Science.gov

Sample records for entre diferentes doses

  1. Diferentes Metodologias Aplicadas ao Ensino de Astronomia

    NASA Astrophysics Data System (ADS)

    Albrecht, E.; Voelzke, M. R.

    2007-08-01

    Espera-se que o educando ao final da educação básica, adquira uma compreensão atualizada das hipóteses, modelos e formas de investigação sobre a origem e evolução do Universo em que vive. O presente trabalho tem como principal objetivo compreender dentre três práticas pedagógicas adotadas no Ensino de Astronomia, na terceira série do Ensino Médio, da Escola Estadual Colônia dos Pescadores, qual melhor cumpre o papel de formação e aprendizagem para vida. A pesquisa preliminar foi através de um questionário onde o intuito foi diagnosticar o conhecimento já existente acerca do tema em questão. O questionário é composto de vinte questões dissertativas e objetivas, onde os educandos das três turmas envolvidas o responderam. Este trabalho utiliza as seguintes metodologias: a tradicional, onde o professor é um repassador de informações, fazendo uso exclusivo de lousa e giz; a segunda também de forma tradicional, porém com auxílio de multimídia para desenvolvimento das aulas e aterceira sob forma de seminários, elaborados e apresentados pelos educandos, no qual o educador faz apenas as intervenções necessárias. Ao final do trabalho os alunos responderão novamente o questionário inicial para diagnosticar dentre as três metodologias utilizadas qual apresentou melhor resultado. Os resultados preliminares obtidos, já podem ser observados e, dos 119 alunos entrevistados, as respostas obtidas são as mais diversas e evidenciam que a grande maioria nunca teve em sua vida escolar o tema Astronomia. Ao serem questionados se já haviam estudado Astronomia as respostas foram: turma A: sim 43%; turma B: sim: 21%; turma C: sim: 24%. Porém quando questionados a respeito do significado de Astronomia observou-se que: turma A: 100% de acertos; turma B: 64% acertos; turma C: 84% de acertos, demonstrando claramente a aprendizagem em diferentes esferas, não dependendo unicamente da escola. Até o presente momento, verificou-se que há interesse em

  2. Absorbed Dose and Dose Equivalent Calculations for Modeling Effective Dose

    NASA Technical Reports Server (NTRS)

    Welton, Andrew; Lee, Kerry

    2010-01-01

    While in orbit, Astronauts are exposed to a much higher dose of ionizing radiation than when on the ground. It is important to model how shielding designs on spacecraft reduce radiation effective dose pre-flight, and determine whether or not a danger to humans is presented. However, in order to calculate effective dose, dose equivalent calculations are needed. Dose equivalent takes into account an absorbed dose of radiation and the biological effectiveness of ionizing radiation. This is important in preventing long-term, stochastic radiation effects in humans spending time in space. Monte carlo simulations run with the particle transport code FLUKA, give absorbed and equivalent dose data for relevant shielding. The shielding geometry used in the dose calculations is a layered slab design, consisting of aluminum, polyethylene, and water. Water is used to simulate the soft tissues that compose the human body. The results obtained will provide information on how the shielding performs with many thicknesses of each material in the slab. This allows them to be directly applicable to modern spacecraft shielding geometries.

  3. Benchmark Dose Modeling

    EPA Science Inventory

    Finite doses are employed in experimental toxicology studies. Under the traditional methodology, the point of departure (POD) value for low dose extrapolation is identified as one of these doses. Dose spacing necessarily precludes a more accurate description of the POD value. ...

  4. From cellular doses to average lung dose.

    PubMed

    Hofmann, W; Winkler-Heil, R

    2015-11-01

    Sensitive basal and secretory cells receive a wide range of doses in human bronchial and bronchiolar airways. Variations of cellular doses arise from the location of target cells in the bronchial epithelium of a given airway and the asymmetry and variability of airway dimensions of the lung among airways in a given airway generation and among bronchial and bronchiolar airway generations. To derive a single value for the average lung dose which can be related to epidemiologically observed lung cancer risk, appropriate weighting scenarios have to be applied. Potential biological weighting parameters are the relative frequency of target cells, the number of progenitor cells, the contribution of dose enhancement at airway bifurcations, the promotional effect of cigarette smoking and, finally, the application of appropriate regional apportionment factors. Depending on the choice of weighting parameters, detriment-weighted average lung doses can vary by a factor of up to 4 for given radon progeny exposure conditions.

  5. Relaciones entre el sueño y la adicción

    PubMed Central

    Cañellas, Francesca; de Lecea, Luis

    2016-01-01

    Resumen La interacción entre los trastornos del sueño y el abuso de sustancias es ya conocida, pero seguramente más compleja de lo que se pensaba. Existe tanto una relación positiva entre tener un trastorno por uso de substancias y sufrir un trastorno de sueño, como viceversa. Los efectos sobre el sueño dependen de la substancia utilizada, pero se ha demostrado que tanto durante su uso como en período de abstinencia los consumidores tienen diferentes problemas de sueño y fundamentalmente un sueño más fragmentado. Sabemos que hay que tener en cuenta los problemas de sueño para evitar recaídas en la adicción. Investigaciones recientes indican que el sistema hipocretinérgico definido por el neuropéptido hipocretina/orexina (Hcrt/ox), localizado en el hipotálamo lateral e implicado entre otros en la regulación del ciclo sueño-vigilia, jugaría un papel importante en las conductas adictivas. Diferentes estudios han demostrado interacciones entre el sistema hipocretinérgico, los circuitos de respuesta aguda al estrés y los sistemas de recompensa. También sabemos que la activación optogenética selectiva del sistema hipocretinérgico incrementa la probabilidad de la transición del sueño a la vigilia, y también es suficiente para iniciar un comportamiento compulsivo de recaída adictiva. La activación del sistema hipocretinérgico podría explicar la hipervigilia asociada al estrés y a la adicción. El mayor conocimiento de esta interacción permitiría entender mejor los mecanismos de la adicción y encontrar nuevas estrategias para el tratamiento de las adicciones. PMID:23241715

  6. Use of effective dose.

    PubMed

    Harrison, J D; Balonov, M; Martin, C J; Ortiz Lopez, P; Menzel, H-G; Simmonds, J R; Smith-Bindman, R; Wakeford, R

    2016-06-01

    International Commission on Radiological Protection (ICRP) Publication 103 provided a detailed explanation of the purpose and use of effective dose and equivalent dose to individual organs and tissues. Effective dose has proven to be a valuable and robust quantity for use in the implementation of protection principles. However, questions have arisen regarding practical applications, and a Task Group has been set up to consider issues of concern. This paper focusses on two key proposals developed by the Task Group that are under consideration by ICRP: (1) confusion will be avoided if equivalent dose is no longer used as a protection quantity, but regarded as an intermediate step in the calculation of effective dose. It would be more appropriate for limits for the avoidance of deterministic effects to the hands and feet, lens of the eye, and skin, to be set in terms of the quantity, absorbed dose (Gy) rather than equivalent dose (Sv). (2) Effective dose is in widespread use in medical practice as a measure of risk, thereby going beyond its intended purpose. While doses incurred at low levels of exposure may be measured or assessed with reasonable reliability, health effects have not been demonstrated reliably at such levels but are inferred. However, bearing in mind the uncertainties associated with risk projection to low doses or low dose rates, it may be considered reasonable to use effective dose as a rough indicator of possible risk, with the additional consideration of variation in risk with age, sex and population group. PMID:26980800

  7. Use of effective dose.

    PubMed

    Harrison, J D; Balonov, M; Martin, C J; Ortiz Lopez, P; Menzel, H-G; Simmonds, J R; Smith-Bindman, R; Wakeford, R

    2016-06-01

    International Commission on Radiological Protection (ICRP) Publication 103 provided a detailed explanation of the purpose and use of effective dose and equivalent dose to individual organs and tissues. Effective dose has proven to be a valuable and robust quantity for use in the implementation of protection principles. However, questions have arisen regarding practical applications, and a Task Group has been set up to consider issues of concern. This paper focusses on two key proposals developed by the Task Group that are under consideration by ICRP: (1) confusion will be avoided if equivalent dose is no longer used as a protection quantity, but regarded as an intermediate step in the calculation of effective dose. It would be more appropriate for limits for the avoidance of deterministic effects to the hands and feet, lens of the eye, and skin, to be set in terms of the quantity, absorbed dose (Gy) rather than equivalent dose (Sv). (2) Effective dose is in widespread use in medical practice as a measure of risk, thereby going beyond its intended purpose. While doses incurred at low levels of exposure may be measured or assessed with reasonable reliability, health effects have not been demonstrated reliably at such levels but are inferred. However, bearing in mind the uncertainties associated with risk projection to low doses or low dose rates, it may be considered reasonable to use effective dose as a rough indicator of possible risk, with the additional consideration of variation in risk with age, sex and population group.

  8. Religiosidade, juventude e sexualidade: entre a autonomia e a rigidez1

    PubMed Central

    Silva, Cristiane Gonçalves da; Santos, Alessandro Oliveira; Licciardi, Daniele Carli; Paiva, Vera; Parker, Richard

    2009-01-01

    Esse artigo descreve como jovens religiosos e autoridades religiosas de sua comunidade compreendem a sexualidade, considerando suas experiências pessoais e como membros de comunidades religiosas. A análise pretende contribuir para que políticas públicas dedicadas à promoção da saúde sexual da juventude considerem a religiosidade, no contexto de um estado laico e da promoção do direito à prevenção. Foram realizadas 26 entrevistas abertas e semidirigidas em diferentes comunidades da região metropolitana da cidade de São Paulo (comunidades católicas, da umbanda, do candomblé e de diferentes denominações evangélicas) sobre iniciação sexual, casamento, gravidez, contracepção e prevenção das DST/Aids, homossexualidade, aborto e direitos humanos. Observou-se como jovens e autoridades religiosas convivem com a tensão entre tradição e modernidade e os distintos discursos sobre a sexualidade. Como sujeitos religiosos (do discurso religioso) e sujeitos sexuais (de discursos sobre sexualidade), devem ser incorporados pelos programas como sujeitos de direito nos termos de sua religiosidade. PMID:21886456

  9. Neutron dose equivalent meter

    DOEpatents

    Olsher, Richard H.; Hsu, Hsiao-Hua; Casson, William H.; Vasilik, Dennis G.; Kleck, Jeffrey H.; Beverding, Anthony

    1996-01-01

    A neutron dose equivalent detector for measuring neutron dose capable of accurately responding to neutron energies according to published fluence to dose curves. The neutron dose equivalent meter has an inner sphere of polyethylene, with a middle shell overlying the inner sphere, the middle shell comprising RTV.RTM. silicone (organosiloxane) loaded with boron. An outer shell overlies the middle shell and comprises polyethylene loaded with tungsten. The neutron dose equivalent meter defines a channel through the outer shell, the middle shell, and the inner sphere for accepting a neutron counter tube. The outer shell is loaded with tungsten to provide neutron generation, increasing the neutron dose equivalent meter's response sensitivity above 8 MeV.

  10. Doses from radiation exposure.

    PubMed

    Menzel, H-G; Harrison, J D

    2012-01-01

    Practical implementation of the International Commission on Radiological Protection's (ICRP) system of protection requires the availability of appropriate methods and data. The work of Committee 2 is concerned with the development of reference data and methods for the assessment of internal and external radiation exposure of workers and members of the public. This involves the development of reference biokinetic and dosimetric models, reference anatomical models of the human body, and reference anatomical and physiological data. Following ICRP's 2007 Recommendations, Committee 2 has focused on the provision of new reference dose coefficients for external and internal exposure. As well as specifying changes to the radiation and tissue weighting factors used in the calculation of protection quantities, the 2007 Recommendations introduced the use of reference anatomical phantoms based on medical imaging data, requiring explicit sex averaging of male and female organ-equivalent doses in the calculation of effective dose. In preparation for the calculation of new dose coefficients, Committee 2 and its task groups have provided updated nuclear decay data (ICRP Publication 107) and adult reference computational phantoms (ICRP Publication 110). New dose coefficients for external exposures of workers are complete (ICRP Publication 116), and work is in progress on a series of reports on internal dose coefficients to workers from inhaled and ingested radionuclides. Reference phantoms for children will also be provided and used in the calculation of dose coefficients for public exposures. Committee 2 also has task groups on exposures to radiation in space and on the use of effective dose.

  11. On Ensino da Astronomia no Ensino Médio sob Diferentes Abordagens Metodológicas

    NASA Astrophysics Data System (ADS)

    Voelzke, Marcos Rincon; Albrecht, Evonir

    2011-12-01

    O presente trabalho, sobre a intervenção de metodologias de ensino, foi desenvolvido na Escola Estadual Colônia dos Pescadores, na cidade de Caraguatatuba - SP, em três turmas do terceiro ano do Ensino Médio, perfazendo um total de 119 educandos, entre 16 e 19 anos. Antes de iniciar-se a intervenção, um questionário de vinte perguntas objetivas e dissertativas foi desenvolvido, aplicado pelo professor da classe, que ministrou as aulas correspondentes. Este questionário foi o mesmo em todas as três classes com o objetivo de diagnosticar o conhecimento prévio dos alunos sobre Astronomia. Começando a intervenção nas turmas, o professor envolvido usou três diferentes metodologias de ensino: (A) em forma de seminários, elaborados e apresentados pelos alunos, nos quais o professor fazia apenas as intervenções necessárias, (B) na forma tradicional, com a ajuda de multimídia para o desenvolvimento das aulas e a terceira (C) a tradicional, fazendo uso exclusivo de lousa e giz. No final do trabalho os alunos responderam o mesmo questionário novamente, de modo que os três métodos utilizados puderam ser comparados. Os resultados apresentados após a intervenção foram melhores que os resultados iniciais indicando a ocorrência de uma aprendizagem significativa. Quando os estudantes foram inicialmente questionados sobre quantos planetas existem no nosso sistema solar, a classe A obteve 39% de respostas certas, a classe B 48% e a classe C 46%, mas após o desenvolvimento das atividades, as classes obtiveram respectivamente 94%, 97 % e 90% de aproveitamento. No término do bimestre, foi sugerido aos educandos que elaborassem uma história em quadrinhos, a qual serviu para averiguar se os conceitos inicialmente observados foram alterados e se novos foram agregados. A análise das histórias foi dividida em três partes: Criatividade; Temas abordados; Emprego correto dos conceitos estudados. Ao final quatorze histórias foram confeccionadas. O aprendizado

  12. Diferentes metodologias aplicadas ao ensino de astronomia no Ensino Médio

    NASA Astrophysics Data System (ADS)

    Albrecht, E.; Voelzke, M. R.

    2009-03-01

    O presente trabalho de intervenção foi realizado junto à Escola Estadual Colònia dos Pescadores na cidade de Caraguatatuba, com très turmas do terceiro ano do Ensino Médio, envolvendo 119 alunos com idades entre 16 e 19 anos. A fase inicial foi composta de um questionário de vinte questíes dissertativas e objetivas, aplicado pelo professor titular da sala, que era o mesmo nas très turmas, para diagnosticar nos educandos os conceitos prévios sobre Astronomia e, partindo destes realizar um trabalho de intervenção nas classes envolvidas utilizando, em cada uma, metodologias diferentes: (A) sob forma de seminários, elaborados e apresentados pelos educandos, no qual o educador faz apenas as intervençíes necessárias; (B) de forma tradicional, com auxílio de multimídias para desenvolvimento das aulas e a terceira (C) tradicional, fazendo uso exclusivo de lousa e giz. Ao final do trabalho os alunos responderam novamente o questionário inicial para diagnosticar dentre as très metodologias utilizadas qual apresentou melhores aplicaçíes, os resultados iniciais foram comparados com os finais. Quando questionados a respeito do significado de Astronomia observou-se inicialmente que os acertos na turma A foram de 100%, turma B: 64%, turma C: 84%, após a intervenção os acertos foram: 100%, 97% e 85% respectivamente, demonstrando que houve um avanço significativo na turma B, a turma A manteve seu índice e a turma C evoluiu, porém não tanto quanto a B. Quando interrogados sobre quantos planetas vocè acha que existem em nosso Sistema Solar? os acertos foram: turma A: 39%, turma B: 48% e turma C: 46%, após o desenvolvimento do trabalho os acertos foram 94%, 97% e 90% respectivamente. Dentro das respostas obtidas observa-se que a metodologia tradicional com o auxílio de multimeios, aplicada na turma B, demonstrou melhores resultados, sendo a mais significativa. Outra conclusão muito importante é que apesar de o tema Astronomia ser amplamente

  13. Synchronized dynamic dose reconstruction

    SciTech Connect

    Litzenberg, Dale W.; Hadley, Scott W.; Tyagi, Neelam; Balter, James M.; Ten Haken, Randall K.; Chetty, Indrin J.

    2007-01-15

    Variations in target volume position between and during treatment fractions can lead to measurable differences in the dose distribution delivered to each patient. Current methods to estimate the ongoing cumulative delivered dose distribution make idealized assumptions about individual patient motion based on average motions observed in a population of patients. In the delivery of intensity modulated radiation therapy (IMRT) with a multi-leaf collimator (MLC), errors are introduced in both the implementation and delivery processes. In addition, target motion and MLC motion can lead to dosimetric errors from interplay effects. All of these effects may be of clinical importance. Here we present a method to compute delivered dose distributions for each treatment beam and fraction, which explicitly incorporates synchronized real-time patient motion data and real-time fluence and machine configuration data. This synchronized dynamic dose reconstruction method properly accounts for the two primary classes of errors that arise from delivering IMRT with an MLC: (a) Interplay errors between target volume motion and MLC motion, and (b) Implementation errors, such as dropped segments, dose over/under shoot, faulty leaf motors, tongue-and-groove effect, rounded leaf ends, and communications delays. These reconstructed dose fractions can then be combined to produce high-quality determinations of the dose distribution actually received to date, from which individualized adaptive treatment strategies can be determined.

  14. Know your dose: RADDOSE

    PubMed Central

    Paithankar, Karthik S.; Garman, Elspeth F.

    2010-01-01

    The program RADDOSE is widely used to compute the dose absorbed by a macromolecular crystal during an X-ray diffraction experiment. A number of factors affect the absorbed dose, including the incident X-ray flux density, the photon energy and the composition of the macromolecule and of the buffer in the crystal. An experimental dose limit for macromolecular crystallography (MX) of 30 MGy at 100 K has been reported, beyond which the biological information obtained may be compromised. Thus, for the planning of an optimized diffraction experiment the estimation of dose has become an additional tool. A number of approximations were made in the original version of RADDOSE. Recently, the code has been modified in order to take into account fluorescent X-­ray escape from the crystal (version 2) and the inclusion of incoherent (Compton) scattering into the dose calculation is now reported (version 3). The Compton cross-section, although negligible at the energies currently commonly used in MX, should be considered in dose calculations for incident energies above 20 keV. Calculations using version 3 of RADDOSE reinforce previous studies that predict a reduction in the absorbed dose when data are collected at higher energies compared with data collected at 12.4 keV. Hence, a longer irradiation lifetime for the sample can be achieved at these higher energies but this is at the cost of lower diffraction intensities. The parameter ‘diffraction-dose efficiency’, which is the diffracted intensity per absorbed dose, is revisited in an attempt to investigate the benefits and pitfalls of data collection using higher and lower energy radiation, particularly for thin crystals. PMID:20382991

  15. Calculating drug doses.

    PubMed

    2016-09-01

    Numeracy and calculation are key skills for nurses. As nurses are directly accountable for ensuring medicines are prescribed, dispensed and administered safely, they must be able to understand and calculate drug doses. PMID:27615351

  16. Ibuprofen dosing for children

    MedlinePlus

    Motrin; Advil ... Ibuprofen is a type of nonsteroidal anti-inflammatory drug (NSAID). It can help: Reduce aches, pain, sore ... Ibuprofen can be taken as liquid or chewable tablets. To give the correct dose, you need to ...

  17. Utirik Atoll Dose Assessment

    SciTech Connect

    Robison, W.L.; Conrado, C.L.; Bogen, K.T

    1999-10-06

    On March 1, 1954, radioactive fallout from the nuclear test at Bikini Atoll code-named BRAVO was deposited on Utirik Atoll which lies about 187 km (300 miles) east of Bikini Atoll. The residents of Utirik were evacuated three days after the fallout started and returned to their atoll in May 1954. In this report we provide a final dose assessment for current conditions at the atoll based on extensive data generated from samples collected in 1993 and 1994. The estimated population average maximum annual effective dose using a diet including imported foods is 0.037 mSv y{sup -1} (3.7 mrem y{sup -1}). The 95% confidence limits are within a factor of three of their population average value. The population average integrated effective dose over 30-, 50-, and 70-y is 0.84 mSv (84, mrem), 1.2 mSv (120 mrem), and 1.4 mSv (140 mrem), respectively. The 95% confidence limits on the population-average value post 1998, i.e., the 30-, 50-, and 70-y integral doses, are within a factor of two of the mean value and are independent of time, t, for t > 5 y. Cesium-137 ({sup 137}Cs) is the radionuclide that contributes most of this dose, mostly through the terrestrial food chain and secondarily from external gamma exposure. The dose from weapons-related radionuclides is very low and of no consequence to the health of the population. The annual background doses in the U. S. and Europe are 3.0 mSv (300 mrem), and 2.4 mSv (240 mrem), respectively. The annual background dose in the Marshall Islands is estimated to be 1.4 mSv (140 mrem). The total estimated combined Marshall Islands background dose plus the weapons-related dose is about 1.5 mSv y{sup -1} (150 mrem y{sup -1}) which can be directly compared to the annual background effective dose of 3.0 mSv y{sup -1} (300 mrem y{sup -1}) for the U. S. and 2.4 mSv y{sup -1} (240 mrem y{sup -1}) for Europe. Moreover, the doses listed in this report are based only on the radiological decay of {sup 137}Cs (30.1 y half-life) and other

  18. [High dose rate brachytherapy].

    PubMed

    Aisen, S; Carvalho, H A; Chavantes, M C; Esteves, S C; Haddad, C M; Permonian, A C; Taier, M do C; Marinheiro, R C; Feriancic, C V

    1992-01-01

    The high dose rate brachytherapy uses a single source os 192Ir with 10Ci of nominal activity in a remote afterloading machine. This technique allows an outpatient treatment, without the inconveniences of the conventional low dose rate brachytherapy such as use of general anesthesia, rhachianesthesia, prolonged immobilization, and personal exposition to radiation. The radiotherapy department is now studying 5 basic treatment schemes concerning carcinomas of the uterine cervix, endometrium, lung, esophagus and central nervous system tumors. With the Micro Selectron HDR, 257 treatment sessions were done in 90 patients. Mostly were treated with weekly fractions, receiving a total of three to four treatments each. No complications were observed neither during nor after the procedure. Doses, fraction and ideal associations still have to be studied, so that a higher therapeutic ratio can be reached.

  19. Dose Reduction Techniques

    SciTech Connect

    WAGGONER, L.O.

    2000-05-16

    As radiation safety specialists, one of the things we are required to do is evaluate tools, equipment, materials and work practices and decide whether the use of these products or work practices will reduce radiation dose or risk to the environment. There is a tendency for many workers that work with radioactive material to accomplish radiological work the same way they have always done it rather than look for new technology or change their work practices. New technology is being developed all the time that can make radiological work easier and result in less radiation dose to the worker or reduce the possibility that contamination will be spread to the environment. As we discuss the various tools and techniques that reduce radiation dose, keep in mind that the radiological controls should be reasonable. We can not always get the dose to zero, so we must try to accomplish the work efficiently and cost-effectively. There are times we may have to accept there is only so much you can do. The goal is to do the smart things that protect the worker but do not hinder him while the task is being accomplished. In addition, we should not demand that large amounts of money be spent for equipment that has marginal value in order to save a few millirem. We have broken the handout into sections that should simplify the presentation. Time, distance, shielding, and source reduction are methods used to reduce dose and are covered in Part I on work execution. We then look at operational considerations, radiological design parameters, and discuss the characteristics of personnel who deal with ALARA. This handout should give you an overview of what it takes to have an effective dose reduction program.

  20. Dose Calculation Spreadsheet

    1997-06-10

    VENTSAR XL is an EXCEL Spreadsheet that can be used to calculate downwind doses as a result of a hypothetical atmospheric release. Both building effects and plume rise may be considered. VENTSAR XL will run using any version of Microsoft EXCEL version 4.0 or later. Macros (the programming language of EXCEL) was used to automate the calculations. The user enters a minimal amount of input and the code calculates the resulting concentrations and doses atmore » various downwind distances as specified by the user.« less

  1. LADTAPXL Aqueous Dose Spreadsheet

    SciTech Connect

    Hamby, David M.; Simpkins, Ali A.; Jannik, G. T.

    1999-08-10

    LADTAPXL is an EXCEL spreadsheet model of the NRC computer code LADTAP. LADTAPXL calculates maximally exposed individual and population doses from chronic liquid releases. Environmental pathways include external exposure resulting from recreational activities on the Savannah River and ingestion of water, fish, and invertebrates of Savannah River origin.

  2. When is a dose not a dose

    SciTech Connect

    Bond, V.P.

    1991-01-01

    Although an enormous amount of progress has been made in the fields of radiation protection and risk assessment, a number of significant problems remain. The one problem which transcends all the rest, and which has been subject to considerable misunderstanding, involves what has come to be known as the 'linear non-threshold hypothesis', or 'linear hypothesis'. Particularly troublesome has been the interpretation that any amount of radiation can cause an increase in the excess incidence of cancer. The linear hypothesis has dominated radiation protection philosophy for more than three decades, with enormous financial, societal and political impacts and has engendered an almost morbid fear of low-level exposure to ionizing radiation in large segments of the population. This document presents a different interpretation of the linear hypothesis. The basis for this view lies in the evolution of dose-response functions, particularly with respect to their use initially in the context of early acute effects, and then for the late effects, carcinogenesis and mutagenesis. 11 refs., 4 figs. (MHB)

  3. Low-Dose Carcinogenicity Studies

    EPA Science Inventory

    One of the major deficiencies of cancer risk assessments is the lack of low-dose carcinogenicity data. Most assessments require extrapolation from high to low doses, which is subject to various uncertainties. Only 4 low-dose carcinogenicity studies and 5 low-dose biomarker/pre-n...

  4. Effects of Proton Radiation Dose, Dose Rate and Dose Fractionation on Hematopoietic Cells in Mice

    PubMed Central

    Ware, J. H.; Sanzari, J.; Avery, S.; Sayers, C.; Krigsfeld, G.; Nuth, M.; Wan, X. S.; Rusek, A.; Kennedy, A. R.

    2012-01-01

    The present study evaluated the acute effects of radiation dose, dose rate and fractionation as well as the energy of protons in hematopoietic cells of irradiated mice. The mice were irradiated with a single dose of 51.24 MeV protons at a dose of 2 Gy and a dose rate of 0.05–0.07 Gy/min or 1 GeV protons at doses of 0.1, 0.2, 0.5, 1, 1.5 and 2 Gy delivered in a single dose at dose rates of 0.05 or 0.5 Gy/min or in five daily dose fractions at a dose rate of 0.05 Gy/min. Sham-irradiated animals were used as controls. The results demonstrate a dose-dependent loss of white blood cells (WBCs) and lymphocytes by up to 61% and 72%, respectively, in mice irradiated with protons at doses up to 2 Gy. The results also demonstrate that the dose rate, fractionation pattern and energy of the proton radiation did not have significant effects on WBC and lymphocyte counts in the irradiated animals. These results suggest that the acute effects of proton radiation on WBC and lymphocyte counts are determined mainly by the radiation dose, with very little contribution from the dose rate (over the range of dose rates evaluated), fractionation and energy of the protons. PMID:20726731

  5. Effects of proton radiation dose, dose rate and dose fractionation on hematopoietic cells in mice

    SciTech Connect

    Ware, J.H.; Rusek, A.; Sanzari, J.; Avery, S.; Sayers, C.; Krigsfeld, G.; Nuth, M.; Wan, X.S.; Kennedy, A.R.

    2010-09-01

    The present study evaluated the acute effects of radiation dose, dose rate and fractionation as well as the energy of protons in hematopoietic cells of irradiated mice. The mice were irradiated with a single dose of 51.24 MeV protons at a dose of 2 Gy and a dose rate of 0.05-0.07 Gy/min or 1 GeV protons at doses of 0.1, 0.2, 0.5, 1, 1.5 and 2 Gy delivered in a single dose at dose rates of 0.05 or 0.5 Gy/min or in five daily dose fractions at a dose rate of 0.05 Gy/min. Sham-irradiated animals were used as controls. The results demonstrate a dose-dependent loss of white blood cells (WBCs) and lymphocytes by up to 61% and 72%, respectively, in mice irradiated with protons at doses up to 2 Gy. The results also demonstrate that the dose rate, fractionation pattern and energy of the proton radiation did not have significant effects on WBC and lymphocyte counts in the irradiated animals. These results suggest that the acute effects of proton radiation on WBC and lymphocyte counts are determined mainly by the radiation dose, with very little contribution from the dose rate (over the range of dose rates evaluated), fractionation and energy of the protons.

  6. Absorbed dose water calorimeter

    SciTech Connect

    Domen, S.R.

    1982-01-26

    An absorbed dose water calorimeter that takes advantage of the low thermal diffusivity of water and the water-imperviousness of polyethylene film. An ultra-small bead thermistor is sandwiched between two thin polyethylene films stretched between insulative supports in a water bath. The polyethylene films insulate the thermistor and its leads, the leads being run out from between the films in insulated sleeving and then to junctions to form a wheatstone bridge circuit. Convection barriers may be provided to reduce the effects of convection from the point of measurement. Controlled heating of different levels in the water bath is accomplished by electrical heater circuits provided for controlling temperature drift and providing adiabatic operation of the calorimeter. The absorbed dose is determined from the known specific heat of water and the measured temperature change.

  7. Estimation of the Dose and Dose Rate Effectiveness Factor

    NASA Technical Reports Server (NTRS)

    Chappell, L.; Cucinotta, F. A.

    2013-01-01

    Current models to estimate radiation risk use the Life Span Study (LSS) cohort that received high doses and high dose rates of radiation. Transferring risks from these high dose rates to the low doses and dose rates received by astronauts in space is a source of uncertainty in our risk calculations. The solid cancer models recommended by BEIR VII [1], UNSCEAR [2], and Preston et al [3] is fitted adequately by a linear dose response model, which implies that low doses and dose rates would be estimated the same as high doses and dose rates. However animal and cell experiments imply there should be curvature in the dose response curve for tumor induction. Furthermore animal experiments that directly compare acute to chronic exposures show lower increases in tumor induction than acute exposures. A dose and dose rate effectiveness factor (DDREF) has been estimated and applied to transfer risks from the high doses and dose rates of the LSS cohort to low doses and dose rates such as from missions in space. The BEIR VII committee [1] combined DDREF estimates using the LSS cohort and animal experiments using Bayesian methods for their recommendation for a DDREF value of 1.5 with uncertainty. We reexamined the animal data considered by BEIR VII and included more animal data and human chromosome aberration data to improve the estimate for DDREF. Several experiments chosen by BEIR VII were deemed inappropriate for application to human risk models of solid cancer risk. Animal tumor experiments performed by Ullrich et al [4], Alpen et al [5], and Grahn et al [6] were analyzed to estimate the DDREF. Human chromosome aberration experiments performed on a sample of astronauts within NASA were also available to estimate the DDREF. The LSS cohort results reported by BEIR VII were combined with the new radiobiology results using Bayesian methods.

  8. Hanford Environmental Dose Reconstruction Project

    SciTech Connect

    Finch, S.M.; McMakin, A.H.

    1991-01-01

    The objective of the Hanford Environmental Dose Reconstruction Project is to estimate the radiation doses that individuals and populations could have received from nuclear operations at Hanford since 1944. The project is divided into the following technical tasks. These tasks correspond to the path radionuclides followed, from release to impact on humans (dose estimates): Source terms; environmental transport environmental monitoring data; demographics, agriculture, food habits; environmental pathways and dose estimates.

  9. Hanford Environmental Dose Reconstruction Project

    SciTech Connect

    Finch, S.M.; McMakin, A.H.

    1992-02-01

    The objective of the Hanford Environmental Dose Reconstruction Project is to estimate the radiation doses that individuals and populations could have received from nuclear operations at Hanford since 1944. The project is divided into the following technical tasks. These tasks correspond to the path radionuclides followed, from release to impact on humans (dose estimates): source terms; environmental transport; environmental monitoring data; demography, food consumption, and agriculture; environmental pathways and dose estimates.

  10. Hanford Environmental Dose Reconstruction Project

    SciTech Connect

    Cannon, S.D.; Finch, S.M.

    1992-10-01

    The objective of the Hanford Environmental Dose Reconstruction (HEDR) Project is to estimate the radiation doses that individuals and populations could have received from nuclear operations at Hanford since 1944. The independent Technical Steering Panel (TSP) provides technical direction. The project is divided into the following technical tasks. These tasks correspond to the path radionuclides followed from release to impact on humans (dose estimates):Source Terms, Environmental Transport, Environmental Monitoring Data, Demography, Food Consumption, and Agriculture, and Environmental Pathways and Dose Estimates.

  11. Hanford Environmental Dose Reconstruction Project

    SciTech Connect

    Finch, S.M.; McMakin, A.H.

    1992-01-01

    The objective of the Hanford Environmental Dose Reconstruction Project is to estimate the radiation doses that individuals and populations could have received from nuclear operations at Hanford since 1944. The project is divided into the following technical tasks. These tasks correspond to the path radionuclides followed, from release to impact on humans (dose estimates): Source Terms, Environmental Transport, Environmental Monitoring Data, Demography, Food Consumption, and Agriculture, and Environmental Pathways and Dose Estimates.

  12. [Fixed-dose combination].

    PubMed

    Nagai, Yoshio

    2015-03-01

    Many patients with type 2 diabetes mellitus(T2DM) do not achieve satisfactory glycemic control by monotherapy alone, and often require multiple oral hypoglycemic agents (OHAs). Combining OHAs with complementary mechanisms of action is fundamental to the management of T2DM. Fixed-dose combination therapy(FDC) offers a method of simplifying complex regimens. Efficacy and tolerability appear to be similar between FDC and treatment with individual agents. In addition, FDC can enhance adherence and improved adherence may result in improved glycemic control. Four FDC agents are available in Japan: pioglitazone-glimepiride, pioglitazone-metformin, pioglitazone-alogliptin, and voglibose-mitiglinide. In this review, the advantages and disadvantages of these four combinations are identified and discussed. PMID:25812374

  13. Standardized radiological dose evaluations

    SciTech Connect

    Peterson, V.L.; Stahlnecker, E.

    1996-05-01

    Following the end of the Cold War, the mission of Rocky Flats Environmental Technology Site changed from production of nuclear weapons to cleanup. Authorization baseis documents for the facilities, primarily the Final Safety Analysis Reports, are being replaced with new ones in which accident scenarios are sorted into coarse bins of consequence and frequency, similar to the approach of DOE-STD-3011-94. Because this binning does not require high precision, a standardized approach for radiological dose evaluations is taken for all the facilities at the site. This is done through a standard calculation ``template`` for use by all safety analysts preparing the new documents. This report describes this template and its use.

  14. Distribución espacial de cúmulos y asociaciones estelares con diferentes edades en la Nube Mayor de Magallanes

    NASA Astrophysics Data System (ADS)

    Bica, E.; Clariá, J. J.; Dottori, H.; Santos, J. F. C.; Piatti, A. E.

    Sobre la base de observaciones realizadas en Cerro Tololo y el Casleo, se presenta un catálogo con fotometría UBV integrada de 504 cúmulos y 120 asociaciones estelares en la Nube Mayor de Magallanes. Se determinan edades en términos de los tipos SWB y se identifican 38 cúmulos tipo VII, muchos de los cuales pueden ser cúmulos globulares clásicos. El tamaño de las distribuciones espaciales crece uniformemente con la edad (tipo SWB), en tanto que existe una diferencia en el cociente axial entre los grupos más jóvenes y más viejos que 30 millones de años, lo que implica una orientación aproximadamente de frente para los primeros y una posición inclinada ~ 45o para el segundo grupo. Las asimetrías en las distribuciones espaciales, juntamente con la falta de coincidencia de los centroides de los diferentes grupos de edad, sugiere que el disco de la Nube Mayor de Magallanes fue severamente perturbado en el pasado.

  15. Dose refinement. ARAC's role

    SciTech Connect

    Ellis, J. S.; Sullivan, T. J.; Baskett, R. L.

    1998-06-01

    The Atmospheric Release Advisory Capability (ARAC), located at the Lawrence Livermore National Laboratory, since the late 1970's has been involved in assessing consequences from nuclear and other hazardous material releases into the atmosphere. ARAC's primary role has been emergency response. However, after the emergency phase, there is still a significant role for dispersion modeling. This work usually involves refining the source term and, hence, the dose to the populations affected as additional information becomes available in the form of source term estimates release rates, mix of material, and release geometry and any measurements from passage of the plume and deposition on the ground. Many of the ARAC responses have been documented elsewhere. 1 Some of the more notable radiological releases that ARAC has participated in the post-emergency phase have been the 1979 Three Mile Island nuclear power plant (NPP) accident outside Harrisburg, PA, the 1986 Chernobyl NPP accident in the Ukraine, and the 1996 Japan Tokai nuclear processing plant explosion. ARAC has also done post-emergency phase analyses for the 1978 Russian satellite COSMOS 954 reentry and subsequent partial burn up of its on board nuclear reactor depositing radioactive materials on the ground in Canada, the 1986 uranium hexafluoride spill in Gore, OK, the 1993 Russian Tomsk-7 nuclear waste tank explosion, and lesser releases of mostly tritium. In addition, ARAC has performed a key role in the contingency planning for possible accidental releases during the launch of spacecraft with radioisotope thermoelectric generators (RTGs) on board (i.e. Galileo, Ulysses, Mars-Pathfinder, and Cassini), and routinely exercises with the Federal Radiological Monitoring and Assessment Center (FRMAC) in preparation for offsite consequences of radiological releases from NPPs and nuclear weapon accidents or incidents. Several accident post-emergency phase assessments are discussed in this paper in order to illustrate

  16. Dose to medium versus dose to water as an estimator of dose to sensitive skeletal tissue

    NASA Astrophysics Data System (ADS)

    Walters, B. R. B.; Kramer, R.; Kawrakow, I.

    2010-08-01

    The purpose of this study is to determine whether dose to medium, Dm, or dose to water, Dw, provides a better estimate of the dose to the radiosensitive red bone marrow (RBM) and bone surface cells (BSC) in spongiosa, or cancellous bone. This is addressed in the larger context of the ongoing debate over whether Dm or Dw should be specified in Monte Carlo calculated radiotherapy treatment plans. The study uses voxelized, virtual human phantoms, FAX06/MAX06 (female/male), incorporated into an EGSnrc Monte Carlo code to perform Monte Carlo dose calculations during simulated irradiation by a 6 MV photon beam from an Elekta SL25 accelerator. Head and neck, chest and pelvis irradiations are studied. FAX06/MAX06 include precise modelling of spongiosa based on µCT images, allowing dose to RBM and BSC to be resolved from the dose to bone. Modifications to the FAX06/MAX06 user codes are required to score Dw and Dm in spongiosa. Dose uncertainties of ~1% (BSC, RBM) or ~0.5% (Dm, Dw) are obtained after up to 5 days of simulations on 88 CPUs. Clinically significant differences (>5%) between Dm and Dw are found only in cranial spongiosa, where the volume fraction of trabecular bone (TBVF) is high (55%). However, for spongiosa locations where there is any significant difference between Dm and Dw, comparisons of differential dose volume histograms (DVHs) and average doses show that Dw provides a better overall estimate of dose to RBM and BSC. For example, in cranial spongiosa the average Dm underestimates the average dose to sensitive tissue by at least 5%, while average Dw is within ~1% of the average dose to sensitive tissue. Thus, it is better to specify Dw than Dm in Monte Carlo treatment plans, since Dw provides a better estimate of dose to sensitive tissue in bone, the only location where the difference is likely to be clinically significant.

  17. Hanford Environmental Dose Reconstruction Project

    SciTech Connect

    Finch, S.M.; McMakin, A.H.

    1992-06-01

    The objective of the Hanford Environmental Dose Reconstruction Project is to estimate the radiation doses that individuals and populations could have received from nuclear operations at Hanford since 1944. The project is being managed and conducted by the Battelle Pacific Northwest Laboratories under contract with the Centers for Disease Control. The independent Technical Steering Panel (TSP) provides technical direction. The project is divided into the following technical tasks. These tasks correspond to the path radionuclides followed, from release to impact on humans (dose estimates): source terms; environmental transport; environmental monitoring data; demography, food consumption, and agriculture; environmental pathways and dose estimates.

  18. Psychotropic dose equivalence in Japan.

    PubMed

    Inada, Toshiya; Inagaki, Ataru

    2015-08-01

    Psychotropic dose equivalence is an important concept when estimating the approximate psychotropic doses patients receive, and deciding on the approximate titration dose when switching from one psychotropic agent to another. It is also useful from a research viewpoint when defining and extracting specific subgroups of subjects. Unification of various agents into a single standard agent facilitates easier analytical comparisons. On the basis of differences in psychopharmacological prescription features, those of available psychotropic agents and their approved doses, and racial differences between Japan and other countries, psychotropic dose equivalency tables designed specifically for Japanese patients have been widely used in Japan since 1998. Here we introduce dose equivalency tables for: (i) antipsychotics; (ii) antiparkinsonian agents; (iii) antidepressants; and (iv) anxiolytics, sedatives and hypnotics available in Japan. Equivalent doses for the therapeutic effects of individual psychotropic compounds were determined principally on the basis of randomized controlled trials conducted in Japan and consensus among dose equivalency tables reported previously by psychopharmacological experts. As these tables are intended to merely suggest approximate standard values, physicians should use them with discretion. Updated information of psychotropic dose equivalence in Japan is available at http://www.jsprs.org/en/equivalence.tables/. [Correction added on 8 July 2015, after first online publication: A link to the updated information has been added.].

  19. A dose error evaluation study for 4D dose calculations

    NASA Astrophysics Data System (ADS)

    Milz, Stefan; Wilkens, Jan J.; Ullrich, Wolfgang

    2014-10-01

    Previous studies have shown that respiration induced motion is not negligible for Stereotactic Body Radiation Therapy. The intrafractional breathing induced motion influences the delivered dose distribution on the underlying patient geometry such as the lung or the abdomen. If a static geometry is used, a planning process for these indications does not represent the entire dynamic process. The quality of a full 4D dose calculation approach depends on the dose coordinate transformation process between deformable geometries. This article provides an evaluation study that introduces an advanced method to verify the quality of numerical dose transformation generated by four different algorithms. The used transformation metric value is based on the deviation of the dose mass histogram (DMH) and the mean dose throughout dose transformation. The study compares the results of four algorithms. In general, two elementary approaches are used: dose mapping and energy transformation. Dose interpolation (DIM) and an advanced concept, so called divergent dose mapping model (dDMM), are used for dose mapping. The algorithms are compared to the basic energy transformation model (bETM) and the energy mass congruent mapping (EMCM). For evaluation 900 small sample regions of interest (ROI) are generated inside an exemplary lung geometry (4DCT). A homogeneous fluence distribution is assumed for dose calculation inside the ROIs. The dose transformations are performed with the four different algorithms. The study investigates the DMH-metric and the mean dose metric for different scenarios (voxel sizes: 8 mm, 4 mm, 2 mm, 1 mm 9 different breathing phases). dDMM achieves the best transformation accuracy in all measured test cases with 3-5% lower errors than the other models. The results of dDMM are reasonable and most efficient in this study, although the model is simple and easy to implement. The EMCM model also achieved suitable results, but the approach requires a more complex

  20. Helical tomotherapy superficial dose measurements

    SciTech Connect

    Ramsey, Chester R.; Seibert, Rebecca M.; Robison, Benjamin; Mitchell, Martha

    2007-08-15

    Helical tomotherapy is a treatment technique that is delivered from a 6 MV fan beam that traces a helical path while the couch moves linearly into the bore. In order to increase the treatment delivery dose rate, helical tomotherapy systems do not have a flattening filter. As such, the dose distributions near the surface of the patient may be considerably different from other forms of intensity-modulated delivery. The purpose of this study was to measure the dose distributions near the surface for helical tomotherapy plans with a varying separation between the target volume and the surface of an anthropomorphic phantom. A hypothetical planning target volume (PTV) was defined on an anthropomorphic head phantom to simulate a 2.0 Gy per fraction IMRT parotid-sparing head and neck treatment of the upper neck nodes. A total of six target volumes were created with 0, 1, 2, 3, 4, and 5 mm of separation between the surface of the phantom and the outer edge of the PTV. Superficial doses were measured for each of the treatment deliveries using film placed in the head phantom and thermoluminescent dosimeters (TLDs) placed on the phantom's surface underneath an immobilization mask. In the 0 mm test case where the PTV extends to the phantom surface, the mean TLD dose was 1.73{+-}0.10 Gy (or 86.6{+-}5.1% of the prescribed dose). The measured superficial dose decreases to 1.23{+-}0.10 Gy (61.5{+-}5.1% of the prescribed dose) for a PTV-surface separation of 5 mm. The doses measured by the TLDs indicated that the tomotherapy treatment planning system overestimates superficial doses by 8.9{+-}3.2%. The radiographic film dose for the 0 mm test case was 1.73{+-}0.07 Gy, as compared to the calculated dose of 1.78{+-}0.05 Gy. Given the results of the TLD and film measurements, the superficial calculated doses are overestimated between 3% and 13%. Without the use of bolus, tumor volumes that extend to the surface may be underdosed. As such, it is recommended that bolus be added for these

  1. Bayesian estimation of dose thresholds

    NASA Technical Reports Server (NTRS)

    Groer, P. G.; Carnes, B. A.

    2003-01-01

    An example is described of Bayesian estimation of radiation absorbed dose thresholds (subsequently simply referred to as dose thresholds) using a specific parametric model applied to a data set on mice exposed to 60Co gamma rays and fission neutrons. A Weibull based relative risk model with a dose threshold parameter was used to analyse, as an example, lung cancer mortality and determine the posterior density for the threshold dose after single exposures to 60Co gamma rays or fission neutrons from the JANUS reactor at Argonne National Laboratory. The data consisted of survival, censoring times and cause of death information for male B6CF1 unexposed and exposed mice. The 60Co gamma whole-body doses for the two exposed groups were 0.86 and 1.37 Gy. The neutron whole-body doses were 0.19 and 0.38 Gy. Marginal posterior densities for the dose thresholds for neutron and gamma radiation were calculated with numerical integration and found to have quite different shapes. The density of the threshold for 60Co is unimodal with a mode at about 0.50 Gy. The threshold density for fission neutrons declines monotonically from a maximum value at zero with increasing doses. The posterior densities for all other parameters were similar for the two radiation types.

  2. Hanford Environmental Dose Reconstruction Project

    SciTech Connect

    Finch, S.M.

    1990-09-01

    This monthly report summarizes the technical progress and project status for the Hanford Environmental Dose Reconstruction (HEDR) Project being conducted at the Pacific Northwest Laboratory (PNL) under the direction of a Technical Steering Panel (TSP). The TSP is composed of experts in numerous technical fields related to this project and represents the interests of the public. The objective of the Hanford Environmental Dose Reconstruction Project is to estimate the radiation doses that populations could have received from nuclear operations at Hanford since 1944. The project is divided into the following technical tasks. These tasks correspond to the path radionuclides followed, from release to impact on humans (dose estimates): source terms, environmental transport, environmental monitoring data, demographics, agriculture, food habits, environmental pathways and dose estimates. 3 figs.

  3. Radioactive Dose Assessment and NRC Verification of Licensee Dose Calculation.

    1994-09-16

    Version 00 PCDOSE was developed for the NRC to perform calculations to determine radioactive dose due to the annual averaged offsite release of liquid and gaseous effluent by U.S commercial nuclear power facilities. Using NRC approved dose assessment methodologies, it acts as an inspector's tool for verifying the compliance of the facility's dose assessment software. PCDOSE duplicates the calculations of the GASPAR II mainframe code as well as calculations using the methodologices of Reg. Guidemore » 1.109 Rev. 1 and NUREG-0133 by optional choice.« less

  4. Radiation dose estimates for radiopharmaceuticals

    SciTech Connect

    Stabin, M.G.; Stubbs, J.B.; Toohey, R.E.

    1996-04-01

    Tables of radiation dose estimates based on the Cristy-Eckerman adult male phantom are provided for a number of radiopharmaceuticals commonly used in nuclear medicine. Radiation dose estimates are listed for all major source organs, and several other organs of interest. The dose estimates were calculated using the MIRD Technique as implemented in the MIRDOSE3 computer code, developed by the Oak Ridge Institute for Science and Education, Radiation Internal Dose Information Center. In this code, residence times for source organs are used with decay data from the MIRD Radionuclide Data and Decay Schemes to produce estimates of radiation dose to organs of standardized phantoms representing individuals of different ages. The adult male phantom of the Cristy-Eckerman phantom series is different from the MIRD 5, or Reference Man phantom in several aspects, the most important of which is the difference in the masses and absorbed fractions for the active (red) marrow. The absorbed fractions for flow energy photons striking the marrow are also different. Other minor differences exist, but are not likely to significantly affect dose estimates calculated with the two phantoms. Assumptions which support each of the dose estimates appears at the bottom of the table of estimates for a given radiopharmaceutical. In most cases, the model kinetics or organ residence times are explicitly given. The results presented here can easily be extended to include other radiopharmaceuticals or phantoms.

  5. The Issue of Motivating Entre(Intra)Preneurial Behavior.

    ERIC Educational Resources Information Center

    Winslow, Erik K.

    1990-01-01

    Six principles of motivating entre(intra)preneurial behavior are considered including the climate must allow the expression of such activity; motivation is broadly distributed in the general population; behavior is a function of its consequences; and motivating environments have an aura of excitement and experimentation. (DB)

  6. Hanford Environmental Dose Reconstruction Project

    SciTech Connect

    Finch, S.M.; McMakin, A.H.

    1991-01-01

    The objective of the Hanford Environmental Dose Reconstruction Project is to estimate the radiation doses that individuals and populations could have received from nuclear operations at Hanford since 1944. The project is being managed and conducted by the Pacific Northwest Laboratory (PNL) under the direction of an independent Technical Steering Panel (TSP). The TSP consists of experts in environmental pathways, epidemiology, surface-water transport, ground-water transport, statistics, demography, agriculture, meteorology, nuclear engineering, radiation dosimetry, and cultural anthropology. Included are appointed technical members representing the states of Oregon and Washington, a representative of Native American tribes, and an individual representing the public. The project is divided into the following technical tasks. These tasks correspond to the path radionuclides followed, from release to impact on human (dose estimates): Source Terms; Environmental Transport; Environmental Monitoring Data; Demographics, Agriculture, Food Habits and; Environmental Pathways and Dose Estimates.

  7. Hanford Environmental Dose Reconstruction Project

    SciTech Connect

    McMakin, A.H.; Cannon, S.D.; Finch, S.M.

    1992-07-01

    The objective of the Hanford Environmental Dose Reconstruction (HEDR) Project is to estimate the radiation doses that individuals and populations could have received from nuclear operations at Hanford since 1944. The TSP consists of experts in environmental pathways, epidemiology, surface-water transport, ground-water transport, statistics, demography, agriculture, meteorology, nuclear engineering, radiation dosimetry, and cultural anthropology. Included are appointed technical members representing the states of Oregon, Washington, and Idaho, a representative of Native American tribes, and an individual representing the public. The project is divided into the following technical tasks. These tasks correspond to the path radionuclides followed from release to impact on humans (dose estimates): Source terms, environmental transport, environmental monitoring data, demography, food consumption, and agriculture, and environmental pathways and dose estimates. Progress is discussed.

  8. Gamma Radiation Doses In Sweden

    SciTech Connect

    Almgren, Sara; Isaksson, Mats; Barregaard, Lars

    2008-08-07

    Gamma dose rate measurements were performed in one urban and one rural area using thermoluminescence dosimeters (TLD) worn by 46 participants and placed in their dwellings. The personal effective dose rates were 0.096{+-}0.019(1 SD) and 0.092{+-}0.016(1 SD){mu}Sv/h in the urban and rural area, respectively. The corresponding dose rates in the dwellings were 0.11{+-}0.042(1 SD) and 0.091{+-}0.026(1 SD){mu}Sv/h. However, the differences between the areas were not significant. The values were higher in buildings made of concrete than of wood and higher in apartments than in detached houses. Also, {sup 222}Rn measurements were performed in each dwelling, which showed no correlation with the gamma dose rates in the dwellings.

  9. Estimate Radiological Dose for Animals

    1997-12-18

    Estimate Radiological dose for animals in ecological environment using open literature values for parameters such as body weight, plant and soil ingestion rate, rad. halflife, absorbed energy, biological halflife, gamma energy per decay, soil-to-plant transfer factor, ...etc

  10. Technical basis for dose reconstruction

    SciTech Connect

    Anspaugh, L.R.

    1996-01-31

    The purpose of this paper is to consider two general topics: technical considerations of why dose-reconstruction studies should or should not be performed and methods of dose reconstruction. The first topic is of general and growing interest as the number of dose-reconstruction studies increases, and one asks the question whether it is necessary to perform a dose reconstruction for virtually every site at which, for example, the Department of Energy (DOE) has operated a nuclear-related facility. And there is the broader question of how one might logically draw the line at performing or not performing dose-reconstruction (radiological and chemical) studies for virtually every industrial complex in the entire country. The second question is also of general interest. There is no single correct way to perform a dose-reconstruction study, and it is important not to follow blindly a single method to the point that cheaper, faster, more accurate, and more transparent methods might not be developed and applied.

  11. Ultraviolet radiation cataract: dose dependence

    NASA Astrophysics Data System (ADS)

    Soderberg, Per G.; Loefgren, Stefan

    1994-07-01

    Current safety limits for cataract development after acute exposure to ultraviolet radiation (UVR) are based on experiments analyzing experimental data with a quantal, effect-no effect, dose-response model. The present study showed that intensity of forward light scattering is better described with a continuous dose-response model. It was found that 3, 30 and 300 kJ/m2UVR300nm induces increased light scattering within 6 h. For all three doses the intensity of forward light scattering was constant after 6 h. The intensity of forward light scattering was proportional to the log dose of UVR300nm. There was a slight increase of the intensity of forward light scattering on the contralateral side in animals that received 300 kJ/m2. Altogether 72 Sprague-Dawley male rats were included. Half of the rats were exposed in vivo on one side to UVR300nm. The other half was kept as a control group, receiving the same treatment as exposed rats but without delivery of UVR300nm to the eye. Subgroups of the rats received either of the three doses. Rats were sacrificed at varying intervals after the exposure. The lenses were extracted and the forward light scattering was estimated. It is concluded that intensity of forward light scattering in the lens after exposure to UVR300nm should be described with a continuous dose-reponse model.

  12. Weldon Spring historical dose estimate

    SciTech Connect

    Meshkov, N.; Benioff, P.; Wang, J.; Yuan, Y.

    1986-07-01

    This study was conducted to determine the estimated radiation doses that individuals in five nearby population groups and the general population in the surrounding area may have received as a consequence of activities at a uranium processing plant in Weldon Spring, Missouri. The study is retrospective and encompasses plant operations (1957-1966), cleanup (1967-1969), and maintenance (1969-1982). The dose estimates for members of the nearby population groups are as follows. Of the three periods considered, the largest doses to the general population in the surrounding area would have occurred during the plant operations period (1957-1966). Dose estimates for the cleanup (1967-1969) and maintenance (1969-1982) periods are negligible in comparison. Based on the monitoring data, if there was a person residing continually in a dwelling 1.2 km (0.75 mi) north of the plant, this person is estimated to have received an average of about 96 mrem/yr (ranging from 50 to 160 mrem/yr) above background during plant operations, whereas the dose to a nearby resident during later years is estimated to have been about 0.4 mrem/yr during cleanup and about 0.2 mrem/yr during the maintenance period. These values may be compared with the background dose in Missouri of 120 mrem/yr.

  13. Dose and dose rate effectiveness of space radiation.

    PubMed

    Schimmerling, W; Cucinotta, F A

    2006-01-01

    Dose and dose rate effectiveness factors (DDREF), in conjunction with other weighting factors, are commonly used to scale atomic bomb survivor data in order to establish limits for occupational radiation exposure, including radiation exposure in space. We use some well-known facts about the microscopic pattern of energy deposition of high-energy heavy ions, and about the dose rate dependence of chemical reactions initiated by radiation, to show that DDREF are likely to vary significantly as a function of particle type and energy, cell, tissue, and organ type, and biological end point. As a consequence, we argue that validation of DDREF by conventional methods, e.g. irradiating animal colonies and compiling statistics of cancer mortality, is not appropriate. However, the use of approaches derived from information theory and thermodynamics is a very wide field, and the present work can only be understood as a contribution to an ongoing discussion. PMID:17169950

  14. Radiological dose assessment for vault storage concepts

    SciTech Connect

    Richard, R.F.

    1997-02-25

    This radiological dose assessment presents neutron and photon dose rates in support of project W-460. Dose rates are provided for a single 3013 container, the ``infloor`` storage vault concept, and the ``cubicle`` storage vault concept.

  15. Peripheral doses from pediatric IMRT

    SciTech Connect

    Klein, Eric E.; Maserang, Beth; Wood, Roy; Mansur, David

    2006-07-15

    Peripheral dose (PD) data exist for conventional fields ({>=}10 cm) and intensity-modulated radiotherapy (IMRT) delivery to standard adult-sized phantoms. Pediatric peripheral dose reports are limited to conventional therapy and are model based. Our goal was to ascertain whether data acquired from full phantom studies and/or pediatric models, with IMRT treatment times, could predict Organ at Risk (OAR) dose for pediatric IMRT. As monitor units (MUs) are greater for IMRT, it is expected IMRT PD will be higher; potentially compounded by decreased patient size (absorption). Baseline slab phantom peripheral dose measurements were conducted for very small field sizes (from 2 to 10 cm). Data were collected at distances ranging from 5 to 72 cm away from the field edges. Collimation was either with the collimating jaws or the multileaf collimator (MLC) oriented either perpendicular or along the peripheral dose measurement plane. For the clinical tests, five patients with intracranial or base of skull lesions were chosen. IMRT and conventional three-dimensional (3D) plans for the same patient/target/dose (180 cGy), were optimized without limitation to the number of fields or wedge use. Six MV, 120-leaf MLC Varian axial beams were used. A phantom mimicking a 3-year-old was configured per Center for Disease Control data. Micro (0.125 cc) and cylindrical (0.6 cc) ionization chambers were appropriated for the thyroid, breast, ovaries, and testes. The PD was recorded by electrometers set to the 10{sup -10} scale. Each system set was uniquely calibrated. For the slab phantom studies, close peripheral points were found to have a higher dose for low energy and larger field size and when MLC was not deployed. For points more distant from the field edge, the PD was higher for high-energy beams. MLC orientation was found to be inconsequential for the small fields tested. The thyroid dose was lower for IMRT delivery than that predicted for conventional (ratio of IMRT/cnventional ranged

  16. Dose calculation for electron therapy

    NASA Astrophysics Data System (ADS)

    Gebreamlak, Wondesen T.

    The dose delivered by electron beams has a complex dependence on the shape of the field; any field shaping shields, design of collimator systems, and energy of the beam. This complicated dependence is due to multiple scattering of the electron beam as the beam travels from the accelerator head to the patient. The dosimetry of only regular field shapes (circular, square, or rectangular) is well developed. However, most tumors have irregular shapes and their dosimetry is calculated by direct measurement. This is laborious and time consuming. In addition, error can be introduced during measurements. The lateral build up ratio method (LBR), which is based on the Fermi-Eyges multiple scattering theory, calculates the dosimetry of irregular electron beam shapes. The accuracy of this method depends on the function sigma r(r,E) (the mean square radial displacement of the electron beam in the medium) used in the calculation. This research focuses on improving the accuracy of electron dose calculations using lateral build up ratio method by investigating the properties of sigmar(r,E). The percentage depth dose curves of different circular cutouts were measured using four electron beam energies (6, 9, 12, and 15 MeV), four electron applicator sizes (6x6, 10x10, 14x14, and 20x20 cm), three source-surface distance values (100, 105, 110 cm). The measured percentage depth dose curves were normalized at a depth of 0.05 cm. Using the normalized depth dose, the lateral build up ratio curves were determined. Using the cutout radius and the lateral build up ratio values, sigmar(z,E) were determined. It is shown that the sigma value increases linearly with cutout size until the cutout radius reaches the equilibrium range of the electron beam. The sigma value of an arbitrary circular cutout was determined from the interpolation of sigma versus cutout curve. The corresponding LBR value of the circular cutout was determined using its radius and sigma values. The depth dose distribution of

  17. Hanford Environmental Dose Reconstruction Project

    SciTech Connect

    Finch, S. M.; McMakin, A. H.

    1991-09-01

    The objective of the Hanford Environmental Dose Reconstruction Project is to estimate the radiation dose that individuals and populations could have received from nuclear operations at Hanford since 1944. The project is divided into five technical tasks. These tasks correspond to the path radionuclides followed, from release to impact on humans (i.e., dose estimates). The Source Terms Task develops estimates of radioactive emissions from Hanford facilities since 1944. The Environmental Transport Task reconstructs the movements of radioactive particles from the areas of release to populations. The Environmental Monitoring Data Task assemblies, evaluates and reports historical environmental monitoring data. The Demographics, Agriculture and Food Habits Task develops the data needed to identify the populations that could have been affected by the releases. The Environmental Pathways and Dose Estimates Task used the information derived from the other Tasks to estimate the radiation doses individuals could have received from Hanford radiation. This document lists the progress on this project as of September 1991. 3 figs., 2 tabs.

  18. Hanford Environmental Dose Reconstruction Project

    SciTech Connect

    Finch, S.M.

    1990-01-01

    The objective of the Hanford Environmental Dose Reconstruction Project is to estimate the radiation doses that populations could have received from nuclear operations at Hanford since 1944. The project is being managed and conducted by the Pacific Northwest Laboratory (PNL) under the direction of an independent Technical Steering Panel (TSP). The project is divided into the following technical tasks. These tasks correspond to the path radionuclides followed, from release to impact on humans (dose estimates). The Source Terms Task develops estimates of radioactive emissions from Hanford facilities since 1944. The Environmental Transport Task reconstructs the movement of radioactive materials from the areas of release to populations. The Environmental Monitoring Data Task assembles, evaluates, and reports historical environmental monitoring data. The Demographics, Agriculture, Food Habits Task develops the data needed to identify the populations that could have been affected by the releases. In addition to population and demographic data, the food and water resources and consumption patterns for populations are estimated because they provide a primary pathway for the intake of radionuclides. The Environmental Pathways and Dose Estimates Task use the information produced by the other tasks to estimate the radiation doses populations could have received from Hanford radiation. Project progress is documented in this monthly report, which is available to the public. 3 figs., 3 tabs.

  19. AGING FACILITY WORKER DOSE ASSESSMENT

    SciTech Connect

    R.L. Thacker

    2005-03-24

    The purpose of this calculation is to estimate radiation doses received by personnel working in the Aging Facility performing operations to transfer aging casks to the aging pads for thermal and logistical management, stage empty aging casks, and retrieve aging casks from the aging pads for further processing in other site facilities. Doses received by workers due to aging cask surveillance and maintenance operations are also included. The specific scope of work contained in this calculation covers both collective doses and individual worker group doses on an annual basis, and includes the contributions due to external and internal radiation from normal operation. There are no Category 1 event sequences associated with the Aging Facility (BSC 2004 [DIRS 167268], Section 7.2.1). The results of this calculation will be used to support the design of the Aging Facility and to provide occupational dose estimates for the License Application. The calculations contained in this document were developed by Environmental and Nuclear Engineering of the Design and Engineering Organization and are intended solely for the use of the Design and Engineering Organization in its work regarding facility operation. Yucca Mountain Project personnel from the Environmental and Nuclear Engineering should be consulted before use of the calculations for purposes other than those stated herein or use by individuals other than authorized personnel in Environmental and Nuclear Engineering.

  20. Biological doses with template distribution patterns

    SciTech Connect

    Harrop, R.; Haymond, H.R.; Nisar, A.; Syed, A.N.M.; Feder, B.H.; Neblett, D.L.

    1981-02-01

    Consideration of radiation dose rate effects emphasizes advantages of the template method for lateral distribution of multiple sources in treatment of laterally infiltrating gynecologic cancer, when compared to a conventional technique with colpostats. Biological doses in time dose fractionation (TDF), ret and reu units are calculated for the two treatment methods. With the template method the lateral dose (point B) is raised without significantly increasing the doses to the rectum and bladder, that is, relatively, the calculated biological doses at point A and B are more nearly equivalent and the doses to the rectum and bladder are significantly lower than the dose to point B.

  1. Parameterization of solar flare dose

    SciTech Connect

    Lamarche, A.H.; Poston, J.W.

    1996-12-31

    A critical aspect of missions to the moon or Mars will be the safety and health of the crew. Radiation in space is a hazard for astronauts, especially high-energy radiation following certain types of solar flares. A solar flare event can be very dangerous if astronauts are not adequately shielded because flares can deliver a very high dose in a short period of time. The goal of this research was to parameterize solar flare dose as a function of time to see if it was possible to predict solar flare occurrence, thus providing a warning time. This would allow astronauts to take corrective action and avoid receiving a dose greater than the recommended limit set by the National Council on Radiation Protection and Measurements (NCRP).

  2. Radiation dose from reentrant electrons.

    PubMed

    Badhwar, G D; Watts, J; Cleghorn, T E

    2001-06-01

    In estimating the crew exposures during an extra vehicular activity (EVA), the contribution of reentrant electrons has always been neglected. Although the flux of these electrons is small compared to the flux of trapped electrons, their energy spectrum extends to several GeV compared to about 7 MeV for trapped electrons. This is also true of splash electrons. Using the measured reentrant electron energy spectra, it is shown that the dose contribution of these electrons to the blood forming organs (BFO) is more that 10 times greater than that from the trapped electrons. The calculations also show that the dose-depth response is a very slowly changing function of depth, and thus adding reasonable amounts of additional shielding would not significantly lower the dose to BFO. PMID:11855420

  3. Radiation Dose from Reentrant Electrons

    NASA Technical Reports Server (NTRS)

    Badhwar, G.D.; Cleghorn, T. E.; Watts, J.

    2003-01-01

    In estimating the crew exposures during an EVA, the contribution of reentrant electrons has always been neglected. Although the flux of these electrons is small compared to the flux of trapped electrons, their energy spectrum extends to several GeV compared to about 7 MeV for trapped electrons. This is also true of splash electrons. Using the measured reentrant electron energy spectra, it is shown that the dose contribution of these electrons to the blood forming organs (BFO) is more than 10 times greater than that from the trapped electrons. The calculations also show that the dose-depth response is a very slowly changing function of depth, and thus adding reasonable amounts of additional shielding would not significantly lower the dose to BFO.

  4. A comparison of quantum limited dose and noise equivalent dose

    NASA Astrophysics Data System (ADS)

    Job, Isaias D.; Boyce, Sarah J.; Petrillo, Michael J.; Zhou, Kungang

    2016-03-01

    Quantum-limited-dose (QLD) and noise-equivalent-dose (NED) are performance metrics often used interchangeably. Although the metrics are related, they are not equivalent unless the treatment of electronic noise is carefully considered. These metrics are increasingly important to properly characterize the low-dose performance of flat panel detectors (FPDs). A system can be said to be quantum-limited when the Signal-to-noise-ratio (SNR) is proportional to the square-root of x-ray exposure. Recent experiments utilizing three methods to determine the quantum-limited dose range yielded inconsistent results. To investigate the deviation in results, generalized analytical equations are developed to model the image processing and analysis of each method. We test the generalized expression for both radiographic and fluoroscopic detectors. The resulting analysis shows that total noise content of the images processed by each method are inherently different based on their readout scheme. Finally, it will be shown that the NED is equivalent to the instrumentation-noise-equivalent-exposure (INEE) and furthermore that the NED is derived from the quantum-noise-only method of determining QLD. Future investigations will measure quantum-limited performance of radiographic panels with a modified readout scheme to allow for noise improvements similar to measurements performed with fluoroscopic detectors.

  5. Peritoneal Dialysis Dose and Adequacy

    MedlinePlus

    ... Organizations​​ . (PDF, 345 KB)​​​​​ Alternate Language URL Peritoneal Dialysis Dose and Adequacy Page Content On this page: ... from the abdominal cavity. [ Top ] Types of Peritoneal Dialysis The two types of peritoneal dialysis differ mainly ...

  6. Verification of Internal Dose Calculations.

    NASA Astrophysics Data System (ADS)

    Aissi, Abdelmadjid

    The MIRD internal dose calculations have been in use for more than 15 years, but their accuracy has always been questionable. There have been attempts to verify these calculations; however, these attempts had various shortcomings which kept the question of verification of the MIRD data still unanswered. The purpose of this research was to develop techniques and methods to verify the MIRD calculations in a more systematic and scientific manner. The research consisted of improving a volumetric dosimeter, developing molding techniques, and adapting the Monte Carlo computer code ALGAM to the experimental conditions and vice versa. The organic dosimetric system contained TLD-100 powder and could be shaped to represent human organs. The dosimeter possessed excellent characteristics for the measurement of internal absorbed doses, even in the case of the lungs. The molding techniques are inexpensive and were used in the fabrication of dosimetric and radioactive source organs. The adaptation of the computer program provided useful theoretical data with which the experimental measurements were compared. The experimental data and the theoretical calculations were compared for 6 source organ-7 target organ configurations. The results of the comparison indicated the existence of an agreement between measured and calculated absorbed doses, when taking into consideration the average uncertainty (16%) of the measurements, and the average coefficient of variation (10%) of the Monte Carlo calculations. However, analysis of the data gave also an indication that the Monte Carlo method might overestimate the internal absorbed doses. Even if the overestimate exists, at least it could be said that the use of the MIRD method in internal dosimetry was shown to lead to no unnecessary exposure to radiation that could be caused by underestimating the absorbed dose. The experimental and the theoretical data were also used to test the validity of the Reciprocity Theorem for heterogeneous

  7. EXOMARS IRAS (DOSE) radiation measurements.

    NASA Astrophysics Data System (ADS)

    Federico, C.; Di Lellis, A. M.; Fonte, S.; Pauselli, C.; Reitz, G.; Beaujean, R.

    The characterization and the study of the radiations on their interaction with organic matter is of great interest in view of the human exploration on Mars. The Ionizing RAdiation Sensor (IRAS) selected in the frame of the ExoMars/Pasteur ESA mission is a lightweight particle spectrometer combining various techniques of radiation detection in space. It characterizes the first time the radiation environment on the Mars surface, and provide dose and dose equivalent rates as precursor information absolutely necessary to develop ways to mitigate the radiation risks for future human exploration on Mars. The Martian radiation levels are much higher than those found on Earth and they are relatively low for space. Measurements on the surface will show if they are similar or not to those seen in orbit (modified by the presence of ``albedo'' neutrons produced in the regolith and by the thin Martian atmosphere). IRAS consists of a telescope based on segmented silicon detectors of about 40\\userk\\milli\\metre\\user;k diameter and 300\\user;k\\micro\\metre\\user;k thickness, a segmented organic scintillator, and of a thermoluminescence dosimeter. The telescope will continuously monitor temporal variation of the particle count rate, the dose rate, particle and LET (Linear Energy Transfer) spectra. Tissue equivalent BC430 scintillator material will be used to measure the neutron dose. Neutrons are selected by a criteria requiring no signal in the anti-coincidence. Last, the passive thermoluminescence dosimeter, based on LiF:Mg detectors, regardless the on board operation timing, will measure the total dose accumulated during the exposure period and due to beta and gamma radiation, with a responsivity very close to that of a human tissue.

  8. Methotrexate Dosing Regimen for Plaque-type Psoriasis: A Systematic Review of the Use of Test-dose, Start-dose, Dosing Scheme, Dose Adjustments, Maximum Dose and Folic Acid Supplementation.

    PubMed

    Menting, Stef P; Dekker, Paul M; Limpens, Jacqueline; Hooft, Lotty; Spuls, Phyllis I

    2016-01-01

    There is a range of methotrexate dosing regimens for psoriasis. This review summarizes the evidence for test-dose, start-dose, dosing scheme, dose adjustments, maximum dose and use of folic acid. A literature search for randomized controlled trials and guidelines was performed. Twenty-three randomized controlled trials (29 treatment groups) and 10 guidelines were included. Two treatment groups used a test-dose, 5 guidelines recommend it. The methotrexate start-dose in randomized controlled trials varied from 5 to 25 mg/week, most commonly being either 7.5 mg or 15 mg. Guidelines vary from 5 to 15 mg/week. Methotrexate was administered as a single dose or in a Weinstein schedule in 15 and 11 treatment-groups, respectively; both recommended equally in guidelines. A fixed dose (n = 18), predefined dose (n = 3), or dose adjusted on clinical improvement (n = 8) was used, the last also being recommended in guidelines. Ten treatment groups used folic acid; in 2 it was allowed, in 14 not mentioned, and in 3 no folic acid was used. Most guidelines recommend the use of folic acid. Authors' suggestions for methotrexate dosing are given.

  9. Confectionery-based dose forms.

    PubMed

    Tangso, Kristian J; Ho, Quy Phuong; Boyd, Ben J

    2015-01-01

    Conventional dosage forms such as tablets, capsules and syrups are prescribed in the normal course of practice. However, concerns about patient preferences and market demands have given rise to the exploration of novel unconventional dosage forms. Among these, confectionery-based dose forms have strong potential to overcome compliance problems. This report will review the availability of these unconventional dose forms used in treating the oral cavity and for systemic drug delivery, with a focus on medicated chewing gums, medicated lollipops, and oral bioadhesive devices. The aim is to stimulate increased interest in the opportunities for innovative new products that are available to formulators in this field, particularly for atypical patient populations. PMID:25146440

  10. Atmospheric radiation flight dose rates

    NASA Astrophysics Data System (ADS)

    Tobiska, W. K.

    2015-12-01

    Space weather's effects upon the near-Earth environment are due to dynamic changes in the energy transfer processes from the Sun's photons, particles, and fields. Of the domains that are affected by space weather, the coupling between the solar and galactic high-energy particles, the magnetosphere, and atmospheric regions can significantly affect humans and our technology as a result of radiation exposure. Space Environment Technologies (SET) has been conducting space weather observations of the atmospheric radiation environment at aviation altitudes that will eventually be transitioned into air traffic management operations. The Automated Radiation Measurements for Aerospace Safety (ARMAS) system and Upper-atmospheric Space and Earth Weather eXperiment (USEWX) both are providing dose rate measurements. Both activities are under the ARMAS goal of providing the "weather" of the radiation environment to improve aircraft crew and passenger safety. Over 5-dozen ARMAS and USEWX flights have successfully demonstrated the operation of a micro dosimeter on commercial aviation altitude aircraft that captures the real-time radiation environment resulting from Galactic Cosmic Rays and Solar Energetic Particles. The real-time radiation exposure is computed as an effective dose rate (body-averaged over the radiative-sensitive organs and tissues in units of microsieverts per hour); total ionizing dose is captured on the aircraft, downlinked in real-time, processed on the ground into effective dose rates, compared with NASA's Langley Research Center (LaRC) most recent Nowcast of Atmospheric Ionizing Radiation System (NAIRAS) global radiation climatology model runs, and then made available to end users via the web and smart phone apps. Flight altitudes now exceed 60,000 ft. and extend above commercial aviation altitudes into the stratosphere. In this presentation we describe recent ARMAS and USEWX results.

  11. Radiation dose from cigarette tobacco

    SciTech Connect

    Papastefanou, C.

    2008-08-07

    The radioactivity in tobacco leaves collected from 15 different regions of Greece before cigarette production was studied in order to estimate the effective dose from cigarette tobacco due to the naturally occurring primordial radionuclides, such as {sup 226}Ra and {sup 210}Pb of the uranium series and {sup 228}Ra of the thorium series and/or man-made produced radionuclides, such as {sup 137}Cs of Chernobyl origin. Gamma-ray spectrometry was applied using Ge planar and coaxial type detectors of high resolution and high efficiency. It was concluded that the annual effective dose due to inhalation for adults (smokers) for {sup 226}Ra varied from 42.5 to 178.6 {mu}Sv y{sup -1} (average 79.7 {mu}Sv y{sup -1}), while for {sup 228}Ra from 19.3 to 116.0 {mu}Sv y{sup -1} (average 67.1 {mu}Sv y{sup -1}) and for {sup 210}Pb from 47.0 to 134.9 {mu}Sv y{sup -1} (average 104.7 {mu}Sv y{sup -1}), that is the same order of magnitude for each radionuclide. The sum of the effective dose of the three natural radionuclides varied from 151.9 to 401.3 {mu}Sv y{sup -1} (average 251.5 {mu}Sv y{sup -1}). The annual effective dose from {sup 137}Cs of Chernobyl origin was three orders of magnitude lower as it varied from 70.4 to 410.4 nSv y{sup -1} (average 199.3 nSv y{sup -1})

  12. Dosing dilemmas in obese children.

    PubMed

    Mulla, H; Johnson, T N

    2010-08-01

    With the epidemic of childhood obesity, it is not uncommon for prescribers to puzzle over an appropriate drug dose for an obese child. Defining the optimum therapeutic dose of a drug relies on an understanding of pharmacokinetics and pharmacodynamics. Both these processes can be affected by body composition and the physiological changes that occur in obese children. As a rule of thumb, 75% of excess weight in obese subjects is fat mass, and the remainder lean mass. Although it is reasonable to assume that increases in fat mass alter the distribution of lipophilic drugs and increases in lean mass alter drug clearance, good quality and consistent clinical data supporting these assumptions are lacking for the majority of drugs. The relatively few clinical studies that have evaluated the impact of obesity have often been limited by poor design and insufficient sample size. Moreover, clinical studies conducted during drug development rarely include (or are required to include) obese subjects. Guidance on dosing obese children ought to be provided by drug manufacturers. This could be achieved by including obese patients in studies where possible, enabling the effect of body size on pharmacotherapy to be evaluated. This approach could be further augmented by the use of physiologically based-pharmacokinetic models during early (preclinical) development to predict the impact of obesity on drug disposition, and subsequent clinical studies later in development to provide confirmatory proof. In the meantime, for the majority of drugs already prescribed in children, particularly those where the therapeutic range is narrow or there is significant toxicity, the lack of a validated body size descriptor to use at the bedside means the choice of dose will rely on empirical experience and application of the precautionary principle. PMID:20585055

  13. 5-ASA Dose-Response

    PubMed Central

    Katz, Seymour; Lichtenstein, Gary R; Safdi, Michael A

    2010-01-01

    Mesalamine (5-aminosalicylic acid; 5-ASA) represents the cornerstone of first-line therapy for mild-to-moderate ulcerative colitis (UC). Current guidelines suggest that the combination of oral and rectal therapies provide optimal symptom resolution and effectively maintain remission in the majority of these patients. Although effective, most oral 5-ASA formulations have a high pill burden and rectal therapies are associated with low adherence. Recent research has examined patterns of compliance, as well as the efficacy of different dose levels of 5-ASA in terms of symptom resolution, the maintenance of remission, and improvements in quality of life. The ASCEND I, II, and III trials found that doses of 4.8 g/day are more effective than 2.4 g/day doses in patients with moderate disease, those with previous steroid use, and those with a history of multiple medications. The benefits of effective long-term 5-ASA therapy include the avoidance of more costly and potentially toxic drugs (such as corticosteroids and biologic therapies), as well as improvements in quality of life, reductions in the need for future colectomy, and a lower risk of developing colorectal cancer. PMID:20567558

  14. Tolerance doses for treatment planning

    SciTech Connect

    Lyman, J.T.

    1985-10-01

    Data for the tolerance of normal tissues or organs to (low-LET) radiation has been compiled from a number of sources which are referenced at the end of this document. This tolerance dose data are ostensibly for uniform irradiation of all or part of an organ, and are for either 5% (TD/sub 5/) or 50% (TD/sub 50/) complication probability. The ''size'' of the irradiated organ is variously stated in terms of the absolute volume or the fraction of the organ volume irradiated, or the area or the length of the treatment field. The accuracy of these data is questionable. Much of the data represents doses that one or several experienced therapists have estimated could be safely given rather than quantitative analyses of clinical observations. Because these data have been obtained from multiple sources with possible different criteria for the definition of a complication, there are sometimes different values for what is apparently the same endpoint. The data from some sources shows a tendancy to be quantized in 5 Gy increments. This reflects the size of possible round off errors. It is believed that all these data have been accumulated without the benefit of 3-D dose distributions and therefore the estimates of the size of the volume and/or the uniformity of the irradiation may be less accurate than is now possible. 19 refs., 4 figs.

  15. Mean dose to lymphocytes during radiotherapy treatments

    SciTech Connect

    Brandan, M.E.; Perez-Pastenes, M.A.; Ostrosky-Wegman, P.; Gonsebatt, M.E.; Diaz-Perches, R.

    1994-10-01

    Using a probabilistic model with parameters from four radiotherapy protocols used in Mexican hospitals for the treatment of cervical cancer, the authors have calculated the distribution of dose to cells in peripheral blood of patients. Values of the mean dose to the lymphocytes during and after a {sup 60}Co treatment are compared to estimates from an in vivo chromosome aberration study performed on five patients. Calculations indicate that the mean dose to the circulating blood is about 2% of the tumor dose, while the mean dose to recirculating lymphocytes may reach up to 7% of the tumor dose. Differences up to a factor of two in the dose to the blood are predicted for different protocols delivering equal tumor doses. The data suggest mean doses higher than the predictions of the model. 10 refs., 3 figs., 2 tabs.

  16. Dose rate mapping of VMAT treatments

    NASA Astrophysics Data System (ADS)

    Podesta, Mark; Antoniu Popescu, I.; Verhaegen, Frank

    2016-06-01

    Human tissues exhibit a varying response to radiation dose depending on the dose rate and fractionation scheme used. Dose rate effects have been reported for different radiations, and tissue types. The literature indicates that there is not a significant difference in response for low-LET radiation when using dose rates between 1 Gy min‑1 and 12 Gy min‑1 but lower dose rates have an observable sparing effect on tissues and a differential effect between tissues. In intensity-modulated radiotherapy such as volumetric modulated arc therapy (VMAT) the dose can be delivered with a wide range of dose rates. In this work we developed a method based on time-resolved Monte Carlo simulations to quantify the dose rate frequency distribution for clinical VMAT treatments for three cancer sites, head and neck, lung, and pelvis within both planning target volumes (PTV) and normal tissues. The results show a wide range of dose rates are used to deliver dose in VMAT and up to 75% of the PTV can have its dose delivered with dose rates  <1 Gy min‑1. Pelvic plans on average have a lower mean dose rate within the PTV than lung or head and neck plans but a comparable mean dose rate within the organs at risk. Two VMAT plans that fulfil the same dose objectives and constraints may be delivered with different dose rate distributions, particularly when comparing single arcs to multiple arc plans. It is concluded that for dynamic plans, the dose rate range used varies to a larger degree than previously assumed. The effect of the dose rate range in VMAT on clinical outcome is unknown.

  17. Dose rate mapping of VMAT treatments

    NASA Astrophysics Data System (ADS)

    Podesta, Mark; Antoniu Popescu, I.; Verhaegen, Frank

    2016-06-01

    Human tissues exhibit a varying response to radiation dose depending on the dose rate and fractionation scheme used. Dose rate effects have been reported for different radiations, and tissue types. The literature indicates that there is not a significant difference in response for low-LET radiation when using dose rates between 1 Gy min-1 and 12 Gy min-1 but lower dose rates have an observable sparing effect on tissues and a differential effect between tissues. In intensity-modulated radiotherapy such as volumetric modulated arc therapy (VMAT) the dose can be delivered with a wide range of dose rates. In this work we developed a method based on time-resolved Monte Carlo simulations to quantify the dose rate frequency distribution for clinical VMAT treatments for three cancer sites, head and neck, lung, and pelvis within both planning target volumes (PTV) and normal tissues. The results show a wide range of dose rates are used to deliver dose in VMAT and up to 75% of the PTV can have its dose delivered with dose rates  <1 Gy min-1. Pelvic plans on average have a lower mean dose rate within the PTV than lung or head and neck plans but a comparable mean dose rate within the organs at risk. Two VMAT plans that fulfil the same dose objectives and constraints may be delivered with different dose rate distributions, particularly when comparing single arcs to multiple arc plans. It is concluded that for dynamic plans, the dose rate range used varies to a larger degree than previously assumed. The effect of the dose rate range in VMAT on clinical outcome is unknown.

  18. Dose rate mapping of VMAT treatments.

    PubMed

    Podesta, Mark; Popescu, I Antoniu; Verhaegen, Frank

    2016-06-01

    Human tissues exhibit a varying response to radiation dose depending on the dose rate and fractionation scheme used. Dose rate effects have been reported for different radiations, and tissue types. The literature indicates that there is not a significant difference in response for low-LET radiation when using dose rates between 1 Gy min(-1) and 12 Gy min(-1) but lower dose rates have an observable sparing effect on tissues and a differential effect between tissues. In intensity-modulated radiotherapy such as volumetric modulated arc therapy (VMAT) the dose can be delivered with a wide range of dose rates. In this work we developed a method based on time-resolved Monte Carlo simulations to quantify the dose rate frequency distribution for clinical VMAT treatments for three cancer sites, head and neck, lung, and pelvis within both planning target volumes (PTV) and normal tissues. The results show a wide range of dose rates are used to deliver dose in VMAT and up to 75% of the PTV can have its dose delivered with dose rates  <1 Gy min(-1). Pelvic plans on average have a lower mean dose rate within the PTV than lung or head and neck plans but a comparable mean dose rate within the organs at risk. Two VMAT plans that fulfil the same dose objectives and constraints may be delivered with different dose rate distributions, particularly when comparing single arcs to multiple arc plans. It is concluded that for dynamic plans, the dose rate range used varies to a larger degree than previously assumed. The effect of the dose rate range in VMAT on clinical outcome is unknown.

  19. Personalised dosing: Printing a dose of one's own medicine.

    PubMed

    Alomari, Mustafa; Mohamed, Fatima H; Basit, Abdul W; Gaisford, Simon

    2015-10-30

    Ink-jet printing is a versatile, precise and relatively inexpensive method of depositing small volumes of solutions with remarkable accuracy and repeatability. Although developed primarily as a technology for image reproduction, its areas of application have expanded significantly in recent years. It is particularly suited to the manufacture of low dose medicines or to short production runs and so offers a potential manufacturing solution for the paradigm of personalised medicines. This review discusses the technical and clinical aspects of ink-jet printing that must be considered in order for the technology to become widely adopted in the pharmaceutical arena and considers applications in the literature.

  20. Fewer Doses of HPV Vaccine Result in Immune Response Similar to Three-Dose Regimen

    MedlinePlus

    ... Releases NCI News Note Fewer doses of HPV vaccine result in immune response similar to three-dose ... that two doses of a human papillomavirus (HPV) vaccine, trademarked as Cervarix, resulted in similar serum antibody ...

  1. The impact of inter-fraction dose variations on biological equivalent dose (BED): the concept of equivalent constant dose

    NASA Astrophysics Data System (ADS)

    Zavgorodni, S.

    2004-12-01

    Inter-fraction dose fluctuations, which appear as a result of setup errors, organ motion and treatment machine output variations, may influence the radiobiological effect of the treatment even when the total delivered physical dose remains constant. The effect of these inter-fraction dose fluctuations on the biological effective dose (BED) has been investigated. Analytical expressions for the BED accounting for the dose fluctuations have been derived. The concept of biological effective constant dose (BECD) has been introduced. The equivalent constant dose (ECD), representing the constant physical dose that provides the same cell survival fraction as the fluctuating dose, has also been introduced. The dose fluctuations with Gaussian as well as exponential probability density functions were investigated. The values of BECD and ECD calculated analytically were compared with those derived from Monte Carlo modelling. The agreement between Monte Carlo modelled and analytical values was excellent (within 1%) for a range of dose standard deviations (0-100% of the dose) and the number of fractions (2 to 37) used in the comparison. The ECDs have also been calculated for conventional radiotherapy fields. The analytical expression for the BECD shows that BECD increases linearly with the variance of the dose. The effect is relatively small, and in the flat regions of the field it results in less than 1% increase of ECD. In the penumbra region of the 6 MV single radiotherapy beam the ECD exceeded the physical dose by up to 35%, when the standard deviation of combined patient setup/organ motion uncertainty was 5 mm. Equivalently, the ECD field was ~2 mm wider than the physical dose field. The difference between ECD and the physical dose is greater for normal tissues than for tumours.

  2. Exploring the dose response of radiochromic dosimeters

    NASA Astrophysics Data System (ADS)

    Skyt, P. S.; Wahlstedt, I.; Yates, E. S.; Muren, L. P.; Petersen, J. B. B.; Balling, P.

    2013-06-01

    The aim of this study was to explore the dose response of a newly developed radio-chromic hydrogel dosimeter based on leuco malachite green dye in a gelatine matrix. The original dosimeter composition was first investigated in terms of dose response and dose-rate dependence. In addition, the initiating compounds producing chlorine radicals were substituted with compounds producing fluorine radicals, oxygen-centered radicals, carbon-centered radicals and bromine radicals. Also the surfactant was substituted by other compounds of different molecular size and charge. The original composition gave a dose response of 3.5·10-3 Gy-1cm-1 at 6 Gy/min with a dose rate dependence giving a 27 % increase when decreasing the dose rate to 1 Gy/min. None of the substituted initiating components contributed to an increase in dose response while only one surfactant increased the dose response slightly.

  3. Antimicrobial Dose in Obese Patient

    PubMed Central

    Kassab, Sawsan; Syed Sulaiman, Syed Azhar; Abdul Aziz, Noorizan

    2007-01-01

    Introduction Obesity is a chronic disease that has become one of major public health issue in Malaysia because of its association with other disease states including cardiovascular disease and diabetes. Despite continuous efforts to educate the public about the health risks associated with obesity, prevalence of the disease continues to increase. Dosing of many medications are based on weight, limited data are available on how antimicrobial agents should be dosed in obesity. The aim of this case presentation is to discuss dose of antibiotic in obese patient. Case report: Patient: GMN, Malay, Female, 45 year old, 150kg, transferred from medical ward to ICU with problems of fever, orthopnea, sepsis secondary to nosocomial pneumonia. She was admitted to hospital a week ago for SOB on exertion, cyanosis, mildly dyspneic, somasthenia, bilateral ankle swelling. There was no fever, cough, chest pain, clubbing, flapping tremor. Her grand father has pre-morbid history of obesity, HPT, DM and asthma. She was non alcoholic, smoker, and not on diet control. The diagnosis Pickwickian syndrome was made. Patient was treated with IV Dopamine 11mcg/kg/min, IV Morphine 4mg/h. IV GTN 15mcg/min, IV Ca gluconate 10g/24h for 3/7, IV Zantac 50mg tds, IV Augmentin 1.2g tds, IV Lasix 40mg od, IV Plasil 10mg tds, S.c heparin 5000IU bd. patient become stable and moved to medical ward to continue her treatment. Discussion: The altered physiologic function seen in obese patients is a concern in patients receiving antimicrobial agents because therapeutic outcomes depend on achieving a minimum inhibitory concentration (MIC). The therapeutic effect of any drug can be altered when any of the 4 pharmacokinetic processes (absorption, distribution, metabolism, or elimination) are altered. Decreased blood flow rates and increased renal clearance in obese patients can affect drug distribution and elimination. Changes in serum protein levels can change the metabolism and distribution of drugs that are

  4. Hanford Environmental Dose Reconstruction Project. Monthly report

    SciTech Connect

    Finch, S.M.; McMakin, A.H.

    1992-04-01

    The objective of the Hanford Environmental Dose Reconstruction Project is to estimate the radiation doses that individuals and populations could have received from nuclear operations at Hanford since 1944. The project is divided into the following technical tasks. These tasks correspond to the path radionuclides followed, from release to impact on humans (dose estimates): Source terms, environmental transport, environmental monitoring data, demography, food consumption, and agriculture, and environmental pathways and dose estimates.

  5. Hanford Environmental Dose Reconstruction Project Monthly Report

    SciTech Connect

    Finch, S.M.; McMakin, A.H.

    1992-03-01

    The objective of the Hanford Environmental Dose Reconstruction Project is to estimate the radiation doses that individuals and populations could have received from nuclear operations at Hanford since 1944. The project is divided into the following technical tasks. These tasks correspond to the path radionuclides followed, from release to impact on humans (dose estimates): Source Terms, Environmental Transport, Environmental Monitoring Data, Demography, Food Consumption, and Agriculture, and Environmental Pathways and Dose Estimates.

  6. Hanford Environmental Dose Reconstruction Project. Monthly report

    SciTech Connect

    Finch, S.M.; McMakin, A.H.

    1992-02-01

    The objective of the Hanford Environmental Dose Reconstruction Project is to estimate the radiation doses that individuals and populations could have received from nuclear operations at Hanford since 1944. The project is divided into the following technical tasks. These tasks correspond to the path radionuclides followed, from release to impact on humans (dose estimates): source terms; environmental transport; environmental monitoring data; demography, food consumption, and agriculture; environmental pathways and dose estimates.

  7. Multiple anatomy optimization of accumulated dose

    SciTech Connect

    Watkins, W. Tyler Siebers, Jeffrey V.; Moore, Joseph A.; Gordon, James; Hugo, Geoffrey D.

    2014-11-01

    Purpose: To investigate the potential advantages of multiple anatomy optimization (MAO) for lung cancer radiation therapy compared to the internal target volume (ITV) approach. Methods: MAO aims to optimize a single fluence to be delivered under free-breathing conditions such that the accumulated dose meets the plan objectives, where accumulated dose is defined as the sum of deformably mapped doses computed on each phase of a single four dimensional computed tomography (4DCT) dataset. Phantom and patient simulation studies were carried out to investigate potential advantages of MAO compared to ITV planning. Through simulated delivery of the ITV- and MAO-plans, target dose variations were also investigated. Results: By optimizing the accumulated dose, MAO shows the potential to ensure dose to the moving target meets plan objectives while simultaneously reducing dose to organs at risk (OARs) compared with ITV planning. While consistently superior to the ITV approach, MAO resulted in equivalent OAR dosimetry at planning objective dose levels to within 2% volume in 14/30 plans and to within 3% volume in 19/30 plans for each lung V20, esophagus V25, and heart V30. Despite large variations in per-fraction respiratory phase weights in simulated deliveries at high dose rates (e.g., treating 4/10 phases during single fraction beams) the cumulative clinical target volume (CTV) dose after 30 fractions and per-fraction dose were constant independent of planning technique. In one case considered, however, per-phase CTV dose varied from 74% to 117% of prescription implying the level of ITV-dose heterogeneity may not be appropriate with conventional, free-breathing delivery. Conclusions: MAO incorporates 4DCT information in an optimized dose distribution and can achieve a superior plan in terms of accumulated dose to the moving target and OAR sparing compared to ITV-plans. An appropriate level of dose heterogeneity in MAO plans must be further investigated.

  8. Radiation dose measurements in coronary CT angiography

    PubMed Central

    Sabarudin, Akmal; Sun, Zhonghua

    2013-01-01

    Coronary computed tomography (CT) angiography is associated with high radiation dose and this has raised serious concerns in the literature. Awareness of various parameters for dose estimates and measurements of coronary CT angiography plays an important role in increasing our understanding of the radiation exposure to patients, thus, contributing to the implementation of dose-saving strategies. This article provides an overview of the radiation dose quantity and its measurement during coronary CT angiography procedures. PMID:24392190

  9. Multiple anatomy optimization of accumulated dose

    PubMed Central

    Watkins, W. Tyler; Moore, Joseph A.; Gordon, James; Hugo, Geoffrey D.; Siebers, Jeffrey V.

    2014-01-01

    Purpose: To investigate the potential advantages of multiple anatomy optimization (MAO) for lung cancer radiation therapy compared to the internal target volume (ITV) approach. Methods: MAO aims to optimize a single fluence to be delivered under free-breathing conditions such that the accumulated dose meets the plan objectives, where accumulated dose is defined as the sum of deformably mapped doses computed on each phase of a single four dimensional computed tomography (4DCT) dataset. Phantom and patient simulation studies were carried out to investigate potential advantages of MAO compared to ITV planning. Through simulated delivery of the ITV- and MAO-plans, target dose variations were also investigated. Results: By optimizing the accumulated dose, MAO shows the potential to ensure dose to the moving target meets plan objectives while simultaneously reducing dose to organs at risk (OARs) compared with ITV planning. While consistently superior to the ITV approach, MAO resulted in equivalent OAR dosimetry at planning objective dose levels to within 2% volume in 14/30 plans and to within 3% volume in 19/30 plans for each lung V20, esophagus V25, and heart V30. Despite large variations in per-fraction respiratory phase weights in simulated deliveries at high dose rates (e.g., treating 4/10 phases during single fraction beams) the cumulative clinical target volume (CTV) dose after 30 fractions and per-fraction dose were constant independent of planning technique. In one case considered, however, per-phase CTV dose varied from 74% to 117% of prescription implying the level of ITV-dose heterogeneity may not be appropriate with conventional, free-breathing delivery. Conclusions: MAO incorporates 4DCT information in an optimized dose distribution and can achieve a superior plan in terms of accumulated dose to the moving target and OAR sparing compared to ITV-plans. An appropriate level of dose heterogeneity in MAO plans must be further investigated. PMID:25370619

  10. Hanford Environmental Dose Reconstruction Project. Monthly report

    SciTech Connect

    Cannon, S.D.; Finch, S.M.

    1992-10-01

    The objective of the Hanford Environmental Dose Reconstruction (HEDR) Project is to estimate the radiation doses that individuals and populations could have received from nuclear operations at Hanford since 1944. The independent Technical Steering Panel (TSP) provides technical direction. The project is divided into the following technical tasks. These tasks correspond to the path radionuclides followed from release to impact on humans (dose estimates):Source Terms, Environmental Transport, Environmental Monitoring Data, Demography, Food Consumption, and Agriculture, and Environmental Pathways and Dose Estimates.

  11. A dose monitoring system for dental radiography

    PubMed Central

    Lee, Chena; Kim, Jo-Eun; Symkhampha, Khanthaly; Lee, Woo-Jin; Huh, Kyung-Hoe; Yi, Won-Jin; Heo, Min-Suk; Choi, Soon-Chul; Yeom, Heon-Young

    2016-01-01

    Purpose The current study investigates the feasibility of a platform for a nationwide dose monitoring system for dental radiography. The essential elements for an unerring system are also assessed. Materials and Methods An intraoral radiographic machine with 14 X-ray generators and five sensors, 45 panoramic radiographic machines, and 23 cone-beam computed tomography (CBCT) models used in Korean dental clinics were surveyed to investigate the type of dose report. A main server for storing the dose data from each radiographic machine was prepared. The dose report transfer pathways from the radiographic machine to the main sever were constructed. An effective dose calculation method was created based on the machine specifications and the exposure parameters of three intraoral radiographic machines, five panoramic radiographic machines, and four CBCTs. A viewing system was developed for both dentists and patients to view the calculated effective dose. Each procedure and the main server were integrated into one system. Results The dose data from each type of radiographic machine was successfully transferred to the main server and converted into an effective dose. The effective dose stored in the main server is automatically connected to a viewing program for dentist and patient access. Conclusion A patient radiation dose monitoring system is feasible for dental clinics. Future research in cooperation with clinicians, industry, and radiologists is needed to ensure format convertibility for an efficient dose monitoring system to monitor unexpected radiation dose. PMID:27358817

  12. Chemical Dosing and First-Order Kinetics

    ERIC Educational Resources Information Center

    Hladky, Paul W.

    2011-01-01

    College students encounter a variety of first-order phenomena in their mathematics and science courses. Introductory chemistry textbooks that discuss first-order processes, usually in conjunction with chemical kinetics or radioactive decay, stop at single, discrete dose events. Although single-dose situations are important, multiple-dose events,…

  13. UGT genotyping in belinostat dosing.

    PubMed

    Goey, Andrew K L; Figg, William D

    2016-03-01

    Certain genetic polymorphisms of UDP glucuronosyltransferase 1 family, polypeptide A1 (UGT1A1) can reduce gene expression (*28, *60, *93) or activity (*6), thereby altering the pharmacokinetics, pharmacodynamics, and the risk of toxicities of UGT1A1 substrates, of which irinotecan is a widely-described example. This review presents an overview of the clinical effects of UGT1A1 polymorphisms on the pharmacology of UGT1A1 substrates, with a special focus on the novel histone deacetylase inhibitor belinostat. Belinostat, approved for the treatment of peripheral T-cell lymphoma, is primarily glucuronidated by UGT1A1. Recent preclinical and clinical data showed that UGT1A1*28 was associated with reduced glucuronidation in human liver microsomes, while in a retrospective analysis of a Phase I trial with patients receiving belinostat UGT1A1*60 was predominantly associated with increased belinostat plasma concentrations. Furthermore, both UGT1A1*28 and *60 variants were associated with increased incidence of thrombocytopenia and neutropenia. Using population pharmacokinetic analysis a 33% dose reduction has been proposed for patients carrying UGT1A1 variant alleles. Clinical effects of this genotype-based dosing recommendation is currently prospectively being investigated. Overall, the data suggest that UGT1A1 genotyping is useful for improving belinostat therapy. PMID:26773202

  14. Wildlife toxicity extrapolations: Dose metric

    SciTech Connect

    Fairbrother, A.; Berg, M. van den

    1995-12-31

    Ecotoxicological assessments must rely on the extrapolation of toxicity data from a few indicator species to many species of concern. Data are available from laboratory studies (e.g., quail, mallards, rainbow trout, fathead minnow) and some planned or serendipitous field studies of a broader, but by no means comprehensive, suite of species. Yet all ecological risk assessments begin with an estimate of risk based on information gleaned from the literature. One is then confronted with the necessity of extrapolating toxicity information from a limited number of indicator species to all organisms of interest. This is a particularly acute problem when trying to estimate hazards to wildlife in terrestrial systems as there is an extreme paucity of data for most chemicals in all but a handful of species. This section continues the debate by six panelists of the ``correct`` approach for determining wildlife toxicity thresholds by examining which dose metric to use for threshold determination and interspecific extrapolation, Since wild animals are exposed to environmental contaminants primarily through ingestion, should threshold values be expressed as amount of chemical in the diet (e.g., ppm) or as a body weight-adjusted dose (mg/kg/day)? Which of these two approaches is most relevant for ecological risk assessment decision making? Which is best for interspecific extrapolations? Converting from one metric to the other can compound uncertainty if the actual consumption rates of a species is unknown. How should this be dealt with? Is it of sufficient magnitude to be of concern?

  15. Calculation of dose conversion factors for doses in the fingernails to organ doses at external gamma irradiation in air

    PubMed Central

    Khailov, A.M.; Ivannikov, A. I.; Skvortsov, V.G.; Stepanenko, V.F.; Orlenko, S.P.; Flood, A.B.; Williams, B.B.; Swartz, H.M.

    2015-01-01

    Absorbed doses to fingernails and organs were calculated for a set of homogenous external gamma-ray irradiation geometries in air. The doses were obtained by stochastic modeling of the ionizing particle transport (Monte Carlo method) for a mathematical human phantom with arms and hands placed loosely along the sides of the body. The resulting dose conversion factors for absorbed doses in fingernails can be used to assess the dose distribution and magnitude in practical dose reconstruction problems. For purposes of estimating dose in a large population exposed to radiation in order to triage people for treatment of acute radiation syndrome, the calculated data for a range of energies having a width of from 0.05 to 3.5 MeV were used to convert absorbed doses in fingernails to corresponding doses in organs and the whole body as well as the effective dose. Doses were assessed based on assumed rates of radioactive fallout at different time periods following a nuclear explosion. PMID:26347593

  16. Dose Rate Effects in Linear Bipolar Transistors

    NASA Technical Reports Server (NTRS)

    Johnston, Allan; Swimm, Randall; Harris, R. D.; Thorbourn, Dennis

    2011-01-01

    Dose rate effects are examined in linear bipolar transistors at high and low dose rates. At high dose rates, approximately 50% of the damage anneals at room temperature, even though these devices exhibit enhanced damage at low dose rate. The unexpected recovery of a significant fraction of the damage after tests at high dose rate requires changes in existing test standards. Tests at low temperature with a one-second radiation pulse width show that damage continues to increase for more than 3000 seconds afterward, consistent with predictions of the CTRW model for oxides with a thickness of 700 nm.

  17. A Program for Calculating Radiation Dose Rates.

    1986-01-27

    Version 00 SMART calculates radiation dose rate at the center of the outer cask surface. It can be applied to determine the radiation dose rate on each cask if source conditions, characteristic function, and material conditions in the bottle regions are given. MANYCASK calculates radiation dose rate distribution in a space surrounded by many casks. If the dose rate on each cask surface can be measured, MANYCASK can be applied to predict dose spatial dosemore » rate distribution for any case of cask configuration.« less

  18. Hanford Environmental Dose Reconstruction Project: Monthly Report

    SciTech Connect

    Finch, S.M.

    1990-07-01

    This monthly report summarizes the technical progress and project status for the Hanford Environmental Dose Reconstruction (HEDR) Project being conducted at the Pacific Northwest Laboratory (PNL) under the direction of a Technical Steering Panel (TSP). The objective of the Hanford Environmental Dose Reconstruction Project is to estimate the radiation doses that populations could have received from nuclear operations at Hanford since 1944. The project is divided into the following technical tasks. These tasks correspond to the path radionuclides followed, from release to impact on humans (dose estimates): Source Terms, Environmental Transport, Environmental Monitoring Data, Demographics, Agriculture, Food Habits, and Environmental Pathways and Dose Estimates. 3 figs.

  19. Potencial de Seqüestro de Carbono Atmosférico entre Diferentes Cultivares de Milho (Zea mays L.) sob Condiç o de Déficit Hídrico

    Technology Transfer Automated Retrieval System (TEKTRAN)

    There is a question concerning the role of agricultural practices on carbon sequestration enhancement. By producing biomass with agricultural crops and adding this residue to soil, it should act on the mitigation process of the greenhouse effect, especially CO2. The objectives of this study were to ...

  20. Automated administration of intermittent intravenous doses.

    PubMed

    Lutomski, D M; Schwartz-Fulton, J; Rivera, J O

    1985-11-01

    The cost difference of administering cimetidine 300 mg via intravenous piggyback (IVPB) every six hours by a conventional separate container system versus using an automated intermittent i.v. administration system was evaluated. The study was conducted in two phases. Phase 1 documented the amount of drug waste with the two systems, and phase 2 examined the practical use of the IVAC Multi Dose System. Nurses who administered the medication using the multiple-dose system completed a questionnaire on its operation. A materials cost analysis was performed to compare the two methods. The two systems were found to have approximately equivalent amounts of drug waste over the 30-day evaluation period of phase 1. The mean percentage of doses wasted was 12.2% with the conventional single-dose minibag method and 12.7% with the automated multiple-dose method. The multiple-dose system had a lower cost per dose of cimetidine ($2.25 versus $3.47). These savings appear to outweigh the cost of the additional equipment necessary for the automated system. The majority of nurses preferred the multiple-dose system. Potential problems encountered in accurately delivering doses with the multiple-dose automated system were identified, and possible solutions are suggested. The use of an automated multiple-dose i.v. administration system can potentially decrease the materials cost portion of drug administration. The total impact on hospital costs needs to be evaluated, and other comparisons with alternative administration systems need to be performed.

  1. Statistics of the doses absorbed by workers

    NASA Astrophysics Data System (ADS)

    Parisi, A.

    1982-10-01

    A statistical analysis of the distribution of the doses by individual workers is presented to assess existing norms. A log-normal distribution is assumed for the individual doses. A reference distribution is introduced, characterized by log-normal distribution of annual doses, average 0,5 rem (10% of the limit) and 0.1% of the individuals that will absorb more than 5 rem. Expressions are given for the probability of finding a dose in a given interval and for the fraction of the collective dose due to doses from a given interval. An example using data from medical professions in the United States shows that the fraction of workers with annual doses larger than 5 rem is not contained within the 0.1% recommended limit, and that the level of risk is not uniform between professions.

  2. Dose in x-ray computed tomography

    NASA Astrophysics Data System (ADS)

    Kalender, Willi A.

    2014-02-01

    Radiation dose in x-ray computed tomography (CT) has become a topic of high interest due to the increasing numbers of CT examinations performed worldwide. This review aims to present an overview of current concepts for both scanner output metrics and for patient dosimetry and will comment on their strengths and weaknesses. Controversial issues such as the appropriateness of the CT dose index (CTDI) are discussed in detail. A review of approaches to patient dose assessment presently in practice, of the dose levels encountered and options for further dose optimization are also given and discussed. Patient dose assessment remains a topic for further improvement and for international consensus. All approaches presently in use are based on Monte Carlo (MC) simulations. Estimates for effective dose are established, but they are crude and not patient-specific; organ dose estimates are rarely available. Patient- and organ-specific dose estimates can be provided with adequate accuracy and independent of CTDI phantom measurements by fast MC simulations. Such information, in particular on 3D dose distributions, is important and helpful in optimization efforts. Dose optimization has been performed very successfully in recent years and even resulted in applications with effective dose values of below 1 mSv. In general, a trend towards lower dose values based on technical innovations has to be acknowledged. Effective dose values are down to clearly below 10 mSv on average, and there are a number of applications such as cardiac and pediatric CT which are performed routinely below 1 mSv on modern equipment.

  3. Assessing dose rate distributions in VMAT plans.

    PubMed

    Mackeprang, P-H; Volken, W; Terribilini, D; Frauchiger, D; Zaugg, K; Aebersold, D M; Fix, M K; Manser, P

    2016-04-21

    Dose rate is an essential factor in radiobiology. As modern radiotherapy delivery techniques such as volumetric modulated arc therapy (VMAT) introduce dynamic modulation of the dose rate, it is important to assess the changes in dose rate. Both the rate of monitor units per minute (MU rate) and collimation are varied over the course of a fraction, leading to different dose rates in every voxel of the calculation volume at any point in time during dose delivery. Given the radiotherapy plan and machine specific limitations, a VMAT treatment plan can be split into arc sectors between Digital Imaging and Communications in Medicine control points (CPs) of constant and known MU rate. By calculating dose distributions in each of these arc sectors independently and multiplying them with the MU rate, the dose rate in every single voxel at every time point during the fraction can be calculated. Independently calculated and then summed dose distributions per arc sector were compared to the whole arc dose calculation for validation. Dose measurements and video analysis were performed to validate the calculated datasets. A clinical head and neck, cranial and liver case were analyzed using the tool developed. Measurement validation of synthetic test cases showed linac agreement to precalculated arc sector times within ±0.4 s and doses ±0.1 MU (one standard deviation). Two methods for the visualization of dose rate datasets were developed: the first method plots a two-dimensional (2D) histogram of the number of voxels receiving a given dose rate over the course of the arc treatment delivery. In similarity to treatment planning system display of dose, the second method displays the dose rate as color wash on top of the corresponding computed tomography image, allowing the user to scroll through the variation over time. Examining clinical cases showed dose rates spread over a continuous spectrum, with mean dose rates hardly exceeding 100 cGy min(-1) for conventional fractionation

  4. Assessing dose rate distributions in VMAT plans

    NASA Astrophysics Data System (ADS)

    Mackeprang, P.-H.; Volken, W.; Terribilini, D.; Frauchiger, D.; Zaugg, K.; Aebersold, D. M.; Fix, M. K.; Manser, P.

    2016-04-01

    Dose rate is an essential factor in radiobiology. As modern radiotherapy delivery techniques such as volumetric modulated arc therapy (VMAT) introduce dynamic modulation of the dose rate, it is important to assess the changes in dose rate. Both the rate of monitor units per minute (MU rate) and collimation are varied over the course of a fraction, leading to different dose rates in every voxel of the calculation volume at any point in time during dose delivery. Given the radiotherapy plan and machine specific limitations, a VMAT treatment plan can be split into arc sectors between Digital Imaging and Communications in Medicine control points (CPs) of constant and known MU rate. By calculating dose distributions in each of these arc sectors independently and multiplying them with the MU rate, the dose rate in every single voxel at every time point during the fraction can be calculated. Independently calculated and then summed dose distributions per arc sector were compared to the whole arc dose calculation for validation. Dose measurements and video analysis were performed to validate the calculated datasets. A clinical head and neck, cranial and liver case were analyzed using the tool developed. Measurement validation of synthetic test cases showed linac agreement to precalculated arc sector times within  ±0.4 s and doses  ±0.1 MU (one standard deviation). Two methods for the visualization of dose rate datasets were developed: the first method plots a two-dimensional (2D) histogram of the number of voxels receiving a given dose rate over the course of the arc treatment delivery. In similarity to treatment planning system display of dose, the second method displays the dose rate as color wash on top of the corresponding computed tomography image, allowing the user to scroll through the variation over time. Examining clinical cases showed dose rates spread over a continuous spectrum, with mean dose rates hardly exceeding 100 cGy min-1 for conventional

  5. A Simple Low-dose X-ray CT Simulation from High-dose Scan

    PubMed Central

    Zeng, Dong; Huang, Jing; Bian, Zhaoying; Niu, Shanzhou; Zhang, Hua; Feng, Qianjin; Liang, Zhengrong

    2015-01-01

    Low-dose X-ray computed tomography (CT) simulation from high-dose scan is required in optimizing radiation dose to patients. In this study, we propose a simple low-dose CT simulation strategy in sinogram domain using the raw data from high-dose scan. Specially, a relationship between the incident fluxes of low- and high- dose scans is first determined according to the repeated projection measurements and analysis. Second, the incident flux level of the simulated low-dose scan is generated by properly scaling the incident flux level of high-dose scan via the determined relationship in the first step. Third, the low-dose CT transmission data by energy integrating detection is simulated by adding a statistically independent Poisson noise distribution plus a statistically independent Gaussian noise distribution. Finally, a filtered back-projection (FBP) algorithm is implemented to reconstruct the resultant low-dose CT images. The present low-dose simulation strategy is verified on the simulations and real scans by comparing it with the existing low-dose CT simulation tool. Experimental results demonstrated that the present low-dose CT simulation strategy can generate accurate low-dose CT sinogram data from high-dose scan in terms of qualitative and quantitative measurements. PMID:26543245

  6. Ideal dose level in treatment planning optimization.

    PubMed

    Begnozzi, L; Malaspina, F; Gentile, F P; Chiatti, L; Carpino, S; Fragomeni, R; Benassi, M

    1992-10-01

    The biological response of the tumor is expressed in terms of tumor control probability (TCP) and its dependence on the inhomogeneous dose distribution throughout the tumor volume is studied. The ideal dose level to which the prescribed dose must be referred is derived, by employing a formula based on the linear quadratic model. To administer the prescribed dose to the ideal dose level renders the tumor control probability equal to that one corresponding to a uniform irradiation of the tumor. For the normal tissue irradiated a normal tissue complication probability index (NTCPI) is also defined and calculated. The comparison between NTCPIs of competing plans supports the optimization. In general the resulting ideal dose level is lower than the mean dose level, but not necessarily equal to the minimum in the tumor. This result shows the possibility of administering the prescribed dose to a dose level higher than the minimum, maintaining the tumor control probability at a good level and consequently lowering the complications to the normal tissue. The method offers a general support for the choice of the reference dose level and of the better technique. An example of application of the method is shown.

  7. Patient radiation doses for electron beam CT.

    PubMed

    Castellano, Isabel A; Dance, David R; Skinner, Claire L; Evans, Phil M

    2005-08-01

    A Monte Carlo based computer model has been developed for electron beam computed tomography (EBCT) to calculate organ and effective doses in a humanoid hermaphrodite phantom. The program has been validated by comparison with experimental measurements of the CT dose index in standard head and body CT dose phantoms; agreement to better than 8% has been found. The robustness of the model has been established by varying the input parameters. The amount of energy deposited at the 12:00 position of the standard body CT dose phantom is most susceptible to rotation angle, whereas that in the central region is strongly influenced by the beam quality. The program has been used to investigate the changes in organ absorbed doses arising from partial and full rotation about supine and prone subjects. Superficial organs experience the largest changes in absorbed dose with a change in subject orientation and for partial rotation. Effective doses for typical clinical scan protocols have been calculated and compared with values obtained using existing dosimetry techniques based on full rotation. Calculations which make use of Monte Carlo conversion factors for the scanner that best matches the EBCT dosimetric characteristics consistently overestimate the effective dose in supine subjects by typically 20%, and underestimate the effective dose in prone subjects by typically 13%. These factors can therefore be used to correct values obtained in this way. Empirical dosimetric techniques based on the dose-length product yield errors as great as 77%. This is due to the sensitivity of the dose length product to individual scan lengths. The magnitude of these errors is reduced if empirical dosimetric techniques based on the average absorbed dose in the irradiated volume (CTDIvol) are used. Therefore conversion factors specific to EBCT have been calculated to convert the CTDIvol to an effective dose. PMID:16193782

  8. Patient radiation doses for electron beam CT

    SciTech Connect

    Castellano, Isabel A.; Dance, David R.; Skinner, Claire L.; Evans, Phil M.

    2005-08-15

    A Monte Carlo based computer model has been developed for electron beam computed tomography (EBCT) to calculate organ and effective doses in a humanoid hermaphrodite phantom. The program has been validated by comparison with experimental measurements of the CT dose index in standard head and body CT dose phantoms; agreement to better than 8% has been found. The robustness of the model has been established by varying the input parameters. The amount of energy deposited at the 12:00 position of the standard body CT dose phantom is most susceptible to rotation angle, whereas that in the central region is strongly influenced by the beam quality. The program has been used to investigate the changes in organ absorbed doses arising from partial and full rotation about supine and prone subjects. Superficial organs experience the largest changes in absorbed dose with a change in subject orientation and for partial rotation. Effective doses for typical clinical scan protocols have been calculated and compared with values obtained using existing dosimetry techniques based on full rotation. Calculations which make use of Monte Carlo conversion factors for the scanner that best matches the EBCT dosimetric characteristics consistently overestimate the effective dose in supine subjects by typically 20%, and underestimate the effective dose in prone subjects by typically 13%. These factors can therefore be used to correct values obtained in this way. Empirical dosimetric techniques based on the dose-length product yield errors as great as 77%. This is due to the sensitivity of the dose length product to individual scan lengths. The magnitude of these errors is reduced if empirical dosimetric techniques based on the average absorbed dose in the irradiated volume (CTDI{sub vol}) are used. Therefore conversion factors specific to EBCT have been calculated to convert the CTDI{sub vol} to an effective dose.

  9. Simulation of dose reduction in tomosynthesis

    SciTech Connect

    Svalkvist, Angelica; Baath, Magnus

    2010-01-15

    Purpose: Methods for simulating dose reduction are valuable tools in the work of optimizing radiographic examinations. Using such methods, clinical images can be simulated to have been collected at other, lower, dose levels without the need of additional patient exposure. A recent technology introduced to healthcare that needs optimization is tomosynthesis, where a number of low-dose projection images collected at different angles is used to reconstruct section images of an imaged object. The aim of the present work was to develop a method of simulating dose reduction for digital radiographic systems, suitable for tomosynthesis. Methods: The developed method uses information about the noise power spectrum (NPS) at the original dose level and the simulated dose level to create a noise image that is added to the original image to produce an image that has the same noise properties as an image actually collected at the simulated dose level. As the detective quantum efficiency (DQE) of digital detectors operating at the low dose levels used for tomosynthesis may show a strong dependency on the dose level, it is important that a method for simulating dose reduction for tomosynthesis takes this dependency into account. By applying an experimentally determined relationship between pixel mean and pixel variance, variations in both dose and DQE in relevant dose ranges are taken into account. Results: The developed method was tested on a chest tomosynthesis system and was shown to produce NPS of simulated dose-reduced projection images that agreed well with the NPS of images actually collected at the simulated dose level. The simulated dose reduction method was also applied to tomosynthesis examinations of an anthropomorphic chest phantom, and the obtained noise in the reconstructed section images was very similar to that of an examination actually performed at the simulated dose level. Conclusions: In conclusion, the present article describes a method for simulating dose

  10. Uma Comparação entre Técnicas de Propagação de Erros em Astrofísica: Monte Carlo x Bootstrap

    NASA Astrophysics Data System (ADS)

    Zabot, Alexandre; Baptista, Raymundo

    2005-07-01

    Neste trabalho é feito um estudo comparativo entre dois algoritmos numéricos usados para propagação de erros em dados experimentais. Um deles é conhecido por Método de Monte carlo e o outro por Método de Bootstrap. Recentemente, Dhullon & Watson argüiram que a aplicação do método de Monte Carlo introduz ruído nos dados, e propuseram então a utilização do Bootstrap como alternativa capaz de produzir resultados superiores. O objetivo deste trabalho é testar a validade dessa afirmação. As duas técnicas foram aplicadas a três problemas diferentes: o ajsute de modelos de emissão LTE simples e atmosfera estelar a espectros estelares observados e o ajuste de curvas de luz de eclipses de Variáveis Cataclísmicas para a detemrinação da distribuição radial de brilho dos seus discos de acréscimo. Os métodos foram testados quanto à sua robusteza, ou seja, a capacidade de prover resultados coerentes enre si. Além disso, as soluções dos métodos foram comparadas. Os resultados indicam que não existe evidência de superioridade de um métodos em relação ao outro.

  11. Code System for Emergency Response Dose Assessment.

    2002-01-16

    Version: 00 A dose assessment model for emergency response applications. Dose pathways represented in the model are those that are most likely to be important during and immediately following a release (hours) rather than over an extended time frame (days or weeks). The doses computed include: external dose resulting from exposure to radiation emitted by radionuclides in the air and deposited on the ground, internal dose commitment resulting from inhalation, and total whole-body dose. Threemore » preprocessors are included. RSFPREP generates the MESORAD run specification (input) file, METWR creates the meteorological data file, and RELPREP prepares the release definition file. PRNT is a postprocessor for generating printer or screen-compatible output. All four programs run interactively. MESORAD was developed from version 2.0 of the MESOI atmospheric dispersion model (NESC 9862) retaining its modular nature.« less

  12. Dynamically accumulated dose and 4D accumulated dose for moving tumors

    SciTech Connect

    Li Heng; Li Yupeng; Zhang Xiaodong; Li Xiaoqiang; Liu Wei; Gillin, Michael T.; Zhu, X. Ronald

    2012-12-15

    Purpose: The purpose of this work was to investigate the relationship between dynamically accumulated dose (dynamic dose) and 4D accumulated dose (4D dose) for irradiation of moving tumors, and to quantify the dose uncertainty induced by tumor motion. Methods: The authors established that regardless of treatment modality and delivery properties, the dynamic dose will converge to the 4D dose, instead of the 3D static dose, after multiple deliveries. The bounds of dynamic dose, or the maximum estimation error using 4D or static dose, were established for the 4D and static doses, respectively. Numerical simulations were performed (1) to prove the principle that for each phase, after multiple deliveries, the average number of deliveries for any given time converges to the total number of fractions (K) over the number of phases (N); (2) to investigate the dose difference between the 4D and dynamic doses as a function of the number of deliveries for deliveries of a 'pulsed beam'; and (3) to investigate the dose difference between 4D dose and dynamic doses as a function of delivery time for deliveries of a 'continuous beam.' A Poisson model was developed to estimate the mean dose error as a function of number of deliveries or delivered time for both pulsed beam and continuous beam. Results: The numerical simulations confirmed that the number of deliveries for each phase converges to K/N, assuming a random starting phase. Simulations for the pulsed beam and continuous beam also suggested that the dose error is a strong function of the number of deliveries and/or total deliver time and could be a function of the breathing cycle, depending on the mode of delivery. The Poisson model agrees well with the simulation. Conclusions: Dynamically accumulated dose will converge to the 4D accumulated dose after multiple deliveries, regardless of treatment modality. Bounds of the dynamic dose could be determined using quantities derived from 4D doses, and the mean dose difference

  13. Evaluation of Rectal Dose During High-Dose-Rate Intracavitary Brachytherapy for Cervical Carcinoma

    SciTech Connect

    Sha, Rajib Lochan; Reddy, Palreddy Yadagiri; Rao, Ramakrishna; Muralidhar, Kanaparthy R.; Kudchadker, Rajat J.

    2011-01-01

    High-dose-rate intracavitary brachytherapy (HDR-ICBT) for carcinoma of the uterine cervix often results in high doses being delivered to surrounding organs at risk (OARs) such as the rectum and bladder. Therefore, it is important to accurately determine and closely monitor the dose delivered to these OARs. In this study, we measured the dose delivered to the rectum by intracavitary applications and compared this measured dose to the International Commission on Radiation Units and Measurements rectal reference point dose calculated by the treatment planning system (TPS). To measure the dose, we inserted a miniature (0.1 cm{sup 3}) ionization chamber into the rectum of 86 patients undergoing radiation therapy for cervical carcinoma. The response of the miniature chamber modified by 3 thin lead marker rings for identification purposes during imaging was also characterized. The difference between the TPS-calculated maximum dose and the measured dose was <5% in 52 patients, 5-10% in 26 patients, and 10-14% in 8 patients. The TPS-calculated maximum dose was typically higher than the measured dose. Our study indicates that it is possible to measure the rectal dose for cervical carcinoma patients undergoing HDR-ICBT. We also conclude that the dose delivered to the rectum can be reasonably predicted by the TPS-calculated dose.

  14. Dose estimates of alternative plutonium pyrochemical processes.

    SciTech Connect

    Kornreich, D. E.; Jackson, J. W.; Boerigter, S. T.; Averill, W. A.; Fasel, J. H.

    2002-01-01

    We have coupled our dose calculation tool Pandemonium with a discrete-event, object-oriented, process-modeling system ProMosO to analyze a set of alternatives for plutonium purification operations. The results follow expected trends and indicate, from a dose perspective, that an experimental flowsheet may warrant further research to see if it can be scaled to industrial levels. Flowsheets that include fluoride processes resulted in the largest doses.

  15. Hanford Environmental Dose Reconstruction Project monthly report

    SciTech Connect

    Finch, S.M.

    1991-10-01

    The objective of the Hanford Environmental Dose Reconstruction Project is to estimate the radiation doeses that individuals and populations could have received from nuclear operations at Hanford since 1944. The project is divided into the following technical tasks. These tasks correspond to the path radionuclides followed, from release to impact on humans (dose estimates): Source terms; environmental transport; environmental monitoring data; demographics, agriculture, food habits; environmental pathways and dose estimates.

  16. Radon Exposure and the Definition of Low Doses-The Problem of Spatial Dose Distribution.

    PubMed

    Madas, Balázs G

    2016-07-01

    Investigating the health effects of low doses of ionizing radiation is considered to be one of the most important fields in radiological protection research. Although the definition of low dose given by a dose range seems to be clear, it leaves some open questions. For example, the time frame and the target volume in which absorbed dose is measured have to be defined. While dose rate is considered in the current system of radiological protection, the same cancer risk is associated with all exposures, resulting in a given amount of energy absorbed by a single target cell or distributed among all the target cells of a given organ. However, the biological effects and so the health consequences of these extreme exposure scenarios are unlikely to be the same. Due to the heterogeneous deposition of radon progeny within the lungs, heterogeneous radiation exposure becomes a practical issue in radiological protection. While the macroscopic dose is still within the low dose range, local tissue doses on the order of Grays can be reached in the most exposed parts of the bronchial airways. It can be concluded that progress in low dose research needs not only low dose but also high dose experiments where small parts of a biological sample receive doses on the order of Grays, while the average dose over the whole sample remains low. A narrow interpretation of low dose research might exclude investigations with high relevance to radiological protection. Therefore, studies important to radiological protection should be performed in the frame of low dose research even if the applied doses do not fit in the dose range used for the definition of low doses. PMID:27218294

  17. Radon Exposure and the Definition of Low Doses-The Problem of Spatial Dose Distribution.

    PubMed

    Madas, Balázs G

    2016-07-01

    Investigating the health effects of low doses of ionizing radiation is considered to be one of the most important fields in radiological protection research. Although the definition of low dose given by a dose range seems to be clear, it leaves some open questions. For example, the time frame and the target volume in which absorbed dose is measured have to be defined. While dose rate is considered in the current system of radiological protection, the same cancer risk is associated with all exposures, resulting in a given amount of energy absorbed by a single target cell or distributed among all the target cells of a given organ. However, the biological effects and so the health consequences of these extreme exposure scenarios are unlikely to be the same. Due to the heterogeneous deposition of radon progeny within the lungs, heterogeneous radiation exposure becomes a practical issue in radiological protection. While the macroscopic dose is still within the low dose range, local tissue doses on the order of Grays can be reached in the most exposed parts of the bronchial airways. It can be concluded that progress in low dose research needs not only low dose but also high dose experiments where small parts of a biological sample receive doses on the order of Grays, while the average dose over the whole sample remains low. A narrow interpretation of low dose research might exclude investigations with high relevance to radiological protection. Therefore, studies important to radiological protection should be performed in the frame of low dose research even if the applied doses do not fit in the dose range used for the definition of low doses.

  18. Skin dose measurement with MICROSPEC-2{trademark}

    SciTech Connect

    Hsu, H.H.; Chen, J.; Ing, H.; Clifford, E.T.H.; McLean, T.

    1997-10-01

    For many years, the Eberline HP-260{trademark} beta detectors were used for skin dose measurements at Los Alamos National Laboratory. This detector does not measure the beta spectrum and the skin dose can only be determined if the contaminating radioactive isotope is known. A new product MICROSPEC-2{trademark}, has been developed which consists of a small portable computer with a multichannel analyzer and a beta probe consisting of a phoswich detector. The system measures the beta spectrum and automatically folds in the beta fluence-to-dose conversion function to yield the skin dose.

  19. Issues in carcinogenicity testing: dose selection.

    PubMed

    Haseman, J K

    1985-02-01

    Dose selection in testing chemicals for possible carcinogenicity in rodents continues to be an area of scientific debate. In this paper the definition of "maximum tolerated dose" (MTD) is considered, and the advantages and disadvantages of using MTDs are given. There is no universally accepted definition of an MTD, and as a result, objections to utilizing high doses in carcinogenicity testing may reflect differing definitions of an MTD rather than basic disagreements in dose selection philosophy. Data from 52 National Toxicology Program (NTP) carcinogenicity studies indicate that while dose selection has caused difficulties in certain studies using the gavage route of chemical administration, there is little evidence that this has been a problem in NTP studies using the dietary (feed) route of exposure. These data also indicate that more than two-thirds of the carcinogenic effects detected in feeding studies would have been missed had the high dose been reduced from the estimated MTD to 1/2 MTD. The inherent insensitivity of laboratory animal studies for detecting weak-to-moderate carcinogenic responses also argues against reducing the highest dose level. The addition of a third, lower-dosed group provides for a margin of safety against the possibility of over-estimating the MTD. Primary emphasis should be given to improving procedures for estimating the MTD, particularly for gavage studies. Efforts should also be increased to obtain pharmacokinetic and metabolism data for the test chemical that might be factored into the dose selection and study evaluation processes.

  20. Radiation dose implications of digital angiographic systems.

    PubMed

    Hynes, D M; Gershater, R; Edmonds, E W; Rowlands, J A; Baranoski, D; Turow, D G

    1984-08-01

    Digital subtraction angiography (DSA) has been widely accepted and applied. The concentration of iodine in the vessels of interest is low in intravenous DSA. The resultant images can be improved to some extent by increasing the radiation dose. Therefore DSA could become, and possibly could remain, a relatively high-dose procedure. The contributions to dose from the various components of the examination such as fluoroscopy, positioning, test exposures, and final acquisition runs are considered separately. Individual segments of a DSA examination are discussed to show how and where opportunities arise to reduce doses to the lowest levels consistent with satisfactory images. PMID:6377858

  1. Hanford Environmental Dose Reconstruction Project monthly report

    SciTech Connect

    Finch, S.M.

    1990-12-01

    The objective of the Hanford Environmental Dose Reconstruction Project is to estimate the radiation doses that populations could have been have received from nuclear operations at Hanford since 1944. The project is being managed and conducted by the Pacific Northwest Laboratory (PNL) under the direction of an independent Technical Steering Panel (TSP). The project is divided into the following technical tasks. These tasks correspond to the path radionuclides followed, from release to impact on humans (dose estimates): source terms; environmental transport; environmental monitoring data; demographics, agriculture, food habits; and environmental pathways and dose estimates. 3 figs., 3 tabs.

  2. SPE dose prediction using locally weighted regression.

    PubMed

    Hines, J W; Townsend, L W; Nichols, T F

    2005-01-01

    When astronauts are outside Earth's protective magnetosphere, they are subject to large radiation doses resulting from solar particle events. The total dose received from a major solar particle event in deep space could cause severe radiation poisoning. The dose is usually received over a 20-40 h time interval but the event's effects may be reduced with an early warning system. This paper presents a method to predict the total dose early in the event. It uses a locally weighted regression model, which is easier to train, and provides predictions as accurate as the neural network models that were used previously. PMID:16604613

  3. Hanford Environmental Dose Reconstruction Project Monthly Report

    SciTech Connect

    Finch, S.M.

    1990-01-01

    The objective of the Hanford Environmental Dose Reconstruction Project is to estimate the radiation doses that populations could have received from nuclear operations at Hanford since 1944. The project is being managed and conducted by the Pacific Northwest Laboratory (PNL) under the direction of an independent Technical Steering Panel (TSP). The project is divided into the following technical tasks. These tasks correspond to the path radionuclides followed, from release to impact on humans (dose estimates): source terms; environmental transport; environmental monitoring data; demographics; agriculture; food habits; and environmental pathways and dose estimates. 3 figs.

  4. Hanford Environmental Dose Reconstruction Project Monthly Report

    SciTech Connect

    Finch, S.M.; McMakin, A.H.

    1991-04-01

    The objective of the Hanford Environmental Dose Reconstruction Project is to estimate the radiation doses that populations could have received from nuclear operations at Hanford since 1944. The project is being managed and conducted by the Pacific Northwest Laboratory (PNL) under the direction of an independent Technical Steering Panel (TSP). The project is divided into the following technical tasks. These tasks correspond to the path radionuclides followed, from released to impact on humans (dose estimates): source terms; environmental transport; environmental monitoring data; demographics, agriculture, food habits; and, environmental pathways and dose estimates.

  5. Hanford Environmental Dose Reconstruction Project Monthly Report

    SciTech Connect

    Finch, S.M.

    1991-07-01

    The objective of the Hanford Environmental Dose Reconstruction Project is to estimate the radiation doses that individuals and populations could have received from nuclear operations at Hanford since 1944. The project is being managed and conducted by the Pacific Northwest Laboratory (PNL) under the direction of an independent Technical Steering Panel (TSP). The project is divided into the following technical tasks. These tasks correspond to the path radionuclides followed, from release to impact on humans (dose estimates): Source terms; environmental transport; environmental monitoring data; demographics, agriculture, food habits; and environmental pathways and dose estimates. 2 figs., 2 tabs.

  6. Hanford Environmental Dose Reconstruction Project Monthly Report

    SciTech Connect

    Finch, S.M.

    1991-03-01

    The objective of the Hanford Environmental Dose Reconstruction Project is to estimate the radiation doses that populations could have received from nuclear operations at Hanford since 1944. The project is being managed and conducted by the Pacific Northwest Laboratory (PNL) under the direction of an independent Technical Steering Panel (TSP). The project is divided into the technical tasks which correspond to the path radionuclides followed, from release to impact on humans (dose estimates): source terms; environmental transport; environment monitoring data; demographics, agriculture, food habits; and environmental pathways and dose estimates. 3 figs., 2 tabs.

  7. Hanford Environmental Dose Reconstruction Project Monthly Report

    SciTech Connect

    Finch, S.M.; McMakin, A.H.

    1991-05-01

    The objective of the Hanford Environmental Dose Reconstruction Project is to estimate the radiation doses that individuals and populations could have received from nuclear operations at Hanford since 1944. The project is being managed and conducted by the Pacific Northwest Laboratory (PNL) under the direction of an independent Technical Steering Panel (TSP). The project is divided into the following technical tasks. These tasks correspond to the path radionuclides followed, from release to impact on humans (dose estimates): Source Terms, Environmental Transport, Environmental Monitoring Data, Demographics, Agriculture, Food Habits, Environmental Pathways and Dose Estimates. 2 figs., 1 tab.

  8. Dose dependent pharmacokinetics of naproxen in man.

    PubMed

    Niazi, S K; Alam, S M; Ahmad, S I

    1996-05-01

    The pharmacokinetics of one of the most widely used non-steroidal antiinflammatory drugs, naproxen, were studied in 28 healthy human volunteers at the two most commonly used dose levels, viz., 250 mg and 500 mg, in a cross-over design. The plasma levels of naproxen were analysed by a modified high-pressure liquid chromatography method. The plasma concentrations at higher doses were not proportional to dose, indicating a non-linearity in the pharmacokinetics at the dose levels studied; this finding is new since earlier studies had studied only higher doses and assumed that at lower doses the pharmacokinetics would be linear. There was, however, no significant difference in the elimination half-life (rate constant), time to reach peak concentration (Cmax), mean residence time (MRT), or area under first moment curve (AUMC). The clearance and distribution volume of naproxen were substantially increased at higher dose resulting in statistically lower proportional concentration and the total area under the curve (AUC). These observations are explained on the basis of a change in the plasma protein binding resulting in more free naproxen available for quicker clearance and wider penetration into tissues. These findings have several important clinical implications for the long-term use of naproxen as an antiarthritic drug. It is proposed that the clinical efficacy of naproxen can be increased and side-effects reduced by giving it in small divided doses instead of large doses.

  9. Dose rate in brachytherapy using after-loading machine: pulsed or high-dose rate?

    PubMed

    Hannoun-Lévi, J-M; Peiffert, D

    2014-10-01

    Since February 2014, it is no longer possible to use low-dose rate 192 iridium wires due to the end of industrial production of IRF1 and IRF2 sources. The Brachytherapy Group of the French society of radiation oncology (GC-SFRO) has recommended switching from iridium wires to after-loading machines. Two types of after-loading machines are currently available, based on the dose rate used: pulsed-dose rate or high-dose rate. In this article, we propose a comparative analysis between pulsed-dose rate and high-dose rate brachytherapy, based on biological, technological, organizational and financial considerations.

  10. Red bone marrow doses, integral absorbed doses, and somatically effective dose equivalent from four maxillary occlusal projections

    SciTech Connect

    Berge, T.I.; Wohni, T.

    1984-02-01

    Phantom measurements of red bone marrow (RBM) doses, integral absorbed doses, and somatically effective dose equivalent (SEDE) from four different maxillary occlusal projections are presented. For each projection, different combinations of focus-skin distances and tube potentials were compared with regard to the patient's radiation load. The axial incisal view produced the highest patient exposures, with a maximum red bone marrow dose of 122.5 microGy/exposure, integral absorbed dose of 8.6 mJ/exposure, and SEDE values of 39.6 microSv/exposure. The corresponding values from the frontal, lateral occlusal, and tuber views ranged between 4% and 44% of the axial incisal view values for the integral absorbed dose and SEDE values, and between 0.3% and 3% for the red bone marrow doses. Increasing the focus-skin distance from 17.5 cm to 27 cm is accompanied by a 24% to 30% reduction in integral absorbed dose. Increasing the tube potential from 50 kV to 65 kV likewise results in a 23% reduction in absorbed energy.

  11. Determination of radionuclides and pathways contributing to cumulative dose. Hanford Environmental Dose Reconstruction Project: Dose code recovery activities, Calculation 004

    SciTech Connect

    Napier, B.A.

    1992-12-01

    A series of scoping calculations has been undertaken to evaluate the absolute and relative contributions of different radionuclides and exposure pathways to doses that may have been received by individuals living in the vicinity of the Hanford Site. This scoping calculation (Calculation 004) examined the contributions of numerous radionuclides to cumulative dose via environmental exposures and accumulation in foods. Addressed in this calculation were the contributions to organ and effective dose of infants and adults from (1) air submersion and groundshine external dose, (2) inhalation, (3) ingestion of soil by humans, (4) ingestion of leafy vegetables, (5) ingestion of other vegetables and fruits, (6) ingestion of meat, (7) ingestion of eggs, and (8) ingestion of cows` milk from Feeding Regime 1, as described in calculation 002. This calculation specifically addresses cumulative radiation doses to infants and adults resulting from releases occurring over the period 1945 through 1972.

  12. DICOM organ dose does not accurately represent calculated dose in mammography

    NASA Astrophysics Data System (ADS)

    Suleiman, Moayyad E.; Brennan, Patrick C.; McEntee, Mark F.

    2016-03-01

    This study aims to analyze the agreement between the mean glandular dose estimated by the mammography unit (organ dose) and mean glandular dose calculated using Dance et al published method (calculated dose). Anonymised digital mammograms from 50 BreastScreen NSW centers were downloaded and exposure information required for the calculation of dose was extracted from the DICOM header along with the organ dose estimated by the system. Data from quality assurance annual tests for the included centers were collected and used to calculate the mean glandular dose for each mammogram. Bland-Altman analysis and a two-tailed paired t-test were used to study the agreement between calculated and organ dose and the significance of any differences. A total of 27,869 dose points from 40 centers were included in the study, mean calculated dose and mean organ dose (+/- standard deviation) were 1.47 (+/-0.66) and 1.38 (+/-0.56) mGy respectively. A statistically significant 0.09 mGy bias (t = 69.25; p<0.0001) with 95% limits of agreement between calculated and organ doses ranging from -0.34 and 0.52 were shown by Bland-Altman analysis, which indicates a small yet highly significant difference between the two means. The use of organ dose for dose audits is done at the risk of over or underestimating the calculated dose, hence, further work is needed to identify the causal agents for differences between organ and calculated doses and to generate a correction factor for organ dose.

  13. Case Example of Dose Optimization Using Data From Bortezomib Dose-Finding Clinical Trials

    PubMed Central

    Backenroth, Daniel; Cheung, Ying Kuen Ken; Hershman, Dawn L.; Vulih, Diana; Anderson, Barry; Ivy, Percy; Minasian, Lori

    2016-01-01

    Purpose The current dose-finding methodology for estimating the maximum tolerated dose of investigational anticancer agents is based on the cytotoxic chemotherapy paradigm. Molecularly targeted agents (MTAs) have different toxicity profiles, which may lead to more long-lasting mild or moderate toxicities as well as to late-onset and cumulative toxicities. Several approved MTAs have been poorly tolerated during long-term administration, leading to postmarketing dose optimization studies to re-evaluate the optimal treatment dose. Using data from completed bortezomib dose-finding trials, we explore its toxicity profile, optimize its dose, and examine the appropriateness of current designs for identifying an optimal dose. Patients and Methods We classified the toxicities captured from 481 patients in 14 bortezomib dose-finding studies conducted through the National Cancer Institute Cancer Therapy Evaluation Program, computed the incidence of late-onset toxicities, and compared the incidence of dose-limiting toxicities (DLTs) among groups of patients receiving different doses of bortezomib. Results A total of 13,008 toxicities were captured: 46% of patients’ first DLTs and 88% of dose reductions or discontinuations of treatment because of toxicity were observed after the first cycle. Moreover, for the approved dose of 1.3 mg/m2, the estimated cumulative incidence of DLT was > 50%, and the estimated cumulative incidence of dose reduction or treatment discontinuation because of toxicity was nearly 40%. Conclusions When considering the entire course of treatment, the approved bortezomib dose exceeds the conventional ceiling DLT rate of 20% to 33%. Retrospective analysis of trial data provides an opportunity for dose optimization of MTAs. Future dose-finding studies of MTAs should take into account late-onset toxicities to ensure that a tolerable dose is identified for future efficacy and comparative trials. PMID:26926682

  14. Estimating thyroid dose in pediatric CT exams from surface dose measurement

    NASA Astrophysics Data System (ADS)

    Al-Senan, Rani; Mueller, Deborah L.; Hatab, Mustapha R.

    2012-07-01

    The purpose of this study was to investigate the possibility of estimating pediatric thyroid doses from CT using surface neck doses. Optically stimulated luminescence dosimeters were used to measure the neck surface dose of 25 children ranging in ages between one and three years old. The neck circumference for each child was measured. The relationship between obtained surface doses and thyroid dose was studied using acrylic phantoms of various sizes and with holes of different depths. The ratios of hole-to-surface doses were used to convert patients' surface dose to thyroid dose. ImPACT software was utilized to calculate thyroid dose after applying the appropriate age correction factors. A paired t-test was performed to compare thyroid doses from our approach and ImPACT. The ratio of thyroid to surface dose was found to be 1.1. Thyroid doses ranged from 20 to 80 mGy. Comparison showed no statistical significance (p = 0.18). In addition, the average of surface dose variation along the z-axis in helical scans was studied and found to range between 5% (in 10 cm diameter phantom/24 mm collimation/pitch 1.0) and 8% (in 16 cm diameter phantom/12 mm collimation/pitch 0.7). We conclude that surface dose is an acceptable predictor for pediatric thyroid dose from CT. The uncertainty due to surface dose variability may be reduced if narrower collimation is used with a pitch factor close to 1.0. Also, the results did not show any effect of thyroid depth on the measured dose.

  15. Impact of Drug Therapy, Radiation Dose, and Dose Rate on Renal Toxicity Following Bone Marrow Transplantation

    SciTech Connect

    Cheng, Jonathan C.; Schultheiss, Timothy E. Wong, Jeffrey Y.C.

    2008-08-01

    Purpose: To demonstrate a radiation dose response and to determine the dosimetric and chemotherapeutic factors that influence the incidence of late renal toxicity following total body irradiation (TBI). Methods and Materials: A comprehensive retrospective review was performed of articles reporting late renal toxicity, along with renal dose, fractionation, dose rate, chemotherapy regimens, and potential nephrotoxic agents. In the final analysis, 12 articles (n = 1,108 patients), consisting of 24 distinct TBI/chemotherapy conditioning regimens were included. Regimens were divided into three subgroups: adults (age {>=}18 years), children (age <18 years), and mixed population (both adults and children). Multivariate logistic regression was performed to identify dosimetric and chemotherapeutic factors significantly associated with late renal complications. Results: Individual analysis was performed on each population subgroup. For the purely adult population, the only significant variable was total dose. For the mixed population, the significant variables included total dose, dose rate, and the use of fludarabine. For the pediatric population, only the use of cyclosporin or teniposide was significant; no dose response was noted. A logistic model was generated with the exclusion of the pediatric population because of its lack of dose response. This model yielded the following significant variables: total dose, dose rate, and number of fractions. Conclusion: A dose response for renal damage after TBI was identified. Fractionation and low dose rates are factors to consider when delivering TBI to patients undergoing bone marrow transplantation. Drug therapy also has a major impact on kidney function and can modify the dose-response function.

  16. The Dose Response Relationship for Radiation Carcinogenesis

    NASA Astrophysics Data System (ADS)

    Hall, Eric

    2008-03-01

    Recent surveys show that the collective population radiation dose from medical procedures in the U.S. has increased by 750% in the past two decades. It would be impossible to imagine the practice of medicine today without diagnostic and therapeutic radiology, but nevertheless the widespread and rapidly increasing use of a modality which is a known human carcinogen is a cause for concern. To assess the magnitude of the problem it is necessary to establish the shape of the dose response relationship for radiation carcinogenesis. Information on radiation carcinogenesis comes from the A-bomb survivors, from occupationally exposed individuals and from radiotherapy patients. The A-bomb survivor data indicates a linear relationship between dose and the risk of solid cancers up to a dose of about 2.5 Sv. The lowest dose at which there is a significant excess cancer risk is debatable, but it would appear to be between 40 and 100 mSv. Data from the occupation exposure of nuclear workers shows an excess cancer risk at an average dose of 19.4 mSv. At the other end of the dose scale, data on second cancers in radiotherapy patients indicates that cancer risk does not continue to rise as a linear function of dose, but tends towards a plateau of 40 to 60 Gy, delivered in a fractionated regime. These data can be used to estimate the impact of diagnostic radiology at the low dose end of the dose response relationship, and the impact of new radiotherapy modalities at the high end of the dose response relationship. In the case of diagnostic radiology about 90% of the collective population dose comes from procedures (principally CT scans) which involve doses at which there is credible evidence of an excess cancer incidence. While the risk to the individual is small and justified in a symptomatic patient, the same is not true of some screening procedures is asymptomatic individuals, and in any case the huge number of procedures must add up to a potential public health problem. In the

  17. Multicriteria optimization of the spatial dose distribution

    SciTech Connect

    Schlaefer, Alexander; Viulet, Tiberiu; Muacevic, Alexander; Fürweger, Christoph

    2013-12-15

    Purpose: Treatment planning for radiation therapy involves trade-offs with respect to different clinical goals. Typically, the dose distribution is evaluated based on few statistics and dose–volume histograms. Particularly for stereotactic treatments, the spatial dose distribution represents further criteria, e.g., when considering the gradient between subregions of volumes of interest. The authors have studied how to consider the spatial dose distribution using a multicriteria optimization approach.Methods: The authors have extended a stepwise multicriteria optimization approach to include criteria with respect to the local dose distribution. Based on a three-dimensional visualization of the dose the authors use a software tool allowing interaction with the dose distribution to map objectives with respect to its shape to a constrained optimization problem. Similarly, conflicting criteria are highlighted and the planner decides if and where to relax the shape of the dose distribution.Results: To demonstrate the potential of spatial multicriteria optimization, the tool was applied to a prostate and meningioma case. For the prostate case, local sparing of the rectal wall and shaping of a boost volume are achieved through local relaxations and while maintaining the remaining dose distribution. For the meningioma, target coverage is improved by compromising low dose conformality toward noncritical structures. A comparison of dose–volume histograms illustrates the importance of spatial information for achieving the trade-offs.Conclusions: The results show that it is possible to consider the location of conflicting criteria during treatment planning. Particularly, it is possible to conserve already achieved goals with respect to the dose distribution, to visualize potential trade-offs, and to relax constraints locally. Hence, the proposed approach facilitates a systematic exploration of the optimal shape of the dose distribution.

  18. Biodosimetry and assessment of radiation dose

    PubMed Central

    Crespo, Rafael Herranz; Domene, Mercedes Moreno; Rodríguez, María Jesús Prieto

    2011-01-01

    Aim When investigating radiation accidents, it is very important to determine the exposition dose to the individuals. In the case of exposures over 1 Gy, clinicians may expect deterministic effects arising the following weeks and months, in these cases dose estimation will help physicians in the planning of therapy. Nevertheless, for doses below 1 Gy, biodosimetry data are important due to the risk of developing late stochastic effects. Finally, some accidental overexposures are lack of physical measurements and the only way of quantifying dose is by biological dosimetry. Background The analysis of chromosomal aberrations by different techniques is the most developed method of quantifying dose to individuals exposed to ionising radiations.1,2 Furthermore, the analysis of dicentric chromosomes observed in metaphases from peripheral lymphocytes is the routine technique used in case of acute exposures to assess radiation doses. Materials and methods Solid stain of chromosomes is used to determine dicentric yields for dose estimation. Fluorescence in situ hybridization (FISH) for translocations analysis is used when delayed sampling or suspected chronically irradiation dose assessment. Recommendations in technical considerations are based mainly in the IAEA Technical Report No. 405.2 Results Experience in biological dosimetry at Gregorio Marañón General Hospital is described, including own calibration curves used for dose estimation, background studies and real cases of overexposition. Conclusion Dose assessment by biological dosimeters requires a large previous standardization work and a continuous update. Individual dose assessment involves high qualification professionals and its long time consuming, therefore requires specific Centres. For large mass casualties cooperation among specialized Institutions is needed. PMID:24376970

  19. Perchlorate exposure and dose estimates in infants

    PubMed Central

    Valentín-Blasini, Liza; Blount, Benjamin C.; Otero-Santos, Samaret; Cao, Yang; Bernbaum, Judy C.; Rogan, Walter J.

    2011-01-01

    Perchlorate is a naturally occurring inorganic anion used as a component of solid rocket fuel, explosives, and pyrotechnics. Sufficiently high perchlorate intakes can modify thyroid function by competitively inhibiting iodide uptake in adults; however little is known about perchlorate exposure and health effects in infants. Food intake models predict that infants have higher perchlorate exposure doses than adults. For this reason, we measured perchlorate and related anions (nitrate, thiocyanate, and iodide) in 206 urine samples from 92 infants ages 1–377 days and calculated perchlorate intake dose for this population of infants. The median estimated exposure dose for this population of infants was 0.160 μg/kg/day. Of the 205 individual dose estimates, 9% exceeded the reference dose of 0.7 μg/kg/day; 6% of infants providing multiple samples had multiple perchlorate dose estimates above the reference dose. Estimated exposure dose differed by feeding method: breast-fed infants had a higher perchlorate exposure dose (geometric mean 0.220 μg/kg/day) than infants consuming cow milk-based formula (geometric mean 0.103 μg/kg/day, p<0.0001) or soy-based formula (geometric mean 0.027 μg/kg/day, p<0.0001), consistent with dose estimates based on dietary intake data. The ability of perchlorate to block adequate iodide uptake by the thyroid may have been reduced by the iodine-sufficient status of the infants studied (median urinary iodide 125 μg/L). Further research is needed to see whether these perchlorate intake doses lead to any health effects. PMID:21449579

  20. Perchlorate exposure and dose estimates in infants.

    PubMed

    Valentín-Blasini, Liza; Blount, Benjamin C; Otero-Santos, Samaret; Cao, Yang; Bernbaum, Judy C; Rogan, Walter J

    2011-05-01

    Perchlorate is a naturally occurring inorganic anion used as a component of solid rocket fuel, explosives, and pyrotechnics. Sufficiently high perchlorate intakes can modify thyroid function by competitively inhibiting iodide uptake in adults; however, little is known about perchlorate exposure and health effects in infants. Food intake models predict that infants have higher perchlorate exposure doses than adults. For this reason, we measured perchlorate and related anions (nitrate, thiocyanate, and iodide) in 206 urine samples from 92 infants ages 1-377 days and calculated perchlorate intake dose for this sample of infants. The median estimated exposure dose for this sample of infants was 0.160 μg/kg/day. Of the 205 individual dose estimates, 9% exceeded the reference dose of 0.7 μg/kg/day; 6% of infants providing multiple samples had multiple perchlorate dose estimates above the reference dose. Estimated exposure dose differed by feeding method: breast-fed infants had a higher perchlorate exposure dose (geometric mean 0.220 μg/kg/day) than infants consuming cow milk-based formula (geometric mean 0.103 μg/kg/day, p < 0.0001) or soy-based formula (geometric mean 0.027 μg/kg/day, p < 0.0001), consistent with dose estimates based on dietary intake data. The ability of perchlorate to block adequate iodide uptake by the thyroid may have been reduced by the iodine-sufficient status of the infants studied (median urinary iodide 125 μg/L). Further research is needed to see whether these perchlorate intake doses lead to any health effects.

  1. Clostridium perfringens growth from spore inocula in sous-vide processed pork-based Mexican entrée.

    PubMed

    Miguel-Garcia, Denise Y; Juneja, Vijay K; Valenzuela-Melendrez, Martin; Díaz-Cinco, Martha E; Thippareddi, H; Aida Peña-Ramos, E

    2009-01-01

    The combined effect of Citricidal wih irradiation on Clostridium perfringens growth from spores in a sous-vide processed marinated pork meat Mexican entrée was investigated. Citricidal was added at 200 or 800 ppm after mixing pork meat with tomatillo sauce and inoculated with 3 log(10) CFU/g of C. perfringens spores. Samples were irradiated at either 0 or 2 kGy, heated to an internal temperature of 71 degrees C, and stored at 4 degrees C for 28 d, 15 degrees C for 45 d, and 25 degrees C for 26 h. To simulate the conditions that may occur during transportation, distribution, storage, or handling in supermarkets or by consumers, the effect of static temperature abuse on C. perfringens growth was assessed by transferring samples stored at 4 to 25 degrees C for 13 and 15 h. Total C. perfringens populations were determined by plating diluted samples on tryptose-sulfite-cycloserine agar. Growth was not observed up to 45 d of storage at 15 degrees C in samples supplemented with 800 ppm of Citricidal. At 25 degrees C, no significant differences (P > 0.05) on the lag phase duration due to antimicrobial treatments was observed. The temperature abuse of refrigerated products for up to 15 h did not lead to C. perfringens growth to high infective dose levels of 1 million cells required to cause food poisoning. The results suggest that 800 ppm Citricidal can have significant bacteriostatic activity against C. perfringens and may provide a degree of protection against this pathogen in sous-vide processed marinated pork meat Mexican entrée, under mild temperature abuse (

  2. 32 CFR 218.4 - Dose estimate reporting standards.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., and neutron doses, when applicable. In determining the veteran's dose, initial neutron, initial gamma..., doses will be reported as gamma dose, neutron dose, and internal dose. To the extent to which the... of a neutron or internal exposure? What is the reconstruction? Upon request, the participant or...

  3. 32 CFR 218.4 - Dose estimate reporting standards.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., and neutron doses, when applicable. In determining the veteran's dose, initial neutron, initial gamma..., doses will be reported as gamma dose, neutron dose, and internal dose. To the extent to which the... of a neutron or internal exposure? What is the reconstruction? Upon request, the participant or...

  4. 32 CFR 218.4 - Dose estimate reporting standards.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., and neutron doses, when applicable. In determining the veteran's dose, initial neutron, initial gamma..., doses will be reported as gamma dose, neutron dose, and internal dose. To the extent to which the... of a neutron or internal exposure? What is the reconstruction? Upon request, the participant or...

  5. 32 CFR 218.4 - Dose estimate reporting standards.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., and neutron doses, when applicable. In determining the veteran's dose, initial neutron, initial gamma..., doses will be reported as gamma dose, neutron dose, and internal dose. To the extent to which the... of a neutron or internal exposure? What is the reconstruction? Upon request, the participant or...

  6. Fewer doses of HPV vaccine result in immune response similar to three-dose regimen

    Cancer.gov

    NCI scientists report that two doses of a human papillomavirus (HPV) vaccine, trademarked as Cervarix, resulted in similar serum antibody levels against two of the most carcinogenic types of HPV (16 and 18), compared to a standard three dose regimen.

  7. Low Dose Risk, Decisions, and Risk Communication

    SciTech Connect

    Flynn, James

    2002-09-14

    The overall research objective was to establish new levels of information about how people, groups, and communities respond to low dose radiation exposure. This is basic research into the social psychology of individual, group, and community responses to radiation exposures. The results of this research are directed to improving risk communication and public participation in management of environmental problems resulting from low dose radiation.

  8. An updated dose assessment for Rongelap Island

    SciTech Connect

    Robison, W.L.; Conrado, C.L.; Bogen, K.T.

    1994-07-01

    We have updated the radiological dose assessment for Rongelap Island at Rongelap Atoll using data generated from field trips to the atoll during 1986 through 1993. The data base used for this dose assessment is ten fold greater than that available for the 1982 assessment. Details of each data base are presented along with details about the methods used to calculate the dose from each exposure pathway. The doses are calculated for a resettlement date of January 1, 1995. The maximum annual effective dose is 0.26 mSv y{sup {minus}1} (26 mrem y{sup {minus}1}). The estimated 30-, 50-, and 70-y integral effective doses are 0.0059 Sv (0.59 rem), 0.0082 Sv (0.82 rem), and 0.0097 Sv (0.97 rem), respectively. More than 95% of these estimated doses are due to 137-Cesium ({sup 137}Cs). About 1.5% of the estimated dose is contributed by 90-Strontium ({sup 90}Sr), and about the same amount each by 239+240-Plutonium ({sup 239+240}PU), and 241-Americium ({sup 241}Am).

  9. Mass versus molar doses, similarities and differences.

    PubMed

    Chmielewska, A; Lamparczyk, H

    2008-11-01

    Generally, they are two systems expressing the amounts of active substance in a given drug product, i.e. mass and molar dose. Currently, the dose system based on the mass is widely used in which doses are expressed in grams or milligrams. On the other hand, the molar dose system is in direct relation to the number of molecules. Hence, the objective of this work was to compare both systems in order to find their advantages and disadvantages. Active substances belonging to the groups of antibiotics, nootropic agents, beta-blockers, vitamins, GABA-analog, COX-2 inhibitors, calcium channel antagonists, benzodiazepine receptor agonists, lipid-modifying agents (fibrates), non-steroidal anti-inflammatory drugs (profens), estrogens, neuroleptics, analgesics and benzodiazepines were considered. Moreover, products containing two active substances were also taken into account. These are mixtures of hydrochlorothiazide with active substances influencing the renin-angiotensin system and combined oral contraceptives. For each active substance, belonging to the groups mentioned above molar doses were calculated from mass doses and molar mass. Hence, groups of drugs with a single active substance, drugs with similar pharmacological activities, pharmaceutical alternatives, and drugs with a single active ingredient manufactured in different doses were compared in order to find which dose system describes more adequately differences between and within the groups mentioned above. Comparisons were supported by a number of equations, which theoretically justify the data, and relationships derived from calculations. PMID:19069248

  10. Simple benchmark for complex dose finding studies.

    PubMed

    Cheung, Ying Kuen

    2014-06-01

    While a general goal of early phase clinical studies is to identify an acceptable dose for further investigation, modern dose finding studies and designs are highly specific to individual clinical settings. In addition, as outcome-adaptive dose finding methods often involve complex algorithms, it is crucial to have diagnostic tools to evaluate the plausibility of a method's simulated performance and the adequacy of the algorithm. In this article, we propose a simple technique that provides an upper limit, or a benchmark, of accuracy for dose finding methods for a given design objective. The proposed benchmark is nonparametric optimal in the sense of O'Quigley et al. (2002, Biostatistics 3, 51-56), and is demonstrated by examples to be a practical accuracy upper bound for model-based dose finding methods. We illustrate the implementation of the technique in the context of phase I trials that consider multiple toxicities and phase I/II trials where dosing decisions are based on both toxicity and efficacy, and apply the benchmark to several clinical examples considered in the literature. By comparing the operating characteristics of a dose finding method to that of the benchmark, we can form quick initial assessments of whether the method is adequately calibrated and evaluate its sensitivity to the dose-outcome relationships.

  11. Understanding and using fluoroscopic dose display information.

    PubMed

    Weinberg, Brent D; Guild, Jeffrey B; Arbique, Gary M; Chason, David P; Anderson, Jon A

    2015-01-01

    Fluoroscopically guided procedures are an area of radiology in which radiation exposure to the patient is highly operator dependent. Modern fluoroscopy machines display a variety of information, including technique factors, field of view, operating geometry, exposure mode, fluoroscopic time, air kerma at the reference point (RAK), and air kerma area-product. However, the presentation of this information is highly vendor specific, and many users are unaware of how to interpret this information and use it to perform a study with the minimum necessary dose. A conceptual framework for understanding the radiation dose readout during a procedure is to compare it to the dashboard of an automobile, where the rate at which radiation is being applied (the RAK rate [mGy/min]) is the dose "speed" and the cumulative amount of radiation applied (cumulative RAK [mGy]) is the dose "odometer." This analogy can be used as a starting point to improve knowledge of these parameters, including how RAK is measured, how RAK correlates with skin dose, and how parameters are displayed differently during fluoroscopy and fluorography. Awareness of these factors is critical to understanding how dose parameters translate to patient risk and the consequences of high-dose studies. With this increased awareness, physicians performing fluoroscopically guided procedures can understand how to use built-in features of the fluoroscopic equipment (pulse rate, beam filtration, and automatic exposure control) and fluoroscopic techniques (procedure planning, patient positioning, proper collimation, and magnification) to reduce patient radiation dose, thereby improving patient safety. PMID:25442356

  12. How to calculate the dose of chemotherapy

    PubMed Central

    Gurney, H

    2002-01-01

    Body surface area-dosing does not account for the complex processes of cytotoxic drug elimination. This leads to an unpredictable variation in effect. Overdosing is easily recognised but it is possible that unrecognised underdosing is more common and may occur in 30% or more of patients receiving standard regimen. Those patients who are inadvertently underdosed are at risk of a significantly reduced anticancer effect. Using published data, it can be calculated that there is an almost 20% relative reduction in survival for women receiving adjuvant chemotherapy for breast cancer as a result of unrecognised underdosing. Similarly, the cure rate of cisplatin-based chemotherapy for advanced testicular cancer may be reduced by as much as 10%. The inaccuracy of body surface area-dosing is more than an inconvenience and it is important that methods for more accurate dose calculation are determined, based on the known drug elimination processes for cytotoxic chemotherapy. Twelve rules for dose calculation of chemotherapy are given that can be used as a guideline until better dose-calculation methods become available. Consideration should be given to using fixed dose guidelines independent of body surface area and based on drug elimination capability, both as a starting dose and for dose adjustment, which may have accuracy, safety and financial advantages. British Journal of Cancer (2002) 86, 1297–1302. DOI: 10.1038/sj/bjc/6600139 www.bjcancer.com © 2002 Cancer Research UK PMID:11953888

  13. Space Radiation Quality Factors and the Delta Ray Dose and Dose-Rate Reduction Effectiveness Factor.

    PubMed

    Cucinotta, Francis A; Cacao, Eliedonna; Alp, Murat

    2016-03-01

    In this paper, the authors recommend that the dose and dose-rate effectiveness factor used for space radiation risk assessments should be based on a comparison of the biological effects of energetic electrons produced along a cosmic ray particles path in low fluence exposures to high dose-rate gamma-ray exposures of doses of about 1 Gy. Methods to implement this approach are described.

  14. Space Radiation Quality Factors and the Delta Ray Dose and Dose-Rate Reduction Effectiveness Factor.

    PubMed

    Cucinotta, Francis A; Cacao, Eliedonna; Alp, Murat

    2016-03-01

    In this paper, the authors recommend that the dose and dose-rate effectiveness factor used for space radiation risk assessments should be based on a comparison of the biological effects of energetic electrons produced along a cosmic ray particles path in low fluence exposures to high dose-rate gamma-ray exposures of doses of about 1 Gy. Methods to implement this approach are described. PMID:26808878

  15. Hanford Environmental Dose Reconstruction Project Monthly Report

    SciTech Connect

    Finch, S.M.

    1990-10-01

    This monthly report summarizes the technical progress and project status for the Hanford Environmental Dose Reconstruction (HEDR) Project being conducted at the Pacific Northwest Laboratory (PNL) under the direction of a Technical Steering Panel (TSP). The TSP is composed of experts in numerous technical fields related to this project and represents the interests of the public. The objective of the Hanford Environmental Dose Reconstruction Project is to estimate the radiation doses that populations could have received from nuclear operations at Hanford since 1944. The project is being managed and conducted by the Pacific Northwest Laboratory (PNL) under the direction of an independent Technical Steering Panel (TSP). The project is divided into the following technical tasks. These tasks correspond to the path radionuclides followed, from release to impact on humans (dose estimates): source terms, environmental transport, environmental monitoring data, demographics, agriculture, food habits, and environmental pathways and dose estimates. 3 figs., 3 tabs.

  16. Mapping of cosmic radiation dose in Croatia.

    PubMed

    Poje, M; Vuković, B; Radolić, V; Miklavčić, I; Faj, D; Varga Pajtler, M; Planinić, J

    2012-01-01

    The Earth is continually bombarded by high-energy particles coming from the outer space and the sun. These particles, termed cosmic radiation, interact with nuclei of atmospheric constituents and decrease in intensity with depth in the atmosphere. Measurements of photon and gamma radiation, performed with a Radiameter at 1 m above the ground, indicated dose rates of 50-100 nSv/h. The neutron dose rate was measured with the CR-39 track etch detector calibrated by the CERN-EU high-energy Reference Field (CERF) facility. Correlation between neutron dose rates and altitudes at 36 sites was examined in order to obtain a significant positive correlation coefficient; the resulting linear regression enabled estimation of a neutron dose at particular altitude. The measured neutron dose rate in Osijek (altitude of 89 m, latitude of 45.31° N) was 110 nSv/h.

  17. Hanford Environmental Dose Reconstruction Project Monthly Report

    SciTech Connect

    Finch, S.M.

    1990-06-01

    This monthly report summarizes the technical progress and project status for the Hanford Environmental Dose Reconstruction (HEDR) Project being conducted at Pacific Northwest Laboratory (PNL) under the direction of a Technical Steering Panel (TSP). The TSP is composed of experts in numerous technical fields related to this project and represents the interests of the public. The objective of the Hanford Environmental Dose Reconstruction Project is to estimate the radiation doses that populations could have received from nuclear operations at Hanford since 1944. The project is divided into technical tasks which address each of the primary steps in the path from radioactive releases to dose estimates: source terms, environmental transport, environmental monitoring data, demographics, agriculture, and food habits, and environmental pathways and dose estimates.

  18. Occupational radiation doses during interventional procedures

    NASA Astrophysics Data System (ADS)

    Nuraeni, N.; Hiswara, E.; Kartikasari, D.; Waris, A.; Haryanto, F.

    2016-03-01

    Digital subtraction angiography (DSA) is a type of fluoroscopy technique used in interventional radiology to clearly visualize blood vessels in a bony or dense soft tissue environment. The use of DSA procedures has been increased quite significantly in the Radiology departments in various cities in Indonesia. Various reports showed that both patients and medical staff received a noticeable radiation dose during the course of this procedure. A study had been carried out to measure these doses among interventionalist, nurse and radiographer. The results show that the interventionalist and the nurse, who stood quite close to the X-ray beams compared with the radiographer, received radiation higher than the others. The results also showed that the radiation dose received by medical staff were var depending upon the duration and their position against the X-ray beams. Compared tothe dose limits, however, the radiation dose received by all these three medical staff were still lower than the limits.

  19. Hanford Environmental Dose Reconstruction Project Monthly Report

    SciTech Connect

    Finch, S.M.

    1990-05-01

    This monthly report summarizes the technical progress and project status for the Hanford Environmental Dose Reconstruction (HEDR) Project being conducted at Pacific Northwest Laboratory (PNL) under the direction of a Technical Steering Panel (TSP). The TSP is composed of experts in numerous technical fields related to this project and represents the interests of the public. The US Department of Energy (DOE) funds the project. The objective of the Hanford Environmental Dose Reconstruction Project is to estimate the radiation doses that populations could have received from nuclear operations at Hanford since 1944. The project is divided into the following technical tasks. These tasks address each of the primary steps in the path from radioactive releases to dose estimates source terms, environmental transport, environmental monitoring data, demographics, agriculture, and food habits, and environmental pathways and dose estimates.

  20. GENERAL CONSIDERATIONS OF DOSE-EFFECT AND DOSE-RESPONSE RELATIONSHIPS

    EPA Science Inventory

    ABSTRACT In 2003, the International Union of Pure and Applied chemistry (IUPAC) issued a glossary of terms that included the defi nition of dose-effect and doseresponse relationships (Nordberg et al., 2004). Dose effect relationship is defined as an association between dose and...

  1. A new definition of biological effective dose: The dose distribution effects.

    PubMed

    Zhang, Qinghui; Tian, Suqing; Borasi, Giovanni

    2015-12-01

    A new biological effective dose (BED) is proposed in this note. This new BED definition takes into account the fact that dose distribution is non-uniform for tumors in patients' treatments. This new BED can be calculated from the dose distribution within a tumor, making it practical and useful for clinical applications.

  2. Surface dose measurement using TLD powder extrapolation

    SciTech Connect

    Rapley, P. . E-mail: rapleyp@tbh.net

    2006-10-01

    Surface/near-surface dose measurements in therapeutic x-ray beams are important in determining the dose to the dermal and epidermal skin layers during radiation treatment. Accurate determination of the surface dose is a difficult but important task for proper treatment of patients. A new method of measuring surface dose in phantom through extrapolation of readings from various thicknesses of thermoluminescent dosimeter (TLD) powder has been developed and investigated. A device was designed, built, and tested that provides TLD powder thickness variation to a minimum thickness of 0.125 mm. Variations of the technique have been evaluated to optimize precision with consideration of procedural ease. Results of this study indicate that dose measurements (relative to D{sub max}) in regions of steep dose gradient in the beam axis direction are possible with a precision (2 standard deviations [SDs]) as good as {+-} 1.2% using the technique. The dosimeter was developed and evaluated using variation to the experimental method. A clinically practical procedure was determined, resulting in measured surface dose of 20.4 {+-} 2% of the D{sub max} dose for a 10 x 10 cm{sup 2}, 80-cm source-to-surface distance (SSD), Theratron 780 Cobalt-60 ({sup 60}C) beam. Results obtained with TLD powder extrapolation compare favorably to other methods presented in the literature. The TLD powder extrapolation tool has been used clinically at the Northwestern Ontario Regional Cancer Centre (NWORCC) to measure surface dose effects under a number of conditions. Results from these measurements are reported. The method appears to be a simple and economical tool for surface dose measurement, particularly for facilities with TLD powder measurement capabilities.

  3. Hormones and Endocrine-Disrupting Chemicals: Low-Dose Effects and Nonmonotonic Dose Responses

    PubMed Central

    Colborn, Theo; Hayes, Tyrone B.; Heindel, Jerrold J.; Jacobs, David R.; Lee, Duk-Hee; Shioda, Toshi; Soto, Ana M.; vom Saal, Frederick S.; Welshons, Wade V.; Zoeller, R. Thomas

    2012-01-01

    For decades, studies of endocrine-disrupting chemicals (EDCs) have challenged traditional concepts in toxicology, in particular the dogma of “the dose makes the poison,” because EDCs can have effects at low doses that are not predicted by effects at higher doses. Here, we review two major concepts in EDC studies: low dose and nonmonotonicity. Low-dose effects were defined by the National Toxicology Program as those that occur in the range of human exposures or effects observed at doses below those used for traditional toxicological studies. We review the mechanistic data for low-dose effects and use a weight-of-evidence approach to analyze five examples from the EDC literature. Additionally, we explore nonmonotonic dose-response curves, defined as a nonlinear relationship between dose and effect where the slope of the curve changes sign somewhere within the range of doses examined. We provide a detailed discussion of the mechanisms responsible for generating these phenomena, plus hundreds of examples from the cell culture, animal, and epidemiology literature. We illustrate that nonmonotonic responses and low-dose effects are remarkably common in studies of natural hormones and EDCs. Whether low doses of EDCs influence certain human disorders is no longer conjecture, because epidemiological studies show that environmental exposures to EDCs are associated with human diseases and disabilities. We conclude that when nonmonotonic dose-response curves occur, the effects of low doses cannot be predicted by the effects observed at high doses. Thus, fundamental changes in chemical testing and safety determination are needed to protect human health. PMID:22419778

  4. Hormones and endocrine-disrupting chemicals: low-dose effects and nonmonotonic dose responses.

    PubMed

    Vandenberg, Laura N; Colborn, Theo; Hayes, Tyrone B; Heindel, Jerrold J; Jacobs, David R; Lee, Duk-Hee; Shioda, Toshi; Soto, Ana M; vom Saal, Frederick S; Welshons, Wade V; Zoeller, R Thomas; Myers, John Peterson

    2012-06-01

    For decades, studies of endocrine-disrupting chemicals (EDCs) have challenged traditional concepts in toxicology, in particular the dogma of "the dose makes the poison," because EDCs can have effects at low doses that are not predicted by effects at higher doses. Here, we review two major concepts in EDC studies: low dose and nonmonotonicity. Low-dose effects were defined by the National Toxicology Program as those that occur in the range of human exposures or effects observed at doses below those used for traditional toxicological studies. We review the mechanistic data for low-dose effects and use a weight-of-evidence approach to analyze five examples from the EDC literature. Additionally, we explore nonmonotonic dose-response curves, defined as a nonlinear relationship between dose and effect where the slope of the curve changes sign somewhere within the range of doses examined. We provide a detailed discussion of the mechanisms responsible for generating these phenomena, plus hundreds of examples from the cell culture, animal, and epidemiology literature. We illustrate that nonmonotonic responses and low-dose effects are remarkably common in studies of natural hormones and EDCs. Whether low doses of EDCs influence certain human disorders is no longer conjecture, because epidemiological studies show that environmental exposures to EDCs are associated with human diseases and disabilities. We conclude that when nonmonotonic dose-response curves occur, the effects of low doses cannot be predicted by the effects observed at high doses. Thus, fundamental changes in chemical testing and safety determination are needed to protect human health. PMID:22419778

  5. Resource utilization. High dose rate versus low dose rate brachytherapy for gynecologic cancer.

    PubMed

    Bastin, K; Buchler, D; Stitt, J; Shanahan, T; Pola, Y; Paliwal, B; Kinsella, T

    1993-06-01

    A comparative analysis of anesthesia use, perioperative morbidity and mortality, capital, and treatment cost of high dose rate versus low dose rate intracavitary brachytherapy for gynecologic malignancy is presented. To assess current anesthesia utilization, application location, and high dose rate afterloader availability for gynecologic brachytherapy in private and academic practices, a nine-question survey was sent to 150 radiotherapy centers in the United States, of which 95 (63%) responded. Of these 95 respondents, 95% used low dose rate brachytherapy, and 18% possessed high dose rate capability. General anesthesia was used in 95% of programs for tandem + ovoid and in 31% for ovoids-only placement. Differences among private and academic practice respondents were minimal. In our institution, a cost comparison for low dose rate therapy (two applications with 3 hospital days per application, operating and recovery room use, spinal anesthesia, radiotherapy) versus high dose rate treatment (five outpatient departmental applications, intravenous anesthesia without an anesthesiologist, radiotherapy) revealed a 244% higher overall charge for low dose rate treatment, primarily due to hospital and operating room expenses. In addition to its ability to save thousands of dollars per intracavitary patient, high dose rate therapy generated a "cost-shift," increasing radiotherapy departmental billings by 438%. More importantly, perioperative morbidity and mortality in our experience of 500+ high dose rate applications compared favorably with recently reported data using low dose rate intracavitary treatment. Capital investment, maintenance requirements, and depreciation costs for high dose rate capability are reviewed. Application of the defined "revenue-cost ratio" formula demonstrates the importance of high application numbers and consistent reimbursement for parity in high dose rate operation. Logically, inadequate third-party reimbursement (e.g., Medicare) reduces high

  6. Verification of IMRT dose calculations using AAA and PBC algorithms in dose buildup regions.

    PubMed

    Oinam, Arun S; Singh, Lakhwant

    2010-08-26

    The purpose of this comparative study was to test the accuracy of anisotropic analytical algorithm (AAA) and pencil beam convolution (PBC) algorithms of Eclipse treatment planning system (TPS) for dose calculations in the low- and high-dose buildup regions. AAA and PBC algorithms were used to create two intensity-modulated radiotherapy (IMRT) plans of the same optimal fluence generated from a clinically simulated oropharynx case in an in-house fabricated head and neck phantom. The TPS computed buildup doses were compared with the corresponding measured doses in the phantom using thermoluminescence dosimeters (TLD 100). Analysis of dose distribution calculated using PBC and AAA shows an increase in gamma value in the dose buildup region indicating large dose deviation. For the surface areas of 1, 50 and 100 cm2, PBC overestimates doses as compared to AAA calculated value in the range of 1.34%-3.62% at 0.6 cm depth, 1.74%-2.96% at 0.4 cm depth, and 1.96%-4.06% at 0.2 cm depth, respectively. In high-dose buildup region, AAA calculated doses were lower by an average of -7.56% (SD = 4.73%), while PBC was overestimated by 3.75% (SD = 5.70%) as compared to TLD measured doses at 0.2 cm depth. However, at 0.4 and 0.6 cm depth, PBC overestimated TLD measured doses by 5.84% (SD = 4.38%) and 2.40% (SD = 4.63%), respectively, while AAA underestimated the TLD measured doses by -0.82% (SD = 4.24%) and -1.10% (SD = 4.14%) at the same respective depth. In low-dose buildup region, both AAA and PBC overestimated the TLD measured doses at all depths except -2.05% (SD = 10.21%) by AAA at 0.2 cm depth. The differences between AAA and PBC at all depths were statistically significant (p < 0.05) in high-dose buildup region, whereas it is not statistically significant in low-dose buildup region. In conclusion, AAA calculated the dose more accurately than PBC in clinically important high-dose buildup region at 0.4 cm and 0.6 cm depths. The use of an orfit cast increases the dose buildup

  7. Single-dose oral guanidinoacetic acid exhibits dose-dependent pharmacokinetics in healthy volunteers.

    PubMed

    Ostojic, Sergej M; Vojvodic-Ostojic, Aleksandra

    2015-03-01

    Guanidinoacetic acid (GAA), the natural precursor of creatine, has potential as a dietary supplement for human nutrition, yet no data are available regarding its dose-dependent pharmacokinetic (PK) behavior. We hypothesized that a single dose of orally administered GAA exhibited dose-dependent PK behavior in healthy volunteers. Forty-eight young adults were enrolled in a randomized, placebo-controlled, double-blind, parallel-group trial to receive single oral doses of GAA (1.2, 2.4, and 4.8 g) or a placebo. Pharmacokinetic metrics for plasma GAA and creatine were assessed immediately before (0 hours) and at 1, 2, 4, 6, 8, 12, and 24 hours after GAA ingestion. The lag time appeared to be similar after the bolus ingestion of GAA (0.14 ± 0.17 hours for low-dose GAA, 0.31 ± 0.18 hours for medium-dose GAA, and 0.38 ± 0.32 hours for high-dose GAA; P = .05). An increase in the area under the concentration-time curve for plasma GAA was found for the dose range tested, with 2.4- and 9.3-fold increases in the area under the concentration-time curve for every 2-fold increase in the GAA dose (P < .0001). No differences were found for elimination half-time between the low-dose and medium-dose groups (<1.75 hours), whereas the elimination half-time was significantly longer (>2.1 hours) for the high-dose GAA regimen (P = .001). The volume of distribution was affected by the dosage of GAA applied (102.6 ± 17.3 L for low-dose GAA, 97.5 ± 15.7 L for medium-dose GAA, and 61.1 ± 12.7 L for high-dose GAA; P < .0001). Ingestion of GAA elevated plasma creatine by 80%, 116%, and 293% compared with the placebo for the 1.2, 2.4, and 4.8 g doses, respectively (P < .0001). Guanidinoacetic acid single-dose PK metrics were nonlinear with respect to dose size. Across the dose range of 1.2 to 4.8 g, systemic exposure to GAA increased in a greater than dose-proportional manner. PMID:25622538

  8. Derivation of dose conversion factors for tritium

    SciTech Connect

    Killough, G. G.

    1982-03-01

    For a given intake mode (ingestion, inhalation, absorption through the skin), a dose conversion factor (DCF) is the committed dose equivalent to a specified organ of an individual per unit intake of a radionuclide. One also may consider the effective dose commitment per unit intake, which is a weighted average of organ-specific DCFs, with weights proportional to risks associated with stochastic radiation-induced fatal health effects, as defined by Publication 26 of the International Commission on Radiological Protection (ICRP). This report derives and tabulates organ-specific dose conversion factors and the effective dose commitment per unit intake of tritium. These factors are based on a steady-state model of hydrogen in the tissues of ICRP's Reference Man (ICRP Publication 23) and equilibrium of specific activities between body water and other tissues. The results differ by 27 to 33% from the estimate on which ICRP Publication 30 recommendations are based. The report also examines a dynamic model of tritium retention in body water, mineral bone, and two compartments representing organically-bound hydrogen. This model is compared with data from human subjects who were observed for extended periods. The manner of combining the dose conversion factors with measured or model-predicted levels of contamination in man's exposure media (air, drinking water, soil moisture) to estimate dose rate to an individual is briefly discussed.

  9. Patient Dose Management: Focus on Practical Actions

    PubMed Central

    2016-01-01

    Medical radiation is a very important part of modern medicine, and should be only used when needed and optimized. Justification and optimization of radiation examinations must be performed. The first step of reduction of medical exposure is to know the radiation dose in currently performed examinations. This review covers radiation units, how various imaging modalities report dose, and the current status of radiation dose reports and legislation. Also, practical tips that can be applied to clinical practice are introduced. Afterwards, the importance of radiology exposure related education is emphasized and the current status of education for medical personal and the public is explained, and appropriate education strategies are suggested. Commonly asked radiation dose related example questions and answers are provided in detail to allow medical personnel to answer patients. Lastly, we talk about computerized programs that can be used in medical facilities for managing patient dose. While patient dose monitoring and management should be used to decrease and optimize overall radiation dose, it should not be used to assess individual cancer risk. One must always remember that medically justified examinations should always be performed, and unneeded examinations should be avoided in the first place. PMID:26908988

  10. Georgia fishery study: implications for dose calculations

    SciTech Connect

    Turcotte, M.D.S.

    1983-03-28

    Fish consumption will contribute a major portion of the estimated individual and population doses from L-Reactor liquid releases and Cs-137 remobilization in Steel Creek. It is therefore important that the values for fish consumption used in dose calculations be as realistic as possible. Since publication of the L-Reactor Environmental Information Document (EID), data have become available on sport fishing in the Savannah River. These data provide SRP with site-specific sport fish harvest and consumption values for use in dose calculations. The Georgia fishery data support the total population fish consumption and calculated dose reported in the EID. The data indicate, however, that both the EID average and maximum individual fish consumption have been underestimated, although each to a different degree. The average fish consumption value used in the EID is approximately 3% below the lower limit of the fish consumption range calculated using the Georgia data. A fish consumption value of 11.3 kg/yr should be used to recalculate dose to the average individual from L-Reactor restart. Maximum fish consumption in the EID has been underestimated by approximately 60%, and doses to the maximum individual should also be recalculated. Future dose calculations should utilize an average fish consumption value of 11.3 kg/yr, and a maximum fish consumption value of 34 kg/yr.

  11. Patient Dose Management: Focus on Practical Actions.

    PubMed

    Park, Michael Yong; Jung, Seung Eun

    2016-02-01

    Medical radiation is a very important part of modern medicine, and should be only used when needed and optimized. Justification and optimization of radiation examinations must be performed. The first step of reduction of medical exposure is to know the radiation dose in currently performed examinations. This review covers radiation units, how various imaging modalities report dose, and the current status of radiation dose reports and legislation. Also, practical tips that can be applied to clinical practice are introduced. Afterwards, the importance of radiology exposure related education is emphasized and the current status of education for medical personal and the public is explained, and appropriate education strategies are suggested. Commonly asked radiation dose related example questions and answers are provided in detail to allow medical personnel to answer patients. Lastly, we talk about computerized programs that can be used in medical facilities for managing patient dose. While patient dose monitoring and management should be used to decrease and optimize overall radiation dose, it should not be used to assess individual cancer risk. One must always remember that medically justified examinations should always be performed, and unneeded examinations should be avoided in the first place. PMID:26908988

  12. Variation in lunar neutron dose estimates.

    PubMed

    Slaba, Tony C; Blattnig, Steve R; Clowdsley, Martha S

    2011-12-01

    The radiation environment on the Moon includes albedo neutrons produced by primary particles interacting with the lunar surface. In this work, HZETRN2010 is used to calculate the albedo neutron contribution to effective dose as a function of shielding thickness for four different space radiation environments and to determine to what extent various factors affect such estimates. First, albedo neutron spectra computed with HZETRN2010 are compared to Monte Carlo results in various radiation environments. Next, the impact of lunar regolith composition on the albedo neutron spectrum is examined, and the variation on effective dose caused by neutron fluence-to-effective dose conversion coefficients is studied. A methodology for computing effective dose in detailed human phantoms using HZETRN2010 is also discussed and compared. Finally, the combined variation caused by environmental models, shielding materials, shielding thickness, regolith composition and conversion coefficients on the albedo neutron contribution to effective dose is determined. It is shown that a single percentage number for characterizing the albedo neutron contribution to effective dose can be misleading. In general, the albedo neutron contribution to effective dose is found to vary between 1-32%, with the environmental model, shielding material and shielding thickness being the driving factors that determine the exact contribution. It is also shown that polyethylene or other hydrogen-rich materials may be used to mitigate the albedo neutron exposure. PMID:21859325

  13. Comparison of computed tomography dose reporting software.

    PubMed

    Abdullah, A; Sun, Z; Pongnapang, N; Ng, K-H

    2012-08-01

    Computed tomography (CT) dose reporting software facilitates the estimation of doses to patients undergoing CT examinations. In this study, comparison of three software packages, i.e. CT-Expo (version 1.5, Medizinische Hochschule, Hannover, Germany), ImPACT CT Patients Dosimetry Calculator (version 0.99×, Imaging Performance Assessment on Computed Tomography, www.impactscan.org) and WinDose (version 2.1a, Wellhofer Dosimetry, Schwarzenbruck, Germany), has been made in terms of their calculation algorithm and the results of calculated doses. Estimations were performed for head, chest, abdominal and pelvic examinations based on the protocols recommended by European guidelines using single-slice CT (SSCT) (Siemens Somatom Plus 4, Erlangen, Germany) and multi-slice CT (MSCT) (Siemens Sensation 16, Erlangen, Germany) for software-based female and male phantoms. The results showed that there are some differences in final dose reporting provided by these software packages. There are deviations of effective doses produced by these software packages. Percentages of coefficient of variance range from 3.3 to 23.4 % in SSCT and from 10.6 to 43.8 % in MSCT. It is important that researchers state the name of the software that is used to estimate the various CT dose quantities. Users must also understand the equivalent terminologies between the information obtained from the CT console and the software packages in order to use the software correctly.

  14. Determination of dose distributions and parameter sensitivity. Hanford Environmental Dose Reconstruction Project; dose code recovery activities; Calculation 005

    SciTech Connect

    Napier, B.A.; Farris, W.T.; Simpson, J.C.

    1992-12-01

    A series of scoping calculations has been undertaken to evaluate the absolute and relative contribution of different radionuclides and exposure pathways to doses that may have been received by individuals living in the vicinity of the Hanford site. This scoping calculation (Calculation 005) examined the contributions of numerous parameters to the uncertainty distribution of doses calculated for environmental exposures and accumulation in foods. This study builds on the work initiated in the first scoping study of iodine in cow`s milk and the third scoping study, which added additional pathways. Addressed in this calculation were the contributions to thyroid dose of infants from (1) air submersion and groundshine external dose, (2) inhalation, (3) ingestion of soil by humans, (4) ingestion of leafy vegetables, (5) ingestion of other vegetables and fruits, (6) ingestion of meat, (7) ingestion of eggs, and (8) ingestion of cows` milk from Feeding Regime 1 as described in Calculation 001.

  15. Eye lens dose in interventional cardiology.

    PubMed

    Principi, S; Delgado Soler, C; Ginjaume, M; Beltran Vilagrasa, M; Rovira Escutia, J J; Duch, M A

    2015-07-01

    The ICRP has recently recommended reducing the occupational exposure dose limit for the lens of the eye to 20 mSv y(-1), averaged over a period of 5 y, with no year exceeding 50 mSv, instead of the current 150 mSv y(-1). This reduction will have important implications for interventional cardiology and radiology (IC/IR) personnel. In this work, lens dose received by a staff working in IC is studied in order to determine whether eye lens dose monitoring or/and additional radiological protection measures are required. Eye lens dose exposure was monitored in 10 physicians and 6 nurses. The major IC procedures performed were coronary angiography and percutaneous transluminal coronary angioplasty. The personnel were provided with two thermoluminescent dosemeters (TLDs): one calibrated in terms of Hp(3) located close to the left ear of the operator and a whole-body dosemeter calibrated in terms of Hp(10) and Hp(0.07) positioned on the lead apron. The estimated annual eye lens dose for physicians ranged between 8 and 60 mSv, for a workload of 200 procedures y(-1). Lower doses were collected for nurses, with estimated annual Hp(3) between 2 and 4 mSv y(-1). It was observed that for nurses the Hp(0.07) measurement on the lead apron is a good estimate of eye lens dose. This is not the case for physicians, where the influence of both the position and use of protective devices such as the ceiling shield is very important and produces large differences among doses both at the eyes and on the thorax. For physicians, a good correlation between Hp(3) and dose area product is shown. PMID:25809107

  16. Absorbed dose thresholds and absorbed dose rate limitations for studies of electron radiation effects on polyetherimides

    NASA Technical Reports Server (NTRS)

    Long, Edward R., Jr.; Long, Sheila Ann T.; Gray, Stephanie L.; Collins, William D.

    1989-01-01

    The threshold values of total absorbed dose for causing changes in tensile properties of a polyetherimide film and the limitations of the absorbed dose rate for accelerated-exposure evaluation of the effects of electron radiation in geosynchronous orbit were studied. Total absorbed doses from 1 kGy to 100 MGy and absorbed dose rates from 0.01 MGy/hr to 100 MGy/hr were investigated, where 1 Gy equals 100 rads. Total doses less than 2.5 MGy did not significantly change the tensile properties of the film whereas doses higher than 2.5 MGy significantly reduced elongation-to-failure. There was no measurable effect of the dose rate on the tensile properties for accelerated electron exposures.

  17. CANISTER HANDLING FACILITY WORKER DOSE ASSESSMENT

    SciTech Connect

    D.T. Dexheimer

    2004-02-27

    The purpose of this calculation is to estimate radiation doses received by personnel working in the Canister Handling Facility (CHF) performing operations to receive transportation casks, transfer wastes, prepare waste packages, perform associated equipment maintenance. The specific scope of work contained in this calculation covers individual worker group doses on an annual basis, and includes the contributions due to external and internal radiation. The results of this calculation will be used to support the design of the CHF and provide occupational dose estimates for the License Application.

  18. User instructions for the CIDER Dose Code

    SciTech Connect

    Eslinger, P.W.; Lessor, K.S.; Ouderkirk, S.J.

    1994-05-01

    This document provides user instructions for the CIDER (Calculation of Individual Doses from Environmental Radionuclides) computer code. The CIDER code computes estimates of annual doses estimated for both reference individuals with a known residence and food consumption history. This document also provides user instructions for four utility codes used to build input data libraries for CIDER. These utility codes are ENVFAC (environmental factors), FOOFAC (food factors), LIFFAC (lifestyle factors), and ORGFAC (organ factors). Finally, this document provides user instructions for the EXPAND utility code. The EXPAND code processes a result file from CIDER and extracts a summary of the dose information for reporting or plotting purposes.

  19. Hanford Environmental Dose Reconstruction Project Monthly Report

    SciTech Connect

    Dennis, B.S.

    1990-04-01

    This monthly report summarizes the technical progress and project status for the Hanford Environmental Dose Reconstruction (HEDR) Project being conducted at Pacific Northwest Laboratory (PNL) under the direction of a Technical Steering Panel (TSP). The project is divided into the following technical tasks. These tasks address each of the primary steps in the path from radioactive releases to dose estimates: source terms, environmental transport, environmental monitoring data, demographics, agriculture, and food habits, and environmental pathways and dose estimates. The source terms task will develop estimates for radioactive emissions from Hanford facilities since 1944. These estimates will be based on historical measurements and production information. 1 fig., 1 tab.

  20. Photon doses in NPL standard neutron fields.

    PubMed

    Roberts, N J; Horwood, N A; McKay, C J

    2014-10-01

    Standard neutron fields are invariably accompanied by a photon component due to the neutron-generating reactions and secondary neutron interactions in the surrounding environment. A set of energy-compensated Geiger-Müller (GM) tubes and electronic personal dosemeters (EPDs) have been used to measure the photon dose rates in a number of standard radionuclide and accelerator-based neutron fields. The GM tubes were first characterised in standard radioisotope and X-ray photon fields and then modelled using MCNP to determine their photon dose response as a function of energy. Values for the photon-to-neutron dose equivalent ratios are presented and compared with other published values.

  1. Dose characterization in the near-source region for two high dose rate brachytherapy sources.

    PubMed

    Wang, Ruqing; Li, X Allen

    2002-08-01

    High dose rate (HDR) 192Ir sources are currently used in intravascular brachytherapy (IVB) for the peripheral arterial system. This poses a demand on evaluating accurate dose parameters in the near-source region for such sources. The purpose of this work is to calculate the dose parameters for the old VariSource HDR 192Ir source and the new microSelectron HDR 192Ir source, using Monte Carlo electron and photon transport simulation. The two-dimensional (2D) dose rate distributions and the air kerma strengths for the two HDR sources were calculated by EGSnrc and EGS4 Monte Carlo codes. Based on these data, the dose parameters proposed in the AAPM TG-60 protocol were derived. The dose rate constants obtained are 13.119+/-0.028 cGy h(-1) U(-1) for the old VariSource source, and 22.751+/-0.031 cGy h(-1) U(-1) for the new microSelectron source at the reference point (r0 = 2 mm, theta = pi/2). The 2D dose rate distributions, the radial dose functions, and the anisotropy functions presented for the two sources cover radial distances ranging from 0.5 to 10 mm. In the near-source region on the transverse plane, the dose effects of the charged particle nonequilibrium and the beta-particle dose contribution were studied. It is found that at radial distances ranging from 0.5 to 2 mm, these effects increase the calculated dose rates by up to 29% for the old VariSource source, and by up to 12% for the new microSelectron source, which, in turn, change values of the radial dose function and the anisotropy function. The present dose parameters, which account for the charged particle nonequilibrium and the beta particle contribution, may be used for accurate IVB dose calculation. PMID:12201413

  2. Hanford Environmental Dose Reconstruction Project. Monthly report

    SciTech Connect

    McMakin, A.H.; Cannon, S.D.; Finch, S.M.

    1992-07-01

    The objective of the Hanford Environmental Dose Reconstruction (HEDR) Project is to estimate the radiation doses that individuals and populations could have received from nuclear operations at Hanford since 1944. The TSP consists of experts in environmental pathways, epidemiology, surface-water transport, ground-water transport, statistics, demography, agriculture, meteorology, nuclear engineering, radiation dosimetry, and cultural anthropology. Included are appointed technical members representing the states of Oregon, Washington, and Idaho, a representative of Native American tribes, and an individual representing the public. The project is divided into the following technical tasks. These tasks correspond to the path radionuclides followed from release to impact on humans (dose estimates): Source terms, environmental transport, environmental monitoring data, demography, food consumption, and agriculture, and environmental pathways and dose estimates. Progress is discussed.

  3. Sampling and recording dose rate meter

    SciTech Connect

    Kronenberg, S.

    1984-04-06

    A wide range radiation dose rate for civil defense use, including a Geiger-Mueller tube used in a continuous counting mode and for measuring dose rates from the natural background to about 30. rads/hr., with an ion chamber arranged to measure higher dose rates up to 10,000 rads/hr. The instrument has a sample and record capability in which the selected radiation detector will have its output connected to a selected storage capacitor for a precise interval of time determined by a timing circuit and the storage capacitor will accumulate and hold a voltage proportional to the dose rate, which can be read by means of an electrometer at a later time. The instrument has a self contained hand cranked power supply and all components are selected for long shelf life.

  4. Subanaesthetic dose of ketamine in intractable asthma.

    PubMed

    Garg, Dinesh; Kaistha, Sanjay; Sood, Dinesh

    2011-06-01

    A 75-year-old male diagnosed to be a case of intractable asthma resistant to all conventional therapies requiring ventilatory support, was successfully weaned off the ventilator after treatment with subanaesthetic dose of intravenous ketamine. PMID:22315777

  5. Determination of dose distributions and parameter sensitivity

    SciTech Connect

    Napier, B.A.; Farris, W.T.; Simpson, J.C.

    1992-12-01

    A series of scoping calculations has been undertaken to evaluate the absolute and relative contribution of different radionuclides and exposure pathways to doses that may have been received by individuals living in the vicinity of the Hanford site. This scoping calculation (Calculation 005) examined the contributions of numerous parameters to the uncertainty distribution of doses calculated for environmental exposures and accumulation in foods. This study builds on the work initiated in the first scoping study of iodine in cow's milk and the third scoping study, which added additional pathways. Addressed in this calculation were the contributions to thyroid dose of infants from (1) air submersion and groundshine external dose, (2) inhalation, (3) ingestion of soil by humans, (4) ingestion of leafy vegetables, (5) ingestion of other vegetables and fruits, (6) ingestion of meat, (7) ingestion of eggs, and (8) ingestion of cows' milk from Feeding Regime 1 as described in Calculation 001.

  6. Estimated radiation dose from timepieces containing tritium

    SciTech Connect

    McDowell-Boyer, L M

    1980-01-01

    Luminescent timepieces containing radioactive tritium, either in elemental form or incorporated into paint, are available to the general public. The purpose of this study was to estimate potential radiation dose commitments received by the public annually as a result of exposure to tritium which may escape from the timepieces during their distribution, use, repair, and disposal. Much uncertainty is associated with final dose estimates due to limitations of empirical data from which exposure parameters were derived. Maximum individual dose estimates were generally less than 3 ..mu..Sv/yr, but ranged up to 2 mSv under worst-case conditions postulated. Estimated annual collective (population) doses were less than 5 person/Sv per million timepieces distributed.

  7. Radiation dose to the global flying population.

    PubMed

    Alvarez, Luis E; Eastham, Sebastian D; Barrett, Steven R H

    2016-03-01

    Civil airliner passengers and crew are exposed to elevated levels of radiation relative to being at sea level. Previous studies have assessed the radiation dose received in particular cases or for cohort studies. Here we present the first estimate of the total radiation dose received by the worldwide civilian flying population. We simulated flights globally from 2000 to 2013 using schedule data, applying a radiation propagation code to estimate the dose associated with each flight. Passengers flying in Europe and North America exceed the International Commission on Radiological Protection annual dose limits at an annual average of 510 or 420 flight hours per year, respectively. However, this falls to 160 or 120 h on specific routes under maximum exposure conditions. PMID:26769857

  8. Patient Radiation Doses from Diagnostic Radiology.

    ERIC Educational Resources Information Center

    Hart, D.

    1996-01-01

    Explains how x-ray doses to patients are measured. Describes how different techniques expose patients to differing amounts of ionizing radiation. Compares these figures with other natural and man-made sources. (Author/MKR)

  9. Dose-Response Analysis Using R

    PubMed Central

    Ritz, Christian; Baty, Florent; Streibig, Jens C.; Gerhard, Daniel

    2015-01-01

    Dose-response analysis can be carried out using multi-purpose commercial statistical software, but except for a few special cases the analysis easily becomes cumbersome as relevant, non-standard output requires manual programming. The extension package drc for the statistical environment R provides a flexible and versatile infrastructure for dose-response analyses in general. The present version of the package, reflecting extensions and modifications over the last decade, provides a user-friendly interface to specify the model assumptions about the dose-response relationship and comes with a number of extractors for summarizing fitted models and carrying out inference on derived parameters. The aim of the present paper is to provide an overview of state-of-the-art dose-response analysis, both in terms of general concepts that have evolved and matured over the years and by means of concrete examples. PMID:26717316

  10. Hanford Environmental Dose Reconstruction Project monthly report

    SciTech Connect

    McMakin, A.H., Cannon, S.D.; Finch, S.M.

    1992-09-01

    The objective of the Hanford Environmental Dose Reconstruction MDR) Project is to estimate the radiation doses that individuals and populations could have received from nuclear operations at Hanford since 1944. The TSP consists of experts in envirorunental pathways. epidemiology, surface-water transport, ground-water transport, statistics, demography, agriculture, meteorology, nuclear engineering. radiation dosimetry. and cultural anthropology. Included are appointed members representing the states of Oregon, Washington, and Idaho, a representative of Native American tribes, and an individual representing the public. The project is divided into the following technical tasks. These tasks correspond to the path radionuclides followed from release to impact on humans (dose estimates): Source Terms; Environmental Transport; Environmental Monitoring Data Demography, Food Consumption, and Agriculture; and Environmental Pathways and Dose Estimates.

  11. Respirators, internal dose, and Oyster Creek

    SciTech Connect

    Michal, R.

    1996-06-01

    This article looks at the experience of Oyster Creek in relaxing the requirements for the use of respirators in all facets of plant maintenance, on the overall dose received by plant maintenance personnel. For Roger Shaw, director of radiological controls for three years at GPU Nuclear Corporation`s Oyster Creek nuclear plant the correct dose balance is determined on a job-by-job basis: Does the job require a respirator, which is an effective means of decreasing worker inhalation of airborne radioactive particles? Will wearing a respirator slow down a worker, consequently increasing whole body radiation exposure by prolonging the time spent in fields of high external radiation? How does respiratory protection affect worker safety and to what degree? While changes to the Nuclear Regulatory Commission`s 10CFR20 have updated the radiation protection requirements for the nuclear industry, certain of the revisions have been directed specifically at reducing worker dose, Shaw said. {open_quotes}It basically delineates that dose is dose,{close_quotes} Shaw said, {open_quotes}regardless of whether it is acquired externally or internally.{close_quotes} The revision of Part 20 changed the industry`s attitude toward internal dose, which had always been viewed negatively. {open_quotes}Internal dose was always seen as preventable by wearing respirators and by using engineering techniques such as ventilation control and decontamination,{close_quotes} Shaw said, {open_quotes}whereas external dose, although reduced where practical, was seen as a fact of the job.{close_quotes}

  12. Dose spectra from energetic particles and neutrons

    NASA Astrophysics Data System (ADS)

    Schwadron, Nathan; Bancroft, Chris; Bloser, Peter; Legere, Jason; Ryan, James; Smith, Sonya; Spence, Harlan; Mazur, Joe; Zeitlin, Cary

    2013-10-01

    spectra from energetic particles and neutrons (DoSEN) are an early-stage space technology research project that combines two advanced complementary radiation detection concepts with fundamental advantages over traditional dosimetry. DoSEN measures not only the energy but also the charge distribution (including neutrons) of energetic particles that affect human (and robotic) health in a way not presently possible with current dosimeters. For heavy ions and protons, DoSEN provides a direct measurement of the lineal energy transfer (LET) spectra behind shielding material. For LET measurements, DoSEN contains stacks of thin-thick Si detectors similar in design to those used for the Cosmic Ray Telescope for the Effects of Radiation. With LET spectra, we can now directly break down the observed spectrum of radiation into its constituent heavy-ion components and through biologically based quality factors that provide not only doses and dose rates but also dose equivalents, associated rates, and even organ doses. DoSEN also measures neutrons from 10 to 100 MeV, which requires enough sensitive mass to fully absorb recoil particles that the neutrons produce. DoSEN develops the new concept of combining these independent measurements and using the coincidence of LET measurements and neutron detection to significantly reduce backgrounds in each measurement. The background suppression through the use of coincidence allows for significant reductions in size, mass, and power needed to provide measurements of dose, neutron dose, dose equivalents, LET spectra, and organ doses. Thus, we introduce the DoSEN concept: a promising low-mass instrument that detects the full spectrum of energetic particles, heavy ions, and neutrons to determine biological impact of radiation in space.

  13. Potential radiation doses from 1994 Hanford Operations

    SciTech Connect

    Soldat, J.K.; Antonio, E.J.

    1995-06-01

    This section of the 1994 Hanford Site Environmental Report summarizes the potential radiation doses to the public from releases originating at the Hanford Site. Members of the public are potentially exposed to low-levels of radiation from these effluents through a variety of pathways. The potential radiation doses to the public were calculated for the hypothetical MEI and for the general public residing within 80 km (50 mi) of the Hanford Site.

  14. Uncertainties on lung doses from inhaled plutonium.

    PubMed

    Puncher, Matthew; Birchall, Alan; Bull, Richard K

    2011-10-01

    In a recent epidemiological study, Bayesian uncertainties on lung doses have been calculated to determine lung cancer risk from occupational exposures to plutonium. These calculations used a revised version of the Human Respiratory Tract Model (HRTM) published by the ICRP. In addition to the Bayesian analyses, which give probability distributions of doses, point estimates of doses (single estimates without uncertainty) were also provided for that study using the existing HRTM as it is described in ICRP Publication 66; these are to be used in a preliminary analysis of risk. To infer the differences between the point estimates and Bayesian uncertainty analyses, this paper applies the methodology to former workers of the United Kingdom Atomic Energy Authority (UKAEA), who constituted a subset of the study cohort. The resulting probability distributions of lung doses are compared with the point estimates obtained for each worker. It is shown that mean posterior lung doses are around two- to fourfold higher than point estimates and that uncertainties on doses vary over a wide range, greater than two orders of magnitude for some lung tissues. In addition, we demonstrate that uncertainties on the parameter values, rather than the model structure, are largely responsible for these effects. Of these it appears to be the parameters describing absorption from the lungs to blood that have the greatest impact on estimates of lung doses from urine bioassay. Therefore, accurate determination of the chemical form of inhaled plutonium and the absorption parameter values for these materials is important for obtaining reliable estimates of lung doses and hence risk from occupational exposures to plutonium.

  15. Independent dose calculations for commissioning, quality assurance and dose reconstruction of PBS proton therapy

    NASA Astrophysics Data System (ADS)

    Meier, G.; Besson, R.; Nanz, A.; Safai, S.; Lomax, A. J.

    2015-04-01

    Pencil beam scanning proton therapy allows the delivery of highly conformal dose distributions by delivering several thousand pencil beams. These beams have to be individually optimised and accurately delivered requiring a significant quality assurance workload. In this work we describe a toolkit for independent dose calculations developed at Paul Scherrer Institut which allows for dose reconstructions at several points in the treatment workflow. Quality assurance based on reconstructed dose distributions was shown to be favourable to pencil beam by pencil beam comparisons for the detection of delivery uncertainties and estimation of their effects. Furthermore the dose reconstructions were shown to have a sensitivity of the order of or higher than the measurements currently employed in the clinical verification procedures. The design of the independent dose calculation tool allows for a high modifiability of the dose calculation parameters (e.g. depth dose profiles, angular spatial distributions) allowing for a safe environment outside of the clinical treatment planning system for investigating the effect of such parameters on the resulting dose distributions and thus distinguishing between different contributions to measured dose deviations. The presented system could potentially reduce the amount of patient-specific quality assurance measurements which currently constitute a bottleneck in the clinical workflow.

  16. Ir-192 HDR transit dose and radial dose function determination using alanine/EPR dosimetry

    NASA Astrophysics Data System (ADS)

    Guzmán Calcina, Carmen S.; de Almeida, Adelaide; Oliveira Rocha, José R.; Abrego, Felipe Chen; Baffa, Oswaldo

    2005-03-01

    Source positioning close to the tumour in high dose rate (HDR) brachytherapy is not instantaneous. An increment of dose will be delivered during the movement of the source in the trajectory to its static position. This increment is the transit dose, often not taken into account in brachytherapeutic treatment planning. The transit dose depends on the prescribed dose, number of treatment fractions, velocity and activity of the source. Combining all these factors, the transit dose can be 5% higher than the prescribed absorbed dose value (Sang-Hyun and Muller-Runkel, 1994 Phys. Med. Biol. 39 1181 8, Nath et al 1995 Med. Phys. 22 209 34). However, it cannot exceed this percentage (Nath et al 1995). In this work, we use the alanine-EPR (electron paramagnetic resonance) dosimetric system using analysis of the first derivative of the signal. The transit dose was evaluated for an HDR system and is consistent with that already presented for TLD dosimeters (Bastin et al 1993 Int. J. Radiat. Oncol. Biol. Phys. 26 695 702). Also using the same dosimetric system, the radial dose function, used to evaluate the geometric dose degradation around the source, was determined and its behaviour agrees better with those obtained by Monte Carlo simulations (Nath et al 1995, Williamson and Nath 1991 Med. Phys. 18 434 48, Ballester et al 1997 Med. Phys. 24 1221 8, Ballester et al 2001 Phys. Med. Biol. 46 N79 90) than with TLD measurements (Nath et al 1990 Med. Phys. 17 1032 40).

  17. Modeling Dose-response at Low Dose: A Systems Biology Approach for Ionization Radiation

    PubMed Central

    Zhao, Yuchao; Ricci, Paolo F.

    2010-01-01

    For ionization radiation (IR) induced cancer, a linear non-threshold (LNT) model at very low doses is the default used by a number of national and international organizations and in regulatory law. This default denies any positive benefit from any level of exposure. However, experimental observations and theoretical biology have found that both linear and J-shaped IR dose-response curves can exist at those very low doses. We develop low dose J-shaped dose-response, based on systems biology, and thus justify its use regarding exposure to IR. This approach incorporates detailed, molecular and cellular descriptions of biological/toxicological mechanisms to develop a dose-response model through a set of nonlinear, differential equations describing the signaling pathways and biochemical mechanisms of cell cycle checkpoint, apoptosis, and tumor incidence due to IR. This approach yields a J-shaped dose response curve while showing where LNT behaviors are likely to occur. The results confirm the hypothesis of the J-shaped dose response curve: the main reason is that, at low-doses of IR, cells stimulate protective systems through a longer cell arrest time per unit of IR dose. We suggest that the policy implications of this approach are an increasingly correct way to deal with precautionary measures in public health. PMID:21191485

  18. Independent dose calculations for commissioning, quality assurance and dose reconstruction of PBS proton therapy.

    PubMed

    Meier, G; Besson, R; Nanz, A; Safai, S; Lomax, A J

    2015-04-01

    Pencil beam scanning proton therapy allows the delivery of highly conformal dose distributions by delivering several thousand pencil beams. These beams have to be individually optimised and accurately delivered requiring a significant quality assurance workload. In this work we describe a toolkit for independent dose calculations developed at Paul Scherrer Institut which allows for dose reconstructions at several points in the treatment workflow. Quality assurance based on reconstructed dose distributions was shown to be favourable to pencil beam by pencil beam comparisons for the detection of delivery uncertainties and estimation of their effects. Furthermore the dose reconstructions were shown to have a sensitivity of the order of or higher than the measurements currently employed in the clinical verification procedures. The design of the independent dose calculation tool allows for a high modifiability of the dose calculation parameters (e.g. depth dose profiles, angular spatial distributions) allowing for a safe environment outside of the clinical treatment planning system for investigating the effect of such parameters on the resulting dose distributions and thus distinguishing between different contributions to measured dose deviations. The presented system could potentially reduce the amount of patient-specific quality assurance measurements which currently constitute a bottleneck in the clinical workflow. PMID:25779992

  19. Implementation of dose superimposition to introduce multiple doses for a mathematical absorption model (transit compartment model).

    PubMed

    Shen, Jun; Boeckmann, Alison; Vick, Andrew

    2012-06-01

    A mathematical absorption model (e.g. transit compartment model) is useful to describe complex absorption process. However, in such a model, an assumption has to be made to introduce multiple doses that a prior dose has been absorbed nearly completely when the next dose is administered. This is because the drug input cannot be determined from drug depot compartment through integration of the differential equation system and has to be analytically calculated. We propose a method of dose superimposition to introduce multiple doses; thereby eliminating the assumption. The code for implementing the dose superimposition in WinNonlin and NONMEM was provided. For implementation in NONMEM, we discussed a special case (SC) and a general case (GC). In a SC, dose superimposition was implemented solely using NM-TRAN abbreviated code and the maximum number of the doses that can be administered for any subject must be pre-defined. In a GC, a user-supplied function (FUNCA) in FORTRAN code was defined to perform dose superimposition to remove the restriction that the maximum number of doses must be pre-defined. PMID:22555854

  20. Single-dose versus multi-dose vaccine vials for immunization programmes in developing countries.

    PubMed Central

    Drain, Paul K.; Nelson, Carib M.; Lloyd, John S.

    2003-01-01

    Excessive vaccine wastage and safety concerns have prompted the international health community to develop and supply vaccines in formats other than the standard multi-dose vial. This article presents a programmatic and economic comparison of the major differences between the multi-dose vials and single-dose formats used for immunization services in developing countries. Multi-dose vials, in general, sell at a lower per-dose price and occupy less cold-chain capacity than single-dose formats. However, higher wastage rates may offset these benefits, especially for more expensive vaccines. Single-dose formats offer several important programmatic benefits, such as increased vaccination opportunities and improved vaccine safety. One single-dose format, the prefilled auto-disable (AD) device, provides additional injection safety and convenience features because it physically combines the vaccine and AD syringe. Selecting the appropriate vaccine presentation will depend on many factors. However, multi-dose vials are likely to be most appropriate for cheaper vaccines and in settings where cold-chain storage capacity is restricted. Single-dose formats will be most appropriate for more expensive vaccines and where there are problems with unsafe injection practices. Prefilled AD injection devices will be particularly useful in expanding outreach services while eliminating the possibility of needle reuse. PMID:14758432

  1. Seroconversion status after single dose and double doses of varicella vaccination in children with leukemia.

    PubMed

    Cakir, F Betul; Timur, Cetin; Yoruk, Asim; Cakir, Erkan; Ayhan, Aylin Canbolat

    2012-03-01

    Although varicella is a benign self-limiting disease in healthy children, it can be fatal when it occurs in immunocompromised hosts. Despite that immunosuppressed children are suggested to require 2 doses of vaccine to achieve seroconversion, conflicting results are reported in the literature. The aim of this study was to investigate the seroconversion status and mean antibody titers at first year after single dose and double doses of varicella vaccination in acute lymphoblastic leukemia patients. Patients with leukemia in remission for at least 1 year who were seronegative for varicella-zoster virus immunoglobulin G (IgG) were vaccinated. Titers above the cutoff level (0.65) were accepted as seroconversion. Seventeen patients were vaccinated with single dose whereas 24 patients were vaccinated with double doses. Mean prevaccination antibody titers were 0.56 ± 0.05 in patients with single dose and 0.51 ± 0.08 in patients with double doses (P > .05, Student t test). The mean antibody titers at first year were 0.61 ± 0.05 in patients with single-dose vaccination (P > .05, Wilcoxon signed-rank test) and 1.48 ± 0.04 in patients with double doses (P < .001, Wilcoxon signed-rank test). Seroconversion after single-dose vaccination was achieved in 29% of patients (n = 5/17) and in 75% of patients with double doses (n = 18/24) at first year (P = .004, chi-square test). These results suggest that seroconversion after single-dose vaccination might not persist at first year in malignancy patients. Double doses should be applied in order to provide long-term seroconversion.

  2. Organ Dose and Attributable Cancer Risk in Lung Cancer Screening with Low-Dose Computed Tomography

    PubMed Central

    Saltybaeva, Natalia; Martini, Katharina; Frauenfelder, Thomas; Alkadhi, Hatem

    2016-01-01

    Purpose Lung cancer screening with CT has been recently recommended for decreasing lung cancer mortality. The radiation dose of CT, however, must be kept as low as reasonably achievable for reducing potential stochastic risks from ionizing radiation. The purpose of this study was to calculate individual patients’ lung doses and to estimate cancer risks in low-dose CT (LDCT) in comparison with a standard dose CT (SDCT) protocol. Materials and Methods This study included 47 adult patients (mean age 63.0 ± 5.7 years) undergoing chest CT on a third-generation dual-source scanner. 23/47 patients (49%) had a non-enhanced chest SDCT, 24 patients (51%) underwent LDCT at 100 kVp with spectral shaping at a dose equivalent to a chest x-ray. 3D-dose distributions were obtained from Monte Carlo simulations for each patient, taking into account their body size and individual CT protocol. Based on the dose distributions, patient-specific lung doses were calculated and relative cancer risk was estimated according to BEIR VII recommendations. Results As compared to SDCT, the LDCT protocol allowed for significant organ dose and cancer risk reductions (p<0.001). On average, lung dose was reduced from 7.7 mGy to 0.3 mGy when using LDCT, which was associated with lowering of the cancer risk from 8.6 to 0.35 per 100’000 cases. A strong linear correlation between lung dose and patient effective diameter was found for both protocols (R2 = 0.72 and R2 = 0.75 for SDCT and LDCT, respectively). Conclusion Use of a LDCT protocol for chest CT with a dose equivalent to a chest x-ray allows for significant lung dose and cancer risk reduction from ionizing radiation. PMID:27203720

  3. Tumour dose estimation using automated TLD techniques.

    PubMed

    Ferguson, H M; Lambert, G D; Gustard, D; Harrison, R M

    1998-01-01

    Lithium fluoride (TLD-700) dosimeters were used to measure exit surface absorbed doses in external beam radiotherapy using an automated TLD reader. Delivered tumour absorbed doses were derived from these measurements for head and neck, pelvis and breast treatments. For the head and neck treatments (first fraction only), the mean percentage difference between prescribed and delivered tumour absorbed doses was -0.15 +/- 3.0% (+/- 1 SD), for the pelvic treatments -0.83 +/- 2.8% and for the breast treatments +0.26 +/- 2.9%. The spread of results is approximately +/- 3% (+/- 1 SD). This is comparable with the estimated uncertainty in a single TLD absorbed dose measurement in phantom (+/- 2%; +/- 1 SD). Thus, ICRU recommended tolerances for absorbed dose delivery of +/- 5% may not be unequivocally detectable using this method. An action level of +/- 10% is suggested, allowing investigation of possible gross errors in treatment delivery at an early stage, before the course of treatment has progressed to a point at which absorbed dose compensation is impossible.

  4. Radiation Leukemogenesis at Low Dose Rates

    SciTech Connect

    Weil, Michael; Ullrich, Robert

    2013-09-25

    The major goals of this program were to study the efficacy of low dose rate radiation exposures for the induction of acute myeloid leukemia (AML) and to characterize the leukemias that are caused by radiation exposures at low dose rate. An irradiator facility was designed and constructed that allows large numbers of mice to be irradiated at low dose rates for protracted periods (up to their life span). To the best of our knowledge this facility is unique in the US and it was subsequently used to study radioprotectors being developed for radiological defense (PLoS One. 7(3), e33044, 2012) and is currently being used to study the role of genetic background in susceptibility to radiation-induced lung cancer. One result of the irradiation was expected; low dose rate exposures are ineffective in inducing AML. However, another result was completely unexpected; the irradiated mice had a very high incidence of hepatocellular carcinoma (HCC), approximately 50%. It was unexpected because acute exposures are ineffective in increasing HCC incidence above background. This is a potential important finding for setting exposure limits because it supports the concept of an 'inverse dose rate effect' for some tumor types. That is, for the development of some tumor types low dose rate exposures carry greater risks than acute exposures.

  5. Adaptive fractionation therapy: II. Biological effective dose

    NASA Astrophysics Data System (ADS)

    Chen, Mingli; Lu, Weiguo; Chen, Quan; Ruchala, Kenneth; Olivera, Gustavo

    2008-10-01

    Radiation therapy is fractionized to differentiate the cell killing between the tumor and organ at risk (OAR). Conventionally, fractionation is done by dividing the total dose into equal fraction sizes. However, as the relative positions (configurations) between OAR and the tumor vary from fractions to fractions, intuitively, we want to use a larger fraction size when OAR and the tumor are far apart and a smaller fraction size when OAR and the tumor are close to each other. Adaptive fractionation accounts for variations of configurations between OAR and the tumor. In part I of this series, the adaptation minimizes the OAR (physical) dose and maintains the total tumor (physical) dose. In this work, instead, the adaptation is based on the biological effective dose (BED). Unlike the linear programming approach in part I, we build a fraction size lookup table using mathematical induction. The lookup table essentially describes the fraction size as a function of the remaining tumor BED, the OAR/tumor dose ratio and the remaining number of fractions. The lookup table is calculated by maximizing the expected survival of OAR and preserving the tumor cell kill. Immediately before the treatment of each fraction, the OAR-tumor configuration and thus the dose ratio can be obtained from the daily setup image, and then the fraction size can be determined by the lookup table. Extensive simulations demonstrate the effectiveness of our method compared with the conventional fractionation method.

  6. Population dose near the Semipalatinsk test site.

    PubMed

    Hille, R; Hill, P; Bouisset, P; Calmet, D; Kluson, J; Seisebaev, A; Smagulov, S

    1998-10-01

    To determine the consequences of atmospheric atomic bomb tests for the population in the surroundings of the former nuclear weapons test site near Semipalatinsk in Kazakhstan, a pilot study was performed by an international cooperation between Kazakh, French, Czech and German institutions at two villages, Mostik and Maisk. Together with Kazakh scientists, eight experts from Europe carried out a field mission in September 1995 to assess, within the framework of a NATO supported project, the radiological situation as far as external doses, environmental contamination and body burden of man were concerned. A summary of the results obtained is presented. The actual radiological situation near the test site is characterized by fallout contaminations. Cs was found in upper soil layers in concentrations similar to those of the global fallout. Also Sr, Am and Co were observed. The resulting present dose to the population is low. Mean external doses from soil contamination for Maisk and Mostik (0.60-0.63 mSv/year) presently correspond to mean external doses in normal environments. Mean values of the annual internal doses observed in these two villages are below 2 microSv/year for 90Sr. For other radionuclides the internal doses are also negligible.

  7. Bremsstrahlung doses from natural uranium ingots.

    PubMed

    Anderson, Jeri L; Hertel, Nolan E

    2005-01-01

    In the past, some privately owned commercial facilities in the United States were involved in producing or processing radioactive materials used in the production of atomic weapons. Seven different geometrical objects, representative of the configurations of natural uranium metal potentially encountered by workers at these facilities, are modelled to determine gamma ray and bremsstrahlung dose rates. The dose rates are calculated using the MCNP5 code and also by using the MICROSHIELD point-kernel code. Both gamma ray and bremsstrahlung dose rates are calculated and combined to obtain a total dose rate. The two methods were found to be in good agreement despite differences in modelling assumptions and method differences. Computed total dose rates on the surface of these objects ranged from approximately 51-84 microSv h(-1) and 17-95 microSv h(-1) using the MCNP5 and the MICROSHIELD modeling, respectively. The partitioning of the computed dose rates between gamma rays and bremsstrahlung were the same order of magnitude for each object.

  8. Hanford Environmental Dose Reconstruction Project Monthly Report

    SciTech Connect

    Dennis, B.S.

    1990-02-01

    The objective of the Hanford Environmental Dose Reconstruction Project is to estimate the radiation doses that populations could have received from nuclear operations at Hanford since 1944. The project is divided into technical tasks which address each of the primary steps in the path from radioactive releases to dose estimates. Included are source terms, environmental transport, environmental monitoring data, demographics, agriculture, and food habits, and environmental pathways and dose estimates. The source terms task will develop estimates of radioactive emissions from Hanford facilities since 1944. The environmental transport task will reconstruct the movement of radioactive materials from the areas of release to populations via the atmosphere, surface water, and ground water. The environmental monitoring task will assemble, evaluate, and report historical environmental monitoring data. The demographics, agriculture, and food habits task will develop the data needed to determine the populations that could have been affected by the releases. Population and demographic information will be developed for the general population within the study area. In addition to population and demographic data, the food and water consumption patterns and sources of food and water for these populations must be estimated since these provide a primary pathway for the intake of radionuclides. The environmental pathways and dose estimates task will use the information produced by the other tasks to estimate the radiation doses populations could have received from Hanford. 1 tab., 1 fig.

  9. Evaluation of radionuclide dose-calibrator measurements

    SciTech Connect

    Paras, P.; Comer, F.M.; Demeis, F.; Coursey, B.M.; Calhoun, J.M.; Golas, D.B.

    1986-01-01

    Performance data for radionuclide dose calibrators, which are primarily ionization chambers, are scarce. Large deviations have occasionally been reported, particularly for low photon energies, i.e., emissions from /sup 201/Tl, /sup 133/Xe. The volunteer user program (QB series) of the College of American Pathologists (CAP) (laboratory intercomparison quality control), supported by the US National Bureau of Standards (NBS), for quality control of dose calibrators was suspended. The Atomic Industrial Forum (AIF) has a quality control program among radiopharmaceutical manufacturers but there is no user program in the US at this time, and the performance of dose calibrators in the field is not known. In addition, a number of professionals expressed a strong feeling for the continuation of the CAP program and the availability of standards for dose calibrators from NBS. The objective of this study is twofold: (a) to evaluate the accuracy of dose calibrator measurements for individual patient radioactivity administered doses, and (b) to provide certified sources of certain radionuclides to calibrate the instruments for these radionuclides.

  10. Ivermectin dose assessment without weighing scales.

    PubMed Central

    Alexander, N. D.; Cousens, S. N.; Yahaya, H.; Abiose, A.; Jones, B. R.

    1993-01-01

    Described are two alternatives to the weighing of patients for assessing the dose of ivermectin for use in mass chemotherapy campaigns against onchocerciasis. The first method uses height to separate patients into four dosing categories (1/2, 1, 11/2 and 2 tablets), while the second involves estimating one of these dosing categories according to an individual's physical appearance, without making any measurements. Data for the height-based method were obtained from 6373 people who were taking part in a placebo-controlled trial of ivermectin in northern Nigeria. Use of an arbitrary trade-off of approximately 100 people "overdosed" for every person "underdosed" would lead to 0.5% of the population being underdosed by 1/2 tablet, 46.5% being dosed correctly, 51.7% being overdosed by 1/2 tablet, and 1.2% being overdosed by 1 tablet. The physical appearance approach involved three observers and 779 subjects. A total of 82% of the observers' estimates were "correct", with all the incorrect dosing deviating by only 1/2 tablet from the dose that the subjects should have received. PMID:8324855

  11. Low-dose radiation exposure and carcinogenesis.

    PubMed

    Suzuki, Keiji; Yamashita, Shunichi

    2012-07-01

    Absorption of energy from ionizing radiation by the genetic material in the cell leads to damage to DNA, which in turn leads to cell death, chromosome aberrations and gene mutations. While early or deterministic effects result from organ and tissue damage caused by cell killing, latter two are considered to be involved in the initial events that lead to the development of cancer. Epidemiological studies have demonstrated the dose-response relationships for cancer induction and quantitative evaluations of cancer risk following exposure to moderate to high doses of low-linear energy transfer radiation. A linear, no-threshold model has been applied to assessment of the risks resulting from exposure to moderate and high doses of ionizing radiation; however, a statistically significant increase has hardly been described for radiation doses below 100 mSv. This review summarizes our current knowledge of the physical and biological features of low-dose radiation and discusses the possibilities of induction of cancer by low-dose radiation. PMID:22641644

  12. Radiation Dose Optimization For Critical Organs

    NASA Astrophysics Data System (ADS)

    Khodadadegan, Yasaman

    Ionizing radiation used in the patient diagnosis or therapy has negative effects on the patient body in short term and long term depending on the amount of exposure. More than 700,000 examinations are everyday performed on Interventional Radiology modalities, however; there is no patient-centric information available to the patient or the Quality Assurance for the amount of organ dose received. In this study, we are exploring the methodologies to systematically reduce the absorbed radiation dose in the Fluoroscopically Guided Interventional Radiology procedures. In the first part of this study, we developed a mathematical model which determines a set of geometry settings for the equipment and a level for the energy during a patient exam. The goal is to minimize the amount of absorbed dose in the critical organs while maintaining image quality required for the diagnosis. The model is a large-scale mixed integer program. We performed polyhedral analysis and derived several sets of strong inequalities to improve the computational speed and quality of the solution. Results present the amount of absorbed dose in the critical organ can be reduced up to 99% for a specific set of angles. In the second part, we apply an approximate gradient method to simultaneously optimize angle and table location while minimizing dose in the critical organs with respect to the image quality. In each iteration, we solve a sub-problem as a MIP to determine the radiation field size and corresponding X-ray tube energy. In the computational experiments, results show further reduction (up to 80%) of the absorbed dose in compare with previous method. Last, there are uncertainties in the medical procedures resulting imprecision of the absorbed dose. We propose a robust formulation to hedge from the worst case absorbed dose while ensuring feasibility. In this part, we investigate a robust approach for the organ motions within a radiology procedure. We minimize the absorbed dose for the critical

  13. Skin dose mapping for fluoroscopically guided interventions

    SciTech Connect

    Johnson, Perry B.; Borrego, David; Balter, Stephen; Johnson, Kevin; Siragusa, Daniel; Bolch, Wesley E.

    2011-10-15

    Purpose: To introduce a new skin dose mapping software system for interventional fluoroscopy dose assessment and to analyze the benefits and limitations of patient-phantom matching. Methods: In this study, a new software system was developed for visualizing patient skin dose during interventional fluoroscopy procedures. The system works by translating the reference point air kerma to the location of the patient's skin, which is represented by a computational model. In order to orient the model with the x-ray source, geometric parameters found within the radiation dose structured report (RDSR) are used along with a limited number of in-clinic measurements. The output of the system is a visual indication of skin dose mapped onto an anthropomorphic model at a resolution of 5 mm. In order to determine if patient-dependent and patient-sculpted models increase accuracy, peak skin dose was calculated for each of 26 patient-specific models and compared with doses calculated using an elliptical stylized model, a reference hybrid model, a matched patient-dependent model and one patient-sculpted model. Results were analyzed in terms of a percent difference using the doses calculated using the patient-specific model as the true standard. Results: Anthropometric matching, including the use of both patient-dependent and patient-sculpted phantoms, was shown most beneficial for left lateral and anterior-posterior projections. In these cases, the percent difference using a reference model was between 8 and 20%, using a patient-dependent model between 7 and 15%, and using a patient-sculpted model between 3 and 7%. Under the table tube configurations produced errors less than 5% in most situations due to the flattening affects of the table and pad, and the fact that table height is the main determination of source-to-skin distance for these configurations. In addition to these results, several skin dose maps were produced and a prototype display system was placed on the in

  14. Total ionizing dose effects of domestic SiGe HBTs under different dose rates

    NASA Astrophysics Data System (ADS)

    Liu, Mo-Han; Lu, Wu; Ma, Wu-Ying; Wang, Xin; Guo, Qi; He, Cheng-Fa; Jiang, Ke; Li, Xiao-Long; Xun, Ming-Zhu

    2016-03-01

    The total ionizing radiation (TID) response of commercial NPN silicon germanium hetero-junction bipolar transistors (SiGe HBTs) produced domestically are investigated under dose rates of 800 mGy(Si)/s and 1.3 mGy(Si)/s with a Co-60 gamma irradiation source. The changes of transistor parameters such as Gummel characteristics, and excess base current before and after irradiation, are examined. The results of the experiments show that for the KT1151, the radiation damage is slightly different under the different dose rates after prolonged annealing, and shows a time dependent effect (TDE). For the KT9041, however, the degradations of low dose rate irradiation is higher than for the high dose rate, demonstrating that there is a potential enhanced low dose rate sensitivity (ELDRS) effect for the KT9041. The possible underlying physical mechanisms of the different dose rates responses induced by the gamma rays are discussed.

  15. Dose Effects of Ion Beam Exposure on Deinococcus Radiodurans: Survival and Dose Response

    NASA Astrophysics Data System (ADS)

    Song, Dao-jun; Wu, Li-fang; Wu, Li-jun; Yu, Zeng-liang

    2001-02-01

    To explore the survival and dose response of organism for different radiation sources is of great importance in the research of radiobiology. In this study, the survival-dose response of Deinococcus radiodurans (E.coli, as the control) for ultra-violet (UV), γ-rays radiation and ion beam exposure was investigated. The shoulder type of survival curves were found for both UV and γ-ray ionizing radiation, but the saddle type of survival curves were shown for H+, N+(20keV and 30keV) and Ar+ beam exposure. This dose effect of the survival initially decreased with the increase in dose and then increased in the high dose range and finally decreased again in the higher dose range. Our experimental results suggest that D. radiodurans, which is considerably radio-resistant to UV and x-ray and γ-ray ionizing radiation, do not resist ion beam exposure.

  16. External dose-rate conversion factors for calculation of dose to the public

    SciTech Connect

    Not Available

    1988-07-01

    This report presents a tabulation of dose-rate conversion factors for external exposure to photons and electrons emitted by radionuclides in the environment. This report was prepared in conjunction with criteria for limiting dose equivalents to members of the public from operations of the US Department of Energy (DOE). The dose-rate conversion factors are provided for use by the DOE and its contractors in performing calculations of external dose equivalents to members of the public. The dose-rate conversion factors for external exposure to photons and electrons presented in this report are based on a methodology developed at Oak Ridge National Laboratory. However, some adjustments of the previously documented methodology have been made in obtaining the dose-rate conversion factors in this report. 42 refs., 1 fig., 4 tabs.

  17. SCCT guidelines on radiation dose and dose-optimization strategies in cardiovascular CT

    PubMed Central

    Halliburton, Sandra S.; Abbara, Suhny; Chen, Marcus Y.; Gentry, Ralph; Mahesh, Mahadevappa; Raff, Gilbert L.; Shaw, Leslee J.; Hausleiter, Jörg

    2012-01-01

    Over the last few years, computed tomography (CT) has developed into a standard clinical test for a variety of cardiovascular conditions. The emergence of cardiovascular CT during a period of dramatic increase in radiation exposure to the population from medical procedures and heightened concern about the subsequent potential cancer risk has led to intense scrutiny of the radiation burden of this new technique. This has hastened the development and implementation of dose reduction tools and prompted closer monitoring of patient dose. In an effort to aid the cardiovascular CT community in incorporating patient-centered radiation dose optimization and monitoring strategies into standard practice, the Society of Cardiovascular Computed Tomography has produced a guideline document to review available data and provide recommendations regarding interpretation of radiation dose indices and predictors of risk, appropriate use of scanner acquisition modes and settings, development of algorithms for dose optimization, and establishment of procedures for dose monitoring. PMID:21723512

  18. Association sarcoïdose et maladie de Horton: à propos d'un cas

    PubMed Central

    Marzouk, Sameh; Hriz, Hela; Jallouli, Moez; Cherif, Yosra; Bahloul, Zouhir

    2015-01-01

    La sarcoïdose peut être associée à d'autres maladies inflammatoires. Elle est exceptionnellement associée à une maladie de Horton posant un problème nosologique sur le caractère fortuit ou non de cette association. Nous rapportons l'observation d'une patiente, âgée de 68 ans, chez qui le diagnostic de sarcoïdose avec atteinte rénale, hépatique, oculaire, articulaire et signes généraux a été retenu et ayant été traitée par corticothérapie avec une bonne évolution. 3 ans plus tard elle a présenté des céphalées fronto-temporales associées à une claudication massétérienne et un syndrome inflammatoire biologique. La biopsie de l'artère temporale a conclu à une artérite à cellules géantes. L’évolution a été favorable sous corticothérapie. L'association d'une maladie de Horton à une sarcoïdose suggère un lien éventuel entre ces deux affections. PMID:26213599

  19. Detailed dose distribution prediction of Cf-252 brachytherapy source with boron loading dose enhancement.

    PubMed

    Ghassoun, J; Mostacci, D; Molinari, V; Jehouani, A

    2010-02-01

    The purpose of this work is to evaluate the dose rate distribution and to determine the boron effect on dose rate distribution for (252)Cf brachytherapy source. This study was carried out using a Monte Carlo simulation. To validate the Monte Carlo computer code, the dosimetric parameters were determined following the updated TG-43 formalism and compared with current literature data. The validated computer code was then applied to evaluate the neutron and photon dose distribution and to illustrate the boron loading effect.

  20. Contralateral breast dose from partial breast brachytherapy.

    PubMed

    Robinson, R Cole; Nelson, Christopher L; Bloom, Elizabeth S; Kisling, Kelly D; Mason, Bryan E; Fisher, Gary D; Kirsner, Steven M

    2015-01-01

    The purpose of this study was to determine the dose to the contralateral breast during accelerated partial breast irradiation (APBI) and to compare it to external beam-published values. Thermoluminescent dosimeter (TLD) packets were used to measure the dose to the most medial aspect of the contralateral breast during APBI simulation, daily quality assurance (QA), and treatment. All patients in this study were treated with a single-entry, multicatheter device for 10 fractions to a total dose of 34 Gy. A mark was placed on the patient's skin on the medial aspect of the opposite breast. Three TLD packets were taped to this mark during the pretreatment simulation. Simulations consisted of an AP and Lateral scout and a limited axial scan encompassing the lumpectomy cavity (miniscan), if rotation was a concern. After the simulation the TLD packets were removed and the patients were moved to the high-dose-rate (HDR) vault where three new TLD packets were taped onto the patients at the skin mark. Treatment was administered with a Nucletron HDR afterloader using Iridium-192 as the treatment source. Post-treatment, TLDs were read (along with the simulation and QA TLD and a set of standards exposed to a known dose of 6 MV photons). Measurements indicate an average total dose to the contralateral breast of 70 cGy for outer quadrant implants and 181 cGy for inner quadrant implants. Compared to external beam breast tangents, these results point to less dose being delivered to the contralateral breast when using APBI. PMID:26699549

  1. Low dose neutron late effects: Cataractogenesis

    SciTech Connect

    Worgul, B.V.

    1991-12-01

    The work is formulated to resolve the uncertainty regarding the relative biological effectiveness (RBE) of low dose neutron radiation. The study exploits the fact that cataractogenesis is sensitive to the inverse dose-rate effect as has been observed with heavy ions and was an endpoint considered in the follow-up of the A-bomb survivors. The neutron radiations were initiated at the Radiological Research Accelerator facility (RARAF) of the Nevis Laboratory of Columbia University. Four week old ({plus minus} 1 day) rats were divided into eight dose groups each receiving single or fractionated total doses of 0.2, 1.0, 5.0 and 25.0 cGy of monoenergetic 435 KeV neutrons. Special restraining jigs insured that the eye, at the midpoint of the lens, received the appropriate energy and dose with a relative error of {plus minus}5%. The fractionation regimen consisted of four exposures, each administered at three hour ({plus minus}) intervals. The neutron irradiated groups are being compared to rats irradiated with 250kVp X-rays in doses ranging from 0.5 to 7 Gy. The animals are being examined on a biweekly basis utilizing conventional slit-lamp biomicroscopy and the Scheimpflug Slit Lamp Imaging System (Zeiss). The follows-ups, entering their second year, will continue throughout the life-span of the animals. This is essential inasmuch as given the extremely low doses which are being utilized clinically detectable opacities were not anticipated until a significant fraction of the life span has lapsed. Current data support this contention. At this juncture cataracts in the irradiated groups are beginning to exceed control levels.

  2. Dose-response-a challenge for allelopathy?

    PubMed

    Belz, Regina G; Hurle, Karl; Duke, Stephen O

    2005-04-01

    The response of an organism to a chemical depends, among other things, on the dose. Nonlinear dose-response relationships occur across a broad range of research fields, and are a well established tool to describe the basic mechanisms of phytotoxicity. The responses of plants to allelochemicals as biosynthesized phytotoxins, relate as well to nonlinearity and, thus, allelopathic effects can be adequately quantified by nonlinear mathematical modeling. The current paper applies the concept of nonlinearity to assorted aspects of allelopathy within several bioassays and reveals their analysis by nonlinear regression models. Procedures for a valid comparison of effective doses between different allelopathic interactions are presented for both, inhibitory and stimulatory effects. The dose-response applications measure and compare the responses produced by pure allelochemicals [scopoletin (7-hydroxy-6-methoxy-2H-1-benzopyran-2-one); DIBOA (2,4-dihydroxy-2H-1,4-benzoxaxin-3(4H)-one); BOA (benzoxazolin-2(3H)-one); MBOA (6-methoxy-benzoxazolin-2(3H)-one)], involved in allelopathy of grain crops, to demonstrate how some general principles of dose responses also relate to allelopathy. Hereupon, dose-response applications with living donor plants demonstrate the validity of these principles for density-dependent phytotoxicity of allelochemicals produced and released by living plants (Avena sativa L., Secale cereale L., Triticum L. spp.), and reveal the use of such experiments for initial considerations about basic principles of allelopathy. Results confirm that nonlinearity applies to allelopathy, and the study of allelopathic effects in dose-response experiments allows for new and challenging insights into allelopathic interactions.

  3. On the definition of absorbed dose

    NASA Astrophysics Data System (ADS)

    Grusell, Erik

    2015-02-01

    Purpose: The quantity absorbed dose is used extensively in all areas concerning the interaction of ionizing radiation with biological organisms, as well as with matter in general. The most recent and authoritative definition of absorbed dose is given by the International Commission on Radiation Units and Measurements (ICRU) in ICRU Report 85. However, that definition is incomplete. The purpose of the present work is to give a rigorous definition of absorbed dose. Methods: Absorbed dose is defined in terms of the random variable specific energy imparted. A random variable is a mathematical function, and it cannot be defined without specifying its domain of definition which is a probability space. This is not done in report 85 by the ICRU, mentioned above. Results: In the present work a definition of a suitable probability space is given, so that a rigorous definition of absorbed dose is possible. This necessarily includes the specification of the experiment which the probability space describes. In this case this is an irradiation, which is specified by the initial particles released and by the material objects which can interact with the radiation. Some consequences are discussed. Specific energy imparted is defined for a volume, and the definition of absorbed dose as a point function involves the specific energy imparted for a small mass contained in a volume surrounding the point. A possible more precise definition of this volume is suggested and discussed. Conclusions: The importance of absorbed dose motivates a proper definition, and one is given in the present work. No rigorous definition has been presented before.

  4. 21 years of Biologically Effective Dose

    PubMed Central

    Fowler, J F

    2010-01-01

    In 1989 the British Journal of Radiology published a review proposing the term biologically effective dose (BED), based on linear quadratic cell survival in radiobiology. It aimed to indicate quantitatively the biological effect of any radiotherapy treatment, taking account of changes in dose-per-fraction or dose rate, total dose and (the new factor) overall time. How has it done so far? Acceptable clinical results have been generally reported using BED, and it is in increasing use, although sometimes mistaken for “biologically equivalent dose”, from which it differs by large factors, as explained here. The continuously bending nature of the linear quadratic curve has been questioned but BED has worked well for comparing treatments in many modalities, including some with large fractions. Two important improvements occurred in the BED formula. First, in 1999, high linear energy transfer (LET) radiation was included; second, in 2003, when time parameters for acute mucosal tolerance were proposed, optimum overall times could then be “triangulated” to optimise tumour BED and cell kill. This occurs only when both early and late BEDs meet their full constraints simultaneously. New methods of dose delivery (intensity modulated radiation therapy, stereotactic body radiation therapy, protons, tomotherapy, rapid arc and cyberknife) use a few large fractions and obviously oppose well-known fractionation schedules. Careful biological modelling is required to balance the differing trends of fraction size and local dose gradient, as explained in the discussion “How Fractionation Really Works”. BED is now used for dose escalation studies, radiochemotherapy, brachytherapy, high-LET particle beams, radionuclide-targeted therapy, and for quantifying any treatments using ionising radiation. PMID:20603408

  5. Dose-Response—A Challenge for Allelopathy?

    PubMed Central

    Belz, Regina G.; Hurle, Karl; Duke, Stephen O.

    2005-01-01

    The response of an organism to a chemical depends, among other things, on the dose. Nonlinear dose-response relationships occur across a broad range of research fields, and are a well established tool to describe the basic mechanisms of phytotoxicity. The responses of plants to allelochemicals as biosynthesized phytotoxins, relate as well to nonlinearity and, thus, allelopathic effects can be adequately quantified by nonlinear mathematical modeling. The current paper applies the concept of nonlinearity to assorted aspects of allelopathy within several bioassays and reveals their analysis by nonlinear regression models. Procedures for a valid comparison of effective doses between different allelopathic interactions are presented for both, inhibitory and stimulatory effects. The dose-response applications measure and compare the responses produced by pure allelochemicals [scopoletin (7-hydroxy-6-methoxy-2H-1-benzopyran-2-one); DIBOA (2,4-dihydroxy-2H-1,4-benzoxaxin-3(4H)-one); BOA (benzoxazolin-2(3H)-one); MBOA (6-methoxy-benzoxazolin-2(3H)-one)], involved in allelopathy of grain crops, to demonstrate how some general principles of dose responses also relate to allelopathy. Hereupon, dose-response applications with living donor plants demonstrate the validity of these principles for density-dependent phytotoxicity of allelochemicals produced and released by living plants (Avena sativa L., Secale cereale L., Triticum L. spp.), and reveal the use of such experiments for initial considerations about basic principles of allelopathy. Results confirm that nonlinearity applies to allelopathy, and the study of allelopathic effects in dose-response experiments allows for new and challenging insights into allelopathic interactions. PMID:19330161

  6. Use of effective dose in medicine.

    PubMed

    Harrison, J; Lopez, P O

    2015-06-01

    This paper does not necessarily reflect the views of the International Commission on Radiological Protection. The protection quantity 'effective dose' was developed by the International Commission on Radiological Protection (ICRP) for use in the radiological protection of workers and the public. In this context, it is used as a risk-adjusted dosimetric quantity to optimise protection, comparing received or planned doses with constraints, reference levels, and limits expressed in the same quantity. Considering exposures incurred during medical procedures, effective dose can be of practical value for comparing: doses from different diagnostic examinations and interventional procedures; the use of similar technologies and procedures in different hospitals and countries; and the use of different technologies for the same medical examination, provided that the representative patients or patient populations for which the effective doses are derived are similar with regard to age and sex. However, as stated in ICRP Publication 103, '… risk assessment for medical diagnosis and treatment… is best evaluated using appropriate risk values for the individual tissues at risk and for the age and sex distribution of the individuals undergoing the medical procedures'. This topic was explored in a session of the First ICRP Symposium with arguments for and against the use of a new quantity referred to as 'effective risk', and examination of variations in estimated risk for different diagnostic procedures according to the age and sex of the exposed individuals. This paper restates the primary purposes of effective dose, and summarises estimates of variation in individual risk from medical procedures. The authors support the judicious use of effective dose as an indicator of possible risk, but caution against the use of effective risk as compared with the calculation of scientific best estimates of risk with consideration of associated uncertainties.

  7. Automated size-specific CT dose monitoring program: Assessing variability in CT dose

    SciTech Connect

    Christianson, Olav; Li Xiang; Frush, Donald; Samei, Ehsan

    2012-11-15

    Purpose: The potential health risks associated with low levels of ionizing radiation have created a movement in the radiology community to optimize computed tomography (CT) imaging protocols to use the lowest radiation dose possible without compromising the diagnostic usefulness of the images. Despite efforts to use appropriate and consistent radiation doses, studies suggest that a great deal of variability in radiation dose exists both within and between institutions for CT imaging. In this context, the authors have developed an automated size-specific radiation dose monitoring program for CT and used this program to assess variability in size-adjusted effective dose from CT imaging. Methods: The authors radiation dose monitoring program operates on an independent health insurance portability and accountability act compliant dosimetry server. Digital imaging and communication in medicine routing software is used to isolate dose report screen captures and scout images for all incoming CT studies. Effective dose conversion factors (k-factors) are determined based on the protocol and optical character recognition is used to extract the CT dose index and dose-length product. The patient's thickness is obtained by applying an adaptive thresholding algorithm to the scout images and is used to calculate the size-adjusted effective dose (ED{sub adj}). The radiation dose monitoring program was used to collect data on 6351 CT studies from three scanner models (GE Lightspeed Pro 16, GE Lightspeed VCT, and GE Definition CT750 HD) and two institutions over a one-month period and to analyze the variability in ED{sub adj} between scanner models and across institutions. Results: No significant difference was found between computer measurements of patient thickness and observer measurements (p= 0.17), and the average difference between the two methods was less than 4%. Applying the size correction resulted in ED{sub adj} that differed by up to 44% from effective dose estimates

  8. Interplanetary crew doses and dose equivalents: variations among different bone marrow and skin sites

    NASA Astrophysics Data System (ADS)

    Hoff, J. L.; Townsend, L. W.; Zapp, E. N.

    2004-01-01

    Previously, calculations of bone marrow dose from the large solar particle event (SPE) of July 2000 were carried out using the BRYNTRN space radiation transport code and the computerized anatomical man (CAM) model. Results indicated that the dose for a bone marrow site in the mid-thigh might be twice as large as the dose for a site in the pelvis. These large variations may be significant for space radiation protection purposes, which traditionally use an average of many (typically 33) sites throughout the body. Other organs that cover large portions of the body, such as the skin, may also exhibit similar variations with doses differing from site to site. The skin traditionally uses an average of 32 sites throughout the body. Variations also occur from site to site among the dose equivalents, which may be important in determining stochastic effects. In this work, the magnitudes of dose and dose equivalent variations from site to site are investigated. The BRYNTRN and HZETRN transport codes and the CAM model are used to estimate bone marrow and skin doses and dose equivalents as a function of position in the body for several large solar particle events and annual galactic cosmic ray spectra from throughout the space era. These position-specific results are compared with the average values usually used for radiation protection purposes. Various thicknesses of aluminum shielding, representative of nominal spacecraft, are used in the analyses.

  9. Interplanetary Crew Doses and Dose Equivalents: Variations among Different Bone Marrow and Skin Sites

    NASA Astrophysics Data System (ADS)

    Hoff, J.; Townsend, L.; Zapp, E.

    Previously, calculations of bone marrow dose from the large solar particle event (SPE) of July 2000 were carried out using the BRYNTRN space radiation transport code and the Computerized Anatomical Man (CAM) model. Results indicated that the dose for a bone marrow site in the mid-thigh might be twice as large as the dose for a site in the pelvis. These large variations may be significant for space radiation protection purposes, which traditionally use an average of many (typically 33) sites throughout the body. Other organs that cover large portions of the body, such as the skin, may also exhibit similar variations with doses differing from site to site. The skin traditionally uses an average of 32 sites throughout the body. Variations also occur from site to site among the dose equivalents, which may be important in determining stochastic effects. In this work, the magnitudes of dose and dose equivalent variations from site to site are investigated. The BRYNTRN and HZETRN transport codes and the CAM model are used to estimate bone marrow and skin doses and dose equivalents as a function of position in the body for several large solar particle events and annual galactic cosmic ray (GCR) spectra from throughout the space era. These position-specific results are compared with the average values usually used for radiation protection purposes. Various thicknesses of aluminum shielding, representative of nominal spacecraft and SPE "storm shelter" designs, are used in the analyses.

  10. Dose distribution for dental cone beam CT and its implication for defining a dose index

    PubMed Central

    Pauwels, R; Theodorakou, C; Walker, A; Bosmans, H; Jacobs, R; Horner, K; Bogaerts, R

    2012-01-01

    Objectives To characterize the dose distribution for a range of cone beam CT (CBCT) units, investigating different field of view sizes, central and off-axis geometries, full or partial rotations of the X-ray tube and different clinically applied beam qualities. The implications of the dose distributions on the definition and practicality of a CBCT dose index were assessed. Methods Dose measurements on CBCT devices were performed by scanning cylindrical head-size water and polymethyl methacrylate phantoms, using thermoluminescent dosemeters, a small-volume ion chamber and radiochromic films. Results It was found that the dose distribution can be asymmetrical for dental CBCT exposures throughout a homogeneous phantom, owing to an asymmetrical positioning of the isocentre and/or partial rotation of the X-ray source. Furthermore, the scatter tail along the z-axis was found to have a distinct shape, generally resulting in a strong drop (90%) in absorbed dose outside the primary beam. Conclusions There is no optimal dose index available owing to the complicated exposure geometry of CBCT and the practical aspects of quality control measurements. Practical validation of different possible dose indices is needed, as well as the definition of conversion factors to patient dose. PMID:22752320

  11. Differential dose contributions on total dose distribution of (125)I brachytherapy source.

    PubMed

    Camgöz, B; Yeğin, G; Kumru, M N

    2010-01-01

    This work provides an improvement of the approach using Monte Carlo simulation for the Amersham Model 6711 (125)I brachytherapy seed source, which is well known by many theoretical and experimental studies. The source which has simple geometry was researched with respect to criteria of AAPM Tg-43 Report. The approach offered by this study involves determination of differential dose contributions that come from virtual partitions of a massive radioactive element of the studied source to a total dose at analytical calculation point. Some brachytherapy seeds contain multi-radioactive elements so the dose at any point is a total of separate doses from each element. It is momentous to know well the angular and radial dose distributions around the source that is located in cancerous tissue for clinical treatments. Interior geometry of a source is effective on dose characteristics of a distribution. Dose information of inner geometrical structure of a brachytherapy source cannot be acquired by experimental methods because of limits of physical material and geometry in the healthy tissue, so Monte Carlo simulation is a required approach of the study. EGSnrc Monte Carlo simulation software was used. In the design of a simulation, the radioactive source was divided into 10 rings, partitioned but not separate from each other. All differential sources were simulated for dose calculation, and the shape of dose distribution was determined comparatively distribution of a single-complete source. In this work anisotropy function was examined also mathematically.

  12. Differential dose contributions on total dose distribution of (125)I brachytherapy source.

    PubMed

    Camgöz, B; Yeğin, G; Kumru, M N

    2010-01-01

    This work provides an improvement of the approach using Monte Carlo simulation for the Amersham Model 6711 (125)I brachytherapy seed source, which is well known by many theoretical and experimental studies. The source which has simple geometry was researched with respect to criteria of AAPM Tg-43 Report. The approach offered by this study involves determination of differential dose contributions that come from virtual partitions of a massive radioactive element of the studied source to a total dose at analytical calculation point. Some brachytherapy seeds contain multi-radioactive elements so the dose at any point is a total of separate doses from each element. It is momentous to know well the angular and radial dose distributions around the source that is located in cancerous tissue for clinical treatments. Interior geometry of a source is effective on dose characteristics of a distribution. Dose information of inner geometrical structure of a brachytherapy source cannot be acquired by experimental methods because of limits of physical material and geometry in the healthy tissue, so Monte Carlo simulation is a required approach of the study. EGSnrc Monte Carlo simulation software was used. In the design of a simulation, the radioactive source was divided into 10 rings, partitioned but not separate from each other. All differential sources were simulated for dose calculation, and the shape of dose distribution was determined comparatively distribution of a single-complete source. In this work anisotropy function was examined also mathematically. PMID:24376927

  13. Enhanced Low Dose Rate Sensitivity at Ultra-Low Dose Rates

    NASA Technical Reports Server (NTRS)

    Chen, Dakai; Pease, Ronald; Forney, James; Carts, Martin; Phan, Anthony; Cox, Stephen; Kruckmeyer, Kriby; Burns, Sam; Albarian, Rafi; Holcombe, Bruce; Little, Bradley; Salzman, James; Chaumont, Geraldine; Duperray, Herve; Ouellet, Al; Buchner, Stephen; LaBel, Kenneth

    2011-01-01

    We have presented results of ultra-low dose rate irradiations (< or = 10 mrad(Si)/s) for a variety of radiation hardened and commercial linear bipolar devices. We observed low dose rate enhancement factors exceeding 1.5 in several parts. The worst case of dose rate enhancement resulted in functional failures, which occurred after 10 and 60 krad(Si), for devices irradiated at 0.5 and 10 mrad(Si)/s, respectively. Devices fabricated with radiation hardened processes and designs also displayed dose rate enhancement at below 10 mrad(Si)/s. Furthermore, the data indicated that these devices have not reached the damage saturation point. Therefore the degradation will likely continue to increase with increasing total dose, and the low dose rate enhancement will further magnify. The cases presented here, in addition to previous examples, illustrate the significance and pervasiveness of low dose rate enhancement at dose rates lower than 10 mrad(Si). These results present further challenges for radiation hardness assurance of bipolar linear circuits, and raise the question of whether the current standard test dose rate is conservative enough to bound degradations due to ELDRS.

  14. Radiobiological modelling of dose-gradient effects in low dose rate, high dose rate and pulsed brachytherapy

    NASA Astrophysics Data System (ADS)

    Armpilia, C.; Dale, R. G.; Sandilos, P.; Vlachos, L.

    2006-09-01

    This paper presents a generalization of a previously published methodology which quantified the radiobiological consequences of dose-gradient effects in brachytherapy applications. The methodology uses the linear-quadratic (LQ) formulation to identify an equivalent biologically effective dose (BEDeq) which, if applied uniformly to a specified tissue volume, would produce the same net cell survival as that achieved by a given non-uniform brachytherapy application. Multiplying factors (MFs), which enable the equivalent BED for an enclosed volume to be estimated from the BED calculated at the dose reference surface, have been calculated and tabulated for both spherical and cylindrical geometries. The main types of brachytherapy (high dose rate (HDR), low dose rate (LDR) and pulsed (PB)) have been examined for a range of radiobiological parameters/dimensions. Equivalent BEDs are consistently higher than the BEDs calculated at the reference surface by an amount which depends on the treatment prescription (magnitude of the prescribed dose) at the reference point. MFs are closely related to the numerical BED values, irrespective of how the original BED was attained (e.g., via HDR, LDR or PB). Thus, an average MF can be used for a given prescribed BED as it will be largely independent of the assumed radiobiological parameters (radiosensitivity and α/β) and standardized look-up tables may be applicable to all types of brachytherapy treatment. This analysis opens the way to more systematic approaches for correlating physical and biological effects in several types of brachytherapy and for the improved quantitative assessment and ranking of clinical treatments which involve a brachytherapy component.

  15. Computing proton dose to irregularly moving targets

    NASA Astrophysics Data System (ADS)

    Phillips, Justin; Gueorguiev, Gueorgui; Shackleford, James A.; Grassberger, Clemens; Dowdell, Stephen; Paganetti, Harald; Sharp, Gregory C.

    2014-08-01

    Purpose: While four-dimensional computed tomography (4DCT) and deformable registration can be used to assess the dose delivered to regularly moving targets, there are few methods available for irregularly moving targets. 4DCT captures an idealized waveform, but human respiration during treatment is characterized by gradual baseline shifts and other deviations from a periodic signal. This paper describes a method for computing the dose delivered to irregularly moving targets based on 1D or 3D waveforms captured at the time of delivery. Methods: The procedure uses CT or 4DCT images for dose calculation, and 1D or 3D respiratory waveforms of the target position at time of delivery. Dose volumes are converted from their Cartesian geometry into a beam-specific radiological depth space, parameterized in 2D by the beam aperture, and longitudinally by the radiological depth. In this new frame of reference, the proton doses are translated according to the motion found in the 1D or 3D trajectory. These translated dose volumes are weighted and summed, then transformed back into Cartesian space, yielding an estimate of the dose that includes the effect of the measured breathing motion. The method was validated using a synthetic lung phantom and a single representative patient CT. Simulated 4DCT was generated for the phantom with 2 cm peak-to-peak motion. Results: A passively-scattered proton treatment plan was generated using 6 mm and 5 mm smearing for the phantom and patient plans, respectively. The method was tested without motion, and with two simulated breathing signals: a 2 cm amplitude sinusoid, and a 2 cm amplitude sinusoid with 3 cm linear drift in the phantom. The tumor positions were equally weighted for the patient calculation. Motion-corrected dose was computed based on the mid-ventilation CT image in the phantom and the peak exhale position in the patient. Gamma evaluation was 97.8% without motion, 95.7% for 2 cm sinusoidal motion, 95.7% with 3 cm drift in the

  16. Computing Proton Dose to Irregularly Moving Targets

    PubMed Central

    Phillips, Justin; Gueorguiev, Gueorgui; Shackleford, James A.; Grassberger, Clemens; Dowdell, Stephen; Paganetti, Harald; Sharp, Gregory C.

    2014-01-01

    Purpose While four-dimensional computed tomography (4DCT) and deformable registration can be used to assess the dose delivered to regularly moving targets, there are few methods available for irregularly moving targets. 4DCT captures an idealized waveform, but human respiration during treatment is characterized by gradual baseline shifts and other deviations from a periodic signal. This paper describes a method for computing the dose delivered to irregularly moving targets based on 1D or 3D waveforms captured at the time of delivery. Methods The procedure uses CT or 4DCT images for dose calculation, and 1D or 3D respiratory waveforms of the target position at time of delivery. Dose volumes are converted from their Cartesian geometry into a beam-specific radiological depth space, parameterized in 2D by the beam aperture, and longitudinally by the radiological depth. In this new frame of reference, the proton doses are translated according to the motion found in the 1D or 3D trajectory. These translated dose volumes are weighted and summed, then transformed back into Cartesian space, yielding an estimate of the dose that includes the effect of the measured breathing motion. The method was validated using a synthetic lung phantom and a single representative patient CT. Simulated 4DCT was generated for the phantom with 2 cm peak-to-peak motion. Results A passively-scattered proton treatment plan was generated using 6 mm and 5 mm smearing for the phantom and patient plans, respectively. The method was tested without motion, and with two simulated breathing signals: a 2 cm amplitude sinusoid, and a 2 cm amplitude sinusoid with 3 cm linear drift in the phantom. The tumor positions were equally weighted for the patient calculation. Motion-corrected dose was computed based on the mid-ventilation CT image in the phantom and the peak exhale position in the patient. Gamma evaluation was 97.8% without motion, 95.7% for 2 cm sinusoidal motion, and 95.7% with 3 cm drift in the

  17. DRY TRANSFER FACILITY WORKER DOSE ASSESSMENT

    SciTech Connect

    J.S. Tang

    2004-09-23

    The purpose of this calculation is to estimate radiation doses received by personnel working in the Dry Transfer Facility No.1 (DTF-1) performing operations to receive transportation casks, transfer wastes, prepare waste packages, and ship out loaded waste packages and empty casks. Doses received by workers due to maintenance operations are also included in this revision. The specific scope of work contained in this calculation covers both collective doses and individual worker group doses on an annual basis, and includes the contributions due to external and internal radiation from normal operation, excluding the remediation area of the building. The results of this calculation will be used to support the design of the DTF-1 and to provide occupational dose estimates for the License Application. The calculations contained in this document were developed by Environmental and Nuclear Engineering of the Design and Engineering Organization and are intended solely for the use of the Design and Engineering Organization in its work regarding facility operation. Yucca Mountain Project personnel from the Environmental and Nuclear Engineering should be consulted before use of the calculations for purposes other than those stated herein or use by individuals other than authorized personnel in the Environmental and Nuclear Engineering.

  18. Low dose neutron late effects: Cataractogenesis

    SciTech Connect

    Worgul, B.V.

    1991-04-01

    The work is formulated to resolve the uncertainty regarding the relative biological effectiveness. The endpoint which is being utilized is cataractogenesis. The advantages conferred by this system stems primarily from the non-invasive longitudinal analysis which it allows. It also exploits a well defined system and one which has demonstrated sensitivity to the inverse dose rate effect observed with heavy ions. Four week old rats were divided into 8 dose groups which received single or fractionated total doses of .2, 1.0, 5.0 and 25 cGy of monoenergetic 435 keV neutrons. Special restraining jigs were devised to insure that the eye at the midpoint of the lens received the appropriate energy and dose with a relative error of {plus minus} 5%. The fractionated regimen consisted of four exposures, each administered at 3 hour intervals. The reference radiations, 250 kVp X-rays, were administered in the same fashion but in doses ranging from .5 to 6.0 Gy. The animals are examined on a bi-weekly basis utilizing conventional slit-lamp biomicroscopy and the Scheimpflug Slit-lamp Imaging System. The follow-ups will continue throughout the lifespan of the animals. When opacification begins full documentation will involve the Zeiss imaging system and Oxford retroillumination photography. The processing routinely employs the Merriam/Focht scoring system for cross-referencing with previous cataract studies and establish cataractogenecity using a proven scoring method.

  19. Hanford Environmental Dose Reconstruction Project. Monthly report

    SciTech Connect

    Finch, S. M.; McMakin, A. H.

    1991-09-01

    The objective of the Hanford Environmental Dose Reconstruction Project is to estimate the radiation dose that individuals and populations could have received from nuclear operations at Hanford since 1944. The project is divided into five technical tasks. These tasks correspond to the path radionuclides followed, from release to impact on humans (i.e., dose estimates). The Source Terms Task develops estimates of radioactive emissions from Hanford facilities since 1944. The Environmental Transport Task reconstructs the movements of radioactive particles from the areas of release to populations. The Environmental Monitoring Data Task assemblies, evaluates and reports historical environmental monitoring data. The Demographics, Agriculture and Food Habits Task develops the data needed to identify the populations that could have been affected by the releases. The Environmental Pathways and Dose Estimates Task used the information derived from the other Tasks to estimate the radiation doses individuals could have received from Hanford radiation. This document lists the progress on this project as of September 1991. 3 figs., 2 tabs.

  20. Agriculture-related radiation dose calculations

    SciTech Connect

    Furr, J.M.; Mayberry, J.J.; Waite, D.A.

    1987-10-01

    Estimates of radiation dose to the public must be made at each stage in the identification and qualification process leading to siting a high-level nuclear waste repository. Specifically considering the ingestion pathway, this paper examines questions of reliability and adequacy of dose calculations in relation to five stages of data availability (geologic province, region, area, location, and mass balance) and three methods of calculation (population, population/food production, and food production driven). Calculations were done using the model PABLM with data for the Permian and Palo Duro Basins and the Deaf Smith County area. Extra effort expended in gathering agricultural data at succeeding environmental characterization levels does not appear justified, since dose estimates do not differ greatly; that effort would be better spent determining usage of food types that contribute most to the total dose; and that consumption rate and the air dispersion factor are critical to assessment of radiation dose via the ingestion pathway. 17 refs., 9 figs., 32 tabs.

  1. Genomic Instability Induced by Low Dose Irradiation

    SciTech Connect

    Evans, Helen H. Sedwick, David W. Veigl, Martina L.

    2006-07-15

    The goal of this project was to determine if genomic instability could be initiated by poorly repaired DNA damage induced by low doses of ionizing radiation leading to a mutator phenotype. Human cells were irradiated, then transfected with an unirradiated reporter gene at various times AFTER exposure. The vector carried an inactive GFP gene that fluoresced when the gene was activated by a delayed mutation. Fluorescent cells were measured in the interval of 50 hours to four days after transfection. The results showed that delayed mutations occurred in these cells after exposure to relatively low doses (0.3-1.0 Gy) of low or high ionizing radiation, as well as after treatment with hyrodgen peroxide (30-100 micromolar). The occurrence was both dose and time dependent, often decreasing at higher doses and later times. No marked difference was observed between the response of mis-match repair-proficient and -deficient cell lines. Although the results were quite reproducible within single experiments, difficulties were observed from experiment to experiment. Different reagents and assays were tested, but no improvement resulted. We concluded that this method is not sufficiently robust or consisent to be useful in the assay of the induction of genomic instability by low doses of radiation, at least in these cell lines under our conditions.

  2. Fetal radiation dose in computed tomography.

    PubMed

    Kelaranta, Anna; Kaasalainen, Touko; Seuri, Raija; Toroi, Paula; Kortesniemi, Mika

    2015-07-01

    The connection between recorded volumetric CT dose index (CTDI vol) and determined mean fetal dose (Df) was examined from metal-oxide-semiconductor field-effect transistor dose measurements on an anthropomorphic female phantom in four stages of pregnancy in a 64-slice CT scanner. Automated tube current modulation kept the mean Df fairly constant through all pregnancy stages in trauma (4.4-4.9 mGy) and abdomino-pelvic (2.1-2.4 mGy) protocols. In pulmonary angiography protocol, the mean Df increased exponentially as the distance from the end of the scan range decreased (0.01-0.09 mGy). For trauma protocol, the relative mean Df as a function of gestational age were in the range 0.80-0.97 compared with the mean CTDI vol. For abdomino-pelvic protocol, the relative mean Df was 0.57-0.79 and for pulmonary angiography protocol, 0.01-0.05 compared with the mean CTDI vol, respectively. In conclusion, if the fetus is in the primary beam, the CTDI vol can be used as an upper estimate of the fetal dose. If the fetus is not in the primary beam, the fetal dose can be estimated by considering also the distance of the fetus from the scan range. PMID:25836690

  3. Medical x-ray exposure doses as contaminants of atomic bomb doses.

    PubMed

    Yamamoto, O; Antoku, S; Russell, W J; Fujita, S; Sawada, S

    1988-03-01

    Since 1967 at the times of their biennial ABCC/RERF radiological examinations, all Adult Health Study (AHS) subjects have been interviewed to determine the exposures to medical x-rays they experienced in institutions other than RERF in order to estimate the numbers of examinations and corresponding doses which they received. These data have been stored on computer tapes together with the doses these subjects received during their radiological examinations in the ABCC/RERF Department of Radiology. Thus, their medical x-ray doses are available along with their atomic bomb doses (tentative 1965 doses revised, T65DR) for assessment of the role of ionizing radiation in the development of diseases. The medical x-ray doses incurred at RERF were assessed by means of phantom dosimetry. Those at other institutions were determined using phantom dosimetry data and results of surveys for trends in radiological examinations in Hiroshima and Nagasaki. By the end of 1982, the average medical x-ray doses to the active bone marrow were 12.04 mGy for A-bomb exposed groups and 8.92 mGy for control groups (not-in-cities); to the male gonads, 2.26 mGy and 1.89 mGy, respectively; and to the female gonads, 17.45 mGy and 12.58 mGy, respectively. Results for Hiroshima and Nagasaki were similar. The main impact of medical x-ray doses was in the lowest T65DR group. Medical x-ray active bone marrow doses ranged from 0.05-500% (mean, 35%) of A-bomb doses in the 10-99 mGy T65DR group. In the 100-999 mGy T65DR group, medical x-ray active bone marrow doses ranged from 0.005-50% (mean, 5%) of their T65DR. In the greater than 1,000-mGy T65DR group, medical x-ray exposures were proportionally less. Female active bone marrow and gonad doses were similar in magnitude to the male active bone marrow doses. Medical x-ray exposures produced smaller doses to the gonads of males than to those of the females. The use of medical x-rays is steadily increasing. Careful consideration of doses from medical sources

  4. Single daily dosing of gentamicin: pharmacokinetic comparison of two dosing methodologies for postpartum endometritis.

    PubMed Central

    Liu, C; Abate, B; Reyes, M; Gonik, B

    1999-01-01

    OBJECTIVE: We compared the pharmacokinetics of two methods for dosing gentamicin for the treatment of postpartum endometritis with the goal of achieving adequate peak serum concentrations (>12 mg/L) and prolonged trough levels below 2 mg/L. METHODS: Group-I subjects (n = 5) received intravenous gentamicin, 5 mg/kg per total body weight over 60 min., with a maximum dose of 500 mg. Group-II subjects (n = 17) were dosed intravenously according to the following formula: Dose = desired peak concentration (fixed at 14 mg/L) * (volume of distribution, i.e., 0.35 L/kg) * adjusted body weight (in kilograms). Serum gentamicin levels were obtained 1 hr. and 8-12 hr. after infusion of the second dose. Pharmacokinetic parameters for the subjects in each group were calculated according to standard formulas. RESULTS: Subjects in Group I had significantly higher doses and peak drug concentrations (P < 0.01), while in Group II, 76% of patients had peak levels less than desired (<12 mg/L). Both groups maintained trough levels of <2 mg/L in excess of 12 hr. CONCLUSIONS: Changing to the adjusted body weight formula for Group I, while maintaining a dose between 4 and 5 mg/kg, would reduce excessive peak concentrations. Using a calculated volume of distribution of 0.4 L/kg in Group II would improve peak serum concentrations to the desired levels. Both dosing regimens ensure adequate aminoglycoside pharmacokinetic parameters and avoid the need for monitoring serial serum drug concentrations, provided the expected clinical response is also achieved. While the first dosing formula is simpler to calculate, the second dosing formula allows for more individualized dosing considerations. PMID:10371471

  5. High-Dose-Rate 192Ir Brachytherapy Dose Verification: A Phantom Study

    PubMed Central

    Nikoofar, Alireza; Hoseinpour, Zohreh; Rabi Mahdavi, Seied; Hasanzadeh, Hadi; Rezaei Tavirani, Mostafa

    2015-01-01

    Background: The high-dose-rate (HDR) brachytherapy might be an effective tool for palliation of dysphagia. Because of some concerns about adverse effects due to absorbed radiation dose, it is important to estimate absorbed dose in risky organs during this treatment. Objectives: This study aimed to measure the absorbed dose in the parotid, thyroid, and submandibular gland, eye, trachea, spinal cord, and manubrium of sternum in brachytherapy in an anthropomorphic phantom. Materials and Methods: To measure radiation dose, eye, parotid, thyroid, and submandibular gland, spine, and sternum, an anthropomorphic phantom was considered with applicators to set thermoluminescence dosimeters (TLDs). A specific target volume of about 23 cm3 in the upper thoracic esophagus was considered as target, and phantom planned computed tomography (CT) for HDR brachytherapy, then with a micro-Selectron HDR (192Ir) remote after-loading unit. Results: Absorbed doses were measured with calibrated TLDs and were expressed in centi-Gray (cGy). In regions far from target (≥ 16 cm) such as submandibular, parotid and thyroid glands, mean measured dose ranged from 1.65 to 5.5 cGy. In closer regions (≤ 16 cm), the absorbed dose might be as high as 113 cGy. Conclusions: Our study showed similar depth and surface doses; in closer regions, the surface and depth doses differed significantly due to the role of primary radiation that had imposed a high-dose gradient and difference between the plan and measurement, which was more severe because of simplifications in tissue inhomogeneity, considered in TPS relative to phantom. PMID:26413250

  6. VirtualDose: a software for reporting organ doses from CT for adult and pediatric patients.

    PubMed

    Ding, Aiping; Gao, Yiming; Liu, Haikuan; Caracappa, Peter F; Long, Daniel J; Bolch, Wesley E; Liu, Bob; Xu, X George

    2015-07-21

    This paper describes the development and testing of VirtualDose--a software for reporting organ doses for adult and pediatric patients who undergo x-ray computed tomography (CT) examinations. The software is based on a comprehensive database of organ doses derived from Monte Carlo (MC) simulations involving a library of 25 anatomically realistic phantoms that represent patients of different ages, body sizes, body masses, and pregnant stages. Models of GE Lightspeed Pro 16 and Siemens SOMATOM Sensation 16 scanners were carefully validated for use in MC dose calculations. The software framework is designed with the 'software as a service (SaaS)' delivery concept under which multiple clients can access the web-based interface simultaneously from any computer without having to install software locally. The RESTful web service API also allows a third-party picture archiving and communication system software package to seamlessly integrate with VirtualDose's functions. Software testing showed that VirtualDose was compatible with numerous operating systems including Windows, Linux, Apple OS X, and mobile and portable devices. The organ doses from VirtualDose were compared against those reported by CT-Expo and ImPACT-two dosimetry tools that were based on the stylized pediatric and adult patient models that were known to be anatomically simple. The organ doses reported by VirtualDose differed from those reported by CT-Expo and ImPACT by as much as 300% in some of the patient models. These results confirm the conclusion from past studies that differences in anatomical realism offered by stylized and voxel phantoms have caused significant discrepancies in CT dose estimations.

  7. On effective dose for radiotherapy based on doses to nontarget organs and tissues

    SciTech Connect

    Uselmann, Adam J. Thomadsen, Bruce R.

    2015-02-15

    Purpose: The National Council for Radiation Protection and Measurement (NCRP) published estimates for the collective population dose and the mean effective dose to the population of the United States from medical imaging procedures for 1980/1982 and for 2006. The earlier report ignored the effective dose from radiotherapy and the latter gave a cursory discussion of the topic but again did not include it in the population exposure for various reasons. This paper explains the methodology used to calculate the effective dose in due to radiotherapy procedures in the latter NCRP report and revises the values based on more detailed modeling. Methods: This study calculated the dose to nontarget organs from radiotherapy for reference populations using CT images and published peripheral dose data. Results: Using International Commission on Radiological Protection (ICRP) 60 weighting factors, the total effective dose to nontarget organs in radiotherapy patients is estimated as 298 ± 194 mSv per patient, while the U.S. population effective dose is 0.939 ± 0.610 mSv per person, with a collective dose of 283 000 ± 184 000 person Sv per year. Using ICRP 103 weighting factors, the effective dose is 281 ± 183 mSv per patient, 0.887 ± 0.577 mSv per person in the U.S., and 268 000 ± 174 000 person Sv per year. The uncertainty in the calculations is largely governed by variations in patient size, which was accounted for by considering a range of patient sizes and taking the average treatment site to nontarget organ distance. Conclusions: The methods used to estimate the effective doses from radiotherapy used in NCRP Report No. 160 have been explained and the values updated.

  8. VirtualDose: a software for reporting organ doses from CT for adult and pediatric patients.

    PubMed

    Ding, Aiping; Gao, Yiming; Liu, Haikuan; Caracappa, Peter F; Long, Daniel J; Bolch, Wesley E; Liu, Bob; Xu, X George

    2015-07-21

    This paper describes the development and testing of VirtualDose--a software for reporting organ doses for adult and pediatric patients who undergo x-ray computed tomography (CT) examinations. The software is based on a comprehensive database of organ doses derived from Monte Carlo (MC) simulations involving a library of 25 anatomically realistic phantoms that represent patients of different ages, body sizes, body masses, and pregnant stages. Models of GE Lightspeed Pro 16 and Siemens SOMATOM Sensation 16 scanners were carefully validated for use in MC dose calculations. The software framework is designed with the 'software as a service (SaaS)' delivery concept under which multiple clients can access the web-based interface simultaneously from any computer without having to install software locally. The RESTful web service API also allows a third-party picture archiving and communication system software package to seamlessly integrate with VirtualDose's functions. Software testing showed that VirtualDose was compatible with numerous operating systems including Windows, Linux, Apple OS X, and mobile and portable devices. The organ doses from VirtualDose were compared against those reported by CT-Expo and ImPACT-two dosimetry tools that were based on the stylized pediatric and adult patient models that were known to be anatomically simple. The organ doses reported by VirtualDose differed from those reported by CT-Expo and ImPACT by as much as 300% in some of the patient models. These results confirm the conclusion from past studies that differences in anatomical realism offered by stylized and voxel phantoms have caused significant discrepancies in CT dose estimations. PMID:26134511

  9. The Effect of Low Dose Irradiation and Grapefruit Extract on C. perfringens Growth from Spores in sous vide Processed Pork-Based Mexican Entrée

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sous vide, a common cooking method for meat and poultry products is widely used for providing ready-to-eat meals. Traditionally, these products have limited shelf life, ranging from 2 to 3 weeks. However, similar products may be stored for longer periods in the U.S. and other countries, requiring ad...

  10. Radiotherapy Dose Fractionation under Parameter Uncertainty

    NASA Astrophysics Data System (ADS)

    Davison, Matt; Kim, Daero; Keller, Harald

    2011-11-01

    In radiotherapy, radiation is directed to damage a tumor while avoiding surrounding healthy tissue. Tradeoffs ensue because dose cannot be exactly shaped to the tumor. It is particularly important to ensure that sensitive biological structures near the tumor are not damaged more than a certain amount. Biological tissue is known to have a nonlinear response to incident radiation. The linear quadratic dose response model, which requires the specification of two clinically and experimentally observed response coefficients, is commonly used to model this effect. This model yields an optimization problem giving two different types of optimal dose sequences (fractionation schedules). Which fractionation schedule is preferred depends on the response coefficients. These coefficients are uncertainly known and may differ from patient to patient. Because of this not only the expected outcomes but also the uncertainty around these outcomes are important, and it might not be prudent to select the strategy with the best expected outcome.

  11. Radiotherapy Dose Fractionation under Parameter Uncertainty

    SciTech Connect

    Davison, Matt; Kim, Daero; Keller, Harald

    2011-11-30

    In radiotherapy, radiation is directed to damage a tumor while avoiding surrounding healthy tissue. Tradeoffs ensue because dose cannot be exactly shaped to the tumor. It is particularly important to ensure that sensitive biological structures near the tumor are not damaged more than a certain amount. Biological tissue is known to have a nonlinear response to incident radiation. The linear quadratic dose response model, which requires the specification of two clinically and experimentally observed response coefficients, is commonly used to model this effect. This model yields an optimization problem giving two different types of optimal dose sequences (fractionation schedules). Which fractionation schedule is preferred depends on the response coefficients. These coefficients are uncertainly known and may differ from patient to patient. Because of this not only the expected outcomes but also the uncertainty around these outcomes are important, and it might not be prudent to select the strategy with the best expected outcome.

  12. Vocal dose in teachers: correlation with dysphonia.

    PubMed

    Gama, Ana Cristina Côrtes; Santos, Juliana Nunes; Pedra, Elisângela de Fátima Pereira; Rabelo, Alessandra Terra Vasconcelos; Magalhães, Max de Castro; Casas, Estevam Barbosa de Las

    2016-04-01

    Teachers are professionals with high prevalence of dysphonia, whose main risk factors are the large work hours in classrooms with the presence of background noise. The purpose of the study was to calculate the phonation time and the cycle dose of teachers with dysphonia and teachers without voice disorders during the class. There were two groups analyzed: five teachers with functional dysphonia were the first group and five teachers without voice disorders were the second group. For the data was used the VoxLog® dosimeter and the parameters were: intensity; fundamental frequency; phonation time and cycle dose. The statistical analysis used ANOVA, Student's T-test, and Kruskal-Wallis test. Dysphonic teachers showed major values of phonation time and cycle dose compared with teachers without voice disorders. The dysphonia is related to extended period of speech time and greater exposure of the tissue of the vocal fold to phonotrauma. PMID:27191884

  13. Extended range radiation dose-rate monitor

    DOEpatents

    Valentine, Kenneth H.

    1988-01-01

    An extended range dose-rate monitor is provided which utilizes the pulse pileup phenomenon that occurs in conventional counting systems to alter the dynamic response of the system to extend the dose-rate counting range. The current pulses from a solid-state detector generated by radiation events are amplified and shaped prior to applying the pulses to the input of a comparator. The comparator generates one logic pulse for each input pulse which exceeds the comparator reference threshold. These pulses are integrated and applied to a meter calibrated to indicate the measured dose-rate in response to the integrator output. A portion of the output signal from the integrator is fed back to vary the comparator reference threshold in proportion to the output count rate to extend the sensitive dynamic detection range by delaying the asymptotic approach of the integrator output toward full scale as measured by the meter.

  14. Modelling approaches to dose estimation in children

    PubMed Central

    Johnson, Trevor N

    2005-01-01

    Introduction Most of the drugs on the market are originally developed for adults and dosage selection is based on an optimal balance between clinical efficacy and safety. The aphorism ‘children are not small adults’ not only holds true for the selection of suitable drugs and dosages for use in children but also their susceptibility to adverse drug reactions [1]. Since children may not be subject to dose escalation studies similar to those carried out in the adult population, some initial estimation of dose in paediatrics should be obtained via extrapolation approaches. However, following such an exercise, well-conducted PK-PD or PK studies will still be needed to determine the most appropriate doses for neonates, infants, children and adolescents. PMID:15948929

  15. Historical river flow rates for dose calculations

    SciTech Connect

    Carlton, W.H.

    1991-06-10

    Annual average river flow rates are required input to the LADTAP Computer Code for calculating offsite doses from liquid releases of radioactive materials to the Savannah River. The source of information on annual river flow rates used in dose calculations varies, depending on whether calculations are for retrospective releases or prospective releases. Examples of these types of releases are: Retrospective - releases from routine operations (annual environmental reports) and short term release incidents that have occurred. Prospective - releases that might be expected in the future from routine or abnormal operation of existing or new facilities (EIS`s, EID`S, SAR`S, etc.). This memorandum provides historical flow rates at the downstream gauging station at Highway 301 for use in retrospective dose calculations and derives flow rate data for the Beaufort-Jasper and Port Wentworth water treatment plants.

  16. Tradeoffs between image quality and dose.

    PubMed

    Seibert, J Anthony

    2004-10-01

    Image quality takes on different perspectives and meanings when associated with the concept of as low as reasonably achievable (ALARA), which is chiefly focused on radiation dose delivered as a result of a medical imaging procedure. ALARA is important because of the increased radiosensitivity of children to ionizing radiation and the desire to keep the radiation dose low. By the same token, however, image quality is also important because of the need to provide the necessary information in a radiograph in order to make an accurate diagnosis. Thus, there are tradeoffs to be considered between image quality and radiation dose, which is the main topic of this article. ALARA does not necessarily mean the lowest radiation dose, nor, when implemented, does it result in the least desirable radiographic images. With the recent widespread implementation of digital radiographic detectors and displays, a new level of flexibility and complexity confronts the technologist, physicist, and radiologist in optimizing the pediatric radiography exam. This is due to the separation of the acquisition, display, and archiving events that were previously combined by the screen-film detector, which allows for compensation for under- and overexposures, image processing, and on-line image manipulation. As explained in the article, different concepts must be introduced for a better understanding of the tradeoffs encountered when dealing with digital radiography and ALARA. In addition, there are many instances during the image acquisition/display/interpretation process in which image quality and associated dose can be compromised. This requires continuous diligence to quality control and feedback mechanisms to verify that the goals of image quality, dose and ALARA are achieved.

  17. Determinants of thiopental induction dose requirements.

    PubMed

    Avram, M J; Sanghvi, R; Henthorn, T K; Krejcie, T C; Shanks, C A; Fragen, R J; Howard, K A; Kaczynski, D A

    1993-01-01

    Dose requirements for thiopental anesthetic induction have significant age- and gender-related variability. We studied the association of the patient characteristics age, gender, weight, lean body mass, and cardiac output with thiopental requirements. Doses of thiopental, infused at 150 mg/min, required to reach both a clinical end-point and an electroencephalographic (EEG) end-point were determined in 30 males and 30 females, aged 18-83 yr. Univariate least squares linear regression analysis revealed outliers in the relationships of age, weight, lean body mass, and cardiac output to thiopental dose at clinical and EEG endpoints. Differential weighting of data points minimized the effect of outliers in the construction of a robust multiple linear regression model of the relationship between several selected independent variables and the dependent variables thiopental dose at clinical and EEG endpoints. The multiple linear regression model for thiopental dose at the clinical end-point selecting the regressor variables age, weight, and gender (R2 = 0.76) was similar to that for age, lean body mass, and gender (R2 = 0.75). Thiopental dose at the EEG endpoint was better described by models selecting the variables age, weight, and cardiac output (R2 = 0.88) or age, lean body mass, and cardiac output (R2 = 0.87). Although cardiac output varied with age, age always remained a selected variable. Because weight and lean body mass differed with gender, their selection as variables in the model eliminated gender as a selected variable or minimized its importance.

  18. Measuring pacemaker dose: A clinical perspective

    SciTech Connect

    Studenski, Matthew T.; Xiao Ying; Harrison, Amy S.

    2012-07-01

    Recently in our clinic, we have seen an increased number of patients presenting with pacemakers and defibrillators. Precautions are taken to develop a treatment plan that minimizes the dose to the pacemaker because of the adverse effects of radiation on the electronics. Here we analyze different dosimeters to determine which is the most accurate in measuring pacemaker or defibrillator dose while at the same time not requiring a significant investment in time to maintain an efficient workflow in the clinic. The dosimeters analyzed here were ion chambers, diodes, metal-oxide-semiconductor field effect transistor (MOSFETs), and optically stimulated luminescence (OSL) dosimeters. A simple phantom was used to quantify the angular and energy dependence of each dosimeter. Next, 8 patients plans were delivered to a Rando phantom with all the dosimeters located where the pacemaker would be, and the measurements were compared with the predicted dose. A cone beam computed tomography (CBCT) image was obtained to determine the dosimeter response in the kilovoltage energy range. In terms of the angular and energy dependence of the dosimeters, the ion chamber and diode were the most stable. For the clinical cases, all the dosimeters match relatively well with the predicted dose, although the ideal dosimeter to use is case dependent. The dosimeters, especially the MOSFETS, tend to be less accurate for the plans, with many lateral beams. Because of their efficiency, we recommend using a MOSFET or a diode to measure the dose. If a discrepancy is observed between the measured and expected dose (especially when the pacemaker to field edge is <10 cm), we recommend analyzing the treatment plan to see whether there are many lateral beams. Follow-up with another dosimeter rather than repeating multiple times with the same type of dosimeter. All dosimeters should be placed after the CBCT has been acquired.

  19. Bayesian population modeling of drug dosing adherence.

    PubMed

    Fellows, Kelly; Stoneking, Colin J; Ramanathan, Murali

    2015-10-01

    Adherence is a frequent contributing factor to variations in drug concentrations and efficacy. The purpose of this work was to develop an integrated population model to describe variation in adherence, dose-timing deviations, overdosing and persistence to dosing regimens. The hybrid Markov chain-von Mises method for modeling adherence in individual subjects was extended to the population setting using a Bayesian approach. Four integrated population models for overall adherence, the two-state Markov chain transition parameters, dose-timing deviations, overdosing and persistence were formulated and critically compared. The Markov chain-Monte Carlo algorithm was used for identifying distribution parameters and for simulations. The model was challenged with medication event monitoring system data for 207 hypertension patients. The four Bayesian models demonstrated good mixing and convergence characteristics. The distributions of adherence, dose-timing deviations, overdosing and persistence were markedly non-normal and diverse. The models varied in complexity and the method used to incorporate inter-dependence with the preceding dose in the two-state Markov chain. The model that incorporated a cooperativity term for inter-dependence and a hyperbolic parameterization of the transition matrix probabilities was identified as the preferred model over the alternatives. The simulated probability densities from the model satisfactorily fit the observed probability distributions of adherence, dose-timing deviations, overdosing and persistence parameters in the sample patients. The model also adequately described the median and observed quartiles for these parameters. The Bayesian model for adherence provides a parsimonious, yet integrated, description of adherence in populations. It may find potential applications in clinical trial simulations and pharmacokinetic-pharmacodynamic modeling. PMID:26319548

  20. Determinants of thiopental induction dose requirements.

    PubMed

    Avram, M J; Sanghvi, R; Henthorn, T K; Krejcie, T C; Shanks, C A; Fragen, R J; Howard, K A; Kaczynski, D A

    1993-01-01

    Dose requirements for thiopental anesthetic induction have significant age- and gender-related variability. We studied the association of the patient characteristics age, gender, weight, lean body mass, and cardiac output with thiopental requirements. Doses of thiopental, infused at 150 mg/min, required to reach both a clinical end-point and an electroencephalographic (EEG) end-point were determined in 30 males and 30 females, aged 18-83 yr. Univariate least squares linear regression analysis revealed outliers in the relationships of age, weight, lean body mass, and cardiac output to thiopental dose at clinical and EEG endpoints. Differential weighting of data points minimized the effect of outliers in the construction of a robust multiple linear regression model of the relationship between several selected independent variables and the dependent variables thiopental dose at clinical and EEG endpoints. The multiple linear regression model for thiopental dose at the clinical end-point selecting the regressor variables age, weight, and gender (R2 = 0.76) was similar to that for age, lean body mass, and gender (R2 = 0.75). Thiopental dose at the EEG endpoint was better described by models selecting the variables age, weight, and cardiac output (R2 = 0.88) or age, lean body mass, and cardiac output (R2 = 0.87). Although cardiac output varied with age, age always remained a selected variable. Because weight and lean body mass differed with gender, their selection as variables in the model eliminated gender as a selected variable or minimized its importance. PMID:8418708

  1. Radiological dose reconstruction for birds reconciles outcomes of Fukushima with knowledge of dose-effect relationships.

    PubMed

    Garnier-Laplace, Jacqueline; Beaugelin-Seiller, Karine; Della-Vedova, Claire; Métivier, Jean-Michel; Ritz, Christian; Mousseau, Timothy A; Møller, Anders Pape

    2015-11-16

    We reconstructed the radiological dose for birds observed at 300 census sites in the 50-km northwest area affected by the accident at the Fukushima Daiichi nuclear power plant over 2011-2014. Substituting the ambient dose rate measured at the census points (from 0.16 to 31 μGy h(-1)) with the dose rate reconstructed for adult birds of each species (from 0.3 to 97 μGy h(-1)), we confirmed that the overall bird abundance at Fukushima decreased with increasing total doses. This relationship was directly consistent with exposure levels found in the literature to induce physiological disturbances in birds. Among the 57 species constituting the observed bird community, we found that 90% were likely chronically exposed at a dose rate that could potentially affect their reproductive success. We quantified a loss of 22.6% of the total number of individuals per increment of one unit log10-tansformed total dose (in Gy), over the four-year post-accident period in the explored area. We estimated that a total dose of 0.55 Gy reduced by 50% the total number of birds in the study area over 2011-2014. The data also suggest a significant positive relationship between total dose and species diversity.

  2. Radiological dose reconstruction for birds reconciles outcomes of Fukushima with knowledge of dose-effect relationships.

    PubMed

    Garnier-Laplace, Jacqueline; Beaugelin-Seiller, Karine; Della-Vedova, Claire; Métivier, Jean-Michel; Ritz, Christian; Mousseau, Timothy A; Møller, Anders Pape

    2015-01-01

    We reconstructed the radiological dose for birds observed at 300 census sites in the 50-km northwest area affected by the accident at the Fukushima Daiichi nuclear power plant over 2011-2014. Substituting the ambient dose rate measured at the census points (from 0.16 to 31 μGy h(-1)) with the dose rate reconstructed for adult birds of each species (from 0.3 to 97 μGy h(-1)), we confirmed that the overall bird abundance at Fukushima decreased with increasing total doses. This relationship was directly consistent with exposure levels found in the literature to induce physiological disturbances in birds. Among the 57 species constituting the observed bird community, we found that 90% were likely chronically exposed at a dose rate that could potentially affect their reproductive success. We quantified a loss of 22.6% of the total number of individuals per increment of one unit log10-tansformed total dose (in Gy), over the four-year post-accident period in the explored area. We estimated that a total dose of 0.55 Gy reduced by 50% the total number of birds in the study area over 2011-2014. The data also suggest a significant positive relationship between total dose and species diversity. PMID:26567770

  3. Radiological dose reconstruction for birds reconciles outcomes of Fukushima with knowledge of dose-effect relationships

    NASA Astrophysics Data System (ADS)

    Garnier-Laplace, Jacqueline; Beaugelin-Seiller, Karine; Della-Vedova, Claire; Métivier, Jean-Michel; Ritz, Christian; Mousseau, Timothy A.; Pape Møller, Anders

    2015-11-01

    We reconstructed the radiological dose for birds observed at 300 census sites in the 50-km northwest area affected by the accident at the Fukushima Daiichi nuclear power plant over 2011-2014. Substituting the ambient dose rate measured at the census points (from 0.16 to 31 μGy h-1) with the dose rate reconstructed for adult birds of each species (from 0.3 to 97 μGy h-1), we confirmed that the overall bird abundance at Fukushima decreased with increasing total doses. This relationship was directly consistent with exposure levels found in the literature to induce physiological disturbances in birds. Among the 57 species constituting the observed bird community, we found that 90% were likely chronically exposed at a dose rate that could potentially affect their reproductive success. We quantified a loss of 22.6% of the total number of individuals per increment of one unit log10-tansformed total dose (in Gy), over the four-year post-accident period in the explored area. We estimated that a total dose of 0.55 Gy reduced by 50% the total number of birds in the study area over 2011-2014. The data also suggest a significant positive relationship between total dose and species diversity.

  4. High-Dose Atomoxetine Treatment of ADHD in Youths with Limited Response to Standard Doses

    ERIC Educational Resources Information Center

    Kratochvil, Christopher J.; Michelson, David; Newcorn, Jeffrey H.; Weiss, Margaret D.; Busner, Joan; Moore, Rodney J.; Ruff, Dustin D.; Ramsey, Janet; Dickson, Ruth; Turgay, Atilla; Saylor, Keith E.; Luber, Stephen; Vaughan, Brigette; Allen, Albert J.

    2007-01-01

    Objective: To assess the utility and tolerability of higher than standard atomoxetine doses to treat attention-deficit/hyperactivity disorder (ADHD). Method: Two randomized, double-blind trials of atomoxetine nonresponders ages 6 to 16 years were conducted comparing continued treatment with same-dose atomoxetine to treatment using greater than…

  5. Radiological dose reconstruction for birds reconciles outcomes of Fukushima with knowledge of dose-effect relationships

    PubMed Central

    Garnier-Laplace, Jacqueline; Beaugelin-Seiller, Karine; Della-Vedova, Claire; Métivier, Jean-Michel; Ritz, Christian; Mousseau, Timothy A.; Pape Møller, Anders

    2015-01-01

    We reconstructed the radiological dose for birds observed at 300 census sites in the 50-km northwest area affected by the accident at the Fukushima Daiichi nuclear power plant over 2011–2014. Substituting the ambient dose rate measured at the census points (from 0.16 to 31 μGy h−1) with the dose rate reconstructed for adult birds of each species (from 0.3 to 97 μGy h−1), we confirmed that the overall bird abundance at Fukushima decreased with increasing total doses. This relationship was directly consistent with exposure levels found in the literature to induce physiological disturbances in birds. Among the 57 species constituting the observed bird community, we found that 90% were likely chronically exposed at a dose rate that could potentially affect their reproductive success. We quantified a loss of 22.6% of the total number of individuals per increment of one unit log10-tansformed total dose (in Gy), over the four-year post-accident period in the explored area. We estimated that a total dose of 0.55 Gy reduced by 50% the total number of birds in the study area over 2011–2014. The data also suggest a significant positive relationship between total dose and species diversity. PMID:26567770

  6. Development of a reference dose for BDE-47, 99, and 209 using benchmark dose methods.

    PubMed

    Li, Lu Xi; Chen, Li; Cao, Dan; Chen, Bing Heng; Zhao, Yan; Meng, Xiang Zhou; Xie, Chang Ming; Zhang, Yun Hui

    2014-09-01

    Eleven recently completed toxicological studies were critically reviewed to identify toxicologically significant endpoints and dose-response information. Dose-response data were compiled and entered into the USEPA's benchmark dose software (BMDS) for calculation of a benchmark dose (BMD) and a benchmark dose low (BMDL). After assessing 91 endpoints across the nine studies, a total of 23 of these endpoints were identified for BMD modeling, and BMDL estimates corresponding to various dose-response models were compiled for these separate endpoints. Thyroid, neurobehavior and reproductive endpoints for BDE-47, -99, -209 were quantitatively evaluated. According to methods and feature of each study, different uncertainty factor (UF) value was decided and subsequently reference doses (RfDs) were proposed. Consistent with USEPA, the lowest BMDLs of 2.10, 81.77, and 1698 µg/kg were used to develop RfDs for BDE-47, -99, and -209, respectively. RfDs for BDE-99 and BDE-209 were comparable to EPA results, and however, RfD of BDE-47 was much lower than that of EPA, which may result from that reproductive/developmental proves to be more sensitive than neurobehavior for BDE-47 and the principal study uses very-low-dose exposure. PMID:25256863

  7. Neural network modelling of dose distribution and dose uniformity in the Tunisian Gamma Irradiator.

    PubMed

    Manai, K; Trabelsi, A

    2013-11-01

    In this paper an approach to model dose distributions, isodose curves and dose uniformity in the Tunisian Gamma Irradiation Facility using artificial neural networks (ANNs) are described. For this purpose, measurements were carried out at different points in the irradiation cell using polymethyl methacrylate dosemeters. The calculated and experimental results are compared and good agreement is observed showing that ANNs can be used as an efficient tool for modelling dose distribution in the gamma irradiation facility. Monte Carlo (MC) photon-transport simulation techniques have been used to evaluate the spatial dose distribution for extensive benchmarking. ANN approach appears to be a significant advance over the time-consuming MC or the less accurate regression methods for dose mapping. As a second application, a detailed dose mapping using two different product densities was carried out. The minimum and maximum dose locations and dose uniformity as a function of the irradiated volume for each product density were determined. Good agreement between ANN modelling and experimental results was achieved.

  8. Hanford environmental dose reconstruction project: Monthly report

    SciTech Connect

    Dennis, B.S.

    1989-02-01

    The objective of the Hanford Environmental Dose Reconstruction Project is to estimate the radiation doses that populations could have received from nuclear operations at Hanford since 1944. The Technical Steering Panel consists of experts in environmental pathways, epidemiology, surface-water transport, ground-water transport, statistics, demography, agriculture, meteorology, nuclear engineering, radiation dosimetry, and cultural anthropology. Included among the members are appointed technical members representing the States of Oregon and Washington, cultural and technical experts nominated by the Indian tribes in the region, and an individual representing the public.

  9. Peripheral doses in CyberKnife radiosurgery

    SciTech Connect

    Petti, Paula L.; Chuang, Cynthia F.; Smith, Vernon; Larson, David A.

    2006-06-15

    The purpose of this work is to measure the dose outside the treatment field for conformal CyberKnife treatments, to compare the results to those obtained for similar treatments delivered with gamma knife or intensity-modulated radiation therapy (IMRT), and to investigate the sources of peripheral dose in CyberKnife radiosurgery. CyberKnife treatment plans were developed for two hypothetical lesions in an anthropomorphic phantom, one in the thorax and another in the brain, and measurements were made with LiF thermoluminescent dosimeters (TLD-100 capsules) placed within the phantom at various depths and distances from the irradiated volume. For the brain lesion, gamma knife and 6-MV IMRT treatment plans were also developed, and peripheral doses were measured at the same locations as for the CyberKnife plan. The relative contribution to the CyberKnife peripheral dose from inferior- or superior-oblique beams entering or exiting through the body, internally scattered radiation, and leakage radiation was assessed through additional experiments using the single-isocenter option of the CyberKnife treatment-planning program with different size collimators. CyberKnife peripheral doses (in cGy) ranged from 0.16 to 0.041 % ({+-}0.003%) of the delivered number of monitor units (MU) at distances between 18 and 71 cm from the field edge. These values are two to five times larger than those measured for the comparable gamma knife brain treatment, and up to a factor of four times larger those measured in the IMRT experiment. Our results indicate that the CyberKnife peripheral dose is due largely to leakage radiation, however at distances less than 40 cm from the field edge, entrance, or exit dose from inferior- or superior-oblique beams can also contribute significantly. For distances larger than 40 cm from the field edge, the CyberKnife peripheral dose is directly related to the number of MU delivered, since leakage radiation is the dominant component.

  10. Tardive dyskinesia with low dose amisulpride.

    PubMed

    Tharoor, Hema; Padmavati, R

    2013-01-01

    In recent years, there has been an increasing trend to use amisulpride in the treatment of dysthymia and also as an adjunct treatment in patients with major depression. At low doses (50 mg), amisulpride preferentially blocks presynaptic auto receptors, enhances dopamine release, and therefore acts as a dopaminergic compound able to resolve the dopaminergic hypo activity that characterizes depression. Based on experimental data, amisulpride is the drug of choice for dopaminergic transmission disorders, both in depression and in schizophrenia. This case highlights the development of dyskinesia in a depressed patient treated with low dose amisulpride and fluvoxamine.

  11. Dose specification for 192Ir high dose rate brachytherapy in terms of dose-to-water-in-medium and dose-to-medium-in-medium

    NASA Astrophysics Data System (ADS)

    Paiva Fonseca, Gabriel; Carlsson Tedgren, Åsa; Reniers, Brigitte; Nilsson, Josef; Persson, Maria; Yoriyaz, Hélio; Verhaegen, Frank

    2015-06-01

    Dose calculation in high dose rate brachytherapy with 192Ir is usually based on the TG-43U1 protocol where all media are considered to be water. Several dose calculation algorithms have been developed that are capable of handling heterogeneities with two possibilities to report dose: dose-to-medium-in-medium (Dm,m) and dose-to-water-in-medium (Dw,m). The relation between Dm,m and Dw,m for 192Ir is the main goal of this study, in particular the dependence of Dw,m on the dose calculation approach using either large cavity theory (LCT) or small cavity theory (SCT). A head and neck case was selected due to the presence of media with a large range of atomic numbers relevant to tissues and mass densities such as air, soft tissues and bone interfaces. This case was simulated using a Monte Carlo (MC) code to score: Dm,m, Dw,m (LCT), mean photon energy and photon fluence. Dw,m (SCT) was derived from MC simulations using the ratio between the unrestricted collisional stopping power of the actual medium and water. Differences between Dm,m and Dw,m (SCT or LCT) can be negligible (<1%) for some tissues e.g. muscle and significant for other tissues with differences of up to 14% for bone. Using SCT or LCT approaches leads to differences between Dw,m (SCT) and Dw,m (LCT) up to 29% for bone and 36% for teeth. The mean photon energy distribution ranges from 222 keV up to 356 keV. However, results obtained using mean photon energies are not equivalent to the ones obtained using the full, local photon spectrum. This work concludes that it is essential that brachytherapy studies clearly report the dose quantity. It further shows that while differences between Dm,m and Dw,m (SCT) mainly depend on tissue type, differences between Dm,m and Dw,m (LCT) are, in addition, significantly dependent on the local photon energy fluence spectrum which varies with distance to implanted sources.

  12. Computed Tomography: Image and Dose Assessment

    NASA Astrophysics Data System (ADS)

    Valencia-Ortega, F.; Ruiz-Trejo, C.; Rodríguez-Villafuerte, M.; Buenfil, A. E.; Mora-Hernández, L. A.

    2006-09-01

    In this work an experimental evaluation of image quality and dose imparted during a computed tomography study in a Public Hospital in Mexico City is presented; The measurements required the design and construction of two phantoms at the Institute of Physics, UNAM, according to the recommendations of American Association of Physicists in Medicine (AAPM). Image assessment was performed in terms the spatial resolution and image contrast. Dose measurements were carried out using LiF: Mg,Ti (TLD-100) dosemeters and pencil-shaped ionisation chamber; The results for a computed tomography head study in single and multiple detector modes are presented.

  13. Hanford Environmental Dose Reconstruction Project: Monthly report

    SciTech Connect

    Dennis, B.S.

    1989-06-01

    The project is divided into the technical tasks that address each of the primary steps in the path from radioactive releases to dose estimates. These include source terms; environmental transport; environmental monitoring data; demographics, agriculture, and food habits; and environmental pathways and dose estimates. The source terms task will develop estimates of radioactive emissions from Hanford facilities since 1944. These estimates will be based on historical measurements and production information. The environmental transport task will reconstruct the movement of radioactive materials from the areas of release to populations. Movement via the atmosphere, surface water (Columbia River), and ground water will be studied.

  14. Radiation Dose from Lunar Neutron Albedo

    NASA Technical Reports Server (NTRS)

    Adams, J. H., Jr.; Bhattacharya, M.; Lin, Zi-Wei; Pendleton, G.

    2006-01-01

    The lunar neutron albedo from thermal energies to 8 MeV was measured on the Lunar Prospector Mission in 1998-1999. Using GEANT4 we have calculated the neutron albedo due to cosmic ray bombardment of the moon and found a good-agreement with the measured fast neutron spectra. We then calculated the total effective dose from neutron albedo of all energies, and made comparisons with the effective dose contributions from both galactic cosmic rays and solar particle events to be expected on the lunar surface.

  15. Brachytherapy source characterization for improved dose calculations using primary and scatter dose separation

    SciTech Connect

    Russell, Kellie R.; Carlsson Tedgren, Aasa K.; Ahnesjoe, Anders

    2005-09-15

    In brachytherapy, tissue heterogeneities, source shielding, and finite patient/phantom extensions affect both the primary and scatter dose distributions. The primary dose is, due to the short range of secondary electrons, dependent only on the distribution of material located on the ray line between the source and dose deposition site. The scatter dose depends on both the direct irradiation pattern and the distribution of material in a large volume surrounding the point of interest, i.e., a much larger volume must be included in calculations to integrate many small dose contributions. It is therefore of interest to consider different methods for the primary and the scatter dose calculation to improve calculation accuracy with limited computer resources. The algorithms in present clinical use ignore these effects causing systematic dose errors in brachytherapy treatment planning. In this work we review a primary and scatter dose separation formalism (PSS) for brachytherapy source characterization to support separate calculation of the primary and scatter dose contributions. We show how the resulting source characterization data can be used to drive more accurate dose calculations using collapsed cone superposition for scatter dose calculations. Two types of source characterization data paths are used: a direct Monte Carlo simulation in water phantoms with subsequent parameterization of the results, and an alternative data path built on processing of AAPM TG43 formatted data to provide similar parameter sets. The latter path is motivated of the large amounts of data already existing in the TG43 format. We demonstrate the PSS methods using both data paths for a clinical {sup 192}Ir source. Results are shown for two geometries: a finite but homogeneous water phantom, and a half-slab consisting of water and air. The dose distributions are compared to results from full Monte Carlo simulations and we show significant improvement in scatter dose calculations when the

  16. Low-dose computed tomography image restoration using previous normal-dose scan

    SciTech Connect

    Ma, Jianhua; Huang, Jing; Feng, Qianjin; Zhang, Hua; Lu, Hongbing; Liang, Zhengrong; Chen, Wufan

    2011-10-15

    Purpose: In current computed tomography (CT) examinations, the associated x-ray radiation dose is of a significant concern to patients and operators. A simple and cost-effective means to perform the examinations is to lower the milliampere-seconds (mAs) or kVp parameter (or delivering less x-ray energy to the body) as low as reasonably achievable in data acquisition. However, lowering the mAs parameter will unavoidably increase data noise and the noise would propagate into the CT image if no adequate noise control is applied during image reconstruction. Since a normal-dose high diagnostic CT image scanned previously may be available in some clinical applications, such as CT perfusion imaging and CT angiography (CTA), this paper presents an innovative way to utilize the normal-dose scan as a priori information to induce signal restoration of the current low-dose CT image series. Methods: Unlike conventional local operations on neighboring image voxels, nonlocal means (NLM) algorithm utilizes the redundancy of information across the whole image. This paper adapts the NLM to utilize the redundancy of information in the previous normal-dose scan and further exploits ways to optimize the nonlocal weights for low-dose image restoration in the NLM framework. The resulting algorithm is called the previous normal-dose scan induced nonlocal means (ndiNLM). Because of the optimized nature of nonlocal weights calculation, the ndiNLM algorithm does not depend heavily on image registration between the current low-dose and the previous normal-dose CT scans. Furthermore, the smoothing parameter involved in the ndiNLM algorithm can be adaptively estimated based on the image noise relationship between the current low-dose and the previous normal-dose scanning protocols. Results: Qualitative and quantitative evaluations were carried out on a physical phantom as well as clinical abdominal and brain perfusion CT scans in terms of accuracy and resolution properties. The gain by the use

  17. Radiological Dose Assessment - Nonuniform Skin Dose, Radioactive Skin Contamination, and Multiple Dosimetry

    SciTech Connect

    W. C. Inkret; M. E. Schillaci

    1999-03-01

    Radioactive skin contamination with {beta}- and {gamma}-emitting radionuclides may result in biologically significant absorbed doses to the skin. A specific exposure scenario of interest is a nonuniform skin dose delivered by {beta}- and {gamma}-emissions from radioactive skin contamination. The United States Department of Energy requires a formal evaluation and reporting of nonuniform skin doses. The United States Department of Energy also requires specific, formal procedures for evaluating the results from the placement or use of multiple dosimeters. Action levels relative to potential absorbed doses for the contamination survey instrumentation in use at Los Alamos and formal procedures for evaluating nonuniform skin doses and multiple dosimeters are developed and presented here.

  18. Hanford Dose Overview Program: standardized methods and data for Hanford environmental dose calculations. Rev. 1

    SciTech Connect

    McCormack, W.D.; Ramsdell, J.V.; Napier, B.A.

    1984-05-01

    This document serves as a guide to Hanford contractors for obtaining or performing Hanford-related environmental dose calculations. Because environmental dose estimation techniques are state-of-the-art and are continually evolving, the data and standard methods presented herein will require periodic revision. This document is scheduled to be updated annually, but actual changes to the program will be made more frequently if required. For this reason, PNL's Occupational and Environmental Protection Department should be contacted before any Hanford-related environmental dose calculation is performed. This revision of the Hanford Dose Overview Program Report primarily reflects changes made to the data and models used in calculating atmospheric dispersion of airborne effluents at Hanford. The modified data and models are described in detail. In addition, discussions of dose calculation methods and the review of calculation results have been expanded to provide more explicit guidance to the Hanford contractors. 19 references, 30 tables.

  19. A method to evaluate dose errors introduced by dose mapping processes for mass conserving deformations

    PubMed Central

    Yan, C.; Hugo, G.; Salguero, F. J.; Saleh-Sayah, N.; Weiss, E.; Sleeman, W. C.; Siebers, J. V.

    2012-01-01

    Purpose: To present a method to evaluate the dose mapping error introduced by the dose mapping process. In addition, apply the method to evaluate the dose mapping error introduced by the 4D dose calculation process implemented in a research version of commercial treatment planning system for a patient case. Methods: The average dose accumulated in a finite volume should be unchanged when the dose delivered to one anatomic instance of that volume is mapped to a different anatomic instance—provided that the tissue deformation between the anatomic instances is mass conserving. The average dose to a finite volume on image S is defined as dS¯=es/mS, where eS is the energy deposited in the mass mS contained in the volume. Since mass and energy should be conserved, when dS¯ is mapped to an image R(dS→R¯=dR¯), the mean dose mapping error is defined as Δdm¯=|dR¯-dS¯|=|eR/mR-eS/mS|, where the eR and eS are integral doses (energy deposited), and mR and mS are the masses within the region of interest (ROI) on image R and the corresponding ROI on image S, where R and S are the two anatomic instances from the same patient. Alternatively, application of simple differential propagation yields the differential dose mapping error, Δdd¯=|∂d¯∂e*Δe+∂d¯∂m*Δm|=|(eS-eR)mR-(mS-mR)mR2*eR|=α|dR¯-dS¯| with α=mS/mR. A 4D treatment plan on a ten-phase 4D-CT lung patient is used to demonstrate the dose mapping error evaluations for a patient case, in which the accumulated dose, DR¯=∑S=09dS→R¯, and associated error values (ΔDm¯ and ΔDd¯) are calculated for a uniformly spaced set of ROIs. Results: For the single sample patient dose distribution, the average accumulated differential dose mapping error is 4.3%, the average absolute differential dose mapping error is 10.8%, and the average accumulated mean dose mapping error is 5.0%. Accumulated differential dose mapping errors within the gross tumor volume (GTV) and planning target volume (PTV) are lower, 0

  20. On determining dose rate constants spectroscopically

    SciTech Connect

    Rodriguez, M.; Rogers, D. W. O.

    2013-01-15

    Purpose: To investigate several aspects of the Chen and Nath spectroscopic method of determining the dose rate constants of {sup 125}I and {sup 103}Pd seeds [Z. Chen and R. Nath, Phys. Med. Biol. 55, 6089-6104 (2010)] including the accuracy of using a line or dual-point source approximation as done in their method, and the accuracy of ignoring the effects of the scattered photons in the spectra. Additionally, the authors investigate the accuracy of the literature's many different spectra for bare, i.e., unencapsulated {sup 125}I and {sup 103}Pd sources. Methods: Spectra generated by 14 {sup 125}I and 6 {sup 103}Pd seeds were calculated in vacuo at 10 cm from the source in a 2.7 Multiplication-Sign 2.7 Multiplication-Sign 0.05 cm{sup 3} voxel using the EGSnrc BrachyDose Monte Carlo code. Calculated spectra used the initial photon spectra recommended by AAPM's TG-43U1 and NCRP (National Council of Radiation Protection and Measurements) Report 58 for the {sup 125}I seeds, or TG-43U1 and NNDC(2000) (National Nuclear Data Center, 2000) for {sup 103}Pd seeds. The emitted spectra were treated as coming from a line or dual-point source in a Monte Carlo simulation to calculate the dose rate constant. The TG-43U1 definition of the dose rate constant was used. These calculations were performed using the full spectrum including scattered photons or using only the main peaks in the spectrum as done experimentally. Statistical uncertainties on the air kerma/history and the dose rate/history were Less-Than-Or-Slanted-Equal-To 0.2%. The dose rate constants were also calculated using Monte Carlo simulations of the full seed model. Results: The ratio of the intensity of the 31 keV line relative to that of the main peak in {sup 125}I spectra is, on average, 6.8% higher when calculated with the NCRP Report 58 initial spectrum vs that calculated with TG-43U1 initial spectrum. The {sup 103}Pd spectra exhibit an average 6.2% decrease in the 22.9 keV line relative to the main peak when

  1. An expanded pharmacogenomics warfarin dosing table with utility in generalised dosing guidance.

    PubMed

    Shahabi, Payman; Scheinfeldt, Laura B; Lynch, Daniel E; Schmidlen, Tara J; Perreault, Sylvie; Keller, Margaret A; Kasper, Rachel; Wawak, Lisa; Jarvis, Joseph P; Gerry, Norman P; Gordon, Erynn S; Christman, Michael F; Dubé, Marie-Pierre; Gharani, Neda

    2016-08-01

    Pharmacogenomics (PGx) guided warfarin dosing, using a comprehensive dosing algorithm, is expected to improve dose optimisation and lower the risk of adverse drug reactions. As a complementary tool, a simple genotype-dosing table, such as in the US Food and Drug Administration (FDA) Coumadin drug label, may be utilised for general risk assessment of likely over- or under-anticoagulation on a standard dose of warfarin. This tool may be used as part of the clinical decision support for the interpretation of genetic data, serving as a first step in the anticoagulation therapy decision making process. Here we used a publicly available warfarin dosing calculator (www.warfarindosing.org) to create an expanded gene-based warfarin dosing table, the CPMC-WD table that includes nine genetic variants in CYP2C9, VKORC1, and CYP4F2. Using two datasets, a European American cohort (EUA, n=73) and the Quebec Warfarin Cohort (QWC, n=769), we show that the CPMC-WD table more accurately predicts therapeutic dose than the FDA table (51 % vs 33 %, respectively, in the EUA, McNemar's two-sided p=0.02; 52 % vs 37 % in the QWC, p<1×10(-6)). It also outperforms both the standard of care 5 mg/day dosing (51 % vs 34 % in the EUA, p=0.04; 52 % vs 31 % in the QWC, p<1×10(-6)) as well as a clinical-only algorithm (51 % vs 38 % in the EUA, trend p=0.11; 52 % vs 45 % in the QWC, p=0.003). This table offers a valuable update to the PGx dosing guideline in the drug label.

  2. EXPOSURE RELATED DOSE ESTIMATING MODEL (ERDEM)

    EPA Science Inventory

    ERDEM is a physiologically-based pharmacokinetic (PBPK) model with a graphical user interface (GUI) front end. Such a mathematical model was needed to make reliable estimates of the chemical dose to organs of animals or humans because of uncertainties of making route-to route, lo...

  3. Hanford Environmental Dose Reconstruction Project Monthly Report

    SciTech Connect

    Finch, S.M.

    1991-02-01

    The objective of the Hanford Environmental Dose Reconstruction Project is to estimate the radiation doses that populations could have received from nuclear operations at Hanford since 1944. The project is being managed and conducted by the Pacific Northwest Laboratory (PNL) under the direction of an independent Technical Steering Panel (TSP). The TSP consists of experts in environmental pathways, epidemiology, surface-water transport, ground-water transport, statistics, demography, agriculture, meteorology, nuclear engineering, radiation dosimetry, and cultural anthropology. Included are appointed technical members representing the states of Oregon and Washington, cultural and technical experts nominated by the regional Native American tribes, and an individual representing the public. The project is divided into the following technical tasks. These tasks correspond to the path radionuclides followed, from release to impact on humans (dose estimates): source terms; environmental transport; environmental monitoring data; demographics, agriculture, food habits; and environmental pathways and dose estimates. Project reports and references used in the reports are made available to the public in a public reading room. Project progress is documented in this monthly report, which is available to the public. 3 figs., 3 tabs.

  4. Microbial Biofilms: Persisters, Tolerance and Dosing

    NASA Astrophysics Data System (ADS)

    Cogan, N. G.

    2005-03-01

    Almost all moist surfaces are colonized by microbial biofilms. Biofilms are implicated in cross-contamination of food products, biofouling, medical implants and various human infections such as dental cavities, ulcerative colitis and chronic respiratory infections. Much of current research is focused on the recalcitrance of biofilms to typical antibiotic and antimicrobial treatments. Although the polymer component of biofilms impedes the penetration of antimicrobials through reaction-diffusion limitation, this does not explain the observed tolerance, it merely delays the action of the agent. Heterogeneities in growth-rate also slow the eradication of the bacteria since most antimicrobials are far less effective for non-growing, or slowly growing bacteria. This also does not fully describe biofilm tolerance, since heterogeneities arr primairly a result of nutrient consumption. In this investigation, we describe the formation of `persister' cells which neither grow nor die in the presence of antibiotics. We propose that the cells are of a different phenotype than typical bacterial cells and the expression of the phenotype is regulated by the growth rate and the antibiotic concentration. We describe several experiments which describe the dynamics of persister cells and which motivate a dosing protocol that calls for periodic dosing of the population. We then introduce a mathematical model, which describes the effect of such a dosing regiment and indicates that the relative dose/withdrawal times are important in determining the effectiveness of such a treatment. A reduced model is introduced and the similar behavior is demonstrated analytically.

  5. Personnel Dose Assessment during Active Interrogation

    SciTech Connect

    Miller, Thomas Martin; Akkurt, Hatice; Patton, Bruce W

    2010-01-01

    A leading candidate in the detection of special nuclear material (SNM) is active interrogation (AI). Unlike passive interrogation, AI uses a source to enhance or create a detectable signal from SNM (usually fission), particularly in shielded scenarios or scenarios where the SNM has a low activity. The use of AI thus makes the detection of SNM easier or, in some scenarios, even enables previously impossible detection. During the development of AI sources, significant effort is put into determining the source strength required to detect SNM in specific scenarios. Usually during this process, but not always, an evaluation of personnel dose is also completed. In this instance personnel dose could involve any of the following: (1) personnel performing the AI; (2) unknown stowaways who are inside the object being interrogated; or (3) in clandestine interrogations, personnel who are known to be inside the object being interrogated but are unaware of the interrogation. In most instances, dose to anyone found smuggling SNM will be a secondary issue. However, for the organizations performing the AI, legal if not moral considerations should make dose to the personnel performing the AI, unknown stowaways, or innocent bystanders in clandestine interrogations a serious concern.

  6. Visualization of a changing dose field.

    SciTech Connect

    Helm, T. M; Kornreich, D. E.

    2002-01-01

    To help visualize the results of dose modeling for nuclear materials processing opcrations, we have developed an integrated model that uses a simple dosc calculation tool to obtain estimates of the dose field in a complex geomctry and then post-process the data to produce a video of the now time-dependent data. We generate two-dimensional radiation fields within an existing physical cnvironment and then analyze them using three-dimensional visualization techniques. The radiation fields are generated for both neutrons and photons. Standard monoenergetic diffusion theory is used to estimate the neutron dosc fields. The photon dose is estimated using a point-kernel formalism, with photon shielding effects and buildup taken into account. The radiation field dynamics are analyzed by interleaving individual 3D graphic 'snapshots' into a smoothed, lime dependent, video-based display. In-the-room workers are 'seen' in the radiation fields via a graphical, 3D fly-through rendering of the room. Worker dose levels can reveal surprising dependencies on operational source placement, source types, worker alignment, shielding alignments, and indirect operations from external workers.

  7. Increased occupational radiation doses: nuclear fuel cycle.

    PubMed

    Bouville, André; Kryuchkov, Victor

    2014-02-01

    The increased occupational doses resulting from the Chernobyl nuclear reactor accident that occurred in Ukraine in April 1986, the reactor accident of Fukushima that took place in Japan in March 2011, and the early operations of the Mayak Production Association in Russia in the 1940s and 1950s are presented and discussed. For comparison purposes, the occupational doses due to the other two major reactor accidents (Windscale in the United Kingdom in 1957 and Three Mile Island in the United States in 1979) and to the main plutonium-producing facility in the United States (Hanford Works) are also covered but in less detail. Both for the Chernobyl nuclear reactor accident and the routine operations at Mayak, the considerable efforts made to reconstruct individual doses from external irradiation to a large number of workers revealed that the recorded doses had been overestimated by a factor of about two.Introduction of Increased Occupational Exposures: Nuclear Industry Workers. (Video 1:32, http://links.lww.com/HP/A21). PMID:24378501

  8. Two prospective dosing methods for nortriptyline.

    PubMed

    Perry, P J; Browne, J L; Alexander, B; Tsuang, M T; Sherman, A D; Dunner, F J

    1984-01-01

    This study compared two prospective pharmacokinetic dosing methods to predict steady-state concentrations of nortriptyline. One method required multiple determinations of the nortriptyline plasma concentration to estimate the drug's steady-state concentration. The second method required a single nortriptyline concentration drawn at a fixed time, preferably 36 hours, following a nortriptyline test dose. The 36-hour nortriptyline plasma concentrations (NTP 36h) were substituted into the straight-line equation of Cssav = 17.2 + 3.74 (NTP 36h), where Cssav is the average steady-state concentration for a 100 mg/day dose of nortriptyline. No differences were noted between the observed steady-state nortriptyline concentration of 121 +/- 19 ng/ml, the 36-hour single-point prediction mean concentration of 121 +/- 21 ng/ml, or the multiple-point prediction mean concentration of 122 +/- 19 ng/ml. Because of the similar findings between the two methods, the clinical advantages and disadvantages of each kinetic approach are discussed to put these prospective dosing protocols into their proper perspective.

  9. Dose-shaping using targeted sparse optimization

    SciTech Connect

    Sayre, George A.; Ruan, Dan

    2013-07-15

    Purpose: Dose volume histograms (DVHs) are common tools in radiation therapy treatment planning to characterize plan quality. As statistical metrics, DVHs provide a compact summary of the underlying plan at the cost of losing spatial information: the same or similar dose-volume histograms can arise from substantially different spatial dose maps. This is exactly the reason why physicians and physicists scrutinize dose maps even after they satisfy all DVH endpoints numerically. However, up to this point, little has been done to control spatial phenomena, such as the spatial distribution of hot spots, which has significant clinical implications. To this end, the authors propose a novel objective function that enables a more direct tradeoff between target coverage, organ-sparing, and planning target volume (PTV) homogeneity, and presents our findings from four prostate cases, a pancreas case, and a head-and-neck case to illustrate the advantages and general applicability of our method.Methods: In designing the energy minimization objective (E{sub tot}{sup sparse}), the authors utilized the following robust cost functions: (1) an asymmetric linear well function to allow differential penalties for underdose, relaxation of prescription dose, and overdose in the PTV; (2) a two-piece linear function to heavily penalize high dose and mildly penalize low and intermediate dose in organs-at risk (OARs); and (3) a total variation energy, i.e., the L{sub 1} norm applied to the first-order approximation of the dose gradient in the PTV. By minimizing a weighted sum of these robust costs, general conformity to dose prescription and dose-gradient prescription is achieved while encouraging prescription violations to follow a Laplace distribution. In contrast, conventional quadratic objectives are associated with a Gaussian distribution of violations, which is less forgiving to large violations of prescription than the Laplace distribution. As a result, the proposed objective E{sub tot

  10. Low Dose Effects: Benefit or Harm?

    PubMed

    Woloschak, Gayle E

    2016-03-01

    This forum article discusses issues related to the effects of low dose radiation, an area that is under intense study but difficult to assess. Experiments with large-scale animal studies are included in this paper; these studies point to the need for international consortia to examine and balance the results of these large-scale studies and databases. PMID:26808889

  11. The nasal distribution of metered dose inhalers.

    PubMed

    Newman, S P; Morén, P F; Clarke, S W

    1987-02-01

    The intranasal distribution of aerosol from a metered dose inhaler has been assessed using a radiotracer technique. Inhalers were prepared by adding 99Tcm-labelled Teflon particles (simulating the drug particles) to chlorofluorocarbon propellants, and scans of the head (and chest) taken with a gamma camera. Ten healthy subjects (age range 19-29 years) each performed two radioaerosol studies with the inhaler held in two different ways: either in a single position (vial pointing upwards) or in two positions (vial pointing upwards and then tilted by 30 degrees in the sagittal plane). The vast majority of the dose (82.5 +/- 2.8 (mean +/- SEM) per cent and 80.7 +/- 3.1 per cent respectively for one-position and two-position studies) was deposited on a single localized area in the anterior one-third of the nose, the initial distribution pattern being identical for each study. No significant radioaerosol was detected in the lungs. Only 18.0 +/- 4.7 per cent and 15.4 +/- 4.1 per cent of the dose had been removed by mucociliary action after 30 minutes, and it is probable that the remainder had not penetrated initially beyond the vestibule. Since the deposition pattern was highly localized and more than half the dose probably failed to reach the turbinates it is possible that the overall effect of nasal MDIs is suboptimal for the treatment of generalized nasal disorders.

  12. Gastroduodenal response to low-dose glucagon.

    PubMed

    Feczko, P J; Simms, S M; Iorio, J; Halpert, R

    1983-05-01

    A prospective, double-blind clinical study of the double-contrast upper gastrointestinal examination involving 240 patients was performed using glucagon in doses from 0.025 to 0.125 mg, in 0.025 mg increments. Although motility was diminished, neither gastric distension or coating was improved with the use of glucagon. However, duodenal distension and coating were markedly enhanced. The response of the pylorus was individualistic. The pylorus remained patent in most patients, and glucagon would not prevent barium spillage in the duodenum. However, in those patients with a "competent" pylorus, increasing glucagon doses produced a delay in gastric emptying. Several other variables, including weight, age, and gender, were studied and were not believed to be of clinical significance. Spontaneous gastroesophageal reflux was also increased with the use of glucagon. Glucagon mainly enhanced duodenal visualization but had no beneficial effect on the stomach or pylorus. Absolute dose is the most important factor, and all observable changes can be seen once a certain threshold dose (0.05 mg) is reached.

  13. Increased occupational radiation doses: nuclear fuel cycle.

    PubMed

    Bouville, André; Kryuchkov, Victor

    2014-02-01

    The increased occupational doses resulting from the Chernobyl nuclear reactor accident that occurred in Ukraine in April 1986, the reactor accident of Fukushima that took place in Japan in March 2011, and the early operations of the Mayak Production Association in Russia in the 1940s and 1950s are presented and discussed. For comparison purposes, the occupational doses due to the other two major reactor accidents (Windscale in the United Kingdom in 1957 and Three Mile Island in the United States in 1979) and to the main plutonium-producing facility in the United States (Hanford Works) are also covered but in less detail. Both for the Chernobyl nuclear reactor accident and the routine operations at Mayak, the considerable efforts made to reconstruct individual doses from external irradiation to a large number of workers revealed that the recorded doses had been overestimated by a factor of about two.Introduction of Increased Occupational Exposures: Nuclear Industry Workers. (Video 1:32, http://links.lww.com/HP/A21).

  14. ISFSI site boundary radiation dose rate analyses.

    PubMed

    Hagler, R J; Fero, A H

    2005-01-01

    Across the globe nuclear utilities are in the process of designing and analysing Independent Spent Fuel Storage Installations (ISFSI) for the purpose of above ground spent-fuel storage primarily to mitigate the filling of spent-fuel pools. Using a conjoining of discrete ordinates transport theory (DORT) and Monte Carlo (MCNP) techniques, an ISFSI was analysed to determine neutron and photon dose rates for a generic overpack, and ISFSI pad configuration and design at distances ranging from 1 to -1700 m from the ISFSI array. The calculated dose rates are used to address the requirements of 10CFR72.104, which provides limits to be enforced for the protection of the public by the NRC in regard to ISFSI facilities. For this overpack, dose rates decrease by three orders of magnitude through the first 200 m moving away from the ISFSI. In addition, the contributions from different source terms changes over distance. It can be observed that although side photons provide the majority of dose rate in this calculation, scattered photons and side neutrons take on more importance as the distance from the ISFSI is increased. PMID:16604670

  15. A quality index for equivalent uniform dose

    PubMed Central

    Henríquez, Francisco Cutanda; Castrillón, Silvia Vargas

    2011-01-01

    Equivalent uniform dose (EUD) is the absorbed dose that, when homogeneously given to a tumor, yields the same mean surviving clonogen number as the given non-homogeneous irradiation. EUD is used as an evaluation tool under the assumption that two plans with the same value of EUD are equivalent, and their biological effect on the tumor (clonogen survival) would be the same as the one of a homogeneous irradiation of absorbed dose EUD. In this work, this assumption has been studied, and a figure of merit of its applicability has been obtained. Distributions of surviving clonogen number for homogeneous and non-homogeneous irradiations are found to be different even if their mean values are the same, the figure of merit being greater when there is a wider difference, and the equivalence assumption being less valid. Therefore, EUD can be closer to a uniform dose for some cases than for other ones (high α values, extreme heterogeneity), and the accuracy of the radiobiological indices obtained for evaluation, could be affected. Results show that the equivalence is very sensitive to the choice of radiobiological parameters, and this conclusion has been derived from mathematical properties of EUD. PMID:21897557

  16. [Dialysis dose quantification in critically ill patients].

    PubMed

    Casino, Francesco Gaetano

    2010-01-01

    Acute kidney injury affects about 35% of intensive care unit patients. Renal replacement therapy is required in about 5% of such patients and is associated with a mortality rate as high as 50% to 80%. The latter is likely more related to the failure of extrarenal organs than to an insufficient dialysis dose. This could explain, at least in part, the findings of 2 recent trials (VA/ NIH and RENAL) where the expected dose-outcome relationship was not confirmed. These results cannot be taken to infer that assessing the dialysis dose is no longer required. The contrary is true, in that the common finding of large differences between prescribed and delivered doses calls for accurate dose assessment, at least to avoid underdialysis. The minimum adequate levels are now a Kt/V urea of 1.2 to 1.4 three times a week (3x/wk) on intermittent hemodialysis (IHD), and an effluent of 20 mL/kg/h for 85% of the time on continuous renal replacement therapy (CRTT). Both these parameters can be easily measured but are far from ideal indices because they account neither for residual renal function nor for irregular dose delivery. The equivalent renal urea clearance (EKRjc), by expressing the averaged renal+dialytic urea clearance over the whole treatment period, is able to account for the above factors. Although assessing EKRjc is quite complex, for regular 3x/wk IHD one could use the formula EKRjc=10 Kt/V+1 to compute that a Kt/V of 1.2 and 1.4 corresponds to an EKRjc of 13 and 15 mL/min, respectively. On the other hand, the hourly effluent per kg is numerically similar to EKRjc. On this basis it can be calculated that in non-prediluted really continuous treatment, the recommended CRRT dose (EKRjc=20 mL/min) is 33% higher than the EKRjc of 15 mL/min, corresponding to the recommended Kt/V of 1.4 on 3x/wk IHD.

  17. La problematica de la demarcacion entre ciencia y pseudociencia y sus implicaciones en la educacion cientifica

    NASA Astrophysics Data System (ADS)

    Jimenez Tolentino, Dinorah

    2011-12-01

    En la sociedad prevalece una tendencia generalizada hacia la inclusion de creencias y practicas pseudocientificas. Esta investigacion responde a la necesidad de analizar como la proliferacion de las pseudociencias afecta la vision que tienen los estudiantes universitarios sobre las ciencias naturales. A tales efectos, la investigadora describe las concepciones epistemologicas que tienen los estudiantes sobre las ciencias y las pseudociencias e identifica los criterios de demarcacion, entre un area y otra, que se derivan de estas concepciones. De igual modo, esta identifica las creencias y practicas pseudocientificas de mayor arraigo entre los estudiantes, destacando, a su vez, la razon de ser de las mismas. Por ultimo, la investigadora analiza las implicaciones educativas de la problematica de la demarcacion entre ciencia y pseudociencia. La investigacion es de naturaleza mixta, enmarcada en los paradigmas empirico- analitico y cualitativo. El proceso investigativo se llevo a cabo mediante la administracion del cuestionario Criterios para la demarcacion entre ciencia y pseudociencia. La parte cualitativa estuvo enmarcada en el diseno de estudio de caso, recopilando informacion mediante entrevistas semiestructuradas en dos grupos focales. La poblacion de estudio estuvo constituida por estudiantes universitarios del nivel subgraduado de la Universidad Central de Bayamon. Los resultados del estudio reflejaron las concepciones erroneas de los estudiantes sobre la naturaleza de las ciencias y las pseudociencias. Con respecto a la demarcacion entre ciencia y pseudociencia, el criterio imperante entre los universitarios es el de la verificabilidad, considerando la aplicacion del metodo cientifico como el metodo para demostrar la veracidad de las teorias cientificas. Las creencias y practicas pseudocientificas no son muy frecuentes entre los universitarios. Estos atribuyen las mismas a la prevalencia de elementos supersticiosos y al engano a que es sometida la poblacion

  18. 10 CFR 20.1207 - Occupational dose limits for minors.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 1 2011-01-01 2011-01-01 false Occupational dose limits for minors. 20.1207 Section 20.1207 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Occupational Dose Limits § 20.1207 Occupational dose limits for minors. The annual occupational dose limits for minors...

  19. 10 CFR 20.1207 - Occupational dose limits for minors.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 1 2012-01-01 2012-01-01 false Occupational dose limits for minors. 20.1207 Section 20.1207 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Occupational Dose Limits § 20.1207 Occupational dose limits for minors. The annual occupational dose limits for minors...

  20. 10 CFR 20.1207 - Occupational dose limits for minors.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 1 2013-01-01 2013-01-01 false Occupational dose limits for minors. 20.1207 Section 20.1207 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Occupational Dose Limits § 20.1207 Occupational dose limits for minors. The annual occupational dose limits for minors...

  1. 10 CFR 20.1207 - Occupational dose limits for minors.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 1 2014-01-01 2014-01-01 false Occupational dose limits for minors. 20.1207 Section 20.1207 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Occupational Dose Limits § 20.1207 Occupational dose limits for minors. The annual occupational dose limits for minors...

  2. 10 CFR 20.1207 - Occupational dose limits for minors.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Occupational dose limits for minors. 20.1207 Section 20.1207 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Occupational Dose Limits § 20.1207 Occupational dose limits for minors. The annual occupational dose limits for minors...

  3. High dose rate brachytherapy for oral cancer

    PubMed Central

    YamazakI, Hideya; Yoshida, Ken; Yoshioka, Yasuo; Shimizutani, Kimishige; Furukawa, Souhei; Koizumi, Masahiko; Ogawa, Kazuhiko

    2013-01-01

    Brachytherapy results in better dose distribution compared with other treatments because of steep dose reduction in the surrounding normal tissues. Excellent local control rates and acceptable side effects have been demonstrated with brachytherapy as a sole treatment modality, a postoperative method, and a method of reirradiation. Low-dose-rate (LDR) brachytherapy has been employed worldwide for its superior outcome. With the advent of technology, high-dose-rate (HDR) brachytherapy has enabled health care providers to avoid radiation exposure. This therapy has been used for treating many types of cancer such as gynecological cancer, breast cancer, and prostate cancer. However, LDR and pulsed-dose-rate interstitial brachytherapies have been mainstays for head and neck cancer. HDR brachytherapy has not become widely used in the radiotherapy community for treating head and neck cancer because of lack of experience and biological concerns. On the other hand, because HDR brachytherapy is less time-consuming, treatment can occasionally be administered on an outpatient basis. For the convenience and safety of patients and medical staff, HDR brachytherapy should be explored. To enhance the role of this therapy in treatment of head and neck lesions, we have reviewed its outcomes with oral cancer, including Phase I/II to Phase III studies, evaluating this technique in terms of safety and efficacy. In particular, our studies have shown that superficial tumors can be treated using a non-invasive mold technique on an outpatient basis without adverse reactions. The next generation of image-guided brachytherapy using HDR has been discussed. In conclusion, although concrete evidence is yet to be produced with a sophisticated study in a reproducible manner, HDR brachytherapy remains an important option for treatment of oral cancer. PMID:23179377

  4. Approaches to interventional fluoroscopic dose curves.

    PubMed

    Wunderle, Kevin A; Rakowski, Joseph T; Dong, Frank F

    2016-01-01

    Modern fluoroscopes used for image-based guidance in interventional procedures are complex X-ray machines, with advanced image acquisition and processing systems capable of automatically controlling numerous parameters based on defined protocol settings. This study evaluated and compared approaches to technique factor modulation and air kerma rates in response to simulated patient thickness variations for four state-of-the-art and one previous-generation interventional fluoroscopes. A polymethyl methacrylate (PMMA) phantom was used as a tissue surrogate for the purposes of determining fluoroscopic reference plane air kerma rates, kVp, mA, and variable copper filter thickness over a wide range of simulated tissue thicknesses. Data were acquired for each fluoroscopic and acquisition dose curve within each vendor's default abdomen or body imaging protocol. The data obtained indicated vendor- and model-specific variations in the approach to technique factor modulation and reference plane air kerma rates across a range of tissue thicknesses. However, in the imaging protocol evaluated, all of the state-of-the-art systems had relatively low air kerma rates in the fluoroscopic low-dose imaging mode as compared to the previous-generation unit. Each of the newest-generation systems also employ Cu filtration within the selected protocol in the acquisition mode of imaging; this is a substantial benefit, reducing the skin entrance dose to the patient in the highest dose-rate mode of fluoroscope operation. Some vendors have also enhanced the radiation output capabilities of their fluoroscopes which, under specific conditions, may be beneficial; however, these increased output capabilities also have the potential to lead to unnecessarily high dose rates. Understanding how fluoroscopic technique factors are modulated provides insight into the vendor-specific image acquisition approach and may provide opportunities to optimize the imaging protocols for clinical practice. PMID

  5. Calculating lens dose and surface dose rates from 90Sr ophthalmic applicators using Monte Carlo modeling.

    PubMed

    Gleckler, M; Valentine, J D; Silberstein, E B

    1998-01-01

    Using a 90Sr applicator for brachytherapy for the reduction of recurrence rates after pterygium excisions has been an effective therapeutic procedure. Accurate knowledge of the dose being applied to the affected area on the sclera has been lacking, and for decades inaccurate estimates for lens dose have thus been made. Small errors in the assumptions which are required to make these estimates lead to dose rates changing exponentially because of the attenuation of beta particles. Monte Carlo simulations have been used to evaluate the assumptions that are now being used for the calculation of the surface dose rate and the corresponding determination of lens dose. For an ideal 90Sr applicator, results from this study indicate dose rates to the most radiosensitive areas of the lens ranging from 8.8 to 15.5 cGy/s. This range is based on different eye dimensions that ultimately corresponds to a range in distance between the applicator surface and the germinative epithelium of the lens of 2-3 mm. Furthermore, the conventional 200 cGy threshold for whole lens cataractogenesis is questioned for predicting complications from scleral brachytherapy. The dose to the germinative epithelium should be used for studying radiocataractogenesis.

  6. VirtualDose: a software for reporting organ doses from CT for adult and pediatric patients

    NASA Astrophysics Data System (ADS)

    Ding, Aiping; Gao, Yiming; Liu, Haikuan; Caracappa, Peter F.; Long, Daniel J.; Bolch, Wesley E.; Liu, Bob; Xu, X. George

    2015-07-01

    This paper describes the development and testing of VirtualDose—a software for reporting organ doses for adult and pediatric patients who undergo x-ray computed tomography (CT) examinations. The software is based on a comprehensive database of organ doses derived from Monte Carlo (MC) simulations involving a library of 25 anatomically realistic phantoms that represent patients of different ages, body sizes, body masses, and pregnant stages. Models of GE Lightspeed Pro 16 and Siemens SOMATOM Sensation 16 scanners were carefully validated for use in MC dose calculations. The software framework is designed with the ‘software as a service (SaaS)’ delivery concept under which multiple clients can access the web-based interface simultaneously from any computer without having to install software locally. The RESTful web service API also allows a third-party picture archiving and communication system software package to seamlessly integrate with VirtualDose’s functions. Software testing showed that VirtualDose was compatible with numerous operating systems including Windows, Linux, Apple OS X, and mobile and portable devices. The organ doses from VirtualDose were compared against those reported by CT-Expo and ImPACT—two dosimetry tools that were based on the stylized pediatric and adult patient models that were known to be anatomically simple. The organ doses reported by VirtualDose differed from those reported by CT-Expo and ImPACT by as much as 300% in some of the patient models. These results confirm the conclusion from past studies that differences in anatomical realism offered by stylized and voxel phantoms have caused significant discrepancies in CT dose estimations.

  7. Measurement verification of dose distributions in pulsed-dose rate brachytherapy in breast cancer

    PubMed Central

    Mantaj, Patrycja; Zwierzchowski, Grzegorz

    2013-01-01

    Aim The aim of the study was to verify the dose distribution optimisation method in pulsed brachytherapy. Background The pulsed-dose rate brachytherapy is a very important method of breast tumour treatment using a standard brachytheraphy equipment. The appropriate dose distribution round an implant is an important issue in treatment planning. Advanced computer systems of treatment planning are equipped with algorithms optimising dose distribution. Materials and methods The wax-paraffin phantom was constructed and seven applicators were placed within it. Two treatment plans (non-optimised, optimised) were prepared. The reference points were located at a distance of 5 mm from the applicators’ axis. Thermoluminescent detectors were placed in the phantom at suitable 35 chosen reference points. Results The dosimetry verification was carried out in 35 reference points for the plans before and after optimisation. Percentage difference for the plan without optimisation ranged from −8.5% to 1.4% and after optimisation from −8.3% to 0.01%. In 16 reference points, the calculated percentage difference was negative (from −8.5% to 1.3% for the plan without optimisation and from −8.3% to 0.8% for the optimised plan). In the remaining 19 points percentage difference was from 9.1% to 1.4% for the plan without optimisation and from 7.5% to 0.01% for the optimised plan. No statistically significant differences were found between calculated doses and doses measured at reference points in both dose distribution non-optimised treatment plans and optimised treatment plans. Conclusions No statistically significant differences were found in dose values at reference points between doses calculated by the treatment planning system and those measured by TLDs. This proves the consistency between the measurements and the calculations. PMID:24416545

  8. Bayesian dose-response analysis for epidemiological studies with complex uncertainty in dose estimation.

    PubMed

    Kwon, Deukwoo; Hoffman, F Owen; Moroz, Brian E; Simon, Steven L

    2016-02-10

    Most conventional risk analysis methods rely on a single best estimate of exposure per person, which does not allow for adjustment for exposure-related uncertainty. Here, we propose a Bayesian model averaging method to properly quantify the relationship between radiation dose and disease outcomes by accounting for shared and unshared uncertainty in estimated dose. Our Bayesian risk analysis method utilizes multiple realizations of sets (vectors) of doses generated by a two-dimensional Monte Carlo simulation method that properly separates shared and unshared errors in dose estimation. The exposure model used in this work is taken from a study of the risk of thyroid nodules among a cohort of 2376 subjects who were exposed to fallout from nuclear testing in Kazakhstan. We assessed the performance of our method through an extensive series of simulations and comparisons against conventional regression risk analysis methods. When the estimated doses contain relatively small amounts of uncertainty, the Bayesian method using multiple a priori plausible draws of dose vectors gave similar results to the conventional regression-based methods of dose-response analysis. However, when large and complex mixtures of shared and unshared uncertainties are present, the Bayesian method using multiple dose vectors had significantly lower relative bias than conventional regression-based risk analysis methods and better coverage, that is, a markedly increased capability to include the true risk coefficient within the 95% credible interval of the Bayesian-based risk estimate. An evaluation of the dose-response using our method is presented for an epidemiological study of thyroid disease following radiation exposure.

  9. Spine stereotactic body radiation therapy plans: Achieving dose coverage, conformity, and dose falloff.

    PubMed

    Hong, Linda X; Shankar, Viswanathan; Shen, Jin; Kuo, Hsiang-Chi; Mynampati, Dinesh; Yaparpalvi, Ravindra; Goddard, Lee; Basavatia, Amar; Fox, Jana; Garg, Madhur; Kalnicki, Shalom; Tomé, Wolfgang A

    2015-01-01

    We report our experience of establishing planning objectives to achieve dose coverage, conformity, and dose falloff for spine stereotactic body radiation therapy (SBRT) plans. Patients with spine lesions were treated using SBRT in our institution since September 2009. Since September 2011, we established the following planning objectives for our SBRT spine plans in addition to the cord dose constraints: (1) dose coverage—prescription dose (PD) to cover at least 95% planning target volume (PTV) and 90% PD to cover at least 99% PTV; (2) conformity index (CI)—ratio of prescription isodose volume (PIV) to the PTV < 1.2; (3) dose falloff—ratio of 50% PIV to the PTV (R(50%)); (4) and maximum dose in percentage of PD at 2 cm from PTV in any direction (D(2cm)) to follow Radiation Therapy Oncology Group (RTOG) 0915. We have retrospectively reviewed 66 separate spine lesions treated between September 2009 and December 2012 (31 treated before September 2011 [group 1] and 35 treated after [group 2]). The χ(2) test was used to examine the difference in parameters between groups. The PTV V(100% PD) ≥ 95% objective was met in 29.0% of group 1 vs 91.4% of group 2 (p < 0.01) plans. The PTV V(90% PD) ≥ 99% objective was met in 38.7% of group 1 vs 88.6% of group 2 (p < 0.01) plans. Overall, 4 plans in group 1 had CI > 1.2 vs none in group 2 (p = 0.04). For D(2cm), 48.3% plans yielded a minor violation of the objectives and 16.1% a major violation for group 1, whereas 17.1% exhibited a minor violation and 2.9% a major violation for group 2 (p < 0.01). Spine SBRT plans can be improved on dose coverage, conformity, and dose falloff employing a combination of RTOG spine and lung SBRT protocol planning objectives.

  10. Dose evaluation from multiple detector outputs using convex optimisation.

    PubMed

    Hashimoto, Makoto; Iimoto, Takeshi; Kosako, Toshiso

    2011-07-01

    A dose evaluation using multiple radiation detectors can be improved by the convex optimisation method. It enables flexible dose evaluation corresponding to the actual radiation energy spectrum. An application to the neutron ambient dose equivalent evaluation is investigated using a mixed-gas proportional counter. The convex derives the certain neutron ambient dose with certain width corresponding to the true neutron energy spectrum. The range of the evaluated dose is comparable to the error of conventional neutron dose measurement equipments. An application to the neutron individual dose equivalent measurement is also investigated. Convexes of particular dosemeter combinations evaluate the individual dose equivalent better than the dose evaluation of a single dosemeter. The combinations of dosemeters with high orthogonality of their response characteristics tend to provide a good suitability for dose evaluation.

  11. Fluence-to-dose confusion regarding external stochastic dose determination within the DOE complex.

    SciTech Connect

    Shores, E. F.; Brown, T. H.

    2002-01-01

    The Department of Energy's (DOE) occupational radiation protection dose limits are specified in 10 CFR 835 (hereafter referred to as 'regulation'). Ambiguity in the regulation regarding designation of dose and fluence-to-dose conversion factors leads to confusion and disagreement regarding the appropriate choice of conversion factors. Three primary dose quantities of relevance are absorbed dose, D, quality factor, Q, and the product of those, called dose equivalent, H. The modifier Q is intended to express the long-term fatal cancer causing potential of different radiation types and generally increases with energy for neutrons. For photons, Q is close to unity regardless of energy. In principle, H could be estimated by incorporating a phantom and relevant Q values in a radiation-transport model. In practice, this would entail too much model complexity and computer time. The evaluator of H instead relies on pre-calculated energy-dependent fluence-to-dose conversion factors. Three primary sets of fluence-to-dose conversion factors are commonly used to determine stochastic dose for neutrons and photons: (1) ANSI/ANS-6.1.1-1977 that incorporates the NCRP-38 data for neutrons and sets based on Claiborne and Wells for photons, (2) ANSI/ANS -6.1.1-1991 that are based on and nearly identical to the neutron and photon sets in ICRP -51, and (3) neutron and photon sets in ICRP-74. The first set is maximum H values in a 30-cm diameter cylinder phantom for neutrons and in a 30-cm thick slab phantom for photons. The second set is effective dose equivalent, HE, derived from an anthropomorphic phantom by summing the products of tissue dose equivalents, HT, and tissue weighting factors, w{sub T}. The third set is effective dose, E, also derived from an anthropomorphic phantom by summing the products of H{sub T} and w{sub T}. E is functionally identical to H{sub E} except H{sub T} is the product of D and the radiation weighting factor, w{sub R}, which is similar in meaning to Q.

  12. [Dose of tissue tolerance, dose of tumour sterilisation in continuous and discontinuous irradiation (author's transl)].

    PubMed

    Swyngedauw, J

    1975-05-01

    In the radiotherapy of cancer, two conditions are necessary:-- 1 degree sterilisation of the tumor; 2 degrees safeguard of surrounding tissues. In discontinuous irradiation, sterilisation depends on the administration of a certain tumour-dose within a suitable period or number of sessions. At the rate of 5 sessions weekly, the following dose-number law may be formulated (ELLIS): DT = 2,500.N0,22. Perfect tolerance of the connective tissue is in fact obtained if the total dose is equal or less than: N.S.D..N0,24.T0,11. The nominal standard dose of ELLIS, is a limiting dose of about 1,800 rads. ORTON and ELLIS have published tables which permit one to obtain, without an index of saturation of the supporting tissue by means of a series of double entry tables corresponding each to a frequency of 1, 2, 3, 4, 5 sessions per week. Each table provides the T.D.F. factor in relation to the number of sessions and the elementary dose. The T.D.F. factor is about 100 whatever the periodicity, and whatever the subdivisions of the dose when ELLIS' equation is satisfied, i.e. when one is at the limit of tolerance. Furthermore, the T.D.F. factor of two parts, of treatment under various regimens may be added together. It is sufficient for the sum to be equal to 100 to ensure full tolerance, which eliminates all difficulty of manipulation of a fractionated formula. The conditions of obtention of continuous irradiation do not permit one to separate the doses of sterilisation and tolerance, as was the case with discontinuous irradiation but, generally speaking, both in continuous and discontinuous administration the shorter the period of treatment the more the sterilising dose exceeds the tolerance dose, whereas with very small tumours, one may obtain tumour sterilisation within the limits of tolerance of the supporting tissues. For very large or radio-resistant tumours, one may have to, in order to obtain sterilisation, exceed more or less the perfect tolerance defined by T.D.F. 100 or

  13. Total dose and dose rate models for bipolar transistors in circuit simulation.

    SciTech Connect

    Campbell, Phillip Montgomery; Wix, Steven D.

    2013-05-01

    The objective of this work is to develop a model for total dose effects in bipolar junction transistors for use in circuit simulation. The components of the model are an electrical model of device performance that includes the effects of trapped charge on device behavior, and a model that calculates the trapped charge densities in a specific device structure as a function of radiation dose and dose rate. Simulations based on this model are found to agree well with measurements on a number of devices for which data are available.

  14. Dose and Dose Risk Caused by Natural Phenomena - Proposed Powder Metallurgy Core Manufacturing Facility

    SciTech Connect

    Holmes, W.G.

    2001-08-16

    The offsite radiological effects from high velocity straight winds, tornadoes, and earthquakes have been estimated for a proposed facility for manufacturing enriched uranium fuel cores by powder metallurgy. Projected doses range up to 30 mrem/event to the maximum offsite individual for high winds and up to 85 mrem/event for very severe earthquakes. Even under conservative assumptions on meteorological conditions, the maximum offsite dose would be about 20 per cent of the DOE limit for accidents involving enriched uranium storage facilities. The total dose risk is low and is dominated by the risk from earthquakes. This report discusses this test.

  15. Radiation damage in single-particle cryo-electron microscopy: effects of dose and dose rate

    PubMed Central

    Karuppasamy, Manikandan; Karimi Nejadasl, Fatemeh; Vulovic, Milos; Koster, Abraham J.; Ravelli, Raimond B. G.

    2011-01-01

    Radiation damage is an important resolution limiting factor both in macromolecular X-ray crystallography and cryo-electron microscopy. Systematic studies in macromolecular X-ray crystallography greatly benefited from the use of dose, expressed as energy deposited per mass unit, which is derived from parameters including incident flux, beam energy, beam size, sample composition and sample size. In here, the use of dose is reintroduced for electron microscopy, accounting for the electron energy, incident flux and measured sample thickness and composition. Knowledge of the amount of energy deposited allowed us to compare doses with experimental limits in macromolecular X-ray crystallography, to obtain an upper estimate of radical concentrations that build up in the vitreous sample, and to translate heat-transfer simulations carried out for macromolecular X-ray crystallography to cryo-electron microscopy. Stroboscopic exposure series of 50–250 images were collected for different incident flux densities and integration times from Lumbricus terrestris extracellular hemoglobin. The images within each series were computationally aligned and analyzed with similarity metrics such as Fourier ring correlation, Fourier ring phase residual and figure of merit. Prior to gas bubble formation, the images become linearly brighter with dose, at a rate of approximately 0.1% per 10 MGy. The gradual decomposition of a vitrified hemoglobin sample could be visualized at a series of doses up to 5500 MGy, by which dose the sample was sublimed. Comparison of equal-dose series collected with different incident flux densities showed a dose-rate effect favoring lower flux densities. Heat simulations predict that sample heating will only become an issue for very large dose rates (50 e−Å−2 s−1 or higher) combined with poor thermal contact between the grid and cryo-holder. Secondary radiolytic effects are likely to play a role in dose-rate effects. Stroboscopic data collection

  16. Radiation damage in single-particle cryo-electron microscopy: effects of dose and dose rate.

    PubMed

    Karuppasamy, Manikandan; Karimi Nejadasl, Fatemeh; Vulovic, Milos; Koster, Abraham J; Ravelli, Raimond B G

    2011-05-01

    Radiation damage is an important resolution limiting factor both in macromolecular X-ray crystallography and cryo-electron microscopy. Systematic studies in macromolecular X-ray crystallography greatly benefited from the use of dose, expressed as energy deposited per mass unit, which is derived from parameters including incident flux, beam energy, beam size, sample composition and sample size. In here, the use of dose is reintroduced for electron microscopy, accounting for the electron energy, incident flux and measured sample thickness and composition. Knowledge of the amount of energy deposited allowed us to compare doses with experimental limits in macromolecular X-ray crystallography, to obtain an upper estimate of radical concentrations that build up in the vitreous sample, and to translate heat-transfer simulations carried out for macromolecular X-ray crystallography to cryo-electron microscopy. Stroboscopic exposure series of 50-250 images were collected for different incident flux densities and integration times from Lumbricus terrestris extracellular hemoglobin. The images within each series were computationally aligned and analyzed with similarity metrics such as Fourier ring correlation, Fourier ring phase residual and figure of merit. Prior to gas bubble formation, the images become linearly brighter with dose, at a rate of approximately 0.1% per 10 MGy. The gradual decomposition of a vitrified hemoglobin sample could be visualized at a series of doses up to 5500 MGy, by which dose the sample was sublimed. Comparison of equal-dose series collected with different incident flux densities showed a dose-rate effect favoring lower flux densities. Heat simulations predict that sample heating will only become an issue for very large dose rates (50 e(-)Å(-2) s(-1) or higher) combined with poor thermal contact between the grid and cryo-holder. Secondary radiolytic effects are likely to play a role in dose-rate effects. Stroboscopic data collection combined with

  17. [Dose of tissue tolerance, dose of tumour sterilisation in continuous and discontinuous irradiation (author's transl)].

    PubMed

    Swyngedauw, J

    1975-05-01

    In the radiotherapy of cancer, two conditions are necessary:-- 1 degree sterilisation of the tumor; 2 degrees safeguard of surrounding tissues. In discontinuous irradiation, sterilisation depends on the administration of a certain tumour-dose within a suitable period or number of sessions. At the rate of 5 sessions weekly, the following dose-number law may be formulated (ELLIS): DT = 2,500.N0,22. Perfect tolerance of the connective tissue is in fact obtained if the total dose is equal or less than: N.S.D..N0,24.T0,11. The nominal standard dose of ELLIS, is a limiting dose of about 1,800 rads. ORTON and ELLIS have published tables which permit one to obtain, without an index of saturation of the supporting tissue by means of a series of double entry tables corresponding each to a frequency of 1, 2, 3, 4, 5 sessions per week. Each table provides the T.D.F. factor in relation to the number of sessions and the elementary dose. The T.D.F. factor is about 100 whatever the periodicity, and whatever the subdivisions of the dose when ELLIS' equation is satisfied, i.e. when one is at the limit of tolerance. Furthermore, the T.D.F. factor of two parts, of treatment under various regimens may be added together. It is sufficient for the sum to be equal to 100 to ensure full tolerance, which eliminates all difficulty of manipulation of a fractionated formula. The conditions of obtention of continuous irradiation do not permit one to separate the doses of sterilisation and tolerance, as was the case with discontinuous irradiation but, generally speaking, both in continuous and discontinuous administration the shorter the period of treatment the more the sterilising dose exceeds the tolerance dose, whereas with very small tumours, one may obtain tumour sterilisation within the limits of tolerance of the supporting tissues. For very large or radio-resistant tumours, one may have to, in order to obtain sterilisation, exceed more or less the perfect tolerance defined by T.D.F. 100 or

  18. Calculation of the biological effective dose for piecewise defined dose-rate fits

    SciTech Connect

    Hobbs, Robert F.; Sgouros, George

    2009-03-15

    An algorithmic solution to the biological effective dose (BED) calculation from the Lea-Catcheside formula for a piecewise defined function is presented. Data from patients treated for metastatic thyroid cancer were used to illustrate the solution. The Lea-Catcheside formula for the G-factor of the BED is integrated numerically using a large number of small trapezoidal fits to each integral. The algorithmically calculated BED is compatible with an analytic calculation for a similarly valued exponentially fitted dose-rate plot and is the only resolution for piecewise defined dose-rate functions.

  19. Reevaluation of the newborn thyroid dose from radioiodines

    SciTech Connect

    Hedrick, W.R.; Milavickas, L.R.

    1987-07-01

    The basis for the current thyroid absorbed dose estimates for radioiodines has been examined. The values for the newborn thyroid dose were found to underestimate the dose by a factor of 3. This underestimation of the dose was caused by the assumption that the biokinetic distribution of iodine is the same for the newborn and the adult. Increased thyroid uptake by the newborn requires that higher cumulated activities be incorporated into the dose determinations for the newborn.

  20. Radiation Dose-Volume Effects of Optic Nerves and Chiasm

    SciTech Connect

    Mayo, Charles; Martel, Mary K.; Marks, Lawrence B.; Flickinger, John; Nam, Jiho; Kirkpatrick, John

    2010-03-01

    Publications relating radiation toxicity of the optic nerves and chiasm to quantitative dose and dose-volume measures were reviewed. Few studies have adequate data for dose-volume outcome modeling. The risk of toxicity increased markedly at doses >60 Gy at {approx}1.8 Gy/fraction and at >12 Gy for single-fraction radiosurgery. The evidence is strong that radiation tolerance is increased with a reduction in the dose per fraction. Models of threshold tolerance were examined.

  1. A Process Evaluation of an Efficacious Family-Based Intervention to Promote Healthy Eating: The Entre Familia: Reflejos de Salud Study.

    PubMed

    Schmied, Emily; Parada, Humberto; Horton, Lucy; Ibarra, Leticia; Ayala, Guadalupe

    2015-10-01

    Entre Familia: Reflejos de Salud was a successful family-based randomized controlled trial designed to improve dietary behaviors and intake among U.S. Latino families, specifically fruit and vegetable intake. The novel intervention design merged a community health worker (promotora) model with an entertainment-education component. This process evaluation examined intervention implementation and assessed relationships between implementation factors and dietary change. Participants included 180 mothers randomized to an intervention condition. Process evaluation measures were obtained from participant interviews and promotora notes and included fidelity, dose delivered (i.e., minutes of promotora in-person contact with families, number of promotora home visits), and dose received (i.e., participant use of and satisfaction with intervention materials). Outcome variables included changes in vegetable intake and the use of behavioral strategies to increase dietary fiber and decrease dietary fat intake. Participant satisfaction was high, and fidelity was achieved; 87.5% of families received the planned number of promotora home visits. In the multivariable model, satisfaction with intervention materials predicted more frequent use of strategies to increase dietary fiber (p ≤ .01). Trends suggested that keeping families in the prescribed intervention timeline and obtaining support from other social network members through sharing of program materials may improve changes. Study findings elucidate the relationship between specific intervention processes and dietary changes.

  2. A Process Evaluation of an Efficacious Family-Based Intervention to Promote Healthy Eating: The Entre Familia: Reflejos de Salud Study.

    PubMed

    Schmied, Emily; Parada, Humberto; Horton, Lucy; Ibarra, Leticia; Ayala, Guadalupe

    2015-10-01

    Entre Familia: Reflejos de Salud was a successful family-based randomized controlled trial designed to improve dietary behaviors and intake among U.S. Latino families, specifically fruit and vegetable intake. The novel intervention design merged a community health worker (promotora) model with an entertainment-education component. This process evaluation examined intervention implementation and assessed relationships between implementation factors and dietary change. Participants included 180 mothers randomized to an intervention condition. Process evaluation measures were obtained from participant interviews and promotora notes and included fidelity, dose delivered (i.e., minutes of promotora in-person contact with families, number of promotora home visits), and dose received (i.e., participant use of and satisfaction with intervention materials). Outcome variables included changes in vegetable intake and the use of behavioral strategies to increase dietary fiber and decrease dietary fat intake. Participant satisfaction was high, and fidelity was achieved; 87.5% of families received the planned number of promotora home visits. In the multivariable model, satisfaction with intervention materials predicted more frequent use of strategies to increase dietary fiber (p ≤ .01). Trends suggested that keeping families in the prescribed intervention timeline and obtaining support from other social network members through sharing of program materials may improve changes. Study findings elucidate the relationship between specific intervention processes and dietary changes. PMID:25810469

  3. Warfarin maintenance dose in older patients: higher average dose and wider dose frequency distribution in patients of African ancestry than those of European ancestry.

    PubMed

    Garwood, Candice L; Clemente, Jennifer L; Ibe, George N; Kandula, Vijay A; Curtis, Kristy D; Whittaker, Peter

    2010-06-15

    Studies report that warfarin doses required to maintain therapeutic anticoagulation decrease with age; however, these studies almost exclusively enrolled patients of European ancestry. Consequently, universal application of dosing paradigms based on such evidence may be confounded because ethnicity also influences dose. Therefore, we determined if warfarin dose decreased with age in Americans of African ancestry, if older African and European ancestry patients required different doses, and if their daily dose frequency distributions differed. Our chart review examined 170 patients of African ancestry and 49 patients of European ancestry cared for in our anticoagulation clinic. We calculated the average weekly dose required for each stable, anticoagulated patient to maintain an international normalized ratio of 2.0 to 3.0, determined dose averages for groups <70, 70-79, and >80 years of age and plotted dose as a function of age. The maintenance dose in patients of African ancestry decreased with age (P<0.001). In addition, older patients of African ancestry required higher average weekly doses than patients of European ancestry: 33% higher in the 70- to 79-year-old group (38.2+/-1.9 vs. 28.8+/-1.7 mg; P=0.006) and 52% in the >80-year-old group (33.2+/-1.7 vs. 21.8+/-3.8 mg; P=0.011). Therefore, 43% of older patients of African ancestry required daily doses >5mg and hence would have been under-dosed using current starting-dose guidelines. The dose frequency distribution was wider for older patients of African ancestry compared to those of European ancestry (P<0.01). The higher doses required by older patients of African ancestry indicate that strategies for initiating warfarin therapy based on studies of patients of European ancestry could result in insufficient anticoagulation and thereby potentially increase their thromboembolism risk.

  4. Internal dose conversion factors for calculation of dose to the public

    SciTech Connect

    Not Available

    1988-07-01

    This publication contains 50-year committed dose equivalent factors, in tabular form. The document is intended to be used as the primary reference by the US Department of Energy (DOE) and its contractors for calculating radiation dose equivalents for members of the public, resulting from ingestion or inhalation of radioactive materials. Its application is intended specifically for such materials released to the environment during routine DOE operations, except in those instances where compliance with 40 CFR 61 (National Emission Standards for Hazardous Air Pollutants) requires otherwise. However, the calculated values may be equally applicable to unusual releases or to occupational exposures. The use of these committed dose equivalent tables should ensure that doses to members of the public from internal exposures are calculated in a consistent manner at all DOE facilities.

  5. Simulating total-dose and dose-rate effects on digital microelectronics timing delays using VHDL

    SciTech Connect

    Brothers, C.P. Jr.; Pugh, R.D.

    1995-12-01

    This paper describes a fast timing simulator based on Very High Speed Integrated Circuit (VHSIC) Hardware Description Language (VHDL) for simulating the timing of digital microelectronics in pre-irradiation, total dose, and dose-rate radiation environments. The goal of this research is the rapid and accurate timing simulation of radiation-hardened microelectronic circuits before, during, and after exposure to ionizing radiation. The results of this research effort were the development of VHDL compatible models capable of rapid and accurate simulation of the effect of radiation on the timing performance of microelectronic circuits. The effects of radiation for total dose at 1 Mrad(Si) and dose rates up to 2 {times} 10{sup 12} rads(Si) per second were modeled for a variety of Separation by IMplantion of OXygen (SIMOX) circuits. In all cases tested, the VHDL simulations ran at least 600 times faster than SPICE while maintaining a timing accuracy to within 15% of SPICE values.

  6. Right dose, right now: using big data to optimize antibiotic dosing in the critically ill.

    PubMed

    Elbers, Paul W G; Girbes, Armand; Malbrain, Manu L N G; Bosman, Rob

    2015-01-01

    Antibiotics save lives and are essential for the practice of intensive care medicine. Adequate antibiotic treatment is closely related to outcome. However this is challenging in the critically ill, as their pharmacokinetic profile is markedly altered. Therefore, it is surprising that critical care physicians continue to rely on standard dosing regimens for every patient, regardless of the actual clinical situation. This review outlines the pharmacokinetic and pharmacodynamic principles that underlie the need for individualized and personalized drug dosing. At present, therapeutic drug monitoring may be of help, but has major disadvantages, remains unavailable for most antibiotics and has produced mixed results. We therefore propose the AutoKinetics concept, taking decision support for antibiotic dosing back to the bedside. By direct interaction with electronic patient records, this opens the way for the use of big data for providing the right dose at the right time in each patient.

  7. Entre Dos Mundos/Between Two Worlds: Youth Violence Prevention for Acculturating Latino Families

    ERIC Educational Resources Information Center

    Smokowski, Paul R.; Bacallao, Martica

    2009-01-01

    Objective: This study evaluated the efficacy of Entre Dos Mundos/Between Two Worlds (EDM) prevention for Latino adolescents. Method: In an experimental trial to compare implementation formats, 41 Latino families were randomly assigned to EDM action-oriented skills training groups, and 47 families were randomly assigned to unstructured EDM support…

  8. Dose-effect relationships, epidemiological analysis and the derivation of low dose risk.

    PubMed

    Leenhouts, H P; Chadwick, K H

    2011-03-01

    This paper expands on our recent comments in a letter to this journal about the analysis of epidemiological studies and the determination of low dose RBE of low LET radiation (Chadwick and Leenhouts 2009 J. Radiol. Prot. 29 445-7). Using the assumption that radiation induced cancer arises from a somatic mutation (Chadwick and Leenhouts 2011 J. Radiol. Prot. 31 41-8) a model equation is derived to describe cancer induction as a function of dose. The model is described briefly, evidence is provided in support of it, and it is applied to a set of experimental animal data. The results are compared with a linear fit to the data as has often been done in epidemiological studies. The article presents arguments to support several related messages which are relevant to epidemiological analysis, the derivation of low dose risk and the weighting factor of sparsely ionising radiations. The messages are: (a) cancer incidence following acute exposure should, in principle, be fitted to a linear-quadratic curve with cell killing using all the data available; (b) the acute data are dominated by the quadratic component of dose; (c) the linear fit of any acute data will essentially be dependent on the quadratic component and will be unrelated to the effectiveness of the radiation at low doses; consequently, (d) the method used by ICRP to derive low dose risk from the atomic bomb survivor data means that it is unrelated to the effectiveness of the hard gamma radiation at low radiation doses; (e) the low dose risk value should, therefore, not be used as if it were representative for hard gamma rays to argue for an increased weighting factor for tritium and soft x-rays even though there are mechanistic reasons to expect this; (f) epidemiological studies of chronically exposed populations supported by appropriate cellular radiobiological studies have the best chance of revealing different RBE values for different sparsely ionising radiations. PMID:21346287

  9. Interaction of 2-Gy Equivalent Dose and Margin Status in Perioperative High-Dose-Rate Brachytherapy

    SciTech Connect

    Martinez-Monge, Rafael; Cambeiro, Mauricio; Moreno, Marta; Gaztanaga, Miren; San Julian, Mikel; Alcalde, Juan; Jurado, Matias

    2011-03-15

    Purpose: To determine patient, tumor, and treatment factors predictive of local control (LC) in a series of patients treated with either perioperative high-dose-rate brachytherapy (PHDRB) alone (Group 1) or with PHDRB combined with external-beam radiotherapy (EBRT) (Group 2). Patient and Methods: Patients (n = 312) enrolled in several PHDRB prospective Phase I-II studies conducted at the Clinica Universidad de Navarra were analyzed. Treatment with PHDRB alone, mainly because of prior irradiation, was used in 126 patients to total doses of 32 Gy/8 b.i.d. or 40 Gy/10 b.i.d. treatments after R0 or R1 resections. Treatment with PHDRB plus EBRT was used in 186 patients to total doses of 16 Gy/4 b.i.d. or 24 Gy/6 b.i.d. treatments after R0 or R1 resections along with 45 Gy of EBRT with or without concomitant chemotherapy. Results: No dose-margin interaction was observed in Group 1 patients. In Group 2 patients there was a significant interaction between margin status and 2-Gy equivalent (Eq2Gy) dose (p = 0.002): (1) patients with negative margins had 9-year LC of 95.7% at Eq2Gy = 62.9Gy; (2) patients with close margins of >1 mm had 9-year LC of 92.4% at Eq2Gy = 72.2Gy, and (3) patients with positive/close <1-mm margins had 9-year LC of 68.0% at Eq2Gy = 72.2Gy. Conclusions: Two-gray equivalent doses {>=}70 Gy may compensate the effect of close margins {>=}1 mm but do not counterbalance the detrimental effect of unfavorable (positive/close <1 mm) resection margins. No dose-margin interaction is observed in patients treated at lower Eq2Gy doses {<=}50 Gy with PHDRB alone.

  10. Calculation of dose, dose equivalent, and relative biological effectiveness for high charge and energy ion beams

    NASA Technical Reports Server (NTRS)

    Wilson, J. W.; Chun, S. Y.; Reginatto, M.; Hajnal, F.

    1995-01-01

    The Green's function for the transport of ions of high charge and energy is utilized with a nuclear fragmentation database to evaluate dose, dose equivalent, and RBE for C3H10T1/2 cell survival and neo-plastic transformation as function of depth in soft tissue. Such evaluations are useful to estimates of biological risk for high altitude aircraft, space operations, accelerator operations, and biomedical application.

  11. Measurement of entrance skin dose and estimation of organ dose during pediatric chest radiography.

    PubMed

    Kumaresan, M; Kumar, Rajesh; Biju, K; Choubey, Ajay; Kantharia, S

    2011-06-01

    Entrance skin dose (ESD) was measured to calculate the organ doses from the anteroposterior (AP) and posteroanterior (PA) chest x-ray projections for pediatric patients in an Indian hospital. High sensitivity tissue-equivalent thermoluminescent dosimeters (TLD, LiF: Mg, Cu, P chips) were used for measuring entrance skin dose. The respective organ doses were calculated using the Monte Carlo method (MCNP 3.1) to simulate the examination set-up and a three-dimensional mathematical phantom for representing an average 5-y-old Indian child. Using this method, conversion coefficients were derived for translating the measured ESD to organ doses. The average measured ESDs for the chest AP and PA projections were 0.305 mGy and 0.171 mGy, respectively. The average calculated organ doses in the AP and the PA projections were 0.196 and 0.086 mSv for the thyroid, 0.167 and 0.045 mSv for the trachea, 0.078 and 0.043 mSv for the lungs, 0.110 and 0.013 mSv for the liver, 0.002 and 0.016 mSv for the bone marrow, 0.024 and 0.002 mSv for the kidneys, and 0.109 and 0.023 mSv for the heart, respectively. The ESD and organ doses can be reduced significantly with the proper radiological technique. According to these results, the chest PA projection should be preferred over the AP projection in pediatric patients. The estimated organ doses for the chest AP and PA projections can be used for the estimation of the associated risk.

  12. Comparison of organ dose and dose equivalent for human phantoms of CAM vs. MAX

    NASA Astrophysics Data System (ADS)

    Kim, Myung-Hee Y.; Qualls, Garry D.; Slaba, Tony C.; Cucinotta, Francis A.

    2010-04-01

    For the evaluation of organ dose and dose equivalent of astronauts on space shuttle and the International Space Station (ISS) missions, the CAMERA models of CAM (Computerized Anatomical Male) and CAF (Computerized Anatomical Female) of human tissue shielding have been implemented and used in radiation transport model calculations at NASA. One of new human geometry models to meet the “reference person” of International Commission on Radiological Protection (ICRP) is based on detailed Voxel (volumetric and pixel) phantom models denoted for male and female as MAX (Male Adult voXel) and FAX (Female Adult voXel), respectively. We compared the CAM model predictions of organ doses to those of MAX model, since the MAX model represents the male adult body with much higher fidelity than the CAM model currently used at NASA. Directional body-shielding mass was evaluated for over 1500 target points of MAX for specified organs considered to be sensitive to the induction of stochastic effects. Radiation exposures to solar particle event (SPE), trapped protons, and galactic cosmic ray (GCR) were assessed at the specific sites in the MAX phantom by coupling space radiation transport models with the relevant body-shielding mass. The development of multiple-point body-shielding distributions at each organ made it possible to estimate the mean and variance of organ doses at the specific organ. For the estimate of doses to the blood forming organs (BFOs), data on active marrow distributions in adult were used to weight the bone marrow sites over the human body. The discrete number of target points of MAX organs resulted in a reduced organ dose and dose equivalent compared to the results of CAM organs especially for SPE, and should be further investigated. Differences of effective doses between the two approaches were found to be small (<5%) for GCR.

  13. Calculation of Dose, Dose Equivalent, and Relative Biological Effectiveness for High Charge and Energy Ion Beams

    NASA Technical Reports Server (NTRS)

    Wilson, J. W.; Reginatto, M.; Hajnal, F.; Chun, S. Y.

    1995-01-01

    The Green's function for the transport of ions of high charge and energy is utilized with a nuclear fragmentation database to evaluate dose, dose equivalent, and RBE for C3H1OT1/2 cell survival and neoplastic transformation as a function of depth in soft tissue. Such evaluations are useful to estimates of biological risk for high altitude aircraft, space operations, accelerator operations, and biomedical applications.

  14. Scoping calculation for components of the cow-milk dose pathway for evaluating the dose contribution from iodine-131. Hanford Environmental Dose Reconstruction Project: Dose code recovery activities

    SciTech Connect

    Ikenberry, T.A.; Napier, B.A.

    1992-12-01

    A series of scoping calculations have been undertaken to evaluate The absolute and relative contribution of different exposure pathways to doses that may have been received by individuals living in the vicinity of the Hanford site. This scoping calculation (Calculation 001) examined the contributions of the various exposure pathways associated with environmental transport and accumulation of iodine-131 in the pasture-cow-milk pathway. Addressed in this calculation were the contributions to thyroid dose of infants and adult from (1) the ingestion by dairy cattle of various feedstuffs (pasturage, silage, alfalfa hay, and grass hay) in four different feeding regimes; (2) ingestion of soil by dairy cattle; (3) ingestion of stared feed on which airborne iodine-131 had been deposited; and (4) inhalation of airborne iodine-131 by dairy cows.

  15. Low Dose D-penicillamine in cystinuria.

    PubMed Central

    Purkiss, P; Watts, R W

    1977-01-01

    (1) A single dose of D-penicillamine (not more than 750 mg) taken at 2200 h, together with a prescribed fluid intake of two to three litres during the waking hours, without extra drinks at night, is sufficient to keep the concentration of the urinary cystine below the saturating concentration of urine throughout the 24 h period. (2) This regime does not materially reduce the total 24 h excretion of cystine. (3) The effect of D-penicillamine is mainly seen in the urine excreted between 0200 and 0800 h. (4) This regime is provisionally recommended for the prevention of cystine stone recurrence but not for stone dissolution. Larger total amounts of D-penicillamine given in divided doses are still recommended for the latter purpose. PMID:122666

  16. Epigenomic Adaptation to Low Dose Radiation

    SciTech Connect

    Gould, Michael N.

    2015-06-30

    The overall hypothesis of this grant application is that the adaptive responses elicited by low dose ionizing radiation (LDIR) result in part from heritable DNA methylation changes in the epigenome. In the final budget period at the University of Wisconsin-Madison, we will specifically address this hypothesis by determining if the epigenetically labile, differentially methylated regions (DMRs) that regulate parental-specific expression of imprinted genes are deregulated in agouti mice by low dose radiation exposure during gestation. This information is particularly important to ascertain given the 1) increased human exposure to medical sources of radiation; 2) increased number of people predicted to live and work in space; and 3) enhanced citizen concern about radiation exposure from nuclear power plant accidents and terrorist ‘dirty bombs.’

  17. Use of Fluka to Create Dose Calculations

    NASA Technical Reports Server (NTRS)

    Lee, Kerry T.; Barzilla, Janet; Townsend, Lawrence; Brittingham, John

    2012-01-01

    Monte Carlo codes provide an effective means of modeling three dimensional radiation transport; however, their use is both time- and resource-intensive. The creation of a lookup table or parameterization from Monte Carlo simulation allows users to perform calculations with Monte Carlo results without replicating lengthy calculations. FLUKA Monte Carlo transport code was used to develop lookup tables and parameterizations for data resulting from the penetration of layers of aluminum, polyethylene, and water with areal densities ranging from 0 to 100 g/cm^2. Heavy charged ion radiation including ions from Z=1 to Z=26 and from 0.1 to 10 GeV/nucleon were simulated. Dose, dose equivalent, and fluence as a function of particle identity, energy, and scattering angle were examined at various depths. Calculations were compared against well-known results and against the results of other deterministic and Monte Carlo codes. Results will be presented.

  18. p-MOSFET total dose dosimeter

    NASA Technical Reports Server (NTRS)

    Buehler, Martin G. (Inventor); Blaes, Brent R. (Inventor)

    1994-01-01

    A p-MOSFET total dose dosimeter where the gate voltage is proportional to the incident radiation dose. It is configured in an n-WELL of a p-BODY substrate. It is operated in the saturation region which is ensured by connecting the gate to the drain. The n-well is connected to zero bias. Current flow from source to drain, rather than from peripheral leakage, is ensured by configuring the device as an edgeless MOSFET where the source completely surrounds the drain. The drain junction is the only junction not connected to zero bias. The MOSFET is connected as part of the feedback loop of an operational amplifier. The operational amplifier holds the drain current fixed at a level which minimizes temperature dependence and also fixes the drain voltage. The sensitivity to radiation is made maximum by operating the MOSFET in the OFF state during radiation soak.

  19. Dose-sensitive steroid-induced hyperglycaemia.

    PubMed

    Gannon, Craig; Dando, Nicholas

    2010-10-01

    Steroids cause significant but under-appreciated and poorly managed glucose intolerance. In this case we describe a patient with steroid-induced hyperglycaemia who obtained a large positive impact on glycaemic control from a small reduction in her steroid dose, sufficient to alleviate the need for insulin. Developments in the treatment of steroid-induced hyperglycaemia may mean that a more active approach needs to be considered when treating steroid-related diabetes in patients whose management is palliative. We advise checking for steroid-induced hyperglycaemia by testing capillary blood glucose values 2 hours after the lunchtime meal and recommend a single morning dose of long-acting insulin to treat the condition.

  20. Disruptive Event Biosphere Dose Conversion Factor Analysis

    SciTech Connect

    M. A. Wasiolek

    2003-07-21

    This analysis report, ''Disruptive Event Biosphere Dose Conversion Factor Analysis'', is one of the technical reports containing documentation of the ERMYN (Environmental Radiation Model for Yucca Mountain Nevada) biosphere model for the geologic repository at Yucca Mountain, its input parameters, and the application of the model to perform the dose assessment for the repository. The biosphere model is one of a series of process models supporting the Total System Performance Assessment (TSPA) for the Yucca Mountain repository. A graphical representation of the documentation hierarchy for the ERMYN is presented in Figure 1-1. This figure shows the interrelationships among the products (i.e., analysis and model reports) developed for biosphere modeling and provides an understanding of how this analysis report contributes to biosphere modeling. This report is one of the two reports that develop biosphere dose conversion factors (BDCFs), which are input parameters for the TSPA model. The ''Biosphere Model Report'' (BSC 2003 [DIRS 164186]) describes in detail the conceptual model as well as the mathematical model and lists its input parameters. Model input parameters are developed and described in detail in five analysis report (BSC 2003 [DIRS 160964], BSC 2003 [DIRS 160965], BSC 2003 [DIRS 160976], BSC 2003 [DIRS 161239], and BSC 2003 [DIRS 161241]). The objective of this analysis was to develop the BDCFs for the volcanic ash exposure scenario and the dose factors (DFs) for calculating inhalation doses during volcanic eruption (eruption phase of the volcanic event). The volcanic ash exposure scenario is hereafter referred to as the volcanic ash scenario. For the volcanic ash scenario, the mode of radionuclide release into the biosphere is a volcanic eruption through the repository with the resulting entrainment of contaminated waste in the tephra and the subsequent atmospheric transport and dispersion of contaminated material in the biosphere. The biosphere process

  1. Culmination of Low-Dose Pesticide Effects

    PubMed Central

    2013-01-01

    Pesticides applied in agriculture can affect the structure and function of nontarget populations at lower doses and for longer timespans than predicted by the current risk assessment frameworks. We identified a mechanism for this observation. The populations of an aquatic invertebrate (Culex pipiens) exposed over several generations to repeated pulses of low concentrations of the neonicotinoid insecticide (thiacloprid) continuously declined and did not recover in the presence of a less sensitive competing species (Daphnia magna). By contrast, in the absence of a competitor, insecticide effects on the more sensitive species were only observed at concentrations 1 order of magnitude higher, and the species recovered more rapidly after a contamination event. The underlying processes are experimentally identified and reconstructed using a simulation model. We conclude that repeated toxicant pulse of populations that are challenged with interspecific competition may result in a multigenerational culmination of low-dose effects. PMID:23859631

  2. Total Monte Carlo evaluation for dose calculations.

    PubMed

    Sjöstrand, H; Alhassan, E; Conroy, S; Duan, J; Hellesen, C; Pomp, S; Österlund, M; Koning, A; Rochman, D

    2014-10-01

    Total Monte Carlo (TMC) is a method to propagate nuclear data (ND) uncertainties in transport codes, by using a large set of ND files, which covers the ND uncertainty. The transport code is run multiple times, each time with a unique ND file, and the result is a distribution of the investigated parameter, e.g. dose, where the width of the distribution is interpreted as the uncertainty due to ND. Until recently, this was computer intensive, but with a new development, fast TMC, more applications are accessible. The aim of this work is to test the fast TMC methodology on a dosimetry application and to propagate the (56)Fe uncertainties on the predictions of the dose outside a proposed 14-MeV neutron facility. The uncertainty was found to be 4.2 %. This can be considered small; however, this cannot be generalised to all dosimetry applications and so ND uncertainties should routinely be included in most dosimetry modelling.

  3. Dose reduction in paediatric MDCT: general principles.

    PubMed

    Paterson, A; Frush, D P

    2007-06-01

    The number of multi-detector array computed tomography (MDCT) examinations performed per annum continues to increase in both the adult and paediatric populations. Estimates from 2003 suggested that CT contributed 17% of a radiology department's workload, yet was responsible for up to 75% of the collective population dose from medical radiation. The effective doses for some CT examinations today overlap with those argued to have an increased risk of cancer. This is especially pertinent for paediatric CT, as children are more radiosensitive than adults (and girls more radiosensitive than boys). In addition, children have a longer life ahead of them, in which radiation induced cancers may become manifest. Radiologists must be aware of these facts and practise the ALARA (as low as is reasonably achievable) principle, when it comes to deciding CT protocols and parameters. PMID:17467387

  4. Thyroid dose distribution in dental radiography

    SciTech Connect

    Bristow, R.G.; Wood, R.E.; Clark, G.M. )

    1989-10-01

    The anatomic position and proven radiosensitivity of the thyroid gland make it an organ of concern in dental radiography. A calibrated thermoluminescent dosimetry system was used to investigate the absorbed dose (microGy) to the thyroid gland resultant from a minimum irradiated volume, intraoral full-mouth radiography technique with the use of rectangular collimation with a lead-backed image receptor, and conventional panoramic radiography performed with front and rear lead aprons. Use of the minimum irradiated volume technique resulted in a significantly decreased absorbed dose over the entire thyroid region ranging from 100% to 350% (p less than 0.05). Because this intraoral technique results in radiographs with greater image quality and also exposes the thyroid gland to less radiation than the panoramic, this technique may be an alternative to the panoramic procedure.

  5. Hanford environmental dose reconstruction project: Monthly report

    SciTech Connect

    Dennis, B.S.

    1989-04-01

    The objective of the Hanford Environmental Dose Reconstruction Project is to estimate the radiation doses that populations could have received from nuclear operations at Hanford since 1944. The project is being managed and conducted by Pacific Northwest Laboratory under the direction of an independent Technical Steering Panel. During the reporting period, we continued revision of Work Plan to reflect phased approach, began incorporating comments from TSP Source Terms Subcommittee into a draft report, continued internal PNL clearance of a draft report, began preparing information to be presented at the May TSP meeting on the Columbia River (between Priest Rapids Dam and McNary Dam), completed a draft report summarizing the approach selected for atmospheric modeling, continued developing data bases on meteorological and numerical data, and met with representatives of the Colville, Spokane, Yakima, and Nez Perce tribes to discuss contracts, data collection, proposal revisions, and other aspects of the HEDR Project.

  6. Floating patterns of metered dose inhalers.

    PubMed

    Wolf, B L; Cochran, K R

    1997-01-01

    As long as metered dose inhalers have existed, patients have sought a reliable method to determine if a given canister was still potent. Concerning beta agonists, the answer to this question may be lifesaving. Issues of compliance have made dating canisters or counting doses impractical. Likewise, previous claims of floating characteristics are unreliable. In tap water, we float-tested 13 commonly used inhalers three times each, observing variations as they were incrementally actuated, emptying their contents. One essential pattern was observed. Almost all prescription-size canisters sink when full; all float by the time one-third of their contents is gone. Orientation of prescription-size canisters changes in a distinct pattern especially near 90% depletion. Sample-size canisters showed some variance. Results suggest that the pharmaceutical industry should include individual floating characteristics as part of the package insert as they provide a reproducible means of gauging contents.

  7. Biological equivalent dose studies for dose escalation in the stereotactic synchrotron radiation therapy clinical trials

    SciTech Connect

    Prezado, Y.; Fois, G.; Edouard, M.; Nemoz, C.; Renier, M.; Requardt, H.; Esteve, F.; Adam, JF.; Elleaume, H.; Bravin, A.

    2009-03-15

    Synchrotron radiation is an innovative tool for the treatment of brain tumors. In the stereotactic synchrotron radiation therapy (SSRT) technique a radiation dose enhancement specific to the tumor is obtained. The tumor is loaded with a high atomic number (Z) element and it is irradiated in stereotactic conditions from several entrance angles. The aim of this work was to assess dosimetric properties of the SSRT for preparing clinical trials at the European Synchrotron Radiation Facility (ESRF). To estimate the possible risks, the doses received by the tumor and healthy tissues in the future clinical conditions have been calculated by using Monte Carlo simulations (PENELOPE code). The dose enhancement factors have been determined for different iodine concentrations in the tumor, several tumor positions, tumor sizes, and different beam sizes. A scheme for the dose escalation in the various phases of the clinical trials has been proposed. The biological equivalent doses and the normalized total doses received by the skull have been calculated in order to assure that the tolerance values are not reached.

  8. Solar particle event organ doses and dose equivalents for interplanetary crews: variations due to body size

    NASA Technical Reports Server (NTRS)

    Zapp, E. N.; Townsend, L. W.; Cucinotta, F. A.

    2002-01-01

    Proper assessments of spacecraft shielding requirements and concomitant estimates of risk to critical body organs of spacecraft crews from energetic space radiation require accurate, quantitative methods of characterizing the compositional changes in these radiation fields as they pass through the spacecraft and overlying tissue. When estimating astronaut radiation organ doses and dose equivalents it is customary to use the Computerized Anatomical Man (CAM) model of human geometry to account for body self-shielding. Usually, the distribution for the 50th percentile man (175 cm height; 70 kg mass) is used. Most male members of the U.S. astronaut corps are taller and nearly all have heights that deviate from the 175 cm mean. In this work, estimates of critical organ doses and dose equivalents for interplanetary crews exposed to an event similar to the October 1989 solar particle event are presented for male body sizes that vary from the 5th to the 95th percentiles. Overall the results suggest that calculations of organ dose and dose equivalent may vary by as much as approximately 15% as body size is varied from the 5th to the 95th percentile in the population used to derive the CAM model data. c2002 Published by Elsevier Science Ltd on behalf of COSPAR.

  9. Dose convolution filter: Incorporating spatial dose information into tissue response modeling

    SciTech Connect

    Huang Yimei; Joiner, Michael; Zhao Bo; Liao Yixiang; Burmeister, Jay

    2010-03-15

    Purpose: A model is introduced to integrate biological factors such as cell migration and bystander effects into physical dose distributions, and to incorporate spatial dose information in plan analysis and optimization. Methods: The model consists of a dose convolution filter (DCF) with single parameter {sigma}. Tissue response is calculated by an existing NTCP model with DCF-applied dose distribution as input. The authors determined {sigma} of rat spinal cord from published data. The authors also simulated the GRID technique, in which an open field is collimated into many pencil beams. Results: After applying the DCF, the NTCP model successfully fits the rat spinal cord data with a predicted value of {sigma}=2.6{+-}0.5 mm, consistent with 2 mm migration distances of remyelinating cells. Moreover, it enables the appropriate prediction of a high relative seriality for spinal cord. The model also predicts the sparing of normal tissues by the GRID technique when the size of each pencil beam becomes comparable to {sigma}. Conclusions: The DCF model incorporates spatial dose information and offers an improved way to estimate tissue response from complex radiotherapy dose distributions. It does not alter the prediction of tissue response in large homogenous fields, but successfully predicts increased tissue tolerance in small or highly nonuniform fields.

  10. Nominal Performance Biosphere Dose Conversion Factor Analysis

    SciTech Connect

    Wasiolek, Maryla A.

    2000-12-21

    The purpose of this report was to document the process leading to development of the Biosphere Dose Conversion Factors (BDCFs) for the postclosure nominal performance of the potential repository at Yucca Mountain. BDCF calculations concerned twenty-four radionuclides. This selection included sixteen radionuclides that may be significant nominal performance dose contributors during the compliance period of up to 10,000 years, five additional radionuclides of importance for up to 1 million years postclosure, and three relatively short-lived radionuclides important for the human intrusion scenario. Consideration of radionuclide buildup in soil caused by previous irrigation with contaminated groundwater was taken into account in the BDCF development. The effect of climate evolution, from the current arid conditions to a wetter and cooler climate, on the BDCF values was evaluated. The analysis included consideration of different exposure pathway's contribution to the BDCFs. Calculations of nominal performance BDCFs used the GENII-S computer code in a series of probabilistic realizations to propagate the uncertainties of input parameters into the output. BDCFs for the nominal performance, when combined with the concentrations of radionuclides in groundwater allow calculation of potential radiation doses to the receptor of interest. Calculated estimates of radionuclide concentration in groundwater result from the saturated zone modeling. The integration of the biosphere modeling results (BDCFs) with the outcomes of the other component models is accomplished in the Total System Performance Assessment (TSPA) to calculate doses to the receptor of interest from radionuclides postulated to be released to the environment from the potential repository at Yucca Mountain.

  11. Dose level of occupational exposure in China.

    PubMed

    Tian, Yuan; Zhang, Liang'an; Ju, Yongjian

    2008-01-01

    This paper discusses the dose level of Chinese occupational exposures during 1986-2000. Data on occupational exposures from the main categories in nuclear fuel cycle (uranium enrichment and conversion, fuel fabrication, reactor operation, waste management and research activity, except for uranium mining and milling because of the lack of data), medical uses of radiation (diagnostic radiation, nuclear medicine and radiotherapy) and industrial uses of radiation (industrial radiography and radioisotope production) are presented and summarised in detail. These are the main components of occupational exposures in China. In general, the average annual effective doses show a steady decreasing trend over periods: from 2.16 to 1.16 mSv in medical uses of radiation during 1990-2000; from 1.92 to 1.18 mSv in industrial radiography during 1990-2000; from 8.79 to 2.05 mSv in radioisotope production during the period 1980-2000. Almost all the average annual effective doses in discussed occupations were lower than 5 mSv in recent years (except for well-logging: 6.86 mSv in 1999) and no monitored workers were found to have received the occupational exposure exceeding 50 mSv in a single year or 100 mSv in a five-year period. So the Chinese protection status of occupation exposure has been improved in recent years. However, the average annual effective doses in some occupations, such as diagnostic radiology and coal mining, were still much higher than that of the whole world. There are still needs for further improvement and careful monitoring of occupational exposure to protect every worker from excessive occupational exposure, especially for the workers who were neglected before.

  12. Cue-dose Training with Monetary Reinforcement

    PubMed Central

    Rigsby, Michael O; Rosen, Marc I; Beauvais, John E; Cramer, Joyce A; Rainey, Petrie M; O'Malley, Stephanie S; Dieckhaus, Kevin D; Rounsaville, Bruce J

    2000-01-01

    OBJECTIVE To assess the feasibility and efficacy of two interventions for improving adherence to antiretroviral therapy regimens in HIV-infected subjects compared with a control intervention. DESIGN Randomized, controlled, pilot study. SETTING Department of Veterans Affairs HIV clinic and community-based HIV clinical trials site. PARTICIPANTS Fifty-five HIV-infected subjects on stable antiretroviral therapy regimens. Subjects were predominantly male (89%) and African American (69%), and had histories of heroin or cocaine use (80%). INTERVENTIONS Four weekly sessions of either nondirective inquiries about adherence (control group, C), cue-dose training, which consisted of the use of personalized cues for remembering particular dose times, and feedback about medication taking using Medication Event Monitoring System (MEMS) pill bottle caps, which record time of bottle opening (CD group), or cue-dose training combined with cash reinforcement for correctly timed bottle opening (CD+CR). MEASUREMENTS Opening of the pill bottle within 2 hours before or after a predetermined time was measured by MEMS. RESULTS Adherence to the medication as documented by MEMS was significantly enhanced during the 4-week training period in the CD+CR group, but not in the CD group, compared with the control group. Improvement was also seen in adherence to antiretroviral drugs that were not the object of training and reinforcement. Eight weeks after training and reinforcement were discontinued, adherence in the cash-reinforced group returned to near-baseline levels. CONCLUSIONS Cue-dose training with cash reinforcement led to transient improvement in adherence to antiretroviral therapy in a population including mostly African Americans and subjects with histories of drug abuse. However, we were not able to detect any sustained improvement beyond the active training period, and questions concerning the timing and duration of such an intervention require further study. Randomized, controlled

  13. Ultraviolet radiation therapy and UVR dose models

    SciTech Connect

    Grimes, David Robert

    2015-01-15

    Ultraviolet radiation (UVR) has been an effective treatment for a number of chronic skin disorders, and its ability to alleviate these conditions has been well documented. Although nonionizing, exposure to ultraviolet (UV) radiation is still damaging to deoxyribonucleic acid integrity, and has a number of unpleasant side effects ranging from erythema (sunburn) to carcinogenesis. As the conditions treated with this therapy tend to be chronic, exposures are repeated and can be high, increasing the lifetime probability of an adverse event or mutagenic effect. Despite the potential detrimental effects, quantitative ultraviolet dosimetry for phototherapy is an underdeveloped area and better dosimetry would allow clinicians to maximize biological effect whilst minimizing the repercussions of overexposure. This review gives a history and insight into the current state of UVR phototherapy, including an overview of biological effects of UVR, a discussion of UVR production, illness treated by this modality, cabin design and the clinical implementation of phototherapy, as well as clinical dose estimation techniques. Several dose models for ultraviolet phototherapy are also examined, and the need for an accurate computational dose estimation method in ultraviolet phototherapy is discussed.

  14. Dose reduction in molecular breast imaging

    NASA Astrophysics Data System (ADS)

    Wagenaar, Douglas J.; Chowdhury, Samir; Hugg, James W.; Moats, Rex A.; Patt, Bradley E.

    2011-10-01

    Molecular Breast Imaging (MBI) is the imaging of radiolabeled drugs, cells, or nanoparticles for breast cancer detection, diagnosis, and treatment. Screening of broad populations of women for breast cancer with mammography has been augmented by the emergence of breast MRI in screening of women at high risk for breast cancer. Screening MBI may benefit the sub-population of women with dense breast tissue that obscures small tumors in mammography. Dedicated breast imaging equipment is necessary to enable detection of early-stage tumors less than 1 cm in size. Recent progress in the development of these instruments is reviewed. Pixellated CZT for single photon MBI imaging of 99mTc-sestamibi gives high detection sensitivity for early-stage tumors. The use of registered collimators in a near-field geometry gives significantly higher detection efficiency - a factor of 3.6-, which translates into an equivalent dose reduction factor given the same acquisition time. The radiation dose in the current MBI procedure has been reduced to the level of a four-view digital mammography study. In addition to screening of selected sub-populations, reduced MBI dose allows for dual-isotope, treatment planning, and repeated therapy assessment studies in the era of molecular medicine guided by quantitative molecular imaging.

  15. Preliminary total dose measurements on LDEF.

    PubMed

    Reitz, G

    1992-01-01

    After spending nearly six years in Earth orbit twenty stacks consisting of radiation detectors and biological objects are now back on Earth. These stacks (Experiment A0015 Free Flyer Biostack) are part of the fifty seven science and technology experiments of the Long Duration Exposure Facility (LDEF) of NASA. The major objectives of the Free Flyer Biostack experiments are to investigate the biological effectiveness of single heavy ions of the cosmic radiation in various biological systems and to provide information about the spectral composition of the radiation field and the total dose received in the LDEF orbit. The Biostacks are mounted in two different locations of the LDEF. Up to three layers of Lithium fluoride thermoluminescence dosimeters (TLD) of different isotopic composition were located at different depths of some Biostacks. The preliminary analysis of the TLD yields maximum absorbed dose rates of 2.24 mGy day-1 behind 0.7 g cm-2 shielding and 1.17 mGy day-1 behind 12 g cm-2 shielding. A thermal neutron fluence of 1.7 n cm-2 s-1 is determined from the differences in absorbed dose for different isotopic mixtures of Lithium. The results of this experiment on LDEF are especially valuable and of high importance since LDEF stayed for about six years in the prospected orbit of the Space Station Freedom. There is no knowledge about the effectiveness of the space radiation in long-term spaceflights and the dosimetric data in this orbit are scarce.

  16. Dose to lung from inhaled tritiated particles.

    PubMed

    Richardson, R B; Hong, A

    2001-09-01

    Tritiated particulate materials are of potential hazard in fission, fusion, and other tritium handling facilities. The absorbed fractions (fraction of energy emitted that is absorbed by the target region) are calculated for tritiated particles deposited in the alveolar-interstitial (AI) region of the respiratory tract. The energy absorbed by radiologically sensitive tissue irradiated by tritiated particles, in regions of the lung other than in the AI region, is negligible. The ICRP Publication 71 assumes the absorbed fraction is unity for tritium deposited in the AI region. We employed Monte Carlo methods in a model to evaluate the energy deposition in the wall of the alveolar sac from particles of tritiated beryllium, tritiated graphite, titanium tritide, tritiated iron hydroxide and zirconium tritide. For the five materials examined, the absorbed fraction in alveolar tissue ranged from 0.31 to 0.61 for particles of 1 microm physical diameter and 0.07 to 0.21 for 5 microm diameter particles. The dose to alveolar tissue, for an acute inhalation of tritiated particles by an adult male worker, was calculated based on the ICRP 66 lung model and the particle dissolution model of Mercer (1967). For particles of 5 microm activity median aerodynamic diameter (AMAD), the committed equivalent dose to alveolar tissue, calculated for the five materials, ranged from 32-42%, respectively, of the committed equivalent dose derived assuming the absorbed fractions were unity. PMID:11513464

  17. Obstetric Pharmacokinetic Dosing Studies are Urgently Needed

    PubMed Central

    McCormack, Shelley A.; Best, Brookie M.

    2014-01-01

    Use of pharmacotherapy during pregnancy is common and increasing. Physiologic changes during pregnancy may significantly alter the overall systemic drug exposure, necessitating dose changes. A search of PubMed for pharmacokinetic clinical trials showed 494 publications during pregnancy out of 35,921 total pharmacokinetic published studies (1.29%), from the late 1960s through August 31, 2013. Closer examination of pharmacokinetic studies in pregnant women published since 2008 (81 studies) revealed that about a third of the trials were for treatment of acute labor and delivery issues, a third included studies of infectious disease treatment during pregnancy, and the remaining third were for varied ante-partum indications. Approximately, two-thirds of these recent studies were primarily funded by government agencies worldwide, one-quarter were supported by private non-profit foundations or combinations of government and private funding, and slightly <10% were supported by pharmaceutical industry. As highlighted in this review, vast gaps exist in pharmacology information and evidence for appropriate dosing of medications in pregnant women. This lack of knowledge and understanding of drug disposition throughout pregnancy place both the mother and the fetus at risk for avoidable therapeutic misadventures – suboptimal efficacy or excess toxicity – with medication use in pregnancy. Increased efforts to perform and support obstetric dosing and pharmacokinetic studies are greatly needed. PMID:24575394

  18. PDT Dose Dosimeter for Pleural Photodynamic Therapy

    PubMed Central

    Kim, Michele M.; Darafsheh, Arash; Ahmad, Mahmoud; Finlay, Jarod C.; Zhu, Timothy C.

    2016-01-01

    PDT dose is the product of the photosensitizer concentration and the light fluence in the target tissue. For improved dosimetry during plural photodynamic therapy (PDT), a PDT dose dosimeter was developed to measure both the light fluence and the photosensitizer concentration simultaneously in the same treatment location. Light fluence and spectral data were rigorously compared to other methods of measurement (e.g. photodiode, multi-fiber spectroscopy contact probe) to assess the accuracy of the measurements as well as their uncertainty. Photosensitizer concentration was obtained by measuring the fluorescence of the sensitizer excited by the treatment light. Fluence rate based on the intensity of the laser spectrum was compared to the data obtained by direct measurement of fluence rate by a fiber-coupled photodiode. Phantom studies were done to obtain an optical property correction for the fluorescence signal. Measurements were performed in patients treated Photofrin for different locations in the pleural cavity. Multiple sites were measured to investigate the heterogeneity of the cavity and to provide cross-validation via relative dosimetry. This novel method will allow for accurate real-time determination of delivered PDT dose and improved PDT dosimetry. PMID:27053825

  19. Antibiotic dose optimization in critically ill patients.

    PubMed

    Cotta, M O; Roberts, J A; Lipman, J

    2015-12-01

    The judicious use of existing antibiotics is essential for preserving their activity against infections. In the era of multi-drug resistance, this is of particular importance in clinical areas characterized by high antibiotic use, such as the ICU. Antibiotic dose optimization in critically ill patients requires sound knowledge not only of the altered physiology in serious infections - including severe sepsis, septic shock and ventilator-associated pneumonia - but also of the pathogen-drug exposure relationship (i.e. pharmacokinetic/pharmacodynamic index). An important consideration is the fact that extreme shifts in organ function, such as those seen in hyperdynamic patients or those with multiple organ dysfunction syndrome, can have an impact upon drug exposure, and constant vigilance is required when reviewing antibiotic dosing regimens in the critically ill. The use of continuous renal replacement therapy and extracorporeal membrane oxygenation remain important interventions in these patients; however, both of these treatments can have a profound effect on antibiotic exposure. We suggest placing emphasis on the use of therapeutic drug monitoring and dose individualization when optimizing therapy in these settings.

  20. Assessment of dose during an SGTR

    SciTech Connect

    Adams, J.P.

    1993-01-01

    The Nuclear Regulatory Commission requires utilities to determine the response of a pressurized water reactor to a steam generator tube rupture (SGTR) as part of the safety analysis for the plant. The SGTR analysis includes assumptions regarding the iodine concentration in the reactor coolant system (RCS) due to iodine spikes, primary flashing and bypass fractions, and iodine partitioning in the secondary coolant system (SCS). Experimental and analytical investigations have recently been completed wherein these assumptions were tested to determine whether and to what degree they were conservative (that is, whether they result in a calculated iodine source term/dose that is at least as large or larger than that expected during an actual event). The current study has the objective to assess the overall effects of the results of these investigations on the calculated iodine dose to the environment during an SGTR. To assist in this study, a computer program, DOSE, was written. This program uses a simple, non-mechanistic model to calculate the iodine source term to the environment during an SGTR as a function of water mass inventories and flow rates and iodine concentrations in the RCS and SCS. The principal conclusion of this study is that the iodine concentration in the RCS is the dominant parameter, due to the dominance of primary flashing on the iodine source term.

  1. Multigroup neutron dose calculations for proton therapy

    SciTech Connect

    Kelsey Iv, Charles T; Prinja, Anil K

    2009-01-01

    We have developed tools for the preparation of coupled multigroup proton/neutron cross section libraries. Our method is to use NJOY to process evaluated nuclear data files for incident particles below 150 MeV and MCNPX to produce data for higher energies. We modified the XSEX3 program of the MCNPX code system to produce Legendre expansions of scattering matrices generated by sampling the physics models that are comparable to the output of the GROUPR routine of NJOY. Our code combines the low and high energy scattering data with user input stopping powers and energy deposition cross sections that we also calculated using MCNPX. Our code also calculates momentum transfer coefficients for the library and optionally applies an energy straggling model to the scattering cross sections and stopping powers. The motivation was initially for deterministic solution of space radiation shielding calculations using Attila, but noting that proton therapy treatment planning may neglect secondary neutron dose assessments because of difficulty and expense, we have also investigated the feasibility of multi group methods for this application. We have shown that multigroup MCNPX solutions for secondary neutron dose compare well with continuous energy solutions and are obtainable with less than half computational cost. This efficiency comparison neglects the cost of preparing the library data, but this becomes negligible when distributed over many multi group calculations. Our deterministic calculations illustrate recognized obstacles that may have to be overcome before discrete ordinates methods can be efficient alternatives for proton therapy neutron dose calculations.

  2. Phage therapy pharmacology: calculating phage dosing.

    PubMed

    Abedon, Stephen

    2011-01-01

    Phage therapy, which can be described as a phage-mediated biocontrol of bacteria (or, simply, biocontrol), is the application of bacterial viruses-also bacteriophages or phages-to reduce densities of nuisance or pathogenic bacteria. Predictive calculations for phage therapy dosing should be useful toward rational development of therapeutic as well as biocontrol products. Here, I consider the theoretical basis of a number of concepts relevant to phage dosing for phage therapy including minimum inhibitory concentration (but also "inundation threshold"), minimum bactericidal concentration (but also "clearance threshold"), decimal reduction time (D value), time until bacterial eradication, threshold bacterial density necessary to support phage population growth ("proliferation threshold"), and bacterial density supporting half-maximal phage population growth rates (K(B)). I also address the concepts of phage killing titers, multiplicity of infection, and phage peak densities. Though many of the presented ideas are not unique to this chapter, I nonetheless provide variations on derivations and resulting formulae, plus as appropriate discuss relative importance. The overriding goal is to present a variety of calculations that are useful toward phage therapy dosing so that they may be found in one location and presented in a manner that allows facile appreciation, comparison, and implementation. The importance of phage density as a key determinant of the phage potential to eradicate bacterial targets is stressed throughout the chapter. PMID:22050820

  3. Dose masking feature for BNCT radiotherapy planning

    DOEpatents

    Cook, Jeremy L.; Wessol, Daniel E.; Wheeler, Floyd J.

    2000-01-01

    A system for displaying an accurate model of isodoses to be used in radiotherapy so that appropriate planning can be performed prior to actual treatment on a patient. The nature of the simulation of the radiotherapy planning for BNCT and Fast Neutron Therapy, etc., requires that the doses be computed in the entire volume. The "entire volume" includes the patient and beam geometries as well as the air spaces in between. Isodoses derived from the computed doses will therefore extend into the air regions between the patient and beam geometries and thus depict the unrealistic possibility that radiation deposition occurs in regions containing no physical media. This problem is solved by computing the doses for the entire geometry and then masking the physical and air regions along with the isodose contours superimposed over the patient image at the corresponding plane. The user is thus able to mask out (remove) the contour lines from the unwanted areas of the image by selecting the appropriate contour masking region from the raster image.

  4. Radioactive materials in biosolids : dose modeling.

    SciTech Connect

    Wolbarst, A. B.; Chiu, W. A; Yu, C.; Aiello, K.; Bachmaier, J. T.; Bastian, R. K.; Cheng, J. -J.; Goodman, J.; Hogan, R.; Jones, A. R.; Kamboj, S.; Lenhartt, T.; Ott, W. R.; Rubin, A.; Salomon, S. N.; Schmidt, D. W.; Setlow, L. W.; Environmental Science Division; U.S. EPA; Middlesex County Utilities Authority; U.S. DOE; U.S. NRC; NE Ohio Regional Sewer District

    2006-01-01

    The Interagency Steering Committee on Radiation Standards (ISCORS) has recently completed a study of the occurrence within the United States of radioactive materials in sewage sludge and sewage incineration ash. One component of that effort was an examination of the possible transport of radioactivity from sludge into the local environment and the subsequent exposure of humans. A stochastic environmental pathway model was applied separately to seven hypothetical, generic sludge-release scenarios, leading to the creation of seven tables of Dose-to-Source Ratios (DSR), which can be used in translating from specific activity in sludge into dose to an individual. These DSR values were then combined with the results of an ISCORS survey of sludge and ash at more than 300 publicly owned treatment works, to explore the potential for radiation exposure of sludge workers and members of the public. This paper provides a brief overview of the pathway modeling methodology employed in the exposure and dose assessments and discusses technical aspects of the results obtained.

  5. PDT dose dosimeter for pleural photodynamic therapy

    NASA Astrophysics Data System (ADS)

    Kim, Michele M.; Darafsheh, Arash; Ahmad, Mahmoud; Finlay, Jarod C.; Zhu, Timothy C.

    2016-03-01

    PDT dose is the product of the photosensitizer concentration and the light fluence in the target tissue. For improved dosimetry during plural photodynamic therapy (PDT), a PDT dose dosimeter was developed to measure both the light fluence and the photosensitizer concentration simultaneously in the same treatment location. Light fluence and spectral data were rigorously compared to other methods of measurement (e.g. photodiode, multi-fiber spectroscopy contact probe) to assess the accuracy of the measurements as well as their uncertainty. Photosensitizer concentration was obtained by measuring the fluorescence of the sensitizer excited by the treatment light. Fluence rate based on the intensity of the laser spectrum was compared to the data obtained by direct measurement of fluence rate by a fiber-coupled photodiode. Phantom studies were done to obtain an optical property correction for the fluorescence signal. Measurements were performed in patients treated Photofrin for different locations in the pleural cavity. Multiple sites were measured to investigate the heterogeneity of the cavity and to provide cross-validation via relative dosimetry. This novel method will allow for accurate real-time determination of delivered PDT dose and improved PDT dosimetry.

  6. An absorbed dose calorimeter for IMRT dosimetry

    NASA Astrophysics Data System (ADS)

    Duane, S.; Aldehaybes, M.; Bailey, M.; Lee, N. D.; Thomas, C. G.; Palmans, H.

    2012-10-01

    A new calorimeter for dosimetry in small and complex fields has been built. The device is intended for the direct determination of absorbed dose to water in moderately small fields and in composite fields such as IMRT treatments, and as a transfer instrument calibrated against existing absorbed dose standards in conventional reference conditions. The geometry, materials and mode of operation have been chosen to minimize detector perturbations when used in a water phantom, to give a reasonably isotropic response and to minimize the effects of heat transfer when the calorimeter is used in non-reference conditions in a water phantom. The size of the core is meant to meet the needs of measurement in IMRT treatments and is comparable to the size of the air cavity in a type NE2611 ionization chamber. The calorimeter may also be used for small field dosimetry. Initial measurements in reference conditions and in an IMRT head and neck plan, collapsed to gantry angle zero, have been made to estimate the thermal characteristics of the device, and to assess its performance in use. The standard deviation (estimated repeatability) of the reference absorbed dose measurements was 0.02 Gy (0.6%).

  7. Hanford Environmental Dose Reconstruction Project Monthly Report

    SciTech Connect

    Dennis, B.S.

    1989-08-01

    This monthly report summarizes the technical progress and project status for the Hanford Environmental Dose Reconstruction (HEDR) Project being conducted at Pacific Northwest Laboratory (PNL) under the direction of a Technical Steering Panel (TSP). The TSP is composed of experts in numerous technical fields related to this project and represents the interests of the public. The US Department of Energy (DOE) funds the project. The project is divided into the following technical tasks. These tasks address each of the primary steps in the path from radioactive releases to dose estimates: source terms; environmental transport; environmental monitoring data; demographics, agriculture, and food habits; and environmental pathways and dose estimates. The source terms task will develop estimates of radioactive emissions from Hanford facilities since 1944. These estimates will be based on historical measurements and production information. The environmental transport task will reconstruct the movement of radioactive materials from the areas of release to populations. Movement via the atmosphere, surface water (Columbia River), and ground water will be studied. The environmental monitoring task will assemble, evaluate, and report historical environmental monitoring data. A major effort of this task is to separate Hanford as a source of radionuclide concentrations in the environment from concentrations due to natural sources and nuclear testing fallout.

  8. Dose assessment of aircrew using passive detectors.

    PubMed

    Hajek, M; Berger, T; Schöner, W; Summerer, L; Vana, N

    2002-01-01

    Radiation exposure of aircrew is a serious concern which has been given special emphasis in the European Council directive 96/29/Euratom. The cosmic ray induced neutron component can contribute more than 50% to the biologically relevant dose at aviation altitudes. Various computational approaches to route dose assessment, e.g. CARI, are in use nowadays and are compared with experimental data. Measurements of aircrew exposure usually involve extensive instrumentation in order to cover the whole particle spectrum and energy range present inside aircraft. Due to their small size and easy handling, thermoluminescence dosemeters represent an appropriate alternative. Previous measurements onboard aircraft applying the high-temperature ratio method with LiF:Mg,Ti dosemeters for the determination of an 'averaged' linear energy transfer of mixed radiation fields demonstrate the ability of this method to evaluate the dose equivalent, according to the Q(LETinfinity) relationship proposed by the ICRP. Measurements with CaF2:Tm dosemeters are currently in progress and are discussed here.

  9. Evaluation of MatriXX for IMRT and VMAT dose verifications in peripheral dose regions

    SciTech Connect

    Han Zhaohui; Ng, Sook Kien; Bhagwat, Mandar S.; Lyatskaya, Yulia; Zygmanski, Piotr

    2010-07-15

    Purpose: MatriXX is a two-dimensional ion chamber array designed for IMRT/VMAT (RapidArc, IMAT, etc.) dose verifications. Its dosimetric properties have been characterized for megavoltage beams in a number of studies; however, to the best of the authors' knowledge, there is still a lack of an investigation into its performance in the peripheral or low dose regions. In this work, the authors have carried out a systematic study on this issue. Methods: The authors compare the performance of MatriXX with a cylindrical ion chamber in solid water phantoms in the peripheral dose regions. The comparisons are performed for a number of typical irradiation conditions that involve different gantry and/or MLC motions, field sizes, and distances to the target including static gantry/open fields, static gantry/sweeping MLC gap (mimicking an IMRT delivery), dynamic gantry/oscillating sweeping MLC gap (mimicking a VMAT delivery), as well as clinical IMRT and VMAT plans. Results: MatriXX, when used according to the manufacturer's recommendations, is found to disagree with an ion chamber in peripheral dose regions. This disagreement has been attributed to four types of MatriXX errors, namely, positive bias, over-response to scattered doses, round-off error, and angular dependence, all of which contribute to dose inaccuracies in the peripheral regions. The positive bias, which is independent of the dose level, is cumulative when MatriXX operates in the movie mode. The accumulation is proportional to the number of movie frames (snaps) when the sampling time is greater than 500 ms and is proportional to the overall movie time for a sampling time shorter than 500 ms. This behavior suggests multiple sources of the bias. MatriXX is also found to over-respond to peripheral doses by about 2.0% for the regions investigated in this work (3-15 cm from the field edge), where phantom scatter and collimator scatter dominate. Round-off error is determined to be due to insufficient precision in

  10. Assessment of out-of-field absorbed dose and equivalent dose in proton fields

    SciTech Connect

    Clasie, Ben; Wroe, Andrew; Kooy, Hanne; Depauw, Nicolas; Flanz, Jay; Paganetti, Harald; Rosenfeld, Anatoly

    2010-01-15

    Purpose: In proton therapy, as in other forms of radiation therapy, scattered and secondary particles produce undesired dose outside the target volume that may increase the risk of radiation-induced secondary cancer and interact with electronic devices in the treatment room. The authors implement a Monte Carlo model of this dose deposited outside passively scattered fields and compare it to measurements, determine the out-of-field equivalent dose, and estimate the change in the dose if the same target volumes were treated with an active beam scanning technique. Methods: Measurements are done with a thimble ionization chamber and the Wellhofer MatriXX detector inside a Lucite phantom with field configurations based on the treatment of prostate cancer and medulloblastoma. The authors use a GEANT4 Monte Carlo simulation, demonstrated to agree well with measurements inside the primary field, to simulate fields delivered in the measurements. The partial contributions to the dose are separated in the simulation by particle type and origin. Results: The agreement between experiment and simulation in the out-of-field absorbed dose is within 30% at 10-20 cm from the field edge and 90% of the data agrees within 2 standard deviations. In passive scattering, the neutron contribution to the total dose dominates in the region downstream of the Bragg peak (65%-80% due to internally produced neutrons) and inside the phantom at distances more than 10-15 cm from the field edge. The equivalent doses using 10 for the neutron weighting factor at the entrance to the phantom and at 20 cm from the field edge are 2.2 and 2.6 mSv/Gy for the prostate cancer and cranial medulloblastoma fields, respectively. The equivalent dose at 15-20 cm from the field edge decreases with depth in passive scattering and increases with depth in active scanning. Therefore, active scanning has smaller out-of-field equivalent dose by factors of 30-45 in the entrance region and this factor decreases with depth

  11. Low Dose Suppression of Neoplastic Transformation in Vitro

    SciTech Connect

    John Leslie Redpath

    2012-05-01

    This grant was to study the low dose suppression of neoplastic transformation in vitro and the shape of the dose-response curve at low doses and dose-rates of ionizing radiation. Previous findings had indicated a suppression of transformation at dose <10cGy of low-LET radiation when delivered at high dose-rate. The present study indicates that such suppression extends out to doses in excess of 100cGy when the dose (from I-125 photons) is delivered at dose-rates as low as 0.2 mGy/min and out to in excess of {approx}25cGy the highest dose studied at the very low dose-rate of 0.5 mGy/day. We also examined dose-rate effects for high energy protons (which are a low-LET radiation) and suppression was evident below {approx}10cGy for high dose-rate delivery and at least out to 50cGy for low dose-rate (20cGy/h) delivery. Finally, we also examined the effect of low doses of 1 GeV/n iron ions (a high-LET radiation) delivered at high dose-rate on transformation at low doses and found a suppression below {approx}10cGy that could be attributable to an adaptive response in bystander cells induced by the associated low-LET delta rays. These results have implications for cancer risk assessment at low doses.

  12. Validation of CT dose-reduction simulation

    SciTech Connect

    Massoumzadeh, Parinaz; Don, Steven; Hildebolt, Charles F.; Bae, Kyongtae T.; Whiting, Bruce R.

    2009-01-15

    The objective of this research was to develop and validate a custom computed tomography dose-reduction simulation technique for producing images that have an appearance consistent with the same scan performed at a lower mAs (with fixed kVp, rotation time, and collimation). Synthetic noise is added to projection (sinogram) data, incorporating a stochastic noise model that includes energy-integrating detectors, tube-current modulation, bowtie beam filtering, and electronic system noise. Experimental methods were developed to determine the parameters required for each component of the noise model. As a validation, the outputs of the simulations were compared to measurements with cadavers in the image domain and with phantoms in both the sinogram and image domain, using an unbiased root-mean-square relative error metric to quantify agreement in noise processes. Four-alternative forced-choice (4AFC) observer studies were conducted to confirm the realistic appearance of simulated noise, and the effects of various system model components on visual noise were studied. The ''just noticeable difference (JND)'' in noise levels was analyzed to determine the sensitivity of observers to changes in noise level. Individual detector measurements were shown to be normally distributed (p>0.54), justifying the use of a Gaussian random noise generator for simulations. Phantom tests showed the ability to match original and simulated noise variance in the sinogram domain to within 5.6%{+-}1.6% (standard deviation), which was then propagated into the image domain with errors less than 4.1%{+-}1.6%. Cadaver measurements indicated that image noise was matched to within 2.6%{+-}2.0%. More importantly, the 4AFC observer studies indicated that the simulated images were realistic, i.e., no detectable difference between simulated and original images (p=0.86) was observed. JND studies indicated that observers' sensitivity to change in noise levels corresponded to a 25% difference in dose, which

  13. Disruptive Event Biosphere Dose Conversion Factor Analysis

    SciTech Connect

    M. Wasiolek

    2004-09-08

    This analysis report is one of the technical reports containing documentation of the Environmental Radiation Model for Yucca Mountain, Nevada (ERMYN), a biosphere model supporting the total system performance assessment (TSPA) for the license application (LA) for the Yucca Mountain repository. This analysis report describes the development of biosphere dose conversion factors (BDCFs) for the volcanic ash exposure scenario, and the development of dose factors for calculating inhalation dose during volcanic eruption. A graphical representation of the documentation hierarchy for the ERMYN is presented in Figure 1-1. This figure shows the interrelationships among the products (i.e., analysis and model reports) developed for biosphere modeling and provides an understanding of how this analysis report contributes to biosphere modeling. This report is one of two reports that develop biosphere BDCFs, which are input parameters for the TSPA model. The ''Biosphere Model Report'' (BSC 2004 [DIRS 169460]) describes in detail the ERMYN conceptual model and mathematical model. The input parameter reports, shown to the right of the Biosphere Model Report in Figure 1-1, contain detailed descriptions of the model input parameters, their development and the relationship between the parameters and specific features, events and processes (FEPs). This report describes biosphere model calculations and their output, the BDCFs, for the volcanic ash exposure scenario. This analysis receives direct input from the outputs of the ''Biosphere Model Report'' (BSC 2004 [DIRS 169460]) and from the five analyses that develop parameter values for the biosphere model (BSC 2004 [DIRS 169671]; BSC 2004 [DIRS 169672]; BSC 2004 [DIRS 169673]; BSC 2004 [DIRS 169458]; and BSC 2004 [DIRS 169459]). The results of this report are further analyzed in the ''Biosphere Dose Conversion Factor Importance and Sensitivity Analysis''. The objective of this analysis was to develop the BDCFs for the volcanic ash

  14. A new dosimeter formulation for deformable 3D dose verification

    NASA Astrophysics Data System (ADS)

    Høye, E. M.; Skyt, P. S.; Yates, E. S.; Muren, L. P.; Petersen, J. B. B.; Balling, P.

    2015-01-01

    We present the characteristics of a new silicone-based radiochromic dosimeter containing the leuco-malachite green (LMG) dye. The dose response as well as the dose-rate and photon-energy dependence of the dosimeter were characterized. To optimise the dose response, different concentrations of the chemical components were investigated. The dose response was found to decrease exponentially as a function of time after irradiation. A cylindrical dosimeter was produced and irradiated with a volumetric modulated arc therapy plan; the standard deviation between measured and calculated dose was 5% of the total dose.

  15. Toxicity from repeated doses of acetaminophen in children: assessment of causality and dose in reported cases.

    PubMed

    Heard, Kennon; Bui, Alison; Mlynarchek, Sara L; Green, Jody L; Bond, G Randall; Clark, Richard F; Kozer, Eran; Koff, Raymond S; Dart, Richard C

    2014-01-01

    Liver injury has been reported in children treated with repeated doses of acetaminophen. The objective of this study was to identify and validate reports of liver injury or death in children younger than 6 years who were administered repeated therapeutic doses of acetaminophen. We reviewed US Poison Center data, peer-reviewed literature, US Food and Drug Administration Adverse Event Reports, and US Manufacturer Safety Reports describing adverse effects after acetaminophen administration. Reports that described hepatic abnormalities (description of liver injury or abnormal laboratory testing) or death after acetaminophen administration to children younger than 6 years were included. The identified reports were double abstracted and then reviewed by an expert panel to determine if the hepatic injury was related to acetaminophen and whether the dose of acetaminophen was therapeutic (≤75 mg/kg) or supratherapeutic. Our search yielded 2531 reports of adverse events associated with acetaminophen use. From these cases, we identified 76 cases of hepatic injury and 26 deaths associated with repeated acetaminophen administration. There were 6 cases of hepatic abnormalities and no deaths associated with what our panel determined to be therapeutic doses. A large proportion of cases could not be fully evaluated due to incomplete case reporting. Although we identified numerous examples of liver injury and death after repeated doses of acetaminophen, all the deaths and all but 6 cases of hepatic abnormalities involved doses more than 75 mg/kg per day. This study suggests that the doses of less than 75 mg/kg per day of acetaminophen are safe for children younger than 6 years.

  16. CT effective dose per dose length product using ICRP 103 weighting factors

    SciTech Connect

    Huda, Walter; Magill, Dennise; He Wenjun

    2011-03-15

    Purpose: To generate effective dose per unit dose length product (E/DLP) conversion factors incorporating ICRP Publication 103 tissue weighting factors. Methods: Effective doses for CT examinations were obtained using the IMPACT Dosimetry Calculator using all 23 dose data sets that are offered by this spreadsheet. CT examinations were simulated for scans performed along the patient long axis for each dosimetry data set using a 4 cm beam width ranging from the upper thighs to top of the head. Five basic body regions (head, neck, chest, abdomen, and pelvis), as well as combinations of the regions (head/neck, chest/abdomen, abdomen/pelvis, and chest/abdomen/pelvis) and whole body CT scans were investigated. Correction factors were generated that can be applied to convert E/DLP conversion factors based on ICRP 60 data to conversion factors that are valid for ICRP 103 data (i.e., E{sub 103}/E{sub 60}). Results: Use of ICRP 103 weighting factors increase effective doses for head scans by {approx}11%, for chest scans by {approx}20%, and decrease effective doses for pelvis scans by {approx}25%. Current E/DLP conversion factors are estimated to be 2.4 {mu}Sv/mGy cm for head CT examinations and range between 14 and 20 {mu}Sv/mGy cm for body CT examinations. Conclusions: Factors that enable patient CT doses to be adjusted to account for ICRP 103 tissue weighting factors are provided, which result in E/DLP factors that were increased in head and chest CT, reduced in pelvis CT, and showed no marked change in neck and abdomen CT.

  17. Lead in teeth from lead-dosed goats: Microdistribution and relationship to the cumulative lead dose

    SciTech Connect

    Bellis, David J.; Hetter, Katherine M.; Jones, Joseph; Amarasiriwardena, Dula; Parsons, Patrick J.

    2008-01-15

    Teeth are commonly used as a biomarker of long-term lead exposure. There appear to be few data, however, on the content or distribution of lead in teeth where data on specific lead intake (dose) are also available. This study describes the analysis of a convenience sample of teeth from animals that were dosed with lead for other purposes, i.e., a proficiency testing program for blood lead. Lead concentration of whole teeth obtained from 23 animals, as determined by atomic absorption spectrometry, varied from 0.6 to 80 {mu}g g{sup -1}. Linear regression of whole tooth lead ({mu}g g{sup -1}) on the cumulative lead dose received by the animal (g) yielded a slope of 1.2, with r{sup 2}=0.647 (p<0.0001). Laser ablation inductively coupled plasma mass spectrometry was employed to determine lead content at micrometer scale spatial resolution in the teeth of seven goats representing the dosing range. Highly localized concentrations of lead, ranging from about 10 to 2000 {mu}g g{sup -1}, were found in circumpulpal dentine. Linear regression of circumpulpal lead ({mu}g g{sup -1}) on cumulative lead dose (g) yielded a slope of 23 with r{sup 2}=0.961 (p=0.0001). The data indicated that whole tooth lead, and especially circumpulpal lead, of dosed goats increased linearly with cumulative lead exposure. These data suggest that circumpulpal dentine is a better biomarker of cumulative lead exposure than is whole tooth lead, at least for lead-dosed goats.

  18. Advanced Computational Approaches for Characterizing Stochastic Cellular Responses to Low Dose, Low Dose Rate Exposures

    SciTech Connect

    Scott, Bobby, R., Ph.D.

    2003-06-27

    OAK - B135 This project final report summarizes modeling research conducted in the U.S. Department of Energy (DOE), Low Dose Radiation Research Program at the Lovelace Respiratory Research Institute from October 1998 through June 2003. The modeling research described involves critically evaluating the validity of the linear nonthreshold (LNT) risk model as it relates to stochastic effects induced in cells by low doses of ionizing radiation and genotoxic chemicals. The LNT model plays a central role in low-dose risk assessment for humans. With the LNT model, any radiation (or genotoxic chemical) exposure is assumed to increase one¡¯s risk of cancer. Based on the LNT model, others have predicted tens of thousands of cancer deaths related to environmental exposure to radioactive material from nuclear accidents (e.g., Chernobyl) and fallout from nuclear weapons testing. Our research has focused on developing biologically based models that explain the shape of dose-response curves for low-dose radiation and genotoxic chemical-induced stochastic effects in cells. Understanding the shape of the dose-response curve for radiation and genotoxic chemical-induced stochastic effects in cells helps to better understand the shape of the dose-response curve for cancer induction in humans. We have used a modeling approach that facilitated model revisions over time, allowing for timely incorporation of new knowledge gained related to the biological basis for low-dose-induced stochastic effects in cells. Both deleterious (e.g., genomic instability, mutations, and neoplastic transformation) and protective (e.g., DNA repair and apoptosis) effects have been included in our modeling. Our most advanced model, NEOTRANS2, involves differing levels of genomic instability. Persistent genomic instability is presumed to be associated with nonspecific, nonlethal mutations and to increase both the risk for neoplastic transformation and for cancer occurrence. Our research results, based on

  19. Low Dose MDCT with Tube Current Modulation: Role in Detection of Urolithiasis and Patient Effective Dose Reduction

    PubMed Central

    Kakkar, Chandan; Sripathi, Smiti; Parakh, Anushri; Shrivastav, Rajendra

    2016-01-01

    Introduction Urolithiasis is one of the major, recurring problem in young individuals and CT being the commonest diagnostic modality used. In order to reduce the radiation dose to the patient who are young and as stone formation is a recurring process; one of the simplest way would be, low dose CT along with tube current modulation. Aim Aim of this study was to compare the sensitivity and specificity of low dose (70mAs) with standard dose (250mAs) protocol in detecting urolithiasis and to define the tube current and mean effective patient dose by these protocols. Materials and Methods A prospective study was conducted in 200 patients over a period of 2 years with acute flank pain presentation. CT was performed in 100 cases with standard dose and another 100 with low dose protocol using tube current modulation. Sensitivity and specificity for calculus detection, percentage reduction of dose and tube current with low dose protocol was calculated. Results Urolithiasis was detected in 138 patients, 67 were examined by high dose and 71 were by low dose protocol. Sensitivity and Specificity of low dose protocol was 97.1% and 96.4% with similar results found in high BMI patients. Tube current modulation resulted in reduction of effective tube current by 12.17%. The mean effective patient dose for standard dose was 10.33 mSv whereas 2.92 mSv for low dose with 51.13–53.8% reduction in low dose protocol. Conclusion The study has reinforced that low-dose CT with tube current modulation is appropriate for diagnosis of urolithiasis with significant reduction in tube current and patient effective dose. PMID:27437322

  20. Application of a Novel Dose-Uncertainty Model for Dose-Uncertainty Analysis in Prostate Intensity-Modulated Radiotherapy

    SciTech Connect

    Jin Hosang; Palta, Jatinder R.; Kim, You-Hyun; Kim, Siyong

    2010-11-01

    Purpose: To analyze dose uncertainty using a previously published dose-uncertainty model, and to assess potential dosimetric risks existing in prostate intensity-modulated radiotherapy (IMRT). Methods and Materials: The dose-uncertainty model provides a three-dimensional (3D) dose-uncertainty distribution in a given confidence level. For 8 retrospectively selected patients, dose-uncertainty maps were constructed using the dose-uncertainty model at the 95% CL. In addition to uncertainties inherent to the radiation treatment planning system, four scenarios of spatial errors were considered: machine only (S1), S1 + intrafraction, S1 + interfraction, and S1 + both intrafraction and interfraction errors. To evaluate the potential risks of the IMRT plans, three dose-uncertainty-based plan evaluation tools were introduced: confidence-weighted dose-volume histogram, confidence-weighted dose distribution, and dose-uncertainty-volume histogram. Results: Dose uncertainty caused by interfraction setup error was more significant than that of intrafraction motion error. The maximum dose uncertainty (95% confidence) of the clinical target volume (CTV) was smaller than 5% of the prescribed dose in all but two cases (13.9% and 10.2%). The dose uncertainty for 95% of the CTV volume ranged from 1.3% to 2.9% of the prescribed dose. Conclusions: The dose uncertainty in prostate IMRT could be evaluated using the dose-uncertainty model. Prostate IMRT plans satisfying the same plan objectives could generate a significantly different dose uncertainty because a complex interplay of many uncertainty sources. The uncertainty-based plan evaluation contributes to generating reliable and error-resistant treatment plans.

  1. Radiation dose descriptors: BERT, COD, DAP, and other strange creatures.

    PubMed

    Nickoloff, Edward L; Lu, Zheng Feng; Dutta, Ajoy K; So, James C

    2008-01-01

    Over the years, a number of terms have been used to describe radiation dose. Eight common radiation dose descriptors include background equivalent radiation time (BERT), critical organ dose (COD), surface absorbed dose (SAD), dose area product (DAP), diagnostic acceptable reference level (DARLing), effective dose (ED), fetal absorbed dose (FAD), and total imparted energy (TIE). BERT is compared to the annual natural background radiation (about 3 mSv per year) and is easily understandable for the general public. COD refers to the radiation dose delivered to an individual critical organ. SAD is the radiation dose delivered at the skin surface. DAP is a product of the irradiated surface area multiplied by the radiation dose at the surface. DARLing is usually the radiation level that encompasses 75% (the third quartile) of the data derived from a nationwide or regional survey. DARLings are meant for voluntary guidance. Consistently higher patient doses should be investigated for possible equipment deficiencies or suboptimal protocols. ED is obtained by multiplying the radiation dose delivered to each organ by its weighting factor and then by adding those values to get the sum. It can be used to assess the risk of radiation-induced cancers and serious hereditary effects to future generations, regardless of the procedure being performed, and is the most useful radiation dose descriptor. FAD is the radiation dose delivered to the fetus, and TIE is the sum of the energy imparted to all irradiated tissue. Each of these descriptors is intended to relate radiation dose ultimately to potential biologic effects. To avoid confusion, the key is to avoid using the terms interchangeably. It is important to understand each of the radiation dose descriptors and their derivation in order to correctly evaluate radiation dose and to consult with patients concerned about the risks of radiation.

  2. Pharmacogenetic-guided Warfarin Dosing Algorithm in African-Americans.

    PubMed

    Alzubiedi, Sameh; Saleh, Mohammad I

    2016-01-01

    We aim to develop warfarin dosing algorithm for African-Americans. We explored demographic, clinical, and genetic data from a previously collected cohort of 163 African-American patients with a stable warfarin dose. We explored 2 approaches to develop the algorithm: multiple linear regression and artificial neural network (ANN). The clinical significance of the 2 dosing algorithms was evaluated by calculating the percentage of patients whose predicted dose of warfarin was within 20% of the actual dose. Linear regression model and ANN model predicted the ideal dose in 52% and 48% of the patients, respectively. The mean absolute error using linear regression model was estimated to be 10.8 mg compared with 10.9 mg using ANN. Linear regression and ANN models identified several predictors of warfarin dose including age, weight, CYP2C9 genotype *1/*1, VKORC1 genotype, rs12777823 genotype, rs2108622 genotype, congestive heart failure, and amiodarone use. In conclusion, we developed a warfarin dosing algorithm for African-Americans. The proposed dosing algorithm has the potential to recommend warfarin doses that are close to the appropriate doses. The use of more sophisticated ANN approach did not result in improved predictive performance of the dosing algorithm except for patients of a dose of ≥49 mg/wk.

  3. Pharmacogenetic-guided Warfarin Dosing Algorithm in African-Americans.

    PubMed

    Alzubiedi, Sameh; Saleh, Mohammad I

    2016-01-01

    We aim to develop warfarin dosing algorithm for African-Americans. We explored demographic, clinical, and genetic data from a previously collected cohort of 163 African-American patients with a stable warfarin dose. We explored 2 approaches to develop the algorithm: multiple linear regression and artificial neural network (ANN). The clinical significance of the 2 dosing algorithms was evaluated by calculating the percentage of patients whose predicted dose of warfarin was within 20% of the actual dose. Linear regression model and ANN model predicted the ideal dose in 52% and 48% of the patients, respectively. The mean absolute error using linear regression model was estimated to be 10.8 mg compared with 10.9 mg using ANN. Linear regression and ANN models identified several predictors of warfarin dose including age, weight, CYP2C9 genotype *1/*1, VKORC1 genotype, rs12777823 genotype, rs2108622 genotype, congestive heart failure, and amiodarone use. In conclusion, we developed a warfarin dosing algorithm for African-Americans. The proposed dosing algorithm has the potential to recommend warfarin doses that are close to the appropriate doses. The use of more sophisticated ANN approach did not result in improved predictive performance of the dosing algorithm except for patients of a dose of ≥49 mg/wk. PMID:26355760

  4. A real time dose monitoring and dose reconstruction tool for patient specific VMAT QA and delivery

    SciTech Connect

    Tyagi, Neelam; Yang Kai; Gersten, David; Yan Di

    2012-12-15

    Purpose: To develop a real time dose monitoring and dose reconstruction tool to identify and quantify sources of errors during patient specific volumetric modulated arc therapy (VMAT) delivery and quality assurance. Methods: The authors develop a VMAT delivery monitor tool called linac data monitor that connects to the linac in clinical mode and records, displays, and compares real time machine parameters with the planned parameters. A new measure, called integral error, keeps a running total of leaf overshoot and undershoot errors in each leaf pair, multiplied by leaf width, and the amount of time during which the error exists in monitor unit delivery. Another tool reconstructs Pinnacle{sup 3} Trade-Mark-Sign format delivered plan based on the saved machine logfile and recalculates actual delivered dose in patient anatomy. Delivery characteristics of various standard fractionation and stereotactic body radiation therapy (SBRT) VMAT plans delivered on Elekta Axesse and Synergy linacs were quantified. Results: The MLC and gantry errors for all the treatment sites were 0.00 {+-} 0.59 mm and 0.05 {+-} 0.31 Degree-Sign , indicating a good MLC gain calibration. Standard fractionation plans had a larger gantry error than SBRT plans due to frequent dose rate changes. On average, the MLC errors were negligible but larger errors of up to 6 mm and 2.5 Degree-Sign were seen when dose rate varied frequently. Large gantry errors occurred during the acceleration and deceleration process, and correlated well with MLC errors (r= 0.858, p= 0.0004). PTV mean, minimum, and maximum dose discrepancies were 0.87 {+-} 0.21%, 0.99 {+-} 0.59%, and 1.18 {+-} 0.52%, respectively. The organs at risk (OAR) doses were within 2.5%, except some OARs that showed up to 5.6% discrepancy in maximum dose. Real time displayed normalized total positive integral error (normalized to the total monitor units) correlated linearly with MLC (r= 0.9279, p < 0.001) and gantry errors (r= 0.742, p= 0.005). There

  5. Spine stereotactic body radiation therapy plans: Achieving dose coverage, conformity, and dose falloff

    SciTech Connect

    Hong, Linda X.; Shankar, Viswanathan; Shen, Jin; Kuo, Hsiang-Chi; Mynampati, Dinesh; Yaparpalvi, Ravindra; Goddard, Lee; Basavatia, Amar; Fox, Jana; Garg, Madhur; Kalnicki, Shalom; Tomé, Wolfgang A.

    2015-10-01

    We report our experience of establishing planning objectives to achieve dose coverage, conformity, and dose falloff for spine stereotactic body radiation therapy (SBRT) plans. Patients with spine lesions were treated using SBRT in our institution since September 2009. Since September 2011, we established the following planning objectives for our SBRT spine plans in addition to the cord dose constraints: (1) dose coverage—prescription dose (PD) to cover at least 95% planning target volume (PTV) and 90% PD to cover at least 99% PTV; (2) conformity index (CI)—ratio of prescription isodose volume (PIV) to the PTV < 1.2; (3) dose falloff—ratio of 50% PIV to the PTV (R{sub 50%}); (4) and maximum dose in percentage of PD at 2 cm from PTV in any direction (D{sub 2cm}) to follow Radiation Therapy Oncology Group (RTOG) 0915. We have retrospectively reviewed 66 separate spine lesions treated between September 2009 and December 2012 (31 treated before September 2011 [group 1] and 35 treated after [group 2]). The χ{sup 2} test was used to examine the difference in parameters between groups. The PTV V{sub 100%} {sub PD} ≥ 95% objective was met in 29.0% of group 1 vs 91.4% of group 2 (p < 0.01) plans. The PTV V{sub 90%} {sub PD} ≥ 99% objective was met in 38.7% of group 1 vs 88.6% of group 2 (p < 0.01) plans. Overall, 4 plans in group 1 had CI > 1.2 vs none in group 2 (p = 0.04). For D{sub 2cm}, 48.3% plans yielded a minor violation of the objectives and 16.1% a major violation for group 1, whereas 17.1% exhibited a minor violation and 2.9% a major violation for group 2 (p < 0.01). Spine SBRT plans can be improved on dose coverage, conformity, and dose falloff employing a combination of RTOG spine and lung SBRT protocol planning objectives.

  6. Limitations of the TG-43 formalism for skin high-dose-rate brachytherapy dose calculations

    SciTech Connect

    Granero, Domingo; Perez-Calatayud, Jose; Vijande, Javier; Ballester, Facundo; Rivard, Mark J.

    2014-02-15

    Purpose: In skin high-dose-rate (HDR) brachytherapy, sources are located outside, in contact with, or implanted at some depth below the skin surface. Most treatment planning systems use the TG-43 formalism, which is based on single-source dose superposition within an infinite water medium without accounting for the true geometry in which conditions for scattered radiation are altered by the presence of air. The purpose of this study is to evaluate the dosimetric limitations of the TG-43 formalism in HDR skin brachytherapy and the potential clinical impact. Methods: Dose rate distributions of typical configurations used in skin brachytherapy were obtained: a 5 cm × 5 cm superficial mould; a source inside a catheter located at the skin surface with and without backscatter bolus; and a typical interstitial implant consisting of an HDR source in a catheter located at a depth of 0.5 cm. Commercially available HDR{sup 60}Co and {sup 192}Ir sources and a hypothetical {sup 169}Yb source were considered. The Geant4 Monte Carlo radiation transport code was used to estimate dose rate distributions for the configurations considered. These results were then compared to those obtained with the TG-43 dose calculation formalism. In particular, the influence of adding bolus material over the implant was studied. Results: For a 5 cm × 5 cm{sup 192}Ir superficial mould and 0.5 cm prescription depth, dose differences in comparison to the TG-43 method were about −3%. When the source was positioned at the skin surface, dose differences were smaller than −1% for {sup 60}Co and {sup 192}Ir, yet −3% for {sup 169}Yb. For the interstitial implant, dose differences at the skin surface were −7% for {sup 60}Co, −0.6% for {sup 192}Ir, and −2.5% for {sup 169}Yb. Conclusions: This study indicates the following: (i) for the superficial mould, no bolus is needed; (ii) when the source is in contact with the skin surface, no bolus is needed for either {sup 60}Co and {sup 192}Ir. For

  7. How accurately can the peak skin dose in fluoroscopy be determined using indirect dose metrics?

    SciTech Connect

    Jones, A. Kyle; Ensor, Joe E.; Pasciak, Alexander S.

    2014-07-15

    Purpose: Skin dosimetry is important for fluoroscopically-guided interventions, as peak skin doses (PSD) that result in skin reactions can be reached during these procedures. There is no consensus as to whether or not indirect skin dosimetry is sufficiently accurate for fluoroscopically-guided interventions. However, measuring PSD with film is difficult and the decision to do so must be madea priori. The purpose of this study was to assess the accuracy of different types of indirect dose estimates and to determine if PSD can be calculated within ±50% using indirect dose metrics for embolization procedures. Methods: PSD were measured directly using radiochromic film for 41 consecutive embolization procedures at two sites. Indirect dose metrics from the procedures were collected, including reference air kerma. Four different estimates of PSD were calculated from the indirect dose metrics and compared along with reference air kerma to the measured PSD for each case. The four indirect estimates included a standard calculation method, the use of detailed information from the radiation dose structured report, and two simplified calculation methods based on the standard method. Indirect dosimetry results were compared with direct measurements, including an analysis of uncertainty associated with film dosimetry. Factors affecting the accuracy of the different indirect estimates were examined. Results: When using the standard calculation method, calculated PSD were within ±35% for all 41 procedures studied. Calculated PSD were within ±50% for a simplified method using a single source-to-patient distance for all calculations. Reference air kerma was within ±50% for all but one procedure. Cases for which reference air kerma or calculated PSD exhibited large (±35%) differences from the measured PSD were analyzed, and two main causative factors were identified: unusually small or large source-to-patient distances and large contributions to reference air kerma from cone

  8. Chromosomal Aberrations in Normal and AT Cells Exposed to High Dose of Low Dose Rate Irradiation

    NASA Technical Reports Server (NTRS)

    Kawata, T.; Shigematsu, N.; Kawaguchi, O.; Liu, C.; Furusawa, Y.; Hirayama, R.; George, K.; Cucinotta, F.

    2011-01-01

    Ataxia telangiectasia (A-T) is a human autosomally recessive syndrome characterized by cerebellar ataxia, telangiectases, immune dysfunction, and genomic instability, and high rate of cancer incidence. A-T cell lines are abnormally sensitive to agents that induce DNA double strand breaks, including ionizing radiation. The diverse clinical features in individuals affected by A-T and the complex cellular phenotypes are all linked to the functional inactivation of a single gene (AT mutated). It is well known that cells deficient in ATM show increased yields of both simple and complex chromosomal aberrations after high-dose-rate irradiation, but, less is known on how cells respond to low-dose-rate irradiation. It has been shown that AT cells contain a large number of unrejoined breaks after both low-dose-rate irradiation and high-dose-rate irradiation, however sensitivity for chromosomal aberrations at low-dose-rate are less often studied. To study how AT cells respond to low-dose-rate irradiation, we exposed confluent normal and AT fibroblast cells to up to 3 Gy of gamma-irradiation at a dose rate of 0.5 Gy/day and analyzed chromosomal aberrations in G0 using fusion PCC (Premature Chromosomal Condensation) technique. Giemsa staining showed that 1 Gy induces around 0.36 unrejoined fragments per cell in normal cells and around 1.35 fragments in AT cells, whereas 3Gy induces around 0.65 fragments in normal cells and around 3.3 fragments in AT cells. This result indicates that AT cells can rejoin breaks less effectively in G0 phase of the cell cycle? compared to normal cells. We also analyzed chromosomal exchanges in normal and AT cells after exposure to 3 Gy of low-dose-rate rays using a combination of G0 PCC and FISH techniques. Misrejoining was detected in the AT cells only? When cells irradiated with 3 Gy were subcultured and G2 chromosomal aberrations were analyzed using calyculin-A induced PCC technique, the yield of unrejoined breaks decreased in both normal and AT

  9. Replacing the measles ten-dose vaccine presentation with the single-dose presentation in Thailand.

    PubMed

    Lee, Bruce Y; Assi, Tina-Marie; Rookkapan, Korngamon; Connor, Diana L; Rajgopal, Jayant; Sornsrivichai, Vorasith; Brown, Shawn T; Welling, Joel S; Norman, Bryan A; Chen, Sheng-I; Bailey, Rachel R; Wiringa, Ann E; Wateska, Angela R; Jana, Anirban; Van Panhuis, Willem G; Burke, Donald S

    2011-05-12

    Introduced to minimize open vial wastage, single-dose vaccine vials require more storage space and therefore may affect vaccine supply chains (i.e., the series of steps and processes involved in distributing vaccines from manufacturers to patients). We developed a computational model of Thailand's Trang province vaccine supply chain to analyze the effects of switching from a ten-dose measles vaccine presentation to each of the following: a single-dose measles-mumps-rubella vaccine (which Thailand is currently considering) or a single-dose measles vaccine. While the Trang province vaccine supply chain would generally have enough storage and transport capacity to accommodate the switches, the added volume could push some locations' storage and transport space utilization close to their limits. Single-dose vaccines would allow for more precise ordering and decrease open vial waste, but decrease reserves for unanticipated demand. Moreover, the added disposal and administration costs could far outweigh the costs saved from preventing open vial wastage. PMID:21439313

  10. Dosing Algorithms to Predict Warfarin Maintenance Dose in Caucasians and African Americans

    PubMed Central

    Schelleman, Hedi; Chen, Jinbo; Chen, Zhen; Christie, Jason; Newcomb, Craig W.; Brensinger, Colleen M.; Price, Maureen; Whitehead, Alexander S.; Kealey, Carmel; Thorn, Caroline F.; Samaha, Frederick F.; Kimmel, Stephen E

    2008-01-01

    Objectives The objective of this study was to determine whether clinical, environmental, and genetic factors can be used to develop dosing algorithms for Caucasians and African Americans that perform better than giving empirical 5 mg/day. Methods From April 2002 through December 2005, 259 warfarin initiators were prospectively followed until they reached maintenance dose. Results The Caucasian algorithm included 11 variables (R2=0.43). This model (51% within 1 mg) performed better compared with 5 mg/day (29% within 5±1 mg). The African American algorithm included 10 variables (R2=0.28). This model predicted 37% of doses within 1 mg of the observed dose; a small improvement compared with 5 mg/day (34%). These results were similar to the results we obtained from testing other (published) algorithms. Conclusions The dosing algorithms in Caucasians explained <45% of the variability and the algorithms in African Americans performed only marginally better than giving 5 mg empirically. PMID:18596683

  11. Characterization of infectious dose and lethal dose of two strains of infectious hematopoietic necrosis virus (IHNV)

    USGS Publications Warehouse

    McKenney, Douglas; Kurath, Gael; Wargo, Andrew

    2016-01-01

    The ability to infect a host is a key trait of a virus, and differences in infectivity could put one virus at an evolutionary advantage over another. In this study we have quantified the infectivity of two strains of infectious hematopoietic necrosis virus (IHNV) that are known to differ in fitness and virulence. By exposing juvenile rainbow trout (Oncorhynchus mykiss) hosts to a wide range of virus doses, we were able to calculate the infectious dose in terms of ID50 values for the two genotypes. Lethal dose experiments were also conducted to confirm the virulence difference between the two virus genotypes, using a range of virus doses and holding fish either in isolation or in batch so as to calculate LD50values. We found that infectivity is positively correlated with virulence, with the more virulent genotype having higher infectivity. Additionally, infectivity increases more steeply over a short range of doses compared to virulence, which has a shallower increase. We also examined the data using models of virion interaction and found no evidence to suggest that virions have either an antagonistic or a synergistic effect on each other, supporting the independent action hypothesis in the process of IHNV infection of rainbow trout.

  12. KERMA-based radiation dose management system for real-time patient dose measurement

    NASA Astrophysics Data System (ADS)

    Kim, Kyo-Tae; Heo, Ye-Ji; Oh, Kyung-Min; Nam, Sang-Hee; Kang, Sang-Sik; Park, Ji-Koon; Song, Yong-Keun; Park, Sung-Kwang

    2016-07-01

    Because systems that reduce radiation exposure during diagnostic procedures must be developed, significant time and financial resources have been invested in constructing radiation dose management systems. In the present study, the characteristics of an existing ionization-based system were compared to those of a system based on the kinetic energy released per unit mass (KERMA). Furthermore, the feasibility of using the KERMA-based system for patient radiation dose management was verified. The ionization-based system corrected the effects resulting from radiation parameter perturbations in general radiography whereas the KERMA-based system did not. Because of this difference, the KERMA-based radiation dose management system might overestimate the patient's radiation dose due to changes in the radiation conditions. Therefore, if a correction factor describing the correlation between the systems is applied to resolve this issue, then a radiation dose management system can be developed that will enable real-time measurement of the patient's radiation exposure and acquisition of diagnostic images.

  13. VOXMAT: Hybrid Computational Phantom for Dose Assessment

    SciTech Connect

    Akkurt, Hatice; Eckerman, Keith F

    2007-01-01

    The Oak Ridge National Laboratory (ORNL) computational phantoms have been the standard for assessing the radiation dose due to internal and external exposure over the past three decades. In these phantoms, the body surface and each organ are approximated by mathematical equations; hence, some of the organs are not necessarily realistic in their shape. Over the past two decades, these phantoms have been revised and updated: some of the missing internal organs have been added and the locations of the existing organs have been revised (e.g., thyroid). In the original phantom, only three elemental compositions were used to describe all body tissues. Recently, the compositions of the organs have been updated based on ICRP-89 standards. During the past decade, phantoms based on CT scans were developed for use in dose assessment. Although their shapes are realistic, some computational challenges are noted; including increased computational times and increased memory requirements. For good spatial resolution, more than several million voxels are used to represent the human body. Moreover, when CT scans are obtained, the subject is in a supine position with arms at the side. In some occupational exposure cases, it is necessary to evaluate the dose with the arms and legs in different positions. It will be very difficult and inefficient to reposition the voxels defining the arms and legs to simulate these exposure geometries. In this paper, a new approach for computational phantom development is presented. This approach utilizes the combination of a mathematical phantom and a voxelized phantom for the representation of the anatomy.

  14. Low-Dose Radiotherapy in Indolent Lymphoma

    SciTech Connect

    Rossier, Christine; Schick, Ulrike; Miralbell, Raymond; Mirimanoff, Rene O.; Weber, Damien C.; Ozsahin, Mahmut

    2011-11-01

    Purpose: To assess the response rate, duration of response, and overall survival after low-dose involved-field radiotherapy in patients with recurrent low-grade lymphoma or chronic lymphocytic leukemia (CLL). Methods and Materials: Forty-three (24 women, 19 men) consecutive patients with indolent lymphoma or CLL were treated with a total dose of 4 Gy (2 x 2 Gy) using 6- 18-MV photons. The median age was 73 years (range, 39-88). Radiotherapy was given either after (n = 32; 75%) or before (n = 11; 25%) chemotherapy. The median time from diagnosis was 48 months (range, 1-249). The median follow-up period was 20 months (range, 1-56). Results: The overall response rate was 90%. Twelve patients (28%) had a complete response, 15 (35%) had a partial response, 11 (26%) had stable disease, and 5 (11%) had progressive disease. The median overall survival for patients with a positive response (complete response/partial response/stable disease) was 41 months; for patients with progressive disease it was 6 months (p = 0.001). The median time to in-field progression was 21 months (range, 0-24), and the median time to out-field progression was 8 months (range, 0-40). The 3-year in-field control was 92% in patients with complete response (median was not reached). The median time to in-field progression was 9 months (range, 0.5-24) in patients with partial response and 6 months (range, 0.6-6) in those with stable disease (p < 0.05). Younger age, positive response to radiotherapy, and no previous chemotherapy were the best factors influencing the outcome. Conclusions: Low-dose involved-field radiotherapy is an effective treatment in the management of patients with recurrent low-grade lymphoma or CLL.

  15. Two Realistic Beagle Models for Dose Assessment.

    PubMed

    Stabin, Michael G; Kost, Susan D; Segars, William P; Guilmette, Raymond A

    2015-09-01

    Previously, the authors developed a series of eight realistic digital mouse and rat whole body phantoms based on NURBS technology to facilitate internal and external dose calculations in various species of rodents. In this paper, two body phantoms of adult beagles are described based on voxel images converted to NURBS models. Specific absorbed fractions for activity in 24 organs are presented in these models. CT images were acquired of an adult male and female beagle. The images were segmented, and the organs and structures were modeled using NURBS surfaces and polygon meshes. Each model was voxelized at a resolution of 0.75 × 0.75 × 2 mm. The voxel versions were implemented in GEANT4 radiation transport codes to calculate specific absorbed fractions (SAFs) using internal photon and electron sources. Photon and electron SAFs were then calculated for relevant organs in both models. The SAFs for photons and electrons were compatible with results observed by others. Absorbed fractions for electrons for organ self-irradiation were significantly less than 1.0 at energies above 0.5 MeV, as expected for many of these small-sized organs, and measurable cross irradiation was observed for many organ pairs for high-energy electrons (as would be emitted by nuclides like 32P, 90Y, or 188Re). The SAFs were used with standardized decay data to develop dose factors (DFs) for radiation dose calculations using the RADAR Method. These two new realistic models of male and female beagle dogs will be useful in radiation dosimetry calculations for external or internal simulated sources. PMID:26222214

  16. Optimal radiotherapy dose schedules under parametric uncertainty

    NASA Astrophysics Data System (ADS)

    Badri, Hamidreza; Watanabe, Yoichi; Leder, Kevin

    2016-01-01

    We consider the effects of parameter uncertainty on the optimal radiation schedule in the context of the linear-quadratic model. Our interest arises from the observation that if inter-patient variability in normal and tumor tissue radiosensitivity or sparing factor of the organs-at-risk (OAR) are not accounted for during radiation scheduling, the performance of the therapy may be strongly degraded or the OAR may receive a substantially larger dose than the allowable threshold. This paper proposes a stochastic radiation scheduling concept to incorporate inter-patient variability into the scheduling optimization problem. Our method is based on a probabilistic approach, where the model parameters are given by a set of random variables. Our probabilistic formulation ensures that our constraints are satisfied with a given probability, and that our objective function achieves a desired level with a stated probability. We used a variable transformation to reduce the resulting optimization problem to two dimensions. We showed that the optimal solution lies on the boundary of the feasible region and we implemented a branch and bound algorithm to find the global optimal solution. We demonstrated how the configuration of optimal schedules in the presence of uncertainty compares to optimal schedules in the absence of uncertainty (conventional schedule). We observed that in order to protect against the possibility of the model parameters falling into a region where the conventional schedule is no longer feasible, it is required to avoid extremal solutions, i.e. a single large dose or very large total dose delivered over a long period. Finally, we performed numerical experiments in the setting of head and neck tumors including several normal tissues to reveal the effect of parameter uncertainty on optimal schedules and to evaluate the sensitivity of the solutions to the choice of key model parameters.

  17. Plume temperature emitted from metered dose inhalers.

    PubMed

    Brambilla, G; Church, T; Lewis, D; Meakin, B

    2011-02-28

    The temperature of the drug cloud emitted from a pressurised metered dose inhaler (pMDI) may result in patient discomfort and inconsistent or non-existent dose delivery to the lungs. The effects of variations in formulation (drug, propellant, co-solvent content) and device hardware (metering volume, actuator orifice diameter, add-on devices) upon the temperature of pMDI plumes, expressed as replicate mean minimum values (MMPT), collected into a pharmacopoeial dose unit sampling apparatus (DUSA), have been investigated. Ten commercially available and two development products, including chlorofluorocarbon (CFC) suspensions and hydrofluoroalkane (HFA) solutions or suspensions, were examined together with a number of drug products in late stage development and a variety of HFA 134a placebo pMDIs. Plume temperatures were observed to be lowest in the proximity of the product's actuator mouthpiece where rapid flashing and evaporation of the formulation's propellant and volatile excipients cause cooling. The ability to control plume temperature by judicious choice of formulation co-solvent content, metering volume and the actuator orifice diameter is identified. An ethanol based HFA 134a formulation delivered through a fine orifice is inherently warmer than one with 100% HFA 134a vehicle delivered through a coarse actuator orifice. Of the 10 commercial products evaluated, MMPTs ranged from -54 to +4°C and followed the formulation class rank order, HFA suspensions

  18. Increasing halothane concentrations reduce nitroprusside dose requirement.

    PubMed

    Bedford, R F

    1978-01-01

    There has been no description of the hemodynamic dose-response relationship between halothane and sodium nitroprusside (SNP), although these drugs are used together frequently for induction of deliberate hypotension. Utilizing aortic root cannulation and thermister-tipped pulmonary artery catheterization, this relationship was studied in 6 beagles receiving a standard 100 microgram/kg infusion of SNP solution administered at 3 different infusion rates (5, 10, and 20 microgram/kg/min) while anesthetized with 3 different concentrations of halothane (0.5, 1, and 2%). Sodium nitroprusside infusion resulted in dose-related reductions in mean arterial pressure, systemic vascular resistance, and left ventricular stroke work. Increasing concentrations of halothane significantly potentiated the hypotensive effects of SNP. Cardiac output increase as the SNP infusion rate increased, whereas increasing the halothane concentration resulted in a reduction of cardiac output at each SNP infusion rate studied. Pulmonary artery wedge pressure was significantly reduced by SNP infusion at all 3 halothane concentrations, whereas mean pulmonary artery pressure was unchanged. Arterial pH fell in response to each SNP infusion, from 7.46 at the beginning of the study to 7.32 at the end (p less than 0.001). Sodium nitroprusside predictably induced hypotension during halothane anesthesia at the cost of a dose-related metabolic acidosis. Increasing the depth of halothane anesthesia afforded a greater percentage reduction in arterial pressure at each SNP infusion rate studied. Metabolic acidosis, however, developed no more rapidly at 2% halothane than it did at 0.5 or 1%.

  19. Nominal Performance Biosphere Dose Conversion Factor Analysis

    SciTech Connect

    M.A. Wasiolek

    2003-07-25

    This analysis report is one of the technical reports containing documentation of the Environmental Radiation Model for Yucca Mountain, Nevada (ERMYN), a biosphere model supporting the Total System Performance Assessment (TSPA) for the license application (LA) for the Yucca Mountain repository. This analysis report describes the development of biosphere dose conversion factors (BDCFs) for the groundwater exposure scenario, and the development of conversion factors for assessing compliance with the groundwater protection standard. A graphical representation of the documentation hierarchy for the ERMYN is presented in Figure 1-1. This figure shows the interrelationships among the products (i.e., analysis and model reports) developed for biosphere modeling and provides an understanding of how this analysis report contributes to biosphere modeling. This report is one of two reports that develop biosphere BDCFs, which are input parameters for the TSPA model. The ''Biosphere Model Report'' (BSC 2003 [DIRS 164186]) describes in detail the ERMYN conceptual model and mathematical model. The input parameter reports (BSC 2003 [DIRS 160964]; BSC 2003 [DIRS 160965]; BSC 2003 [DIRS 160976]; BSC 2003 [DIRS 161239]; BSC 2003 [DIRS 161241]) contain detailed description of the model input parameters. This report describes biosphere model calculations and their output, the BDCFs, for the groundwater exposure scenario. The objectives of this analysis are to develop BDCFs and conversion factors for the TSPA. The BDCFs will be used in performance assessment for calculating annual doses for a given concentration of radionuclides in groundwater. The conversion factors will be used for calculating gross alpha particle activity in groundwater and the annual dose from beta- and photon-emitting radionuclides.

  20. Preliminary dose assessment of the Chernobyl accident

    SciTech Connect

    Hull, A.P.

    1987-01-01

    From the major accident at Unit 4 of the Chernobyl nuclear power station, a plume of airborne radioactive fission products was initially carried northwesterly toward Poland, thence toward Scandinavia and into Central Europe. Reports of the levels of radioactivity in a variety of media and of external radiation levels were collected in the Department of Energy's Emergency Operations Center and compiled into a data bank. Portions of these and other data which were obtained directly from published and official reports were utilized to make a preliminary assessment of the extent and magnitude of the external dose to individuals downwind from Chernobyl. Radioactive /sup 131/I was the predominant fission product. The time of arrival of the plume and the maximum concentrations of /sup 131/I in air, vegetation and milk and the maximum reported depositions and external radiation levels have been tabulated country by country. A large amount of the total activity in the release was apparently carried to a significant elevation. The data suggest that in areas where rainfall occurred, deposition levels were from ten to one-hundred times those observed in nearby ''dry'' locations. Sufficient spectral data were obtained to establish average release fractions and to establish a reference spectra of the other nuclides in the release. Preliminary calculations indicated that the collective dose equivalent to the population in Scandinavia and Central Europe during the first year after the Chernobyl accident would be about 8 x 10/sup 6/ person-rem. From the Soviet report, it appears that a first year population dose of about 2 x 10/sup 7/ person-rem (2 x 10/sup 5/ Sv) will be received by the population who were downwind of Chernobyl within the U.S.S.R. during the accident and its subsequent releases over the following week. 32 refs., 14 figs., 20 tabs.

  1. Nominal Performance Biosphere Dose Conversion Factor Analysis

    SciTech Connect

    M. Wasiolek

    2004-09-08

    This analysis report is one of the technical reports containing documentation of the Environmental Radiation Model for Yucca Mountain, Nevada (ERMYN), a biosphere model supporting the Total System Performance Assessment (TSPA) for the license application (LA) for the Yucca Mountain repository. This analysis report describes the development of biosphere dose conversion factors (BDCFs) for the groundwater exposure scenario, and the development of conversion factors for assessing compliance with the groundwater protection standard. A graphical representation of the documentation hierarchy for the ERMYN is presented in Figure 1-1. This figure shows the interrelationships among the products (i.e., analysis and model reports) developed for biosphere modeling and provides an understanding of how this analysis report contributes to biosphere modeling. This report is one of two reports that develop biosphere BDCFs, which are input parameters for the TSPA-LA model. The ''Biosphere Model Report'' (BSC 2004 [DIRS 169460]) describes in detail the ERMYN conceptual model and mathematical model. The input parameter reports, shown to the right of the ''Biosphere Model Report'' in Figure 1-1, contain detailed description of the model input parameters, their development, and the relationship between the parameters and specific features events and processes (FEPs). This report describes biosphere model calculations and their output, the BDCFs, for the groundwater exposure scenario. The objectives of this analysis are to develop BDCFs for the groundwater exposure scenario for the three climate states considered in the TSPA-LA as well as conversion factors for evaluating compliance with the groundwater protection standard. The BDCFs will be used in performance assessment for calculating all-pathway annual doses for a given concentration of radionuclides in groundwater. The conversion factors will be used for calculating gross alpha particle activity in groundwater and the annual dose

  2. Energetic dose: Beyond fire and flint?

    USGS Publications Warehouse

    Linder, G.; Rattner, B.; Cohen, J.

    2000-01-01

    Nutritional and bioenergetic interactions influence exposure to environmental chemicals and may affect the risk realized when wildlife are exposed in the field. Here, food-chain analysis focuses on prairie voles (Microtus ochrogaster) and the evaluation of chemical risks associated with paraquat following 10-d dietary exposures. Reproductive effects were measured in 60-d trials that followed exposures to paraquat-tainted feed: control (untainted feed); 21 mg paraquat/kg feed; 63 mg paraquat/kg feed; and feed-restricted control (untainted feed restricted to 60% baseline consumption). Reproductive success was evaluated in control and treated breeding pairs, and a preliminary bioenergetics analysis was completed in parallel to derive exposure dose. Although reproductive performance differed among groups, feed-restriction appeared to be the dominant treatment effect observed in these 10-d feeding exposure/limited reproductive trials. Exposure dose ranged from 3.70-3.76 to 9.41-11.51 mg parquat/kg BW/day at 21 and 63 mg paraquat/kg feed stock exposures, respectively. Energetic doses as ug paraquat/kcal yielded preliminary estimates of energetic costs associated with paraquat exposure, and were similar within treatments for both sexes, ranging from 4.2-5.5 and 13.1-15.0 ug paraquat/kcal for voles exposed to 21 mg/kg feed stock and 63 mg/kg feed stock, respectively. Given the increasing likelihood that environmental chemicals will be found in wildlife habitat at 'acceptable levels', the critical role that wildlife nutrition plays in evaluating ecological risks should be fully integrated into the assessment process. Tools applied to the analysis of risk must gain higher resolution than the relatively crude methods we currently bring to the process.

  3. Risk of cancer subsequent to low-dose radiation

    SciTech Connect

    Warren, S.

    1980-01-01

    The author puts low dose irradiation risks in perspective using average background radiation doses for standards. He assailed irresponsible media coverage during the height of public interest in the Three-Mile Island Reactor incident. (PCS)

  4. 77 FR 12576 - Veterans' Advisory Board on Dose Reconstruction; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-01

    ... public presentations regarding dose reconstruction efforts related to the Fukushima incident in Japan and... the DoD Population of Interest Dose Reconstruction from the Fukushima incident in Japan'' by...

  5. Weighting of secondary radiations in organ dose calculations.

    PubMed

    Siiskonen, T; Tapiovaara, M

    2010-09-01

    The current system of dose quantities in radiological protection is based, in addition to the absorbed dose, on the concepts of equivalent dose and effective dose. This system has been developed mainly with uniform whole-body exposures in mind. Conceptual and practical problems arise when the system is applied to more general exposure situations where the radiation quality is altered within the human body. In this article these problems are discussed, using proton beam radiotherapy as a specific example, and a proposition is made that dose equivalent quantities should be used instead of equivalent doses when organ doses are of interest. The calculations of out-of-field organ doses in proton therapy show that the International Commission on Radiological Protection-prescribed use of the proton weighting factor generally leads to an underestimation of the stochastic risks, while the use of neutron weighting factors in the way as practised in the literature leads to a significant overestimation of these risks.

  6. List of Error-Prone Abbreviations, Symbols, and Dose Designations

    MedlinePlus

    ... unit dose (e.g., diltiazem 125 mg IV infusion “UD” misin- Use “as directed” terpreted as meaning to give the entire infusion as a unit [bolus] dose) Misinterpretation Correction Mistaken ...

  7. Wide-range radiation dose monitor

    DOEpatents

    Kopp, M.K.

    1984-09-20

    A radiation dose-rate monitor is provided which operates in a conventional linear mode for radiation in the 0 to 0.5 R/h range and utilizes a nonlinear mode of operation for sensing radiation from 0.5 R/h to over 500 R/h. The nonlinear mode is achieved by a feedback circuit which adjusts the high voltage bias of the proportional counter, and hence its gas gain, in accordance with the amount of radiation being monitored. This allows compression of readout onto a single scale over the range of 0 to greater than 500 R/h without scale switching operations.

  8. Wide-range radiation dose monitor

    DOEpatents

    Kopp, Manfred K.

    1986-01-01

    A radiation dose-rate monitor is provided which operates in a conventional linear mode for radiation in the 0 to 0.5 R/h range and utilizes a nonlinear mode of operation for sensing radiation from 0.5 R/h to over 500 R/h. The nonlinear mode is achieved by a feedback circuit which adjusts the high voltage bias of the proportional counter, and hence its gas gain, in accordance with the amount of radiation being monitored. This allows compression of readout onto a single scale over the range of 0 to greater than 500 R/h without scale switching operations.

  9. Lyophilization of unit dose pharmaceutical dosage forms.

    PubMed

    Thapa, P; Baillie, A J; Stevens, H N E

    2003-05-01

    A lyophilization process for a pharmaceutical unit dosage form was developed which comprised a container closed with an impermeable membrane pierced with one or more holes through which the material in the container can be lyophilized. The hole or holes in the membrane have to be sufficiently large to allow water vapor to escape but small to ensure that the material is kept within the container. Lyophilization from sealed, perforated, unit-dose package has shown to be feasible. The technique offers a novel convenient means of lyophilizing nonsterile products in their primary pack and increases the potential for the development of lyophilized formulations for nonparenteral applications.

  10. Quetiapine: dose-response relationship in schizophrenia.

    PubMed

    Sparshatt, Anna; Jones, Sarah; Taylor, David

    2008-01-01

    Quetiapine is a widely used second-generation antipsychotic that is effective in the treatment of schizophrenia and bipolar mania. In recent years, various publications have suggested the possibility that, in some patients, higher than licensed dosages are necessary for full therapeutic effect. A 'high-dose' theory of quetiapine activity has developed, leading many prescribers to disregard the formal upper limit of the quetiapine dosage range (750 or 800 mg/day, depending on local labelling). In this review, we examine the clinical and neuroimaging data relating to the use of quetiapine in acute exacerbations of schizophrenia. Fixed-dose efficacy studies of immediate-release (IR) quetiapine suggest dosages of quetiapine of 150-450 mg/day are more effective than placebo and no less effective than dosages of 600 or 750 mg/day. A fixed-dose study of extended-release quetiapine indicated that dosages of 600 and 800 mg/day were equally efficacious and numerically superior to 400 mg/day. Dosages of IR quetiapine averaging between 254 and 525 mg/day have been shown to be equivalent in efficacy to standard dosages of conventional and other atypical antipsychotics. Pooled data support these findings. Effectiveness studies using quetiapine in daily doses averaging between 565 and 653 mg revealed quetiapine to be somewhat less effective than some comparator drugs. Support for the use of high-dosage quetiapine (>800 mg/day) is very limited: case reports, albeit numerous, describe quetiapine as showing therapeutic effects only at dosages above the licensed range; some data suggest widespread use of higher dosages in practice; and neuroimaging data suggest inadequate dopamine receptor occupancy at standard dosages (although these findings may reflect the low affinity of quetiapine for dopamine receptors). Overall, robust controlled data strongly suggest that the standard dosage range for quetiapine is appropriate for clinical use. The balance of evidence does not support the

  11. Nominal Performance Biosphere Dose Conversion Factor Analysis

    SciTech Connect

    M.A. Wasiolek

    2005-04-28

    This analysis report is one of the technical reports containing documentation of the Environmental Radiation Model for Yucca Mountain, Nevada (ERMYN), a biosphere model supporting the Total System Performance Assessment (TSPA) for the license application (LA) for the Yucca Mountain repository. This analysis report describes the development of biosphere dose conversion factors (BDCFs) for the groundwater exposure scenario, and the development of conversion factors for assessing compliance with the groundwater protection standards. A graphical representation of the documentation hierarchy for the ERMYN is presented in Figure 1-1. This figure shows the interrelationships among the products (i.e., analysis and model reports) developed for biosphere modeling and provides an understanding of how this analysis report contributes to biosphere modeling. This report is one of two reports that develop BDCFs, which are input parameters for the TSPA-LA model. The ''Biosphere Model Report'' (BSC 2004 [DIRS 169460]) describes in detail the ERMYN conceptual model and mathematical model. The input parameter reports, shown to the right of the ''Biosphere Model Report'' in Figure 1-1, contain detailed description of the model input parameters, their development, and the relationship between the parameters and specific features events and processes (FEPs). This report describes biosphere model calculations and their output, the BDCFs, for the groundwater exposure scenario. This analysis receives direct input from the outputs of the ''Biosphere Model Report'' (BSC 2004 [DIRS 169460]) and the five analyses that develop parameter values for the biosphere model (BSC 2005 [DIRS 172827]; BSC 2004 [DIRS 169672]; BSC 2004 [DIRS 169673]; BSC 2004 [DIRS 169458]; BSC 2004 [DIRS 169459]). The results of this report are further analyzed in the ''Biosphere Dose Conversion Factor Importance and Sensitivity Analysis'' (Figure 1-1). The objectives of this analysis are to develop BDCFs for the

  12. [Low dose naltrexone for treatment of pain].

    PubMed

    Plesner, Karin Bruun; Vægter, Henrik Bjarke; Handberg, Gitte

    2015-10-01

    Recent years have seen an increasing interest in the use of low dose naltrexone (LDN) for off-label treatment of pain in diseases as fibromyalgia, multiple sclerosis and morbus Crohn. The evidence is poor, with only few randomized double-blind placebo-controlled studies. The studies currently available are reviewed in this paper. LDN could be a potentially useful drug in the future for the treatment of pain in fibromyalgia, but more studies are needed to verify that it is superior to placebo, and currently it cannot be recommended as first-line therapy. PMID:26509454

  13. Single dose dipyrone for acute postoperative pain

    PubMed Central

    Derry, Sheena; Faura, Clara; Edwards, Jayne; McQuay, Henry J; Moore, R Andrew

    2014-01-01

    Background Dipyrone (metamizole) is a non-steroidal anti-inflammatory drug used in some countries to treat pain (postoperative, colic, cancer, and migraine); it is banned in others because of an association with life-threatening blood agranulocytosis. This review updates a 2001 Cochrane review, and no relevant new studies were identified, but additional outcomes were sought. Objectives To assess the efficacy and adverse events of single dose dipyrone in acute postoperative pain. Search methods The earlier review searched CENTRAL, MEDLINE, EMBASE, LILACS and the Oxford Pain Relief Database to December 1999. For the update we searched CENTRAL, MEDLINE,EMBASE and LILACS to February 2010. Selection criteria Single dose, randomised, double-blind, placebo or active controlled trials of dipyrone for relief of established moderate to severe postoperative pain in adults. We included oral, rectal, intramuscular or intravenous administration of study drugs. Data collection and analysis Studies were assessed for methodological quality and data extracted by two review authors independently. Summed total pain relief over six hours (TOTPAR) was used to calculate the number of participants achieving at least 50% pain relief. Derived results were used to calculate, with 95% confidence intervals, relative benefit compared to placebo, and the number needed to treat (NNT) for one participant to experience at least 50% pain relief over six hours. Use and time to use of rescue medication were additional measures of efficacy. Information on adverse events and withdrawals was collected. Main results Fifteen studies tested mainly 500 mg oral dipyrone (173 participants), 2.5 g intravenous dipyrone (101), 2.5 g intramuscular dipyrone (99); fewer than 60 participants received any other dose. All studies used active controls (ibuprofen, paracetamol, aspirin, flurbiprofen, ketoprofen, dexketoprofen, ketorolac, pethidine, tramadol, suprofen); eight used placebo controls. Over 70% of participants

  14. Bioassay and dose measurement in UV disinfection.

    PubMed Central

    Qualls, R G; Johnson, J D

    1983-01-01

    A bioassay method was developed to measure the average intensity within a UV disinfection reactor. The survival of spores of Bacillus subtilis was determined as a function of UV dose to prepare a standard curve. Spores were added to unknown systems, and the survival rate was used to determine the average intensity. A modification was used for flow-through reactors by which spores were injected as a spike and collected at a known time after injection. A point source summation method for calculating intensity was verified by bioassay measurements in a simple cylinder. This calculation method was also applied to multiple-lamp reactors. PMID:6405690

  15. A generalized a priori dose uncertainty model of IMRT delivery.

    PubMed

    Jin, Hosang; Palta, Jatinder; Suh, Tae-Suk; Kim, Siyong

    2008-03-01

    Multileaf collimator-based intensity modulated radiation therapy (IMRT) is complex because each intensity modulated field consists of hundreds of subfields, each of which is associated with an intricate interplay of uncertainties. In this study, the authors have revised the previously introduced uncertainty model to provide an a priori accurate prediction of dose uncertainty during treatment planning in IMRT. In the previous model, the dose uncertainties were categorized into space-oriented dose uncertainty (SOU) and nonspace-oriented dose uncertainty (NOU). The revised model further divided the uncertainty sources into planning and delivery. SOU and NOU associated with a planning system were defined as inherent dose uncertainty. A convolution method with seven degrees of freedom was also newly applied to generalize the model for practical clinical cases. The model parameters were quantified through a set of measurements, accumulated routine quality assurance (QA) data, and peer-reviewed publications. The predicted uncertainty maps were compared with dose difference distributions between computations and 108 simple open-field measurements using a two-dimensional diode array detector to verify the validity of the model parameters and robustness of the generalized model. To examine the applicability of the model to overall dose uncertainty prediction in IMRT, a retrospective analysis of QA measurements using the diode array detector for 32 clinical IM fields was also performed. A scatter diagram and a correlation coefficient were employed to investigate a correlation of the predicted dose uncertainty distribution with the dose discrepancy distribution between calculation and delivery. In addition, a gamma test was performed to correlate failed regions in dose verification with the dose uncertainty map. The quantified model parameters well correlated the predicted dose uncertainty with the probable dose difference between calculations and measurements. It was visually

  16. Toward an organ based dose prescription method for the improved accuracy of murine dose in orthovoltage x-ray irradiators

    PubMed Central

    Belley, Matthew D.; Wang, Chu; Nguyen, Giao; Gunasingha, Rathnayaka; Chao, Nelson J.; Chen, Benny J.; Dewhirst, Mark W.; Yoshizumi, Terry T.

    2014-01-01

    Purpose: Accurate dosimetry is essential when irradiating mice to ensure that functional and molecular endpoints are well understood for the radiation dose delivered. Conventional methods of prescribing dose in mice involve the use of a single dose rate measurement and assume a uniform average dose throughout all organs of the entire mouse. Here, the authors report the individual average organ dose values for the irradiation of a 12, 23, and 33 g mouse on a 320 kVp x-ray irradiator and calculate the resulting error from using conventional dose prescription methods. Methods: Organ doses were simulated in the Geant4 application for tomographic emission toolkit using the MOBY mouse whole-body phantom. Dosimetry was performed for three beams utilizing filters A (1.65 mm Al), B (2.0 mm Al), and C (0.1 mm Cu + 2.5 mm Al), respectively. In addition, simulated x-ray spectra were validated with physical half-value layer measurements. Results: Average doses in soft-tissue organs were found to vary by as much as 23%–32% depending on the filter. Compared to filters A and B, filter C provided the hardest beam and had the lowest variation in soft-tissue average organ doses across all mouse sizes, with a difference of 23% for the median mouse size of 23 g. Conclusions: This work suggests a new dose prescription method in small animal dosimetry: it presents a departure from the conventional approach of assigning a single dose value for irradiation of mice to a more comprehensive approach of characterizing individual organ doses to minimize the error and uncertainty. In human radiation therapy, clinical treatment planning establishes the target dose as well as the dose distribution, however, this has generally not been done in small animal research. These results suggest that organ dose errors will be minimized by calibrating the dose rates for all filters, and using different dose rates for different organs. PMID:24593746

  17. Toward an organ based dose prescription method for the improved accuracy of murine dose in orthovoltage x-ray irradiators

    SciTech Connect

    Belley, Matthew D.; Wang, Chu; Nguyen, Giao; Gunasingha, Rathnayaka; Chao, Nelson J.; Chen, Benny J.; Dewhirst, Mark W.; Yoshizumi, Terry T.

    2014-03-15

    Purpose: Accurate dosimetry is essential when irradiating mice to ensure that functional and molecular endpoints are well understood for the radiation dose delivered. Conventional methods of prescribing dose in mice involve the use of a single dose rate measurement and assume a uniform average dose throughout all organs of the entire mouse. Here, the authors report the individual average organ dose values for the irradiation of a 12, 23, and 33 g mouse on a 320 kVp x-ray irradiator and calculate the resulting error from using conventional dose prescription methods. Methods: Organ doses were simulated in the Geant4 application for tomographic emission toolkit using the MOBY mouse whole-body phantom. Dosimetry was performed for three beams utilizing filters A (1.65 mm Al), B (2.0 mm Al), and C (0.1 mm Cu + 2.5 mm Al), respectively. In addition, simulated x-ray spectra were validated with physical half-value layer measurements. Results: Average doses in soft-tissue organs were found to vary by as much as 23%–32% depending on the filter. Compared to filters A and B, filter C provided the hardest beam and had the lowest variation in soft-tissue average organ doses across all mouse sizes, with a difference of 23% for the median mouse size of 23 g. Conclusions: This work suggests a new dose prescription method in small animal dosimetry: it presents a departure from the conventional approach of assigninga single dose value for irradiation of mice to a more comprehensive approach of characterizing individual organ doses to minimize the error and uncertainty. In human radiation therapy, clinical treatment planning establishes the target dose as well as the dose distribution, however, this has generally not been done in small animal research. These results suggest that organ dose errors will be minimized by calibrating the dose rates for all filters, and using different dose rates for different organs.

  18. Experimental evaluation of actual delivered dose using mega-voltage cone-beam CT and direct point dose measurement

    SciTech Connect

    Matsubara, Kana; Kohno, Ryosuke; Nishioka, Shie; Shibuya, Toshiyuki; Ariji, Takaki; Akimoto, Tetsuo; Saitoh, Hidetoshi

    2013-07-01

    Radiation therapy in patients is planned by using computed tomography (CT) images acquired before start of the treatment course. Here, tumor shrinkage or weight loss or both, which are common during the treatment course for patients with head-and-neck (H and N) cancer, causes unexpected differences from the plan, as well as dose uncertainty with the daily positional error of patients. For accurate clinical evaluation, it is essential to identify these anatomical changes and daily positional errors, as well as consequent dosimetric changes. To evaluate the actual delivered dose, the authors proposed direct dose measurement and dose calculation with mega-voltage cone-beam CT (MVCBCT). The purpose of the present study was to experimentally evaluate dose calculation by MVCBCT. Furthermore, actual delivered dose was evaluated directly with accurate phantom setup. Because MVCBCT has CT-number variation, even when the analyzed object has a uniform density, a specific and simple CT-number correction method was developed and applied for the H and N site of a RANDO phantom. Dose distributions were calculated with the corrected MVCBCT images of a cylindrical polymethyl methacrylate phantom. Treatment processes from planning to beam delivery were performed for the H and N site of the RANDO phantom. The image-guided radiation therapy procedure was utilized for the phantom setup to improve measurement reliability. The calculated dose in the RANDO phantom was compared to the measured dose obtained by metal-oxide-semiconductor field-effect transistor detectors. In the polymethyl methacrylate phantom, the calculated and measured doses agreed within about +3%. In the RANDO phantom, the dose difference was less than +5%. The calculated dose based on simulation-CT agreed with the measured dose within±3%, even in the region with a high dose gradient. The actual delivered dose was successfully determined by dose calculation with MVCBCT, and the point dose measurement with the image

  19. Dose and dose rate effects of whole-body gamma-irradiation: I. Lymphocytes and lymphoid organs

    NASA Technical Reports Server (NTRS)

    Pecaut, M. J.; Nelson, G. A.; Gridley, D. S.

    2001-01-01

    The major goal of part I of this study was to compare varying doses and dose rates of whole-body gamma-radiation on lymphoid cells and organs. C57BL/6 mice (n = 75) were exposed to 0, 0.5, 1.5, and 3.0 Gy gamma-rays (60Co) at 1 cGy/min (low-dose rate, LDR) and 80 cGy/min (high-dose rate, HDR) and euthanized 4 days later. A significant dose-dependent loss of spleen mass was observed with both LDR and HDR irradiation; for the thymus this was true only with HDR. Decreasing leukocyte and lymphocyte numbers occurred with increasing dose in blood and spleen at both dose rates. The numbers (not percentages) of CD3+ T lymphocytes decreased in the blood in a dose-dependent manner at both HDR and LDR. Splenic T cell counts decreased with dose only in HDR groups; percentages increased with dose at both dose rates. Dose-dependent decreases occurred in CD4+ T helper and CD8+ T cytotoxic cell counts at HDR and LDR. In the blood the percentages of CD4+ cells increased with increasing dose at both dose rates, whereas in the spleen the counts decreased only in the HDR groups. The percentages of the CD8+ population remained stable in both blood and spleen. CD19+ B cell counts and percentages in both compartments declined markedly with increasing HDR and LDR radiation. NK1.1+ natural killer cell numbers and proportions remained relatively stable. Overall, these data indicate that the observed changes were highly dependent on the dose, but not dose rate, and that cells in the spleen are more affected by dose rate than those in blood. The results also suggest that the response of lymphocytes in different body compartments may be variable.

  20. Dose reconstruction for intensity-modulated radiation therapy using a non-iterative method and portal dose image

    NASA Astrophysics Data System (ADS)

    Yeo, Inhwan Jason; Jung, Jae Won; Chew, Meng; Kim, Jong Oh; Wang, Brian; Di Biase, Steven; Zhu, Yunping; Lee, Dohyung

    2009-09-01

    A straightforward and accurate method was developed to verify the delivery of intensity-modulated radiation therapy (IMRT) and to reconstruct the dose in a patient. The method is based on a computational algorithm that linearly describes the physical relationship between beamlets and dose-scoring voxels in a patient and the dose image from an electronic portal imaging device (EPID). The relationship is expressed in the form of dose response functions (responses) that are quantified using Monte Carlo (MC) particle transport techniques. From the dose information measured by the EPID the received patient dose is reconstructed by inversely solving the algorithm. The unique and novel non-iterative feature of this algorithm sets it apart from many existing dose reconstruction methods in the literature. This study presents the algorithm in detail and validates it experimentally for open and IMRT fields. Responses were first calculated for each beamlet of the selected fields by MC simulation. In-phantom and exit film dosimetry were performed on a flat phantom. Using the calculated responses and the algorithm, the exit film dose was used to inversely reconstruct the in-phantom dose, which was then compared with the measured in-phantom dose. The dose comparison in the phantom for all irradiated fields showed a pass rate of higher than 90% dose points given the criteria of dose difference of 3% and distance to agreement of 3 mm.

  1. Optimizing CT radiation dose based on patient size and image quality: the size-specific dose estimate method.

    PubMed

    Larson, David B

    2014-10-01

    The principle of ALARA (dose as low as reasonably achievable) calls for dose optimization rather than dose reduction, per se. Optimization of CT radiation dose is accomplished by producing images of acceptable diagnostic image quality using the lowest dose method available. Because it is image quality that constrains the dose, CT dose optimization is primarily a problem of image quality rather than radiation dose. Therefore, the primary focus in CT radiation dose optimization should be on image quality. However, no reliable direct measure of image quality has been developed for routine clinical practice. Until such measures become available, size-specific dose estimates (SSDE) can be used as a reasonable image-quality estimate. The SSDE method of radiation dose optimization for CT abdomen and pelvis consists of plotting SSDE for a sample of examinations as a function of patient size, establishing an SSDE threshold curve based on radiologists' assessment of image quality, and modifying protocols to consistently produce doses that are slightly above the threshold SSDE curve. Challenges in operationalizing CT radiation dose optimization include data gathering and monitoring, managing the complexities of the numerous protocols, scanners and operators, and understanding the relationship of the automated tube current modulation (ATCM) parameters to image quality. Because CT manufacturers currently maintain their ATCM algorithms as secret for proprietary reasons, prospective modeling of SSDE for patient populations is not possible without reverse engineering the ATCM algorithm and, hence, optimization by this method requires a trial-and-error approach.

  2. Eye lens dosimetry in interventional cardiology: results of staff dose measurements and link to patient dose levels.

    PubMed

    Antic, V; Ciraj-Bjelac, O; Rehani, M; Aleksandric, S; Arandjic, D; Ostojic, M

    2013-01-01

    Workers involved in interventional cardiology procedures receive high eye lens dose if protection is not used. Currently, there is no suitable method for routine use for the measurement of eye dose. Since most angiography machines are equipped with suitable patient dosemeters, deriving factors linking staff eye doses to the patient doses can be helpful. In this study the patient kerma-area product, cumulative dose at an interventional reference point and eye dose in terms of Hp(3) of the cardiologists, nurses and radiographers for interventional cardiology procedures have been measured. Correlations between the patient dose and the staff eye dose were obtained. The mean eye dose was 121 µSv for the first operator, 33 µSv for the second operator/nurse and 12 µSv for radiographer. Normalised eye lens doses per unit kerma-area product were 0.94 µSv Gy⁻¹ cm⁻² for the first operator, 0.33 µSv Gy⁻¹ cm⁻² for the second operator/nurse and 0.16 µSv Gy⁻¹ cm⁻² for radiographers. Statistical analysis indicated that there is a weak but significant (p < 0.01) correlation between the eye dose and the kerma-area product for all three staff categories. These values are based on a local practice and may provide useful reference for other studies for validation and for wider utilisation in assessing the eye dose using patient dose values. PMID:23152146

  3. Hanford Environmental Dose Reconstruction Project monthly report, May 1992

    SciTech Connect

    Finch, S.M.; McMakin, A.H.

    1992-08-01

    The objective of the Hanford Environmental Dose Reconstruction Project is to estimate the radiation doses that individuals and populations could have received from nuclear operations at Hanford since 1944. The project is divided into the following technical tasks. These task correspond to the path radionuclides followed, from release to impact on humans (dose estimates): Source terms, environmental transport, environmental monitoring data, demography, food consumption, and agriculture, and environmental pathways and dose estimates.

  4. Hanford Environmental Dose Reconstruction Project monthly report, May 1992

    SciTech Connect

    Finch, S.M.; McMakin, A.H.

    1992-01-01

    The objective of the Hanford Environmental Dose Reconstruction Project is to estimate the radiation doses that individuals and populations could have received from nuclear operations at Hanford since 1944. The project is divided into the following technical tasks. These task correspond to the path radionuclides followed, from release to impact on humans (dose estimates): Source terms, environmental transport, environmental monitoring data, demography, food consumption, and agriculture, and environmental pathways and dose estimates.

  5. Hanford Environmental Dose Reconstruction Project. Monthly report, November 1991

    SciTech Connect

    Finch, S.M.; McMakin, A.H.

    1991-12-31

    The objective of the Hanford Environmental Dose Reconstruction Project is to estimate the radiation doses that individuals and populations could have received from nuclear operations at Hanford since 1944. The project is divided into the following technical tasks. These tasks correspond to the path radionuclides followed, from release to impact on humans (dose estimates): Source terms; environmental transport environmental monitoring data; demographics, agriculture, food habits; environmental pathways and dose estimates.

  6. Budget constraint and vaccine dosing: a mathematical modelling exercise

    PubMed Central

    2014-01-01

    Background Increasing the number of vaccine doses may potentially improve overall efficacy. Decision-makers need information about choosing the most efficient dose schedule to maximise the total health gain of a population when operating under a constrained budget. The objective of this study is to identify the most efficient vaccine dosing schedule within a fixed vaccination budget from a healthcare payer perspective. Methods An optimisation model is developed in which maximizing the disease reduction is the functional objective and the constraint is the vaccination budget. The model allows variation in vaccination dosing numbers, in cost difference per dose, in vaccine coverage rate, and in vaccine efficacy. We apply the model using the monovalent rotavirus vaccine as an example. Results With a fixed budget, a 2-dose schedule for vaccination against rotavirus infection with the monovalent vaccine results in a larger reduction in disease episodes than a 3-dose scheme with the same vaccine under most circumstances. A 3-dose schedule would only be better under certain conditions: a cost reduction of >26% per dose, combined with vaccine efficacy improvement of ≥5% and a target coverage rate of 75%. Substantial interaction is observed between cost reduction per dose, vaccine coverage rate, and increased vaccine efficacy. Sensitivity analysis shows that the conditions required for a 3-dose strategy to be better than a 2-dose strategy may seldom occur when the budget is fixed. The model does not consider vaccine herd effect, precise timing for additional doses, or the effect of natural immunity development. Conclusions Under budget constraint, optimisation modelling is a helpful tool for a decision-maker selecting the most efficient vaccination dosing schedule. The low dosing scheme could be the optimal option to consider under the many scenarios tested. The model can be applied under many different circumstances of changing dosing schemes with single or multiple

  7. Altitude-dependent dose conversion coefficients in EPCARD.

    PubMed

    Mares, V; Leuthold, G

    2007-01-01

    Conversion coefficients that depend on altitude, cutoff rigidity and solar activity were developed and introduced in the European Program Package for the Calculation of Aviation Route Doses (EPCARD). A set of specially chosen long-distance flights were used to compare the new particle effective doses and ambient dose equivalents with those calculated using the previous averaged constant conversion coefficients. The data show very good agreement to each other. The dose differences for the chosen flights are <11%, for typical civil flight levels.

  8. Hanford Environmental Dose Reconstruction Project monthly report, August 1992

    SciTech Connect

    McMakin, A.H.; Cannon, S.D.; Finch, S.M.

    1992-01-01

    The objective of the Hanford Environmental Dose Reconstruction (HEDR) Project is to estimate the radiation doses that individuals and populations could have received from nuclear operations at Hanford since 1944. The project is divided into the following technical tasks. These tasks correspond to the path radionuclides followed from release to impact on humans (dose estimates): source terms; environmental transport; environmental monitoring data; demography; food consumption; and agriculture; and environmental pathway and dose estimates.

  9. Hanford Environmental Dose Reconstruction Project monthly report, August 1992

    SciTech Connect

    McMakin, A.H.; Cannon, S.D.; Finch, S.M.

    1992-09-01

    The objective of the Hanford Environmental Dose Reconstruction (HEDR) Project is to estimate the radiation doses that individuals and populations could have received from nuclear operations at Hanford since 1944. The project is divided into the following technical tasks. These tasks correspond to the path radionuclides followed from release to impact on humans (dose estimates): source terms; environmental transport; environmental monitoring data; demography; food consumption; and agriculture; and environmental pathway and dose estimates.

  10. Hanford Environmental Dose Reconstruction Project monthly report, February 1993

    SciTech Connect

    Cannon, S.D.; Finch, S.M.

    1993-01-01

    The objective of the Hanford Environmental Dose Reconstruction (HEDR) Project Is to estimate the radiation doses that individuals and populations could have received from nuclear operations at Hanford since 1944. The project is divided into the following technical tasks. These tasks correspond to the path radionuclides followed from release to impact on humans (dose estimates): Source Terms; Environmental Transport; Environmental Monitoring Data; Demography, Food Consumption, and Agriculture; and Environmental Pathways and Dose Estimates.

  11. Hanford Environmental Dose Reconstruction Project monthly report, February 1993

    SciTech Connect

    Cannon, S.D.; Finch, S.M.

    1993-03-01

    The objective of the Hanford Environmental Dose Reconstruction (HEDR) Project Is to estimate the radiation doses that individuals and populations could have received from nuclear operations at Hanford since 1944. The project is divided into the following technical tasks. These tasks correspond to the path radionuclides followed from release to impact on humans (dose estimates): Source Terms; Environmental Transport; Environmental Monitoring Data; Demography, Food Consumption, and Agriculture; and Environmental Pathways and Dose Estimates.

  12. Hanford Environmental Dose Reconstruction Project. Monthly report, January 1992

    SciTech Connect

    Finch, S.M.; McMakin, A.H.

    1992-05-01

    The objective of the Hanford Environmental Dose Reconstruction Project is to estimate the radiation doses that individuals and populations could have received from nuclear operations at Hanford since 1944. The project is divided into the following technical tasks. These tasks correspond to the path radionuclides followed, from release to impact on humans (dose estimates): Source Terms, Environmental Transport, Environmental Monitoring Data, Demography, Food Consumption, and Agriculture, and Environmental Pathways and Dose Estimates.

  13. Maximizing the biological effect of proton dose delivered with scanned beams via inhomogeneous daily dose distributions

    SciTech Connect

    Zeng Chuan; Giantsoudi, Drosoula; Grassberger, Clemens; Goldberg, Saveli; Niemierko, Andrzej; Paganetti, Harald; Efstathiou, Jason A.; Trofimov, Alexei

    2013-05-15

    Purpose: Biological effect of radiation can be enhanced with hypofractionation, localized dose escalation, and, in particle therapy, with optimized distribution of linear energy transfer (LET). The authors describe a method to construct inhomogeneous fractional dose (IFD) distributions, and evaluate the potential gain in the therapeutic effect from their delivery in proton therapy delivered by pencil beam scanning. Methods: For 13 cases of prostate cancer, the authors considered hypofractionated courses of 60 Gy delivered in 20 fractions. (All doses denoted in Gy include the proton's mean relative biological effectiveness (RBE) of 1.1.) Two types of plans were optimized using two opposed lateral beams to deliver a uniform dose of 3 Gy per fraction to the target by scanning: (1) in conventional full-target plans (FTP), each beam irradiated the entire gland, (2) in split-target plans (STP), beams irradiated only the respective proximal hemispheres (prostate split sagittally). Inverse planning yielded intensity maps, in which discrete position control points of the scanned beam (spots) were assigned optimized intensity values. FTP plans preferentially required a higher intensity of spots in the distal part of the target, while STP, by design, employed proximal spots. To evaluate the utility of IFD delivery, IFD plans were generated by rearranging the spot intensities from FTP or STP intensity maps, separately as well as combined using a variety of mixing weights. IFD courses were designed so that, in alternating fractions, one of the hemispheres of the prostate would receive a dose boost and the other receive a lower dose, while the total physical dose from the IFD course was roughly uniform across the prostate. IFD plans were normalized so that the equivalent uniform dose (EUD) of rectum and bladder did not increase, compared to the baseline FTP plan, which irradiated the prostate uniformly in every fraction. An EUD-based model was then applied to estimate tumor

  14. SU-E-T-636: Investigation of Dose Variation in High Dose Radiation Brachytherapy

    SciTech Connect

    Hyvarinen, M; Leventouri, T; Casey, C; Long, S; Pella, S; Dumitru, N; Herrera, R

    2014-06-15

    Purpose: The purpose of this study is to revise most of the HDR types of treatments with their applicators and their localization challenges. Since every millimeter of misplacement counts the study will look into the necessity of increasing the immobilization for several types of applicators Methods: The study took over 136 plans generated by the treatment planning system (TPS) looking into the applicator's placement in regard to the organs at risk (OR) and simulated the three possible displacements at the hottest dose point on the critical organ for several accessories to evaluate the variation of the delivered dose at the point due to the displacement. Results: Significant dose variation was obtained for the Contura, Savi, MLM and Prostate applicators. Conclusion: This study data indicates that an improvement of the immobilization devices for HDR is absolutely necessary. Better applicator fixation devices are required too. Developing new immobilization devices for all the applicators is recommended. Florida Atlantic University may provide Travel reimbursements.

  15. Population Pharmacokinetic Assessment and Pharmacodynamic Implications of Pediatric Cefepime Dosing for Susceptible-Dose-Dependent Organisms

    PubMed Central

    Shoji, Kensuke; Bradley, John S.; Reed, Michael D.; van den Anker, John N.; Domonoske, Christine

    2016-01-01

    The Clinical and Laboratory Standards Institute (CLSI) revised cefepime (CFP) breakpoints for Enterobacteriaceae in 2014, and MICs of 4 and 8 μg/ml were reclassified as susceptible-dose dependent (SDD). Pediatric dosing to provide therapeutic concentrations against SDD organisms has not been defined. CFP pharmacokinetics (PK) data from published pediatric studies were analyzed. Population PK parameters were determined using NONMEM, and Monte Carlo simulation was performed to determine an appropriate CFP dosage regimen for SDD organisms in children. A total of 664 CFP plasma concentrations from 91 neonates, infants, and children were included in this analysis. The median patient age was 1.0 month (interquartile range [IQR], 0.2 to 11.2 months). Serum creatinine (SCR) and postmenstrual age (PMA) were covariates in the final PK model. Simulations indicated that CFP dosing at 50 mg/kg every 8 h (q8h) (as 0.5-h intravenous [i.v.] infusions) will maintain free-CFP concentrations in serum of >4 and 8 μg/ml for >60% of the dose interval in 87.1% and 68.6% of pediatric patients (age, ≥30 days), respectively, and extending the i.v. infusion duration to 3 h results in 92.3% of patients with free-CFP levels above 8 μg/ml for >60% of the dose interval. CFP clearance (CL) is significantly correlated with PMA and SCR. A dose of 50 mg/kg of CFP every 8 to 12 h does not achieve adequate serum exposure for older children with serious infections caused by Gram-negative bacilli with a MIC of 8 μg/ml. Prolonged i.v. infusions may be useful for this population. PMID:26810655

  16. 10 CFR 20.2104 - Determination of prior occupational dose.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 1 2012-01-01 2012-01-01 false Determination of prior occupational dose. 20.2104 Section....2104 Determination of prior occupational dose. (a) For each individual who is likely to receive an annual occupational dose requiring monitoring under § 20.1502, the licensee shall determine...

  17. 10 CFR 20.1201 - Occupational dose limits for adults.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 1 2012-01-01 2012-01-01 false Occupational dose limits for adults. 20.1201 Section 20.1201 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Occupational Dose Limits § 20.1201 Occupational dose limits for adults. (a) The licensee shall control the...

  18. In vivo skin dose measurement in breast conformal radiotherapy

    PubMed Central

    Soleymanifard, Shokouhozaman; Noghreiyan, Atefeh Vejdani; Ghorbani, Mahdi; Jamali, Farideh; Davenport, David

    2016-01-01

    Aim of the study Accurate skin dose assessment is necessary during breast radiotherapy to assure that the skin dose is below the tolerance level and is sufficient to prevent tumour recurrence. The aim of the current study is to measure the skin dose and to evaluate the geometrical/anatomical parameters that affect it. Material and methods Forty patients were simulated by TIGRT treatment planning system and treated with two tangential fields of 6 MV photon beam. Wedge filters were used to homogenise dose distribution for 11 patients. Skin dose was measured by thermoluminescent dosimeters (TLD-100) and the effects of beam incident angle, thickness of irradiated region, and beam entry separation on the skin dose were analysed. Results Average skin dose in treatment course of 50 Gy to the clinical target volume (CTV) was 36.65 Gy. The corresponding dose values for patients who were treated with and without wedge filter were 35.65 and 37.20 Gy, respectively. It was determined that the beam angle affected the average skin dose while the thickness of the irradiated region and the beam entry separation did not affect dose. Since the skin dose measured in this study was lower than the amount required to prevent tumour recurrence, application of bolus material in part of the treatment course is suggested for post-mastectomy advanced breast radiotherapy. It is more important when wedge filters are applied to homogenize dose distribution. PMID:27358592

  19. 10 CFR 835.207 - Occupational dose limits for minors.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 4 2011-01-01 2011-01-01 false Occupational dose limits for minors. 835.207 Section 835.207 Energy DEPARTMENT OF ENERGY OCCUPATIONAL RADIATION PROTECTION Standards for Internal and External Exposure § 835.207 Occupational dose limits for minors. The dose limits for minors occupationally...

  20. 10 CFR 835.207 - Occupational dose limits for minors.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Occupational dose limits for minors. 835.207 Section 835.207 Energy DEPARTMENT OF ENERGY OCCUPATIONAL RADIATION PROTECTION Standards for Internal and External Exposure § 835.207 Occupational dose limits for minors. The dose limits for minors occupationally...

  1. 10 CFR 20.2104 - Determination of prior occupational dose.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 1 2011-01-01 2011-01-01 false Determination of prior occupational dose. 20.2104 Section....2104 Determination of prior occupational dose. (a) For each individual who is likely to receive an annual occupational dose requiring monitoring under § 20.1502, the licensee shall determine...

  2. 10 CFR 20.1201 - Occupational dose limits for adults.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 1 2011-01-01 2011-01-01 false Occupational dose limits for adults. 20.1201 Section 20.1201 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Occupational Dose Limits § 20.1201 Occupational dose limits for adults. (a) The licensee shall control the...

  3. 10 CFR 835.207 - Occupational dose limits for minors.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 4 2013-01-01 2013-01-01 false Occupational dose limits for minors. 835.207 Section 835.207 Energy DEPARTMENT OF ENERGY OCCUPATIONAL RADIATION PROTECTION Standards for Internal and External Exposure § 835.207 Occupational dose limits for minors. The dose limits for minors occupationally...

  4. 10 CFR 835.207 - Occupational dose limits for minors.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 4 2012-01-01 2012-01-01 false Occupational dose limits for minors. 835.207 Section 835.207 Energy DEPARTMENT OF ENERGY OCCUPATIONAL RADIATION PROTECTION Standards for Internal and External Exposure § 835.207 Occupational dose limits for minors. The dose limits for minors occupationally...

  5. 10 CFR 20.2104 - Determination of prior occupational dose.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 1 2013-01-01 2013-01-01 false Determination of prior occupational dose. 20.2104 Section....2104 Determination of prior occupational dose. (a) For each individual who is likely to receive an annual occupational dose requiring monitoring under § 20.1502, the licensee shall determine...

  6. 10 CFR 20.2104 - Determination of prior occupational dose.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 1 2014-01-01 2014-01-01 false Determination of prior occupational dose. 20.2104 Section....2104 Determination of prior occupational dose. (a) For each individual who is likely to receive an annual occupational dose requiring monitoring under § 20.1502, the licensee shall determine...

  7. 10 CFR 20.1201 - Occupational dose limits for adults.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 1 2013-01-01 2013-01-01 false Occupational dose limits for adults. 20.1201 Section 20.1201 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Occupational Dose Limits § 20.1201 Occupational dose limits for adults. (a) The licensee shall control the...

  8. 10 CFR 835.207 - Occupational dose limits for minors.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 4 2014-01-01 2014-01-01 false Occupational dose limits for minors. 835.207 Section 835.207 Energy DEPARTMENT OF ENERGY OCCUPATIONAL RADIATION PROTECTION Standards for Internal and External Exposure § 835.207 Occupational dose limits for minors. The dose limits for minors occupationally...

  9. 10 CFR 20.2104 - Determination of prior occupational dose.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Determination of prior occupational dose. 20.2104 Section....2104 Determination of prior occupational dose. (a) For each individual who is likely to receive an annual occupational dose requiring monitoring under § 20.1502, the licensee shall determine...

  10. 10 CFR 20.1201 - Occupational dose limits for adults.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 1 2014-01-01 2014-01-01 false Occupational dose limits for adults. 20.1201 Section 20.1201 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Occupational Dose Limits § 20.1201 Occupational dose limits for adults. (a) The licensee shall control the...

  11. Calculation of dose conversion factors for thoron decay products.

    PubMed

    Ishikawa, Tetsuo; Tokonami, Shinji; Nemeth, Csaba

    2007-12-01

    The dose conversion factors for short-lived thoron decay products were calculated using a dosimetric approach. The calculations were based on a computer program LUDEP, which implements the ICRP 66 respiratory tract model. The dose per equilibrium equivalent concentration for thoron (EETC) was calculated with respect to (1) equivalent dose to each region of the lung tissues (bronchial, bronchiolar and alveolar), (2) weighted equivalent dose to organs other than lung, and (3) effective dose. The calculations indicated that (1) the most exposed region of the lung tissues was the bronchial for the unattached fraction and the bronchiolar for the attached fraction, (2) the effective dose is dominated by the contribution of lung dose, and (3) the effective dose per EETC was about four times larger than the effective dose per equilibrium equivalent concentration for radon (EERC). The calculated dose conversion factors were applied to the comparative dosimetry for some thoron-enhanced areas where the EERC and EETC have been measured. In the case of a spa in Japan, the dose from thoron decay products was larger than the dose from radon decay products.

  12. 10 CFR 20.1004 - Units of radiation dose.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 1 2012-01-01 2012-01-01 false Units of radiation dose. 20.1004 Section 20.1004 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION General Provisions § 20.1004 Units of radiation dose. (a) Definitions. As used in this part, the units of radiation dose are:...

  13. 10 CFR 20.1004 - Units of radiation dose.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 1 2014-01-01 2014-01-01 false Units of radiation dose. 20.1004 Section 20.1004 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION General Provisions § 20.1004 Units of radiation dose. (a) Definitions. As used in this part, the units of radiation dose are:...

  14. 10 CFR 20.1004 - Units of radiation dose.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 1 2013-01-01 2013-01-01 false Units of radiation dose. 20.1004 Section 20.1004 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION General Provisions § 20.1004 Units of radiation dose. (a) Definitions. As used in this part, the units of radiation dose are:...

  15. OCCUPATIONAL DOSE ASSESSMENT IN INTERVENTIONAL CARDIOLOGY IN SERBIA.

    PubMed

    Kaljevic, J; Ciraj-Bjelac, O; Stankovic, J; Arandjic, D; Bozovic, P; Antic, V

    2016-09-01

    The objective of this work is to assess the occupational dose in interventional cardiology in a large hospital in Belgrade, Serbia. A double-dosimetry method was applied for the estimation of whole-body dose, using thermoluminescent dosemeters, calibrated in terms of the personal dose equivalent Hp(10). Besides the double-dosimetry method, eye dose was also estimated by means of measuring ambient dose equivalent, H*(10), and doses per procedure were reported. Doses were assessed for 13 physicians, 6 nurses and 10 radiographers, for 2 consequent years. The maximum annual effective dose assessed was 4.3, 2.1 and 1.3 mSv for physicians, nurses and radiographers, respectively. The maximum doses recorded by the dosemeter worn at the collar level (over the apron) were 16.8, 11.9 and 4.5 mSv, respectively. This value was used for the eye lens dose assessment. Estimated doses are in accordance with or higher than annual dose limits for the occupational exposure. PMID:26464526

  16. Single dose NTBC-treatment of hereditary tyrosinemia type I.

    PubMed

    Schlune, A; Thimm, E; Herebian, D; Spiekerkoetter, U

    2012-09-01

    NTBC (2-(2-nitro-4-trifluoromethylbenzoyl)-1,3cyclohexanedione) is the mainstay of treatment in tyrosinemia type 1 (HT 1). The current recommendation is to divide the total daily dose of NTBC into two doses. We monitored the plasma NTBC concentrations in a series of seven patients who were changed from multiple divided doses to a single daily dose of NTBC. Two additional patients were started on a single daily dose of NTBC after the diagnosis of HT 1 was established. In three patients, NTBC kinetics were performed over 6 and 24 hours, respectively. The use of multiple divided doses or a single daily dose did not significantly affect plasma NTBC concentrations or the mean daily dose needed to attain therapeutic plasma NTBC concentrations. Moreover, kinetic studies demonstrated that plasma NTBC concentrations were completely stable over a period of 24 hours with a single dose regimen, as expected given the known NTBC plasma half life of 54 hours. Although these preliminary results need to be confirmed in more patients, our findings show that administration of NTBC in a single daily dose may be as effective as a multiple-dose regimen in reaching therapeutic plasma NTBC concentrations and suppressing succinylacetone formation in patients with HT 1. In fact, single dose treatment may increase patients' compliance with the drug treatment and improve metabolic control.

  17. Reducing CT dose in myocardial perfusion SPECT/CT.

    PubMed

    O'Shaughnessy, Emma; Dixon, Kat L

    2015-11-01

    The aim of this study was to reduce the radiation dose arising from computed tomography (CT) attenuation correction to single photon emission computed tomography myocardial perfusion imaging studies without adversely affecting its accuracy. Using the Perspex CTDI phantom with the Xi detector to measure dose, CT scans were acquired using the Siemens Symbia T over the full range of CT settings available. Using the default setting 'AECmean', the measured dose at the centre of the phantom was 1.68 mGy and the breast dose from the scout view was 0.30 mGy. The lowest dose was achieved using the dose modulation setting in which the doses were reduced to 1.21 mGy and undetectable (<0.01 mGy), respectively. To observe the effect of changing these settings, 30 patients received a stress scan with default CT settings and a rest scan utilizing single photon emission computed tomography-guided CT and the dose modulation CT settings. Results showed a mean effective dose reduction of 23.6%. The dose reduction was greatest for larger patients, with the largest dose reduction for one patient being 72%. There was no apparent difference in attenuation correction between the two sets of resultant images. These new lower-dose settings are now applied to all clinical myocardial perfusion imaging studies. PMID:26302461

  18. Ingestion of Nevada Test Site Fallout: Internal dose estimates

    SciTech Connect

    Whicker, F.W.; Kirchner, T.B.; Anspaugh, L.R.

    1996-10-01

    This paper summarizes individual and collective dose estimates for the internal organs of hypothetical yet representative residents of selected communities that received measurable fallout from nuclear detonations at the Nevada Test Site. The doses, which resulted from ingestion of local and regional food products contaminated with over 20 radionuclides, were estimated with use of the PATHWAY food-chain-transport model to provide estimates of central tendency and uncertainty. The thyroid gland received much higher doses than other internal organs and tissues. In a avery few cases, infants might have received thyroid doses in excess of 1 Gy, depending on location, diet, and timing of fallout. {sup 131}I was the primary thyroid dose contributor, and fresh milk was the main exposure pathway. With the exception of the thyroid, organ doses from the ingestion pathway were much smaller (<3%) than those from external gamma exposure to deposited fallout. Doses to residents living closest to the Nevada Test Site were contributed mainly by a few fallout events; doses to more distantly located people were generally smaller, but a greater number of events provided measurable contributions. The effectiveness of different fallout events in producing internal organ doses through ingestion varied dramatically with seasonal timing of the test, with maximum dose per unit fallout occurring for early summer depositions when milk cows were on pasture and fresh, local vegetables were used. Within specific communities, internal doses differed by age, sex, and lifestyle. Collective internal dose estimates for specific geographic areas are provided.

  19. 32 CFR 218.4 - Dose estimate reporting standards.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 2 2010-07-01 2010-07-01 false Dose estimate reporting standards. 218.4 Section... ATMOSPHERIC NUCLEAR TEST PROGRAM (1945-1962) § 218.4 Dose estimate reporting standards. The following minimum standards for reporting dose estimates shall be uniformly applied by the Military Services when...

  20. 10 CFR 20.1201 - Occupational dose limits for adults.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Occupational dose limits for adults. 20.1201 Section 20... Limits § 20.1201 Occupational dose limits for adults. (a) The licensee shall control the occupational dose to individual adults, except for planned special exposures under § 20.1206, to the following...

  1. Total dose performance of radiation hardened voltage regulators and references

    NASA Technical Reports Server (NTRS)

    McClure, S.; Gorelick, J.; Pease, R.; Rax, B.; Ladbury, R.

    2001-01-01

    Total dose test of commercially available radiation hardened bipolar voltage regulators and references show reduced sensitivity to dose rate and varying sensitivity to bias under pressure. Behavior of critical parameters in different dose rate and bias conditions is compared and the impact to hardness assurance methodology is discussed.

  2. Electron paramagnetic resonance in irradiated fingernails: variability of dose dependence and possibilities of initial dose assessment.

    PubMed

    Reyes, R A; Romanyukha, Alexander; Olsen, C; Trompier, F; Benevides, L A

    2009-08-01

    The results of electron paramagnetic resonance (EPR) measurements in irradiated fingernails are presented. In total, 83 samples of different fingernails were studied. Five different groups of samples were selected based on the collection time of fingernail samples, their level of mechanical stress, and the number and size of clippings: (1) recently (<24 h) cut, irradiated and measured with EPR without any treatment of samples, and with rigorous control of size and number of clippings (stressed-fresh, controlled); (2) recently (<24 h) cut, irradiated and measured with EPR after application of a special treatment (10 min of water soaking, 5 min of drying time) to reduce the mechanical stress caused by cutting the samples, and with rigorous control of size and number of clippings (unstressed-fresh, controlled); (3) previously (>24 h) cut, stored at room temperature, additionally cut into small pieces immediately prior to study, irradiated and measured with EPR without any treatment of samples, and with rigorous control of size and number of clippings (stressed-old, controlled); (4) previously (>24 h) cut, stored at room temperature, additionally cut into small pieces immediately prior to the study, irradiated and measured with EPR after application of a special treatment to reduce mechanical stress caused by cut, and with rigorous control of size and number of clippings (unstressed-old, controlled); and (5) recently (<24 h) cut, irradiated and measured with EPR after application of a special treatment to reduce the mechanical stress caused by cut, and without rigorous control of size and number of clippings (unstressed-fresh, uncontrolled). Except for the fifth selected group, variability of the dose dependence inside all groups was found to be not statistically significant, although the variability among the different groups was significant. Comparison of the mean dose dependences obtained for each group allowed selection of key factors responsible for radiation

  3. Immune reactivity after high-dose irradiation

    SciTech Connect

    Gassmann, W.; Wottge, H.U.; von Kolzynski, M.; Mueller-Ruchholtz, W.

    1986-03-01

    Immune reactivity after total-body irradiation was investigated in rats using skin graft rejection as the indicator system. After sublethal irradiation with 10.5 Gy (approximately 50% lethality/6 weeks) the rejection of major histocompatibility complex allogeneic skin grafts was delayed significantly compared with nonirradiated control animals (28 versus 6.5 days). In contrast, skin grafts were rejected after 7.5 days in sublethally irradiated animals and 7 days in lethally irradiated animals if additional skin donor type alloantigens--namely, irradiated bone marrow cells--were given i.v. either simultaneously or with a delay of not more than 24 hr after the above conditioning regimen. These reactions were alloantigen-specific. They were observed in six different strain combinations with varying donors and recipients. Starting on day 2 after irradiation, i.v. injection of bone marrow gradually lost its effectivity and skin grafts were no longer rejected with uniform rapidity; skin donor marrow given on days 4 or 8 did not accelerate skin graft rejection at all. These data show that for approximately 1-2 days after high-dose total-body irradiation rats are still capable of starting a vigorous immune reaction against i.v.-injected alloantigens. The phenomenon of impaired rejection of skin grafted immediately after high-dose irradiation appears to result from the poor accessibility of skin graft alloantigens during the early postirradiation phase when vascularization of the grafted skin is insufficient.

  4. Legionnaires' disease: The infective dose paradox

    SciTech Connect

    O'Brien, S.J.; Bhopal, R.S.

    1993-07-03

    The species of Legionella bacteria that cause legionnaires' disease are widely distributed in aquatic habitats. Infection via inhalation of aerosols containing bacteria is the main, though contested, mode of transmission. Most outbreaks have been associated with aerosols from evaporative cooling systems and complex hot water systems. There are several gaps in the understanding of the transmission of legionnaires' disease. One area of uncertainty is the size of the infective dose of the organism required to produce disease in human beings. Animal experiments suggest that a high dose is required, and the fact that there is no person-to-person spread supports this view. However, low concentrations of legionellae seem to be emitted from water systems, and epidemiological evidence indicates that infection can occur at some distance from the source of aerosol. Environmental concentration of legionellae might have been underestimated because of technical obstacles to detection. There are difficulties in culturing this slow-growing and unusually fastidious organism. Thus, the preferred culture media contain antimicrobial agents that inhibit completing organisms.

  5. Fixed-dose combination therapy for psoriasis.

    PubMed

    Guenther, Lyn C

    2004-01-01

    Fixed-dose combination therapy offers stable products containing two or more medications with different mechanisms of action and safety profiles. It is also convenient for patients since only one product rather than two or more needs to be applied. Topical corticosteroids are often the mainstay of therapy in psoriasis. Diprosalic and Nerisalic contain a topical corticosteroid (betamethasone dipropionate and diflucortolone, respectively) and salicylic acid. A left/right study showed that both products have comparable efficacy. It has also been shown that betamethasone dipropionate + salicylic acid ointment has similar efficacy to clobetasol and calcipotriene (calcipotriol) ointments. Betamethasone dipropionate + salicylic acid lotion has similar efficacy to clobetasol lotion. Faster improvement of scaling, itching, and redness was noted with betamethasone dipropionate + salicylic acid lotion compared with betamethasone dipropionate alone. Dovobet (Daivobet) ointment is a fixed-dose combination product containing betamethasone dipropionate and calcipotriene. Clinical studies have shown that it has greater efficacy and a faster speed of onset than the individual components or tacalcitol. Once daily and twice daily treatments have similar efficacy. Psoriasis Area and Severity Index reductions of approximately 40% after 1 week and 70% after 4 weeks of therapy were consistently noted in six large international studies involving >6000 patients. Betamethasone dipropionate + calcipotriene treatment is associated with approximately 75% less adverse cutaneous events as compared with tacalcitol, 50% less compared with calcipotriene, and a similar number as treatment with betamethasone dipropionate.

  6. Fixed-dose combination therapy for psoriasis.

    PubMed

    Guenther, Lyn C

    2004-01-01

    Fixed-dose combination therapy offers stable products containing two or more medications with different mechanisms of action and safety profiles. It is also convenient for patients since only one product rather than two or more needs to be applied. Topical corticosteroids are often the mainstay of therapy in psoriasis. Diprosalic and Nerisalic contain a topical corticosteroid (betamethasone dipropionate and diflucortolone, respectively) and salicylic acid. A left/right study showed that both products have comparable efficacy. It has also been shown that betamethasone dipropionate + salicylic acid ointment has similar efficacy to clobetasol and calcipotriene (calcipotriol) ointments. Betamethasone dipropionate + salicylic acid lotion has similar efficacy to clobetasol lotion. Faster improvement of scaling, itching, and redness was noted with betamethasone dipropionate + salicylic acid lotion compared with betamethasone dipropionate alone. Dovobet (Daivobet) ointment is a fixed-dose combination product containing betamethasone dipropionate and calcipotriene. Clinical studies have shown that it has greater efficacy and a faster speed of onset than the individual components or tacalcitol. Once daily and twice daily treatments have similar efficacy. Psoriasis Area and Severity Index reductions of approximately 40% after 1 week and 70% after 4 weeks of therapy were consistently noted in six large international studies involving >6000 patients. Betamethasone dipropionate + calcipotriene treatment is associated with approximately 75% less adverse cutaneous events as compared with tacalcitol, 50% less compared with calcipotriene, and a similar number as treatment with betamethasone dipropionate. PMID:15109271

  7. Bridging Solutions in Dose Finding Problems

    PubMed Central

    O’Quigley, John; Iasonos, Alexia

    2014-01-01

    SUMMARY The idea of bridging in dose-finding studies is closely linked to the problem of group heterogeneity. There are some distinctive features in the case of bridging which need to be considered if efficient estimation of the maximum tolerated dose (MTD) is to be accomplished. The case of two distinct populations is considered. In the bridging setting we usually have in mind two studies, corresponding to the two populations. In some cases, the first of these studies may have been completed while the second has yet to be initiated. In other cases, the studies take place simultaneously and information can then be shared among the two groups. The methodological problem is how to make most use of the information gained in the first study to help improve efficiency in the second. We describe the models that we can use for the purpose of bridging and study situations in which their use leads to overall improvements in performance as well as cases where there is no gain when compared to carrying out parallel studies. Simulations and an example in pediatric oncology help to provide further insight. PMID:25071878

  8. Carboplatin dosing for adult Japanese patients.

    PubMed

    Ando, Yuichi; Shimokata, Tomoya; Yasuda, Yoshinari; Hasegawa, Yoshinori

    2014-02-01

    Carboplatin is a platinum-based anticancer drug that has been long used to treat many types of solid cancer. Because the clearance of carboplatin strongly correlates with the glomerular filtration rate (GFR), its dosage is calculated with the Calvert formula on the basis of the patient's GFR to achieve the target area under the plasma drug concentration-time curve (AUC) for each patient. However, many lines of evidence from previous clinical studies should be interpreted with caution because different methods were used to estimate drug clearance and derive the dosage of carboplatin. There is a particularly high risk of carboplatin overdosing when the dosage is determined on the basis of standardized serum creatinine values. When deciding the dose of carboplatin for adult Japanese patients, preferred methods to assess renal function instead of directly measuring GFR include (1) 24-h urinary collection-based creatinine clearance adjusted by adding 0.2 mg/dl to the serum creatinine concentration measured by standardized methods, and (2) equation-based GFR (eGFR) with a back calculation to units of ml/min per subject. Given the limitations of serum creatinine-based GFR estimations, the GFR or creatinine clearance should be directly measured in each patient whenever possible. To ensure patient safety and facilitate a medical-team approach, the single most appropriate method available at each institute or medical team should be consistently used to calculate the dose of carboplatin with the Calvert formula.

  9. Single dose regorafenib-induced hypertensive crisis.

    PubMed

    Yilmaz, B; Kemal, Y; Teker, F; Kut, E; Demirag, G; Yucel, I

    2014-06-01

    Gastrointestinal stromal tumors (GISTs) are uncommon tumors of the gastrointestinal (GI) tract. Regorafenib is a new multikinase inhibitor and is approved for the treatment of GISTs in patients who develop resistance to imatinib and sunitinib. The most common drug-related adverse events with regorafenib are hypertension, hand-foot skin reactions, and diarrhea. Grade IV hypertensive side effect has never been reported after a single dose. In this report, we present a case of Grade IV hypertensive side effect (hypertensive crisis and seizure) after a single dose of regorafenib. A 54-year-old male normotensive GIST patient was admitted to the emergency department with seizure and encephalopathy after the first dosage of regorafenib. His blood pressure was 240/140 mmHg upon admission. After intensive treatment with nitrate and nitroprusside, his blood pressure returned to normal levels in five days. Regorafenib was discontinued, and he did not experience hypertension again. This paper reports the first case of Grade IV hypertension after the first dosage of regorafenib. We can suggest that hypertension is an idiosyncratic side effect unrelated to the dosage.

  10. Environmental dose reconstruction for the urals population

    SciTech Connect

    Degteva, M.O.

    1996-12-31

    In 1948 the Mayak plutonium production facility was put into operation in the Southern Urals approximately 100 km northwest of the city of Chelyabinsk. This facility consisted of three main sites: reactor plant, radiochemical facility, and waste management facility. A series of releases and accidents occurred in the initial period of intense activity during the start-up and early years of operation of the Mayak facility. The major sources of radioactive contamination were: (1) the discharges of 2.75 million curies of liquid wastes into the Techa River in 1949-1956, (2) an explosion in the storage facility of radioactive wastes in 1957 (so-called Kyshtym Accident) which led to the form East Urals Radioactive Trace (EURT) as a result of the dispersion of 2 million curies in the atmosphere, (3) the resuspension of 600 curies with dry silt from the shores of Karachay Lake during a heavy thunderstorm, and (5) gaseous-aerosol releases (about 560,000 Ci of {sup 131}I) mainly during the first decade of the facility`s operation. A large fraction of the releases into the Techa River and during the Kyshtym Accident consist of long-lived radionuclides, mainly {sup 90}Sr. This article covers the following, besides the sources and history of radioactive contamination: data bases for dose reconstruction and risk assessment; the approaches to population dose reconstruction. 13 refs., 10 figs.

  11. ESTIGMA Y VIH/SIDA ENTRE PADRES/MADRES Y ADOLESCENTES PUERTORRIQUEÑOS/AS

    PubMed Central

    Pérez, Grace Rosado; Reyes, Glendalys Rivera; Villanueva, Victoria Larrieux; Torres, Gilliam J. Torres; Díaz, Elba Betancourt; Varas-Díaz, Nelson; Villaruel, Antonia

    2016-01-01

    La comunicación entre padres/madres y adolescentes sobre el tema de la sexualidad es importante para el desarrollo de la salud de personas jóvenes. Dicha comunicación puede verse negativamente impactada por actitudes estigmatizantes hacia el tema del VIH/SIDA. El objetivo de este estudio fue identificar actitudes estigmatizantes hacia el VIH/SIDA entre padres/madres y adolescentes puertorriqueños/as. Este esfuerzo es parte del Proyecto Cuídalos, dirigido a probar una intervención en formato electrónico que busca aumentar la comunicación sobre sexualidad y salud entre padres/madres y adolescentes mediante un diseño experimental con 458 diadas de padres/madres y adolescentes de 13 a 17 años. Para propósitos de este artículo reportamos estadísticas descriptivas sobre estigma hacia el VIH/SIDA con la información recopilada en la medición basal. Tanto adultos/as como adolescentes mostraron actitudes estigmatizantes hacia el VIH/SIDA. A la luz de los resultados es necesario continuar desarrollando intervenciones para la reducción de estigma en esta población. Los/as padres/madres pueden ser un recurso invaluable para reducir el estigma en los/as jóvenes, y prevenir conductas sexuales de riesgo e infecciones. PMID:27099649

  12. Eye dose monitoring of PET/CT workers

    PubMed Central

    O'Connor, U; O'Reilly, G

    2014-01-01

    Objective: The objective of the study was to measure eye dose [Hp(3)] to workers in a busy positron emission tomography (PET)/CT centre. Doses were compared with the proposed new annual dose limit of 20 mSv. Methods: We used a newly designed dosemeter to measure eye dose [Hp(3)]. Eye dosemeters were worn with an adjustable headband, with the dosemeter positioned adjacent to the left eye. The whole-body dose was also recorded using electronic personal dosemeter (EPD® Mk2; Thermo Electron Corporation, Waltham, MA). Exposed staff included radiographers, nurses and healthcare assistants. Results: The radiographers received the highest exposure of the staff groups studied, with one radiographer receiving an exposure of 0.5 mSv over the 3-month survey period. The estimated maximum eye dose for 1 year is approximately 2 mSv. The numeric value for eye dose was compared with the numeric value for personal dose equivalent to see if one could be used as an indicator for the other. From our data, a conservative estimate of eye dose Hp(3) (mSv) can be made as being up to approximately twice the numeric value for whole-body dose [Hp(10)] (mSv). Conclusion: Eye dose was found to be well within the new proposed annual limit at our PET/CT centre. Routine whole-body dose measurements may be a useful starting point for assessing whether eye dose monitoring should be prioritized in a PET facility. Advances in knowledge: Following the proposal of a reduced eye dose limit, this article provides new measurement data on staff eye doses for PET/CT workers. PMID:25109711

  13. DuraSeal as a spacer to reduce rectal doses in low-dose rate brachytherapy for prostate cancer.

    PubMed

    Heikkilä, Vesa-Pekka; Kärnä, Aarno; Vaarala, Markku H

    2014-08-01

    The purpose of this study was to evaluate the utility of off-label use of DuraSeal polyethylene glycol (PEG) gel in low-dose rate (LDR) prostate brachytherapy seed implantation to reduce rectal doses. Diluted DuraSeal was easy to use and, in spite of a clearance effect, useful in decreasing D₂cc rectal doses. PMID:25201125

  14. Dual-axis rotational coronary angiography can reduce peak skin dose and scattered dose: a phantom study.

    PubMed

    Liu, Huiliang; Jin, Zhigeng; Deng, Yunpeng; Jing, Limin

    2014-07-08

    The purpose of this study was to evaluate peak skin dose received by the patient and scattered dose to the operator during dual-axis rotational coronary angiography (DARCA), and to compare with those of standard coronary angiography (SA). An anthropomorphic phantom was used to simulate a patient undergoing diagnostic coronary angiography. Cine imaging was applied on the phantom for 2 s, 3 s, and 5 s in SA projections to mimic clinical situations with normal vessels, and uncomplicated and complicated coronary lesions. DARCA was performed in two curved trajectories around the phantom. During both SA and DARCA, peak skin dose was measured with thermoluminescent dosimeter arrays and scattered dose with a dosimeter at predefined height (approximately at the level of left eye) at the operator's location. Compared to SA, DARCA was found lower in both peak skin dose (range: 44%-82%, p < 0.001) and scattered dose (range: 40%-70%, p < 0.001). The maximal reductions were observed in the set mimicking complicated lesion examinations (82% reduction for peak skin dose, p < 0.001; 70% reduction for scattered dose, p < 0.001). DARCA reduces both peak skin dose and scattered dose in comparison to SA. The benefi t of radiation dose reduction could be especially signifi cant in complicated lesion examinations due to large reduction in X-ray exposure time. The use of DARCA could, therefore, be recommended in clinical practice to minimize radiation dose.

  15. Dose and dose-rate effects of ionizing radiation: a discussion in the light of radiological protection.

    PubMed

    Rühm, Werner; Woloschak, Gayle E; Shore, Roy E; Azizova, Tamara V; Grosche, Bernd; Niwa, Ohtsura; Akiba, Suminori; Ono, Tetsuya; Suzuki, Keiji; Iwasaki, Toshiyasu; Ban, Nobuhiko; Kai, Michiaki; Clement, Christopher H; Bouffler, Simon; Toma, Hideki; Hamada, Nobuyuki

    2015-11-01

    The biological effects on humans of low-dose and low-dose-rate exposures to ionizing radiation have always been of major interest. The most recent concept as suggested by the International Commission on Radiological Protection (ICRP) is to extrapolate existing epidemiological data at high doses and dose rates down to low doses and low dose rates relevant to radiological protection, using the so-called dose and dose-rate effectiveness factor (DDREF). The present paper summarizes what was presented and discussed by experts from ICRP and Japan at a dedicated workshop on this topic held in May 2015 in Kyoto, Japan. This paper describes the historical development of the DDREF concept in light of emerging scientific evidence on dose and dose-rate effects, summarizes the conclusions recently drawn by a number of international organizations (e.g., BEIR VII, ICRP, SSK, UNSCEAR, and WHO), mentions current scientific efforts to obtain more data on low-dose and low-dose-rate effects at molecular, cellular, animal and human levels, and discusses future options that could be useful to improve and optimize the DDREF concept for the purpose of radiological protection. PMID:26343037

  16. Dose and dose-rate effects of ionizing radiation: a discussion in the light of radiological protection.

    PubMed

    Rühm, Werner; Woloschak, Gayle E; Shore, Roy E; Azizova, Tamara V; Grosche, Bernd; Niwa, Ohtsura; Akiba, Suminori; Ono, Tetsuya; Suzuki, Keiji; Iwasaki, Toshiyasu; Ban, Nobuhiko; Kai, Michiaki; Clement, Christopher H; Bouffler, Simon; Toma, Hideki; Hamada, Nobuyuki

    2015-11-01

    The biological effects on humans of low-dose and low-dose-rate exposures to ionizing radiation have always been of major interest. The most recent concept as suggested by the International Commission on Radiological Protection (ICRP) is to extrapolate existing epidemiological data at high doses and dose rates down to low doses and low dose rates relevant to radiological protection, using the so-called dose and dose-rate effectiveness factor (DDREF). The present paper summarizes what was presented and discussed by experts from ICRP and Japan at a dedicated workshop on this topic held in May 2015 in Kyoto, Japan. This paper describes the historical development of the DDREF concept in light of emerging scientific evidence on dose and dose-rate effects, summarizes the conclusions recently drawn by a number of international organizations (e.g., BEIR VII, ICRP, SSK, UNSCEAR, and WHO), mentions current scientific efforts to obtain more data on low-dose and low-dose-rate effects at molecular, cellular, animal and human levels, and discusses future options that could be useful to improve and optimize the DDREF concept for the purpose of radiological protection.

  17. APPLICATION AND USE OF DOSE ESTIMATING EXPOSURE MODEL (DEEM) FOR DOSE COMPARISONS AFTER EXPOSURE TO TRICHLOROETHYLENE (TCE)

    EPA Science Inventory

    Route-to-route extrapolations are a crucial step in many risk assessments. Often the doses which result In toxicological end points in one route must be compared with doses resulting from typical environmental exposures by another route. In this case we used EPA's Dose Estimati...

  18. APPLICATION AND USE OF DOSE ESTIMATING EXPOSURE MODEL (DEEM) FOR ROUTE TO ROUTE DOSE COMPARISONS AFTER EXPOSURE TO TRICHLOROETHYLENE (TCE)

    EPA Science Inventory

    Route-to-route extrapolations are a crucial step in many risk assessments. Often the doses which result In toxicological end points in one route must be compared with doses resulting from typical environmental exposures by another route. In this case we used EPA's Dose Estimati...

  19. Calculation of the absorbed dose and dose equivalent induced by medium energy neutrons and protons and comparison with experiment

    NASA Technical Reports Server (NTRS)

    Armstrong, T. W.; Bishop, B. L.

    1972-01-01

    Monte Carlo calculations have been carried out to determine the absorbed dose and dose equivalent for 592-MeV protons incident on a cylindrical phantom and for neutrons from 580-MeV proton-Be collisions incident on a semi-infinite phantom. For both configurations, the calculated depth dependence of the absorbed dose is in good agreement with experimental data.

  20. Ambient dose and dose rate measurements in the vicinity of Elekta Precise accelerators for radiation therapy.

    PubMed

    Zutz, H; Hupe, O

    2014-12-01

    In radiation therapy, commercially available medical linear accelerators (LINACs) are used. At high primary beam energies in the 10-MeV range, the leakage dose of the accelerator head and the backscatter from the room walls, the air and the patient become more important. Therefore, radiation protection measurements of photon dose rates in the treatment room and in the maze are performed to quantify the radiation field. Since the radiation of the LINACs is usually pulsed with short radiation pulse durations in the microsecond range, there are problems with electronic dose (rate) meters commonly used in radiation protection. In this paper measurements with ionisation chambers are presented and electronic dosemeters are used for testing at selected positions. The measured time-averaged dose rate ranges from a few microsieverts per hour in the maze to some millisieverts per hour in the vicinity of the accelerator head and up to some sieverts per hour in the blanked primary beam and several hundred sieverts per hour in the direct primary beam.

  1. Electrolyte interactions with vapor dosed and solution dosed carbon monoxide on platinum (111)

    NASA Astrophysics Data System (ADS)

    Borup, R. L.; Sauer, D. E.; Stuve, E. M.

    1997-03-01

    Carbon monoxide adsorption and interactions with electrolyte species were examined for a Pt(111) electrode in 0.1M HClO 4. The experiments were conducted with an ex situ ultrahigh vacuum (UHV)-electrochemical system, with CO being adsorbed either from the vapor phase in the vacuum chamber or from solution. CO oxidation coulometry and cyclic voltammetry were used to characterize CO coverage in solution, and thermal desorption spectroscopy was used to measure CO coverage in vacuum, desorption kinetics and to detect coadsorbed electrolyte species. In agreement with earlier studies, the saturation coverage of 0.68 ML of CO from solution dosing is nearly 40% greater than the saturation coverage of 0.50 ML in vacuum at room temperature. The higher saturation coverages survive transfer to vacuum, but only in the presence of coadsorbed electrolyte species (H 2O and ClO 4) retained after removal of the electrode from the electrolyte. In the absence of coadsorbed electrolyte species, saturated, solution dosed CO transferred to vacuum exhibits the same coverage as vapor dosed CO. Interaction between CO and electrolyte species was confirmed through detection of both in thermal desorption following immersion of a vapor dosed CO adlayer into solution and back-transfer to vacuum. Kinetic modeling of CO thermal desorption showed that, regardless of whether CO is adsorbed from solution or from vapor, the COCO repulsive interactions are approximately 40% less when electrolyte species are retained than when they are absent.

  2. Deferasirox at therapeutic doses is associated with dose-dependent hypercalciuria.

    PubMed

    Wong, Phillip; Polkinghorne, Kevan; Kerr, Peter G; Doery, James C G; Gillespie, Matthew T; Larmour, I; Fuller, Peter J; Bowden, Donald K; Milat, Frances

    2016-04-01

    Deferasirox is an oral iron chelator used widely in the treatment of thalassemia major and other transfusion-dependent hemoglobinopathies. Whilst initial long-term studies established the renal safety of deferasirox, there are now increasing reports of hypercalciuria and renal tubular dysfunction. In addition, urolithiasis with rapid loss of bone density in patients with β thalassemia major has been reported. We conducted a cross-sectional cohort study enrolling 152 adult patients comprising of β thalassemia major (81.5%), sickle cell disease (8%), thalassemia intermedia (2%), HbH disease (6.5%) and E/β thalassemia (2%). Cases were matched with normal control subjects on age, gender and serum creatinine. Iron chelator use was documented and urine calcium to creatinine ratios measured. At the time of analysis, 88.8% of patients were receiving deferasirox and 11.2% were on deferoxamine. Hypercalciuria was present in 91.9% of subjects on deferasirox in a positive dose-dependent relationship. This was not seen with subjects receiving deferoxamine. At a mean dose of 30.2±8.8mg/kg/day, deferasirox was associated with an almost 4 fold increase in urine calcium to creatinine ratio (UCa/Cr). Hypercalciuria was present at therapeutic doses of deferasirox in a dose-dependent manner and warrants further investigation and vigilance for osteoporosis, urolithiasis and other markers of renal dysfunction. PMID:26802257

  3. Low-dose propranolol for infantile haemangioma.

    PubMed

    Tan, Swee T; Itinteang, Tinte; Leadbitter, Philip

    2011-03-01

    In 2008, propranolol was serendipitously observed to cause accelerated involution of infantile haemangioma. However, the mechanism by which it causes this dramatic effect is unknown, the dosage empirical and the optimal duration of treatment unexplored. This study determines the minimal dosage and duration of propranolol treatment to achieve accelerated involution of problematic infantile haemangioma. Consecutive patients with problematic proliferating infantile haemangioma treated with propranolol were culled from our prospective vascular anomalies database. The patients were initially managed as inpatients and commenced on propranolol at 0.25 mg kg(-1) twice daily, and closely monitored. The dosage was increased to 0.5 mg kg(-1) twice daily after 24 h, if there was no cardiovascular or metabolic side effect. The dosage was increased further by 0.5 mg kg(-1) day(-1) until a visible effect was noticed or up to a maximum of 2 mg kg(-1) day(-1), and was maintained until the lesion had fully involuted or the child was 12-months old. A total of 15 patients aged 3 weeks to 8.5 months (mean, 11 weeks) underwent propranolol treatment for problematic proliferating infantile haemangioma, which threatened life (n=1) or vision (n=2) or nasal obstruction (n=3) and/or caused ulceration (n=6) and/or bleeding (n=2) and/or significant tissue distortion (n=12). The minimal dosage required to achieve accelerated involution was 1.5-2.0 mg kg(-1) day(-1). Rebound growth occurred in the first patient when the dose was withdrawn at 7.5 months of age requiring reinstitution of treatment. No rebound growth was observed in the remaining patients. No other complications were observed. Propranolol at 1.5-2.0 mg kg(-1) day(-1), administered in divided doses with gradual increase in the dose, is effective and safe for treating problematic proliferating infantile haemangioma in our cohort of patients. Treatment should be maintained until the lesion is completely involuted or the child is 12

  4. Oak Ridge Dose Reconstruction Project Summary Report; Reports of the Oak Ridge Dose Reconstruction, Vol. 7

    SciTech Connect

    Thomas E. Widner; et. al.

    1999-07-01

    In the early 1990s, concern about the Oak Ridge Reservation's past releases of contaminants to the environment prompted Tennessee's public health officials to pursue an in-depth study of potential off-site health effects at Oak Ridge. This study, the Oak Ridge dose reconstruction, was supported by an agreement between the U.S. Department of Energy (DOE) and the State of Tennessee, and was overseen by a 12-member panel of individuals appointed by Tennessee's Commissioner of Health. The panel requested that the principal investigator for the project prepare the following report, ''Oak Ridge Dose Reconstruction Project Summary Report,'' to serve the following purposes: (1) summarize in a single, less technical report, the methods and results of the various investigations that comprised the Phase II of the dose reconstruction; (2) describe the systematic searching of classified and unclassified historical records that was a vital component of the project; and (3) summarize the less detailed, screening-level assessments that were performed to evaluate the potential health significance of a number of materials, such a uranium, whose priority did not require a complete dose reconstruction effort. This report describes each major step of the dose reconstruction study: (1) the review of thousands of historical records to obtain information relating to past operations at each facility; (2) estimation of the quantity and timing of releases of radioiodines from X-10, of mercury from Y-12, of PCB's from all facilities, and of cesium-137 and other radionuclides from White Oak Creek; (3) evaluation of the routes taken by these contaminants through the environment to nearby populations; and (4) estimation of doses and health risks to exposed groups. Calculations found the highest excess cancer risks for a female born in 1952 who drank goat milk; the highest non-cancer health risk was for children in a farm family exposed to PCBs in and near East Fork Poplar Creek. More detailed

  5. Monte Carlo Study of Radiation Dose Enhancement by Gadolinium in Megavoltage and High Dose Rate Radiotherapy

    PubMed Central

    Zhang, Daniel G.; Feygelman, Vladimir; Moros, Eduardo G.; Latifi, Kujtim; Zhang, Geoffrey G.

    2014-01-01

    MRI is often used in tumor localization for radiotherapy treatment planning, with gadolinium (Gd)-containing materials often introduced as a contrast agent. Motexafin gadolinium is a novel radiosensitizer currently being studied in clinical trials. The nanoparticle technologies can target tumors with high concentration of high-Z materials. This Monte Carlo study is the first detailed quantitative investigation of high-Z material Gd-induced dose enhancement in megavoltage external beam photon therapy. BEAMnrc, a radiotherapy Monte Carlo simulation package, was used to calculate dose enhancement as a function of Gd concentration. Published phase space files for the TrueBeam flattening filter free (FFF) and conventional flattened 6MV photon beams were used. High dose rate (HDR) brachytherapy with Ir-192 source was also investigated as a reference. The energy spectra difference caused a dose enhancement difference between the two beams. Since the Ir-192 photons have lower energy yet, the photoelectric effect in the presence of Gd leads to even higher dose enhancement in HDR. At depth of 1.8 cm, the percent mean dose enhancement for the FFF beam was 0.38±0.12, 1.39±0.21, 2.51±0.34, 3.59±0.26, and 4.59±0.34 for Gd concentrations of 1, 5, 10, 15, and 20 mg/mL, respectively. The corresponding values for the flattened beam were 0.09±0.14, 0.50±0.28, 1.19±0.29, 1.68±0.39, and 2.34±0.24. For Ir-192 with direct contact, the enhanced were 0.50±0.14, 2.79±0.17, 5.49±0.12, 8.19±0.14, and 10.80±0.13. Gd-containing materials used in MRI as contrast agents can also potentially serve as radiosensitizers in radiotherapy. This study demonstrates that Gd can be used to enhance radiation dose in target volumes not only in HDR brachytherapy, but also in 6 MV FFF external beam radiotherapy, but higher than the currently used clinical concentration (>5 mg/mL) would be needed. PMID:25275550

  6. Is There a Dose-Response Relationship for Heart Disease With Low-Dose Radiation Therapy?

    SciTech Connect

    Chung, Eugene; Corbett, James R.; Moran, Jean M.; Griffith, Kent A.; Marsh, Robin B.; Feng, Mary; Jagsi, Reshma; Kessler, Marc L.; Ficaro, Edward C.; Pierce, Lori J.

    2013-03-15

    Purpose: To quantify cardiac radiation therapy (RT) exposure using sensitive measures of cardiac dysfunction; and to correlate dysfunction with heart doses, in the setting of adjuvant RT for left-sided breast cancer. Methods and Materials: On a randomized trial, 32 women with node-positive left-sided breast cancer underwent pre-RT stress single photon emission computed tomography (SPECT-CT) myocardial perfusion scans. Patients received RT to the breast/chest wall and regional lymph nodes to doses of 50 to 52.2 Gy. Repeat SPECT-CT scans were performed 1 year after RT. Perfusion defects (PD), summed stress defects scores (SSS), and ejection fractions (EF) were evaluated. Doses to the heart and coronary arteries were quantified. Results: The mean difference in pre- and post-RT PD was −0.38% ± 3.20% (P=.68), with no clinically significant defects. To assess for subclinical effects, PD were also examined using a 1.5-SD below the normal mean threshold, with a mean difference of 2.53% ± 12.57% (P=.38). The mean differences in SSS and EF before and after RT were 0.78% ± 2.50% (P=.08) and 1.75% ± 7.29% (P=.39), respectively. The average heart Dmean and D95 were 2.82 Gy (range, 1.11-6.06 Gy) and 0.90 Gy (range, 0.13-2.17 Gy), respectively. The average Dmean and D95 to the left anterior descending artery were 7.22 Gy (range, 2.58-18.05 Gy) and 3.22 Gy (range, 1.23-6.86 Gy), respectively. No correlations were found between cardiac doses and changes in PD, SSS, and EF. Conclusions: Using sensitive measures of cardiac function, no clinically significant defects were found after RT, with the average heart Dmean <5 Gy. Although a dose response may exist for measures of cardiac dysfunction at higher doses, no correlation was found in the present study for low doses delivered to cardiac structures and perfusion, SSS, or EF.

  7. Monte Carlo study of radiation dose enhancement by gadolinium in megavoltage and high dose rate radiotherapy.

    PubMed

    Zhang, Daniel G; Feygelman, Vladimir; Moros, Eduardo G; Latifi, Kujtim; Zhang, Geoffrey G

    2014-01-01

    MRI is often used in tumor localization for radiotherapy treatment planning, with gadolinium (Gd)-containing materials often introduced as a contrast agent. Motexafin gadolinium is a novel radiosensitizer currently being studied in clinical trials. The nanoparticle technologies can target tumors with high concentration of high-Z materials. This Monte Carlo study is the first detailed quantitative investigation of high-Z material Gd-induced dose enhancement in megavoltage external beam photon therapy. BEAMnrc, a radiotherapy Monte Carlo simulation package, was used to calculate dose enhancement as a function of Gd concentration. Published phase space files for the TrueBeam flattening filter free (FFF) and conventional flattened 6MV photon beams were used. High dose rate (HDR) brachytherapy with Ir-192 source was also investigated as a reference. The energy spectra difference caused a dose enhancement difference between the two beams. Since the Ir-192 photons have lower energy yet, the photoelectric effect in the presence of Gd leads to even higher dose enhancement in HDR. At depth of 1.8 cm, the percent mean dose enhancement for the FFF beam was 0.38±0.12, 1.39±0.21, 2.51±0.34, 3.59±0.26, and 4.59±0.34 for Gd concentrations of 1, 5, 10, 15, and 20 mg/mL, respectively. The corresponding values for the flattened beam were 0.09±0.14, 0.50±0.28, 1.19±0.29, 1.68±0.39, and 2.34±0.24. For Ir-192 with direct contact, the enhanced were 0.50±0.14, 2.79±0.17, 5.49±0.12, 8.19±0.14, and 10.80±0.13. Gd-containing materials used in MRI as contrast agents can also potentially serve as radiosensitizers in radiotherapy. This study demonstrates that Gd can be used to enhance radiation dose in target volumes not only in HDR brachytherapy, but also in 6 MV FFF external beam radiotherapy, but higher than the currently used clinical concentration (>5 mg/mL) would be needed.

  8. Thyroid Dose During Neurointerventional Procedures: Does Lead Shielding Reduce the Dose?

    SciTech Connect

    Shortt, C. P.; Fanning, N. F.; Malone, L.; Thornton, J.; Brennan, P.; Lee, M. J.

    2007-09-15

    Purpose. To assess radiation dose to the thyroid in patients undergoing neurointerventional procedures and to evaluate dose reduction to the thyroid by lead shielding. Methods and Materials. A randomized patient study was undertaken to evaluate the dose reduction by thyroid lead shields and assess their practicality in a clinical setting. Sixty-five patients attending for endovascular treatment of arteriovenous malformations (AVMs) and aneurysms were randomized into one of 2 groups a) No Thyroid Shield and b) Thyroid Lead Shield. Two thermoluminescent dosimeters (TLDs) were placed over the thyroid gland (1 on each side) at constant positions on each patient in both groups. A thyroid lead shield (Pb eq. 0.5 mm) was placed around the neck of patients in the thyroid lead shield group after the neurointerventional radiologist had obtained satisfactory working access above the neck. The total dose-area-product (DAP) value, number and type of digital subtraction angiography (DSA) runs and fluoroscopy time were recorded for all patients. Results. Of the 72 patients who initially attended for neurointerventional procedures, 7 were excluded due to failure to consent or because of procedures involving access to the external carotid circulation. Of the remaining 65 who were randomized, a further 9 were excluded due to; procedureabandonment, unfeasible shield placement or shield interference with the procedure. Patient demographics included mean age of 47.9 yrs (15-74), F:M=1.4:1. Mean fluoroscopy time was 25.9 min. Mean DAP value was 13,134.8 cGy.cm{sup 2} and mean number of DSA runs was 13.4. The mean relative thyroid doses were significantly different (p< 0.001) between the unshielded (7.23 mSv/cGy2 x 105) and shielded groups (3.77 mSv/cGy2 x 105). A mean thyroid dose reduction of 48% was seen in the shielded group versus the unshielded group. Conclusion. Considerable doses to the thyroid are incurred during neurointerventional procedures, highlighting the need for

  9. Estimation of Radiation Dose in CT Based on Projection Data.

    PubMed

    Tian, Xiaoyu; Yin, Zhye; De Man, Bruno; Samei, Ehsan

    2016-10-01

    Managing and optimizing radiation dose has become a core problem for the CT community. As a fundamental step for dose optimization, accurate and computationally efficient dose estimates are crucial. The purpose of this study was to devise a computationally efficient projection-based dose metric. The absorbed energy and object mass were individually modeled using the projection data. The absorbed energy was estimated using the difference between intensity of the primary photon and the exit photon. The mass was estimated using the volume under the attenuation profile. The feasibility of the approach was evaluated across phantoms with a broad size range, various kVp settings, and two bowtie filters, using a simulation tool, the Computer Assisted Tomography SIMulator (CATSIM) software. The accuracy of projection-based dose estimation was validated against Monte Carlo (MC) simulations. The relationship between projection-based dose metric and MC dose estimate was evaluated using regression models. The projection-based dose metric showed a strong correlation with Monte Carlo dose estimates (R (2) > 0.94). The prediction errors for the projection-based dose metric were all below 15 %. This study demonstrated the feasibility of computationally efficient dose estimation requiring only the projection data.

  10. A Bayesian Semiparametric Model for Radiation Dose-Response Estimation.

    PubMed

    Furukawa, Kyoji; Misumi, Munechika; Cologne, John B; Cullings, Harry M

    2016-06-01

    In evaluating the risk of exposure to health hazards, characterizing the dose-response relationship and estimating acceptable exposure levels are the primary goals. In analyses of health risks associated with exposure to ionizing radiation, while there is a clear agreement that moderate to high radiation doses cause harmful effects in humans, little has been known about the possible biological effects at low doses, for example, below 0.1 Gy, which is the dose range relevant to most radiation exposures of concern today. A conventional approach to radiation dose-response estimation based on simple parametric forms, such as the linear nonthreshold model, can be misleading in evaluating the risk and, in particular, its uncertainty at low doses. As an alternative approach, we consider a Bayesian semiparametric model that has a connected piece-wise-linear dose-response function with prior distributions having an autoregressive structure among the random slope coefficients defined over closely spaced dose categories. With a simulation study and application to analysis of cancer incidence data among Japanese atomic bomb survivors, we show that this approach can produce smooth and flexible dose-response estimation while reasonably handling the risk uncertainty at low doses and elsewhere. With relatively few assumptions and modeling options to be made by the analyst, the method can be particularly useful in assessing risks associated with low-dose radiation exposures. PMID:26581473

  11. Importance of dose timing to achieving undetectable viral loads.

    PubMed

    Gill, Christopher J; Sabin, Lora L; Hamer, Davidson H; Keyi, Xu; Jianbo, Zhang; Li, Tao; Wu, Wan-Ju; Wilson, Ira B; Desilva, Mary Bachman

    2010-08-01

    Little is known about the importance of dose timing to successful antiretroviral therapy (ART). In a cohort comprised of Chinese HIV/AIDS patients, we measured adherence among subjects for 6 months using three methods in parallel: self-report using a visual analog scale (SR-VAS), pill count, and electronic drug monitors (EDM). We calculated two adherence metrics using the EDM data. The first metric used the proportion of doses taken; the second metric credited doses as adherent only if taken within a 1-h window of a pre-specified dose time (EDM 'proportion taken within dose time'). Of the adherence measures, EDM had the strongest associations with viral suppression. Of the two EDM metrics, incorporating dose timing had a stronger association with viral suppression. We conclude that dose timing is also an important determinant of successful ART, and should be considered as an additional dimension to overall adherence.

  12. Low-dose effects of hormones and endocrine disruptors.

    PubMed

    Vandenberg, Laura N

    2014-01-01

    Endogenous hormones have effects on tissue morphology, cell physiology, and behaviors at low doses. In fact, hormones are known to circulate in the part-per-trillion and part-per-billion concentrations, making them highly effective and potent signaling molecules. Many endocrine-disrupting chemicals (EDCs) mimic hormones, yet there is strong debate over whether these chemicals can also have effects at low doses. In the 1990s, scientists proposed the "low-dose hypothesis," which postulated that EDCs affect humans and animals at environmentally relevant doses. This chapter focuses on data that support and refute the low-dose hypothesis. A case study examining the highly controversial example of bisphenol A and its low-dose effects on the prostate is examined through the lens of endocrinology. Finally, the chapter concludes with a discussion of factors that can influence the ability of a study to detect and interpret low-dose effects appropriately.

  13. [Indications for low-dose CT in the emergency setting].

    PubMed

    Poletti, Pierre-Alexandre; Andereggen, Elisabeth; Rutschmann, Olivier; de Perrot, Thomas; Caviezel, Alessandro; Platon, Alexandra

    2009-08-19

    CT delivers a large dose of radiation, especially in abdominal imaging. Recently, a low-dose abdominal CT protocol (low-dose CT) has been set-up in our institution. "Low-dose CT" is almost equivalent to a single standard abdominal radiograph in term of dose of radiation (about one sixth of those delivered by a standard CT). "Low-dose CT" is now used routinely in our emergency service in two main indications: patients with a suspicion of renal colic and those with right lower quadrant pain. It is obtained without intravenous contrast media. Oral contrast is given to patients with suspicion of appendicitis. "Low-dose CT" is used in the frame of well defined clinical algorithms, and does only replace standard CT when it can reach a comparable diagnostic quality.

  14. Dose-response relationships for carcinogens: a review.

    PubMed Central

    Zeise, L; Wilson, R; Crouch, E A

    1987-01-01

    We review the experimental evidence for various shapes of dose-response relationships for carcinogens and summarize those experiments that give the most information on relatively low doses. A brief review of some models is given to illustrate the shapes of dose-response curve expected from them. Our major interest is in the use of dose-response relationships to estimate risks to humans at low doses, and so we pay special attention to experimentally observed and theoretically expected nonlinearities. There are few experimental examples of nonlinear dose-response relations in humans, but this may simply be due to the limitations in the data. The several examples in rodents, even though for high dose data, suggest that nonlinearity is common. In some cases such nonlinearities may be rationalized on the basis of the pharmacokinetics of the test compound or its metabolites. PMID:3311725

  15. Brachytherapy for early oral tongue cancer: low dose rate to high dose rate.

    PubMed

    Yamazaki, Hideya; Inoue, Takehiro; Yoshida, Ken; Yoshioka, Yasuo; Furukawa, Souhei; Kakimoto, Naoya; Shimizutani, Kimishige; Inoue, Toshihiko

    2003-03-01

    To examine the compatibility of low dose rate (LDR) with high dose rate (HDR) brachytherapy, we reviewed 399 patients with early oral tongue cancer (T1-2N0M0) treated solely by brachytherapy at Osaka University Hospital between 1967 and 1999. For patients in the LDR group (n = 341), the treatment sources consisted of Ir-192 pin for 227 patients (1973-1996; irradiated dose, 61-85 Gy; median, 70 Gy), Ra-226 needle for 113 patients (1967-1986; 55-93 Gy; median, 70 Gy). Ra-226 and Ir-192 were combined for one patient. Ir-192 HDR (microSelectron-HDR) was used for 58 patients in the HDR group (1991-present; 48-60 Gy; median, 60 Gy). LDR implantations were performed via oral and HDR via a submental/submandibular approach. The dose rates at the reference point for the LDR group were 0.30 to 0.8 Gy/h, and for the HDR group 1.0 to 3.4 Gy/min. The patients in the HDR group received a total dose of 48-60 Gy (8-10 fractions) during one week. Two fractions were administered per day (at least a 6-h interval). The 3- and 5-year local control rates for patients in the LDR group were 85% and 80%, respectively, and those in the HDR group were both 84%. HDR brachytherapy showed the same lymph-node control rate as did LDR brachytherapy (67% at 5 years). HDR brachytherapy achieved the same locoregional result as did LDR brachytherapy. A converting factor of 0.86 is applicable for HDR in the treatment of early oral tongue cancer.

  16. Investigation of the Entrance Surface Dose and Dose to Different Organs in Lumbar Spine Imaging

    PubMed Central

    Sina, S; Zeinali, B; Karimipoorfard, M; Lotfalizadeh, F; Sadeghi, M; Zamani, E; Faghihi, R

    2014-01-01

    Background: Dose assessment using proper dosimeters is especially important in radiation protection optimization and imaging justification in diagnostic radiology. Objective: The aim of this study is to obtain the Entrance Skin Dose (ESD) of patients undergoing lumbar spine imaging using two thermoluminescence dosimeters TLD-100 (LiF: Mg, Ti) and GR-200 (LiF: Mg, Cu, P) and also to obtain the absorbed dose to different organs in lumbar spine imaging with several views. Methods: To measure the ESD values of the patients undergoing lumbar spine imaging, the two TLD types were put on their skin surface. The ESD values for different views of lumbar spine imaging were also measured by putting the TLDs at the surface of the Rando phantom. Several TLD chips were inserted inside different organs of Rando phantom to measure the absorbed dose to different organs in lumbar spine imaging. Results: The results indicate that there is a close agreement between the results of the two dosimeters. Based on the results of this experiment, the ESD dose of the 16 patients included in this study varied between 2.71 mGy and 26.29 mGy with the average of 11.89 mGy for TLD-100, and between 2.55 mGy and 27.41 mGy with the average of 12.32 mGy for GR-200 measurements. The ESDs obtained by putting the two types of TLDs at the surface of Rando phantom are in close agreement. Conclusion: According to the results, the GR200 has greater sensitivity than the TLD-100. PMID:25599058

  17. Coronary computed tomography angiography using ultra-low-dose contrast media: radiation dose and image quality.

    PubMed

    Komatsu, Sei; Kamata, Teruaki; Imai, Atsuko; Ohara, Tomoki; Takewa, Mitsuhiko; Ohe, Ryoko; Miyaji, Kazuaki; Yoshida, Junichi; Kodama, Kazuhisa

    2013-08-01

    To analyze the invasiveness and image quality of coronary CT angiography (CCTA) with 80 kV. We enrolled 181 patients with low body weight and low calcium level. Of these, 154 patients were randomly assigned to 1 of 3 groups: 280 HU/80 kV (n = 51); 350 HU/80 kV (n = 51); or 350 HU/120 kV (n = 52). The amount of contrast media (CM) was decided with a CT number-controlling system. Twenty-seven patients were excluded because of an invalid time density curve by timing bolus. The predicted amount of CM, volume CT dose index, dose-length product, effective dose, image noise, and 5-point image quality were measured. The amounts of CM for the 80 kV/280 HU, 80 kV/350 HU, and 120 kV/350 HU groups were 10 ± 4 mL, 15 ± 7 mL, and 30 ± 6 mL, respectively. Although image noise was greater at 80 than 120 kV, there was no significant difference in image quality between 80 kV/350 HU and 120 kV/350 HU (p = 0.390). There was no significant difference in image quality between 80 kV/280 HU and 80 kV/350 HU (4.4 ± 0.7 vs. 4.7 ± 0.4, p = 0.056). The amount of CM and effective dose was lower for 80 kV CCTA than for 120 kV CCTA. CCTA at 80 kV/280 HU may decrease the amount of CM and radiation dose necessary while maintaining image quality.

  18. Dose reconstruction for real-time patient-specific dose estimation in CT

    SciTech Connect

    De Man, Bruno Yin, Zhye; Wu, Mingye; FitzGerald, Paul; Kalra, Mannudeep

    2015-05-15

    Purpose: Many recent computed tomography (CT) dose reduction approaches belong to one of three categories: statistical reconstruction algorithms, efficient x-ray detectors, and optimized CT acquisition schemes with precise control over the x-ray distribution. The latter category could greatly benefit from fast and accurate methods for dose estimation, which would enable real-time patient-specific protocol optimization. Methods: The authors present a new method for volumetrically reconstructing absorbed dose on a per-voxel basis, directly from the actual CT images. The authors’ specific implementation combines a distance-driven pencil-beam approach to model the first-order x-ray interactions with a set of Gaussian convolution kernels to model the higher-order x-ray interactions. The authors performed a number of 3D simulation experiments comparing the proposed method to a Monte Carlo based ground truth. Results: The authors’ results indicate that the proposed approach offers a good trade-off between accuracy and computational efficiency. The images show a good qualitative correspondence to Monte Carlo estimates. Preliminary quantitative results show errors below 10%, except in bone regions, where the authors see a bigger model mismatch. The computational complexity is similar to that of a low-resolution filtered-backprojection algorithm. Conclusions: The authors present a method for analytic dose reconstruction in CT, similar to the techniques used in radiation therapy planning with megavoltage energies. Future work will include refinements of the proposed method to improve the accuracy as well as a more extensive validation study. The proposed method is not intended to replace methods that track individual x-ray photons, but the authors expect that it may prove useful in applications where real-time patient-specific dose estimation is required.

  19. Direct dose mapping versus energy/mass transfer mapping for 4D dose accumulation: fundamental differences and dosimetric consequences

    NASA Astrophysics Data System (ADS)

    Li, Haisen S.; Zhong, Hualiang; Kim, Jinkoo; Glide-Hurst, Carri; Gulam, Misbah; Nurushev, Teamour S.; Chetty, Indrin J.

    2014-01-01

    The direct dose mapping (DDM) and energy/mass transfer (EMT) mapping are two essential algorithms for accumulating the dose from different anatomic phases to the reference phase when there is organ motion or tumor/tissue deformation during the delivery of radiation therapy. DDM is based on interpolation of the dose values from one dose grid to another and thus lacks rigor in defining the dose when there are multiple dose values mapped to one dose voxel in the reference phase due to tissue/tumor deformation. On the other hand, EMT counts the total energy and mass transferred to each voxel in the reference phase and calculates the dose by dividing the energy by mass. Therefore it is based on fundamentally sound physics principles. In this study, we implemented the two algorithms and integrated them within the Eclipse treatment planning system. We then compared the clinical dosimetric difference between the two algorithms for ten lung cancer patients receiving stereotactic radiosurgery treatment, by accumulating the delivered dose to the end-of-exhale (EE) phase. Specifically, the respiratory period was divided into ten phases and the dose to each phase was calculated and mapped to the EE phase and then accumulated. The displacement vector field generated by Demons-based registration of the source and reference images was used to transfer the dose and energy. The DDM and EMT algorithms produced noticeably different cumulative dose in the regions with sharp mass density variations and/or high dose gradients. For the planning target volume (PTV) and internal target volume (ITV) minimum dose, the difference was up to 11% and 4% respectively. This suggests that DDM might not be adequate for obtaining an accurate dose distribution of the cumulative plan, instead, EMT should be considered.

  20. Uncertainties in the reference dose for methylmercury.

    PubMed

    Dourson, M L; Wullenweber, A E; Poirier, K A

    2001-10-01

    This paper critically examines the National Academy of Sciences and the National Research Council report on the toxicological effects of methyl mercury and the recently published US Environmental Protection Agency Reference Dose (RfD) for Methylmercury. Particular scrutiny is placed on the choice of the critical study and the underlining assumptions utilized in the selection of specific uncertainty factors (UFs) and the rationale for using a less-than-default factor of 10. The UFs that were utilized or considered by other agencies and organizations are also critically examined, explained and compared to one another. Based on these analyses, the authors suggest research that could be performed that would ameliorate the uncertainty of choosing a more precise partial UFor that may even provide completeness of database to allow for selecting of a UF for unity, thus improving the precision of the current published RfD.