Inverting ion images without Abel inversion: maximum entropy reconstruction of velocity maps.
Dick, Bernhard
2014-01-14
A new method for the reconstruction of velocity maps from ion images is presented, which is based on the maximum entropy concept. In contrast to other methods used for Abel inversion the new method never applies an inversion or smoothing to the data. Instead, it iteratively finds the map which is the most likely cause for the observed data, using the correct likelihood criterion for data sampled from a Poissonian distribution. The entropy criterion minimizes the information content in this map, which hence contains no information for which there is no evidence in the data. Two implementations are proposed, and their performance is demonstrated with simulated and experimental data: Maximum Entropy Velocity Image Reconstruction (MEVIR) obtains a two-dimensional slice through the velocity distribution and can be compared directly to Abel inversion. Maximum Entropy Velocity Legendre Reconstruction (MEVELER) finds one-dimensional distribution functions Q(l)(v) in an expansion of the velocity distribution in Legendre polynomials P((cos θ) for the angular dependence. Both MEVIR and MEVELER can be used for the analysis of ion images with intensities as low as 0.01 counts per pixel, with MEVELER performing significantly better than MEVIR for images with low intensity. Both methods perform better than pBASEX, in particular for images with less than one average count per pixel.
Chandra and XMM-Newton Observations of the Abell 3395/Abell 3391 Intercluster Filament
NASA Astrophysics Data System (ADS)
Alvarez, Gabriella E.; Randall, Scott W.; Bourdin, Hervé; Jones, Christine; Holley-Bockelmann, Kelly
2018-05-01
We present Chandra and XMM-Newton X-ray observations of the Abell 3391/Abell 3395 intercluster filament. It has been suggested that the galaxy clusters Abell 3395, Abell 3391, and the galaxy group ESO-161 -IG 006 located between the two clusters, are in alignment along a large-scale intercluster filament. We find that the filament is aligned close to the plane of the sky, in contrast to previous results. We find a global projected filament temperature kT = {4.45}-0.55+0.89 keV, electron density {n}e={1.08}-0.05+0.06× {10}-4 cm‑3, and {M}gas}={2.7}-0.1+0.2 × {10}13 M ⊙. The thermodynamic properties of the filament are consistent with that of the intracluster medium (ICM) of Abell 3395 and Abell 3391, suggesting that the filament emission is dominated by ICM gas that has been tidally disrupted during an early stage merger between these two clusters. We present temperature, density, entropy, and abundance profiles across the filament. We find that the galaxy group ESO-161 may be undergoing ram-pressure-stripping in the low-density environment at or near the virial radius of both clusters, due to its rapid motion through the filament.
Deep Chandra Observations of Abell 586: A Remarkably Relaxed Non-Cool-Core Cluster
NASA Astrophysics Data System (ADS)
Richstein, Hannah; Su, Yuanyuan
2018-01-01
The dichotomy between cool-core and non-cool-core clusters has been a lasting perplexity in extragalactic astronomy. Nascent cores in non-cool-core clusters may have been disrupted by major mergers, yet the dichotomy cannot be reproduced in cosmology simulations. We present deep Chandra observations of the massive galaxy cluster Abell 586, which resides at z=0.17, thus allowing its gas properties to be measured out to its virial radius. Abell 586 appears remarkably relaxed with a nearly spherical X-ray surface brightness distribution and without any offset between its X-ray and optical centroids. We measure that its temperature profile does not decrease towards the cluster center and its central entropy stays above 100 keV cm2. A non-cool-core emerges in Abell 586 in the absence of any disruptions on the large scale. Our study demonstrates that non-cool-core clusters can be formed without major mergers. The origins of some non-cool-core clusters may be related to conduction, AGN feedback, or preheating.The SAO REU program is funded by the National Science Foundation REU and Department of Defense ASSURE programs under NSF Grant AST-1659473, and by the Smithsonian Institution.
Suzaku observations of low surface brightness cluster Abell 1631
NASA Astrophysics Data System (ADS)
Babazaki, Yasunori; Mitsuishi, Ikuyuki; Ota, Naomi; Sasaki, Shin; Böhringer, Hans; Chon, Gayoung; Pratt, Gabriel W.; Matsumoto, Hironori
2018-04-01
We present analysis results for a nearby galaxy cluster Abell 1631 at z = 0.046 using the X-ray observatory Suzaku. This cluster is categorized as a low X-ray surface brightness cluster. To study the dynamical state of the cluster, we conduct four-pointed Suzaku observations and investigate physical properties of the Mpc-scale hot gas associated with the A 1631 cluster for the first time. Unlike relaxed clusters, the X-ray image shows no strong peak at the center and an irregular morphology. We perform spectral analysis and investigate the radial profiles of the gas temperature, density, and entropy out to approximately 1.5 Mpc in the east, north, west, and south directions by combining with the XMM-Newton data archive. The measured gas density in the central region is relatively low (a few ×10-4 cm-3) at the given temperature (˜2.9 keV) compared with X-ray-selected clusters. The entropy profile and value within the central region (r < 0.1 r200) are found to be flatter and higher (≳400 keV cm2). The observed bolometric luminosity is approximately three times lower than that expected from the luminosity-temperature relation in previous studies of relaxed clusters. These features are also observed in another low surface brightness cluster, Abell 76. The spatial distributions of galaxies and the hot gas appear to be different. The X-ray luminosity is relatively lower than that expected from the velocity dispersion. A post-merger scenario may explain the observed results.
Suzaku observations of low surface brightness cluster Abell 1631
NASA Astrophysics Data System (ADS)
Babazaki, Yasunori; Mitsuishi, Ikuyuki; Ota, Naomi; Sasaki, Shin; Böhringer, Hans; Chon, Gayoung; Pratt, Gabriel W.; Matsumoto, Hironori
2018-06-01
We present analysis results for a nearby galaxy cluster Abell 1631 at z = 0.046 using the X-ray observatory Suzaku. This cluster is categorized as a low X-ray surface brightness cluster. To study the dynamical state of the cluster, we conduct four-pointed Suzaku observations and investigate physical properties of the Mpc-scale hot gas associated with the A 1631 cluster for the first time. Unlike relaxed clusters, the X-ray image shows no strong peak at the center and an irregular morphology. We perform spectral analysis and investigate the radial profiles of the gas temperature, density, and entropy out to approximately 1.5 Mpc in the east, north, west, and south directions by combining with the XMM-Newton data archive. The measured gas density in the central region is relatively low (a few ×10-4 cm-3) at the given temperature (˜2.9 keV) compared with X-ray-selected clusters. The entropy profile and value within the central region (r < 0.1 r200) are found to be flatter and higher (≳400 keV cm2). The observed bolometric luminosity is approximately three times lower than that expected from the luminosity-temperature relation in previous studies of relaxed clusters. These features are also observed in another low surface brightness cluster, Abell 76. The spatial distributions of galaxies and the hot gas appear to be different. The X-ray luminosity is relatively lower than that expected from the velocity dispersion. A post-merger scenario may explain the observed results.
Abell 1142 and the Missing Central Galaxy – A Cluster in Transition?
NASA Astrophysics Data System (ADS)
Jones, Alexander; Su, Yuanyuan; Buote, David; Forman, William; van Weeren, Reinout; Jones, Christine; Gastaldello, Fabio; Kraft, Ralph; Randall, Scott
2018-01-01
Two types of galaxy clusters exist: cool core (CC) clusters which exhibit centrally-peaked metallicity and X-ray emission and non-cool core (NCC) clusters, possessing comparably homogeneous metallicity and X-ray emission distributions. However, the origin of this dichotomy is still unknown. The current prevailing theories state that either there is a primordial entropy limit, above which a CC is unable to form, or that clusters can change type through major mergers and radiative cooling. Abell 1142 is a galaxy cluster that can provide a unique probe of the root of this cluster-type division. It is formed of two merging sub-clusters, each with its own brightest cluster galaxies (BCG). Its enriched X-ray centroid (possible CC remnant) lies between these two BCGs. We present the thermal and chemical distributions of this system using deep (180ks) XMM-Newton observations to shed light on the role of mergers in the evolution of galaxy clusters.
The Noble-Abel Stiffened-Gas equation of state
NASA Astrophysics Data System (ADS)
Le Métayer, Olivier; Saurel, Richard
2016-04-01
Hyperbolic two-phase flow models have shown excellent ability for the resolution of a wide range of applications ranging from interfacial flows to fluid mixtures with several velocities. These models account for waves propagation (acoustic and convective) and consist in hyperbolic systems of partial differential equations. In this context, each phase is compressible and needs an appropriate convex equation of state (EOS). The EOS must be simple enough for intensive computations as well as boundary conditions treatment. It must also be accurate, this being challenging with respect to simplicity. In the present approach, each fluid is governed by a novel EOS named "Noble Abel stiffened gas," this formulation being a significant improvement of the popular "Stiffened Gas (SG)" EOS. It is a combination of the so-called "Noble-Abel" and "stiffened gas" equations of state that adds repulsive effects to the SG formulation. The determination of the various thermodynamic functions and associated coefficients is the aim of this article. We first use thermodynamic considerations to determine the different state functions such as the specific internal energy, enthalpy, and entropy. Then we propose to determine the associated coefficients for a liquid in the presence of its vapor. The EOS parameters are determined from experimental saturation curves. Some examples of liquid-vapor fluids are examined and associated parameters are computed with the help of the present method. Comparisons between analytical and experimental saturation curves show very good agreement for wide ranges of temperature for both liquid and vapor.
Cool Core Disruption in Abell 1763
NASA Astrophysics Data System (ADS)
Douglass, Edmund; Blanton, Elizabeth L.; Clarke, Tracy E.; Randall, Scott W.; Edwards, Louise O. V.; Sabry, Ziad
2017-01-01
We present the analysis of a 20 ksec Chandra archival observation of the massive galaxy cluster Abell 1763. A model-subtracted image highlighting excess cluster emission reveals a large spiral structure winding outward from the core to a radius of ~950 kpc. We measure the gas of the inner spiral to have significantly lower entropy than non-spiral regions at the same radius. This is consistent with the structure resulting from merger-induced motion of the cluster’s cool core, a phenomenon seen in many systems. Atypical of spiral-hosting clusters, an intact cool core is not detected. Its absence suggests the system has experienced significant disruption since the initial dynamical encounter that set the sloshing core in motion. Along the major axis of the elongated ICM distribution we detect thermal features consistent with the merger event most likely responsible for cool core disruption. The merger-induced transition towards non-cool core status will be discussed. The interaction between the powerful (P1.4 ~ 1026 W Hz-1) cluster-center WAT radio source and its ICM environment will also be discussed.
An off-axis galaxy cluster merger: Abell 0141
NASA Astrophysics Data System (ADS)
Caglar, Turgay
2018-04-01
We present structural analysis results of Abell 0141 (z = 0.23) based on X-ray data. The X-ray luminosity map demonstrates that Abell 0141 (A0141) is a bimodal galaxy cluster, which is separated on the sky by ˜0.65 Mpc with an elongation along the north-south direction. The optical galaxy density map also demonstrates this bimodality. We estimate sub-cluster ICM temperatures of 5.17^{+0.20}_{-0.19} keV for A0141N and 5.23^{+0.24}_{-0.23} keV for A0141S. We obtain X-ray morphological parameters w = 0.034 ± 0.004, c = 0.113 ± 0.004, and w = 0.039 ± 0.004, c = 0.104 ± 0.005 for A0141N and A0141S, respectively. The resulting X-ray morphological parameters indicate that both sub-clusters are moderately disturbed non-cool core structures. We find a slight brightness jump in the bridge region, and yet, there is still an absence of strong X-ray emitting gas between sub-clusters. We discover a significantly hotspot (˜10 keV) between sub-clusters, and a Mach number M = 1.69^{+0.40}_{-0.37} is obtained by using the temperature jump condition. However, we did not find direct evidence for shock-heating between sub-clusters. We estimate the sub-clusters' central entropies as K0 > 100 keV cm2, which indicates that the sub-clusters are not cool cores. We find some evidence that the system undergoes an off-axis collision; however, the cores of each sub-clusters have not yet been destroyed. Due to the orientation of X-ray tails of sub-clusters, we suggest that the northern sub-cluster moves through the south-west direction, and the southern cluster moves through the north-east direction. In conclusion, we are witnessing an earlier phase of close core passage between sub-clusters.
The wonderful apparatus of John Jacob Abel called the "artificial kidney".
Eknoyan, Garabed
2009-01-01
Hemodialysis, which now provides life-saving therapy to millions of individuals, began as an exploratory attempt to sustain the lives of selected patients in the 1950s. That was a century after the formulation of the concept and determination of the laws governing dialysis. The first step in the translation of the laboratory principles of dialysis to living animals was the "vividiffusion" apparatus developed by John Jacob Abel (1859-1938), dubbed the "artificial kidney" in the August 11, 1913 issue of The Times of London reporting the demonstration of vividiffusion by Abel at University College. The detailed article in the January 18, 1914 of the New York Times, reproduced here, is based on the subsequent medical reports published by Abel et al. Tentative attempts of human dialysis in the decade that followed based on the vividiffusion apparatus of Abel and his materials (collodion, hirudin, and glass) met with failure and had to be abandoned. Practical dialysis became possible in the 1940s and thereafter after cellophane, heparin, and teflon became available. Abel worked in an age of great progress and experimental work in the basic sciences that laid the foundations of science-driven medicine. It was a "Heroic Age of Medicine," when medical discoveries and communicating them to the public were assuming increasing importance. This article provides the cultural, social, scientific, and medical background in which Abel worked, developed and reported his wonderful apparatus called the "artificial kidney."
ASCA observations of distant clusters of galaxies.
NASA Astrophysics Data System (ADS)
Tsuru, T.; Koyama, K.; Hughes, J. P.; Arimoto, N.; Kii, T.; Hattori, M.
It is important not only in studies of clusters of galaxies but also in cosmological aspects to investigate the evolution of X-ray properties of clusters of galaxies. ASCA enables detailed spectral studies on distant clusters and the evolution of temperature for the first time. The authors present here "preliminary" results of ASCA observation of 17 distant (z = 0.14 - 0.55) clusters of galaxies. The sample includes: Cl0016+16 Abell 370, Abell 1995, Abell 959, ACGG 118, Zw 3136, EMSS 1305.4+2941, Abell 1851, Abell 963, Abell 2163, EMSS 0839.8+2938, Abell 665, Abell 1689, Abell 2218, Abell 586, Abell 1413, Abell 1895. The cosmological constants of H0 = 50 km/s/Mpc and q0 = 0.5 are adopted in this paper.
The Filtered Abel Transform and Its Application in Combustion Diagnostics
NASA Technical Reports Server (NTRS)
Simons, Stephen N. (Technical Monitor); Yuan, Zeng-Guang
2003-01-01
Many non-intrusive combustion diagnosis methods generate line-of-sight projections of a flame field. To reconstruct the spatial field of the measured properties, these projections need to be deconvoluted. When the spatial field is axisymmetric, commonly used deconvolution method include the Abel transforms, the onion peeling method and the two-dimensional Fourier transform method and its derivatives such as the filtered back projection methods. This paper proposes a new approach for performing the Abel transform method is developed, which possesses the exactness of the Abel transform and the flexibility of incorporating various filters in the reconstruction process. The Abel transform is an exact method and the simplest among these commonly used methods. It is evinced in this paper that all the exact reconstruction methods for axisymmetric distributions must be equivalent to the Abel transform because of its uniqueness and exactness. Detailed proof is presented to show that the two dimensional Fourier methods when applied to axisymmetric cases is identical to the Abel transform. Discrepancies among various reconstruction method stem from the different approximations made to perform numerical calculations. An equation relating the spectrum of a set of projection date to that of the corresponding spatial distribution is obtained, which shows that the spectrum of the projection is equal to the Abel transform of the spectrum of the corresponding spatial distribution. From the equation, if either the projection or the distribution is bandwidth limited, the other is also bandwidth limited, and both have the same bandwidth. If the two are not bandwidth limited, the Abel transform has a bias against low wave number components in most practical cases. This explains why the Abel transform and all exact deconvolution methods are sensitive to high wave number noises. The filtered Abel transform is based on the fact that the Abel transform of filtered projection data is equal to an integral transform of the original projection data with the kernel function being the Abel transform of the filtering function. The kernel function is independent of the projection data and can be obtained separately when the filtering function is selected. Users can select the best filtering function for a particular set of experimental data. When the kernal function is obtained, it can be used repeatedly to a number of projection data sets (rovs) from the same experiment. When an entire flame image that contains a large number of projection lines needs to be processed, the new approach significantly reduces computational effort in comparison with the conventional approach in which each projection data set is deconvoluted separately. Computer codes have been developed to perform the filter Abel transform for an entire flame field. Measured soot volume fraction data of a jet diffusion flame are processed as an example.
High-Performance Mixed Models Based Genome-Wide Association Analysis with omicABEL software
Fabregat-Traver, Diego; Sharapov, Sodbo Zh.; Hayward, Caroline; Rudan, Igor; Campbell, Harry; Aulchenko, Yurii; Bientinesi, Paolo
2014-01-01
To raise the power of genome-wide association studies (GWAS) and avoid false-positive results in structured populations, one can rely on mixed model based tests. When large samples are used, and when multiple traits are to be studied in the ’omics’ context, this approach becomes computationally challenging. Here we consider the problem of mixed-model based GWAS for arbitrary number of traits, and demonstrate that for the analysis of single-trait and multiple-trait scenarios different computational algorithms are optimal. We implement these optimal algorithms in a high-performance computing framework that uses state-of-the-art linear algebra kernels, incorporates optimizations, and avoids redundant computations, increasing throughput while reducing memory usage and energy consumption. We show that, compared to existing libraries, our algorithms and software achieve considerable speed-ups. The OmicABEL software described in this manuscript is available under the GNU GPL v. 3 license as part of the GenABEL project for statistical genomics at http: //www.genabel.org/packages/OmicABEL. PMID:25717363
High-Performance Mixed Models Based Genome-Wide Association Analysis with omicABEL software.
Fabregat-Traver, Diego; Sharapov, Sodbo Zh; Hayward, Caroline; Rudan, Igor; Campbell, Harry; Aulchenko, Yurii; Bientinesi, Paolo
2014-01-01
To raise the power of genome-wide association studies (GWAS) and avoid false-positive results in structured populations, one can rely on mixed model based tests. When large samples are used, and when multiple traits are to be studied in the 'omics' context, this approach becomes computationally challenging. Here we consider the problem of mixed-model based GWAS for arbitrary number of traits, and demonstrate that for the analysis of single-trait and multiple-trait scenarios different computational algorithms are optimal. We implement these optimal algorithms in a high-performance computing framework that uses state-of-the-art linear algebra kernels, incorporates optimizations, and avoids redundant computations, increasing throughput while reducing memory usage and energy consumption. We show that, compared to existing libraries, our algorithms and software achieve considerable speed-ups. The OmicABEL software described in this manuscript is available under the GNU GPL v. 3 license as part of the GenABEL project for statistical genomics at http: //www.genabel.org/packages/OmicABEL.
Abel's Theorem Simplifies Reduction of Order
ERIC Educational Resources Information Center
Green, William R.
2011-01-01
We give an alternative to the standard method of reduction or order, in which one uses one solution of a homogeneous, linear, second order differential equation to find a second, linearly independent solution. Our method, based on Abel's Theorem, is shorter, less complex and extends to higher order equations.
GNSS-Based Space Weather Systems Including COSMIC Ionospheric Measurements
NASA Technical Reports Server (NTRS)
Komjathy, Attila; Mandrake, Lukas; Wilson, Brian; Iijima, Byron; Pi, Xiaoqing; Hajj, George; Mannucci, Anthony J.
2006-01-01
The presentation outline includes University Corporation for Atmospheric Research (UCAR) and Jet Propulsion Laboratory (JPL) product comparisons, assimilating ground-based global positioning satellites (GPS) and COSMIC into JPL/University of Southern California (USC) Global Assimilative Ionospheric Model (GAIM), and JPL/USC GAIM validation. The discussion of comparisons examines Abel profiles and calibrated TEC. The JPL/USC GAIM validation uses Arecibo ISR, Jason-2 VTEC, and Abel profiles.
NASA Astrophysics Data System (ADS)
Rodrigo Carrasco Damele, Eleazar; Verdugo, Tomas
2018-01-01
The galaxy cluster Abell 3827 is one of the most massive clusters know at z ≦ 0.1 (Richness class 2, BM typeI, X-ray LX = 2.4 x 1044 erg s-1). The Brightest Cluster Galaxy (BCG) in Abell 3827 is perhaps the most extreme example of ongoing galaxy cannibalism. The multi-component BCG hosts the stellar remnants nuclei of at least four bright elliptical galaxies embedded in a common assymetric halo extended up to 15 kpc. The most notorious characteristic of the BCG is the existence of a unique strong gravitational lens system located within the inner 15 kpc region. A mass estimation of the galaxy based on strong lensing model was presented in Carrasco et al (2010, ApJL, 715, 160). Moreover, the exceptional strong lensing lens system in Abell 3827 and the location of the four bright galaxies has been used to measure for the first time small physical separations between dark and ordinary matter (Williams et al. 2011, MNRAS, 415, 448, Massey et al. 2015, MNRAS, 449, 3393). In this contribution, we present a detailed strong lensing and dynamical analysis of the cluster Abell 3827 based on spectroscopic redshift of the lensed features and from ~70 spectroscopically confirmed member galaxies inside 0.5 x 0.5 Mpc from the cluster center.
The Power of Woman-Positive Literacy Work. Program-Based Action Research.
ERIC Educational Resources Information Center
Lloyd, Betty-Ann; And Others
The experiences of Canadian women in adult basic education and literacy (ABEL) were examined in a national research project during which 2 contact women from each of 12 ABEL programs across Canada spend one-half day each week "researching" their program's "woman-positive" activities and the consequences of those activities for…
Abel inversion using fast Fourier transforms.
Kalal, M; Nugent, K A
1988-05-15
A fast Fourier transform based Abel inversion technique is proposed. The method is faster than previously used techniques, potentially very accurate (even for a relatively small number of points), and capable of handling large data sets. The technique is discussed in the context of its use with 2-D digital interferogram analysis algorithms. Several examples are given.
Abyssal BEnthic Laboratory (ABEL): a novel approach for long-term investigation at abyssal depths
NASA Astrophysics Data System (ADS)
Berta, M.; Gasparoni, F.; Capobianco, M.
1995-03-01
This study assesses the feasibility of a configuration for a benthic underwater system, called ABEL (Abyssal BEnthic Laboratory), capable of operating both under controlled and autonomous modes for periods of several months to over one year at abyssal depths up to 6000 m. A network of stations, capable of different configurations, has been identified as satisfying the widest range of scientific expectations, and at the same time to address the technological challenge to increase the feasibility of scientific investigations, even when the need is not yet well specified. The overall system consists of a central Benthic Investigation Laboratory, devoted to the execution of the most complex scientific activities, with fixed Satellite Stations acting as nodes of a measuring network and a Mobile Station extending ABEL capabilities with the possibility to carry out surveys over the investigation area and interventions on the fixed stations. ABEL architecture also includes a dedicated deployment and recovery module, as well as sea-surface and land-based facilities. Such an installation constitutes the sea-floor equivalent of a meteorological or geophysical laboratory. Attention has been paid to selecting investigation tools supporting the ABEL system to carry out its mission with high operativity and minimal risk and environmental impact. This demands technologies to enable presence and operation at abyssal depths for the required period of time. Presence can be guaranteed by proper choice of power supply and communication systems. Operations require visual and manipulative capabilities, as well as deployment and retrieval capabilities. Advanced control system architectures must be considered, along with knowledge based approaches, to comply with the requirements for autonomous control. The results of this investigation demonstrate the feasibility of the ABEL concept and the pre-dimensioning of its main components.
ParallABEL: an R library for generalized parallelization of genome-wide association studies.
Sangket, Unitsa; Mahasirimongkol, Surakameth; Chantratita, Wasun; Tandayya, Pichaya; Aulchenko, Yurii S
2010-04-29
Genome-Wide Association (GWA) analysis is a powerful method for identifying loci associated with complex traits and drug response. Parts of GWA analyses, especially those involving thousands of individuals and consuming hours to months, will benefit from parallel computation. It is arduous acquiring the necessary programming skills to correctly partition and distribute data, control and monitor tasks on clustered computers, and merge output files. Most components of GWA analysis can be divided into four groups based on the types of input data and statistical outputs. The first group contains statistics computed for a particular Single Nucleotide Polymorphism (SNP), or trait, such as SNP characterization statistics or association test statistics. The input data of this group includes the SNPs/traits. The second group concerns statistics characterizing an individual in a study, for example, the summary statistics of genotype quality for each sample. The input data of this group includes individuals. The third group consists of pair-wise statistics derived from analyses between each pair of individuals in the study, for example genome-wide identity-by-state or genomic kinship analyses. The input data of this group includes pairs of SNPs/traits. The final group concerns pair-wise statistics derived for pairs of SNPs, such as the linkage disequilibrium characterisation. The input data of this group includes pairs of individuals. We developed the ParallABEL library, which utilizes the Rmpi library, to parallelize these four types of computations. ParallABEL library is not only aimed at GenABEL, but may also be employed to parallelize various GWA packages in R. The data set from the North American Rheumatoid Arthritis Consortium (NARAC) includes 2,062 individuals with 545,080, SNPs' genotyping, was used to measure ParallABEL performance. Almost perfect speed-up was achieved for many types of analyses. For example, the computing time for the identity-by-state matrix was linearly reduced from approximately eight hours to one hour when ParallABEL employed eight processors. Executing genome-wide association analysis using the ParallABEL library on a computer cluster is an effective way to boost performance, and simplify the parallelization of GWA studies. ParallABEL is a user-friendly parallelization of GenABEL.
VizieR Online Data Catalog: Ultradiffuse galaxies found in deep HST images of HFF (Lee+, 2017)
NASA Astrophysics Data System (ADS)
Lee, M. G.; Kang, J.; Lee, J. H.; Jang in, S.
2018-03-01
Abell S1063 and Abell 2744 are located at redshift z=0.348 and z=0.308, respectively, so their HST fields cover a relatively large fraction of each cluster. They are part of the target galaxy clusters in the Hubble Frontier Fields (HFF) Program, for which deep Hubble Space Telescope (HST) images are available (Lotz+ 2017ApJ...837...97L). We used ACS/F814W(I) and WFC3/F105W(Y) images for Abell S1063 and Abell 2744 in the HFF. The effective wavelengths of the F814W and F105W filters for the redshifts of Abell S1063 and Abell 2744 (6220 and 8030Å) correspond approximately to SDSS r' and Cousins I (or SDSS i') in the rest frame, respectively. Figure 1 display color images of the HST fields for Abell S1063 and Abell 2744. In this study we adopt the cosmological parameters H0=73km/s/Mpc, ΩM=0.27, and ΩΛ=0.73. For these parameters, luminosity distance moduli of Abell S1063 and Abell 2744 are (m-M)0=41.25 (d=1775Mpc) and 40.94 (d=1540Mpc), and angular diameter distances are 978 and 901Mpc, respectively. (5 data files).
Improved Abel transform inversion: First application to COSMIC/FORMOSAT-3
NASA Astrophysics Data System (ADS)
Aragon-Angel, A.; Hernandez-Pajares, M.; Juan, J.; Sanz, J.
2007-05-01
In this paper the first results of Ionospheric Tomographic inversion are presented, using the Improved Abel Transform on the COSMIC/FORMOSAT-3 constellation of 6 LEO satellites, carrying on-board GPS receivers.[- 4mm] The Abel transform inversion is a wide used technique which in the ionospheric context makes it possible to retrieve electron densities as a function of height based of STEC (Slant Total Electron Content) data gathered from GPS receivers on board of LEO (Low Earth Orbit) satellites. Within this precise use, the classical approach of the Abel inversion is based on the assumption of spherical symmetry of the electron density in the vicinity of an occultation, meaning that the electron content varies in height but not horizontally. In particular, one implication of this assumption is that the VTEC (Vertical Total Electron Content) is a constant value for the occultation region. This assumption may not always be valid since horizontal ionospheric gradients (a very frequent feature in some ionosphere problematic areas such as the Equatorial region) could significantly affect the electron profiles. [- 4mm] In order to overcome this limitation/problem of the classical Abel inversion, a studied improvement of this technique can be obtained by assuming separability in the electron density (see Hernández-Pajares et al. 2000). This means that the electron density can be expressed by the multiplication of VTEC data and a shape function which assumes all the height dependency in it while the VTEC data keeps the horizontal dependency. Actually, it is more realistic to assume that this shape fuction depends only on the height and to use VTEC information to take into account the horizontal variation rather than considering spherical symmetry in the electron density function as it has been carried out in the classical approach of the Abel inversion.[-4mm] Since the above mentioned improved Abel inversion technique has already been tested and proven to be a useful tool to obtain a vertical description of the ionospheric electron density (see García-Fernández et al. 2003), a natural following step would be to extend the use of this technique to the recently available COSMIC data. The COSMIC satellite constellation, formed by 6 micro-satellites, is being deployed since April 2006 in circular orbit around the Earth, with a final altitude of about 700-800 kilometers. Its global and almost uniform coverage will overcome one of the main limitations of this technique which is the sparcity of data, related to lack of GPS receivers in some regions. This can significantly stimulate the development of radio occultation techniques with the use of the huge volume of data provided by the COSMIC constellation to be processed and analysed updating the current knowledge of the Ionospheres nature and behaviour. In this context a summary of the Improvel Abel transform inversion technique and the first results based on COSMIC constellation data will be presented. Moreover, future improvements, taking into account the higher temporal and global spatial coverage, will be discussed. [-4mm] References:M. Hernández-Pajares, J. M. Juan and J. Sanz, Improving the Abel inversion by adding ground GPS data to LEO radio occultations in ionospheric sounding, GEOPHYSICAL RESEARCH LETTERS, VOL. 27, NO. 16, PAGES 2473-2476, AUGUST 15, 2000.M. Garcia-Fernández, M. Hernández-Pajares, M. Juan, and J. Sanz, Improvement of ionospheric electron density estimation with GPSMET occultations using Abel inversion and VTEC Information, JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 108, NO. A9, 1338, doi:10.1029/2003JA009952, 2003
ParallABEL: an R library for generalized parallelization of genome-wide association studies
2010-01-01
Background Genome-Wide Association (GWA) analysis is a powerful method for identifying loci associated with complex traits and drug response. Parts of GWA analyses, especially those involving thousands of individuals and consuming hours to months, will benefit from parallel computation. It is arduous acquiring the necessary programming skills to correctly partition and distribute data, control and monitor tasks on clustered computers, and merge output files. Results Most components of GWA analysis can be divided into four groups based on the types of input data and statistical outputs. The first group contains statistics computed for a particular Single Nucleotide Polymorphism (SNP), or trait, such as SNP characterization statistics or association test statistics. The input data of this group includes the SNPs/traits. The second group concerns statistics characterizing an individual in a study, for example, the summary statistics of genotype quality for each sample. The input data of this group includes individuals. The third group consists of pair-wise statistics derived from analyses between each pair of individuals in the study, for example genome-wide identity-by-state or genomic kinship analyses. The input data of this group includes pairs of SNPs/traits. The final group concerns pair-wise statistics derived for pairs of SNPs, such as the linkage disequilibrium characterisation. The input data of this group includes pairs of individuals. We developed the ParallABEL library, which utilizes the Rmpi library, to parallelize these four types of computations. ParallABEL library is not only aimed at GenABEL, but may also be employed to parallelize various GWA packages in R. The data set from the North American Rheumatoid Arthritis Consortium (NARAC) includes 2,062 individuals with 545,080, SNPs' genotyping, was used to measure ParallABEL performance. Almost perfect speed-up was achieved for many types of analyses. For example, the computing time for the identity-by-state matrix was linearly reduced from approximately eight hours to one hour when ParallABEL employed eight processors. Conclusions Executing genome-wide association analysis using the ParallABEL library on a computer cluster is an effective way to boost performance, and simplify the parallelization of GWA studies. ParallABEL is a user-friendly parallelization of GenABEL. PMID:20429914
UV spectroscopy including ISM line absorption: of the exciting star of Abell 35
NASA Astrophysics Data System (ADS)
Ziegler, M.; Rauch, T.; Werner, K.; Kruk, J. W.
Reliable spectral analysis that is based on high-resolution UV observations requires an adequate, simultaneous modeling of the interstellar line absorption and reddening. In the case of the central star of the planetary nebula Abell 35, BD-22 3467, we demonstrate our current standard spectral-analysis method that is based on the Tübingen NLTE Model-Atmosphere Package (TMAP). We present an on- going spectral analysis of FUSE and HST/STIS observations of BD-22 3467.
Health reform and technology--what does it mean for us?
Abele, J
1995-01-01
John Abele, Founder Chairman of Boston Scientific Corporation, spoke at AAMI's 30th Annual Meeting on 22 May in Anaheim, CA. His speech was part of AAMI's plenary session, "The Impact of a Reformed Health System on New Technology." After his speech, Abele joined three of AAMI's experts in a roundtable discussion on the topics he raised. See the BI&T Forum page 479 for their discussion. As a business entrepreneur and scientist, Abele is well versed in the topic of health reform and scientific advancements. He began his career with a degree in physics and philosophy, then moved into the health care field because of his fascination with medical devices and technologies. He has spent years working as an engineer, a salesperson, a general manager, and a partner in a research and development company. He was a cofounder of AAMI in 1965. Boston Scientific's roots trace back to 1969, when Abele joined with Itzhak Bentov to build a company around a steerable catheter. The associated technology became a platform for many types of tools that could be used as alternatives to surgery in most organs of the body. Today, with over 5,000 employees, 4,000 products, and a worldwide presence, the original objective of developing products and procedures that reduce risk, trauma, cost, and time still applies. Abele is the author of many papers and book chapters, and he has lectured extensively on the technology of various medical devices and technical, social, economic, and political trends affecting health care. His major interests are science education and the process by which new technology is invented, developed, and introduced to society. The following article is based on Abele's presentation.
Hubble Frontier Field Abell 2744
2014-01-07
This long-exposure image from NASA Hubble Space Telescope of massive galaxy cluster Abell 2744 is the deepest ever made of any cluster of galaxies. Shown in the foreground is Abell 2744, located in the constellation Sculptor.
Abel's theorem in the noncommutative case
NASA Astrophysics Data System (ADS)
Leitenberger, Frank
2004-03-01
We define noncommutative binary forms. Using the typical representation of Hermite we prove the fundamental theorem of algebra and we derive a noncommutative Cardano formula for cubic forms. We define quantized elliptic and hyperelliptic differentials of the first kind. Following Abel we prove Abel's theorem.
Serre duality, Abel's theorem, and Jacobi inversion for supercurves over a thick superpoint
NASA Astrophysics Data System (ADS)
Rothstein, Mitchell J.; Rabin, Jeffrey M.
2015-04-01
The principal aim of this paper is to extend Abel's theorem to the setting of complex supermanifolds of dimension 1 | q over a finite-dimensional local supercommutative C-algebra. The theorem is proved by establishing a compatibility of Serre duality for the supercurve with Poincaré duality on the reduced curve. We include an elementary algebraic proof of the requisite form of Serre duality, closely based on the account of the reduced case given by Serre in Algebraic groups and class fields, combined with an invariance result for the topology on the dual of the space of répartitions. Our Abel map, taking Cartier divisors of degree zero to the dual of the space of sections of the Berezinian sheaf, modulo periods, is defined via Penkov's characterization of the Berezinian sheaf as the cohomology of the de Rham complex of the sheaf D of differential operators. We discuss the Jacobi inversion problem for the Abel map and give an example demonstrating that if n is an integer sufficiently large that the generic divisor of degree n is linearly equivalent to an effective divisor, this need not be the case for all divisors of degree n.
Weak Gravitational Lensing by the Nearby Cluster Abell 3667.
Joffre; Fischer; Frieman; McKay; Mohr; Nichol; Johnston; Sheldon; Bernstein
2000-05-10
We present two weak lensing reconstructions of the nearby (zcl=0.055) merging cluster Abell 3667, based on observations taken approximately 1 yr apart under different seeing conditions. This is the lowest redshift cluster with a weak lensing mass reconstruction to date. The reproducibility of features in the two mass maps demonstrates that weak lensing studies of low-redshift clusters are feasible. These data constitute the first results from an X-ray luminosity-selected weak lensing survey of 19 low-redshift (z<0.1) southern clusters.
Tauberian theorems for Abel summability of sequences of fuzzy numbers
NASA Astrophysics Data System (ADS)
Yavuz, Enes; ćoşkun, Hüsamettin
2015-09-01
We give some conditions under which Abel summable sequences of fuzzy numbers are convergent. As corollaries we obtain the results given in [E. Yavuz, Ö. Talo, Abel summability of sequences of fuzzy numbers, Soft computing 2014, doi: 10.1007/s00500-014-1563-7].
Remote Sensing of the Ionosphere and Plasmasphere from Space Using Radiowaves
NASA Technical Reports Server (NTRS)
Mannucci, Anthony J.
2008-01-01
Topics include the scientific context, trans-ionospheric and sounding, small-scale structure, plasmasphere, fast and slow tomography, and pseudo-imaging. Individual slides focus on where geospace science stands today, variability in inner magnetosphere electric fields, Appleton-Hartree formula, phase and range ionospheric observables, examples of leveling, large ionization changes during storms, new mid-latitude phenomena, ionospheric sounding, COSMIC CERTO/Tri-band beacon, LEO-ground radio tomography, irregularity measurements, COSMIC, critical sensor data from COSMIC GPS limb sounding, occultation geometry, comparison of calibrated slant TEC measurements for 26 June 2006, historic examples of Abel electron density profiles, comparison of UCAR and JPL Able profiles of 26 June 2006, validating UCAR and JPL Abel profiles using Arecibo ISR measurements for 26 June 2006, E-region from GPS/MET 1995, Abel versus gradient assisted retrieval, 3000 profiles/day, plasmasphere, JASON TEC above satellite, GPS equatorial plasmasphere measurements, April 2002 geomagnetic storm, and space-based GPS tomography.
ROSAT HRI images of Abell 85 and Abell 496: Evidence for inhomogeneities in cooling flows
NASA Technical Reports Server (NTRS)
Prestwich, Andrea H.; Guimond, Stephen J.; Luginbuhl, Christian B.; Joy, Marshall
1995-01-01
We present ROSAT high-resolution images of two clusters of galaxies with cooling flows, Abell 496 and Abell 85. In these clusters, X-ray emission on small scales above the general cluster emission is significant at the 3 sigma level. There is no evidence for optical counterparts. If real, the enhancements may be associated with clumps of gas at a lower temperature and higher density than the ambient medium, or hotter, denser gas perhaps compressed by magnetic fields. These observations can be used to test models of how thermal instabilities form and evolve in cooling flows.
ROSAT HRI images of Abell 85 and Abell 496: Evidence for inhomogeneities in cooling flows
NASA Technical Reports Server (NTRS)
Prestwich, Andrea H.; Guimond, Stephen J.; Luginbuhl, Christian; Joy, Marshall
1994-01-01
We present ROSAT HRI images of two clusters of galaxies with cooling flows, Abell 496 and Abell 85. In these clusters, x-ray emission on small scales above the general cluster emission is significant at the 3 sigma level. There is no evidence for optical counterparts. The enhancements may be associated with lumps of gas at a lower temperature and higher density than the ambient medium, or hotter, denser gas perhaps compressed by magnetic fields. These observations can be used to test models of how thermal instabilities form and evolve in cooling flows.
The Noble-Abel Stiffened-Gas equation of state
DOE Office of Scientific and Technical Information (OSTI.GOV)
Le Métayer, Olivier, E-mail: olivier.lemetayer@univ-amu.fr; Saurel, Richard, E-mail: richard.saurel@univ-amu.fr; RS2N, 371 Chemin de Gaumin, 83640 Saint-Zacharie
2016-04-15
Hyperbolic two-phase flow models have shown excellent ability for the resolution of a wide range of applications ranging from interfacial flows to fluid mixtures with several velocities. These models account for waves propagation (acoustic and convective) and consist in hyperbolic systems of partial differential equations. In this context, each phase is compressible and needs an appropriate convex equation of state (EOS). The EOS must be simple enough for intensive computations as well as boundary conditions treatment. It must also be accurate, this being challenging with respect to simplicity. In the present approach, each fluid is governed by a novel EOSmore » named “Noble Abel stiffened gas,” this formulation being a significant improvement of the popular “Stiffened Gas (SG)” EOS. It is a combination of the so-called “Noble-Abel” and “stiffened gas” equations of state that adds repulsive effects to the SG formulation. The determination of the various thermodynamic functions and associated coefficients is the aim of this article. We first use thermodynamic considerations to determine the different state functions such as the specific internal energy, enthalpy, and entropy. Then we propose to determine the associated coefficients for a liquid in the presence of its vapor. The EOS parameters are determined from experimental saturation curves. Some examples of liquid-vapor fluids are examined and associated parameters are computed with the help of the present method. Comparisons between analytical and experimental saturation curves show very good agreement for wide ranges of temperature for both liquid and vapor.« less
NASA Astrophysics Data System (ADS)
Bockenhauer, Samuel; Fuerstenberg, Alexandre; Yao, Xiao Jie; Kobilka, Brian K.; Moerner, W. E.
2012-02-01
The ABEL trap allows trapping of single biomolecules in solution for extended observation without immobilization. The essential idea combines fluorescence-based position estimation with fast electrokinetic feedback in a microfluidic geometry to counter the Brownian motion of a single nanoscale object, hence maintaining its position in the field of view for hundreds of milliseconds to seconds. Such prolonged observation of single proteins allows access to slow dynamics, as probed by any available photophysical observables. We have used the ABEL trap to study conformational dynamics of the β2-adrenergic receptor, a key G-protein coupled receptor and drug target, in the absence and presence of agonist. A single environment-sensitive dye reports on the receptor microenvironment, providing a real-time readout of conformational change for each trapped receptor. The focus of this paper will be a quantitative comparison of the ligandfree and agonist-bound receptor data from our ABEL trap experiments. We observe a small but clearly detectable shift in conformational equilibria and a lengthening of fluctuation timescales upon binding of agonist. In order to quantify the shift in state distributions and timescales, we apply nonparametric statistical tests to place error bounds on the resulting single-molecule distributions.
Modeling & Testing of Inflatable Structures for Rapidly Deployable Port Infrastructures
2010-07-01
Rapidly Deployable Port Infrastructures By: Andrew Bloxom Abel Medellin Chris Vince Dr. Solomon Yim N SW C C D -C IS D -2 01...Andrew Bloxom, Abel Medellin , Chris Vince, Dr. Solomon Yim 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING...Andrew Bloxom Abel Medellin Chris Vince Dr. Solomon Yim A special thanks to: • Ben Testerman and Dr. Pat
VizieR Online Data Catalog: Strong lensing mass modeling of 4 HFF clusters (Kawamata+, 2016)
NASA Astrophysics Data System (ADS)
Kawamata, R.; Oguri, M.; Ishigaki, M.; Shimasaku, K.; Ouchi, M.
2018-02-01
We use the public HFF data (http://www.stsci.edu/hst/campaigns/frontier-fields/) for our analysis. The HFF targets six massive clusters, Abell 2744 (z=0.308), MACS J0416.1-2403 (z=0.397), MACS J0717.5+3745 (z=0.545), MACS J1149.6+2223 (z=0.541), Abell S1063 (z=0.348), and Abell 370 (z=0.375), which have been chosen according to their lensing strength and also their accessibility from major ground-based telescopes. The cluster core and parallel field region of each cluster are observed deeply with the IR channel of Wide Field Camera 3 (WFC3/IR) and the Advanced Camera for Surveys (ACS). As of 2015 October, HST observations for the first four clusters, Abell 2744, MACS J0416.1-2403, MACS J0717.5+3745, and MACS J1149.6+2223, are completed. In this study, we use the Version 1.0 data products of drizzled images with a pixel scale of 0.03"/pixel provided by the Space Telescope Science Institute (STScI). The images for each cluster consist of F435W (B435), F606W (V606), and F814W (i814) images from ACS, and F105W (Y105), F125W (J125), F140W (JH140), and F160W (H160) images from WFC3/IR. (7 data files).
NASA Astrophysics Data System (ADS)
Lotz, Jennifer; Mountain, M.; Grogin, N. A.; Koekemoer, A. M.; Capak, P. L.; Mack, J.; Coe, D. A.; Barker, E. A.; Adler, D. S.; Avila, R. J.; Anderson, J.; Casertano, S.; Christian, C. A.; Gonzaga, S.; Ferguson, H. C.; Fruchter, A. S.; Jenkner, H.; Jordan, I. J.; Hammer, D.; Hilbert, B.; Lawton, B. L.; Lee, J. C.; Lucas, R. A.; MacKenty, J. W.; Mutchler, M. J.; Ogaz, S.; Reid, I. N.; Royle, P.; Robberto, M.; Sembach, K.; Smith, L. J.; Sokol, J.; Surace, J. A.; Taylor, D.; Tumlinson, J.; Viana, A.; Williams, R. E.; Workman, W.
2014-01-01
Using Director's Discretionary observing time, HST is undertaking a revolutionary deep field observing program to peer deeper into the Universe than ever before. The Frontier Fields will combine the power of HST with the natural gravitational telescopes of high-magnification clusters of galaxies to produce the deepest observations of clusters and their lensed galaxies and the second-deepest observations of blank fields ever obtained. Up to six strong-lensing clusters (Abell 2744, MACSJ0416.1-2403, MACSJ0717.5+3745, MACSJ1149.5+2223, AbellS1063, and Abell 370) will be targeted with coordinated parallels of adjacent blank fields with ACS/WFC and WFC3/IR cameras to ~29th ABmag depths in seven bandpasses over the next three years. These observations will reveal distant galaxy populations ~10-100 times fainter than any previously observed, and improve our statistical understanding of galaxies during the epoch of reionization. Here we present Hubble Space Telescope observations of the first set of the Frontier Fields, Abell 2744, and describe the HST Frontier Fields observing strategy and schedule. All data for this observing program is nonproprietary and available immediately upon entry into the Mikulski Archive for Space Telescopes.
Anti-inflammatory and antioxidative effects of Camellia oleifera Abel components.
Xiao, Xiaomei; He, Liangmei; Chen, Yayun; Wu, Longhuo; Wang, Lin; Liu, Zhiping
2017-11-01
Camellia oleifera Abel is a member of Camellia, and its seeds are used to extract Camellia oil, which is generally used as cooking oil in the south of China. Camellia oil consists of unsaturated fatty acids, tea polyphenol, squalene, saponin, carrot element and vitamins, etc. The seed remains after oil extraction of C. oleifera Abel are by-products of oil production, named as Camellia oil cake. Its extracts contain bioactive compounds including sasanquasaponin, flavonoid and tannin. Major components from Camellia oil and its cake have been shown to have anti-inflammatory, antioxidative, antimicrobial and antitumor activities. In this review, we will summarize the latest advance in the studies on anti-inflammatory or antioxidative effects of C. oleifera products, thus providing valuable reference for the future research and development of C. oleifera Abel.
2017-07-12
Aλ(y)) from Figure 5 to be converted into integrated absorbance as a function of radius (A’λ(r)), by the use of an inverse Abel transform (Equation...harsh environments,” Appl. Opt., vol. 48, no. 29, p. 5546, Oct. 2009. (8) Figure 8: Radial temperature distribution from inverse Abel transform...Results – Data processing – Absorbance area – Temperature measurements o Path averaged o Abel inversion – Species Concentration 5) Conclusions and
Non-thermal pressure in the outskirts of Abell 2142
NASA Astrophysics Data System (ADS)
Fusco-Femiano, Roberto; Lapi, Andrea
2018-03-01
Clumping and turbulence are expected to affect the matter accreted on to the outskirts of galaxy clusters. To determine their impact on the thermodynamic properties of Abell 2142, we perform an analysis of the X-ray temperature data from XMM-Newton via our SuperModel, a state-of-the-art tool for investigating the astrophysics of the intracluster medium already tested on many individual clusters (since Cavaliere, Lapi & Fusco-Femiano 2009). Using the gas density profile corrected for clumpiness derived by Tchernin et al. (2016), we find evidence for the presence of a non-thermal pressure component required to sustain gravity in the cluster outskirts of Abell 2142, that amounts to about 30 per cent of the total pressure at the virial radius. The presence of the non-thermal component implies the gas fraction to be consistent with the universal value at the virial radius and the electron thermal pressure profile to be in good agreement with that inferred from the SZ data. Our results indicate that the presence of gas clumping and of a non-thermal pressure component are both necessary to recover the observed physical properties in the cluster outskirts. Moreover, we stress that an alternative method often exploited in the literature (included Abell 2142) to determine the temperature profile kBT = Pe/ne basing on a combination of the Sunyaev-Zel'dovich (SZ) pressure Pe and of the X-ray electron density ne does not allow us to highlight the presence of non-thermal pressure support in the cluster outskirts.
Revisiting Abell 2744: a powerful synergy of GLASS spectroscopy and HFF photometry
NASA Astrophysics Data System (ADS)
Wang, Xin; Wang
We present new emission line identifications and improve the lensing reconstruction of the mass distribution of galaxy cluster Abell 2744 using the Grism Lens-Amplified Survey from Space (GLASS) spectroscopy and the Hubble Frontier Fields (HFF) imaging. We performed blind and targeted searches for faint line emitters on all objects, including the arc sample, within the field of view (FoV) of GLASS prime pointings. We report 55 high quality spectroscopic redshifts, 5 of which are for arc images. We also present an extensive analysis based on the HFF photometry, measuring the colors and photometric redshifts of all objects within the FoV, and comparing the spectroscopic and photometric redshift estimates. In order to improve the lens model of Abell 2744, we develop a rigorous algorithm to screen arc images, based on their colors and morphology, and selecting the most reliable ones to use. As a result, 25 systems (corresponding to 72 images) pass the screening process and are used to reconstruct the gravitational potential of the cluster pixellated on an adaptive mesh. The resulting total mass distribution is compared with a stellar mass map obtained from the Spitzer Frontier Fields data in order to study the relative distribution of stars and dark matter in the cluster.
Dark matter dynamics in Abell 3827: new data consistent with standard cold dark matter
NASA Astrophysics Data System (ADS)
Massey, Richard; Harvey, David; Liesenborgs, Jori; Richard, Johan; Stach, Stuart; Swinbank, Mark; Taylor, Peter; Williams, Liliya; Clowe, Douglas; Courbin, Frédéric; Edge, Alastair; Israel, Holger; Jauzac, Mathilde; Joseph, Rémy; Jullo, Eric; Kitching, Thomas D.; Leonard, Adrienne; Merten, Julian; Nagai, Daisuke; Nightingale, James; Robertson, Andrew; Romualdez, Luis Javier; Saha, Prasenjit; Smit, Renske; Tam, Sut-Ieng; Tittley, Eric
2018-06-01
We present integral field spectroscopy of galaxy cluster Abell 3827, using Atacama Large Millimetre Array (ALMA) and Very Large Telescope/Multi-Unit Spectroscopic Explorer. It reveals an unusual configuration of strong gravitational lensing in the cluster core, with at least seven lensed images of a single background spiral galaxy. Lens modelling based on Hubble Space Telescope imaging had suggested that the dark matter associated with one of the cluster's central galaxies may be offset. The new spectroscopic data enable better subtraction of foreground light, and better identification of multiple background images. The inferred distribution of dark matter is consistent with being centred on the galaxies, as expected by Λ cold dark matter. Each galaxy's dark matter also appears to be symmetric. Whilst, we do not find an offset between mass and light (suggestive of self-interacting dark matter) as previously reported, the numerical simulations that have been performed to calibrate Abell 3827 indicate that offsets and asymmetry are still worth looking for in collisions with particular geometries. Meanwhile, ALMA proves exceptionally useful for strong lens image identifications.
Redshifts in the Southern Abell Redshift Survey Clusters. I. The Data
NASA Astrophysics Data System (ADS)
Way, M. J.; Quintana, H.; Infante, L.; Lambas, D. G.; Muriel, H.
2005-11-01
The Southern Abell Redshift Survey (SARS) contains 39 clusters of galaxies with redshifts in the range 0.0
NASA Astrophysics Data System (ADS)
Mao, Tian-Xiang; Wang, Jie; Frenk, Carlos S.; Gao, Liang; Li, Ran; Wang, Qiao; Cao, Xiaoyue; Li, Ming
2018-07-01
Schwinn et al. have recently compared the abundance and distribution of massive substructures identified in a gravitational lensing analysis of Abell 2744 by Jauzac et al. and N-body simulation, and found no cluster in Lambda cold dark matter (ΛCDM) simulation that is similar to Abell 2744. Schwinn et al. identified the measured projected aperture masses with the actual masses associated with subhaloes in the Millenium XXL N-body simulation. We have used the high-resolution Phoenix cluster simulations to show that such an identification is incorrect: the aperture mass is dominated by mass in the body of the cluster that happens to be projected along the line of sight to the subhalo. This enhancement varies from factors of a few to factors of more than 100, particularly for subhaloes projected near the centre of the cluster. We calculate aperture masses for subhaloes in our simulation and compare them to the measurements for Abell 2744. We find that the data for Abell 2744 are in excellent agreement with the matched predictions from ΛCDM. We provide further predictions for aperture mass functions of subhaloes in idealized surveys with varying mass detection thresholds.
2009-12-01
reserved. Printed in the U.S.A. ASTROMETRY WITH THE HUBBLE SPACE TELESCOPE: TRIGONOMETRIC PARALLAXES OF PLANETARY NEBULA NUCLEI NGC 6853, NGC 7293, ABELL 31...present absolute parallaxes and relative proper motions for the central stars of the planetary nebulae NGC 6853 (The Dumbbell), NGC 7293 (The Helix...Abell 31, and DeHt 5. This paper details our reduction and analysis using DeHt 5 as an example. We obtain these planetary nebula nuclei (PNNi
A 1400-MHz survey of 1478 Abell clusters of galaxies
NASA Technical Reports Server (NTRS)
Owen, F. N.; White, R. A.; Hilldrup, K. C.; Hanisch, R. J.
1982-01-01
Observations of 1478 Abell clusters of galaxies with the NRAO 91-m telescope at 1400 MHz are reported. The measured beam shape was deconvolved from the measured source Gaussian fits in order to estimate the source size and position angle. All detected sources within 0.5 corrected Abell cluster radii are listed, including the cluster number, richness class, distance class, magnitude of the tenth brightest galaxy, redshift estimate, corrected cluster radius in arcmin, right ascension and error, declination and error, total flux density and error, and angular structure for each source.
HUBBLE VIEWS DISTANT GALAXIES THROUGH A COSMIC LENS
NASA Technical Reports Server (NTRS)
2002-01-01
This NASA Hubble Space Telescope image of the rich galaxy cluster, Abell 2218, is a spectacular example of gravitational lensing. The arc-like pattern spread across the picture like a spider web is an illusion caused by the gravitational field of the cluster. The cluster is so massive and compact that light rays passing through it are deflected by its enormous gravitational field, much as an optical lens bends light to form an image. The process magnifies, brightens and distorts images of objects that lie far beyond the cluster. This provides a powerful 'zoom lens' for viewing galaxies that are so far away they could not normally be observed with the largest available telescopes. Hubble's high resolution reveals numerous arcs which are difficult to detect with ground-based telescopes because they appear to be so thin. The arcs are the distorted images of a very distant galaxy population extending 5-10 times farther than the lensing cluster. This population existed when the universe was just one quarter of its present age. The arcs provide a direct glimpse of how star forming regions are distributed in remote galaxies, and other clues to the early evoution of galaxies. Hubble also reveals multiple imaging, a rarer lensing event that happens when the distortion is large enough to produce more than one image of the same galaxy. Abell 2218 has an unprecedented total of seven multiple systems. The abundance of lensing features in Abell 2218 has been used to make a detailed map of the distribution of matter in the cluster's center. From this, distances can be calculated for a sample of 120 faint arclets found on the Hubble image. These arclets represent galaxies that are 50 times fainter than objects that can be seen with ground-based telescopes. Studies of remote galaxies viewed through well-studied lenses like Abell 2218 promise to reveal the nature of normal galaxies at much earlier epochs than was previously possible. The technique is a powerful combination of Hubble's superlative capabilities and the 'natural' focusing properties of massive clusters like Abell 2218. The image was taken with the Wide Field Planetary Camera 2. Credits: W.Couch (University of New South Wales), R. Ellis (Cambridge University), and NASA
Evaluation of Inversion Methods Applied to Ionospheric ro Observations
NASA Astrophysics Data System (ADS)
Rios Caceres, Arq. Estela Alejandra; Rios, Victor Hugo; Guyot, Elia
The new technique of radio-occultation can be used to study the Earth's ionosphere. The retrieval processes of ionospheric profiling from radio occultation observations usually assume spherical symmetry of electron density distribution at the locality of occultation and use the Abel integral transform to invert the measured total electron content (TEC) values. This pa-per presents a set of ionospheric profiles obtained from SAC-C satellite with the Abel inversion technique. The effects of the ionosphere on the GPS signal during occultation, such as bending and scintillation, are examined. Electron density profiles are obtained using the Abel inversion technique. Ionospheric radio occultations are validated using vertical profiles of electron con-centration from inverted ionograms , obtained from ionosonde sounding in the vicinity of the occultation. Results indicate that the Abel transform works well in the mid-latitudes during the daytime, but is less accurate during the night-time.
Bayesian Abel Inversion in Quantitative X-Ray Radiography
Howard, Marylesa; Fowler, Michael; Luttman, Aaron; ...
2016-05-19
A common image formation process in high-energy X-ray radiography is to have a pulsed power source that emits X-rays through a scene, a scintillator that absorbs X-rays and uoresces in the visible spectrum in response to the absorbed photons, and a CCD camera that images the visible light emitted from the scintillator. The intensity image is related to areal density, and, for an object that is radially symmetric about a central axis, the Abel transform then gives the object's volumetric density. Two of the primary drawbacks to classical variational methods for Abel inversion are their sensitivity to the type andmore » scale of regularization chosen and the lack of natural methods for quantifying the uncertainties associated with the reconstructions. In this work we cast the Abel inversion problem within a statistical framework in order to compute volumetric object densities from X-ray radiographs and to quantify uncertainties in the reconstruction. A hierarchical Bayesian model is developed with a likelihood based on a Gaussian noise model and with priors placed on the unknown density pro le, the data precision matrix, and two scale parameters. This allows the data to drive the localization of features in the reconstruction and results in a joint posterior distribution for the unknown density pro le, the prior parameters, and the spatial structure of the precision matrix. Results of the density reconstructions and pointwise uncertainty estimates are presented for both synthetic signals and real data from a U.S. Department of Energy X-ray imaging facility.« less
VizieR Online Data Catalog: Abell 315 spectroscopic dataset (Biviano+, 2017)
NASA Astrophysics Data System (ADS)
Biviano, A.; Popesso, P.; Dietrich, J. P.; Zhang, Y.-Y.; Erfanianfar, G.; Romaniello, M.; Sartoris, B.
2017-03-01
Abell 315 was observed at the European Southern Observatory (ESO) Very Large Telescope (VLT) with the VIsible MultiObject Spectrograph (VIMOS). The VIMOS data were acquired using 8 separate pointings, plus 2 additional pointings required to provide the needed redundancy within the central region and to cover the gaps between the VIMOS quadrants. Catalog of galaxies with redshifts in the region of the cluster Abell 315, with flags indicating whether these galaxies are members of the cluster, members of substructures within the cluster, and with probabilities for the cluster members to belong to the main cluster structure. (1 data file).
U(1)-invariant membranes: The geometric formulation, Abel, and pendulum differential equations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zheltukhin, A. A.; Fysikum, AlbaNova, Stockholm University, 106 91 Stockholm; NORDITA, Roslagstullsbacken 23, 106 91 Stockholm
The geometric approach to study the dynamics of U(1)-invariant membranes is developed. The approach reveals an important role of the Abel nonlinear differential equation of the first type with variable coefficients depending on time and one of the membrane extendedness parameters. The general solution of the Abel equation is constructed. Exact solutions of the whole system of membrane equations in the D=5 Minkowski space-time are found and classified. It is shown that if the radial component of the membrane world vector is only time dependent, then the dynamics is described by the pendulum equation.
NASA Astrophysics Data System (ADS)
Tchernin, C.; Bartelmann, M.; Huber, K.; Dekel, A.; Hurier, G.; Majer, C. L.; Meyer, S.; Zinger, E.; Eckert, D.; Meneghetti, M.; Merten, J.
2018-06-01
Context. The mass of galaxy clusters is not a direct observable, nonetheless it is commonly used to probe cosmological models. Based on the combination of all main cluster observables, that is, the X-ray emission, the thermal Sunyaev-Zel'dovich (SZ) signal, the velocity dispersion of the cluster galaxies, and gravitational lensing, the gravitational potential of galaxy clusters can be jointly reconstructed. Aims: We derive the two main ingredients required for this joint reconstruction: the potentials individually reconstructed from the observables and their covariance matrices, which act as a weight in the joint reconstruction. We show here the method to derive these quantities. The result of the joint reconstruction applied to a real cluster will be discussed in a forthcoming paper. Methods: We apply the Richardson-Lucy deprojection algorithm to data on a two-dimensional (2D) grid. We first test the 2D deprojection algorithm on a β-profile. Assuming hydrostatic equilibrium, we further reconstruct the gravitational potential of a simulated galaxy cluster based on synthetic SZ and X-ray data. We then reconstruct the projected gravitational potential of the massive and dynamically active cluster Abell 2142, based on the X-ray observations collected with XMM-Newton and the SZ observations from the Planck satellite. Finally, we compute the covariance matrix of the projected reconstructed potential of the cluster Abell 2142 based on the X-ray measurements collected with XMM-Newton. Results: The gravitational potentials of the simulated cluster recovered from synthetic X-ray and SZ data are consistent, even though the potential reconstructed from X-rays shows larger deviations from the true potential. Regarding Abell 2142, the projected gravitational cluster potentials recovered from SZ and X-ray data reproduce well the projected potential inferred from gravitational-lensing observations. We also observe that the covariance matrix of the potential for Abell 2142 reconstructed from XMM-Newton data sensitively depends on the resolution of the deprojected grid and on the smoothing scale used in the deprojection. Conclusions: We show that the Richardson-Lucy deprojection method can be effectively applied on a grid and that the projected potential is well recovered from real and simulated data based on X-ray and SZ signal. The comparison between the reconstructed potentials from the different observables provides additional information on the validity of the assumptions as function of the projected radius.
The cluster Abell 780: an optical view
NASA Astrophysics Data System (ADS)
Durret, F.; Slezak, E.; Adami, C.
2009-11-01
Context: The Abell 780 cluster, better known as the Hydra A cluster, has been thouroughly analyzed in X-rays. However, little is known about its optical properties. Aims: We propose to derive the galaxy luminosity function (GLF) in this apparently relaxed cluster and to search for possible environmental effects by comparing the GLFs in various regions and by looking at the galaxy distribution at large scale around Abell 780. Methods: Our study is based on optical images obtained with the ESO 2.2m telescope and WFI camera in the B and R bands, covering a total region of 67.22 × 32.94 arcmin^2, or 4.235 × 2.075 Mpc2 for a cluster redshift of 0.0539. Results: In a region of 500 kpc radius around the cluster center, the GLF in the R band shows a double structure, with a broad and flat bright part and a flat faint end that can be fit by a power law with an index α ~ - 0.85 ± 0.12 in the 20.25 ≤ R ≤ 21.75 interval. If we divide this 500 kpc radius region in north+south or east+west halves, we find no clear difference between the GLFs in these smaller regions. No obvious large-scale structure is apparent within 5 Mpc from the cluster, based on galaxy redshifts and magnitudes collected from the NED database in a much larger region than that covered by our data, suggesting that there is no major infall of material in any preferential direction. However, the Serna-Gerbal method reveals a gravitationally bound structure of 27 galaxies, which includes the cD, and of a more strongly gravitationally bound structure of 14 galaxies. Conclusions: These optical results agree with the overall relaxed structure of Abell 780 previously derived from X-ray analyses. Based on observations obtained at the European Southern Observatory, program ESO 68.A-0084(A), P. I. E. Slezak. This research has made use of the NASA/IPAC Extragalactic Database (NED), which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration.
NASA Astrophysics Data System (ADS)
Coe, Daniel Aaron
The goal of thesis is to help scientists resolve one of the great mysteries of our time: the nature of Dark Matter. Dark Matter is currently believed to make up over 80% of the material in our universe, yet we have so far inferred but a few of its basic properties. Here we study the Dark Matter surrounding a galaxy cluster, Abell 1689, via the most direct method currently available--gravitational lensing. Abell 1689 is a "strong" gravitational lens, meaning it produces multiple images of more distant galaxies. The observed positions of these images can be measured very precisely and act as a blueprint allowing us to reconstruct the Dark Matter distribution of the lens. Until now, such mass models of Abell 1689 have reproduced the observed multiple images well but with significant positional offsets. Using a new method we develop here, we obtain a new mass model which perfectly reproduces the observed positions of 168 knots identified within 135 multiple images of 42 galaxies. An important ingredient to our mass model is the accurate measurement of distances to the lensed galaxies via their photometric redshifts. Here we develop tools which improve the accuracy of these measurements based on our study of the Hubble Ultra Deep Field, the only image yet taken to comparable depth as the magnified regions of Abell 1689. We present results both for objects in the Hubble Ultra Deep Field and for galaxies gravitationally lensed by Abell 1689. As part of this thesis, we also provide reviews of Dark Matter and Gravitational Lensing, including a chapter devoted to the mass profiles of Dark Matter halos realized in simulations. The original work presented here was performed primarily by myself under the guidance of Narciso Benítez and Holland Ford as a member of the Advanced Camera for Surveys GTO Science Team at Johns Hopkins University and the Instituto de Astrofisica de Andalucfa. My advisors served on my thesis committee along with Rick White, Gabor Domokos, and Steve Zelditch.
A variational regularization of Abel transform for GPS radio occultation
NASA Astrophysics Data System (ADS)
Wee, Tae-Kwon
2018-04-01
In the Global Positioning System (GPS) radio occultation (RO) technique, the inverse Abel transform of measured bending angle (Abel inversion, hereafter AI) is the standard means of deriving the refractivity. While concise and straightforward to apply, the AI accumulates and propagates the measurement error downward. The measurement error propagation is detrimental to the refractivity in lower altitudes. In particular, it builds up negative refractivity bias in the tropical lower troposphere. An alternative to AI is the numerical inversion of the forward Abel transform, which does not incur the integration of error-possessing measurement and thus precludes the error propagation. The variational regularization (VR) proposed in this study approximates the inversion of the forward Abel transform by an optimization problem in which the regularized solution describes the measurement as closely as possible within the measurement's considered accuracy. The optimization problem is then solved iteratively by means of the adjoint technique. VR is formulated with error covariance matrices, which permit a rigorous incorporation of prior information on measurement error characteristics and the solution's desired behavior into the regularization. VR holds the control variable in the measurement space to take advantage of the posterior height determination and to negate the measurement error due to the mismodeling of the refractional radius. The advantages of having the solution and the measurement in the same space are elaborated using a purposely corrupted synthetic sounding with a known true solution. The competency of VR relative to AI is validated with a large number of actual RO soundings. The comparison to nearby radiosonde observations shows that VR attains considerably smaller random and systematic errors compared to AI. A noteworthy finding is that in the heights and areas that the measurement bias is supposedly small, VR follows AI very closely in the mean refractivity deserting the first guess. In the lowest few kilometers that AI produces large negative refractivity bias, VR reduces the refractivity bias substantially with the aid of the background, which in this study is the operational forecasts of the European Centre for Medium-Range Weather Forecasts (ECMWF). It is concluded based on the results presented in this study that VR offers a definite advantage over AI in the quality of refractivity.
A Strong Merger Shock in Abell 665
NASA Technical Reports Server (NTRS)
Dasadia, S.; Sun, M.; Sarazin, C.; Morandi, A.; Markevitch, M.; Wik, D.; Feretti, L.; Giovannini, G.; Govoni, F.
2016-01-01
Deep (103 ks) Chandra observations of Abell 665 have revealed rich structures in this merging galaxy cluster, including a strong shock and two cold fronts. The newly discovered shock has a Mach number of M =?3.0 +/- 0.6, propagating in front of a cold disrupted cloud. This makes Abell 665 the second cluster, after the Bullet cluster, where a strong merger shock of M is approximately 3 has been detected. The shock velocity from jump conditions is consistent with (2.7 +/- 0.7) × 10(exp 3) km s(exp -1). The new data also reveal a prominent southern cold front with potentially heated gas ahead of it. Abell 665 also hosts a giant radio halo. There is a hint of diffuse radio emission extending to the shock at the north, which needs to be examined with better radio data. This new strong shock provides a great opportunity to study the reacceleration model with the X-ray and radio data combined.
NASA Technical Reports Server (NTRS)
Kurtz, M. J.; Huchra, J. P.; Beers, T. C.; Geller, M. J.; Gioia, I. M.
1985-01-01
X-ray and optical observations of the cluster of galaxies Abell 744 are presented. The X-ray flux (assuming H(0) = 100 km/s per Mpc) is about 9 x 10 to the 42nd erg/s. The X-ray source is extended, but shows no other structure. Photographic photometry (in Kron-Cousins R), calibrated by deep CCD frames, is presented for all galaxies brighter than 19th magnitude within 0.75 Mpc of the cluster center. The luminosity function is normal, and the isopleths show little evidence of substructure near the cluster center. The cluster has a dominant central galaxy, which is classified as a normal brightest-cluster elliptical on the basis of its luminosity profile. New redshifts were obtained for 26 galaxies in the vicinity of the cluster center; 20 appear to be cluster members. The spatial distribution of redshifts is peculiar; the dispersion within the 150 kpc core radius is much greater than outside. Abell 744 is similar to the nearby cluster Abell 1060.
Uncertainties in the cluster-cluster correlation function
NASA Astrophysics Data System (ADS)
Ling, E. N.; Frenk, C. S.; Barrow, J. D.
1986-12-01
The bootstrap resampling technique is applied to estimate sampling errors and significance levels of the two-point correlation functions determined for a subset of the CfA redshift survey of galaxies and a redshift sample of 104 Abell clusters. The angular correlation function for a sample of 1664 Abell clusters is also calculated. The standard errors in xi(r) for the Abell data are found to be considerably larger than quoted 'Poisson errors'. The best estimate for the ratio of the correlation length of Abell clusters (richness class R greater than or equal to 1, distance class D less than or equal to 4) to that of CfA galaxies is 4.2 + 1.4 or - 1.0 (68 percentile error). The enhancement of cluster clustering over galaxy clustering is statistically significant in the presence of resampling errors. The uncertainties found do not include the effects of possible systematic biases in the galaxy and cluster catalogs and could be regarded as lower bounds on the true uncertainty range.
Evolution of spherical cavitation bubbles: Parametric and closed-form solutions
NASA Astrophysics Data System (ADS)
Mancas, Stefan C.; Rosu, Haret C.
2016-02-01
We present an analysis of the Rayleigh-Plesset equation for a three dimensional vacuous bubble in water. In the simplest case when the effects of surface tension are neglected, the known parametric solutions for the radius and time evolution of the bubble in terms of a hypergeometric function are briefly reviewed. By including the surface tension, we show the connection between the Rayleigh-Plesset equation and Abel's equation, and obtain the parametric rational Weierstrass periodic solutions following the Abel route. In the same Abel approach, we also provide a discussion of the nonintegrable case of nonzero viscosity for which we perform a numerical integration.
HUBBLE AND KECK DISCOVER GALAXY BUILDING BLOCK
NASA Technical Reports Server (NTRS)
2002-01-01
This NASA Hubble Space Telescope image shows a very small, faint galaxy 'building block' newly discovered by a unique collaboration between ground- and space-based telescopes. Hubble and the 10-meter Keck Telescopes in Hawaii joined forces, using a galaxy cluster which acts as gravitational lens to detect what scientists believe is one of the smallest very distant objects ever found. The galaxy cluster Abell 2218 was used by a team of European and American astronomers led by Richard Ellis (Caltech) in their systematic search for intrinsically faint distant star-forming systems. Without help from Abell 2218's exceptional magnifying power to make objects appear about 30 times brighter, the galaxy building block would have been undetectable. In the image to the right, the object is seen distorted into two nearly identical, very red 'images' by the gravitational lens. The image pair represents the magnified result of a single background object gravitationally lensed by Abell 2218 and viewed at a distance of 13.4 billion light-years. The intriguing object contains only one million stars, far fewer than a mature galaxy, and scientists believe it is very young. Such young star-forming systems of low mass at early cosmic times are likely to be the objects from which present-day galaxies have formed. In the image to the left, the full overview of the galaxy cluster Abell 2218 is seen. This image was taken by Hubble in 1999 at the completion of Hubble Servicing Mission 3A. Credit: NASA, ESA, Richard Ellis (Caltech) and Jean-Paul Kneib (Observatoire Midi-Pyrenees, France) Acknowledgment: NASA, A. Fruchter and the ERO Team (STScI and ST-ECF)
Mystery solved: discovery of extended radio emission in the merging galaxy cluster Abell 2146
NASA Astrophysics Data System (ADS)
Hlavacek-Larrondo, J.; Gendron-Marsolais, M.-L.; Fecteau-Beaucage, D.; van Weeren, R. J.; Russell, H. R.; Edge, A.; Olamaie, M.; Rumsey, C.; King, L.; Fabian, A. C.; McNamara, B.; Hogan, M.; Mezcua, M.; Taylor, G.
2018-04-01
Abell 2146 (z = 0.232) is a massive galaxy cluster currently undergoing a spectacular merger in the plane of the sky with a bullet-like morphology. It was the first system in which both the bow and upstream shock fronts were detected at X-ray wavelengths (Mach ˜2), yet deep Giant MetreWave Telescope 325 MHz observations failed to detect extended radio emission associated with the cluster as is typically seen in such systems. We present new, multiconfiguration 1-2 GHz Karl G. Jansky Very Large Array (VLA) observations of Abell 2146 totalling 16 h of observations. These data reveal for the first time the presence of an extended (≈850 kpc), faint radio structure associated with Abell 2146. The structure appears to harbour multiple components, one associated with the upstream shock that we classify as a radio relic and one associated with the subcluster core that is consisted as being a radio halo bounded by the bow shock. The newly detected structures have some of the lowest radio powers detected thus far in any cluster (P1.4 GHz, halo = 2.4 ± 0.2 × 1023 W Hz-1 and P1.4 GHz, relic = 2.2 ± 0.2 × 1023 W Hz-1). The flux measurement of the halo, as well as its morphology, also suggests that the halo was recently created (≈0.3 Gyr after core passage), consistent with the dynamical state of the cluster. These observations demonstrate the capacity of the upgraded VLA to detect extremely faint and extended radio structures. Based on these observations, we predict that many more radio relics and radio haloes in merging clusters should be detected by future radio facilities such as the Square Kilometre Array.
NASA Astrophysics Data System (ADS)
Russell, H. R.; McNamara, B. R.; Fabian, A. C.; Nulsen, P. E. J.; Combes, F.; Edge, A. C.; Hogan, M. T.; McDonald, M.; Salomé, P.; Tremblay, G.; Vantyghem, A. N.
2017-12-01
We present new ALMA observations tracing the morphology and velocity structure of the molecular gas in the central galaxy of the cluster Abell 1795. The molecular gas lies in two filaments that extend 5-7 kpc to the N and S from the nucleus and project exclusively around the outer edges of two inner radio bubbles. Radio jets launched by the central active galactic nucleus have inflated bubbles filled with relativistic plasma into the hot atmosphere surrounding the central galaxy. The N filament has a smoothly increasing velocity gradient along its length from the central galaxy's systemic velocity at the nucleus to -370 km s^{-1}, the average velocity of the surrounding galaxies, at the furthest extent. The S filament has a similarly smooth but shallower velocity gradient and appears to have partially collapsed in a burst of star formation. The close spatial association with the radio lobes, together with the ordered velocity gradients and narrow velocity dispersions, shows that the molecular filaments are gas flows entrained by the expanding radio bubbles. Assuming a Galactic XCO factor, the total molecular gas mass is 3.2 ± 0.2 × 109 M⊙. More than half lies above the N radio bubble. Lifting the molecular clouds appears to require an infeasibly efficient coupling between the molecular gas and the radio bubble. The energy required also exceeds the mechanical power of the N radio bubble by a factor of 2. Stimulated feedback, where the radio bubbles lift low-entropy X-ray gas that becomes thermally unstable and rapidly cools in situ, provides a plausible model. Multiple generations of radio bubbles are required to lift this substantial gas mass. The close morphological association then indicates that the cold gas either moulds the newly expanding bubbles or is itself pushed aside and shaped as they inflate.
The cD galaxy in Abell cluster 1775
NASA Technical Reports Server (NTRS)
Hayes, J. J. E.; Bhattacharya, B.
1990-01-01
Over the last 20 years, a number of workers have studied the multiple nuclei cD galaxy in the rich Abell cluster 1775, trying to discover its nature. In all the cases though, very little has been published concerning its morphology. The majority of arguments about the nature of this object have been based on the relative radial velocities of the 2 components with each other and with the other galaxies in the cluster, or its radio morphology. Very little work has been done on the optical morphology. To rectify that lack of data, the authors have obtained charge coupled device (CCD) images of the cD. The authors find from the CCD data that the cD is unlikely to be a bound object and that there is strong evidence for a collision.
Evolution of the UV upturn in cluster galaxies: Abell 1689
NASA Astrophysics Data System (ADS)
Ali, S. S.; Bremer, M. N.; Phillipps, S.; De Propris, R.
2018-05-01
We have measured the strength of the UV upturn for red sequence galaxies in the Abell 1689 cluster at z = 0.18, reaching to or below the L* level and therefore probing the general evolution of the upturn phenomenon. We find that the range of UV upturn strengths in the population as a whole has not declined over the past 2.2 Gyrs. This is consistent with a model where hot horizontal branch stars, produced by a Helium-enriched population, provide the required UV flux. Based on local counterparts, this interpretation of the result implies Helium abundances of at least 1.5 times the primordial value for this HB population, along with high formation and assembly redshifts for the galaxies and at least a subset of their stellar populations.
Profile inversion in presence of ray bending
NASA Technical Reports Server (NTRS)
Wallio, H. A.; Grossi, M. D.
1972-01-01
Inversion of radio occultation data for planetary atmospheres and ionospheres has been performed using the seismological Herglotz-Wiechert method, as adapted by Phinney and Anderson to the radio-occultation case. Profile reconstruction performed in computer simulated experiments with this approach have been compared with the ones obtained with the straight-ray Abel transform. For a thin atmosphere and ionosphere, like the ones encountered on Mars, microwave occultation data can be inverted accurately with both methods. For a dense ionosphere like the sun's corona, ray bending of microwaves is severe, and recovered refractivity by the Herglotz-Wiechert method provides significant improvement over the straight-ray Abel transform: the error reduces from more than 60% to less than 20% at a height of 60,000 km above the base of the corona.
Chandra Observation of the WAT Radio Source/ICM Interaction in Abell 623
NASA Astrophysics Data System (ADS)
Anand, Gagandeep; Blanton, Elizabeth L.; Randall, Scott W.; Paterno-Mahler, Rachel; Douglass, Edmund
2017-01-01
Galaxy clusters are important objects for studying the physics of the intracluster medium (ICM), galaxy formation and evolution, and cosmological parameters. Clusters containing wide-angle tail (WAT) radio sources are particularly valuable for studies of the interaction between these sources and the surrounding ICM. These sources are thought to form when the ram pressure from the ICM caused by the relative motion between the host radio galaxy and the cluster bends the radio lobes into a distinct wide-angle morphology. We present our results from the analysis of a Chandra observation of the nearby WAT hosting galaxy cluster Abell 623. A clear decrement in X-ray emission is coincident with the southern radio lobe, consistent with being a cavity carved out by the radio source. We present profiles of surface brightness, temperature, density, and pressure and find evidence for a possible shock. Based on the X-ray pressure in the vicinity of the radio lobes and assumptions about the content of the lobes, we estimate the relative ICM velocity required to bend the lobes into the observed angle. We also present spectral model fits to the overall diffuse cluster emission and see no strong signature for a cool core. The sum of the evidence indicates that Abell 623 may be undergoing a large scale cluster-cluster merger.
Retrieval Performance and Indexing Differences in ABELL and MLAIB
ERIC Educational Resources Information Center
Graziano, Vince
2012-01-01
Searches for 117 British authors are compared in the Annual Bibliography of English Language and Literature (ABELL) and the Modern Language Association International Bibliography (MLAIB). Authors are organized by period and genre within the early modern era. The number of records for each author was subdivided by format, language of publication,…
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1998-11-01
The easy-to-use ABEL software evaluates for-profit company claims of inability to afford penalties, clean-up costs, or compliance costs. Violators raise the issue of inability to pay in most of EPA`s enforcement actions regardless of whether there is any hard evidence supporting those claims. The program enables Federal, State and local enforcement professionals to quickly determine if there was any validity to those claims. ABEL is a tool that promotes quick settlements by performing screening analyses of defendants and potentially responsible parties (PRP`s) to determine their financial capacity. After analyzing some basic financial ratios that reflect a company`s solvency, ABEL assessesmore » the firm`s ability to pay by focusing on projected cash flows. The model explicitly calculates the value of projected, internally generated cash flows from historical tax information, and compares these cash flows to the proposed environmental expenditure(s). The software is extremely easy to use. Version 3.0.16 updates the standard values for inflation and discount rate.« less
PredictABEL: an R package for the assessment of risk prediction models.
Kundu, Suman; Aulchenko, Yurii S; van Duijn, Cornelia M; Janssens, A Cecile J W
2011-04-01
The rapid identification of genetic markers for multifactorial diseases from genome-wide association studies is fuelling interest in investigating the predictive ability and health care utility of genetic risk models. Various measures are available for the assessment of risk prediction models, each addressing a different aspect of performance and utility. We developed PredictABEL, a package in R that covers descriptive tables, measures and figures that are used in the analysis of risk prediction studies such as measures of model fit, predictive ability and clinical utility, and risk distributions, calibration plot and the receiver operating characteristic plot. Tables and figures are saved as separate files in a user-specified format, which include publication-quality EPS and TIFF formats. All figures are available in a ready-made layout, but they can be customized to the preferences of the user. The package has been developed for the analysis of genetic risk prediction studies, but can also be used for studies that only include non-genetic risk factors. PredictABEL is freely available at the websites of GenABEL ( http://www.genabel.org ) and CRAN ( http://cran.r-project.org/).
Evidence for an extensive intracluster medium from radio observations of distant Abell clusters
NASA Technical Reports Server (NTRS)
Hanisch, R. J.; Ulmer, M. P.
1985-01-01
Observations have been made of 18 distance class 5 and 6 Abell clusters of galaxies using the VLA in its 'C' configuration at a frequency of 1460 MHz. Half of the clusters in the sample are confirmed or probable sources of X-ray emission. All the detected radio sources with flux densities above 10 mJy are reported, and information is provided concerning the angular extent of the sources, as well as the most likely optical identification. The existence of an extensive intracluster medium is inferred by identifying extended/distorted radio sources with galaxies whose apparent magnitudes are consistent with their being cluster members and that are at projected distances of 3-4 Abell radii (6-8 Mpc) from the nearest cluster center. By requiring that the radio sources are confined by the ambient medium, the ambient density is calculated and the total cluster mass is estimated. As a sample calculation, a wide-angle-tail radio source some 5 Mpc from the center of Abell 348 is used to estimate these quantities.
Rapid Inversion of Angular Deflection Data for Certain Axisymmetric Refractive Index Distributions
NASA Technical Reports Server (NTRS)
Rubinstein, R.; Greenberg, P. S.
1994-01-01
Certain functions useful for representing axisymmetric refractive-index distributions are shown to have exact solutions for Abel transformation of the resulting angular deflection data. An advantage of this procedure over direct numerical Abel inversion is that least-squares curve fitting is a smoothing process that reduces the noise sensitivity of the computation
ERIC Educational Resources Information Center
Rodgers, Joann Ellison
2010-01-01
The notion that vitamins, minerals, and other "supplemental" nutrients profoundly change behavior, mood, and intellect has origins as old as recorded history. Research has indeed suggested connections between nutrient deficiencies and behavior problems, but correlations are not the same as causality. This "Abell Report" is an…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Suganuma, Hideo; Sakumichi, Naoyuki
In the context of the dual superconductor picture for the confinement mechanism, we study maximally Abelian (MA) projection of quark confinement in SU(3) quenched lattice QCD with 32{sup 4} at β=6.4 (i.e., a ≃ 0.058 fm). We investigate the static quark-antiquark potential V(r), its Abelian part V{sub Abel}(r) and its off-diagonal part V{sub off}(r), respectively, from the on-axis lattice data. As a remarkable fact, we find almost perfect Abelian dominance for quark confinement, i.e., σ{sub Abel} ≃ σ for the string tension, on the fine and large-volume lattice. We find also a nontrivial summation relation of V (r) ≃ V{submore » Abel}(r)+V{sub off}(r)« less
Guan, Yue; Li, Weifeng; Jiang, Zhuoran; Chen, Ying; Liu, Song; He, Jian; Zhou, Zhengyang; Ge, Yun
2016-12-01
This study aimed to develop whole-lesion apparent diffusion coefficient (ADC)-based entropy-related parameters of cervical cancer to preliminarily assess intratumoral heterogeneity of this lesion in comparison to adjacent normal cervical tissues. A total of 51 women (mean age, 49 years) with cervical cancers confirmed by biopsy underwent 3-T pelvic diffusion-weighted magnetic resonance imaging with b values of 0 and 800 s/mm 2 prospectively. ADC-based entropy-related parameters including first-order entropy and second-order entropies were derived from the whole tumor volume as well as adjacent normal cervical tissues. Intraclass correlation coefficient, Wilcoxon test with Bonferroni correction, Kruskal-Wallis test, and receiver operating characteristic curve were used for statistical analysis. All the parameters showed excellent interobserver agreement (all intraclass correlation coefficients > 0.900). Entropy, entropy(H) 0 , entropy(H) 45 , entropy(H) 90 , entropy(H) 135 , and entropy(H) mean were significantly higher, whereas entropy(H) range and entropy(H) std were significantly lower in cervical cancers compared to adjacent normal cervical tissues (all P <.0001). Kruskal-Wallis test showed that there were no significant differences among the values of various second-order entropies including entropy(H) 0, entropy(H) 45 , entropy(H) 90 , entropy(H) 135 , and entropy(H) mean. All second-order entropies had larger area under the receiver operating characteristic curve than first-order entropy in differentiating cervical cancers from adjacent normal cervical tissues. Further, entropy(H) 45 , entropy(H) 90 , entropy(H) 135 , and entropy(H) mean had the same largest area under the receiver operating characteristic curve of 0.867. Whole-lesion ADC-based entropy-related parameters of cervical cancers were developed successfully, which showed initial potential in characterizing intratumoral heterogeneity in comparison to adjacent normal cervical tissues. Copyright © 2016 The Association of University Radiologists. Published by Elsevier Inc. All rights reserved.
Comparison of four stable numerical methods for Abel's integral equation
NASA Technical Reports Server (NTRS)
Murio, Diego A.; Mejia, Carlos E.
1991-01-01
The 3-D image reconstruction from cone-beam projections in computerized tomography leads naturally, in the case of radial symmetry, to the study of Abel-type integral equations. If the experimental information is obtained from measured data, on a discrete set of points, special methods are needed in order to restore continuity with respect to the data. A new combined Regularized-Adjoint-Conjugate Gradient algorithm, together with two different implementations of the Mollification Method (one based on a data filtering technique and the other on the mollification of the kernal function) and a regularization by truncation method (initially proposed for 2-D ray sample schemes and more recently extended to 3-D cone-beam image reconstruction) are extensively tested and compared for accuracy and numerical stability as functions of the level of noise in the data.
Revisiting Abell 2744: a powerful synergy of the GLASS spectroscopy and the HFF photometry.
NASA Astrophysics Data System (ADS)
Wang, Xin; Borello Schmidt, Kasper; Treu, Tommaso
2015-08-01
We present new emission line identifications and improve the strong lensing reconstruction of the massive cluster Abell 2744 using the Grism Lens-Amplified Survey from Space (GLASS) observations and the full depth of the Hubble Frontier Fields (HFF) imaging. We performed a blind and targeted search for emission lines in objects within the full field of view (FoV) of the GLASS prime pointings, including all the previously known multiple arc images. We report over 50 high quality spectroscopic redshifts, 4 of which are for the arc images. We also present an extensive analysis based on the HFF photometry, measuring the colors and photometric redshifts of all objects within the FoV, and comparing the spectroscopic and photometric results of the same ensemble of sources. In order to improve the lens model of Abell 2744, we develop a rigorous alogorithm to screen arc images, based on their colors and morphology, and selecting the most reliable ones to use. As a result, 21 systems (corresponding to 59 images) pass the screening process and are used to reconstruct the gravitational potential of the cluster pixellated on an adaptive mesh. The resulting total mass distribution is compared with a stellar mass map obtained from the deep Spitzer Frontier Fields data in a fashion very similar to the reduction of the Spitzer UltRa Faint SUrvey Program (SURFS UP) clusters, in order to study the relative distribution of stars and dark matter in the cluster. The maps of convergence, shear, and magnification are made publicly available in the standard HFF format.
Wu, Jiang-Ping; Kang, Nai-Xin; Zhang, Mi-Ya; Gao, Hong-Wei; Li, Xiao-Ran; Liu, Yan-Li; Xu, Qiong-Ming; Yang, Shi-Lin
2017-07-06
Camellia oleifera C. Abel has been widely cultivated in China, and a group of bioactive constituents such as triterpeniod saponin have been isolated from C. oleifera C. Abel. In the current study, a new triterpeniod saponin was isolated from the EtOH extract of the roots of C. oleifera C. Abel, named as oleiferoside W, and the cytotoxic properties of oleiferoside W were evaluated in non-small cell lung cancer A549 cells. At the same time the inducing apoptosis, the depolarization of mitochondrial membrane potential (Δψ), the up-regulation of related pro-apoptotic proteins, such as cleaved-PARP, cleaved-caspase-3, and the down-regulation of anti-apoptotic marker Bcl-2/Bax were measured on oleiferoside W. Furthermore, the function, inducing the generation of reactive oxygen species (ROS) and apoptosis, of oleiferoside W could be reversed by N-acetylcysteine (NAC). In conclusion, our findings showed that oleiferoside W induced apoptosis involving mitochondrial pathway and increasing intracellular ROS production in the A549 cells, suggesting that oleiferoside W may have the possibility to be a useful anticancer agent for therapy in lung cancer.
Abell 48 - a rare WN-type central star of a planetary nebula
NASA Astrophysics Data System (ADS)
Todt, H.; Kniazev, A. Y.; Gvaramadze, V. V.; Hamann, W.-R.; Buckley, D.; Crause, L.; Crawford, S. M.; Gulbis, A. A. S.; Hettlage, C.; Hooper, E.; Husser, T.-O.; Kotze, P.; Loaring, N.; Nordsieck, K. H.; O'Donoghue, D.; Pickering, T.; Potter, S.; Romero-Colmenero, E.; Vaisanen, P.; Williams, T.; Wolf, M.
2013-04-01
A considerable fraction of the central stars of planetary nebulae (CSPNe) are hydrogen-deficient. Almost all of these H-deficient central stars (CSs) display spectra with strong carbon and helium lines. Most of them exhibit emission-line spectra resembling those of massive WC stars. Therefore these stars are classed as CSPNe of spectral type [WC]. Recently, quantitative spectral analysis of two emission-line CSs, PB 8 and IC 4663, revealed that these stars do not belong to the [WC] class. Instead PB 8 has been classified as [WN/WC] type and IC 4663 as [WN] type. In this work we report the spectroscopic identification of another rare [WN] star, the CS of Abell 48. We performed a spectral analysis of Abell 48 with the Potsdam Wolf-Rayet (PoWR) models for expanding atmospheres. We find that the expanding atmosphere of Abell 48 is mainly composed of helium (85 per cent by mass), hydrogen (10 per cent) and nitrogen (5 per cent). The residual hydrogen and the enhanced nitrogen abundance make this object different from the other [WN] star IC 4663. We discuss the possible origin of this atmospheric composition.
Chandra Catches Early Phase of Cosmic Assembly
NASA Astrophysics Data System (ADS)
2004-08-01
A NASA Chandra X-ray Observatory image has revealed a complex of several intergalactic hot gas clouds in the process of merging. The superb Chandra spatial resolution made it possible to distinguish individual galaxies from the massive clouds of hot gas. One of the clouds, which that envelops hundreds of galaxies, has an extraordinarily low concentration of iron atoms, indicating that it is in the very early stages of cluster evolution. "We may be seeing hot intergalactic gas in a relatively pristine state before it has been polluted by gas from galaxies," said Q. Daniel Wang of the University of Massachusetts in Amherst, and lead author on an upcoming Astrophysical Journal article describing the study. "This discovery should provide valuable insight into how the most massive structures in the universe are assembled." 3-Panel Image of Abell 2125, Its Core & Galaxy C153 3-Panel Image of Abell 2125, Its Core & Galaxy C153 The complex, known as Abell 2125,is about 3 billion light years from Earth, and is seen at a time about 11 billion years after the Big Bang, when many galaxy clusters are believed to have formed. The Chandra Abell 2125 image shows several huge elongated clouds of multimillion degree gas coming together from different directions. These hot gas clouds, each of which contains hundreds of galaxies, appear to be in the process of merging to form a single massive galaxy cluster. Chandra, Hubble Space Telescope, and Very Large Array radio telescope data show that several galaxies in the Abell 2125 core cluster are being stripped of their gas as they fall through surrounding high-pressure hot gas. This stripping process has enriched the core cluster's gas in heavy elements such as iron. Abell 2125's Core & Galaxy C153 Abell 2125's Core & Galaxy C153 The gas in the pristine cloud, which is still several million light years away from the core cluster, is conspicuous for its lack of iron atoms. This anemic cloud must be in a very early evolutionary stage. The iron atoms produced by supernovas in the embedded galaxies must still be contained in and around the galaxies, perhaps in grains of dust not well mixed with the observed X-ray-emitting gas. Over time, as the cluster merges with the other clusters and the hot gas pressure increases, the dust grains will be driven from the galaxies, mixed with the hot gas, and destroyed, liberating the iron atoms. Building a massive galaxy cluster is a step-by-step enterprise that takes billions of years. Exactly how long it takes for such a cluster to form depends on many factors, such as the density of subclusters in the vicinity, the rate of the expansion of the universe, and the relative amounts of dark energy and dark matter. Chandra X-ray Image of Abell 2125, Low Energy Chandra X-ray Image of Abell 2125, Low Energy Cluster formation also involves complex interactions between the galaxies and the hot gas that may determine how large the galaxies in the cluster can ultimately become. These interactions determine how the galaxies maintain their gas content, the fuel for star formation. The observations of Abell 2125 provide a rare glimpse into the early steps in this process. NASA's Marshall Space Flight Center, Huntsville, Ala., manages the Chandra program for NASA's Office of Space Science, Washington. Northrop Grumman of Redondo Beach, Calif., formerly TRW, Inc., was the prime development contractor for the observatory. The Smithsonian Astrophysical Observatory controls science and flight operations from the Chandra X-ray Center in Cambridge, Mass. Additional information and images are available at: http://chandra.harvard.edu and http://chandra.nasa.gov
VizieR Online Data Catalog: Halpha measurements in Abell 2465 (Wegner+, 2015)
NASA Astrophysics Data System (ADS)
Wegner, G. A.; Chu, D. S.; Hwang, H. S.
2015-07-01
The wavelength of the Hα line at the redshift of Abell 2465 is near 817nm in a clear spectral region between the many telluric emission lines. A custom narrow-band filter for observing Hα was obtained from the Andover Corp. It has a peak transmission at 817.7nm (m817) and a full width at half-maximum (FWHM) of 8.77nm. The wide filter was a Gunn i (ig) filter with nearly the same central wavelength of 820nm and a FWHM of 185nm, and was manufactured by Custom Scientific. Hα observations of Abell 2465 were obtained 2012 September 19-23 using the 2.4m Hiltner telescope at the MDM Observatory on Kitt Peak. The 'Nellie' CCD was used. (1 data file).
The nature of the driving mechanism in the pulsating hybrid PG 1159 star Abell 43
NASA Astrophysics Data System (ADS)
Quirion, P.-O.; Fontaine, G.; Brassard, P.
2005-10-01
We extend our previous pulsational stability analyses of PG 1159 stars by modeling the hybrid PG 1159 type star Abell 43. We show that the standard κ-mechanism due to the ionization of C and O in the envelope of this H-rich PG 1159 star is perfectly able to drive g-mode pulsations. Thus, contrary to a recent suggestion, there is no need to invoke any new or exotic mechanism to explain the pulsational instabilities observed in this particular star. Our expected instability band for l=1 modes extends in period from ~2604 s to ~5529 s, which is consistent with the available photometric observations of Abell 43. We also suggest that efforts to detect luminosity variations in its sibling NGC 7094 be pursued.
Abell 1763: A Giant Gas Sloshing Spiral But No Cool Core
NASA Astrophysics Data System (ADS)
Douglass, Edmund
2017-09-01
We propose a 76 ksec observation of the z=0.23 galaxy cluster Abell 1763. Previous Chandra data reveals the system as host to a large 950 kpc gas sloshing spiral. Atypical of spiral-hosting clusters, an intact cool core is not detected. Its absence suggests the interaction has led to significant disruption since the onset of core sloshing. The primary cluster is accompanied by two X-ray emitting subsystems. Given the orientation of the spiral, both systems are strong candidates for being the perturber responsible for its formation. Abell 1763 provides us with the rare opportunity to examine an infall event (primary + perturber) resulting in sloshing to the point of core disintegration. Detailed analysis will be performed on the disrupted core, the spiral, and the perturber candidates.
Multicolour CCD surface photometry for E and S0 galaxies in 10 clusters
NASA Astrophysics Data System (ADS)
Jorgensen, Inger; Franx, Marijn; Kjaergaard, Per
1995-04-01
CCD surface photometry for 232 E and S0 galaxies is presented. The galaxies are observed in Gunn r and Johnson B, or Gunn r and g. For 48 of the galaxies surface photometry in Johnson U is also presented. Aperture magnitudes in Gunn nu are derived for half of the galaxies. Galaxies in the following clusters have been observed: Abell 194, Abell 539, Abell 3381, Abell 3574, Abell S639, Abell S753, HydraI (Abell 1060), DC2345-28, Doradus and Grm15. The data are part of our ongoing study of the large-scale motions in the Universe and the physical background for the fundamental plane. We use a full model fitting technique for analysing the CCD images. This gives radial profiles of local surface brightness, colour, ellipticity and position angle. The residuals relative to the elliptical isophotes are described quantitatively by Fourier expansions. Effective radius, mean surface brightness and total magnitude are derived by fitting a de Vaucouleurs r^¼ growth curve. We have derived a characteristic radius r_n similar to the diameter D_n introduced by Dressler et al. The derivation of the effective parameters and of r_n takes the seeing into account. We confirm the results by Saglia et al. that the effects of the seeing can be substantial. Seeing-corrected values of the effective parameters and r_n are also presented for 147 E and S0 galaxies in the Coma cluster. Colours, colour gradients and geometrical parameters are derived. The photometry is internally consistent within 0.016 mag. Comparison with the photoelectric aperture photometry from Burstein et al. shows a mean offset of 0.010 mag with an rms scatter of 0.034 mag. The global photometric parameters are compared with data from Faber et al., Lucey et al. and Lucey & Carter. These comparisons imply that the typical rms errors are as follows - log r_n:+/-0.015 log r_e:+/-0.045 m_T:+/-0.09 mag;
Entropy and equilibrium via games of complexity
NASA Astrophysics Data System (ADS)
Topsøe, Flemming
2004-09-01
It is suggested that thermodynamical equilibrium equals game theoretical equilibrium. Aspects of this thesis are discussed. The philosophy is consistent with maximum entropy thinking of Jaynes, but goes one step deeper by deriving the maximum entropy principle from an underlying game theoretical principle. The games introduced are based on measures of complexity. Entropy is viewed as minimal complexity. It is demonstrated that Tsallis entropy ( q-entropy) and Kaniadakis entropy ( κ-entropy) can be obtained in this way, based on suitable complexity measures. A certain unifying effect is obtained by embedding these measures in a two-parameter family of entropy functions.
An Analysis of Rich Cluster Redshift Survey Data for Large Scale Structure Studies
NASA Astrophysics Data System (ADS)
Slinglend, K.; Batuski, D.; Haase, S.; Hill, J.
1994-12-01
The results from the COBE satellite show the existence of structure on scales on the order of 10% or more of the horizon scale of the universe. Rich clusters of galaxies from Abell's catalog show evidence of structure on scales of 100 Mpc and may hold the promise of confirming structure on the scale of the COBE result. However, many Abell clusters have zero or only one measured redshift, so present knowledge of their three dimensional distribution has quite large uncertainties. The shortage of measured redshifts for these clusters may also mask a problem of projection effects corrupting the membership counts for the clusters. Our approach in this effort has been to use the MX multifiber spectrometer on the Steward 2.3m to measure redshifts of at least ten galaxies in each of 80 Abell cluster fields with richness class R>= 1 and mag10 <= 16.8 (estimated z<= 0.12) and zero or one measured redshifts. This work will result in a deeper, more complete (and reliable) sample of positions of rich clusters. Our primary intent for the sample is for two-point correlation and other studies of the large scale structure traced by these clusters in an effort to constrain theoretical models for structure formation. We are also obtaining enough redshifts per cluster so that a much better sample of reliable cluster velocity dispersions will be available for other studies of cluster properties. To date, we have collected such data for 64 clusters, and for most of them, we have seven or more cluster members with redshifts, allowing for reliable velocity dispersion calculations. Velocity histograms and stripe density plots for several interesting cluster fields are presented, along with summary tables of cluster redshift results. Also, with 10 or more redshifts in most of our cluster fields (30({') } square, just about an `Abell diameter' at z ~ 0.1) we have investigated the extent of projection effects within the Abell catalog in an effort to quantify and understand how this may effect the Abell sample.
Tracing Large Scale Structure with a Redshift Survey of Rich Clusters of Galaxies
NASA Astrophysics Data System (ADS)
Batuski, D.; Slinglend, K.; Haase, S.; Hill, J. M.
1993-12-01
Rich clusters of galaxies from Abell's catalog show evidence of structure on scales of 100 Mpc and hold promise of confirming the existence of structure in the more immediate universe on scales corresponding to COBE results (i.e., on the order of 10% or more of the horizon size of the universe). However, most Abell clusters do not as yet have measured redshifts (or, in the case of most low redshift clusters, have only one or two galaxies measured), so present knowledge of their three dimensional distribution has quite large uncertainties. The shortage of measured redshifts for these clusters may also mask a problem of projection effects corrupting the membership counts for the clusters, perhaps even to the point of spurious identifications of some of the clusters themselves. Our approach in this effort has been to use the MX multifiber spectrometer to measure redshifts of at least ten galaxies in each of about 80 Abell cluster fields with richness class R>= 1 and mag10 <= 16.8. This work will result in a somewhat deeper, much more complete (and reliable) sample of positions of rich clusters. Our primary use for the sample is for two-point correlation and other studies of the large scale structure traced by these clusters. We are also obtaining enough redshifts per cluster so that a much better sample of reliable cluster velocity dispersions will be available for other studies of cluster properties. To date, we have collected such data for 40 clusters, and for most of them, we have seven or more cluster members with redshifts, allowing for reliable velocity dispersion calculations. Velocity histograms for several interesting cluster fields are presented, along with summary tables of cluster redshift results. Also, with 10 or more redshifts in most of our cluster fields (30({') } square, just about an `Abell diameter' at z ~ 0.1) we have investigated the extent of projection effects within the Abell catalog in an effort to quantify and understand how this may effect the Abell sample.
X-ray emission from a complete sample of Abell clusters of galaxies
NASA Astrophysics Data System (ADS)
Briel, Ulrich G.; Henry, J. Patrick
1993-11-01
The ROSAT All-Sky Survey (RASS) is used to investigate the X-ray properties of a complete sample of Abell clusters with measured redshifts and accurate positions. The sample comprises the 145 clusters within a 561 square degree region at high galactic latitude. The mean redshift is 0.17. This sample is especially well suited to be studied within the RASS since the mean exposure time is higher than average and the mean galactic column density is very low. These together produce a flux limit of about 4.2 x 10-13 erg/sq cm/s in the 0.5 to 2.5 keV energy band. Sixty-six (46%) individual clusters are detected at a significance level higher than 99.7% of which 7 could be chance coincidences of background or foreground sources. At redshifts greater than 0.3 six clusters out of seven (86%) are detected at the same significance level. The detected objects show a clear X-ray luminosity -- galaxy count relation with a dispersion consistent with other external estimates of the error in the counts. By analyzing the excess of positive fluctuations of the X-ray flux at the cluster positions, compared with the fluctuations of randomly drawn background fields, it is possible to extend these results below the nominal flux limit. We find 80% of richness R greater than or = 0 and 86% of R greater than or = 1 clusters are X-ray emitters with fluxes above 1 x 10-13 erg/sq cm/s. Nearly 90% of the clusters meeting the requirements to be in Abell's statistical sample emit above the same level. We therefore conclude that almost all Abell clusters are real clusters and the Abell catalog is not strongly contaminated by projection effects. We use the Kaplan-Meier product limit estimator to calculate the cumulative X-ray luminosity function. We show that the shape of the luminosity functions are similiar for different richness classes, but the characteristic luminosities of richness 2 clusters are about twice those of richness 1 clusters which are in turn about twice those of richness 0 clusters. This result is another manifestation of the luminosity -- richness elation for Abell clusters.
Double symbolic joint entropy in nonlinear dynamic complexity analysis
NASA Astrophysics Data System (ADS)
Yao, Wenpo; Wang, Jun
2017-07-01
Symbolizations, the base of symbolic dynamic analysis, are classified as global static and local dynamic approaches which are combined by joint entropy in our works for nonlinear dynamic complexity analysis. Two global static methods, symbolic transformations of Wessel N. symbolic entropy and base-scale entropy, and two local ones, namely symbolizations of permutation and differential entropy, constitute four double symbolic joint entropies that have accurate complexity detections in chaotic models, logistic and Henon map series. In nonlinear dynamical analysis of different kinds of heart rate variability, heartbeats of healthy young have higher complexity than those of the healthy elderly, and congestive heart failure (CHF) patients are lowest in heartbeats' joint entropy values. Each individual symbolic entropy is improved by double symbolic joint entropy among which the combination of base-scale and differential symbolizations have best complexity analysis. Test results prove that double symbolic joint entropy is feasible in nonlinear dynamic complexity analysis.
NASA Astrophysics Data System (ADS)
Venkatapathy, Y.; Bravo-Alfaro, H.; Mayya, Y. D.; Lobo, C.; Durret, F.; Gamez, V.; Valerdi, M.; Granados-Contreras, A. P.; Navarro-Poupard, F.
2017-12-01
This work is part of a series of papers devoted to investigating the evolution of cluster galaxies during their infall. In the present article, we image in NIR a selected sample of galaxies throughout the massive cluster Abell 85 (z = 0.055). We obtain (JHK‧) photometry for 68 objects, reaching ˜1 mag arcsec-2 deeper than 2MASS. We use these images to unveil asymmetries in the outskirts of a sample of bright galaxies and develop a new asymmetry index, {α }{An}, which allows us to quantify the degree of disruption by the relative area occupied by the tidal features on the plane of the sky. We measure the asymmetries for a subsample of 41 large-area objects, finding clear asymmetries in 10 galaxies; most of these are in groups and pairs projected at different clustercentric distances, and some of them are located beyond R 500. Combining information on the H I gas content of blue galaxies and the distribution of substructures across Abell 85 with the present NIR asymmetry analysis, we obtain a very powerful tool to confirm that tidal mechanisms are indeed present and are currently affecting a fraction of galaxies in Abell 85. However, when comparing our deep NIR images with UV blue images of two very disrupted (jellyfish) galaxies in this cluster, we discard the presence of tidal interactions down to our detection limit. Our results suggest that ram-pressure stripping is at the origin of such spectacular disruptions. We conclude that across a complex cluster like Abell 85, environmental mechanisms, both gravitational and hydrodynamical, are playing an active role in driving galaxy evolution.
Topology in two dimensions. II - The Abell and ACO cluster catalogues
NASA Astrophysics Data System (ADS)
Plionis, Manolis; Valdarnini, Riccardo; Coles, Peter
1992-09-01
We apply a method for quantifying the topology of projected galaxy clustering to the Abell and ACO catalogues of rich clusters. We use numerical simulations to quantify the statistical bias involved in using high peaks to define the large-scale structure, and we use the results obtained to correct our observational determinations for this known selection effect and also for possible errors introduced by boundary effects. We find that the Abell cluster sample is consistent with clusters being identified with high peaks of a Gaussian random field, but that the ACO shows a slight meatball shift away from the Gaussian behavior over and above that expected purely from the high-peak selection. The most conservative explanation of this effect is that it is caused by some artefact of the procedure used to select the clusters in the two samples.
Cluster redshifts in five suspected superclusters
NASA Technical Reports Server (NTRS)
Ciardullo, R.; Ford, H.; Harms, R.
1985-01-01
Redshift surveys for rich superclusters were carried out in five regions of the sky containing surface-density enhancements of Abell clusters. While several superclusters are identified, projection effects dominate each field, and no system contains more than five rich clusters. Two systems are found to be especially interesting. The first, field 0136 10, is shown to contain a superposition of at least four distinct superclusters, with the richest system possessing a small velocity dispersion. The second system, 2206 - 22, though a region of exceedingly high Abell cluster surface density, appears to be a remarkable superposition of 23 rich clusters almost uniformly distributed in redshift space between 0.08 and 0.24. The new redshifts significantly increase the three-dimensional information available for the distance class 5 and 6 Abell clusters and allow the spatial correlation function around rich superclusters to be estimated.
Anti-Brownian ELectrokinetic (ABEL) Trapping of Single High Density Lipoprotein (HDL) Particles
NASA Astrophysics Data System (ADS)
Bockenhauer, Samuel; Furstenberg, Alexandre; Wang, Quan; Devree, Brian; Jie Yao, Xiao; Bokoch, Michael; Kobilka, Brian; Sunahara, Roger; Moerner, W. E.
2010-03-01
The ABEL trap is a novel device for trapping single biomolecules in solution for extended observation. The trap estimates the position of a fluorescently-labeled object as small as ˜10 nm in solution and then applies a feedback electrokinetic drift every 20 us to trap the object by canceling its Brownian motion. We use the ABEL trap to study HDL particles at the single-copy level. HDL particles, essential in regulation of ``good'' cholesterol in humans, comprise a small (˜10 nm) lipid bilayer disc bounded by a belt of apolipoproteins. By engineering HDL particles with single fluorescent donor/acceptor probes and varying lipid compositions, we are working to study lipid diffusion on small length scales. We also use HDL particles as hosts for single transmembrane receptors, which should enable study of receptor conformational dynamics on long timescales.
A Critical Look at Entropy-Based Gene-Gene Interaction Measures.
Lee, Woojoo; Sjölander, Arvid; Pawitan, Yudi
2016-07-01
Several entropy-based measures for detecting gene-gene interaction have been proposed recently. It has been argued that the entropy-based measures are preferred because entropy can better capture the nonlinear relationships between genotypes and traits, so they can be useful to detect gene-gene interactions for complex diseases. These suggested measures look reasonable at intuitive level, but so far there has been no detailed characterization of the interactions captured by them. Here we study analytically the properties of some entropy-based measures for detecting gene-gene interactions in detail. The relationship between interactions captured by the entropy-based measures and those of logistic regression models is clarified. In general we find that the entropy-based measures can suffer from a lack of specificity in terms of target parameters, i.e., they can detect uninteresting signals as interactions. Numerical studies are carried out to confirm theoretical findings. © 2016 WILEY PERIODICALS, INC.
RELICS Discovery of a Probable Lens-magnified SN behind Galaxy Cluster Abell 1763
NASA Astrophysics Data System (ADS)
Rodney, S.; Coe, D.; Bradley, L.; Strolger, L.; Brammer, G.; Avila, R.; Ryan, R.; Ogaz, S.; Riess, A.; Sharon, K.; Johnson, T.; Paterno-Mahler, R.; Molino, A.; Graham, M.; Kelly, P.; Filippenko, A.; Frye, B.; Foley, R.; Schmidt, K.; Umetsu, K.; Czakon, N.; Weiner, B.; Stark, D.; Mainali, R.; Zitrin, A.; Sendra, I.; Graur, O.; Grillo, C.; Hjorth, J.; Selsing, J.; Christensen, L.; Rosati, P.; Nonino, M.; Balestra, I.; Vulcani, B.; McCully, C.; Dawson, W.; Bouwens, R.; Lam, D.; Trenti, M.; Nunez, D. Carrasco; Matheson, T.; Merten, J.; Jha, S.; Jones, C.; Andrade-Santos, F.; Salmon, B.; Bradac, M.; Hoag, A.; Huang, K.; Wang, X.; Oesch, P.
2016-07-01
We report the discovery of a likely supernova (SN) in the background field of the galaxy cluster Abell 1763 (a.k.a. RXC J1335.3+4059, ZwCl 1333.7+4117). The SN candidate was detected in Hubble Space Telescope (HST) observations collected on June 17, 2016 as part of the Reionization Lensing Cluster Survey (RELICS, HST program ID: 14096, PI: D.Coe).
Using entropy measures to characterize human locomotion.
Leverick, Graham; Szturm, Tony; Wu, Christine Q
2014-12-01
Entropy measures have been widely used to quantify the complexity of theoretical and experimental dynamical systems. In this paper, the value of using entropy measures to characterize human locomotion is demonstrated based on their construct validity, predictive validity in a simple model of human walking and convergent validity in an experimental study. Results show that four of the five considered entropy measures increase meaningfully with the increased probability of falling in a simple passive bipedal walker model. The same four entropy measures also experienced statistically significant increases in response to increasing age and gait impairment caused by cognitive interference in an experimental study. Of the considered entropy measures, the proposed quantized dynamical entropy (QDE) and quantization-based approximation of sample entropy (QASE) offered the best combination of sensitivity to changes in gait dynamics and computational efficiency. Based on these results, entropy appears to be a viable candidate for assessing the stability of human locomotion.
Quantile based Tsallis entropy in residual lifetime
NASA Astrophysics Data System (ADS)
Khammar, A. H.; Jahanshahi, S. M. A.
2018-02-01
Tsallis entropy is a generalization of type α of the Shannon entropy, that is a nonadditive entropy unlike the Shannon entropy. Shannon entropy may be negative for some distributions, but Tsallis entropy can always be made nonnegative by choosing appropriate value of α. In this paper, we derive the quantile form of this nonadditive's entropy function in the residual lifetime, namely the residual quantile Tsallis entropy (RQTE) and get the bounds for it, depending on the Renyi's residual quantile entropy. Also, we obtain relationship between RQTE and concept of proportional hazards model in the quantile setup. Based on the new measure, we propose a stochastic order and aging classes, and study its properties. Finally, we prove characterizations theorems for some well known lifetime distributions. It is shown that RQTE uniquely determines the parent distribution unlike the residual Tsallis entropy.
Why Can't Johnny Read? The Abell Report. Volume 23, No.7
ERIC Educational Resources Information Center
Jacobson, Joan
2010-01-01
Baltimore's school-based vision-screening program may be leaving thousands of children with uncorrected eyesight problems. Vision screening in public schools is essential for students to learn, especially when low-income children face a high rate of eyesight problems and have poor access to health care. Left undetected and uncorrected, vision…
ERIC Educational Resources Information Center
Wind, Stefanie A.; Gale, Jessica D.
2015-01-01
Multiple-choice (MC) items that are constructed such that distractors target known misconceptions for a particular domain provide useful diagnostic information about student misconceptions (Herrmann-Abell & DeBoer, 2011, 2014; Sadler, 1998). Item response theory models can be used to examine misconceptions distractor-driven multiple-choice…
Time-dependent entropy evolution in microscopic and macroscopic electromagnetic relaxation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baker-Jarvis, James
This paper is a study of entropy and its evolution in the time and frequency domains upon application of electromagnetic fields to materials. An understanding of entropy and its evolution in electromagnetic interactions bridges the boundaries between electromagnetism and thermodynamics. The approach used here is a Liouville-based statistical-mechanical theory. I show that the microscopic entropy is reversible and the macroscopic entropy satisfies an H theorem. The spectral entropy development can be very useful for studying the frequency response of materials. Using a projection-operator based nonequilibrium entropy, different equations are derived for the entropy and entropy production and are applied tomore » the polarization, magnetization, and macroscopic fields. I begin by proving an exact H theorem for the entropy, progress to application of time-dependent entropy in electromagnetics, and then apply the theory to relevant applications in electromagnetics. The paper concludes with a discussion of the relationship of the frequency-domain form of the entropy to the permittivity, permeability, and impedance.« less
Relating different quantum generalizations of the conditional Rényi entropy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tomamichel, Marco; School of Physics, The University of Sydney, Sydney 2006; Berta, Mario
2014-08-15
Recently a new quantum generalization of the Rényi divergence and the corresponding conditional Rényi entropies was proposed. Here, we report on a surprising relation between conditional Rényi entropies based on this new generalization and conditional Rényi entropies based on the quantum relative Rényi entropy that was used in previous literature. Our result generalizes the well-known duality relation H(A|B) + H(A|C) = 0 of the conditional von Neumann entropy for tripartite pure states to Rényi entropies of two different kinds. As a direct application, we prove a collection of inequalities that relate different conditional Rényi entropies and derive a new entropicmore » uncertainty relation.« less
The GenABEL Project for statistical genomics.
Karssen, Lennart C; van Duijn, Cornelia M; Aulchenko, Yurii S
2016-01-01
Development of free/libre open source software is usually done by a community of people with an interest in the tool. For scientific software, however, this is less often the case. Most scientific software is written by only a few authors, often a student working on a thesis. Once the paper describing the tool has been published, the tool is no longer developed further and is left to its own device. Here we describe the broad, multidisciplinary community we formed around a set of tools for statistical genomics. The GenABEL project for statistical omics actively promotes open interdisciplinary development of statistical methodology and its implementation in efficient and user-friendly software under an open source licence. The software tools developed withing the project collectively make up the GenABEL suite, which currently consists of eleven tools. The open framework of the project actively encourages involvement of the community in all stages, from formulation of methodological ideas to application of software to specific data sets. A web forum is used to channel user questions and discussions, further promoting the use of the GenABEL suite. Developer discussions take place on a dedicated mailing list, and development is further supported by robust development practices including use of public version control, code review and continuous integration. Use of this open science model attracts contributions from users and developers outside the "core team", facilitating agile statistical omics methodology development and fast dissemination.
Analysis of the optical emission of the young precataclysmic variables HS 1857+5144 and ABELL 65
NASA Astrophysics Data System (ADS)
Shimansky, V. V.; Pozdnyakova, S. A.; Borisov, N. V.; Bikmaev, I. F.; Vlasyuk, V. V.; Spiridonova, O. I.; Galeev, A. I.; Mel'Nikov, S. S.
2009-10-01
We analyze the physical state and the properties of the close binary systems HS 1857+5144 and Abell 65. We took the spectra of both systems over a wide range of orbital phases with the 6-m telescope of the Special Astrophysical Observatory of the Russian Academy of Sciences (SAO RAS) and obtained their multicolor light curves with the RTT150 and Zeiss-1000 telescopes of the SAO RAS. We demonstrate that both Abell 65 and HS 1857+5144 are young precataclysmic variables (PV) with orbital periods of P orb = 1. d 003729 and P orb = 0. d 26633331, respectively. The observed brightness and spectral variations during the orbital period are due to the radiation of the cold component, which absorbs the short-wave radiation of the hot component and reemits it in the visual part of the spectrum. A joint analysis of the brightness and radial velocity curves allowed us to find the possible and optimum sets of their fundamental parameters. We found the luminosity excesses of the secondary components of HS 1857+5144 and Abell 65 with respect to the corresponding Main Sequence stars to be typical for such objects. The excess luminosities of the secondary components of all young PVs are indicative of their faster relaxation rate towards the quiescent state compared to the rates estimated in earlier studies.
Entropy generation of nanofluid flow in a microchannel heat sink
NASA Astrophysics Data System (ADS)
Manay, Eyuphan; Akyürek, Eda Feyza; Sahin, Bayram
2018-06-01
Present study aims to investigate the effects of the presence of nano sized TiO2 particles in the base fluid on entropy generation rate in a microchannel heat sink. Pure water was chosen as base fluid, and TiO2 particles were suspended into the pure water in five different particle volume fractions of 0.25%, 0.5%, 1.0%, 1.5% and 2.0%. Under laminar, steady state flow and constant heat flux boundary conditions, thermal, frictional, total entropy generation rates and entropy generation number ratios of nanofluids were experimentally analyzed in microchannel flow for different channel heights of 200 μm, 300 μm, 400 μm and 500 μm. It was observed that frictional and total entropy generation rates increased as thermal entropy generation rate were decreasing with an increase in particle volume fraction. In microchannel flows, thermal entropy generation could be neglected due to its too low rate smaller than 1.10e-07 in total entropy generation. Higher channel heights caused higher thermal entropy generation rates, and increasing channel height yielded an increase from 30% to 52% in thermal entropy generation. When channel height decreased, an increase of 66%-98% in frictional entropy generation was obtained. Adding TiO2 nanoparticles into the base fluid caused thermal entropy generation to decrease about 1.8%-32.4%, frictional entropy generation to increase about 3.3%-21.6%.
NASA Technical Reports Server (NTRS)
Warren, W. H., Jr.
1983-01-01
The machine readable catalog is described. The machine version contains the same data as the published table, which includes a second file with the notes. The computerized data files are prepared at the Astronomical Data Center. Detected discrepancies and cluster identifications based on photometric estimators are included.
Entropy-based goodness-of-fit test: Application to the Pareto distribution
NASA Astrophysics Data System (ADS)
Lequesne, Justine
2013-08-01
Goodness-of-fit tests based on entropy have been introduced in [13] for testing normality. The maximum entropy distribution in a class of probability distributions defined by linear constraints induces a Pythagorean equality between the Kullback-Leibler information and an entropy difference. This allows one to propose a goodness-of-fit test for maximum entropy parametric distributions which is based on the Kullback-Leibler information. We will focus on the application of the method to the Pareto distribution. The power of the proposed test is computed through Monte Carlo simulation.
RED: a set of molecular descriptors based on Renyi entropy.
Delgado-Soler, Laura; Toral, Raul; Tomás, M Santos; Rubio-Martinez, Jaime
2009-11-01
New molecular descriptors, RED (Renyi entropy descriptors), based on the generalized entropies introduced by Renyi are presented. Topological descriptors based on molecular features have proven to be useful for describing molecular profiles. Renyi entropy is used as a variability measure to contract a feature-pair distribution composing the descriptor vector. The performance of RED descriptors was tested for the analysis of different sets of molecular distances, virtual screening, and pharmacological profiling. A free parameter of the Renyi entropy has been optimized for all the considered applications.
Content Based Image Retrieval and Information Theory: A General Approach.
ERIC Educational Resources Information Center
Zachary, John; Iyengar, S. S.; Barhen, Jacob
2001-01-01
Proposes an alternative real valued representation of color based on the information theoretic concept of entropy. A theoretical presentation of image entropy is accompanied by a practical description of the merits and limitations of image entropy compared to color histograms. Results suggest that image entropy is a promising approach to image…
Subgrid-scale Condensation Modeling for Entropy-based Large Eddy Simulations of Clouds
NASA Astrophysics Data System (ADS)
Kaul, C. M.; Schneider, T.; Pressel, K. G.; Tan, Z.
2015-12-01
An entropy- and total water-based formulation of LES thermodynamics, such as that used by the recently developed code PyCLES, is advantageous from physical and numerical perspectives. However, existing closures for subgrid-scale thermodynamic fluctuations assume more traditional choices for prognostic thermodynamic variables, such as liquid potential temperature, and are not directly applicable to entropy-based modeling. Since entropy and total water are generally nonlinearly related to diagnosed quantities like temperature and condensate amounts, neglecting their small-scale variability can lead to bias in simulation results. Here we present the development of a subgrid-scale condensation model suitable for use with entropy-based thermodynamic formulations.
Driver fatigue detection through multiple entropy fusion analysis in an EEG-based system.
Min, Jianliang; Wang, Ping; Hu, Jianfeng
2017-01-01
Driver fatigue is an important contributor to road accidents, and fatigue detection has major implications for transportation safety. The aim of this research is to analyze the multiple entropy fusion method and evaluate several channel regions to effectively detect a driver's fatigue state based on electroencephalogram (EEG) records. First, we fused multiple entropies, i.e., spectral entropy, approximate entropy, sample entropy and fuzzy entropy, as features compared with autoregressive (AR) modeling by four classifiers. Second, we captured four significant channel regions according to weight-based electrodes via a simplified channel selection method. Finally, the evaluation model for detecting driver fatigue was established with four classifiers based on the EEG data from four channel regions. Twelve healthy subjects performed continuous simulated driving for 1-2 hours with EEG monitoring on a static simulator. The leave-one-out cross-validation approach obtained an accuracy of 98.3%, a sensitivity of 98.3% and a specificity of 98.2%. The experimental results verified the effectiveness of the proposed method, indicating that the multiple entropy fusion features are significant factors for inferring the fatigue state of a driver.
Statistical analysis of catalogs of extragalactic objects. II - The Abell catalog of rich clusters
NASA Technical Reports Server (NTRS)
Hauser, M. G.; Peebles, P. J. E.
1973-01-01
The results of a power-spectrum analysis are presented for the distribution of clusters in the Abell catalog. Clear and direct evidence is found for superclusters with small angular scale, in agreement with the recent study of Bogart and Wagoner (1973). It is also found that the degree and angular scale of the apparent superclustering varies with distance in the manner expected if the clustering is intrinsic to the spatial distribution rather than a consequence of patchy local obscuration.
NASA Technical Reports Server (NTRS)
Balasubramanian, R.; Norrie, D. H.; De Vries, G.
1979-01-01
Abel's integral equation is the governing equation for certain problems in physics and engineering, such as radiation from distributed sources. The finite element method for the solution of this non-linear equation is presented for problems with cylindrical symmetry and the extension to more general integral equations is indicated. The technique was applied to an axisymmetric glow discharge problem and the results show excellent agreement with previously obtained solutions
NASA Technical Reports Server (NTRS)
Warren, Wayne H., Jr.
1989-01-01
The machine readable version of the compilation, as it is currently being distributed from the Astronomical Data Center, is described. The catalog contains redshifts and velocity dispersions for all Abell clusters for which these data had been published up to 1986 July. Also included are 1950 equatorial coordinates for the centers of the listed clusters, numbers of observations used to determine the redshifts, and bibliographical references citing the data sources.
An Entropy-Based Measure for Assessing Fuzziness in Logistic Regression
ERIC Educational Resources Information Center
Weiss, Brandi A.; Dardick, William
2016-01-01
This article introduces an entropy-based measure of data-model fit that can be used to assess the quality of logistic regression models. Entropy has previously been used in mixture-modeling to quantify how well individuals are classified into latent classes. The current study proposes the use of entropy for logistic regression models to quantify…
Information Entropy Analysis of the H1N1 Genetic Code
NASA Astrophysics Data System (ADS)
Martwick, Andy
2010-03-01
During the current H1N1 pandemic, viral samples are being obtained from large numbers of infected people world-wide and are being sequenced on the NCBI Influenza Virus Resource Database. The information entropy of the sequences was computed from the probability of occurrence of each nucleotide base at every position of each set of sequences using Shannon's definition of information entropy, [ H=∑bpb,2( 1pb ) ] where H is the observed information entropy at each nucleotide position and pb is the probability of the base pair of the nucleotides A, C, G, U. Information entropy of the current H1N1 pandemic is compared to reference human and swine H1N1 entropy. As expected, the current H1N1 entropy is in a low entropy state and has a very large mutation potential. Using the entropy method in mature genes we can identify low entropy regions of nucleotides that generally correlate to critical protein function.
RADIO AND DEEP CHANDRA OBSERVATIONS OF THE DISTURBED COOL CORE CLUSTER ABELL 133
DOE Office of Scientific and Technical Information (OSTI.GOV)
Randall, S. W.; Nulsen, P. E. J.; Forman, W. R.
2010-10-10
We present results based on new Chandra and multi-frequency radio observations of the disturbed cool core cluster Abell 133. The diffuse gas has a complex bird-like morphology, with a plume of emission extending from two symmetric wing-like features. The plume is capped with a filamentary radio structure that has been previously classified as a radio relic. X-ray spectral fits in the region of the relic indicate the presence of either high-temperature gas or non-thermal emission, although the measured photon index is flatter than would be expected if the non-thermal emission is from inverse Compton scattering of the cosmic microwave backgroundmore » by the radio-emitting particles. We find evidence for a weak elliptical X-ray surface brightness edge surrounding the core, which we show is consistent with a sloshing cold front. The plume is consistent with having formed due to uplift by a buoyantly rising radio bubble, now seen as the radio relic, and has properties consistent with buoyantly lifted plumes seen in other systems (e.g., M87). Alternatively, the plume may be a gas sloshing spiral viewed edge-on. Results from spectral analysis of the wing-like features are inconsistent with the previous suggestion that the wings formed due to the passage of a weak shock through the cool core. We instead conclude that the wings are due to X-ray cavities formed by displacement of X-ray gas by the radio relic. The central cD galaxy contains two small-scale cold gas clumps that are slightly offset from their optical and UV counterparts, suggestive of a galaxy-galaxy merger event. On larger scales, there is evidence for cluster substructure in both optical observations and the X-ray temperature map. We suggest that the Abell 133 cluster has recently undergone a merger event with an interloping subgroup, initialing gas sloshing in the core. The torus of sloshed gas is seen close to edge-on, leading to the somewhat ragged appearance of the elliptical surface brightness edge. We show that the additional buoyant force from a passing subcluster can have a significant effect on the rise trajectories of buoyant bubbles, although this effect alone cannot fully explain the morphology of Abell 133. The radio observations reveal a large-scale double-lobed structure not previously identified in the literature. We conclude that this structure represents a previously unreported background giant radio galaxy at z = 0.293, the northern lobe of which overlies the radio relic in the core of Abell 133. A rough estimate indicates that the contribution of this background lobe to the total radio emission in the region of the relic is modest (<13%).« less
Lens models under the microscope: comparison of Hubble Frontier Field cluster magnification maps
NASA Astrophysics Data System (ADS)
Priewe, Jett; Williams, Liliya L. R.; Liesenborgs, Jori; Coe, Dan; Rodney, Steven A.
2017-02-01
Using the power of gravitational lensing magnification by massive galaxy clusters, the Hubble Frontier Fields provide deep views of six patches of the high-redshift Universe. The combination of deep Hubble imaging and exceptional lensing strength has revealed the greatest numbers of multiply-imaged galaxies available to constrain models of cluster mass distributions. However, even with O(100) images per cluster, the uncertainties associated with the reconstructions are not negligible. The goal of this paper is to show the diversity of model magnification predictions. We examine seven and nine mass models of Abell 2744 and MACS J0416, respectively, submitted to the Mikulski Archive for Space Telescopes for public distribution in 2015 September. The dispersion between model predictions increases from 30 per cent at common low magnifications (μ ˜ 2) to 70 per cent at rare high magnifications (μ ˜ 40). MACS J0416 exhibits smaller dispersions than Abell 2744 for 2 < μ < 10. We show that magnification maps based on different lens inversion techniques typically differ from each other by more than their quoted statistical errors. This suggests that some models underestimate the true uncertainties, which are primarily due to various lensing degeneracies. Though the exact mass sheet degeneracy is broken, its generalized counterpart is not broken at least in Abell 2744. Other local degeneracies are also present in both clusters. Our comparison of models is complementary to the comparison of reconstructions of known synthetic mass distributions. By focusing on observed clusters, we can identify those that are best constrained, and therefore provide the clearest view of the distant Universe.
Controlling Brownian motion of single protein molecules and single fluorophores in aqueous buffer.
Cohen, Adam E; Moerner, W E
2008-05-12
We present an Anti-Brownian Electrokinetic trap (ABEL trap) capable of trapping individual fluorescently labeled protein molecules in aqueous buffer. The ABEL trap operates by tracking the Brownian motion of a single fluorescent particle in solution, and applying a time-dependent electric field designed to induce an electrokinetic drift that cancels the Brownian motion. The trapping strength of the ABEL trap is limited by the latency of the feedback loop. In previous versions of the trap, this latency was set by the finite frame rate of the camera used for video-tracking. In the present system, the motion of the particle is tracked entirely in hardware (without a camera or image-processing software) using a rapidly rotating laser focus and lock-in detection. The feedback latency is set by the finite rate of arrival of photons. We demonstrate trapping of individual molecules of the protein GroEL in buffer, and we show confinement of single fluorophores of the dye Cy3 in water.
UV Observations of the Galaxy Cluster Abell 1795 with the Optical Monitor on XMM-Newton
NASA Technical Reports Server (NTRS)
Mittaz, J. P. D.; Kaastra, J. S.; Tamura, T.; Fabian, A. C.; Mushotzky, F.; Peterson, J. R.; Ikebe, Y.; Lumb, D. H.; Paerels, F.; Stewart, G.
2000-01-01
We present the results of an analysis of broad band UV observations of the central regions of Abell 1795 observed with the optical monitor on XMM-Newton. As have been found with other UV observations of the central regions of clusters of galaxies, we find evidence for star formation. However, we also find evidence for absorption in the cD galaxy on a more extended scale than has been seen with optical imaging. We also report the first UV observation of part of the filamentary structure seen in H-alpha, X-rays and very deep U band imaging. The part of the filament we see is very blue with UV colours consistent with a very early (O/B) stellar population. This is the first direct evidence of a dominant population of early type stars at the centre of Abell 1795 and implies very recent star formation. The relationship of this emission to emission at other wavebands is discussed.
The kinematics of dense clusters of galaxies. II - The distribution of velocity dispersions
NASA Technical Reports Server (NTRS)
Zabludoff, Ann I.; Geller, Margaret J.; Huchra, John P.; Ramella, Massimo
1993-01-01
From the survey of 31 Abell R above 1 cluster fields within z of 0.02-0.05, we extract 25 dense clusters with velocity dispersions omicron above 300 km/s and with number densities exceeding the mean for the Great Wall of galaxies by one deviation. From the CfA Redshift Survey (in preparation), we obtain an approximately volume-limited catalog of 31 groups with velocity dispersions above 100 km/s and with the same number density limit. We combine these well-defined samples to obtain the distribution of cluster velocity dispersions. The group sample enables us to correct for incompleteness in the Abell catalog at low velocity dispersions. The clusters from the Abell cluster fields populate the high dispersion tail. For systems with velocity dispersions above 700 km/s, approximately the median for R = 1 clusters, the group and cluster abundances are consistent. The combined distribution is consistent with cluster X-ray temperature functions.
The cluster-cluster correlation function. [of galaxies
NASA Technical Reports Server (NTRS)
Postman, M.; Geller, M. J.; Huchra, J. P.
1986-01-01
The clustering properties of the Abell and Zwicky cluster catalogs are studied using the two-point angular and spatial correlation functions. The catalogs are divided into eight subsamples to determine the dependence of the correlation function on distance, richness, and the method of cluster identification. It is found that the Corona Borealis supercluster contributes significant power to the spatial correlation function to the Abell cluster sample with distance class of four or less. The distance-limited catalog of 152 Abell clusters, which is not greatly affected by a single system, has a spatial correlation function consistent with the power law Xi(r) = 300r exp -1.8. In both the distance class four or less and distance-limited samples the signal in the spatial correlation function is a power law detectable out to 60/h Mpc. The amplitude of Xi(r) for clusters of richness class two is about three times that for richness class one clusters. The two-point spatial correlation function is sensitive to the use of estimated redshifts.
Watching Single Enzymes and Fluorescent Proteins in Action in Solution Using a Microfluidic Trap
NASA Astrophysics Data System (ADS)
Goldsmith, Randall
2012-02-01
Observation of dynamics of single biomolecules over a prolonged time without altering the biomolecule via immobilization is achieved with a specialized microfluidic device. This device, the Anti-Brownian ELectrokinetic (ABEL) Trap, uses real-time electrokinetic feedback to cancel Brownian motion of single objects in solution. First, we use the ABEL Trap to study Allophycocyanin (APC), a photosynthetic antenna-protein and popular fluorescent probe. A complex relationship between fluorescence intensity and lifetime is observed, suggesting light-induced conformational changes and radiative and non-radiative rate fluctuations. Second, we apply the ABEL Trap to single molecules of the multi-copper enzyme blue Nitrite Reductase where a fluorescent label reports on the oxidation state of the Type I Copper. Redox cycling is observed and kinetic analysis allows extraction of the microscopic rate constants in the kinetic scheme. Evidence of a substrate-induced shift of the intramolecular electron transfer rate is seen. Taken together, these observations provide windows of unprecedented detail into the dynamics of solution-phase biomolecules.
Exploring stability of entropy analysis for signal with different trends
NASA Astrophysics Data System (ADS)
Zhang, Yin; Li, Jin; Wang, Jun
2017-03-01
Considering the effects of environment disturbances and instrument systems, the actual detecting signals always are carrying different trends, which result in that it is difficult to accurately catch signals complexity. So choosing steady and effective analysis methods is very important. In this paper, we applied entropy measures-the base-scale entropy and approximate entropy to analyze signal complexity, and studied the effect of trends on the ideal signal and the heart rate variability (HRV) signals, that is, linear, periodic, and power-law trends which are likely to occur in actual signals. The results show that approximate entropy is unsteady when we embed different trends into the signals, so it is not suitable to analyze signal with trends. However, the base-scale entropy has preferable stability and accuracy for signal with different trends. So the base-scale entropy is an effective method to analyze the actual signals.
The GenABEL Project for statistical genomics
Karssen, Lennart C.; van Duijn, Cornelia M.; Aulchenko, Yurii S.
2016-01-01
Development of free/libre open source software is usually done by a community of people with an interest in the tool. For scientific software, however, this is less often the case. Most scientific software is written by only a few authors, often a student working on a thesis. Once the paper describing the tool has been published, the tool is no longer developed further and is left to its own device. Here we describe the broad, multidisciplinary community we formed around a set of tools for statistical genomics. The GenABEL project for statistical omics actively promotes open interdisciplinary development of statistical methodology and its implementation in efficient and user-friendly software under an open source licence. The software tools developed withing the project collectively make up the GenABEL suite, which currently consists of eleven tools. The open framework of the project actively encourages involvement of the community in all stages, from formulation of methodological ideas to application of software to specific data sets. A web forum is used to channel user questions and discussions, further promoting the use of the GenABEL suite. Developer discussions take place on a dedicated mailing list, and development is further supported by robust development practices including use of public version control, code review and continuous integration. Use of this open science model attracts contributions from users and developers outside the “core team”, facilitating agile statistical omics methodology development and fast dissemination. PMID:27347381
2004-06-09
KENNEDY SPACE CENTER, FLA. - At Cape Canaveral Air Force Station, KSC Firefighter Chris Maupin (left) takes equipment from Lt. Keith Abell. They and other KSC firefighters teamed up with task forces from Satellite Beach, Malabar, Melbourne, Palm Bay, Patrick Air Force Base and Brevard County to help fight wildfires in the Palm Bay and Malabar areas that threatened homes and property during the Memorial Day holiday weekend.
Cao, Yuzhen; Cai, Lihui; Wang, Jiang; Wang, Ruofan; Yu, Haitao; Cao, Yibin; Liu, Jing
2015-08-01
In this paper, experimental neurophysiologic recording and statistical analysis are combined to investigate the nonlinear characteristic and the cognitive function of the brain. Fuzzy approximate entropy and fuzzy sample entropy are applied to characterize the model-based simulated series and electroencephalograph (EEG) series of Alzheimer's disease (AD). The effectiveness and advantages of these two kinds of fuzzy entropy are first verified through the simulated EEG series generated by the alpha rhythm model, including stronger relative consistency and robustness. Furthermore, in order to detect the abnormality of irregularity and chaotic behavior in the AD brain, the complexity features based on these two fuzzy entropies are extracted in the delta, theta, alpha, and beta bands. It is demonstrated that, due to the introduction of fuzzy set theory, the fuzzy entropies could better distinguish EEG signals of AD from that of the normal than the approximate entropy and sample entropy. Moreover, the entropy values of AD are significantly decreased in the alpha band, particularly in the temporal brain region, such as electrode T3 and T4. In addition, fuzzy sample entropy could achieve higher group differences in different brain regions and higher average classification accuracy of 88.1% by support vector machine classifier. The obtained results prove that fuzzy sample entropy may be a powerful tool to characterize the complexity abnormalities of AD, which could be helpful in further understanding of the disease.
NASA Astrophysics Data System (ADS)
Cao, Yuzhen; Cai, Lihui; Wang, Jiang; Wang, Ruofan; Yu, Haitao; Cao, Yibin; Liu, Jing
2015-08-01
In this paper, experimental neurophysiologic recording and statistical analysis are combined to investigate the nonlinear characteristic and the cognitive function of the brain. Fuzzy approximate entropy and fuzzy sample entropy are applied to characterize the model-based simulated series and electroencephalograph (EEG) series of Alzheimer's disease (AD). The effectiveness and advantages of these two kinds of fuzzy entropy are first verified through the simulated EEG series generated by the alpha rhythm model, including stronger relative consistency and robustness. Furthermore, in order to detect the abnormality of irregularity and chaotic behavior in the AD brain, the complexity features based on these two fuzzy entropies are extracted in the delta, theta, alpha, and beta bands. It is demonstrated that, due to the introduction of fuzzy set theory, the fuzzy entropies could better distinguish EEG signals of AD from that of the normal than the approximate entropy and sample entropy. Moreover, the entropy values of AD are significantly decreased in the alpha band, particularly in the temporal brain region, such as electrode T3 and T4. In addition, fuzzy sample entropy could achieve higher group differences in different brain regions and higher average classification accuracy of 88.1% by support vector machine classifier. The obtained results prove that fuzzy sample entropy may be a powerful tool to characterize the complexity abnormalities of AD, which could be helpful in further understanding of the disease.
Driver fatigue detection through multiple entropy fusion analysis in an EEG-based system
Min, Jianliang; Wang, Ping
2017-01-01
Driver fatigue is an important contributor to road accidents, and fatigue detection has major implications for transportation safety. The aim of this research is to analyze the multiple entropy fusion method and evaluate several channel regions to effectively detect a driver's fatigue state based on electroencephalogram (EEG) records. First, we fused multiple entropies, i.e., spectral entropy, approximate entropy, sample entropy and fuzzy entropy, as features compared with autoregressive (AR) modeling by four classifiers. Second, we captured four significant channel regions according to weight-based electrodes via a simplified channel selection method. Finally, the evaluation model for detecting driver fatigue was established with four classifiers based on the EEG data from four channel regions. Twelve healthy subjects performed continuous simulated driving for 1–2 hours with EEG monitoring on a static simulator. The leave-one-out cross-validation approach obtained an accuracy of 98.3%, a sensitivity of 98.3% and a specificity of 98.2%. The experimental results verified the effectiveness of the proposed method, indicating that the multiple entropy fusion features are significant factors for inferring the fatigue state of a driver. PMID:29220351
Upper entropy axioms and lower entropy axioms
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guo, Jin-Li, E-mail: phd5816@163.com; Suo, Qi
2015-04-15
The paper suggests the concepts of an upper entropy and a lower entropy. We propose a new axiomatic definition, namely, upper entropy axioms, inspired by axioms of metric spaces, and also formulate lower entropy axioms. We also develop weak upper entropy axioms and weak lower entropy axioms. Their conditions are weaker than those of Shannon–Khinchin axioms and Tsallis axioms, while these conditions are stronger than those of the axiomatics based on the first three Shannon–Khinchin axioms. The subadditivity and strong subadditivity of entropy are obtained in the new axiomatics. Tsallis statistics is a special case of satisfying our axioms. Moreover,more » different forms of information measures, such as Shannon entropy, Daroczy entropy, Tsallis entropy and other entropies, can be unified under the same axiomatics.« less
Coherence and entanglement measures based on Rényi relative entropies
NASA Astrophysics Data System (ADS)
Zhu, Huangjun; Hayashi, Masahito; Chen, Lin
2017-11-01
We study systematically resource measures of coherence and entanglement based on Rényi relative entropies, which include the logarithmic robustness of coherence, geometric coherence, and conventional relative entropy of coherence together with their entanglement analogues. First, we show that each Rényi relative entropy of coherence is equal to the corresponding Rényi relative entropy of entanglement for any maximally correlated state. By virtue of this observation, we establish a simple operational connection between entanglement measures and coherence measures based on Rényi relative entropies. We then prove that all these coherence measures, including the logarithmic robustness of coherence, are additive. Accordingly, all these entanglement measures are additive for maximally correlated states. In addition, we derive analytical formulas for Rényi relative entropies of entanglement of maximally correlated states and bipartite pure states, which reproduce a number of classic results on the relative entropy of entanglement and logarithmic robustness of entanglement in a unified framework. Several nontrivial bounds for Rényi relative entropies of coherence (entanglement) are further derived, which improve over results known previously. Moreover, we determine all states whose relative entropy of coherence is equal to the logarithmic robustness of coherence. As an application, we provide an upper bound for the exact coherence distillation rate, which is saturated for pure states.
Damage detection in rotating machinery by means of entropy-based parameters
NASA Astrophysics Data System (ADS)
Tocarciuc, Alexandru; Bereteu, Liviu; ǎgǎnescu, Gheorghe Eugen, Dr
2014-11-01
The paper is proposing two new entropy-based parameters, namely Renyi Entropy Index (REI) and Sharma-Mittal Entropy Index (SMEI), for detecting the presence of failures (or damages) in rotating machinery, namely: belt structural damage, belt wheels misalignment, failure of the fixing bolt of the machine to its baseplate and eccentricities (i.e.: due to detaching a small piece of material or bad mounting of the rotating components of the machine). The algorithms to obtain the proposed entropy-based parameters are described and test data is used in order to assess their sensitivity. A vibration test bench is used for measuring the levels of vibration while artificially inducing damage. The deviation of the two entropy-based parameters is compared in two states of the vibration test bench: not damaged and damaged. At the end of the study, their sensitivity is compared to Shannon Entropic Index.
An efficient algorithm for automatic phase correction of NMR spectra based on entropy minimization
NASA Astrophysics Data System (ADS)
Chen, Li; Weng, Zhiqiang; Goh, LaiYoong; Garland, Marc
2002-09-01
A new algorithm for automatic phase correction of NMR spectra based on entropy minimization is proposed. The optimal zero-order and first-order phase corrections for a NMR spectrum are determined by minimizing entropy. The objective function is constructed using a Shannon-type information entropy measure. Entropy is defined as the normalized derivative of the NMR spectral data. The algorithm has been successfully applied to experimental 1H NMR spectra. The results of automatic phase correction are found to be comparable to, or perhaps better than, manual phase correction. The advantages of this automatic phase correction algorithm include its simple mathematical basis and the straightforward, reproducible, and efficient optimization procedure. The algorithm is implemented in the Matlab program ACME—Automated phase Correction based on Minimization of Entropy.
NASA Astrophysics Data System (ADS)
Schirmer, M.; Carrasco, E. R.; Pessev, P.; Garrel, V.; Winge, C.; Neichel, B.; Vidal, F.
2015-04-01
We have observed two of the six Frontier Fields galaxy clusters, MACS J0416.1-2403 and Abell 2744, using the Gemini Multi-Conjugate Adaptive Optics System (GeMS) and the Gemini South Adaptive Optics Imager (GSAOI). With 0.″ 08-0.″ 10 FWHM our data are nearly diffraction-limited over a 100\\prime\\prime × 100\\prime\\prime wide area. GeMS/GSAOI complements the Hubble Space Telescope (HST) redwards of 1.6 μm with twice the angular resolution. We reach a 5σ depth of {{K}s}˜ 25.6 mag (AB) for compact sources. In this paper, we describe the observations, data processing, and initial public data release. We provide fully calibrated, co-added images matching the native GSAOI pixel scale as well as the larger plate scales of the HST release, adding to the legacy value of the Frontier Fields. Our work demonstrates that even for fields at high galactic latitude where natural guide stars are rare, current multi-conjugated adaptive optics technology at 8 m telescopes has opened a new window on the distant universe. Observations of a third Frontier Field, Abell 370, are planned. Based on observations obtained at the Gemini Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the NSF on behalf of the Gemini partnership: the National Science Foundation (United States), the Science and Technology Facilities Council (United Kingdom), the National Research Council (Canada), CONICYT (Chile), the Australian Research Council (Australia), Ministério da Ciência, Tecnologia e Inovação (Brazil) and Ministerio de Ciencia, Tecnología e Innovación Productiva (Argentina). Based on observations made with ESO Telescopes at the La Silla and Paranal Observatories, Chile.
Salient target detection based on pseudo-Wigner-Ville distribution and Rényi entropy.
Xu, Yuannan; Zhao, Yuan; Jin, Chenfei; Qu, Zengfeng; Liu, Liping; Sun, Xiudong
2010-02-15
We present what we believe to be a novel method based on pseudo-Wigner-Ville distribution (PWVD) and Rényi entropy for salient targets detection. In the foundation of studying the statistical property of Rényi entropy via PWVD, the residual entropy-based saliency map of an input image can be obtained. From the saliency map, target detection is completed by the simple and convenient threshold segmentation. Experimental results demonstrate the proposed method can detect targets effectively in complex ground scenes.
Entropy coders for image compression based on binary forward classification
NASA Astrophysics Data System (ADS)
Yoo, Hoon; Jeong, Jechang
2000-12-01
Entropy coders as a noiseless compression method are widely used as final step compression for images, and there have been many contributions to increase of entropy coder performance and to reduction of entropy coder complexity. In this paper, we propose some entropy coders based on the binary forward classification (BFC). The BFC requires overhead of classification but there is no change between the amount of input information and the total amount of classified output information, which we prove this property in this paper. And using the proved property, we propose entropy coders that are the BFC followed by Golomb-Rice coders (BFC+GR) and the BFC followed by arithmetic coders (BFC+A). The proposed entropy coders introduce negligible additional complexity due to the BFC. Simulation results also show better performance than other entropy coders that have similar complexity to the proposed coders.
Shocks and Bubbles in a Deep Chandra Observation of the Cooling Flow Cluster Abell 2052
2009-01-01
the bubble rims related to radio source outbursts have been found in a few clusters including M87/ Virgo (Forman et al. 2005), Hydra A (Nulsen et al...Printed in the U.S.A. SHOCKS AND BUBBLES IN A DEEP CHANDRA OBSERVATION OF THE COOLING FLOW CLUSTER ABELL 2052 E. L. Blanton1, S. W. Randall2, E. M...Douglass1, C. L. Sarazin3, T. E. Clarke4,5, and B. R. McNamara2,6,7 1 Institute for Astrophysical Research , Boston University, 725 Commonwealth Avenue
Abell 2069 - An X-ray cluster of galaxies with multiple subcondensations
NASA Technical Reports Server (NTRS)
Gioia, I. M.; Maccacaro, T.; Geller, M. J.; Huchra, J. P.; Stocke, J.; Steiner, J. E.
1982-01-01
X-ray and optical observations of the cluster Abell 2069 are presented. The cluster is at a mean redshift of 0.116. The cluster shows multiple condensations in both the X-ray emission and in the galaxy surface density and, thus, does not appear to be relaxed. There is a close correspondence between the gas and galaxy distributions which indicates that the galaxies in this system do map the mass distribution, contrary to what might be expected if low-mass neutrinos dominate the cluster mass.
NASA Astrophysics Data System (ADS)
Yao, Lei; Wang, Zhenpo; Ma, Jun
2015-10-01
This paper proposes a method of fault detection of the connection of Lithium-Ion batteries based on entropy for electric vehicle. In electric vehicle operation process, some factors, such as road conditions, driving habits, vehicle performance, always affect batteries by vibration, which easily cause loosing or virtual connection between batteries. Through the simulation of the battery charging and discharging experiment under vibration environment, the data of voltage fluctuation can be obtained. Meanwhile, an optimal filtering method is adopted using discrete cosine filter method to analyze the characteristics of system noise, based on the voltage set when batteries are working under different vibration frequency. Experimental data processed by filtering is analyzed based on local Shannon entropy, ensemble Shannon entropy and sample entropy. And the best way to find a method of fault detection of the connection of lithium-ion batteries based on entropy is presented for electric vehicle. The experimental data shows that ensemble Shannon entropy can predict the accurate time and the location of battery connection failure in real time. Besides electric-vehicle industry, this method can also be used in other areas in complex vibration environment.
Global sensitivity analysis for fuzzy inputs based on the decomposition of fuzzy output entropy
NASA Astrophysics Data System (ADS)
Shi, Yan; Lu, Zhenzhou; Zhou, Yicheng
2018-06-01
To analyse the component of fuzzy output entropy, a decomposition method of fuzzy output entropy is first presented. After the decomposition of fuzzy output entropy, the total fuzzy output entropy can be expressed as the sum of the component fuzzy entropy contributed by fuzzy inputs. Based on the decomposition of fuzzy output entropy, a new global sensitivity analysis model is established for measuring the effects of uncertainties of fuzzy inputs on the output. The global sensitivity analysis model can not only tell the importance of fuzzy inputs but also simultaneously reflect the structural composition of the response function to a certain degree. Several examples illustrate the validity of the proposed global sensitivity analysis, which is a significant reference in engineering design and optimization of structural systems.
An Entropy-Based Measure for Assessing Fuzziness in Logistic Regression
Weiss, Brandi A.; Dardick, William
2015-01-01
This article introduces an entropy-based measure of data–model fit that can be used to assess the quality of logistic regression models. Entropy has previously been used in mixture-modeling to quantify how well individuals are classified into latent classes. The current study proposes the use of entropy for logistic regression models to quantify the quality of classification and separation of group membership. Entropy complements preexisting measures of data–model fit and provides unique information not contained in other measures. Hypothetical data scenarios, an applied example, and Monte Carlo simulation results are used to demonstrate the application of entropy in logistic regression. Entropy should be used in conjunction with other measures of data–model fit to assess how well logistic regression models classify cases into observed categories. PMID:29795897
An Entropy-Based Measure for Assessing Fuzziness in Logistic Regression.
Weiss, Brandi A; Dardick, William
2016-12-01
This article introduces an entropy-based measure of data-model fit that can be used to assess the quality of logistic regression models. Entropy has previously been used in mixture-modeling to quantify how well individuals are classified into latent classes. The current study proposes the use of entropy for logistic regression models to quantify the quality of classification and separation of group membership. Entropy complements preexisting measures of data-model fit and provides unique information not contained in other measures. Hypothetical data scenarios, an applied example, and Monte Carlo simulation results are used to demonstrate the application of entropy in logistic regression. Entropy should be used in conjunction with other measures of data-model fit to assess how well logistic regression models classify cases into observed categories.
A cluster in a crowded environment: XMM-Newton and Chandra observations of A3558
NASA Astrophysics Data System (ADS)
Rossetti, M.; Ghizzardi, S.; Molendi, S.; Finoguenov, A.
2007-03-01
Combining XMM-Newton and Chandra data, we have performed a detailed study of Abell 3558. Our analysis shows that its dynamical history is more complicated than previously thought. We have found some traits typical of cool core clusters (surface brightness peaked at the center, peaked metal abundance profile) and others that are more common in merging clusters, like deviations from spherical symmetry in the thermodynamic quantities of the ICM. This last result has been achieved with a new technique for deriving temperature maps from images. We have also detected a cold front and, with the combined use of XMM-Newton and Chandra, we have characterized its properties, such as the speed and the metal abundance profile across the edge. This cold front is probably due to the sloshing of the core, induced by the perturbation of the gravitational potential associated with a past merger. The hydrodynamic processes related to this perturbation have presumably produced a tail of lower entropy, higher pressure and metal rich ICM, which extends behind the cold front for~500 kpc. The unique characteristics of A3558 are probably due to the very peculiar environment in which it is located: the core of the Shapley supercluster. Appendices A and B are only available in electronic form at http://www.aanda.org
An entropy-based statistic for genomewide association studies.
Zhao, Jinying; Boerwinkle, Eric; Xiong, Momiao
2005-07-01
Efficient genotyping methods and the availability of a large collection of single-nucleotide polymorphisms provide valuable tools for genetic studies of human disease. The standard chi2 statistic for case-control studies, which uses a linear function of allele frequencies, has limited power when the number of marker loci is large. We introduce a novel test statistic for genetic association studies that uses Shannon entropy and a nonlinear function of allele frequencies to amplify the differences in allele and haplotype frequencies to maintain statistical power with large numbers of marker loci. We investigate the relationship between the entropy-based test statistic and the standard chi2 statistic and show that, in most cases, the power of the entropy-based statistic is greater than that of the standard chi2 statistic. The distribution of the entropy-based statistic and the type I error rates are validated using simulation studies. Finally, we apply the new entropy-based test statistic to two real data sets, one for the COMT gene and schizophrenia and one for the MMP-2 gene and esophageal carcinoma, to evaluate the performance of the new method for genetic association studies. The results show that the entropy-based statistic obtained smaller P values than did the standard chi2 statistic.
Dual-threshold segmentation using Arimoto entropy based on chaotic bee colony optimization
NASA Astrophysics Data System (ADS)
Li, Li
2018-03-01
In order to extract target from complex background more quickly and accurately, and to further improve the detection effect of defects, a method of dual-threshold segmentation using Arimoto entropy based on chaotic bee colony optimization was proposed. Firstly, the method of single-threshold selection based on Arimoto entropy was extended to dual-threshold selection in order to separate the target from the background more accurately. Then intermediate variables in formulae of Arimoto entropy dual-threshold selection was calculated by recursion to eliminate redundant computation effectively and to reduce the amount of calculation. Finally, the local search phase of artificial bee colony algorithm was improved by chaotic sequence based on tent mapping. The fast search for two optimal thresholds was achieved using the improved bee colony optimization algorithm, thus the search could be accelerated obviously. A large number of experimental results show that, compared with the existing segmentation methods such as multi-threshold segmentation method using maximum Shannon entropy, two-dimensional Shannon entropy segmentation method, two-dimensional Tsallis gray entropy segmentation method and multi-threshold segmentation method using reciprocal gray entropy, the proposed method can segment target more quickly and accurately with superior segmentation effect. It proves to be an instant and effective method for image segmentation.
Bivariate Rainfall and Runoff Analysis Using Shannon Entropy Theory
NASA Astrophysics Data System (ADS)
Rahimi, A.; Zhang, L.
2012-12-01
Rainfall-Runoff analysis is the key component for many hydrological and hydraulic designs in which the dependence of rainfall and runoff needs to be studied. It is known that the convenient bivariate distribution are often unable to model the rainfall-runoff variables due to that they either have constraints on the range of the dependence or fixed form for the marginal distributions. Thus, this paper presents an approach to derive the entropy-based joint rainfall-runoff distribution using Shannon entropy theory. The distribution derived can model the full range of dependence and allow different specified marginals. The modeling and estimation can be proceeded as: (i) univariate analysis of marginal distributions which includes two steps, (a) using the nonparametric statistics approach to detect modes and underlying probability density, and (b) fitting the appropriate parametric probability density functions; (ii) define the constraints based on the univariate analysis and the dependence structure; (iii) derive and validate the entropy-based joint distribution. As to validate the method, the rainfall-runoff data are collected from the small agricultural experimental watersheds located in semi-arid region near Riesel (Waco), Texas, maintained by the USDA. The results of unviariate analysis show that the rainfall variables follow the gamma distribution, whereas the runoff variables have mixed structure and follow the mixed-gamma distribution. With this information, the entropy-based joint distribution is derived using the first moments, the first moments of logarithm transformed rainfall and runoff, and the covariance between rainfall and runoff. The results of entropy-based joint distribution indicate: (1) the joint distribution derived successfully preserves the dependence between rainfall and runoff, and (2) the K-S goodness of fit statistical tests confirm the marginal distributions re-derived reveal the underlying univariate probability densities which further assure that the entropy-based joint rainfall-runoff distribution are satisfactorily derived. Overall, the study shows the Shannon entropy theory can be satisfactorily applied to model the dependence between rainfall and runoff. The study also shows that the entropy-based joint distribution is an appropriate approach to capture the dependence structure that cannot be captured by the convenient bivariate joint distributions. Joint Rainfall-Runoff Entropy Based PDF, and Corresponding Marginal PDF and Histogram for W12 Watershed The K-S Test Result and RMSE on Univariate Distributions Derived from the Maximum Entropy Based Joint Probability Distribution;
ERIC Educational Resources Information Center
Pennisi, Aline; Argentin, Gianluca; Abbiati, Giovanni; Caputo, Andrea
2016-01-01
This work summarizes the results of two randomized control trails (RCTs) aimed at evaluating the effectiveness of a professional development program for lower secondary school math teachers. The program, called M@t.abel, was financed by the Ministry of Education in Southern Italy with EU funds. It lasts a full school year and it is based on formal…
2004-06-09
KENNEDY SPACE CENTER, FLA. - At Cape Canaveral Air Force Station, Lt. Keith Abell (left) hands equipment to KSC Firefighter Chris Maupin for storage. They and other KSC firefighters teamed up with task forces from Satellite Beach, Malabar, Melbourne, Palm Bay, Patrick Air Force Base and Brevard County to help fight wildfires in the Palm Bay and Malabar areas that threatened homes and property during the Memorial Day holiday weekend.
2004-06-09
KENNEDY SPACE CENTER, FLA. - At Cape Canaveral Air Force Station, Lt. Keith Abell (left) and KSC Firefighter Chris Maupin store equipment on the fire truck. They and other KSC firefighters teamed up with task forces from Satellite Beach, Malabar, Melbourne, Palm Bay, Patrick Air Force Base and Brevard County to help fight wildfires in the Palm Bay and Malabar areas that threatened homes and property during the Memorial Day holiday weekend.
NASA Astrophysics Data System (ADS)
Ai, Yan-Ting; Guan, Jiao-Yue; Fei, Cheng-Wei; Tian, Jing; Zhang, Feng-Ling
2017-05-01
To monitor rolling bearing operating status with casings in real time efficiently and accurately, a fusion method based on n-dimensional characteristic parameters distance (n-DCPD) was proposed for rolling bearing fault diagnosis with two types of signals including vibration signal and acoustic emission signals. The n-DCPD was investigated based on four information entropies (singular spectrum entropy in time domain, power spectrum entropy in frequency domain, wavelet space characteristic spectrum entropy and wavelet energy spectrum entropy in time-frequency domain) and the basic thought of fusion information entropy fault diagnosis method with n-DCPD was given. Through rotor simulation test rig, the vibration and acoustic emission signals of six rolling bearing faults (ball fault, inner race fault, outer race fault, inner-ball faults, inner-outer faults and normal) are collected under different operation conditions with the emphasis on the rotation speed from 800 rpm to 2000 rpm. In the light of the proposed fusion information entropy method with n-DCPD, the diagnosis of rolling bearing faults was completed. The fault diagnosis results show that the fusion entropy method holds high precision in the recognition of rolling bearing faults. The efforts of this study provide a novel and useful methodology for the fault diagnosis of an aeroengine rolling bearing.
Entropy Based Genetic Association Tests and Gene-Gene Interaction Tests
de Andrade, Mariza; Wang, Xin
2011-01-01
In the past few years, several entropy-based tests have been proposed for testing either single SNP association or gene-gene interaction. These tests are mainly based on Shannon entropy and have higher statistical power when compared to standard χ2 tests. In this paper, we extend some of these tests using a more generalized entropy definition, Rényi entropy, where Shannon entropy is a special case of order 1. The order λ (>0) of Rényi entropy weights the events (genotype/haplotype) according to their probabilities (frequencies). Higher λ places more emphasis on higher probability events while smaller λ (close to 0) tends to assign weights more equally. Thus, by properly choosing the λ, one can potentially increase the power of the tests or the p-value level of significance. We conducted simulation as well as real data analyses to assess the impact of the order λ and the performance of these generalized tests. The results showed that for dominant model the order 2 test was more powerful and for multiplicative model the order 1 or 2 had similar power. The analyses indicate that the choice of λ depends on the underlying genetic model and Shannon entropy is not necessarily the most powerful entropy measure for constructing genetic association or interaction tests. PMID:23089811
NASA Astrophysics Data System (ADS)
Walker, S. A.; Sanders, J. S.; Fabian, A. C.
2016-09-01
The unrivalled spatial resolution of the Chandra X-ray observatory has allowed many breakthroughs to be made in high-energy astrophysics. Here we explore applications of Gaussian gradient magnitude (GGM) filtering to X-ray data, which dramatically improves the clarity of surface brightness edges in X-ray observations, and maps gradients in X-ray surface brightness over a range of spatial scales. In galaxy clusters, we find that this method is able to reveal remarkable substructure behind the cold fronts in Abell 2142 and Abell 496, possibly the result of Kelvin-Helmholtz instabilities. In Abell 2319 and Abell 3667, we demonstrate that the GGM filter can provide a straightforward way of mapping variations in the widths and jump ratios along the lengths of cold fronts. We present results from our ongoing programme of analysing the Chandra and XMM-Newton archives with the GGM filter. In the Perseus cluster, we identify a previously unseen edge around 850 kpc from the core to the east, lying outside a known large-scale cold front, which is possibly a bow shock. In MKW 3s we find an unusual `V' shape surface brightness enhancement starting at the cluster core, which may be linked to the AGN jet. In the Crab nebula a new, moving feature in the outer part of the torus is identified which moves across the plane of the sky at a speed of ˜0.1c, and lies much further from the central pulsar than the previous motions seen by Chandra.
The predictive power of singular value decomposition entropy for stock market dynamics
NASA Astrophysics Data System (ADS)
Caraiani, Petre
2014-01-01
We use a correlation-based approach to analyze financial data from the US stock market, both daily and monthly observations from the Dow Jones. We compute the entropy based on the singular value decomposition of the correlation matrix for the components of the Dow Jones Industrial Index. Based on a moving window, we derive time varying measures of entropy for both daily and monthly data. We find that the entropy has a predictive ability with respect to stock market dynamics as indicated by the Granger causality tests.
Hunt, Brian R; Ott, Edward
2015-09-01
In this paper, we propose, discuss, and illustrate a computationally feasible definition of chaos which can be applied very generally to situations that are commonly encountered, including attractors, repellers, and non-periodically forced systems. This definition is based on an entropy-like quantity, which we call "expansion entropy," and we define chaos as occurring when this quantity is positive. We relate and compare expansion entropy to the well-known concept of topological entropy to which it is equivalent under appropriate conditions. We also present example illustrations, discuss computational implementations, and point out issues arising from attempts at giving definitions of chaos that are not entropy-based.
Entropy information of heart rate variability and its power spectrum during day and night
NASA Astrophysics Data System (ADS)
Jin, Li; Jun, Wang
2013-07-01
Physiologic systems generate complex fluctuations in their output signals that reflect the underlying dynamics. We employed the base-scale entropy method and the power spectral analysis to study the 24 hours heart rate variability (HRV) signals. The results show that such profound circadian-, age- and pathologic-dependent changes are accompanied by changes in base-scale entropy and power spectral distribution. Moreover, the base-scale entropy changes reflect the corresponding changes in the autonomic nerve outflow. With the suppression of the vagal tone and dominance of the sympathetic tone in congestive heart failure (CHF) subjects, there is more variability in the date fluctuation mode. So the higher base-scale entropy belongs to CHF subjects. With the decrease of the sympathetic tone and the respiratory frequency (RSA) becoming more pronounced with slower breathing during sleeping, the base-scale entropy drops in CHF subjects. The HRV series of the two healthy groups have the same diurnal/nocturnal trend as the CHF series. The fluctuation dynamics trend of data in the three groups can be described as “HF effect”.
Embedded spiral patterns in the massive galaxy cluster Abell 1835
NASA Astrophysics Data System (ADS)
Ueda, S.; Kitayama, T.; Dotani, T.
2017-10-01
We report on the properties of the intracluster medium (ICM) in the central region of the massive galaxy cluster, Abell 1835, obtained with the data from the Chandra X-ray Observatory. We find distinctive spiral patterns in the cool core in the residual image of the X-ray surface brightness after its nominal profile is subtracted. The spiral patterns consist of two arms. One of them appears as positive, and the other appears as negative excesses in the residual image. Their sizes are ˜ 70 kpc and their morphologies are consistent with each other. We find that the spiral patterns extend from the cool core out to the hotter surrounding ICM. We analyze the X-ray spectra extracted from both regions. We obtain that the ICM properties are similar to those expected by gas sloshing. We also find that the ICM in the two regions of spiral patterns is near or is in pressure equilibrium. Abell 1835 may now be experiencing gas sloshing induced by an off-axis minor merger. These results have been already published (Ueda, Kitayama, & Dotani 2017, ApJ, 837, 34).
The XMM Cluster Outskirts Project (X-COP)
NASA Astrophysics Data System (ADS)
Eckert, D.
2017-10-01
The outskirts of galaxy clusters (typically the regions located beyond R500) are the regions where the transition between the virialized ICM and the infalling material from the large-scale structure takes place. As such, they play a central role in our understanding of the processes leading to the virialization of the accreting gas within the central dark-matter halo. I will give an overview of the XMM cluster outskirts project (X-COP), a very large program on XMM to study the virial region of galaxy clusters with unprecedented details. I will show how X-ray observations can be combined with the Sunyaev-Zeldovich signal to recover the thermodynamic properties and hydrostatic mass of the ICM, bypassing the need for expensive X-ray spectroscopic observations. I will discuss the results obtained using this technique on Abell 2142 and Abell 2319 and give prospects for the results expected using the full X-COP sample. I will also present recent results on the search for warm-hot baryons in the filaments connected to clusters, emphasizing on the discovery of 3 filaments of 10-million-degree gas connected to the massive cluster Abell 2744.
Hierarchical Velocity Structure in the Core of Abell 2597
NASA Technical Reports Server (NTRS)
Still, Martin; Mushotzky, Richard
2004-01-01
We present XMM-Newton RGS and EPIC data of the putative cooling flow cluster Abell 2597. Velocities of the low-ionization emission lines in the spectrum are blue shifted with respect to the high-ionization lines by 1320 (sup +660) (sub -210) kilometers per second, which is consistent with the difference in the two peaks of the galaxy velocity distribution and may be the signature of bulk turbulence, infall, rotation or damped oscillation in the cluster. A hierarchical velocity structure such as this could be the direct result of galaxy mergers in the cluster core, or the injection of power into the cluster gas from a central engine. The uniform X-ray morphology of the cluster, the absence of fine scale temperature structure and the random distribution of the the galaxy positions, independent of velocity, suggests that our line of sight is close to the direction of motion. These results have strong implications for cooling flow models of the cluster Abell 2597. They give impetus to those models which account for the observed temperature structure of some clusters using mergers instead of cooling flows.
Tomography and the Herglotz-Wiechert inverse formulation
NASA Astrophysics Data System (ADS)
Nowack, Robert L.
1990-04-01
In this paper, linearized tomography and the Herglotz-Wiechert inverse formulation are compared. Tomographic inversions for 2-D or 3-D velocity structure use line integrals along rays and can be written in terms of Radon transforms. For radially concentric structures, Radon transforms are shown to reduce to Abel transforms. Therefore, for straight ray paths, the Abel transform of travel-time is a tomographic algorithm specialized to a one-dimensional radially concentric medium. The Herglotz-Wiechert formulation uses seismic travel-time data to invert for one-dimensional earth structure and is derived using exact ray trajectories by applying an Abel transform. This is of historical interest since it would imply that a specialized tomographic-like algorithm has been used in seismology since the early part of the century (see Herglotz, 1907; Wiechert, 1910). Numerical examples are performed comparing the Herglotz-Wiechert algorithm and linearized tomography along straight rays. Since the Herglotz-Wiechert algorithm is applicable under specific conditions, (the absence of low velocity zones) to non-straight ray paths, the association with tomography may prove to be useful in assessing the uniqueness of tomographic results generalized to curved ray geometries.
Entropy in molecular recognition by proteins
Caro, José A.; Harpole, Kyle W.; Kasinath, Vignesh; Lim, Jackwee; Granja, Jeffrey; Valentine, Kathleen G.; Sharp, Kim A.
2017-01-01
Molecular recognition by proteins is fundamental to molecular biology. Dissection of the thermodynamic energy terms governing protein–ligand interactions has proven difficult, with determination of entropic contributions being particularly elusive. NMR relaxation measurements have suggested that changes in protein conformational entropy can be quantitatively obtained through a dynamical proxy, but the generality of this relationship has not been shown. Twenty-eight protein–ligand complexes are used to show a quantitative relationship between measures of fast side-chain motion and the underlying conformational entropy. We find that the contribution of conformational entropy can range from favorable to unfavorable, which demonstrates the potential of this thermodynamic variable to modulate protein–ligand interactions. For about one-quarter of these complexes, the absence of conformational entropy would render the resulting affinity biologically meaningless. The dynamical proxy for conformational entropy or “entropy meter” also allows for refinement of the contributions of solvent entropy and the loss in rotational-translational entropy accompanying formation of high-affinity complexes. Furthermore, structure-based application of the approach can also provide insight into long-lived specific water–protein interactions that escape the generic treatments of solvent entropy based simply on changes in accessible surface area. These results provide a comprehensive and unified view of the general role of entropy in high-affinity molecular recognition by proteins. PMID:28584100
Entropy in molecular recognition by proteins.
Caro, José A; Harpole, Kyle W; Kasinath, Vignesh; Lim, Jackwee; Granja, Jeffrey; Valentine, Kathleen G; Sharp, Kim A; Wand, A Joshua
2017-06-20
Molecular recognition by proteins is fundamental to molecular biology. Dissection of the thermodynamic energy terms governing protein-ligand interactions has proven difficult, with determination of entropic contributions being particularly elusive. NMR relaxation measurements have suggested that changes in protein conformational entropy can be quantitatively obtained through a dynamical proxy, but the generality of this relationship has not been shown. Twenty-eight protein-ligand complexes are used to show a quantitative relationship between measures of fast side-chain motion and the underlying conformational entropy. We find that the contribution of conformational entropy can range from favorable to unfavorable, which demonstrates the potential of this thermodynamic variable to modulate protein-ligand interactions. For about one-quarter of these complexes, the absence of conformational entropy would render the resulting affinity biologically meaningless. The dynamical proxy for conformational entropy or "entropy meter" also allows for refinement of the contributions of solvent entropy and the loss in rotational-translational entropy accompanying formation of high-affinity complexes. Furthermore, structure-based application of the approach can also provide insight into long-lived specific water-protein interactions that escape the generic treatments of solvent entropy based simply on changes in accessible surface area. These results provide a comprehensive and unified view of the general role of entropy in high-affinity molecular recognition by proteins.
NASA Astrophysics Data System (ADS)
Brustein, R.
I review some basic facts about entropy bounds in general and about cosmological entropy bounds. Then I review the causal entropy bound, the conditions for its validity and its application to the study of cosmological singularities. This article is based on joint work with Gabriele Veneziano and subsequent related research.
NASA Astrophysics Data System (ADS)
Xu, Pengcheng; Wang, Dong; Singh, Vijay P.; Wang, Yuankun; Wu, Jichun; Wang, Lachun; Zou, Xinqing; Chen, Yuanfang; Chen, Xi; Liu, Jiufu; Zou, Ying; He, Ruimin
2017-12-01
Hydrometeorological data are needed for obtaining point and areal mean, quantifying the spatial variability of hydrometeorological variables, and calibration and verification of hydrometeorological models. Hydrometeorological networks are utilized to collect such data. Since data collection is expensive, it is essential to design an optimal network based on the minimal number of hydrometeorological stations in order to reduce costs. This study proposes a two-phase copula entropy- based multiobjective optimization approach that includes: (1) copula entropy-based directional information transfer (CDIT) for clustering the potential hydrometeorological gauges into several groups, and (2) multiobjective method for selecting the optimal combination of gauges for regionalized groups. Although entropy theory has been employed for network design before, the joint histogram method used for mutual information estimation has several limitations. The copula entropy-based mutual information (MI) estimation method is shown to be more effective for quantifying the uncertainty of redundant information than the joint histogram (JH) method. The effectiveness of this approach is verified by applying to one type of hydrometeorological gauge network, with the use of three model evaluation measures, including Nash-Sutcliffe Coefficient (NSC), arithmetic mean of the negative copula entropy (MNCE), and MNCE/NSC. Results indicate that the two-phase copula entropy-based multiobjective technique is capable of evaluating the performance of regional hydrometeorological networks and can enable decision makers to develop strategies for water resources management.
NASA Astrophysics Data System (ADS)
Wu, Yue; Shang, Pengjian; Li, Yilong
2018-03-01
A modified multiscale sample entropy measure based on symbolic representation and similarity (MSEBSS) is proposed in this paper to research the complexity of stock markets. The modified algorithm reduces the probability of inducing undefined entropies and is confirmed to be robust to strong noise. Considering the validity and accuracy, MSEBSS is more reliable than Multiscale entropy (MSE) for time series mingled with much noise like financial time series. We apply MSEBSS to financial markets and results show American stock markets have the lowest complexity compared with European and Asian markets. There are exceptions to the regularity that stock markets show a decreasing complexity over the time scale, indicating a periodicity at certain scales. Based on MSEBSS, we introduce the modified multiscale cross-sample entropy measure based on symbolic representation and similarity (MCSEBSS) to consider the degree of the asynchrony between distinct time series. Stock markets from the same area have higher synchrony than those from different areas. And for stock markets having relative high synchrony, the entropy values will decrease with the increasing scale factor. While for stock markets having high asynchrony, the entropy values will not decrease with the increasing scale factor sometimes they tend to increase. So both MSEBSS and MCSEBSS are able to distinguish stock markets of different areas, and they are more helpful if used together for studying other features of financial time series.
An efficient and flexible Abel-inversion method for noisy data
NASA Astrophysics Data System (ADS)
Antokhin, Igor I.
2016-12-01
We propose an efficient and flexible method for solving the Abel integral equation of the first kind, frequently appearing in many fields of astrophysics, physics, chemistry, and applied sciences. This equation represents an ill-posed problem, thus solving it requires some kind of regularization. Our method is based on solving the equation on a so-called compact set of functions and/or using Tikhonov's regularization. A priori constraints on the unknown function, defining a compact set, are very loose and can be set using simple physical considerations. Tikhonov's regularization in itself does not require any explicit a priori constraints on the unknown function and can be used independently of such constraints or in combination with them. Various target degrees of smoothness of the unknown function may be set, as required by the problem at hand. The advantage of the method, apart from its flexibility, is that it gives uniform convergence of the approximate solution to the exact solution, as the errors of input data tend to zero. The method is illustrated on several simulated models with known solutions. An example of astrophysical application of the method is also given.
Awan, Imtiaz; Aziz, Wajid; Habib, Nazneen; Alowibdi, Jalal S.; Saeed, Sharjil; Nadeem, Malik Sajjad Ahmed; Shah, Syed Ahsin Ali
2018-01-01
Considerable interest has been devoted for developing a deeper understanding of the dynamics of healthy biological systems and how these dynamics are affected due to aging and disease. Entropy based complexity measures have widely been used for quantifying the dynamics of physical and biological systems. These techniques have provided valuable information leading to a fuller understanding of the dynamics of these systems and underlying stimuli that are responsible for anomalous behavior. The single scale based traditional entropy measures yielded contradictory results about the dynamics of real world time series data of healthy and pathological subjects. Recently the multiscale entropy (MSE) algorithm was introduced for precise description of the complexity of biological signals, which was used in numerous fields since its inception. The original MSE quantified the complexity of coarse-grained time series using sample entropy. The original MSE may be unreliable for short signals because the length of the coarse-grained time series decreases with increasing scaling factor τ, however, MSE works well for long signals. To overcome the drawback of original MSE, various variants of this method have been proposed for evaluating complexity efficiently. In this study, we have proposed multiscale normalized corrected Shannon entropy (MNCSE), in which instead of using sample entropy, symbolic entropy measure NCSE has been used as an entropy estimate. The results of the study are compared with traditional MSE. The effectiveness of the proposed approach is demonstrated using noise signals as well as interbeat interval signals from healthy and pathological subjects. The preliminary results of the study indicate that MNCSE values are more stable and reliable than original MSE values. The results show that MNCSE based features lead to higher classification accuracies in comparison with the MSE based features. PMID:29771977
Awan, Imtiaz; Aziz, Wajid; Shah, Imran Hussain; Habib, Nazneen; Alowibdi, Jalal S; Saeed, Sharjil; Nadeem, Malik Sajjad Ahmed; Shah, Syed Ahsin Ali
2018-01-01
Considerable interest has been devoted for developing a deeper understanding of the dynamics of healthy biological systems and how these dynamics are affected due to aging and disease. Entropy based complexity measures have widely been used for quantifying the dynamics of physical and biological systems. These techniques have provided valuable information leading to a fuller understanding of the dynamics of these systems and underlying stimuli that are responsible for anomalous behavior. The single scale based traditional entropy measures yielded contradictory results about the dynamics of real world time series data of healthy and pathological subjects. Recently the multiscale entropy (MSE) algorithm was introduced for precise description of the complexity of biological signals, which was used in numerous fields since its inception. The original MSE quantified the complexity of coarse-grained time series using sample entropy. The original MSE may be unreliable for short signals because the length of the coarse-grained time series decreases with increasing scaling factor τ, however, MSE works well for long signals. To overcome the drawback of original MSE, various variants of this method have been proposed for evaluating complexity efficiently. In this study, we have proposed multiscale normalized corrected Shannon entropy (MNCSE), in which instead of using sample entropy, symbolic entropy measure NCSE has been used as an entropy estimate. The results of the study are compared with traditional MSE. The effectiveness of the proposed approach is demonstrated using noise signals as well as interbeat interval signals from healthy and pathological subjects. The preliminary results of the study indicate that MNCSE values are more stable and reliable than original MSE values. The results show that MNCSE based features lead to higher classification accuracies in comparison with the MSE based features.
Analysis of LAC Observations of Clusters of Galaxies and Supernova Remnants
NASA Technical Reports Server (NTRS)
Hughes, J.
1996-01-01
The following publications are included and serve as the final report: The X-ray Spectrum of Abell 665; Clusters of Galaxies; Ginga Observation of an Oxygen-rich Supernova Remnant; Ginga Observations of the Coma Cluster and Studies of the Spatial Distribution of Iron; A Measurement of the Hubble Constant from the X-ray Properties and the Sunyaev-Zel'dovich Effect of Abell 2218; Non-polytropic Model for the Coma Cluster; and Abundance Gradients in Cooling Flow Clusters: Ginga LAC (Large Area Counter) and Einstein SSS (Solid State Spectrometer) Spectra of A496, A1795, A2142, and A2199.
Entropy-based link prediction in weighted networks
NASA Astrophysics Data System (ADS)
Xu, Zhongqi; Pu, Cunlai; Ramiz Sharafat, Rajput; Li, Lunbo; Yang, Jian
2017-01-01
Information entropy has been proved to be an effective tool to quantify the structural importance of complex networks. In the previous work (Xu et al, 2016 \\cite{xu2016}), we measure the contribution of a path in link prediction with information entropy. In this paper, we further quantify the contribution of a path with both path entropy and path weight, and propose a weighted prediction index based on the contributions of paths, namely Weighted Path Entropy (WPE), to improve the prediction accuracy in weighted networks. Empirical experiments on six weighted real-world networks show that WPE achieves higher prediction accuracy than three typical weighted indices.
Entropy Is Simple, Qualitatively.
ERIC Educational Resources Information Center
Lambert, Frank L.
2002-01-01
Suggests that qualitatively, entropy is simple. Entropy increase from a macro viewpoint is a measure of the dispersal of energy from localized to spread out at a temperature T. Fundamentally based on statistical and quantum mechanics, this approach is superior to the non-fundamental "disorder" as a descriptor of entropy change. (MM)
Entropy Viscosity and L1-based Approximations of PDEs: Exploiting Sparsity
2015-10-23
AFRL-AFOSR-VA-TR-2015-0337 Entropy Viscosity and L1-based Approximations of PDEs: Exploiting Sparsity Jean-Luc Guermond TEXAS A & M UNIVERSITY 750...REPORT DATE (DD-MM-YYYY) 09-05-2015 2. REPORT TYPE Final report 3. DATES COVERED (From - To) 01-07-2012 - 30-06-2015 4. TITLE AND SUBTITLE Entropy ...conservation equations can be stabilized by using the so-called entropy viscosity method and we proposed to to investigate this new technique. We
Rusin, Craig G.; Hudson, John L.; Lee, Hoshik; Delos, John B.; Guin, Lauren E.; Vergales, Brooke D.; Paget-Brown, Alix; Kattwinkel, John; Lake, Douglas E.; Moorman, J. Randall
2012-01-01
In healthy neonates, connections between the heart and lungs through brain stem chemosensory pathways and the autonomic nervous system result in cardiorespiratory synchronization. This interdependence between cardiac and respiratory dynamics can be difficult to measure because of intermittent signal quality in intensive care settings and variability of heart and breathing rates. We employed a phase-based measure suggested by Schäfer and coworkers (Schäfer C, Rosenblum MG, Kurths J, Abel HH. Nature 392: 239–240, 1998) to obtain a breath-by-breath analysis of cardiorespiratory interaction. This measure of cardiorespiratory interaction does not distinguish between cardiac control of respiration associated with cardioventilatory coupling and respiratory influences on the heart rate associated with respiratory sinus arrhythmia. We calculated, in sliding 4-min windows, the probability density of heartbeats as a function of the concurrent phase of the respiratory cycle. Probability density functions whose Shannon entropy had a <0.1% chance of occurring from random numbers were classified as exhibiting interaction. In this way, we analyzed 18 infant-years of data from 1,202 patients in the Neonatal Intensive Care Unit at University of Virginia. We found evidence of interaction in 3.3 patient-years of data (18%). Cardiorespiratory interaction increased several-fold with postnatal development, but, surprisingly, the rate of increase was not affected by gestational age at birth. We find evidence for moderate correspondence between this measure of cardiorespiratory interaction and cardioventilatory coupling and no evidence for respiratory sinus arrhythmia, leading to the need for further investigation of the underlying mechanism. Such continuous measures of physiological interaction may serve to gauge developmental maturity in neonatal intensive care patients and prove useful in decisions about incipient illness and about hospital discharge. PMID:22174403
NASA Astrophysics Data System (ADS)
Sugawara, Yuuki; Takizawa, Motokazu; Itahana, Madoka; Akamatsu, Hiroki; Fujita, Yutaka; Ohashi, Takaya; Ishisaki, Yoshitaka
2017-12-01
The results of Suzaku observations of the outskirts of Abell 3395, including a large-scale structure filament toward Abell 3391, are presented. We measured temperature and abundance distributions from the southern outskirt of A 3395 to the north at the virial radius, where a filament structure has been found in the former X-ray and Sunyaev-Zel'dovich (SZ) effect observations between A 3391 and A 3395. The overall temperature structure is consistent with the universal profile proposed by Okabe, N., et al. 2014, PASJ, 66, 99 for relaxed clusters, except for the filament region. A hint of intracluster medium heating is found between the two clusters, which might be due to their interaction in the early phase of a cluster merger. Although we obtained a relatively low metal abundance of Z=0.169^{+0.164+0.009+0.018}_{-0.150-0.004-0.015} solar, where the first, second, and third errors are statistical, cosmic X-ray background systematic, and non-X-ray background systematic, respectively, at the virial radius in the filament, our results are still consistent with previous results for other clusters (Z ˜ 0.3 solar) within errors. Therefore, our results are also consistent with the early enrichment scenario. We estimated Compton y parameters only from X-ray results in the region between A 3391 and A 3395 assuming a simple geometry. They are smaller than the previous SZ results with the Planck satellite. The difference could be attributed to a more elaborate geometry such as a filament inclined to the line-of-sight direction, or underestimation of the X-ray temperature because of the unresolved multi-temperature structures or undetected hot X-ray emission of the shock-heated gas.
Jiang, Quansheng; Shen, Yehu; Li, Hua; Xu, Fengyu
2018-01-24
Feature recognition and fault diagnosis plays an important role in equipment safety and stable operation of rotating machinery. In order to cope with the complexity problem of the vibration signal of rotating machinery, a feature fusion model based on information entropy and probabilistic neural network is proposed in this paper. The new method first uses information entropy theory to extract three kinds of characteristics entropy in vibration signals, namely, singular spectrum entropy, power spectrum entropy, and approximate entropy. Then the feature fusion model is constructed to classify and diagnose the fault signals. The proposed approach can combine comprehensive information from different aspects and is more sensitive to the fault features. The experimental results on simulated fault signals verified better performances of our proposed approach. In real two-span rotor data, the fault detection accuracy of the new method is more than 10% higher compared with the methods using three kinds of information entropy separately. The new approach is proved to be an effective fault recognition method for rotating machinery.
Application of Renyi entropy for ultrasonic molecular imaging.
Hughes, M S; Marsh, J N; Arbeit, J M; Neumann, R G; Fuhrhop, R W; Wallace, K D; Thomas, L; Smith, J; Agyem, K; Lanza, G M; Wickline, S A; McCarthy, J E
2009-05-01
Previous work has demonstrated that a signal receiver based on a limiting form of the Shannon entropy is, in certain settings, more sensitive to subtle changes in scattering architecture than conventional energy-based signal receivers [M. S. Hughes et al., J. Acoust. Soc. Am. 121, 3542-3557 (2007)]. In this paper new results are presented demonstrating further improvements in sensitivity using a signal receiver based on the Renyi entropy.
Gul, Ahmet; Erman, Burak
2018-01-16
Prediction of peptide binding on specific human leukocyte antigens (HLA) has long been studied with successful results. We herein describe the effects of entropy and dynamics by investigating the binding stabilities of 10 nanopeptides on various HLA Class I alleles using a theoretical model based on molecular dynamics simulations. The fluctuational entropies of the peptides are estimated over a temperature range of 310-460 K. The estimated entropies correlate well with experimental binding affinities of the peptides: peptides that have higher binding affinities have lower entropies compared to non-binders, which have significantly larger entropies. The computation of the entropies is based on a simple model that requires short molecular dynamics trajectories and allows for approximate but rapid determination. The paper draws attention to the long neglected dynamic aspects of peptide binding, and provides a fast computation scheme that allows for rapid scanning of large numbers of peptides on selected HLA antigens, which may be useful in defining the right peptides for personal immunotherapy.
Prediction of Protein Configurational Entropy (Popcoen).
Goethe, Martin; Gleixner, Jan; Fita, Ignacio; Rubi, J Miguel
2018-03-13
A knowledge-based method for configurational entropy prediction of proteins is presented; this methodology is extremely fast, compared to previous approaches, because it does not involve any type of configurational sampling. Instead, the configurational entropy of a query fold is estimated by evaluating an artificial neural network, which was trained on molecular-dynamics simulations of ∼1000 proteins. The predicted entropy can be incorporated into a large class of protein software based on cost-function minimization/evaluation, in which configurational entropy is currently neglected for performance reasons. Software of this type is used for all major protein tasks such as structure predictions, proteins design, NMR and X-ray refinement, docking, and mutation effect predictions. Integrating the predicted entropy can yield a significant accuracy increase as we show exemplarily for native-state identification with the prominent protein software FoldX. The method has been termed Popcoen for Prediction of Protein Configurational Entropy. An implementation is freely available at http://fmc.ub.edu/popcoen/ .
NASA Astrophysics Data System (ADS)
Gul, Ahmet; Erman, Burak
2018-03-01
Prediction of peptide binding on specific human leukocyte antigens (HLA) has long been studied with successful results. We herein describe the effects of entropy and dynamics by investigating the binding stabilities of 10 nanopeptides on various HLA Class I alleles using a theoretical model based on molecular dynamics simulations. The fluctuational entropies of the peptides are estimated over a temperature range of 310-460 K. The estimated entropies correlate well with experimental binding affinities of the peptides: peptides that have higher binding affinities have lower entropies compared to non-binders, which have significantly larger entropies. The computation of the entropies is based on a simple model that requires short molecular dynamics trajectories and allows for approximate but rapid determination. The paper draws attention to the long neglected dynamic aspects of peptide binding, and provides a fast computation scheme that allows for rapid scanning of large numbers of peptides on selected HLA antigens, which may be useful in defining the right peptides for personal immunotherapy.
Logarithmic black hole entropy corrections and holographic Rényi entropy
NASA Astrophysics Data System (ADS)
Mahapatra, Subhash
2018-01-01
The entanglement and Rényi entropies for spherical entangling surfaces in CFTs with gravity duals can be explicitly calculated by mapping these entropies first to the thermal entropy on hyperbolic space and then, using the AdS/CFT correspondence, to the Wald entropy of topological black holes. Here we extend this idea by taking into account corrections to the Wald entropy. Using the method based on horizon symmetries and the asymptotic Cardy formula, we calculate corrections to the Wald entropy and find that these corrections are proportional to the logarithm of the area of the horizon. With the corrected expression for the entropy of the black hole, we then find corrections to the Rényi entropies. We calculate these corrections for both Einstein and Gauss-Bonnet gravity duals. Corrections with logarithmic dependence on the area of the entangling surface naturally occur at the order GD^0. The entropic c-function and the inequalities of the Rényi entropy are also satisfied even with the correction terms.
The X-ray luminosity functions of Abell clusters from the Einstein Cluster Survey
NASA Technical Reports Server (NTRS)
Burg, R.; Giacconi, R.; Forman, W.; Jones, C.
1994-01-01
We have derived the present epoch X-ray luminosity function of northern Abell clusters using luminosities from the Einstein Cluster Survey. The sample is sufficiently large that we can determine the luminosity function for each richness class separately with sufficient precision to study and compare the different luminosity functions. We find that, within each richness class, the range of X-ray luminosity is quite large and spans nearly a factor of 25. Characterizing the luminosity function for each richness class with a Schechter function, we find that the characteristic X-ray luminosity, L(sub *), scales with richness class as (L(sub *) varies as N(sub*)(exp gamma), where N(sub *) is the corrected, mean number of galaxies in a richness class, and the best-fitting exponent is gamma = 1.3 +/- 0.4. Finally, our analysis suggests that there is a lower limit to the X-ray luminosity of clusters which is determined by the integrated emission of the cluster member galaxies, and this also scales with richness class. The present sample forms a baseline for testing cosmological evolution of Abell-like clusters when an appropriate high-redshift cluster sample becomes available.
Single-molecule dynamics in nanofabricated traps
NASA Astrophysics Data System (ADS)
Cohen, Adam
2009-03-01
The Anti-Brownian Electrokinetic trap (ABEL trap) provides a means to immobilize a single fluorescent molecule in solution, without surface attachment chemistry. The ABEL trap works by tracking the Brownian motion of a single molecule, and applying feedback electric fields to induce an electrokinetic motion that approximately cancels the Brownian motion. We present a new design for the ABEL trap that allows smaller molecules to be trapped and more information to be extracted from the dynamics of a single molecule than was previously possible. In particular, we present strategies for extracting dynamically fluctuating mobilities and diffusion coefficients, as a means to probe dynamic changes in molecular charge and shape. If one trapped molecule is good, many trapped molecules are better. An array of single molecules in solution, each immobilized without surface attachment chemistry, provides an ideal test-bed for single-molecule analyses of intramolecular dynamics and intermolecular interactions. We present a technology for creating such an array, using a fused silica plate with nanofabricated dimples and a removable cover for sealing single molecules within the dimples. With this device one can watch the shape fluctuations of single molecules of DNA or study cooperative interactions in weakly associating protein complexes.
NASA Astrophysics Data System (ADS)
Abel, Martin; Frommhold, Lothar; Li, Xiaoping; Hunt, Katharine L. C.
2012-06-01
The interaction-induced absorption by collisional pairs of H{_2} molecules is an important opacity source in the atmospheres of various types of planets and cool stars, such as late stars, low-mass stars, brown dwarfs, cool white dwarf stars, the ambers of the smaller, burnt out main sequence stars, exoplanets, etc., and therefore of special astronomical interest The emission spectra of cool white dwarf stars differ significantly in the infrared from the expected blackbody spectra of their cores, which is largely due to absorption by collisional H{_2}-H{_2}, H{_2}-He, and H{_2}-H complexes in the stellar atmospheres. Using quantum-chemical methods we compute the atmospheric absorption from hundreds to thousands of kelvin. Laboratory measurements of interaction-induced absorption spectra by H{_2} pairs exist only at room temperature and below. We show that our results reproduce these measurements closely, so that our computational data permit reliable modeling of stellar atmosphere opacities even for the higher temperatures. First results for H_2-He complexes have already been applied to astrophysical models have shown great improvements in these models. L. Frommhold, Collision-Induced Absorption in Gases, Cambridge University Press, Cambridge, New York, 1993 and 2006 X. Li, K. L. C. Hunt, F. Wang, M. Abel, and L. Frommhold, Collision-Induced Infrared Absorption by Molecular Hydrogen Pairs at Thousands of Kelvin, Int. J. of Spect., vol. 2010, Article ID 371201, 11 pages, 2010. doi: 10.1155/2010/371201 M. Abel, L. Frommhold, X. Li, and K. L. C. Hunt, Collision-induced absorption by H{_2} pairs: From hundreds to thousands of Kelvin, J. Phys. Chem. A, 115, 6805-6812, 2011} L. Frommhold, M. Abel, F. Wang, M. Gustafsson, X. Li, and K. L. C. Hunt, "Infrared atmospheric emission and absorption by simple molecular complexes, from first principles", Mol. Phys. 108, 2265, 2010 M. Abel, L. Frommhold, X. Li, and K. L. C. Hunt, Infrared absorption by collisional H_2-He complexes at temperatures up to 9000 K and frequencies from 0 to 20000 cm-1, J. Chem. Phys., 136, 044319, 2012 D. Saumon, M. S. Marley, M. Abel, L. Frommhold, and R. S. Freedman, New H_2 collision-induced absorption and NH_3 opacity and the spectra of the coolest brown dwarfs, Astrophysical Journal, 2012
Application of Renyi entropy for ultrasonic molecular imaging
Hughes, M. S.; Marsh, J. N.; Arbeit, J. M.; Neumann, R. G.; Fuhrhop, R. W.; Wallace, K. D.; Thomas, L.; Smith, J.; Agyem, K.; Lanza, G. M.; Wickline, S. A.; McCarthy, J. E.
2009-01-01
Previous work has demonstrated that a signal receiver based on a limiting form of the Shannon entropy is, in certain settings, more sensitive to subtle changes in scattering architecture than conventional energy-based signal receivers [M. S. Hughes et al., J. Acoust. Soc. Am. 121, 3542–3557 (2007)]. In this paper new results are presented demonstrating further improvements in sensitivity using a signal receiver based on the Renyi entropy. PMID:19425656
Financial time series analysis based on effective phase transfer entropy
NASA Astrophysics Data System (ADS)
Yang, Pengbo; Shang, Pengjian; Lin, Aijing
2017-02-01
Transfer entropy is a powerful technique which is able to quantify the impact of one dynamic system on another system. In this paper, we propose the effective phase transfer entropy method based on the transfer entropy method. We use simulated data to test the performance of this method, and the experimental results confirm that the proposed approach is capable of detecting the information transfer between the systems. We also explore the relationship between effective phase transfer entropy and some variables, such as data size, coupling strength and noise. The effective phase transfer entropy is positively correlated with the data size and the coupling strength. Even in the presence of a large amount of noise, it can detect the information transfer between systems, and it is very robust to noise. Moreover, this measure is indeed able to accurately estimate the information flow between systems compared with phase transfer entropy. In order to reflect the application of this method in practice, we apply this method to financial time series and gain new insight into the interactions between systems. It is demonstrated that the effective phase transfer entropy can be used to detect some economic fluctuations in the financial market. To summarize, the effective phase transfer entropy method is a very efficient tool to estimate the information flow between systems.
Calculating the Entropy of Solid and Liquid Metals, Based on Acoustic Data
NASA Astrophysics Data System (ADS)
Tekuchev, V. V.; Kalinkin, D. P.; Ivanova, I. V.
2018-05-01
The entropies of iron, cobalt, rhodium, and platinum are studied for the first time, based on acoustic data and using the Debye theory and rigid-sphere model, from 298 K up to the boiling point. A formula for the melting entropy of metals is validated. Good agreement between the research results and the literature data is obtained.
Controlling the Shannon Entropy of Quantum Systems
Xing, Yifan; Wu, Jun
2013-01-01
This paper proposes a new quantum control method which controls the Shannon entropy of quantum systems. For both discrete and continuous entropies, controller design methods are proposed based on probability density function control, which can drive the quantum state to any target state. To drive the entropy to any target at any prespecified time, another discretization method is proposed for the discrete entropy case, and the conditions under which the entropy can be increased or decreased are discussed. Simulations are done on both two- and three-dimensional quantum systems, where division and prediction are used to achieve more accurate tracking. PMID:23818819
Controlling the shannon entropy of quantum systems.
Xing, Yifan; Wu, Jun
2013-01-01
This paper proposes a new quantum control method which controls the Shannon entropy of quantum systems. For both discrete and continuous entropies, controller design methods are proposed based on probability density function control, which can drive the quantum state to any target state. To drive the entropy to any target at any prespecified time, another discretization method is proposed for the discrete entropy case, and the conditions under which the entropy can be increased or decreased are discussed. Simulations are done on both two- and three-dimensional quantum systems, where division and prediction are used to achieve more accurate tracking.
Accuracy of topological entanglement entropy on finite cylinders.
Jiang, Hong-Chen; Singh, Rajiv R P; Balents, Leon
2013-09-06
Topological phases are unique states of matter which support nonlocal excitations which behave as particles with fractional statistics. A universal characterization of gapped topological phases is provided by the topological entanglement entropy (TEE). We study the finite size corrections to the TEE by focusing on systems with a Z2 topological ordered state using density-matrix renormalization group and perturbative series expansions. We find that extrapolations of the TEE based on the Renyi entropies with a Renyi index of n≥2 suffer from much larger finite size corrections than do extrapolations based on the von Neumann entropy. In particular, when the circumference of the cylinder is about ten times the correlation length, the TEE obtained using von Neumann entropy has an error of order 10(-3), while for Renyi entropies it can even exceed 40%. We discuss the relevance of these findings to previous and future searches for topological ordered phases, including quantum spin liquids.
Derivation of Hunt equation for suspension distribution using Shannon entropy theory
NASA Astrophysics Data System (ADS)
Kundu, Snehasis
2017-12-01
In this study, the Hunt equation for computing suspension concentration in sediment-laden flows is derived using Shannon entropy theory. Considering the inverse of the void ratio as a random variable and using principle of maximum entropy, probability density function and cumulative distribution function of suspension concentration is derived. A new and more general cumulative distribution function for the flow domain is proposed which includes several specific other models of CDF reported in literature. This general form of cumulative distribution function also helps to derive the Rouse equation. The entropy based approach helps to estimate model parameters using suspension data of sediment concentration which shows the advantage of using entropy theory. Finally model parameters in the entropy based model are also expressed as functions of the Rouse number to establish a link between the parameters of the deterministic and probabilistic approaches.
NOTE: Entropy-based automated classification of independent components separated from fMCG
NASA Astrophysics Data System (ADS)
Comani, S.; Srinivasan, V.; Alleva, G.; Romani, G. L.
2007-03-01
Fetal magnetocardiography (fMCG) is a noninvasive technique suitable for the prenatal diagnosis of the fetal heart function. Reliable fetal cardiac signals can be reconstructed from multi-channel fMCG recordings by means of independent component analysis (ICA). However, the identification of the separated components is usually accomplished by visual inspection. This paper discusses a novel automated system based on entropy estimators, namely approximate entropy (ApEn) and sample entropy (SampEn), for the classification of independent components (ICs). The system was validated on 40 fMCG datasets of normal fetuses with the gestational age ranging from 22 to 37 weeks. Both ApEn and SampEn were able to measure the stability and predictability of the physiological signals separated with ICA, and the entropy values of the three categories were significantly different at p <0.01. The system performances were compared with those of a method based on the analysis of the time and frequency content of the components. The outcomes of this study showed a superior performance of the entropy-based system, in particular for early gestation, with an overall ICs detection rate of 98.75% and 97.92% for ApEn and SampEn respectively, as against a value of 94.50% obtained with the time-frequency-based system.
Fault Diagnosis for Micro-Gas Turbine Engine Sensors via Wavelet Entropy
Yu, Bing; Liu, Dongdong; Zhang, Tianhong
2011-01-01
Sensor fault diagnosis is necessary to ensure the normal operation of a gas turbine system. However, the existing methods require too many resources and this need can’t be satisfied in some occasions. Since the sensor readings are directly affected by sensor state, sensor fault diagnosis can be performed by extracting features of the measured signals. This paper proposes a novel fault diagnosis method for sensors based on wavelet entropy. Based on the wavelet theory, wavelet decomposition is utilized to decompose the signal in different scales. Then the instantaneous wavelet energy entropy (IWEE) and instantaneous wavelet singular entropy (IWSE) are defined based on the previous wavelet entropy theory. Subsequently, a fault diagnosis method for gas turbine sensors is proposed based on the results of a numerically simulated example. Then, experiments on this method are carried out on a real micro gas turbine engine. In the experiment, four types of faults with different magnitudes are presented. The experimental results show that the proposed method for sensor fault diagnosis is efficient. PMID:22163734
Fault diagnosis for micro-gas turbine engine sensors via wavelet entropy.
Yu, Bing; Liu, Dongdong; Zhang, Tianhong
2011-01-01
Sensor fault diagnosis is necessary to ensure the normal operation of a gas turbine system. However, the existing methods require too many resources and this need can't be satisfied in some occasions. Since the sensor readings are directly affected by sensor state, sensor fault diagnosis can be performed by extracting features of the measured signals. This paper proposes a novel fault diagnosis method for sensors based on wavelet entropy. Based on the wavelet theory, wavelet decomposition is utilized to decompose the signal in different scales. Then the instantaneous wavelet energy entropy (IWEE) and instantaneous wavelet singular entropy (IWSE) are defined based on the previous wavelet entropy theory. Subsequently, a fault diagnosis method for gas turbine sensors is proposed based on the results of a numerically simulated example. Then, experiments on this method are carried out on a real micro gas turbine engine. In the experiment, four types of faults with different magnitudes are presented. The experimental results show that the proposed method for sensor fault diagnosis is efficient.
Stochastic approach to equilibrium and nonequilibrium thermodynamics.
Tomé, Tânia; de Oliveira, Mário J
2015-04-01
We develop the stochastic approach to thermodynamics based on stochastic dynamics, which can be discrete (master equation) and continuous (Fokker-Planck equation), and on two assumptions concerning entropy. The first is the definition of entropy itself and the second the definition of entropy production rate, which is non-negative and vanishes in thermodynamic equilibrium. Based on these assumptions, we study interacting systems with many degrees of freedom in equilibrium or out of thermodynamic equilibrium and how the macroscopic laws are derived from the stochastic dynamics. These studies include the quasiequilibrium processes; the convexity of the equilibrium surface; the monotonic time behavior of thermodynamic potentials, including entropy; the bilinear form of the entropy production rate; the Onsager coefficients and reciprocal relations; and the nonequilibrium steady states of chemical reactions.
Entropy Analysis of Kinetic Flux Vector Splitting Schemes for the Compressible Euler Equations
NASA Technical Reports Server (NTRS)
Shiuhong, Lui; Xu, Jun
1999-01-01
Flux Vector Splitting (FVS) scheme is one group of approximate Riemann solvers for the compressible Euler equations. In this paper, the discretized entropy condition of the Kinetic Flux Vector Splitting (KFVS) scheme based on the gas-kinetic theory is proved. The proof of the entropy condition involves the entropy definition difference between the distinguishable and indistinguishable particles.
Exact solutions for the entropy production rate of several irreversible processes.
Ross, John; Vlad, Marcel O
2005-11-24
We investigate thermal conduction described by Newton's law of cooling and by Fourier's transport equation and chemical reactions based on mass action kinetics where we detail a simple example of a reaction mechanism with one intermediate. In these cases we derive exact expressions for the entropy production rate and its differential. We show that at a stationary state the entropy production rate is an extremum if and only if the stationary state is a state of thermodynamic equilibrium. These results are exact and independent of any expansions of the entropy production rate. In the case of thermal conduction we compare our exact approach with the conventional approach based on the expansion of the entropy production rate near equilibrium. If we expand the entropy production rate in a series and keep terms up to the third order in the deviation variables and then differentiate, we find out that the entropy production rate is not an extremum at a nonequilibrium steady state. If there is a strict proportionality between fluxes and forces, then the entropy production rate is an extremum at the stationary state even if the stationary state is far away from equilibrium.
A new entropy based on a group-theoretical structure
NASA Astrophysics Data System (ADS)
Curado, Evaldo M. F.; Tempesta, Piergiulio; Tsallis, Constantino
2016-03-01
A multi-parametric version of the nonadditive entropy Sq is introduced. This new entropic form, denoted by S a , b , r, possesses many interesting statistical properties, and it reduces to the entropy Sq for b = 0, a = r : = 1 - q (hence Boltzmann-Gibbs entropy SBG for b = 0, a = r → 0). The construction of the entropy S a , b , r is based on a general group-theoretical approach recently proposed by one of us, Tempesta (2016). Indeed, essentially all the properties of this new entropy are obtained as a consequence of the existence of a rational group law, which expresses the structure of S a , b , r with respect to the composition of statistically independent subsystems. Depending on the choice of the parameters, the entropy S a , b , r can be used to cover a wide range of physical situations, in which the measure of the accessible phase space increases say exponentially with the number of particles N of the system, or even stabilizes, by increasing N, to a limiting value. This paves the way to the use of this entropy in contexts where the size of the phase space does not increase as fast as the number of its constituting particles (or subsystems) increases.
Pawlowski, Marcin Piotr; Jara, Antonio; Ogorzalek, Maciej
2015-01-01
Entropy in computer security is associated with the unpredictability of a source of randomness. The random source with high entropy tends to achieve a uniform distribution of random values. Random number generators are one of the most important building blocks of cryptosystems. In constrained devices of the Internet of Things ecosystem, high entropy random number generators are hard to achieve due to hardware limitations. For the purpose of the random number generation in constrained devices, this work proposes a solution based on the least-significant bits concatenation entropy harvesting method. As a potential source of entropy, on-board integrated sensors (i.e., temperature, humidity and two different light sensors) have been analyzed. Additionally, the costs (i.e., time and memory consumption) of the presented approach have been measured. The results obtained from the proposed method with statistical fine tuning achieved a Shannon entropy of around 7.9 bits per byte of data for temperature and humidity sensors. The results showed that sensor-based random number generators are a valuable source of entropy with very small RAM and Flash memory requirements for constrained devices of the Internet of Things. PMID:26506357
Population entropies estimates of proteins
NASA Astrophysics Data System (ADS)
Low, Wai Yee
2017-05-01
The Shannon entropy equation provides a way to estimate variability of amino acids sequences in a multiple sequence alignment of proteins. Knowledge of protein variability is useful in many areas such as vaccine design, identification of antibody binding sites, and exploration of protein 3D structural properties. In cases where the population entropies of a protein are of interest but only a small sample size can be obtained, a method based on linear regression and random subsampling can be used to estimate the population entropy. This method is useful for comparisons of entropies where the actual sequence counts differ and thus, correction for alignment size bias is needed. In the current work, an R based package named EntropyCorrect that enables estimation of population entropy is presented and an empirical study on how well this new algorithm performs on simulated dataset of various combinations of population and sample sizes is discussed. The package is available at https://github.com/lloydlow/EntropyCorrect. This article, which was originally published online on 12 May 2017, contained an error in Eq. (1), where the summation sign was missing. The corrected equation appears in the Corrigendum attached to the pdf.
Pawlowski, Marcin Piotr; Jara, Antonio; Ogorzalek, Maciej
2015-10-22
Entropy in computer security is associated with the unpredictability of a source of randomness. The random source with high entropy tends to achieve a uniform distribution of random values. Random number generators are one of the most important building blocks of cryptosystems. In constrained devices of the Internet of Things ecosystem, high entropy random number generators are hard to achieve due to hardware limitations. For the purpose of the random number generation in constrained devices, this work proposes a solution based on the least-significant bits concatenation entropy harvesting method. As a potential source of entropy, on-board integrated sensors (i.e., temperature, humidity and two different light sensors) have been analyzed. Additionally, the costs (i.e., time and memory consumption) of the presented approach have been measured. The results obtained from the proposed method with statistical fine tuning achieved a Shannon entropy of around 7.9 bits per byte of data for temperature and humidity sensors. The results showed that sensor-based random number generators are a valuable source of entropy with very small RAM and Flash memory requirements for constrained devices of the Internet of Things.
NASA Astrophysics Data System (ADS)
Alameddine, Ibrahim; Karmakar, Subhankar; Qian, Song S.; Paerl, Hans W.; Reckhow, Kenneth H.
2013-10-01
The total maximum daily load program aims to monitor more than 40,000 standard violations in around 20,000 impaired water bodies across the United States. Given resource limitations, future monitoring efforts have to be hedged against the uncertainties in the monitored system, while taking into account existing knowledge. In that respect, we have developed a hierarchical spatiotemporal Bayesian model that can be used to optimize an existing monitoring network by retaining stations that provide the maximum amount of information, while identifying locations that would benefit from the addition of new stations. The model assumes the water quality parameters are adequately described by a joint matrix normal distribution. The adopted approach allows for a reduction in redundancies, while emphasizing information richness rather than data richness. The developed approach incorporates the concept of entropy to account for the associated uncertainties. Three different entropy-based criteria are adopted: total system entropy, chlorophyll-a standard violation entropy, and dissolved oxygen standard violation entropy. A multiple attribute decision making framework is adopted to integrate the competing design criteria and to generate a single optimal design. The approach is implemented on the water quality monitoring system of the Neuse River Estuary in North Carolina, USA. The model results indicate that the high priority monitoring areas identified by the total system entropy and the dissolved oxygen violation entropy criteria are largely coincident. The monitoring design based on the chlorophyll-a standard violation entropy proved to be less informative, given the low probabilities of violating the water quality standard in the estuary.
Generalized Entanglement Entropy and Holography
NASA Astrophysics Data System (ADS)
Obregón, O.
2018-04-01
A nonextensive statistical mechanics entropy that depends only on the probability distribution is proposed in the framework of superstatistics. It is based on a Γ(χ 2) distribution that depends on β and also on pl . The corresponding modified von Neumann entropy is constructed; it is shown that it can also be obtained from a generalized Replica trick. We address the question whether the generalized entanglement entropy can play a role in the gauge/gravity duality. We pay attention to 2dCFT and their gravity duals. The correction terms to the von Neumann entropy result more relevant than the usual UV (for c = 1) ones and also than those due to the area dependent AdS 3 entropy which result comparable to the UV ones. Then the correction terms due to the new entropy would modify the Ryu-Takayanagi identification between the CFT entanglement entropy and the AdS entropy in a different manner than the UV ones or than the corrections to the AdS 3 area dependent entropy.
Characterizing time series via complexity-entropy curves
NASA Astrophysics Data System (ADS)
Ribeiro, Haroldo V.; Jauregui, Max; Zunino, Luciano; Lenzi, Ervin K.
2017-06-01
The search for patterns in time series is a very common task when dealing with complex systems. This is usually accomplished by employing a complexity measure such as entropies and fractal dimensions. However, such measures usually only capture a single aspect of the system dynamics. Here, we propose a family of complexity measures for time series based on a generalization of the complexity-entropy causality plane. By replacing the Shannon entropy by a monoparametric entropy (Tsallis q entropy) and after considering the proper generalization of the statistical complexity (q complexity), we build up a parametric curve (the q -complexity-entropy curve) that is used for characterizing and classifying time series. Based on simple exact results and numerical simulations of stochastic processes, we show that these curves can distinguish among different long-range, short-range, and oscillating correlated behaviors. Also, we verify that simulated chaotic and stochastic time series can be distinguished based on whether these curves are open or closed. We further test this technique in experimental scenarios related to chaotic laser intensity, stock price, sunspot, and geomagnetic dynamics, confirming its usefulness. Finally, we prove that these curves enhance the automatic classification of time series with long-range correlations and interbeat intervals of healthy subjects and patients with heart disease.
Secondary structural entropy in RNA switch (Riboswitch) identification.
Manzourolajdad, Amirhossein; Arnold, Jonathan
2015-04-28
RNA regulatory elements play a significant role in gene regulation. Riboswitches, a widespread group of regulatory RNAs, are vital components of many bacterial genomes. These regulatory elements generally function by forming a ligand-induced alternative fold that controls access to ribosome binding sites or other regulatory sites in RNA. Riboswitch-mediated mechanisms are ubiquitous across bacterial genomes. A typical class of riboswitch has its own unique structural and biological complexity, making de novo riboswitch identification a formidable task. Traditionally, riboswitches have been identified through comparative genomics based on sequence and structural homology. The limitations of structural-homology-based approaches, coupled with the assumption that there is a great diversity of undiscovered riboswitches, suggests the need for alternative methods for riboswitch identification, possibly based on features intrinsic to their structure. As of yet, no such reliable method has been proposed. We used structural entropy of riboswitch sequences as a measure of their secondary structural dynamics. Entropy values of a diverse set of riboswitches were compared to that of their mutants, their dinucleotide shuffles, and their reverse complement sequences under different stochastic context-free grammar folding models. Significance of our results was evaluated by comparison to other approaches, such as the base-pairing entropy and energy landscapes dynamics. Classifiers based on structural entropy optimized via sequence and structural features were devised as riboswitch identifiers and tested on Bacillus subtilis, Escherichia coli, and Synechococcus elongatus as an exploration of structural entropy based approaches. The unusually long untranslated region of the cotH in Bacillus subtilis, as well as upstream regions of certain genes, such as the sucC genes were associated with significant structural entropy values in genome-wide examinations. Various tests show that there is in fact a relationship between higher structural entropy and the potential for the RNA sequence to have alternative structures, within the limitations of our methodology. This relationship, though modest, is consistent across various tests. Understanding the behavior of structural entropy as a fairly new feature for RNA conformational dynamics, however, may require extensive exploratory investigation both across RNA sequences and folding models.
Device-Independent Tests of Entropy
NASA Astrophysics Data System (ADS)
Chaves, Rafael; Brask, Jonatan Bohr; Brunner, Nicolas
2015-09-01
We show that the entropy of a message can be tested in a device-independent way. Specifically, we consider a prepare-and-measure scenario with classical or quantum communication, and develop two different methods for placing lower bounds on the communication entropy, given observable data. The first method is based on the framework of causal inference networks. The second technique, based on convex optimization, shows that quantum communication provides an advantage over classical communication, in the sense of requiring a lower entropy to reproduce given data. These ideas may serve as a basis for novel applications in device-independent quantum information processing.
A Statistical Study of Multiply Imaged Systems in the Lensing Cluster Abell 68
NASA Astrophysics Data System (ADS)
Richard, Johan; Kneib, Jean-Paul; Jullo, Eric; Covone, Giovanni; Limousin, Marceau; Ellis, Richard; Stark, Daniel; Bundy, Kevin; Czoske, Oliver; Ebeling, Harald; Soucail, Geneviève
2007-06-01
We have carried out an extensive spectroscopic survey with the Keck and VLT telescopes, targeting lensed galaxies in the background of the massive cluster Abell 68. Spectroscopic measurements are obtained for 26 lensed images, including a distant galaxy at z=5.4. Redshifts have been determined for 5 out of 7 multiple-image systems. Through a careful modeling of the mass distribution in the strongly lensed regime, we derive a mass estimate of 5.3×1014 Msolar within 500 kpc. Our mass model is then used to constrain the redshift distribution of the remaining multiply imaged and singly imaged sources. This enables us to examine the physical properties for a subsample of 7 Lyα emitters at 1.7<~z<~5.5, whose unlensed luminosities of ~=1041 ergs s-1 are fainter than similar objects found in blank fields. Of particular interest is an extended Lyα emission region surrounding a highly magnified source at z=2.6, detected in VIMOS integral field spectroscopy data. The physical scale of the most distant lensed source at z=5.4 is very small (<300 pc), similar to the lensed z~5.6 emitter reported by Ellis et al. in Abell 2218. New photometric data available for Abell 2218 allow for a direct comparison between these two unique objects. Our survey illustrates the practicality of using lensing clusters to probe the faint end of the z~2-5 Lyα luminosity function in a manner that is complementary to blank-field narrowband surveys. Data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation. Also based on observations collected at the Very Large Telescope (Antu/UT1 and Melipal/UT3), European Southern Observatory, Paranal, Chile (ESO programs 070.A-0643 and 073.A-0774), the NASA/ESA Hubble Space Telescope (program 8249) obtained at the Space Telescope Science Institute, which is operated by AURA under NASA contract NAS5-26555, and the Canada-France-Hawaii Telescope (CFHT), which is operated by the National Research Council of Canada, the Institut National des Sciences de l'Univers of the Centre National de la Recherche Scientifique of France, and the University of Hawaii.
Estimating the Entropy of Binary Time Series: Methodology, Some Theory and a Simulation Study
NASA Astrophysics Data System (ADS)
Gao, Yun; Kontoyiannis, Ioannis; Bienenstock, Elie
2008-06-01
Partly motivated by entropy-estimation problems in neuroscience, we present a detailed and extensive comparison between some of the most popular and effective entropy estimation methods used in practice: The plug-in method, four different estimators based on the Lempel-Ziv (LZ) family of data compression algorithms, an estimator based on the Context-Tree Weighting (CTW) method, and the renewal entropy estimator. METHODOLOGY: Three new entropy estimators are introduced; two new LZ-based estimators, and the “renewal entropy estimator,” which is tailored to data generated by a binary renewal process. For two of the four LZ-based estimators, a bootstrap procedure is described for evaluating their standard error, and a practical rule of thumb is heuristically derived for selecting the values of their parameters in practice. THEORY: We prove that, unlike their earlier versions, the two new LZ-based estimators are universally consistent, that is, they converge to the entropy rate for every finite-valued, stationary and ergodic process. An effective method is derived for the accurate approximation of the entropy rate of a finite-state hidden Markov model (HMM) with known distribution. Heuristic calculations are presented and approximate formulas are derived for evaluating the bias and the standard error of each estimator. SIMULATION: All estimators are applied to a wide range of data generated by numerous different processes with varying degrees of dependence and memory. The main conclusions drawn from these experiments include: (i) For all estimators considered, the main source of error is the bias. (ii) The CTW method is repeatedly and consistently seen to provide the most accurate results. (iii) The performance of the LZ-based estimators is often comparable to that of the plug-in method. (iv) The main drawback of the plug-in method is its computational inefficiency; with small word-lengths it fails to detect longer-range structure in the data, and with longer word-lengths the empirical distribution is severely undersampled, leading to large biases.
NASA Astrophysics Data System (ADS)
Mohammad-Djafari, Ali
2015-01-01
The main object of this tutorial article is first to review the main inference tools using Bayesian approach, Entropy, Information theory and their corresponding geometries. This review is focused mainly on the ways these tools have been used in data, signal and image processing. After a short introduction of the different quantities related to the Bayes rule, the entropy and the Maximum Entropy Principle (MEP), relative entropy and the Kullback-Leibler divergence, Fisher information, we will study their use in different fields of data and signal processing such as: entropy in source separation, Fisher information in model order selection, different Maximum Entropy based methods in time series spectral estimation and finally, general linear inverse problems.
Wavelet entropy characterization of elevated intracranial pressure.
Xu, Peng; Scalzo, Fabien; Bergsneider, Marvin; Vespa, Paul; Chad, Miller; Hu, Xiao
2008-01-01
Intracranial Hypertension (ICH) often occurs for those patients with traumatic brain injury (TBI), stroke, tumor, etc. Pathology of ICH is still controversial. In this work, we used wavelet entropy and relative wavelet entropy to study the difference existed between normal and hypertension states of ICP for the first time. The wavelet entropy revealed the similar findings as the approximation entropy that entropy during ICH state is smaller than that in normal state. Moreover, with wavelet entropy, we can see that ICH state has the more focused energy in the low wavelet frequency band (0-3.1 Hz) than the normal state. The relative wavelet entropy shows that the energy distribution in the wavelet bands between these two states is actually different. Based on these results, we suggest that ICH may be formed by the re-allocation of oscillation energy within brain.
Entropy of electromyography time series
NASA Astrophysics Data System (ADS)
Kaufman, Miron; Zurcher, Ulrich; Sung, Paul S.
2007-12-01
A nonlinear analysis based on Renyi entropy is applied to electromyography (EMG) time series from back muscles. The time dependence of the entropy of the EMG signal exhibits a crossover from a subdiffusive regime at short times to a plateau at longer times. We argue that this behavior characterizes complex biological systems. The plateau value of the entropy can be used to differentiate between healthy and low back pain individuals.
Discovery of Ram-pressure Stripped Gas around an Elliptical Galaxy in Abell 2670
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sheen, Yun-Kyeong; Kim, Minjin; Smith, Rory
Studies of cluster galaxies are increasingly finding galaxies with spectacular one-sided tails of gas and young stars, suggestive of intense ram-pressure stripping. These so-called “jellyfish” galaxies typically have late-type morphology. In this paper, we present Multi Unit Spectroscopic Explorer (MUSE) observations of an elliptical galaxy in Abell 2670 with long tails of material visible in the optical spectra, as well as blobs with tadpole-like morphology. The spectra in the central part of the galaxy reveal a stellar component as well as ionized gas. The stellar component does not have significant rotation, while the ionized gas defines a clear star-forming gasmore » disk. We argue, based on deep optical images of the galaxy, that the gas was most likely acquired during a past wet merger. It is possible that the star-forming blobs are also remnants of the merger. In addition, the direction and kinematics of the one-sided ionized tails, combined with the tadpole morphology of the star-forming blobs, strongly suggests that the system is undergoing ram pressure from the intracluster medium. In summary, this paper presents the discovery of a post-merger elliptical galaxy undergoing ram-pressure stripping.« less
Discovery of Ram-pressure Stripped Gas around an Elliptical Galaxy in Abell 2670
NASA Astrophysics Data System (ADS)
Sheen, Yun-Kyeong; Smith, Rory; Jaffé, Yara; Kim, Minjin; Yi, Sukyoung K.; Duc, Pierre-Alain; Nantais, Julie; Candlish, Graeme; Demarco, Ricardo; Treister, Ezequiel
2017-05-01
Studies of cluster galaxies are increasingly finding galaxies with spectacular one-sided tails of gas and young stars, suggestive of intense ram-pressure stripping. These so-called “jellyfish” galaxies typically have late-type morphology. In this paper, we present Multi Unit Spectroscopic Explorer (MUSE) observations of an elliptical galaxy in Abell 2670 with long tails of material visible in the optical spectra, as well as blobs with tadpole-like morphology. The spectra in the central part of the galaxy reveal a stellar component as well as ionized gas. The stellar component does not have significant rotation, while the ionized gas defines a clear star-forming gas disk. We argue, based on deep optical images of the galaxy, that the gas was most likely acquired during a past wet merger. It is possible that the star-forming blobs are also remnants of the merger. In addition, the direction and kinematics of the one-sided ionized tails, combined with the tadpole morphology of the star-forming blobs, strongly suggests that the system is undergoing ram pressure from the intracluster medium. In summary, this paper presents the discovery of a post-merger elliptical galaxy undergoing ram-pressure stripping.
The third law of thermodynamics and the fractional entropies
NASA Astrophysics Data System (ADS)
Baris Bagci, G.
2016-08-01
We consider the fractal calculus based Ubriaco and Machado entropies and investigate whether they conform to the third law of thermodynamics. The Ubriaco entropy satisfies the third law of thermodynamics in the interval 0 < q ≤ 1 exactly where it is also thermodynamically stable. The Machado entropy, on the other hand, yields diverging inverse temperature in the region 0 < q ≤ 1, albeit with non-vanishing negative entropy values. Therefore, despite the divergent inverse temperature behavior, the Machado entropy fails the third law of thermodynamics. We also show that the aforementioned results are also supported by the one-dimensional Ising model with no external field.
Entropy as an indicator of cerebral perfusion in patients with increased intracranial pressure.
Khan, James; Mariappan, Ramamani; Venkatraghavan, Lashmi
2014-07-01
Changes in electroencephalogram (EEG) patterns correlate well with changes in cerebral perfusion pressure (CPP) and hence entropy and bispectral index values may also correlate with CPP. To highlight the potential application of entropy, an EEG-based anesthetic depth monitor, on indicating cerebral perfusion in patients with increased intracranial pressure (ICP), we report two cases of emergency neurosurgical procedure in patients with raised ICP where anesthesia was titrated to entropy values and the entropy values suddenly increased after cranial decompression, reflecting the increase in CPP. Maintaining systemic blood pressure in order to maintain the CPP is the anesthetic goal while managing patients with raised ICP. EEG-based anesthetic depth monitors may hold valuable information on guiding anesthetic management in patients with decreased CPP for better neurological outcome.
DISENTANGLING THE ICL WITH THE CHEFs: ABELL 2744 AS A CASE STUDY
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiménez-Teja, Y.; Dupke, R., E-mail: yojite@iaa.es
Measurements of the intracluster light (ICL) are still prone to methodological ambiguities, and there are multiple techniques in the literature to address them, mostly based on the binding energy, the local density distribution, or the surface brightness. A common issue with these methods is the a priori assumption of a number of hypotheses on either the ICL morphology, its surface brightness level, or some properties of the brightest cluster galaxy (BCG). The discrepancy in the results is high, and numerical simulations just place a boundary on the ICL fraction in present-day galaxy clusters in the range 10%–50%. We developed amore » new algorithm based on the Chebyshev–Fourier functions to estimate the ICL fraction without relying on any a priori assumption about the physical or geometrical characteristics of the ICL. We are able to not only disentangle the ICL from the galactic luminosity but mark out the limits of the BCG from the ICL in a natural way. We test our technique with the recently released data of the cluster Abell 2744, observed by the Frontier Fields program. The complexity of this multiple merging cluster system and the formidable depth of these images make it a challenging test case to prove the efficiency of our algorithm. We found a final ICL fraction of 19.17 ± 2.87%, which is very consistent with numerical simulations.« less
Formulating the shear stress distribution in circular open channels based on the Renyi entropy
NASA Astrophysics Data System (ADS)
Khozani, Zohreh Sheikh; Bonakdari, Hossein
2018-01-01
The principle of maximum entropy is employed to derive the shear stress distribution by maximizing the Renyi entropy subject to some constraints and by assuming that dimensionless shear stress is a random variable. A Renyi entropy-based equation can be used to model the shear stress distribution along the entire wetted perimeter of circular channels and circular channels with flat beds and deposited sediments. A wide range of experimental results for 12 hydraulic conditions with different Froude numbers (0.375 to 1.71) and flow depths (20.3 to 201.5 mm) were used to validate the derived shear stress distribution. For circular channels, model performance enhanced with increasing flow depth (mean relative error (RE) of 0.0414) and only deteriorated slightly at the greatest flow depth (RE of 0.0573). For circular channels with flat beds, the Renyi entropy model predicted the shear stress distribution well at lower sediment depth. The Renyi entropy model results were also compared with Shannon entropy model results. Both models performed well for circular channels, but for circular channels with flat beds the Renyi entropy model displayed superior performance in estimating the shear stress distribution. The Renyi entropy model was highly precise and predicted the shear stress distribution in a circular channel with RE of 0.0480 and in a circular channel with a flat bed with RE of 0.0488.
Chao, Anne; Jost, Lou; Hsieh, T C; Ma, K H; Sherwin, William B; Rollins, Lee Ann
2015-01-01
Shannon entropy H and related measures are increasingly used in molecular ecology and population genetics because (1) unlike measures based on heterozygosity or allele number, these measures weigh alleles in proportion to their population fraction, thus capturing a previously-ignored aspect of allele frequency distributions that may be important in many applications; (2) these measures connect directly to the rich predictive mathematics of information theory; (3) Shannon entropy is completely additive and has an explicitly hierarchical nature; and (4) Shannon entropy-based differentiation measures obey strong monotonicity properties that heterozygosity-based measures lack. We derive simple new expressions for the expected values of the Shannon entropy of the equilibrium allele distribution at a neutral locus in a single isolated population under two models of mutation: the infinite allele model and the stepwise mutation model. Surprisingly, this complex stochastic system for each model has an entropy expressable as a simple combination of well-known mathematical functions. Moreover, entropy- and heterozygosity-based measures for each model are linked by simple relationships that are shown by simulations to be approximately valid even far from equilibrium. We also identify a bridge between the two models of mutation. We apply our approach to subdivided populations which follow the finite island model, obtaining the Shannon entropy of the equilibrium allele distributions of the subpopulations and of the total population. We also derive the expected mutual information and normalized mutual information ("Shannon differentiation") between subpopulations at equilibrium, and identify the model parameters that determine them. We apply our measures to data from the common starling (Sturnus vulgaris) in Australia. Our measures provide a test for neutrality that is robust to violations of equilibrium assumptions, as verified on real world data from starlings.
The genus curve of the Abell clusters
NASA Technical Reports Server (NTRS)
Rhoads, James E.; Gott, J. Richard, III; Postman, Marc
1994-01-01
We study the topology of large-scale structure through a genus curve measurement of the recent Abell catalog redshift survey of Postman, Huchra, and Geller (1992). The structure is found to be spongelike near median density and to exhibit isolated superclusters and voids at high and low densities, respectively. The genus curve shows a slight shift toward 'meatball' topology, but remains consistent with the hypothesis of Gaussian random phase initial conditions. The amplitude of the genus curve corresponds to a power-law spectrum with index n = 0.21(sub -0.47 sup +0.43) on scales of 48/h Mpc or to a cold dark matter power spectrum with omega h = 0.36(sub -0.17 sup +0.46).
The genus curve of the Abell clusters
NASA Astrophysics Data System (ADS)
Rhoads, James E.; Gott, J. Richard, III; Postman, Marc
1994-01-01
We study the topology of large-scale structure through a genus curve measurement of the recent Abell catalog redshift survey of Postman, Huchra, and Geller (1992). The structure is found to be spongelike near median density and to exhibit isolated superclusters and voids at high and low densities, respectively. The genus curve shows a slight shift toward 'meatball' topology, but remains consistent with the hypothesis of Gaussian random phase initial conditions. The amplitude of the genus curve corresponds to a power-law spectrum with index n = 0.21-0.47+0.43 on scales of 48/h Mpc or to a cold dark matter power spectrum with omega h = 0.36-0.17+0.46.
2017-12-08
Release Date: March 10, 2010 - Distant galaxy clusters mysteriously stream at a million miles per hour along a path roughly centered on the southern constellations Centaurus and Hydra. A new study led by Alexander Kashlinsky at NASA's Goddard Space Flight Center in Greenbelt, Md., tracks this collective motion -- dubbed the "dark flow" -- to twice the distance originally reported, out to more than 2.5 billion light-years. Abell 1689, redshift 0.181. Credit: NASA/Goddard Space Flight Center/Scientific Visualization Studio/ESA/L. Bradley/JHU To learn more go to: www.nasa.gov/centers/goddard/news/releases/2010/10-023.html To see other visualizations related to this story go to: svs.gsfc.nasa.gov/goto?10580
VizieR Online Data Catalog: Magellan/M2FS spectroscopy of Abell 267 (Tucker+, 2017)
NASA Astrophysics Data System (ADS)
Tucker, E.; Walker, M. G.; Mateo, M.; Olszewski, E. W.; Bailey, J. I.; Crane, J. D.; Shectman, S. A.
2018-02-01
We select targets for Michigan/Magellan Fiber System (M2FS) observations by identifying galaxies detected in SDSS images (Data Release 12; Alam et al.2015, Cat. V/147) that are projected along the line of sight to Abell 267 and are likely to be quiescent cluster members. We observed 223 individual galaxy spectra on 2013 November 30 on the Clay Magellan Telescope using M2FS. We used the low-resolution grating on M2FS and chose a coverage range of 4600-6400Å with a resolution of R~2000. The detector used with M2FS consists of two 4096*4112 pixel CCDs. (1 data file).
Maximum Relative Entropy of Coherence: An Operational Coherence Measure.
Bu, Kaifeng; Singh, Uttam; Fei, Shao-Ming; Pati, Arun Kumar; Wu, Junde
2017-10-13
The operational characterization of quantum coherence is the cornerstone in the development of the resource theory of coherence. We introduce a new coherence quantifier based on maximum relative entropy. We prove that the maximum relative entropy of coherence is directly related to the maximum overlap with maximally coherent states under a particular class of operations, which provides an operational interpretation of the maximum relative entropy of coherence. Moreover, we show that, for any coherent state, there are examples of subchannel discrimination problems such that this coherent state allows for a higher probability of successfully discriminating subchannels than that of all incoherent states. This advantage of coherent states in subchannel discrimination can be exactly characterized by the maximum relative entropy of coherence. By introducing a suitable smooth maximum relative entropy of coherence, we prove that the smooth maximum relative entropy of coherence provides a lower bound of one-shot coherence cost, and the maximum relative entropy of coherence is equivalent to the relative entropy of coherence in the asymptotic limit. Similar to the maximum relative entropy of coherence, the minimum relative entropy of coherence has also been investigated. We show that the minimum relative entropy of coherence provides an upper bound of one-shot coherence distillation, and in the asymptotic limit the minimum relative entropy of coherence is equivalent to the relative entropy of coherence.
Small-window parametric imaging based on information entropy for ultrasound tissue characterization
Tsui, Po-Hsiang; Chen, Chin-Kuo; Kuo, Wen-Hung; Chang, King-Jen; Fang, Jui; Ma, Hsiang-Yang; Chou, Dean
2017-01-01
Constructing ultrasound statistical parametric images by using a sliding window is a widely adopted strategy for characterizing tissues. Deficiency in spatial resolution, the appearance of boundary artifacts, and the prerequisite data distribution limit the practicability of statistical parametric imaging. In this study, small-window entropy parametric imaging was proposed to overcome the above problems. Simulations and measurements of phantoms were executed to acquire backscattered radiofrequency (RF) signals, which were processed to explore the feasibility of small-window entropy imaging in detecting scatterer properties. To validate the ability of entropy imaging in tissue characterization, measurements of benign and malignant breast tumors were conducted (n = 63) to compare performances of conventional statistical parametric (based on Nakagami distribution) and entropy imaging by the receiver operating characteristic (ROC) curve analysis. The simulation and phantom results revealed that entropy images constructed using a small sliding window (side length = 1 pulse length) adequately describe changes in scatterer properties. The area under the ROC for using small-window entropy imaging to classify tumors was 0.89, which was higher than 0.79 obtained using statistical parametric imaging. In particular, boundary artifacts were largely suppressed in the proposed imaging technique. Entropy enables using a small window for implementing ultrasound parametric imaging. PMID:28106118
Small-window parametric imaging based on information entropy for ultrasound tissue characterization
NASA Astrophysics Data System (ADS)
Tsui, Po-Hsiang; Chen, Chin-Kuo; Kuo, Wen-Hung; Chang, King-Jen; Fang, Jui; Ma, Hsiang-Yang; Chou, Dean
2017-01-01
Constructing ultrasound statistical parametric images by using a sliding window is a widely adopted strategy for characterizing tissues. Deficiency in spatial resolution, the appearance of boundary artifacts, and the prerequisite data distribution limit the practicability of statistical parametric imaging. In this study, small-window entropy parametric imaging was proposed to overcome the above problems. Simulations and measurements of phantoms were executed to acquire backscattered radiofrequency (RF) signals, which were processed to explore the feasibility of small-window entropy imaging in detecting scatterer properties. To validate the ability of entropy imaging in tissue characterization, measurements of benign and malignant breast tumors were conducted (n = 63) to compare performances of conventional statistical parametric (based on Nakagami distribution) and entropy imaging by the receiver operating characteristic (ROC) curve analysis. The simulation and phantom results revealed that entropy images constructed using a small sliding window (side length = 1 pulse length) adequately describe changes in scatterer properties. The area under the ROC for using small-window entropy imaging to classify tumors was 0.89, which was higher than 0.79 obtained using statistical parametric imaging. In particular, boundary artifacts were largely suppressed in the proposed imaging technique. Entropy enables using a small window for implementing ultrasound parametric imaging.
Ultra-deep K S-band Imaging of the Hubble Frontier Fields
NASA Astrophysics Data System (ADS)
Brammer, Gabriel B.; Marchesini, Danilo; Labbé, Ivo; Spitler, Lee; Lange-Vagle, Daniel; Barker, Elizbeth A.; Tanaka, Masayuki; Fontana, Adriano; Galametz, Audrey; Ferré-Mateu, Anna; Kodama, Tadayuki; Lundgren, Britt; Martis, Nicholas; Muzzin, Adam; Stefanon, Mauro; Toft, Sune; van der Wel, Arjen; Vulcani, Benedetta; Whitaker, Katherine E.
2016-09-01
We present an overview of the “KIFF” project, which provides ultra-deep K s -band imaging of all six of the Hubble Frontier Fields clusters, Abell 2744, MACS-0416, Abell S1063, Abell 370, MACS-0717, and MACS-1149. All of these fields have recently been observed with large allocations of Directors’ Discretionary Time with the Hubble and Spitzer telescopes, covering 0.4\\lt λ \\lt 1.6 μ {{m}} and 3.6-4.5 μ {{m}}, respectively. VLT/HAWK-I integrations of the first four fields reach 5σ limiting depths of {K}s˜ 26.0 (AB, point sources) and have excellent image quality (FWHM ˜ 0.″4). The MACS-0717 and MACS-1149 fields are observable from the northern hemisphere, and shorter Keck/MOSFIRE integrations on those fields reach limiting depths of K s = 25.5 and 25.1, with a seeing FWHM of ˜ 0.″4 and 0\\buildrel{\\prime\\prime}\\over{.} 5. In all cases the K s -band mosaics cover the primary cluster and parallel HST/ACS+WFC3 fields. The total area of the K s -band coverage is 490 arcmin2. The K s -band at 2.2 μ {{m}} crucially fills the gap between the reddest HST filter (1.6 μ {{m}} ˜ H band) and the IRAC 3.6 μ {{m}} passband. While reaching the full depths of the space-based imaging is not currently feasible from the ground, the deep K s -band images provide important constraints on both the redshifts and the stellar population properties of galaxies extending well below the characteristic stellar mass across most of the age of the universe, down to and including the redshifts of the targeted galaxy clusters (z≲ 0.5). Reduced, aligned mosaics of all six survey fields are provided.
NASA Astrophysics Data System (ADS)
Kawakami, Todd Mori
In April of 1995, the launch of the GPS Meteorology Experiment (GPS/MET) onboard the Orbview-1 satellite, formerly known as Microlab-1, provided the first technology demonstration of active limb sounding of the Earth's atmosphere with a low Earth orbiting spacecraft utilizing the signals transmitted by the satellites of the Global Positioning System (GPS). Though the experiment's primary mission was to probe the troposphere and stratosphere, GPS/MET was also capable of making radio occultation observations of the ionosphere. The application of the GPS occultation technique to the upper atmosphere created a unique opportunity to conduct ionospheric research with an unprecedented global distribution of observations. For operational support requirements, the Abel transform could be employed to invert the horizontal TEC profiles computed from the L1 and L2 phase measurements observed by GPS/MET into electron density profiles versus altitude in near real time. The usefulness of the method depends on how effectively the TEC limb profiles can be transformed into vertical electron density profiles. An assessment of GPS/MET's ability to determine electron density profiles needs to be examined to validate the significance of the GPS occultation method as a new and complementary ionospheric research tool to enhance the observational databases and improve space weather modeling and forecasting. To that end, simulations of the occultation observations and their inversions have been conducted to test the Abel transform algorithm and to provide qualitative information about the type and range of errors that might be experienced during the processing of real data. Comparisons of the electron density profiles inferred from real GPS/MET observations are then compared with coincident in situ measurements from the satellites of Defense Meteorological Satellite Program (DMSP) and ground-based remote sensing from digisonde and incoherent scatter radar facilities. The principal focus of this study is the validation of the electron density profiles inferred from GPS occultation observations using the Abel transform.
Entropy-based financial asset pricing.
Ormos, Mihály; Zibriczky, Dávid
2014-01-01
We investigate entropy as a financial risk measure. Entropy explains the equity premium of securities and portfolios in a simpler way and, at the same time, with higher explanatory power than the beta parameter of the capital asset pricing model. For asset pricing we define the continuous entropy as an alternative measure of risk. Our results show that entropy decreases in the function of the number of securities involved in a portfolio in a similar way to the standard deviation, and that efficient portfolios are situated on a hyperbola in the expected return-entropy system. For empirical investigation we use daily returns of 150 randomly selected securities for a period of 27 years. Our regression results show that entropy has a higher explanatory power for the expected return than the capital asset pricing model beta. Furthermore we show the time varying behavior of the beta along with entropy.
Entropy-Based Financial Asset Pricing
Ormos, Mihály; Zibriczky, Dávid
2014-01-01
We investigate entropy as a financial risk measure. Entropy explains the equity premium of securities and portfolios in a simpler way and, at the same time, with higher explanatory power than the beta parameter of the capital asset pricing model. For asset pricing we define the continuous entropy as an alternative measure of risk. Our results show that entropy decreases in the function of the number of securities involved in a portfolio in a similar way to the standard deviation, and that efficient portfolios are situated on a hyperbola in the expected return – entropy system. For empirical investigation we use daily returns of 150 randomly selected securities for a period of 27 years. Our regression results show that entropy has a higher explanatory power for the expected return than the capital asset pricing model beta. Furthermore we show the time varying behavior of the beta along with entropy. PMID:25545668
Entropy in self-similar shock profiles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Margolin, Len G.; Reisner, Jon Michael; Jordan, Pedro M.
In this paper, we study the structure of a gaseous shock, and in particular the distribution of entropy within, in both a thermodynamics and a statistical mechanics context. The problem of shock structure has a long and distinguished history that we review. We employ the Navier–Stokes equations to construct a self–similar version of Becker’s solution for a shock assuming a particular (physically plausible) Prandtl number; that solution reproduces the well–known result of Morduchow & Libby that features a maximum of the equilibrium entropy inside the shock profile. We then construct an entropy profile, based on gas kinetic theory, that ismore » smooth and monotonically increasing. The extension of equilibrium thermodynamics to irreversible processes is based in part on the assumption of local thermodynamic equilibrium. We show that this assumption is not valid except for the weakest shocks. Finally, we conclude by hypothesizing a thermodynamic nonequilibrium entropy and demonstrating that it closely estimates the gas kinetic nonequilibrium entropy within a shock.« less
Statistical Mechanical Proof of the Second Law of Thermodynamics based on Volume Entropy
NASA Astrophysics Data System (ADS)
Campisi, Michele
2007-10-01
As pointed out in [M. Campisi. Stud. Hist. Phil. M. P. 36 (2005) 275-290] the volume entropy (that is the logarithm of the volume of phase space enclosed by the constant energy hyper-surface) provides a good mechanical analogue of thermodynamic entropy because it satisfies the heat theorem and it is an adiabatic invariant. This property explains the ``equal'' sign in Clausius principle (Sf>=Si) in a purely mechanical way and suggests that the volume entropy might explain the ``larger than'' sign (i.e. the Law of Entropy Increase) if non adiabatic transformations were considered. Based on the principles of quantum mechanics here we prove that, provided the initial equilibrium satisfy the natural condition of decreasing ordering of probabilities, the expectation value of the volume entropy cannot decrease for arbitrary transformations performed by some external sources of work on a insulated system. This can be regarded as a rigorous quantum mechanical proof of the Second Law.
Entropy in self-similar shock profiles
Margolin, Len G.; Reisner, Jon Michael; Jordan, Pedro M.
2017-07-16
In this paper, we study the structure of a gaseous shock, and in particular the distribution of entropy within, in both a thermodynamics and a statistical mechanics context. The problem of shock structure has a long and distinguished history that we review. We employ the Navier–Stokes equations to construct a self–similar version of Becker’s solution for a shock assuming a particular (physically plausible) Prandtl number; that solution reproduces the well–known result of Morduchow & Libby that features a maximum of the equilibrium entropy inside the shock profile. We then construct an entropy profile, based on gas kinetic theory, that ismore » smooth and monotonically increasing. The extension of equilibrium thermodynamics to irreversible processes is based in part on the assumption of local thermodynamic equilibrium. We show that this assumption is not valid except for the weakest shocks. Finally, we conclude by hypothesizing a thermodynamic nonequilibrium entropy and demonstrating that it closely estimates the gas kinetic nonequilibrium entropy within a shock.« less
NASA Astrophysics Data System (ADS)
Jia, Rui-Sheng; Sun, Hong-Mei; Peng, Yan-Jun; Liang, Yong-Quan; Lu, Xin-Ming
2017-07-01
Microseismic monitoring is an effective means for providing early warning of rock or coal dynamical disasters, and its first step is microseismic event detection, although low SNR microseismic signals often cannot effectively be detected by routine methods. To solve this problem, this paper presents permutation entropy and a support vector machine to detect low SNR microseismic events. First, an extraction method of signal features based on multi-scale permutation entropy is proposed by studying the influence of the scale factor on the signal permutation entropy. Second, the detection model of low SNR microseismic events based on the least squares support vector machine is built by performing a multi-scale permutation entropy calculation for the collected vibration signals, constructing a feature vector set of signals. Finally, a comparative analysis of the microseismic events and noise signals in the experiment proves that the different characteristics of the two can be fully expressed by using multi-scale permutation entropy. The detection model of microseismic events combined with the support vector machine, which has the features of high classification accuracy and fast real-time algorithms, can meet the requirements of online, real-time extractions of microseismic events.
Characterizing the Small Scale Structure in Clusters of Galaxies
NASA Technical Reports Server (NTRS)
Forman, William R.
2001-01-01
We studied galaxy clusters Abell 119, Abell 754, and Abell 1750, using data from the ASCA and ROSAT satellites. In addition, we completed the paper "Merging Binary Clusters". In this paper we study three prominent bi-modal X-ray clusters: A3528, A1750 and A3395. Since the sub-clusters in these systems have projected separations of 0.93, 1.00 and 0.67 Mpc respectively, we examine their X-ray and optical observations to investigate the dynamics and possible merging of these sub-clusters. Using data taken with ROSAT and ASCA, we analyze the temperature and surface brightness distributions. We also analyze the velocity distributions of the three clusters using new measurements supplemented with previously published data. We examined both the overall cluster properties as well as the two sub-cluster elements in each. These results were then applied to the determination of the overall cluster masses, that demonstrate excellent consistency between the various methods used. While the characteristic parameters of the sub-clusters are typical of isolated objects, our temperature results for the regions between the two sub-clusters clearly confirm the presence of merger activity that is suggested by the surface brightness distributions. These three clusters represent a progression of equal-sized sub-cluster mergers, starting from initial contact to immediately before first core passage.
NASA Astrophysics Data System (ADS)
Dalla Bontà, E.; Davies, R. L.; Houghton, R. C. W.; D'Eugenio, F.; Méndez-Abreu, J.
2018-02-01
We present a photometric analysis of 65 galaxies in the rich cluster Abell 1689 at z = 0.183, using the Hubble Space Telescope Advanced Camera for Surveys archive images in the rest-frame V band. We perform two-dimensional multicomponent photometric decomposition of each galaxy adopting different models of the surface-brightness distribution. We present an accurate morphological classification for each of the sample galaxies. For 50 early-type galaxies, we fit both a de Vaucouleurs law and a Sérsic law; S0s are modelled by also including a disc component described by an exponential law. Bars of SB0s are described by the profile of a Ferrers ellipsoid. For the 15 spirals, we model a Sérsic bulge, exponential disc and, when required, a Ferrers bar component. We derive the Fundamental Plane (FP) by fitting 40 early-type galaxies in the sample, using different surface-brightness distributions. We find that the tightest plane is that derived by Sérsic bulges. We find that bulges of spirals lie on the same relation. The FP is better defined by the bulges alone rather than the entire galaxies. Comparison with local samples shows both an offset and rotation in the FP of Abell 1689.
Search For Cosmic-Ray-Induced Gamma-Ray Emission In Galaxy Clusters
Ackermann, M.
2014-04-30
Current theories predict relativistic hadronic particle populations in clusters of galaxies in addition to the already observed relativistic leptons. In these scenarios hadronic interactions give rise to neutral pions which decay into rays that are potentially observable with the Large Area Telescope (LAT) on board the Fermi space telescope. We present a joint likelihood analysis searching for spatially extended γ-ray emission at the locations of 50 galaxy clusters in 4 years of Fermi-LAT data under the assumption of the universal cosmic-ray model proposed by Pinzke & Pfrommer (2010). We find an excess at a significance of 2.7 σ which uponmore » closer inspection is however correlated to individual excess emission towards three galaxy clusters: Abell 400, Abell 1367 and Abell 3112. We discuss these cases in detail and conservatively attribute the emission to unmodeled background (for example, radio galaxies within the clusters). Through the combined analysis of 50 clusters we exclude hadronic injection efficiencies in simple hadronic models above 21% and establish limits on the cosmic-ray to thermal pressure ratio within the virial radius, R200, to be below 1.2-1.4% depending on the morphological classification. In addition we derive new limits on the γ-ray flux from individual clusters in our sample.« less
NASA Astrophysics Data System (ADS)
Wang, WenBin; Wu, ZiNiu; Wang, ChunFeng; Hu, RuiFeng
2013-11-01
A model based on a thermodynamic approach is proposed for predicting the dynamics of communicable epidemics assumed to be governed by controlling efforts of multiple scales so that an entropy is associated with the system. All the epidemic details are factored into a single and time-dependent coefficient, the functional form of this coefficient is found through four constraints, including notably the existence of an inflexion point and a maximum. The model is solved to give a log-normal distribution for the spread rate, for which a Shannon entropy can be defined. The only parameter, that characterizes the width of the distribution function, is uniquely determined through maximizing the rate of entropy production. This entropy-based thermodynamic (EBT) model predicts the number of hospitalized cases with a reasonable accuracy for SARS in the year 2003. This EBT model can be of use for potential epidemics such as avian influenza and H7N9 in China.
The Conditional Entropy Power Inequality for Bosonic Quantum Systems
NASA Astrophysics Data System (ADS)
De Palma, Giacomo; Trevisan, Dario
2018-06-01
We prove the conditional Entropy Power Inequality for Gaussian quantum systems. This fundamental inequality determines the minimum quantum conditional von Neumann entropy of the output of the beam-splitter or of the squeezing among all the input states where the two inputs are conditionally independent given the memory and have given quantum conditional entropies. We also prove that, for any couple of values of the quantum conditional entropies of the two inputs, the minimum of the quantum conditional entropy of the output given by the conditional Entropy Power Inequality is asymptotically achieved by a suitable sequence of quantum Gaussian input states. Our proof of the conditional Entropy Power Inequality is based on a new Stam inequality for the quantum conditional Fisher information and on the determination of the universal asymptotic behaviour of the quantum conditional entropy under the heat semigroup evolution. The beam-splitter and the squeezing are the central elements of quantum optics, and can model the attenuation, the amplification and the noise of electromagnetic signals. This conditional Entropy Power Inequality will have a strong impact in quantum information and quantum cryptography. Among its many possible applications there is the proof of a new uncertainty relation for the conditional Wehrl entropy.
The Conditional Entropy Power Inequality for Bosonic Quantum Systems
NASA Astrophysics Data System (ADS)
De Palma, Giacomo; Trevisan, Dario
2018-01-01
We prove the conditional Entropy Power Inequality for Gaussian quantum systems. This fundamental inequality determines the minimum quantum conditional von Neumann entropy of the output of the beam-splitter or of the squeezing among all the input states where the two inputs are conditionally independent given the memory and have given quantum conditional entropies. We also prove that, for any couple of values of the quantum conditional entropies of the two inputs, the minimum of the quantum conditional entropy of the output given by the conditional Entropy Power Inequality is asymptotically achieved by a suitable sequence of quantum Gaussian input states. Our proof of the conditional Entropy Power Inequality is based on a new Stam inequality for the quantum conditional Fisher information and on the determination of the universal asymptotic behaviour of the quantum conditional entropy under the heat semigroup evolution. The beam-splitter and the squeezing are the central elements of quantum optics, and can model the attenuation, the amplification and the noise of electromagnetic signals. This conditional Entropy Power Inequality will have a strong impact in quantum information and quantum cryptography. Among its many possible applications there is the proof of a new uncertainty relation for the conditional Wehrl entropy.
Entropy and generalized least square methods in assessment of the regional value of streamgages
Markus, M.; Vernon, Knapp H.; Tasker, Gary D.
2003-01-01
The Illinois State Water Survey performed a study to assess the streamgaging network in the State of Illinois. One of the important aspects of the study was to assess the regional value of each station through an assessment of the information transfer among gaging records for low, average, and high flow conditions. This analysis was performed for the main hydrologic regions in the State, and the stations were initially evaluated using a new approach based on entropy analysis. To determine the regional value of each station within a region, several information parameters, including total net information, were defined based on entropy. Stations were ranked based on the total net information. For comparison, the regional value of the same stations was assessed using the generalized least square regression (GLS) method, developed by the US Geological Survey. Finally, a hybrid combination of GLS and entropy was created by including a function of the negative net information as a penalty function in the GLS. The weights of the combined model were determined to maximize the average correlation with the results of GLS and entropy. The entropy and GLS methods were evaluated using the high-flow data from southern Illinois stations. The combined method was compared with the entropy and GLS approaches using the high-flow data from eastern Illinois stations. ?? 2003 Elsevier B.V. All rights reserved.
An entropy model to measure heterogeneity of pedestrian crowds using self-propelled agents
NASA Astrophysics Data System (ADS)
Rangel-Huerta, A.; Ballinas-Hernández, A. L.; Muñoz-Meléndez, A.
2017-05-01
An entropy model to characterize the heterogeneity of a pedestrian crowd in a counter-flow corridor is presented. Pedestrians are modeled as self-propelled autonomous agents that are able to perform maneuvers to avoid collisions based on a set of simple rules of perception and action. An observer can determine a probability distribution function of the displayed behavior of pedestrians based only on external information. Three types of pedestrian are modeled, relaxed, standard and hurried pedestrians depending on their preferences of turn and non-turn when walking. Thus, using these types of pedestrians two crowds can be simulated: homogeneous and heterogeneous crowds. Heterogeneity is measured in this research based on the entropy in function of time. For that, the entropy of a homogeneous crowd comprising standard pedestrians is used as reference. A number of simulations to measure entropy of pedestrian crowds were conducted by varying different combinations of types of pedestrians, initial simulation conditions of macroscopic flow, as well as density of the crowd. Results from these simulations show that our entropy model is sensitive enough to capture the effect of both the initial simulation conditions about the spatial distribution of pedestrians in a corridor, and the composition of a crowd. Also, a relevant finding is that entropy in function of density presents a phase transition in the critical region.
Long memory and volatility clustering: Is the empirical evidence consistent across stock markets?
NASA Astrophysics Data System (ADS)
Bentes, Sónia R.; Menezes, Rui; Mendes, Diana A.
2008-06-01
Long memory and volatility clustering are two stylized facts frequently related to financial markets. Traditionally, these phenomena have been studied based on conditionally heteroscedastic models like ARCH, GARCH, IGARCH and FIGARCH, inter alia. One advantage of these models is their ability to capture nonlinear dynamics. Another interesting manner to study the volatility phenomenon is by using measures based on the concept of entropy. In this paper we investigate the long memory and volatility clustering for the SP 500, NASDAQ 100 and Stoxx 50 indexes in order to compare the US and European Markets. Additionally, we compare the results from conditionally heteroscedastic models with those from the entropy measures. In the latter, we examine Shannon entropy, Renyi entropy and Tsallis entropy. The results corroborate the previous evidence of nonlinear dynamics in the time series considered.
NASA Astrophysics Data System (ADS)
Lee, Joon Hyeop; Pak, Mina; Lee, Hye-Ran; Oh, Sree
2018-04-01
We investigate the properties of bright galaxies of various morphological types in Abell 1139 and Abell 2589, using pixel color–magnitude diagram (pCMD) analysis. The sample contains 32 galaxies brighter than M r = ‑21.3 mag with spectroscopic redshifts, which are deeply imaged in the g and r bands using the MegaCam mounted on the Canada–France–Hawaii Telescope. After masking contaminants with two-step procedures, we examine how the detailed properties in the pCMDs depend on galaxy morphology and infrared color. The mean g ‑ r color as a function of surface brightness (μ r ) in the pCMD of a galaxy shows good performance in distinguishing between early- and late-type galaxies, but it is not perfect because of the similarity between elliptical galaxies and bulge-dominated spiral galaxies. On the other hand, the g ‑ r color dispersion as a function of μ r works better. We find that the best set of parameters for galaxy classification is a combination of the minimum color dispersion at μ r ≤ 21.2 mag arcsec‑2 and the maximum color dispersion at 20.0 ≤ μ r ≤ 21.0 mag arcsec‑2 the latter reflects the complexity of stellar populations at the disk component in a typical spiral galaxy. Finally, the color dispersion measurements of an elliptical galaxy appear to be correlated with the Wide-field Infrared Survey Explorer infrared color ([4.6]–[12]). This indicates that the complexity of stellar populations in an elliptical galaxy is related to its recent star formation activities. From this observational evidence, we infer that gas-rich minor mergers or gas interactions may have usually occurred during the recent growth of massive elliptical galaxies.
NASA Astrophysics Data System (ADS)
Lee, Joon Hyeop; Oh, Sree; Jeong, Hyunjin; Yi, Sukyoung K.; Kyeong, Jaemann; Park, Byeong-Gon
2017-07-01
As a case study to understand the coevolution of Brightest Cluster Galaxies (BCGs) and their host clusters, we investigate the BCGs in dynamically young and old clusters Abell 1139 (A1139) and Abell 2589 (A2589). We analyze the pixel color–magnitude diagrams (pCMDs) using deep g- and r-band images, obtained from the Canada–France–Hawaii Telescope observations. After masking foreground/background objects and smoothing pixels in consideration of the observational seeing size, detailed pCMD features are compared between the two BCGs. (1) Although the overall shapes of the pCMDs are similar to those of typical early-type galaxies, the A2589-BCG tends to have redder mean pixel color and smaller pixel color deviation at given surface brightness than the A1139-BCG. (2) The mean pixel color distribution as a function of pixel surface brightness (pCMD backbone) indicates that the A2589-BCG formed a larger central body (∼2.0 kpc in radius) via major dry mergers at an early epoch than the A1139-BCG (a central body ∼1.3 kpc in radius), whereas they have grown commonly in subsequent minor mergers. (3) The spatial distributions of the pCMD outliers reveal that the A1139-BCG experienced considerable tidal events more recently than the A2589-BCG, whereas the A2589-BCG has an asymmetric compact core, possibly resulting from a major dry merger at an early epoch. (4) The A2589-BCG shows a very large faint-to-bright pixel number ratio, compared to early-type non-BCGs, whereas the ratio for the A1139-BCG is not distinctively large. These results are consistent with the idea that the BCG in the dynamically older cluster (A2589) formed earlier and is better relaxed.
NASA Astrophysics Data System (ADS)
Liu, Haixing; Savić, Dragan; Kapelan, Zoran; Zhao, Ming; Yuan, Yixing; Zhao, Hongbin
2014-07-01
Flow entropy is a measure of uniformity of pipe flows in water distribution systems. By maximizing flow entropy one can identify reliable layouts or connectivity in networks. In order to overcome the disadvantage of the common definition of flow entropy that does not consider the impact of pipe diameter on reliability, an extended definition of flow entropy, termed as diameter-sensitive flow entropy, is proposed. This new methodology is then assessed by using other reliability methods, including Monte Carlo Simulation, a pipe failure probability model, and a surrogate measure (resilience index) integrated with water demand and pipe failure uncertainty. The reliability assessment is based on a sample of WDS designs derived from an optimization process for each of the two benchmark networks. Correlation analysis is used to evaluate quantitatively the relationship between entropy and reliability. To ensure reliability, a comparative analysis between the flow entropy and the new method is conducted. The results demonstrate that the diameter-sensitive flow entropy shows consistently much stronger correlation with the three reliability measures than simple flow entropy. Therefore, the new flow entropy method can be taken as a better surrogate measure for reliability and could be potentially integrated into the optimal design problem of WDSs. Sensitivity analysis results show that the velocity parameters used in the new flow entropy has no significant impact on the relationship between diameter-sensitive flow entropy and reliability.
An entropy-based analysis of lane changing behavior: An interactive approach.
Kosun, Caglar; Ozdemir, Serhan
2017-05-19
As a novelty, this article proposes the nonadditive entropy framework for the description of driver behaviors during lane changing. The authors also state that this entropy framework governs the lane changing behavior in traffic flow in accordance with the long-range vehicular interactions and traffic safety. The nonadditive entropy framework is the new generalized theory of thermostatistical mechanics. Vehicular interactions during lane changing are considered within this framework. The interactive approach for the lane changing behavior of the drivers is presented in the traffic flow scenarios presented in the article. According to the traffic flow scenarios, 4 categories of traffic flow and driver behaviors are obtained. Through the scenarios, comparative analyses of nonadditive and additive entropy domains are also provided. Two quadrants of the categories belong to the nonadditive entropy; the rest are involved in the additive entropy domain. Driving behaviors are extracted and the scenarios depict that nonadditivity matches safe driving well, whereas additivity corresponds to unsafe driving. Furthermore, the cooperative traffic system is considered in nonadditivity where the long-range interactions are present. However, the uncooperative traffic system falls into the additivity domain. The analyses also state that there would be possible traffic flow transitions among the quadrants. This article shows that lane changing behavior could be generalized as nonadditive, with additivity as a special case, based on the given traffic conditions. The nearest and close neighbor models are well within the conventional additive entropy framework. In this article, both the long-range vehicular interactions and safe driving behavior in traffic are handled in the nonadditive entropy domain. It is also inferred that the Tsallis entropy region would correspond to mandatory lane changing behavior, whereas additive and either the extensive or nonextensive entropy region would match discretionary lane changing behavior. This article states that driver behaviors would be in the nonadditive entropy domain to provide a safe traffic stream and hence with vehicle accident prevention in mind.
Xiao, Xiao; Hua, Xue-Ming; Wu, Yi-Xiong; Li, Fang
2012-09-01
Pulsed TIG welding is widely used in industry due to its superior properties, and the measurement of arc temperature is important to analysis of welding process. The relationship between particle densities of Ar and temperature was calculated based on the theory of spectrum, the relationship between emission coefficient of spectra line at 794.8 nm and temperature was calculated, arc image of spectra line at 794.8 nm was captured by high speed camera, and both the Abel inversion and Fowler-Milne method were used to calculate the temperature distribution of pulsed TIG welding.
Quantum thermodynamics and quantum entanglement entropies in an expanding universe
NASA Astrophysics Data System (ADS)
Farahmand, Mehrnoosh; Mohammadzadeh, Hosein; Mehri-Dehnavi, Hossein
2017-05-01
We investigate an asymptotically spatially flat Robertson-Walker space-time from two different perspectives. First, using von Neumann entropy, we evaluate the entanglement generation due to the encoded information in space-time. Then, we work out the entropy of particle creation based on the quantum thermodynamics of the scalar field on the underlying space-time. We show that the general behavior of both entropies are the same. Therefore, the entanglement can be applied to the customary quantum thermodynamics of the universe. Also, using these entropies, we can recover some information about the parameters of space-time.
Measuring Gaussian quantum information and correlations using the Rényi entropy of order 2.
Adesso, Gerardo; Girolami, Davide; Serafini, Alessio
2012-11-09
We demonstrate that the Rényi-2 entropy provides a natural measure of information for any multimode Gaussian state of quantum harmonic systems, operationally linked to the phase-space Shannon sampling entropy of the Wigner distribution of the state. We prove that, in the Gaussian scenario, such an entropy satisfies the strong subadditivity inequality, a key requirement for quantum information theory. This allows us to define and analyze measures of Gaussian entanglement and more general quantum correlations based on such an entropy, which are shown to satisfy relevant properties such as monogamy.
2004-06-09
KENNEDY SPACE CENTER, FLA. - At Cape Canaveral Air Force Station, KSC Firefighter Chris Maupin (left) watches as Lt. Keith Abell practices maneuvering apparatus on top of the firefighting vehicle with which they are able to direct the hoses to attack fires from above and below. The firefighters teamed up with task forces from Satellite Beach, Malabar, Melbourne, Palm Bay, Patrick Air Force Base and Brevard County to help fight wildfires in the Palm Bay and Malabar areas that threatened homes and property during the Memorial Day holiday weekend.
NASA Astrophysics Data System (ADS)
Zhao, Hui; Qu, Weilu; Qiu, Weiting
2018-03-01
In order to evaluate sustainable development level of resource-based cities, an evaluation method with Shapely entropy and Choquet integral is proposed. First of all, a systematic index system is constructed, the importance of each attribute is calculated based on the maximum Shapely entropy principle, and then the Choquet integral is introduced to calculate the comprehensive evaluation value of each city from the bottom up, finally apply this method to 10 typical resource-based cities in China. The empirical results show that the evaluation method is scientific and reasonable, which provides theoretical support for the sustainable development path and reform direction of resource-based cities.
NASA Astrophysics Data System (ADS)
Mao, Chao; Chen, Shou
2017-01-01
According to the traditional entropy value method still have low evaluation accuracy when evaluating the performance of mining projects, a performance evaluation model of mineral project founded on improved entropy is proposed. First establish a new weight assignment model founded on compatible matrix analysis of analytic hierarchy process (AHP) and entropy value method, when the compatibility matrix analysis to achieve consistency requirements, if it has differences between subjective weights and objective weights, moderately adjust both proportions, then on this basis, the fuzzy evaluation matrix for performance evaluation. The simulation experiments show that, compared with traditional entropy and compatible matrix analysis method, the proposed performance evaluation model of mining project based on improved entropy value method has higher accuracy assessment.
Marsh, J. N.; Wallace, K. D.; McCarthy, J. E.; Wickerhauser, M. V.; Maurizi, B. N.; Lanza, G. M.; Wickline, S. A.; Hughes, M. S.
2011-01-01
Previously, we reported new methods for ultrasound signal characterization using entropy, Hf; a generalized entropy, the Renyi entropy, If(r); and a limiting form of Renyi entropy suitable for real-time calculation, If,∞. All of these quantities demonstrated significantly more sensitivity to subtle changes in scattering architecture than energy-based methods in certain settings. In this study, the real-time calculable limit of the Renyi entropy, If,∞, is applied for the imaging of angiogenic murine neovasculature in a breast cancer xenograft using a targeted contrast agent. It is shown that this approach may be used to detect reliably the accumulation of targeted nanoparticles at five minutes post-injection in this in vivo model. PMID:20679020
Relating quantum coherence and correlations with entropy-based measures.
Wang, Xiao-Li; Yue, Qiu-Ling; Yu, Chao-Hua; Gao, Fei; Qin, Su-Juan
2017-09-21
Quantum coherence and quantum correlations are important quantum resources for quantum computation and quantum information. In this paper, using entropy-based measures, we investigate the relationships between quantum correlated coherence, which is the coherence between subsystems, and two main kinds of quantum correlations as defined by quantum discord as well as quantum entanglement. In particular, we show that quantum discord and quantum entanglement can be well characterized by quantum correlated coherence. Moreover, we prove that the entanglement measure formulated by quantum correlated coherence is lower and upper bounded by the relative entropy of entanglement and the entanglement of formation, respectively, and equal to the relative entropy of entanglement for all the maximally correlated states.
A comparison of techniques for inversion of radio-ray phase data in presence of ray bending
NASA Technical Reports Server (NTRS)
Wallio, H. A.; Grossi, M. D.
1972-01-01
Derivations are presented of the straight-line Abel transform and the seismological Herglotz-Wiechert transform (which takes ray bending into account) that are used in the reconstruction of refractivity profiles from radio-wave phase data. Profile inversion utilizing these approaches, performed in computer-simulated experiments, are compared for cases of positive, zero, and negative ray bending. For thin atmospheres and ionospheres, such as the Martian atmosphere and ionosphere, radio wave signals are shown to be inverted accurately with both methods. For dense media, such as the solar corona or the lower Venus atmosphere, the refractive recovered by the seismological Herglotz-Wiechert transform provide a significant improvement compared with the straight-line Abel transform.
Generalized permutation entropy analysis based on the two-index entropic form S q , δ
NASA Astrophysics Data System (ADS)
Xu, Mengjia; Shang, Pengjian
2015-05-01
Permutation entropy (PE) is a novel measure to quantify the complexity of nonlinear time series. In this paper, we propose a generalized permutation entropy ( P E q , δ ) based on the recently postulated entropic form, S q , δ , which was proposed as an unification of the well-known Sq of nonextensive-statistical mechanics and S δ , a possibly appropriate candidate for the black-hole entropy. We find that P E q , δ with appropriate parameters can amplify minor changes and trends of complexities in comparison to PE. Experiments with this generalized permutation entropy method are performed with both synthetic and stock data showing its power. Results show that P E q , δ is an exponential function of q and the power ( k ( δ ) ) is a constant if δ is determined. Some discussions about k ( δ ) are provided. Besides, we also find some interesting results about power law.
Generalized sample entropy analysis for traffic signals based on similarity measure
NASA Astrophysics Data System (ADS)
Shang, Du; Xu, Mengjia; Shang, Pengjian
2017-05-01
Sample entropy is a prevailing method used to quantify the complexity of a time series. In this paper a modified method of generalized sample entropy and surrogate data analysis is proposed as a new measure to assess the complexity of a complex dynamical system such as traffic signals. The method based on similarity distance presents a different way of signals patterns match showing distinct behaviors of complexity. Simulations are conducted over synthetic data and traffic signals for providing the comparative study, which is provided to show the power of the new method. Compared with previous sample entropy and surrogate data analysis, the new method has two main advantages. The first one is that it overcomes the limitation about the relationship between the dimension parameter and the length of series. The second one is that the modified sample entropy functions can be used to quantitatively distinguish time series from different complex systems by the similar measure.
Effect of extreme data loss on heart rate signals quantified by entropy analysis
NASA Astrophysics Data System (ADS)
Li, Yu; Wang, Jun; Li, Jin; Liu, Dazhao
2015-02-01
The phenomenon of data loss always occurs in the analysis of large databases. Maintaining the stability of analysis results in the event of data loss is very important. In this paper, we used a segmentation approach to generate a synthetic signal that is randomly wiped from data according to the Gaussian distribution and the exponential distribution of the original signal. Then, the logistic map is used as verification. Finally, two methods of measuring entropy-base-scale entropy and approximate entropy-are comparatively analyzed. Our results show the following: (1) Two key parameters-the percentage and the average length of removed data segments-can change the sequence complexity according to logistic map testing. (2) The calculation results have preferable stability for base-scale entropy analysis, which is not sensitive to data loss. (3) The loss percentage of HRV signals should be controlled below the range (p = 30 %), which can provide useful information in clinical applications.
Role of information theoretic uncertainty relations in quantum theory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jizba, Petr, E-mail: p.jizba@fjfi.cvut.cz; ITP, Freie Universität Berlin, Arnimallee 14, D-14195 Berlin; Dunningham, Jacob A., E-mail: J.Dunningham@sussex.ac.uk
2015-04-15
Uncertainty relations based on information theory for both discrete and continuous distribution functions are briefly reviewed. We extend these results to account for (differential) Rényi entropy and its related entropy power. This allows us to find a new class of information-theoretic uncertainty relations (ITURs). The potency of such uncertainty relations in quantum mechanics is illustrated with a simple two-energy-level model where they outperform both the usual Robertson–Schrödinger uncertainty relation and Shannon entropy based uncertainty relation. In the continuous case the ensuing entropy power uncertainty relations are discussed in the context of heavy tailed wave functions and Schrödinger cat states. Again,more » improvement over both the Robertson–Schrödinger uncertainty principle and Shannon ITUR is demonstrated in these cases. Further salient issues such as the proof of a generalized entropy power inequality and a geometric picture of information-theoretic uncertainty relations are also discussed.« less
Fozouni, Niloufar; Chopp, Michael; Nejad-Davarani, Siamak P.; Zhang, Zheng Gang; Lehman, Norman L.; Gu, Steven; Ueno, Yuji; Lu, Mei; Ding, Guangliang; Li, Lian; Hu, Jiani; Bagher-Ebadian, Hassan; Hearshen, David; Jiang, Quan
2013-01-01
Background To overcome the limitations of conventional diffusion tensor magnetic resonance imaging resulting from the assumption of a Gaussian diffusion model for characterizing voxels containing multiple axonal orientations, Shannon's entropy was employed to evaluate white matter structure in human brain and in brain remodeling after traumatic brain injury (TBI) in a rat. Methods Thirteen healthy subjects were investigated using a Q-ball based DTI data sampling scheme. FA and entropy values were measured in white matter bundles, white matter fiber crossing areas, different gray matter (GM) regions and cerebrospinal fluid (CSF). Axonal densities' from the same regions of interest (ROIs) were evaluated in Bielschowsky and Luxol fast blue stained autopsy (n = 30) brain sections by light microscopy. As a case demonstration, a Wistar rat subjected to TBI and treated with bone marrow stromal cells (MSC) 1 week after TBI was employed to illustrate the superior ability of entropy over FA in detecting reorganized crossing axonal bundles as confirmed by histological analysis with Bielschowsky and Luxol fast blue staining. Results Unlike FA, entropy was less affected by axonal orientation and more affected by axonal density. A significant agreement (r = 0.91) was detected between entropy values from in vivo human brain and histologically measured axonal density from post mortum from the same brain structures. The MSC treated TBI rat demonstrated that the entropy approach is superior to FA in detecting axonal remodeling after injury. Compared with FA, entropy detected new axonal remodeling regions with crossing axons, confirmed with immunohistological staining. Conclusions Entropy measurement is more effective in distinguishing axonal remodeling after injury, when compared with FA. Entropy is also more sensitive to axonal density than axonal orientation, and thus may provide a more accurate reflection of axonal changes that occur in neurological injury and disease. PMID:24143186
Fozouni, Niloufar; Chopp, Michael; Nejad-Davarani, Siamak P; Zhang, Zheng Gang; Lehman, Norman L; Gu, Steven; Ueno, Yuji; Lu, Mei; Ding, Guangliang; Li, Lian; Hu, Jiani; Bagher-Ebadian, Hassan; Hearshen, David; Jiang, Quan
2013-01-01
To overcome the limitations of conventional diffusion tensor magnetic resonance imaging resulting from the assumption of a Gaussian diffusion model for characterizing voxels containing multiple axonal orientations, Shannon's entropy was employed to evaluate white matter structure in human brain and in brain remodeling after traumatic brain injury (TBI) in a rat. Thirteen healthy subjects were investigated using a Q-ball based DTI data sampling scheme. FA and entropy values were measured in white matter bundles, white matter fiber crossing areas, different gray matter (GM) regions and cerebrospinal fluid (CSF). Axonal densities' from the same regions of interest (ROIs) were evaluated in Bielschowsky and Luxol fast blue stained autopsy (n = 30) brain sections by light microscopy. As a case demonstration, a Wistar rat subjected to TBI and treated with bone marrow stromal cells (MSC) 1 week after TBI was employed to illustrate the superior ability of entropy over FA in detecting reorganized crossing axonal bundles as confirmed by histological analysis with Bielschowsky and Luxol fast blue staining. Unlike FA, entropy was less affected by axonal orientation and more affected by axonal density. A significant agreement (r = 0.91) was detected between entropy values from in vivo human brain and histologically measured axonal density from post mortum from the same brain structures. The MSC treated TBI rat demonstrated that the entropy approach is superior to FA in detecting axonal remodeling after injury. Compared with FA, entropy detected new axonal remodeling regions with crossing axons, confirmed with immunohistological staining. Entropy measurement is more effective in distinguishing axonal remodeling after injury, when compared with FA. Entropy is also more sensitive to axonal density than axonal orientation, and thus may provide a more accurate reflection of axonal changes that occur in neurological injury and disease.
Beyond the Shannon–Khinchin formulation: The composability axiom and the universal-group entropy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tempesta, Piergiulio, E-mail: p.tempesta@fis.ucm.es
2016-02-15
The notion of entropy is ubiquitous both in natural and social sciences. In the last two decades, a considerable effort has been devoted to the study of new entropic forms, which generalize the standard Boltzmann–Gibbs (BG) entropy and could be applicable in thermodynamics, quantum mechanics and information theory. In Khinchin (1957), by extending previous ideas of Shannon (1948) and Shannon and Weaver (1949), Khinchin proposed a characterization of the BG entropy, based on four requirements, nowadays known as the Shannon–Khinchin (SK) axioms. The purpose of this paper is twofold. First, we show that there exists an intrinsic group-theoretical structure behindmore » the notion of entropy. It comes from the requirement of composability of an entropy with respect to the union of two statistically independent systems, that we propose in an axiomatic formulation. Second, we show that there exists a simple universal family of trace-form entropies. This class contains many well known examples of entropies and infinitely many new ones, a priori multi-parametric. Due to its specific relation with Lazard’s universal formal group of algebraic topology, the new general entropy introduced in this work will be called the universal-group entropy. A new example of multi-parametric entropy is explicitly constructed.« less
Rogue waves and entropy consumption
NASA Astrophysics Data System (ADS)
Hadjihoseini, Ali; Lind, Pedro G.; Mori, Nobuhito; Hoffmann, Norbert P.; Peinke, Joachim
2017-11-01
Based on data from the Sea of Japan and the North Sea the occurrence of rogue waves is analyzed by a scale-dependent stochastic approach, which interlinks fluctuations of waves for different spacings. With this approach we are able to determine a stochastic cascade process, which provides information of the general multipoint statistics. Furthermore the evolution of single trajectories in scale, which characterize wave height fluctuations in the surroundings of a chosen location, can be determined. The explicit knowledge of the stochastic process enables to assign entropy values to all wave events. We show that for these entropies the integral fluctuation theorem, a basic law of non-equilibrium thermodynamics, is valid. This implies that positive and negative entropy events must occur. Extreme events like rogue waves are characterized as negative entropy events. The statistics of these entropy fluctuations changes with the wave state, thus for the Sea of Japan the statistics of the entropies has a more pronounced tail for negative entropy values, indicating a higher probability of rogue waves.
Fundamental limits on quantum dynamics based on entropy change
NASA Astrophysics Data System (ADS)
Das, Siddhartha; Khatri, Sumeet; Siopsis, George; Wilde, Mark M.
2018-01-01
It is well known in the realm of quantum mechanics and information theory that the entropy is non-decreasing for the class of unital physical processes. However, in general, the entropy does not exhibit monotonic behavior. This has restricted the use of entropy change in characterizing evolution processes. Recently, a lower bound on the entropy change was provided in the work of Buscemi, Das, and Wilde [Phys. Rev. A 93(6), 062314 (2016)]. We explore the limit that this bound places on the physical evolution of a quantum system and discuss how these limits can be used as witnesses to characterize quantum dynamics. In particular, we derive a lower limit on the rate of entropy change for memoryless quantum dynamics, and we argue that it provides a witness of non-unitality. This limit on the rate of entropy change leads to definitions of several witnesses for testing memory effects in quantum dynamics. Furthermore, from the aforementioned lower bound on entropy change, we obtain a measure of non-unitarity for unital evolutions.
Filter-based multiscale entropy analysis of complex physiological time series.
Xu, Yuesheng; Zhao, Liang
2013-08-01
Multiscale entropy (MSE) has been widely and successfully used in analyzing the complexity of physiological time series. We reinterpret the averaging process in MSE as filtering a time series by a filter of a piecewise constant type. From this viewpoint, we introduce filter-based multiscale entropy (FME), which filters a time series to generate multiple frequency components, and then we compute the blockwise entropy of the resulting components. By choosing filters adapted to the feature of a given time series, FME is able to better capture its multiscale information and to provide more flexibility for studying its complexity. Motivated by the heart rate turbulence theory, which suggests that the human heartbeat interval time series can be described in piecewise linear patterns, we propose piecewise linear filter multiscale entropy (PLFME) for the complexity analysis of the time series. Numerical results from PLFME are more robust to data of various lengths than those from MSE. The numerical performance of the adaptive piecewise constant filter multiscale entropy without prior information is comparable to that of PLFME, whose design takes prior information into account.
Entropy-Based Registration of Point Clouds Using Terrestrial Laser Scanning and Smartphone GPS.
Chen, Maolin; Wang, Siying; Wang, Mingwei; Wan, Youchuan; He, Peipei
2017-01-20
Automatic registration of terrestrial laser scanning point clouds is a crucial but unresolved topic that is of great interest in many domains. This study combines terrestrial laser scanner with a smartphone for the coarse registration of leveled point clouds with small roll and pitch angles and height differences, which is a novel sensor combination mode for terrestrial laser scanning. The approximate distance between two neighboring scan positions is firstly calculated with smartphone GPS coordinates. Then, 2D distribution entropy is used to measure the distribution coherence between the two scans and search for the optimal initial transformation parameters. To this end, we propose a method called Iterative Minimum Entropy (IME) to correct initial transformation parameters based on two criteria: the difference between the average and minimum entropy and the deviation from the minimum entropy to the expected entropy. Finally, the presented method is evaluated using two data sets that contain tens of millions of points from panoramic and non-panoramic, vegetation-dominated and building-dominated cases and can achieve high accuracy and efficiency.
Irreversible entropy model for damage diagnosis in resistors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cuadras, Angel, E-mail: angel.cuadras@upc.edu; Crisóstomo, Javier; Ovejas, Victoria J.
2015-10-28
We propose a method to characterize electrical resistor damage based on entropy measurements. Irreversible entropy and the rate at which it is generated are more convenient parameters than resistance for describing damage because they are essentially positive in virtue of the second law of thermodynamics, whereas resistance may increase or decrease depending on the degradation mechanism. Commercial resistors were tested in order to characterize the damage induced by power surges. Resistors were biased with constant and pulsed voltage signals, leading to power dissipation in the range of 4–8 W, which is well above the 0.25 W nominal power to initiate failure. Entropymore » was inferred from the added power and temperature evolution. A model is proposed to understand the relationship among resistance, entropy, and damage. The power surge dissipates into heat (Joule effect) and damages the resistor. The results show a correlation between entropy generation rate and resistor failure. We conclude that damage can be conveniently assessed from irreversible entropy generation. Our results for resistors can be easily extrapolated to other systems or machines that can be modeled based on their resistance.« less
Entropy Measurement for Biometric Verification Systems.
Lim, Meng-Hui; Yuen, Pong C
2016-05-01
Biometric verification systems are designed to accept multiple similar biometric measurements per user due to inherent intrauser variations in the biometric data. This is important to preserve reasonable acceptance rate of genuine queries and the overall feasibility of the recognition system. However, such acceptance of multiple similar measurements decreases the imposter's difficulty of obtaining a system-acceptable measurement, thus resulting in a degraded security level. This deteriorated security needs to be measurable to provide truthful security assurance to the users. Entropy is a standard measure of security. However, the entropy formula is applicable only when there is a single acceptable possibility. In this paper, we develop an entropy-measuring model for biometric systems that accepts multiple similar measurements per user. Based on the idea of guessing entropy, the proposed model quantifies biometric system security in terms of adversarial guessing effort for two practical attacks. Excellent agreement between analytic and experimental simulation-based measurement results on a synthetic and a benchmark face dataset justify the correctness of our model and thus the feasibility of the proposed entropy-measuring approach.
Dispersion entropy for the analysis of resting-state MEG regularity in Alzheimer's disease.
Azami, Hamed; Rostaghi, Mostafa; Fernandez, Alberto; Escudero, Javier
2016-08-01
Alzheimer's disease (AD) is a progressive degenerative brain disorder affecting memory, thinking, behaviour and emotion. It is the most common form of dementia and a big social problem in western societies. The analysis of brain activity may help to diagnose this disease. Changes in entropy methods have been reported useful in research studies to characterize AD. We have recently proposed dispersion entropy (DisEn) as a very fast and powerful tool to quantify the irregularity of time series. The aim of this paper is to evaluate the ability of DisEn, in comparison with fuzzy entropy (FuzEn), sample entropy (SampEn), and permutation entropy (PerEn), to discriminate 36 AD patients from 26 elderly control subjects using resting-state magnetoencephalogram (MEG) signals. The results obtained by DisEn, FuzEn, and SampEn, unlike PerEn, show that the AD patients' signals are more regular than controls' time series. The p-values obtained by DisEn, FuzEn, SampEn, and PerEn based methods demonstrate the superiority of DisEn over PerEn, SampEn, and PerEn. Moreover, the computation time for the newly proposed DisEn-based method is noticeably less than for the FuzEn, SampEn, and PerEn based approaches.
NASA Astrophysics Data System (ADS)
He, Jiayi; Shang, Pengjian; Xiong, Hui
2018-06-01
Stocks, as the concrete manifestation of financial time series with plenty of potential information, are often used in the study of financial time series. In this paper, we utilize the stock data to recognize their patterns through out the dissimilarity matrix based on modified cross-sample entropy, then three-dimensional perceptual maps of the results are provided through multidimensional scaling method. Two modified multidimensional scaling methods are proposed in this paper, that is, multidimensional scaling based on Kronecker-delta cross-sample entropy (MDS-KCSE) and multidimensional scaling based on permutation cross-sample entropy (MDS-PCSE). These two methods use Kronecker-delta based cross-sample entropy and permutation based cross-sample entropy to replace the distance or dissimilarity measurement in classical multidimensional scaling (MDS). Multidimensional scaling based on Chebyshev distance (MDSC) is employed to provide a reference for comparisons. Our analysis reveals a clear clustering both in synthetic data and 18 indices from diverse stock markets. It implies that time series generated by the same model are easier to have similar irregularity than others, and the difference in the stock index, which is caused by the country or region and the different financial policies, can reflect the irregularity in the data. In the synthetic data experiments, not only the time series generated by different models can be distinguished, the one generated under different parameters of the same model can also be detected. In the financial data experiment, the stock indices are clearly divided into five groups. Through analysis, we find that they correspond to five regions, respectively, that is, Europe, North America, South America, Asian-Pacific (with the exception of mainland China), mainland China and Russia. The results also demonstrate that MDS-KCSE and MDS-PCSE provide more effective divisions in experiments than MDSC.
Entropic Imaging of Cataract Lens: An In Vitro Study
Shung, K. Kirk; Tsui, Po-Hsiang; Fang, Jui; Ma, Hsiang-Yang; Wu, Shuicai; Lin, Chung-Chih
2014-01-01
Phacoemulsification is a common surgical method for treating advanced cataracts. Determining the optimal phacoemulsification energy depends on the hardness of the lens involved. Previous studies have shown that it is possible to evaluate lens hardness via ultrasound parametric imaging based on statistical models that require data to follow a specific distribution. To make the method more system-adaptive, nonmodel-based imaging approach may be necessary in the visualization of lens hardness. This study investigated the feasibility of applying an information theory derived parameter – Shannon entropy from ultrasound backscatter to quantify lens hardness. To determine the physical significance of entropy, we performed computer simulations to investigate the relationship between the signal-to-noise ratio (SNR) based on the Rayleigh distribution and Shannon entropy. Young's modulus was measured in porcine lenses, in which cataracts had been artificially induced by the immersion in formalin solution in vitro. A 35-MHz ultrasound transducer was used to scan the cataract lenses for entropy imaging. The results showed that the entropy is 4.8 when the backscatter data form a Rayleigh distribution corresponding to an SNR of 1.91. The Young's modulus of the lens increased from approximately 8 to 100 kPa when we increased the immersion time from 40 to 160 min (correlation coefficient r = 0.99). Furthermore, the results indicated that entropy imaging seemed to facilitate visualizing different degrees of lens hardening. The mean entropy value increased from 2.7 to 4.0 as the Young's modulus increased from 8 to 100 kPa (r = 0.85), suggesting that entropy imaging may have greater potential than that of conventional statistical parametric imaging in determining the optimal energy to apply during phacoemulsification. PMID:24760103
Increased resting-state brain entropy in Alzheimer's disease.
Xue, Shao-Wei; Guo, Yonghu
2018-03-07
Entropy analysis of resting-state functional MRI (R-fMRI) is a novel approach to characterize brain temporal dynamics and facilitates the identification of abnormal brain activity caused by several disease conditions. However, Alzheimer's disease (AD)-related brain entropy mapping based on R-fMRI has not been assessed. Here, we measured the sample entropy and voxel-wise connectivity of the network degree centrality (DC) of the intrinsic brain activity acquired by R-fMRI in 26 patients with AD and 26 healthy controls. Compared with the controls, AD patients showed increased entropy in the middle temporal gyrus and the precentral gyrus and also showed decreased DC in the precuneus. Moreover, the magnitude of the negative correlation between local brain activity (entropy) and network connectivity (DC) was increased in AD patients in comparison with healthy controls. These findings provide new evidence on AD-related brain entropy alterations.
Microscopic insights into the NMR relaxation based protein conformational entropy meter
Kasinath, Vignesh; Sharp, Kim A.; Wand, A. Joshua
2013-01-01
Conformational entropy is a potentially important thermodynamic parameter contributing to protein function. Quantitative measures of conformational entropy are necessary for an understanding of its role but have been difficult to obtain. An empirical method that utilizes changes in conformational dynamics as a proxy for changes in conformational entropy has recently been introduced. Here we probe the microscopic origins of the link between conformational dynamics and conformational entropy using molecular dynamics simulations. Simulation of seven pro! teins gave an excellent correlation with measures of side-chain motion derived from NMR relaxation. The simulations show that the motion of methyl-bearing side-chains are sufficiently coupled to that of other side chains to serve as excellent reporters of the overall side-chain conformational entropy. These results tend to validate the use of experimentally accessible measures of methyl motion - the NMR-derived generalized order parameters - as a proxy from which to derive changes in protein conformational entropy. PMID:24007504
Geometric entropy and edge modes of the electromagnetic field
NASA Astrophysics Data System (ADS)
Donnelly, William; Wall, Aron C.
2016-11-01
We calculate the vacuum entanglement entropy of Maxwell theory in a class of curved spacetimes by Kaluza-Klein reduction of the theory onto a two-dimensional base manifold. Using two-dimensional duality, we express the geometric entropy of the electromagnetic field as the entropy of a tower of scalar fields, constant electric and magnetic fluxes, and a contact term, whose leading-order divergence was discovered by Kabat. The complete contact term takes the form of one negative scalar degree of freedom confined to the entangling surface. We show that the geometric entropy agrees with a statistical definition of entanglement entropy that includes edge modes: classical solutions determined by their boundary values on the entangling surface. This resolves a long-standing puzzle about the statistical interpretation of the contact term in the entanglement entropy. We discuss the implications of this negative term for black hole thermodynamics and the renormalization of Newton's constant.
NASA Astrophysics Data System (ADS)
Ghirardini, V.; Ettori, S.; Eckert, D.; Molendi, S.; Gastaldello, F.; Pointecouteau, E.; Hurier, G.; Bourdin, H.
2018-06-01
Aims: We present the joint analysis of the X-ray and Sunyaev-Zel'dovich (SZ) signals in Abell 2319, the galaxy cluster with the highest signal-to-noise ratio in SZ Planck maps and that has been surveyed within our XMM-Newton Cluster Outskirts Project (X-COP), a very large program which aims to grasp the physical condition in 12 local (z < 0.1) and massive (M200 > 3 × 1014 M⊙) galaxy clusters out to R200 and beyond. Methods: We recover the profiles of the thermodynamic properties by the geometrical deprojection of the X-ray surface brightness, of the SZ Comptonization parameter, and accurate and robust spectroscopic measurements of the gas temperature out to 3.2 Mpc (1.6 R200), 4 Mpc (2 R200), and 1.6 Mpc (0.8 R200), respectively. We resolve the clumpiness of the gas density to be below 20% over the entire observed volume. We also demonstrate that most of this clumpiness originates from the ongoing merger and can be associated with large-scale inhomogeneities (the "residual" clumpiness). We estimate the total mass through the hydrostatic equilibrium equation. This analysis is done both in azimuthally averaged radial bins and in eight independent angular sectors, enabling us to study in detail the azimuthal variance of the recovered properties. Results: Given the exquisite quality of the X-ray and SZ datasets, their radial extension, and their complementarity, we constrain at R200 the total hydrostatic mass, modelled with a Navarro-Frenk-White profile at very high precision (M200 = 10.7 ± 0.5stat. ± 0.9syst. × 1014 M⊙). We identify the ongoing merger and how it is affecting differently the gas properties in the resolved azimuthal sectors. We have several indications that the merger has injected a high level of non-thermal pressure in this system: the clumping free density profile is above the average profile obtained by stacking Rosat/PSPC observations; the gas mass fraction recovered using our hydrostatic mass profile exceeds the expected cosmic gas fraction beyond R500; the pressure profile is flatter than the fit obtained by the Planck Collaboration; the entropy profile is flatter than the mean profile predicted from non-radiative simulations; the analysis in azimuthal sectors has revealed that these deviations occur in a preferred region of the cluster. All these tensions are resolved by requiring a relative support of about 40% from non-thermal to the total pressure at R200.
NASA Technical Reports Server (NTRS)
Carpenter, Mark H.; Fisher, Travis C.; Nielsen, Eric J.; Frankel, Steven H.
2013-01-01
Nonlinear entropy stability and a summation-by-parts framework are used to derive provably stable, polynomial-based spectral collocation methods of arbitrary order. The new methods are closely related to discontinuous Galerkin spectral collocation methods commonly known as DGFEM, but exhibit a more general entropy stability property. Although the new schemes are applicable to a broad class of linear and nonlinear conservation laws, emphasis herein is placed on the entropy stability of the compressible Navier-Stokes equations.
Entropy of measurement and erasure: Szilard's membrane model revisited
NASA Astrophysics Data System (ADS)
Leff, Harvey S.; Rex, Andrew F.
1994-11-01
It is widely believed that measurement is accompanied by irreversible entropy increase. This conventional wisdom is based in part on Szilard's 1929 study of entropy decrease in a thermodynamic system by intelligent intervention (i.e., a Maxwell's demon) and Brillouin's association of entropy with information. Bennett subsequently argued that information acquisition is not necessarily irreversible, but information erasure must be dissipative (Landauer's principle). Inspired by the ensuing debate, we revisit the membrane model introduced by Szilard and find that it can illustrate and clarify (1) reversible measurement, (2) information storage, (3) decoupling of the memory from the system being measured, and (4) entropy increase associated with memory erasure and resetting.
Fault detection and diagnosis for gas turbines based on a kernelized information entropy model.
Wang, Weiying; Xu, Zhiqiang; Tang, Rui; Li, Shuying; Wu, Wei
2014-01-01
Gas turbines are considered as one kind of the most important devices in power engineering and have been widely used in power generation, airplanes, and naval ships and also in oil drilling platforms. However, they are monitored without man on duty in the most cases. It is highly desirable to develop techniques and systems to remotely monitor their conditions and analyze their faults. In this work, we introduce a remote system for online condition monitoring and fault diagnosis of gas turbine on offshore oil well drilling platforms based on a kernelized information entropy model. Shannon information entropy is generalized for measuring the uniformity of exhaust temperatures, which reflect the overall states of the gas paths of gas turbine. In addition, we also extend the entropy to compute the information quantity of features in kernel spaces, which help to select the informative features for a certain recognition task. Finally, we introduce the information entropy based decision tree algorithm to extract rules from fault samples. The experiments on some real-world data show the effectiveness of the proposed algorithms.
Epoch-based Entropy for Early Screening of Alzheimer's Disease.
Houmani, N; Dreyfus, G; Vialatte, F B
2015-12-01
In this paper, we introduce a novel entropy measure, termed epoch-based entropy. This measure quantifies disorder of EEG signals both at the time level and spatial level, using local density estimation by a Hidden Markov Model on inter-channel stationary epochs. The investigation is led on a multi-centric EEG database recorded from patients at an early stage of Alzheimer's disease (AD) and age-matched healthy subjects. We investigate the classification performances of this method, its robustness to noise, and its sensitivity to sampling frequency and to variations of hyperparameters. The measure is compared to two alternative complexity measures, Shannon's entropy and correlation dimension. The classification accuracies for the discrimination of AD patients from healthy subjects were estimated using a linear classifier designed on a development dataset, and subsequently tested on an independent test set. Epoch-based entropy reached a classification accuracy of 83% on the test dataset (specificity = 83.3%, sensitivity = 82.3%), outperforming the two other complexity measures. Furthermore, it was shown to be more stable to hyperparameter variations, and less sensitive to noise and sampling frequency disturbances than the other two complexity measures.
Fault Detection and Diagnosis for Gas Turbines Based on a Kernelized Information Entropy Model
Wang, Weiying; Xu, Zhiqiang; Tang, Rui; Li, Shuying; Wu, Wei
2014-01-01
Gas turbines are considered as one kind of the most important devices in power engineering and have been widely used in power generation, airplanes, and naval ships and also in oil drilling platforms. However, they are monitored without man on duty in the most cases. It is highly desirable to develop techniques and systems to remotely monitor their conditions and analyze their faults. In this work, we introduce a remote system for online condition monitoring and fault diagnosis of gas turbine on offshore oil well drilling platforms based on a kernelized information entropy model. Shannon information entropy is generalized for measuring the uniformity of exhaust temperatures, which reflect the overall states of the gas paths of gas turbine. In addition, we also extend the entropy to compute the information quantity of features in kernel spaces, which help to select the informative features for a certain recognition task. Finally, we introduce the information entropy based decision tree algorithm to extract rules from fault samples. The experiments on some real-world data show the effectiveness of the proposed algorithms. PMID:25258726
Li, Jing Xin; Yang, Li; Yang, Lei; Zhang, Chao; Huo, Zhao Min; Chen, Min Hao; Luan, Xiao Feng
2018-03-01
Quantitative evaluation of ecosystem service is a primary premise for rational resources exploitation and sustainable development. Examining ecosystem services flow provides a scientific method to quantity ecosystem services. We built an assessment indicator system based on land cover/land use under the framework of four types of ecosystem services. The types of ecosystem services flow were reclassified. Using entropy theory, disorder degree and developing trend of indicators and urban ecosystem were quantitatively assessed. Beijing was chosen as the study area, and twenty-four indicators were selected for evaluation. The results showed that the entropy value of Beijing urban ecosystem during 2004 to 2015 was 0.794 and the entropy flow was -0.024, suggesting a large disordered degree and near verge of non-health. The system got maximum values for three times, while the mean annual variation of the system entropy value increased gradually in three periods, indicating that human activities had negative effects on urban ecosystem. Entropy flow reached minimum value in 2007, implying the environmental quality was the best in 2007. The determination coefficient for the fitting function of total permanent population in Beijing and urban ecosystem entropy flow was 0.921, indicating that urban ecosystem health was highly correlated with total permanent population.
Bayesian framework inspired no-reference region-of-interest quality measure for brain MRI images
Osadebey, Michael; Pedersen, Marius; Arnold, Douglas; Wendel-Mitoraj, Katrina
2017-01-01
Abstract. We describe a postacquisition, attribute-based quality assessment method for brain magnetic resonance imaging (MRI) images. It is based on the application of Bayes theory to the relationship between entropy and image quality attributes. The entropy feature image of a slice is segmented into low- and high-entropy regions. For each entropy region, there are three separate observations of contrast, standard deviation, and sharpness quality attributes. A quality index for a quality attribute is the posterior probability of an entropy region given any corresponding region in a feature image where quality attribute is observed. Prior belief in each entropy region is determined from normalized total clique potential (TCP) energy of the slice. For TCP below the predefined threshold, the prior probability for a region is determined by deviation of its percentage composition in the slice from a standard normal distribution built from 250 MRI volume data provided by Alzheimer’s Disease Neuroimaging Initiative. For TCP above the threshold, the prior is computed using a mathematical model that describes the TCP–noise level relationship in brain MRI images. Our proposed method assesses the image quality of each entropy region and the global image. Experimental results demonstrate good correlation with subjective opinions of radiologists for different types and levels of quality distortions. PMID:28630885
Harmonic analysis of electric locomotive and traction power system based on wavelet singular entropy
NASA Astrophysics Data System (ADS)
Dun, Xiaohong
2018-05-01
With the rapid development of high-speed railway and heavy-haul transport, the locomotive and traction power system has become the main harmonic source of China's power grid. In response to this phenomenon, the system's power quality issues need timely monitoring, assessment and governance. Wavelet singular entropy is an organic combination of wavelet transform, singular value decomposition and information entropy theory, which combines the unique advantages of the three in signal processing: the time-frequency local characteristics of wavelet transform, singular value decomposition explores the basic modal characteristics of data, and information entropy quantifies the feature data. Based on the theory of singular value decomposition, the wavelet coefficient matrix after wavelet transform is decomposed into a series of singular values that can reflect the basic characteristics of the original coefficient matrix. Then the statistical properties of information entropy are used to analyze the uncertainty of the singular value set, so as to give a definite measurement of the complexity of the original signal. It can be said that wavelet entropy has a good application prospect in fault detection, classification and protection. The mat lab simulation shows that the use of wavelet singular entropy on the locomotive and traction power system harmonic analysis is effective.
Optimization of a Circular Microchannel With Entropy Generation Minimization Method
NASA Astrophysics Data System (ADS)
Jafari, Arash; Ghazali, Normah Mohd
2010-06-01
New advances in micro and nano scales are being realized and the contributions of micro and nano heat dissipation devices are of high importance in this novel technology development. Past studies showed that microchannel design depends on its thermal resistance and pressure drop. However, entropy generation minimization (EGM) as a new optimization theory stated that the rate of entropy generation should be also optimized. Application of EGM in microchannel heat sink design is reviewed and discussed in this paper. Latest principles for deriving the entropy generation relations are discussed to present how this approach can be achieved. An optimization procedure using EGM method with the entropy generation rate is derived for a circular microchannel heat sink based upon thermal resistance and pressure drop. The equations are solved using MATLAB and the obtained results are compared to similar past studies. The effects of channel diameter, number of channels, heat flux, and pumping power on the entropy generation rate and Reynolds number are investigated. Analytical correlations are utilized for heat transfer and friction coefficients. A minimum entropy generation has been observed for N = 40 and channel diameter of 90μm. It is concluded that for N = 40 and channel hydraulic diameter of 90μm, the circular microchannel heat sink is on its optimum operating point based on second law of thermodynamics.
Quantitative characterization of brazing performance for Sn-plated silver alloy fillers
NASA Astrophysics Data System (ADS)
Wang, Xingxing; Peng, Jin; Cui, Datian
2017-12-01
Two types of AgCuZnSn fillers were prepared based on BAg50CuZn and BAg34CuZnSn alloy through a combinative process of electroplating and thermal diffusion. The models of wetting entropy and joint strength entropy of AgCuZnSn filler metals were established. The wetting entropy of the Sn-plated silver brazing alloys are lower than the traditional fillers, and its joint strength entropy value is slightly higher than the latter. The wetting entropy value of the Sn-plated brazing alloys and traditional filler metal are similar to the change trend of the wetting area. The trend of the joint strength entropy value with those fillers are consisted with the tensile strength of the stainless steel joints with the increase of Sn content.
Marsh, Jon N; Wallace, Kirk D; McCarthy, John E; Wickerhauser, Mladen V; Maurizi, Brian N; Lanza, Gregory M; Wickline, Samuel A; Hughes, Michael S
2010-08-01
Previously, we reported new methods for ultrasound signal characterization using entropy, H(f); a generalized entropy, the Renyi entropy, I(f)(r); and a limiting form of Renyi entropy suitable for real-time calculation, I(f),(infinity). All of these quantities demonstrated significantly more sensitivity to subtle changes in scattering architecture than energy-based methods in certain settings. In this study, the real-time calculable limit of the Renyi entropy, I(f),(infinity), is applied for the imaging of angiogenic murine neovasculature in a breast cancer xenograft using a targeted contrast agent. It is shown that this approach may be used to reliably detect the accumulation of targeted nanoparticles at five minutes post-injection in this in vivo model.
General monogamy of Tsallis q -entropy entanglement in multiqubit systems
NASA Astrophysics Data System (ADS)
Luo, Yu; Tian, Tian; Shao, Lian-He; Li, Yongming
2016-06-01
In this paper, we study the monogamy inequality of Tsallis q -entropy entanglement. We first provide an analytic formula of Tsallis q -entropy entanglement in two-qubit systems for 5/-√{13 } 2 ≤q ≤5/+√{13 } 2 . The analytic formula of Tsallis q -entropy entanglement in 2 ⊗d system is also obtained and we show that Tsallis q -entropy entanglement satisfies a set of hierarchical monogamy equalities. Furthermore, we prove the squared Tsallis q -entropy entanglement follows a general inequality in the qubit systems. Based on the monogamy relations, a set of multipartite entanglement indicators is constructed, which can detect all genuine multiqubit entangled states even in the case of N -tangle vanishes. Moreover, we study some examples in multipartite higher-dimensional system for the monogamy inequalities.
An adaptive technique to maximize lossless image data compression of satellite images
NASA Technical Reports Server (NTRS)
Stewart, Robert J.; Lure, Y. M. Fleming; Liou, C. S. Joe
1994-01-01
Data compression will pay an increasingly important role in the storage and transmission of image data within NASA science programs as the Earth Observing System comes into operation. It is important that the science data be preserved at the fidelity the instrument and the satellite communication systems were designed to produce. Lossless compression must therefore be applied, at least, to archive the processed instrument data. In this paper, we present an analysis of the performance of lossless compression techniques and develop an adaptive approach which applied image remapping, feature-based image segmentation to determine regions of similar entropy and high-order arithmetic coding to obtain significant improvements over the use of conventional compression techniques alone. Image remapping is used to transform the original image into a lower entropy state. Several techniques were tested on satellite images including differential pulse code modulation, bi-linear interpolation, and block-based linear predictive coding. The results of these experiments are discussed and trade-offs between computation requirements and entropy reductions are used to identify the optimum approach for a variety of satellite images. Further entropy reduction can be achieved by segmenting the image based on local entropy properties then applying a coding technique which maximizes compression for the region. Experimental results are presented showing the effect of different coding techniques for regions of different entropy. A rule-base is developed through which the technique giving the best compression is selected. The paper concludes that maximum compression can be achieved cost effectively and at acceptable performance rates with a combination of techniques which are selected based on image contextual information.
Shearlet-based measures of entropy and complexity for two-dimensional patterns
NASA Astrophysics Data System (ADS)
Brazhe, Alexey
2018-06-01
New spatial entropy and complexity measures for two-dimensional patterns are proposed. The approach is based on the notion of disequilibrium and is built on statistics of directional multiscale coefficients of the fast finite shearlet transform. Shannon entropy and Jensen-Shannon divergence measures are employed. Both local and global spatial complexity and entropy estimates can be obtained, thus allowing for spatial mapping of complexity in inhomogeneous patterns. The algorithm is validated in numerical experiments with a gradually decaying periodic pattern and Ising surfaces near critical state. It is concluded that the proposed algorithm can be instrumental in describing a wide range of two-dimensional imaging data, textures, or surfaces, where an understanding of the level of order or randomness is desired.
Lebatard, Anne-Elisabeth; Bourlès, Didier L.; Duringer, Philippe; Jolivet, Marc; Braucher, Régis; Carcaillet, Julien; Schuster, Mathieu; Arnaud, Nicolas; Monié, Patrick; Lihoreau, Fabrice; Likius, Andossa; Mackaye, Hassan Taisso; Vignaud, Patrick; Brunet, Michel
2008-01-01
Ages were determined at two hominid localities from the Chad Basin in the Djurab Desert (Northern Chad). In the Koro Toro fossiliferous area, KT 12 locality (16°00′N, 18°53′E) was the site of discovery of Australopithecus bahrelghazali (Abel) and in the Toros-Menalla fossiliferous area, TM 266 locality (16°15′N, 17°29′E) was the site of discovery of Sahelanthropus tchadensis (Toumaï). At both localities, the evolutive degree of the associated fossil mammal assemblages allowed a biochronological estimation of the hominid remains: early Pliocene (3–3.5 Ma) at KT 12 and late Miocene (≈7 Ma) at TM 266. Atmospheric 10Be, a cosmogenic nuclide, was used to quasicontinuously date these sedimentary units. The authigenic 10Be/9Be dating of a pelite relic within the sedimentary level containing Abel yields an age of 3.58 ± 0.27 Ma that points to the contemporaneity of Australopithecus bahrelghazali (Abel) with Australopithecus afarensis (Lucy). The 28 10Be/9Be ages obtained within the anthracotheriid unit containing Toumaï bracket, by absolute dating, the age of Sahelanthropus tchadensis to lie between 6.8 and 7.2 Ma. This chronological constraint is an important cornerstone both for establishing the earliest stages of hominid evolution and for new calibrations of the molecular clock. PMID:18305174
A study of the Ionospheric electron density profile with FORMOSAT-3/COSMIC observation data
NASA Astrophysics Data System (ADS)
Chou, Min-Yang; Tsai, Ho-Fang; Lin, Chi-Yen; Lee, I.-Te; Lin, Charles; Liu, Jann-Yenq
2015-04-01
The GPS Occultation Experiment payload onboard FORMOSAT-3/COSMIC microsatellite constellation is capable of scanning the ionospheric structure by the radio occultation (RO) technique to retrieve precise electron density profiles since 2006. Due to the success of FORMOSAT-3/COSMIC, the follow-on mission, FORMOSAT-7/COSMIC-2, is to launch 12 microsatellites in 2016 and 2018, respectively, with the Global Navigation Satellite Systems (GNSS) RO instrument onboard for tracking GPS, Galileo and/or GLONASS satellite signals and to provide more than 8,000 RO soundings per day globally. An overview of the validation of the FORMOSAT-3/COSMIC ionospheric profiling is given by means of the traditional Abel transform through bending angle and total electron content (TEC), while the ionospheric data assimilation is also applied, based on the Gauss-Markov Kalman filter with the International Reference Ionosphere model (IRI-2007) and global ionosphere map (GIM) as background model, to assimilate TEC observations from FORMOSAT-3/COSMIC. The results shows comparison of electron density profiles from Abel inversion and data assimilation. Furthermore, an observing system simulation experiment is also applied to determine the impact of FORMOSAT-7/COSMIC-2 on ionospheric weather monitoring, which reveals an opportunity on advanced study of small spatial and temporal variations in the ionosphere.
Consistent Application of the Boltzmann Distribution to Residual Entropy in Crystals
ERIC Educational Resources Information Center
Kozliak, Evguenii I.
2007-01-01
Four different approaches to residual entropy (the entropy remaining in crystals comprised of nonsymmetric molecules like CO, N[subscript 2]O, FClO[subscript 3], and H[subscript 2]O as temperatures approach 0 K) are analyzed and a new method of its calculation is developed based on application of the Boltzmann distribution. The inherent connection…
Entropy Filtered Density Function for Large Eddy Simulation of Turbulent Reacting Flows
NASA Astrophysics Data System (ADS)
Safari, Mehdi
Analysis of local entropy generation is an effective means to optimize the performance of energy and combustion systems by minimizing the irreversibilities in transport processes. Large eddy simulation (LES) is employed to describe entropy transport and generation in turbulent reacting flows. The entropy transport equation in LES contains several unclosed terms. These are the subgrid scale (SGS) entropy flux and entropy generation caused by irreversible processes: heat conduction, mass diffusion, chemical reaction and viscous dissipation. The SGS effects are taken into account using a novel methodology based on the filtered density function (FDF). This methodology, entitled entropy FDF (En-FDF), is developed and utilized in the form of joint entropy-velocity-scalar-turbulent frequency FDF and the marginal scalar-entropy FDF, both of which contain the chemical reaction effects in a closed form. The former constitutes the most comprehensive form of the En-FDF and provides closure for all the unclosed filtered moments. This methodology is applied for LES of a turbulent shear layer involving transport of passive scalars. Predictions show favor- able agreements with the data generated by direct numerical simulation (DNS) of the same layer. The marginal En-FDF accounts for entropy generation effects as well as scalar and entropy statistics. This methodology is applied to a turbulent nonpremixed jet flame (Sandia Flame D) and predictions are validated against experimental data. In both flows, sources of irreversibility are predicted and analyzed.
Entropy, complexity, and Markov diagrams for random walk cancer models.
Newton, Paul K; Mason, Jeremy; Hurt, Brian; Bethel, Kelly; Bazhenova, Lyudmila; Nieva, Jorge; Kuhn, Peter
2014-12-19
The notion of entropy is used to compare the complexity associated with 12 common cancers based on metastatic tumor distribution autopsy data. We characterize power-law distributions, entropy, and Kullback-Liebler divergence associated with each primary cancer as compared with data for all cancer types aggregated. We then correlate entropy values with other measures of complexity associated with Markov chain dynamical systems models of progression. The Markov transition matrix associated with each cancer is associated with a directed graph model where nodes are anatomical locations where a metastatic tumor could develop, and edge weightings are transition probabilities of progression from site to site. The steady-state distribution corresponds to the autopsy data distribution. Entropy correlates well with the overall complexity of the reduced directed graph structure for each cancer and with a measure of systemic interconnectedness of the graph, called graph conductance. The models suggest that grouping cancers according to their entropy values, with skin, breast, kidney, and lung cancers being prototypical high entropy cancers, stomach, uterine, pancreatic and ovarian being mid-level entropy cancers, and colorectal, cervical, bladder, and prostate cancers being prototypical low entropy cancers, provides a potentially useful framework for viewing metastatic cancer in terms of predictability, complexity, and metastatic potential.
Entropy, complexity, and Markov diagrams for random walk cancer models
NASA Astrophysics Data System (ADS)
Newton, Paul K.; Mason, Jeremy; Hurt, Brian; Bethel, Kelly; Bazhenova, Lyudmila; Nieva, Jorge; Kuhn, Peter
2014-12-01
The notion of entropy is used to compare the complexity associated with 12 common cancers based on metastatic tumor distribution autopsy data. We characterize power-law distributions, entropy, and Kullback-Liebler divergence associated with each primary cancer as compared with data for all cancer types aggregated. We then correlate entropy values with other measures of complexity associated with Markov chain dynamical systems models of progression. The Markov transition matrix associated with each cancer is associated with a directed graph model where nodes are anatomical locations where a metastatic tumor could develop, and edge weightings are transition probabilities of progression from site to site. The steady-state distribution corresponds to the autopsy data distribution. Entropy correlates well with the overall complexity of the reduced directed graph structure for each cancer and with a measure of systemic interconnectedness of the graph, called graph conductance. The models suggest that grouping cancers according to their entropy values, with skin, breast, kidney, and lung cancers being prototypical high entropy cancers, stomach, uterine, pancreatic and ovarian being mid-level entropy cancers, and colorectal, cervical, bladder, and prostate cancers being prototypical low entropy cancers, provides a potentially useful framework for viewing metastatic cancer in terms of predictability, complexity, and metastatic potential.
Television documentary, history and memory. An analysis of Sergio Zavoli's The Gardens of Abel.
Foot, John
2014-10-20
This article examines a celebrated documentary made for Italian state TV in 1968 and transmitted in 1969 to an audience of millions. The programme - The Gardens of Abel - looked at changes introduced by the radical psychiatrist Franco Basaglia in an asylum in the north-east of Italy (Gorizia). The article examines the content of this programme for the first time, questions some of the claims that have been made for it, and outlines the sources used by the director, Sergio Zavoli. The article argues that the film was as much an expression of Zavoli's vision and ideas as it was linked to those of Franco Basaglia himself. Finally, the article highlights the way that this programme has become part of historical discourse and popular memory.
Inhibition of α-glucosidase by polysaccharides from the fruit hull of Camellia oleifera Abel.
Zhang, Sheng; Li, Xiang-Zhou
2015-01-22
We isolated and purified polysaccharides from the Camellia oleifera Abel. fruit hull and studied its hypoglycemic potential. Our results revealed six polysaccharides (CFPA-1-5 & CFPB) from the aqueous extract from the defatted C. oleifera fruit hull. Purified polysaccharides (purity >90%) were investigated for the inhibition of α-glucosidase activity in vitro. Two polysaccharides, CFPB and CFPA-3 were present in high concentration in the fruit hull and showed a dose-dependent inhibition of α-glucosidase activity, with IC50 concentrations of 11.80 and 10.95 μg/mL, respectively. This result suggests that polysaccharides (CFP) extracted from the fruit hull of C. oleifera may have potential as functional foods with featuring a hypoglycemic effect. Copyright © 2014 Elsevier Ltd. All rights reserved.
Television documentary, history and memory. An analysis of Sergio Zavoli's The Gardens of Abel
Foot, John
2014-01-01
This article examines a celebrated documentary made for Italian state TV in 1968 and transmitted in 1969 to an audience of millions. The programme – The Gardens of Abel – looked at changes introduced by the radical psychiatrist Franco Basaglia in an asylum in the north-east of Italy (Gorizia). The article examines the content of this programme for the first time, questions some of the claims that have been made for it, and outlines the sources used by the director, Sergio Zavoli. The article argues that the film was as much an expression of Zavoli's vision and ideas as it was linked to those of Franco Basaglia himself. Finally, the article highlights the way that this programme has become part of historical discourse and popular memory. PMID:25937804
NASA Astrophysics Data System (ADS)
Suparmi, A.; Cari, C.; Nur Pratiwi, Beta; Arya Nugraha, Dewanta
2017-01-01
D dimensional Schrodinger equation for the mixed Manning Rosen potential was investigated using supersymmetric quantum mechanics. We obtained the energy eigenvalues from radial part solution and wavefunctions in radial and angular parts solution. From the lowest radial wavefunctions, we evaluated the Shannon entropy information using Matlab software. Based on the entropy densities demonstrated graphically, we obtained that the wave of position information entropy density moves right when the value of potential parameter q increases, while its wave moves left with the increase of parameter α. The wave of momentum information entropy densities were expressed in graphs. We observe that its amplitude increase with increasing parameter q and α
Investigation of FeNiCrWMn - a new high entropy alloy
NASA Astrophysics Data System (ADS)
Buluc, G.; Florea, I.; Bălţătescu, O.; Florea, R. M.; Carcea, I.
2015-11-01
The term of high entropy alloys started from the analysis of multicomponent alloys, which were produced at an experimental level since 1995 by developing a new concept related to the development of metallic materials. Recent developments in the field of high-entropy alloys have revealed that they have versatile properties like: ductility, toughness, hardness and corrosion resistance [1]. Up until now, it has been demonstrated that the explored this alloys are feasible to be synthesized, processed and analyzed contrary to the misunderstanding based on traditional experiences. Moreover, there are many opportunities in this field for academic studies and industrial applications [1, 2]. As the combinations of composition and process for producing high entropy alloys are numerous and each high entropy alloy has its own microstructure and properties to be identified and understood, the research work is truly limitless. The novelty of these alloys consists of chemical composition. These alloys have been named high entropy alloys due to the atomic scale mixing entropies higher than traditional alloys. In this paper, I will present the microscopy and the mechanical properties of high entropy alloy FeNiCrWMn.
Transfer Entropy as a Log-Likelihood Ratio
NASA Astrophysics Data System (ADS)
Barnett, Lionel; Bossomaier, Terry
2012-09-01
Transfer entropy, an information-theoretic measure of time-directed information transfer between joint processes, has steadily gained popularity in the analysis of complex stochastic dynamics in diverse fields, including the neurosciences, ecology, climatology, and econometrics. We show that for a broad class of predictive models, the log-likelihood ratio test statistic for the null hypothesis of zero transfer entropy is a consistent estimator for the transfer entropy itself. For finite Markov chains, furthermore, no explicit model is required. In the general case, an asymptotic χ2 distribution is established for the transfer entropy estimator. The result generalizes the equivalence in the Gaussian case of transfer entropy and Granger causality, a statistical notion of causal influence based on prediction via vector autoregression, and establishes a fundamental connection between directed information transfer and causality in the Wiener-Granger sense.
Transfer entropy as a log-likelihood ratio.
Barnett, Lionel; Bossomaier, Terry
2012-09-28
Transfer entropy, an information-theoretic measure of time-directed information transfer between joint processes, has steadily gained popularity in the analysis of complex stochastic dynamics in diverse fields, including the neurosciences, ecology, climatology, and econometrics. We show that for a broad class of predictive models, the log-likelihood ratio test statistic for the null hypothesis of zero transfer entropy is a consistent estimator for the transfer entropy itself. For finite Markov chains, furthermore, no explicit model is required. In the general case, an asymptotic χ2 distribution is established for the transfer entropy estimator. The result generalizes the equivalence in the Gaussian case of transfer entropy and Granger causality, a statistical notion of causal influence based on prediction via vector autoregression, and establishes a fundamental connection between directed information transfer and causality in the Wiener-Granger sense.
Surface entropy of liquids via a direct Monte Carlo approach - Application to liquid Si
NASA Technical Reports Server (NTRS)
Wang, Z. Q.; Stroud, D.
1990-01-01
Two methods are presented for a direct Monte Carlo evaluation of the surface entropy S(s) of a liquid interacting by specified, volume-independent potentials. The first method is based on an application of the approach of Ferrenberg and Swendsen (1988, 1989) to Monte Carlo simulations at two different temperatures; it gives much more reliable results for S(s) in liquid Si than previous calculations based on numerical differentiation. The second method expresses the surface entropy directly as a canonical average at fixed temperature.
Infrared image segmentation method based on spatial coherence histogram and maximum entropy
NASA Astrophysics Data System (ADS)
Liu, Songtao; Shen, Tongsheng; Dai, Yao
2014-11-01
In order to segment the target well and suppress background noises effectively, an infrared image segmentation method based on spatial coherence histogram and maximum entropy is proposed. First, spatial coherence histogram is presented by weighting the importance of the different position of these pixels with the same gray-level, which is obtained by computing their local density. Then, after enhancing the image by spatial coherence histogram, 1D maximum entropy method is used to segment the image. The novel method can not only get better segmentation results, but also have a faster computation time than traditional 2D histogram-based segmentation methods.
Rényi entropies and observables.
Lesche, Bernhard
2004-01-01
Evidence is given that Rényi entropies of macroscopic thermodynamic systems defined on the bases of probabilities of microstates cannot be related to observables. The notion of observable is clarified.
Zhao, Yong; Hong, Wen-Xue
2011-11-01
Fast, nondestructive and accurate identification of special quality eggs is an urgent problem. The present paper proposed a new feature extraction method based on symbol entropy to identify near infrared spectroscopy of special quality eggs. The authors selected normal eggs, free range eggs, selenium-enriched eggs and zinc-enriched eggs as research objects and measured the near-infrared diffuse reflectance spectra in the range of 12 000-4 000 cm(-1). Raw spectra were symbolically represented with aggregation approximation algorithm and symbolic entropy was extracted as feature vector. An error-correcting output codes multiclass support vector machine classifier was designed to identify the spectrum. Symbolic entropy feature is robust when parameter changed and the highest recognition rate reaches up to 100%. The results show that the identification method of special quality eggs using near-infrared is feasible and the symbol entropy can be used as a new feature extraction method of near-infrared spectra.
Delchini, Marc O.; Ragusa, Jean C.; Ferguson, Jim
2017-02-17
A viscous regularization technique, based on the local entropy residual, was proposed by Delchini et al. (2015) to stabilize the nonequilibrium-diffusion Grey Radiation-Hydrodynamic equations using an artificial viscosity technique. This viscous regularization is modulated by the local entropy production and is consistent with the entropy minimum principle. However, Delchini et al. (2015) only based their work on the hyperbolic parts of the Grey Radiation-Hydrodynamic equations and thus omitted the relaxation and diffusion terms present in the material energy and radiation energy equations. Here in this paper, we extend the theoretical grounds for the method and derive an entropy minimum principlemore » for the full set of nonequilibrium-diffusion Grey Radiation-Hydrodynamic equations. This further strengthens the applicability of the entropy viscosity method as a stabilization technique for radiation-hydrodynamic shock simulations. Radiative shock calculations using constant and temperature-dependent opacities are compared against semi-analytical reference solutions, and we present a procedure to perform spatial convergence studies of such simulations.« less
Gradient Dynamics and Entropy Production Maximization
NASA Astrophysics Data System (ADS)
Janečka, Adam; Pavelka, Michal
2018-01-01
We compare two methods for modeling dissipative processes, namely gradient dynamics and entropy production maximization. Both methods require similar physical inputs-how energy (or entropy) is stored and how it is dissipated. Gradient dynamics describes irreversible evolution by means of dissipation potential and entropy, it automatically satisfies Onsager reciprocal relations as well as their nonlinear generalization (Maxwell-Onsager relations), and it has statistical interpretation. Entropy production maximization is based on knowledge of free energy (or another thermodynamic potential) and entropy production. It also leads to the linear Onsager reciprocal relations and it has proven successful in thermodynamics of complex materials. Both methods are thermodynamically sound as they ensure approach to equilibrium, and we compare them and discuss their advantages and shortcomings. In particular, conditions under which the two approaches coincide and are capable of providing the same constitutive relations are identified. Besides, a commonly used but not often mentioned step in the entropy production maximization is pinpointed and the condition of incompressibility is incorporated into gradient dynamics.
Entropy of hydrological systems under small samples: Uncertainty and variability
NASA Astrophysics Data System (ADS)
Liu, Dengfeng; Wang, Dong; Wang, Yuankun; Wu, Jichun; Singh, Vijay P.; Zeng, Xiankui; Wang, Lachun; Chen, Yuanfang; Chen, Xi; Zhang, Liyuan; Gu, Shenghua
2016-01-01
Entropy theory has been increasingly applied in hydrology in both descriptive and inferential ways. However, little attention has been given to the small-sample condition widespread in hydrological practice, where either hydrological measurements are limited or are even nonexistent. Accordingly, entropy estimated under this condition may incur considerable bias. In this study, small-sample condition is considered and two innovative entropy estimators, the Chao-Shen (CS) estimator and the James-Stein-type shrinkage (JSS) estimator, are introduced. Simulation tests are conducted with common distributions in hydrology, that lead to the best-performing JSS estimator. Then, multi-scale moving entropy-based hydrological analyses (MM-EHA) are applied to indicate the changing patterns of uncertainty of streamflow data collected from the Yangtze River and the Yellow River, China. For further investigation into the intrinsic property of entropy applied in hydrological uncertainty analyses, correlations of entropy and other statistics at different time-scales are also calculated, which show connections between the concept of uncertainty and variability.
Optimization and large scale computation of an entropy-based moment closure
NASA Astrophysics Data System (ADS)
Kristopher Garrett, C.; Hauck, Cory; Hill, Judith
2015-12-01
We present computational advances and results in the implementation of an entropy-based moment closure, MN, in the context of linear kinetic equations, with an emphasis on heterogeneous and large-scale computing platforms. Entropy-based closures are known in several cases to yield more accurate results than closures based on standard spectral approximations, such as PN, but the computational cost is generally much higher and often prohibitive. Several optimizations are introduced to improve the performance of entropy-based algorithms over previous implementations. These optimizations include the use of GPU acceleration and the exploitation of the mathematical properties of spherical harmonics, which are used as test functions in the moment formulation. To test the emerging high-performance computing paradigm of communication bound simulations, we present timing results at the largest computational scales currently available. These results show, in particular, load balancing issues in scaling the MN algorithm that do not appear for the PN algorithm. We also observe that in weak scaling tests, the ratio in time to solution of MN to PN decreases.
Optimization and large scale computation of an entropy-based moment closure
Hauck, Cory D.; Hill, Judith C.; Garrett, C. Kristopher
2015-09-10
We present computational advances and results in the implementation of an entropy-based moment closure, M N, in the context of linear kinetic equations, with an emphasis on heterogeneous and large-scale computing platforms. Entropy-based closures are known in several cases to yield more accurate results than closures based on standard spectral approximations, such as P N, but the computational cost is generally much higher and often prohibitive. Several optimizations are introduced to improve the performance of entropy-based algorithms over previous implementations. These optimizations include the use of GPU acceleration and the exploitation of the mathematical properties of spherical harmonics, which aremore » used as test functions in the moment formulation. To test the emerging high-performance computing paradigm of communication bound simulations, we present timing results at the largest computational scales currently available. Lastly, these results show, in particular, load balancing issues in scaling the M N algorithm that do not appear for the P N algorithm. We also observe that in weak scaling tests, the ratio in time to solution of M N to P N decreases.« less
NASA Astrophysics Data System (ADS)
Ghikas, Demetris P. K.; Oikonomou, Fotios D.
2018-04-01
Using the generalized entropies which depend on two parameters we propose a set of quantitative characteristics derived from the Information Geometry based on these entropies. Our aim, at this stage, is to construct first some fundamental geometric objects which will be used in the development of our geometrical framework. We first establish the existence of a two-parameter family of probability distributions. Then using this family we derive the associated metric and we state a generalized Cramer-Rao Inequality. This gives a first two-parameter classification of complex systems. Finally computing the scalar curvature of the information manifold we obtain a further discrimination of the corresponding classes. Our analysis is based on the two-parameter family of generalized entropies of Hanel and Thurner (2011).
Hu, Dehua; Liu, Qing; Tisdale, Jeremy; ...
2015-04-15
This paper reports Seebeck effects driven by both surface polarization difference and entropy difference by using intramolecular charge-transfer states in n-type and p-type conjugated polymers, namely IIDT and IIDDT, based on vertical conductor/polymer/conductor thin-film devices. Large Seebeck coefficients of -898 V/K and 1300 V/K from are observed from n-type IIDT p-type IIDDT, respectively, when the charge-transfer states are generated by a white light illumination of 100 mW/cm2. Simultaneously, electrical conductivities are increased from almost insulating states in dark condition to conducting states under photoexcitation in both n-type IIDT and p-type IIDDT devices. We find that the intramolecular charge-transfer states canmore » largely enhance Seebeck effects in the n-type IIDT and p-type IIDDT devices driven by both surface polarization difference and entropy difference. Furthermore, the Seebeck effects can be shifted between polarization and entropy regimes when electrical conductivities are changed. This reveals a new concept to develop Seebeck effects by controlling polarization and entropy regimes based on charge-transfer states in vertical conductor/polymer/conductor thin-film devices.« less
NASA Astrophysics Data System (ADS)
Sjögreen, Björn; Yee, H. C.
2018-07-01
The Sjogreen and Yee [31] high order entropy conservative numerical method for compressible gas dynamics is extended to include discontinuities and also extended to equations of ideal magnetohydrodynamics (MHD). The basic idea is based on Tadmor's [40] original work for inviscid perfect gas flows. For the MHD four formulations of the MHD are considered: (a) the conservative MHD, (b) the Godunov [14] non-conservative form, (c) the Janhunen [19] - MHD with magnetic field source terms, and (d) a MHD with source terms by Brackbill and Barnes [5]. Three forms of the high order entropy numerical fluxes for the MHD in the finite difference framework are constructed. They are based on the extension of the low order form of Chandrashekar and Klingenberg [9], and two forms with modifications of the Winters and Gassner [49] numerical fluxes. For flows containing discontinuities and multiscale turbulence fluctuations the high order entropy conservative numerical fluxes as the new base scheme under the Yee and Sjogreen [31] and Kotov et al. [21,22] high order nonlinear filter approach is developed. The added nonlinear filter step on the high order centered entropy conservative spatial base scheme is only utilized at isolated computational regions, while maintaining high accuracy almost everywhere for long time integration of unsteady flows and DNS and LES of turbulence computations. Representative test cases for both smooth flows and problems containing discontinuities for the gas dynamics and the ideal MHD are included. The results illustrate the improved stability by using the high order entropy conservative numerical flux as the base scheme instead of the pure high order central scheme.
Large Scale Structure Studies: Final Results from a Rich Cluster Redshift Survey
NASA Astrophysics Data System (ADS)
Slinglend, K.; Batuski, D.; Haase, S.; Hill, J.
1995-12-01
The results from the COBE satellite show the existence of structure on scales on the order of 10% or more of the horizon scale of the universe. Rich clusters of galaxies from the Abell-ACO catalogs show evidence of structure on scales of 100 Mpc and hold the promise of confirming structure on the scale of the COBE result. Unfortunately, until now, redshift information has been unavailable for a large percentage of these clusters, so present knowledge of their three dimensional distribution has quite large uncertainties. Our approach in this effort has been to use the MX multifiber spectrometer on the Steward 2.3m to measure redshifts of at least ten galaxies in each of 88 Abell cluster fields with richness class R>= 1 and mag10 <= 16.8 (estimated z<= 0.12) and zero or one measured redshifts. This work has resulted in a deeper, 95% complete and more reliable sample of 3-D positions of rich clusters. The primary intent of this survey has been to constrain theoretical models for the formation of the structure we see in the universe today through 2-pt. spatial correlation function and other analyses of the large scale structures traced by these clusters. In addition, we have obtained enough redshifts per cluster to greatly improve the quality and size of the sample of reliable cluster velocity dispersions available for use in other studies of cluster properties. This new data has also allowed the construction of an updated and more reliable supercluster candidate catalog. Our efforts have resulted in effectively doubling the volume traced by these clusters. Presented here is the resulting 2-pt. spatial correlation function, as well as density plots and several other figures quantifying the large scale structure from this much deeper and complete sample. Also, with 10 or more redshifts in most of our cluster fields, we have investigated the extent of projection effects within the Abell catalog in an effort to quantify and understand how this may effect the Abell sample.
The maximum entropy production principle: two basic questions.
Martyushev, Leonid M
2010-05-12
The overwhelming majority of maximum entropy production applications to ecological and environmental systems are based on thermodynamics and statistical physics. Here, we discuss briefly maximum entropy production principle and raises two questions: (i) can this principle be used as the basis for non-equilibrium thermodynamics and statistical mechanics and (ii) is it possible to 'prove' the principle? We adduce one more proof which is most concise today.
Entropy production during hadronization of a quark-gluon plasma
NASA Astrophysics Data System (ADS)
Biró, Tamás S.; Schram, Zsolt; Jenkovszky, László
2018-02-01
We revisit some physical pictures for the hadronization of quark-gluon plasma, concentrating on the problem of entropy production during processes where the number of degrees of freedom is seemingly reduced due to color confinement. Based on observations on Regge trajectories we propose not having an infinite tower of hadronic resonances. We discuss possible entropy production mechanisms far from equilibrium in terms of stochastic dynamics.
Entanglement entropy and entanglement spectrum of the Kitaev model.
Yao, Hong; Qi, Xiao-Liang
2010-08-20
In this letter, we obtain an exact formula for the entanglement entropy of the ground state and all excited states of the Kitaev model. Remarkably, the entanglement entropy can be expressed in a simple separable form S = SG+SF, with SF the entanglement entropy of a free Majorana fermion system and SG that of a Z2 gauge field. The Z2 gauge field part contributes to the universal "topological entanglement entropy" of the ground state while the fermion part is responsible for the nonlocal entanglement carried by the Z2 vortices (visons) in the non-Abelian phase. Our result also enables the calculation of the entire entanglement spectrum and the more general Renyi entropy of the Kitaev model. Based on our results we propose a new quantity to characterize topologically ordered states--the capacity of entanglement, which can distinguish the st ates with and without topologically protected gapless entanglement spectrum.
Spin-phase-space-entropy production
NASA Astrophysics Data System (ADS)
Santos, Jader P.; Céleri, Lucas C.; Brito, Frederico; Landi, Gabriel T.; Paternostro, Mauro
2018-05-01
Quantifying the degree of irreversibility of an open system dynamics represents a problem of both fundamental and applied relevance. Even though a well-known framework exists for thermal baths, the results give diverging results in the limit of zero temperature and are also not readily extended to nonequilibrium reservoirs, such as dephasing baths. Aimed at filling this gap, in this paper we introduce a phase-space-entropy production framework for quantifying the irreversibility of spin systems undergoing Lindblad dynamics. The theory is based on the spin Husimi-Q function and its corresponding phase-space entropy, known as Wehrl entropy. Unlike the von Neumann entropy production rate, we show that in our framework, the Wehrl entropy production rate remains valid at any temperature and is also readily extended to arbitrary nonequilibrium baths. As an application, we discuss the irreversibility associated with the interaction of a two-level system with a single-photon pulse, a problem which cannot be treated using the conventional approach.
Entropy of black holes with multiple horizons
NASA Astrophysics Data System (ADS)
He, Yun; Ma, Meng-Sen; Zhao, Ren
2018-05-01
We examine the entropy of black holes in de Sitter space and black holes surrounded by quintessence. These black holes have multiple horizons, including at least the black hole event horizon and a horizon outside it (cosmological horizon for de Sitter black holes and "quintessence horizon" for the black holes surrounded by quintessence). Based on the consideration that the two horizons are not independent each other, we conjecture that the total entropy of these black holes should not be simply the sum of entropies of the two horizons, but should have an extra term coming from the correlations between the two horizons. Different from our previous works, in this paper we consider the cosmological constant as the variable and employ an effective method to derive the explicit form of the entropy. We also try to discuss the thermodynamic stabilities of these black holes according to the entropy and the effective temperature.
Compression based entropy estimation of heart rate variability on multiple time scales.
Baumert, Mathias; Voss, Andreas; Javorka, Michal
2013-01-01
Heart rate fluctuates beat by beat in a complex manner. The aim of this study was to develop a framework for entropy assessment of heart rate fluctuations on multiple time scales. We employed the Lempel-Ziv algorithm for lossless data compression to investigate the compressibility of RR interval time series on different time scales, using a coarse-graining procedure. We estimated the entropy of RR interval time series of 20 young and 20 old subjects and also investigated the compressibility of randomly shuffled surrogate RR time series. The original RR time series displayed significantly smaller compression entropy values than randomized RR interval data. The RR interval time series of older subjects showed significantly different entropy characteristics over multiple time scales than those of younger subjects. In conclusion, data compression may be useful approach for multiscale entropy assessment of heart rate variability.
Entropy factor for randomness quantification in neuronal data.
Rajdl, K; Lansky, P; Kostal, L
2017-11-01
A novel measure of neural spike train randomness, an entropy factor, is proposed. It is based on the Shannon entropy of the number of spikes in a time window and can be seen as an analogy to the Fano factor. Theoretical properties of the new measure are studied for equilibrium renewal processes and further illustrated on gamma and inverse Gaussian probability distributions of interspike intervals. Finally, the entropy factor is evaluated from the experimental records of spontaneous activity in macaque primary visual cortex and compared to its theoretical behavior deduced for the renewal process models. Both theoretical and experimental results show substantial differences between the Fano and entropy factors. Rather paradoxically, an increase in the variability of spike count is often accompanied by an increase of its predictability, as evidenced by the entropy factor. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
Relative entropy of steering: on its definition and properties
NASA Astrophysics Data System (ADS)
Kaur, Eneet; Wilde, Mark M.
2017-11-01
In Gallego and Aolita (2015 Phys. Rev. X 5 041008), the authors proposed a definition for the relative entropy of steering and showed that the resulting quantity is a convex steering monotone. Here we advocate for a different definition for relative entropy of steering, based on well grounded concerns coming from quantum Shannon theory. We prove that this modified relative entropy of steering is a convex steering monotone. Furthermore, we establish that it is uniformly continuous and faithful, in both cases giving quantitative bounds that should be useful in applications. We also consider a restricted relative entropy of steering which is relevant for the case in which the free operations in the resource theory of steering have a more restricted form (the restricted operations could be more relevant in practical scenarios). The restricted relative entropy of steering is convex, monotone with respect to these restricted operations, uniformly continuous, and faithful.
Minimal entropy approximation for cellular automata
NASA Astrophysics Data System (ADS)
Fukś, Henryk
2014-02-01
We present a method for the construction of approximate orbits of measures under the action of cellular automata which is complementary to the local structure theory. The local structure theory is based on the idea of Bayesian extension, that is, construction of a probability measure consistent with given block probabilities and maximizing entropy. If instead of maximizing entropy one minimizes it, one can develop another method for the construction of approximate orbits, at the heart of which is the iteration of finite-dimensional maps, called minimal entropy maps. We present numerical evidence that the minimal entropy approximation sometimes outperforms the local structure theory in characterizing the properties of cellular automata. The density response curve for elementary CA rule 26 is used to illustrate this claim.
Entropy of adsorption of mixed surfactants from solutions onto the air/water interface
Chen, L.-W.; Chen, J.-H.; Zhou, N.-F.
1995-01-01
The partial molar entropy change for mixed surfactant molecules adsorbed from solution at the air/water interface has been investigated by surface thermodynamics based upon the experimental surface tension isotherms at various temperatures. Results for different surfactant mixtures of sodium dodecyl sulfate and sodium tetradecyl sulfate, decylpyridinium chloride and sodium alkylsulfonates have shown that the partial molar entropy changes for adsorption of the mixed surfactants were generally negative and decreased with increasing adsorption to a minimum near the maximum adsorption and then increased abruptly. The entropy decrease can be explained by the adsorption-orientation of surfactant molecules in the adsorbed monolayer and the abrupt entropy increase at the maximum adsorption is possible due to the strong repulsion between the adsorbed molecules.
Entropy, complexity, and Markov diagrams for random walk cancer models
Newton, Paul K.; Mason, Jeremy; Hurt, Brian; Bethel, Kelly; Bazhenova, Lyudmila; Nieva, Jorge; Kuhn, Peter
2014-01-01
The notion of entropy is used to compare the complexity associated with 12 common cancers based on metastatic tumor distribution autopsy data. We characterize power-law distributions, entropy, and Kullback-Liebler divergence associated with each primary cancer as compared with data for all cancer types aggregated. We then correlate entropy values with other measures of complexity associated with Markov chain dynamical systems models of progression. The Markov transition matrix associated with each cancer is associated with a directed graph model where nodes are anatomical locations where a metastatic tumor could develop, and edge weightings are transition probabilities of progression from site to site. The steady-state distribution corresponds to the autopsy data distribution. Entropy correlates well with the overall complexity of the reduced directed graph structure for each cancer and with a measure of systemic interconnectedness of the graph, called graph conductance. The models suggest that grouping cancers according to their entropy values, with skin, breast, kidney, and lung cancers being prototypical high entropy cancers, stomach, uterine, pancreatic and ovarian being mid-level entropy cancers, and colorectal, cervical, bladder, and prostate cancers being prototypical low entropy cancers, provides a potentially useful framework for viewing metastatic cancer in terms of predictability, complexity, and metastatic potential. PMID:25523357
On the Consequences of Clausius-Duhem Inequality for Electrolyte Solutions
NASA Astrophysics Data System (ADS)
Reis, Martina; Bassi, Adalberto Bono Maurizio Sacchi
2014-03-01
Based on the fundamentals of thermo-statics, non-equilibrium thermodynamics theories frequently employ an entropy inequality, where the entropy flux is collinear to the heat flux, and the entropy supply is proportional to the energy supply. Although this assumption is suitable for many material bodies, e.g. heat-conducting viscous fluids, there is a class of materials for which these assumptions are not valid. By assuming that the entropy flux and the entropy supply are constitutive quantities, in this work it is demonstrated that the entropy flux for a reacting ionic mixture of non-volatile solutes presents a non-collinear term due to the diffusive fluxes. The consequences of the collinearity between the entropy flux and the heat flux, as well as the proportionality of the entropy supply and the energy supply on the stability of chemical systems are also investigated. Furthermore, by considering an electrolyte solution of non-volatile solutes in phase equilibrium with water vapor, and the constitutive nature of the entropy flux, the stability of a vapor-electrolyte solution interface is studied. Despite this work only deals with electrolyte solutions, the results presented can be easily extended to more complex chemical reacting systems. The first author acknowledges financial support from CNPq (National Counsel of Technological and Scientific Development).
Distance-Based Configurational Entropy of Proteins from Molecular Dynamics Simulations
Fogolari, Federico; Corazza, Alessandra; Fortuna, Sara; Soler, Miguel Angel; VanSchouwen, Bryan; Brancolini, Giorgia; Corni, Stefano; Melacini, Giuseppe; Esposito, Gennaro
2015-01-01
Estimation of configurational entropy from molecular dynamics trajectories is a difficult task which is often performed using quasi-harmonic or histogram analysis. An entirely different approach, proposed recently, estimates local density distribution around each conformational sample by measuring the distance from its nearest neighbors. In this work we show this theoretically well grounded the method can be easily applied to estimate the entropy from conformational sampling. We consider a set of systems that are representative of important biomolecular processes. In particular: reference entropies for amino acids in unfolded proteins are obtained from a database of residues not participating in secondary structure elements;the conformational entropy of folding of β2-microglobulin is computed from molecular dynamics simulations using reference entropies for the unfolded state;backbone conformational entropy is computed from molecular dynamics simulations of four different states of the EPAC protein and compared with order parameters (often used as a measure of entropy);the conformational and rototranslational entropy of binding is computed from simulations of 20 tripeptides bound to the peptide binding protein OppA and of β2-microglobulin bound to a citrate coated gold surface. This work shows the potential of the method in the most representative biological processes involving proteins, and provides a valuable alternative, principally in the shown cases, where other approaches are problematic. PMID:26177039
Distance-Based Configurational Entropy of Proteins from Molecular Dynamics Simulations.
Fogolari, Federico; Corazza, Alessandra; Fortuna, Sara; Soler, Miguel Angel; VanSchouwen, Bryan; Brancolini, Giorgia; Corni, Stefano; Melacini, Giuseppe; Esposito, Gennaro
2015-01-01
Estimation of configurational entropy from molecular dynamics trajectories is a difficult task which is often performed using quasi-harmonic or histogram analysis. An entirely different approach, proposed recently, estimates local density distribution around each conformational sample by measuring the distance from its nearest neighbors. In this work we show this theoretically well grounded the method can be easily applied to estimate the entropy from conformational sampling. We consider a set of systems that are representative of important biomolecular processes. In particular: reference entropies for amino acids in unfolded proteins are obtained from a database of residues not participating in secondary structure elements;the conformational entropy of folding of β2-microglobulin is computed from molecular dynamics simulations using reference entropies for the unfolded state;backbone conformational entropy is computed from molecular dynamics simulations of four different states of the EPAC protein and compared with order parameters (often used as a measure of entropy);the conformational and rototranslational entropy of binding is computed from simulations of 20 tripeptides bound to the peptide binding protein OppA and of β2-microglobulin bound to a citrate coated gold surface. This work shows the potential of the method in the most representative biological processes involving proteins, and provides a valuable alternative, principally in the shown cases, where other approaches are problematic.
NASA Technical Reports Server (NTRS)
Benedict, G. F.; McArthur, Barbara E.; Napiwotzki, Ralf; Harrison, Thomas E.; Harris, Hugh C.; Nelan, Edmund; Bond, Howard E; Patterson, Richard J.; Ciardullo, Robin
2009-01-01
We present absolute parallaxes and relative proper motions for the central stars of the planetary nebulae NGC 6853 (The Dumbbell), NGC 7293 (The Helix), Abell 31, and DeHt 5. This paper details our reduction and analysis using DeHt 5 as an example. We obtain these planetary nebula nuclei (PNNi) parallaxes with astrometric data from Fine Guidance Sensors FGS 1r and FGS 3, white-light interferometers on the Hubble Space Telescope. Proper motions, spectral classifications and VJHKT2M and DDO51 photometry of the stars comprising the astrometric reference frames provide spectrophotometric estimates of reference star absolute parallaxes. Introducing these into our model as observations with error, we determine absolute parallaxes for each PNN. Weighted averaging with previous independent parallax measurements yields an average parallax precision, sigma (sub pi)/ pi = 5%. Derived distances are: d(sub NGC6853) = 405(exp +28 sub -25) pc, d(sub NGC7293) = 216(exp +14 sub -12) pc, d(sub Abell31) = 621(exp +91 sub -70) pc, and d(sub DeHt5) = 345(exp +19 sub -17) pc. These PNNi distances are all smaller than previously derived from spectroscopic analyses of the central stars. To obtain absolute magnitudes from these distances requires estimates of interstellar extinction. We average extinction measurements culled from the literature, from reddening based on PNNi intrinsic colors derived from model SEDs, and an assumption that each PNN experiences the same rate of extinction as a function of distance as do the reference stars nearest (in angular separation) to each central star. We also apply Lutz-Kelker bias corrections. The absolute magnitudes and effective temperatures permit estimates of PNNi radii through both the Stefan-Boltzmann relation and Eddington fluxes. Comparing absolute magnitudes with post-AGB models provides mass estimates. Masses cluster around 0.57 solar Mass, close to the peak of the white dwarf mass distribution. Adding a few more PNNi with well-determined distances and masses, we compare all the PNNi with cooler white dwarfs of similar mass, and confirm, as expected, that PNNi have larger radii than white dwarfs that have reached their final cooling tracks.
On the Merging Cluster Abell 578 and Its Central Radio Galaxy 4C+67.13
NASA Astrophysics Data System (ADS)
Hagino, K.; Stawarz, Ł.; Siemiginowska, A.; Cheung, C. C.; Kozieł-Wierzbowska, D.; Szostek, A.; Madejski, G.; Harris, D. E.; Simionescu, A.; Takahashi, T.
2015-06-01
Here we analyze radio, optical, and X-ray data for the peculiar cluster Abell 578. This cluster is not fully relaxed and consists of two merging sub-systems. The brightest cluster galaxy (BCG), CGPG 0719.8+6704, is a pair of interacting ellipticals with projected separation ˜10 kpc, the brighter of which hosts the radio source 4C+67.13. The Fanaroff-Riley type-II radio morphology of 4C+67.13 is unusual for central radio galaxies in local Abell clusters. Our new optical spectroscopy revealed that both nuclei of the CGPG 0719.8+6704 pair are active, albeit at low accretion rates corresponding to the Eddington ratio ˜ {{10}-4} (for the estimated black hole masses of ˜ 3× {{10}8} {{M}⊙ } and ˜ {{10}9} {{M}⊙ }). The gathered X-ray (Chandra) data allowed us to confirm and to quantify robustly the previously noted elongation of the gaseous atmosphere in the dominant sub-cluster, as well as a large spatial offset (˜60 kpc projected) between the position of the BCG and the cluster center inferred from the modeling of the X-ray surface brightness distribution. Detailed analysis of the brightness profiles and temperature revealed also that the cluster gas in the vicinity of 4C+67.13 is compressed (by a factor of about ˜1.4) and heated (from ≃ 2.0 keV up to 2.7 keV), consistent with the presence of a weak shock (Mach number ˜1.3) driven by the expanding jet cocoon. This would then require the jet kinetic power of the order of ˜ {{10}45} erg s-1, implying either a very high efficiency of the jet production for the current accretion rate, or a highly modulated jet/accretion activity in the system. Based on service observations made with the WHT operated on the island of La Palma by the Isaac Newton Group in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofísica de Canarias.
NASA Astrophysics Data System (ADS)
González-López, J.; Bauer, F. E.; Aravena, M.; Laporte, N.; Bradley, L.; Carrasco, M.; Carvajal, R.; Demarco, R.; Infante, L.; Kneissl, R.; Koekemoer, A. M.; Muñoz Arancibia, A. M.; Troncoso, P.; Villard, E.; Zitrin, A.
2017-12-01
Context. Most sub-mm emission line studies of galaxies to date have targeted sources with known redshifts where the frequencies of the lines are well constrained. Recent blind line scans circumvent the spectroscopic redshift requirement, which could represent a selection bias. Aims: Our aim is to detect emission lines present in continuum oriented observations. The detection of these lines provides spectroscopic redshift information and yields important properties of the galaxies. Methods: We perform a search for emission lines in the Atacama Large Millimeter/submillimeter Array observations of five clusters which are part of the Frontier Fields and assess the reliability of our detection. We additionally investigate plausibility by associating line candidates with detected galaxies in deep near-infrared imaging. Results: We find 26 significant emission lines candidates, with observed line fluxes between 0.2-4.6 Jy kms-1and velocity dispersions (FWHM) of 25-600kms-1. Nine of these candidates lie in close proximity to near-infrared sources, boosting their reliability; in six cases the observed line frequency and strength are consistent with expectations given the photometric redshift and properties of the galaxy counterparts. We present redshift identifications, magnifications, and molecular gas estimates for the galaxies with identified lines. We show that two of these candidates likely originate from starburst galaxies, one of which is a so-called jellyfish galaxy that is strongly affected by ram pressure stripping, while another two are consistent with being main sequence galaxies based in their depletion times. Conclusions: This work highlights the degree to which serendipitous emission lines can be discovered in large mosaic continuum observations when deep ancillary data are available. The low number of high-significance line detections, however, confirms that such surveys are not as optimal as blind line scans. We stress that Monte Carlo simulations should be used to assess the line detection significances since using the negative noise suffers from stochasticity and incurs significantly larger uncertainties.
A model-assisted radio occultation data inversion method based on data ingestion into NeQuick
NASA Astrophysics Data System (ADS)
Shaikh, M. M.; Nava, B.; Kashcheyev, A.
2017-01-01
Inverse Abel transform is the most common method to invert radio occultation (RO) data in the ionosphere and it is based on the assumption of the spherical symmetry for the electron density distribution in the vicinity of an occultation event. It is understood that this 'spherical symmetry hypothesis' could fail, above all, in the presence of strong horizontal electron density gradients. As a consequence, in some cases wrong electron density profiles could be obtained. In this work, in order to incorporate the knowledge of horizontal gradients, we have suggested an inversion technique based on the adaption of the empirical ionospheric model, NeQuick2, to RO-derived TEC. The method relies on the minimization of a cost function involving experimental and model-derived TEC data to determine NeQuick2 input parameters (effective local ionization parameters) at specific locations and times. These parameters are then used to obtain the electron density profile along the tangent point (TP) positions associated with the relevant RO event using NeQuick2. The main focus of our research has been laid on the mitigation of spherical symmetry effects from RO data inversion without using external data such as data from global ionospheric maps (GIM). By using RO data from Constellation Observing System for Meteorology Ionosphere and Climate (FORMOSAT-3/COSMIC) mission and manually scaled peak density data from a network of ionosondes along Asian and American longitudinal sectors, we have obtained a global improvement of 5% with 7% in Asian longitudinal sector (considering the data used in this work), in the retrieval of peak electron density (NmF2) with model-assisted inversion as compared to the Abel inversion. Mean errors of NmF2 in Asian longitudinal sector are calculated to be much higher compared to American sector.
Bubble Entropy: An Entropy Almost Free of Parameters.
Manis, George; Aktaruzzaman, Md; Sassi, Roberto
2017-11-01
Objective : A critical point in any definition of entropy is the selection of the parameters employed to obtain an estimate in practice. We propose a new definition of entropy aiming to reduce the significance of this selection. Methods: We call the new definition Bubble Entropy . Bubble Entropy is based on permutation entropy, where the vectors in the embedding space are ranked. We use the bubble sort algorithm for the ordering procedure and count instead the number of swaps performed for each vector. Doing so, we create a more coarse-grained distribution and then compute the entropy of this distribution. Results: Experimental results with both real and synthetic HRV signals showed that bubble entropy presents remarkable stability and exhibits increased descriptive and discriminating power compared to all other definitions, including the most popular ones. Conclusion: The definition proposed is almost free of parameters. The most common ones are the scale factor r and the embedding dimension m . In our definition, the scale factor is totally eliminated and the importance of m is significantly reduced. The proposed method presents increased stability and discriminating power. Significance: After the extensive use of some entropy measures in physiological signals, typical values for their parameters have been suggested, or at least, widely used. However, the parameters are still there, application and dataset dependent, influencing the computed value and affecting the descriptive power. Reducing their significance or eliminating them alleviates the problem, decoupling the method from the data and the application, and eliminating subjective factors. Objective : A critical point in any definition of entropy is the selection of the parameters employed to obtain an estimate in practice. We propose a new definition of entropy aiming to reduce the significance of this selection. Methods: We call the new definition Bubble Entropy . Bubble Entropy is based on permutation entropy, where the vectors in the embedding space are ranked. We use the bubble sort algorithm for the ordering procedure and count instead the number of swaps performed for each vector. Doing so, we create a more coarse-grained distribution and then compute the entropy of this distribution. Results: Experimental results with both real and synthetic HRV signals showed that bubble entropy presents remarkable stability and exhibits increased descriptive and discriminating power compared to all other definitions, including the most popular ones. Conclusion: The definition proposed is almost free of parameters. The most common ones are the scale factor r and the embedding dimension m . In our definition, the scale factor is totally eliminated and the importance of m is significantly reduced. The proposed method presents increased stability and discriminating power. Significance: After the extensive use of some entropy measures in physiological signals, typical values for their parameters have been suggested, or at least, widely used. However, the parameters are still there, application and dataset dependent, influencing the computed value and affecting the descriptive power. Reducing their significance or eliminating them alleviates the problem, decoupling the method from the data and the application, and eliminating subjective factors.
The pressure and entropy of a unitary Fermi gas with particle-hole fluctuation
NASA Astrophysics Data System (ADS)
Gong, Hao; Ruan, Xiao-Xia; Zong, Hong-Shi
2018-01-01
We calculate the pressure and entropy of a unitary Fermi gas based on universal relations combined with our previous prediction of energy which was calculated within the framework of the non-self-consistent T-matrix approximation with particle-hole fluctuation. The resulting entropy and pressure are compared with the experimental data and the theoretical results without induced interaction. For entropy, we find good agreement between our results with particle-hole fluctuation and the experimental measurements reported by ENS group and MIT experiment. For pressure, our results suffer from a systematic upshift compared to MIT data.
Towards operational interpretations of generalized entropies
NASA Astrophysics Data System (ADS)
Topsøe, Flemming
2010-12-01
The driving force behind our study has been to overcome the difficulties you encounter when you try to extend the clear and convincing operational interpretations of classical Boltzmann-Gibbs-Shannon entropy to other notions, especially to generalized entropies as proposed by Tsallis. Our approach is philosophical, based on speculations regarding the interplay between truth, belief and knowledge. The main result demonstrates that, accepting philosophically motivated assumptions, the only possible measures of entropy are those suggested by Tsallis - which, as we know, include classical entropy. This result constitutes, so it seems, a more transparent interpretation of entropy than previously available. However, further research to clarify the assumptions is still needed. Our study points to the thesis that one should never consider the notion of entropy in isolation - in order to enable a rich and technically smooth study, further concepts, such as divergence, score functions and descriptors or controls should be included in the discussion. This will clarify the distinction between Nature and Observer and facilitate a game theoretical discussion. The usefulness of this distinction and the subsequent exploitation of game theoretical results - such as those connected with the notion of Nash equilibrium - is demonstrated by a discussion of the Maximum Entropy Principle.
A Comparison of Multiscale Permutation Entropy Measures in On-Line Depth of Anesthesia Monitoring
Li, Xiaoli; Li, Duan; Li, Yongwang; Ursino, Mauro
2016-01-01
Objective Multiscale permutation entropy (MSPE) is becoming an interesting tool to explore neurophysiological mechanisms in recent years. In this study, six MSPE measures were proposed for on-line depth of anesthesia (DoA) monitoring to quantify the anesthetic effect on the real-time EEG recordings. The performance of these measures in describing the transient characters of simulated neural populations and clinical anesthesia EEG were evaluated and compared. Methods Six MSPE algorithms—derived from Shannon permutation entropy (SPE), Renyi permutation entropy (RPE) and Tsallis permutation entropy (TPE) combined with the decomposition procedures of coarse-graining (CG) method and moving average (MA) analysis—were studied. A thalamo-cortical neural mass model (TCNMM) was used to generate noise-free EEG under anesthesia to quantitatively assess the robustness of each MSPE measure against noise. Then, the clinical anesthesia EEG recordings from 20 patients were analyzed with these measures. To validate their effectiveness, the ability of six measures were compared in terms of tracking the dynamical changes in EEG data and the performance in state discrimination. The Pearson correlation coefficient (R) was used to assess the relationship among MSPE measures. Results CG-based MSPEs failed in on-line DoA monitoring at multiscale analysis. In on-line EEG analysis, the MA-based MSPE measures at 5 decomposed scales could track the transient changes of EEG recordings and statistically distinguish the awake state, unconsciousness and recovery of consciousness (RoC) state significantly. Compared to single-scale SPE and RPE, MSPEs had better anti-noise ability and MA-RPE at scale 5 performed best in this aspect. MA-TPE outperformed other measures with faster tracking speed of the loss of unconsciousness. Conclusions MA-based multiscale permutation entropies have the potential for on-line anesthesia EEG analysis with its simple computation and sensitivity to drug effect changes. CG-based multiscale permutation entropies may fail to describe the characteristics of EEG at high decomposition scales. PMID:27723803
A Comparison of Multiscale Permutation Entropy Measures in On-Line Depth of Anesthesia Monitoring.
Su, Cui; Liang, Zhenhu; Li, Xiaoli; Li, Duan; Li, Yongwang; Ursino, Mauro
2016-01-01
Multiscale permutation entropy (MSPE) is becoming an interesting tool to explore neurophysiological mechanisms in recent years. In this study, six MSPE measures were proposed for on-line depth of anesthesia (DoA) monitoring to quantify the anesthetic effect on the real-time EEG recordings. The performance of these measures in describing the transient characters of simulated neural populations and clinical anesthesia EEG were evaluated and compared. Six MSPE algorithms-derived from Shannon permutation entropy (SPE), Renyi permutation entropy (RPE) and Tsallis permutation entropy (TPE) combined with the decomposition procedures of coarse-graining (CG) method and moving average (MA) analysis-were studied. A thalamo-cortical neural mass model (TCNMM) was used to generate noise-free EEG under anesthesia to quantitatively assess the robustness of each MSPE measure against noise. Then, the clinical anesthesia EEG recordings from 20 patients were analyzed with these measures. To validate their effectiveness, the ability of six measures were compared in terms of tracking the dynamical changes in EEG data and the performance in state discrimination. The Pearson correlation coefficient (R) was used to assess the relationship among MSPE measures. CG-based MSPEs failed in on-line DoA monitoring at multiscale analysis. In on-line EEG analysis, the MA-based MSPE measures at 5 decomposed scales could track the transient changes of EEG recordings and statistically distinguish the awake state, unconsciousness and recovery of consciousness (RoC) state significantly. Compared to single-scale SPE and RPE, MSPEs had better anti-noise ability and MA-RPE at scale 5 performed best in this aspect. MA-TPE outperformed other measures with faster tracking speed of the loss of unconsciousness. MA-based multiscale permutation entropies have the potential for on-line anesthesia EEG analysis with its simple computation and sensitivity to drug effect changes. CG-based multiscale permutation entropies may fail to describe the characteristics of EEG at high decomposition scales.
Autonomous entropy-based intelligent experimental design
NASA Astrophysics Data System (ADS)
Malakar, Nabin Kumar
2011-07-01
The aim of this thesis is to explore the application of probability and information theory in experimental design, and to do so in a way that combines what we know about inference and inquiry in a comprehensive and consistent manner. Present day scientific frontiers involve data collection at an ever-increasing rate. This requires that we find a way to collect the most relevant data in an automated fashion. By following the logic of the scientific method, we couple an inference engine with an inquiry engine to automate the iterative process of scientific learning. The inference engine involves Bayesian machine learning techniques to estimate model parameters based upon both prior information and previously collected data, while the inquiry engine implements data-driven exploration. By choosing an experiment whose distribution of expected results has the maximum entropy, the inquiry engine selects the experiment that maximizes the expected information gain. The coupled inference and inquiry engines constitute an autonomous learning method for scientific exploration. We apply it to a robotic arm to demonstrate the efficacy of the method. Optimizing inquiry involves searching for an experiment that promises, on average, to be maximally informative. If the set of potential experiments is described by many parameters, the search involves a high-dimensional entropy space. In such cases, a brute force search method will be slow and computationally expensive. We develop an entropy-based search algorithm, called nested entropy sampling, to select the most informative experiment. This helps to reduce the number of computations necessary to find the optimal experiment. We also extended the method of maximizing entropy, and developed a method of maximizing joint entropy so that it could be used as a principle of collaboration between two robots. This is a major achievement of this thesis, as it allows the information-based collaboration between two robotic units towards a same goal in an automated fashion.
X-ray constraints on the shape of the dark matter in five Abell clusters
NASA Technical Reports Server (NTRS)
Buote, David A.; Canizares, Claude R.
1992-01-01
X-ray observations obtained with the Einstein Observatory are used to constrain the shape of the dark matter in the inner regions of Abell clusters A401, A426, A1656, A2029, and A2199, each of which exhibits highly flattened optical isopleths. The dark matter is modeled as an ellipsoid with a mass density of about r exp -2. The possible shapes of the dark matter is constrained by comparing these model isophotes to the image isophotes. The X-ray isophotes, and therefore the gravitational potentials, have ellipticities of about 0.1-0.2. The dark matter within the central 1 Mpc is found to be substantially rounder for all the clusters. It is concluded that the shape of the galaxy distributions in these clusters traces neither the gravitational potential nor the gravitating matter.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Andersson, Karl E.; /Stockholm U. /SLAC; Peterson, J.R.
2007-04-17
We propose a new Monte Carlo method to study extended X-ray sources with the European Photon Imaging Camera (EPIC) aboard XMM Newton. The Smoothed Particle Inference (SPI) technique, described in a companion paper, is applied here to the EPIC data for the clusters of galaxies Abell 1689, Centaurus and RXJ 0658-55 (the ''bullet cluster''). We aim to show the advantages of this method of simultaneous spectral-spatial modeling over traditional X-ray spectral analysis. In Abell 1689 we confirm our earlier findings about structure in temperature distribution and produce a high resolution temperature map. We also confirm our findings about velocity structuremore » within the gas. In the bullet cluster, RXJ 0658-55, we produce the highest resolution temperature map ever to be published of this cluster allowing us to trace what looks like the motion of the bullet in the cluster. We even detect a south to north temperature gradient within the bullet itself. In the Centaurus cluster we detect, by dividing up the luminosity of the cluster in bands of gas temperatures, a striking feature to the north-east of the cluster core. We hypothesize that this feature is caused by a subcluster left over from a substantial merger that slightly displaced the core. We conclude that our method is very powerful in determining the spatial distributions of plasma temperatures and very useful for systematic studies in cluster structure.« less
NASA Astrophysics Data System (ADS)
Rodney, Steven A.; Patel, Brandon; Scolnic, Daniel; Foley, Ryan J.; Molino, Alberto; Brammer, Gabriel; Jauzac, Mathilde; Bradač, Maruša; Broadhurst, Tom; Coe, Dan; Diego, Jose M.; Graur, Or; Hjorth, Jens; Hoag, Austin; Jha, Saurabh W.; Johnson, Traci L.; Kelly, Patrick; Lam, Daniel; McCully, Curtis; Medezinski, Elinor; Meneghetti, Massimo; Merten, Julian; Richard, Johan; Riess, Adam; Sharon, Keren; Strolger, Louis-Gregory; Treu, Tommaso; Wang, Xin; Williams, Liliya L. R.; Zitrin, Adi
2015-09-01
SN HFF14Tom is a Type Ia SN discovered at z=1.3457+/- 0.0001 behind the galaxy cluster Abell 2744 (z = 0.308). In a cosmology-independent analysis, we find that HFF14Tom is 0.77 ± 0.15 mag brighter than unlensed Type Ia SNe at similar redshift, implying a lensing magnification of {μ }{obs}=2.03+/- 0.29. This observed magnification provides a rare opportunity for a direct empirical test of galaxy cluster lens models. Here we test 17 lens models, 13 of which were generated before the SN magnification was known, qualifying as pure “blind tests.” The models are collectively fairly accurate: 8 of the models deliver median magnifications that are consistent with the measured μ to within 1σ. However, there is a subtle systematic bias: the significant disagreements all involve models overpredicting the magnification. We evaluate possible causes for this mild bias, and find no single physical or methodological explanation to account for it. We do find that model accuracy can be improved to some extent with stringent quality cuts on multiply imaged systems, such as requiring that a large fraction have spectroscopic redshifts. In addition to testing model accuracies as we have done here, Type Ia SN magnifications could also be used as inputs for future lens models of Abell 2744 and other clusters, providing valuable constraints in regions where traditional strong- and weak-lensing information is unavailable.
The near-infrared Tully-Fisher relation - A preliminary study of the Coma and Abell 400 clusters
NASA Technical Reports Server (NTRS)
Guhathakurta, Puragra; Bernstein, Gary; Raychaudhury, Somak; Haynes, Martha; Giovanelli, Riccardo; Herter, Terry; Vogt, Nicole
1993-01-01
We have started a large project to study the NIR Tully-Fisher (TF) relation using H- and I-band surface photometry of spiral galaxies. A preliminary study of 20 spirals in the Coma and Abell 400 clusters is presented. The NIR images have been used to derive accurate inclinations and total magnitudes, and rotational linewidths are measured from high-quality 21-cm Arecibo data. The scatter in the Coma TF plot is found to be 0.19 mag in the H band and 0.20 mag in the I band for a set of 13 galaxies, if we assume that they are all at the same distance. The deviation of the Coma galaxies from the best-fit Tully-Fisher relation is correlated with their redshift, indicating that some of the galaxies are not bound to the cluster. Indeed, if we treat all the galaxies in the Coma sample as undergoing free Hubble expansion, the TF scatter drops to 0.12 and 0.13 mag for the H- and I-band datasets, respectively. The Abell 400 sample is best fit by a common distance model, yielding a scatter of 0.12 mag for seven galaxies in H using a fixed TF slope. We are in the process of studying cluster and field spirals out to about 10,000 km/s in order to calibrate the NIR TF relation and will apply it to more nearby galaxies to measure the peculiar velocity field in the local universe.
Steepest entropy ascent quantum thermodynamic model of electron and phonon transport
NASA Astrophysics Data System (ADS)
Li, Guanchen; von Spakovsky, Michael R.; Hin, Celine
2018-01-01
An advanced nonequilibrium thermodynamic model for electron and phonon transport is formulated based on the steepest-entropy-ascent quantum thermodynamics framework. This framework, based on the principle of steepest entropy ascent (or the equivalent maximum entropy production principle), inherently satisfies the laws of thermodynamics and mechanics and is applicable at all temporal and spatial scales even in the far-from-equilibrium realm. Specifically, the model is proven to recover the Boltzmann transport equations in the near-equilibrium limit and the two-temperature model of electron-phonon coupling when no dispersion is assumed. The heat and mass transport at a temperature discontinuity across a homogeneous interface where the dispersion and coupling of electron and phonon transport are both considered are then modeled. Local nonequilibrium system evolution and nonquasiequilibrium interactions are predicted and the results discussed.
Differential effects of gender on entropy perception
NASA Astrophysics Data System (ADS)
Satcharoen, Kleddao
2017-12-01
The purpose of this research is to examine differences in perception of entropy (color intensity) between male and female computer users. The objectives include identifying gender-based differences in entropy intention and exploring the potential effects of these differences (if any) on user interface design. The research is an effort to contribute to an emerging field of interest in gender as it relates to science, engineering and technology (SET), particularly user interface design. Currently, there is limited evidence on the role of gender in user interface design and in use of technology generally, with most efforts at gender-differentiated or customized design based on stereotypes and assumptions about female use of technology or the assumption of a default position based on male preferences. Image entropy was selected as a potential characteristic where gender could be a factor in perception because of known differences in color perception acuity between male and female individuals, even where there is no known color perception abnormality (which is more common with males). Although the literature review suggested that training could offset differences in color perception and identification, tests in untrained subject groups routinely show that females are more able to identify, match, and differentiate colors, and that there is a stronger emotional and psychosocial association of color for females. Since image entropy is associated with information content and image salience, the ability to identify areas of high entropy could make a difference in user perception and technological capabilities.
Wavelet entropy of BOLD time series: An application to Rolandic epilepsy.
Gupta, Lalit; Jansen, Jacobus F A; Hofman, Paul A M; Besseling, René M H; de Louw, Anton J A; Aldenkamp, Albert P; Backes, Walter H
2017-12-01
To assess the wavelet entropy for the characterization of intrinsic aberrant temporal irregularities in the time series of resting-state blood-oxygen-level-dependent (BOLD) signal fluctuations. Further, to evaluate the temporal irregularities (disorder/order) on a voxel-by-voxel basis in the brains of children with Rolandic epilepsy. The BOLD time series was decomposed using the discrete wavelet transform and the wavelet entropy was calculated. Using a model time series consisting of multiple harmonics and nonstationary components, the wavelet entropy was compared with Shannon and spectral (Fourier-based) entropy. As an application, the wavelet entropy in 22 children with Rolandic epilepsy was compared to 22 age-matched healthy controls. The images were obtained by performing resting-state functional magnetic resonance imaging (fMRI) using a 3T system, an 8-element receive-only head coil, and an echo planar imaging pulse sequence ( T2*-weighted). The wavelet entropy was also compared to spectral entropy, regional homogeneity, and Shannon entropy. Wavelet entropy was found to identify the nonstationary components of the model time series. In Rolandic epilepsy patients, a significantly elevated wavelet entropy was observed relative to controls for the whole cerebrum (P = 0.03). Spectral entropy (P = 0.41), regional homogeneity (P = 0.52), and Shannon entropy (P = 0.32) did not reveal significant differences. The wavelet entropy measure appeared more sensitive to detect abnormalities in cerebral fluctuations represented by nonstationary effects in the BOLD time series than more conventional measures. This effect was observed in the model time series as well as in Rolandic epilepsy. These observations suggest that the brains of children with Rolandic epilepsy exhibit stronger nonstationary temporal signal fluctuations than controls. 2 Technical Efficacy: Stage 3 J. Magn. Reson. Imaging 2017;46:1728-1737. © 2017 International Society for Magnetic Resonance in Medicine.
Adjusting protein graphs based on graph entropy.
Peng, Sheng-Lung; Tsay, Yu-Wei
2014-01-01
Measuring protein structural similarity attempts to establish a relationship of equivalence between polymer structures based on their conformations. In several recent studies, researchers have explored protein-graph remodeling, instead of looking a minimum superimposition for pairwise proteins. When graphs are used to represent structured objects, the problem of measuring object similarity become one of computing the similarity between graphs. Graph theory provides an alternative perspective as well as efficiency. Once a protein graph has been created, its structural stability must be verified. Therefore, a criterion is needed to determine if a protein graph can be used for structural comparison. In this paper, we propose a measurement for protein graph remodeling based on graph entropy. We extend the concept of graph entropy to determine whether a graph is suitable for representing a protein. The experimental results suggest that when applied, graph entropy helps a conformational on protein graph modeling. Furthermore, it indirectly contributes to protein structural comparison if a protein graph is solid.
NASA Astrophysics Data System (ADS)
Wan, Minjie; Gu, Guohua; Qian, Weixian; Ren, Kan; Chen, Qian; Maldague, Xavier
2018-06-01
Infrared image enhancement plays a significant role in intelligent urban surveillance systems for smart city applications. Unlike existing methods only exaggerating the global contrast, we propose a particle swam optimization-based local entropy weighted histogram equalization which involves the enhancement of both local details and fore-and background contrast. First of all, a novel local entropy weighted histogram depicting the distribution of detail information is calculated based on a modified hyperbolic tangent function. Then, the histogram is divided into two parts via a threshold maximizing the inter-class variance in order to improve the contrasts of foreground and background, respectively. To avoid over-enhancement and noise amplification, double plateau thresholds of the presented histogram are formulated by means of particle swarm optimization algorithm. Lastly, each sub-image is equalized independently according to the constrained sub-local entropy weighted histogram. Comparative experiments implemented on real infrared images prove that our algorithm outperforms other state-of-the-art methods in terms of both visual and quantized evaluations.
Adjusting protein graphs based on graph entropy
2014-01-01
Measuring protein structural similarity attempts to establish a relationship of equivalence between polymer structures based on their conformations. In several recent studies, researchers have explored protein-graph remodeling, instead of looking a minimum superimposition for pairwise proteins. When graphs are used to represent structured objects, the problem of measuring object similarity become one of computing the similarity between graphs. Graph theory provides an alternative perspective as well as efficiency. Once a protein graph has been created, its structural stability must be verified. Therefore, a criterion is needed to determine if a protein graph can be used for structural comparison. In this paper, we propose a measurement for protein graph remodeling based on graph entropy. We extend the concept of graph entropy to determine whether a graph is suitable for representing a protein. The experimental results suggest that when applied, graph entropy helps a conformational on protein graph modeling. Furthermore, it indirectly contributes to protein structural comparison if a protein graph is solid. PMID:25474347
Pan, Keyao; Deem, Michael W.
2011-01-01
Many viruses evolve rapidly. For example, haemagglutinin (HA) of the H3N2 influenza A virus evolves to escape antibody binding. This evolution of the H3N2 virus means that people who have previously been exposed to an influenza strain may be infected by a newly emerged virus. In this paper, we use Shannon entropy and relative entropy to measure the diversity and selection pressure by an antibody in each amino acid site of H3 HA between the 1992–1993 season and the 2009–2010 season. Shannon entropy and relative entropy are two independent state variables that we use to characterize H3N2 evolution. The entropy method estimates future H3N2 evolution and migration using currently available H3 HA sequences. First, we show that the rate of evolution increases with the virus diversity in the current season. The Shannon entropy of the sequence in the current season predicts relative entropy between sequences in the current season and those in the next season. Second, a global migration pattern of H3N2 is assembled by comparing the relative entropy flows of sequences sampled in China, Japan, the USA and Europe. We verify this entropy method by describing two aspects of historical H3N2 evolution. First, we identify 54 amino acid sites in HA that have evolved in the past to evade the immune system. Second, the entropy method shows that epitopes A and B on the top of HA evolve most vigorously to escape antibody binding. Our work provides a novel entropy-based method to predict and quantify future H3N2 evolution and to describe the evolutionary history of H3N2. PMID:21543352
Activity-Based Approach for Teaching Aqueous Solubility, Energy, and Entropy
ERIC Educational Resources Information Center
Eisen, Laura; Marano, Nadia; Glazier, Samantha
2014-01-01
We describe an activity-based approach for teaching aqueous solubility to introductory chemistry students that provides a more balanced presentation of the roles of energy and entropy in dissolution than is found in most general chemistry textbooks. In the first few activities, students observe that polar substances dissolve in water, whereas…
Intrinsic Information Processing and Energy Dissipation in Stochastic Input-Output Dynamical Systems
2015-07-09
Crutchfield. Information Anatomy of Stochastic Equilibria, Entropy , (08 2014): 0. doi: 10.3390/e16094713 Virgil Griffith, Edwin Chong, Ryan James...Christopher Ellison, James Crutchfield. Intersection Information Based on Common Randomness, Entropy , (04 2014): 0. doi: 10.3390/e16041985 TOTAL: 5 Number...Learning Group Seminar, Complexity Sciences Center, UC Davis. Korana Burke and Greg Wimsatt (UCD), reviewed PRL “Measurement of Stochastic Entropy
Manfredi; Feix
2000-10-01
The properties of an alternative definition of quantum entropy, based on Wigner functions, are discussed. Such a definition emerges naturally from the Wigner representation of quantum mechanics, and can easily quantify the amount of entanglement of a quantum state. It is shown that smoothing of the Wigner function induces an increase in entropy. This fact is used to derive some simple rules to construct positive-definite probability distributions which are also admissible Wigner functions.
Numerical estimation of the relative entropy of entanglement
NASA Astrophysics Data System (ADS)
Zinchenko, Yuriy; Friedland, Shmuel; Gour, Gilad
2010-11-01
We propose a practical algorithm for the calculation of the relative entropy of entanglement (REE), defined as the minimum relative entropy between a state and the set of states with positive partial transpose. Our algorithm is based on a practical semidefinite cutting plane approach. In low dimensions the implementation of the algorithm in matlab provides an estimation for the REE with an absolute error smaller than 10-3.
Toward an Attention-Based Diagnostic Tool for Patients With Locked-in Syndrome.
Lesenfants, Damien; Habbal, Dina; Chatelle, Camille; Soddu, Andrea; Laureys, Steven; Noirhomme, Quentin
2018-03-01
Electroencephalography (EEG) has been proposed as a supplemental tool for reducing clinical misdiagnosis in severely brain-injured populations helping to distinguish conscious from unconscious patients. We studied the use of spectral entropy as a measure of focal attention in order to develop a motor-independent, portable, and objective diagnostic tool for patients with locked-in syndrome (LIS), answering the issues of accuracy and training requirement. Data from 20 healthy volunteers, 6 LIS patients, and 10 patients with a vegetative state/unresponsive wakefulness syndrome (VS/UWS) were included. Spectral entropy was computed during a gaze-independent 2-class (attention vs rest) paradigm, and compared with EEG rhythms (delta, theta, alpha, and beta) classification. Spectral entropy classification during the attention-rest paradigm showed 93% and 91% accuracy in healthy volunteers and LIS patients respectively. VS/UWS patients were at chance level. EEG rhythms classification reached a lower accuracy than spectral entropy. Resting-state EEG spectral entropy could not distinguish individual VS/UWS patients from LIS patients. The present study provides evidence that an EEG-based measure of attention could detect command-following in patients with severe motor disabilities. The entropy system could detect a response to command in all healthy subjects and LIS patients, while none of the VS/UWS patients showed a response to command using this system.
Shah, Shagun Bhatia; Chowdhury, Itee; Bhargava, Ajay Kumar; Sabbharwal, Bhawnish
2015-01-01
This study aimed to compare the hemodynamic responses during induction and intubation between propofol and etomidate using entropy guided hypnosis. Sixty ASA I & II patients in the age group 20-60 yrs, scheduled for modified radical mastectomy were randomly allocated in two groups based on induction agent Etomidate or Propofol. Both groups received intravenous midazolam 0.03 mg kg(-1) and fentanyl 2 μg kg(-1) as premedication. After induction with the desired agent titrated to entropy 40, vecuronium 0.1 mg kg(-1) was administered for neuromuscular blockade. Heart rate, systolic, diastolic and mean arterial pressures, response entropy [RE] and state entropy [SE] were recorded at baseline, induction and upto three minutes post intubation. Data was subject to statistical analysis SPSS (version 12.0) the paired and the unpaired Student's T-tests for equality of means. Etomidate provided hemodynamic stability without the requirement of any rescue drug in 96.6% patients whereas rescue drug ephedrine was required in 36.6% patients in propofol group. Reduced induction doses 0.15mg kg(-1) for etomidate and 0.98 mg kg(-1) for propofol, sufficed to give an adequate anaesthetic depth based on entropy. Etomidate provides more hemodynamic stability than propofol during induction and intubation. Reduced induction doses of etomidate and propofol titrated to entropy translated into increased hemodynamic stability for both drugs and sufficed to give an adequate anaesthetic depth.
Shah, Shagun Bhatia; Chowdhury, Itee; Bhargava, Ajay Kumar; Sabbharwal, Bhawnish
2015-01-01
Background and Aims: This study aimed to compare the hemodynamic responses during induction and intubation between propofol and etomidate using entropy guided hypnosis. Material and Methods: Sixty ASA I & II patients in the age group 20-60 yrs, scheduled for modified radical mastectomy were randomly allocated in two groups based on induction agent Etomidate or Propofol. Both groups received intravenous midazolam 0.03 mg kg-1 and fentanyl 2 μg kg-1 as premedication. After induction with the desired agent titrated to entropy 40, vecuronium 0.1 mg kg-1 was administered for neuromuscular blockade. Heart rate, systolic, diastolic and mean arterial pressures, response entropy [RE] and state entropy [SE] were recorded at baseline, induction and upto three minutes post intubation. Data was subject to statistical analysis SPSS (version 12.0) the paired and the unpaired Student's T-tests for equality of means. Results: Etomidate provided hemodynamic stability without the requirement of any rescue drug in 96.6% patients whereas rescue drug ephedrine was required in 36.6% patients in propofol group. Reduced induction doses 0.15mg kg-1 for etomidate and 0.98 mg kg-1 for propofol, sufficed to give an adequate anaesthetic depth based on entropy. Conclusion: Etomidate provides more hemodynamic stability than propofol during induction and intubation. Reduced induction doses of etomidate and propofol titrated to entropy translated into increased hemodynamic stability for both drugs and sufficed to give an adequate anaesthetic depth. PMID:25948897
The Mass Function of Abell Clusters
NASA Astrophysics Data System (ADS)
Chen, J.; Huchra, J. P.; McNamara, B. R.; Mader, J.
1998-12-01
The velocity dispersion and mass functions for rich clusters of galaxies provide important constraints on models of the formation of Large-Scale Structure (e.g., Frenk et al. 1990). However, prior estimates of the velocity dispersion or mass function for galaxy clusters have been based on either very small samples of clusters (Bahcall and Cen 1993; Zabludoff et al. 1994) or large but incomplete samples (e.g., the Girardi et al. (1998) determination from a sample of clusters with more than 30 measured galaxy redshifts). In contrast, we approach the problem by constructing a volume-limited sample of Abell clusters. We collected individual galaxy redshifts for our sample from two major galaxy velocity databases, the NASA Extragalactic Database, NED, maintained at IPAC, and ZCAT, maintained at SAO. We assembled a database with velocity information for possible cluster members and then selected cluster members based on both spatial and velocity data. Cluster velocity dispersions and masses were calculated following the procedures of Danese, De Zotti, and di Tullio (1980) and Heisler, Tremaine, and Bahcall (1985), respectively. The final velocity dispersion and mass functions were analyzed in order to constrain cosmological parameters by comparison to the results of N-body simulations. Our data for the cluster sample as a whole and for the individual clusters (spatial maps and velocity histograms) in our sample is available on-line at http://cfa-www.harvard.edu/ huchra/clusters. This website will be updated as more data becomes available in the master redshift compilations, and will be expanded to include more clusters and large groups of galaxies.
Galaxy evolution in the cluster Abell 85: new insights from the dwarf population
NASA Astrophysics Data System (ADS)
Habas, Rebecca; Fadda, Dario; Marleau, Francine R.; Biviano, Andrea; Durret, Florence
2018-04-01
We present the first results of a new spectroscopic survey of the cluster Abell 85 targeting 1466 candidate cluster members within the central ˜1 deg2 of the cluster and having magnitudes mr < 20.5 using the VIsible MultiObject Spectrograph on the VLT and the Hydra spectrograh on WIYN. A total of 520 galaxies are confirmed as either relaxed cluster members or part of an infalling population. A significant fraction are low mass; the median stellar mass of the sample is 109.6 M⊙, and 25 per cent have stellar masses below 109 M⊙ (i.e. 133 dwarf galaxies). We also identify seven active galactic nuclei (AGN), four of which reside in dwarf host galaxies. We probe the evolution of star formation rates, based on Hα emission and continuum modelling, as a function of both mass and environment. We find that more star-forming galaxies are observed at larger clustercentric distances, while infalling galaxies show evidence for recently enhanced star-forming activity. Main-sequence galaxies, defined by their continuum star formation rates, show different evolutionary behaviour based on their mass. At the low-mass end, the galaxies have had their star formation recently quenched, while more massive galaxies show no significant change. The time-scales probed here favour fast quenching mechanisms, such as ram-pressure stripping. Galaxies within the green valley, defined similarly, do not show evidence of quenching. Instead, the low-mass galaxies maintain their levels of star-forming activity, while the more massive galaxies have experienced a recent burst.
NASA Astrophysics Data System (ADS)
Komatsu, Nobuyoshi
2017-11-01
A power-law corrected entropy based on a quantum entanglement is considered to be a viable black-hole entropy. In this study, as an alternative to Bekenstein-Hawking entropy, a power-law corrected entropy is applied to Padmanabhan's holographic equipartition law to thermodynamically examine an extra driving term in the cosmological equations for a flat Friedmann-Robertson-Walker universe at late times. Deviations from the Bekenstein-Hawking entropy generate an extra driving term (proportional to the α th power of the Hubble parameter, where α is a dimensionless constant for the power-law correction) in the acceleration equation, which can be derived from the holographic equipartition law. Interestingly, the value of the extra driving term in the present model is constrained by the second law of thermodynamics. From the thermodynamic constraint, the order of the driving term is found to be consistent with the order of the cosmological constant measured by observations. In addition, the driving term tends to be constantlike when α is small, i.e., when the deviation from the Bekenstein-Hawking entropy is small.
Entanglement entropy in critical phenomena and analog models of quantum gravity
NASA Astrophysics Data System (ADS)
Fursaev, Dmitri V.
2006-06-01
A general geometrical structure of the entanglement entropy for spatial partition of a relativistic QFT system is established by using methods of the effective gravity action and the spectral geometry. A special attention is payed to the subleading terms in the entropy in different dimensions and to behavior in different states. It is conjectured, on the base of relation between the entropy and the action, that in a fundamental theory the ground state entanglement entropy per unit area equals 1/(4GN), where GN is the Newton constant in the low-energy gravity sector of the theory. The conjecture opens a new avenue in analogue gravity models. For instance, in higher-dimensional condensed matter systems, which near a critical point are described by relativistic QFT’s, the entanglement entropy density defines an effective gravitational coupling. By studying the properties of this constant one can get new insights in quantum gravity phenomena, such as the universality of the low-energy physics, the renormalization group behavior of GN, the statistical meaning of the Bekenstein-Hawking entropy.
Entropy in bimolecular simulations: A comprehensive review of atomic fluctuations-based methods.
Kassem, Summer; Ahmed, Marawan; El-Sheikh, Salah; Barakat, Khaled H
2015-11-01
Entropy of binding constitutes a major, and in many cases a detrimental, component of the binding affinity in biomolecular interactions. While the enthalpic part of the binding free energy is easier to calculate, estimating the entropy of binding is further more complicated. A precise evaluation of entropy requires a comprehensive exploration of the complete phase space of the interacting entities. As this task is extremely hard to accomplish in the context of conventional molecular simulations, calculating entropy has involved many approximations. Most of these golden standard methods focused on developing a reliable estimation of the conformational part of the entropy. Here, we review these methods with a particular emphasis on the different techniques that extract entropy from atomic fluctuations. The theoretical formalisms behind each method is explained highlighting its strengths as well as its limitations, followed by a description of a number of case studies for each method. We hope that this brief, yet comprehensive, review provides a useful tool to understand these methods and realize the practical issues that may arise in such calculations. Copyright © 2015 Elsevier Inc. All rights reserved.
Using Link Disconnection Entropy Disorder to Detect Fast Moving Nodes in MANETs.
Alvarez, Carlos F; Palafox, Luis E; Aguilar, Leocundo; Sanchez, Mauricio A; Martinez, Luis G
2016-01-01
Mobile ad-hoc networks (MANETs) are dynamic by nature; this dynamism comes from node mobility, traffic congestion, and other transmission conditions. Metrics to evaluate the effects of those conditions shine a light on node's behavior in an ad-hoc network, helping to identify the node or nodes with better conditions of connection. In this paper, we propose a relative index to evaluate a single node reliability, based on the link disconnection entropy disorder using neighboring nodes as reference. Link disconnection entropy disorder is best used to identify fast moving nodes or nodes with unstable communications, this without the need of specialized sensors such as GPS. Several scenarios were studied to verify the index, measuring the effects of Speed and traffic density on the link disconnection entropy disorder. Packet delivery ratio is associated to the metric detecting a strong relationship, enabling the use of the link disconnection entropy disorder to evaluate the stability of a node to communicate with other nodes. To expand the utilization of the link entropy disorder, we identified nodes with higher speeds in network simulations just by using the link entropy disorder.
Cleavage Entropy as Quantitative Measure of Protease Specificity
Fuchs, Julian E.; von Grafenstein, Susanne; Huber, Roland G.; Margreiter, Michael A.; Spitzer, Gudrun M.; Wallnoefer, Hannes G.; Liedl, Klaus R.
2013-01-01
A purely information theory-guided approach to quantitatively characterize protease specificity is established. We calculate an entropy value for each protease subpocket based on sequences of cleaved substrates extracted from the MEROPS database. We compare our results with known subpocket specificity profiles for individual proteases and protease groups (e.g. serine proteases, metallo proteases) and reflect them quantitatively. Summation of subpocket-wise cleavage entropy contributions yields a measure for overall protease substrate specificity. This total cleavage entropy allows ranking of different proteases with respect to their specificity, separating unspecific digestive enzymes showing high total cleavage entropy from specific proteases involved in signaling cascades. The development of a quantitative cleavage entropy score allows an unbiased comparison of subpocket-wise and overall protease specificity. Thus, it enables assessment of relative importance of physicochemical and structural descriptors in protease recognition. We present an exemplary application of cleavage entropy in tracing substrate specificity in protease evolution. This highlights the wide range of substrate promiscuity within homologue proteases and hence the heavy impact of a limited number of mutations on individual substrate specificity. PMID:23637583
Design of new face-centered cubic high entropy alloys by thermodynamic calculation
NASA Astrophysics Data System (ADS)
Choi, Won-Mi; Jung, Seungmun; Jo, Yong Hee; Lee, Sunghak; Lee, Byeong-Joo
2017-09-01
A new face-centered cubic (fcc) high entropy alloy system with non-equiatomic compositions has been designed by utilizing a CALculation of PHAse Diagram (CALPHAD) - type thermodynamic calculation technique. The new alloy system is based on the representative fcc high entropy alloy, the Cantor alloy which is an equiatomic Co- Cr-Fe-Mn-Ni five-component alloy, but fully or partly replace the cobalt by vanadium and is of non-equiatomic compositions. Alloy compositions expected to have an fcc single-phase structure between 700 °C and melting temperatures are proposed. All the proposed alloys are experimentally confirmed to have the fcc single-phase during materials processes (> 800 °C), through an X-ray diffraction analysis. It is shown that there are more chances to find fcc single-phase high entropy alloys if paying attention to non-equiatomic composition regions and that the CALPHAD thermodynamic calculation can be an efficient tool for it. An alloy design technique based on thermodynamic calculation is demonstrated and the applicability and limitation of the approach as a design tool for high entropy alloys is discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tourassi, Georgia D.; Harrawood, Brian; Singh, Swatee
2007-08-15
We have previously presented a knowledge-based computer-assisted detection (KB-CADe) system for the detection of mammographic masses. The system is designed to compare a query mammographic region with mammographic templates of known ground truth. The templates are stored in an adaptive knowledge database. Image similarity is assessed with information theoretic measures (e.g., mutual information) derived directly from the image histograms. A previous study suggested that the diagnostic performance of the system steadily improves as the knowledge database is initially enriched with more templates. However, as the database increases in size, an exhaustive comparison of the query case with each stored templatemore » becomes computationally burdensome. Furthermore, blind storing of new templates may result in redundancies that do not necessarily improve diagnostic performance. To address these concerns we investigated an entropy-based indexing scheme for improving the speed of analysis and for satisfying database storage restrictions without compromising the overall diagnostic performance of our KB-CADe system. The indexing scheme was evaluated on two different datasets as (i) a search mechanism to sort through the knowledge database, and (ii) a selection mechanism to build a smaller, concise knowledge database that is easier to maintain but still effective. There were two important findings in the study. First, entropy-based indexing is an effective strategy to identify fast a subset of templates that are most relevant to a given query. Only this subset could be analyzed in more detail using mutual information for optimized decision making regarding the query. Second, a selective entropy-based deposit strategy may be preferable where only high entropy cases are maintained in the knowledge database. Overall, the proposed entropy-based indexing scheme was shown to reduce the computational cost of our KB-CADe system by 55% to 80% while maintaining the system's diagnostic performance.« less
Brain entropy and human intelligence: A resting-state fMRI study
Calderone, Daniel; Morales, Leah J.
2018-01-01
Human intelligence comprises comprehension of and reasoning about an infinitely variable external environment. A brain capable of large variability in neural configurations, or states, will more easily understand and predict variable external events. Entropy measures the variety of configurations possible within a system, and recently the concept of brain entropy has been defined as the number of neural states a given brain can access. This study investigates the relationship between human intelligence and brain entropy, to determine whether neural variability as reflected in neuroimaging signals carries information about intellectual ability. We hypothesize that intelligence will be positively associated with entropy in a sample of 892 healthy adults, using resting-state fMRI. Intelligence is measured with the Shipley Vocabulary and WASI Matrix Reasoning tests. Brain entropy was positively associated with intelligence. This relation was most strongly observed in the prefrontal cortex, inferior temporal lobes, and cerebellum. This relationship between high brain entropy and high intelligence indicates an essential role for entropy in brain functioning. It demonstrates that access to variable neural states predicts complex behavioral performance, and specifically shows that entropy derived from neuroimaging signals at rest carries information about intellectual capacity. Future work in this area may elucidate the links between brain entropy in both resting and active states and various forms of intelligence. This insight has the potential to provide predictive information about adaptive behavior and to delineate the subdivisions and nature of intelligence based on entropic patterns. PMID:29432427
Brain entropy and human intelligence: A resting-state fMRI study.
Saxe, Glenn N; Calderone, Daniel; Morales, Leah J
2018-01-01
Human intelligence comprises comprehension of and reasoning about an infinitely variable external environment. A brain capable of large variability in neural configurations, or states, will more easily understand and predict variable external events. Entropy measures the variety of configurations possible within a system, and recently the concept of brain entropy has been defined as the number of neural states a given brain can access. This study investigates the relationship between human intelligence and brain entropy, to determine whether neural variability as reflected in neuroimaging signals carries information about intellectual ability. We hypothesize that intelligence will be positively associated with entropy in a sample of 892 healthy adults, using resting-state fMRI. Intelligence is measured with the Shipley Vocabulary and WASI Matrix Reasoning tests. Brain entropy was positively associated with intelligence. This relation was most strongly observed in the prefrontal cortex, inferior temporal lobes, and cerebellum. This relationship between high brain entropy and high intelligence indicates an essential role for entropy in brain functioning. It demonstrates that access to variable neural states predicts complex behavioral performance, and specifically shows that entropy derived from neuroimaging signals at rest carries information about intellectual capacity. Future work in this area may elucidate the links between brain entropy in both resting and active states and various forms of intelligence. This insight has the potential to provide predictive information about adaptive behavior and to delineate the subdivisions and nature of intelligence based on entropic patterns.
An adaptable binary entropy coder
NASA Technical Reports Server (NTRS)
Kiely, A.; Klimesh, M.
2001-01-01
We present a novel entropy coding technique which is based on recursive interleaving of variable-to-variable length binary source codes. We discuss code design and performance estimation methods, as well as practical encoding and decoding algorithms.
Application of online measures to monitor and evaluate multiplatform fusion performance
NASA Astrophysics Data System (ADS)
Stubberud, Stephen C.; Kowalski, Charlene; Klamer, Dale M.
1999-07-01
A primary concern of multiplatform data fusion is assessing the quality and utility of data shared among platforms. Constraints such as platform and sensor capability and task load necessitate development of an on-line system that computes a metric to determine which other platform can provide the best data for processing. To determine data quality, we are implementing an approach based on entropy coupled with intelligent agents. To determine data quality, we are implementing an approach based on entropy coupled with intelligent agents. Entropy measures quality of processed information such as localization, classification, and ambiguity in measurement-to-track association. Lower entropy scores imply less uncertainty about a particular target. When new information is provided, we compuete the level of improvement a particular track obtains from one measurement to another. The measure permits us to evaluate the utility of the new information. We couple entropy with intelligent agents that provide two main data gathering functions: estimation of another platform's performance and evaluation of the new measurement data's quality. Both functions result from the entropy metric. The intelligent agent on a platform makes an estimate of another platform's measurement and provides it to its own fusion system, which can then incorporate it, for a particular target. A resulting entropy measure is then calculated and returned to its own agent. From this metric, the agent determines a perceived value of the offboard platform's measurement. If the value is satisfactory, the agent requests the measurement from the other platform, usually by interacting with the other platform's agent. Once the actual measurement is received, again entropy is computed and the agent assesses its estimation process and refines it accordingly.
Cornforth, David J; Tarvainen, Mika P; Jelinek, Herbert F
2014-01-01
Cardiac autonomic neuropathy (CAN) is a disease that involves nerve damage leading to an abnormal control of heart rate. An open question is to what extent this condition is detectable from heart rate variability (HRV), which provides information only on successive intervals between heart beats, yet is non-invasive and easy to obtain from a three-lead ECG recording. A variety of measures may be extracted from HRV, including time domain, frequency domain, and more complex non-linear measures. Among the latter, Renyi entropy has been proposed as a suitable measure that can be used to discriminate CAN from controls. However, all entropy methods require estimation of probabilities, and there are a number of ways in which this estimation can be made. In this work, we calculate Renyi entropy using several variations of the histogram method and a density method based on sequences of RR intervals. In all, we calculate Renyi entropy using nine methods and compare their effectiveness in separating the different classes of participants. We found that the histogram method using single RR intervals yields an entropy measure that is either incapable of discriminating CAN from controls, or that it provides little information that could not be gained from the SD of the RR intervals. In contrast, probabilities calculated using a density method based on sequences of RR intervals yield an entropy measure that provides good separation between groups of participants and provides information not available from the SD. The main contribution of this work is that different approaches to calculating probability may affect the success of detecting disease. Our results bring new clarity to the methods used to calculate the Renyi entropy in general, and in particular, to the successful detection of CAN.
Cornforth, David J.; Tarvainen, Mika P.; Jelinek, Herbert F.
2014-01-01
Cardiac autonomic neuropathy (CAN) is a disease that involves nerve damage leading to an abnormal control of heart rate. An open question is to what extent this condition is detectable from heart rate variability (HRV), which provides information only on successive intervals between heart beats, yet is non-invasive and easy to obtain from a three-lead ECG recording. A variety of measures may be extracted from HRV, including time domain, frequency domain, and more complex non-linear measures. Among the latter, Renyi entropy has been proposed as a suitable measure that can be used to discriminate CAN from controls. However, all entropy methods require estimation of probabilities, and there are a number of ways in which this estimation can be made. In this work, we calculate Renyi entropy using several variations of the histogram method and a density method based on sequences of RR intervals. In all, we calculate Renyi entropy using nine methods and compare their effectiveness in separating the different classes of participants. We found that the histogram method using single RR intervals yields an entropy measure that is either incapable of discriminating CAN from controls, or that it provides little information that could not be gained from the SD of the RR intervals. In contrast, probabilities calculated using a density method based on sequences of RR intervals yield an entropy measure that provides good separation between groups of participants and provides information not available from the SD. The main contribution of this work is that different approaches to calculating probability may affect the success of detecting disease. Our results bring new clarity to the methods used to calculate the Renyi entropy in general, and in particular, to the successful detection of CAN. PMID:25250311
NASA Astrophysics Data System (ADS)
Benfenati, Francesco; Beretta, Gian Paolo
2018-04-01
We show that to prove the Onsager relations using the microscopic time reversibility one necessarily has to make an ergodic hypothesis, or a hypothesis closely linked to that. This is true in all the proofs of the Onsager relations in the literature: from the original proof by Onsager, to more advanced proofs in the context of linear response theory and the theory of Markov processes, to the proof in the context of the kinetic theory of gases. The only three proofs that do not require any kind of ergodic hypothesis are based on additional hypotheses on the macroscopic evolution: Ziegler's maximum entropy production principle (MEPP), the principle of time reversal invariance of the entropy production, or the steepest entropy ascent principle (SEAP).
Reply to "Comment on 'Quantum Kaniadakis entropy under projective measurement' ".
Ourabah, Kamel; Tribeche, Mouloud
2016-08-01
We rely on our proof of the nondecreasing character of quantum Kaniadakis entropy under projective measurement [Phys. Rev. E 92, 032114 (2015)PLEEE81539-375510.1103/PhysRevE.92.032114], and we put it into perspective with the results of Bosyk et al. [Quantum Inf Process 15, 3393 (2016)10.1007/s11128-016-1329-5]. Our method, adopted for the proof that Kaniadakis entropy does not decrease under a projective measurement, is based on Jensen's inequalities, while the method proposed by the authors of the Comment represents another alternative and clearly correct method to prove the same thing. Furthermore, we clarify that our interest in Kaniadakis entropy is due to the fact that this entropy has a transparent physical significance, emerging within the special relativity.
Elements of the cognitive universe
NASA Astrophysics Data System (ADS)
Topsøe, Flemming
2017-06-01
"The least biased inference, taking available information into account, is the one with maximum entropy". So we are taught by Jaynes. The many followers from a broad spectrum of the natural and social sciences point to the wisdom of this principle, the maximum entropy principle, MaxEnt. But "entropy" need not be tied only to classical entropy and thus to probabilistic thinking. In fact, the arguments found in Jaynes' writings and elsewhere can, as we shall attempt to demonstrate, profitably be revisited, elaborated and transformed to apply in a much more general abstract setting. The approach is based on game theoretical thinking. Philosophical considerations dealing with notions of cognition - basically truth and belief - lie behind. Quantitative elements are introduced via a concept of description effort. An interpretation of Tsallis Entropy is indicated.
Entropy-Based Search Algorithm for Experimental Design
NASA Astrophysics Data System (ADS)
Malakar, N. K.; Knuth, K. H.
2011-03-01
The scientific method relies on the iterated processes of inference and inquiry. The inference phase consists of selecting the most probable models based on the available data; whereas the inquiry phase consists of using what is known about the models to select the most relevant experiment. Optimizing inquiry involves searching the parameterized space of experiments to select the experiment that promises, on average, to be maximally informative. In the case where it is important to learn about each of the model parameters, the relevance of an experiment is quantified by Shannon entropy of the distribution of experimental outcomes predicted by a probable set of models. If the set of potential experiments is described by many parameters, we must search this high-dimensional entropy space. Brute force search methods will be slow and computationally expensive. We present an entropy-based search algorithm, called nested entropy sampling, to select the most informative experiment for efficient experimental design. This algorithm is inspired by Skilling's nested sampling algorithm used in inference and borrows the concept of a rising threshold while a set of experiment samples are maintained. We demonstrate that this algorithm not only selects highly relevant experiments, but also is more efficient than brute force search. Such entropic search techniques promise to greatly benefit autonomous experimental design.
Mapping the Dark Matter Distribution of the Merging Galaxy Cluster Abell 115
NASA Astrophysics Data System (ADS)
Kim, Mincheol; Jee, Myungkook James; Forman, William; Golovich, Nathan; van Weeren, Reinout
2018-01-01
The colliding galaxy cluster Abell 115 shows a number of clear merging features including radio relics, double X-ray peaks, and offsets between the cluster member galaxies and the X-ray distributions. In order to constrain the merging scenario of this complex system, it is critical to know where the dark matter is. We present a high-fidelity weak-lensing analysis of the system using a state-of-the-art method that robustly models the detailed PSF variations. Our mass reconstruction reveals two distinct mass peaks. Through a careful bootstrapping analysis, we demonstrate that the positions of these two mass peaks are highly consistent with those of the cluster galaxies, although the comparison with the X-ray emission shows that the mass peaks lead the X-ray peaks. We obtain the first weak-lensing mass of each subcluster by simultaneously fitting two NFW profiles, as well as the total mass of the system. Interestingly, the total mass is a few factors lower than the published dynamical mass based on velocity dispersion. This large mass discrepancy may be attributed to a significant disruption of the cluster galaxy orbits due to the violent merger. Our preliminary analysis indicates that the two subclusters might have experienced a first off-axis collision a few Gyrs ago and might be now returning for a second collision.
Tang, Yongchuan; Zhou, Deyun; Chan, Felix T S
2018-06-11
Quantification of uncertain degree in the Dempster-Shafer evidence theory (DST) framework with belief entropy is still an open issue, even a blank field for the open world assumption. Currently, the existed uncertainty measures in the DST framework are limited to the closed world where the frame of discernment (FOD) is assumed to be complete. To address this issue, this paper focuses on extending a belief entropy to the open world by considering the uncertain information represented as the FOD and the nonzero mass function of the empty set simultaneously. An extension to Deng’s entropy in the open world assumption (EDEOW) is proposed as a generalization of the Deng’s entropy and it can be degenerated to the Deng entropy in the closed world wherever necessary. In order to test the reasonability and effectiveness of the extended belief entropy, an EDEOW-based information fusion approach is proposed and applied to sensor data fusion under uncertainty circumstance. The experimental results verify the usefulness and applicability of the extended measure as well as the modified sensor data fusion method. In addition, a few open issues still exist in the current work: the necessary properties for a belief entropy in the open world assumption, whether there exists a belief entropy that satisfies all the existed properties, and what is the most proper fusion frame for sensor data fusion under uncertainty.
NASA Astrophysics Data System (ADS)
Li, Weiyao; Huang, Guanhua; Xiong, Yunwu
2016-04-01
The complexity of the spatial structure of porous media, randomness of groundwater recharge and discharge (rainfall, runoff, etc.) has led to groundwater movement complexity, physical and chemical interaction between groundwater and porous media cause solute transport in the medium more complicated. An appropriate method to describe the complexity of features is essential when study on solute transport and conversion in porous media. Information entropy could measure uncertainty and disorder, therefore we attempted to investigate complexity, explore the contact between the information entropy and complexity of solute transport in heterogeneous porous media using information entropy theory. Based on Markov theory, two-dimensional stochastic field of hydraulic conductivity (K) was generated by transition probability. Flow and solute transport model were established under four conditions (instantaneous point source, continuous point source, instantaneous line source and continuous line source). The spatial and temporal complexity of solute transport process was characterized and evaluated using spatial moment and information entropy. Results indicated that the entropy increased as the increase of complexity of solute transport process. For the point source, the one-dimensional entropy of solute concentration increased at first and then decreased along X and Y directions. As time increased, entropy peak value basically unchanged, peak position migrated along the flow direction (X direction) and approximately coincided with the centroid position. With the increase of time, spatial variability and complexity of solute concentration increase, which result in the increases of the second-order spatial moment and the two-dimensional entropy. Information entropy of line source was higher than point source. Solute entropy obtained from continuous input was higher than instantaneous input. Due to the increase of average length of lithoface, media continuity increased, flow and solute transport complexity weakened, and the corresponding information entropy also decreased. Longitudinal macro dispersivity declined slightly at early time then rose. Solute spatial and temporal distribution had significant impacts on the information entropy. Information entropy could reflect the change of solute distribution. Information entropy appears a tool to characterize the spatial and temporal complexity of solute migration and provides a reference for future research.
Relative entropy of entanglement and restricted measurements.
Piani, M
2009-10-16
We introduce variants of relative entropy of entanglement based on the optimal distinguishability from unentangled states by means of restricted measurements. In this way we are able to prove that the standard regularized entropy of entanglement is strictly positive for all multipartite entangled states. This implies that the asymptotic creation of a multipartite entangled state by means of local operations and classical communication always requires the consumption of a nonlocal resource at a strictly positive rate.
Design of high entropy alloys based on the experience from commercial superalloys
NASA Astrophysics Data System (ADS)
Wang, Z.; Huang, Y.; Wang, J.; Liu, C. T.
2015-01-01
High entropy alloys (HEAs) have been drawing increasing attention recently and gratifying results have been obtained. However, the existing metallurgic rules of HEAs could not provide specific information of selecting candidate alloys for structural applications. Our brief survey reveals that many commercial superalloys have medium and even to high configurational entropies. The experience of commercial superalloys provides a clue for helping us in the development of HEAs for structural applications.
NASA Astrophysics Data System (ADS)
Gulamsarwar, Syazwani; Salleh, Zabidin
2017-08-01
The purpose of this paper is to generalize the notions of Adler's topological entropy along with their several fundamental properties. A function f : X → Y is said to be R-map if f-1 (V) is regular open in X for every regular open set V in Y. Thus, we initiated a notion of topological nearly entropy for topological R-dynamical systems which is based on nearly compact relative to the space by using R-map.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koenig, Robert
We propose a generalization of the quantum entropy power inequality involving conditional entropies. For the special case of Gaussian states, we give a proof based on perturbation theory for symplectic spectra. We discuss some implications for entanglement-assisted classical communication over additive bosonic noise channels.
NASA Astrophysics Data System (ADS)
Viswanathan, Vilayanur V.; Choi, Daiwon; Wang, Donghai; Xu, Wu; Towne, Silas; Williford, Ralph E.; Zhang, Ji-Guang; Liu, Jun; Yang, Zhenguo
The entropy changes (Δ S) in various cathode and anode materials, as well as in complete Li-ion batteries, were measured using an electrochemical thermodynamic measurement system (ETMS). LiCoO 2 has a much larger entropy change than electrodes based on LiNi xCo yMn zO 2 and LiFePO 4, while lithium titanate based anodes have lower entropy change compared to graphite anodes. The reversible heat generation rate was found to be a significant portion of the total heat generation rate. The appropriate combinations of cathode and anode were investigated to minimize reversible heat generation rate across the 0-100% state of charge (SOC) range. In addition to screening for battery electrode materials with low reversible heat, the techniques described in this paper can be a useful engineering tool for battery thermal management in stationary and transportation applications.
Entanglement of two blocks of spins in the critical Ising model
NASA Astrophysics Data System (ADS)
Facchi, P.; Florio, G.; Invernizzi, C.; Pascazio, S.
2008-11-01
We compute the entropy of entanglement of two blocks of L spins at a distance d in the ground state of an Ising chain in an external transverse magnetic field. We numerically study the von Neumann entropy for different values of the transverse field. At the critical point we obtain analytical results for blocks of size L=1 and 2. In the general case, the critical entropy is shown to be additive when d→∞ . Finally, based on simple arguments, we derive an expression for the entropy at the critical point as a function of both L and d . This formula is in excellent agreement with numerical results.
The Shannon entropy as a measure of diffusion in multidimensional dynamical systems
NASA Astrophysics Data System (ADS)
Giordano, C. M.; Cincotta, P. M.
2018-05-01
In the present work, we introduce two new estimators of chaotic diffusion based on the Shannon entropy. Using theoretical, heuristic and numerical arguments, we show that the entropy, S, provides a measure of the diffusion extent of a given small initial ensemble of orbits, while an indicator related with the time derivative of the entropy, S', estimates the diffusion rate. We show that in the limiting case of near ergodicity, after an appropriate normalization, S' coincides with the standard homogeneous diffusion coefficient. The very first application of this formulation to a 4D symplectic map and to the Arnold Hamiltonian reveals very successful and encouraging results.
Continuous time wavelet entropy of auditory evoked potentials.
Cek, M Emre; Ozgoren, Murat; Savaci, F Acar
2010-01-01
In this paper, the continuous time wavelet entropy (CTWE) of auditory evoked potentials (AEP) has been characterized by evaluating the relative wavelet energies (RWE) in specified EEG frequency bands. Thus, the rapid variations of CTWE due to the auditory stimulation could be detected in post-stimulus time interval. This approach removes the probability of missing the information hidden in short time intervals. The discrete time and continuous time wavelet based wavelet entropy variations were compared on non-target and target AEP data. It was observed that CTWE can also be an alternative method to analyze entropy as a function of time. 2009 Elsevier Ltd. All rights reserved.
Entropy model of dissipative structure on corporate social responsibility
NASA Astrophysics Data System (ADS)
Li, Zuozhi; Jiang, Jie
2017-06-01
Enterprise is prompted to fulfill the social responsibility requirement by the internal and external environment. In this complex system, some studies suggest that firms have an orderly or chaotic entropy exchange behavior. Based on the theory of dissipative structure, this paper constructs the entropy index system of corporate social responsibility(CSR) and explores the dissipative structure of CSR through Brusselator model criterion. Picking up listed companies of the equipment manufacturing, the research shows that CSR has positive incentive to negative entropy and promotes the stability of dissipative structure. In short, the dissipative structure of CSR has a positive impact on the interests of stakeholders and corporate social images.
Entropy for Mechanically Vibrating Systems
NASA Astrophysics Data System (ADS)
Tufano, Dante
The research contained within this thesis deals with the subject of entropy as defined for and applied to mechanically vibrating systems. This work begins with an overview of entropy as it is understood in the fields of classical thermodynamics, information theory, statistical mechanics, and statistical vibroacoustics. Khinchin's definition of entropy, which is the primary definition used for the work contained in this thesis, is introduced in the context of vibroacoustic systems. The main goal of this research is to to establish a mathematical framework for the application of Khinchin's entropy in the field of statistical vibroacoustics by examining the entropy context of mechanically vibrating systems. The introduction of this thesis provides an overview of statistical energy analysis (SEA), a modeling approach to vibroacoustics that motivates this work on entropy. The objective of this thesis is given, and followed by a discussion of the intellectual merit of this work as well as a literature review of relevant material. Following the introduction, an entropy analysis of systems of coupled oscillators is performed utilizing Khinchin's definition of entropy. This analysis develops upon the mathematical theory relating to mixing entropy, which is generated by the coupling of vibroacoustic systems. The mixing entropy is shown to provide insight into the qualitative behavior of such systems. Additionally, it is shown that the entropy inequality property of Khinchin's entropy can be reduced to an equality using the mixing entropy concept. This equality can be interpreted as a facet of the second law of thermodynamics for vibroacoustic systems. Following this analysis, an investigation of continuous systems is performed using Khinchin's entropy. It is shown that entropy analyses using Khinchin's entropy are valid for continuous systems that can be decomposed into a finite number of modes. The results are shown to be analogous to those obtained for simple oscillators, which demonstrates the applicability of entropy-based approaches to real-world systems. Three systems are considered to demonstrate these findings: 1) a rod end-coupled to a simple oscillator, 2) two end-coupled rods, and 3) two end-coupled beams. The aforementioned work utilizes the weak coupling assumption to determine the entropy of composite systems. Following this discussion, a direct method of finding entropy is developed which does not rely on this limiting assumption. The resulting entropy provides a useful benchmark for evaluating the accuracy of the weak coupling approach, and is validated using systems of coupled oscillators. The later chapters of this work discuss Khinchin's entropy as applied to nonlinear and nonconservative systems, respectively. The discussion of entropy for nonlinear systems is motivated by the desire to expand the applicability of SEA techniques beyond the linear regime. The discussion of nonconservative systems is also crucial, since real-world systems interact with their environment, and it is necessary to confirm the validity of an entropy approach for systems that are relevant in the context of SEA. Having developed a mathematical framework for determining entropy under a number of previously unexplored cases, the relationship between thermodynamics and statistical vibroacoustics can be better understood. Specifically, vibroacoustic temperatures can be obtained for systems that are not necessarily linear or weakly coupled. In this way, entropy provides insight into how the power flow proportionality of statistical energy analysis (SEA) can be applied to a broader class of vibroacoustic systems. As such, entropy is a useful tool for both justifying and expanding the foundational results of SEA.
Single-cell entropy for accurate estimation of differentiation potency from a cell's transcriptome
NASA Astrophysics Data System (ADS)
Teschendorff, Andrew E.; Enver, Tariq
2017-06-01
The ability to quantify differentiation potential of single cells is a task of critical importance. Here we demonstrate, using over 7,000 single-cell RNA-Seq profiles, that differentiation potency of a single cell can be approximated by computing the signalling promiscuity, or entropy, of a cell's transcriptome in the context of an interaction network, without the need for feature selection. We show that signalling entropy provides a more accurate and robust potency estimate than other entropy-based measures, driven in part by a subtle positive correlation between the transcriptome and connectome. Signalling entropy identifies known cell subpopulations of varying potency and drug resistant cancer stem-cell phenotypes, including those derived from circulating tumour cells. It further reveals that expression heterogeneity within single-cell populations is regulated. In summary, signalling entropy allows in silico estimation of the differentiation potency and plasticity of single cells and bulk samples, providing a means to identify normal and cancer stem-cell phenotypes.
Entropy-stable summation-by-parts discretization of the Euler equations on general curved elements
NASA Astrophysics Data System (ADS)
Crean, Jared; Hicken, Jason E.; Del Rey Fernández, David C.; Zingg, David W.; Carpenter, Mark H.
2018-03-01
We present and analyze an entropy-stable semi-discretization of the Euler equations based on high-order summation-by-parts (SBP) operators. In particular, we consider general multidimensional SBP elements, building on and generalizing previous work with tensor-product discretizations. In the absence of dissipation, we prove that the semi-discrete scheme conserves entropy; significantly, this proof of nonlinear L2 stability does not rely on integral exactness. Furthermore, interior penalties can be incorporated into the discretization to ensure that the total (mathematical) entropy decreases monotonically, producing an entropy-stable scheme. SBP discretizations with curved elements remain accurate, conservative, and entropy stable provided the mapping Jacobian satisfies the discrete metric invariants; polynomial mappings at most one degree higher than the SBP operators automatically satisfy the metric invariants in two dimensions. In three-dimensions, we describe an elementwise optimization that leads to suitable Jacobians in the case of polynomial mappings. The properties of the semi-discrete scheme are verified and investigated using numerical experiments.
Single-cell entropy for accurate estimation of differentiation potency from a cell's transcriptome
Teschendorff, Andrew E.; Enver, Tariq
2017-01-01
The ability to quantify differentiation potential of single cells is a task of critical importance. Here we demonstrate, using over 7,000 single-cell RNA-Seq profiles, that differentiation potency of a single cell can be approximated by computing the signalling promiscuity, or entropy, of a cell's transcriptome in the context of an interaction network, without the need for feature selection. We show that signalling entropy provides a more accurate and robust potency estimate than other entropy-based measures, driven in part by a subtle positive correlation between the transcriptome and connectome. Signalling entropy identifies known cell subpopulations of varying potency and drug resistant cancer stem-cell phenotypes, including those derived from circulating tumour cells. It further reveals that expression heterogeneity within single-cell populations is regulated. In summary, signalling entropy allows in silico estimation of the differentiation potency and plasticity of single cells and bulk samples, providing a means to identify normal and cancer stem-cell phenotypes. PMID:28569836
Information entropy and dark energy evolution
NASA Astrophysics Data System (ADS)
Capozziello, Salvatore; Luongo, Orlando
Here, the information entropy is investigated in the context of early and late cosmology under the hypothesis that distinct phases of universe evolution are entangled between them. The approach is based on the entangled state ansatz, representing a coarse-grained definition of primordial dark temperature associated to an effective entangled energy density. The dark temperature definition comes from assuming either Von Neumann or linear entropy as sources of cosmological thermodynamics. We interpret the involved information entropies by means of probabilities of forming structures during cosmic evolution. Following this recipe, we propose that quantum entropy is simply associated to the thermodynamical entropy and we investigate the consequences of our approach using the adiabatic sound speed. As byproducts, we analyze two phases of universe evolution: the late and early stages. To do so, we first recover that dark energy reduces to a pure cosmological constant, as zero-order entanglement contribution, and second that inflation is well-described by means of an effective potential. In both cases, we infer numerical limits which are compatible with current observations.
Modeling Information Content Via Dirichlet-Multinomial Regression Analysis.
Ferrari, Alberto
2017-01-01
Shannon entropy is being increasingly used in biomedical research as an index of complexity and information content in sequences of symbols, e.g. languages, amino acid sequences, DNA methylation patterns and animal vocalizations. Yet, distributional properties of information entropy as a random variable have seldom been the object of study, leading to researchers mainly using linear models or simulation-based analytical approach to assess differences in information content, when entropy is measured repeatedly in different experimental conditions. Here a method to perform inference on entropy in such conditions is proposed. Building on results coming from studies in the field of Bayesian entropy estimation, a symmetric Dirichlet-multinomial regression model, able to deal efficiently with the issue of mean entropy estimation, is formulated. Through a simulation study the model is shown to outperform linear modeling in a vast range of scenarios and to have promising statistical properties. As a practical example, the method is applied to a data set coming from a real experiment on animal communication.
Preserved Entropy, quantum criticality and fragile magnetism
NASA Astrophysics Data System (ADS)
Canfield, Paul
A large swath of strongly correlated electron systems can be associated with the phenomenon of preserved entropy and fragile magnetism. In this talk I will present our thoughts and plans for the discovery and development of lanthanide and transition metal based, strongly correlated systems that are revealed by suppressed, fragile magnetism or grow out of preserved entropy. This talk is based on work published in This work was supported by the U.S. Dept. of Energy, Basic Energy Science, Division of Materials Sciences and Engineering under Contract No. DE-AC02-07CH11358 as well as by the Gordon and Betty Moore Foundations EPiQS Initiative through Grant GBMF4411.
Tsallis entropy and general polygamy of multiparty quantum entanglement in arbitrary dimensions
NASA Astrophysics Data System (ADS)
Kim, Jeong San
2016-12-01
We establish a unified view of the polygamy of multiparty quantum entanglement in arbitrary dimensions. Using quantum Tsallis-q entropy, we provide a one-parameter class of polygamy inequalities of multiparty quantum entanglement. This class of polygamy inequalities reduces to the known polygamy inequalities based on tangle and entanglement of assistance for a selective choice of the parameter q . We further provide one-parameter generalizations of various quantum correlations based on Tsallis-q entropy. By investigating the properties of the generalized quantum correlations, we provide a sufficient condition on which the Tsallis-q polygamy inequalities hold in multiparty quantum systems of arbitrary dimensions.
Engoren, Milo; Brown, Russell R; Dubovoy, Anna
2017-01-01
Acute anemia is associated with both cerebral dysfunction and acute kidney injury and is often treated with red blood cell transfusion. We sought to determine if blood transfusion changed the cerebral oximetry entropy, a measure of the complexity or irregularity of the oximetry values, and if this change was associated with subsequent acute kidney injury. This was a retrospective, case-control study of patients undergoing cardiac surgery with cardiopulmonary bypass at a tertiary care hospital, comparing those who received a red blood cell transfusion to those who did not. Acute kidney injury was defined as a perioperative increase in serum creatinine by ⩾26.4 μmol/L or by ⩾50% increase. Entropy was measured using approximate entropy, sample entropy, forbidden word entropy and basescale4 entropy in 500-point sets. Forty-four transfused patients were matched to 88 randomly selected non-transfused patients. All measures of entropy had small changes in the transfused group, but increased in the non-transfused group (p<0.05, for all comparisons). Thirty-five of 132 patients (27%) suffered acute kidney injury. Based on preoperative factors, patients who suffered kidney injury were similar to those who did not, including baseline cerebral oximetry levels. After analysis with hierarchical logistic regression, the change in basescale4 entropy (odds ratio = 1.609, 95% confidence interval = 1.057-2.450, p = 0.027) and the interaction between basescale entropy and transfusion were significantly associated with subsequent development of acute kidney injury. The transfusion of red blood cells was associated with a smaller rise in entropy values compared to non-transfused patients, suggesting a change in the regulation of cerebral oxygenation, and these changes in cerebral oxygenation are also associated with acute kidney injury.
2010-08-19
NASA Hubble Space Telescope shows the inner region of Abell 1689, an immense cluster of galaxies located 2.2 billion light-years away. The cluster gravitational field is warping light from background galaxies, causing them to appear as arcs.
Celestial Cities and the Roads That Connect Them
2008-01-25
Observations from NASA Spitzer Space Telescope show that filamentary galaxies form stars at twice the rate of their densely clustered counterparts. This is a representation of galaxies in and surrounding a galaxy cluster called Abell 1763.
Shocking Tails in the Major Merger Abell 2744
NASA Astrophysics Data System (ADS)
Owers, Matt S.; Couch, Warrick J.; Nulsen, Paul E. J.; Randall, Scott W.
2012-05-01
We identify four rare "jellyfish" galaxies in Hubble Space Telescope imagery of the major merger cluster Abell 2744. These galaxies harbor trails of star-forming knots and filaments which have formed in situ in gas tails stripped from the parent galaxies, indicating they are in the process of being transformed by the environment. Further evidence for rapid transformation in these galaxies comes from their optical spectra, which reveal starburst, poststarburst, and active galactic nucleus features. Most intriguingly, three of the jellyfish galaxies lie near intracluster medium features associated with a merging "Bullet-like" subcluster and its shock front detected in Chandra X-ray images. We suggest that the high-pressure merger environment may be responsible for the star formation in the gaseous tails. This provides observational evidence for the rapid transformation of galaxies during the violent core passage phase of a major cluster merger.
X-ray lines and self-interacting dark matter.
Mambrini, Yann; Toma, Takashi
We study the correlation between a monochromatic signal from annihilating dark matter and its self-interacting cross section. We apply our argument to a complex scalar dark sector, where the pseudo-scalar plays the role of a warm dark matter candidate while the scalar mediates its interaction with the Standard Model. We combine the recent observation of the cluster Abell 3827 for self-interacting dark matter and the constraints on the annihilation cross section for monochromatic X-ray lines. We also confront our model to a set of recent experimental analyses and find that such an extension can naturally produce a monochromatic keV signal corresponding to recent observations of Perseus or Andromeda, while in the meantime it predicts a self-interacting cross section of the order of [Formula: see text], as recently claimed in the observation of the cluster Abell 3827. We also propose a way to distinguish such models by future direct detection techniques.
On the X-ray spectrum of the volume emissivity arising from Abell clusters
NASA Technical Reports Server (NTRS)
Stottlemyer, A. R.; Boldt, E. A.
1984-01-01
HEAO 1 A-2 X-ray spectra (2-15 keV) for an optically selected sample of Abell clusters of galaxies with z less than 0.1 have been analyzed to determine the energy dependence of the cosmological X-ray volume emissivity arising from such clusters. This spectrum is well fitted by an isothermal-bremsstrahlung model with kT = 7.4 + or - 1.5 KeV. This result is a test of the isothermal-volume-emissivity spectrum to be inferred from the conjecture that all contributing clusters may be characterized by kT = 7 keV, as assumed by McKee et al. (1980) in estimating the underlying luminosity function for the same sample. Although satisfied at the statistical level indicated, the analysis of a low-luminosity subsample suggests that this assumption of identical isothermal spectra would lead to a systematic error for a more statistically precise determination of the luminosity function's form.
SHOCKING TAILS IN THE MAJOR MERGER ABELL 2744
DOE Office of Scientific and Technical Information (OSTI.GOV)
Owers, Matt S.; Couch, Warrick J.; Nulsen, Paul E. J.
We identify four rare 'jellyfish' galaxies in Hubble Space Telescope imagery of the major merger cluster Abell 2744. These galaxies harbor trails of star-forming knots and filaments which have formed in situ in gas tails stripped from the parent galaxies, indicating they are in the process of being transformed by the environment. Further evidence for rapid transformation in these galaxies comes from their optical spectra, which reveal starburst, poststarburst, and active galactic nucleus features. Most intriguingly, three of the jellyfish galaxies lie near intracluster medium features associated with a merging 'Bullet-like' subcluster and its shock front detected in Chandra X-raymore » images. We suggest that the high-pressure merger environment may be responsible for the star formation in the gaseous tails. This provides observational evidence for the rapid transformation of galaxies during the violent core passage phase of a major cluster merger.« less
Naef, Rudolf; Acree, William E
2017-06-25
The calculation of the standard enthalpies of vaporization, sublimation and solvation of organic molecules is presented using a common computer algorithm on the basis of a group-additivity method. The same algorithm is also shown to enable the calculation of their entropy of fusion as well as the total phase-change entropy of liquid crystals. The present method is based on the complete breakdown of the molecules into their constituting atoms and their immediate neighbourhood; the respective calculations of the contribution of the atomic groups by means of the Gauss-Seidel fitting method is based on experimental data collected from literature. The feasibility of the calculations for each of the mentioned descriptors was verified by means of a 10-fold cross-validation procedure proving the good to high quality of the predicted values for the three mentioned enthalpies and for the entropy of fusion, whereas the predictive quality for the total phase-change entropy of liquid crystals was poor. The goodness of fit ( Q ²) and the standard deviation (σ) of the cross-validation calculations for the five descriptors was as follows: 0.9641 and 4.56 kJ/mol ( N = 3386 test molecules) for the enthalpy of vaporization, 0.8657 and 11.39 kJ/mol ( N = 1791) for the enthalpy of sublimation, 0.9546 and 4.34 kJ/mol ( N = 373) for the enthalpy of solvation, 0.8727 and 17.93 J/mol/K ( N = 2637) for the entropy of fusion and 0.5804 and 32.79 J/mol/K ( N = 2643) for the total phase-change entropy of liquid crystals. The large discrepancy between the results of the two closely related entropies is discussed in detail. Molecules for which both the standard enthalpies of vaporization and sublimation were calculable, enabled the estimation of their standard enthalpy of fusion by simple subtraction of the former from the latter enthalpy. For 990 of them the experimental enthalpy-of-fusion values are also known, allowing their comparison with predictions, yielding a correlation coefficient R ² of 0.6066.
Measurement of Entropy of a Multiparticle System: a ``Do-List''
NASA Astrophysics Data System (ADS)
Bialas, A.; Czyz, W.
2000-03-01
An algorithm for measurement of entropy in multiparticle systems, based on the recently published proposal of the present authors is given. Dependence on discretization of the system and effects of multiparticle correlations are discussed in some detail.
NASA Astrophysics Data System (ADS)
Jiang, Jiaqi; Gu, Rongbao
2016-04-01
This paper generalizes the method of traditional singular value decomposition entropy by incorporating orders q of Rényi entropy. We analyze the predictive power of the entropy based on trajectory matrix using Shanghai Composite Index and Dow Jones Index data in both static test and dynamic test. In the static test on SCI, results of global granger causality tests all turn out to be significant regardless of orders selected. But this entropy fails to show much predictability in American stock market. In the dynamic test, we find that the predictive power can be significantly improved in SCI by our generalized method but not in DJI. This suggests that noises and errors affect SCI more frequently than DJI. In the end, results obtained using different length of sliding window also corroborate this finding.
Ugarte, Juan P; Orozco-Duque, Andrés; Tobón, Catalina; Kremen, Vaclav; Novak, Daniel; Saiz, Javier; Oesterlein, Tobias; Schmitt, Clauss; Luik, Armin; Bustamante, John
2014-01-01
There is evidence that rotors could be drivers that maintain atrial fibrillation. Complex fractionated atrial electrograms have been located in rotor tip areas. However, the concept of electrogram fractionation, defined using time intervals, is still controversial as a tool for locating target sites for ablation. We hypothesize that the fractionation phenomenon is better described using non-linear dynamic measures, such as approximate entropy, and that this tool could be used for locating the rotor tip. The aim of this work has been to determine the relationship between approximate entropy and fractionated electrograms, and to develop a new tool for rotor mapping based on fractionation levels. Two episodes of chronic atrial fibrillation were simulated in a 3D human atrial model, in which rotors were observed. Dynamic approximate entropy maps were calculated using unipolar electrogram signals generated over the whole surface of the 3D atrial model. In addition, we optimized the approximate entropy calculation using two real multi-center databases of fractionated electrogram signals, labeled in 4 levels of fractionation. We found that the values of approximate entropy and the levels of fractionation are positively correlated. This allows the dynamic approximate entropy maps to localize the tips from stable and meandering rotors. Furthermore, we assessed the optimized approximate entropy using bipolar electrograms generated over a vicinity enclosing a rotor, achieving rotor detection. Our results suggest that high approximate entropy values are able to detect a high level of fractionation and to locate rotor tips in simulated atrial fibrillation episodes. We suggest that dynamic approximate entropy maps could become a tool for atrial fibrillation rotor mapping.
NASA Astrophysics Data System (ADS)
Soomro, Feroz Ahmed; Rizwan-ul-Haq; Khan, Z. H.; Zhang, Qiang
2017-10-01
Main theme of the article is to examine the entropy generation analysis for the magneto-hydrodynamic mixed convection flow of water functionalized carbon nanotubes along an inclined stretching surface. Thermophysical properties of both particles and working fluid are incorporated in the system of governing partial differential equations. Rehabilitation of nonlinear system of equations is obtained via similarity transformations. Moreover, solutions of these equations are further utilized to determine the volumetric entropy and characteristic entropy generation. Solutions of governing boundary layer equations are obtained numerically using the finite difference method. Effects of two types of carbon nanotubes, namely, single-wall carbon nanotubes (SWCNTs) and multi-wall carbon nanotubes (MWCNTs) with water as base fluid have been analyzed over the physical quantities of interest, namely, surface skin friction, heat transfer rate and entropy generation coefficients. Influential results of velocities, temperature, entropy generation and isotherms are plotted against the emerging parameter, namely, nanoparticle fraction 0≤φ ≤ 0.2, thermal convective parameter 0≤ λ ≤ 5, Hartmann number 0≤ M≤ 2, suction/injection parameter -1≤ S≤ 1, and Eckert number 0≤ Ec ≤ 2. It is finally concluded that skin friction increases due to the increase in the magnetic parameter, suction/injection and nanoparticle volume fraction, whereas the Nusselt number shows an increasing trend due to the increase in the suction parameter, mixed convection parameter and nanoparticle volume fraction. Similarly, entropy generation shows an opposite behavior for the Hartmann number and mixed convection parameter for both single-wall and multi-wall carbon nanotubes.
Berkvens, Rafael; Peremans, Herbert; Weyn, Maarten
2016-10-02
Localization systems are increasingly valuable, but their location estimates are only useful when the uncertainty of the estimate is known. This uncertainty is currently calculated as the location error given a ground truth, which is then used as a static measure in sometimes very different environments. In contrast, we propose the use of the conditional entropy of a posterior probability distribution as a complementary measure of uncertainty. This measure has the advantage of being dynamic, i.e., it can be calculated during localization based on individual sensor measurements, does not require a ground truth, and can be applied to discrete localization algorithms. Furthermore, for every consistent location estimation algorithm, both the location error and the conditional entropy measures must be related, i.e., a low entropy should always correspond with a small location error, while a high entropy can correspond with either a small or large location error. We validate this relationship experimentally by calculating both measures of uncertainty in three publicly available datasets using probabilistic Wi-Fi fingerprinting with eight different implementations of the sensor model. We show that the discrepancy between these measures, i.e., many location estimates having a high location error while simultaneously having a low conditional entropy, is largest for the least realistic implementations of the probabilistic sensor model. Based on the results presented in this paper, we conclude that conditional entropy, being dynamic, complementary to location error, and applicable to both continuous and discrete localization, provides an important extra means of characterizing a localization method.
Berkvens, Rafael; Peremans, Herbert; Weyn, Maarten
2016-01-01
Localization systems are increasingly valuable, but their location estimates are only useful when the uncertainty of the estimate is known. This uncertainty is currently calculated as the location error given a ground truth, which is then used as a static measure in sometimes very different environments. In contrast, we propose the use of the conditional entropy of a posterior probability distribution as a complementary measure of uncertainty. This measure has the advantage of being dynamic, i.e., it can be calculated during localization based on individual sensor measurements, does not require a ground truth, and can be applied to discrete localization algorithms. Furthermore, for every consistent location estimation algorithm, both the location error and the conditional entropy measures must be related, i.e., a low entropy should always correspond with a small location error, while a high entropy can correspond with either a small or large location error. We validate this relationship experimentally by calculating both measures of uncertainty in three publicly available datasets using probabilistic Wi-Fi fingerprinting with eight different implementations of the sensor model. We show that the discrepancy between these measures, i.e., many location estimates having a high location error while simultaneously having a low conditional entropy, is largest for the least realistic implementations of the probabilistic sensor model. Based on the results presented in this paper, we conclude that conditional entropy, being dynamic, complementary to location error, and applicable to both continuous and discrete localization, provides an important extra means of characterizing a localization method. PMID:27706099
Cooperative Localization for Multi-AUVs Based on GM-PHD Filters and Information Entropy Theory
Zhang, Lichuan; Wang, Tonghao; Xu, Demin
2017-01-01
Cooperative localization (CL) is considered a promising method for underwater localization with respect to multiple autonomous underwater vehicles (multi-AUVs). In this paper, we proposed a CL algorithm based on information entropy theory and the probability hypothesis density (PHD) filter, aiming to enhance the global localization accuracy of the follower. In the proposed framework, the follower carries lower cost navigation systems, whereas the leaders carry better ones. Meanwhile, the leaders acquire the followers’ observations, including both measurements and clutter. Then, the PHD filters are utilized on the leaders and the results are communicated to the followers. The followers then perform weighted summation based on all received messages and obtain a final positioning result. Based on the information entropy theory and the PHD filter, the follower is able to acquire a precise knowledge of its position. PMID:28991191
DNA binding site characterization by means of Rényi entropy measures on nucleotide transitions.
Perera, A; Vallverdu, M; Claria, F; Soria, J M; Caminal, P
2008-06-01
In this work, parametric information-theory measures for the characterization of binding sites in DNA are extended with the use of transitional probabilities on the sequence. We propose the use of parametric uncertainty measures such as Rényi entropies obtained from the transition probabilities for the study of the binding sites, in addition to nucleotide frequency-based Rényi measures. Results are reported in this work comparing transition frequencies (i.e., dinucleotides) and base frequencies for Shannon and parametric Rényi entropies for a number of binding sites found in E. Coli, lambda and T7 organisms. We observe that the information provided by both approaches is not redundant. Furthermore, under the presence of noise in the binding site matrix we observe overall improved robustness of nucleotide transition-based algorithms when compared with nucleotide frequency-based method.
Finite-band solutions of the coupled dispersionless hierarchy
NASA Astrophysics Data System (ADS)
Li, Zhu
2016-08-01
The coupled dispersionless hierarchy is derived with the help of the zero curvature equation. Based on the Lax matrix, we introduce an algebraic curve {{ K }}n of arithmetic genus n, from which we establish the corresponding meromorphic function ϕ, the Baker-Akhiezer function {\\varphi }1, and Dubrovin-type equations. The straightening out of all the flows is given under the Abel-Jacobi coordinates. Using the asymptotic properties of ϕ and {\\varphi }1, we obtain the explicit theta function representations of the meromorphic function ϕ, the Baker-Akhiezer function {\\varphi }1 and of solutions for the whole hierarchy.
Maximum entropy method applied to deblurring images on a MasPar MP-1 computer
NASA Technical Reports Server (NTRS)
Bonavito, N. L.; Dorband, John; Busse, Tim
1991-01-01
A statistical inference method based on the principle of maximum entropy is developed for the purpose of enhancing and restoring satellite images. The proposed maximum entropy image restoration method is shown to overcome the difficulties associated with image restoration and provide the smoothest and most appropriate solution consistent with the measured data. An implementation of the method on the MP-1 computer is described, and results of tests on simulated data are presented.
NASA Astrophysics Data System (ADS)
Emaminejad, Nastaran; Wahi-Anwar, Muhammad; Hoffman, John; Kim, Grace H.; Brown, Matthew S.; McNitt-Gray, Michael
2018-02-01
Translation of radiomics into clinical practice requires confidence in its interpretations. This may be obtained via understanding and overcoming the limitations in current radiomic approaches. Currently there is a lack of standardization in radiomic feature extraction. In this study we examined a few factors that are potential sources of inconsistency in characterizing lung nodules, such as 1)different choices of parameters and algorithms in feature calculation, 2)two CT image dose levels, 3)different CT reconstruction algorithms (WFBP, denoised WFBP, and Iterative). We investigated the effect of variation of these factors on entropy textural feature of lung nodules. CT images of 19 lung nodules identified from our lung cancer screening program were identified by a CAD tool and contours provided. The radiomics features were extracted by calculating 36 GLCM based and 4 histogram based entropy features in addition to 2 intensity based features. A robustness index was calculated across different image acquisition parameters to illustrate the reproducibility of features. Most GLCM based and all histogram based entropy features were robust across two CT image dose levels. Denoising of images slightly improved robustness of some entropy features at WFBP. Iterative reconstruction resulted in improvement of robustness in a fewer times and caused more variation in entropy feature values and their robustness. Within different choices of parameters and algorithms texture features showed a wide range of variation, as much as 75% for individual nodules. Results indicate the need for harmonization of feature calculations and identification of optimum parameters and algorithms in a radiomics study.
Maravall, Darío; de Lope, Javier; Fuentes, Juan P
2017-01-01
We introduce a hybrid algorithm for the self-semantic location and autonomous navigation of robots using entropy-based vision and visual topological maps. In visual topological maps the visual landmarks are considered as leave points for guiding the robot to reach a target point (robot homing) in indoor environments. These visual landmarks are defined from images of relevant objects or characteristic scenes in the environment. The entropy of an image is directly related to the presence of a unique object or the presence of several different objects inside it: the lower the entropy the higher the probability of containing a single object inside it and, conversely, the higher the entropy the higher the probability of containing several objects inside it. Consequently, we propose the use of the entropy of images captured by the robot not only for the landmark searching and detection but also for obstacle avoidance. If the detected object corresponds to a landmark, the robot uses the suggestions stored in the visual topological map to reach the next landmark or to finish the mission. Otherwise, the robot considers the object as an obstacle and starts a collision avoidance maneuver. In order to validate the proposal we have defined an experimental framework in which the visual bug algorithm is used by an Unmanned Aerial Vehicle (UAV) in typical indoor navigation tasks.
Maravall, Darío; de Lope, Javier; Fuentes, Juan P.
2017-01-01
We introduce a hybrid algorithm for the self-semantic location and autonomous navigation of robots using entropy-based vision and visual topological maps. In visual topological maps the visual landmarks are considered as leave points for guiding the robot to reach a target point (robot homing) in indoor environments. These visual landmarks are defined from images of relevant objects or characteristic scenes in the environment. The entropy of an image is directly related to the presence of a unique object or the presence of several different objects inside it: the lower the entropy the higher the probability of containing a single object inside it and, conversely, the higher the entropy the higher the probability of containing several objects inside it. Consequently, we propose the use of the entropy of images captured by the robot not only for the landmark searching and detection but also for obstacle avoidance. If the detected object corresponds to a landmark, the robot uses the suggestions stored in the visual topological map to reach the next landmark or to finish the mission. Otherwise, the robot considers the object as an obstacle and starts a collision avoidance maneuver. In order to validate the proposal we have defined an experimental framework in which the visual bug algorithm is used by an Unmanned Aerial Vehicle (UAV) in typical indoor navigation tasks. PMID:28900394
NASA Astrophysics Data System (ADS)
Farokhi, Saeed; Taghavi, Ray; Keshmiri, Shawn
2015-11-01
Stealth technology is developed for military aircraft to minimize their signatures. The primary attention was focused on radar signature, followed by the thermal and noise signatures of the vehicle. For radar evasion, advanced configuration designs, extensive use of carbon composites and radar-absorbing material, are developed. On thermal signature, mainly in the infra-red (IR) bandwidth, the solution was found in blended rectangular nozzles of high aspect ratio that are shielded from ground detectors. For noise, quiet and calm jets are integrated into vehicles with low-turbulence configuration design. However, these technologies are totally incapable of detecting new generation of revolutionary aircraft. These shall use all electric, distributed, propulsion system that are thermally transparent. In addition, composite skin and non-emitting sensors onboard the aircraft will lead to low signature. However, based on the second-law of thermodynamics, there is no air vehicle that can escape from leaving an entropy trail. Entropy is thus the only inevitable signature of any system, that once measured, can detect the source. By characterizing the entropy field based on its statistical properties, the source may be recognized, akin to face recognition technology. Direct measurement of entropy is cumbersome, however as a derived property, it can be easily measured. The measurement accuracy depends on the probe design and the sensors onboard. One novel air data sensor suite is introduced with promising potential to capture the entropy trail.
JVLA 1.5 GHz Continuum Observation of CLASH Clusters. I. Radio Properties of the BCGs
NASA Astrophysics Data System (ADS)
Yu, Heng; Tozzi, Paolo; van Weeren, Reinout; Liuzzo, Elisabetta; Giovannini, Gabriele; Donahue, Megan; Balestra, Italo; Rosati, Piero; Aravena, Manuel
2018-02-01
We present high-resolution (∼1″), 1.5 GHz continuum observations of the brightest cluster galaxies (BCGs) of 13 CLASH (Cluster Lensing And Supernova survey with Hubble) clusters at 0.18< z< 0.69 with the Karl G. Jansky Very Large Array (JVLA). Radio emission is clearly detected and characterized for 11 BCGs, while for two of them we obtain only upper limits to their radio flux (< 0.1 mJy at 5σ confidence level). We also consider five additional clusters whose BCG is detected in FIRST or NVSS. We find radio powers in the range from 2× {10}23 to ∼ {10}26 {{W}} {{Hz}}-1 and radio spectral indices {α }1.530 (defined as the slope between 1.5 and 30 GHz) distributed from ∼ -1 to ‑0.25 around the central value < α > =-0.68. The radio emission from the BCGs is resolved in three cases (Abell 383, MACS J1931, and RX J2129), and unresolved or marginally resolved in the remaining eight cases observed with JVLA. In all the cases the BCGs are consistent with being powered by active galactic nuclei. The radio power shows a positive correlation with the BCG star formation rate, and a negative correlation with the central entropy of the surrounding intracluster medium (ICM) except in two cases (MACS J1206 and CL J1226). Finally, over the restricted range in radio power sampled by the CLASH BCGs, we observe a significant scatter between the radio power and the average mechanical power stored in the ICM cavities.
Roushangar, Kiyoumars; Alizadeh, Farhad; Adamowski, Jan
2018-08-01
Understanding precipitation on a regional basis is an important component of water resources planning and management. The present study outlines a methodology based on continuous wavelet transform (CWT) and multiscale entropy (CWME), combined with self-organizing map (SOM) and k-means clustering techniques, to measure and analyze the complexity of precipitation. Historical monthly precipitation data from 1960 to 2010 at 31 rain gauges across Iran were preprocessed by CWT. The multi-resolution CWT approach segregated the major features of the original precipitation series by unfolding the structure of the time series which was often ambiguous. The entropy concept was then applied to components obtained from CWT to measure dispersion, uncertainty, disorder, and diversification of subcomponents. Based on different validity indices, k-means clustering captured homogenous areas more accurately, and additional analysis was performed based on the outcome of this approach. The 31 rain gauges in this study were clustered into 6 groups, each one having a unique CWME pattern across different time scales. The results of clustering showed that hydrologic similarity (multiscale variation of precipitation) was not based on geographic contiguity. According to the pattern of entropy across the scales, each cluster was assigned an entropy signature that provided an estimation of the entropy pattern of precipitation data in each cluster. Based on the pattern of mean CWME for each cluster, a characteristic signature was assigned, which provided an estimation of the CWME of a cluster across scales of 1-2, 3-8, and 9-13 months relative to other stations. The validity of the homogeneous clusters demonstrated the usefulness of the proposed approach to regionalize precipitation. Further analysis based on wavelet coherence (WTC) was performed by selecting central rain gauges in each cluster and analyzing against temperature, wind, Multivariate ENSO index (MEI), and East Atlantic (EA) and North Atlantic Oscillation (NAO), indeces. The results revealed that all climatic features except NAO influenced precipitation in Iran during the 1960-2010 period. Copyright © 2018 Elsevier Inc. All rights reserved.
Fisher information and Rényi entropies in dynamical systems.
Godó, B; Nagy, Á
2017-07-01
The link between the Fisher information and Rényi entropies is explored. The relationship is based on a thermodynamical formalism based on Fisher information with a parameter, β, which is interpreted as the inverse temperature. The Fisher heat capacity is defined and found to be sensitive to changes of higher order than the analogous quantity in the conventional formulation.
Characterization of Early Partial Seizure Onset: Frequency, Complexity and Entropy
Jouny, Christophe C.; Bergey, Gregory K.
2011-01-01
Objective A clear classification of partial seizures onset features is not yet established. Complexity and entropy have been very widely used to describe dynamical systems, but a systematic evaluation of these measures to characterize partial seizures has never been performed. Methods Eighteen different measures including power in frequency bands up to 300Hz, Gabor atom density (GAD), Higuchi fractal dimension (HFD), Lempel-Ziv complexity, Shannon entropy, sample entropy, and permutation entropy, were selected to test sensitivity to partial seizure onset. Intracranial recordings from forty-five patients with mesial temporal, neocortical temporal and neocortical extratemporal seizure foci were included (331 partial seizures). Results GAD, Lempel-Ziv complexity, HFD, high frequency activity, and sample entropy were the most reliable measures to assess early seizure onset. Conclusions Increases in complexity and occurrence of high-frequency components appear to be commonly associated with early stages of partial seizure evolution from all regions. The type of measure (frequency-based, complexity or entropy) does not predict the efficiency of the method to detect seizure onset. Significance Differences between measures such as GAD and HFD highlight the multimodal nature of partial seizure onsets. Improved methods for early seizure detection may be achieved from a better understanding of these underlying dynamics. PMID:21872526
Using Link Disconnection Entropy Disorder to Detect Fast Moving Nodes in MANETs
Palafox, Luis E.; Aguilar, Leocundo; Sanchez, Mauricio A.; Martinez, Luis G.
2016-01-01
Mobile ad-hoc networks (MANETs) are dynamic by nature; this dynamism comes from node mobility, traffic congestion, and other transmission conditions. Metrics to evaluate the effects of those conditions shine a light on node’s behavior in an ad-hoc network, helping to identify the node or nodes with better conditions of connection. In this paper, we propose a relative index to evaluate a single node reliability, based on the link disconnection entropy disorder using neighboring nodes as reference. Link disconnection entropy disorder is best used to identify fast moving nodes or nodes with unstable communications, this without the need of specialized sensors such as GPS. Several scenarios were studied to verify the index, measuring the effects of Speed and traffic density on the link disconnection entropy disorder. Packet delivery ratio is associated to the metric detecting a strong relationship, enabling the use of the link disconnection entropy disorder to evaluate the stability of a node to communicate with other nodes. To expand the utilization of the link entropy disorder, we identified nodes with higher speeds in network simulations just by using the link entropy disorder. PMID:27219671
Zaylaa, Amira; Oudjemia, Souad; Charara, Jamal; Girault, Jean-Marc
2015-09-01
This paper presents two new concepts for discrimination of signals of different complexity. The first focused initially on solving the problem of setting entropy descriptors by varying the pattern size instead of the tolerance. This led to the search for the optimal pattern size that maximized the similarity entropy. The second paradigm was based on the n-order similarity entropy that encompasses the 1-order similarity entropy. To improve the statistical stability, n-order fuzzy similarity entropy was proposed. Fractional Brownian motion was simulated to validate the different methods proposed, and fetal heart rate signals were used to discriminate normal from abnormal fetuses. In all cases, it was found that it was possible to discriminate time series of different complexity such as fractional Brownian motion and fetal heart rate signals. The best levels of performance in terms of sensitivity (90%) and specificity (90%) were obtained with the n-order fuzzy similarity entropy. However, it was shown that the optimal pattern size and the maximum similarity measurement were related to intrinsic features of the time series. Copyright © 2015 Elsevier Ltd. All rights reserved.
Zeng, Danyun; Shen, Qingliang; Cho, Jae-Hyun
2017-02-26
Biological functions of intrinsically disordered proteins (IDPs), and proteins containing intrinsically disordered regions (IDRs) are often mediated by short linear motifs, like proline-rich motifs (PRMs). Upon binding to their target proteins, IDPs undergo a disorder-to-order transition which is accompanied by a large conformational entropy penalty. Hence, the molecular mechanisms underlying control of conformational entropy are critical for understanding the binding affinity and selectivity of IDPs-mediated protein-protein interactions (PPIs). Here, we investigated the backbone conformational entropy change accompanied by binding of the N-terminal SH3 domain (nSH3) of CrkII and PRM derived from guanine nucleotide exchange factor 1 (C3G). In particular, we focused on the estimation of conformational entropy change of disordered PRM upon binding to the nSH3 domain. Quantitative characterization of conformational dynamics of disordered peptides like PRMs is limited. Hence, we combined various methods, including NMR model-free analysis, δ2D, DynaMine, and structure-based calculation of entropy loss. This study demonstrates that the contribution of backbone conformational entropy change is significant in the PPIs mediated by IDPs/IDRs. Copyright © 2017 Elsevier Inc. All rights reserved.
Entropy-Based TOA Estimation and SVM-Based Ranging Error Mitigation in UWB Ranging Systems
Yin, Zhendong; Cui, Kai; Wu, Zhilu; Yin, Liang
2015-01-01
The major challenges for Ultra-wide Band (UWB) indoor ranging systems are the dense multipath and non-line-of-sight (NLOS) problems of the indoor environment. To precisely estimate the time of arrival (TOA) of the first path (FP) in such a poor environment, a novel approach of entropy-based TOA estimation and support vector machine (SVM) regression-based ranging error mitigation is proposed in this paper. The proposed method can estimate the TOA precisely by measuring the randomness of the received signals and mitigate the ranging error without the recognition of the channel conditions. The entropy is used to measure the randomness of the received signals and the FP can be determined by the decision of the sample which is followed by a great entropy decrease. The SVM regression is employed to perform the ranging-error mitigation by the modeling of the regressor between the characteristics of received signals and the ranging error. The presented numerical simulation results show that the proposed approach achieves significant performance improvements in the CM1 to CM4 channels of the IEEE 802.15.4a standard, as compared to conventional approaches. PMID:26007726
NASA Astrophysics Data System (ADS)
Li, Yongbo; Xu, Minqiang; Wang, Rixin; Huang, Wenhu
2016-01-01
This paper presents a new rolling bearing fault diagnosis method based on local mean decomposition (LMD), improved multiscale fuzzy entropy (IMFE), Laplacian score (LS) and improved support vector machine based binary tree (ISVM-BT). When the fault occurs in rolling bearings, the measured vibration signal is a multi-component amplitude-modulated and frequency-modulated (AM-FM) signal. LMD, a new self-adaptive time-frequency analysis method can decompose any complicated signal into a series of product functions (PFs), each of which is exactly a mono-component AM-FM signal. Hence, LMD is introduced to preprocess the vibration signal. Furthermore, IMFE that is designed to avoid the inaccurate estimation of fuzzy entropy can be utilized to quantify the complexity and self-similarity of time series for a range of scales based on fuzzy entropy. Besides, the LS approach is introduced to refine the fault features by sorting the scale factors. Subsequently, the obtained features are fed into the multi-fault classifier ISVM-BT to automatically fulfill the fault pattern identifications. The experimental results validate the effectiveness of the methodology and demonstrate that proposed algorithm can be applied to recognize the different categories and severities of rolling bearings.
Enhanced automatic artifact detection based on independent component analysis and Renyi's entropy.
Mammone, Nadia; Morabito, Francesco Carlo
2008-09-01
Artifacts are disturbances that may occur during signal acquisition and may affect their processing. The aim of this paper is to propose a technique for automatically detecting artifacts from the electroencephalographic (EEG) recordings. In particular, a technique based on both Independent Component Analysis (ICA) to extract artifactual signals and on Renyi's entropy to automatically detect them is presented. This technique is compared to the widely known approach based on ICA and the joint use of kurtosis and Shannon's entropy. The novel processing technique is shown to detect on average 92.6% of the artifactual signals against the average 68.7% of the previous technique on the studied available database. Moreover, Renyi's entropy is shown to be able to detect muscle and very low frequency activity as well as to discriminate them from other kinds of artifacts. In order to achieve an efficient rejection of the artifacts while minimizing the information loss, future efforts will be devoted to the improvement of blind artifact separation from EEG in order to ensure a very efficient isolation of the artifactual activity from any signals deriving from other brain tasks.
Analysis of swarm behaviors based on an inversion of the fluctuation theorem.
Hamann, Heiko; Schmickl, Thomas; Crailsheim, Karl
2014-01-01
A grand challenge in the field of artificial life is to find a general theory of emergent self-organizing systems. In swarm systems most of the observed complexity is based on motion of simple entities. Similarly, statistical mechanics focuses on collective properties induced by the motion of many interacting particles. In this article we apply methods from statistical mechanics to swarm systems. We try to explain the emergent behavior of a simulated swarm by applying methods based on the fluctuation theorem. Empirical results indicate that swarms are able to produce negative entropy within an isolated subsystem due to frozen accidents. Individuals of a swarm are able to locally detect fluctuations of the global entropy measure and store them, if they are negative entropy productions. By accumulating these stored fluctuations over time the swarm as a whole is producing negative entropy and the system ends up in an ordered state. We claim that this indicates the existence of an inverted fluctuation theorem for emergent self-organizing dissipative systems. This approach bears the potential of general applicability.
The Frontier Fields: Survey Design and Initial Results
NASA Astrophysics Data System (ADS)
Lotz, J. M.; Koekemoer, A.; Coe, D.; Grogin, N.; Capak, P.; Mack, J.; Anderson, J.; Avila, R.; Barker, E. A.; Borncamp, D.; Brammer, G.; Durbin, M.; Gunning, H.; Hilbert, B.; Jenkner, H.; Khandrika, H.; Levay, Z.; Lucas, R. A.; MacKenty, J.; Ogaz, S.; Porterfield, B.; Reid, N.; Robberto, M.; Royle, P.; Smith, L. J.; Storrie-Lombardi, L. J.; Sunnquist, B.; Surace, J.; Taylor, D. C.; Williams, R.; Bullock, J.; Dickinson, M.; Finkelstein, S.; Natarajan, P.; Richard, J.; Robertson, B.; Tumlinson, J.; Zitrin, A.; Flanagan, K.; Sembach, K.; Soifer, B. T.; Mountain, M.
2017-03-01
What are the faintest distant galaxies we can see with the Hubble Space Telescope (HST) now, before the launch of the James Webb Space Telescope? This is the challenge taken up by the Frontier Fields, a Director’s discretionary time campaign with HST and the Spitzer Space Telescope to see deeper into the universe than ever before. The Frontier Fields combines the power of HST and Spitzer with the natural gravitational telescopes of massive high-magnification clusters of galaxies to produce the deepest observations of clusters and their lensed galaxies ever obtained. Six clusters—Abell 2744, MACSJ0416.1-2403, MACSJ0717.5+3745, MACSJ1149.5+2223, Abell S1063, and Abell 370—have been targeted by the HST ACS/WFC and WFC3/IR cameras with coordinated parallel fields for over 840 HST orbits. The parallel fields are the second-deepest observations thus far by HST with 5σ point-source depths of ˜29th ABmag. Galaxies behind the clusters experience typical magnification factors of a few, with small regions magnified by factors of 10-100. Therefore, the Frontier Field cluster HST images achieve intrinsic depths of ˜30-33 mag over very small volumes. Spitzer has obtained over 1000 hr of Director’s discretionary imaging of the Frontier Field cluster and parallels in IRAC 3.6 and 4.5 μm bands to 5σ point-source depths of ˜26.5, 26.0 ABmag. We demonstrate the exceptional sensitivity of the HST Frontier Field images to faint high-redshift galaxies, and review the initial results related to the primary science goals.
NASA Astrophysics Data System (ADS)
Abel, Martin; Frommhold, Lothar; Li, Xiaoping; Hunt, Katharine L. C.
2011-06-01
The interaction-induced absorption by collisional pairs of H{_2} molecules is an important opacity source in the atmospheres of the outer planets and cool stars. The emission spectra of cool white dwarf stars differ significantly in the infrared from the expected blackbody spectra of their cores, which is largely due to absorption by collisional H{_2}-H{_2}, H{_2}-He, and H{_2}-H complexes in the stellar atmospheres. Using quantum-chemical methods we compute the atmospheric absorption from hundreds to thousands of kelvin. Laboratory measurements of interaction-induced absorption spectra by H{_2} pairs exist only at room temperature and below. We show that our results reproduce these measurements closely, so that our computational data permit reliable modeling of stellar atmosphere opacities even for the higher temperatures. L. Frommhold, Collision-Induced Absorption in Gases, Cambridge University Press, Cambridge, New York, 1993 and 2006 Xiaoping Li, Katharine L. C. Hunt, Fei Wang, Martin Abel, and Lothar Frommhold, "Collision-Induced Infrared Absorption by Molecular Hydrogen Pairs at Thousands of Kelvin", International Journal of Spectroscopy, vol. 2010, Article ID 371201, 11 pages, 2010. doi: 10.1155/2010/371201 M. Abel, L. Frommhold, X. Li, and K. L. C. Hunt, "Collision-induced absorption by H{_2} pairs: From hundreds to thousands of Kelvin," J. Phys. Chem. A, published online, DOI: 10.1021/jp109441f L. Frommhold, M. Abel, F. Wang, M. Gustafsson, X. Li, and K. L. C. Hunt, "Infrared atmospheric emission and absorption by simple molecular complexes, from first principles", Mol. Phys. 108, 2265, 2010
NASA Astrophysics Data System (ADS)
Straka, Mika J.; Caldarelli, Guido; Squartini, Tiziano; Saracco, Fabio
2018-04-01
Bipartite networks provide an insightful representation of many systems, ranging from mutualistic networks of species interactions to investment networks in finance. The analyses of their topological structures have revealed the ubiquitous presence of properties which seem to characterize many—apparently different—systems. Nestedness, for example, has been observed in biological plant-pollinator as well as in country-product exportation networks. Due to the interdisciplinary character of complex networks, tools developed in one field, for example ecology, can greatly enrich other areas of research, such as economy and finance, and vice versa. With this in mind, we briefly review several entropy-based bipartite null models that have been recently proposed and discuss their application to real-world systems. The focus on these models is motivated by the fact that they show three very desirable features: analytical character, general applicability, and versatility. In this respect, entropy-based methods have been proven to perform satisfactorily both in providing benchmarks for testing evidence-based null hypotheses and in reconstructing unknown network configurations from partial information. Furthermore, entropy-based models have been successfully employed to analyze ecological as well as economic systems. As an example, the application of entropy-based null models has detected early-warning signals, both in economic and financial systems, of the 2007-2008 world crisis. Moreover, they have revealed a statistically-significant export specialization phenomenon of country export baskets in international trade, a result that seems to reconcile Ricardo's hypothesis in classical economics with recent findings on the (empirical) diversification industrial production at the national level. Finally, these null models have shown that the information contained in the nestedness is already accounted for by the degree sequence of the corresponding graphs.
Evolution of Planetary Nebulae with WR-type Central Stars
NASA Astrophysics Data System (ADS)
Danehkar, Ashkbiz
2014-04-01
This thesis presents a study of the kinematics, physical conditions and chemical abundances for a sample of Galactic planetary nebulae (PNe) with Wolf-Rayet (WR) and weak emission-line stars (wels), based on optical integral field unit (IFU) spectroscopy obtained with the Wide Field Spectrograph (WiFeS) on the Australian National University 2.3 telescope at Siding Spring Observatory, and complemented by spectra from the literature. PNe surrounding WR-type stars constitute a particular study class for this study. A considerable fraction of currently well-identified central stars of PNe exhibit 'hydrogen-deficient' fast expanding atmospheres characterized by a large mass-loss rate. Most of them were classified as the carbon-sequence and a few of them as the nitrogen-sequence of the WR-type stars. What are less clear are the physical mechanisms and evolutionary paths that remove the hydrogen-rich outer layer from these degenerate cores, and transform it into a fast stellar wind. The aim of this thesis is to determine kinematic structure, density distribution, thermal structure and elemental abundances for a sample of PNe with different hydrogen-deficient central stars, which might provide clues about the origin and formation of their hydrogen-deficient stellar atmospheres. Hα and [N II] emission features have been used to determine kinematic structures. Based on spatially resolved observations of these emission lines, combined with archival Hubble Space Telescope imaging for compact PNe, morphological structures of these PNe have been determined. Comparing the velocity maps from the IFU spectrograph with those provided by morpho-kinematic models allowed disentangling of the different morphological components of most PNe, apart from the compact objects. The results indicate that these PNe have axisymmetric morphologies, either bipolar or elliptical. In many cases, the associated kinematic maps for PNe around hot WR-type stars also show the presence of so-called fast low-ionization emission regions (FLIERs). The WiFeS observations, complemented with archival spectra from the literature, have been used to carry out plasma diagnostics and abundance analysis using both collisionally excited lines (CELs) and optical recombination lines (ORLs). ORL abundances for carbon, nitrogen and oxygen have been derived where adequate recombination lines were available. The weak physical dependence of ORLs has also been used to determine the physical properties. It is found that the ORL abundances are several times higher than the CEL abundances, whereas the temperatures derived from the He I recombination lines are typically lower than those measured from the collisionally excited nebular-to-auroral forbidden line ratios. The abundance discrepancy factors (ADFs) for doubly-ionized nitrogen and oxygen are within a range from 2 to 49, which are closely correlated with the dichotomy between temperatures derived from forbidden lines and those from He I recombination lines. The results show that the ADF and temperature dichotomy are correlated with the intrinsic nebular Hβ surface brightness, suggesting that the abundance discrepancy problem must be related to the nebular evolution. Three-dimensional photoionization models of a carefully selected sample of Galactic PNe have been constructed, constrained by the WiFeS observations (Abell 48 and SuWt 2) and the double echelle MIKE spectroscopy from the literature (Hb 4 and PB 8). The WiFeS observations have been used to perform the empirical analysis of Abell 48 and SuWt 2. The spatially resolved velocity distributions were used to determine the kinematic structures of Hb 4 and Abell 48. The previously identified non-LTE model atmospheres of Abell 48 and PB 8 have been used as ionizing fluxes in their photoionization models. It is found that the enhancement of the [N II] emission in the FLIERs of Hb 4 is more attributed to the geometry and density distribution, while the ionization correction factor method and electron temperature used for the empirical analysis are mostly responsible for apparent inhomogeneity of nitrogen abundance. However, the results indicate that the chemically inhomogeneous models, containing a small fraction of metal-rich inclusions (around 5 percent), provide acceptable matches to the observed ORLs in Hb 4 and PB 8. The observed nebular spectrum of Abell 48 was best produced by using a nitrogen-sequence non-LTE model atmosphere of a low-mass progenitor star rather than a massive Pop I star. For Abell 48, the helium temperature predicted by the photoionization model is higher than those empirically derived, suggesting the presence of a fraction of cold metal-rich structures inside the nebula. It is found that a dual-dust chemistry with different grain species and discrete grain sizes likely produces the nebular Spitzer mid-infrared continuum of PB 8. The photoionization models of SuWt 2 suggest the presence of a hot hydrogen-deficient degenerate core, compatible with what is known as a PG 1159-type star, while the nebula's age is consistent with a born-again scenario.
The coupling analysis between stock market indices based on permutation measures
NASA Astrophysics Data System (ADS)
Shi, Wenbin; Shang, Pengjian; Xia, Jianan; Yeh, Chien-Hung
2016-04-01
Many information-theoretic methods have been proposed for analyzing the coupling dependence between time series. And it is significant to quantify the correlation relationship between financial sequences since the financial market is a complex evolved dynamic system. Recently, we developed a new permutation-based entropy, called cross-permutation entropy (CPE), to detect the coupling structures between two synchronous time series. In this paper, we extend the CPE method to weighted cross-permutation entropy (WCPE), to address some of CPE's limitations, mainly its inability to differentiate between distinct patterns of a certain motif and the sensitivity of patterns close to the noise floor. It shows more stable and reliable results than CPE does when applied it to spiky data and AR(1) processes. Besides, we adapt the CPE method to infer the complexity of short-length time series by freely changing the time delay, and test it with Gaussian random series and random walks. The modified method shows the advantages in reducing deviations of entropy estimation compared with the conventional one. Finally, the weighted cross-permutation entropy of eight important stock indices from the world financial markets is investigated, and some useful and interesting empirical results are obtained.
Extremal entanglement and mixedness in continuous variable systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adesso, Gerardo; Serafini, Alessio; Illuminati, Fabrizio
2004-08-01
We investigate the relationship between mixedness and entanglement for Gaussian states of continuous variable systems. We introduce generalized entropies based on Schatten p norms to quantify the mixedness of a state and derive their explicit expressions in terms of symplectic spectra. We compare the hierarchies of mixedness provided by such measures with the one provided by the purity (defined as tr {rho}{sup 2} for the state {rho}) for generic n-mode states. We then review the analysis proving the existence of both maximally and minimally entangled states at given global and marginal purities, with the entanglement quantified by the logarithmic negativity.more » Based on these results, we extend such an analysis to generalized entropies, introducing and fully characterizing maximally and minimally entangled states for given global and local generalized entropies. We compare the different roles played by the purity and by the generalized p entropies in quantifying the entanglement and the mixedness of continuous variable systems. We introduce the concept of average logarithmic negativity, showing that it allows a reliable quantitative estimate of continuous variable entanglement by direct measurements of global and marginal generalized p entropies.« less
Entropy generation method to quantify thermal comfort.
Boregowda, S C; Tiwari, S N; Chaturvedi, S K
2001-12-01
The present paper presents a thermodynamic approach to assess the quality of human-thermal environment interaction and quantify thermal comfort. The approach involves development of entropy generation term by applying second law of thermodynamics to the combined human-environment system. The entropy generation term combines both human thermal physiological responses and thermal environmental variables to provide an objective measure of thermal comfort. The original concepts and definitions form the basis for establishing the mathematical relationship between thermal comfort and entropy generation term. As a result of logic and deterministic approach, an Objective Thermal Comfort Index (OTCI) is defined and established as a function of entropy generation. In order to verify the entropy-based thermal comfort model, human thermal physiological responses due to changes in ambient conditions are simulated using a well established and validated human thermal model developed at the Institute of Environmental Research of Kansas State University (KSU). The finite element based KSU human thermal computer model is being utilized as a "Computational Environmental Chamber" to conduct series of simulations to examine the human thermal responses to different environmental conditions. The output from the simulation, which include human thermal responses and input data consisting of environmental conditions are fed into the thermal comfort model. Continuous monitoring of thermal comfort in comfortable and extreme environmental conditions is demonstrated. The Objective Thermal Comfort values obtained from the entropy-based model are validated against regression based Predicted Mean Vote (PMV) values. Using the corresponding air temperatures and vapor pressures that were used in the computer simulation in the regression equation generates the PMV values. The preliminary results indicate that the OTCI and PMV values correlate well under ideal conditions. However, an experimental study is needed in the future to fully establish the validity of the OTCI formula and the model. One of the practical applications of this index is that could it be integrated in thermal control systems to develop human-centered environmental control systems for potential use in aircraft, mass transit vehicles, intelligent building systems, and space vehicles.
Entropy generation method to quantify thermal comfort
NASA Technical Reports Server (NTRS)
Boregowda, S. C.; Tiwari, S. N.; Chaturvedi, S. K.
2001-01-01
The present paper presents a thermodynamic approach to assess the quality of human-thermal environment interaction and quantify thermal comfort. The approach involves development of entropy generation term by applying second law of thermodynamics to the combined human-environment system. The entropy generation term combines both human thermal physiological responses and thermal environmental variables to provide an objective measure of thermal comfort. The original concepts and definitions form the basis for establishing the mathematical relationship between thermal comfort and entropy generation term. As a result of logic and deterministic approach, an Objective Thermal Comfort Index (OTCI) is defined and established as a function of entropy generation. In order to verify the entropy-based thermal comfort model, human thermal physiological responses due to changes in ambient conditions are simulated using a well established and validated human thermal model developed at the Institute of Environmental Research of Kansas State University (KSU). The finite element based KSU human thermal computer model is being utilized as a "Computational Environmental Chamber" to conduct series of simulations to examine the human thermal responses to different environmental conditions. The output from the simulation, which include human thermal responses and input data consisting of environmental conditions are fed into the thermal comfort model. Continuous monitoring of thermal comfort in comfortable and extreme environmental conditions is demonstrated. The Objective Thermal Comfort values obtained from the entropy-based model are validated against regression based Predicted Mean Vote (PMV) values. Using the corresponding air temperatures and vapor pressures that were used in the computer simulation in the regression equation generates the PMV values. The preliminary results indicate that the OTCI and PMV values correlate well under ideal conditions. However, an experimental study is needed in the future to fully establish the validity of the OTCI formula and the model. One of the practical applications of this index is that could it be integrated in thermal control systems to develop human-centered environmental control systems for potential use in aircraft, mass transit vehicles, intelligent building systems, and space vehicles.
Porta, Alberto; Bari, Vlasta; Bassani, Tito; Marchi, Andrea; Tassin, Stefano; Canesi, Margherita; Barbic, Franca; Furlan, Raffaello
2013-01-01
Entropy-based approaches are frequently used to quantify complexity of short-term cardiovascular control from spontaneous beat-to-beat variability of heart period (HP) and systolic arterial pressure (SAP). Among these tools the ones optimizing a critical parameter such as the pattern length are receiving more and more attention. This study compares two entropy-based techniques for the quantification of complexity making use of completely different strategies to optimize the pattern length. Comparison was carried out over HP and SAP variability series recorded from 12 Parkinson's disease (PD) patients without orthostatic hypotension or symptoms of orthostatic intolerance and 12 age-matched healthy control (HC) subjects. Regardless of the method, complexity of cardiovascular control increased in PD group, thus suggesting the early impairment of cardiovascular function.
2017-08-03
2017 interns participated in a summer poster session at Goddard on August 3,2017. Awards were given to top posters in categories of: computer science/IT, engineering, GSFC functional services and science. Colleen Hartman, Nancy Abell and Juan Ramon presented awards.
2017-08-03
2017 interns participated in a summer poster session at Goddard on August 3, 2017. Awards were given to top posters in categories of: computer science/IT, engineering, GSFC functional services, and science. Colleen Hartman, Nancy Abell and Juan Ramon presented awards.
1999-12-02
Atlas Image mosaic, covering 34 x 34 on the sky, of the Coma cluster, aka Abell 1656. This is a particularly rich cluster of individual galaxies over 1000 members, most prominently the two giant ellipticals, NGC 4874 right and NGC 4889 left.
DEM interpolation weight calculation modulus based on maximum entropy
NASA Astrophysics Data System (ADS)
Chen, Tian-wei; Yang, Xia
2015-12-01
There is negative-weight in traditional interpolation of gridding DEM, in the article, the principle of Maximum Entropy is utilized to analyze the model system which depends on modulus of space weight. Negative-weight problem of the DEM interpolation is researched via building Maximum Entropy model, and adding nonnegative, first and second order's Moment constraints, the negative-weight problem is solved. The correctness and accuracy of the method was validated with genetic algorithm in matlab program. The method is compared with the method of Yang Chizhong interpolation and quadratic program. Comparison shows that the volume and scaling of Maximum Entropy's weight is fit to relations of space and the accuracy is superior to the latter two.
Nielsen, Birgitte; Hveem, Tarjei Sveinsgjerd; Kildal, Wanja; Abeler, Vera M; Kristensen, Gunnar B; Albregtsen, Fritz; Danielsen, Håvard E; Rohde, Gustavo K
2015-01-01
Nuclear texture analysis measures the spatial arrangement of the pixel gray levels in a digitized microscopic nuclear image and is a promising quantitative tool for prognosis of cancer. The aim of this study was to evaluate the prognostic value of entropy-based adaptive nuclear texture features in a total population of 354 uterine sarcomas. Isolated nuclei (monolayers) were prepared from 50 µm tissue sections and stained with Feulgen-Schiff. Local gray level entropy was measured within small windows of each nuclear image and stored in gray level entropy matrices, and two superior adaptive texture features were calculated from each matrix. The 5-year crude survival was significantly higher (P < 0.001) for patients with high texture feature values (72%) than for patients with low feature values (36%). When combining DNA ploidy classification (diploid/nondiploid) and texture (high/low feature value), the patients could be stratified into three risk groups with 5-year crude survival of 77, 57, and 34% (Hazard Ratios (HR) of 1, 2.3, and 4.1, P < 0.001). Entropy-based adaptive nuclear texture was an independent prognostic marker for crude survival in multivariate analysis including relevant clinicopathological features (HR = 2.1, P = 0.001), and should therefore be considered as a potential prognostic marker in uterine sarcomas. © The Authors. Published 2014 International Society for Advancement of Cytometry PMID:25483227
NASA Astrophysics Data System (ADS)
Liu, Hao; Li, Kangda; Wang, Bing; Tang, Hainie; Gong, Xiaohui
2017-01-01
A quantized block compressive sensing (QBCS) framework, which incorporates the universal measurement, quantization/inverse quantization, entropy coder/decoder, and iterative projected Landweber reconstruction, is summarized. Under the QBCS framework, this paper presents an improved reconstruction algorithm for aerial imagery, QBCS, with entropy-aware projected Landweber (QBCS-EPL), which leverages the full-image sparse transform without Wiener filter and an entropy-aware thresholding model for wavelet-domain image denoising. Through analyzing the functional relation between the soft-thresholding factors and entropy-based bitrates for different quantization methods, the proposed model can effectively remove wavelet-domain noise of bivariate shrinkage and achieve better image reconstruction quality. For the overall performance of QBCS reconstruction, experimental results demonstrate that the proposed QBCS-EPL algorithm significantly outperforms several existing algorithms. With the experiment-driven methodology, the QBCS-EPL algorithm can obtain better reconstruction quality at a relatively moderate computational cost, which makes it more desirable for aerial imagery applications.
Bellomo, Guido; Bosyk, Gustavo M; Holik, Federico; Zozor, Steeve
2017-11-07
Based on the problem of quantum data compression in a lossless way, we present here an operational interpretation for the family of quantum Rényi entropies. In order to do this, we appeal to a very general quantum encoding scheme that satisfies a quantum version of the Kraft-McMillan inequality. Then, in the standard situation, where one is intended to minimize the usual average length of the quantum codewords, we recover the known results, namely that the von Neumann entropy of the source bounds the average length of the optimal codes. Otherwise, we show that by invoking an exponential average length, related to an exponential penalization over large codewords, the quantum Rényi entropies arise as the natural quantities relating the optimal encoding schemes with the source description, playing an analogous role to that of von Neumann entropy.
Causal Entropies – a measure for determining changes in the temporal organization of neural systems
Waddell, Jack; Dzakpasu, Rhonda; Booth, Victoria; Riley, Brett; Reasor, Jonathan; Poe, Gina; Zochowski, Michal
2009-01-01
We propose a novel measure to detect temporal ordering in the activity of individual neurons in a local network, which is thought to be a hallmark of activity-dependent synaptic modifications during learning. The measure, called Causal Entropy, is based on the time-adaptive detection of asymmetries in the relative temporal patterning between neuronal pairs. We characterize properties of the measure on both simulated data and experimental multiunit recordings of hippocampal neurons from the awake, behaving rat, and show that the metric can more readily detect those asymmetries than standard cross correlation-based techniques, especially since the temporal sensitivity of causal entropy can detect such changes rapidly and dynamically. PMID:17275095
Music viewed by its entropy content: A novel window for comparative analysis.
Febres, Gerardo; Jaffe, Klaus
2017-01-01
Polyphonic music files were analyzed using the set of symbols that produced the Minimal Entropy Description, which we call the Fundamental Scale. This allowed us to create a novel space to represent music pieces by developing: (a) a method to adjust a textual description from its original scale of observation to an arbitrarily selected scale, (b) a method to model the structure of any textual description based on the shape of the symbol frequency profiles, and (c) the concept of higher order entropy as the entropy associated with the deviations of a frequency-ranked symbol profile from a perfect Zipfian profile. We call this diversity index the '2nd Order Entropy'. Applying these methods to a variety of musical pieces showed how the space of 'symbolic specific diversity-entropy' and that of '2nd order entropy' captures characteristics that are unique to each music type, style, composer and genre. Some clustering of these properties around each musical category is shown. These methods allow us to visualize a historic trajectory of academic music across this space, from medieval to contemporary academic music. We show that the description of musical structures using entropy, symbol frequency profiles and specific symbolic diversity allows us to characterize traditional and popular expressions of music. These classification techniques promise to be useful in other disciplines for pattern recognition and machine learning.
Entropy-Aided Evaluation of Meteorological Droughts Over China
NASA Astrophysics Data System (ADS)
Sang, Yan-Fang; Singh, Vijay P.; Hu, Zengyun; Xie, Ping; Li, Xinxin
2018-01-01
Evaluation of drought and its spatial distribution is essential to develop mitigation measures. In this study, we employed the entropy index to investigate the spatiotemporal variability of meteorological droughts over China. Entropy values, with a reliable hydrological and geographical basis, are closely related to the months of precipitation deficit and its mean magnitude and can thus represent the physical formation of droughts. The value of entropy index can be roughly classified as <0.35, 0.36-0.90, and >0.90, reflecting high, middle, and low occurrence probabilities of droughts. The accumulated precipitation deficits, based on the standardized precipitation-evapotranspiration index at the 1, 3, 6, and 12 month scales, consistently increase with entropy decrease, no matter considering the moderately, severely, or extremely dry conditions. Therefore, Northwest China and North China, with smaller entropy values, have higher occurrence probability of droughts than South China, with a break at 38°N latitude. The aggravating droughts in North China and Southwest China over recent decades are represented by the increase in both the occurrence frequency and the magnitude. The entropy, determined by absolute magnitude of the difference between precipitation and potential evapotranspiration, as well as its scatter and skewness characteristics, is easily calculated and can be an effective index for evaluating drought and its spatial distribution. We therefore identified dominant thresholds for entropy values and statistical characteristics of precipitation deficit, which would help evaluate the occurrence probability of droughts worldwide.
Ugarte, Juan P.; Orozco-Duque, Andrés; Tobón, Catalina; Kremen, Vaclav; Novak, Daniel; Saiz, Javier; Oesterlein, Tobias; Schmitt, Clauss; Luik, Armin; Bustamante, John
2014-01-01
There is evidence that rotors could be drivers that maintain atrial fibrillation. Complex fractionated atrial electrograms have been located in rotor tip areas. However, the concept of electrogram fractionation, defined using time intervals, is still controversial as a tool for locating target sites for ablation. We hypothesize that the fractionation phenomenon is better described using non-linear dynamic measures, such as approximate entropy, and that this tool could be used for locating the rotor tip. The aim of this work has been to determine the relationship between approximate entropy and fractionated electrograms, and to develop a new tool for rotor mapping based on fractionation levels. Two episodes of chronic atrial fibrillation were simulated in a 3D human atrial model, in which rotors were observed. Dynamic approximate entropy maps were calculated using unipolar electrogram signals generated over the whole surface of the 3D atrial model. In addition, we optimized the approximate entropy calculation using two real multi-center databases of fractionated electrogram signals, labeled in 4 levels of fractionation. We found that the values of approximate entropy and the levels of fractionation are positively correlated. This allows the dynamic approximate entropy maps to localize the tips from stable and meandering rotors. Furthermore, we assessed the optimized approximate entropy using bipolar electrograms generated over a vicinity enclosing a rotor, achieving rotor detection. Our results suggest that high approximate entropy values are able to detect a high level of fractionation and to locate rotor tips in simulated atrial fibrillation episodes. We suggest that dynamic approximate entropy maps could become a tool for atrial fibrillation rotor mapping. PMID:25489858
Tian, Yin; Zhang, Huiling; Xu, Wei; Zhang, Haiyong; Yang, Li; Zheng, Shuxing; Shi, Yupan
2017-01-01
Spectral entropy, which was generated by applying the Shannon entropy concept to the power distribution of the Fourier-transformed electroencephalograph (EEG), was utilized to measure the uniformity of power spectral density underlying EEG when subjects performed the working memory tasks twice, i.e., before and after training. According to Signed Residual Time (SRT) scores based on response speed and accuracy trade-off, 20 subjects were divided into two groups, namely high-performance and low-performance groups, to undertake working memory (WM) tasks. We found that spectral entropy derived from the retention period of WM on channel FC4 exhibited a high correlation with SRT scores. To this end, spectral entropy was used in support vector machine classifier with linear kernel to differentiate these two groups. Receiver operating characteristics analysis and leave-one out cross-validation (LOOCV) demonstrated that the averaged classification accuracy (CA) was 90.0 and 92.5% for intra-session and inter-session, respectively, indicating that spectral entropy could be used to distinguish these two different WM performance groups successfully. Furthermore, the support vector regression prediction model with radial basis function kernel and the root-mean-square error of prediction revealed that spectral entropy could be utilized to predict SRT scores on individual WM performance. After testing the changes in SRT scores and spectral entropy for each subject by short-time training, we found that 16 in 20 subjects’ SRT scores were clearly promoted after training and 15 in 20 subjects’ SRT scores showed consistent changes with spectral entropy before and after training. The findings revealed that spectral entropy could be a promising indicator to predict individual’s WM changes by training and further provide a novel application about WM for brain–computer interfaces. PMID:28912701
Inference of gene regulatory networks from time series by Tsallis entropy
2011-01-01
Background The inference of gene regulatory networks (GRNs) from large-scale expression profiles is one of the most challenging problems of Systems Biology nowadays. Many techniques and models have been proposed for this task. However, it is not generally possible to recover the original topology with great accuracy, mainly due to the short time series data in face of the high complexity of the networks and the intrinsic noise of the expression measurements. In order to improve the accuracy of GRNs inference methods based on entropy (mutual information), a new criterion function is here proposed. Results In this paper we introduce the use of generalized entropy proposed by Tsallis, for the inference of GRNs from time series expression profiles. The inference process is based on a feature selection approach and the conditional entropy is applied as criterion function. In order to assess the proposed methodology, the algorithm is applied to recover the network topology from temporal expressions generated by an artificial gene network (AGN) model as well as from the DREAM challenge. The adopted AGN is based on theoretical models of complex networks and its gene transference function is obtained from random drawing on the set of possible Boolean functions, thus creating its dynamics. On the other hand, DREAM time series data presents variation of network size and its topologies are based on real networks. The dynamics are generated by continuous differential equations with noise and perturbation. By adopting both data sources, it is possible to estimate the average quality of the inference with respect to different network topologies, transfer functions and network sizes. Conclusions A remarkable improvement of accuracy was observed in the experimental results by reducing the number of false connections in the inferred topology by the non-Shannon entropy. The obtained best free parameter of the Tsallis entropy was on average in the range 2.5 ≤ q ≤ 3.5 (hence, subextensive entropy), which opens new perspectives for GRNs inference methods based on information theory and for investigation of the nonextensivity of such networks. The inference algorithm and criterion function proposed here were implemented and included in the DimReduction software, which is freely available at http://sourceforge.net/projects/dimreduction and http://code.google.com/p/dimreduction/. PMID:21545720
Entropy Beacon: A Hairpin-Free DNA Amplification Strategy for Efficient Detection of Nucleic Acids
2015-01-01
Here, we propose an efficient strategy for enzyme- and hairpin-free nucleic acid detection called an entropy beacon (abbreviated as Ebeacon). Different from previously reported DNA hybridization/displacement-based strategies, Ebeacon is driven forward by increases in the entropy of the system, instead of free energy released from new base-pair formation. Ebeacon shows high sensitivity, with a detection limit of 5 pM target DNA in buffer and 50 pM in cellular homogenate. Ebeacon also benefits from the hairpin-free amplification strategy and zero-background, excellent thermostability from 20 °C to 50 °C, as well as good resistance to complex environments. In particular, based on the huge difference between the breathing rate of a single base pair and two adjacent base pairs, Ebeacon also shows high selectivity toward base mutations, such as substitution, insertion, and deletion and, therefore, is an efficient nucleic acid detection method, comparable to most reported enzyme-free strategies. PMID:26505212
A mechanism producing power law etc. distributions
NASA Astrophysics Data System (ADS)
Li, Heling; Shen, Hongjun; Yang, Bin
2017-07-01
Power law distribution is playing an increasingly important role in the complex system study. Based on the insolvability of complex systems, the idea of incomplete statistics is utilized and expanded, three different exponential factors are introduced in equations about the normalization condition, statistical average and Shannon entropy, with probability distribution function deduced about exponential function, power function and the product form between power function and exponential function derived from Shannon entropy and maximal entropy principle. So it is shown that maximum entropy principle can totally replace equal probability hypothesis. Owing to the fact that power and probability distribution in the product form between power function and exponential function, which cannot be derived via equal probability hypothesis, can be derived by the aid of maximal entropy principle, it also can be concluded that maximal entropy principle is a basic principle which embodies concepts more extensively and reveals basic principles on motion laws of objects more fundamentally. At the same time, this principle also reveals the intrinsic link between Nature and different objects in human society and principles complied by all.
Rényi entropy, abundance distribution, and the equivalence of ensembles.
Mora, Thierry; Walczak, Aleksandra M
2016-05-01
Distributions of abundances or frequencies play an important role in many fields of science, from biology to sociology, as does the Rényi entropy, which measures the diversity of a statistical ensemble. We derive a mathematical relation between the abundance distribution and the Rényi entropy, by analogy with the equivalence of ensembles in thermodynamics. The abundance distribution is mapped onto the density of states, and the Rényi entropy to the free energy. The two quantities are related in the thermodynamic limit by a Legendre transform, by virtue of the equivalence between the micro-canonical and canonical ensembles. In this limit, we show how the Rényi entropy can be constructed geometrically from rank-frequency plots. This mapping predicts that non-concave regions of the rank-frequency curve should result in kinks in the Rényi entropy as a function of its order. We illustrate our results on simple examples, and emphasize the limitations of the equivalence of ensembles when a thermodynamic limit is not well defined. Our results help choose reliable diversity measures based on the experimental accuracy of the abundance distributions in particular frequency ranges.
Two dissimilar approaches to dynamical systems on hyper MV -algebras and their information entropy
NASA Astrophysics Data System (ADS)
Mehrpooya, Adel; Ebrahimi, Mohammad; Davvaz, Bijan
2017-09-01
Measuring the flow of information that is related to the evolution of a system which is modeled by applying a mathematical structure is of capital significance for science and usually for mathematics itself. Regarding this fact, a major issue in concern with hyperstructures is their dynamics and the complexity of the varied possible dynamics that exist over them. Notably, the dynamics and uncertainty of hyper MV -algebras which are hyperstructures and extensions of a central tool in infinite-valued Lukasiewicz propositional calculus that models many valued logics are of primary concern. Tackling this problem, in this paper we focus on the subject of dynamical systems on hyper MV -algebras and their entropy. In this respect, we adopt two varied approaches. One is the set-based approach in which hyper MV -algebra dynamical systems are developed by employing set functions and set partitions. By the other method that is based on points and point partitions, we establish the concept of hyper injective dynamical systems on hyper MV -algebras. Next, we study the notion of entropy for both kinds of systems. Furthermore, we consider essential ergodic characteristics of those systems and their entropy. In particular, we introduce the concept of isomorphic hyper injective and hyper MV -algebra dynamical systems, and we demonstrate that isomorphic systems have the same entropy. We present a couple of theorems in order to help calculate entropy. In particular, we prove a contemporary version of addition and Kolmogorov-Sinai Theorems. Furthermore, we provide a comparison between the indispensable properties of hyper injective and semi-independent dynamical systems. Specifically, we present and prove theorems that draw comparisons between the entropies of such systems. Lastly, we discuss some possible relationships between the theories of hyper MV -algebra and MV -algebra dynamical systems.
2013-01-01
Here we present a novel, end-point method using the dead-end-elimination and A* algorithms to efficiently and accurately calculate the change in free energy, enthalpy, and configurational entropy of binding for ligand–receptor association reactions. We apply the new approach to the binding of a series of human immunodeficiency virus (HIV-1) protease inhibitors to examine the effect ensemble reranking has on relative accuracy as well as to evaluate the role of the absolute and relative ligand configurational entropy losses upon binding in affinity differences for structurally related inhibitors. Our results suggest that most thermodynamic parameters can be estimated using only a small fraction of the full configurational space, and we see significant improvement in relative accuracy when using an ensemble versus single-conformer approach to ligand ranking. We also find that using approximate metrics based on the single-conformation enthalpy differences between the global minimum energy configuration in the bound as well as unbound states also correlates well with experiment. Using a novel, additive entropy expansion based on conditional mutual information, we also analyze the source of ligand configurational entropy loss upon binding in terms of both uncoupled per degree of freedom losses as well as changes in coupling between inhibitor degrees of freedom. We estimate entropic free energy losses of approximately +24 kcal/mol, 12 kcal/mol of which stems from loss of translational and rotational entropy. Coupling effects contribute only a small fraction to the overall entropy change (1–2 kcal/mol) but suggest differences in how inhibitor dihedral angles couple to each other in the bound versus unbound states. The importance of accounting for flexibility in drug optimization and design is also discussed. PMID:24250277
Ladar imaging detection of salient map based on PWVD and Rényi entropy
NASA Astrophysics Data System (ADS)
Xu, Yuannan; Zhao, Yuan; Deng, Rong; Dong, Yanbing
2013-10-01
Spatial-frequency information of a given image can be extracted by associating the grey-level spatial data with one of the well-known spatial/spatial-frequency distributions. The Wigner-Ville distribution (WVD) has a good characteristic that the images can be represented in spatial/spatial-frequency domains. For intensity and range images of ladar, through the pseudo Wigner-Ville distribution (PWVD) using one or two dimension window, the statistical property of Rényi entropy is studied. We also analyzed the change of Rényi entropy's statistical property in the ladar intensity and range images when the man-made objects appear. From this foundation, a novel method for generating saliency map based on PWVD and Rényi entropy is proposed. After that, target detection is completed when the saliency map is segmented using a simple and convenient threshold method. For the ladar intensity and range images, experimental results show the proposed method can effectively detect the military vehicles from complex earth background with low false alarm.
EEG based topography analysis in string recognition task
NASA Astrophysics Data System (ADS)
Ma, Xiaofei; Huang, Xiaolin; Shen, Yuxiaotong; Qin, Zike; Ge, Yun; Chen, Ying; Ning, Xinbao
2017-03-01
Vision perception and recognition is a complex process, during which different parts of brain are involved depending on the specific modality of the vision target, e.g. face, character, or word. In this study, brain activities in string recognition task compared with idle control state are analyzed through topographies based on multiple measurements, i.e. sample entropy, symbolic sample entropy and normalized rhythm power, extracted from simultaneously collected scalp EEG. Our analyses show that, for most subjects, both symbolic sample entropy and normalized gamma power in string recognition task are significantly higher than those in idle state, especially at locations of P4, O2, T6 and C4. It implies that these regions are highly involved in string recognition task. Since symbolic sample entropy measures complexity, from the perspective of new information generation, and normalized rhythm power reveals the power distributions in frequency domain, complementary information about the underlying dynamics can be provided through the two types of indices.
Rényi entropy measure of noise-aided information transmission in a binary channel.
Chapeau-Blondeau, François; Rousseau, David; Delahaies, Agnès
2010-05-01
This paper analyzes a binary channel by means of information measures based on the Rényi entropy. The analysis extends, and contains as a special case, the classic reference model of binary information transmission based on the Shannon entropy measure. The extended model is used to investigate further possibilities and properties of stochastic resonance or noise-aided information transmission. The results demonstrate that stochastic resonance occurs in the information channel and is registered by the Rényi entropy measures at any finite order, including the Shannon order. Furthermore, in definite conditions, when seeking the Rényi information measures that best exploit stochastic resonance, then nontrivial orders differing from the Shannon case usually emerge. In this way, through binary information transmission, stochastic resonance identifies optimal Rényi measures of information differing from the classic Shannon measure. A confrontation of the quantitative information measures with visual perception is also proposed in an experiment of noise-aided binary image transmission.
Liu, Miao; Zhang, Yang; Liang, Fulai; Qi, Fugui; Lv, Hao; Wang, Jianqi; Zhang, Yang
2017-01-01
Ultra-wide band (UWB) radar for short-range human target detection is widely used to find and locate survivors in some rescue missions after a disaster. The results of the application of bistatic UWB radar for detecting multi-stationary human targets have shown that human targets close to the radar antennas are very often visible, while those farther from radar antennas are detected with less reliability. In this paper, on account of the significant difference of frequency content between the echo signal of the human target and that of noise in the shadowing region, an algorithm based on wavelet entropy is proposed to detect multiple targets. Our findings indicate that the entropy value of human targets was much lower than that of noise. Compared with the method of adaptive filtering and the energy spectrum, wavelet entropy can accurately detect the person farther from the radar antennas, and it can be employed as a useful tool in detecting multiple targets by bistatic UWB radar. PMID:28973988
Xue, Huijun; Liu, Miao; Zhang, Yang; Liang, Fulai; Qi, Fugui; Chen, Fuming; Lv, Hao; Wang, Jianqi; Zhang, Yang
2017-09-30
Ultra-wide band (UWB) radar for short-range human target detection is widely used to find and locate survivors in some rescue missions after a disaster. The results of the application of bistatic UWB radar for detecting multi-stationary human targets have shown that human targets close to the radar antennas are very often visible, while those farther from radar antennas are detected with less reliability. In this paper, on account of the significant difference of frequency content between the echo signal of the human target and that of noise in the shadowing region, an algorithm based on wavelet entropy is proposed to detect multiple targets. Our findings indicate that the entropy value of human targets was much lower than that of noise. Compared with the method of adaptive filtering and the energy spectrum, wavelet entropy can accurately detect the person farther from the radar antennas, and it can be employed as a useful tool in detecting multiple targets by bistatic UWB radar.
NASA Astrophysics Data System (ADS)
Kuramochi, Yui; Ueda, Masahito
2015-03-01
We consider the information flow on a system observable X corresponding to a positive-operator-valued measure under a quantum measurement process Y described by a completely positive instrument from the viewpoint of the relative entropy. We establish a sufficient condition for the relative-entropy conservation law which states that the average decrease in the relative entropy of the system observable X equals the relative entropy of the measurement outcome of Y , i.e., the information gain due to measurement. This sufficient condition is interpreted as an assumption of classicality in the sense that there exists a sufficient statistic in a joint successive measurement of Y followed by X such that the probability distribution of the statistic coincides with that of a single measurement of X for the premeasurement state. We show that in the case when X is a discrete projection-valued measure and Y is discrete, the classicality condition is equivalent to the relative-entropy conservation for arbitrary states. The general theory on the relative-entropy conservation is applied to typical quantum measurement models, namely, quantum nondemolition measurement, destructive sharp measurements on two-level systems, a photon counting, a quantum counting, homodyne and heterodyne measurements. These examples except for the nondemolition and photon-counting measurements do not satisfy the known Shannon-entropy conservation law proposed by Ban [M. Ban, J. Phys. A: Math. Gen. 32, 1643 (1999), 10.1088/0305-4470/32/9/012], implying that our approach based on the relative entropy is applicable to a wider class of quantum measurements.
Optimization of pressure gauge locations for water distribution systems using entropy theory.
Yoo, Do Guen; Chang, Dong Eil; Jun, Hwandon; Kim, Joong Hoon
2012-12-01
It is essential to select the optimal pressure gauge location for effective management and maintenance of water distribution systems. This study proposes an objective and quantified standard for selecting the optimal pressure gauge location by defining the pressure change at other nodes as a result of demand change at a specific node using entropy theory. Two cases are considered in terms of demand change: that in which demand at all nodes shows peak load by using a peak factor and that comprising the demand change of the normal distribution whose average is the base demand. The actual pressure change pattern is determined by using the emitter function of EPANET to reflect the pressure that changes practically at each node. The optimal pressure gauge location is determined by prioritizing the node that processes the largest amount of information it gives to (giving entropy) and receives from (receiving entropy) the whole system according to the entropy standard. The suggested model is applied to one virtual and one real pipe network, and the optimal pressure gauge location combination is calculated by implementing the sensitivity analysis based on the study results. These analysis results support the following two conclusions. Firstly, the installation priority of the pressure gauge in water distribution networks can be determined with a more objective standard through the entropy theory. Secondly, the model can be used as an efficient decision-making guide for gauge installation in water distribution systems.
VizieR Online Data Catalog: GLASS. IX. Structural param. from HFF & GLASS (Morishita+, 2017)
NASA Astrophysics Data System (ADS)
Morishita, T.; Abramson, L. E.; Treu, T.; Vulcani, B.; Schmidt, K. B.; Dressler, A.; Poggianti, B. M.; Malkan, M. A.; Wang, X.; Huang, K.-H.; Trenti, M.; Bradac, M.; Hoag, A.
2017-09-01
We base our analysis on Hubble Frontier Fields (HFF; Lotz+ 2017ApJ...837...97L) imaging and Grism Survey from Space (GLASS; Schmidt+ 2014ApJ...782L..36S; Treu+, 2015, J/ApJ/812/114) HST spectroscopy for the first four HFF clusters with complete data: Abell2744 (z=0.308), MACS0416 (0.396), MACS0717 (0.548), and MACS1149 (0.544). HFF imaging spans ACS F435/606/814W through WFC3IR F105/125/140/160W filters (seven bands). Our final catalog consists of 3948 galaxies, with 2200 in clusters and 1748 in field environments. A total of 298 have ground-based and 168 have GLASS spectroscopic redshifts. (1 data file).
Using constrained information entropy to detect rare adverse drug reactions from medical forums.
Yi Zheng; Chaowang Lan; Hui Peng; Jinyan Li
2016-08-01
Adverse drug reactions (ADRs) detection is critical to avoid malpractices yet challenging due to its uncertainty in pre-marketing review and the underreporting in post-marketing surveillance. To conquer this predicament, social media based ADRs detection methods have been proposed recently. However, existing researches are mostly co-occurrence based methods and face several issues, in particularly, leaving out the rare ADRs and unable to distinguish irrelevant ADRs. In this work, we introduce a constrained information entropy (CIE) method to solve these problems. CIE first recognizes the drug-related adverse reactions using a predefined keyword dictionary and then captures high- and low-frequency (rare) ADRs by information entropy. Extensive experiments on medical forums dataset demonstrate that CIE outperforms the state-of-the-art co-occurrence based methods, especially in rare ADRs detection.
Estimating cognitive workload using wavelet entropy-based features during an arithmetic task.
Zarjam, Pega; Epps, Julien; Chen, Fang; Lovell, Nigel H
2013-12-01
Electroencephalography (EEG) has shown promise as an indicator of cognitive workload; however, precise workload estimation is an ongoing research challenge. In this investigation, seven levels of workload were induced using an arithmetic task, and the entropy of wavelet coefficients extracted from EEG signals is shown to distinguish all seven levels. For a subject-independent multi-channel classification scheme, the entropy features achieved high accuracy, up to 98% for channels from the frontal lobes, in the delta frequency band. This suggests that a smaller number of EEG channels in only one frequency band can be deployed for an effective EEG-based workload classification system. Together with analysis based on phase locking between channels, these results consistently suggest increased synchronization of neural responses for higher load levels. Copyright © 2013 Elsevier Ltd. All rights reserved.
Guastello, Stephen J; Gorin, Hillary; Huschen, Samuel; Peters, Natalie E; Fabisch, Megan; Poston, Kirsten
2012-10-01
It has become well established in laboratory experiments that switching tasks, perhaps due to interruptions at work, incur costs in response time to complete the next task. Conditions are also known that exaggerate or lessen the switching costs. Although switching costs can contribute to fatigue, task switching can also be an adaptive response to fatigue. The present study introduces a new research paradigm for studying the emergence of voluntary task switching regimes, self-organizing processes therein, and the possibly conflicting roles of switching costs and minimum entropy. Fifty-four undergraduates performed 7 different computer-based cognitive tasks producing sets of 49 responses under instructional conditions requiring task quotas or no quotas. The sequences of task choices were analyzed using orbital decomposition to extract pattern types and lengths, which were then classified and compared with regard to Shannon entropy, topological entropy, number of task switches involved, and overall performance. Results indicated that similar but different patterns were generated under the two instructional conditions, and better performance was associated with lower topological entropy. Both entropy metrics were associated with the amount of voluntary task switching. Future research should explore conditions affecting the trade-off between switching costs and entropy, levels of automaticity between task elements, and the role of voluntary switching regimes on fatigue.
Configurational entropy of polar glass formers and the effect of electric field on glass transition
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matyushov, Dmitry V., E-mail: dmitrym@asu.edu
2016-07-21
A model of low-temperature polar liquids is constructed that accounts for the configurational heat capacity, entropy, and the effect of a strong electric field on the glass transition. The model is based on the Padé-truncated perturbation expansions of the liquid state theory. Depending on parameters, it accommodates an ideal glass transition of vanishing configurational entropy and its avoidance, with a square-root divergent enumeration function at the point of its termination. A composite density-temperature parameter ρ{sup γ}/T, often used to represent combined pressure and temperature data, follows from the model. The theory is in good agreement with the experimental data formore » excess (over the crystal state) thermodynamics of molecular glass formers. We suggest that the Kauzmann entropy crisis might be a signature of vanishing configurational entropy of a subset of degrees of freedom, multipolar rotations in our model. This scenario has observable consequences: (i) a dynamical crossover of the relaxation time and (ii) the fragility index defined by the ratio of the excess heat capacity and excess entropy at the glass transition. The Kauzmann temperature of vanishing configurational entropy and the corresponding glass transition temperature shift upward when the electric field is applied. The temperature shift scales quadratically with the field strength.« less
Two-phase thermodynamic model for computing entropies of liquids reanalyzed
NASA Astrophysics Data System (ADS)
Sun, Tao; Xian, Jiawei; Zhang, Huai; Zhang, Zhigang; Zhang, Yigang
2017-11-01
The two-phase thermodynamic (2PT) model [S.-T. Lin et al., J. Chem. Phys. 119, 11792-11805 (2003)] provides a promising paradigm to efficiently determine the ionic entropies of liquids from molecular dynamics. In this model, the vibrational density of states (VDoS) of a liquid is decomposed into a diffusive gas-like component and a vibrational solid-like component. By treating the diffusive component as hard sphere (HS) gas and the vibrational component as harmonic oscillators, the ionic entropy of the liquid is determined. Here we examine three issues crucial for practical implementations of the 2PT model: (i) the mismatch between the VDoS of the liquid system and that of the HS gas; (ii) the excess entropy of the HS gas; (iii) the partition of the gas-like and solid-like components. Some of these issues have not been addressed before, yet they profoundly change the entropy predicted from the model. Based on these findings, a revised 2PT formalism is proposed and successfully tested in systems with Lennard-Jones potentials as well as many-atom potentials of liquid metals. Aside from being capable of performing quick entropy estimations for a wide range of systems, the formalism also supports fine-tuning to accurately determine entropies at specific thermal states.
A Theoretical Basis for Entropy-Scaling Effects in Human Mobility Patterns.
Osgood, Nathaniel D; Paul, Tuhin; Stanley, Kevin G; Qian, Weicheng
2016-01-01
Characterizing how people move through space has been an important component of many disciplines. With the advent of automated data collection through GPS and other location sensing systems, researchers have the opportunity to examine human mobility at spatio-temporal resolution heretofore impossible. However, the copious and complex data collected through these logging systems can be difficult for humans to fully exploit, leading many researchers to propose novel metrics for encapsulating movement patterns in succinct and useful ways. A particularly salient proposed metric is the mobility entropy rate of the string representing the sequence of locations visited by an individual. However, mobility entropy rate is not scale invariant: entropy rate calculations based on measurements of the same trajectory at varying spatial or temporal granularity do not yield the same value, limiting the utility of mobility entropy rate as a metric by confounding inter-experimental comparisons. In this paper, we derive a scaling relationship for mobility entropy rate of non-repeating straight line paths from the definition of Lempel-Ziv compression. We show that the resulting formulation predicts the scaling behavior of simulated mobility traces, and provides an upper bound on mobility entropy rate under certain assumptions. We further show that this formulation has a maximum value for a particular sampling rate, implying that optimal sampling rates for particular movement patterns exist.
Entropy production and optimization of geothermal power plants
NASA Astrophysics Data System (ADS)
Michaelides, Efstathios E.
2012-09-01
Geothermal power plants are currently producing reliable and low-cost, base load electricity. Three basic types of geothermal power plants are currently in operation: single-flashing, dual-flashing, and binary power plants. Typically, the single-flashing and dual-flashing geothermal power plants utilize geothermal water (brine) at temperatures in the range of 550-430 K. Binary units utilize geothermal resources at lower temperatures, typically 450-380 K. The entropy production in the various components of the three types of geothermal power plants determines the efficiency of the plants. It is axiomatic that a lower entropy production would improve significantly the energy utilization factor of the corresponding power plant. For this reason, the entropy production in the major components of the three types of geothermal power plants has been calculated. It was observed that binary power plants generate the lowest amount of entropy and, thus, convert the highest rate of geothermal energy into mechanical energy. The single-flashing units generate the highest amount of entropy, primarily because they re-inject fluid at relatively high temperature. The calculations for entropy production provide information on the equipment where the highest irreversibilities occur, and may be used to optimize the design of geothermal processes in future geothermal power plants and thermal cycles used for the harnessing of geothermal energy.
NASA Astrophysics Data System (ADS)
Gu, Rongbao; Shao, Yanmin
2016-07-01
In this paper, a new concept of multi-scales singular value decomposition entropy based on DCCA cross correlation analysis is proposed and its predictive power for the Dow Jones Industrial Average Index is studied. Using Granger causality analysis with different time scales, it is found that, the singular value decomposition entropy has predictive power for the Dow Jones Industrial Average Index for period less than one month, but not for more than one month. This shows how long the singular value decomposition entropy predicts the stock market that extends Caraiani's result obtained in Caraiani (2014). On the other hand, the result also shows an essential characteristic of stock market as a chaotic dynamic system.
Sort entropy-based for the analysis of EEG during anesthesia
NASA Astrophysics Data System (ADS)
Ma, Liang; Huang, Wei-Zhi
2010-08-01
The monitoring of anesthetic depth is an absolutely necessary procedure in the process of surgical operation. To judge and control the depth of anesthesia has become a clinical issue which should be resolved urgently. EEG collected wiil be processed by sort entrop in this paper. Signal response of the surface of the cerebral cortex is determined for different stages of patients in the course of anesthesia. EEG is simulated and analyzed through the fast algorithm of sort entropy. The results show that discipline of phasic changes for EEG is very detected accurately,and it has better noise immunity in detecting the EEG anaesthetized than approximate entropy. In conclusion,the computing of Sort entropy algorithm requires shorter time. It has high efficiency and strong anti-interference.
Convex Accelerated Maximum Entropy Reconstruction
Worley, Bradley
2016-01-01
Maximum entropy (MaxEnt) spectral reconstruction methods provide a powerful framework for spectral estimation of nonuniformly sampled datasets. Many methods exist within this framework, usually defined based on the magnitude of a Lagrange multiplier in the MaxEnt objective function. An algorithm is presented here that utilizes accelerated first-order convex optimization techniques to rapidly and reliably reconstruct nonuniformly sampled NMR datasets using the principle of maximum entropy. This algorithm – called CAMERA for Convex Accelerated Maximum Entropy Reconstruction Algorithm – is a new approach to spectral reconstruction that exhibits fast, tunable convergence in both constant-aim and constant-lambda modes. A high-performance, open source NMR data processing tool is described that implements CAMERA, and brief comparisons to existing reconstruction methods are made on several example spectra. PMID:26894476
Affine Isoperimetry and Information Theoretic Inequalities
ERIC Educational Resources Information Center
Lv, Songjun
2012-01-01
There are essential connections between the isoperimetric theory and information theoretic inequalities. In general, the Brunn-Minkowski inequality and the entropy power inequality, as well as the classical isoperimetric inequality and the classical entropy-moment inequality, turn out to be equivalent in some certain sense, respectively. Based on…
Can standard cosmological models explain the observed Abell cluster bulk flow?
NASA Technical Reports Server (NTRS)
Strauss, Michael A.; Cen, Renyue; Ostriker, Jeremiah P.; Laure, Tod R.; Postman, Marc
1995-01-01
Lauer and Postman (LP) observed that all Abell clusters with redshifts less than 15,000 km/s appear to be participating in a bulk flow of 689 km/s with respect to the cosmic microwave background. We find this result difficult to reconcile with all popular models for large-scale structure formation that assume Gaussian initial conditions. This conclusion is based on Monte Carlo realizations of the LP data, drawn from large particle-mesh N-body simulations for six different models of the initial power spectrum (standard, tilted, and Omega(sub 0) = 0.3 cold dark matter, and two variants of the primordial baryon isocurvature model). We have taken special care to treat properly the longest-wavelength components of the power spectra. The simulations are sampled, 'observed,' and analyzed as identically as possible to the LP cluster sample. Large-scale bulk flows as measured from clusters in the simulations are in excellent agreement with those measured from the grid: the clusters do not exhibit any strong velocity bias on large scales. Bulk flows with amplitude as large as that reported by LP are not uncommon in the Monte Carlo data stes; the distribution of measured bulk flows before error bias subtraction is rougly Maxwellian, with a peak around 400 km/s. However the chi squared of the observed bulk flow, taking into account the anisotropy of the error ellipsoid, is much more difficult to match in the simulations. The models examined are ruled out at confidence levels between 94% and 98%.
Shadow-angle method for anisotropic and weakly absorbing films.
Surdutovich, G; Vitlina, R; Baranauskas, V
1999-07-01
A method for determining the optical properties of a film on an isotropic substrate is proposed. The method is based on the existence of two specific incidence angles in the angular interference pattern of the p-polarized light where oscillations of the reflection coefficient cease. The first of these angles, theta(B1), is the well-known Abelès angle, i.e., the ambient-film Brewster angle, and the second angle theta(B2) is the film-substrate Brewster angle. In the conventional planar geometry and in a vacuum ambient there is a rigorous constraint epsilon(1) + epsilon > epsilon(1)epsilon on the film and the substrate dielectric permittivities epsilon(1) and epsilon, respectively, for the existence of the second angle theta(B2.) The limitation may be removed in an experiment by use of a cylindrical lens as an ambient with epsilon(0) > 1, so that both angles become observable. This, contrary to general belief, allows one to adopt the conventional Abelès method not only for films with epsilon(1) close to the substrate's value epsilon but also for any value of epsilon(1). The method, when applied to a wedge-shaped film or to any film of unknown variable thickness, permits one to determine (i) the refractive index of a film on an unknown substrate, (ii) the vertical and the horizontal optical anisotropies of a film on an isotropic substrate, (iii) the weak absorption of a moderately thick film on a transparent or an absorbing isotropic substrate.
NASA Astrophysics Data System (ADS)
Bell, T. F.; Foust, F.; Inan, U. S.; Lehtinen, N. G.
2010-12-01
The energetic particles comprising the Earth’s radiation belts are an important component of Space Weather. The commonly accepted model of the quasi-steady radiation belts developed by Abel and Thorne [1998] proposes that VLF signals from powerful ground based transmitters determine the lifetimes of energetic radiation belt electrons (100 keV-1.5 MeV) on L shells in the range 1.3-2.8. The primary mechanism of interaction is pitch angle scattering during gyro-resonance. Recent observations [Starks et al., 2008] from multiple spacecraft suggest that the actual night time intensity of VLF transmitter signals in the radiation belts is approximately 20 dB below the level assumed in the Abel and Thorne model and approximately 10 dB below model values during the day. In this work we discuss one mechanism which might be responsible for a large portion of this intensity discrepancy. The mechanism is linear mode coupling between electromagnetic whistler mode waves and quasi-electrostatic whistler mode waves. As VLF electromagnetic whistler mode waves propagate through regions containing small scale (2-100 m) magnetic-field-aligned plasma density irregularities, they excite quasi-electrostatic whistler mode waves, and this excitation represents a power loss for the input waves. We construct plausible models of the irregularities in order to use numerical simulations to determine the characteristics of the mode coupling mechanism and the conditions under which the input VLF waves can lose significant power to the excited quasi-electrostatic whistler mode waves.
Mpc-scale diffuse radio emission in two massive cool-core clusters of galaxies
NASA Astrophysics Data System (ADS)
Sommer, Martin W.; Basu, Kaustuv; Intema, Huib; Pacaud, Florian; Bonafede, Annalisa; Babul, Arif; Bertoldi, Frank
2017-04-01
Radio haloes are diffuse synchrotron sources on scales of ˜1 Mpc that are found in merging clusters of galaxies, and are believed to be powered by electrons re-accelerated by merger-driven turbulence. We present measurements of extended radio emission on similarly large scales in two clusters of galaxies hosting cool cores: Abell 2390 and Abell 2261. The analysis is based on interferometric imaging with the Karl G. Jansky Very Large Array, Very Large Array and Giant Metrewave Radio Telescope. We present detailed radio images of the targets, subtract the compact emission components and measure the spectral indices for the diffuse components. The radio emission in A2390 extends beyond a known sloshing-like brightness discontinuity, and has a very steep in-band spectral slope at 1.5 GHz that is similar to some known ultrasteep spectrum radio haloes. The diffuse signal in A2261 is more extended than in A2390 but has lower luminosity. X-ray morphological indicators, derived from XMM-Newton X-ray data, place these clusters in the category of relaxed or regular systems, although some asymmetric features that can indicate past minor mergers are seen in the X-ray brightness images. If these two Mpc-scale radio sources are categorized as giant radio haloes, they question the common assumption of radio haloes occurring exclusively in clusters undergoing violent merging activity, in addition to commonly used criteria for distinguishing between radio haloes and minihaloes.
A redshift survey of the strong-lensing cluster ABELL 383
DOE Office of Scientific and Technical Information (OSTI.GOV)
Geller, Margaret J.; Hwang, Ho Seong; Kurtz, Michael J.
2014-03-01
Abell 383 is a famous rich cluster (z = 0.1887) imaged extensively as a basis for intensive strong- and weak-lensing studies. Nonetheless, there are few spectroscopic observations. We enable dynamical analyses by measuring 2360 new redshifts for galaxies with r {sub Petro} ≤ 20.5 and within 50' of the Brightest Cluster Galaxy (BCG; R.A.{sub 2000} = 42.°014125, decl.{sub 2000} = –03.°529228). We apply the caustic technique to identify 275 cluster members within 7 h {sup –1} Mpc of the hierarchical cluster center. The BCG lies within –11 ± 110 km s{sup –1} and 21 ± 56 h {sup –1} kpcmore » of the hierarchical cluster center; the velocity dispersion profile of the BCG appears to be an extension of the velocity dispersion profile based on cluster members. The distribution of cluster members on the sky corresponds impressively with the weak-lensing contours of Okabe et al. especially when the impact of foreground and background structure is included. The values of R {sub 200} = 1.22 ± 0.01 h {sup –1} Mpc and M {sub 200} = (5.07 ± 0.09) × 10{sup 14} h {sup –1} M {sub ☉} obtained by application of the caustic technique agree well with recent completely independent lensing measures. The caustic estimate extends direct measurement of the cluster mass profile to a radius of ∼5 h {sup –1} Mpc.« less
A Multi-level Fuzzy Evaluation Method for Smart Distribution Network Based on Entropy Weight
NASA Astrophysics Data System (ADS)
Li, Jianfang; Song, Xiaohui; Gao, Fei; Zhang, Yu
2017-05-01
Smart distribution network is considered as the future trend of distribution network. In order to comprehensive evaluate smart distribution construction level and give guidance to the practice of smart distribution construction, a multi-level fuzzy evaluation method based on entropy weight is proposed. Firstly, focus on both the conventional characteristics of distribution network and new characteristics of smart distribution network such as self-healing and interaction, a multi-level evaluation index system which contains power supply capability, power quality, economy, reliability and interaction is established. Then, a combination weighting method based on Delphi method and entropy weight method is put forward, which take into account not only the importance of the evaluation index in the experts’ subjective view, but also the objective and different information from the index values. Thirdly, a multi-level evaluation method based on fuzzy theory is put forward. Lastly, an example is conducted based on the statistical data of some cites’ distribution network and the evaluation method is proved effective and rational.
Multiple scattering and the density distribution of a Cs MOT.
Overstreet, K; Zabawa, P; Tallant, J; Schwettmann, A; Shaffer, J
2005-11-28
Multiple scattering is studied in a Cs magneto-optical trap (MOT). We use two Abel inversion algorithms to recover density distributions of the MOT from fluorescence images. Deviations of the density distribution from a Gaussian are attributed to multiple scattering.
NASA Astrophysics Data System (ADS)
Manfroid, J.
2017-05-01
matière sombre – Abell 2744 vu par ALMA – Bousculade dans Orion – Rotation stellaire – Tsunamis martiens – Planète X ou 9 – Formation d’étoiles dans les jets de trous noirs – Éjection d’un trou noir
Science Teacher Education: An International Perspective.
ERIC Educational Resources Information Center
Abell, Sandra K., Ed.
This book presents reform efforts in science teacher education from an international perspective. Chapters include: (1) "International Perspectives on Science Teacher Education: An Introduction" (Sandra K. Abell); (2) "The Development of Preservice Elementary Science Teacher Education in Australia" (Ken Appleton, Ian S. Ginns,…
Shannon information entropy in the canonical genetic code.
Nemzer, Louis R
2017-02-21
The Shannon entropy measures the expected information value of messages. As with thermodynamic entropy, the Shannon entropy is only defined within a system that identifies at the outset the collections of possible messages, analogous to microstates, that will be considered indistinguishable macrostates. This fundamental insight is applied here for the first time to amino acid alphabets, which group the twenty common amino acids into families based on chemical and physical similarities. To evaluate these schemas objectively, a novel quantitative method is introduced based the inherent redundancy in the canonical genetic code. Each alphabet is taken as a separate system that partitions the 64 possible RNA codons, the microstates, into families, the macrostates. By calculating the normalized mutual information, which measures the reduction in Shannon entropy, conveyed by single nucleotide messages, groupings that best leverage this aspect of fault tolerance in the code are identified. The relative importance of properties related to protein folding - like hydropathy and size - and function, including side-chain acidity, can also be estimated. This approach allows the quantification of the average information value of nucleotide positions, which can shed light on the coevolution of the canonical genetic code with the tRNA-protein translation mechanism. Copyright © 2016 Elsevier Ltd. All rights reserved.
Spatio-temporal scaling effects on longshore sediment transport pattern along the nearshore zone
NASA Astrophysics Data System (ADS)
Khorram, Saeed; Ergil, Mustafa
2018-03-01
A measure of uncertainties, entropy has been employed in such different applications as coastal engineering probability inferences. Entropy sediment transport integration theories present novel visions in coastal analyses/modeling the application and development of which are still far-reaching. Effort has been made in the present paper to propose a method that needs an entropy-power index for spatio-temporal patterns analyses. Results have shown that the index is suitable for marine/hydrological ecosystem components analyses based on a beach area case study. The method makes use of six Makran Coastal monthly data (1970-2015) and studies variables such as spatio-temporal patterns, LSTR (long-shore sediment transport rate), wind speed, and wave height all of which are time-dependent and play considerable roles in terrestrial coastal investigations; the mentioned variables show meaningful spatio-temporal variability most of the time, but explanation of their combined performance is not easy. Accordingly, the use of an entropy-power index can show considerable signals that facilitate the evaluation of water resources and will provide an insight regarding hydrological parameters' interactions at scales as large as beach areas. Results have revealed that an STDDPI (entropy based spatio-temporal disorder dynamics power index) can simulate wave, long-shore sediment transport rate, and wind when granulometry, concentration, and flow conditions vary.
Wu, Jun; Li, Chengbing; Huo, Yueying
2014-01-01
Safety of dangerous goods transport is directly related to the operation safety of dangerous goods transport enterprise. Aiming at the problem of the high accident rate and large harm in dangerous goods logistics transportation, this paper took the group decision making problem based on integration and coordination thought into a multiagent multiobjective group decision making problem; a secondary decision model was established and applied to the safety assessment of dangerous goods transport enterprise. First of all, we used dynamic multivalue background and entropy theory building the first level multiobjective decision model. Secondly, experts were to empower according to the principle of clustering analysis, and combining with the relative entropy theory to establish a secondary rally optimization model based on relative entropy in group decision making, and discuss the solution of the model. Then, after investigation and analysis, we establish the dangerous goods transport enterprise safety evaluation index system. Finally, case analysis to five dangerous goods transport enterprises in the Inner Mongolia Autonomous Region validates the feasibility and effectiveness of this model for dangerous goods transport enterprise recognition, which provides vital decision making basis for recognizing the dangerous goods transport enterprises. PMID:25477954
Wu, Jun; Li, Chengbing; Huo, Yueying
2014-01-01
Safety of dangerous goods transport is directly related to the operation safety of dangerous goods transport enterprise. Aiming at the problem of the high accident rate and large harm in dangerous goods logistics transportation, this paper took the group decision making problem based on integration and coordination thought into a multiagent multiobjective group decision making problem; a secondary decision model was established and applied to the safety assessment of dangerous goods transport enterprise. First of all, we used dynamic multivalue background and entropy theory building the first level multiobjective decision model. Secondly, experts were to empower according to the principle of clustering analysis, and combining with the relative entropy theory to establish a secondary rally optimization model based on relative entropy in group decision making, and discuss the solution of the model. Then, after investigation and analysis, we establish the dangerous goods transport enterprise safety evaluation index system. Finally, case analysis to five dangerous goods transport enterprises in the Inner Mongolia Autonomous Region validates the feasibility and effectiveness of this model for dangerous goods transport enterprise recognition, which provides vital decision making basis for recognizing the dangerous goods transport enterprises.
Entropy Analysis in Mixed Convection MHD flow of Nanofluid over a Non-linear Stretching Sheet
NASA Astrophysics Data System (ADS)
Matin, Meisam Habibi; Nobari, Mohammad Reza Heirani; Jahangiri, Pouyan
This article deals with a numerical study of entropy analysis in mixed convection MHD flow of nanofluid over a non-linear stretching sheet taking into account the effects of viscous dissipation and variable magnetic field. The nanofluid is made of such nano particles as SiO2 with pure water as a base fluid. To analyze the problem, at first the boundary layer equations are transformed into non-linear ordinary equations using a similarity transformation. The resultant equations are then solved numerically using the Keller-Box scheme based on the implicit finite-difference method. The effects of different non-dimensional governing parameters such as magnetic parameter, nanoparticles volume fraction, Nusselt, Richardson, Eckert, Hartman, Brinkman, Reynolds and entropy generation numbers are investigated in details. The results indicate that increasing the nano particles to the base fluids causes the reduction in shear forces and a decrease in stretching sheet heat transfer coefficient. Also, decreasing the magnetic parameter and increasing the Eckert number result in improves heat transfer rate. Furthermore, the surface acts as a strong source of irreversibility due to the higher entropy generation number near the surface.
Design of Novel Precipitate-Strengthened Al-Co-Cr-Fe-Nb-Ni High-Entropy Superalloys
NASA Astrophysics Data System (ADS)
Antonov, Stoichko; Detrois, Martin; Tin, Sammy
2018-01-01
A series of non-equiatomic Al-Co-Cr-Fe-Nb-Ni high-entropy alloys, with varying levels of Co, Nb and Fe, were investigated in an effort to obtain microstructures similar to conventional Ni-based superalloys. Elevated levels of Co were observed to significantly decrease the solvus temperature of the γ' precipitates. Both Nb and Co in excessive concentrations promoted the formation of Laves and NiAl phases that formed either during solidification and remained undissolved during homogenization or upon high-temperature aging. Lowering the content of Nb, Co, or Fe prevented the formation of the eutectic type Laves. In addition, lowering the Co content resulted in a higher number density and volume fraction of the γ' precipitates, while increasing the Fe content led to the destabilization of the γ' precipitates. Various aging treatments were performed which led to different size distributions of the strengthening phase. Results from the microstructural characterization and hardness property assessments of these high-entropy alloys were compared to a commercial, high-strength Ni-based superalloy RR1000. Potentially, precipitation-strengthened high-entropy alloys could find applications replacing Ni-based superalloys as structural materials in power generation applications.
Directionality theory and the evolution of body size.
Demetrius, L
2000-12-07
Directionality theory, a dynamic theory of evolution that integrates population genetics with demography, is based on the concept of evolutionary entropy, a measure of the variability in the age of reproducing individuals in a population. The main tenets of the theory are three principles relating the response to the ecological constraints a population experiences, with trends in entropy as the population evolves under mutation and natural selection. (i) Stationary size or fluctuations around a stationary size (bounded growth): a unidirectional increase in entropy; (ii) prolonged episodes of exponential growth (unbounded growth), large population size: a unidirectional decrease in entropy; and (iii) prolonged episodes of exponential growth (unbounded growth), small population size: random, non-directional change in entropy. We invoke these principles, together with an allometric relationship between entropy, and the morphometric variable body size, to provide evolutionary explanations of three empirical patterns pertaining to trends in body size, namely (i) Cope's rule, the tendency towards size increase within phyletic lineages; (ii) the island rule, which pertains to changes in body size that occur as species migrate from mainland populations to colonize island habitats; and (iii) Bergmann's rule, the tendency towards size increase with increasing latitude. The observation that these ecotypic patterns can be explained in terms of the directionality principles for entropy underscores the significance of evolutionary entropy as a unifying concept in forging a link between micro-evolution, the dynamics of gene frequency change, and macro-evolution, dynamic changes in morphometric variables.
Hacisuleyman, Aysima; Erman, Burak
2017-01-01
It has recently been proposed by Gunasakaran et al. that allostery may be an intrinsic property of all proteins. Here, we develop a computational method that can determine and quantify allosteric activity in any given protein. Based on Schreiber's transfer entropy formulation, our approach leads to an information transfer landscape for the protein that shows the presence of entropy sinks and sources and explains how pairs of residues communicate with each other using entropy transfer. The model can identify the residues that drive the fluctuations of others. We apply the model to Ubiquitin, whose allosteric activity has not been emphasized until recently, and show that there are indeed systematic pathways of entropy and information transfer between residues that correlate well with the activities of the protein. We use 600 nanosecond molecular dynamics trajectories for Ubiquitin and its complex with human polymerase iota and evaluate entropy transfer between all pairs of residues of Ubiquitin and quantify the binding susceptibility changes upon complex formation. We explain the complex formation propensities of Ubiquitin in terms of entropy transfer. Important residues taking part in allosteric communication in Ubiquitin predicted by our approach are in agreement with results of NMR relaxation dispersion experiments. Finally, we show that time delayed correlation of fluctuations of two interacting residues possesses an intrinsic causality that tells which residue controls the interaction and which one is controlled. Our work shows that time delayed correlations, entropy transfer and causality are the required new concepts for explaining allosteric communication in proteins.
The stochastic thermodynamics of a rotating Brownian particle in a gradient flow
Lan, Yueheng; Aurell, Erik
2015-01-01
We compute the entropy production engendered in the environment from a single Brownian particle which moves in a gradient flow, and show that it corresponds in expectation to classical near-equilibrium entropy production in the surrounding fluid with specific mesoscopic transport coefficients. With temperature gradient, extra terms are found which result from the nonlinear interaction between the particle and the non-equilibrated environment. The calculations are based on the fluctuation relations which relate entropy production to the probabilities of stochastic paths and carried out in a multi-time formalism. PMID:26194015
Preliminary Characterization of Erythrocytes Deformability on the Entropy-Complexity Plane
Korol, Ana M; D’Arrigo, Mabel; Foresto, Patricia; Pérez, Susana; Martín, Maria T; Rosso, Osualdo A
2010-01-01
We present an application of wavelet-based Information Theory quantifiers (Normalized Total Shannon Entropy, MPR-Statistical Complexity and Entropy-Complexity plane) on red blood cells membrane viscoelasticity characterization. These quantifiers exhibit important localization advantages provided by the Wavelet Theory. The present approach produces a clear characterization of this dynamical system, finding out an evident manifestation of a random process on the red cell samples of healthy individuals, and its sharp reduction of randomness on analyzing a human haematological disease, such as β-thalassaemia minor. PMID:21611139
LOFAR discovery of an ultra-steep radio halo and giant head-tail radio galaxy in Abell 1132
NASA Astrophysics Data System (ADS)
Wilber, A.; Brüggen, M.; Bonafede, A.; Savini, F.; Shimwell, T.; van Weeren, R. J.; Rafferty, D.; Mechev, A. P.; Intema, H.; Andrade-Santos, F.; Clarke, A. O.; Mahony, E. K.; Morganti, R.; Prandoni, I.; Brunetti, G.; Röttgering, H.; Mandal, S.; de Gasperin, F.; Hoeft, M.
2018-01-01
Low-Frequency Array (LOFAR) observations at 144 MHz have revealed large-scale radio sources in the unrelaxed galaxy cluster Abell 1132. The cluster hosts diffuse radio emission on scales of ∼650 kpc near the cluster centre and a head-tail (HT) radio galaxy, extending up to 1 Mpc, south of the cluster centre. The central diffuse radio emission is not seen in NRAO VLA FIRST Survey, Westerbork Northern Sky Survey, nor in C & D array VLA observations at 1.4 GHz, but is detected in our follow-up Giant Meterwave Radio Telescope (GMRT) observations at 325 MHz. Using LOFAR and GMRT data, we determine the spectral index of the central diffuse emission to be α = -1.75 ± 0.19 (S ∝ να). We classify this emission as an ultra-steep spectrum radio halo and discuss the possible implications for the physical origin of radio haloes. The HT radio galaxy shows narrow, collimated emission extending up to 1 Mpc and another 300 kpc of more diffuse, disturbed emission, giving a full projected linear size of 1.3 Mpc - classifying it as a giant radio galaxy (GRG) and making it the longest HT found to date. The head of the GRG coincides with an elliptical galaxy (SDSS J105851.01+564308.5) belonging to Abell 1132. In our LOFAR image, there appears to be a connection between the radio halo and the GRG. The turbulence that may have produced the halo may have also affected the tail of the GRG. In turn, the GRG may have provided seed electrons for the radio halo.
The first high resolution image of coronal gas in a starbursting cool core cluster
NASA Astrophysics Data System (ADS)
Johnson, Sean
2017-08-01
Galaxy clusters represent a unique laboratory for directly observing gas cooling and feedback due to their high masses and correspondingly high gas densities and temperatures. Cooling of X-ray gas observed in 1/3 of clusters, known as cool-core clusters, should fuel star formation at prodigious rates, but such high levels of star formation are rarely observed. Feedback from active galactic nuclei (AGN) is a leading explanation for the lack of star formation in most cool clusters, and AGN power is sufficient to offset gas cooling on average. Nevertheless, some cool core clusters exhibit massive starbursts indicating that our understanding of cooling and feedback is incomplete. Observations of 10^5 K coronal gas in cool core clusters through OVI emission offers a sensitive means of testing our understanding of cooling and feedback because OVI emission is a dominant coolant and sensitive tracer of shocked gas. Recently, Hayes et al. 2016 demonstrated that synthetic narrow-band imaging of OVI emission is possible through subtraction of long-pass filters with the ACS+SBC for targets at z=0.23-0.29. Here, we propose to use this exciting new technique to directly image coronal OVI emitting gas at high resolution in Abell 1835, a prototypical starbursting cool-core cluster at z=0.252. Abell 1835 hosts a strong cooling core, massive starburst, radio AGN, and at z=0.252, it offers a unique opportunity to directly image OVI at hi-res in the UV with ACS+SBC. With just 15 orbits of ACS+SBC imaging, the proposed observations will complete the existing rich multi-wavelength dataset available for Abell 1835 to provide new insights into cooling and feedback in clusters.
Exploiting the Maximum Entropy Principle to Increase Retrieval Effectiveness.
ERIC Educational Resources Information Center
Cooper, William S.
1983-01-01
Presents information retrieval design approach in which queries of computer-based system consist of sets of terms, either unweighted or weighted with subjective term precision estimates, and retrieval outputs ranked by probability of usefulness estimated by "maximum entropy principle." Boolean and weighted request systems are discussed.…
[The reconstruction of welding arc 3D electron density distribution based on Stark broadening].
Zhang, Wang; Hua, Xue-Ming; Pan, Cheng-Gang; Li, Fang; Wang, Min
2012-10-01
The three-dimensional electron density is very important for welding arc quality control. In the present paper, Side-on characteristic line profile was collected by a spectrometer, and the lateral experimental data were approximated by a polynomial fitting. By applying an Abel inversion technique, the authors obtained the radial intensity distribution at each wavelength and thus constructed a profile for the radial positions. The Fourier transform was used to separate the Lorentz linear from the spectrum reconstructed, thus got the accurate Stark width. And we calculated the electronic density three-dimensional distribution of the TIG welding are plasma.
NASA Technical Reports Server (NTRS)
Clapp, L. H.; Twiss, R. G.; Cattolica, R. J.
1991-01-01
Experimental results are presented related to the radial spread of fluorescence excited by 10 and 20 KeV electron beams passing through nonflowing rarefied nitrogen at 293 K. An imaging technique for obtaining species distributions from measured beam-excited fluorescence is described, based on a signal inversion scheme mathematically equivalent to the inversion of the Abel integral equation. From fluorescence image data, measurements of beam radius, integrated signal intensity, and spatially resolved distributions of N2(+) first-negative-band fluorescence-emitting species have been made. Data are compared with earlier measurements and with an heuristic beam spread model.
2004-06-09
KENNEDY SPACE CENTER, FLA. - At Cape Canaveral Air Force Station, Firefighter Chris Maupin (left) and Lt. Keith Abell demonstrate how the special aircraft firefighting vehicle (known as ARF) was used at the site of a recent fire in Brevard County, Fla. The firefighters sit inside the vehicle with a "driver" in the middle. They are able to direct the hoses to attack fires from above and below. The firefighters teamed up with task forces from Satellite Beach, Malabar, Melbourne, Palm Bay, Patrick Air Force Base and Brevard County to help fight wildfires in the Palm Bay and Malabar areas that threatened homes and property during the Memorial Day holiday weekend.
NASA Astrophysics Data System (ADS)
Melchert, O.; Hartmann, A. K.
2015-02-01
In this work we consider information-theoretic observables to analyze short symbolic sequences, comprising time series that represent the orientation of a single spin in a two-dimensional (2D) Ising ferromagnet on a square lattice of size L2=1282 for different system temperatures T . The latter were chosen from an interval enclosing the critical point Tc of the model. At small temperatures the sequences are thus very regular; at high temperatures they are maximally random. In the vicinity of the critical point, nontrivial, long-range correlations appear. Here we implement estimators for the entropy rate, excess entropy (i.e., "complexity"), and multi-information. First, we implement a Lempel-Ziv string-parsing scheme, providing seemingly elaborate entropy rate and multi-information estimates and an approximate estimator for the excess entropy. Furthermore, we apply easy-to-use black-box data-compression utilities, providing approximate estimators only. For comparison and to yield results for benchmarking purposes, we implement the information-theoretic observables also based on the well-established M -block Shannon entropy, which is more tedious to apply compared to the first two "algorithmic" entropy estimation procedures. To test how well one can exploit the potential of such data-compression techniques, we aim at detecting the critical point of the 2D Ising ferromagnet. Among the above observables, the multi-information, which is known to exhibit an isolated peak at the critical point, is very easy to replicate by means of both efficient algorithmic entropy estimation procedures. Finally, we assess how good the various algorithmic entropy estimates compare to the more conventional block entropy estimates and illustrate a simple modification that yields enhanced results.
Evaluation of the entropy consistent euler flux on 1D and 2D test problems
NASA Astrophysics Data System (ADS)
Roslan, Nur Khairunnisa Hanisah; Ismail, Farzad
2012-06-01
Perhaps most CFD simulations may yield good predictions of pressure and velocity when compared to experimental data. Unfortunately, these results will most likely not adhere to the second law of thermodynamics hence comprising the authenticity of predicted data. Currently, the test of a good CFD code is to check how much entropy is generated in a smooth flow and hope that the numerical entropy produced is of the correct sign when a shock is encountered. Herein, a shock capturing code written in C++ based on a recent entropy consistent Euler flux is developed to simulate 1D and 2D flows. Unlike other finite volume schemes in commercial CFD code, this entropy consistent flux (EC) function precisely satisfies the discrete second law of thermodynamics. This EC flux has an entropy-conserved part, preserving entropy for smooth flows and a numerical diffusion part that will accurately produce the proper amount of entropy, consistent with the second law. Several numerical simulations of the entropy consistent flux have been tested on two dimensional test cases. The first case is a Mach 3 flow over a forward facing step. The second case is a flow over a NACA 0012 airfoil while the third case is a hypersonic flow passing over a 2D cylinder. Local flow quantities such as velocity and pressure are analyzed and then compared with mainly the Roe flux. The results herein show that the EC flux does not capture the unphysical rarefaction shock unlike the Roe-flux and does not easily succumb to the carbuncle phenomenon. In addition, the EC flux maintains good performance in cases where the Roe flux is known to be superior.