatomical Man (CAM) model. Results indicated that the dose for a bone marrow site in the mid-thigh might be twice as large as the dose for a site in the pelvis. These large variations may be significant for space radiation protection purposes, which traditionally use an average of many (typically 33) sites throughout the body. Other organs that cover large portions of the body, such as the skin, may also exhibit similar variations with doses differing from site to site. The skin traditionally uses an average of 32 sites throughout the body. Variations also occur from site to site among the dose equivalents, which may be important in determining stochastic effects. In this work, the magnitudes of dose and dose equivalent variations from site to site are investigated. The BRYNTRN and HZETRN transport codes and the CAM model are used to estimate bone marrow and skin doses and dose equivalents as a function of position in the body for several large solar particle events and annual galactic cosmic ray (GCR) spectra from throughout the space era. These position-specific results are compared with the average values usually used for radiation protection purposes. Various thicknesses of aluminum shielding, representative of nominal spacecraft and SPE "storm shelter" designs, are used in the analyses.

  19. Enhanced Low Dose Rate Sensitivity at Ultra-Low Dose Rates

    NASA Technical Reports Server (NTRS)

    Chen, Dakai; Pease, Ronald; Forney, James; Carts, Martin; Phan, Anthony; Cox, Stephen; Kruckmeyer, Kriby; Burns, Sam; Albarian, Rafi; Holcombe, Bruce; Little, Bradley; Salzman, James; Chaumont, Geraldine; Duperray, Herve; Ouellet, Al; Buchner, Stephen; LaBel, Kenneth

    2011-01-01

    We have presented results of ultra-low dose rate irradiations (< or = 10 mrad(Si)/s) for a variety of radiation hardened and commercial linear bipolar devices. We observed low dose rate enhancement factors exceeding 1.5 in several parts. The worst case of dose rate enhancement resulted in functional failures, which occurred after 10 and 60 krad(Si), for devices irradiated at 0.5 and 10 mrad(Si)/s, respectively. Devices fabricated with radiation hardened processes and designs also displayed dose rate enhancement at below 10 mrad(Si)/s. Furthermore, the data indicated that these devices have not reached the damage saturation point. Therefore the degradation will likely continue to increase with increasing total dose, and the low dose rate enhancement will further magnify. The cases presented here, in addition to previous examples, illustrate the significance and pervasiveness of low dose rate enhancement at dose rates lower than 10 mrad(Si). These results present further challenges for radiation hardness assurance of bipolar linear circuits, and raise the question of whether the current standard test dose rate is conservative enough to bound degradations due to ELDRS.

  20. Differential dose contributions on total dose distribution of 125I brachytherapy source

    PubMed Central

    Camgöz, B.; Yeğin, G.; Kumru, M.N.

    2010-01-01

    This work provides an improvement of the approach using Monte Carlo simulation for the Amersham Model 6711 125I brachytherapy seed source, which is well known by many theoretical and experimental studies. The source which has simple geometry was researched with respect to criteria of AAPM Tg-43 Report. The approach offered by this study involves determination of differential dose contributions that come from virtual partitions of a massive radioactive element of the studied source to a total dose at analytical calculation point. Some brachytherapy seeds contain multi-radioactive elements so the dose at any point is a total of separate doses from each element. It is momentous to know well the angular and radial dose distributions around the source that is located in cancerous tissue for clinical treatments. Interior geometry of a source is effective on dose characteristics of a distribution. Dose information of inner geometrical structure of a brachytherapy source cannot be acquired by experimental methods because of limits of physical material and geometry in the healthy tissue, so Monte Carlo simulation is a required approach of the study. EGSnrc Monte Carlo simulation software was used. In the design of a simulation, the radioactive source was divided into 10 rings, partitioned but not separate from each other. All differential sources were simulated for dose calculation, and the shape of dose distribution was determined comparatively distribution of a single-complete source. In this work anisotropy function was examined also mathematically. PMID:24376927

  1. Equivalent dose and effective dose from stray radiation during passively scattered proton radiotherapy for prostate cancer

    NASA Astrophysics Data System (ADS)

    Fontenot, Jonas; Taddei, Phillip; Zheng, Yuanshui; Mirkovic, Dragan; Jordan, Thomas; Newhauser, Wayne

    2008-03-01

    Proton therapy reduces the integral therapeutic dose required for local control in prostate patients compared to intensity-modulated radiotherapy. One proposed benefit of this reduction is an associated decrease in the incidence of radiogenic secondary cancers. However, patients are also exposed to stray radiation during the course of treatment. The purpose of this study was to quantify the stray radiation dose received by patients during proton therapy for prostate cancer. Using a Monte Carlo model of a proton therapy nozzle and a computerized anthropomorphic phantom, we determined that the effective dose from stray radiation per therapeutic dose (E/D) for a typical prostate patient was approximately 5.5 mSv Gy-1. Sensitivity analysis revealed that E/D varied by ±30% over the interval of treatment parameter values used for proton therapy of the prostate. Equivalent doses per therapeutic dose (HT/D) in specific organs at risk were found to decrease with distance from the isocenter, with a maximum of 12 mSv Gy-1 in the organ closest to the treatment volume (bladder) and 1.9 mSv Gy-1 in the furthest (esophagus). Neutrons created in the nozzle predominated effective dose, though neutrons created in the patient contributed substantially to the equivalent dose in organs near the proton field. Photons contributed less than 15% to equivalent doses.

  2. Automated size-specific CT dose monitoring program: Assessing variability in CT dose

    SciTech Connect

    Christianson, Olav; Li Xiang; Frush, Donald; Samei, Ehsan

    2012-11-15

    Purpose: The potential health risks associated with low levels of ionizing radiation have created a movement in the radiology community to optimize computed tomography (CT) imaging protocols to use the lowest radiation dose possible without compromising the diagnostic usefulness of the images. Despite efforts to use appropriate and consistent radiation doses, studies suggest that a great deal of variability in radiation dose exists both within and between institutions for CT imaging. In this context, the authors have developed an automated size-specific radiation dose monitoring program for CT and used this program to assess variability in size-adjusted effective dose from CT imaging. Methods: The authors radiation dose monitoring program operates on an independent health insurance portability and accountability act compliant dosimetry server. Digital imaging and communication in medicine routing software is used to isolate dose report screen captures and scout images for all incoming CT studies. Effective dose conversion factors (k-factors) are determined based on the protocol and optical character recognition is used to extract the CT dose index and dose-length product. The patient's thickness is obtained by applying an adaptive thresholding algorithm to the scout images and is used to calculate the size-adjusted effective dose (ED{sub adj}). The radiation dose monitoring program was used to collect data on 6351 CT studies from three scanner models (GE Lightspeed Pro 16, GE Lightspeed VCT, and GE Definition CT750 HD) and two institutions over a one-month period and to analyze the variability in ED{sub adj} between scanner models and across institutions. Results: No significant difference was found between computer measurements of patient thickness and observer measurements (p= 0.17), and the average difference between the two methods was less than 4%. Applying the size correction resulted in ED{sub adj} that differed by up to 44% from effective dose estimates

  3. Computing effective dose in cardiac CT

    NASA Astrophysics Data System (ADS)

    Huda, Walter; Tipnis, Sameer; Sterzik, Alexander; Schoepf, U. Joseph

    2010-07-01

    We present a method of estimating effective doses in cardiac CT that accounts for selected techniques (kV mAs-1), anatomical location of the scan and patient size. A CT dosimetry spreadsheet (ImPACT CT Patient Dosimetry Calculator) was used to estimate effective doses (E) using ICRP 103 weighting factors for a 70 kg patient undergoing cardiac CT examinations. Using dose length product (DLP) for the same scans, we obtained values of E/DLP for three CT scanners used in cardiac imaging from two vendors. E/DLP ratios were obtained as a function of the anatomical location in the chest and for x-ray tube voltages ranging from 80 to 140 kV. We also computed the ratio of the average absorbed dose in a water cylinder modeling a patient weighing W kg to the corresponding average absorbed dose in a water cylinder equivalent to a 70 kg patient. The average E/DLP for a 16 cm cardiac heart CT scan was 26 µSv (mGy cm)-1, which is about 70% higher than the current E/DLP values used for chest CT scans (i.e. 14-17 µSv (mGy cm)-1). Our cardiac E/DLP ratios are higher because the cardiac region is ~30% more radiosensitive than the chest, and use of the ICRP 103 tissue weighting factors increases cardiac CT effective doses by ~30%. Increasing the x-ray tube voltage from 80 to 140 kV increases the E/DLP conversion factor for cardiac CT by 17%. For the same incident radiation at 120 kV, doses in 45 kg adults were ~22% higher than those in 70 kg adults, whereas doses in 120 kg adults were ~28% lower. Accurate estimates of the patient effective dose in cardiac CT should use ICRP 103 tissue weighting factors, and account for a choice of scan techniques (kV mAs-1), exposed scan region, as well as patient size.

  4. Computing proton dose to irregularly moving targets

    NASA Astrophysics Data System (ADS)

    Phillips, Justin; Gueorguiev, Gueorgui; Shackleford, James A.; Grassberger, Clemens; Dowdell, Stephen; Paganetti, Harald; Sharp, Gregory C.

    2014-08-01

    Purpose: While four-dimensional computed tomography (4DCT) and deformable registration can be used to assess the dose delivered to regularly moving targets, there are few methods available for irregularly moving targets. 4DCT captures an idealized waveform, but human respiration during treatment is characterized by gradual baseline shifts and other deviations from a periodic signal. This paper describes a method for computing the dose delivered to irregularly moving targets based on 1D or 3D waveforms captured at the time of delivery. Methods: The procedure uses CT or 4DCT images for dose calculation, and 1D or 3D respiratory waveforms of the target position at time of delivery. Dose volumes are converted from their Cartesian geometry into a beam-specific radiological depth space, parameterized in 2D by the beam aperture, and longitudinally by the radiological depth. In this new frame of reference, the proton doses are translated according to the motion found in the 1D or 3D trajectory. These translated dose volumes are weighted and summed, then transformed back into Cartesian space, yielding an estimate of the dose that includes the effect of the measured breathing motion. The method was validated using a synthetic lung phantom and a single representative patient CT. Simulated 4DCT was generated for the phantom with 2 cm peak-to-peak motion. Results: A passively-scattered proton treatment plan was generated using 6 mm and 5 mm smearing for the phantom and patient plans, respectively. The method was tested without motion, and with two simulated breathing signals: a 2 cm amplitude sinusoid, and a 2 cm amplitude sinusoid with 3 cm linear drift in the phantom. The tumor positions were equally weighted for the patient calculation. Motion-corrected dose was computed based on the mid-ventilation CT image in the phantom and the peak exhale position in the patient. Gamma evaluation was 97.8% without motion, 95.7% for 2 cm sinusoidal motion, 95.7% with 3 cm drift in the

  5. Computing Proton Dose to Irregularly Moving Targets

    PubMed Central

    Phillips, Justin; Gueorguiev, Gueorgui; Shackleford, James A.; Grassberger, Clemens; Dowdell, Stephen; Paganetti, Harald; Sharp, Gregory C.

    2014-01-01

    Purpose While four-dimensional computed tomography (4DCT) and deformable registration can be used to assess the dose delivered to regularly moving targets, there are few methods available for irregularly moving targets. 4DCT captures an idealized waveform, but human respiration during treatment is characterized by gradual baseline shifts and other deviations from a periodic signal. This paper describes a method for computing the dose delivered to irregularly moving targets based on 1D or 3D waveforms captured at the time of delivery. Methods The procedure uses CT or 4DCT images for dose calculation, and 1D or 3D respiratory waveforms of the target position at time of delivery. Dose volumes are converted from their Cartesian geometry into a beam-specific radiological depth space, parameterized in 2D by the beam aperture, and longitudinally by the radiological depth. In this new frame of reference, the proton doses are translated according to the motion found in the 1D or 3D trajectory. These translated dose volumes are weighted and summed, then transformed back into Cartesian space, yielding an estimate of the dose that includes the effect of the measured breathing motion. The method was validated using a synthetic lung phantom and a single representative patient CT. Simulated 4DCT was generated for the phantom with 2 cm peak-to-peak motion. Results A passively-scattered proton treatment plan was generated using 6 mm and 5 mm smearing for the phantom and patient plans, respectively. The method was tested without motion, and with two simulated breathing signals: a 2 cm amplitude sinusoid, and a 2 cm amplitude sinusoid with 3 cm linear drift in the phantom. The tumor positions were equally weighted for the patient calculation. Motion-corrected dose was computed based on the mid-ventilation CT image in the phantom and the peak exhale position in the patient. Gamma evaluation was 97.8% without motion, 95.7% for 2 cm sinusoidal motion, and 95.7% with 3 cm drift in the

  6. Doses metrics and patient age in CT.

    PubMed

    Huda, Walter; Tipnis, Sameer V

    2016-03-01

    The aim of this study was to investigate how effective dose and size-specific dose estimate (SSDE) change with patient age (size) for routine head and abdominal/pelvic CT examinations. Heads and abdomens of patients were modelled as a mass-equivalent cylinder of water corresponding to the patient 'effective diameter'. Head CT scans were performed at CTDIvol(S) of 40 mGy, and abdominal CT scans were performed at CTDIvol(L) of 10 mGy. Values of SSDE were obtained using conversion factors in AAPM Task Group Report 204. Age-specific scan lengths for head and abdominal CT scans obtained from the authors' clinical practice were used to estimate the dose-length product for each CT examination. Effective doses were calculated from previously published age- and sex-specific E/DLP conversion factors, based on ICRP 103 organ-weighting factors. For head CT examinations, the scan length increased from 15 cm in a newborn to 20 cm in adults, and for an abdominal/pelvic CT, the scan length increased from 20 cm in a newborn to 45 cm in adults. For head CT scans, SSDE ranged from 37.2 mGy in adults to 48.8 mGy in a newborn, an increase of 31 %. The corresponding head CT effective doses range from 1.4 mSv in adults to 5.2 mSv in a newborn, an increase of 270 %. For abdomen CT scans, SSDE ranged from 13.7 mGy in adults to 23.0 mGy in a newborn, an increase of 68 %. The corresponding abdominal CT effective doses ranged from 6.3 mSv in adults to 15.4 mSv in a newborn, an increase of 140 %. SSDE increases much less than effective dose in paediatric patients compared with adults because it does not account for scan length or scattered radiation. Size- and age-specific effective doses better quantify the total radiation received by patients in CT by explicitly accounting for all organ doses, as well as their relative radio sensitivity.

  7. Mammography-oncogenecity at low doses.

    PubMed

    Heyes, G J; Mill, A J; Charles, M W

    2009-06-01

    Controversy exists regarding the biological effectiveness of low energy x-rays used for mammography breast screening. Recent radiobiology studies have provided compelling evidence that these low energy x-rays may be 4.42 +/- 2.02 times more effective in causing mutational damage than higher energy x-rays. These data include a study involving in vitro irradiation of a human cell line using a mammography x-ray source and a high energy source which matches the spectrum of radiation observed in survivors from the Hiroshima atomic bomb. Current radiation risk estimates rely heavily on data from the atomic bomb survivors, and a direct comparison between the diagnostic energies used in the UK breast screening programme and those used for risk estimates can now be made. Evidence highlighting the increase in relative biological effectiveness (RBE) of mammography x-rays to a range of x-ray energies implies that the risks of radiation-induced breast cancers for mammography x-rays are potentially underestimated by a factor of four. A pooled analysis of three measurements gives a maximal RBE (for malignant transformation of human cells in vitro) of 4.02 +/- 0.72 for 29 kVp (peak accelerating voltage) x-rays compared to high energy electrons and higher energy x-rays. For the majority of women in the UK NHS breast screening programme, it is shown that the benefit safely exceeds the risk of possible cancer induction even when this higher biological effectiveness factor is applied. The risk/benefit analysis, however, implies the need for caution for women screened under the age of 50, and particularly for those with a family history (and therefore a likely genetic susceptibility) of breast cancer. In vitro radiobiological data are generally acquired at high doses, and there are different extrapolation mechanisms to the low doses seen clinically. Recent low dose in vitro data have indicated a potential suppressive effect at very low dose rates and doses. Whilst mammography is a low

  8. Low dose neutron late effects: Cataractogenesis

    SciTech Connect

    Worgul, B.V.

    1991-04-01

    The work is formulated to resolve the uncertainty regarding the relative biological effectiveness. The endpoint which is being utilized is cataractogenesis. The advantages conferred by this system stems primarily from the non-invasive longitudinal analysis which it allows. It also exploits a well defined system and one which has demonstrated sensitivity to the inverse dose rate effect observed with heavy ions. Four week old rats were divided into 8 dose groups which received single or fractionated total doses of .2, 1.0, 5.0 and 25 cGy of monoenergetic 435 keV neutrons. Special restraining jigs were devised to insure that the eye at the midpoint of the lens received the appropriate energy and dose with a relative error of {plus minus} 5%. The fractionated regimen consisted of four exposures, each administered at 3 hour intervals. The reference radiations, 250 kVp X-rays, were administered in the same fashion but in doses ranging from .5 to 6.0 Gy. The animals are examined on a bi-weekly basis utilizing conventional slit-lamp biomicroscopy and the Scheimpflug Slit-lamp Imaging System. The follow-ups will continue throughout the lifespan of the animals. When opacification begins full documentation will involve the Zeiss imaging system and Oxford retroillumination photography. The processing routinely employs the Merriam/Focht scoring system for cross-referencing with previous cataract studies and establish cataractogenecity using a proven scoring method.

  9. Antenatal steroids: can we optimize the dose?

    PubMed Central

    Romejko-Wolniewicz, Ewa; Teliga-Czajkowska, Justyna; Czajkowski, Krzysztof

    2014-01-01

    Purpose of review The beneficial effects of antenatal steroids in women at risk of preterm birth are evident. A dose of 24 mg appears sufficient, but there are insufficient data to recommend betamethasone or dexamethasone, a single steroid dose, the optimal interval between doses and repeated courses, the gestational age at which treatment is beneficial and the long-term effects of steroid treatment. This review addresses these aspects of antenatal steroid treatment. Recent findings Although the 12-h and 24-h dosing intervals are equivalent with respect to prevention of respiratory distress syndrome, the former enables the completion of treatment in 50% more neonates delivered prematurely. Reducing the single steroid dose in patients at risk for premature birth reduces the associated maternal side effects. An inverse relationship has been demonstrated between the number of corticosteroid courses and foetal growth. The reduced size of exposed foetuses has been attributed to birth at earlier gestational ages and decreased foetal growth. Evidence suggests that antenatal exposure to synthetic glucocorticoids in term-born children has long-lasting effects, which may have important implications in the recommendation of steroids before elective caesarean at term. Summary The short-term and long-term effects of the dosage regimen on the pregnant mother and foetus remain unclear. PMID:24463225

  10. Transcriptional effects of gene dose reduction

    PubMed Central

    2014-01-01

    Large-scale gene dose reductions usually lead to abnormal phenotypes or death. However, male mammals, Drosophila, and Caenorhabditis elegans have only one X chromosome and thus can be considered as monosomic for a major chromosome. Despite the deleterious effects brought about by such gene dose reduction in the case of an autosome, X chromosome monosomy in males is natural and innocuous. This is because of the nearly full transcriptional compensation for X chromosome genes in males, as opposed to no or partial transcriptional compensation for autosomal one-dose genes arising due to deletions. Buffering, the passive absorption of disturbance due to enzyme kinetics, and feedback responses triggered by expression change contribute to partial compensation. Feed-forward mechanisms, which are active responses to genes being located on the X, rather than actual gene dose are important contributors to full X chromosome compensation. In the last decade, high-throughput techniques have provided us with the tools to effectively and quantitatively measure the small-fold transcriptional effects of dose reduction. This is leading to a better understanding of compensatory mechanisms. PMID:24581086

  11. Agriculture-related radiation dose calculations

    SciTech Connect

    Furr, J.M.; Mayberry, J.J.; Waite, D.A.

    1987-10-01

    Estimates of radiation dose to the public must be made at each stage in the identification and qualification process leading to siting a high-level nuclear waste repository. Specifically considering the ingestion pathway, this paper examines questions of reliability and adequacy of dose calculations in relation to five stages of data availability (geologic province, region, area, location, and mass balance) and three methods of calculation (population, population/food production, and food production driven). Calculations were done using the model PABLM with data for the Permian and Palo Duro Basins and the Deaf Smith County area. Extra effort expended in gathering agricultural data at succeeding environmental characterization levels does not appear justified, since dose estimates do not differ greatly; that effort would be better spent determining usage of food types that contribute most to the total dose; and that consumption rate and the air dispersion factor are critical to assessment of radiation dose via the ingestion pathway. 17 refs., 9 figs., 32 tabs.

  12. DRY TRANSFER FACILITY WORKER DOSE ASSESSMENT

    SciTech Connect

    J.S. Tang

    2004-09-23

    The purpose of this calculation is to estimate radiation doses received by personnel working in the Dry Transfer Facility No.1 (DTF-1) performing operations to receive transportation casks, transfer wastes, prepare waste packages, and ship out loaded waste packages and empty casks. Doses received by workers due to maintenance operations are also included in this revision. The specific scope of work contained in this calculation covers both collective doses and individual worker group doses on an annual basis, and includes the contributions due to external and internal radiation from normal operation, excluding the remediation area of the building. The results of this calculation will be used to support the design of the DTF-1 and to provide occupational dose estimates for the License Application. The calculations contained in this document were developed by Environmental and Nuclear Engineering of the Design and Engineering Organization and are intended solely for the use of the Design and Engineering Organization in its work regarding facility operation. Yucca Mountain Project personnel from the Environmental and Nuclear Engineering should be consulted before use of the calculations for purposes other than those stated herein or use by individuals other than authorized personnel in the Environmental and Nuclear Engineering.

  13. NOTE: Validation of blood product irradiation doses

    NASA Astrophysics Data System (ADS)

    Cheung, T.; Butson, M.; Yu, P. K. N.

    2001-10-01

    Dosimetry of blood irradiation using x-ray beams on a medical linear accelerator has been studied to evaluate the accuracy of a diode detector and the delivery achievable. Variations in applied doses for a standard dual field 6 MV x-ray are measured with a commercial diode detector. Results show that the diode detector measured applied in vitro doses to within 5.4% (2 standard deviations (2 SD)) of those calculated with a collapsed-cone convolution treatment-planning computer for a sample of 100 blood irradiations. Experiments involving the packing procedure of the blood products in the blood box were performed. It was found that a large proportion of the variation in the predicted and measured dose was due to the compacting of the scatter material at the base of the blood box (over a 6 month period) producing a higher density below the blood than originally scanned; hence an overall reduction of delivered dose was observed. The diode measurements (which provide an immediate printout) are recommended in conjunction with a film dosimeter such as radiochromic film, which still provides a back-up dose monitor and a visual reminder that the blood has been irradiated. It is also recommended that the blood box be completely evacuated of all scatter material every month and the base be carefully repacked to provide uniform scatter material.

  14. Validation of blood product irradiation doses.

    PubMed

    Cheung, T; Butson, M; Yu, P K

    2001-10-01

    Dosimetry of blood irradiation using x-ray beams on a medical linear accelerator has been studied to evaluate the accuracy of a diode detector and the delivery achievable. Variations in applied doses for a standard dual field 6 MV x-ray are measured with a commercial diode detector. Results show that the diode detector measured applied in vitro doses to within 5.4% (2 standard deviations (2 SD)) of those calculated with a collapsed-cone convolution treatment-planning computer for a sample of 100 blood irradiations. Experiments involving the packing procedure of the blood products in the blood box were performed. It was found that a large proportion of the variation in the predicted and measured dose was due to the compacting of the scatter material at the base of the blood box (over a 6 month period) producing a higher density below the blood than originally scanned; hence an overall reduction of delivered dose was observed. The diode measurements (which provide an immediate printout) are recommended in conjunction with a film dosimeter such as radiochromic film, which still provides a back-up dose monitor and a visual reminder that the blood has been irradiated. It is also recommended that the blood box be completely evacuated of all scatter material every month and the base be carefully repacked to provide uniform scatter material.

  15. Genomic Instability Induced by Low Dose Irradiation

    SciTech Connect

    Evans, Helen H. Sedwick, David W. Veigl, Martina L.

    2006-07-15

    The goal of this project was to determine if genomic instability could be initiated by poorly repaired DNA damage induced by low doses of ionizing radiation leading to a mutator phenotype. Human cells were irradiated, then transfected with an unirradiated reporter gene at various times AFTER exposure. The vector carried an inactive GFP gene that fluoresced when the gene was activated by a delayed mutation. Fluorescent cells were measured in the interval of 50 hours to four days after transfection. The results showed that delayed mutations occurred in these cells after exposure to relatively low doses (0.3-1.0 Gy) of low or high ionizing radiation, as well as after treatment with hyrodgen peroxide (30-100 micromolar). The occurrence was both dose and time dependent, often decreasing at higher doses and later times. No marked difference was observed between the response of mis-match repair-proficient and -deficient cell lines. Although the results were quite reproducible within single experiments, difficulties were observed from experiment to experiment. Different reagents and assays were tested, but no improvement resulted. We concluded that this method is not sufficiently robust or consisent to be useful in the assay of the induction of genomic instability by low doses of radiation, at least in these cell lines under our conditions.

  16. Hanford Environmental Dose Reconstruction Project. Monthly report

    SciTech Connect

    Finch, S. M.; McMakin, A. H.

    1991-09-01

    The objective of the Hanford Environmental Dose Reconstruction Project is to estimate the radiation dose that individuals and populations could have received from nuclear operations at Hanford since 1944. The project is divided into five technical tasks. These tasks correspond to the path radionuclides followed, from release to impact on humans (i.e., dose estimates). The Source Terms Task develops estimates of radioactive emissions from Hanford facilities since 1944. The Environmental Transport Task reconstructs the movements of radioactive particles from the areas of release to populations. The Environmental Monitoring Data Task assemblies, evaluates and reports historical environmental monitoring data. The Demographics, Agriculture and Food Habits Task develops the data needed to identify the populations that could have been affected by the releases. The Environmental Pathways and Dose Estimates Task used the information derived from the other Tasks to estimate the radiation doses individuals could have received from Hanford radiation. This document lists the progress on this project as of September 1991. 3 figs., 2 tabs.

  17. Cervix cancer brachytherapy: high dose rate.

    PubMed

    Miglierini, P; Malhaire, J-P; Goasduff, G; Miranda, O; Pradier, O

    2014-10-01

    Cervical cancer, although less common in industrialized countries, is the fourth most common cancer affecting women worldwide and the fourth leading cause of cancer death. In developing countries, these cancers are often discovered at a later stage in the form of locally advanced tumour with a poor prognosis. Depending on the stage of the disease, treatment is mainly based on a chemoradiotherapy followed by uterovaginal brachytherapy ending by a potential remaining tumour surgery or in principle for some teams. The role of irradiation is crucial to ensure a better local control. It has been shown that the more the delivered dose is important, the better the local results are. In order to preserve the maximum of organs at risk and to allow this dose escalation, brachytherapy (intracavitary and/or interstitial) has been progressively introduced. Its evolution and its progressive improvement have led to the development of high dose rate brachytherapy, the advantages of which are especially based on the possibility of outpatient treatment while maintaining the effectiveness of other brachytherapy forms (i.e., low dose rate or pulsed dose rate). Numerous innovations have also been completed in the field of imaging, leading to a progress in treatment planning systems by switching from two-dimensional form to a three-dimensional one. Image-guided brachytherapy allows more precise target volume delineation as well as an optimized dosimetry permitting a better coverage of target volumes.

  18. Fetal radiation dose in computed tomography.

    PubMed

    Kelaranta, Anna; Kaasalainen, Touko; Seuri, Raija; Toroi, Paula; Kortesniemi, Mika

    2015-07-01

    The connection between recorded volumetric CT dose index (CTDI vol) and determined mean fetal dose (Df) was examined from metal-oxide-semiconductor field-effect transistor dose measurements on an anthropomorphic female phantom in four stages of pregnancy in a 64-slice CT scanner. Automated tube current modulation kept the mean Df fairly constant through all pregnancy stages in trauma (4.4-4.9 mGy) and abdomino-pelvic (2.1-2.4 mGy) protocols. In pulmonary angiography protocol, the mean Df increased exponentially as the distance from the end of the scan range decreased (0.01-0.09 mGy). For trauma protocol, the relative mean Df as a function of gestational age were in the range 0.80-0.97 compared with the mean CTDI vol. For abdomino-pelvic protocol, the relative mean Df was 0.57-0.79 and for pulmonary angiography protocol, 0.01-0.05 compared with the mean CTDI vol, respectively. In conclusion, if the fetus is in the primary beam, the CTDI vol can be used as an upper estimate of the fetal dose. If the fetus is not in the primary beam, the fetal dose can be estimated by considering also the distance of the fetus from the scan range.

  19. Dose equivalence for high-dose-rate to low-dose-rate intracavitary irradiation in the treatment of cancer of the uterine cervix

    SciTech Connect

    Akine, Y.; Tokita, N.; Ogino, T.; Kajiura, Y.; Tsukiyama, I.; Egawa, S. )

    1990-12-01

    By comparing the incidence of major radiation injury, we estimated doses clinically equivalent for high-dose-rate (HDR) to conventional low-dose-rate (LDR) intracavitary irradiation in patients with Stages IIb and IIIb cancer of the uterine cervix. We reviewed a total of 300 patients who were treated with external beam therapy to the pelvis (50 Gy in 5 weeks) followed either by low-dose-rate (253 patients) or high-dose-rate (47 patients) intracavitary treatment. The high-dose-rate intracavitary treatment was given 5 Gy per session to point A, 4 fractions in 2 weeks, with a total dose of 20 Gy. The low-dose-rate treatment was given with one or two application(s) delivering 11-52 Gy to the point A. The local control rates were similar in both groups. The incidence of major radiation injury requiring surgical intervention were 5.1% (13/253) and 4.3% (2/47) for low-dose-rate and high-dose-rate groups, respectively. The 4.3% incidence corresponded to 29.8 Gy with low-dose-rate irradiation, thus, it was concluded that the clinically equivalent dose for high-dose-rate irradiation was approximately 2/3 (20/29.8) of the dose used in low-dose-rate therapy.

  20. Dose finding when the target dose is on a plateau of a dose-response curve: comparison of fully sequential designs.

    PubMed

    Ivanova, Anastasia; Xiao, Changfu

    2013-01-01

    Consider the problem of estimating a dose with a certain response rate. Many multistage dose-finding designs for this problem were originally developed for oncology studies where the mean dose-response is strictly increasing in dose. In non-oncology phase II dose-finding studies, the dose-response curve often plateaus in the range of interest, and there are several doses with the mean response equal to the target. In this case, it is usually of interest to find the lowest of these doses because higher doses might have higher adverse event rates. It is often desirable to compare the response rate at the estimated target dose with a placebo and/or active control. We investigate which of the several known dose-finding methods developed for oncology phase I trials is the most suitable when the dose-response curve plateaus. Some of the designs tend to spread the allocation among the doses on the plateau. Others, such as the continual reassessment method and the t-statistic design, concentrate allocation at one of the doses with the t-statistic design selecting the lowest dose on the plateau more frequently.

  1. Evaluation of image and dose according to I-dose technique when performing a CT scan

    NASA Astrophysics Data System (ADS)

    Ryu, S. W.; Lee, H. K.; Cho, J. H.

    2015-06-01

    In this study, we applied the iterative reconstruction technique to improve image quality (I-dose) and evaluated its usability by analyzing the quality of the resulting image and evaluating the dose. To perform the scans, we fixed the uniform module (CTP 486's section) 4 on the table of the computed tomography (CT) device with the American association of physicists in medicine (AAPM) phantom and located it in the center where the X-rays could be generated by using a razor beam. Then, we set up the conditions of 120 kilovoltage peak (kVp), 150 milliampere second (mAs), collimation 4 × 0.625 mm, and a standard YA (Y-Sharp) filter. Next, we formed two groups: Group A in which I-dose was not applied and Group B in which I-dose was applied. According to the rod in the middle, after fixing the location of (A) at 12 o'clock, (B) at 3 o'clock, (C) at 6 o'clock, and (D) at 9 o'clock to evaluate the image quality, the CT number was measured and the noise level was analyzed. Using the AAPM phantom with doses of 50, 100, 200, 250, and 300 mAs by 80, 100, and 120 kVp, a dose analysis was performed. After scanning, the CT numbers and noise level were measured 20 times as a function of the I-dose levels (1-7). After applying I-dose at 6, 9, 12, and 3 o'clock, when a higher I-dose was applied, a lower noise level was measured. As a result, it was found that when applying I-dose to the AAPM phantom, the higher the level of I-dose, the lower the level of noise. When applying I-dose, the dose can be reduced by 60%. When I-dose is applied when taking CT scans in a clinical study, it is possible to lower the dose and lower the noise level.

  2. High Dose versus Low Dose Intravenous Pantoprazole in Bleeding Peptic Ulcer: A Randomized Clinical Trial

    PubMed Central

    Masjedizadeh, Abdol Rahim; Hajiani, Eskandar; Alavinejad, Pezhman; Hashemi, Seyed Jalal; Shayesteh, Ali Akbar; Jamshidian, Noordin

    2014-01-01

    BACKGROUND The appropriate dose of proton pump inhibitors for treatment of patients with upper (GI) bleeding remains controversial. This study compares high-dose versus low-dose intravenous proton pump inhibitor (PPI) infusion for prevention of GI bleeding complications. METHODS A total of 166 patients with bleeding peptic ulcers underwent therapeutic endoscopy using concomitant therapy by argon plasma coagulation (APC) and diluted epinephrine injection. Patients were randomly divided into two groups: high-dose pantoprazole (80 mg bolus, 8 mg per hour) and low-dose pantoprazole (40 mg bolus, 4 mg per hour) infused for three days. Initial outcomes were rebleeding, need for surgery, hemoglobin drop more than two units, and hospitalization for more than five days. Secondary outcome included mortality rate. RESULTS Overall, 166 patients (83 patients per group) enrolled in the study. The average age of patients in the high-dose group was 59.5±15.6 years and 52.3±13.3 years in the low-dose group (p=0.58). Males comprised 69.7% of patients. In the high-dose group, the mean number of units of transfused blood was 3.3±1.71 and in the low-dose group, it was 2.82±1.73 (p=0.50). There were 36 (43.37%) patients in the high-dose group and 40 (48.19%) in the low-dose group who were hospitalized for more than 5 days (p=0.53). Rebleeding was observed in 27 (32.53%) patients in the high-dose group and in 21 (25.30%) in the low-dose group (p=0.30). There were no significant differences observed in drop in hemoglobin of more than two units (p=0.15), mortality (p=0.99) and surgery (p=0.75) between the two groups. CONCLUSION For controlling peptic ulcer bleeding, there is no difference between high dose and low dose pantoprazole infusion. PMID:25093061

  3. The Role of Age on Dose Limiting Toxicities (DLTs) in Phase I Dose-escalation Trials

    PubMed Central

    Schwandt, A; Harris, P. J.; Hunsberger, S.; Deleporte, A.; Smith, G. L.; Vulih, D.; Anderson, B. D.; Ivy, S. P.

    2016-01-01

    Purpose Elderly oncology patients are not enrolled in early phase trials in proportion to the numbers of geriatric patients with cancer. There may be concern that elderly patients will not tolerate investigational agents as well as younger patients resulting in a disproportionate number of dose-limiting toxicities (DLTs). Recent single-institution studies provide conflicting data on the relationship between age and DLT. Experimental Design We retrospectively reviewed data about patients treated on single-agent, dose-escalation, phase I clinical trials sponsored by the Cancer Therapy Evaluation Program (CTEP) of the National Cancer Institute. Patients’ dose levels were described as percentage of maximum tolerated dose (%MTD), the highest dose level at which <33% of patients had a DLT, or recommended phase II dose (RP2D). Mixed-effect logistic regression models were used to analyze relationships between the probability of a DLT and age and other explanatory variables. Results Increasing dose, increasing age, and worsening performance status (PS) were significantly related to an increased probability of a DLT in this model (p<0.05). There was no association between dose level administered and age (p=0.57). Conclusions This analysis of phase I dose-escalation trials involving over 500 patients older than 70 years of age, is the largest reported. As age and dose level increased and PS worsened, the probability of a DLT increased. While increasing age was associated with occurrence of DLT, this risk remained within accepted thresholds of risk for phase I trials. There was no evidence of age bias on enrollment of patients on low or high dose levels. PMID:25028396

  4. VirtualDose: a software for reporting organ doses from CT for adult and pediatric patients.

    PubMed

    Ding, Aiping; Gao, Yiming; Liu, Haikuan; Caracappa, Peter F; Long, Daniel J; Bolch, Wesley E; Liu, Bob; Xu, X George

    2015-07-21

    This paper describes the development and testing of VirtualDose--a software for reporting organ doses for adult and pediatric patients who undergo x-ray computed tomography (CT) examinations. The software is based on a comprehensive database of organ doses derived from Monte Carlo (MC) simulations involving a library of 25 anatomically realistic phantoms that represent patients of different ages, body sizes, body masses, and pregnant stages. Models of GE Lightspeed Pro 16 and Siemens SOMATOM Sensation 16 scanners were carefully validated for use in MC dose calculations. The software framework is designed with the 'software as a service (SaaS)' delivery concept under which multiple clients can access the web-based interface simultaneously from any computer without having to install software locally. The RESTful web service API also allows a third-party picture archiving and communication system software package to seamlessly integrate with VirtualDose's functions. Software testing showed that VirtualDose was compatible with numerous operating systems including Windows, Linux, Apple OS X, and mobile and portable devices. The organ doses from VirtualDose were compared against those reported by CT-Expo and ImPACT-two dosimetry tools that were based on the stylized pediatric and adult patient models that were known to be anatomically simple. The organ doses reported by VirtualDose differed from those reported by CT-Expo and ImPACT by as much as 300% in some of the patient models. These results confirm the conclusion from past studies that differences in anatomical realism offered by stylized and voxel phantoms have caused significant discrepancies in CT dose estimations.

  5. On effective dose for radiotherapy based on doses to nontarget organs and tissues

    SciTech Connect

    Uselmann, Adam J. Thomadsen, Bruce R.

    2015-02-15

    Purpose: The National Council for Radiation Protection and Measurement (NCRP) published estimates for the collective population dose and the mean effective dose to the population of the United States from medical imaging procedures for 1980/1982 and for 2006. The earlier report ignored the effective dose from radiotherapy and the latter gave a cursory discussion of the topic but again did not include it in the population exposure for various reasons. This paper explains the methodology used to calculate the effective dose in due to radiotherapy procedures in the latter NCRP report and revises the values based on more detailed modeling. Methods: This study calculated the dose to nontarget organs from radiotherapy for reference populations using CT images and published peripheral dose data. Results: Using International Commission on Radiological Protection (ICRP) 60 weighting factors, the total effective dose to nontarget organs in radiotherapy patients is estimated as 298 ± 194 mSv per patient, while the U.S. population effective dose is 0.939 ± 0.610 mSv per person, with a collective dose of 283 000 ± 184 000 person Sv per year. Using ICRP 103 weighting factors, the effective dose is 281 ± 183 mSv per patient, 0.887 ± 0.577 mSv per person in the U.S., and 268 000 ± 174 000 person Sv per year. The uncertainty in the calculations is largely governed by variations in patient size, which was accounted for by considering a range of patient sizes and taking the average treatment site to nontarget organ distance. Conclusions: The methods used to estimate the effective doses from radiotherapy used in NCRP Report No. 160 have been explained and the values updated.

  6. Validation of the photon dose calculation model in the VARSKIN 4 skin dose computer code.

    PubMed

    Sherbini, Sami; Decicco, Joseph; Struckmeyer, Richard; Saba, Mohammad; Bush-Goddard, Stephanie

    2012-12-01

    An updated version of the skin dose computer code VARSKIN, namely VARSKIN 4, was examined to determine the accuracy of the photon model in calculating dose rates with different combinations of source geometry and radionuclides. The reference data for this validation were obtained by means of Monte Carlo transport calculations using MCNP5. The geometries tested included the zero volume sources point and disc, as well as the volume sources sphere and cylinder. Three geometries were tested using source directly on the skin, source off the skin with an absorber material between source and skin, and source off the skin with only an air gap between source and skin. The results of these calculations showed that the non-volume sources produced dose rates that were in very good agreement with the Monte Carlo calculations, but the volume sources resulted in overestimates of the dose rates compared with the Monte Carlo results by factors that ranged up to about 2.5. The results for the air gap showed poor agreement with Monte Carlo for all source geometries, with the dose rates overestimated in all cases. The conclusion was that, for situations where the beta dose is dominant, these results are of little significance because the photon dose in such cases is generally a very small fraction of the total dose. For situations in which the photon dose is dominant, use of the point or disc geometries should be adequate in most cases except those in which the dose approaches or exceeds an applicable limit. Such situations will often require a more accurate dose assessment and may require the use of methods such as Monte Carlo transport calculations.

  7. Photon dose calculation based on electron multiple-scattering theory: primary dose deposition kernels.

    PubMed

    Wang, L; Jette, D

    1999-08-01

    The transport of the secondary electrons resulting from high-energy photon interactions is essential to energy redistribution and deposition. In order to develop an accurate dose-calculation algorithm for high-energy photons, which can predict the dose distribution in inhomogeneous media and at the beam edges, we have investigated the feasibility of applying electron transport theory [Jette, Med. Phys. 15, 123 (1988)] to photon dose calculation. In particular, the transport of and energy deposition by Compton electron and electrons and positrons resulting from pair production were studied. The primary photons are treated as the source of the secondary electrons and positrons, which are transported through the irradiated medium using Gaussian multiple-scattering theory [Jette, Med. Phys. 15, 123 (1988)]. The initial angular and kinetic energy distribution(s) of the secondary electrons (and positrons) emanating from the photon interactions are incorporated into the transport. Due to different mechanisms of creation and cross-section functions, the transport of and the energy deposition by the electrons released in these two processes are studied and modeled separately based on first principles. In this article, we focus on determining the dose distribution for an individual interaction site. We define the Compton dose deposition kernel (CDK) or the pair-production dose deposition kernel (PDK) as the dose distribution relative to the point of interaction, per unit interaction density, for a monoenergetic photon beam in an infinite homogeneous medium of unit density. The validity of this analytic modeling of dose deposition was evaluated through EGS4 Monte Carlo simulation. Quantitative agreement between these two calculations of the dose distribution and the average energy deposited per interaction was achieved. Our results demonstrate the applicability of the electron dose-calculation method to photon dose calculation.

  8. Extended range radiation dose-rate monitor

    DOEpatents

    Valentine, Kenneth H.

    1988-01-01

    An extended range dose-rate monitor is provided which utilizes the pulse pileup phenomenon that occurs in conventional counting systems to alter the dynamic response of the system to extend the dose-rate counting range. The current pulses from a solid-state detector generated by radiation events are amplified and shaped prior to applying the pulses to the input of a comparator. The comparator generates one logic pulse for each input pulse which exceeds the comparator reference threshold. These pulses are integrated and applied to a meter calibrated to indicate the measured dose-rate in response to the integrator output. A portion of the output signal from the integrator is fed back to vary the comparator reference threshold in proportion to the output count rate to extend the sensitive dynamic detection range by delaying the asymptotic approach of the integrator output toward full scale as measured by the meter.

  9. Vocal dose in teachers: correlation with dysphonia.

    PubMed

    Gama, Ana Cristina Côrtes; Santos, Juliana Nunes; Pedra, Elisângela de Fátima Pereira; Rabelo, Alessandra Terra Vasconcelos; Magalhães, Max de Castro; Casas, Estevam Barbosa de Las

    2016-04-01

    Teachers are professionals with high prevalence of dysphonia, whose main risk factors are the large work hours in classrooms with the presence of background noise. The purpose of the study was to calculate the phonation time and the cycle dose of teachers with dysphonia and teachers without voice disorders during the class. There were two groups analyzed: five teachers with functional dysphonia were the first group and five teachers without voice disorders were the second group. For the data was used the VoxLog® dosimeter and the parameters were: intensity; fundamental frequency; phonation time and cycle dose. The statistical analysis used ANOVA, Student's T-test, and Kruskal-Wallis test. Dysphonic teachers showed major values of phonation time and cycle dose compared with teachers without voice disorders. The dysphonia is related to extended period of speech time and greater exposure of the tissue of the vocal fold to phonotrauma.

  10. Historical river flow rates for dose calculations

    SciTech Connect

    Carlton, W.H.

    1991-06-10

    Annual average river flow rates are required input to the LADTAP Computer Code for calculating offsite doses from liquid releases of radioactive materials to the Savannah River. The source of information on annual river flow rates used in dose calculations varies, depending on whether calculations are for retrospective releases or prospective releases. Examples of these types of releases are: Retrospective - releases from routine operations (annual environmental reports) and short term release incidents that have occurred. Prospective - releases that might be expected in the future from routine or abnormal operation of existing or new facilities (EIS`s, EID`S, SAR`S, etc.). This memorandum provides historical flow rates at the downstream gauging station at Highway 301 for use in retrospective dose calculations and derives flow rate data for the Beaufort-Jasper and Port Wentworth water treatment plants.

  11. Subantimicrobial dose doxycycline for acne and rosacea.

    PubMed

    Bikowski, Joseph B

    2003-01-01

    Acne vulgaris and rosacea present therapeutic challenges due to their chronicity, potential for disfigurement, and psychosocial impact. Although pathophysiologically distinct, both conditions have major inflammatory components. Consequently, topical and systemic antimicrobial agents are routinely prescribed for extended periods. Emergence of resistant strains of Propionibacterium acnes, adverse events, and compliance issues associated with chronic systemic tetracycline use have led to new treatment approaches. At subantimicrobial doses, tetracyclines reduce inflammation via anticollagenolytic, antimatrix-degrading metalloproteinase, and cytokine down-regulating properties. Subantimicrobial dose (SD) doxycycline (Periostat 20 mg) has clinical utility in periodontitis and has been investigated in a double-blind, placebo-controlled trial in the treatment of moderate facial acne as well as in an open label study in the treatment of rosacea. The results of subantimicrobial dose doxycycline treatment in early trials support its benefits and further investigation in acne and rosacea.

  12. Health benefits from low-dose irradiation

    SciTech Connect

    Luckey, T.D.

    1996-12-31

    Whole-body exposures of mice and humans show no harm from low doses of ionizing radiation. Forty reports show statistically significant, p < 0.01, beneficial effects when cancer and total mortality rates were examined in mice. In vitro experiments indicate that radiogenic metabolism, adaptive repair mechanisms, such as DNA repair enzymes, and the essential nature of ionizing radiation are responsible for part of this activity. However, overwhelming evidence shows that low-dose irradiation increases immune competence. Such data negate the linear concept, which has no reliable whole-animal data to support it in the low-dose range. Cell culture data are not pertinent; such cells do not have a complete immune system.

  13. Dose Estimation in Pediatric Nuclear Medicine.

    PubMed

    Fahey, Frederic H; Goodkind, Alison B; Plyku, Donika; Khamwan, Kitiwat; O'Reilly, Shannon E; Cao, Xinhua; Frey, Eric C; Li, Ye; Bolch, Wesley E; Sgouros, George; Treves, S Ted

    2017-03-01

    The practice of nuclear medicine in children is well established for imaging practically all physiologic systems but particularly in the fields of oncology, neurology, urology, and orthopedics. Pediatric nuclear medicine yields images of physiologic and molecular processes that can provide essential diagnostic information to the clinician. However, nuclear medicine involves the administration of radiopharmaceuticals that expose the patient to ionizing radiation and children are thought to be at a higher risk for adverse effects from radiation exposure than adults. Therefore it may be considered prudent to take extra care to optimize the radiation dose associated with pediatric nuclear medicine. This requires a solid understanding of the dosimetry associated with the administration of radiopharmaceuticals in children. Models for estimating the internal radiation dose from radiopharmaceuticals have been developed by the Medical Internal Radiation Dosimetry Committee of the Society of Nuclear Medicine and Molecular Imaging and other groups. But to use these models accurately in children, better pharmacokinetic data for the radiopharmaceuticals and anatomical models specifically for children need to be developed. The use of CT in the context of hybrid imaging has also increased significantly in the past 15 years, and thus CT dosimetry as it applies to children needs to be better understood. The concept of effective dose has been used to compare different practices involving radiation on a dosimetric level, but this approach may not be appropriate when applied to a population of children of different ages as the radiosensitivity weights utilized in the calculation of effective dose are not specific to children and may vary as a function of age on an organ-by-organ bias. As these gaps in knowledge of dosimetry and radiation risk as they apply to children are filled, more accurate models can be developed that allow for better approaches to dose optimization. In turn, this

  14. Dose prescription in boron neutron capture therapy

    SciTech Connect

    Gupta, N.M.S.; Gahbauer, R.A. ); Blue, T.E. ); Wambersie, A. )

    1994-03-30

    The purpose of this paper is to address some aspects of the many considerations that need to go into a dose prescription in boron neutron capture therapy (BNCT) for brain tumors; and to describe some methods to incorporate knowledge from animal studies and other experiments into the process of dose prescription. Previously, an algorithm to estimate the normal tissue tolerance to mixed high and low linear energy transfer radiations in BNCT was proposed. The authors have developed mathematical formulations and computational methods to represent this algorithm. Generalized models to fit the central axis dose rate components for an epithermal neutron field were also developed. These formulations and beam fitting models were programmed into spreadsheets to simulate two treatment techniques which are expected to be used in BNCT: a two-field bilateral scheme and a single-field treatment scheme. Parameters in these spreadsheets can be varied to represent the fractionation scheme used, the [sup 10]B microdistribution in normal tissue, and the ratio of [sup 10]B in tumor to normal tissue. Most of these factors have to be determined for a given neutron field and [sup 10]B compound combination from large animal studies. The spreadsheets have been programmed to integrate all of the treatment-related information and calculate the location along the central axis where the normal tissue tolerance is exceeded first. This information is then used to compute the maximum treatment time allowable and the maximum tumor dose that may be delivered for a given BNCT treatment. The effect of different treatment variables on the treatment time and tumor dose has been shown to be very significant. It has also been shown that the location of D[sub max] shifts significantly, depending on some of the treatment variables-mainly the fractionation scheme used. These results further emphasize the fact that dose prescription in BNCT is very complicated and nonintuitive. 11 refs., 6 figs., 3 tabs.

  15. Determinants of thiopental induction dose requirements.

    PubMed

    Avram, M J; Sanghvi, R; Henthorn, T K; Krejcie, T C; Shanks, C A; Fragen, R J; Howard, K A; Kaczynski, D A

    1993-01-01

    Dose requirements for thiopental anesthetic induction have significant age- and gender-related variability. We studied the association of the patient characteristics age, gender, weight, lean body mass, and cardiac output with thiopental requirements. Doses of thiopental, infused at 150 mg/min, required to reach both a clinical end-point and an electroencephalographic (EEG) end-point were determined in 30 males and 30 females, aged 18-83 yr. Univariate least squares linear regression analysis revealed outliers in the relationships of age, weight, lean body mass, and cardiac output to thiopental dose at clinical and EEG endpoints. Differential weighting of data points minimized the effect of outliers in the construction of a robust multiple linear regression model of the relationship between several selected independent variables and the dependent variables thiopental dose at clinical and EEG endpoints. The multiple linear regression model for thiopental dose at the clinical end-point selecting the regressor variables age, weight, and gender (R2 = 0.76) was similar to that for age, lean body mass, and gender (R2 = 0.75). Thiopental dose at the EEG endpoint was better described by models selecting the variables age, weight, and cardiac output (R2 = 0.88) or age, lean body mass, and cardiac output (R2 = 0.87). Although cardiac output varied with age, age always remained a selected variable. Because weight and lean body mass differed with gender, their selection as variables in the model eliminated gender as a selected variable or minimized its importance.

  16. Measuring pacemaker dose: A clinical perspective

    SciTech Connect

    Studenski, Matthew T.; Xiao Ying; Harrison, Amy S.

    2012-07-01

    Recently in our clinic, we have seen an increased number of patients presenting with pacemakers and defibrillators. Precautions are taken to develop a treatment plan that minimizes the dose to the pacemaker because of the adverse effects of radiation on the electronics. Here we analyze different dosimeters to determine which is the most accurate in measuring pacemaker or defibrillator dose while at the same time not requiring a significant investment in time to maintain an efficient workflow in the clinic. The dosimeters analyzed here were ion chambers, diodes, metal-oxide-semiconductor field effect transistor (MOSFETs), and optically stimulated luminescence (OSL) dosimeters. A simple phantom was used to quantify the angular and energy dependence of each dosimeter. Next, 8 patients plans were delivered to a Rando phantom with all the dosimeters located where the pacemaker would be, and the measurements were compared with the predicted dose. A cone beam computed tomography (CBCT) image was obtained to determine the dosimeter response in the kilovoltage energy range. In terms of the angular and energy dependence of the dosimeters, the ion chamber and diode were the most stable. For the clinical cases, all the dosimeters match relatively well with the predicted dose, although the ideal dosimeter to use is case dependent. The dosimeters, especially the MOSFETS, tend to be less accurate for the plans, with many lateral beams. Because of their efficiency, we recommend using a MOSFET or a diode to measure the dose. If a discrepancy is observed between the measured and expected dose (especially when the pacemaker to field edge is <10 cm), we recommend analyzing the treatment plan to see whether there are many lateral beams. Follow-up with another dosimeter rather than repeating multiple times with the same type of dosimeter. All dosimeters should be placed after the CBCT has been acquired.

  17. Radiological dose reconstruction for birds reconciles outcomes of Fukushima with knowledge of dose-effect relationships

    NASA Astrophysics Data System (ADS)

    Garnier-Laplace, Jacqueline; Beaugelin-Seiller, Karine; Della-Vedova, Claire; Métivier, Jean-Michel; Ritz, Christian; Mousseau, Timothy A.; Pape Møller, Anders

    2015-11-01

    We reconstructed the radiological dose for birds observed at 300 census sites in the 50-km northwest area affected by the accident at the Fukushima Daiichi nuclear power plant over 2011-2014. Substituting the ambient dose rate measured at the census points (from 0.16 to 31 μGy h-1) with the dose rate reconstructed for adult birds of each species (from 0.3 to 97 μGy h-1), we confirmed that the overall bird abundance at Fukushima decreased with increasing total doses. This relationship was directly consistent with exposure levels found in the literature to induce physiological disturbances in birds. Among the 57 species constituting the observed bird community, we found that 90% were likely chronically exposed at a dose rate that could potentially affect their reproductive success. We quantified a loss of 22.6% of the total number of individuals per increment of one unit log10-tansformed total dose (in Gy), over the four-year post-accident period in the explored area. We estimated that a total dose of 0.55 Gy reduced by 50% the total number of birds in the study area over 2011-2014. The data also suggest a significant positive relationship between total dose and species diversity.

  18. High-Dose Atomoxetine Treatment of ADHD in Youths with Limited Response to Standard Doses

    ERIC Educational Resources Information Center

    Kratochvil, Christopher J.; Michelson, David; Newcorn, Jeffrey H.; Weiss, Margaret D.; Busner, Joan; Moore, Rodney J.; Ruff, Dustin D.; Ramsey, Janet; Dickson, Ruth; Turgay, Atilla; Saylor, Keith E.; Luber, Stephen; Vaughan, Brigette; Allen, Albert J.

    2007-01-01

    Objective: To assess the utility and tolerability of higher than standard atomoxetine doses to treat attention-deficit/hyperactivity disorder (ADHD). Method: Two randomized, double-blind trials of atomoxetine nonresponders ages 6 to 16 years were conducted comparing continued treatment with same-dose atomoxetine to treatment using greater than…

  19. A CONCEPTUAL FRAMEWORK FOR MANAGING RADIATION DOSE TO PATIENTS IN DIAGNOSTIC RADIOLOGY USING REFERENCE DOSE LEVELS.

    PubMed

    Almén, Anja; Båth, Magnus

    2016-06-01

    The overall aim of the present work was to develop a conceptual framework for managing radiation dose in diagnostic radiology with the intention to support optimisation. An optimisation process was first derived. The framework for managing radiation dose, based on the derived optimisation process, was then outlined. The outset of the optimisation process is four stages: providing equipment, establishing methodology, performing examinations and ensuring quality. The optimisation process comprises a series of activities and actions at these stages. The current system of diagnostic reference levels is an activity in the last stage, ensuring quality. The system becomes a reactive activity only to a certain extent engaging the core activity in the radiology department, performing examinations. Three reference dose levels-possible, expected and established-were assigned to the three stages in the optimisation process, excluding ensuring quality. A reasonably achievable dose range is also derived, indicating an acceptable deviation from the established dose level. A reasonable radiation dose for a single patient is within this range. The suggested framework for managing radiation dose should be regarded as one part of the optimisation process. The optimisation process constitutes a variety of complementary activities, where managing radiation dose is only one part. This emphasises the need to take a holistic approach integrating the optimisation process in different clinical activities.

  20. Right Dose, Right Now: Customized Drug Dosing in the Critically Ill.

    PubMed

    Roberts, Jason A; Kumar, Anand; Lipman, Jeffrey

    2017-02-01

    Drugs are key weapons that clinicians have to battle against the profound pathologies encountered in critically ill patients. Antibiotics in particular are commonly used and can improve patient outcomes dramatically. Despite this, there are strong opportunities for further reducing the persisting poor outcomes for infected critically ill patients. However, taking these next steps for improving patient care requires a new approach to antibiotic therapy. Giving the right dose is highly likely to increase the probability of clinical cure from infection and suppress the emergence of resistant pathogens. Furthermore, in some patients with higher levels of sickness severity, reduced mortality from an optimized approach to antibiotic use could also occur. To enable optimized dosing, the use of customized dosing regimens through either evidence-based dosing nomograms or preferably through the use of dosing software supplemented by therapeutic drug monitoring data should be embedded into daily practice. These customized dosing regimens should also be given as soon as practicable as reduced time to initiation of therapy has been shown to improve patient survival, particularly in the presence of septic shock. However, robust data supporting these logical approaches to therapy, which may deliver the next step change improvement for treatment of infections in critically ill patients, are lacking. Large prospective studies of patient survival and health system costs are now required to determine the value of customized antibiotic dosing, that is, giving the right dose at the right time.

  1. Simple methods for the estimation of dose distributions, organ doses and energy imparted in paediatric radiology.

    PubMed

    Almén, A; Nilsson, M

    1996-07-01

    The energy imparted and the effective dose can both be used to describe the risk to the patient in diagnostic radiology. Simple methods must be employed to determine these quantities in clinical situations. Methods using measured relative depth-dose distributions are presented and evaluated here. Measurements of depth-dose distributions for x-ray beams were performed with an ionization chamber, a diode and a number of TL dosimeters. The energy imparted was calculated from measurements with both phantoms and patients. The method of calculating the mean absorbed dose to organs was applied to pelvis and lumbar spine examinations. TL dosimeters were found to be an appropriate detector for measuring depth-dose distributions. When calculating the energy imparted the entrance beam area must be accurately known. The mean absorbed dose to organs can be derived from measured relative depth-dose curves if accurate information on entrance beam position and area is available for the particular examination technique used. The advantage of these methods is that the dose distribution is measured for the photon beam used for the examination of the patients.

  2. Radiological dose reconstruction for birds reconciles outcomes of Fukushima with knowledge of dose-effect relationships

    PubMed Central

    Garnier-Laplace, Jacqueline; Beaugelin-Seiller, Karine; Della-Vedova, Claire; Métivier, Jean-Michel; Ritz, Christian; Mousseau, Timothy A.; Pape Møller, Anders

    2015-01-01

    We reconstructed the radiological dose for birds observed at 300 census sites in the 50-km northwest area affected by the accident at the Fukushima Daiichi nuclear power plant over 2011–2014. Substituting the ambient dose rate measured at the census points (from 0.16 to 31 μGy h−1) with the dose rate reconstructed for adult birds of each species (from 0.3 to 97 μGy h−1), we confirmed that the overall bird abundance at Fukushima decreased with increasing total doses. This relationship was directly consistent with exposure levels found in the literature to induce physiological disturbances in birds. Among the 57 species constituting the observed bird community, we found that 90% were likely chronically exposed at a dose rate that could potentially affect their reproductive success. We quantified a loss of 22.6% of the total number of individuals per increment of one unit log10-tansformed total dose (in Gy), over the four-year post-accident period in the explored area. We estimated that a total dose of 0.55 Gy reduced by 50% the total number of birds in the study area over 2011–2014. The data also suggest a significant positive relationship between total dose and species diversity. PMID:26567770

  3. Peripheral doses in CyberKnife radiosurgery

    SciTech Connect

    Petti, Paula L.; Chuang, Cynthia F.; Smith, Vernon; Larson, David A.

    2006-06-15

    The purpose of this work is to measure the dose outside the treatment field for conformal CyberKnife treatments, to compare the results to those obtained for similar treatments delivered with gamma knife or intensity-modulated radiation therapy (IMRT), and to investigate the sources of peripheral dose in CyberKnife radiosurgery. CyberKnife treatment plans were developed for two hypothetical lesions in an anthropomorphic phantom, one in the thorax and another in the brain, and measurements were made with LiF thermoluminescent dosimeters (TLD-100 capsules) placed within the phantom at various depths and distances from the irradiated volume. For the brain lesion, gamma knife and 6-MV IMRT treatment plans were also developed, and peripheral doses were measured at the same locations as for the CyberKnife plan. The relative contribution to the CyberKnife peripheral dose from inferior- or superior-oblique beams entering or exiting through the body, internally scattered radiation, and leakage radiation was assessed through additional experiments using the single-isocenter option of the CyberKnife treatment-planning program with different size collimators. CyberKnife peripheral doses (in cGy) ranged from 0.16 to 0.041 % ({+-}0.003%) of the delivered number of monitor units (MU) at distances between 18 and 71 cm from the field edge. These values are two to five times larger than those measured for the comparable gamma knife brain treatment, and up to a factor of four times larger those measured in the IMRT experiment. Our results indicate that the CyberKnife peripheral dose is due largely to leakage radiation, however at distances less than 40 cm from the field edge, entrance, or exit dose from inferior- or superior-oblique beams can also contribute significantly. For distances larger than 40 cm from the field edge, the CyberKnife peripheral dose is directly related to the number of MU delivered, since leakage radiation is the dominant component.

  4. Computed Tomography: Image and Dose Assessment

    SciTech Connect

    Valencia-Ortega, F.; Ruiz-Trejo, C.; Rodriguez-Villafuerte, M.; Buenfil, A. E.; Mora-Hernandez, L. A.

    2006-09-08

    In this work an experimental evaluation of image quality and dose imparted during a computed tomography study in a Public Hospital in Mexico City is presented; The measurements required the design and construction of two phantoms at the Institute of Physics, UNAM, according to the recommendations of American Association of Physicists in Medicine (AAPM). Image assessment was performed in terms the spatial resolution and image contrast. Dose measurements were carried out using LiF: Mg,Ti (TLD-100) dosemeters and pencil-shaped ionisation chamber; The results for a computed tomography head study in single and multiple detector modes are presented.

  5. Dose estimates from the Chernobyl accident

    SciTech Connect

    Lange, R.; Dickerson, M.H.; Gudiksen, P.H.

    1987-11-01

    The Lawrence Livermore National Laboratory Atmospheric Release Advisory Capability (ARAC) responded to the Chernobyl nuclear reactor accident in the Soviet Union by utilizing long-range atmospheric dispersion modeling to estimate the amount of radioactivity released (source term) and the radiation dose distribution due to exposure to the radioactive cloud over Europe and the Northern Hemisphere. In later assessments, after the release of data on the accident by the Soviet Union, the ARAC team used their mesoscale to regional scale model to focus in on the radiation dose distribution within the Soviet Union and the vicinity of the Chernobyl plant. 22 refs., 5 figs., 5 tabs.

  6. Hanford environmental dose reconstruction project: Monthly report

    SciTech Connect

    Dennis, B.S.

    1989-02-01

    The objective of the Hanford Environmental Dose Reconstruction Project is to estimate the radiation doses that populations could have received from nuclear operations at Hanford since 1944. The Technical Steering Panel consists of experts in environmental pathways, epidemiology, surface-water transport, ground-water transport, statistics, demography, agriculture, meteorology, nuclear engineering, radiation dosimetry, and cultural anthropology. Included among the members are appointed technical members representing the States of Oregon and Washington, cultural and technical experts nominated by the Indian tribes in the region, and an individual representing the public.

  7. Dose measurements around spallation neutron sources.

    PubMed

    Fragopoulou, M; Stoulos, S; Manolopoulou, M; Krivopustov, M; Zamani, M

    2008-01-01

    Neutron dose measurements and calculations around spallation sources appear to be of great importance in shielding research. Two spallation sources were irradiated by high-energy proton beams delivered by the Nuclotron accelerator (JINR), Dubna. Neutrons produced by the spallation sources were measured by using solid-state nuclear track detectors. In addition, neutron dose was calculated after polyethylene and concrete, using a phenomenological model based on empirical relations applied in high-energy physics. The study provides an analytical and experimental neutron benchmark analysis using the transmission factor and a comparison between the experimental results and calculations.

  8. Cardiovascular abnormalities with single dose of tapentadol.

    PubMed

    Vachhani, A; Barvaliya, M; Naik, V; Tripathi, C B

    2014-01-01

    This case represents the development of dizziness, palpitation, tightness in chest, flushing, and tremor on consumption of a single dose of tapentadol (100 mg) for acute lower back pain. The patient was admitted in the intensive cardiac care unit for continuous monitoring. At admission, electrocardiogram showed tachycardia (140/min) along with ST segment elevation in second chest lead (V2). The patient was monitored and advised not to take further doses of tapentadol. He was discharged after 36 hours of admission. Tapentadol should be used cautiously in patients with cardiovascular diseases and receiving sympathomimetic drugs.

  9. Radiation Dose from Lunar Neutron Albedo

    NASA Technical Reports Server (NTRS)

    Adams, J. H., Jr.; Bhattacharya, M.; Lin, Zi-Wei; Pendleton, G.

    2006-01-01

    The lunar neutron albedo from thermal energies to 8 MeV was measured on the Lunar Prospector Mission in 1998-1999. Using GEANT4 we have calculated the neutron albedo due to cosmic ray bombardment of the moon and found a good-agreement with the measured fast neutron spectra. We then calculated the total effective dose from neutron albedo of all energies, and made comparisons with the effective dose contributions from both galactic cosmic rays and solar particle events to be expected on the lunar surface.

  10. Imaging of Radiation Dose for Stereotactic Radiosurgery

    SciTech Connect

    Guan, Timothy Y.; Almond, Peter R.; Park, Hwan C.; Lindberg, Robert D.; Shields, Christopher B.

    2015-01-15

    The distributions of radiation dose for stereotactic radiosurgery, using a modified linear accelerator (Philips SL-25 and SRS-200), have been studied by using three different dosimeters: (1) ferrous-agarose-xylenol orange (FAX) gels, (2) TLD, and (3) thick-emulsion GafChromic dye film. These dosimeters were loaded into a small volume of defect in a phantom head. A regular linac stereotactic radiosurgery treatment was then given to the phantom head for each type of dosimeter. The measured radiation dose and its distributions were found to be in good agreement with those calculated by the treatment planning computer.

  11. Brachytherapy source characterization for improved dose calculations using primary and scatter dose separation.

    PubMed

    Russell, Kellie R; Tedgren, Asa K Carlsson; Ahnesjö, Anders

    2005-09-01

    In brachytherapy, tissue heterogeneities, source shielding, and finite patient/phantom extensions affect both the primary and scatter dose distributions. The primary dose is, due to the short range of secondary electrons, dependent only on the distribution of material located on the ray line between the source and dose deposition site. The scatter dose depends on both the direct irradiation pattern and the distribution of material in a large volume surrounding the point of interest, i.e., a much larger volume must be included in calculations to integrate many small dose contributions. It is therefore of interest to consider different methods for the primary and the scatter dose calculation to improve calculation accuracy with limited computer resources. The algorithms in present clinical use ignore these effects causing systematic dose errors in brachytherapy treatment planning. In this work we review a primary and scatter dose separation formalism (PSS) for brachytherapy source characterization to support separate calculation of the primary and scatter dose contributions. We show how the resulting source characterization data can be used to drive more accurate dose calculations using collapsed cone superposition for scatter dose calculations. Two types of source characterization data paths are used: a direct Monte Carlo simulation in water phantoms with subsequent parameterization of the results, and an alternative data path built on processing of AAPM TG43 formatted data to provide similar parameter sets. The latter path is motivated of the large amounts of data already existing in the TG43 format. We demonstrate the PSS methods using both data paths for a clinical 192Ir source. Results are shown for two geometries: a finite but homogeneous water phantom, and a half-slab consisting of water and air. The dose distributions are compared to results from full Monte Carlo simulations and we show significant improvement in scatter dose calculations when the collapsed

  12. Low-dose computed tomography image restoration using previous normal-dose scan

    SciTech Connect

    Ma, Jianhua; Huang, Jing; Feng, Qianjin; Zhang, Hua; Lu, Hongbing; Liang, Zhengrong; Chen, Wufan

    2011-10-15

    Purpose: In current computed tomography (CT) examinations, the associated x-ray radiation dose is of a significant concern to patients and operators. A simple and cost-effective means to perform the examinations is to lower the milliampere-seconds (mAs) or kVp parameter (or delivering less x-ray energy to the body) as low as reasonably achievable in data acquisition. However, lowering the mAs parameter will unavoidably increase data noise and the noise would propagate into the CT image if no adequate noise control is applied during image reconstruction. Since a normal-dose high diagnostic CT image scanned previously may be available in some clinical applications, such as CT perfusion imaging and CT angiography (CTA), this paper presents an innovative way to utilize the normal-dose scan as a priori information to induce signal restoration of the current low-dose CT image series. Methods: Unlike conventional local operations on neighboring image voxels, nonlocal means (NLM) algorithm utilizes the redundancy of information across the whole image. This paper adapts the NLM to utilize the redundancy of information in the previous normal-dose scan and further exploits ways to optimize the nonlocal weights for low-dose image restoration in the NLM framework. The resulting algorithm is called the previous normal-dose scan induced nonlocal means (ndiNLM). Because of the optimized nature of nonlocal weights calculation, the ndiNLM algorithm does not depend heavily on image registration between the current low-dose and the previous normal-dose CT scans. Furthermore, the smoothing parameter involved in the ndiNLM algorithm can be adaptively estimated based on the image noise relationship between the current low-dose and the previous normal-dose scanning protocols. Results: Qualitative and quantitative evaluations were carried out on a physical phantom as well as clinical abdominal and brain perfusion CT scans in terms of accuracy and resolution properties. The gain by the use

  13. Radiological Dose Assessment - Nonuniform Skin Dose, Radioactive Skin Contamination, and Multiple Dosimetry

    SciTech Connect

    W. C. Inkret; M. E. Schillaci

    1999-03-01

    Radioactive skin contamination with {beta}- and {gamma}-emitting radionuclides may result in biologically significant absorbed doses to the skin. A specific exposure scenario of interest is a nonuniform skin dose delivered by {beta}- and {gamma}-emissions from radioactive skin contamination. The United States Department of Energy requires a formal evaluation and reporting of nonuniform skin doses. The United States Department of Energy also requires specific, formal procedures for evaluating the results from the placement or use of multiple dosimeters. Action levels relative to potential absorbed doses for the contamination survey instrumentation in use at Los Alamos and formal procedures for evaluating nonuniform skin doses and multiple dosimeters are developed and presented here.

  14. A method to evaluate dose errors introduced by dose mapping processes for mass conserving deformations

    SciTech Connect

    Yan, C.; Hugo, G.; Salguero, F. J.; Saleh-Sayah, N.; Weiss, E.; Sleeman, W. C.; Siebers, J. V.

    2012-04-15

    Purpose: To present a method to evaluate the dose mapping error introduced by the dose mapping process. In addition, apply the method to evaluate the dose mapping error introduced by the 4D dose calculation process implemented in a research version of commercial treatment planning system for a patient case. Methods: The average dose accumulated in a finite volume should be unchanged when the dose delivered to one anatomic instance of that volume is mapped to a different anatomic instance--provided that the tissue deformation between the anatomic instances is mass conserving. The average dose to a finite volume on image S is defined as d{sub S}=e{sub s}/m{sub S}, where e{sub S} is the energy deposited in the mass m{sub S} contained in the volume. Since mass and energy should be conserved, when d{sub S} is mapped to an image R(d{sub S{yields}R}=d{sub R}), the mean dose mapping error is defined as {Delta}d{sub m}=|d{sub R}-d{sub S}|=|e{sub R}/m{sub R}-e{sub S}/m{sub S}|, where the e{sub R} and e{sub S} are integral doses (energy deposited), and m{sub R} and m{sub S} are the masses within the region of interest (ROI) on image R and the corresponding ROI on image S, where R and S are the two anatomic instances from the same patient. Alternatively, application of simple differential propagation yields the differential dose mapping error, {Delta}d{sub d}=|({partial_derivative}d/{partial_derivative}e)*{Delta}e+({partial_derivative}d/{partial_derivative}m)*{Delta}m|=|((e{sub S}-e{sub R})/m{sub R})-((m{sub S}-m{sub R})/m{sub R}{sup 2})*e{sub R}|={alpha}|d{sub R}-d{sub S}| with {alpha}=m{sub S}/m{sub R}. A 4D treatment plan on a ten-phase 4D-CT lung patient is used to demonstrate the dose mapping error evaluations for a patient case, in which the accumulated dose, D{sub R}={Sigma}{sub S=0}{sup 9}d{sub S{yields}R}, and associated error values ({Delta}D{sub m} and {Delta}D{sub d}) are calculated for a uniformly spaced set of ROIs. Results: For the single sample patient dose

  15. Rotation to methadone after opioid dose escalation: How should individualization of dosing occur?

    PubMed

    Zimmermann, Camilla; Seccareccia, Dori; Booth, Christopher M; Cottrell, Wayne

    2005-01-01

    Methadone is a synthetic opioid agonist and N-methyl-D-aspartate (NMDA) receptor antagonist that is being increasingly used in pain management, particularly for pain that is resistant to conventional opioids. We describe two patients with neurotoxic side effects on escalating doses of parenteral hydromorphone with uncontrolled cancer pain who were successfully converted to oral methadone at a dose much smaller than predicted. The phenomenon of increasing pain despite opioid dose escalation is discussed and the rationale for the use of methadone in this situation is described. While methadone is useful for patients with unremitting pain on another opioid, existing conversion regimens do not specifically take into account the setting of dose escalation. Clinical guidelines for rotation to methadone after dose escalation of the previous opioid are needed to avoid toxicity including respiratory depression. A possible conversion method for rotation to methadone for patients with escalating pain and opioid use is suggested.

  16. On determining dose rate constants spectroscopically

    SciTech Connect

    Rodriguez, M.; Rogers, D. W. O.

    2013-01-15

    Purpose: To investigate several aspects of the Chen and Nath spectroscopic method of determining the dose rate constants of {sup 125}I and {sup 103}Pd seeds [Z. Chen and R. Nath, Phys. Med. Biol. 55, 6089-6104 (2010)] including the accuracy of using a line or dual-point source approximation as done in their method, and the accuracy of ignoring the effects of the scattered photons in the spectra. Additionally, the authors investigate the accuracy of the literature's many different spectra for bare, i.e., unencapsulated {sup 125}I and {sup 103}Pd sources. Methods: Spectra generated by 14 {sup 125}I and 6 {sup 103}Pd seeds were calculated in vacuo at 10 cm from the source in a 2.7 Multiplication-Sign 2.7 Multiplication-Sign 0.05 cm{sup 3} voxel using the EGSnrc BrachyDose Monte Carlo code. Calculated spectra used the initial photon spectra recommended by AAPM's TG-43U1 and NCRP (National Council of Radiation Protection and Measurements) Report 58 for the {sup 125}I seeds, or TG-43U1 and NNDC(2000) (National Nuclear Data Center, 2000) for {sup 103}Pd seeds. The emitted spectra were treated as coming from a line or dual-point source in a Monte Carlo simulation to calculate the dose rate constant. The TG-43U1 definition of the dose rate constant was used. These calculations were performed using the full spectrum including scattered photons or using only the main peaks in the spectrum as done experimentally. Statistical uncertainties on the air kerma/history and the dose rate/history were Less-Than-Or-Slanted-Equal-To 0.2%. The dose rate constants were also calculated using Monte Carlo simulations of the full seed model. Results: The ratio of the intensity of the 31 keV line relative to that of the main peak in {sup 125}I spectra is, on average, 6.8% higher when calculated with the NCRP Report 58 initial spectrum vs that calculated with TG-43U1 initial spectrum. The {sup 103}Pd spectra exhibit an average 6.2% decrease in the 22.9 keV line relative to the main peak when

  17. Fast dose algorithm for generation of dose coverage probability for robustness analysis of fractionated radiotherapy

    NASA Astrophysics Data System (ADS)

    Tilly, David; Ahnesjö, Anders

    2015-07-01

    A fast algorithm is constructed to facilitate dose calculation for a large number of randomly sampled treatment scenarios, each representing a possible realisation of a full treatment with geometric, fraction specific displacements for an arbitrary number of fractions. The algorithm is applied to construct a dose volume coverage probability map (DVCM) based on dose calculated for several hundred treatment scenarios to enable the probabilistic evaluation of a treatment plan. For each treatment scenario, the algorithm calculates the total dose by perturbing a pre-calculated dose, separately for the primary and scatter dose components, for the nominal conditions. The ratio of the scenario specific accumulated fluence, and the average fluence for an infinite number of fractions is used to perturb the pre-calculated dose. Irregularities in the accumulated fluence may cause numerical instabilities in the ratio, which is mitigated by regularisation through convolution with a dose pencil kernel. Compared to full dose calculations the algorithm demonstrates a speedup factor of ~1000. The comparisons to full calculations show a 99% gamma index (2%/2 mm) pass rate for a single highly modulated beam in a virtual water phantom subject to setup errors during five fractions. The gamma comparison shows a 100% pass rate in a moving tumour irradiated by a single beam in a lung-like virtual phantom. DVCM iso-probability lines computed with the fast algorithm, and with full dose calculation for each of the fractions, for a hypo-fractionated prostate case treated with rotational arc therapy treatment were almost indistinguishable.

  18. Patient-specific dose calculation methods for high-dose-rate iridium-192 brachytherapy

    NASA Astrophysics Data System (ADS)

    Poon, Emily S.

    In high-dose-rate 192Ir brachytherapy, the radiation dose received by the patient is calculated according to the AAPM Task Group 43 (TG-43) formalism. This table-based dose superposition method uses dosimetry parameters derived with the radioactive 192Ir source centered in a water phantom. It neglects the dose perturbations caused by inhomogeneities, such as the patient anatomy, applicators, shielding, and radiographic contrast solution. In this work, we evaluated the dosimetric characteristics of a shielded rectal applicator with an endocavitary balloon injected with contrast solution. The dose distributions around this applicator were calculated by the GEANT4 Monte Carlo (MC) code and measured by ionization chamber and GAFCHROMIC EBT film. A patient-specific dose calculation study was then carried out for 40 rectal treatment plans. The PTRAN_CT MC code was used to calculate the dose based on computed tomography (CT) images. This study involved the development of BrachyGUI, an integrated treatment planning tool that can process DICOM-RT data and create PTRAN_CT input initialization files. BrachyGUI also comes with dose calculation and evaluation capabilities. We proposed a novel scatter correction method to account for the reduction in backscatter radiation near tissue-air interfaces. The first step requires calculating the doses contributed by primary and scattered photons separately, assuming a full scatter environment. The scatter dose in the patient is subsequently adjusted using a factor derived by MC calculations, which depends on the distances between the point of interest, the 192Ir source, and the body contour. The method was validated for multicatheter breast brachytherapy, in which the target and skin doses for 18 patient plans agreed with PTRAN_CT calculations better than 1%. Finally, we developed a CT-based analytical dose calculation method. It corrects for the photon attenuation and scatter based upon the radiological paths determined by ray tracing

  19. Equivalent normalized total dose estimates in cyberknife radiotherapy dose delivery in prostate cancer hypofractionation regimens.

    PubMed

    Sudahar, H; Kurup, P G G; Murali, V; Mahadev, P; Velmurugan, J

    2012-04-01

    As the α/β value of prostate is very small and lower than the surrounding critical organs, hypofractionated radiotherapy became a vital mode of treatment of prostate cancer. Cyberknife (Accuray Inc., Sunnyvale, CA, USA) treatment for localized prostate cancer is performed in hypofractionated dose regimen alone. Effective dose escalation in the hypofractionated regimen can be estimated if the corresponding conventional 2 Gy per fraction equivalent normalized total dose (NTD) distribution is known. The present study aims to analyze the hypofractionated dose distribution of localized prostate cancer in terms of equivalent NTD. Randomly selected 12 localized prostate cases treated in cyberknife with a dose regimen of 36.25 Gy in 5 fractions were considered. The 2 Gy per fraction equivalent NTDs were calculated using the formula derived from the linear quadratic (LQ) model. Dose distributions were analyzed with the corresponding NTDs. The conformity index for the prescribed target dose of 36.25 Gy equivalent to the NTD dose of 90.63 Gy (α/β = 1.5) or 74.31 Gy (α/β = 3) was ranging between 1.15 and 1.73 with a mean value of 1.32 ± 0.15. The D5% of the target was 111.41 ± 8.66 Gy for α/β = 1.5 and 90.15 ± 6.57 Gy for α/β = 3. Similarly, the D95% was 91.98 ± 3.77 Gy for α/β = 1.5 and 75.35 ± 2.88 Gy for α/β = 3. The mean values of bladder and rectal volume receiving the prescribed dose of 36.25 Gy were 0.83 cm3 and 0.086 cm3, respectively. NTD dose analysis shows an escalated dose distribution within the target for low α/β (1.5 Gy) with reasonable sparing of organs at risk. However, the higher α/β of prostate (3 Gy) is not encouraging the fact of dose escalation in cyberknife hypofractionated dose regimen of localized prostate cancer.

  20. Methods of calculating radiation absorbed dose.

    PubMed

    Wegst, A V

    1987-01-01

    The new tumoricidal radioactive agents being developed will require a careful estimate of radiation absorbed tumor and critical organ dose for each patient. Clinical methods will need to be developed using standard imaging or counting instruments to determine cumulated organ activities with tracer amounts before the therapeutic administration of the material. Standard MIRD dosimetry methods can then be applied.

  1. Quality control and reliability of reported doses.

    PubMed

    Stadtmann, H; Figel, Markus; Kamenopoulou, V; Kluszczynski, D; Roed, H; Van Dijk, J

    2004-01-01

    Results of performance tests verifying the dosimetric properties of dosimetric systems are published in various reports (e.g. IAEA and EURADOS). However, there is hardly any information in the open literature relating to the uncertainty in a dose measurement or in the annual dose, which is increased by failure of the evaluation or data management system, damage of the dosemeter itself or by the loss of dosemeter. In this article, an attempt is made to estimate the importance of the above-mentioned conditions. This is achieved by sending questionnaires to about 200 approved dosimetric services in Europe. In total 88 questionnaires were returned and analysed. In the questionnaires, the frequency of occurrence of the various error conditions were investigated. Participants were also asked to evaluate the impact of the error condition from a dosimetric point of view and what countermeasures are taken. The article summarises all responses and compares different sources of errors according to their impact on the uncertainty of the resulting dose and gives a comprehensive overview on quality control actions and reliability on reported doses from European dosimetric services.

  2. Dose-shaping using targeted sparse optimization

    SciTech Connect

    Sayre, George A.; Ruan, Dan

    2013-07-15

    Purpose: Dose volume histograms (DVHs) are common tools in radiation therapy treatment planning to characterize plan quality. As statistical metrics, DVHs provide a compact summary of the underlying plan at the cost of losing spatial information: the same or similar dose-volume histograms can arise from substantially different spatial dose maps. This is exactly the reason why physicians and physicists scrutinize dose maps even after they satisfy all DVH endpoints numerically. However, up to this point, little has been done to control spatial phenomena, such as the spatial distribution of hot spots, which has significant clinical implications. To this end, the authors propose a novel objective function that enables a more direct tradeoff between target coverage, organ-sparing, and planning target volume (PTV) homogeneity, and presents our findings from four prostate cases, a pancreas case, and a head-and-neck case to illustrate the advantages and general applicability of our method.Methods: In designing the energy minimization objective (E{sub tot}{sup sparse}), the authors utilized the following robust cost functions: (1) an asymmetric linear well function to allow differential penalties for underdose, relaxation of prescription dose, and overdose in the PTV; (2) a two-piece linear function to heavily penalize high dose and mildly penalize low and intermediate dose in organs-at risk (OARs); and (3) a total variation energy, i.e., the L{sub 1} norm applied to the first-order approximation of the dose gradient in the PTV. By minimizing a weighted sum of these robust costs, general conformity to dose prescription and dose-gradient prescription is achieved while encouraging prescription violations to follow a Laplace distribution. In contrast, conventional quadratic objectives are associated with a Gaussian distribution of violations, which is less forgiving to large violations of prescription than the Laplace distribution. As a result, the proposed objective E{sub tot

  3. Antibiotic dosing in multiple organ dysfunction syndrome.

    PubMed

    Ulldemolins, Marta; Roberts, Jason A; Lipman, Jeffrey; Rello, Jordi

    2011-05-01

    Although early and appropriate antibiotic therapy remains the cornerstone of success for the treatment of septic shock, few data exist to guide antibiotic dose optimization in critically ill patients, particularly those with multiple organ dysfunction syndrome (MODS). It is well known that MODS significantly alters the patient's physiology, but the effects of these variations on pharmacokinetics have not been reviewed concisely. Therefore, the aims of this article are to summarize the disease-driven variations in pharmacokinetics and pharmacodynamics and to provide antibiotic dosing recommendations for critically ill patients with MODS. The main findings of this review are that the two parameters that vary with greatest significance in critically ill patients with MODS are drug volume of distribution and clearance. Disease- and clinician-driven changes lead to an increased volume of distribution and lower-than-expected plasma drug concentrations during the first day of therapy at least. Decreased antibiotic clearance is common and can lead to drug toxicity. In summary, "front-loaded" doses of antibiotic during the first 24 h of therapy should account for the likely increases in the antibiotic volume of distribution. Thereafter, maintenance dosing must be guided by drug clearance and adjusted to the degree of organ dysfunction.

  4. Hanford Environmental Dose Reconstruction Project Monthly Report

    SciTech Connect

    Finch, S.M.

    1991-02-01

    The objective of the Hanford Environmental Dose Reconstruction Project is to estimate the radiation doses that populations could have received from nuclear operations at Hanford since 1944. The project is being managed and conducted by the Pacific Northwest Laboratory (PNL) under the direction of an independent Technical Steering Panel (TSP). The TSP consists of experts in environmental pathways, epidemiology, surface-water transport, ground-water transport, statistics, demography, agriculture, meteorology, nuclear engineering, radiation dosimetry, and cultural anthropology. Included are appointed technical members representing the states of Oregon and Washington, cultural and technical experts nominated by the regional Native American tribes, and an individual representing the public. The project is divided into the following technical tasks. These tasks correspond to the path radionuclides followed, from release to impact on humans (dose estimates): source terms; environmental transport; environmental monitoring data; demographics, agriculture, food habits; and environmental pathways and dose estimates. Project reports and references used in the reports are made available to the public in a public reading room. Project progress is documented in this monthly report, which is available to the public. 3 figs., 3 tabs.

  5. EXPOSURE RELATED DOSE ESTIMATING MODEL (ERDEM)

    EPA Science Inventory

    ERDEM is a physiologically-based pharmacokinetic (PBPK) model with a graphical user interface (GUI) front end. Such a mathematical model was needed to make reliable estimates of the chemical dose to organs of animals or humans because of uncertainties of making route-to route, lo...

  6. Visualization of a changing dose field.

    SciTech Connect

    Helm, T. M; Kornreich, D. E.

    2002-01-01

    To help visualize the results of dose modeling for nuclear materials processing opcrations, we have developed an integrated model that uses a simple dosc calculation tool to obtain estimates of the dose field in a complex geomctry and then post-process the data to produce a video of the now time-dependent data. We generate two-dimensional radiation fields within an existing physical cnvironment and then analyze them using three-dimensional visualization techniques. The radiation fields are generated for both neutrons and photons. Standard monoenergetic diffusion theory is used to estimate the neutron dosc fields. The photon dose is estimated using a point-kernel formalism, with photon shielding effects and buildup taken into account. The radiation field dynamics are analyzed by interleaving individual 3D graphic 'snapshots' into a smoothed, lime dependent, video-based display. In-the-room workers are 'seen' in the radiation fields via a graphical, 3D fly-through rendering of the room. Worker dose levels can reveal surprising dependencies on operational source placement, source types, worker alignment, shielding alignments, and indirect operations from external workers.

  7. Dose metrology for DUV lithographic tools

    NASA Astrophysics Data System (ADS)

    Kivenzor, Gregory J.; Zimmerman, Richard

    2001-04-01

    The semiconductor industry is investigating metrology methods and tools to ensure the high accuracy and stability required for chip making. Lithography equipment manufacturers are under constant pressure to provide in situ measurements that prevent wafer processing form slipping from the established parameters. This is especially true for DUV exposure tools utilizing excimer lasers with high repetition rates. Dose metrology is one of the key parameters for linewidth control in photolithography. This paper discusses current developments in dose metrology for 248, 193, and 157 nm wavelengths. Particular emphasis is placed on the methodology to support dose stability over the lifetime of the tool. Aspects of tool-to-self and tool-to- tool matching are examined in detail, as well as the implications of the mix-and-match use of lithography equipment. To ensure the long-term accuracy of present tools, strong cooperation is needed within the semiconductor industry from suppliers and end users; and beyond, from standards organizations and international consortia. This paper describes the tasks that have to be accomplished to sustain the dose metrology during the transition from the existing tools to future generations of optical micro lithographic tools.

  8. Patient doses from CT examinations in Turkey

    PubMed Central

    Ataç, Gökçe Kaan; Parmaksız, Aydın; İnal, Tolga; Bulur, Emine; Bulgurlu, Figen; Öncü, Tolga; Gündoğdu, Sadi

    2015-01-01

    PURPOSE We aimed to establish the first diagnostic reference levels (DRLs) for computed tomography (CT) examinations in adult and pediatric patients in Turkey and compare these with international DRLs. METHODS CT performance information and examination parameters (for head, chest, high-resolution CT of the chest [HRCT-chest], abdominal, and pelvic protocols) from 1607 hospitals were collected via a survey. Dose length products and effective doses for standard patient sizes were calculated from the reported volume CT dose index (CTDIvol). RESULTS The median number of protocols reported from the 167 responding hospitals (10% response rate) was 102 across five different age groups. Third quartile CTDIvol values for adult pelvic and all pediatric body protocols were higher than the European Commission standards but were comparable to studies conducted in other countries. CONCLUSION The radiation dose indicators for adult patients were similar to those reported in the literature, except for those associated with head protocols. CT protocol optimization is necessary for adult head and pediatric chest, HRCT-chest, abdominal, and pelvic protocols. The findings from this study are recommended for use as national DRLs in Turkey. PMID:26133189

  9. Microbial Biofilms: Persisters, Tolerance and Dosing

    NASA Astrophysics Data System (ADS)

    Cogan, N. G.

    2005-03-01

    Almost all moist surfaces are colonized by microbial biofilms. Biofilms are implicated in cross-contamination of food products, biofouling, medical implants and various human infections such as dental cavities, ulcerative colitis and chronic respiratory infections. Much of current research is focused on the recalcitrance of biofilms to typical antibiotic and antimicrobial treatments. Although the polymer component of biofilms impedes the penetration of antimicrobials through reaction-diffusion limitation, this does not explain the observed tolerance, it merely delays the action of the agent. Heterogeneities in growth-rate also slow the eradication of the bacteria since most antimicrobials are far less effective for non-growing, or slowly growing bacteria. This also does not fully describe biofilm tolerance, since heterogeneities arr primairly a result of nutrient consumption. In this investigation, we describe the formation of `persister' cells which neither grow nor die in the presence of antibiotics. We propose that the cells are of a different phenotype than typical bacterial cells and the expression of the phenotype is regulated by the growth rate and the antibiotic concentration. We describe several experiments which describe the dynamics of persister cells and which motivate a dosing protocol that calls for periodic dosing of the population. We then introduce a mathematical model, which describes the effect of such a dosing regiment and indicates that the relative dose/withdrawal times are important in determining the effectiveness of such a treatment. A reduced model is introduced and the similar behavior is demonstrated analytically.

  10. Beta Bremsstrahlung dose in concrete shielding

    NASA Astrophysics Data System (ADS)

    Manjunatha, H. C.; Chandrika, B. M.; Rudraswamy, B.; Sankarshan, B. M.

    2012-05-01

    In a nuclear reactor, beta nuclides are released during nuclear reactions. These betas interact with shielding concrete and produces external Bremsstrahlung (EB) radiation. To estimate Bremsstrahlung dose and shield efficiency in concrete, it is essential to know Bremsstrahlung distribution or spectra. The present work formulated a new method to evaluate the EB spectrum and hence Bremsstrahlung dose of beta nuclides (32P, 89Sr, 90Sr-90Y, 90Y, 91Y, 208Tl, 210Bi, 234Pa and 40K) in concrete. The Bremsstrahlung yield of these beta nuclides in concrete is also estimated. The Bremsstrahlung yield in concrete due to 90Sr-90Y is higher than those of other given nuclides. This estimated spectrum is accurate because it is based on more accurate modified atomic number (Zmod) and Seltzer's data, where an electron-electron interaction is also included. Presented data in concrete provide a quick and convenient reference for radiation protection. The present methodology can be used to calculate the Bremsstrahlung dose in nuclear shielding materials. It can be quickly employed to give a first pass dose estimate prior to a more detailed experimental study.

  11. Personnel Dose Assessment during Active Interrogation

    SciTech Connect

    Miller, Thomas Martin; Akkurt, Hatice; Patton, Bruce W

    2010-01-01

    A leading candidate in the detection of special nuclear material (SNM) is active interrogation (AI). Unlike passive interrogation, AI uses a source to enhance or create a detectable signal from SNM (usually fission), particularly in shielded scenarios or scenarios where the SNM has a low activity. The use of AI thus makes the detection of SNM easier or, in some scenarios, even enables previously impossible detection. During the development of AI sources, significant effort is put into determining the source strength required to detect SNM in specific scenarios. Usually during this process, but not always, an evaluation of personnel dose is also completed. In this instance personnel dose could involve any of the following: (1) personnel performing the AI; (2) unknown stowaways who are inside the object being interrogated; or (3) in clandestine interrogations, personnel who are known to be inside the object being interrogated but are unaware of the interrogation. In most instances, dose to anyone found smuggling SNM will be a secondary issue. However, for the organizations performing the AI, legal if not moral considerations should make dose to the personnel performing the AI, unknown stowaways, or innocent bystanders in clandestine interrogations a serious concern.

  12. [Dialysis dose quantification in critically ill patients].

    PubMed

    Casino, Francesco Gaetano

    2010-01-01

    Acute kidney injury affects about 35% of intensive care unit patients. Renal replacement therapy is required in about 5% of such patients and is associated with a mortality rate as high as 50% to 80%. The latter is likely more related to the failure of extrarenal organs than to an insufficient dialysis dose. This could explain, at least in part, the findings of 2 recent trials (VA/ NIH and RENAL) where the expected dose-outcome relationship was not confirmed. These results cannot be taken to infer that assessing the dialysis dose is no longer required. The contrary is true, in that the common finding of large differences between prescribed and delivered doses calls for accurate dose assessment, at least to avoid underdialysis. The minimum adequate levels are now a Kt/V urea of 1.2 to 1.4 three times a week (3x/wk) on intermittent hemodialysis (IHD), and an effluent of 20 mL/kg/h for 85% of the time on continuous renal replacement therapy (CRTT). Both these parameters can be easily measured but are far from ideal indices because they account neither for residual renal function nor for irregular dose delivery. The equivalent renal urea clearance (EKRjc), by expressing the averaged renal+dialytic urea clearance over the whole treatment period, is able to account for the above factors. Although assessing EKRjc is quite complex, for regular 3x/wk IHD one could use the formula EKRjc=10 Kt/V+1 to compute that a Kt/V of 1.2 and 1.4 corresponds to an EKRjc of 13 and 15 mL/min, respectively. On the other hand, the hourly effluent per kg is numerically similar to EKRjc. On this basis it can be calculated that in non-prediluted really continuous treatment, the recommended CRRT dose (EKRjc=20 mL/min) is 33% higher than the EKRjc of 15 mL/min, corresponding to the recommended Kt/V of 1.4 on 3x/wk IHD.

  13. Monte Carlo dose calculations in advanced radiotherapy

    NASA Astrophysics Data System (ADS)

    Bush, Karl Kenneth

    The remarkable accuracy of Monte Carlo (MC) dose calculation algorithms has led to the widely accepted view that these methods should and will play a central role in the radiotherapy treatment verification and planning of the future. The advantages of using MC clinically are particularly evident for radiation fields passing through inhomogeneities, such as lung and air cavities, and for small fields, including those used in today's advanced intensity modulated radiotherapy techniques. Many investigators have reported significant dosimetric differences between MC and conventional dose calculations in such complex situations, and have demonstrated experimentally the unmatched ability of MC calculations in modeling charged particle disequilibrium. The advantages of using MC dose calculations do come at a cost. The nature of MC dose calculations require a highly detailed, in-depth representation of the physical system (accelerator head geometry/composition, anatomical patient geometry/composition and particle interaction physics) to allow accurate modeling of external beam radiation therapy treatments. To perform such simulations is computationally demanding and has only recently become feasible within mainstream radiotherapy practices. In addition, the output of the accelerator head simulation can be highly sensitive to inaccuracies within a model that may not be known with sufficient detail. The goal of this dissertation is to both improve and advance the implementation of MC dose calculations in modern external beam radiotherapy. To begin, a novel method is proposed to fine-tune the output of an accelerator model to better represent the measured output. In this method an intensity distribution of the electron beam incident on the model is inferred by employing a simulated annealing algorithm. The method allows an investigation of arbitrary electron beam intensity distributions and is not restricted to the commonly assumed Gaussian intensity. In a second component of

  14. Low-dose heparin versus full-dose heparin with high-dose aprotinin during cardiopulmonary bypass. A preliminary report.

    PubMed Central

    von Segesser, L K; Garcia, E; Turina, M I

    1993-01-01

    Perfusion during cardiopulmonary bypass with low-dose heparin (activated clotting time, > 180 sec) versus full-dose heparin (activated clotting time, > 480 sec) combined with high-dose aprotinin was evaluated prospectively. Fifteen patients undergoing elective myocardial revascularization were randomly assigned to 1 of 2 groups. No significant differences between the groups were found for age, sex, body surface area, preoperative hematocrit level, duration of cardiopulmonary bypass, aortic cross-clamp time, mean number of bypasses per patient, or mean number of arterial grafts per patient. In all patients, heparin-coated cardiopulmonary bypass equipment was used, including heparinized hollow-fiber membrane oxygenators and tubing sets. In each group, protamine sulfate was given equivalent to the heparin loading dose; additional doses were administered according to the ACT. The mean total dosage of heparin was 9.5 +/- 1.4 x 10(3) IU for the group given low systemic heparinization (Group 1) compared with 34.6 +/- 3.4 x 10(3) IU for the group given full systemic heparinization in combination with high-dose aprotinin (Group 2) (p < 0.0001). The mean amount of aprotinin administered in Group 2 was 5.6 +/- 0.3 x 10(6) KIU; aprotinin was not used in Group 1. The mean protamine dosage necessary in Group 1, 7.0 +/- 0.9 x 10(3) IU, was significantly less than the 22.9 +/- 3.2 x 10(3) IU needed in Group 2 (p < 0.0001). In Group 1, shed blood recovery was achieved by a red-cell spinning device; in Group 2, cardiotomy suction was used. The total chest tube drainage (i.e., postoperative blood loss) per patient in Group 1 totaled 432 +/- 162 mL/m2; in Group 2, it was 311 +/- 111 mL/m2 (difference not significant). Transfusion requirements comprised a mean volume of 143 +/- 165 mL/m2 concentrated homologous red blood cells per patient in Group 1 and 416 +/- 128 mL/m2 in Group 2 (p < 0.01). Heparin-coated perfusion equipment allowed a significantly lower dosage of systemic heparin

  15. Low Dose Ionizing Radiation Modulates Immune Function

    SciTech Connect

    Nelson, Gregory A.

    2016-01-12

    In order to examine the effects of low dose ionizing radiation on the immune system we chose to examine an amplified adaptive cellular immunity response. This response is Type IV delayed-type hypersensitivity also called contact hypersensitivity. The agent fluorescein isothiocyanate (FITC) is a low molecular weight, lipophilic, reactive, fluorescent molecule that can be applied to the skin where it (hapten) reacts with proteins (carriers) to become a complete antigen. Exposure to FITC leads to sensitization which is easily measured as a hypersensitivity inflammatory reaction following a subsequent exposure to the ear. Ear swelling, eosinophil infiltration, immunoglobulin E production and cytokine secretion patterns characteristic of a “Th2 polarized” immune response are the components of the reaction. The reaction requires successful implementation of antigen processing and presentation by antigen presenting Langerhans cells, communication with naïve T lymphocytes in draining lymph nodes, expansion of activated T cell clones, migration of activated T cells to the circulation, and recruitment of memory T cells, macrophages and eosinophils to the site of the secondary challenge. Using this model our approach was to quantify system function rather than relying only on indirect biomarkers of cell. We measured the FITC-induced hypersensitivity reaction over a range of doses from 2 cGy to 2 Gy. Irradiations were performed during key events or prior to key events to deplete critical cell populations. In addition to quantifying the final inflammatory response, we assessed cell populations in peripheral blood and spleen, cytokine signatures, IgE levels and expression of genes associated with key processes in sensitization and elicitation/recall. We hypothesized that ionizing radiation would produce a biphasic effect on immune system function resulting in an enhancement at low doses and a depression at higher doses and suggested that this transition would occur in the

  16. 10 CFR 20.1207 - Occupational dose limits for minors.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Occupational dose limits for minors. 20.1207 Section 20.1207 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Occupational Dose Limits § 20.1207 Occupational dose limits for minors. The annual occupational dose limits for minors...

  17. Out-of-field doses in radiotherapy: Input to epidemiological studies and dose-risk models.

    PubMed

    Harrison, Roger

    2017-04-06

    Out-of-field doses in radiotherapy have been increasingly studied in recent years because of the generally improved survival of patients who have received radiotherapy as part of their treatment for cancer and their subsequent risk of a second malignancy. This short article attempts to identify some current problems, challenges and opportunities for dosimetry developments in this field. Out-of-field doses and derived risk estimates contribute to general knowledge about radiation effects on humans as well as contributing to risk-benefit considerations for the individual patient. It is suggested that for input into epidemiological studies, the complete dose description (i.e. the synthesis of therapy and imaging doses from all the treatment and imaging modalities) is ideally required, although there is currently no common dosimetry framework which easily covers all modalities. A general strategy for out-of-field dose estimation requires development and improvement in several areas including (i) dosimetry in regions of steep dose gradient close to the field edge (ii) experimentally verified analytical and Monte Carlo models for out-of-field doses (iii) the validity of treatment planning system algorithms outside the field edge (iv) dosimetry of critical sub-structures in organs at risk (v) mixed field (including neutron) dosimetry in proton and ion radiotherapy and photoneutron production in high energy photon beams (vi) the most appropriate quantities to use in neutron dosimetry in a radiotherapy context and (vii) simplification of measurement methods in regions distant from the target volume.

  18. Uma Comparação entre Técnicas de Propagação de Erros em Astrofísica: Monte Carlo x Bootstrap

    NASA Astrophysics Data System (ADS)

    Zabot, Alexandre; Baptista, Raymundo

    2005-07-01

    Neste trabalho é feito um estudo comparativo entre dois algoritmos numéricos usados para propagação de erros em dados experimentais. Um deles é conhecido por Método de Monte carlo e o outro por Método de Bootstrap. Recentemente, Dhullon & Watson argüiram que a aplicação do método de Monte Carlo introduz ruído nos dados, e propuseram então a utilização do Bootstrap como alternativa capaz de produzir resultados superiores. O objetivo deste trabalho é testar a validade dessa afirmação. As duas técnicas foram aplicadas a três problemas diferentes: o ajsute de modelos de emissão LTE simples e atmosfera estelar a espectros estelares observados e o ajuste de curvas de luz de eclipses de Variáveis Cataclísmicas para a detemrinação da distribuição radial de brilho dos seus discos de acréscimo. Os métodos foram testados quanto à sua robusteza, ou seja, a capacidade de prover resultados coerentes enre si. Além disso, as soluções dos métodos foram comparadas. Os resultados indicam que não existe evidência de superioridade de um métodos em relação ao outro.

  19. Spine stereotactic body radiation therapy plans: Achieving dose coverage, conformity, and dose falloff.

    PubMed

    Hong, Linda X; Shankar, Viswanathan; Shen, Jin; Kuo, Hsiang-Chi; Mynampati, Dinesh; Yaparpalvi, Ravindra; Goddard, Lee; Basavatia, Amar; Fox, Jana; Garg, Madhur; Kalnicki, Shalom; Tomé, Wolfgang A

    2015-01-01

    We report our experience of establishing planning objectives to achieve dose coverage, conformity, and dose falloff for spine stereotactic body radiation therapy (SBRT) plans. Patients with spine lesions were treated using SBRT in our institution since September 2009. Since September 2011, we established the following planning objectives for our SBRT spine plans in addition to the cord dose constraints: (1) dose coverage—prescription dose (PD) to cover at least 95% planning target volume (PTV) and 90% PD to cover at least 99% PTV; (2) conformity index (CI)—ratio of prescription isodose volume (PIV) to the PTV < 1.2; (3) dose falloff—ratio of 50% PIV to the PTV (R(50%)); (4) and maximum dose in percentage of PD at 2 cm from PTV in any direction (D(2cm)) to follow Radiation Therapy Oncology Group (RTOG) 0915. We have retrospectively reviewed 66 separate spine lesions treated between September 2009 and December 2012 (31 treated before September 2011 [group 1] and 35 treated after [group 2]). The χ(2) test was used to examine the difference in parameters between groups. The PTV V(100% PD) ≥ 95% objective was met in 29.0% of group 1 vs 91.4% of group 2 (p < 0.01) plans. The PTV V(90% PD) ≥ 99% objective was met in 38.7% of group 1 vs 88.6% of group 2 (p < 0.01) plans. Overall, 4 plans in group 1 had CI > 1.2 vs none in group 2 (p = 0.04). For D(2cm), 48.3% plans yielded a minor violation of the objectives and 16.1% a major violation for group 1, whereas 17.1% exhibited a minor violation and 2.9% a major violation for group 2 (p < 0.01). Spine SBRT plans can be improved on dose coverage, conformity, and dose falloff employing a combination of RTOG spine and lung SBRT protocol planning objectives.

  20. Bayesian dose-response analysis for epidemiological studies with complex uncertainty in dose estimation.

    PubMed

    Kwon, Deukwoo; Hoffman, F Owen; Moroz, Brian E; Simon, Steven L

    2016-02-10

    Most conventional risk analysis methods rely on a single best estimate of exposure per person, which does not allow for adjustment for exposure-related uncertainty. Here, we propose a Bayesian model averaging method to properly quantify the relationship between radiation dose and disease outcomes by accounting for shared and unshared uncertainty in estimated dose. Our Bayesian risk analysis method utilizes multiple realizations of sets (vectors) of doses generated by a two-dimensional Monte Carlo simulation method that properly separates shared and unshared errors in dose estimation. The exposure model used in this work is taken from a study of the risk of thyroid nodules among a cohort of 2376 subjects who were exposed to fallout from nuclear testing in Kazakhstan. We assessed the performance of our method through an extensive series of simulations and comparisons against conventional regression risk analysis methods. When the estimated doses contain relatively small amounts of uncertainty, the Bayesian method using multiple a priori plausible draws of dose vectors gave similar results to the conventional regression-based methods of dose-response analysis. However, when large and complex mixtures of shared and unshared uncertainties are present, the Bayesian method using multiple dose vectors had significantly lower relative bias than conventional regression-based risk analysis methods and better coverage, that is, a markedly increased capability to include the true risk coefficient within the 95% credible interval of the Bayesian-based risk estimate. An evaluation of the dose-response using our method is presented for an epidemiological study of thyroid disease following radiation exposure.

  1. VirtualDose: a software for reporting organ doses from CT for adult and pediatric patients

    NASA Astrophysics Data System (ADS)

    Ding, Aiping; Gao, Yiming; Liu, Haikuan; Caracappa, Peter F.; Long, Daniel J.; Bolch, Wesley E.; Liu, Bob; Xu, X. George

    2015-07-01

    This paper describes the development and testing of VirtualDose—a software for reporting organ doses for adult and pediatric patients who undergo x-ray computed tomography (CT) examinations. The software is based on a comprehensive database of organ doses derived from Monte Carlo (MC) simulations involving a library of 25 anatomically realistic phantoms that represent patients of different ages, body sizes, body masses, and pregnant stages. Models of GE Lightspeed Pro 16 and Siemens SOMATOM Sensation 16 scanners were carefully validated for use in MC dose calculations. The software framework is designed with the ‘software as a service (SaaS)’ delivery concept under which multiple clients can access the web-based interface simultaneously from any computer without having to install software locally. The RESTful web service API also allows a third-party picture archiving and communication system software package to seamlessly integrate with VirtualDose’s functions. Software testing showed that VirtualDose was compatible with numerous operating systems including Windows, Linux, Apple OS X, and mobile and portable devices. The organ doses from VirtualDose were compared against those reported by CT-Expo and ImPACT—two dosimetry tools that were based on the stylized pediatric and adult patient models that were known to be anatomically simple. The organ doses reported by VirtualDose differed from those reported by CT-Expo and ImPACT by as much as 300% in some of the patient models. These results confirm the conclusion from past studies that differences in anatomical realism offered by stylized and voxel phantoms have caused significant discrepancies in CT dose estimations.

  2. Choosing the optimal dose in sublingual immunotherapy: Rationale for the 300 index of reactivity dose.

    PubMed

    Demoly, Pascal; Passalacqua, Gianni; Calderon, Moises A; Yalaoui, Tarik

    2015-01-01

    Sublingual immunotherapy (SLIT) is an effective and well-tolerated method of treating allergic respiratory diseases associated with seasonal and perennial allergens. In contrast to the subcutaneous route, SLIT requires a much greater amount of antigen to achieve a clinical effect. Many studies have shown that SLIT involves a dose-response relationship, and therefore it is important to use a proven clinically effective dose from the onset of treatment, because low doses are ineffective and very high doses may increase the risk of side effects. A well-defined standardization of allergen content is also crucial to ensure consistent quality, potency and appropriate immunomodulatory action of the SLIT product. Several methods of measuring antigenicity are used by manufacturers of SLIT products, including the index of reactivity (IR), standardized quality tablet unit, and bioequivalent allergy unit. A large body of evidence has established the 300 IR dose of SLIT as offering optimal efficacy and tolerability for allergic rhinitis due to grass and birch pollen and HDM, and HDM-induced moderate, persistent allergic asthma. The 300 IR dose also offers consistency of dosing across a variety of different allergens, and is associated with higher rates of adherence and patient satisfaction. Studies in patients with grass pollen allergies showed that the 300 IR dose has a rapid onset of action, is effective in both adults and children in the short term and, when administered pre-coseasonally in the long term, and maintains the clinical benefit, even after cessation of treatment. In patients with HDM-associated AR and/or asthma, the 300 IR dose also demonstrated significant improvements in symptoms and quality of life, and significantly decreased use of symptomatic medication. The 300 IR dose is well tolerated, with adverse events generally being of mild or moderate severity, declining in frequency and severity over time and in the subsequent courses. We discuss herein the most

  3. Hanford Dose Overview Program. Comparison of AIRDOS-EPA and Hanford site dose codes

    SciTech Connect

    Aaberg, R.L.; Napier, B.A.

    1985-11-01

    Radiation dose commitments for persons in the Hanford environs calculated using AIRDOS-EPA were compared with those calculated using a suite of Hanford codes: FOOD, PABLM, DACRIN, and KRONIC. Dose commitments to the population and to the maximally exposed individual (MI) based on annual releases of eight radionuclides from the N-Reactor, were calculated by these codes. Dose commitments from each pathway to the total body, lung, thyroid, and lower large intestine (LLI) are given for the population and MI, respectively. 11 refs., 25 tabs.

  4. Radiation damage in single-particle cryo-electron microscopy: effects of dose and dose rate

    PubMed Central

    Karuppasamy, Manikandan; Karimi Nejadasl, Fatemeh; Vulovic, Milos; Koster, Abraham J.; Ravelli, Raimond B. G.

    2011-01-01

    Radiation damage is an important resolution limiting factor both in macromolecular X-ray crystallography and cryo-electron microscopy. Systematic studies in macromolecular X-ray crystallography greatly benefited from the use of dose, expressed as energy deposited per mass unit, which is derived from parameters including incident flux, beam energy, beam size, sample composition and sample size. In here, the use of dose is reintroduced for electron microscopy, accounting for the electron energy, incident flux and measured sample thickness and composition. Knowledge of the amount of energy deposited allowed us to compare doses with experimental limits in macromolecular X-ray crystallography, to obtain an upper estimate of radical concentrations that build up in the vitreous sample, and to translate heat-transfer simulations carried out for macromolecular X-ray crystallography to cryo-electron microscopy. Stroboscopic exposure series of 50–250 images were collected for different incident flux densities and integration times from Lumbricus terrestris extracellular hemoglobin. The images within each series were computationally aligned and analyzed with similarity metrics such as Fourier ring correlation, Fourier ring phase residual and figure of merit. Prior to gas bubble formation, the images become linearly brighter with dose, at a rate of approximately 0.1% per 10 MGy. The gradual decomposition of a vitrified hemoglobin sample could be visualized at a series of doses up to 5500 MGy, by which dose the sample was sublimed. Comparison of equal-dose series collected with different incident flux densities showed a dose-rate effect favoring lower flux densities. Heat simulations predict that sample heating will only become an issue for very large dose rates (50 e−Å−2 s−1 or higher) combined with poor thermal contact between the grid and cryo-holder. Secondary radiolytic effects are likely to play a role in dose-rate effects. Stroboscopic data collection

  5. Calculation of the biological effective dose for piecewise defined dose-rate fits

    SciTech Connect

    Hobbs, Robert F.; Sgouros, George

    2009-03-15

    An algorithmic solution to the biological effective dose (BED) calculation from the Lea-Catcheside formula for a piecewise defined function is presented. Data from patients treated for metastatic thyroid cancer were used to illustrate the solution. The Lea-Catcheside formula for the G-factor of the BED is integrated numerically using a large number of small trapezoidal fits to each integral. The algorithmically calculated BED is compatible with an analytic calculation for a similarly valued exponentially fitted dose-rate plot and is the only resolution for piecewise defined dose-rate functions.

  6. Total dose and dose rate models for bipolar transistors in circuit simulation.

    SciTech Connect

    Campbell, Phillip Montgomery; Wix, Steven D.

    2013-05-01

    The objective of this work is to develop a model for total dose effects in bipolar junction transistors for use in circuit simulation. The components of the model are an electrical model of device performance that includes the effects of trapped charge on device behavior, and a model that calculates the trapped charge densities in a specific device structure as a function of radiation dose and dose rate. Simulations based on this model are found to agree well with measurements on a number of devices for which data are available.

  7. Dose dependence of interface traps in gate oxides at high levels of total dose

    SciTech Connect

    Baze, M.P.; Plaag, R.E.; Johnston, A.H. )

    1989-12-01

    Interface traps in gate oxides were found to saturate at high total dose levels. An empirical model was developed to describe the nonlinear dependence and saturation characteristics. Three different processes were studied including CMOS/SOS, hardened bulk CMOS and unhardened bulk CMOS using several combinations of dose rate and bias. An evaluation was made of the model's accuracy in extrapolating the effect of interface traps to very high doses. A possible application of the model in characterizing devices for space environments is discussed along with implications for a physical model of radiation induced interface trap buildup.

  8. Dose and Dose Risk Caused by Natural Phenomena - Proposed Powder Metallurgy Core Manufacturing Facility

    SciTech Connect

    Holmes, W.G.

    2001-08-16

    The offsite radiological effects from high velocity straight winds, tornadoes, and earthquakes have been estimated for a proposed facility for manufacturing enriched uranium fuel cores by powder metallurgy. Projected doses range up to 30 mrem/event to the maximum offsite individual for high winds and up to 85 mrem/event for very severe earthquakes. Even under conservative assumptions on meteorological conditions, the maximum offsite dose would be about 20 per cent of the DOE limit for accidents involving enriched uranium storage facilities. The total dose risk is low and is dominated by the risk from earthquakes. This report discusses this test.

  9. Reevaluation of the newborn thyroid dose from radioiodines

    SciTech Connect

    Hedrick, W.R.; Milavickas, L.R.

    1987-07-01

    The basis for the current thyroid absorbed dose estimates for radioiodines has been examined. The values for the newborn thyroid dose were found to underestimate the dose by a factor of 3. This underestimation of the dose was caused by the assumption that the biokinetic distribution of iodine is the same for the newborn and the adult. Increased thyroid uptake by the newborn requires that higher cumulated activities be incorporated into the dose determinations for the newborn.

  10. Clostridium perfringens growth from spore inocula in sous-vide processed pork-based Mexican entrée.

    PubMed

    Miguel-Garcia, Denise Y; Juneja, Vijay K; Valenzuela-Melendrez, Martin; Díaz-Cinco, Martha E; Thippareddi, H; Aida Peña-Ramos, E

    2009-01-01

    The combined effect of Citricidal wih irradiation on Clostridium perfringens growth from spores in a sous-vide processed marinated pork meat Mexican entrée was investigated. Citricidal was added at 200 or 800 ppm after mixing pork meat with tomatillo sauce and inoculated with 3 log(10) CFU/g of C. perfringens spores. Samples were irradiated at either 0 or 2 kGy, heated to an internal temperature of 71 degrees C, and stored at 4 degrees C for 28 d, 15 degrees C for 45 d, and 25 degrees C for 26 h. To simulate the conditions that may occur during transportation, distribution, storage, or handling in supermarkets or by consumers, the effect of static temperature abuse on C. perfringens growth was assessed by transferring samples stored at 4 to 25 degrees C for 13 and 15 h. Total C. perfringens populations were determined by plating diluted samples on tryptose-sulfite-cycloserine agar. Growth was not observed up to 45 d of storage at 15 degrees C in samples supplemented with 800 ppm of Citricidal. At 25 degrees C, no significant differences (P > 0.05) on the lag phase duration due to antimicrobial treatments was observed. The temperature abuse of refrigerated products for up to 15 h did not lead to C. perfringens growth to high infective dose levels of 1 million cells required to cause food poisoning. The results suggest that 800 ppm Citricidal can have significant bacteriostatic activity against C. perfringens and may provide a degree of protection against this pathogen in sous-vide processed marinated pork meat Mexican entrée, under mild temperature abuse (

  11. Dose-dependent changes in the locomotor responses to methamphetamine in BALB/c mice: low doses induce hypolocomotion.

    PubMed

    Singh, Rana A K; Kosten, Therese A; Kinsey, Berma M; Shen, Xiaoyun; Lopez, Angel Y; Kosten, Thomas R; Orson, Frank M

    2012-12-01

    The overall goal of the present study was to determine the effects of different doses of (+)-methamphetamine (meth) on locomotor activity of Balb/C mice. Four experiments were designed to test a wide range of meth doses in BALB/c female mice. In Experiment 1, we examined locomotor activity induced by an acute administration of low doses of meth (0.01 and 0.03mg/kg) in a 90-min session. Experiment 2 was conducted to test higher meth doses (0.3-10mg/kg). In Experiment 3, separate sets of mice were pre-treated with various meth doses once or twice (one injection/week) prior to a locomotor challenge with a low meth dose. Finally, in Experiment 4, we tested whether locomotor activation would be affected by pretreatment with a low or moderate dose of meth one month prior to the low meth dose challenge. Results show that low doses of meth induce hypolocomotion whereas moderate to high doses induce hyperlocomotion. Prior exposure to either one moderate or high dose of meth or to two, low doses of meth attenuated the hypolocomotor effect of a low meth dose one week later. This effect was also attenuated in mice tested one month after administration of a moderate meth dose. These results show that low and high doses of meth can have opposing effects on locomotor activity. Further, prior exposure to the drug leads to tolerance, rather than sensitization, of the hypolocomotor response to low meth doses.

  12. ELDRS Characterization for a Very High Dose Mission

    NASA Technical Reports Server (NTRS)

    Harris, Richard D.; McClure, Steven S.; Rax, Bernard G.; Kenna, Aaron J.; Thorbourn, Dennis O.; Clark, Karla B.; Yan, Tsun-Yee

    2010-01-01

    Evaluation of bipolar linear parts which may have Enhanced Low Dose Rate Sensitivity (ELDRS) is problematic for missions that have very high dose radiation requirements. The accepted standards for evaluating parts that display ELDRS require testing at a very low dose rate which could be prohibitively long for very high dose missions. In this work, a methodology for ELDRS characterization of bipolar parts for mission doses up to 1 Mrad(Si) is evaluated. The procedure employs an initial dose rate of 0.01 rad(Si)/s to a total dose of 50 krad(Si) and then changes to 0.04 rad(Si)/s to a total dose of 1 Mrad(Si). This procedure appears to work well. No change in rate of degradation with dose has been observed when the dose rate is changed from 0.01 to 0.04 rad(Si)/s. This is taken as an indication that the degradation due to the higher dose rate is equivalent to that at the lower dose rate at the higher dose levels, at least for the parts studied to date. In several cases, significant parameter degradation or functional failure not observed at HDR was observed at fairly high total doses (50 to 250 krad(Si)) at LDR. This behavior calls into question the use of dose rate trend data and enhancement factors to predict LDR performance.

  13. An Adaptive Staggered Dose Design for a Normal Endpoint.

    PubMed

    Wu, Joseph; Menon, Sandeep; Chang, Mark

    2015-01-01

    In a clinical trial where several doses are compared to a control, a multi-stage design that combines both the selection of the best dose and the confirmation of this selected dose is desirable. An example is the two-stage drop-the-losers or pick-the-winner design, where inferior doses are dropped after interim analysis. Selection of target dose(s) can be based on ranking of observed effects, hypothesis testing with adjustment for multiplicity, or other criteria at interim stages. A number of methods have been proposed and have made significant gains in trial efficiency. However, many of these designs started off with all doses with equal allocation and did not consider prioritizing the doses using existing dose-response information. We propose an adaptive staggered dose procedure that allows explicit prioritization of doses and applies error spending scheme that favors doses with assumed better responses. This design starts off with only a subset of the doses and adaptively adds new doses depending on interim results. Using simulation, we have shown that this design performs better in terms of increased statistical power than the drop-the-losers design given strong prior information of dose response.

  14. Does vertebroplasty affect radiation dose distribution?: comparison of spatial dose distributions in a cement-injected vertebra as calculated by treatment planning system and actual spatial dose distribution.

    PubMed

    Komemushi, Atsushi; Tanigawa, Noboru; Kariya, Shuji; Yagi, Rie; Nakatani, Miyuki; Suzuki, Satoshi; Sano, Akira; Ikeda, Koshi; Utsunomiya, Keita; Harima, Yoko; Sawada, Satoshi

    2012-01-01

    Purpose. To assess differences in dose distribution of a vertebral body injected with bone cement as calculated by radiation treatment planning system (RTPS) and actual dose distribution. Methods. We prepared two water-equivalent phantoms with cement, and the other two phantoms without cement. The bulk density of the bone cement was imported into RTPS to reduce error from high CT values. A dose distribution map for the phantoms with and without cement was calculated using RTPS with clinical setting and with the bulk density importing. Actual dose distribution was measured by the film density. Dose distribution as calculated by RTPS was compared to the dose distribution measured by the film dosimetry. Results. For the phantom with cement, dose distribution was distorted for the areas corresponding to inside the cement and on the ventral side of the cement. However, dose distribution based on film dosimetry was undistorted behind the cement and dose increases were seen inside cement and around the cement. With the equivalent phantom with bone cement, differences were seen between dose distribution calculated by RTPS and that measured by the film dosimetry. Conclusion. The dose distribution of an area containing bone cement calculated using RTPS differs from actual dose distribution.

  15. An algorithm for unfolding neutron dose and dose equivalent from digitized recoil-particle tracks

    SciTech Connect

    Bolch, W.E.; Turner, J.E.; Hamm, R.N.

    1986-10-01

    Previous work had demonstrated the feasibility of a digital approach to neutron dosimetry. A Monte Carlo simulation code of one detector design utilizing the operating principles of time-projection chambers was completed. This thesis presents and verifies one version of the dosimeter's computer algorithm. This algorithm processes the output of the ORNL simulation code, but is applicable to all detectors capable of digitizing recoil-particle tracks. Key features include direct measurement of track lengths and identification of particle type for each registered event. The resulting dosimeter should allow more accurate determinations of neutron dose and dose equivalent compared with conventional dosimeters, which cannot measure these quantities directly. Verification of the algorithm was accomplished by running a variety of recoil particles through the simulated detector volume and comparing the resulting absorbed dose and dose equivalent to those unfolded by the algorithm.

  16. Right dose, right now: using big data to optimize antibiotic dosing in the critically ill.

    PubMed

    Elbers, Paul W G; Girbes, Armand; Malbrain, Manu L N G; Bosman, Rob

    2015-01-01

    Antibiotics save lives and are essential for the practice of intensive care medicine. Adequate antibiotic treatment is closely related to outcome. However this is challenging in the critically ill, as their pharmacokinetic profile is markedly altered. Therefore, it is surprising that critical care physicians continue to rely on standard dosing regimens for every patient, regardless of the actual clinical situation. This review outlines the pharmacokinetic and pharmacodynamic principles that underlie the need for individualized and personalized drug dosing. At present, therapeutic drug monitoring may be of help, but has major disadvantages, remains unavailable for most antibiotics and has produced mixed results. We therefore propose the AutoKinetics concept, taking decision support for antibiotic dosing back to the bedside. By direct interaction with electronic patient records, this opens the way for the use of big data for providing the right dose at the right time in each patient.

  17. Low dose aprotinin and low dose tranexamic acid in elective cardiac surgery with cardiopulmonary bypass.

    PubMed

    Waldow, Thomas; Krutzsch, Diana; Wils, Michael; Plötze, Katrin; Matschke, Klaus

    2009-01-01

    The antifibrinolytic agents aprotinin and tranexamic acid have both been proven to be efficient in reducing postoperative blood loss and transfusion requirements in patients in cardiac surgery. In light of recent safety issues regarding aprotinin, this single-centre study compared efficacy and safety of low dose aprotinin (2 million KIU, pump-prime volume only) and low dose tranexamic acid (1 g, pump-prime volume) in 708 consecutive patients from two prospective registers undergoing elective cardiac procedures with cardiopulmonary bypass (CPB). Incidences of postoperative complications showed no significant differences between groups. Postoperative blood loss and transfusion requirements were significantly lower in aprotinin compared to tranexamic acid patients. Overall, both antifibrinolytic low dose regimens are safe components of perioperative patient management in elective cardiac surgery with CPB. Cardiac procedures requiring longer CPB times might benefit from the administration of low dose aprotinin.

  18. Simulating total-dose and dose-rate effects on digital microelectronics timing delays using VHDL

    SciTech Connect

    Brothers, C.P. Jr.; Pugh, R.D.

    1995-12-01

    This paper describes a fast timing simulator based on Very High Speed Integrated Circuit (VHSIC) Hardware Description Language (VHDL) for simulating the timing of digital microelectronics in pre-irradiation, total dose, and dose-rate radiation environments. The goal of this research is the rapid and accurate timing simulation of radiation-hardened microelectronic circuits before, during, and after exposure to ionizing radiation. The results of this research effort were the development of VHDL compatible models capable of rapid and accurate simulation of the effect of radiation on the timing performance of microelectronic circuits. The effects of radiation for total dose at 1 Mrad(Si) and dose rates up to 2 {times} 10{sup 12} rads(Si) per second were modeled for a variety of Separation by IMplantion of OXygen (SIMOX) circuits. In all cases tested, the VHDL simulations ran at least 600 times faster than SPICE while maintaining a timing accuracy to within 15% of SPICE values.

  19. Internal dose conversion factors for calculation of dose to the public

    SciTech Connect

    Not Available

    1988-07-01

    This publication contains 50-year committed dose equivalent factors, in tabular form. The document is intended to be used as the primary reference by the US Department of Energy (DOE) and its contractors for calculating radiation dose equivalents for members of the public, resulting from ingestion or inhalation of radioactive materials. Its application is intended specifically for such materials released to the environment during routine DOE operations, except in those instances where compliance with 40 CFR 61 (National Emission Standards for Hazardous Air Pollutants) requires otherwise. However, the calculated values may be equally applicable to unusual releases or to occupational exposures. The use of these committed dose equivalent tables should ensure that doses to members of the public from internal exposures are calculated in a consistent manner at all DOE facilities.

  20. Comparison of organ dose and dose equivalent for human phantoms of CAM vs. MAX

    NASA Astrophysics Data System (ADS)

    Kim, Myung-Hee Y.; Qualls, Garry D.; Slaba, Tony C.; Cucinotta, Francis A.

    2010-04-01

    For the evaluation of organ dose and dose equivalent of astronauts on space shuttle and the International Space Station (ISS) missions, the CAMERA models of CAM (Computerized Anatomical Male) and CAF (Computerized Anatomical Female) of human tissue shielding have been implemented and used in radiation transport model calculations at NASA. One of new human geometry models to meet the “reference person” of International Commission on Radiological Protection (ICRP) is based on detailed Voxel (volumetric and pixel) phantom models denoted for male and female as MAX (Male Adult voXel) and FAX (Female Adult voXel), respectively. We compared the CAM model predictions of organ doses to those of MAX model, since the MAX model represents the male adult body with much higher fidelity than the CAM model currently used at NASA. Directional body-shielding mass was evaluated for over 1500 target points of MAX for specified organs considered to be sensitive to the induction of stochastic effects. Radiation exposures to solar particle event (SPE), trapped protons, and galactic cosmic ray (GCR) were assessed at the specific sites in the MAX phantom by coupling space radiation transport models with the relevant body-shielding mass. The development of multiple-point body-shielding distributions at each organ made it possible to estimate the mean and variance of organ doses at the specific organ. For the estimate of doses to the blood forming organs (BFOs), data on active marrow distributions in adult were used to weight the bone marrow sites over the human body. The discrete number of target points of MAX organs resulted in a reduced organ dose and dose equivalent compared to the results of CAM organs especially for SPE, and should be further investigated. Differences of effective doses between the two approaches were found to be small (<5%) for GCR.

  1. Ultra-low dose naltrexone potentiates the anticonvulsant effect of low dose morphine on clonic seizures.

    PubMed

    Honar, H; Riazi, K; Homayoun, H; Sadeghipour, H; Rashidi, N; Ebrahimkhani, M R; Mirazi, N; Dehpour, A R

    2004-01-01

    Significant potentiation of analgesic effects of opioids can be achieved through selective blockade of their stimulatory effects on intracellular signaling pathways by ultra-low doses of opioid receptor antagonists. However, the generality and specificity of this interaction is not well understood. The bimodal modulation of pentylenetetrazole-induced seizure threshold by opioids provide a model to assess the potential usefulness of this approach in seizure disorders and to examine the differential mechanisms involved in opioid anti- (morphine at 0.5-3 mg/kg) versus pro-convulsant (20-100 mg/kg) effects. Systemic administration of ultra-low doses of naltrexone (100 fg/kg-10 ng/kg) significantly potentiated the anticonvulsant effect of morphine at 0.5 mg/kg while higher degrees of opioid receptor antagonism blocked this effect. Moreover, inhibition of opioid-induced excitatory signaling by naltrexone (1 ng/kg) unmasked a strong anticonvulsant effect for very low doses of morphine (1 ng/kg-100 microg/kg), suggesting that a presumed inhibitory component of opioid receptor signaling can exert strong seizure-protective effects even at very low levels of opioid receptor activation. However, ultra-low dose naltrexone could not increase the maximal anticonvulsant effect of morphine (1-3 mg/kg), possibly due to a ceiling effect. The proconvulsant effects of morphine on seizure threshold were minimally altered by ultra-low doses of naltrexone while being completely blocked by a higher dose (1 mg/kg) of the antagonist. The present data suggest that ultra-low doses of opioid receptor antagonists may provide a potent strategy to modulate seizure susceptibility, especially in conjunction with very low doses of opioids.

  2. Calculation of Dose, Dose Equivalent, and Relative Biological Effectiveness for High Charge and Energy Ion Beams

    NASA Technical Reports Server (NTRS)

    Wilson, J. W.; Reginatto, M.; Hajnal, F.; Chun, S. Y.

    1995-01-01

    The Green's function for the transport of ions of high charge and energy is utilized with a nuclear fragmentation database to evaluate dose, dose equivalent, and RBE for C3H1OT1/2 cell survival and neoplastic transformation as a function of depth in soft tissue. Such evaluations are useful to estimates of biological risk for high altitude aircraft, space operations, accelerator operations, and biomedical applications.

  3. Calculation of dose, dose equivalent, and relative biological effectiveness for high charge and energy ion beams

    NASA Technical Reports Server (NTRS)

    Wilson, J. W.; Chun, S. Y.; Reginatto, M.; Hajnal, F.

    1995-01-01

    The Green's function for the transport of ions of high charge and energy is utilized with a nuclear fragmentation database to evaluate dose, dose equivalent, and RBE for C3H10T1/2 cell survival and neo-plastic transformation as function of depth in soft tissue. Such evaluations are useful to estimates of biological risk for high altitude aircraft, space operations, accelerator operations, and biomedical application.

  4. High-dose neutron detector project update

    SciTech Connect

    Menlove, Howard Olsen; Henzlova, Daniela

    2016-08-10

    These are the slides for a progress review meeting by the sponsor. This is an update on the high-dose neutron detector project. In summary, improvements in both boron coating and signal amplification have been achieved; improved boron coating materials and procedures have increased efficiency by ~ 30-40% without the corresponding increase in the detector plate area; low dead-time via thin cell design (~ 4 mm gas gaps) and fast amplifiers; prototype PDT 8” pod has been received and testing is in progress; significant improvements in efficiency and stability have been verified; use commercial PDT 10B design and fabrication to obtain a faster path from the research to practical high-dose neutron detector.

  5. PGWD: Integrating Personal Genome for Warfarin Dosing.

    PubMed

    Pan, Yidan; Cheng, Ronghai; Li, Zhoufang; Zhao, Yujun; He, Jiankui

    2016-03-01

    Warfarin is a drug normally used in the prevention of thrombosis and the formation of blood clots. The dosage of warfarin is strongly affected by genetic variants of CYP2C9 and VKORC1 genes. Current technologies for detecting the variants of these genes are mainly based on real-time PCR. In recent years, due to the rapidly dropping cost of whole genome sequencing and genotyping, more and more people get their whole genome sequenced or genotyped. However, current software for warfarin dosing prediction is based on low-throughput genetic information from either real-time PCR or melting curve methods. There is no bioinformatics tool available that can take the high-throughput genome sequencing data as input and determine the accurate dosage of warfarin. Here, we present PGWD, a web tool that analyzes personal genome sequencing data and integrates with clinical information for warfarin dosing.

  6. Effects of low doses of radiation.

    PubMed

    Fry, R J

    1996-06-01

    This is a brief review of what is known from experimental studies about the effects of low doses of radiation, and approaches that might improve risk estimates are discussed. The dose-response relationships for cancer induction by radiation vary markedly between tissues. The evidence suggests that 1) the induction of the initial events is dependent on the cell type because the size and/or the number of targets and how the cells handle the initial lesions differs between cell types; and 2) there are marked differences among tissues how initial lesions are expressed and proceed to overt cancer. The recent findings about adaptive responses are discussed in the context of what they contribute to our understanding about the response to irradiation. Lastly, the possibility of extending the approach of determining "The probability of causation," which Vic Bond played such an important role in establishing, is raised.

  7. Low dose naltrexone therapy in multiple sclerosis.

    PubMed

    Agrawal, Y P

    2005-01-01

    The use of low doses of naltrexone for the treatment of multiple sclerosis (MS) enjoys a worldwide following amongst MS patients. There is overwhelming anecdotal evidence, that in low doses naltrexone not only prevents relapses in MS but also reduces the progression of the disease. It is proposed that naltrexone acts by reducing apoptosis of oligodendrocytes. It does this by reducing inducible nitric oxide synthase activity. This results in a decrease in the formation of peroxynitrites, which in turn prevent the inhibition of the glutamate transporters. Thus, the excitatory neurotoxicity of glutamate on neuronal cells and oligodendrocytes via activation of the alpha-amino-3-hydroxy-5-methyl-isoxazole-4-propionic acid class of glutamate receptor is prevented. It is crucial that the medical community respond to patient needs and investigate this drug in a clinical trial.

  8. LUDEP: A Lung Dose Evaluation Program

    SciTech Connect

    Birchall, A.; Bailey, M.R. ); James, A.C. )

    1990-06-01

    A Task Group of the ICRP is currently reviewing its dosimetric model for the respiratory tract with the aim of producing a more comprehensive and realistic model which can be used both for dosimetry and bioassay purposes. This in turn requires deposition, clearance, and dosimetry to be treated in a more detailed manner in than in the current model. In order to examine the practical application and radiological implications of the proposed model, a microcomputer program has been developed in a modular form so that changes can be easily included as the model develops. LUDEP (Lung Dose Evaluation Program) is a user-friendly menu-driven program which can be operated on any IBM-compatible PC. It enables the user to calculate (a) doses to each region of the respiratory tract and all other body organs, and (b) excretion rates and retention curves for bioassay purposes. 11 refs., 4 figs., 6 tabs.

  9. UNAVCO to support DOSE regional geodesy

    NASA Astrophysics Data System (ADS)

    Ware, Randolph

    The Earth science programs at NASA and the National Science Foundation are joining forces to support regional Global Positioning System (GPS) geodesy experiments. The combined field project support functions will be conducted by the University Navstar Consortium (UNAVCO) facility.NASA's Solid Earth Science Branch initiated the Dynamics of the Solid Earth (DOSE) program in 1992. DOSE supports a variety of investigations, including studies of crustal deformation due to tectonic plate motion, earthquakes, post-glacial rebound, and volcanic activity. Many of these investigations require high-precision geodetic measurements utilizing the space-based GPS technology. NSF's Earth Sciences Division established UNAVCO in 1984 to provide equipment, technical, and related support to university investigators applying GPS technology to geosciences research. UNAVCO has since supported investigators in more than 100 regional GPS geodesy projects. The UNAVCO facility operates in Boulder, Colo., as a program of the University Corporation for Atmospheric Research.

  10. Floating patterns of metered dose inhalers.

    PubMed

    Wolf, B L; Cochran, K R

    1997-01-01

    As long as metered dose inhalers have existed, patients have sought a reliable method to determine if a given canister was still potent. Concerning beta agonists, the answer to this question may be lifesaving. Issues of compliance have made dating canisters or counting doses impractical. Likewise, previous claims of floating characteristics are unreliable. In tap water, we float-tested 13 commonly used inhalers three times each, observing variations as they were incrementally actuated, emptying their contents. One essential pattern was observed. Almost all prescription-size canisters sink when full; all float by the time one-third of their contents is gone. Orientation of prescription-size canisters changes in a distinct pattern especially near 90% depletion. Sample-size canisters showed some variance. Results suggest that the pharmaceutical industry should include individual floating characteristics as part of the package insert as they provide a reproducible means of gauging contents.

  11. High dose Nutrizym 22 in cystic fibrosis.

    PubMed

    Shah, A; Dinwiddie, R; Madge, S; Prescott, P; Hudson, G

    1993-09-01

    New high dose pancreatic enzyme preparations could be potentially helpful to cystic fibrosis (CF) patients. The purpose of this study was to compare the efficacy of the new high dose pancreatic enzyme preparation, Nutrizym 22 with the standard preparation Nutrizym GR. Twenty-five CF children (aged 7-16 years) entered the study and 22 completed it; 3 did not, due to non-compliance. All were taking Nutrizym GR for at least 2 weeks before entering the study. A randomised double blind, crossover method using standard Nutrizym GR or double strength Nutrizym 22 capsules was carried out over two consecutive 14-day periods. Crossover analyses of variance showed no statistically significant differences in actual weight gain, appetite, abdominal pain, stool consistency or faecal fat during the prestudy and study periods. It is concluded that half the capsule numbers of the high strength preparation are just as effective as the standard capsule dosage.

  12. Scoping calculation for components of the cow-milk dose pathway for evaluating the dose contribution from iodine-131. Hanford Environmental Dose Reconstruction Project: Dose code recovery activities

    SciTech Connect

    Ikenberry, T.A.; Napier, B.A.

    1992-12-01

    A series of scoping calculations have been undertaken to evaluate The absolute and relative contribution of different exposure pathways to doses that may have been received by individuals living in the vicinity of the Hanford site. This scoping calculation (Calculation 001) examined the contributions of the various exposure pathways associated with environmental transport and accumulation of iodine-131 in the pasture-cow-milk pathway. Addressed in this calculation were the contributions to thyroid dose of infants and adult from (1) the ingestion by dairy cattle of various feedstuffs (pasturage, silage, alfalfa hay, and grass hay) in four different feeding regimes; (2) ingestion of soil by dairy cattle; (3) ingestion of stared feed on which airborne iodine-131 had been deposited; and (4) inhalation of airborne iodine-131 by dairy cows.

  13. Epigenomic Adaptation to Low Dose Radiation

    SciTech Connect

    Gould, Michael N.

    2015-06-30

    The overall hypothesis of this grant application is that the adaptive responses elicited by low dose ionizing radiation (LDIR) result in part from heritable DNA methylation changes in the epigenome. In the final budget period at the University of Wisconsin-Madison, we will specifically address this hypothesis by determining if the epigenetically labile, differentially methylated regions (DMRs) that regulate parental-specific expression of imprinted genes are deregulated in agouti mice by low dose radiation exposure during gestation. This information is particularly important to ascertain given the 1) increased human exposure to medical sources of radiation; 2) increased number of people predicted to live and work in space; and 3) enhanced citizen concern about radiation exposure from nuclear power plant accidents and terrorist ‘dirty bombs.’

  14. Low-dose radiation and leukemia

    SciTech Connect

    Linos, A.; Gray, J.E.; Orvis, A.L.; Kyle, R.A.; O'Fallon, W.M.; Kurland, L.T.

    1980-05-15

    We investigated the effect of diagnostic and low-level therapeutic radiation (less than 300 rads to bone marrow) on the development of leukemia. During this study, 138 patients with leukemia (representing all known incidence cases of leukemia in residents of Olmsted County, Minnesota, between 1955 and 1974) were each matched with two controls, and the lifelong experiences of both groups with regard to diagnostic and therapeutic radiation were ascertained. No statistically significant increase was found in the risk of developing leukemia after radiation doses of 0 to 300 rads (3 Gy) to the bone marrow when these amounts were administered in small doses over long periods of time, as in routine medical care.

  15. Optical fibres for high radiation dose environments

    NASA Astrophysics Data System (ADS)

    Henschel, H.; Kohn, O.; Schmidt, H. U.; Bawirzanski, E.; Landers, A.

    1994-06-01

    A variety of modern single mode (SM) and graded index (GI) fibres as well as a new pure silica multimode step index (MMSI) fibre with high OH content were irradiated at a Co-60 gamma ray source with a dose rate of approximately = 1.5Gy/s up to a total dose of 10(exp 6)Gy. The radiation-induced loss of all fibres was measured continuously during and after irradiation at discrete wavelengths (approximately = 850, approximately = 1070, approximately = 1300, approximately = 1550nm). With one SM fibre type also the 'breaking stress' before and after irradiation was determined. Radiation-induced losses of approximately less than 5dB/50m (at approximately = 1300nm) were found with some of the SM fibres, whereas the MMSI fibre showed a final induced loss of only 0.5dB/50m at 1070nm wavelength. The breaking stress of the SM fibre increased by about 10%.

  16. Thyroid dose distribution in dental radiography

    SciTech Connect

    Bristow, R.G.; Wood, R.E.; Clark, G.M. )

    1989-10-01

    The anatomic position and proven radiosensitivity of the thyroid gland make it an organ of concern in dental radiography. A calibrated thermoluminescent dosimetry system was used to investigate the absorbed dose (microGy) to the thyroid gland resultant from a minimum irradiated volume, intraoral full-mouth radiography technique with the use of rectangular collimation with a lead-backed image receptor, and conventional panoramic radiography performed with front and rear lead aprons. Use of the minimum irradiated volume technique resulted in a significantly decreased absorbed dose over the entire thyroid region ranging from 100% to 350% (p less than 0.05). Because this intraoral technique results in radiographs with greater image quality and also exposes the thyroid gland to less radiation than the panoramic, this technique may be an alternative to the panoramic procedure.

  17. Use of Fluka to Create Dose Calculations

    NASA Technical Reports Server (NTRS)

    Lee, Kerry T.; Barzilla, Janet; Townsend, Lawrence; Brittingham, John

    2012-01-01

    Monte Carlo codes provide an effective means of modeling three dimensional radiation transport; however, their use is both time- and resource-intensive. The creation of a lookup table or parameterization from Monte Carlo simulation allows users to perform calculations with Monte Carlo results without replicating lengthy calculations. FLUKA Monte Carlo transport code was used to develop lookup tables and parameterizations for data resulting from the penetration of layers of aluminum, polyethylene, and water with areal densities ranging from 0 to 100 g/cm^2. Heavy charged ion radiation including ions from Z=1 to Z=26 and from 0.1 to 10 GeV/nucleon were simulated. Dose, dose equivalent, and fluence as a function of particle identity, energy, and scattering angle were examined at various depths. Calculations were compared against well-known results and against the results of other deterministic and Monte Carlo codes. Results will be presented.

  18. Hydroxychloroquine toxicity despite normal dose therapy.

    PubMed

    Falcone, P M; Paolini, L; Lou, P L

    1993-10-01

    The risk of retinopathy associated with the use of hydroxychloroquine is said to be nullified if the dosage recommendations are followed strictly. In this case report, we describe an elderly patient with rheumatoid arthritis who had bilateral maculopathy, presumably secondary to hydroxychloroquine therapy, despite a dosing regimen within therapeutic guidelines. We believe special attention should be given to elderly patients who are being treated with hydroxychloroquine because their retinal pigment epithelium may be more susceptible to the toxic effects of this drug.

  19. Nominal Performance Biosphere Dose Conversion Factor Analysis

    SciTech Connect

    Wasiolek, Maryla A.

    2000-12-21

    The purpose of this report was to document the process leading to development of the Biosphere Dose Conversion Factors (BDCFs) for the postclosure nominal performance of the potential repository at Yucca Mountain. BDCF calculations concerned twenty-four radionuclides. This selection included sixteen radionuclides that may be significant nominal performance dose contributors during the compliance period of up to 10,000 years, five additional radionuclides of importance for up to 1 million years postclosure, and three relatively short-lived radionuclides important for the human intrusion scenario. Consideration of radionuclide buildup in soil caused by previous irrigation with contaminated groundwater was taken into account in the BDCF development. The effect of climate evolution, from the current arid conditions to a wetter and cooler climate, on the BDCF values was evaluated. The analysis included consideration of different exposure pathway's contribution to the BDCFs. Calculations of nominal performance BDCFs used the GENII-S computer code in a series of probabilistic realizations to propagate the uncertainties of input parameters into the output. BDCFs for the nominal performance, when combined with the concentrations of radionuclides in groundwater allow calculation of potential radiation doses to the receptor of interest. Calculated estimates of radionuclide concentration in groundwater result from the saturated zone modeling. The integration of the biosphere modeling results (BDCFs) with the outcomes of the other component models is accomplished in the Total System Performance Assessment (TSPA) to calculate doses to the receptor of interest from radionuclides postulated to be released to the environment from the potential repository at Yucca Mountain.

  20. Solar particle event organ doses and dose equivalents for interplanetary crews: variations due to body size

    NASA Technical Reports Server (NTRS)

    Zapp, E. N.; Townsend, L. W.; Cucinotta, F. A.

    2002-01-01

    Proper assessments of spacecraft shielding requirements and concomitant estimates of risk to critical body organs of spacecraft crews from energetic space radiation require accurate, quantitative methods of characterizing the compositional changes in these radiation fields as they pass through the spacecraft and overlying tissue. When estimating astronaut radiation organ doses and dose equivalents it is customary to use the Computerized Anatomical Man (CAM) model of human geometry to account for body self-shielding. Usually, the distribution for the 50th percentile man (175 cm height; 70 kg mass) is used. Most male members of the U.S. astronaut corps are taller and nearly all have heights that deviate from the 175 cm mean. In this work, estimates of critical organ doses and dose equivalents for interplanetary crews exposed to an event similar to the October 1989 solar particle event are presented for male body sizes that vary from the 5th to the 95th percentiles. Overall the results suggest that calculations of organ dose and dose equivalent may vary by as much as approximately 15% as body size is varied from the 5th to the 95th percentile in the population used to derive the CAM model data. c2002 Published by Elsevier Science Ltd on behalf of COSPAR.

  1. Ethylene oxide dose and dose-rate effects in the mouse dominant-lethal test

    SciTech Connect

    Generoso, W.M.; Cain, K.T.; Hughes, L.A.; Sega, G.A.; Braden, P.W.; Gosslee, D.G.; Shelby, M.D.

    1986-01-01

    In the dose-response study, male mice were exposed by inhalation to ethylene oxide (EtO) for 4 consecutive days. Mice were exposed for 6 hr per day to 300 ppm, 400 ppm, or 500 ppm EtO for a daily total of 1800, 2400, or 3000 ppm X hr (total exposures of 7200, 9600 and 12,000 ppm X hr), respectively. In the dose-rate study, mice were given a total exposure of 1800 ppm X hr per day, also for 4 consecutive days, delivered either at 300 ppm in 6 hr, 600 ppm in 3 hr, or 1200 ppm in 1.5 hr. Quantitation of dominant-lethal responses was made on matings involving sperm exposed as late spermatids and early spermatozoa, the most sensitive stages to EtO. In the dose-response study, a dose-related increase in dominant-lethal mutations was observed, the dose-response curve proved to be nonlinear. In the dose-rate study, increasing the exposure concentrations resulted in increased dominant-lethal responses.

  2. Biological equivalent dose studies for dose escalation in the stereotactic synchrotron radiation therapy clinical trials

    SciTech Connect

    Prezado, Y.; Fois, G.; Edouard, M.; Nemoz, C.; Renier, M.; Requardt, H.; Esteve, F.; Adam, JF.; Elleaume, H.; Bravin, A.

    2009-03-15

    Synchrotron radiation is an innovative tool for the treatment of brain tumors. In the stereotactic synchrotron radiation therapy (SSRT) technique a radiation dose enhancement specific to the tumor is obtained. The tumor is loaded with a high atomic number (Z) element and it is irradiated in stereotactic conditions from several entrance angles. The aim of this work was to assess dosimetric properties of the SSRT for preparing clinical trials at the European Synchrotron Radiation Facility (ESRF). To estimate the possible risks, the doses received by the tumor and healthy tissues in the future clinical conditions have been calculated by using Monte Carlo simulations (PENELOPE code). The dose enhancement factors have been determined for different iodine concentrations in the tumor, several tumor positions, tumor sizes, and different beam sizes. A scheme for the dose escalation in the various phases of the clinical trials has been proposed. The biological equivalent doses and the normalized total doses received by the skull have been calculated in order to assure that the tolerance values are not reached.

  3. Dose convolution filter: Incorporating spatial dose information into tissue response modeling

    SciTech Connect

    Huang Yimei; Joiner, Michael; Zhao Bo; Liao Yixiang; Burmeister, Jay

    2010-03-15

    Purpose: A model is introduced to integrate biological factors such as cell migration and bystander effects into physical dose distributions, and to incorporate spatial dose information in plan analysis and optimization. Methods: The model consists of a dose convolution filter (DCF) with single parameter {sigma}. Tissue response is calculated by an existing NTCP model with DCF-applied dose distribution as input. The authors determined {sigma} of rat spinal cord from published data. The authors also simulated the GRID technique, in which an open field is collimated into many pencil beams. Results: After applying the DCF, the NTCP model successfully fits the rat spinal cord data with a predicted value of {sigma}=2.6{+-}0.5 mm, consistent with 2 mm migration distances of remyelinating cells. Moreover, it enables the appropriate prediction of a high relative seriality for spinal cord. The model also predicts the sparing of normal tissues by the GRID technique when the size of each pencil beam becomes comparable to {sigma}. Conclusions: The DCF model incorporates spatial dose information and offers an improved way to estimate tissue response from complex radiotherapy dose distributions. It does not alter the prediction of tissue response in large homogenous fields, but successfully predicts increased tissue tolerance in small or highly nonuniform fields.

  4. Phage therapy pharmacology: calculating phage dosing.

    PubMed

    Abedon, Stephen

    2011-01-01

    Phage therapy, which can be described as a phage-mediated biocontrol of bacteria (or, simply, biocontrol), is the application of bacterial viruses-also bacteriophages or phages-to reduce densities of nuisance or pathogenic bacteria. Predictive calculations for phage therapy dosing should be useful toward rational development of therapeutic as well as biocontrol products. Here, I consider the theoretical basis of a number of concepts relevant to phage dosing for phage therapy including minimum inhibitory concentration (but also "inundation threshold"), minimum bactericidal concentration (but also "clearance threshold"), decimal reduction time (D value), time until bacterial eradication, threshold bacterial density necessary to support phage population growth ("proliferation threshold"), and bacterial density supporting half-maximal phage population growth rates (K(B)). I also address the concepts of phage killing titers, multiplicity of infection, and phage peak densities. Though many of the presented ideas are not unique to this chapter, I nonetheless provide variations on derivations and resulting formulae, plus as appropriate discuss relative importance. The overriding goal is to present a variety of calculations that are useful toward phage therapy dosing so that they may be found in one location and presented in a manner that allows facile appreciation, comparison, and implementation. The importance of phage density as a key determinant of the phage potential to eradicate bacterial targets is stressed throughout the chapter.

  5. Gold Nanoparticle Hyperthermia Reduces Radiotherapy Dose

    PubMed Central

    Lin, Lynn; Slatkin, Daniel N.; Dilmanian, F. Avraham; Vadas, Timothy M.; Smilowitz, Henry M.

    2014-01-01

    Gold nanoparticles can absorb near infrared light, resulting in heating and ablation of tumors. Gold nanoparticles have also been used for enhancing the dose of X-rays in tumors during radiotherapy. The combination of hyperthermia and radiotherapy is synergistic, importantly allowing a reduction in X-ray dose with improved therapeutic results. Here we intratumorally infused small 15 nm gold nanoparticles engineered to be transformed from infrared-transparent to infrared-absorptive by the tumor, which were then heated by infrared followed by X-ray treatment. Synergy was studied using a very radioresistant subcutaneous squamous cell carcinoma (SCCVII) in mice. It was found that the dose required to control 50% of the tumors, normally 55 Gy, could be reduced to <15 Gy (a factor of >3.7). Gold nanoparticles therefore provide a method to combine hyperthermia and radiotherapy to drastically reduce the X-ray radiation needed, thus sparing normal tissue, reducing the side effects, and making radiotherapy more effective. PMID:24990355

  6. Assessment of dose during an SGTR

    SciTech Connect

    Adams, J.P.

    1993-01-01

    The Nuclear Regulatory Commission requires utilities to determine the response of a pressurized water reactor to a steam generator tube rupture (SGTR) as part of the safety analysis for the plant. The SGTR analysis includes assumptions regarding the iodine concentration in the reactor coolant system (RCS) due to iodine spikes, primary flashing and bypass fractions, and iodine partitioning in the secondary coolant system (SCS). Experimental and analytical investigations have recently been completed wherein these assumptions were tested to determine whether and to what degree they were conservative (that is, whether they result in a calculated iodine source term/dose that is at least as large or larger than that expected during an actual event). The current study has the objective to assess the overall effects of the results of these investigations on the calculated iodine dose to the environment during an SGTR. To assist in this study, a computer program, DOSE, was written. This program uses a simple, non-mechanistic model to calculate the iodine source term to the environment during an SGTR as a function of water mass inventories and flow rates and iodine concentrations in the RCS and SCS. The principal conclusion of this study is that the iodine concentration in the RCS is the dominant parameter, due to the dominance of primary flashing on the iodine source term.

  7. Antibiotic dose optimization in critically ill patients.

    PubMed

    Cotta, M O; Roberts, J A; Lipman, J

    2015-12-01

    The judicious use of existing antibiotics is essential for preserving their activity against infections. In the era of multi-drug resistance, this is of particular importance in clinical areas characterized by high antibiotic use, such as the ICU. Antibiotic dose optimization in critically ill patients requires sound knowledge not only of the altered physiology in serious infections - including severe sepsis, septic shock and ventilator-associated pneumonia - but also of the pathogen-drug exposure relationship (i.e. pharmacokinetic/pharmacodynamic index). An important consideration is the fact that extreme shifts in organ function, such as those seen in hyperdynamic patients or those with multiple organ dysfunction syndrome, can have an impact upon drug exposure, and constant vigilance is required when reviewing antibiotic dosing regimens in the critically ill. The use of continuous renal replacement therapy and extracorporeal membrane oxygenation remain important interventions in these patients; however, both of these treatments can have a profound effect on antibiotic exposure. We suggest placing emphasis on the use of therapeutic drug monitoring and dose individualization when optimizing therapy in these settings.

  8. Dose masking feature for BNCT radiotherapy planning

    DOEpatents

    Cook, Jeremy L.; Wessol, Daniel E.; Wheeler, Floyd J.

    2000-01-01

    A system for displaying an accurate model of isodoses to be used in radiotherapy so that appropriate planning can be performed prior to actual treatment on a patient. The nature of the simulation of the radiotherapy planning for BNCT and Fast Neutron Therapy, etc., requires that the doses be computed in the entire volume. The "entire volume" includes the patient and beam geometries as well as the air spaces in between. Isodoses derived from the computed doses will therefore extend into the air regions between the patient and beam geometries and thus depict the unrealistic possibility that radiation deposition occurs in regions containing no physical media. This problem is solved by computing the doses for the entire geometry and then masking the physical and air regions along with the isodose contours superimposed over the patient image at the corresponding plane. The user is thus able to mask out (remove) the contour lines from the unwanted areas of the image by selecting the appropriate contour masking region from the raster image.

  9. Ultraviolet radiation therapy and UVR dose models.

    PubMed

    Grimes, David Robert

    2015-01-01

    Ultraviolet radiation (UVR) has been an effective treatment for a number of chronic skin disorders, and its ability to alleviate these conditions has been well documented. Although nonionizing, exposure to ultraviolet (UV) radiation is still damaging to deoxyribonucleic acid integrity, and has a number of unpleasant side effects ranging from erythema (sunburn) to carcinogenesis. As the conditions treated with this therapy tend to be chronic, exposures are repeated and can be high, increasing the lifetime probability of an adverse event or mutagenic effect. Despite the potential detrimental effects, quantitative ultraviolet dosimetry for phototherapy is an underdeveloped area and better dosimetry would allow clinicians to maximize biological effect whilst minimizing the repercussions of overexposure. This review gives a history and insight into the current state of UVR phototherapy, including an overview of biological effects of UVR, a discussion of UVR production, illness treated by this modality, cabin design and the clinical implementation of phototherapy, as well as clinical dose estimation techniques. Several dose models for ultraviolet phototherapy are also examined, and the need for an accurate computational dose estimation method in ultraviolet phototherapy is discussed.

  10. PDT Dose Dosimeter for Pleural Photodynamic Therapy

    PubMed Central

    Kim, Michele M.; Darafsheh, Arash; Ahmad, Mahmoud; Finlay, Jarod C.; Zhu, Timothy C.

    2016-01-01

    PDT dose is the product of the photosensitizer concentration and the light fluence in the target tissue. For improved dosimetry during plural photodynamic therapy (PDT), a PDT dose dosimeter was developed to measure both the light fluence and the photosensitizer concentration simultaneously in the same treatment location. Light fluence and spectral data were rigorously compared to other methods of measurement (e.g. photodiode, multi-fiber spectroscopy contact probe) to assess the accuracy of the measurements as well as their uncertainty. Photosensitizer concentration was obtained by measuring the fluorescence of the sensitizer excited by the treatment light. Fluence rate based on the intensity of the laser spectrum was compared to the data obtained by direct measurement of fluence rate by a fiber-coupled photodiode. Phantom studies were done to obtain an optical property correction for the fluorescence signal. Measurements were performed in patients treated Photofrin for different locations in the pleural cavity. Multiple sites were measured to investigate the heterogeneity of the cavity and to provide cross-validation via relative dosimetry. This novel method will allow for accurate real-time determination of delivered PDT dose and improved PDT dosimetry. PMID:27053825

  11. Radioactive materials in biosolids : dose modeling.

    SciTech Connect

    Wolbarst, A. B.; Chiu, W. A; Yu, C.; Aiello, K.; Bachmaier, J. T.; Bastian, R. K.; Cheng, J. -J.; Goodman, J.; Hogan, R.; Jones, A. R.; Kamboj, S.; Lenhartt, T.; Ott, W. R.; Rubin, A.; Salomon, S. N.; Schmidt, D. W.; Setlow, L. W.; Environmental Science Division; U.S. EPA; Middlesex County Utilities Authority; U.S. DOE; U.S. NRC; NE Ohio Regional Sewer District

    2006-01-01

    The Interagency Steering Committee on Radiation Standards (ISCORS) has recently completed a study of the occurrence within the United States of radioactive materials in sewage sludge and sewage incineration ash. One component of that effort was an examination of the possible transport of radioactivity from sludge into the local environment and the subsequent exposure of humans. A stochastic environmental pathway model was applied separately to seven hypothetical, generic sludge-release scenarios, leading to the creation of seven tables of Dose-to-Source Ratios (DSR), which can be used in translating from specific activity in sludge into dose to an individual. These DSR values were then combined with the results of an ISCORS survey of sludge and ash at more than 300 publicly owned treatment works, to explore the potential for radiation exposure of sludge workers and members of the public. This paper provides a brief overview of the pathway modeling methodology employed in the exposure and dose assessments and discusses technical aspects of the results obtained.

  12. Obstetric Pharmacokinetic Dosing Studies are Urgently Needed

    PubMed Central

    McCormack, Shelley A.; Best, Brookie M.

    2014-01-01

    Use of pharmacotherapy during pregnancy is common and increasing. Physiologic changes during pregnancy may significantly alter the overall systemic drug exposure, necessitating dose changes. A search of PubMed for pharmacokinetic clinical trials showed 494 publications during pregnancy out of 35,921 total pharmacokinetic published studies (1.29%), from the late 1960s through August 31, 2013. Closer examination of pharmacokinetic studies in pregnant women published since 2008 (81 studies) revealed that about a third of the trials were for treatment of acute labor and delivery issues, a third included studies of infectious disease treatment during pregnancy, and the remaining third were for varied ante-partum indications. Approximately, two-thirds of these recent studies were primarily funded by government agencies worldwide, one-quarter were supported by private non-profit foundations or combinations of government and private funding, and slightly <10% were supported by pharmaceutical industry. As highlighted in this review, vast gaps exist in pharmacology information and evidence for appropriate dosing of medications in pregnant women. This lack of knowledge and understanding of drug disposition throughout pregnancy place both the mother and the fetus at risk for avoidable therapeutic misadventures – suboptimal efficacy or excess toxicity – with medication use in pregnancy. Increased efforts to perform and support obstetric dosing and pharmacokinetic studies are greatly needed. PMID:24575394

  13. Supplementary iron dose in pregnancy anemia prophylaxis.

    PubMed

    Reddaiah, V P; Raj, P P; Ramachandran, K; Nath, L M; Sood, S K; Madan, N; Rusia, U

    1989-01-01

    This study was conducted to determine the optimum dose of supplemental iron for prophylaxis against pregnancy anemia. One hundred and ten pregnant women were randomly allocated to three groups: Group A receiving equivalent of 60 mg, group B 120 mg and Group C 240 mg, elemental iron as ferrous sulphate daily; the content of folic acid was constant in all the three groups (0.5 mg). These women had at least consumed 90 tablets in 100 +/- 10 days. Blood was drawn at the beginning and at the end of the treatment. Fifty percent were anemic (less than 11 g/100 ml). The hemoglobin levels rose similarly in all groups and the differences were statistically not significant. Fifty-six percent had depleted iron stores (serum ferritin value less than 12 micrograms/l) at the beginning of the study. Following therapy a statistically significant increase in iron stores was observed in group B and C as compared to group A. The difference between group B and C was not significant. The side effects increased with increasing doses of iron; 32.4%, 40.3% and 72% in group A, B and C respectively. Based on these findings, the authors advocate that optimum dose of iron should be 120 mg instead of 60 mg as is currently being used in the National Nutritional Anemia Prophylaxis Programme.

  14. A New Proton Dose Algorithm for Radiotherapy

    NASA Astrophysics Data System (ADS)

    Lee, Chungchi (Chris).

    This algorithm recursively propagates the proton distribution in energy, angle and space at one level in an absorbing medium to another, at slightly greater depth, until all the protons are stopped. The angular transition density describing the proton trajectory is based on Moliere's multiple scattering theory and Vavilov's theory of energy loss along the proton's path increment. These multiple scattering and energy loss distributions are sampled using equal probability spacing to optimize computational speed while maintaining calculational accuracy. Nuclear interactions are accounted for by using a simple exponential expression to describe the loss of protons along a given path increment and the fraction of the original energy retained by the proton is deposited locally. Two levels of testing for the algorithm are provided: (1) Absolute dose comparisons with PTRAN Monte Carlo simulations in homogeneous water media. (2) Modeling of a fixed beam line including the scattering system and range modulator and comparisons with measured data in a homogeneous water phantom. The dose accuracy of this algorithm is shown to be within +/-5% throughout the range of a 200-MeV proton when compared to measurements except in the shoulder region of the lateral profile at the Bragg peak where a dose difference as large as 11% can be found. The numerical algorithm has an adequate spatial accuracy of 3 mm. Measured data as input is not required.

  15. Ultraviolet radiation therapy and UVR dose models

    SciTech Connect

    Grimes, David Robert

    2015-01-15

    Ultraviolet radiation (UVR) has been an effective treatment for a number of chronic skin disorders, and its ability to alleviate these conditions has been well documented. Although nonionizing, exposure to ultraviolet (UV) radiation is still damaging to deoxyribonucleic acid integrity, and has a number of unpleasant side effects ranging from erythema (sunburn) to carcinogenesis. As the conditions treated with this therapy tend to be chronic, exposures are repeated and can be high, increasing the lifetime probability of an adverse event or mutagenic effect. Despite the potential detrimental effects, quantitative ultraviolet dosimetry for phototherapy is an underdeveloped area and better dosimetry would allow clinicians to maximize biological effect whilst minimizing the repercussions of overexposure. This review gives a history and insight into the current state of UVR phototherapy, including an overview of biological effects of UVR, a discussion of UVR production, illness treated by this modality, cabin design and the clinical implementation of phototherapy, as well as clinical dose estimation techniques. Several dose models for ultraviolet phototherapy are also examined, and the need for an accurate computational dose estimation method in ultraviolet phototherapy is discussed.

  16. High-dose photoirradiation of esophageal cancer.

    PubMed Central

    Thomas, R J; Abbott, M; Bhathal, P S; St John, D J; Morstyn, G

    1987-01-01

    Fifteen patients with locally advanced esophageal cancer were treated with phototherapy. Each patient had dysphagia and weight loss before therapy and could not be operated on because of the extent of the tumor or poor performance status. Patients received a photosensitizer (hematoporphyrin derivative) 72 hours before phototherapy and were then treated by light delivered by an argon pumped dye laser or gold metal vapor laser at powers up to 2.2 W and doses of 337 J/cm2. Fourteen patients received 24 treatments. The results were all patients achieved a tumor response. The depth of response depended on the dose and dose rate of radiation. There were four of 24 local complications (mediastinitis 3, bronchoesophageal fistula 1). These occurred in patients treated with a power of greater than 1.5 W. There were two complete pathologic remissions in patients with locally advanced cancer. In conclusion, phototherapy is an effective alternative to other forms of palliation and potentially may be an alternative to surgery in selected cases of locally advanced esophageal cancer. Images Fig. 1. Fig. 2.,Fig. 3.,Fig. 4. Fig. 6. PMID:3606245

  17. Multigroup neutron dose calculations for proton therapy

    SciTech Connect

    Kelsey Iv, Charles T; Prinja, Anil K

    2009-01-01

    We have developed tools for the preparation of coupled multigroup proton/neutron cross section libraries. Our method is to use NJOY to process evaluated nuclear data files for incident particles below 150 MeV and MCNPX to produce data for higher energies. We modified the XSEX3 program of the MCNPX code system to produce Legendre expansions of scattering matrices generated by sampling the physics models that are comparable to the output of the GROUPR routine of NJOY. Our code combines the low and high energy scattering data with user input stopping powers and energy deposition cross sections that we also calculated using MCNPX. Our code also calculates momentum transfer coefficients for the library and optionally applies an energy straggling model to the scattering cross sections and stopping powers. The motivation was initially for deterministic solution of space radiation shielding calculations using Attila, but noting that proton therapy treatment planning may neglect secondary neutron dose assessments because of difficulty and expense, we have also investigated the feasibility of multi group methods for this application. We have shown that multigroup MCNPX solutions for secondary neutron dose compare well with continuous energy solutions and are obtainable with less than half computational cost. This efficiency comparison neglects the cost of preparing the library data, but this becomes negligible when distributed over many multi group calculations. Our deterministic calculations illustrate recognized obstacles that may have to be overcome before discrete ordinates methods can be efficient alternatives for proton therapy neutron dose calculations.

  18. Light dose verification for pleural PDT.

    PubMed

    Sandell, Julia L; Liang, Xing; Zhu, Timothy

    2012-02-13

    The ability to deliver uniform light dose in Photodynamic therapy (PDT) is critical to treatment efficacy. Current protocol in pleural photodynamic therapy uses 7 isotropic detectors placed at discrete locations within the pleural cavity to monitor light dose throughout treatment. While effort is made to place the detectors uniformly through the cavity, measurements do not provide an overall uniform measurement of delivered dose. A real-time infrared (IR) tracking camera is development to better deliver and monitor a more uniform light distribution during treatment. It has been shown previously that there is good agreement between fluence calculated using IR tracking data and isotropic detector measurements for direct light phantom experiments. This study presents the results of an extensive phantom study which uses variable, patient-like geometries and optical properties (both absorption and scattering). Position data of the treatment is collected from the IR navigation system while concurrently light distribution measurements are made using the aforementioned isotropic detectors. These measurements are compared to fluence calculations made using data from the IR navigation system to verify our light distribution theory is correct and applicable in patient-like settings. The verification of this treatment planning technique is an important step in bringing real-time fluence monitoring into the clinic for more effective treatment.

  19. The consequence of day-to-day stochastic dose deviation from the planned dose in fractionated radiation therapy.

    PubMed

    Paul, Subhadip; Roy, Prasun Kumar

    2016-02-01

    Radiation therapy is one of the important treatment procedures of cancer. The day-to-day delivered dose to the tissue in radiation therapy often deviates from the planned fixed dose per fraction. This day-to-day variation of radiation dose is stochastic. Here, we have developed the mathematical formulation to represent the day-to-day stochastic dose variation effect in radiation therapy. Our analysis shows that that the fixed dose delivery approximation under-estimates the biological effective dose, even if the average delivered dose per fraction is equal to the planned dose per fraction. The magnitude of the under-estimation effect relies upon the day-to-day stochastic dose variation level, the dose fraction size and the values of the radiobiological parameters of the tissue. We have further explored the application of our mathematical formulation for adaptive dose calculation. Our analysis implies that, compared to the premise of the Linear Quadratic Linear (LQL) framework, the Linear Quadratic framework based analytical formulation under-estimates the required dose per fraction necessary to produce the same biological effective dose as originally planned. Our study provides analytical formulation to calculate iso-effect in adaptive radiation therapy considering day-to-day stochastic dose deviation from planned dose and also indicates the potential utility of LQL framework in this context.

  20. Assessment of out-of-field absorbed dose and equivalent dose in proton fields

    SciTech Connect

    Clasie, Ben; Wroe, Andrew; Kooy, Hanne; Depauw, Nicolas; Flanz, Jay; Paganetti, Harald; Rosenfeld, Anatoly

    2010-01-15

    Purpose: In proton therapy, as in other forms of radiation therapy, scattered and secondary particles produce undesired dose outside the target volume that may increase the risk of radiation-induced secondary cancer and interact with electronic devices in the treatment room. The authors implement a Monte Carlo model of this dose deposited outside passively scattered fields and compare it to measurements, determine the out-of-field equivalent dose, and estimate the change in the dose if the same target volumes were treated with an active beam scanning technique. Methods: Measurements are done with a thimble ionization chamber and the Wellhofer MatriXX detector inside a Lucite phantom with field configurations based on the treatment of prostate cancer and medulloblastoma. The authors use a GEANT4 Monte Carlo simulation, demonstrated to agree well with measurements inside the primary field, to simulate fields delivered in the measurements. The partial contributions to the dose are separated in the simulation by particle type and origin. Results: The agreement between experiment and simulation in the out-of-field absorbed dose is within 30% at 10-20 cm from the field edge and 90% of the data agrees within 2 standard deviations. In passive scattering, the neutron contribution to the total dose dominates in the region downstream of the Bragg peak (65%-80% due to internally produced neutrons) and inside the phantom at distances more than 10-15 cm from the field edge. The equivalent doses using 10 for the neutron weighting factor at the entrance to the phantom and at 20 cm from the field edge are 2.2 and 2.6 mSv/Gy for the prostate cancer and cranial medulloblastoma fields, respectively. The equivalent dose at 15-20 cm from the field edge decreases with depth in passive scattering and increases with depth in active scanning. Therefore, active scanning has smaller out-of-field equivalent dose by factors of 30-45 in the entrance region and this factor decreases with depth

  1. Evaluation of MatriXX for IMRT and VMAT dose verifications in peripheral dose regions

    SciTech Connect

    Han Zhaohui; Ng, Sook Kien; Bhagwat, Mandar S.; Lyatskaya, Yulia; Zygmanski, Piotr

    2010-07-15

    Purpose: MatriXX is a two-dimensional ion chamber array designed for IMRT/VMAT (RapidArc, IMAT, etc.) dose verifications. Its dosimetric properties have been characterized for megavoltage beams in a number of studies; however, to the best of the authors' knowledge, there is still a lack of an investigation into its performance in the peripheral or low dose regions. In this work, the authors have carried out a systematic study on this issue. Methods: The authors compare the performance of MatriXX with a cylindrical ion chamber in solid water phantoms in the peripheral dose regions. The comparisons are performed for a number of typical irradiation conditions that involve different gantry and/or MLC motions, field sizes, and distances to the target including static gantry/open fields, static gantry/sweeping MLC gap (mimicking an IMRT delivery), dynamic gantry/oscillating sweeping MLC gap (mimicking a VMAT delivery), as well as clinical IMRT and VMAT plans. Results: MatriXX, when used according to the manufacturer's recommendations, is found to disagree with an ion chamber in peripheral dose regions. This disagreement has been attributed to four types of MatriXX errors, namely, positive bias, over-response to scattered doses, round-off error, and angular dependence, all of which contribute to dose inaccuracies in the peripheral regions. The positive bias, which is independent of the dose level, is cumulative when MatriXX operates in the movie mode. The accumulation is proportional to the number of movie frames (snaps) when the sampling time is greater than 500 ms and is proportional to the overall movie time for a sampling time shorter than 500 ms. This behavior suggests multiple sources of the bias. MatriXX is also found to over-respond to peripheral doses by about 2.0% for the regions investigated in this work (3-15 cm from the field edge), where phantom scatter and collimator scatter dominate. Round-off error is determined to be due to insufficient precision in

  2. A practical approach to determine dose metrics for nanomaterials.

    PubMed

    Delmaar, Christiaan J E; Peijnenburg, Willie J G M; Oomen, Agnes G; Chen, Jingwen; de Jong, Wim H; Sips, Adriënne J A M; Wang, Zhuang; Park, Margriet V D Z

    2015-05-01

    Traditionally, administered mass is used to describe doses of conventional chemical substances in toxicity studies. For deriving toxic doses of nanomaterials, mass and chemical composition alone may not adequately describe the dose, because particles with the same chemical composition can have completely different toxic mass doses depending on properties such as particle size. Other dose metrics such as particle number, volume, or surface area have been suggested, but consensus is lacking. The discussion regarding the most adequate dose metric for nanomaterials clearly needs a systematic, unbiased approach to determine the most appropriate dose metric for nanomaterials. In the present study, the authors propose such an approach and apply it to results from in vitro and in vivo experiments with silver and silica nanomaterials. The proposed approach is shown to provide a convenient tool to systematically investigate and interpret dose metrics of nanomaterials. Recommendations for study designs aimed at investigating dose metrics are provided.

  3. Multiple-dose and double-dose versus single-dose administration of methotrexate for the treatment of ectopic pregnancy: a systematic review and meta-analysis.

    PubMed

    Yang, Chun; Cai, Jing; Geng, Yuhong; Gao, Ying

    2017-04-01

    In this systematic review and meta-analysis, the effectiveness and safety among different dosage of methotrexate protocols for the treatment of unruptured tubal ectopic pregnancy was evaluated. Six studies of randomized contorlled trials were identified through searches conducted on PubMed, Embase and Cochrane Library between January 1974 and March 2016. The overall success rate of multiple-dose protocol was similar to the single-dose protocol (RR 1.07, 95% CI 0.99 to 1.17, I(2) = 0%). The difference between double-dose and single-dose groups was not significant (RR 1.09, 95% CI 0.98 and 1.20, I(2) = 0%). The incidence of side-effects of double-dose regimen was similar with single-dose regimen. Side-effects, however, are more common in multiple-dose regimen (RR 1.64, 95% CI 1.15 to 2.34, P = 0.006, I(2) = 0%). This meta-analysis indicated that the incidence of side-effects of multiple-dose protocol was significantly higher than single-dose protocol, and the success rates between them were similar. The double-dose regimen was an efficient and safe alternative to the single-dose protocol. Further high-quality researches are needed to confirm our findings and to develop the optimal protocol.

  4. Low Dose Suppression of Neoplastic Transformation in Vitro

    SciTech Connect

    John Leslie Redpath

    2012-05-01

    This grant was to study the low dose suppression of neoplastic transformation in vitro and the shape of the dose-response curve at low doses and dose-rates of ionizing radiation. Previous findings had indicated a suppression of transformation at dose <10cGy of low-LET radiation when delivered at high dose-rate. The present study indicates that such suppression extends out to doses in excess of 100cGy when the dose (from I-125 photons) is delivered at dose-rates as low as 0.2 mGy/min and out to in excess of {approx}25cGy the highest dose studied at the very low dose-rate of 0.5 mGy/day. We also examined dose-rate effects for high energy protons (which are a low-LET radiation) and suppression was evident below {approx}10cGy for high dose-rate delivery and at least out to 50cGy for low dose-rate (20cGy/h) delivery. Finally, we also examined the effect of low doses of 1 GeV/n iron ions (a high-LET radiation) delivered at high dose-rate on transformation at low doses and found a suppression below {approx}10cGy that could be attributable to an adaptive response in bystander cells induced by the associated low-LET delta rays. These results have implications for cancer risk assessment at low doses.

  5. Disruptive Event Biosphere Dose Conversion Factor Analysis

    SciTech Connect

    M. Wasiolek

    2004-09-08

    This analysis report is one of the technical reports containing documentation of the Environmental Radiation Model for Yucca Mountain, Nevada (ERMYN), a biosphere model supporting the total system performance assessment (TSPA) for the license application (LA) for the Yucca Mountain repository. This analysis report describes the development of biosphere dose conversion factors (BDCFs) for the volcanic ash exposure scenario, and the development of dose factors for calculating inhalation dose during volcanic eruption. A graphical representation of the documentation hierarchy for the ERMYN is presented in Figure 1-1. This figure shows the interrelationships among the products (i.e., analysis and model reports) developed for biosphere modeling and provides an understanding of how this analysis report contributes to biosphere modeling. This report is one of two reports that develop biosphere BDCFs, which are input parameters for the TSPA model. The ''Biosphere Model Report'' (BSC 2004 [DIRS 169460]) describes in detail the ERMYN conceptual model and mathematical model. The input parameter reports, shown to the right of the Biosphere Model Report in Figure 1-1, contain detailed descriptions of the model input parameters, their development and the relationship between the parameters and specific features, events and processes (FEPs). This report describes biosphere model calculations and their output, the BDCFs, for the volcanic ash exposure scenario. This analysis receives direct input from the outputs of the ''Biosphere Model Report'' (BSC 2004 [DIRS 169460]) and from the five analyses that develop parameter values for the biosphere model (BSC 2004 [DIRS 169671]; BSC 2004 [DIRS 169672]; BSC 2004 [DIRS 169673]; BSC 2004 [DIRS 169458]; and BSC 2004 [DIRS 169459]). The results of this report are further analyzed in the ''Biosphere Dose Conversion Factor Importance and Sensitivity Analysis''. The objective of this analysis was to develop the BDCFs for the volcanic ash

  6. Is it sensible to 'deform' dose? 3D experimental validation of dose-warping

    SciTech Connect

    Yeo, U. J.; Taylor, M. L.; Supple, J. R.; Smith, R. L.; Dunn, L.; Kron, T.; Franich, R. D.

    2012-08-15

    Purpose: Strategies for dose accumulation in deforming anatomy are of interest in radiotherapy. Algorithms exist for the deformation of dose based on patient image sets, though these are sometimes contentious because not all such image calculations are constrained by physical laws. While tumor and organ motion has been a key area of study for a considerable amount of time, deformation is of increasing interest. In this work, we demonstrate a full 3D experimental validation of results from a range of dose deformation algorithms available in the public domain. Methods: We recently developed the first tissue-equivalent, full 3D deformable dosimetric phantom-'DEFGEL.' To assess the accuracy of dose-warping based on deformable image registration (DIR), we have measured doses in undeformed and deformed states of the DEFGEL dosimeter and compared these to planned doses and warped doses. In this way we have directly evaluated the accuracy of dose-warping calculations for 11 different algorithms. We have done this for a range of stereotactic irradiation schemes and types and magnitudes of deformation. Results: The original Horn and Schunck algorithm is shown to be the best performing of the 11 algorithms trialled. Comparing measured and dose-warped calculations for this method, it is found that for a 10 Multiplication-Sign 10 mm{sup 2} square field, {gamma}{sub 3%/3mm}= 99.9%; for a 20 Multiplication-Sign 20 mm{sup 2} cross-shaped field, {gamma}{sub 3%/3mm}= 99.1%; and for a multiple dynamic arc (0.413 cm{sup 3} PTV) treatment adapted from a patient treatment plan, {gamma}{sub 3%/3mm}= 95%. In each case, the agreement is comparable to-but consistently {approx}1% less than-comparison between measured and calculated (planned) dose distributions in the absence of deformation. The magnitude of the deformation, as measured by the largest displacement experienced by any voxel in the volume, has the greatest influence on the accuracy of the warped dose distribution. Considering

  7. Dose and cost considerations for relocation after nuclear accidents.

    PubMed

    Qu, J; Ehrhardt, J

    1998-08-01

    The results of a comprehensive study of the dose and cost considerations for relocation after nuclear accidents are presented in this paper. These results include the quantification of the dependence of area affected by relocation on dose intervention level and source term, the countermeasures implementation cost-benefit estimate, as well as the application of cost-benefit analysis to optimize the dose intervention level for relocation. In order to explicitly consider the distribution of individual dose among the exposed population to determine the optimal dose intervention level for relocation, the concept of individual dose evaluation function has been introduced in the present work.

  8. A new dosimeter formulation for deformable 3D dose verification

    NASA Astrophysics Data System (ADS)

    Høye, E. M.; Skyt, P. S.; Yates, E. S.; Muren, L. P.; Petersen, J. B. B.; Balling, P.

    2015-01-01

    We present the characteristics of a new silicone-based radiochromic dosimeter containing the leuco-malachite green (LMG) dye. The dose response as well as the dose-rate and photon-energy dependence of the dosimeter were characterized. To optimise the dose response, different concentrations of the chemical components were investigated. The dose response was found to decrease exponentially as a function of time after irradiation. A cylindrical dosimeter was produced and irradiated with a volumetric modulated arc therapy plan; the standard deviation between measured and calculated dose was 5% of the total dose.

  9. CT effective dose per dose length product using ICRP 103 weighting factors

    SciTech Connect

    Huda, Walter; Magill, Dennise; He Wenjun

    2011-03-15

    Purpose: To generate effective dose per unit dose length product (E/DLP) conversion factors incorporating ICRP Publication 103 tissue weighting factors. Methods: Effective doses for CT examinations were obtained using the IMPACT Dosimetry Calculator using all 23 dose data sets that are offered by this spreadsheet. CT examinations were simulated for scans performed along the patient long axis for each dosimetry data set using a 4 cm beam width ranging from the upper thighs to top of the head. Five basic body regions (head, neck, chest, abdomen, and pelvis), as well as combinations of the regions (head/neck, chest/abdomen, abdomen/pelvis, and chest/abdomen/pelvis) and whole body CT scans were investigated. Correction factors were generated that can be applied to convert E/DLP conversion factors based on ICRP 60 data to conversion factors that are valid for ICRP 103 data (i.e., E{sub 103}/E{sub 60}). Results: Use of ICRP 103 weighting factors increase effective doses for head scans by {approx}11%, for chest scans by {approx}20%, and decrease effective doses for pelvis scans by {approx}25%. Current E/DLP conversion factors are estimated to be 2.4 {mu}Sv/mGy cm for head CT examinations and range between 14 and 20 {mu}Sv/mGy cm for body CT examinations. Conclusions: Factors that enable patient CT doses to be adjusted to account for ICRP 103 tissue weighting factors are provided, which result in E/DLP factors that were increased in head and chest CT, reduced in pelvis CT, and showed no marked change in neck and abdomen CT.

  10. Antagonism by idazoxan at low dose but not high dose, of the natriuretic action of moxonidine.

    PubMed Central

    Allan, D. R.; Penner, S. B.; Smyth, D. D.

    1996-01-01

    1. Recent studies concerning the imidazoline receptor have utilized idazoxan as a specific imidazoline receptor antagonist. The aim of the present study was to describe the in vivo effects of various doses of idazoxan on renal function, in the presence and absence of moxonidine, an I1 imidazoline receptor agonist. 2. In anaesthetized, unilaterally nephrectomized (7 to 10 days) Sprague Dawley rats, an intrarenal infusion of moxonidine (3 nmol kg-1 min-1) increased urine flow rate, sodium excretion and osmolar clearance without altering free water clearance. Pretreatment with intravenous idazoxan at 0.1 and 0.3 mg kg-1 produced a dose-related decrease in the renal actions of moxonidine. However, a higher dose of idazoxan (1 mg kg-1) was not as effective as the 0.3 mg kg-1 dose in blocking the effects of moxonidine. 3. In a separate series of experiments, the direct renal actions of idazoxan alone were investigated. Idazoxan at 0.3 mg kg-1 failed to alter urine flow rate and sodium excretion. However, idazoxan at 1 mg kg-1 produced a significant increase in urine flow rate and sodium excretion in association with an increase in osmolar clearance. 4. These results do not prove but are consistent with low doses of idazoxan antagonizing the sites stimulated by moxonidine (renal imidazoline receptors). However, at higher doses, idazoxan may function as a partial agonist and/or interact with other receptors to increase urine flow rate, independent of imidazoline receptor blockade. These studies underscore the importance of the dose of idazoxan administered when this antagonist is used as a tool to investigate imidazoline receptors. PMID:8825339

  11. Lead in teeth from lead-dosed goats: Microdistribution and relationship to the cumulative lead dose

    SciTech Connect

    Bellis, David J.; Hetter, Katherine M.; Jones, Joseph; Amarasiriwardena, Dula; Parsons, Patrick J.

    2008-01-15

    Teeth are commonly used as a biomarker of long-term lead exposure. There appear to be few data, however, on the content or distribution of lead in teeth where data on specific lead intake (dose) are also available. This study describes the analysis of a convenience sample of teeth from animals that were dosed with lead for other purposes, i.e., a proficiency testing program for blood lead. Lead concentration of whole teeth obtained from 23 animals, as determined by atomic absorption spectrometry, varied from 0.6 to 80 {mu}g g{sup -1}. Linear regression of whole tooth lead ({mu}g g{sup -1}) on the cumulative lead dose received by the animal (g) yielded a slope of 1.2, with r{sup 2}=0.647 (p<0.0001). Laser ablation inductively coupled plasma mass spectrometry was employed to determine lead content at micrometer scale spatial resolution in the teeth of seven goats representing the dosing range. Highly localized concentrations of lead, ranging from about 10 to 2000 {mu}g g{sup -1}, were found in circumpulpal dentine. Linear regression of circumpulpal lead ({mu}g g{sup -1}) on cumulative lead dose (g) yielded a slope of 23 with r{sup 2}=0.961 (p=0.0001). The data indicated that whole tooth lead, and especially circumpulpal lead, of dosed goats increased linearly with cumulative lead exposure. These data suggest that circumpulpal dentine is a better biomarker of cumulative lead exposure than is whole tooth lead, at least for lead-dosed goats.

  12. Toxicity from repeated doses of acetaminophen in children: assessment of causality and dose in reported cases.

    PubMed

    Heard, Kennon; Bui, Alison; Mlynarchek, Sara L; Green, Jody L; Bond, G Randall; Clark, Richard F; Kozer, Eran; Koff, Raymond S; Dart, Richard C

    2014-01-01

    Liver injury has been reported in children treated with repeated doses of acetaminophen. The objective of this study was to identify and validate reports of liver injury or death in children younger than 6 years who were administered repeated therapeutic doses of acetaminophen. We reviewed US Poison Center data, peer-reviewed literature, US Food and Drug Administration Adverse Event Reports, and US Manufacturer Safety Reports describing adverse effects after acetaminophen administration. Reports that described hepatic abnormalities (description of liver injury or abnormal laboratory testing) or death after acetaminophen administration to children younger than 6 years were included. The identified reports were double abstracted and then reviewed by an expert panel to determine if the hepatic injury was related to acetaminophen and whether the dose of acetaminophen was therapeutic (≤75 mg/kg) or supratherapeutic. Our search yielded 2531 reports of adverse events associated with acetaminophen use. From these cases, we identified 76 cases of hepatic injury and 26 deaths associated with repeated acetaminophen administration. There were 6 cases of hepatic abnormalities and no deaths associated with what our panel determined to be therapeutic doses. A large proportion of cases could not be fully evaluated due to incomplete case reporting. Although we identified numerous examples of liver injury and death after repeated doses of acetaminophen, all the deaths and all but 6 cases of hepatic abnormalities involved doses more than 75 mg/kg per day. This study suggests that the doses of less than 75 mg/kg per day of acetaminophen are safe for children younger than 6 years.

  13. Chromosomal Aberrations in Normal and AT Cells Exposed to High Dose of Low Dose Rate Irradiation

    NASA Technical Reports Server (NTRS)

    Kawata, T.; Shigematsu, N.; Kawaguchi, O.; Liu, C.; Furusawa, Y.; Hirayama, R.; George, K.; Cucinotta, F.

    2011-01-01

    Ataxia telangiectasia (A-T) is a human autosomally recessive syndrome characterized by cerebellar ataxia, telangiectases, immune dysfunction, and genomic instability, and high rate of cancer incidence. A-T cell lines are abnormally sensitive to agents that induce DNA double strand breaks, including ionizing radiation. The diverse clinical features in individuals affected by A-T and the complex cellular phenotypes are all linked to the functional inactivation of a single gene (AT mutated). It is well known that cells deficient in ATM show increased yields of both simple and complex chromosomal aberrations after high-dose-rate irradiation, but, less is known on how cells respond to low-dose-rate irradiation. It has been shown that AT cells contain a large number of unrejoined breaks after both low-dose-rate irradiation and high-dose-rate irradiation, however sensitivity for chromosomal aberrations at low-dose-rate are less often studied. To study how AT cells respond to low-dose-rate irradiation, we exposed confluent normal and AT fibroblast cells to up to 3 Gy of gamma-irradiation at a dose rate of 0.5 Gy/day and analyzed chromosomal aberrations in G0 using fusion PCC (Premature Chromosomal Condensation) technique. Giemsa staining showed that 1 Gy induces around 0.36 unrejoined fragments per cell in normal cells and around 1.35 fragments in AT cells, whereas 3Gy induces around 0.65 fragments in normal cells and around 3.3 fragments in AT cells. This result indicates that AT cells can rejoin breaks less effectively in G0 phase of the cell cycle? compared to normal cells. We also analyzed chromosomal exchanges in normal and AT cells after exposure to 3 Gy of low-dose-rate rays using a combination of G0 PCC and FISH techniques. Misrejoining was detected in the AT cells only? When cells irradiated with 3 Gy were subcultured and G2 chromosomal aberrations were analyzed using calyculin-A induced PCC technique, the yield of unrejoined breaks decreased in both normal and AT

  14. A real time dose monitoring and dose reconstruction tool for patient specific VMAT QA and delivery

    SciTech Connect

    Tyagi, Neelam; Yang Kai; Gersten, David; Yan Di

    2012-12-15

    Purpose: To develop a real time dose monitoring and dose reconstruction tool to identify and quantify sources of errors during patient specific volumetric modulated arc therapy (VMAT) delivery and quality assurance. Methods: The authors develop a VMAT delivery monitor tool called linac data monitor that connects to the linac in clinical mode and records, displays, and compares real time machine parameters with the planned parameters. A new measure, called integral error, keeps a running total of leaf overshoot and undershoot errors in each leaf pair, multiplied by leaf width, and the amount of time during which the error exists in monitor unit delivery. Another tool reconstructs Pinnacle{sup 3} Trade-Mark-Sign format delivered plan based on the saved machine logfile and recalculates actual delivered dose in patient anatomy. Delivery characteristics of various standard fractionation and stereotactic body radiation therapy (SBRT) VMAT plans delivered on Elekta Axesse and Synergy linacs were quantified. Results: The MLC and gantry errors for all the treatment sites were 0.00 {+-} 0.59 mm and 0.05 {+-} 0.31 Degree-Sign , indicating a good MLC gain calibration. Standard fractionation plans had a larger gantry error than SBRT plans due to frequent dose rate changes. On average, the MLC errors were negligible but larger errors of up to 6 mm and 2.5 Degree-Sign were seen when dose rate varied frequently. Large gantry errors occurred during the acceleration and deceleration process, and correlated well with MLC errors (r= 0.858, p= 0.0004). PTV mean, minimum, and maximum dose discrepancies were 0.87 {+-} 0.21%, 0.99 {+-} 0.59%, and 1.18 {+-} 0.52%, respectively. The organs at risk (OAR) doses were within 2.5%, except some OARs that showed up to 5.6% discrepancy in maximum dose. Real time displayed normalized total positive integral error (normalized to the total monitor units) correlated linearly with MLC (r= 0.9279, p < 0.001) and gantry errors (r= 0.742, p= 0.005). There

  15. Spine stereotactic body radiation therapy plans: Achieving dose coverage, conformity, and dose falloff

    SciTech Connect

    Hong, Linda X.; Shankar, Viswanathan; Shen, Jin; Kuo, Hsiang-Chi; Mynampati, Dinesh; Yaparpalvi, Ravindra; Goddard, Lee; Basavatia, Amar; Fox, Jana; Garg, Madhur; Kalnicki, Shalom; Tomé, Wolfgang A.

    2015-10-01

    We report our experience of establishing planning objectives to achieve dose coverage, conformity, and dose falloff for spine stereotactic body radiation therapy (SBRT) plans. Patients with spine lesions were treated using SBRT in our institution since September 2009. Since September 2011, we established the following planning objectives for our SBRT spine plans in addition to the cord dose constraints: (1) dose coverage—prescription dose (PD) to cover at least 95% planning target volume (PTV) and 90% PD to cover at least 99% PTV; (2) conformity index (CI)—ratio of prescription isodose volume (PIV) to the PTV < 1.2; (3) dose falloff—ratio of 50% PIV to the PTV (R{sub 50%}); (4) and maximum dose in percentage of PD at 2 cm from PTV in any direction (D{sub 2cm}) to follow Radiation Therapy Oncology Group (RTOG) 0915. We have retrospectively reviewed 66 separate spine lesions treated between September 2009 and December 2012 (31 treated before September 2011 [group 1] and 35 treated after [group 2]). The χ{sup 2} test was used to examine the difference in parameters between groups. The PTV V{sub 100%} {sub PD} ≥ 95% objective was met in 29.0% of group 1 vs 91.4% of group 2 (p < 0.01) plans. The PTV V{sub 90%} {sub PD} ≥ 99% objective was met in 38.7% of group 1 vs 88.6% of group 2 (p < 0.01) plans. Overall, 4 plans in group 1 had CI > 1.2 vs none in group 2 (p = 0.04). For D{sub 2cm}, 48.3% plans yielded a minor violation of the objectives and 16.1% a major violation for group 1, whereas 17.1% exhibited a minor violation and 2.9% a major violation for group 2 (p < 0.01). Spine SBRT plans can be improved on dose coverage, conformity, and dose falloff employing a combination of RTOG spine and lung SBRT protocol planning objectives.

  16. Limitations of the TG-43 formalism for skin high-dose-rate brachytherapy dose calculations

    SciTech Connect

    Granero, Domingo; Perez-Calatayud, Jose; Vijande, Javier; Ballester, Facundo; Rivard, Mark J.

    2014-02-15

    Purpose: In skin high-dose-rate (HDR) brachytherapy, sources are located outside, in contact with, or implanted at some depth below the skin surface. Most treatment planning systems use the TG-43 formalism, which is based on single-source dose superposition within an infinite water medium without accounting for the true geometry in which conditions for scattered radiation are altered by the presence of air. The purpose of this study is to evaluate the dosimetric limitations of the TG-43 formalism in HDR skin brachytherapy and the potential clinical impact. Methods: Dose rate distributions of typical configurations used in skin brachytherapy were obtained: a 5 cm × 5 cm superficial mould; a source inside a catheter located at the skin surface with and without backscatter bolus; and a typical interstitial implant consisting of an HDR source in a catheter located at a depth of 0.5 cm. Commercially available HDR{sup 60}Co and {sup 192}Ir sources and a hypothetical {sup 169}Yb source were considered. The Geant4 Monte Carlo radiation transport code was used to estimate dose rate distributions for the configurations considered. These results were then compared to those obtained with the TG-43 dose calculation formalism. In particular, the influence of adding bolus material over the implant was studied. Results: For a 5 cm × 5 cm{sup 192}Ir superficial mould and 0.5 cm prescription depth, dose differences in comparison to the TG-43 method were about −3%. When the source was positioned at the skin surface, dose differences were smaller than −1% for {sup 60}Co and {sup 192}Ir, yet −3% for {sup 169}Yb. For the interstitial implant, dose differences at the skin surface were −7% for {sup 60}Co, −0.6% for {sup 192}Ir, and −2.5% for {sup 169}Yb. Conclusions: This study indicates the following: (i) for the superficial mould, no bolus is needed; (ii) when the source is in contact with the skin surface, no bolus is needed for either {sup 60}Co and {sup 192}Ir. For

  17. How accurately can the peak skin dose in fluoroscopy be determined using indirect dose metrics?

    SciTech Connect

    Jones, A. Kyle; Ensor, Joe E.; Pasciak, Alexander S.

    2014-07-15

    Purpose: Skin dosimetry is important for fluoroscopically-guided interventions, as peak skin doses (PSD) that result in skin reactions can be reached during these procedures. There is no consensus as to whether or not indirect skin dosimetry is sufficiently accurate for fluoroscopically-guided interventions. However, measuring PSD with film is difficult and the decision to do so must be madea priori. The purpose of this study was to assess the accuracy of different types of indirect dose estimates and to determine if PSD can be calculated within ±50% using indirect dose metrics for embolization procedures. Methods: PSD were measured directly using radiochromic film for 41 consecutive embolization procedures at two sites. Indirect dose metrics from the procedures were collected, including reference air kerma. Four different estimates of PSD were calculated from the indirect dose metrics and compared along with reference air kerma to the measured PSD for each case. The four indirect estimates included a standard calculation method, the use of detailed information from the radiation dose structured report, and two simplified calculation methods based on the standard method. Indirect dosimetry results were compared with direct measurements, including an analysis of uncertainty associated with film dosimetry. Factors affecting the accuracy of the different indirect estimates were examined. Results: When using the standard calculation method, calculated PSD were within ±35% for all 41 procedures studied. Calculated PSD were within ±50% for a simplified method using a single source-to-patient distance for all calculations. Reference air kerma was within ±50% for all but one procedure. Cases for which reference air kerma or calculated PSD exhibited large (±35%) differences from the measured PSD were analyzed, and two main causative factors were identified: unusually small or large source-to-patient distances and large contributions to reference air kerma from cone

  18. Characterization of infectious dose and lethal dose of two strains of infectious hematopoietic necrosis virus (IHNV)

    USGS Publications Warehouse

    McKenney, Douglas; Kurath, Gael; Wargo, Andrew

    2016-01-01

    The ability to infect a host is a key trait of a virus, and differences in infectivity could put one virus at an evolutionary advantage over another. In this study we have quantified the infectivity of two strains of infectious hematopoietic necrosis virus (IHNV) that are known to differ in fitness and virulence. By exposing juvenile rainbow trout (Oncorhynchus mykiss) hosts to a wide range of virus doses, we were able to calculate the infectious dose in terms of ID50 values for the two genotypes. Lethal dose experiments were also conducted to confirm the virulence difference between the two virus genotypes, using a range of virus doses and holding fish either in isolation or in batch so as to calculate LD50values. We found that infectivity is positively correlated with virulence, with the more virulent genotype having higher infectivity. Additionally, infectivity increases more steeply over a short range of doses compared to virulence, which has a shallower increase. We also examined the data using models of virion interaction and found no evidence to suggest that virions have either an antagonistic or a synergistic effect on each other, supporting the independent action hypothesis in the process of IHNV infection of rainbow trout.

  19. X-ray security scanners for personnel and vehicle control: dose quantities and dose values.

    PubMed

    Hupe, Oliver; Ankerhold, Ulrike

    2007-08-01

    After the security related occurrences in the past few years, there is an increasing need for airport security and border controls. In the combat against terror and smuggling, X-rays are used for the screening of persons and vehicles. The exposure of humans to ionising radiation raises the question of justification. To solve this question, reliable and traceable dose values are needed. A research project of the German Federal Ministry for the Environment, Nature Conservation and Nuclear Safety was initiated. Its task is to measure the ambient dose equivalent, H*(10), and the personal dose equivalent, H(p)(10), for typical types of personnel and vehicle X-ray scanners, using the transmission and/or backscatter method. In the following, the measuring quantities which are to be used for these investigations will be discussed and the measuring instruments will be presented. Furthermore, the experimental set-up is described. For the personnel X-ray scanners investigated, the obtained dose values are in the range from 0.07 to 6 microSv. These values will be compared to the dose values of the natural environmental radiation and some exposures in the field of medicine.

  20. KERMA-based radiation dose management system for real-time patient dose measurement

    NASA Astrophysics Data System (ADS)

    Kim, Kyo-Tae; Heo, Ye-Ji; Oh, Kyung-Min; Nam, Sang-Hee; Kang, Sang-Sik; Park, Ji-Koon; Song, Yong-Keun; Park, Sung-Kwang

    2016-07-01

    Because systems that reduce radiation exposure during diagnostic procedures must be developed, significant time and financial resources have been invested in constructing radiation dose management systems. In the present study, the characteristics of an existing ionization-based system were compared to those of a system based on the kinetic energy released per unit mass (KERMA). Furthermore, the feasibility of using the KERMA-based system for patient radiation dose management was verified. The ionization-based system corrected the effects resulting from radiation parameter perturbations in general radiography whereas the KERMA-based system did not. Because of this difference, the KERMA-based radiation dose management system might overestimate the patient's radiation dose due to changes in the radiation conditions. Therefore, if a correction factor describing the correlation between the systems is applied to resolve this issue, then a radiation dose management system can be developed that will enable real-time measurement of the patient's radiation exposure and acquisition of diagnostic images.

  1. Characterization of infectious dose and lethal dose of two strains of infectious hematopoietic necrosis virus (IHNV).

    PubMed

    McKenney, Douglas G; Kurath, Gael; Wargo, Andrew R

    2016-03-02

    The ability to infect a host is a key trait of a virus, and differences in infectivity could put one virus at an evolutionary advantage over another. In this study we have quantified the infectivity of two strains of infectious hematopoietic necrosis virus (IHNV) that are known to differ in fitness and virulence. By exposing juvenile rainbow trout (Oncorhynchus mykiss) hosts to a wide range of virus doses, we were able to calculate the infectious dose in terms of ID50 values for the two genotypes. Lethal dose experiments were also conducted to confirm the virulence difference between the two virus genotypes, using a range of virus doses and holding fish either in isolation or in batch so as to calculate LD50 values. We found that infectivity is positively correlated with virulence, with the more virulent genotype having higher infectivity. Additionally, infectivity increases more steeply over a short range of doses compared to virulence, which has a shallower increase. We also examined the data using models of virion interaction and found no evidence to suggest that virions have either an antagonistic or a synergistic effect on each other, supporting the independent action hypothesis in the process of IHNV infection of rainbow trout.

  2. A study evaluating the dependence of the patient dose on the CT dose change in a SPECT/CT scan

    NASA Astrophysics Data System (ADS)

    Kim, Woo-Hyun; Kim, Ho-Sung; Dong, Kyung-Rae; Chung, Woon-Kwan; Cho, Jae-Hwan; Shin, Jae-Woo

    2012-07-01

    This study assessed ways of reducing the patient dose by examining the dependence of the patient dose on the CT (computed tomography) dose in a SPECT (single-photon emission computed tomography)/CT scan. To measure the patient dose, we used Precedence 16 SPECT/CT along with a phantom for the CT dose measurement (CT dose phantom kit for adult's head and body, Model 76-414-4150), a 100-mm ionization chamber (CT Ion Chamber) and an X-ray detector (Victoreen Model 4000M+). In addition, the patient dose was evaluated under conditions similar to those for an actual examination using an ImPACT (imaging performance assessment of CT scanners) dosimetry calculator in the Monte Carlo simulation method. The experimental method involved the use of a CT dose phantom to measure the patient dose under different CT conditions (kVp and mAs) to determine the CTDI (CT dose index) under each condition. An ImPACT dosimetry calculator was also used to measure CTDIw (CT dose index water ), CTDIv (CT dose index volume ), DLP (dose-length product), and effective dose. According to the patient dose measurements using the CT dose phantom, the CTDI showed an approximately 54 fold difference between when the maximum (140 kVp and 250 mAs) and the minimum dose (90 kVp and 25 mAs) was used. The CTDI showed a 4.2 fold difference between the conditions (120 kVp and 200 mAs) used mainly in a common CT scan and the conditions (120 kVp and 50 mAs) used mainly in a SPECT/CT scan. According to the measurement results using the dosimetry calculator, the effective dose showed an approximately 35 fold difference between the conditions for the maximum and the minimum doses, as in the case with the CT dose phantom. The effective dose showed a 4.1 fold difference between the conditions used mainly in a common CT scan and those used mainly in a SPECT/CT scan. This study examined the patient dose by reducing the CT dose in a SPECT/CT scan. As various examinations can be conducted due to the development of

  3. Patient dose considerations in computed tomography examinations

    PubMed Central

    Tsalafoutas, Ioannis A; Koukourakis, Georgios V

    2010-01-01

    Ionizing radiation is extensively used in medicine and its contribution to both diagnosis and therapy is undisputable. However, the use of ionizing radiation also involves a certain risk since it may cause damage to tissues and organs and trigger carcinogenesis. Computed tomography (CT) is currently one of the major contributors to the collective population radiation dose both because it is a relatively high dose examination and an increasing number of people are subjected to CT examinations many times during their lifetime. The evolution of CT scanner technology has greatly increased the clinical applications of CT and its availability throughout the world and made it a routine rather than a specialized examination. With the modern multislice CT scanners, fast volume scanning of the whole human body within less than 1 min is now feasible. Two dimensional images of superb quality can be reconstructed in every possible plane with respect to the patient axis (e.g. axial, sagital and coronal). Furthermore, three-dimensional images of all anatomic structures and organs can be produced with only minimal additional effort (e.g. skeleton, tracheobronchial tree, gastrointestinal system and cardiovascular system). All these applications, which are diagnostically valuable, also involve a significant radiation risk. Therefore, all medical professionals involved with CT, either as referring or examining medical doctors must be aware of the risks involved before they decide to prescribe or perform CT examinations. Ultimately, the final decision concerning justification for a prescribed CT examination lies upon the radiologist. In this paper, we summarize the basic information concerning the detrimental effects of ionizing radiation, as well as the CT dosimetry background. Furthermore, after a brief summary of the evolution of CT scanning, the current CT scanner technology and its special features with respect to patient doses are given in detail. Some numerical data is also

  4. Low-Dose Radiotherapy in Indolent Lymphoma

    SciTech Connect

    Rossier, Christine; Schick, Ulrike; Miralbell, Raymond; Mirimanoff, Rene O.; Weber, Damien C.; Ozsahin, Mahmut

    2011-11-01

    Purpose: To assess the response rate, duration of response, and overall survival after low-dose involved-field radiotherapy in patients with recurrent low-grade lymphoma or chronic lymphocytic leukemia (CLL). Methods and Materials: Forty-three (24 women, 19 men) consecutive patients with indolent lymphoma or CLL were treated with a total dose of 4 Gy (2 x 2 Gy) using 6- 18-MV photons. The median age was 73 years (range, 39-88). Radiotherapy was given either after (n = 32; 75%) or before (n = 11; 25%) chemotherapy. The median time from diagnosis was 48 months (range, 1-249). The median follow-up period was 20 months (range, 1-56). Results: The overall response rate was 90%. Twelve patients (28%) had a complete response, 15 (35%) had a partial response, 11 (26%) had stable disease, and 5 (11%) had progressive disease. The median overall survival for patients with a positive response (complete response/partial response/stable disease) was 41 months; for patients with progressive disease it was 6 months (p = 0.001). The median time to in-field progression was 21 months (range, 0-24), and the median time to out-field progression was 8 months (range, 0-40). The 3-year in-field control was 92% in patients with complete response (median was not reached). The median time to in-field progression was 9 months (range, 0.5-24) in patients with partial response and 6 months (range, 0.6-6) in those with stable disease (p < 0.05). Younger age, positive response to radiotherapy, and no previous chemotherapy were the best factors influencing the outcome. Conclusions: Low-dose involved-field radiotherapy is an effective treatment in the management of patients with recurrent low-grade lymphoma or CLL.

  5. Plume temperature emitted from metered dose inhalers.

    PubMed

    Brambilla, G; Church, T; Lewis, D; Meakin, B

    2011-02-28

    The temperature of the drug cloud emitted from a pressurised metered dose inhaler (pMDI) may result in patient discomfort and inconsistent or non-existent dose delivery to the lungs. The effects of variations in formulation (drug, propellant, co-solvent content) and device hardware (metering volume, actuator orifice diameter, add-on devices) upon the temperature of pMDI plumes, expressed as replicate mean minimum values (MMPT), collected into a pharmacopoeial dose unit sampling apparatus (DUSA), have been investigated. Ten commercially available and two development products, including chlorofluorocarbon (CFC) suspensions and hydrofluoroalkane (HFA) solutions or suspensions, were examined together with a number of drug products in late stage development and a variety of HFA 134a placebo pMDIs. Plume temperatures were observed to be lowest in the proximity of the product's actuator mouthpiece where rapid flashing and evaporation of the formulation's propellant and volatile excipients cause cooling. The ability to control plume temperature by judicious choice of formulation co-solvent content, metering volume and the actuator orifice diameter is identified. An ethanol based HFA 134a formulation delivered through a fine orifice is inherently warmer than one with 100% HFA 134a vehicle delivered through a coarse actuator orifice. Of the 10 commercial products evaluated, MMPTs ranged from -54 to +4°C and followed the formulation class rank order, HFA suspensions

  6. Preliminary dose assessment of the Chernobyl accident

    SciTech Connect

    Hull, A.P.

    1987-01-01

    From the major accident at Unit 4 of the Chernobyl nuclear power station, a plume of airborne radioactive fission products was initially carried northwesterly toward Poland, thence toward Scandinavia and into Central Europe. Reports of the levels of radioactivity in a variety of media and of external radiation levels were collected in the Department of Energy's Emergency Operations Center and compiled into a data bank. Portions of these and other data which were obtained directly from published and official reports were utilized to make a preliminary assessment of the extent and magnitude of the external dose to individuals downwind from Chernobyl. Radioactive /sup 131/I was the predominant fission product. The time of arrival of the plume and the maximum concentrations of /sup 131/I in air, vegetation and milk and the maximum reported depositions and external radiation levels have been tabulated country by country. A large amount of the total activity in the release was apparently carried to a significant elevation. The data suggest that in areas where rainfall occurred, deposition levels were from ten to one-hundred times those observed in nearby ''dry'' locations. Sufficient spectral data were obtained to establish average release fractions and to establish a reference spectra of the other nuclides in the release. Preliminary calculations indicated that the collective dose equivalent to the population in Scandinavia and Central Europe during the first year after the Chernobyl accident would be about 8 x 10/sup 6/ person-rem. From the Soviet report, it appears that a first year population dose of about 2 x 10/sup 7/ person-rem (2 x 10/sup 5/ Sv) will be received by the population who were downwind of Chernobyl within the U.S.S.R. during the accident and its subsequent releases over the following week. 32 refs., 14 figs., 20 tabs.

  7. Nominal Performance Biosphere Dose Conversion Factor Analysis

    SciTech Connect

    M. Wasiolek

    2004-09-08

    This analysis report is one of the technical reports containing documentation of the Environmental Radiation Model for Yucca Mountain, Nevada (ERMYN), a biosphere model supporting the Total System Performance Assessment (TSPA) for the license application (LA) for the Yucca Mountain repository. This analysis report describes the development of biosphere dose conversion factors (BDCFs) for the groundwater exposure scenario, and the development of conversion factors for assessing compliance with the groundwater protection standard. A graphical representation of the documentation hierarchy for the ERMYN is presented in Figure 1-1. This figure shows the interrelationships among the products (i.e., analysis and model reports) developed for biosphere modeling and provides an understanding of how this analysis report contributes to biosphere modeling. This report is one of two reports that develop biosphere BDCFs, which are input parameters for the TSPA-LA model. The ''Biosphere Model Report'' (BSC 2004 [DIRS 169460]) describes in detail the ERMYN conceptual model and mathematical model. The input parameter reports, shown to the right of the ''Biosphere Model Report'' in Figure 1-1, contain detailed description of the model input parameters, their development, and the relationship between the parameters and specific features events and processes (FEPs). This report describes biosphere model calculations and their output, the BDCFs, for the groundwater exposure scenario. The objectives of this analysis are to develop BDCFs for the groundwater exposure scenario for the three climate states considered in the TSPA-LA as well as conversion factors for evaluating compliance with the groundwater protection standard. The BDCFs will be used in performance assessment for calculating all-pathway annual doses for a given concentration of radionuclides in groundwater. The conversion factors will be used for calculating gross alpha particle activity in groundwater and the annual dose

  8. Optimal radiotherapy dose schedules under parametric uncertainty

    NASA Astrophysics Data System (ADS)

    Badri, Hamidreza; Watanabe, Yoichi; Leder, Kevin

    2016-01-01

    We consider the effects of parameter uncertainty on the optimal radiation schedule in the context of the linear-quadratic model. Our interest arises from the observation that if inter-patient variability in normal and tumor tissue radiosensitivity or sparing factor of the organs-at-risk (OAR) are not accounted for during radiation scheduling, the performance of the therapy may be strongly degraded or the OAR may receive a substantially larger dose than the allowable threshold. This paper proposes a stochastic radiation scheduling concept to incorporate inter-patient variability into the scheduling optimization problem. Our method is based on a probabilistic approach, where the model parameters are given by a set of random variables. Our probabilistic formulation ensures that our constraints are satisfied with a given probability, and that our objective function achieves a desired level with a stated probability. We used a variable transformation to reduce the resulting optimization problem to two dimensions. We showed that the optimal solution lies on the boundary of the feasible region and we implemented a branch and bound algorithm to find the global optimal solution. We demonstrated how the configuration of optimal schedules in the presence of uncertainty compares to optimal schedules in the absence of uncertainty (conventional schedule). We observed that in order to protect against the possibility of the model parameters falling into a region where the conventional schedule is no longer feasible, it is required to avoid extremal solutions, i.e. a single large dose or very large total dose delivered over a long period. Finally, we performed numerical experiments in the setting of head and neck tumors including several normal tissues to reveal the effect of parameter uncertainty on optimal schedules and to evaluate the sensitivity of the solutions to the choice of key model parameters.

  9. Energetic dose: Beyond fire and flint?

    USGS Publications Warehouse

    Linder, G.; Rattner, B.; Cohen, J.

    2000-01-01

    Nutritional and bioenergetic interactions influence exposure to environmental chemicals and may affect the risk realized when wildlife are exposed in the field. Here, food-chain analysis focuses on prairie voles (Microtus ochrogaster) and the evaluation of chemical risks associated with paraquat following 10-d dietary exposures. Reproductive effects were measured in 60-d trials that followed exposures to paraquat-tainted feed: control (untainted feed); 21 mg paraquat/kg feed; 63 mg paraquat/kg feed; and feed-restricted control (untainted feed restricted to 60% baseline consumption). Reproductive success was evaluated in control and treated breeding pairs, and a preliminary bioenergetics analysis was completed in parallel to derive exposure dose. Although reproductive performance differed among groups, feed-restriction appeared to be the dominant treatment effect observed in these 10-d feeding exposure/limited reproductive trials. Exposure dose ranged from 3.70-3.76 to 9.41-11.51 mg parquat/kg BW/day at 21 and 63 mg paraquat/kg feed stock exposures, respectively. Energetic doses as ug paraquat/kcal yielded preliminary estimates of energetic costs associated with paraquat exposure, and were similar within treatments for both sexes, ranging from 4.2-5.5 and 13.1-15.0 ug paraquat/kcal for voles exposed to 21 mg/kg feed stock and 63 mg/kg feed stock, respectively. Given the increasing likelihood that environmental chemicals will be found in wildlife habitat at 'acceptable levels', the critical role that wildlife nutrition plays in evaluating ecological risks should be fully integrated into the assessment process. Tools applied to the analysis of risk must gain higher resolution than the relatively crude methods we currently bring to the process.

  10. Absorption of cyclosporine A after oral dosing.

    PubMed

    Grevel, J

    1986-12-01

    Variability in the absorption of CsA seems to contribute to the observed lack of correlation between the size of the oral dose and the trough concentration at steady state. Absorption is probably improved by thorough dispersion of the oral solution of CsA in the drink the patient prefers. Evidence for GI metabolism of CsA has only been gathered in animal experiments. The importance of bile for absorption of CsA into the portal blood is established. The bioavailability of CsA does not seem to be determined by the metabolism during the first passage through the liver. Enterohepatic recycling is likely for CsA metabolites and unlikely for unchanged CsA. A pharmacokinetic model that assumes zero-order absorption of CsA describes human data better than a model with first-order absorption. According to the zero-order model, CsA is absorbed only in the upper part of the small intestine by a mechanism that operates under saturation. Two independent findings in transplantation patients support this model. First, it was shown that small doses of CsA produce disproportionally high blood concentrations, probably due to a better bioavailability. Second, accelerated transit times in the intestine (diarrhea) lead to unexpectedly low blood concentrations, probably due to poor bioavailability. Further factors have been identified that cause low absorption of CsA: liver dysfunction and external bile drainage after liver transplantation. The influence of food on the absorption of CsA is still not determined conclusively, but it seems that giving CsA together with a standard breakfast results in higher blood concentrations. The observed increase in the bioavailability of CsA with time after transplantation could be caused by the attempt to steadily lower the dose.

  11. VOXMAT: Hybrid Computational Phantom for Dose Assessment

    SciTech Connect

    Akkurt, Hatice; Eckerman, Keith F

    2007-01-01

    The Oak Ridge National Laboratory (ORNL) computational phantoms have been the standard for assessing the radiation dose due to internal and external exposure over the past three decades. In these phantoms, the body surface and each organ are approximated by mathematical equations; hence, some of the organs are not necessarily realistic in their shape. Over the past two decades, these phantoms have been revised and updated: some of the missing internal organs have been added and the locations of the existing organs have been revised (e.g., thyroid). In the original phantom, only three elemental compositions were used to describe all body tissues. Recently, the compositions of the organs have been updated based on ICRP-89 standards. During the past decade, phantoms based on CT scans were developed for use in dose assessment. Although their shapes are realistic, some computational challenges are noted; including increased computational times and increased memory requirements. For good spatial resolution, more than several million voxels are used to represent the human body. Moreover, when CT scans are obtained, the subject is in a supine position with arms at the side. In some occupational exposure cases, it is necessary to evaluate the dose with the arms and legs in different positions. It will be very difficult and inefficient to reposition the voxels defining the arms and legs to simulate these exposure geometries. In this paper, a new approach for computational phantom development is presented. This approach utilizes the combination of a mathematical phantom and a voxelized phantom for the representation of the anatomy.

  12. Can point doses predict volumetric dose to rectum and bladder: a CT-based planning study in high dose rate intracavitary brachytherapy of cervical carcinoma?

    PubMed Central

    Patil, V M; Patel, F D; Chakraborty, S; Oinam, A S; Sharma, S C

    2011-01-01

    Objective Point doses, as defined by the International Commission on Radiation Units and Measurements (ICRU), are classically used to evaluate doses to the rectum and bladder in high dose rate intracavitary brachytherapy (HDR-ICBT) in cervical cancer. Several studies have shown good correlation between the ICRU point doses and the volumetric doses to these organs. In the present study we attempted to evaluate whether this correlation could be used to predict the volumetric doses to these organs. Methods A total of 150 HDR-ICBT insertions performed between December 2006 and June 2008 were randomly divided into two groups. Group A (n=50) was used to derive the correlation between the point and volumetric doses using regression analysis. This was tested in Group B (n=100) insertions using studentised residuals and Bland–Altman plots. Results Significant correlations were obtained for all volumetric doses and ICRU point doses for rectum and bladder in Group A insertions. The strongest correlation was found for the dose to 2 cc volumes (D2cc). The correlation coefficients for bladder and rectal D2cc versus the respective ICRU point doses were 0.82 and 0.77, respectively (p<0.001). Statistical validation of equations generated in Group B showed mean studentised residual values of 0.001 and 0.000 for the bladder and rectum. However, Bland–Altman analysis showed that the error range for these equations for bladder and rectum were ±64% and ±41% of the point A dose, respectively, which makes these equations unreliable for clinical use. Conclusion Volumetric imaging is essential to obtain proper information about volumetric doses. PMID:21511749

  13. Is there any cumulative dose for trastuzumab?

    PubMed

    Mutlu, Hasan; Coşkun, Hasan Şenol

    2015-12-01

    Trastuzumab is one of the most important agents that target human epidermal growth factor receptor 2, but its cardiotoxic effect limits to use it. The mechanism of cardiac dysfunction-related trastuzumab is still unclear. In literature, there is no definite information about the cumulative dose of trastuzumab for cardiotoxicity. In presented case, we reported a breast cancer patient who has been receiving long-term trastuzumab. We have not found any cardiac problems for duration of over four years. According to our case and literature review, we may say that trastuzumab is safely used with periodically echocardiographic control in patients with breast cancer.

  14. Calculation of external dose from distributed source

    SciTech Connect

    Kocher, D.C.

    1986-01-01

    This paper discusses a relatively simple calculational method, called the point kernel method (Fo68), for estimating external dose from distributed sources that emit photon or electron radiations. The principles of the point kernel method are emphasized, rather than the presentation of extensive sets of calculations or tables of numerical results. A few calculations are presented for simple source geometries as illustrations of the method, and references and descriptions are provided for other caluclations in the literature. This paper also describes exposure situations for which the point kernel method is not appropriate and other, more complex, methods must be used, but these methods are not discussed in any detail.

  15. Nominal Performance Biosphere Dose Conversion Factor Analysis

    SciTech Connect

    M.A. Wasiolek

    2005-04-28

    This analysis report is one of the technical reports containing documentation of the Environmental Radiation Model for Yucca Mountain, Nevada (ERMYN), a biosphere model supporting the Total System Performance Assessment (TSPA) for the license application (LA) for the Yucca Mountain repository. This analysis report describes the development of biosphere dose conversion factors (BDCFs) for the groundwater exposure scenario, and the development of conversion factors for assessing compliance with the groundwater protection standards. A graphical representation of the documentation hierarchy for the ERMYN is presented in Figure 1-1. This figure shows the interrelationships among the products (i.e., analysis and model reports) developed for biosphere modeling and provides an understanding of how this analysis report contributes to biosphere modeling. This report is one of two reports that develop BDCFs, which are input parameters for the TSPA-LA model. The ''Biosphere Model Report'' (BSC 2004 [DIRS 169460]) describes in detail the ERMYN conceptual model and mathematical model. The input parameter reports, shown to the right of the ''Biosphere Model Report'' in Figure 1-1, contain detailed description of the model input parameters, their development, and the relationship between the parameters and specific features events and processes (FEPs). This report describes biosphere model calculations and their output, the BDCFs, for the groundwater exposure scenario. This analysis receives direct input from the outputs of the ''Biosphere Model Report'' (BSC 2004 [DIRS 169460]) and the five analyses that develop parameter values for the biosphere model (BSC 2005 [DIRS 172827]; BSC 2004 [DIRS 169672]; BSC 2004 [DIRS 169673]; BSC 2004 [DIRS 169458]; BSC 2004 [DIRS 169459]). The results of this report are further analyzed in the ''Biosphere Dose Conversion Factor Importance and Sensitivity Analysis'' (Figure 1-1). The objectives of this analysis are to develop BDCFs for the

  16. Wide-range radiation dose monitor

    DOEpatents

    Kopp, Manfred K.

    1986-01-01

    A radiation dose-rate monitor is provided which operates in a conventional linear mode for radiation in the 0 to 0.5 R/h range and utilizes a nonlinear mode of operation for sensing radiation from 0.5 R/h to over 500 R/h. The nonlinear mode is achieved by a feedback circuit which adjusts the high voltage bias of the proportional counter, and hence its gas gain, in accordance with the amount of radiation being monitored. This allows compression of readout onto a single scale over the range of 0 to greater than 500 R/h without scale switching operations.

  17. Wide-range radiation dose monitor

    DOEpatents

    Kopp, M.K.

    1984-09-20

    A radiation dose-rate monitor is provided which operates in a conventional linear mode for radiation in the 0 to 0.5 R/h range and utilizes a nonlinear mode of operation for sensing radiation from 0.5 R/h to over 500 R/h. The nonlinear mode is achieved by a feedback circuit which adjusts the high voltage bias of the proportional counter, and hence its gas gain, in accordance with the amount of radiation being monitored. This allows compression of readout onto a single scale over the range of 0 to greater than 500 R/h without scale switching operations.

  18. Single dose dipyrone for acute postoperative pain

    PubMed Central

    Derry, Sheena; Faura, Clara; Edwards, Jayne; McQuay, Henry J; Moore, R Andrew

    2014-01-01

    Background Dipyrone (metamizole) is a non-steroidal anti-inflammatory drug used in some countries to treat pain (postoperative, colic, cancer, and migraine); it is banned in others because of an association with life-threatening blood agranulocytosis. This review updates a 2001 Cochrane review, and no relevant new studies were identified, but additional outcomes were sought. Objectives To assess the efficacy and adverse events of single dose dipyrone in acute postoperative pain. Search methods The earlier review searched CENTRAL, MEDLINE, EMBASE, LILACS and the Oxford Pain Relief Database to December 1999. For the update we searched CENTRAL, MEDLINE,EMBASE and LILACS to February 2010. Selection criteria Single dose, randomised, double-blind, placebo or active controlled trials of dipyrone for relief of established moderate to severe postoperative pain in adults. We included oral, rectal, intramuscular or intravenous administration of study drugs. Data collection and analysis Studies were assessed for methodological quality and data extracted by two review authors independently. Summed total pain relief over six hours (TOTPAR) was used to calculate the number of participants achieving at least 50% pain relief. Derived results were used to calculate, with 95% confidence intervals, relative benefit compared to placebo, and the number needed to treat (NNT) for one participant to experience at least 50% pain relief over six hours. Use and time to use of rescue medication were additional measures of efficacy. Information on adverse events and withdrawals was collected. Main results Fifteen studies tested mainly 500 mg oral dipyrone (173 participants), 2.5 g intravenous dipyrone (101), 2.5 g intramuscular dipyrone (99); fewer than 60 participants received any other dose. All studies used active controls (ibuprofen, paracetamol, aspirin, flurbiprofen, ketoprofen, dexketoprofen, ketorolac, pethidine, tramadol, suprofen); eight used placebo controls. Over 70% of participants

  19. List of Error-Prone Abbreviations, Symbols, and Dose Designations

    MedlinePlus

    ... unit dose (e.g., diltiazem 125 mg IV infusion “UD” misin- Use “as directed” terpreted as meaning to give the entire infusion as a unit [bolus] dose) Misinterpretation Correction Mistaken ...

  20. 77 FR 12576 - Veterans' Advisory Board on Dose Reconstruction; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-01

    ... public presentations regarding dose reconstruction efforts related to the Fukushima incident in Japan and... the DoD Population of Interest Dose Reconstruction from the Fukushima incident in Japan'' by...

  1. High to Low Dose Extrapolation of Experimental Animal Carcinogenesis Studies,

    DTIC Science & Technology

    with its inherent limitations. A number of commonly used mathematical models of dose - response necessary for this extrapolation, will be discussed...thresholds; incorporation of background, or spontaneous responses; modification of the dose - response by pharmacokinetic processes. (Author)

  2. Risk of cancer subsequent to low-dose radiation

    SciTech Connect

    Warren, S.

    1980-01-01

    The author puts low dose irradiation risks in perspective using average background radiation doses for standards. He assailed irresponsible media coverage during the height of public interest in the Three-Mile Island Reactor incident. (PCS)

  3. Advanced Computational Approaches for Characterizing Stochastic Cellular Responses to Low Dose, Low Dose Rate Exposures

    SciTech Connect

    Scott, Bobby, R., Ph.D.

    2003-06-27

    OAK - B135 This project final report summarizes modeling research conducted in the U.S. Department of Energy (DOE), Low Dose Radiation Research Program at the Lovelace Respiratory Research Institute from October 1998 through June 2003. The modeling research described involves critically evaluating the validity of the linear nonthreshold (LNT) risk model as it relates to stochastic effects induced in cells by low doses of ionizing radiation and genotoxic chemicals. The LNT model plays a central role in low-dose risk assessment for humans. With the LNT model, any radiation (or genotoxic chemical) exposure is assumed to increase one¡¯s risk of cancer. Based on the LNT model, others have predicted tens of thousands of cancer deaths related to environmental exposure to radioactive material from nuclear accidents (e.g., Chernobyl) and fallout from nuclear weapons testing. Our research has focused on developing biologically based models that explain the shape of dose-response curves for low-dose radiation and genotoxic chemical-induced stochastic effects in cells. Understanding the shape of the dose-response curve for radiation and genotoxic chemical-induced stochastic effects in cells helps to better understand the shape of the dose-response curve for cancer induction in humans. We have used a modeling approach that facilitated model revisions over time, allowing for timely incorporation of new knowledge gained related to the biological basis for low-dose-induced stochastic effects in cells. Both deleterious (e.g., genomic instability, mutations, and neoplastic transformation) and protective (e.g., DNA repair and apoptosis) effects have been included in our modeling. Our most advanced model, NEOTRANS2, involves differing levels of genomic instability. Persistent genomic instability is presumed to be associated with nonspecific, nonlethal mutations and to increase both the risk for neoplastic transformation and for cancer occurrence. Our research results, based on

  4. Determination of surface dose and the effect of bolus to surface dose in electron beams

    SciTech Connect

    Guenhan, Basri; Kemikler, Goenuel; Koca, Ayse

    2003-09-30

    When treating tumors from surface to a certain depth (< 5 cm), electron beams are preferred in radiotherapy. To increase the surface doses of lower electron beams, tissue-equivalent bolus materials are often used. We observed that the surface doses increased with increasing field sizes and electron energies. At the same time, we also observed that all electron parameters were shifted toward the skin as much as the thickness of the bolus used. The effect of bolus to the surface doses was more significant at low electron energies than at higher electron energies. Rando phantom measurements at 6-, 7.5-, and 9-MeV were slightly lower than the solid phantom measurements, which could only be explained by the inverse square law effect and the Rando phantom contour irregularity.

  5. Maximizing the biological effect of proton dose delivered with scanned beams via inhomogeneous daily dose distributions

    SciTech Connect

    Zeng Chuan; Giantsoudi, Drosoula; Grassberger, Clemens; Goldberg, Saveli; Niemierko, Andrzej; Paganetti, Harald; Efstathiou, Jason A.; Trofimov, Alexei

    2013-05-15

    Purpose: Biological effect of radiation can be enhanced with hypofractionation, localized dose escalation, and, in particle therapy, with optimized distribution of linear energy transfer (LET). The authors describe a method to construct inhomogeneous fractional dose (IFD) distributions, and evaluate the potential gain in the therapeutic effect from their delivery in proton therapy delivered by pencil beam scanning. Methods: For 13 cases of prostate cancer, the authors considered hypofractionated courses of 60 Gy delivered in 20 fractions. (All doses denoted in Gy include the proton's mean relative biological effectiveness (RBE) of 1.1.) Two types of plans were optimized using two opposed lateral beams to deliver a uniform dose of 3 Gy per fraction to the target by scanning: (1) in conventional full-target plans (FTP), each beam irradiated the entire gland, (2) in split-target plans (STP), beams irradiated only the respective proximal hemispheres (prostate split sagittally). Inverse planning yielded intensity maps, in which discrete position control points of the scanned beam (spots) were assigned optimized intensity values. FTP plans preferentially required a higher intensity of spots in the distal part of the target, while STP, by design, employed proximal spots. To evaluate the utility of IFD delivery, IFD plans were generated by rearranging the spot intensities from FTP or STP intensity maps, separately as well as combined using a variety of mixing weights. IFD courses were designed so that, in alternating fractions, one of the hemispheres of the prostate would receive a dose boost and the other receive a lower dose, while the total physical dose from the IFD course was roughly uniform across the prostate. IFD plans were normalized so that the equivalent uniform dose (EUD) of rectum and bladder did not increase, compared to the baseline FTP plan, which irradiated the prostate uniformly in every fraction. An EUD-based model was then applied to estimate tumor

  6. SU-E-T-636: Investigation of Dose Variation in High Dose Radiation Brachytherapy

    SciTech Connect

    Hyvarinen, M; Leventouri, T; Casey, C; Long, S; Pella, S; Dumitru, N; Herrera, R

    2014-06-15

    Purpose: The purpose of this study is to revise most of the HDR types of treatments with their applicators and their localization challenges. Since every millimeter of misplacement counts the study will look into the necessity of increasing the immobilization for several types of applicators Methods: The study took over 136 plans generated by the treatment planning system (TPS) looking into the applicator's placement in regard to the organs at risk (OR) and simulated the three possible displacements at the hottest dose point on the critical organ for several accessories to evaluate the variation of the delivered dose at the point due to the displacement. Results: Significant dose variation was obtained for the Contura, Savi, MLM and Prostate applicators. Conclusion: This study data indicates that an improvement of the immobilization devices for HDR is absolutely necessary. Better applicator fixation devices are required too. Developing new immobilization devices for all the applicators is recommended. Florida Atlantic University may provide Travel reimbursements.

  7. Toward an organ based dose prescription method for the improved accuracy of murine dose in orthovoltage x-ray irradiators

    SciTech Connect

    Belley, Matthew D.; Wang, Chu; Nguyen, Giao; Gunasingha, Rathnayaka; Chao, Nelson J.; Chen, Benny J.; Dewhirst, Mark W.; Yoshizumi, Terry T.

    2014-03-15

    Purpose: Accurate dosimetry is essential when irradiating mice to ensure that functional and molecular endpoints are well understood for the radiation dose delivered. Conventional methods of prescribing dose in mice involve the use of a single dose rate measurement and assume a uniform average dose throughout all organs of the entire mouse. Here, the authors report the individual average organ dose values for the irradiation of a 12, 23, and 33 g mouse on a 320 kVp x-ray irradiator and calculate the resulting error from using conventional dose prescription methods. Methods: Organ doses were simulated in the Geant4 application for tomographic emission toolkit using the MOBY mouse whole-body phantom. Dosimetry was performed for three beams utilizing filters A (1.65 mm Al), B (2.0 mm Al), and C (0.1 mm Cu + 2.5 mm Al), respectively. In addition, simulated x-ray spectra were validated with physical half-value layer measurements. Results: Average doses in soft-tissue organs were found to vary by as much as 23%–32% depending on the filter. Compared to filters A and B, filter C provided the hardest beam and had the lowest variation in soft-tissue average organ doses across all mouse sizes, with a difference of 23% for the median mouse size of 23 g. Conclusions: This work suggests a new dose prescription method in small animal dosimetry: it presents a departure from the conventional approach of assigninga single dose value for irradiation of mice to a more comprehensive approach of characterizing individual organ doses to minimize the error and uncertainty. In human radiation therapy, clinical treatment planning establishes the target dose as well as the dose distribution, however, this has generally not been done in small animal research. These results suggest that organ dose errors will be minimized by calibrating the dose rates for all filters, and using different dose rates for different organs.

  8. Dose and dose rate effects of whole-body gamma-irradiation: I. Lymphocytes and lymphoid organs

    NASA Technical Reports Server (NTRS)

    Pecaut, M. J.; Nelson, G. A.; Gridley, D. S.

    2001-01-01

    The major goal of part I of this study was to compare varying doses and dose rates of whole-body gamma-radiation on lymphoid cells and organs. C57BL/6 mice (n = 75) were exposed to 0, 0.5, 1.5, and 3.0 Gy gamma-rays (60Co) at 1 cGy/min (low-dose rate, LDR) and 80 cGy/min (high-dose rate, HDR) and euthanized 4 days later. A significant dose-dependent loss of spleen mass was observed with both LDR and HDR irradiation; for the thymus this was true only with HDR. Decreasing leukocyte and lymphocyte numbers occurred with increasing dose in blood and spleen at both dose rates. The numbers (not percentages) of CD3+ T lymphocytes decreased in the blood in a dose-dependent manner at both HDR and LDR. Splenic T cell counts decreased with dose only in HDR groups; percentages increased with dose at both dose rates. Dose-dependent decreases occurred in CD4+ T helper and CD8+ T cytotoxic cell counts at HDR and LDR. In the blood the percentages of CD4+ cells increased with increasing dose at both dose rates, whereas in the spleen the counts decreased only in the HDR groups. The percentages of the CD8+ population remained stable in both blood and spleen. CD19+ B cell counts and percentages in both compartments declined markedly with increasing HDR and LDR radiation. NK1.1+ natural killer cell numbers and proportions remained relatively stable. Overall, these data indicate that the observed changes were highly dependent on the dose, but not dose rate, and that cells in the spleen are more affected by dose rate than those in blood. The results also suggest that the response of lymphocytes in different body compartments may be variable.

  9. Dose reconstruction for intensity-modulated radiation therapy using a non-iterative method and portal dose image

    NASA Astrophysics Data System (ADS)

    Yeo, Inhwan Jason; Jung, Jae Won; Chew, Meng; Kim, Jong Oh; Wang, Brian; Di Biase, Steven; Zhu, Yunping; Lee, Dohyung

    2009-09-01

    A straightforward and accurate method was developed to verify the delivery of intensity-modulated radiation therapy (IMRT) and to reconstruct the dose in a patient. The method is based on a computational algorithm that linearly describes the physical relationship between beamlets and dose-scoring voxels in a patient and the dose image from an electronic portal imaging device (EPID). The relationship is expressed in the form of dose response functions (responses) that are quantified using Monte Carlo (MC) particle transport techniques. From the dose information measured by the EPID the received patient dose is reconstructed by inversely solving the algorithm. The unique and novel non-iterative feature of this algorithm sets it apart from many existing dose reconstruction methods in the literature. This study presents the algorithm in detail and validates it experimentally for open and IMRT fields. Responses were first calculated for each beamlet of the selected fields by MC simulation. In-phantom and exit film dosimetry were performed on a flat phantom. Using the calculated responses and the algorithm, the exit film dose was used to inversely reconstruct the in-phantom dose, which was then compared with the measured in-phantom dose. The dose comparison in the phantom for all irradiated fields showed a pass rate of higher than 90% dose points given the criteria of dose difference of 3% and distance to agreement of 3 mm.

  10. Optimizing CT radiation dose based on patient size and image quality: the size-specific dose estimate method.

    PubMed

    Larson, David B

    2014-10-01

    The principle of ALARA (dose as low as reasonably achievable) calls for dose optimization rather than dose reduction, per se. Optimization of CT radiation dose is accomplished by producing images of acceptable diagnostic image quality using the lowest dose method available. Because it is image quality that constrains the dose, CT dose optimization is primarily a problem of image quality rather than radiation dose. Therefore, the primary focus in CT radiation dose optimization should be on image quality. However, no reliable direct measure of image quality has been developed for routine clinical practice. Until such measures become available, size-specific dose estimates (SSDE) can be used as a reasonable image-quality estimate. The SSDE method of radiation dose optimization for CT abdomen and pelvis consists of plotting SSDE for a sample of examinations as a function of patient size, establishing an SSDE threshold curve based on radiologists' assessment of image quality, and modifying protocols to consistently produce doses that are slightly above the threshold SSDE curve. Challenges in operationalizing CT radiation dose optimization include data gathering and monitoring, managing the complexities of the numerous protocols, scanners and operators, and understanding the relationship of the automated tube current modulation (ATCM) parameters to image quality. Because CT manufacturers currently maintain their ATCM algorithms as secret for proprietary reasons, prospective modeling of SSDE for patient populations is not possible without reverse engineering the ATCM algorithm and, hence, optimization by this method requires a trial-and-error approach.

  11. Steepness of the radiation dose-response curve for dose-per-fraction escalation keeping the number of fractions fixed.

    PubMed

    Bentzen, Søren M

    2005-01-01

    Clinically, there is growing interest in strategies for intensifying radiation therapy by escalating the dose per fraction. This paper considers the steepness of the dose-response curve in this case. The steepness of a radiation dose-response curve is most conveniently quantified by the normalized dose-response gradient, gamma. Under the assumption of a linear-quadratic dose-effect model, a simple analytical relationship is derived between the gamma-value for a dose-response curve generated by varying the total dose while keeping the number of fractions constant, i.e. escalating the dose per fraction, and the gamma-value for a dose-response curve generated by varying the total dose while keeping the dose per fraction constant. This formulation is compared with clinical dose-response data from the literature and shown to be in good agreement with the observations. Some implications of this formulation for non-uniform dose distributions delivered using 3D conformal radiotherapy or intensity modulated radiotherapy (IMRT) are briefly discussed.

  12. Hanford Environmental Dose Reconstruction Project. Monthly report, January 1992

    SciTech Connect

    Finch, S.M.; McMakin, A.H.

    1992-05-01

    The objective of the Hanford Environmental Dose Reconstruction Project is to estimate the radiation doses that individuals and populations could have received from nuclear operations at Hanford since 1944. The project is divided into the following technical tasks. These tasks correspond to the path radionuclides followed, from release to impact on humans (dose estimates): Source Terms, Environmental Transport, Environmental Monitoring Data, Demography, Food Consumption, and Agriculture, and Environmental Pathways and Dose Estimates.

  13. Hanford Environmental Dose Reconstruction Project monthly report, May 1992

    SciTech Connect

    Finch, S.M.; McMakin, A.H.

    1992-08-01

    The objective of the Hanford Environmental Dose Reconstruction Project is to estimate the radiation doses that individuals and populations could have received from nuclear operations at Hanford since 1944. The project is divided into the following technical tasks. These task correspond to the path radionuclides followed, from release to impact on humans (dose estimates): Source terms, environmental transport, environmental monitoring data, demography, food consumption, and agriculture, and environmental pathways and dose estimates.

  14. Hanford Environmental Dose Reconstruction Project monthly report, May 1992

    SciTech Connect

    Finch, S.M.; McMakin, A.H.

    1992-01-01

    The objective of the Hanford Environmental Dose Reconstruction Project is to estimate the radiation doses that individuals and populations could have received from nuclear operations at Hanford since 1944. The project is divided into the following technical tasks. These task correspond to the path radionuclides followed, from release to impact on humans (dose estimates): Source terms, environmental transport, environmental monitoring data, demography, food consumption, and agriculture, and environmental pathways and dose estimates.

  15. Radiation Dose Deposition in the Active Marrow of Reference Man.

    DTIC Science & Technology

    1977-10-31

    gamma ray-fission neutron exposure , the relative biological effec- tiveness (RBE) per unit marrow dose between neutrons and gamma rays in producing...calculations in terms of marrow dose (rad (marrow)) per unit incident fluence. The third presents in- tegral marrow doses calculated for exposure to...in the marrow than other devices. This is shown by the fact that the neutron dose deposited by a given total exposure from such a de- vice is as much

  16. Hanford Environmental Dose Reconstruction Project monthly report, August 1992

    SciTech Connect

    McMakin, A.H.; Cannon, S.D.; Finch, S.M.

    1992-01-01

    The objective of the Hanford Environmental Dose Reconstruction (HEDR) Project is to estimate the radiation doses that individuals and populations could have received from nuclear operations at Hanford since 1944. The project is divided into the following technical tasks. These tasks correspond to the path radionuclides followed from release to impact on humans (dose estimates): source terms; environmental transport; environmental monitoring data; demography; food consumption; and agriculture; and environmental pathway and dose estimates.

  17. Hanford Environmental Dose Reconstruction Project monthly report, August 1992

    SciTech Connect

    McMakin, A.H.; Cannon, S.D.; Finch, S.M.

    1992-09-01

    The objective of the Hanford Environmental Dose Reconstruction (HEDR) Project is to estimate the radiation doses that individuals and populations could have received from nuclear operations at Hanford since 1944. The project is divided into the following technical tasks. These tasks correspond to the path radionuclides followed from release to impact on humans (dose estimates): source terms; environmental transport; environmental monitoring data; demography; food consumption; and agriculture; and environmental pathway and dose estimates.

  18. Methodological Challenges in Describing Medication Dosing Errors in Children

    DTIC Science & Technology

    2005-01-01

    completed and FDA labeling is provided for a medication, it is unclear which dose is most appropriate for children. For example, olanzapine is an...antipsychotic medication that is not currently licensed for use in children under age 18 years. Table 2 represents different pediatric doses for olanzapine ...recommended in several selected sources. Table 2. Dosing information for olanzapine Source Recommended pediatric dose* Harriet Lane Handbook19

  19. Hanford Environmental Dose Reconstruction Project monthly report, February 1993

    SciTech Connect

    Cannon, S.D.; Finch, S.M.

    1993-01-01

    The objective of the Hanford Environmental Dose Reconstruction (HEDR) Project Is to estimate the radiation doses that individuals and populations could have received from nuclear operations at Hanford since 1944. The project is divided into the following technical tasks. These tasks correspond to the path radionuclides followed from release to impact on humans (dose estimates): Source Terms; Environmental Transport; Environmental Monitoring Data; Demography, Food Consumption, and Agriculture; and Environmental Pathways and Dose Estimates.

  20. Hanford Environmental Dose Reconstruction Project monthly report, February 1993

    SciTech Connect

    Cannon, S.D.; Finch, S.M.

    1993-03-01

    The objective of the Hanford Environmental Dose Reconstruction (HEDR) Project Is to estimate the radiation doses that individuals and populations could have received from nuclear operations at Hanford since 1944. The project is divided into the following technical tasks. These tasks correspond to the path radionuclides followed from release to impact on humans (dose estimates): Source Terms; Environmental Transport; Environmental Monitoring Data; Demography, Food Consumption, and Agriculture; and Environmental Pathways and Dose Estimates.

  1. Necrosis and Apoptosis in Hepatocellular Carcinoma Following Low-Dose Versus High-Dose Preoperative Chemoembolization

    SciTech Connect

    Lu Wei Li Yanhao He Xiaofeng; Zhao Jianbo; Chen Yong; Mei Quelin

    2008-11-15

    Our purpose was to study necrosis and apoptosis of hepatocellular carcinoma (HCC) cells after preoperative transcatheter arterial chemoembolization (TACE) with use of low-dose and high-dose anticancer drugs in HCCs. Fifty-four patients with advanced but surgically resectable HCC were studied. Thirty-four patients who elected to undergo preoperative superselective TACE were randomized to low- and high-dose TACE. Patients in group A (n = 16) received low-dose anticancer drugs: 2 mg mitomycin C (MMC), 10 mg epirubicin (EPI), and 100 mg carboplatin (CBP). Patients in group B (n = 18) were given high doses of anticancer drugs (10 mg MMC, 40 mg EPI, and 300 mg CBP). Hepatic resection was subsequently performed. Group C comprised 20 patients who underwent resection without TACE. In all patients the necrosis rates and apoptosis index of tumor cells were evaluated by pathologic examinations and terminal deoxynucleotidyl transferase-mediated nick-end labeling assay. There was no significant difference between group A and group B in tumor response (p > 0.05) after TACE. Necrosis rates in groups A, B, and C were 88.4 {+-} 11.1%, 87.1 {+-} 12.5%, and 7.3 {+-} 3.5%, respectively. There was no significant difference between group A and group B (p > 0.05), while statistical difference was found between group A and group C (p < 0.001) and between group B and group C (p < 0.001). Apoptosis indexes in the three groups were 11.0 {+-} 4.0%, 10.7 {+-} 3.9%, and 5.6 {+-} 2.6%, respectively. Statistical difference exhibited between group A and group C (p < 0.001) and group B versus group C (p < 0.001). No significant difference was observed between group A and group B (p > 0.05). In conclusion, superselective TACE with low- and high-dose chemotherapeutic agents induced similar degrees of cellular apoptosis and necrosis.

  2. Efficacy of a single high dose versus multiple low doses of LLLT on wounded skin fibroblasts

    NASA Astrophysics Data System (ADS)

    Hawkins, Denise H.; Abrahamse, Heidi

    2007-07-01

    Background/purpose: In vivo studies have demonstrated that phototherapy accelerates wound healing in the clinical environment; however the exact mechanism is still not completely understood. The main focus of this study was to use in vitro laboratory results to establish an effective treatment regimen that may be practical and applicable to the clinical environment. This in vitro study aimed to compare the cellular responses of wounded fibroblasts following a single exposure of 5 J/cm2 or multiple exposures of low doses (2.5 J/cm2 or 5 J/cm2) on one day of the week to a single application of a higher dose (16 J/cm2) on day 1 and day 4. Methodology: Cellular responses to Helium-Neon (632.8 nm) laser irradiation were evaluated by measuring changes in cell morphology, cell viability, cell proliferation, membrane integrity and DNA damage. Results: Wounded cells exposed to 5 J/cm2 on day 1 and day 4 showed an increase in cell viability, increase in the release of bFGF, increase in cell density, decrease in ALP enzyme activity and decrease in caspase 3/7 activity indicating a stimulatory effect. Wounded cells exposed to three doses of 5 J/cm2 on day 1 showed a decrease in cell viability and cell proliferation and an increase in LDH cytotoxicity and DNA damage indicating an inhibitory effect. Conclusion: Results indicate that cellular responses are influenced by the combination of dose administered, number of exposures and time between exposures. Single doses administered with sufficient time between exposures is more beneficial to restoring cell function than multiple doses within a short period. Although this work confirms previous reports on the cumulative effect of laser irradiation it provides essential information for the initiation of in vivo clinical studies.

  3. Implementation of spot scanning dose optimization and dose calculation for helium ions in Hyperion

    SciTech Connect

    Fuchs, Hermann; Schreiner, Thomas; Georg, Dietmar

    2015-09-15

    Purpose: Helium ions ({sup 4}He) may supplement current particle beam therapy strategies as they possess advantages in physical dose distribution over protons. To assess potential clinical advantages, a dose calculation module accounting for relative biological effectiveness (RBE) was developed and integrated into the treatment planning system Hyperion. Methods: Current knowledge on RBE of {sup 4}He together with linear energy transfer considerations motivated an empirical depth-dependent “zonal” RBE model. In the plateau region, a RBE of 1.0 was assumed, followed by an increasing RBE up to 2.8 at the Bragg-peak region, which was then kept constant over the fragmentation tail. To account for a variable proton RBE, the same model concept was also applied to protons with a maximum RBE of 1.6. Both RBE models were added to a previously developed pencil beam algorithm for physical dose calculation and included into the treatment planning system Hyperion. The implementation was validated against Monte Carlo simulations within a water phantom using γ-index evaluation. The potential benefits of {sup 4}He based treatment plans were explored in a preliminary treatment planning comparison (against protons) for four treatment sites, i.e., a prostate, a base-of-skull, a pediatric, and a head-and-neck tumor case. Separate treatment plans taking into account physical dose calculation only or using biological modeling were created for protons and {sup 4}He. Results: Comparison of Monte Carlo and Hyperion calculated doses resulted in a γ{sub mean} of 0.3, with 3.4% of the values above 1 and γ{sub 1%} of 1.5 and better. Treatment plan evaluation showed comparable planning target volume coverage for both particles, with slightly increased coverage for {sup 4}He. Organ at risk (OAR) doses were generally reduced using {sup 4}He, some by more than to 30%. Improvements of {sup 4}He over protons were more pronounced for treatment plans taking biological effects into account. All

  4. 10 CFR 20.1004 - Units of radiation dose.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 1 2011-01-01 2011-01-01 false Units of radiation dose. 20.1004 Section 20.1004 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION General Provisions § 20.1004 Units of radiation dose. (a) Definitions. As used in this part, the units of radiation dose are:...

  5. 10 CFR 20.1004 - Units of radiation dose.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 1 2012-01-01 2012-01-01 false Units of radiation dose. 20.1004 Section 20.1004 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION General Provisions § 20.1004 Units of radiation dose. (a) Definitions. As used in this part, the units of radiation dose are:...

  6. 42 CFR 81.6 - Use of radiation dose information.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 42 Public Health 1 2013-10-01 2013-10-01 false Use of radiation dose information. 81.6 Section 81... Probability of Causation § 81.6 Use of radiation dose information. Determining probability of causation will require the use of radiation dose information provided to DOL by the National Institute for...

  7. 42 CFR 81.6 - Use of radiation dose information.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 42 Public Health 1 2014-10-01 2014-10-01 false Use of radiation dose information. 81.6 Section 81... Probability of Causation § 81.6 Use of radiation dose information. Determining probability of causation will require the use of radiation dose information provided to DOL by the National Institute for...

  8. 42 CFR 81.6 - Use of radiation dose information.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Use of radiation dose information. 81.6 Section 81... Probability of Causation § 81.6 Use of radiation dose information. Determining probability of causation will require the use of radiation dose information provided to DOL by the National Institute for...

  9. 10 CFR 20.1004 - Units of radiation dose.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Units of radiation dose. 20.1004 Section 20.1004 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION General Provisions § 20.1004 Units of radiation dose. (a) Definitions. As used in this part, the units of radiation dose are:...

  10. 42 CFR 81.6 - Use of radiation dose information.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 42 Public Health 1 2012-10-01 2012-10-01 false Use of radiation dose information. 81.6 Section 81... Probability of Causation § 81.6 Use of radiation dose information. Determining probability of causation will require the use of radiation dose information provided to DOL by the National Institute for...

  11. 10 CFR 20.1004 - Units of radiation dose.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 1 2013-01-01 2013-01-01 false Units of radiation dose. 20.1004 Section 20.1004 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION General Provisions § 20.1004 Units of radiation dose. (a) Definitions. As used in this part, the units of radiation dose are:...

  12. 42 CFR 81.6 - Use of radiation dose information.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 1 2011-10-01 2011-10-01 false Use of radiation dose information. 81.6 Section 81... Probability of Causation § 81.6 Use of radiation dose information. Determining probability of causation will require the use of radiation dose information provided to DOL by the National Institute for...

  13. 10 CFR 20.1004 - Units of radiation dose.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 1 2014-01-01 2014-01-01 false Units of radiation dose. 20.1004 Section 20.1004 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION General Provisions § 20.1004 Units of radiation dose. (a) Definitions. As used in this part, the units of radiation dose are:...

  14. Pharmacokinetics and dose proportionality of ceftibuten in men.

    PubMed Central

    Lin, C; Lim, J; Radwanski, E; Marco, A; Affrime, M

    1995-01-01

    The pharmacokinetics and dose proportionality of ceftibuten were evaluated in healthy male volunteers receiving single oral doses of 200, 400, and 800 mg of ceftibuten. The drug was absorbed with similar times to the maximum concentration of drug in plasma for all three doses. Concentrations of ceftibuten in plasma increased with increasing dose. Analysis of variance was carried out on the dose-adjusted values for the maximum concentration of drug in plasma and the area under the plasma concentration-time curve; the results indicated that the concentrations in plasma after the 200- and 400-mg doses were dose proportional, and after the 800-mg of dose they were less than dose proportional. The elimination half-life from plasma ranged from 2.0 to 2.3 h and was independent of dose. The total excretion of unchanged ceftibuten in urine accounted for 53 to 68% of the dose, and the renal clearance was estimated to be 53 to 61 ml/min after all doses. The amount of ceftibuten-trans, the major in vitro and in vivo conversion product of ceftibuten, was low in both plasma and urine. PMID:7726498

  15. Total dose performance of radiation hardened voltage regulators and references

    NASA Technical Reports Server (NTRS)

    McClure, S.; Gorelick, J.; Pease, R.; Rax, B.; Ladbury, R.

    2001-01-01

    Total dose test of commercially available radiation hardened bipolar voltage regulators and references show reduced sensitivity to dose rate and varying sensitivity to bias under pressure. Behavior of critical parameters in different dose rate and bias conditions is compared and the impact to hardness assurance methodology is discussed.

  16. Effective dose estimation during conventional and CT urography

    NASA Astrophysics Data System (ADS)

    Alzimami, K.; Sulieman, A.; Omer, E.; Suliman, I. I.; Alsafi, K.

    2014-11-01

    Intravenous urography (IVU) and CT urography (CTU) are efficient radiological examinations for the evaluation of the urinary system disorders. However patients are exposed to a significant radiation dose. The objectives of this study are to: (i) measure and compare patient radiation dose by computed tomography urography (CTU) and conventional intravenous urography (IVU) and (ii) evaluate organ equivalent dose and cancer risks from CTU and IVU imaging procedures. A total of 141 patients were investigated. A calibrated CT machine (Siemens-Somatom Emotion duo) was used for CTU, while a Shimadzu X ray machine was used for IVU. Thermoluminescence dosimeters (TLD-GR200A) were used to measure patients' entrance surface doses (ESD). TLDs were calibrated under reproducible reference conditions. Patients radiation dose values (DLP) for CTU were 172±61 mGy cm, CTDIvol 4.75±2 mGy and effective dose 2.58±1 mSv. Patient cancer probabilities were estimated to be 1.4 per million per CTU examination. Patients ESDs values for IVU were 21.62±5 mGy, effective dose 1.79±1 mSv. CT involves a higher effective dose than IVU. In this study the radiation dose is considered low compared to previous studies. The effective dose from CTU procedures was 30% higher compared to IVU procedures. Wide dose variation between patient doses suggests that optimization is not fulfilled yet.

  17. Radiotherapy dose calculations in the presence of hip prostheses

    SciTech Connect

    Keall, Paul J.; Siebers, Jeffrey V.; Jeraj, Robert; Mohan, Radhe

    2003-06-30

    The high density and atomic number of hip prostheses for patients undergoing pelvic radiotherapy challenge our ability to accurately calculate dose. A new clinical dose calculation algorithm, Monte Carlo, will allow accurate calculation of the radiation transport both within and beyond hip prostheses. The aim of this research was to investigate, for both phantom and patient geometries, the capability of various dose calculation algorithms to yield accurate treatment plans. Dose distributions in phantom and patient geometries with high atomic number prostheses were calculated using Monte Carlo, superposition, pencil beam, and no-heterogeneity correction algorithms. The phantom dose distributions were analyzed by depth dose and dose profile curves. The patient dose distributions were analyzed by isodose curves, dose-volume histograms (DVHs) and tumor control probability/normal tissue complication probability (TCP/NTCP) calculations. Monte Carlo calculations predicted the dose enhancement and reduction at the proximal and distal prosthesis interfaces respectively, whereas superposition and pencil beam calculations did not. However, further from the prosthesis, the differences between the dose calculation algorithms diminished. Treatment plans calculated with superposition showed similar isodose curves, DVHs, and TCP/NTCP as the Monte Carlo plans, except in the bladder, where Monte Carlo predicted a slightly lower dose. Treatment plans calculated with either the pencil beam method or with no heterogeneity correction differed significantly from the Monte Carlo plans.

  18. A 3D isodose manipulation tool for interactive dose shaping

    NASA Astrophysics Data System (ADS)

    Kamerling, C. P.; Ziegenhein, P.; Heinrich, H.; Oelfke, U.

    2014-03-01

    The interactive dose shaping (IDS) planning paradigm aims to perform interactive local dose adaptations of an IMRT plan without compromising already established valuable dose features in real-time. In this work we introduce an interactive 3D isodose manipulation tool which enables local modifications of a dose distribution intuitively by direct manipulation of an isodose surface. We developed an in-house IMRT TPS framework employing an IDS engine as well as a 3D GUI for dose manipulation and visualization. In our software an initial dose distribution can be interactively modified through an isodose surface manipulation tool by intuitively clicking on an isodose surface. To guide the user interaction, the position of the modification is indicated by a sphere while the mouse cursor hovers the isodose surface. The sphere's radius controls the locality of the modification. The tool induces a dose modification as a direct change of dose in one or more voxels, which is incrementally obtained by fluence adjustments. A subsequent recovery step identifies voxels with violated dose features and aims to recover their original dose. We showed a proof of concept study for the proposed tool by adapting the dose distribution of a prostate case (9 beams, coplanar). Single dose modifications take less than 2 seconds on an actual desktop PC.

  19. Ingestion of Nevada Test Site Fallout: Internal dose estimates

    SciTech Connect

    Whicker, F.W.; Kirchner, T.B.; Anspaugh, L.R.

    1996-10-01

    This paper summarizes individual and collective dose estimates for the internal organs of hypothetical yet representative residents of selected communities that received measurable fallout from nuclear detonations at the Nevada Test Site. The doses, which resulted from ingestion of local and regional food products contaminated with over 20 radionuclides, were estimated with use of the PATHWAY food-chain-transport model to provide estimates of central tendency and uncertainty. The thyroid gland received much higher doses than other internal organs and tissues. In a avery few cases, infants might have received thyroid doses in excess of 1 Gy, depending on location, diet, and timing of fallout. {sup 131}I was the primary thyroid dose contributor, and fresh milk was the main exposure pathway. With the exception of the thyroid, organ doses from the ingestion pathway were much smaller (<3%) than those from external gamma exposure to deposited fallout. Doses to residents living closest to the Nevada Test Site were contributed mainly by a few fallout events; doses to more distantly located people were generally smaller, but a greater number of events provided measurable contributions. The effectiveness of different fallout events in producing internal organ doses through ingestion varied dramatically with seasonal timing of the test, with maximum dose per unit fallout occurring for early summer depositions when milk cows were on pasture and fresh, local vegetables were used. Within specific communities, internal doses differed by age, sex, and lifestyle. Collective internal dose estimates for specific geographic areas are provided.

  20. Occupational dose constraints in interventional cardiology procedures: the DIMOND approach

    NASA Astrophysics Data System (ADS)

    Tsapaki, Virginia; Kottou, Sophia; Vano, Eliseo; Komppa, Tuomo; Padovani, Renato; Dowling, Annita; Molfetas, Michael; Neofotistou, Vassiliki

    2004-03-01

    Radiation fields involved in angiographic suites are most uneven with intensity and gradient varying widely with projection geometry. The European Commission DIMOND III project addressed among others, the issues regarding optimization of staff doses with an attempt to propose preliminary occupational dose constraints. Two thermoluminescent dosemeters (TLD) were used to assess operators' extremity doses (left shoulder and left foot) during 20 coronary angiographies (CAs) and 20 percutaneous transluminal coronary angioplasties (PTCAs) in five European centres. X-ray equipment, radiation protection measures used and the dose delivered to the patient in terms of dose-area product (DAP) were recorded so as to subsequently associate them with operator's dose. The range of staff doses noted for the same TLD position, centre and procedure type emphasizes the importance of protective measures and technical characteristics of x-ray equipment. Correlation of patient's DAP with staff shoulder dose is moderate whereas correlation of patient's DAP with staff foot dose is poor in both CA and PTCA. Therefore, it is difficult to predict operator's dose from patient's DAP mainly due to the different use of protective measures. A preliminary occupational dose constraint value was defined by calculating cardiologists' annual effective dose and found to be 0.6 mSv.

  1. 10 CFR 20.1201 - Occupational dose limits for adults.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 1 2013-01-01 2013-01-01 false Occupational dose limits for adults. 20.1201 Section 20... Limits § 20.1201 Occupational dose limits for adults. (a) The licensee shall control the occupational dose to individual adults, except for planned special exposures under § 20.1206, to the following...

  2. 10 CFR 20.1201 - Occupational dose limits for adults.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 1 2011-01-01 2011-01-01 false Occupational dose limits for adults. 20.1201 Section 20... Limits § 20.1201 Occupational dose limits for adults. (a) The licensee shall control the occupational dose to individual adults, except for planned special exposures under § 20.1206, to the following...

  3. 10 CFR 20.1201 - Occupational dose limits for adults.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 1 2014-01-01 2014-01-01 false Occupational dose limits for adults. 20.1201 Section 20... Limits § 20.1201 Occupational dose limits for adults. (a) The licensee shall control the occupational dose to individual adults, except for planned special exposures under § 20.1206, to the following...

  4. 10 CFR 20.1201 - Occupational dose limits for adults.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Occupational dose limits for adults. 20.1201 Section 20... Limits § 20.1201 Occupational dose limits for adults. (a) The licensee shall control the occupational dose to individual adults, except for planned special exposures under § 20.1206, to the following...

  5. In vivo skin dose measurement in breast conformal radiotherapy

    PubMed Central

    Soleymanifard, Shokouhozaman; Noghreiyan, Atefeh Vejdani; Ghorbani, Mahdi; Jamali, Farideh; Davenport, David

    2016-01-01

    Aim of the study Accurate skin dose assessment is necessary during breast radiotherapy to assure that the skin dose is below the tolerance level and is sufficient to prevent tumour recurrence. The aim of the current study is to measure the skin dose and to evaluate the geometrical/anatomical parameters that affect it. Material and methods Forty patients were simulated by TIGRT treatment planning system and treated with two tangential fields of 6 MV photon beam. Wedge filters were used to homogenise dose distribution for 11 patients. Skin dose was measured by thermoluminescent dosimeters (TLD-100) and the effects of beam incident angle, thickness of irradiated region, and beam entry separation on the skin dose were analysed. Results Average skin dose in treatment course of 50 Gy to the clinical target volume (CTV) was 36.65 Gy. The corresponding dose values for patients who were treated with and without wedge filter were 35.65 and 37.20 Gy, respectively. It was determined that the beam angle affected the average skin dose while the thickness of the irradiated region and the beam entry separation did not affect dose. Since the skin dose measured in this study was lower than the amount required to prevent tumour recurrence, application of bolus material in part of the treatment course is suggested for post-mastectomy advanced breast radiotherapy. It is more important when wedge filters are applied to homogenize dose distribution. PMID:27358592

  6. Environmental dose reconstruction for the urals population

    SciTech Connect

    Degteva, M.O.

    1996-12-31

    In 1948 the Mayak plutonium production facility was put into operation in the Southern Urals approximately 100 km northwest of the city of Chelyabinsk. This facility consisted of three main sites: reactor plant, radiochemical facility, and waste management facility. A series of releases and accidents occurred in the initial period of intense activity during the start-up and early years of operation of the Mayak facility. The major sources of radioactive contamination were: (1) the discharges of 2.75 million curies of liquid wastes into the Techa River in 1949-1956, (2) an explosion in the storage facility of radioactive wastes in 1957 (so-called Kyshtym Accident) which led to the form East Urals Radioactive Trace (EURT) as a result of the dispersion of 2 million curies in the atmosphere, (3) the resuspension of 600 curies with dry silt from the shores of Karachay Lake during a heavy thunderstorm, and (5) gaseous-aerosol releases (about 560,000 Ci of {sup 131}I) mainly during the first decade of the facility`s operation. A large fraction of the releases into the Techa River and during the Kyshtym Accident consist of long-lived radionuclides, mainly {sup 90}Sr. This article covers the following, besides the sources and history of radioactive contamination: data bases for dose reconstruction and risk assessment; the approaches to population dose reconstruction. 13 refs., 10 figs.

  7. Legionnaires' disease: The infective dose paradox

    SciTech Connect

    O'Brien, S.J.; Bhopal, R.S.

    1993-07-03

    The species of Legionella bacteria that cause legionnaires' disease are widely distributed in aquatic habitats. Infection via inhalation of aerosols containing bacteria is the main, though contested, mode of transmission. Most outbreaks have been associated with aerosols from evaporative cooling systems and complex hot water systems. There are several gaps in the understanding of the transmission of legionnaires' disease. One area of uncertainty is the size of the infective dose of the organism required to produce disease in human beings. Animal experiments suggest that a high dose is required, and the fact that there is no person-to-person spread supports this view. However, low concentrations of legionellae seem to be emitted from water systems, and epidemiological evidence indicates that infection can occur at some distance from the source of aerosol. Environmental concentration of legionellae might have been underestimated because of technical obstacles to detection. There are difficulties in culturing this slow-growing and unusually fastidious organism. Thus, the preferred culture media contain antimicrobial agents that inhibit completing organisms.

  8. PDT dose dosimetry for pleural photodynamic therapy

    PubMed Central

    Sharikova, Anna V.; Finlay, Jarod C.; Liang, Xing; Zhu, Timothy C.

    2015-01-01

    PDT dose is the product of the photosensitizer concentration and the light fluence in target tissue. Although existing systems are capable of measuring the light fluence in vivo, the concurrent measurement of photosensitizer in the treated tissue so far has been lacking. We have developed and tested a new method to simultaneously acquire light dosimetry and photosensitizer fluorescence data via the same isotropic detector, employing treatment light as the excitation source. A dichroic beamsplitter is used to split light from the isotropic detector into two fibers, one for light dosimetry, the other, after the 665 nm treatment light is removed by a band-stop filter, to a spectrometer for fluorescence detection. The light fluence varies significantly during treatment because of the source movement. The fluorescence signal is normalized by the light fluence measured at treatment wavelength. We have shown that the absolute photosensitizer concentration can be obtained by an optical properties correction factor and linear spectral fitting. Tissue optical properties are determined using an absorption spectroscopy probe immediately before PDT at the same sites. This novel method allows accurate real-time determination of delivered PDT dose using existing isotropic detectors, and may lead to a considerable improvement of PDT treatment quality compared to the currently employed systems. Preliminary data in patient studies is presented. PMID:25999645

  9. Single toxin dose-response models revisited

    PubMed Central

    Glaholt, SP; Kyker-Snowman, E; Shaw, JR; Chen, CY

    2016-01-01

    The goal of this paper is to offer a rigorous analysis of the sigmoid shape single toxin dose-response relationship. The toxin efficacy function is introduced and four special points, including maximum toxin efficacy and inflection points, on the dose-response curve are defined. The special points define three phases of the toxin effect on mortality: (1) toxin concentrations smaller than the first inflection point or (2) larger then the second inflection point imply low mortality rate, and (3) concentrations between the first and the second inflection points imply high mortality rate. Probabilistic interpretation and mathematical analysis for each of four models, Hill, logit, probit, and Weibull is provided. Two general model extensions are introduced: (1) the multi-target hit model that accounts for the existence of several vital receptors affected by the toxin, and (2) model with a nonzero mortality at zero concentration to account for natural mortality. Special attention is given to statistical estimation in the framework of the generalized linear model with the binomial dependent variable as the mortality count in each experiment, contrary to the widespread nonlinear regression treating the mortality rate as continuous variable. The models are illustrated using standard EPA Daphnia acute (48 hours) toxicity tests with mortality as a function of NiCl or CuSO4 toxin. PMID:27847315

  10. Establishing the irradiation dose for paper decontamination

    NASA Astrophysics Data System (ADS)

    Moise, Ioan Valentin; Virgolici, Marian; Negut, Constantin Daniel; Manea, Mihaela; Alexandru, Mioara; Trandafir, Laura; Zorila, Florina Lucica; Talasman, Catalina Mihaela; Manea, Daniela; Nisipeanu, Steluta; Haiducu, Maria; Balan, Zamfir

    2012-08-01

    Museums, libraries and archives are preserving documents that are slowly degrading due to the inherent ageing of the cellulose substrate or to the technological errors of the past (acid paper, iron gall ink). Beside this, large quantities of paper are rapidly damaged by biological attacks following natural disasters and improper storage conditions. The treatment of paper documents with ionizing radiation can be used for mass decontamination of cultural heritage items but conservators and restaurators are still reserved because of the radiation induced degradation. We conducted a study for establishing the dose needed for the effective treatment of paper documents, taking into account the biological burden and the irradiation effects on paper structure. We used physical testing specific to paper industry and less destructive analytical methods (thermal analysis). Our results show that an effective treatment can be performed with doses lower than 10 kGy. Old paper appears to be less affected by gamma radiation than recent paper but the sampling is highly affected by the non-uniform degree of the initial degradation status. The extent of testing for degradation and the magnitude of acceptable degradation should take into account the biological threat and the expected life time of the paper documents.

  11. High-dose gallium imaging in lymphoma

    SciTech Connect

    Anderson, K.C.; Leonard, R.C.; Canellos, G.P.; Skarin, A.T.; Kaplan, W.D.

    1983-08-01

    The role of gallium-67 imaging in the management of patients with lymphoma, traditionally assessed using low tracer doses and the rectilinear scanner, was assessed when using larger doses (7 to 10 mCi) and a triple-peak Anger camera. Gallium scan results in 51 patients with non-Hodgkin's lymphoma and 21 patients with Hodgkin's disease were compared with simultaneous radiologic, clinical, and histopathologic reports. Subsequent disease course was also evaluated in light of radionuclide findings. Sensitivity and specificity of the scans were 0.90 or greater for both non-Hodgkin's lymphoma and Hodgkin's disease, and overall accuracy by site was 96 percent. Although there are insufficient numbers of pretreatment scans to allow any conclusions, our data suggest that newer approaches to gallium scanning in treated patients are (1) highly specific in all lymphomas and most sensitive in high-grade non-Hodgkin's lymphoma and Hodgkin's disease; (2) valuable in assessing the mediastinum in both non-Hodgkin's lymphoma and Hodgkin's disease; and (3) helpful adjuncts to computed tomographic scanning and ultrasonography in assessing abdominal node disease.

  12. Single dose pharmacokinetics of terbinafine in cats.

    PubMed

    Wang, Ang; Ding, Huanzhong; Liu, Yiming; Gao, Yan; Zeng, Zhenling

    2012-08-01

    The pharmacokinetics of terbinafine was studied in six healthy fasted cats following a single intravenous and oral administration at a dose of 10 mg/kg and 30 mg/kg, respectively, according to a two-period crossover design. Plasma terbinafine concentrations were determined using a reverse phase liquid chromatographic method. The pharmacokinetic parameters were calculated by non-compartmental analysis with WinNonlin 5.2.1 software. After intravenous administration, the terminal half-life and area under the curve from time 0 to infinity were 10.40 ± 4.56 h, 15.20 ± 3.61 h·µg/ml, respectively. After oral dosing, the mean maximum concentration was 3.22 ± 0.60 µg/ml, reached at 1.33 ± 0.41 h. The terminal half-life, area under the curve from time 0 to infinity and apparent volume of distribution were 8.01 ± 3.46 h, 13.77 ± 4.99 h·µg/ml, 25.63 ± 6.29 l/kg, respectively. The absolute bioavailability of terbinafine hydrochloride tablets after oral administration was 31.00 ± 10.85%. Although bioavailability was low, excellent penetration at the site of infection and low minimum inhibitory concentrations values provided terbinafine with good efficacy against dermatophyte infections.

  13. Immune reactivity after high-dose irradiation

    SciTech Connect

    Gassmann, W.; Wottge, H.U.; von Kolzynski, M.; Mueller-Ruchholtz, W.

    1986-03-01

    Immune reactivity after total-body irradiation was investigated in rats using skin graft rejection as the indicator system. After sublethal irradiation with 10.5 Gy (approximately 50% lethality/6 weeks) the rejection of major histocompatibility complex allogeneic skin grafts was delayed significantly compared with nonirradiated control animals (28 versus 6.5 days). In contrast, skin grafts were rejected after 7.5 days in sublethally irradiated animals and 7 days in lethally irradiated animals if additional skin donor type alloantigens--namely, irradiated bone marrow cells--were given i.v. either simultaneously or with a delay of not more than 24 hr after the above conditioning regimen. These reactions were alloantigen-specific. They were observed in six different strain combinations with varying donors and recipients. Starting on day 2 after irradiation, i.v. injection of bone marrow gradually lost its effectivity and skin grafts were no longer rejected with uniform rapidity; skin donor marrow given on days 4 or 8 did not accelerate skin graft rejection at all. These data show that for approximately 1-2 days after high-dose total-body irradiation rats are still capable of starting a vigorous immune reaction against i.v.-injected alloantigens. The phenomenon of impaired rejection of skin grafted immediately after high-dose irradiation appears to result from the poor accessibility of skin graft alloantigens during the early postirradiation phase when vascularization of the grafted skin is insufficient.

  14. Calculation of patient effective dose and scattered dose for dental mobile fluoroscopic equipment: application of the Monte Carlo simulation.

    PubMed

    Lee, Boram; Lee, Jungseok; Kang, Sangwon; Cho, Hyelim; Shin, Gwisoon; Lee, Jeong-Woo; Choi, Jonghak

    2013-01-01

    The objective of this study was to evaluate the patient effective dose and scattered dose from recently developed dental mobile equipment in Korea. The MCNPX 2.6 (Los Alamos National Laboratory, USA) was used in a Monte Carlo simulation to calculate both the effective and scattered doses. The MCNPX code was constructed identically as in the general use of equipment and the effective dose and scattered dose were calculated using the KTMAN-2 digital phantom. The effective dose was calculated as 906 μSv. The equivalent doses per organ were calculated via the MCNPX code, and were 32 174 and 19 μSv in the salivary gland and oesophagus, respectively. The scattered dose of 22.5-32.6 μSv of the tube side at 25 cm from the centre in anterior and posterior planes was measured as 1.4-3 times higher than the detector side of 10.5-16.0 μSv.

  15. Oral anticancer drugs: how limited dosing options and dose reductions may affect outcomes in comparative trials and efficacy in patients.

    PubMed

    Prasad, Vinay; Massey, Paul R; Fojo, Tito

    2014-05-20

    Historically, cancer medicine has avoided the problem of unequal dosing by comparing maximum-tolerated doses of intravenous regimens with proportionate dose reductions for toxicity. However, in recent years, with the development of numerous oral anticancer agents, dosing options are arbitrarily and increasingly limited by the size of pills. We contend that an underappreciated consequence of pill size is unequal dosing in comparative clinical trials and that this can have an impact on outcomes. We discuss how comparative effectiveness trials can be unbalanced and how the use of doses that are not sustainable might affect outcomes, especially marginal ones. We further argue that because of their poor tolerability and their limited dosing options, which often result in large dose adjustments in response to toxicity, the real-world clinical effectiveness of oral anticancer agents may be diminished and may not emulate results achieved in registration trials.

  16. Oral Anticancer Drugs: How Limited Dosing Options and Dose Reductions May Affect Outcomes in Comparative Trials and Efficacy in Patients

    PubMed Central

    Prasad, Vinay; Massey, Paul R.; Fojo, Tito

    2014-01-01

    Historically, cancer medicine has avoided the problem of unequal dosing by comparing maximum-tolerated doses of intravenous regimens with proportionate dose reductions for toxicity. However, in recent years, with the development of numerous oral anticancer agents, dosing options are arbitrarily and increasingly limited by the size of pills. We contend that an underappreciated consequence of pill size is unequal dosing in comparative clinical trials and that this can have an impact on outcomes. We discuss how comparative effectiveness trials can be unbalanced and how the use of doses that are not sustainable might affect outcomes, especially marginal ones. We further argue that because of their poor tolerability and their limited dosing options, which often result in large dose adjustments in response to toxicity, the real-world clinical effectiveness of oral anticancer agents may be diminished and may not emulate results achieved in registration trials. PMID:24711558

  17. Chernobyl Doses. Volume 1. Analysis of Forest Canopy Radiation Response from Multispectral Imagery and the Relationship to Doses

    DTIC Science & Technology

    1994-09-01

    AD-A284 746 Defense Nuclear Agency Alexandria, VA 22310-3398 DNA-TR-92-37-V1 Chernobyl Doses Volume 1-Analysis of Forest Canopy Radiation Response...REPORT DATE 3. REPORT TYPE AND DATES COVERED 940901 Technical 870929- 930930 4. TITLE AND SUBTITLE 5. FUNDING NUMBERS Chernobyl Doses Volume 1-Analysis of...volume of the report Chernobyl Doses presents details of a new, quantitative method for remotely sensing ionizing radiation dose to vegetation

  18. Radiological environmental dose assessment methods and compliance dose results for 2015 operations at the Savannah River Site

    SciTech Connect

    Jannik, G. T.; Dixon, K. L.

    2016-09-01

    This report presents the environmental dose assessment methods and the estimated potential doses to the offsite public from 2015 Savannah River Site (SRS) atmospheric and liquid radioactive releases. Also documented are potential doses from special-case exposure scenarios - such as the consumption of deer meat, fish, and goat milk.

  19. APPLICATION AND USE OF DOSE ESTIMATING EXPOSURE MODEL (DEEM) FOR DOSE COMPARISONS AFTER EXPOSURE TO TRICHLOROETHYLENE (TCE)

    EPA Science Inventory

    Route-to-route extrapolations are a crucial step in many risk assessments. Often the doses which result In toxicological end points in one route must be compared with doses resulting from typical environmental exposures by another route. In this case we used EPA's Dose Estimati...

  20. APPLICATION AND USE OF DOSE ESTIMATING EXPOSURE MODEL (DEEM) FOR ROUTE TO ROUTE DOSE COMPARISONS AFTER EXPOSURE TO TRICHLOROETHYLENE (TCE)

    EPA Science Inventory

    Route-to-route extrapolations are a crucial step in many risk assessments. Often the doses which result In toxicological end points in one route must be compared with doses resulting from typical environmental exposures by another route. In this case we used EPA's Dose Estimati...

  1. DOSE-RESPONSE BEHAVIOR OF ANDROGENIC AND ANTIANDROGENIC CHEMICALS: IMPLICATIONS FOR LOW-DOSE EXTRAPOLATION AND CUMULATIVE TOXICITY

    EPA Science Inventory

    DOSE-RESPONSE BEHAVIOR OF ANDROGENIC AND ANTIANDROGENIC CHEMICALS: IMPLICATIONS FOR LOW-DOSE EXTRAPOLATION AND CUMULATIVE TOXICITY. LE Gray Jr, C Wolf, J Furr, M Price, C Lambright, VS Wilson and J Ostby. USEPA, ORD, NHEERL, EB, RTD, RTP, NC, USA.
    Dose-response behavior of a...

  2. Calculation of the absorbed dose and dose equivalent induced by medium energy neutrons and protons and comparison with experiment

    NASA Technical Reports Server (NTRS)

    Armstrong, T. W.; Bishop, B. L.

    1972-01-01

    Monte Carlo calculations have been carried out to determine the absorbed dose and dose equivalent for 592-MeV protons incident on a cylindrical phantom and for neutrons from 580-MeV proton-Be collisions incident on a semi-infinite phantom. For both configurations, the calculated depth dependence of the absorbed dose is in good agreement with experimental data.

  3. Radiation fields and dose assessments in Korean nuclear power plants.

    PubMed

    Kim, Hee Geun; Kong, Tae Young; Jeong, Woo Tae; Kim, Seok Tae

    2011-07-01

    In the primary systems of nuclear power plants (NPPs), various radionuclides including fission products and corrosion products are generated due to the complex water chemistry conditions. In particular, (3)H, (14)C, (58)Co, (60)Co, (137)Cs, and (131)I are important or potential radionuclides with respect to dose assessment for workers and the management of radioactive effluents or dose assessment for the public. In this paper, the dominant contributors to the dose for workers and the public were reviewed and the process of dose assessment attributable to those contributors was investigated. Furthermore, an analysis was carried out on some examples of dose to workers during NPP operation.

  4. Patient doses using multidetector computed tomography scanners in Kenya.

    PubMed

    Korir, G K; Wambani, J S; Korir, I K

    2012-08-01

    Assessment of patient dose attributed to multislice computed tomography (CT) examination. A questionnaire method was developed and used in recording the patient dose and scanning parameters for the head, chest, abdomen and lumbar spine examinations. The patient doses due to brain, chest and abdomen examination were above the international diagnostic reference levels (DRLs) by factors of between one and four. The study demonstrated that the use of multislice CT elevates patient radiation dose, justifying the need for local optimised scanning protocols and the use of institutional DRL for dose management without affecting diagnostic image quality.

  5. Low-dose propranolol for infantile haemangioma.

    PubMed

    Tan, Swee T; Itinteang, Tinte; Leadbitter, Philip

    2011-03-01

    In 2008, propranolol was serendipitously observed to cause accelerated involution of infantile haemangioma. However, the mechanism by which it causes this dramatic effect is unknown, the dosage empirical and the optimal duration of treatment unexplored. This study determines the minimal dosage and duration of propranolol treatment to achieve accelerated involution of problematic infantile haemangioma. Consecutive patients with problematic proliferating infantile haemangioma treated with propranolol were culled from our prospective vascular anomalies database. The patients were initially managed as inpatients and commenced on propranolol at 0.25 mg kg(-1) twice daily, and closely monitored. The dosage was increased to 0.5 mg kg(-1) twice daily after 24 h, if there was no cardiovascular or metabolic side effect. The dosage was increased further by 0.5 mg kg(-1) day(-1) until a visible effect was noticed or up to a maximum of 2 mg kg(-1) day(-1), and was maintained until the lesion had fully involuted or the child was 12-months old. A total of 15 patients aged 3 weeks to 8.5 months (mean, 11 weeks) underwent propranolol treatment for problematic proliferating infantile haemangioma, which threatened life (n=1) or vision (n=2) or nasal obstruction (n=3) and/or caused ulceration (n=6) and/or bleeding (n=2) and/or significant tissue distortion (n=12). The minimal dosage required to achieve accelerated involution was 1.5-2.0 mg kg(-1) day(-1). Rebound growth occurred in the first patient when the dose was withdrawn at 7.5 months of age requiring reinstitution of treatment. No rebound growth was observed in the remaining patients. No other complications were observed. Propranolol at 1.5-2.0 mg kg(-1) day(-1), administered in divided doses with gradual increase in the dose, is effective and safe for treating problematic proliferating infantile haemangioma in our cohort of patients. Treatment should be maintained until the lesion is completely involuted or the child is 12

  6. Ambient dose and dose rate measurements in the vicinity of Elekta Precise accelerators for radiation therapy.

    PubMed

    Zutz, H; Hupe, O

    2014-12-01

    In radiation therapy, commercially available medical linear accelerators (LINACs) are used. At high primary beam energies in the 10-MeV range, the leakage dose of the accelerator head and the backscatter from the room walls, the air and the patient become more important. Therefore, radiation protection measurements of photon dose rates in the treatment room and in the maze are performed to quantify the radiation field. Since the radiation of the LINACs is usually pulsed with short radiation pulse durations in the microsecond range, there are problems with electronic dose (rate) meters commonly used in radiation protection. In this paper measurements with ionisation chambers are presented and electronic dosemeters are used for testing at selected positions. The measured time-averaged dose rate ranges from a few microsieverts per hour in the maze to some millisieverts per hour in the vicinity of the accelerator head and up to some sieverts per hour in the blanked primary beam and several hundred sieverts per hour in the direct primary beam.

  7. Low-dose-rate, low-dose irradiation delays neurodegeneration in a model of retinitis pigmentosa.

    PubMed

    Otani, Atsushi; Kojima, Hiroshi; Guo, Congrong; Oishi, Akio; Yoshimura, Nagahisa

    2012-01-01

    The existence of radiation hormesis is controversial. Several stimulatory effects of low-dose (LD) radiation have been reported to date; however, the effects on neural tissue or neurodegeneration remain unknown. Here, we show that LD radiation has a neuroprotective effect in mouse models of retinitis pigmentosa, a hereditary, progressive neurodegenerative disease that leads to blindness. Various LD radiation doses were administered to the eyes in a retinal degeneration mouse model, and their pathological and physiological effects were analyzed. LD gamma radiation in a low-dose-rate (LDR) condition rescues photoreceptor cell apoptosis both morphologically and functionally. The greatest effect was observed in a condition using 650 mGy irradiation and a 26 mGy/minute dose rate. Multiple rounds of irradiation strengthened this neuroprotective effect. A characteristic up-regulation (563%) of antioxidative gene peroxiredoxin-2 (Prdx2) in the LDR-LD-irradiated retina was observed compared to the sham-treated control retina. Silencing the Prdx2 using small-interfering RNA administration reduced the LDR-LD rescue effect on the photoreceptors. Our results demonstrate for the first time that LDR-LD irradiation has a biological effect in neural cells of living animals. The results support that radiation exhibits hormesis, and this effect may be applied as a novel therapeutic concept for retinitis pigmentosa and for other progressive neurodegenerative diseases regardless of the mechanism of degeneration involved.

  8. TSD-DOSE : a radiological dose assessment model for treatment, storage, and disposal facilities.

    SciTech Connect

    Pfingston, M.

    1998-12-23

    In May 1991, the U.S. Department of Energy (DOE), Office of Waste Operations, issued a nationwide moratorium on shipping slightly radioactive mixed waste from DOE facilities to commercial treatment, storage, and disposal (TSD) facilities. Studies were subsequently conducted to evaluate the radiological impacts associated with DOE's prior shipments through DOE's authorized release process under DOE Order 5400.5. To support this endeavor, a radiological assessment computer code--TSD-DOSE (Version 1.1)--was developed and issued by DOE in 1997. The code was developed on the basis of detailed radiological assessments performed for eight commercial hazardous waste TSD facilities. It was designed to utilize waste-specific and site-specific data to estimate potential radiological doses to on-site workers and the off-site public from waste handling operations at a TSD facility. The code has since been released for use by DOE field offices and was recently used by DOE to evaluate the release of septic waste containing residual radioactive material to a TSD facility licensed under the Resource Conservation and Recovery Act. Revisions to the code were initiated in 1997 to incorporate comments received from users and to increase TSD-DOSE's capability, accuracy, and flexibility. These updates included incorporation of the method used to estimate external radiation doses from DOE's RESRAD model and expansion of the source term to include 85 radionuclides. In addition, a detailed verification and benchmarking analysis was performed.

  9. Assessment of patient dose in medical processes by in-vivo dose measuring devices: A review

    NASA Astrophysics Data System (ADS)

    Tuncel, Nina

    2016-11-01

    In-vivo dosimetry (IVD) in medicine especially in radiation therapy is a well-established and recommended procedure for the estimation of the dose delivered to a patient during the radiation treatment. It became even more important with the emerging use of new and more complex radiotherapy techniques such as intensity-modulated or image-guided radiation therapy. While IVD has been used in brachytherapy for decades and the initial motivation for performing was mainly to assess doses to organs at risk by direct measurements, it is now possible to calculate 3D for detection of deviations or errors. In-vivo dosimeters can be divided into real-time and passive detectors that need some finite time following irradiation for their analysis. They require a calibration against a calibrated ionization chamber in a known radiation field. Most of these detectors have a response that is energy and/or dose rate dependent and consequently require adjustments of the response to account for changes in the actual radiation conditions compared to the calibration situation. Correction factors are therefore necessary to take. Today, the most common dosimeters for patients' dose verification through in-vivo measurements are semiconductor diodes, thermo-luminescent dosimeters, optically stimulated luminescence dosimeters, metal-oxide-semiconductor field-effect transistors and plastic scintillator detectors with small outer diameters.

  10. Steroid dose sparing: pharmacodynamic responses to single versus divided doses of methylprednisolone in man.

    PubMed

    Reiss, W G; Slaughter, R L; Ludwig, E A; Middleton, E; Jusko, W J

    1990-06-01

    Inhibitory drug interactions affecting the metabolism of methylprednisolone (MP) may produce either steroid sparing or adverse effects partly by increasing the exposure time to the steroid. This phenomenon can be mimicked by administering MP in divided doses. Two types of responses were compared after a single MP dose (40 mg bolus) and a divided regimen (20 mg bolus and a 5 mg bolus 8 hours later) in six healthy male volunteers. The suppression of basophils measured as whole blood histamine and plasma cortisol concentrations was assessed during 32 hours. The 37.5% reduction in dose produced a 23% overall decreased blood histamine response. A pharmacodynamic model for basophil cell distribution to and from an extravascular compartment describes the effects of MP after both regimens. A slower initial decline in blood histamine after the divided regimen may be related to incomplete suppression of basophil cell return to blood. The 50% inhibitory concentrations of MP of about 5 ng/ml were similar for both regimens. The decline and return of cortisol concentrations were similar between MP treatments with suppression continuing for 24 hours. The 50% inhibitory concentrations of MP values for adrenal suppression were about 1 ng/ml. Pharmacodynamic modeling is useful in quantitating corticosteroid responses and generally predicted the "dose-sparing" effects that were achieved by prolonging MP plasma concentrations. This study supports previous clinical observations that patients may require morning through evening exposure to MP to optimize efficacy while adrenal suppression is being minimized.

  11. The importance of carcinogen dose in chemoprevention studies: quantitative interrelationships between, dibenzo[a,l]pyrene dose, chlorophyllin dose, target organ DNA adduct biomarkers and final tumor outcome.

    PubMed

    Pratt, M Margaret; Reddy, Ashok P; Hendricks, Jerry D; Pereira, Cliff; Kensler, Thomas W; Bailey, George S

    2007-03-01

    Chlorophyllin (CHL) is a potent antimutagen in vitro, an effective anti-carcinogen in several animal models, and significantly reduced urinary biomarkers of aflatoxin B(1) (AFB(1)) exposure in a human population. Here we report an expanded analysis of CHL chemoprevention using the potent environmental hydrocarbon dibenzo[a,l]pyrene (DBP). A dose-dose matrix design employed over 12 000 rainbow trout to evaluate the interrelationships among dietary carcinogen dose, anti-carcinogen dose, carcinogen-DNA adduct levels at exposure and eventual tumor outcome in two target organs. Included was an evaluation of the pharmaceutical CHL preparation (Derifil), used previously in a study of individuals chronically exposed to AFB(1). CHL was pre-, co- and post-fed at doses of 0-6000 p.p.m. and co-fed with DBP at doses of 0-371.5 p.p.m. for 4 weeks. This protocol generated a total of 21 dose-dose treatment groups, each evaluated with three or more replicates of 100 animals. The DBP-only treatment produced dose-responsive increases in liver and stomach DBP-DNA adducts, whereas increasing CHL co-treatment doses produced successive inhibition in liver (49-83%) and stomach (47-75%) adduct levels at each DBP dose examined. The remaining 8711 trout were necropsied, 10 months later. DBP treatment alone produced a logit incidence versus log [DBP] dose-response curve in stomach that was linear; CHL co-treatment provided dose-dependent tumor inhibition which ranged from 30 to 68% and was predictable from the adduct response. The Derifil CHL preparation was also found to effectively reduce DNA adduction and final tumor incidence in stomach (as well as liver), with a potency compatible with its total chlorin content. Liver tumor incidence in the DBP-only groups appeared to plateau near 60%. At DBP doses of doses generally reduced tumor incidence and multiplicity consistent with early DNA adducts as biomarkers. At 225 p.p.m. DBP, however, very high CHL doses were

  12. Monte Carlo Study of Radiation Dose Enhancement by Gadolinium in Megavoltage and High Dose Rate Radiotherapy

    PubMed Central

    Zhang, Daniel G.; Feygelman, Vladimir; Moros, Eduardo G.; Latifi, Kujtim; Zhang, Geoffrey G.

    2014-01-01

    MRI is often used in tumor localization for radiotherapy treatment planning, with gadolinium (Gd)-containing materials often introduced as a contrast agent. Motexafin gadolinium is a novel radiosensitizer currently being studied in clinical trials. The nanoparticle technologies can target tumors with high concentration of high-Z materials. This Monte Carlo study is the first detailed quantitative investigation of high-Z material Gd-induced dose enhancement in megavoltage external beam photon therapy. BEAMnrc, a radiotherapy Monte Carlo simulation package, was used to calculate dose enhancement as a function of Gd concentration. Published phase space files for the TrueBeam flattening filter free (FFF) and conventional flattened 6MV photon beams were used. High dose rate (HDR) brachytherapy with Ir-192 source was also investigated as a reference. The energy spectra difference caused a dose enhancement difference between the two beams. Since the Ir-192 photons have lower energy yet, the photoelectric effect in the presence of Gd leads to even higher dose enhancement in HDR. At depth of 1.8 cm, the percent mean dose enhancement for the FFF beam was 0.38±0.12, 1.39±0.21, 2.51±0.34, 3.59±0.26, and 4.59±0.34 for Gd concentrations of 1, 5, 10, 15, and 20 mg/mL, respectively. The corresponding values for the flattened beam were 0.09±0.14, 0.50±0.28, 1.19±0.29, 1.68±0.39, and 2.34±0.24. For Ir-192 with direct contact, the enhanced were 0.50±0.14, 2.79±0.17, 5.49±0.12, 8.19±0.14, and 10.80±0.13. Gd-containing materials used in MRI as contrast agents can also potentially serve as radiosensitizers in radiotherapy. This study demonstrates that Gd can be used to enhance radiation dose in target volumes not only in HDR brachytherapy, but also in 6 MV FFF external beam radiotherapy, but higher than the currently used clinical concentration (>5 mg/mL) would be needed. PMID:25275550

  13. Oak Ridge Dose Reconstruction Project Summary Report; Reports of the Oak Ridge Dose Reconstruction, Vol. 7

    SciTech Connect

    Thomas E. Widner; et. al.

    1999-07-01

    In the early 1990s, concern about the Oak Ridge Reservation's past releases of contaminants to the environment prompted Tennessee's public health officials to pursue an in-depth study of potential off-site health effects at Oak Ridge. This study, the Oak Ridge dose reconstruction, was supported by an agreement between the U.S. Department of Energy (DOE) and the State of Tennessee, and was overseen by a 12-member panel of individuals appointed by Tennessee's Commissioner of Health. The panel requested that the principal investigator for the project prepare the following report, ''Oak Ridge Dose Reconstruction Project Summary Report,'' to serve the following purposes: (1) summarize in a single, less technical report, the methods and results of the various investigations that comprised the Phase II of the dose reconstruction; (2) describe the systematic searching of classified and unclassified historical records that was a vital component of the project; and (3) summarize the less detailed, screening-level assessments that were performed to evaluate the potential health significance of a number of materials, such a uranium, whose priority did not require a complete dose reconstruction effort. This report describes each major step of the dose reconstruction study: (1) the review of thousands of historical records to obtain information relating to past operations at each facility; (2) estimation of the quantity and timing of releases of radioiodines from X-10, of mercury from Y-12, of PCB's from all facilities, and of cesium-137 and other radionuclides from White Oak Creek; (3) evaluation of the routes taken by these contaminants through the environment to nearby populations; and (4) estimation of doses and health risks to exposed groups. Calculations found the highest excess cancer risks for a female born in 1952 who drank goat milk; the highest non-cancer health risk was for children in a farm family exposed to PCBs in and near East Fork Poplar Creek. More detailed

  14. Is There a Dose-Response Relationship for Heart Disease With Low-Dose Radiation Therapy?

    SciTech Connect

    Chung, Eugene; Corbett, James R.; Moran, Jean M.; Griffith, Kent A.; Marsh, Robin B.; Feng, Mary; Jagsi, Reshma; Kessler, Marc L.; Ficaro, Edward C.; Pierce, Lori J.

    2013-03-15

    Purpose: To quantify cardiac radiation therapy (RT) exposure using sensitive measures of cardiac dysfunction; and to correlate dysfunction with heart doses, in the setting of adjuvant RT for left-sided breast cancer. Methods and Materials: On a randomized trial, 32 women with node-positive left-sided breast cancer underwent pre-RT stress single photon emission computed tomography (SPECT-CT) myocardial perfusion scans. Patients received RT to the breast/chest wall and regional lymph nodes to doses of 50 to 52.2 Gy. Repeat SPECT-CT scans were performed 1 year after RT. Perfusion defects (PD), summed stress defects scores (SSS), and ejection fractions (EF) were evaluated. Doses to the heart and coronary arteries were quantified. Results: The mean difference in pre- and post-RT PD was −0.38% ± 3.20% (P=.68), with no clinically significant defects. To assess for subclinical effects, PD were also examined using a 1.5-SD below the normal mean threshold, with a mean difference of 2.53% ± 12.57% (P=.38). The mean differences in SSS and EF before and after RT were 0.78% ± 2.50% (P=.08) and 1.75% ± 7.29% (P=.39), respectively. The average heart Dmean and D95 were 2.82 Gy (range, 1.11-6.06 Gy) and 0.90 Gy (range, 0.13-2.17 Gy), respectively. The average Dmean and D95 to the left anterior descending artery were 7.22 Gy (range, 2.58-18.05 Gy) and 3.22 Gy (range, 1.23-6.86 Gy), respectively. No correlations were found between cardiac doses and changes in PD, SSS, and EF. Conclusions: Using sensitive measures of cardiac function, no clinically significant defects were found after RT, with the average heart Dmean <5 Gy. Although a dose response may exist for measures of cardiac dysfunction at higher doses, no correlation was found in the present study for low doses delivered to cardiac structures and perfusion, SSS, or EF.

  15. Thyroid Dose During Neurointerventional Procedures: Does Lead Shielding Reduce the Dose?

    SciTech Connect

    Shortt, C. P.; Fanning, N. F.; Malone, L.; Thornton, J.; Brennan, P.; Lee, M. J.

    2007-09-15

    Purpose. To assess radiation dose to the thyroid in patients undergoing neurointerventional procedures and to evaluate dose reduction to the thyroid by lead shielding. Methods and Materials. A randomized patient study was undertaken to evaluate the dose reduction by thyroid lead shields and assess their practicality in a clinical setting. Sixty-five patients attending for endovascular treatment of arteriovenous malformations (AVMs) and aneurysms were randomized into one of 2 groups a) No Thyroid Shield and b) Thyroid Lead Shield. Two thermoluminescent dosimeters (TLDs) were placed over the thyroid gland (1 on each side) at constant positions on each patient in both groups. A thyroid lead shield (Pb eq. 0.5 mm) was placed around the neck of patients in the thyroid lead shield group after the neurointerventional radiologist had obtained satisfactory working access above the neck. The total dose-area-product (DAP) value, number and type of digital subtraction angiography (DSA) runs and fluoroscopy time were recorded for all patients. Results. Of the 72 patients who initially attended for neurointerventional procedures, 7 were excluded due to failure to consent or because of procedures involving access to the external carotid circulation. Of the remaining 65 who were randomized, a further 9 were excluded due to; procedureabandonment, unfeasible shield placement or shield interference with the procedure. Patient demographics included mean age of 47.9 yrs (15-74), F:M=1.4:1. Mean fluoroscopy time was 25.9 min. Mean DAP value was 13,134.8 cGy.cm{sup 2} and mean number of DSA runs was 13.4. The mean relative thyroid doses were significantly different (p< 0.001) between the unshielded (7.23 mSv/cGy2 x 105) and shielded groups (3.77 mSv/cGy2 x 105). A mean thyroid dose reduction of 48% was seen in the shielded group versus the unshielded group. Conclusion. Considerable doses to the thyroid are incurred during neurointerventional procedures, highlighting the need for

  16. Automated extraction of radiation dose information for CT examinations.

    PubMed

    Cook, Tessa S; Zimmerman, Stefan; Maidment, Andrew D A; Kim, Woojin; Boonn, William W

    2010-11-01

    Exposure to radiation as a result of medical imaging is currently in the spotlight, receiving attention from Congress as well as the lay press. Although scanner manufacturers are moving toward including effective dose information in the Digital Imaging and Communications in Medicine headers of imaging studies, there is a vast repository of retrospective CT data at every imaging center that stores dose information in an image-based dose sheet. As such, it is difficult for imaging centers to participate in the ACR's Dose Index Registry. The authors have designed an automated extraction system to query their PACS archive and parse CT examinations to extract the dose information stored in each dose sheet. First, an open-source optical character recognition program processes each dose sheet and converts the information to American Standard Code for Information Interchange (ASCII) text. Each text file is parsed, and radiation dose information is extracted and stored in a database which can be queried using an existing pathology and radiology enterprise search tool. Using this automated extraction pipeline, it is possible to perform dose analysis on the >800,000 CT examinations in the PACS archive and generate dose reports for all of these patients. It is also possible to more effectively educate technologists, radiologists, and referring physicians about exposure to radiation from CT by generating report cards for interpreted and performed studies. The automated extraction pipeline enables compliance with the ACR's reporting guidelines and greater awareness of radiation dose to patients, thus resulting in improved patient care and management.

  17. Neutron dose in and out of 18MV photon fields.

    PubMed

    Ezzati, A O; Studenski, M T

    2017-04-01

    In radiation therapy, neutron contamination is an undesirable side effect of using high energy photons to treat patients. Neutron contamination requires adjustments to the shielding requirements of the linear accelerator vault and contributes to the risk of secondary malignancies in patients by delivering dose outside of the primary treatment field. Using MCNPX, an established Monte Carlo code, manufacturer blueprints, and the most up to date ICRP neutron dose conversion factors, the neutron spectra, neutron/photon dose ratio, and the neutron capture gamma ray dose were calculated at different depths and off axis distances in a tissue equivalent phantom. Results demonstrated that the neutron spectra and dose are dependent on field size, depth in the phantom, and off-axis distance. Simulations showed that because of the low neutron absorption cross section of the linear accelerator head materials, the contribution to overall patient dose from neutrons can be up to 1000 times the photon dose out of the treatment field and is also dependent on field size and depth. Beyond 45cm off-axis, the dependence of the neutron dose on field size is minimal. Neutron capture gamma ray dose is also field size dependent and is at a maximum at a depth of about 7cm. It is important to remember that when treating with high energy photons, the dose from contamination neutrons must be considered as it is much greater than the photon dose.

  18. A Bayesian Semiparametric Model for Radiation Dose-Response Estimation.

    PubMed

    Furukawa, Kyoji; Misumi, Munechika; Cologne, John B; Cullings, Harry M

    2016-06-01

    In evaluating the risk of exposure to health hazards, characterizing the dose-response relationship and estimating acceptable exposure levels are the primary goals. In analyses of health risks associated with exposure to ionizing radiation, while there is a clear agreement that moderate to high radiation doses cause harmful effects in humans, little has been known about the possible biological effects at low doses, for example, below 0.1 Gy, which is the dose range relevant to most radiation exposures of concern today. A conventional approach to radiation dose-response estimation based on simple parametric forms, such as the linear nonthreshold model, can be misleading in evaluating the risk and, in particular, its uncertainty at low doses. As an alternative approach, we consider a Bayesian semiparametric model that has a connected piece-wise-linear dose-response function with prior distributions having an autoregressive structure among the random slope coefficients defined over closely spaced dose categories. With a simulation study and application to analysis of cancer incidence data among Japanese atomic bomb survivors, we show that this approach can produce smooth and flexible dose-response estimation while reasonably handling the risk uncertainty at low doses and elsewhere. With relatively few assumptions and modeling options to be made by the analyst, the method can be particularly useful in assessing risks associated with low-dose radiation exposures.

  19. Principles of CT: radiation dose and image quality.

    PubMed

    Goldman, Lee W

    2007-12-01

    This article discusses CT radiation dose, the measurement of CT dose, and CT image quality. The most commonly used dose descriptor is CT dose index, which represents the dose to a location (e.g., depth) in a scanned volume from a complete series of slices. A weighted average of the CT dose index measured at the center and periphery of dose phantoms provides a convenient single-number estimate of patient dose for a procedure, and this value (or a related indicator that includes the scanned length) is often displayed on the operator's console. CT image quality, as in most imaging, is described in terms of contrast, spatial resolution, image noise, and artifacts. A strength of CT is its ability to visualize structures of low contrast in a subject, a task that is limited primarily by noise and is therefore closely associated with radiation dose: The higher the dose contributing to the image, the less apparent is image noise and the easier it is to perceive low-contrast structures. Spatial resolution is ultimately limited by sampling, but both image noise and resolution are strongly affected by the reconstruction filter. As a result, diagnostically acceptable image quality at acceptable doses of radiation requires appropriately designed clinical protocols, including appropriate kilovolt peaks, amperages, slice thicknesses, and reconstruction filters.

  20. Simulation of computed tomography dose based on voxel phantom

    NASA Astrophysics Data System (ADS)

    Liu, Chunyu; Lv, Xiangbo; Li, Zhaojun

    2017-01-01

    Computed Tomography (CT) is one of the preferred and the most valuable imaging tool used in diagnostic radiology, which provides a high-quality cross-sectional image of the body. It still causes higher doses of radiation to patients comparing to the other radiological procedures. The Monte-Carlo method is appropriate for estimation of the radiation dose during the CT examinations. The simulation of the Computed Tomography Dose Index (CTDI) phantom was developed in this paper. Under a similar conditions used in physical measurements, dose profiles were calculated and compared against the measured values that were reported. The results demonstrate a good agreement between the calculated and the measured doses. From different CT exam simulations using the voxel phantom, the highest absorbed dose was recorded for the lung, the brain, the bone surface. A comparison between the different scan type shows that the effective dose for a chest scan is the highest one, whereas the effective dose values during abdomen and pelvis scan are very close, respectively. The lowest effective dose resulted from the head scan. Although, the dose in CT is related to various parameters, such as the tube current, exposure time, beam energy, slice thickness and patient size, this study demonstrates that the MC simulation is a useful tool to accurately estimate the dose delivered to any specific organs for patients undergoing the CT exams and can be also a valuable technique for the design and the optimization of the CT x-ray source.

  1. Dose-response relationships for carcinogens: a review

    SciTech Connect

    Zeise, L.; Wilson, R.; Crouch, E.A.C.

    1987-08-01

    The authors review the experimental evidence for various shapes of dose-response relationships for carcinogens and summarize those experiments that give the most information on relatively low doses. A brief review of some models is given to illustrate the shapes of dose-response curve expected from them. Their major interest is in the use of dose-response relationships to estimate risks to humans at low doses, and so they pay special attention to experimentally observed and theoretically expected nonlinearities. There are few experimental examples of nonlinear dose-response relations in humans, but this may simply be due to the limitations in the data. The several examples in rodents, even though for high dose data, suggest that nonlinearity is common. In some cases such nonlinearities may be rationalized on the basis of the pharmacokinetics of the test compound or its metabolites.

  2. Detectors in medical physics measuring dose by detectors

    NASA Astrophysics Data System (ADS)

    Alrowaili, Ziyad

    The doses were measured at the depth of 10 cm and at the maximum dose dmax for two energies 6 MV photon and 10 MV photon on Elekta machine. Measuring dose was done by using only two points and comparing the results with percentage depth dose (PDD) for the depth dose curve for both energies. In addition the doses were obtained by using three methods of detectors to measure the dose by using the ion chamber, Thermo luminescence, and films. The results obtained for three measurements agreed within 2% for 6 MV photon and 3% for 10 MV photon by using three different detectors in the clinic. Therefore, these detectors are stable and reliable to be used in clinical applications.

  3. [Indications for low-dose CT in the emergency setting].

    PubMed

    Poletti, Pierre-Alexandre; Andereggen, Elisabeth; Rutschmann, Olivier; de Perrot, Thomas; Caviezel, Alessandro; Platon, Alexandra

    2009-08-19

    CT delivers a large dose of radiation, especially in abdominal imaging. Recently, a low-dose abdominal CT protocol (low-dose CT) has been set-up in our institution. "Low-dose CT" is almost equivalent to a single standard abdominal radiograph in term of dose of radiation (about one sixth of those delivered by a standard CT). "Low-dose CT" is now used routinely in our emergency service in two main indications: patients with a suspicion of renal colic and those with right lower quadrant pain. It is obtained without intravenous contrast media. Oral contrast is given to patients with suspicion of appendicitis. "Low-dose CT" is used in the frame of well defined clinical algorithms, and does only replace standard CT when it can reach a comparable diagnostic quality.

  4. Low-dose effects of hormones and endocrine disruptors.

    PubMed

    Vandenberg, Laura N

    2014-01-01

    Endogenous hormones have effects on tissue morphology, cell physiology, and behaviors at low doses. In fact, hormones are known to circulate in the part-per-trillion and part-per-billion concentrations, making them highly effective and potent signaling molecules. Many endocrine-disrupting chemicals (EDCs) mimic hormones, yet there is strong debate over whether these chemicals can also have effects at low doses. In the 1990s, scientists proposed the "low-dose hypothesis," which postulated that EDCs affect humans and animals at environmentally relevant doses. This chapter focuses on data that support and refute the low-dose hypothesis. A case study examining the highly controversial example of bisphenol A and its low-dose effects on the prostate is examined through the lens of endocrinology. Finally, the chapter concludes with a discussion of factors that can influence the ability of a study to detect and interpret low-dose effects appropriately.

  5. Misonidazole with dexamethasone rescue: an escalating dose toxicity study

    SciTech Connect

    Tanasichuk, H.; Urtasun, R.C.; Fulton, D.S.; Raleigh, J.

    1984-09-01

    Neurotoxicity induced by misonidazole (MISO) and desmethylmisonidazole (DMM) has become the dose limiting factor in clinical work. In 1981, the authors reported a preliminary study suggestive that Dexamethasone (DEXA) does have a protective effect against peripheral neuropathies (PN) resulting from toxicity of misonidazole. The authors are presently investigating the use of DEXA, with escalating doses of MISO in an attempt to modify its neurotoxicity. To date, 16 patients have been registered to receive total doses of MISO given in 9 equally divided doses over 3 weeks. DEXA is given 3 days prior to the first dose and continues for the duration of therapy. All patients receive palliative radiation. No toxicity was seen at the total dose of 13.5 gm/M/sub 2/. One grade I PN occurred in the first four patients receiving 15.5 gm/M/sub 2/. Six additional patients were entered at this dose level and no further incidence of PN was observed.

  6. Dose-response relationships for carcinogens: a review.

    PubMed Central

    Zeise, L; Wilson, R; Crouch, E A

    1987-01-01

    We review the experimental evidence for various shapes of dose-response relationships for carcinogens and summarize those experiments that give the most information on relatively low doses. A brief review of some models is given to illustrate the shapes of dose-response curve expected from them. Our major interest is in the use of dose-response relationships to estimate risks to humans at low doses, and so we pay special attention to experimentally observed and theoretically expected nonlinearities. There are few experimental examples of nonlinear dose-response relations in humans, but this may simply be due to the limitations in the data. The several examples in rodents, even though for high dose data, suggest that nonlinearity is common. In some cases such nonlinearities may be rationalized on the basis of the pharmacokinetics of the test compound or its metabolites. PMID:3311725

  7. TU-F-17A-08: The Relative Accuracy of 4D Dose Accumulation for Lung Radiotherapy Using Rigid Dose Projection Versus Dose Recalculation On Every Breathing Phase

    SciTech Connect

    Lamb, J; Lee, C; Tee, S; Lee, P; Iwamoto, K; Low, D; Valdes, G; Robinson, C

    2014-06-15

    Purpose: To investigate the accuracy of 4D dose accumulation using projection of dose calculated on the end-exhalation, mid-ventilation, or average intensity breathing phase CT scan, versus dose accumulation performed using full Monte Carlo dose recalculation on every breathing phase. Methods: Radiotherapy plans were analyzed for 10 patients with stage I-II lung cancer planned using 4D-CT. SBRT plans were optimized using the dose calculated by a commercially-available Monte Carlo algorithm on the end-exhalation 4D-CT phase. 4D dose accumulations using deformable registration were performed with a commercially available tool that projected the planned dose onto every breathing phase without recalculation, as well as with a Monte Carlo recalculation of the dose on all breathing phases. The 3D planned dose (3D-EX), the 3D dose calculated on the average intensity image (3D-AVE), and the 4D accumulations of the dose calculated on the end-exhalation phase CT (4D-PR-EX), the mid-ventilation phase CT (4D-PR-MID), and the average intensity image (4D-PR-AVE), respectively, were compared against the accumulation of the Monte Carlo dose recalculated on every phase. Plan evaluation metrics relating to target volumes and critical structures relevant for lung SBRT were analyzed. Results: Plan evaluation metrics tabulated using 4D-PR-EX, 4D-PR-MID, and 4D-PR-AVE differed from those tabulated using Monte Carlo recalculation on every phase by an average of 0.14±0.70 Gy, - 0.11±0.51 Gy, and 0.00±0.62 Gy, respectively. Deviations of between 8 and 13 Gy were observed between the 4D-MC calculations and both 3D methods for the proximal bronchial trees of 3 patients. Conclusions: 4D dose accumulation using projection without re-calculation may be sufficiently accurate compared to 4D dose accumulated from Monte Carlo recalculation on every phase, depending on institutional protocols. Use of 4D dose accumulation should be considered when evaluating normal tissue complication

  8. High-dose Helical Tomotherapy With Concurrent Full-dose Chemotherapy for Locally Advanced Pancreatic Cancer

    SciTech Connect

    Chang, Jee Suk; Wang, Michael L.C.; Koom, Woong Sub; Yoon, Hong In; Chung, Yoonsun; Song, Si Young; Seong, Jinsil

    2012-08-01

    Purpose: To improve poor therapeutic outcome of current practice of chemoradiotherapy (CRT), high-dose helical tomotherapy (HT) with concurrent full-dose chemotherapy has been performed on patients with locally advanced pancreatic cancer (LAPC), and the results were analyzed. Methods and Materials: We retrospectively reviewed 39 patients with LAPC treated with radiotherapy using HT (median, 58.4 Gy; range, 50.8-59.9 Gy) and concomitant chemotherapy between 2006 and 2009. Radiotherapy was directed to the primary tumor with a 0.5-cm margin without prophylactic nodal coverage. Twenty-nine patients (79%) received full-dose (1000 mg/m{sup 2}) gemcitabine-based chemotherapy during HT. After completion of CRT, maintenance chemotherapy was administered to 37 patients (95%). Results: The median follow-up was 15.5 months (range, 3.4-43.9) for the entire cohort, and 22.5 months (range, 12.0-43.9) for the surviving patients. The 1- and 2-year local progression-free survival rates were 82.1% and 77.3%, respectively. Eight patients (21%) were converted to resectable status, including 1 with a pathological complete response. The median overall survival and progression-free survival were 21.2 and 14.0 months, respectively. Acute toxicities were acceptable with no gastrointestinal (GI) toxicity higher than Grade 3. Severe late GI toxicity ({>=}Grade 3) occurred in 10 patients (26%); 1 treatment-related death from GI bleeding was observed. Conclusion: High-dose helical tomotherapy with concurrent full-dose chemotherapy resulted in improved local control and long-term survival in patients with LAPC. Future studies are needed to widen the therapeutic window by minimizing late GI toxicity.

  9. Dose reconstruction for real-time patient-specific dose estimation in CT

    SciTech Connect

    De Man, Bruno Yin, Zhye; Wu, Mingye; FitzGerald, Paul; Kalra, Mannudeep

    2015-05-15

    Purpose: Many recent computed tomography (CT) dose reduction approaches belong to one of three categories: statistical reconstruction algorithms, efficient x-ray detectors, and optimized CT acquisition schemes with precise control over the x-ray distribution. The latter category could greatly benefit from fast and accurate methods for dose estimation, which would enable real-time patient-specific protocol optimization. Methods: The authors present a new method for volumetrically reconstructing absorbed dose on a per-voxel basis, directly from the actual CT images. The authors’ specific implementation combines a distance-driven pencil-beam approach to model the first-order x-ray interactions with a set of Gaussian convolution kernels to model the higher-order x-ray interactions. The authors performed a number of 3D simulation experiments comparing the proposed method to a Monte Carlo based ground truth. Results: The authors’ results indicate that the proposed approach offers a good trade-off between accuracy and computational efficiency. The images show a good qualitative correspondence to Monte Carlo estimates. Preliminary quantitative results show errors below 10%, except in bone regions, where the authors see a bigger model mismatch. The computational complexity is similar to that of a low-resolution filtered-backprojection algorithm. Conclusions: The authors present a method for analytic dose reconstruction in CT, similar to the techniques used in radiation therapy planning with megavoltage energies. Future work will include refinements of the proposed method to improve the accuracy as well as a more extensive validation study. The proposed method is not intended to replace methods that track individual x-ray photons, but the authors expect that it may prove useful in applications where real-time patient-specific dose estimation is required.

  10. Reporting small bowel dose in cervix cancer high-dose-rate brachytherapy.

    PubMed

    Liao, Yixiang; Dandekar, Virag; Chu, James C H; Turian, Julius; Bernard, Damian; Kiel, Krystyna

    2016-01-01

    Small bowel (SB) is an organ at risk (OAR) that may potentially develop toxicity after radiotherapy for cervix cancer. However, its dose from brachytherapy (BT) is not systematically reported as in other OARs, even with image-guided brachytherapy (IGBT). This study aims to introduce consideration of quantified objectives for SB in BT plan optimization and to evaluate the feasibility of sparing SB while maintaining adequate target coverage. In all, 13 patients were included in this retrospective study. All patients were treated with external beam radiotherapy (EBRT) 45Gy in 25 fractions followed by high dose rate (HDR)-BT boost of 28Gy in 4 fractions using tandem/ring applicator. Magnetic resonance imaging (MRI) and computed tomographic (CT) images were obtained to define the gross tumor volume (GTV), high-risk clinical target volume (HR-CTV) and OARs (rectum, bladder, sigmoid colon, and SB). Treatment plans were generated for each patient using GEC-ESTRO recommendations based on the first CT/MRI. Treatment plans were revised to reduce SB dose when the [Formula: see text] dose to SB was > 5Gy, while maintaining other OAR constraints. For the 7 patients with 2 sets of CT and MRI studies, the interfraction variation of the most exposed SB was analyzed. Plan revisions were done in 6 of 13 cases owing to high [Formula: see text] of SB. An average reduction of 19% in [Formula: see text] was achieved. Meeting SB and other OAR constraints resulted in less than optimal target coverage in 2 patients (D90 of HR-CTV < 77Gyαβ10). The highest interfraction variation was observed for SB at 16 ± 59%, as opposed to 28 ± 27% for rectum and 21 ± 16% for bladder. Prospective reporting of SB dose could provide data required to establish a potential correlation with radiation-induced late complication for SB.

  11. Efficacy, Dose Reduction, and Resistance to High-dose Fluticasone in Patients with Eosinophilic Esophagitis

    PubMed Central

    Butz, Bridget K.; Wen, Ting; Gleich, Gerald J.; Furuta, Glenn T.; Spergel, Jonathan; King, Eileen; Kramer, Robert E.; Collins, Margaret H.; Stucke, Emily; Mangeot, Colleen; Jackson, W. Daniel; O’Gorman, Molly; Abonia, J. Pablo; Pentiuk, Scott; Putnam, Philip E.; Rothenberg, Marc E.

    2014-01-01

    Background & Aims We evaluated the efficacy and safety of high-dose swallowed fluticasone propionate (FP) and dose reduction in patients with eosinophilic esophagitis (EoE) and analyzed esophageal transcriptomes to identify mechanisms. Methods We conducted a randomized, multisite, double-blind, placebo-controlled trial of daily 1760 mcg FP in participants 3–30 years old with active EoE. Twenty-eight participants received FP and 14 received placebo. After 3 months, participants given FP who were in complete remission (CR) received 880 mcg FP daily, and participants in the FP or placebo groups who were not in CR continued or started, respectively, 1760 mcg FP daily for 3 additional months. The primary endpoint was histologic evidence for CR. Secondary endpoints were partial remission (PR), symptoms, compliance, esophageal gene expression, esophageal eosinophil count, and the relationship between clinical features and FP responsiveness. Results After 3 months, 65% of subjects given FP and no subjects given placebo were in CR (P=.0001); 12% of those given FP and 8% of those given placebo were in PR. In the FP group, 73% of subjects remained in CR and 20% were in PR after the daily dose was reduced by 50%. Extending FP therapy in FP-resistant participants did not induce remission. FP decreased heartburn severity (P=.041). Compliance, age, sex, atopic status, or anthropomorphic features were not associated with response to FP. Gene expression patterns in esophageal tissues of FP responders were similar to those of patients without EoE; there was evidence for heterogeneous steroid signaling in subjects that did not respond to FP. Conclusions Daily administration of a high dose of FP induces histologic remission in 65%–77% of patients with EoE after 3 months. A 50% dose reduction remained effective in 73%–93% of patients that initially responded to FP. Nonresponders had evidence of steroid resistance; histologic and molecular markers may predict resistance

  12. Coronary computed tomography angiography using ultra-low-dose contrast media: radiation dose and image quality.

    PubMed

    Komatsu, Sei; Kamata, Teruaki; Imai, Atsuko; Ohara, Tomoki; Takewa, Mitsuhiko; Ohe, Ryoko; Miyaji, Kazuaki; Yoshida, Junichi; Kodama, Kazuhisa

    2013-08-01

    To analyze the invasiveness and image quality of coronary CT angiography (CCTA) with 80 kV. We enrolled 181 patients with low body weight and low calcium level. Of these, 154 patients were randomly assigned to 1 of 3 groups: 280 HU/80 kV (n = 51); 350 HU/80 kV (n = 51); or 350 HU/120 kV (n = 52). The amount of contrast media (CM) was decided with a CT number-controlling system. Twenty-seven patients were excluded because of an invalid time density curve by timing bolus. The predicted amount of CM, volume CT dose index, dose-length product, effective dose, image noise, and 5-point image quality were measured. The amounts of CM for the 80 kV/280 HU, 80 kV/350 HU, and 120 kV/350 HU groups were 10 ± 4 mL, 15 ± 7 mL, and 30 ± 6 mL, respectively. Although image noise was greater at 80 than 120 kV, there was no significant difference in image quality between 80 kV/350 HU and 120 kV/350 HU (p = 0.390). There was no significant difference in image quality between 80 kV/280 HU and 80 kV/350 HU (4.4 ± 0.7 vs. 4.7 ± 0.4, p = 0.056). The amount of CM and effective dose was lower for 80 kV CCTA than for 120 kV CCTA. CCTA at 80 kV/280 HU may decrease the amount of CM and radiation dose necessary while maintaining image quality.

  13. Validation of Dose Calculation Codes for Clearance

    SciTech Connect

    Menon, S.; Wirendal, B.; Bjerler, J.; Studsvik; Teunckens, L.

    2003-02-27

    Various international and national bodies such as the International Atomic Energy Agency, the European Commission, the US Nuclear Regulatory Commission have put forward proposals or guidance documents to regulate the ''clearance'' from regulatory control of very low level radioactive material, in order to allow its recycling as a material management practice. All these proposals are based on predicted scenarios for subsequent utilization of the released materials. The calculation models used in these scenarios tend to utilize conservative data regarding exposure times and dose uptake as well as other assumptions as a safeguard against uncertainties. None of these models has ever been validated by comparison with the actual real life practice of recycling. An international project was organized in order to validate some of the assumptions made in these calculation models, and, thereby, better assess the radiological consequences of recycling on a practical large scale.

  14. Estimating γ-rays dose using computer

    NASA Astrophysics Data System (ADS)

    Al-Rawi, Anis M.; Muslih, Raad M.; Al-Harithy, Rafila S.

    When gum arabic is exposed to γ-rays, a change in its reflection and absorption ability for the different wave lengths is obtained. This change is used for estimating the absorbed γ-rays directly. In the present work we are not concerned with the type of components that are chemically formed as emphasis will only be put on the physical changes. The physical state is taken as a potential chemical change since a molecular damage is accumulated as a result of the dose absorbed. The fortran IV data General (Nova 3) designed for estimating colour measurements was connected to a spectrophotometer that enables measuring the changes in both absorbing and reflecting or even diffusing of light through irradiated materials.

  15. DOSE ASSESSMENTS FROM THE DISPOSAL OF LOW ...

    EPA Pesticide Factsheets

    Modeling the long-term performance of the RCRA-C disposal cell and potential doses to off-site receptors is used to derive maximum radionuclide specific concentrations in the wastes that would enable these wastes to be disposed of safely using the RCRA-C disposal cell technology. Modeling potential exposures to derive these waste acceptance concentrations involves modeling exposures to workers during storage, treatment and disposal of the wastes, as well as exposures to individuals after disposal operations have ceased. Post facility closure exposures can result from the slow expected degradation of the disposal cell over long time periods (one thousand years after disposal) and in advertent human intrusion. Provide a means of determining waste acceptance radionuclide concentrations for disposal of debris from radiological dispersal device incidents as well as low-activity wastes generated in commercial, medical and research activities, potentially serve as the technical basis for guidance on disposal of these materials.

  16. Device for the reduction of population dose

    SciTech Connect

    Kihara, T.; Uchinoumi, K.; Akagi, F.; Antoku, S.

    1982-06-01

    Conventional dental radiographic procedures do not permit direct visualization of the radiation field or the central ray. As a result, it is necessary to use a beam diameter larger than the film in order to prevent an unnecessarily high number of cone cuts or other errors during visual alignment of the cone and film. The modification of a conventional dental x-ray cone which permits the central ray to be depicted by a beam of light is described. The use of the device significantly reduced the number of cone cuts, even when small beam diameters were used. Visualization of the central ray improved radiographic accuracy and has the potential to significantly reduce the over-all dose to the population by reducing the size of the field used for dental radiography.

  17. DNA profiling from heroin street dose packages.

    PubMed

    Zamir, Ashira; Cohen, Yaron; Azoury, Myriam

    2007-03-01

    A large amount of heroin street doses are seized and examined for drug content by the Israel police. These are generally wrapped in heat-sealed plastic. Occasionally it is possible to visualize latent fingerprints on the plastic wrap itself, but the small size of the plastic item and the sealing process makes the success rate very low. In this study, the possibility of extracting and profiling DNA from the burnt edge of the plastic wrap was investigated. The idea was based on the assumption that epithelial cells might be trapped during the sealing process. The results show that there are sufficient quantities of DNA deposited at the "amorphic" burnt edges of sealed street doses for DNA profiling to be carried out. A controlled experiment using a known donor was performed. This subject carried out sealing of "street drug" packages and consequent DNA extractions were performed to show that known DNA profiles could be recovered from such packages, as a result of handling by the "packer." "Square-like" burnt edges did not yield DNA profiles, probably because of differences in the sealing process. It was also shown that DNA could be recovered from the plastic wrap itself and not only from the amorphic burnt edges. As heroin dealers and drug users are often involved in other crimes and run-ins with the law, the effective extraction and addition of their DNA profiles from such items of evidence to the newly established DNA database in Israel provides new avenues in the continued fight against crime and drug traffickers.

  18. Direct dose mapping versus energy/mass transfer mapping for 4D dose accumulation: fundamental differences and dosimetric consequences

    NASA Astrophysics Data System (ADS)

    Li, Haisen S.; Zhong, Hualiang; Kim, Jinkoo; Glide-Hurst, Carri; Gulam, Misbah; Nurushev, Teamour S.; Chetty, Indrin J.

    2014-01-01

    The direct dose mapping (DDM) and energy/mass transfer (EMT) mapping are two essential algorithms for accumulating the dose from different anatomic phases to the reference phase when there is organ motion or tumor/tissue deformation during the delivery of radiation therapy. DDM is based on interpolation of the dose values from one dose grid to another and thus lacks rigor in defining the dose when there are multiple dose values mapped to one dose voxel in the reference phase due to tissue/tumor deformation. On the other hand, EMT counts the total energy and mass transferred to each voxel in the reference phase and calculates the dose by dividing the energy by mass. Therefore it is based on fundamentally sound physics principles. In this study, we implemented the two algorithms and integrated them within the Eclipse treatment planning system. We then compared the clinical dosimetric difference between the two algorithms for ten lung cancer patients receiving stereotactic radiosurgery treatment, by accumulating the delivered dose to the end-of-exhale (EE) phase. Specifically, the respiratory period was divided into ten phases and the dose to each phase was calculated and mapped to the EE phase and then accumulated. The displacement vector field generated by Demons-based registration of the source and reference images was used to transfer the dose and energy. The DDM and EMT algorithms produced noticeably different cumulative dose in the regions with sharp mass density variations and/or high dose gradients. For the planning target volume (PTV) and internal target volume (ITV) minimum dose, the difference was up to 11% and 4% respectively. This suggests that DDM might not be adequate for obtaining an accurate dose distribution of the cumulative plan, instead, EMT should be considered.

  19. SU-E-T-280: Reconstructed Rectal Wall Dose Map-Based Verification of Rectal Dose Sparing Effect According to Rectum Definition Methods and Dose Perturbation by Air Cavity in Endo-Rectal Balloon

    SciTech Connect

    Park, J; Park, H; Lee, J; Kang, S; Lee, M; Suh, T; Lee, B

    2014-06-01

    Purpose: Dosimetric effect and discrepancy according to the rectum definition methods and dose perturbation by air cavity in an endo-rectal balloon (ERB) were verified using rectal-wall (Rwall) dose maps considering systematic errors in dose optimization and calculation accuracy in intensity-modulated radiation treatment (IMRT) for prostate cancer patients. Methods: When the inflated ERB having average diameter of 4.5 cm and air volume of 100 cc is used for patient, Rwall doses were predicted by pencil-beam convolution (PBC), anisotropic analytic algorithm (AAA), and AcurosXB (AXB) with material assignment function. The errors of dose optimization and calculation by separating air cavity from the whole rectum (Rwhole) were verified with measured rectal doses. The Rwall doses affected by the dose perturbation of air cavity were evaluated using a featured rectal phantom allowing insert of rolled-up gafchromic films and glass rod detectors placed along the rectum perimeter. Inner and outer Rwall doses were verified with reconstructed predicted rectal wall dose maps. Dose errors and extent at dose levels were evaluated with estimated rectal toxicity. Results: While AXB showed insignificant difference of target dose coverage, Rwall doses underestimated by up to 20% in dose optimization for the Rwhole than Rwall at all dose range except for the maximum dose. As dose optimization for Rwall was applied, the Rwall doses presented dose error less than 3% between dose calculation algorithm except for overestimation of maximum rectal dose up to 5% in PBC. Dose optimization for Rwhole caused dose difference of Rwall especially at intermediate doses. Conclusion: Dose optimization for Rwall could be suggested for more accurate prediction of rectal wall dose prediction and dose perturbation effect by air cavity in IMRT for prostate cancer. This research was supported by the Leading Foreign Research Institute Recruitment Program through the National Research Foundation of Korea

  20. Efficacy of Extended-Interval Dosing of Micafungin Evaluated Using a Pharmacokinetic/Pharmacodynamic Study with Humanized Doses in Mice

    PubMed Central

    Lepak, A.; Marchillo, K.; VanHecker, J.; Azie, N.

    2015-01-01

    The pharmacokinetic/pharmacodynamic (PK/PD) characteristics of the echinocandins favor infrequent administration of large doses. The in vivo investigation reported here tested the utility of a range of humanized dose levels of micafungin using a variety of prolonged dosing intervals for the prevention and therapy of established disseminated candidiasis. Humanized doses of 600 mg administered every 6 days prevented fungal growth in prophylaxis. Humanized doses of 300 to 1,000 mg administered every 6 days demonstrated efficacy for established infections. PMID:26552968

  1. Biological-Based Modeling of Low Dose Radiation Risks

    SciTech Connect

    Scott, Bobby R., Ph.D.

    2006-11-08

    The objective of this project was to refine a biological-based model (called NEOTRANS2) for low-dose, radiation-induced stochastic effects taking into consideration newly available data, including data on bystander effects (deleterious and protective). The initial refinement led to our NEOTRANS3 model which has undergone further refinement (e.g., to allow for differential DNA repair/apoptosis over different dose regions). The model has been successfully used to explain nonlinear dose-response curves for low-linear-energy-transfer (LET) radiation-induced mutations (in vivo) and neoplastic transformation (in vitro). Relative risk dose-response functions developed for neoplastic transformation have been adapted for application to cancer relative risk evaluation for irradiated humans. Our low-dose research along with that conducted by others collectively demonstrate the following regarding induced protection associated with exposure to low doses of low-LET radiation: (1) protects against cell killing by high-LET alpha particles; (2) protects against spontaneous chromosomal damage; (3) protects against spontaneous mutations and neoplastic transformations; (4) suppresses mutations induced by a large radiation dose even when the low dose is given after the large dose; (5) suppresses spontaneous and alpha-radiation-induced cancers; (6) suppresses metastasis of existing cancer; (7) extends tumor latent period; (8) protects against diseases other than cancer; and (9) extends life expectancy. These forms of radiation-induced protection are called adapted protection as they relate to induced adaptive response. Thus, low doses and dose rates of low-LET radiation generally protect rather than harm us. These findings invalidate the linear not threshold (LNT) hypothesis which is based on the premise that any amount of radiation is harmful irrespective of its type. The hypothesis also implicates a linear dose-response curve for cancer induction that has a positive slope and no

  2. Volumetric (3D) bladder dose parameters are more reproducible than point (2D) dose parameters in vaginal vault high-dose-rate brachytherapy

    PubMed Central

    Sapienza, Lucas Gomes; Flosi, Adriana; Aiza, Antonio; de Assis Pellizzon, Antonio Cassio; Chojniak, Rubens; Baiocchi, Glauco

    2016-01-01

    There is no consensus on the use of computed tomography in vaginal cuff brachytherapy (VCB) planning. The purpose of this study was to prospectively determine the reproducibility of point bladder dose parameters (DICRU and maximum dose), compared with volumetric-based parameters. Twenty-two patients who were treated with high-dose-rate (HDR) VCB underwent simulation by computed tomography (CT-scan) with a Foley catheter at standard tension (position A) and extra tension (position B). CT-scan determined the bladder ICRU dose point in both positions and compared the displacement and recorded dose. Volumetric parameters (D0.1cc, D1.0cc, D2.0cc, D4.0cc and D50%) and point dose parameters were compared. The average spatial shift in ICRU dose point in the vertical, longitudinal and lateral directions was 2.91 mm (range: 0.10–9.00), 12.04 mm (range: 4.50–24.50) and 2.65 mm (range: 0.60–8.80), respectively. The DICRU ratio for positions A and B was 1.64 (p < 0.001). Moreover, a decrease in Dmax was observed (p = 0.016). Tension level of the urinary catheter did not affect the volumetric parameters. Our data suggest that point parameters (DICRU and Dmax) are not reproducible and are not the ideal choice for dose reporting. PMID:27296459

  3. Biologically effective uniform dose (D) for specification, report and comparison of dose response relations and treatment plans.

    PubMed

    Mavroidis, P; Lind, B K; Brahme, A

    2001-10-01

    Developments in radiation therapy planning have improved the information about the three-dimensional dose distribution in the patient. Isodose graphs, dose volume histograms and most recently radiobiological models can be used to evaluate the dose distribution delivered to the irradiated organs and volumes of interest. The concept of a biologically effective uniform dose (D) assumes that any two dose distributions are equivalent if they cause the same probability for tumour control or normal tissue complication. In the present paper the D concept both for tumours and normal tissues is presented, making use of the fact that probabilities averaged over both dose distribution and organ radiosensitivity are more relevant to the clinical outcome than the expected number of surviving clonogens or functional subunits. D can be calculated in complex target volumes or organs at risk either from the 3D dose matrix or from the corresponding dose volume histograms of the dose plan. The value of the D concept is demonstrated by applying it to two treatment plans of a cervix cancer. Comparison is made of the D concept with the effective dose (Deff ) and equivalent uniform dose (EUD) that have been suggested in the past. The value of the concept for complex targets and fractionation schedules is also pointed out.

  4. Impact of microscopic disease extension, extra-CTV tumour islets, incidental dose and dose conformity on tumour control probability.

    PubMed

    Selvaraj, Jothybasu; Baker, Colin; Nahum, Alan

    2016-06-01

    The impact of microscopic disease extension (MDE), extra-CTV tumour islets (TIs), incidental dose and dose conformity on tumour control probability (TCP) is analyzed using insilico simulations in this study. MDE in the region in between GTV and CTV is simulated inclusive of geometric uncertainties (GE) using spherical targets and spherical dose distribution. To study the effect of incidental dose on TIs and the effect of dose-response curve (DRC) on tumour control, islets were randomly distributed and TCP was calculated for various dose levels by rescaling the dose. Further, the impact of dose conformity on required PTV margins is also studied. The required PTV margins are ~2 mm lesser than assuming a uniform clonogen density if an exponential clonogen density fall off in the GTV-CTV is assumed. However, margins are almost equal if GE is higher in both cases. This shows that GE has a profound impact on margins. The effect of TIs showed a bi-phasic relation with increasing dose, indicating that patients with islets not in the beam paths do not benefit from dose escalation. Increasing dose conformity is also found to have considerable effect on TCP loss especially for larger GE. Further, smaller margins in IGRT should be used with caution where uncertainty in CTV definition is of concern.

  5. Factors for converting dose measured in polystyrene phantoms to dose reported in water phantoms for incident proton beams

    SciTech Connect

    Moyers, M. F.; Vatnitsky, A. S.; Vatnitsky, S. M.

    2011-10-15

    Purpose: Previous dosimetry protocols allowed calibrations of proton beamline dose monitors to be performed in plastic phantoms. Nevertheless, dose determinations were referenced to absorbed dose-to-muscle or absorbed dose-to-water. The IAEA Code of Practice TRS 398 recommended that dose calibrations be performed with ionization chambers only in water phantoms because plastic-to-water dose conversion factors were not available with sufficient accuracy at the time of its writing. These factors are necessary, however, to evaluate the difference in doses delivered to patients if switching from calibration in plastic to a protocol that only allows calibration in water. Methods: This work measured polystyrene-to-water dose conversion factors for this purpose. Uncertainties in the results due to temperature, geometry, and chamber effects were minimized by using special experimental set-up procedures. The measurements were validated by Monte Carlo simulations. Results: At the peak of non-range-modulated beams, measured polystyrene-to-water factors ranged from 1.015 to 1.024 for beams with ranges from 36 to 315 mm. For beams with the same ranges and medium sized modulations, the factors ranged from 1.005 to 1.019. The measured results were used to generate tables of polystyrene-to-water dose conversion factors. Conclusions: The dose conversion factors can be used at clinical proton facilities to support beamline and patient specific dose per monitor unit calibrations performed in polystyrene phantoms.

  6. Principles for the selection of doses in chronic rodent bioassays. ILSI Risk Science Working Group on Dose Selection.

    PubMed

    Foran, J A

    1997-01-01

    Dose selection in chronic rodent bioassays has been one of the most debated issues in risk assessment. The Committee on Risk Assessment Methods of the National Research Council attempted, but failed, in 1993 to reach consensus on how to select doses for chronic rodent bioassays. However, a more recent effort conducted by the ILSI Risk Science Institute has resulted in a consensus set of principles for dose selection, including selection of the highest dose for chronic rodent bioassays. The principles encourage a move away from sole reliance on a maximum tolerated dose (MTD), as it has been traditionally defined (primarily by body weight and histopathology), and toward the use of sound scientific and toxicologic principles for the selection of all doses in the chronic bioassay. Specifically, the principles recommend that dose selection for chronic studies must be based on sound toxicologic principles; dose selection should consider human exposure; dose selection should be based on a variety of endpoints and effects derived from prechronic studies; and dose selection should consider physicochemical and other factors. Implementation of the principles internationally will have two important benefits; improvement in the quality and consistency of the rodent bioassay and international harmonization of dose selection procedures.

  7. A mathematical approach to optimal selection of dose values in the additive dose method of ERP dosimetry

    SciTech Connect

    Hayes, R.B.; Haskell, E.H.; Kenner, G.H.

    1996-01-01

    Additive dose methods commonly used in electron paramagnetic resonance (EPR) dosimetry are time consuming and labor intensive. We have developed a mathematical approach for determining optimal spacing of applied doses and the number of spectra which should be taken at each dose level. Expected uncertainitites in the data points are assumed to be normally distributed with a fixed standard deviation and linearity of dose response is also assumed. The optimum spacing and number of points necessary for the minimal error can be estimated, as can the likely error in the resulting estimate. When low doses are being estimated for tooth enamel samples the optimal spacing is shown to be a concentration of points near the zero dose value with fewer spectra taken at a single high dose value within the range of known linearity. Optimization of the analytical process results in increased accuracy and sample throughput.

  8. Prefecture-wide multi-centre radiation dose survey as a useful tool for CT dose optimisation: report of Gunma radiation dose study.

    PubMed

    Fukushima, Yasuhiro; Taketomi-Takahashi, Ayako; Nakajima, Takahito; Tsushima, Yoshito

    2015-12-01

    The aim of this study was to verify the usefulness for the dose optimisation of setting a diagnostic reference level (DRL) based on the results of a prefecture-wide multi-centre radiation dose survey and providing data feedback. All hospitals/clinics in the authors' prefecture with computed tomography (CT) scanners were requested to report data. The first survey was done in July 2011, and the results of dose-length products (DLPs) for each CT scanner were fed back to all hospitals/clinics, with DRL set from all the data. One year later, a second survey was done in the same manner. The medians of DLP in the upper abdomen, whole body and coronary CT in 2012 were significantly smaller than those of the 2011 survey. The interquartile ranges of DLP in the head, chest, pelvis and coronary CT were also smaller in 2012. Radiation dose survey with data feedback may be helpful for CT dose optimisation.

  9. Comparison of planned and measured rectal dose in-vivo during high dose rate Cobalt-60 brachytherapy of cervical cancer.

    PubMed

    Zaman, Z K; Ung, N M; Malik, R A; Ho, G F; Phua, V C E; Jamalludin, Z; Baharuldin, M T H; Ng, K H

    2014-12-01

    Cobalt-60 (Co-60) is a relatively new source for the application of high-dose rate (HDR) brachytherapy. Radiation dose to the rectum is often a limiting factor in achieving the full prescribed dose to the target during brachytherapy of cervical cancer. The aim of this study was to measure radiation doses to the rectum in-vivo during HDR Co-60 brachytherapy. A total of eleven HDR brachytherapy treatments of cervical cancer were recruited in this study. A series of diodes incorporated in a rectal probe was inserted into the patient's rectum during each brachytherapy procedure. Real-time measured rectal doses were compared to calculated doses by the treatment planning system (TPS). The differences between calculated and measured dose ranged from 8.5% to 41.2%. This corresponds to absolute dose differences ranging from 0.3 Gy to 1.5 Gy. A linear relationship was observed between calculated and measured doses with linear regression R(2) value of 0.88, indicating close association between the measured and calculated doses. In general, absorbed doses for the rectum as calculated by TPS were observed to be higher than the doses measured using the diode probe. In-vivo dosimetry is an important quality assurance method for HDR brachytherapy of cervical cancer. It provides information that can contribute to the reduction of errors and discrepancies in dose delivery. Our study has shown that in-vivo dosimetry is feasible and can be performed to estimate the dose to the rectum during HDR brachytherapy using Co-60.

  10. Pharmacokinetic Dashboard-Recommended Dosing Is Different than Standard of Care Dosing in Infliximab-Treated Pediatric IBD Patients.

    PubMed

    Dubinsky, Marla C; Phan, Becky L; Singh, Namita; Rabizadeh, Shervin; Mould, Diane R

    2017-01-01

    Standard of care (SOC; combination of 5-10 mg/kg and an interval every 6-8 weeks) dosing of infliximab (IFX) is associated with significant loss of response. Dashboards using covariates that influence IFX pharmacokinetics (PK) may be a more precise way of optimizing anti-TNF dosing. We tested a prototype dashboard to compare forecasted dosing regimens with actual administered regimens and SOC. Fifty IBD patients completing IFX induction were monitored during maintenance (weeks 14-54). Clinical and laboratory data were collected at each infusion; serum was analyzed for IFX concentrations and anti-drug antibodies (ADA) at weeks 14 and 54 (Prometheus Labs, San Diego). Dosing was blinded to PK data. Dashboard-based assessments were conducted on de-identified clinical, laboratory, and PK data. Bayesian algorithms were used to forecast individualized troughs and determine optimal dosing to maintain target trough concentrations (3 μg/mL). Dashboard forecasted dosing post-week 14 was compared to actual administered dose and frequency and SOC. Using week 14 clinical data only, the dashboard recommended either a dose or an interval change (<0.5 mg/kg or <1 week difference) in 43/50 patients; only 44% recommended to have SOC dosing. When IFX14 concentration and ADA status were added to clinical data, dose and/or interval changes based on actual dosing were recommended in 48/50 (96%) patients; SOC dosing was recommended in only 11/50 (22%). Dashboard recommended SOC IFX dosing in a minority of patients. Dashboards will be an important tool to individualize IFX dosing to improve treatment durability.

  11. Dose-response relationships of FMISO between trace dose and various macro-doses in rat by ultra-performance liquid chromatography with mass spectrometry and radioactivity analysis.

    PubMed

    Du, Jinglei; Zhu, Lin; Zhou, Xue; Yin, Wei; Deng, Aifang; Qiao, Jinping

    2012-11-01

    Screening the pharmacokinetics of candidates using liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) may be efficacious and safe for the research and development of new PET imaging agents. However, the PET imaging agent is administered as trace dose and the sensitivity of LC-MS/MS is often insufficient. If the dose was increased to be quantifiable, it should be necessary to prove whether the pharmacokinetics between trace and macro-doses is consistent or not. In this paper, fluoromisonidazole (FMISO), a tumor PET imaging agent, was chosen to evaluate the dose-response pharmacokinetics by administering various single intravenous doses (0.1, 0.4, 1.6 and 6.4 mg/kg) in male Sprague-Dawley rats. The plasma concentration of FMISO was determined by an ultra-performance liquid chromatography-tandem mass spectrometric (UPLC-MS/MS) method, and the blood radioactivity of [(18)F]FMISO was detected by a gamma counter. By calculating and comparing the pharmacokinetic parameters, the total area under the plasma concentration-time curve from time zero to infinity (AUC(0-∞)) and peak plasma concentration (C(max)) values increased with the selected FMISO doses, and showing linear dose-dependent. On the other hand, some parameters related to time, such as the elimination half-lives (t(1/2)) and elimination rate constant (K(e)) were dose-independent, and there is no significant deference between trace dose and various macro-doses. The data should be useful to evaluate the novel 2-nitroimidazole derivatives as potential PET tumor imaging agents.

  12. Out-of-field doses and neutron dose equivalents for electron beams from modern Varian and Elekta linear accelerators.

    PubMed

    Cardenas, Carlos E; Nitsch, Paige L; Kudchadker, Rajat J; Howell, Rebecca M; Kry, Stephen F

    2016-07-08

    Out-of-field doses from radiotherapy can cause harmful side effects or eventually lead to secondary cancers. Scattered doses outside the applicator field, neutron source strength values, and neutron dose equivalents have not been broadly investigated for high-energy electron beams. To better understand the extent of these exposures, we measured out-of-field dose characteristics of electron applicators for high-energy electron beams on two Varian 21iXs, a Varian TrueBeam, and an Elekta Versa HD operating at various energy levels. Out-of-field dose profiles and percent depth-dose curves were measured in a Wellhofer water phantom using a Farmer ion chamber. Neutron dose was assessed using a combination of moderator buckets and gold activation foils placed on the treatment couch at various locations in the patient plane on both the Varian 21iX and Elekta Versa HD linear accelerators. Our findings showed that out-of-field electron doses were highest for the highest electron energies. These doses typically decreased with increasing distance from the field edge but showed substantial increases over some distance ranges. The Elekta linear accelerator had higher electron out-of-field doses than the Varian units examined, and the Elekta dose profiles exhibited a second dose peak about 20 to 30 cm from central-axis, which was found to be higher than typical out-of-field doses from photon beams. Electron doses decreased sharply with depth before becoming nearly constant; the dose was found to decrease to a depth of approximately E(MeV)/4 in cm. With respect to neutron dosimetry, Q values and neutron dose equivalents increased with electron beam energy. Neutron contamination from electron beams was found to be much lower than that from photon beams. Even though the neutron dose equivalent for electron beams represented a small portion of neutron doses observed under photon beams, neutron doses from electron beams may need to be considered for special cases.

  13. Out-of-field doses and neutron dose equivalents for electron beams from modern Varian and Elekta linear accelerators.

    PubMed

    Cardenas, Carlos E; Nitsch, Paige L; Kudchadker, Rajat J; Howell, Rebecca M; Kry, Stephen F

    2016-07-01

    Out-of-field doses from radiotherapy can cause harmful side effects or eventually lead to secondary cancers. Scattered doses outside the applicator field, neutron source strength values, and neutron dose equivalents have not been broadly investigated for high-energy electron beams. To better understand the extent of these exposures, we measured out-of-field dose characteristics of electron applicators for high-energy electron beams on two Varian 21iXs, a Varian TrueBeam, and an Elekta Versa HD operating at various energy levels. Out-of-field dose profiles and percent depth-dose curves were measured in a Wellhofer water phantom using a Farmer ion chamber. Neutron dose was assessed using a combination of moderator buckets and gold activation foils placed on the treatment couch at various locations in the patient plane on both the Varian 21iX and Elekta Versa HD linear accelerators. Our findings showed that out-of-field electron doses were highest for the highest electron energies. These doses typically decreased with increasing distance from the field edge but showed substantial increases over some distance ranges. The Elekta linear accelerator had higher electron out-of-field doses than the Varian units examined, and the Elekta dose profiles exhibited a second dose peak about 20 to 30 cm from central-axis, which was found to be higher than typical out-of-field doses from photon beams. Electron doses decreased sharply with depth before becoming nearly constant; the dose was found to decrease to a depth of approximately E(MeV)/4 in cm. With respect to neutron dosimetry, Q values and neutron dose equivalents increased with electron beam energy. Neutron contamination from electron beams was found to be much lower than that from photon beams. Even though the neutron dose equivalent for electron beams represented a small portion of neutron doses observed under photon beams, neutron doses from electron beams may need to be considered for special cases. PACS number(s): 87

  14. Effect of Scanning Beam for Superficial Dose in Proton Therapy.

    PubMed

    Moskvin, Vadim P; Estabrook, Neil C; Cheng, Chee-Wai; Das, Indra J; Johnstone, Peter A S

    2015-10-01

    Proton beam delivery technology is under development to minimize the scanning spot size for uniform dose to target, but it is also known that the superficial dose could be as high as the dose at Bragg peak for narrow and small proton beams. The objective of this study is to explore the characteristics of dose distribution at shallow depths using Monte Carlo simulation with the FLUKA code for uniform scanning (US) and discrete spot scanning (DSS) proton beams. The results show that the superficial dose for DSS is relatively high compared to US. Additionally, DSS delivers a highly heterogeneous dose to the irradiated surface for comparable doses at Bragg peak. Our simulation shows that the superficial dose can become as high as the Bragg peak when the diameter of the proton beam is reduced. This may compromise the advantage of proton beam therapy for sparing normal tissue, making skin dose a limiting factor for the clinical use of DSS. Finally, the clinical advantage of DSS may not be essential for treating uniform dose across a large target, as in craniospinal irradiation (CSI).

  15. Low-dose cyclophosphamide-induced acute hepatotoxicity

    PubMed Central

    Subramaniam, S. Ravih; Cader, Rizna Abdul; Mohd, Rozita; Yen, Kong Wei; Ghafor, Halim Abdul

    2013-01-01

    Patient: Male, 48 Final Diagnosis: Low dose cyclophosphamide-induced acute hepatotoxicity Symptoms: Epigastric pain Medication: Withdrawal of cyclophosphamide Clinical Procedure: — Specialty: Nephrology • Hepatology • Gastroenterology • Toxicology Objective: Unexpected drug reaction Background: Cyclophosphamide is commonly used to treat cancers, systemic vasculitides, and kidney disea