Sample records for entropy method modelo

  1. Time-series analysis of sleep wake stage of rat EEG using time-dependent pattern entropy

    NASA Astrophysics Data System (ADS)

    Ishizaki, Ryuji; Shinba, Toshikazu; Mugishima, Go; Haraguchi, Hikaru; Inoue, Masayoshi

    2008-05-01

    We performed electroencephalography (EEG) for six male Wistar rats to clarify temporal behaviors at different levels of consciousness. Levels were identified both by conventional sleep analysis methods and by our novel entropy method. In our method, time-dependent pattern entropy is introduced, by which EEG is reduced to binary symbolic dynamics and the pattern of symbols in a sliding temporal window is considered. A high correlation was obtained between level of consciousness as measured by the conventional method and mean entropy in our entropy method. Mean entropy was maximal while awake (stage W) and decreased as sleep deepened. These results suggest that time-dependent pattern entropy may offer a promising method for future sleep research.

  2. High Order Entropy-Constrained Residual VQ for Lossless Compression of Images

    NASA Technical Reports Server (NTRS)

    Kossentini, Faouzi; Smith, Mark J. T.; Scales, Allen

    1995-01-01

    High order entropy coding is a powerful technique for exploiting high order statistical dependencies. However, the exponentially high complexity associated with such a method often discourages its use. In this paper, an entropy-constrained residual vector quantization method is proposed for lossless compression of images. The method consists of first quantizing the input image using a high order entropy-constrained residual vector quantizer and then coding the residual image using a first order entropy coder. The distortion measure used in the entropy-constrained optimization is essentially the first order entropy of the residual image. Experimental results show very competitive performance.

  3. A diameter-sensitive flow entropy method for reliability consideration in water distribution system design

    NASA Astrophysics Data System (ADS)

    Liu, Haixing; Savić, Dragan; Kapelan, Zoran; Zhao, Ming; Yuan, Yixing; Zhao, Hongbin

    2014-07-01

    Flow entropy is a measure of uniformity of pipe flows in water distribution systems. By maximizing flow entropy one can identify reliable layouts or connectivity in networks. In order to overcome the disadvantage of the common definition of flow entropy that does not consider the impact of pipe diameter on reliability, an extended definition of flow entropy, termed as diameter-sensitive flow entropy, is proposed. This new methodology is then assessed by using other reliability methods, including Monte Carlo Simulation, a pipe failure probability model, and a surrogate measure (resilience index) integrated with water demand and pipe failure uncertainty. The reliability assessment is based on a sample of WDS designs derived from an optimization process for each of the two benchmark networks. Correlation analysis is used to evaluate quantitatively the relationship between entropy and reliability. To ensure reliability, a comparative analysis between the flow entropy and the new method is conducted. The results demonstrate that the diameter-sensitive flow entropy shows consistently much stronger correlation with the three reliability measures than simple flow entropy. Therefore, the new flow entropy method can be taken as a better surrogate measure for reliability and could be potentially integrated into the optimal design problem of WDSs. Sensitivity analysis results show that the velocity parameters used in the new flow entropy has no significant impact on the relationship between diameter-sensitive flow entropy and reliability.

  4. The performance evaluation model of mining project founded on the weight optimization entropy value method

    NASA Astrophysics Data System (ADS)

    Mao, Chao; Chen, Shou

    2017-01-01

    According to the traditional entropy value method still have low evaluation accuracy when evaluating the performance of mining projects, a performance evaluation model of mineral project founded on improved entropy is proposed. First establish a new weight assignment model founded on compatible matrix analysis of analytic hierarchy process (AHP) and entropy value method, when the compatibility matrix analysis to achieve consistency requirements, if it has differences between subjective weights and objective weights, moderately adjust both proportions, then on this basis, the fuzzy evaluation matrix for performance evaluation. The simulation experiments show that, compared with traditional entropy and compatible matrix analysis method, the proposed performance evaluation model of mining project based on improved entropy value method has higher accuracy assessment.

  5. Controlling the Shannon Entropy of Quantum Systems

    PubMed Central

    Xing, Yifan; Wu, Jun

    2013-01-01

    This paper proposes a new quantum control method which controls the Shannon entropy of quantum systems. For both discrete and continuous entropies, controller design methods are proposed based on probability density function control, which can drive the quantum state to any target state. To drive the entropy to any target at any prespecified time, another discretization method is proposed for the discrete entropy case, and the conditions under which the entropy can be increased or decreased are discussed. Simulations are done on both two- and three-dimensional quantum systems, where division and prediction are used to achieve more accurate tracking. PMID:23818819

  6. Controlling the shannon entropy of quantum systems.

    PubMed

    Xing, Yifan; Wu, Jun

    2013-01-01

    This paper proposes a new quantum control method which controls the Shannon entropy of quantum systems. For both discrete and continuous entropies, controller design methods are proposed based on probability density function control, which can drive the quantum state to any target state. To drive the entropy to any target at any prespecified time, another discretization method is proposed for the discrete entropy case, and the conditions under which the entropy can be increased or decreased are discussed. Simulations are done on both two- and three-dimensional quantum systems, where division and prediction are used to achieve more accurate tracking.

  7. Dual-threshold segmentation using Arimoto entropy based on chaotic bee colony optimization

    NASA Astrophysics Data System (ADS)

    Li, Li

    2018-03-01

    In order to extract target from complex background more quickly and accurately, and to further improve the detection effect of defects, a method of dual-threshold segmentation using Arimoto entropy based on chaotic bee colony optimization was proposed. Firstly, the method of single-threshold selection based on Arimoto entropy was extended to dual-threshold selection in order to separate the target from the background more accurately. Then intermediate variables in formulae of Arimoto entropy dual-threshold selection was calculated by recursion to eliminate redundant computation effectively and to reduce the amount of calculation. Finally, the local search phase of artificial bee colony algorithm was improved by chaotic sequence based on tent mapping. The fast search for two optimal thresholds was achieved using the improved bee colony optimization algorithm, thus the search could be accelerated obviously. A large number of experimental results show that, compared with the existing segmentation methods such as multi-threshold segmentation method using maximum Shannon entropy, two-dimensional Shannon entropy segmentation method, two-dimensional Tsallis gray entropy segmentation method and multi-threshold segmentation method using reciprocal gray entropy, the proposed method can segment target more quickly and accurately with superior segmentation effect. It proves to be an instant and effective method for image segmentation.

  8. Financial time series analysis based on effective phase transfer entropy

    NASA Astrophysics Data System (ADS)

    Yang, Pengbo; Shang, Pengjian; Lin, Aijing

    2017-02-01

    Transfer entropy is a powerful technique which is able to quantify the impact of one dynamic system on another system. In this paper, we propose the effective phase transfer entropy method based on the transfer entropy method. We use simulated data to test the performance of this method, and the experimental results confirm that the proposed approach is capable of detecting the information transfer between the systems. We also explore the relationship between effective phase transfer entropy and some variables, such as data size, coupling strength and noise. The effective phase transfer entropy is positively correlated with the data size and the coupling strength. Even in the presence of a large amount of noise, it can detect the information transfer between systems, and it is very robust to noise. Moreover, this measure is indeed able to accurately estimate the information flow between systems compared with phase transfer entropy. In order to reflect the application of this method in practice, we apply this method to financial time series and gain new insight into the interactions between systems. It is demonstrated that the effective phase transfer entropy can be used to detect some economic fluctuations in the financial market. To summarize, the effective phase transfer entropy method is a very efficient tool to estimate the information flow between systems.

  9. New Fault Recognition Method for Rotary Machinery Based on Information Entropy and a Probabilistic Neural Network.

    PubMed

    Jiang, Quansheng; Shen, Yehu; Li, Hua; Xu, Fengyu

    2018-01-24

    Feature recognition and fault diagnosis plays an important role in equipment safety and stable operation of rotating machinery. In order to cope with the complexity problem of the vibration signal of rotating machinery, a feature fusion model based on information entropy and probabilistic neural network is proposed in this paper. The new method first uses information entropy theory to extract three kinds of characteristics entropy in vibration signals, namely, singular spectrum entropy, power spectrum entropy, and approximate entropy. Then the feature fusion model is constructed to classify and diagnose the fault signals. The proposed approach can combine comprehensive information from different aspects and is more sensitive to the fault features. The experimental results on simulated fault signals verified better performances of our proposed approach. In real two-span rotor data, the fault detection accuracy of the new method is more than 10% higher compared with the methods using three kinds of information entropy separately. The new approach is proved to be an effective fault recognition method for rotating machinery.

  10. Fusion information entropy method of rolling bearing fault diagnosis based on n-dimensional characteristic parameter distance

    NASA Astrophysics Data System (ADS)

    Ai, Yan-Ting; Guan, Jiao-Yue; Fei, Cheng-Wei; Tian, Jing; Zhang, Feng-Ling

    2017-05-01

    To monitor rolling bearing operating status with casings in real time efficiently and accurately, a fusion method based on n-dimensional characteristic parameters distance (n-DCPD) was proposed for rolling bearing fault diagnosis with two types of signals including vibration signal and acoustic emission signals. The n-DCPD was investigated based on four information entropies (singular spectrum entropy in time domain, power spectrum entropy in frequency domain, wavelet space characteristic spectrum entropy and wavelet energy spectrum entropy in time-frequency domain) and the basic thought of fusion information entropy fault diagnosis method with n-DCPD was given. Through rotor simulation test rig, the vibration and acoustic emission signals of six rolling bearing faults (ball fault, inner race fault, outer race fault, inner-ball faults, inner-outer faults and normal) are collected under different operation conditions with the emphasis on the rotation speed from 800 rpm to 2000 rpm. In the light of the proposed fusion information entropy method with n-DCPD, the diagnosis of rolling bearing faults was completed. The fault diagnosis results show that the fusion entropy method holds high precision in the recognition of rolling bearing faults. The efforts of this study provide a novel and useful methodology for the fault diagnosis of an aeroengine rolling bearing.

  11. Use of information entropy measures of sitting postural sway to quantify developmental delay in infants

    PubMed Central

    Deffeyes, Joan E; Harbourne, Regina T; DeJong, Stacey L; Kyvelidou, Anastasia; Stuberg, Wayne A; Stergiou, Nicholas

    2009-01-01

    Background By quantifying the information entropy of postural sway data, the complexity of the postural movement of different populations can be assessed, giving insight into pathologic motor control functioning. Methods In this study, developmental delay of motor control function in infants was assessed by analysis of sitting postural sway data acquired from force plate center of pressure measurements. Two types of entropy measures were used: symbolic entropy, including a new asymmetric symbolic entropy measure, and approximate entropy, a more widely used entropy measure. For each method of analysis, parameters were adjusted to optimize the separation of the results from the infants with delayed development from infants with typical development. Results The method that gave the widest separation between the populations was the asymmetric symbolic entropy method, which we developed by modification of the symbolic entropy algorithm. The approximate entropy algorithm also performed well, using parameters optimized for the infant sitting data. The infants with delayed development were found to have less complex patterns of postural sway in the medial-lateral direction, and were found to have different left-right symmetry in their postural sway, as compared to typically developing infants. Conclusion The results of this study indicate that optimization of the entropy algorithm for infant sitting postural sway data can greatly improve the ability to separate the infants with developmental delay from typically developing infants. PMID:19671183

  12. High-Order Entropy Stable Finite Difference Schemes for Nonlinear Conservation Laws: Finite Domains

    NASA Technical Reports Server (NTRS)

    Fisher, Travis C.; Carpenter, Mark H.

    2013-01-01

    Developing stable and robust high-order finite difference schemes requires mathematical formalism and appropriate methods of analysis. In this work, nonlinear entropy stability is used to derive provably stable high-order finite difference methods with formal boundary closures for conservation laws. Particular emphasis is placed on the entropy stability of the compressible Navier-Stokes equations. A newly derived entropy stable weighted essentially non-oscillatory finite difference method is used to simulate problems with shocks and a conservative, entropy stable, narrow-stencil finite difference approach is used to approximate viscous terms.

  13. Entropy in bimolecular simulations: A comprehensive review of atomic fluctuations-based methods.

    PubMed

    Kassem, Summer; Ahmed, Marawan; El-Sheikh, Salah; Barakat, Khaled H

    2015-11-01

    Entropy of binding constitutes a major, and in many cases a detrimental, component of the binding affinity in biomolecular interactions. While the enthalpic part of the binding free energy is easier to calculate, estimating the entropy of binding is further more complicated. A precise evaluation of entropy requires a comprehensive exploration of the complete phase space of the interacting entities. As this task is extremely hard to accomplish in the context of conventional molecular simulations, calculating entropy has involved many approximations. Most of these golden standard methods focused on developing a reliable estimation of the conformational part of the entropy. Here, we review these methods with a particular emphasis on the different techniques that extract entropy from atomic fluctuations. The theoretical formalisms behind each method is explained highlighting its strengths as well as its limitations, followed by a description of a number of case studies for each method. We hope that this brief, yet comprehensive, review provides a useful tool to understand these methods and realize the practical issues that may arise in such calculations. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Low Streamflow Forcasting using Minimum Relative Entropy

    NASA Astrophysics Data System (ADS)

    Cui, H.; Singh, V. P.

    2013-12-01

    Minimum relative entropy spectral analysis is derived in this study, and applied to forecast streamflow time series. Proposed method extends the autocorrelation in the manner that the relative entropy of underlying process is minimized so that time series data can be forecasted. Different prior estimation, such as uniform, exponential and Gaussian assumption, is taken to estimate the spectral density depending on the autocorrelation structure. Seasonal and nonseasonal low streamflow series obtained from Colorado River (Texas) under draught condition is successfully forecasted using proposed method. Minimum relative entropy determines spectral of low streamflow series with higher resolution than conventional method. Forecasted streamflow is compared to the prediction using Burg's maximum entropy spectral analysis (MESA) and Configurational entropy. The advantage and disadvantage of each method in forecasting low streamflow is discussed.

  15. Quantifying selection and diversity in viruses by entropy methods, with application to the haemagglutinin of H3N2 influenza

    PubMed Central

    Pan, Keyao; Deem, Michael W.

    2011-01-01

    Many viruses evolve rapidly. For example, haemagglutinin (HA) of the H3N2 influenza A virus evolves to escape antibody binding. This evolution of the H3N2 virus means that people who have previously been exposed to an influenza strain may be infected by a newly emerged virus. In this paper, we use Shannon entropy and relative entropy to measure the diversity and selection pressure by an antibody in each amino acid site of H3 HA between the 1992–1993 season and the 2009–2010 season. Shannon entropy and relative entropy are two independent state variables that we use to characterize H3N2 evolution. The entropy method estimates future H3N2 evolution and migration using currently available H3 HA sequences. First, we show that the rate of evolution increases with the virus diversity in the current season. The Shannon entropy of the sequence in the current season predicts relative entropy between sequences in the current season and those in the next season. Second, a global migration pattern of H3N2 is assembled by comparing the relative entropy flows of sequences sampled in China, Japan, the USA and Europe. We verify this entropy method by describing two aspects of historical H3N2 evolution. First, we identify 54 amino acid sites in HA that have evolved in the past to evade the immune system. Second, the entropy method shows that epitopes A and B on the top of HA evolve most vigorously to escape antibody binding. Our work provides a novel entropy-based method to predict and quantify future H3N2 evolution and to describe the evolutionary history of H3N2. PMID:21543352

  16. On determining absolute entropy without quantum theory or the third law of thermodynamics

    NASA Astrophysics Data System (ADS)

    Steane, Andrew M.

    2016-04-01

    We employ classical thermodynamics to gain information about absolute entropy, without recourse to statistical methods, quantum mechanics or the third law of thermodynamics. The Gibbs-Duhem equation yields various simple methods to determine the absolute entropy of a fluid. We also study the entropy of an ideal gas and the ionization of a plasma in thermal equilibrium. A single measurement of the degree of ionization can be used to determine an unknown constant in the entropy equation, and thus determine the absolute entropy of a gas. It follows from all these examples that the value of entropy at absolute zero temperature does not need to be assigned by postulate, but can be deduced empirically.

  17. Application of an improved minimum entropy deconvolution method for railway rolling element bearing fault diagnosis

    NASA Astrophysics Data System (ADS)

    Cheng, Yao; Zhou, Ning; Zhang, Weihua; Wang, Zhiwei

    2018-07-01

    Minimum entropy deconvolution is a widely-used tool in machinery fault diagnosis, because it enhances the impulse component of the signal. The filter coefficients that greatly influence the performance of the minimum entropy deconvolution are calculated by an iterative procedure. This paper proposes an improved deconvolution method for the fault detection of rolling element bearings. The proposed method solves the filter coefficients by the standard particle swarm optimization algorithm, assisted by a generalized spherical coordinate transformation. When optimizing the filters performance for enhancing the impulses in fault diagnosis (namely, faulty rolling element bearings), the proposed method outperformed the classical minimum entropy deconvolution method. The proposed method was validated in simulation and experimental signals from railway bearings. In both simulation and experimental studies, the proposed method delivered better deconvolution performance than the classical minimum entropy deconvolution method, especially in the case of low signal-to-noise ratio.

  18. In Vivo potassium-39 NMR spectra by the burg maximum-entropy method

    NASA Astrophysics Data System (ADS)

    Uchiyama, Takanori; Minamitani, Haruyuki

    The Burg maximum-entropy method was applied to estimate 39K NMR spectra of mung bean root tips. The maximum-entropy spectra have as good a linearity between peak areas and potassium concentrations as those obtained by fast Fourier transform and give a better estimation of intracellular potassium concentrations. Therefore potassium uptake and loss processes of mung bean root tips are shown to be more clearly traced by the maximum-entropy method.

  19. Nonadditive entropy maximization is inconsistent with Bayesian updating.

    PubMed

    Pressé, Steve

    2014-11-01

    The maximum entropy method-used to infer probabilistic models from data-is a special case of Bayes's model inference prescription which, in turn, is grounded in basic propositional logic. By contrast to the maximum entropy method, the compatibility of nonadditive entropy maximization with Bayes's model inference prescription has never been established. Here we demonstrate that nonadditive entropy maximization is incompatible with Bayesian updating and discuss the immediate implications of this finding. We focus our attention on special cases as illustrations.

  20. Comparing Postural Stability Entropy Analyses to Differentiate Fallers and Non-Fallers

    PubMed Central

    Fino, Peter C.; Mojdehi, Ahmad R.; Adjerid, Khaled; Habibi, Mohammad; Lockhart, Thurmon E.; Ross, Shane D.

    2015-01-01

    The health and financial cost of falls has spurred research to differentiate the characteristics of fallers and non-fallers. Postural stability has received much of the attention with recent studies exploring various measures of entropy. This study compared the discriminatory ability of several entropy methods at differentiating two paradigms in the center-of-pressure (COP) of elderly individuals: 1.) eyes open (EO) versus eyes closed (EC) and 2.) fallers (F) versus non-fallers (NF). Methods were compared using the area under the curve (AUC) of the receiver-operating characteristic (ROC) curves developed from logistic regression models. Overall, multiscale entropy (MSE) and composite multiscale entropy (CompMSE) performed the best with AUCs of 0.71 for EO/EC and 0.77 for F/NF. When methods were combined together to maximize the AUC, the entropy classifier had an AUC of for 0.91 the F/NF comparison. These results suggest researchers and clinicians attempting to create clinical tests to identify fallers should consider a combination of every entropy method when creating a classifying test. Additionally, MSE and CompMSE classifiers using polar coordinate data outperformed rectangular coordinate data, encouraging more research into the most appropriate time series for postural stability entropy analysis. PMID:26464267

  1. Comparing Postural Stability Entropy Analyses to Differentiate Fallers and Non-fallers.

    PubMed

    Fino, Peter C; Mojdehi, Ahmad R; Adjerid, Khaled; Habibi, Mohammad; Lockhart, Thurmon E; Ross, Shane D

    2016-05-01

    The health and financial cost of falls has spurred research to differentiate the characteristics of fallers and non-fallers. Postural stability has received much of the attention with recent studies exploring various measures of entropy. This study compared the discriminatory ability of several entropy methods at differentiating two paradigms in the center-of-pressure of elderly individuals: (1) eyes open (EO) vs. eyes closed (EC) and (2) fallers (F) vs. non-fallers (NF). Methods were compared using the area under the curve (AUC) of the receiver-operating characteristic curves developed from logistic regression models. Overall, multiscale entropy (MSE) and composite multiscale entropy (CompMSE) performed the best with AUCs of 0.71 for EO/EC and 0.77 for F/NF. When methods were combined together to maximize the AUC, the entropy classifier had an AUC of for 0.91 the F/NF comparison. These results suggest researchers and clinicians attempting to create clinical tests to identify fallers should consider a combination of every entropy method when creating a classifying test. Additionally, MSE and CompMSE classifiers using polar coordinate data outperformed rectangular coordinate data, encouraging more research into the most appropriate time series for postural stability entropy analysis.

  2. [Evaluation of a simplified index (spectral entropy) about sleep state of electrocardiogram recorded by a simplified polygraph, MemCalc-Makin2].

    PubMed

    Ohisa, Noriko; Ogawa, Hiromasa; Murayama, Nobuki; Yoshida, Katsumi

    2010-02-01

    Polysomnography (PSG) is the gold standard for the diagnosis of sleep apnea hypopnea syndrome (SAHS), but it takes time to analyze the PSG and PSG cannot be performed repeatedly because of efforts and costs. Therefore, simplified sleep respiratory disorder indices in which are reflected the PSG results are needed. The Memcalc method, which is a combination of the maximum entropy method for spectral analysis and the non-linear least squares method for fitting analysis (Makin2, Suwa Trust, Tokyo, Japan) has recently been developed. Spectral entropy which is derived by the Memcalc method might be useful to expressing the trend of time-series behavior. Spectral entropy of ECG which is calculated with the Memcalc method was evaluated by comparing to the PSG results. Obstructive SAS patients (n = 79) and control volanteer (n = 7) ECG was recorded using MemCalc-Makin2 (GMS) with PSG recording using Alice IV (Respironics) from 20:00 to 6:00. Spectral entropy of ECG, which was calculated every 2 seconds using the Memcalc method, was compared to sleep stages which were analyzed manually from PSG recordings. Spectral entropy value (-0.473 vs. -0.418, p < 0.05) were significantly increased in the OSAHS compared to the control. For the entropy cutoff level of -0.423, sensitivity and specificity for OSAHS were 86.1% and 71.4%, respectively, resulting in a receiver operating characteristic with an area under the curve of 0.837. The absolute value of entropy had inverse correlation with stage 3. Spectral entropy, which was calculated with Memcalc method, might be a possible index evaluating the quality of sleep.

  3. Entropy method of measuring and evaluating periodicity of quasi-periodic trajectories

    NASA Astrophysics Data System (ADS)

    Ni, Yanshuo; Turitsyn, Konstantin; Baoyin, Hexi; Junfeng, Li

    2018-06-01

    This paper presents a method for measuring the periodicity of quasi-periodic trajectories by applying discrete Fourier transform (DFT) to the trajectories and analyzing the frequency domain within the concept of entropy. Having introduced the concept of entropy, analytical derivation and numerical results indicate that entropies increase as a logarithmic function of time. Periodic trajectories typically have higher entropies, and trajectories with higher entropies mean the periodicities of the motions are stronger. Theoretical differences between two trajectories expressed as summations of trigonometric functions are also derived analytically. Trajectories in the Henon-Heiles system and the circular restricted three-body problem (CRTBP) are analyzed with the indicator entropy and compared with orthogonal fast Lyapunov indicator (OFLI). The results show that entropy is a better tool for discriminating periodicity in quasiperiodic trajectories than OFLI and can detect periodicity while excluding the spirals that are judged as periodic cases by OFLI. Finally, trajectories in the vicinity of 243 Ida and 6489 Golevka are considered as examples, and the numerical results verify these conclusions. Some trajectories near asteroids look irregular, but their higher entropy values as analyzed by this method serve as evidence of frequency regularity in three directions. Moreover, these results indicate that applying DFT to the trajectories in the vicinity of irregular small bodies and calculating their entropy in the frequency domain provides a useful quantitative analysis method for evaluating orderliness in the periodicity of quasi-periodic trajectories within a given time interval.

  4. Entropy Stable Spectral Collocation Schemes for the Navier-Stokes Equations: Discontinuous Interfaces

    NASA Technical Reports Server (NTRS)

    Carpenter, Mark H.; Fisher, Travis C.; Nielsen, Eric J.; Frankel, Steven H.

    2013-01-01

    Nonlinear entropy stability and a summation-by-parts framework are used to derive provably stable, polynomial-based spectral collocation methods of arbitrary order. The new methods are closely related to discontinuous Galerkin spectral collocation methods commonly known as DGFEM, but exhibit a more general entropy stability property. Although the new schemes are applicable to a broad class of linear and nonlinear conservation laws, emphasis herein is placed on the entropy stability of the compressible Navier-Stokes equations.

  5. Fault detection of the connection of lithium-ion power batteries based on entropy for electric vehicles

    NASA Astrophysics Data System (ADS)

    Yao, Lei; Wang, Zhenpo; Ma, Jun

    2015-10-01

    This paper proposes a method of fault detection of the connection of Lithium-Ion batteries based on entropy for electric vehicle. In electric vehicle operation process, some factors, such as road conditions, driving habits, vehicle performance, always affect batteries by vibration, which easily cause loosing or virtual connection between batteries. Through the simulation of the battery charging and discharging experiment under vibration environment, the data of voltage fluctuation can be obtained. Meanwhile, an optimal filtering method is adopted using discrete cosine filter method to analyze the characteristics of system noise, based on the voltage set when batteries are working under different vibration frequency. Experimental data processed by filtering is analyzed based on local Shannon entropy, ensemble Shannon entropy and sample entropy. And the best way to find a method of fault detection of the connection of lithium-ion batteries based on entropy is presented for electric vehicle. The experimental data shows that ensemble Shannon entropy can predict the accurate time and the location of battery connection failure in real time. Besides electric-vehicle industry, this method can also be used in other areas in complex vibration environment.

  6. Driver fatigue detection through multiple entropy fusion analysis in an EEG-based system.

    PubMed

    Min, Jianliang; Wang, Ping; Hu, Jianfeng

    2017-01-01

    Driver fatigue is an important contributor to road accidents, and fatigue detection has major implications for transportation safety. The aim of this research is to analyze the multiple entropy fusion method and evaluate several channel regions to effectively detect a driver's fatigue state based on electroencephalogram (EEG) records. First, we fused multiple entropies, i.e., spectral entropy, approximate entropy, sample entropy and fuzzy entropy, as features compared with autoregressive (AR) modeling by four classifiers. Second, we captured four significant channel regions according to weight-based electrodes via a simplified channel selection method. Finally, the evaluation model for detecting driver fatigue was established with four classifiers based on the EEG data from four channel regions. Twelve healthy subjects performed continuous simulated driving for 1-2 hours with EEG monitoring on a static simulator. The leave-one-out cross-validation approach obtained an accuracy of 98.3%, a sensitivity of 98.3% and a specificity of 98.2%. The experimental results verified the effectiveness of the proposed method, indicating that the multiple entropy fusion features are significant factors for inferring the fatigue state of a driver.

  7. Nonparametric entropy estimation using kernel densities.

    PubMed

    Lake, Douglas E

    2009-01-01

    The entropy of experimental data from the biological and medical sciences provides additional information over summary statistics. Calculating entropy involves estimates of probability density functions, which can be effectively accomplished using kernel density methods. Kernel density estimation has been widely studied and a univariate implementation is readily available in MATLAB. The traditional definition of Shannon entropy is part of a larger family of statistics, called Renyi entropy, which are useful in applications that require a measure of the Gaussianity of data. Of particular note is the quadratic entropy which is related to the Friedman-Tukey (FT) index, a widely used measure in the statistical community. One application where quadratic entropy is very useful is the detection of abnormal cardiac rhythms, such as atrial fibrillation (AF). Asymptotic and exact small-sample results for optimal bandwidth and kernel selection to estimate the FT index are presented and lead to improved methods for entropy estimation.

  8. Gradient Dynamics and Entropy Production Maximization

    NASA Astrophysics Data System (ADS)

    Janečka, Adam; Pavelka, Michal

    2018-01-01

    We compare two methods for modeling dissipative processes, namely gradient dynamics and entropy production maximization. Both methods require similar physical inputs-how energy (or entropy) is stored and how it is dissipated. Gradient dynamics describes irreversible evolution by means of dissipation potential and entropy, it automatically satisfies Onsager reciprocal relations as well as their nonlinear generalization (Maxwell-Onsager relations), and it has statistical interpretation. Entropy production maximization is based on knowledge of free energy (or another thermodynamic potential) and entropy production. It also leads to the linear Onsager reciprocal relations and it has proven successful in thermodynamics of complex materials. Both methods are thermodynamically sound as they ensure approach to equilibrium, and we compare them and discuss their advantages and shortcomings. In particular, conditions under which the two approaches coincide and are capable of providing the same constitutive relations are identified. Besides, a commonly used but not often mentioned step in the entropy production maximization is pinpointed and the condition of incompressibility is incorporated into gradient dynamics.

  9. Generalized sample entropy analysis for traffic signals based on similarity measure

    NASA Astrophysics Data System (ADS)

    Shang, Du; Xu, Mengjia; Shang, Pengjian

    2017-05-01

    Sample entropy is a prevailing method used to quantify the complexity of a time series. In this paper a modified method of generalized sample entropy and surrogate data analysis is proposed as a new measure to assess the complexity of a complex dynamical system such as traffic signals. The method based on similarity distance presents a different way of signals patterns match showing distinct behaviors of complexity. Simulations are conducted over synthetic data and traffic signals for providing the comparative study, which is provided to show the power of the new method. Compared with previous sample entropy and surrogate data analysis, the new method has two main advantages. The first one is that it overcomes the limitation about the relationship between the dimension parameter and the length of series. The second one is that the modified sample entropy functions can be used to quantitatively distinguish time series from different complex systems by the similar measure.

  10. Bubble Entropy: An Entropy Almost Free of Parameters.

    PubMed

    Manis, George; Aktaruzzaman, Md; Sassi, Roberto

    2017-11-01

    Objective : A critical point in any definition of entropy is the selection of the parameters employed to obtain an estimate in practice. We propose a new definition of entropy aiming to reduce the significance of this selection. Methods: We call the new definition Bubble Entropy . Bubble Entropy is based on permutation entropy, where the vectors in the embedding space are ranked. We use the bubble sort algorithm for the ordering procedure and count instead the number of swaps performed for each vector. Doing so, we create a more coarse-grained distribution and then compute the entropy of this distribution. Results: Experimental results with both real and synthetic HRV signals showed that bubble entropy presents remarkable stability and exhibits increased descriptive and discriminating power compared to all other definitions, including the most popular ones. Conclusion: The definition proposed is almost free of parameters. The most common ones are the scale factor r and the embedding dimension m . In our definition, the scale factor is totally eliminated and the importance of m is significantly reduced. The proposed method presents increased stability and discriminating power. Significance: After the extensive use of some entropy measures in physiological signals, typical values for their parameters have been suggested, or at least, widely used. However, the parameters are still there, application and dataset dependent, influencing the computed value and affecting the descriptive power. Reducing their significance or eliminating them alleviates the problem, decoupling the method from the data and the application, and eliminating subjective factors. Objective : A critical point in any definition of entropy is the selection of the parameters employed to obtain an estimate in practice. We propose a new definition of entropy aiming to reduce the significance of this selection. Methods: We call the new definition Bubble Entropy . Bubble Entropy is based on permutation entropy, where the vectors in the embedding space are ranked. We use the bubble sort algorithm for the ordering procedure and count instead the number of swaps performed for each vector. Doing so, we create a more coarse-grained distribution and then compute the entropy of this distribution. Results: Experimental results with both real and synthetic HRV signals showed that bubble entropy presents remarkable stability and exhibits increased descriptive and discriminating power compared to all other definitions, including the most popular ones. Conclusion: The definition proposed is almost free of parameters. The most common ones are the scale factor r and the embedding dimension m . In our definition, the scale factor is totally eliminated and the importance of m is significantly reduced. The proposed method presents increased stability and discriminating power. Significance: After the extensive use of some entropy measures in physiological signals, typical values for their parameters have been suggested, or at least, widely used. However, the parameters are still there, application and dataset dependent, influencing the computed value and affecting the descriptive power. Reducing their significance or eliminating them alleviates the problem, decoupling the method from the data and the application, and eliminating subjective factors.

  11. Driver fatigue detection through multiple entropy fusion analysis in an EEG-based system

    PubMed Central

    Min, Jianliang; Wang, Ping

    2017-01-01

    Driver fatigue is an important contributor to road accidents, and fatigue detection has major implications for transportation safety. The aim of this research is to analyze the multiple entropy fusion method and evaluate several channel regions to effectively detect a driver's fatigue state based on electroencephalogram (EEG) records. First, we fused multiple entropies, i.e., spectral entropy, approximate entropy, sample entropy and fuzzy entropy, as features compared with autoregressive (AR) modeling by four classifiers. Second, we captured four significant channel regions according to weight-based electrodes via a simplified channel selection method. Finally, the evaluation model for detecting driver fatigue was established with four classifiers based on the EEG data from four channel regions. Twelve healthy subjects performed continuous simulated driving for 1–2 hours with EEG monitoring on a static simulator. The leave-one-out cross-validation approach obtained an accuracy of 98.3%, a sensitivity of 98.3% and a specificity of 98.2%. The experimental results verified the effectiveness of the proposed method, indicating that the multiple entropy fusion features are significant factors for inferring the fatigue state of a driver. PMID:29220351

  12. Computational Methods for Configurational Entropy Using Internal and Cartesian Coordinates.

    PubMed

    Hikiri, Simon; Yoshidome, Takashi; Ikeguchi, Mitsunori

    2016-12-13

    The configurational entropy of solute molecules is a crucially important quantity to study various biophysical processes. Consequently, it is necessary to establish an efficient quantitative computational method to calculate configurational entropy as accurately as possible. In the present paper, we investigate the quantitative performance of the quasi-harmonic and related computational methods, including widely used methods implemented in popular molecular dynamics (MD) software packages, compared with the Clausius method, which is capable of accurately computing the change of the configurational entropy upon temperature change. Notably, we focused on the choice of the coordinate systems (i.e., internal or Cartesian coordinates). The Boltzmann-quasi-harmonic (BQH) method using internal coordinates outperformed all the six methods examined here. The introduction of improper torsions in the BQH method improves its performance, and anharmonicity of proper torsions in proteins is identified to be the origin of the superior performance of the BQH method. In contrast, widely used methods implemented in MD packages show rather poor performance. In addition, the enhanced sampling of replica-exchange MD simulations was found to be efficient for the convergent behavior of entropy calculations. Also in folding/unfolding transitions of a small protein, Chignolin, the BQH method was reasonably accurate. However, the independent term without the correlation term in the BQH method was most accurate for the folding entropy among the methods considered in this study, because the QH approximation of the correlation term in the BQH method was no longer valid for the divergent unfolded structures.

  13. How to Calculate Renyi Entropy from Heart Rate Variability, and Why it Matters for Detecting Cardiac Autonomic Neuropathy.

    PubMed

    Cornforth, David J; Tarvainen, Mika P; Jelinek, Herbert F

    2014-01-01

    Cardiac autonomic neuropathy (CAN) is a disease that involves nerve damage leading to an abnormal control of heart rate. An open question is to what extent this condition is detectable from heart rate variability (HRV), which provides information only on successive intervals between heart beats, yet is non-invasive and easy to obtain from a three-lead ECG recording. A variety of measures may be extracted from HRV, including time domain, frequency domain, and more complex non-linear measures. Among the latter, Renyi entropy has been proposed as a suitable measure that can be used to discriminate CAN from controls. However, all entropy methods require estimation of probabilities, and there are a number of ways in which this estimation can be made. In this work, we calculate Renyi entropy using several variations of the histogram method and a density method based on sequences of RR intervals. In all, we calculate Renyi entropy using nine methods and compare their effectiveness in separating the different classes of participants. We found that the histogram method using single RR intervals yields an entropy measure that is either incapable of discriminating CAN from controls, or that it provides little information that could not be gained from the SD of the RR intervals. In contrast, probabilities calculated using a density method based on sequences of RR intervals yield an entropy measure that provides good separation between groups of participants and provides information not available from the SD. The main contribution of this work is that different approaches to calculating probability may affect the success of detecting disease. Our results bring new clarity to the methods used to calculate the Renyi entropy in general, and in particular, to the successful detection of CAN.

  14. How to Calculate Renyi Entropy from Heart Rate Variability, and Why it Matters for Detecting Cardiac Autonomic Neuropathy

    PubMed Central

    Cornforth, David J.;  Tarvainen, Mika P.; Jelinek, Herbert F.

    2014-01-01

    Cardiac autonomic neuropathy (CAN) is a disease that involves nerve damage leading to an abnormal control of heart rate. An open question is to what extent this condition is detectable from heart rate variability (HRV), which provides information only on successive intervals between heart beats, yet is non-invasive and easy to obtain from a three-lead ECG recording. A variety of measures may be extracted from HRV, including time domain, frequency domain, and more complex non-linear measures. Among the latter, Renyi entropy has been proposed as a suitable measure that can be used to discriminate CAN from controls. However, all entropy methods require estimation of probabilities, and there are a number of ways in which this estimation can be made. In this work, we calculate Renyi entropy using several variations of the histogram method and a density method based on sequences of RR intervals. In all, we calculate Renyi entropy using nine methods and compare their effectiveness in separating the different classes of participants. We found that the histogram method using single RR intervals yields an entropy measure that is either incapable of discriminating CAN from controls, or that it provides little information that could not be gained from the SD of the RR intervals. In contrast, probabilities calculated using a density method based on sequences of RR intervals yield an entropy measure that provides good separation between groups of participants and provides information not available from the SD. The main contribution of this work is that different approaches to calculating probability may affect the success of detecting disease. Our results bring new clarity to the methods used to calculate the Renyi entropy in general, and in particular, to the successful detection of CAN. PMID:25250311

  15. Application of a Real-Time, Calculable Limiting Form of the Renyi Entropy for Molecular Imaging of Tumors

    PubMed Central

    Marsh, J. N.; Wallace, K. D.; McCarthy, J. E.; Wickerhauser, M. V.; Maurizi, B. N.; Lanza, G. M.; Wickline, S. A.; Hughes, M. S.

    2011-01-01

    Previously, we reported new methods for ultrasound signal characterization using entropy, Hf; a generalized entropy, the Renyi entropy, If(r); and a limiting form of Renyi entropy suitable for real-time calculation, If,∞. All of these quantities demonstrated significantly more sensitivity to subtle changes in scattering architecture than energy-based methods in certain settings. In this study, the real-time calculable limit of the Renyi entropy, If,∞, is applied for the imaging of angiogenic murine neovasculature in a breast cancer xenograft using a targeted contrast agent. It is shown that this approach may be used to detect reliably the accumulation of targeted nanoparticles at five minutes post-injection in this in vivo model. PMID:20679020

  16. Music viewed by its entropy content: A novel window for comparative analysis.

    PubMed

    Febres, Gerardo; Jaffe, Klaus

    2017-01-01

    Polyphonic music files were analyzed using the set of symbols that produced the Minimal Entropy Description, which we call the Fundamental Scale. This allowed us to create a novel space to represent music pieces by developing: (a) a method to adjust a textual description from its original scale of observation to an arbitrarily selected scale, (b) a method to model the structure of any textual description based on the shape of the symbol frequency profiles, and (c) the concept of higher order entropy as the entropy associated with the deviations of a frequency-ranked symbol profile from a perfect Zipfian profile. We call this diversity index the '2nd Order Entropy'. Applying these methods to a variety of musical pieces showed how the space of 'symbolic specific diversity-entropy' and that of '2nd order entropy' captures characteristics that are unique to each music type, style, composer and genre. Some clustering of these properties around each musical category is shown. These methods allow us to visualize a historic trajectory of academic music across this space, from medieval to contemporary academic music. We show that the description of musical structures using entropy, symbol frequency profiles and specific symbolic diversity allows us to characterize traditional and popular expressions of music. These classification techniques promise to be useful in other disciplines for pattern recognition and machine learning.

  17. Rényi continuous entropy of DNA sequences.

    PubMed

    Vinga, Susana; Almeida, Jonas S

    2004-12-07

    Entropy measures of DNA sequences estimate their randomness or, inversely, their repeatability. L-block Shannon discrete entropy accounts for the empirical distribution of all length-L words and has convergence problems for finite sequences. A new entropy measure that extends Shannon's formalism is proposed. Renyi's quadratic entropy calculated with Parzen window density estimation method applied to CGR/USM continuous maps of DNA sequences constitute a novel technique to evaluate sequence global randomness without some of the former method drawbacks. The asymptotic behaviour of this new measure was analytically deduced and the calculation of entropies for several synthetic and experimental biological sequences was performed. The results obtained were compared with the distributions of the null model of randomness obtained by simulation. The biological sequences have shown a different p-value according to the kernel resolution of Parzen's method, which might indicate an unknown level of organization of their patterns. This new technique can be very useful in the study of DNA sequence complexity and provide additional tools for DNA entropy estimation. The main MATLAB applications developed and additional material are available at the webpage . Specialized functions can be obtained from the authors.

  18. Performance Analysis of Entropy Methods on K Means in Clustering Process

    NASA Astrophysics Data System (ADS)

    Dicky Syahputra Lubis, Mhd.; Mawengkang, Herman; Suwilo, Saib

    2017-12-01

    K Means is a non-hierarchical data clustering method that attempts to partition existing data into one or more clusters / groups. This method partitions the data into clusters / groups so that data that have the same characteristics are grouped into the same cluster and data that have different characteristics are grouped into other groups.The purpose of this data clustering is to minimize the objective function set in the clustering process, which generally attempts to minimize variation within a cluster and maximize the variation between clusters. However, the main disadvantage of this method is that the number k is often not known before. Furthermore, a randomly chosen starting point may cause two points to approach the distance to be determined as two centroids. Therefore, for the determination of the starting point in K Means used entropy method where this method is a method that can be used to determine a weight and take a decision from a set of alternatives. Entropy is able to investigate the harmony in discrimination among a multitude of data sets. Using Entropy criteria with the highest value variations will get the highest weight. Given this entropy method can help K Means work process in determining the starting point which is usually determined at random. Thus the process of clustering on K Means can be more quickly known by helping the entropy method where the iteration process is faster than the K Means Standard process. Where the postoperative patient dataset of the UCI Repository Machine Learning used and using only 12 data as an example of its calculations is obtained by entropy method only with 2 times iteration can get the desired end result.

  19. Exploring stability of entropy analysis for signal with different trends

    NASA Astrophysics Data System (ADS)

    Zhang, Yin; Li, Jin; Wang, Jun

    2017-03-01

    Considering the effects of environment disturbances and instrument systems, the actual detecting signals always are carrying different trends, which result in that it is difficult to accurately catch signals complexity. So choosing steady and effective analysis methods is very important. In this paper, we applied entropy measures-the base-scale entropy and approximate entropy to analyze signal complexity, and studied the effect of trends on the ideal signal and the heart rate variability (HRV) signals, that is, linear, periodic, and power-law trends which are likely to occur in actual signals. The results show that approximate entropy is unsteady when we embed different trends into the signals, so it is not suitable to analyze signal with trends. However, the base-scale entropy has preferable stability and accuracy for signal with different trends. So the base-scale entropy is an effective method to analyze the actual signals.

  20. Reply to "Comment on 'Quantum Kaniadakis entropy under projective measurement' ".

    PubMed

    Ourabah, Kamel; Tribeche, Mouloud

    2016-08-01

    We rely on our proof of the nondecreasing character of quantum Kaniadakis entropy under projective measurement [Phys. Rev. E 92, 032114 (2015)PLEEE81539-375510.1103/PhysRevE.92.032114], and we put it into perspective with the results of Bosyk et al. [Quantum Inf Process 15, 3393 (2016)10.1007/s11128-016-1329-5]. Our method, adopted for the proof that Kaniadakis entropy does not decrease under a projective measurement, is based on Jensen's inequalities, while the method proposed by the authors of the Comment represents another alternative and clearly correct method to prove the same thing. Furthermore, we clarify that our interest in Kaniadakis entropy is due to the fact that this entropy has a transparent physical significance, emerging within the special relativity.

  1. Salient target detection based on pseudo-Wigner-Ville distribution and Rényi entropy.

    PubMed

    Xu, Yuannan; Zhao, Yuan; Jin, Chenfei; Qu, Zengfeng; Liu, Liping; Sun, Xiudong

    2010-02-15

    We present what we believe to be a novel method based on pseudo-Wigner-Ville distribution (PWVD) and Rényi entropy for salient targets detection. In the foundation of studying the statistical property of Rényi entropy via PWVD, the residual entropy-based saliency map of an input image can be obtained. From the saliency map, target detection is completed by the simple and convenient threshold segmentation. Experimental results demonstrate the proposed method can detect targets effectively in complex ground scenes.

  2. Consistent maximum entropy representations of pipe flow networks

    NASA Astrophysics Data System (ADS)

    Waldrip, Steven H.; Niven, Robert K.; Abel, Markus; Schlegel, Michael

    2017-06-01

    The maximum entropy method is used to predict flows on water distribution networks. This analysis extends the water distribution network formulation of Waldrip et al. (2016) Journal of Hydraulic Engineering (ASCE), by the use of a continuous relative entropy defined on a reduced parameter set. This reduction in the parameters that the entropy is defined over ensures consistency between different representations of the same network. The performance of the proposed reduced parameter method is demonstrated with a one-loop network case study.

  3. Maximum entropy method applied to deblurring images on a MasPar MP-1 computer

    NASA Technical Reports Server (NTRS)

    Bonavito, N. L.; Dorband, John; Busse, Tim

    1991-01-01

    A statistical inference method based on the principle of maximum entropy is developed for the purpose of enhancing and restoring satellite images. The proposed maximum entropy image restoration method is shown to overcome the difficulties associated with image restoration and provide the smoothest and most appropriate solution consistent with the measured data. An implementation of the method on the MP-1 computer is described, and results of tests on simulated data are presented.

  4. Application of a real-time, calculable limiting form of the Renyi entropy for molecular imaging of tumors.

    PubMed

    Marsh, Jon N; Wallace, Kirk D; McCarthy, John E; Wickerhauser, Mladen V; Maurizi, Brian N; Lanza, Gregory M; Wickline, Samuel A; Hughes, Michael S

    2010-08-01

    Previously, we reported new methods for ultrasound signal characterization using entropy, H(f); a generalized entropy, the Renyi entropy, I(f)(r); and a limiting form of Renyi entropy suitable for real-time calculation, I(f),(infinity). All of these quantities demonstrated significantly more sensitivity to subtle changes in scattering architecture than energy-based methods in certain settings. In this study, the real-time calculable limit of the Renyi entropy, I(f),(infinity), is applied for the imaging of angiogenic murine neovasculature in a breast cancer xenograft using a targeted contrast agent. It is shown that this approach may be used to reliably detect the accumulation of targeted nanoparticles at five minutes post-injection in this in vivo model.

  5. Fault Diagnosis for Micro-Gas Turbine Engine Sensors via Wavelet Entropy

    PubMed Central

    Yu, Bing; Liu, Dongdong; Zhang, Tianhong

    2011-01-01

    Sensor fault diagnosis is necessary to ensure the normal operation of a gas turbine system. However, the existing methods require too many resources and this need can’t be satisfied in some occasions. Since the sensor readings are directly affected by sensor state, sensor fault diagnosis can be performed by extracting features of the measured signals. This paper proposes a novel fault diagnosis method for sensors based on wavelet entropy. Based on the wavelet theory, wavelet decomposition is utilized to decompose the signal in different scales. Then the instantaneous wavelet energy entropy (IWEE) and instantaneous wavelet singular entropy (IWSE) are defined based on the previous wavelet entropy theory. Subsequently, a fault diagnosis method for gas turbine sensors is proposed based on the results of a numerically simulated example. Then, experiments on this method are carried out on a real micro gas turbine engine. In the experiment, four types of faults with different magnitudes are presented. The experimental results show that the proposed method for sensor fault diagnosis is efficient. PMID:22163734

  6. Fault diagnosis for micro-gas turbine engine sensors via wavelet entropy.

    PubMed

    Yu, Bing; Liu, Dongdong; Zhang, Tianhong

    2011-01-01

    Sensor fault diagnosis is necessary to ensure the normal operation of a gas turbine system. However, the existing methods require too many resources and this need can't be satisfied in some occasions. Since the sensor readings are directly affected by sensor state, sensor fault diagnosis can be performed by extracting features of the measured signals. This paper proposes a novel fault diagnosis method for sensors based on wavelet entropy. Based on the wavelet theory, wavelet decomposition is utilized to decompose the signal in different scales. Then the instantaneous wavelet energy entropy (IWEE) and instantaneous wavelet singular entropy (IWSE) are defined based on the previous wavelet entropy theory. Subsequently, a fault diagnosis method for gas turbine sensors is proposed based on the results of a numerically simulated example. Then, experiments on this method are carried out on a real micro gas turbine engine. In the experiment, four types of faults with different magnitudes are presented. The experimental results show that the proposed method for sensor fault diagnosis is efficient.

  7. RNA Thermodynamic Structural Entropy

    PubMed Central

    Garcia-Martin, Juan Antonio; Clote, Peter

    2015-01-01

    Conformational entropy for atomic-level, three dimensional biomolecules is known experimentally to play an important role in protein-ligand discrimination, yet reliable computation of entropy remains a difficult problem. Here we describe the first two accurate and efficient algorithms to compute the conformational entropy for RNA secondary structures, with respect to the Turner energy model, where free energy parameters are determined from UV absorption experiments. An algorithm to compute the derivational entropy for RNA secondary structures had previously been introduced, using stochastic context free grammars (SCFGs). However, the numerical value of derivational entropy depends heavily on the chosen context free grammar and on the training set used to estimate rule probabilities. Using data from the Rfam database, we determine that both of our thermodynamic methods, which agree in numerical value, are substantially faster than the SCFG method. Thermodynamic structural entropy is much smaller than derivational entropy, and the correlation between length-normalized thermodynamic entropy and derivational entropy is moderately weak to poor. In applications, we plot the structural entropy as a function of temperature for known thermoswitches, such as the repression of heat shock gene expression (ROSE) element, we determine that the correlation between hammerhead ribozyme cleavage activity and total free energy is improved by including an additional free energy term arising from conformational entropy, and we plot the structural entropy of windows of the HIV-1 genome. Our software RNAentropy can compute structural entropy for any user-specified temperature, and supports both the Turner’99 and Turner’04 energy parameters. It follows that RNAentropy is state-of-the-art software to compute RNA secondary structure conformational entropy. Source code is available at https://github.com/clotelab/RNAentropy/; a full web server is available at http://bioinformatics.bc.edu/clotelab/RNAentropy, including source code and ancillary programs. PMID:26555444

  8. RNA Thermodynamic Structural Entropy.

    PubMed

    Garcia-Martin, Juan Antonio; Clote, Peter

    2015-01-01

    Conformational entropy for atomic-level, three dimensional biomolecules is known experimentally to play an important role in protein-ligand discrimination, yet reliable computation of entropy remains a difficult problem. Here we describe the first two accurate and efficient algorithms to compute the conformational entropy for RNA secondary structures, with respect to the Turner energy model, where free energy parameters are determined from UV absorption experiments. An algorithm to compute the derivational entropy for RNA secondary structures had previously been introduced, using stochastic context free grammars (SCFGs). However, the numerical value of derivational entropy depends heavily on the chosen context free grammar and on the training set used to estimate rule probabilities. Using data from the Rfam database, we determine that both of our thermodynamic methods, which agree in numerical value, are substantially faster than the SCFG method. Thermodynamic structural entropy is much smaller than derivational entropy, and the correlation between length-normalized thermodynamic entropy and derivational entropy is moderately weak to poor. In applications, we plot the structural entropy as a function of temperature for known thermoswitches, such as the repression of heat shock gene expression (ROSE) element, we determine that the correlation between hammerhead ribozyme cleavage activity and total free energy is improved by including an additional free energy term arising from conformational entropy, and we plot the structural entropy of windows of the HIV-1 genome. Our software RNAentropy can compute structural entropy for any user-specified temperature, and supports both the Turner'99 and Turner'04 energy parameters. It follows that RNAentropy is state-of-the-art software to compute RNA secondary structure conformational entropy. Source code is available at https://github.com/clotelab/RNAentropy/; a full web server is available at http://bioinformatics.bc.edu/clotelab/RNAentropy, including source code and ancillary programs.

  9. Quantifying complexity of financial short-term time series by composite multiscale entropy measure

    NASA Astrophysics Data System (ADS)

    Niu, Hongli; Wang, Jun

    2015-05-01

    It is significant to study the complexity of financial time series since the financial market is a complex evolved dynamic system. Multiscale entropy is a prevailing method used to quantify the complexity of a time series. Due to its less reliability of entropy estimation for short-term time series at large time scales, a modification method, the composite multiscale entropy, is applied to the financial market. To qualify its effectiveness, its applications in the synthetic white noise and 1 / f noise with different data lengths are reproduced first in the present paper. Then it is introduced for the first time to make a reliability test with two Chinese stock indices. After conducting on short-time return series, the CMSE method shows the advantages in reducing deviations of entropy estimation and demonstrates more stable and reliable results when compared with the conventional MSE algorithm. Finally, the composite multiscale entropy of six important stock indices from the world financial markets is investigated, and some useful and interesting empirical results are obtained.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Maoyuan; Besford, Quinn Alexander; Mulvaney, Thomas

    The entropy of hydrophobic solvation has been explained as the result of ordered solvation structures, of hydrogen bonds, of the small size of the water molecule, of dispersion forces, and of solvent density fluctuations. We report a new approach to the calculation of the entropy of hydrophobic solvation, along with tests of and comparisons to several other methods. The methods are assessed in the light of the available thermodynamic and spectroscopic information on the effects of temperature on hydrophobic solvation. Five model hydrophobes in SPC/E water give benchmark solvation entropies via Widom’s test-particle insertion method, and other methods and modelsmore » are tested against these particle-insertion results. Entropies associated with distributions of tetrahedral order, of electric field, and of solvent dipole orientations are examined. We find these contributions are small compared to the benchmark particle-insertion entropy. Competitive with or better than other theories in accuracy, but with no free parameters, is the new estimate of the entropy contributed by correlations between dipole moments. Dipole correlations account for most of the hydrophobic solvation entropy for all models studied and capture the distinctive temperature dependence seen in thermodynamic and spectroscopic experiments. Entropies based on pair and many-body correlations in number density approach the correct magnitudes but fail to describe temperature and size dependences, respectively. Hydrogen-bond definitions and free energies that best reproduce entropies from simulations are reported, but it is difficult to choose one hydrogen bond model that fits a variety of experiments. The use of information theory, scaled-particle theory, and related methods is discussed briefly. Our results provide a test of the Frank-Evans hypothesis that the negative solvation entropy is due to structured water near the solute, complement the spectroscopic detection of that solvation structure by identifying the structural feature responsible for the entropy change, and point to a possible explanation for the observed dependence on length scale. Our key results are that the hydrophobic effect, i.e. the signature, temperature-dependent, solvation entropy of nonpolar molecules in water, is largely due to a dispersion force arising from correlations between rotating permanent dipole moments, that the strength of this force depends on the Kirkwood g-factor, and that the strength of this force may be obtained exactly without simulation.« less

  11. Entanglement Entropy of Black Holes.

    PubMed

    Solodukhin, Sergey N

    2011-01-01

    The entanglement entropy is a fundamental quantity, which characterizes the correlations between sub-systems in a larger quantum-mechanical system. For two sub-systems separated by a surface the entanglement entropy is proportional to the area of the surface and depends on the UV cutoff, which regulates the short-distance correlations. The geometrical nature of entanglement-entropy calculation is particularly intriguing when applied to black holes when the entangling surface is the black-hole horizon. I review a variety of aspects of this calculation: the useful mathematical tools such as the geometry of spaces with conical singularities and the heat kernel method, the UV divergences in the entropy and their renormalization, the logarithmic terms in the entanglement entropy in four and six dimensions and their relation to the conformal anomalies. The focus in the review is on the systematic use of the conical singularity method. The relations to other known approaches such as 't Hooft's brick-wall model and the Euclidean path integral in the optical metric are discussed in detail. The puzzling behavior of the entanglement entropy due to fields, which non-minimally couple to gravity, is emphasized. The holographic description of the entanglement entropy of the blackhole horizon is illustrated on the two- and four-dimensional examples. Finally, I examine the possibility to interpret the Bekenstein-Hawking entropy entirely as the entanglement entropy.

  12. Entanglement Entropy of Black Holes

    NASA Astrophysics Data System (ADS)

    Solodukhin, Sergey N.

    2011-10-01

    The entanglement entropy is a fundamental quantity, which characterizes the correlations between sub-systems in a larger quantum-mechanical system. For two sub-systems separated by a surface the entanglement entropy is proportional to the area of the surface and depends on the UV cutoff, which regulates the short-distance correlations. The geometrical nature of entanglement-entropy calculation is particularly intriguing when applied to black holes when the entangling surface is the black-hole horizon. I review a variety of aspects of this calculation: the useful mathematical tools such as the geometry of spaces with conical singularities and the heat kernel method, the UV divergences in the entropy and their renormalization, the logarithmic terms in the entanglement entropy in four and six dimensions and their relation to the conformal anomalies. The focus in the review is on the systematic use of the conical singularity method. The relations to other known approaches such as 't Hooft's brick-wall model and the Euclidean path integral in the optical metric are discussed in detail. The puzzling behavior of the entanglement entropy due to fields, which non-minimally couple to gravity, is emphasized. The holographic description of the entanglement entropy of the blackhole horizon is illustrated on the two- and four-dimensional examples. Finally, I examine the possibility to interpret the Bekenstein-Hawking entropy entirely as the entanglement entropy.

  13. Direct comparison of phase-sensitive vibrational sum frequency generation with maximum entropy method: case study of water.

    PubMed

    de Beer, Alex G F; Samson, Jean-Sebastièn; Hua, Wei; Huang, Zishuai; Chen, Xiangke; Allen, Heather C; Roke, Sylvie

    2011-12-14

    We present a direct comparison of phase sensitive sum-frequency generation experiments with phase reconstruction obtained by the maximum entropy method. We show that both methods lead to the same complex spectrum. Furthermore, we discuss the strengths and weaknesses of each of these methods, analyzing possible sources of experimental and analytical errors. A simulation program for maximum entropy phase reconstruction is available at: http://lbp.epfl.ch/. © 2011 American Institute of Physics

  14. Efficient optimization of the quantum relative entropy

    NASA Astrophysics Data System (ADS)

    Fawzi, Hamza; Fawzi, Omar

    2018-04-01

    Many quantum information measures can be written as an optimization of the quantum relative entropy between sets of states. For example, the relative entropy of entanglement of a state is the minimum relative entropy to the set of separable states. The various capacities of quantum channels can also be written in this way. We propose a unified framework to numerically compute these quantities using off-the-shelf semidefinite programming solvers, exploiting the approximation method proposed in Fawzi, Saunderson and Parrilo (2017 arXiv: 1705.00812). As a notable application, this method allows us to provide numerical counterexamples for a proposed lower bound on the quantum conditional mutual information in terms of the relative entropy of recovery.

  15. Characterization of Early Partial Seizure Onset: Frequency, Complexity and Entropy

    PubMed Central

    Jouny, Christophe C.; Bergey, Gregory K.

    2011-01-01

    Objective A clear classification of partial seizures onset features is not yet established. Complexity and entropy have been very widely used to describe dynamical systems, but a systematic evaluation of these measures to characterize partial seizures has never been performed. Methods Eighteen different measures including power in frequency bands up to 300Hz, Gabor atom density (GAD), Higuchi fractal dimension (HFD), Lempel-Ziv complexity, Shannon entropy, sample entropy, and permutation entropy, were selected to test sensitivity to partial seizure onset. Intracranial recordings from forty-five patients with mesial temporal, neocortical temporal and neocortical extratemporal seizure foci were included (331 partial seizures). Results GAD, Lempel-Ziv complexity, HFD, high frequency activity, and sample entropy were the most reliable measures to assess early seizure onset. Conclusions Increases in complexity and occurrence of high-frequency components appear to be commonly associated with early stages of partial seizure evolution from all regions. The type of measure (frequency-based, complexity or entropy) does not predict the efficiency of the method to detect seizure onset. Significance Differences between measures such as GAD and HFD highlight the multimodal nature of partial seizure onsets. Improved methods for early seizure detection may be achieved from a better understanding of these underlying dynamics. PMID:21872526

  16. Comparison of transfer entropy methods for financial time series

    NASA Astrophysics Data System (ADS)

    He, Jiayi; Shang, Pengjian

    2017-09-01

    There is a certain relationship between the global financial markets, which creates an interactive network of global finance. Transfer entropy, a measurement for information transfer, offered a good way to analyse the relationship. In this paper, we analysed the relationship between 9 stock indices from the U.S., Europe and China (from 1995 to 2015) by using transfer entropy (TE), effective transfer entropy (ETE), Rényi transfer entropy (RTE) and effective Rényi transfer entropy (ERTE). We compared the four methods in the sense of the effectiveness for identification of the relationship between stock markets. In this paper, two kinds of information flows are given. One reveals that the U.S. took the leading position when in terms of lagged-current cases, but when it comes to the same date, China is the most influential. And ERTE could provide superior results.

  17. Estimating the Entropy of Binary Time Series: Methodology, Some Theory and a Simulation Study

    NASA Astrophysics Data System (ADS)

    Gao, Yun; Kontoyiannis, Ioannis; Bienenstock, Elie

    2008-06-01

    Partly motivated by entropy-estimation problems in neuroscience, we present a detailed and extensive comparison between some of the most popular and effective entropy estimation methods used in practice: The plug-in method, four different estimators based on the Lempel-Ziv (LZ) family of data compression algorithms, an estimator based on the Context-Tree Weighting (CTW) method, and the renewal entropy estimator. METHODOLOGY: Three new entropy estimators are introduced; two new LZ-based estimators, and the “renewal entropy estimator,” which is tailored to data generated by a binary renewal process. For two of the four LZ-based estimators, a bootstrap procedure is described for evaluating their standard error, and a practical rule of thumb is heuristically derived for selecting the values of their parameters in practice. THEORY: We prove that, unlike their earlier versions, the two new LZ-based estimators are universally consistent, that is, they converge to the entropy rate for every finite-valued, stationary and ergodic process. An effective method is derived for the accurate approximation of the entropy rate of a finite-state hidden Markov model (HMM) with known distribution. Heuristic calculations are presented and approximate formulas are derived for evaluating the bias and the standard error of each estimator. SIMULATION: All estimators are applied to a wide range of data generated by numerous different processes with varying degrees of dependence and memory. The main conclusions drawn from these experiments include: (i) For all estimators considered, the main source of error is the bias. (ii) The CTW method is repeatedly and consistently seen to provide the most accurate results. (iii) The performance of the LZ-based estimators is often comparable to that of the plug-in method. (iv) The main drawback of the plug-in method is its computational inefficiency; with small word-lengths it fails to detect longer-range structure in the data, and with longer word-lengths the empirical distribution is severely undersampled, leading to large biases.

  18. Prediction of Protein Configurational Entropy (Popcoen).

    PubMed

    Goethe, Martin; Gleixner, Jan; Fita, Ignacio; Rubi, J Miguel

    2018-03-13

    A knowledge-based method for configurational entropy prediction of proteins is presented; this methodology is extremely fast, compared to previous approaches, because it does not involve any type of configurational sampling. Instead, the configurational entropy of a query fold is estimated by evaluating an artificial neural network, which was trained on molecular-dynamics simulations of ∼1000 proteins. The predicted entropy can be incorporated into a large class of protein software based on cost-function minimization/evaluation, in which configurational entropy is currently neglected for performance reasons. Software of this type is used for all major protein tasks such as structure predictions, proteins design, NMR and X-ray refinement, docking, and mutation effect predictions. Integrating the predicted entropy can yield a significant accuracy increase as we show exemplarily for native-state identification with the prominent protein software FoldX. The method has been termed Popcoen for Prediction of Protein Configurational Entropy. An implementation is freely available at http://fmc.ub.edu/popcoen/ .

  19. Interaction Entropy: A New Paradigm for Highly Efficient and Reliable Computation of Protein-Ligand Binding Free Energy.

    PubMed

    Duan, Lili; Liu, Xiao; Zhang, John Z H

    2016-05-04

    Efficient and reliable calculation of protein-ligand binding free energy is a grand challenge in computational biology and is of critical importance in drug design and many other molecular recognition problems. The main challenge lies in the calculation of entropic contribution to protein-ligand binding or interaction systems. In this report, we present a new interaction entropy method which is theoretically rigorous, computationally efficient, and numerically reliable for calculating entropic contribution to free energy in protein-ligand binding and other interaction processes. Drastically different from the widely employed but extremely expensive normal mode method for calculating entropy change in protein-ligand binding, the new method calculates the entropic component (interaction entropy or -TΔS) of the binding free energy directly from molecular dynamics simulation without any extra computational cost. Extensive study of over a dozen randomly selected protein-ligand binding systems demonstrated that this interaction entropy method is both computationally efficient and numerically reliable and is vastly superior to the standard normal mode approach. This interaction entropy paradigm introduces a novel and intuitive conceptual understanding of the entropic effect in protein-ligand binding and other general interaction systems as well as a practical method for highly efficient calculation of this effect.

  20. Multi-Scale Low-Entropy Method for Optimizing the Processing Parameters during Automated Fiber Placement.

    PubMed

    Han, Zhenyu; Sun, Shouzheng; Fu, Hongya; Fu, Yunzhong

    2017-09-03

    Automated fiber placement (AFP) process includes a variety of energy forms and multi-scale effects. This contribution proposes a novel multi-scale low-entropy method aiming at optimizing processing parameters in an AFP process, where multi-scale effect, energy consumption, energy utilization efficiency and mechanical properties of micro-system could be taken into account synthetically. Taking a carbon fiber/epoxy prepreg as an example, mechanical properties of macro-meso-scale are obtained by Finite Element Method (FEM). A multi-scale energy transfer model is then established to input the macroscopic results into the microscopic system as its boundary condition, which can communicate with different scales. Furthermore, microscopic characteristics, mainly micro-scale adsorption energy, diffusion coefficient entropy-enthalpy values, are calculated under different processing parameters based on molecular dynamics method. Low-entropy region is then obtained in terms of the interrelation among entropy-enthalpy values, microscopic mechanical properties (interface adsorbability and matrix fluidity) and processing parameters to guarantee better fluidity, stronger adsorption, lower energy consumption and higher energy quality collaboratively. Finally, nine groups of experiments are carried out to verify the validity of the simulation results. The results show that the low-entropy optimization method can reduce void content effectively, and further improve the mechanical properties of laminates.

  1. Sample entropy applied to the analysis of synthetic time series and tachograms

    NASA Astrophysics Data System (ADS)

    Muñoz-Diosdado, A.; Gálvez-Coyt, G. G.; Solís-Montufar, E.

    2017-01-01

    Entropy is a method of non-linear analysis that allows an estimate of the irregularity of a system, however, there are different types of computational entropy that were considered and tested in order to obtain one that would give an index of signals complexity taking into account the data number of the analysed time series, the computational resources demanded by the method, and the accuracy of the calculation. An algorithm for the generation of fractal time-series with a certain value of β was used for the characterization of the different entropy algorithms. We obtained a significant variation for most of the algorithms in terms of the series size, which could result counterproductive for the study of real signals of different lengths. The chosen method was sample entropy, which shows great independence of the series size. With this method, time series of heart interbeat intervals or tachograms of healthy subjects and patients with congestive heart failure were analysed. The calculation of sample entropy was carried out for 24-hour tachograms and time subseries of 6-hours for sleepiness and wakefulness. The comparison between the two populations shows a significant difference that is accentuated when the patient is sleeping.

  2. Uncertainties have a meaning: Information entropy as a quality measure for 3-D geological models

    NASA Astrophysics Data System (ADS)

    Wellmann, J. Florian; Regenauer-Lieb, Klaus

    2012-03-01

    Analyzing, visualizing and communicating uncertainties are important issues as geological models can never be fully determined. To date, there exists no general approach to quantify uncertainties in geological modeling. We propose here to use information entropy as an objective measure to compare and evaluate model and observational results. Information entropy was introduced in the 50s and defines a scalar value at every location in the model for predictability. We show that this method not only provides a quantitative insight into model uncertainties but, due to the underlying concept of information entropy, can be related to questions of data integration (i.e. how is the model quality interconnected with the used input data) and model evolution (i.e. does new data - or a changed geological hypothesis - optimize the model). In other words information entropy is a powerful measure to be used for data assimilation and inversion. As a first test of feasibility, we present the application of the new method to the visualization of uncertainties in geological models, here understood as structural representations of the subsurface. Applying the concept of information entropy on a suite of simulated models, we can clearly identify (a) uncertain regions within the model, even for complex geometries; (b) the overall uncertainty of a geological unit, which is, for example, of great relevance in any type of resource estimation; (c) a mean entropy for the whole model, important to track model changes with one overall measure. These results cannot easily be obtained with existing standard methods. The results suggest that information entropy is a powerful method to visualize uncertainties in geological models, and to classify the indefiniteness of single units and the mean entropy of a model quantitatively. Due to the relationship of this measure to the missing information, we expect the method to have a great potential in many types of geoscientific data assimilation problems — beyond pure visualization.

  3. [Identification of special quality eggs with NIR spectroscopy technology based on symbol entropy feature extraction method].

    PubMed

    Zhao, Yong; Hong, Wen-Xue

    2011-11-01

    Fast, nondestructive and accurate identification of special quality eggs is an urgent problem. The present paper proposed a new feature extraction method based on symbol entropy to identify near infrared spectroscopy of special quality eggs. The authors selected normal eggs, free range eggs, selenium-enriched eggs and zinc-enriched eggs as research objects and measured the near-infrared diffuse reflectance spectra in the range of 12 000-4 000 cm(-1). Raw spectra were symbolically represented with aggregation approximation algorithm and symbolic entropy was extracted as feature vector. An error-correcting output codes multiclass support vector machine classifier was designed to identify the spectrum. Symbolic entropy feature is robust when parameter changed and the highest recognition rate reaches up to 100%. The results show that the identification method of special quality eggs using near-infrared is feasible and the symbol entropy can be used as a new feature extraction method of near-infrared spectra.

  4. A two-phase copula entropy-based multiobjective optimization approach to hydrometeorological gauge network design

    NASA Astrophysics Data System (ADS)

    Xu, Pengcheng; Wang, Dong; Singh, Vijay P.; Wang, Yuankun; Wu, Jichun; Wang, Lachun; Zou, Xinqing; Chen, Yuanfang; Chen, Xi; Liu, Jiufu; Zou, Ying; He, Ruimin

    2017-12-01

    Hydrometeorological data are needed for obtaining point and areal mean, quantifying the spatial variability of hydrometeorological variables, and calibration and verification of hydrometeorological models. Hydrometeorological networks are utilized to collect such data. Since data collection is expensive, it is essential to design an optimal network based on the minimal number of hydrometeorological stations in order to reduce costs. This study proposes a two-phase copula entropy- based multiobjective optimization approach that includes: (1) copula entropy-based directional information transfer (CDIT) for clustering the potential hydrometeorological gauges into several groups, and (2) multiobjective method for selecting the optimal combination of gauges for regionalized groups. Although entropy theory has been employed for network design before, the joint histogram method used for mutual information estimation has several limitations. The copula entropy-based mutual information (MI) estimation method is shown to be more effective for quantifying the uncertainty of redundant information than the joint histogram (JH) method. The effectiveness of this approach is verified by applying to one type of hydrometeorological gauge network, with the use of three model evaluation measures, including Nash-Sutcliffe Coefficient (NSC), arithmetic mean of the negative copula entropy (MNCE), and MNCE/NSC. Results indicate that the two-phase copula entropy-based multiobjective technique is capable of evaluating the performance of regional hydrometeorological networks and can enable decision makers to develop strategies for water resources management.

  5. Entropy and generalized least square methods in assessment of the regional value of streamgages

    USGS Publications Warehouse

    Markus, M.; Vernon, Knapp H.; Tasker, Gary D.

    2003-01-01

    The Illinois State Water Survey performed a study to assess the streamgaging network in the State of Illinois. One of the important aspects of the study was to assess the regional value of each station through an assessment of the information transfer among gaging records for low, average, and high flow conditions. This analysis was performed for the main hydrologic regions in the State, and the stations were initially evaluated using a new approach based on entropy analysis. To determine the regional value of each station within a region, several information parameters, including total net information, were defined based on entropy. Stations were ranked based on the total net information. For comparison, the regional value of the same stations was assessed using the generalized least square regression (GLS) method, developed by the US Geological Survey. Finally, a hybrid combination of GLS and entropy was created by including a function of the negative net information as a penalty function in the GLS. The weights of the combined model were determined to maximize the average correlation with the results of GLS and entropy. The entropy and GLS methods were evaluated using the high-flow data from southern Illinois stations. The combined method was compared with the entropy and GLS approaches using the high-flow data from eastern Illinois stations. ?? 2003 Elsevier B.V. All rights reserved.

  6. DEM interpolation weight calculation modulus based on maximum entropy

    NASA Astrophysics Data System (ADS)

    Chen, Tian-wei; Yang, Xia

    2015-12-01

    There is negative-weight in traditional interpolation of gridding DEM, in the article, the principle of Maximum Entropy is utilized to analyze the model system which depends on modulus of space weight. Negative-weight problem of the DEM interpolation is researched via building Maximum Entropy model, and adding nonnegative, first and second order's Moment constraints, the negative-weight problem is solved. The correctness and accuracy of the method was validated with genetic algorithm in matlab program. The method is compared with the method of Yang Chizhong interpolation and quadratic program. Comparison shows that the volume and scaling of Maximum Entropy's weight is fit to relations of space and the accuracy is superior to the latter two.

  7. Compression embedding

    DOEpatents

    Sandford, M.T. II; Handel, T.G.; Bradley, J.N.

    1998-03-10

    A method of embedding auxiliary information into the digital representation of host data created by a lossy compression technique is disclosed. The method applies to data compressed with lossy algorithms based on series expansion, quantization to a finite number of symbols, and entropy coding. Lossy compression methods represent the original data as integer indices having redundancy and uncertainty in value by one unit. Indices which are adjacent in value are manipulated to encode auxiliary data. By a substantially reverse process, the embedded auxiliary data can be retrieved easily by an authorized user. Lossy compression methods use loss-less compressions known also as entropy coding, to reduce to the final size the intermediate representation as indices. The efficiency of the compression entropy coding, known also as entropy coding is increased by manipulating the indices at the intermediate stage in the manner taught by the method. 11 figs.

  8. Compression embedding

    DOEpatents

    Sandford, II, Maxwell T.; Handel, Theodore G.; Bradley, Jonathan N.

    1998-01-01

    A method of embedding auxiliary information into the digital representation of host data created by a lossy compression technique. The method applies to data compressed with lossy algorithms based on series expansion, quantization to a finite number of symbols, and entropy coding. Lossy compression methods represent the original data as integer indices having redundancy and uncertainty in value by one unit. Indices which are adjacent in value are manipulated to encode auxiliary data. By a substantially reverse process, the embedded auxiliary data can be retrieved easily by an authorized user. Lossy compression methods use loss-less compressions known also as entropy coding, to reduce to the final size the intermediate representation as indices. The efficiency of the compression entropy coding, known also as entropy coding is increased by manipulating the indices at the intermediate stage in the manner taught by the method.

  9. Entropy generation in Gaussian quantum transformations: applying the replica method to continuous-variable quantum information theory

    NASA Astrophysics Data System (ADS)

    Gagatsos, Christos N.; Karanikas, Alexandros I.; Kordas, Georgios; Cerf, Nicolas J.

    2016-02-01

    In spite of their simple description in terms of rotations or symplectic transformations in phase space, quadratic Hamiltonians such as those modelling the most common Gaussian operations on bosonic modes remain poorly understood in terms of entropy production. For instance, determining the quantum entropy generated by a Bogoliubov transformation is notably a hard problem, with generally no known analytical solution, while it is vital to the characterisation of quantum communication via bosonic channels. Here we overcome this difficulty by adapting the replica method, a tool borrowed from statistical physics and quantum field theory. We exhibit a first application of this method to continuous-variable quantum information theory, where it enables accessing entropies in an optical parametric amplifier. As an illustration, we determine the entropy generated by amplifying a binary superposition of the vacuum and a Fock state, which yields a surprisingly simple, yet unknown analytical expression.

  10. Calculation of heat transfer on shuttle type configurations including the effects of variable entropy at boundary layer edge

    NASA Technical Reports Server (NTRS)

    Dejarnette, F. R.

    1972-01-01

    A relatively simple method is presented for including the effect of variable entropy at the boundary-layer edge in a heat transfer method developed previously. For each inviscid surface streamline an approximate shockwave shape is calculated using a modified form of Maslen's method for inviscid axisymmetric flows. The entropy for the streamline at the edge of the boundary layer is determined by equating the mass flux through the shock wave to that inside the boundary layer. Approximations used in this technique allow the heating rates along each inviscid surface streamline to be calculated independent of the other streamlines. The shock standoff distances computed by the present method are found to compare well with those computed by Maslen's asymmetric method. Heating rates are presented for blunted circular and elliptical cones and a typical space shuttle orbiter at angles of attack. Variable entropy effects are found to increase heating rates downstream of the nose significantly higher than those computed using normal-shock entropy, and turbulent heating rates increased more than laminar rates. Effects of Reynolds number and angles of attack are also shown.

  11. Double symbolic joint entropy in nonlinear dynamic complexity analysis

    NASA Astrophysics Data System (ADS)

    Yao, Wenpo; Wang, Jun

    2017-07-01

    Symbolizations, the base of symbolic dynamic analysis, are classified as global static and local dynamic approaches which are combined by joint entropy in our works for nonlinear dynamic complexity analysis. Two global static methods, symbolic transformations of Wessel N. symbolic entropy and base-scale entropy, and two local ones, namely symbolizations of permutation and differential entropy, constitute four double symbolic joint entropies that have accurate complexity detections in chaotic models, logistic and Henon map series. In nonlinear dynamical analysis of different kinds of heart rate variability, heartbeats of healthy young have higher complexity than those of the healthy elderly, and congestive heart failure (CHF) patients are lowest in heartbeats' joint entropy values. Each individual symbolic entropy is improved by double symbolic joint entropy among which the combination of base-scale and differential symbolizations have best complexity analysis. Test results prove that double symbolic joint entropy is feasible in nonlinear dynamic complexity analysis.

  12. Conditional Entropy-Constrained Residual VQ with Application to Image Coding

    NASA Technical Reports Server (NTRS)

    Kossentini, Faouzi; Chung, Wilson C.; Smith, Mark J. T.

    1996-01-01

    This paper introduces an extension of entropy-constrained residual vector quantization (VQ) where intervector dependencies are exploited. The method, which we call conditional entropy-constrained residual VQ, employs a high-order entropy conditioning strategy that captures local information in the neighboring vectors. When applied to coding images, the proposed method is shown to achieve better rate-distortion performance than that of entropy-constrained residual vector quantization with less computational complexity and lower memory requirements. Moreover, it can be designed to support progressive transmission in a natural way. It is also shown to outperform some of the best predictive and finite-state VQ techniques reported in the literature. This is due partly to the joint optimization between the residual vector quantizer and a high-order conditional entropy coder as well as the efficiency of the multistage residual VQ structure and the dynamic nature of the prediction.

  13. Minimal entropy approximation for cellular automata

    NASA Astrophysics Data System (ADS)

    Fukś, Henryk

    2014-02-01

    We present a method for the construction of approximate orbits of measures under the action of cellular automata which is complementary to the local structure theory. The local structure theory is based on the idea of Bayesian extension, that is, construction of a probability measure consistent with given block probabilities and maximizing entropy. If instead of maximizing entropy one minimizes it, one can develop another method for the construction of approximate orbits, at the heart of which is the iteration of finite-dimensional maps, called minimal entropy maps. We present numerical evidence that the minimal entropy approximation sometimes outperforms the local structure theory in characterizing the properties of cellular automata. The density response curve for elementary CA rule 26 is used to illustrate this claim.

  14. Third law of thermodynamics as a key test of generalized entropies.

    PubMed

    Bento, E P; Viswanathan, G M; da Luz, M G E; Silva, R

    2015-02-01

    The laws of thermodynamics constrain the formulation of statistical mechanics at the microscopic level. The third law of thermodynamics states that the entropy must vanish at absolute zero temperature for systems with nondegenerate ground states in equilibrium. Conversely, the entropy can vanish only at absolute zero temperature. Here we ask whether or not generalized entropies satisfy this fundamental property. We propose a direct analytical procedure to test if a generalized entropy satisfies the third law, assuming only very general assumptions for the entropy S and energy U of an arbitrary N-level classical system. Mathematically, the method relies on exact calculation of β=dS/dU in terms of the microstate probabilities p(i). To illustrate this approach, we present exact results for the two best known generalizations of statistical mechanics. Specifically, we study the Kaniadakis entropy S(κ), which is additive, and the Tsallis entropy S(q), which is nonadditive. We show that the Kaniadakis entropy correctly satisfies the third law only for -1<κ<+1, thereby shedding light on why κ is conventionally restricted to this interval. Surprisingly, however, the Tsallis entropy violates the third law for q<1. Finally, we give a concrete example of the power of our proposed method by applying it to a paradigmatic system: the one-dimensional ferromagnetic Ising model with nearest-neighbor interactions.

  15. Configurational entropy: an improvement of the quasiharmonic approximation using configurational temperature.

    PubMed

    Nguyen, Phuong H; Derreumaux, Philippe

    2012-01-14

    One challenge in computational biophysics and biology is to develop methodologies able to estimate accurately the configurational entropy of macromolecules. Among many methods, the quasiharmonic approximation (QH) is most widely used as it is simple in both theory and implementation. However, it has been shown that this method becomes inaccurate by overestimating entropy for systems with rugged free energy landscapes. Here, we propose a simple method to improve the QH approximation, i.e., to reduce QH entropy. We approximate the potential energy landscape of the system by an effective harmonic potential, and request that this potential must produce exactly the configurational temperature of the system. Due to this constraint, the force constants associated with the effective harmonic potential are increased, or equivalently, entropy of motion governed by this effective harmonic potential is reduced. We also introduce the effective configurational temperature concept which can be used as an indicator to check the anharmonicity of the free energy landscape. To validate the new method we compare it with the recently developed expansion approximate method by calculating entropy of one simple model system and two peptides with 3 and 16 amino acids either in gas phase or in explicit solvent. We show that the new method appears to be a good choice in practice as it is a compromise between accuracy and computational speed. A modification of the expansion approximate method is also introduced and advantages are discussed in some detail.

  16. Distance-Based Configurational Entropy of Proteins from Molecular Dynamics Simulations

    PubMed Central

    Fogolari, Federico; Corazza, Alessandra; Fortuna, Sara; Soler, Miguel Angel; VanSchouwen, Bryan; Brancolini, Giorgia; Corni, Stefano; Melacini, Giuseppe; Esposito, Gennaro

    2015-01-01

    Estimation of configurational entropy from molecular dynamics trajectories is a difficult task which is often performed using quasi-harmonic or histogram analysis. An entirely different approach, proposed recently, estimates local density distribution around each conformational sample by measuring the distance from its nearest neighbors. In this work we show this theoretically well grounded the method can be easily applied to estimate the entropy from conformational sampling. We consider a set of systems that are representative of important biomolecular processes. In particular: reference entropies for amino acids in unfolded proteins are obtained from a database of residues not participating in secondary structure elements;the conformational entropy of folding of β2-microglobulin is computed from molecular dynamics simulations using reference entropies for the unfolded state;backbone conformational entropy is computed from molecular dynamics simulations of four different states of the EPAC protein and compared with order parameters (often used as a measure of entropy);the conformational and rototranslational entropy of binding is computed from simulations of 20 tripeptides bound to the peptide binding protein OppA and of β2-microglobulin bound to a citrate coated gold surface. This work shows the potential of the method in the most representative biological processes involving proteins, and provides a valuable alternative, principally in the shown cases, where other approaches are problematic. PMID:26177039

  17. Distance-Based Configurational Entropy of Proteins from Molecular Dynamics Simulations.

    PubMed

    Fogolari, Federico; Corazza, Alessandra; Fortuna, Sara; Soler, Miguel Angel; VanSchouwen, Bryan; Brancolini, Giorgia; Corni, Stefano; Melacini, Giuseppe; Esposito, Gennaro

    2015-01-01

    Estimation of configurational entropy from molecular dynamics trajectories is a difficult task which is often performed using quasi-harmonic or histogram analysis. An entirely different approach, proposed recently, estimates local density distribution around each conformational sample by measuring the distance from its nearest neighbors. In this work we show this theoretically well grounded the method can be easily applied to estimate the entropy from conformational sampling. We consider a set of systems that are representative of important biomolecular processes. In particular: reference entropies for amino acids in unfolded proteins are obtained from a database of residues not participating in secondary structure elements;the conformational entropy of folding of β2-microglobulin is computed from molecular dynamics simulations using reference entropies for the unfolded state;backbone conformational entropy is computed from molecular dynamics simulations of four different states of the EPAC protein and compared with order parameters (often used as a measure of entropy);the conformational and rototranslational entropy of binding is computed from simulations of 20 tripeptides bound to the peptide binding protein OppA and of β2-microglobulin bound to a citrate coated gold surface. This work shows the potential of the method in the most representative biological processes involving proteins, and provides a valuable alternative, principally in the shown cases, where other approaches are problematic.

  18. Sample entropy analysis of cervical neoplasia gene-expression signatures

    PubMed Central

    Botting, Shaleen K; Trzeciakowski, Jerome P; Benoit, Michelle F; Salama, Salama A; Diaz-Arrastia, Concepcion R

    2009-01-01

    Background We introduce Approximate Entropy as a mathematical method of analysis for microarray data. Approximate entropy is applied here as a method to classify the complex gene expression patterns resultant of a clinical sample set. Since Entropy is a measure of disorder in a system, we believe that by choosing genes which display minimum entropy in normal controls and maximum entropy in the cancerous sample set we will be able to distinguish those genes which display the greatest variability in the cancerous set. Here we describe a method of utilizing Approximate Sample Entropy (ApSE) analysis to identify genes of interest with the highest probability of producing an accurate, predictive, classification model from our data set. Results In the development of a diagnostic gene-expression profile for cervical intraepithelial neoplasia (CIN) and squamous cell carcinoma of the cervix, we identified 208 genes which are unchanging in all normal tissue samples, yet exhibit a random pattern indicative of the genetic instability and heterogeneity of malignant cells. This may be measured in terms of the ApSE when compared to normal tissue. We have validated 10 of these genes on 10 Normal and 20 cancer and CIN3 samples. We report that the predictive value of the sample entropy calculation for these 10 genes of interest is promising (75% sensitivity, 80% specificity for prediction of cervical cancer over CIN3). Conclusion The success of the Approximate Sample Entropy approach in discerning alterations in complexity from biological system with such relatively small sample set, and extracting biologically relevant genes of interest hold great promise. PMID:19232110

  19. Entropy and climate. I - ERBE observations of the entropy production of the earth

    NASA Technical Reports Server (NTRS)

    Stephens, G. L.; O'Brien, D. M.

    1993-01-01

    An approximate method for estimating the global distributions of the entropy fluxes flowing through the upper boundary of the climate system is introduced, and an estimate of the entropy exchange between the earth and space and the entropy production of the planet is provided. Entropy fluxes calculated from the Earth Radiation Budget Experiment measurements show how the long-wave entropy flux densities dominate the total entropy fluxes at all latitudes compared with the entropy flux densities associated with reflected sunlight, although the short-wave flux densities are important in the context of clear sky-cloudy sky net entropy flux differences. It is suggested that the entropy production of the planet is both constant for the 36 months of data considered and very near its maximum possible value. The mean value of this production is 0.68 x 10 exp 15 W/K, and the amplitude of the annual cycle is approximately 1 to 2 percent of this value.

  20. Logarithmic black hole entropy corrections and holographic Rényi entropy

    NASA Astrophysics Data System (ADS)

    Mahapatra, Subhash

    2018-01-01

    The entanglement and Rényi entropies for spherical entangling surfaces in CFTs with gravity duals can be explicitly calculated by mapping these entropies first to the thermal entropy on hyperbolic space and then, using the AdS/CFT correspondence, to the Wald entropy of topological black holes. Here we extend this idea by taking into account corrections to the Wald entropy. Using the method based on horizon symmetries and the asymptotic Cardy formula, we calculate corrections to the Wald entropy and find that these corrections are proportional to the logarithm of the area of the horizon. With the corrected expression for the entropy of the black hole, we then find corrections to the Rényi entropies. We calculate these corrections for both Einstein and Gauss-Bonnet gravity duals. Corrections with logarithmic dependence on the area of the entangling surface naturally occur at the order GD^0. The entropic c-function and the inequalities of the Rényi entropy are also satisfied even with the correction terms.

  1. Device-Independent Tests of Entropy

    NASA Astrophysics Data System (ADS)

    Chaves, Rafael; Brask, Jonatan Bohr; Brunner, Nicolas

    2015-09-01

    We show that the entropy of a message can be tested in a device-independent way. Specifically, we consider a prepare-and-measure scenario with classical or quantum communication, and develop two different methods for placing lower bounds on the communication entropy, given observable data. The first method is based on the framework of causal inference networks. The second technique, based on convex optimization, shows that quantum communication provides an advantage over classical communication, in the sense of requiring a lower entropy to reproduce given data. These ideas may serve as a basis for novel applications in device-independent quantum information processing.

  2. Harvesting Entropy for Random Number Generation for Internet of Things Constrained Devices Using On-Board Sensors

    PubMed Central

    Pawlowski, Marcin Piotr; Jara, Antonio; Ogorzalek, Maciej

    2015-01-01

    Entropy in computer security is associated with the unpredictability of a source of randomness. The random source with high entropy tends to achieve a uniform distribution of random values. Random number generators are one of the most important building blocks of cryptosystems. In constrained devices of the Internet of Things ecosystem, high entropy random number generators are hard to achieve due to hardware limitations. For the purpose of the random number generation in constrained devices, this work proposes a solution based on the least-significant bits concatenation entropy harvesting method. As a potential source of entropy, on-board integrated sensors (i.e., temperature, humidity and two different light sensors) have been analyzed. Additionally, the costs (i.e., time and memory consumption) of the presented approach have been measured. The results obtained from the proposed method with statistical fine tuning achieved a Shannon entropy of around 7.9 bits per byte of data for temperature and humidity sensors. The results showed that sensor-based random number generators are a valuable source of entropy with very small RAM and Flash memory requirements for constrained devices of the Internet of Things. PMID:26506357

  3. Population entropies estimates of proteins

    NASA Astrophysics Data System (ADS)

    Low, Wai Yee

    2017-05-01

    The Shannon entropy equation provides a way to estimate variability of amino acids sequences in a multiple sequence alignment of proteins. Knowledge of protein variability is useful in many areas such as vaccine design, identification of antibody binding sites, and exploration of protein 3D structural properties. In cases where the population entropies of a protein are of interest but only a small sample size can be obtained, a method based on linear regression and random subsampling can be used to estimate the population entropy. This method is useful for comparisons of entropies where the actual sequence counts differ and thus, correction for alignment size bias is needed. In the current work, an R based package named EntropyCorrect that enables estimation of population entropy is presented and an empirical study on how well this new algorithm performs on simulated dataset of various combinations of population and sample sizes is discussed. The package is available at https://github.com/lloydlow/EntropyCorrect. This article, which was originally published online on 12 May 2017, contained an error in Eq. (1), where the summation sign was missing. The corrected equation appears in the Corrigendum attached to the pdf.

  4. Harvesting entropy for random number generation for internet of things constrained devices using on-board sensors.

    PubMed

    Pawlowski, Marcin Piotr; Jara, Antonio; Ogorzalek, Maciej

    2015-10-22

    Entropy in computer security is associated with the unpredictability of a source of randomness. The random source with high entropy tends to achieve a uniform distribution of random values. Random number generators are one of the most important building blocks of cryptosystems. In constrained devices of the Internet of Things ecosystem, high entropy random number generators are hard to achieve due to hardware limitations. For the purpose of the random number generation in constrained devices, this work proposes a solution based on the least-significant bits concatenation entropy harvesting method. As a potential source of entropy, on-board integrated sensors (i.e., temperature, humidity and two different light sensors) have been analyzed. Additionally, the costs (i.e., time and memory consumption) of the presented approach have been measured. The results obtained from the proposed method with statistical fine tuning achieved a Shannon entropy of around 7.9 bits per byte of data for temperature and humidity sensors. The results showed that sensor-based random number generators are a valuable source of entropy with very small RAM and Flash memory requirements for constrained devices of the Internet of Things.

  5. On cell entropy inequality for discontinuous Galerkin methods

    NASA Technical Reports Server (NTRS)

    Jiang, Guangshan; Shu, Chi-Wang

    1993-01-01

    We prove a cell entropy inequality for a class of high order discontinuous Galerkin finite element methods approximating conservation laws, which implies convergence for the one dimensional scalar convex case.

  6. Nonadditive entropy maximization is inconsistent with Bayesian updating

    NASA Astrophysics Data System (ADS)

    Pressé, Steve

    2014-11-01

    The maximum entropy method—used to infer probabilistic models from data—is a special case of Bayes's model inference prescription which, in turn, is grounded in basic propositional logic. By contrast to the maximum entropy method, the compatibility of nonadditive entropy maximization with Bayes's model inference prescription has never been established. Here we demonstrate that nonadditive entropy maximization is incompatible with Bayesian updating and discuss the immediate implications of this finding. We focus our attention on special cases as illustrations.

  7. A method for the fast estimation of a battery entropy-variation high-resolution curve - Application on a commercial LiFePO4/graphite cell

    NASA Astrophysics Data System (ADS)

    Damay, Nicolas; Forgez, Christophe; Bichat, Marie-Pierre; Friedrich, Guy

    2016-11-01

    The entropy-variation of a battery is responsible for heat generation or consumption during operation and its prior measurement is mandatory for developing a thermal model. It is generally done through the potentiometric method which is considered as a reference. However, it requires several days or weeks to get a look-up table with a 5 or 10% SoC (State of Charge) resolution. In this study, a calorimetric method based on the inversion of a thermal model is proposed for the fast estimation of a nearly continuous curve of entropy-variation. This is achieved by separating the heats produced while charging and discharging the battery. The entropy-variation is then deduced from the extracted entropic heat. The proposed method is validated by comparing the results obtained with several current rates to measurements made with the potentiometric method.

  8. Computation of entropy and Lyapunov exponent by a shift transform.

    PubMed

    Matsuoka, Chihiro; Hiraide, Koichi

    2015-10-01

    We present a novel computational method to estimate the topological entropy and Lyapunov exponent of nonlinear maps using a shift transform. Unlike the computation of periodic orbits or the symbolic dynamical approach by the Markov partition, the method presented here does not require any special techniques in computational and mathematical fields to calculate these quantities. In spite of its simplicity, our method can accurately capture not only the chaotic region but also the non-chaotic region (window region) such that it is important physically but the (Lebesgue) measure zero and usually hard to calculate or observe. Furthermore, it is shown that the Kolmogorov-Sinai entropy of the Sinai-Ruelle-Bowen measure (the physical measure) coincides with the topological entropy.

  9. Computation of entropy and Lyapunov exponent by a shift transform

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matsuoka, Chihiro, E-mail: matsuoka.chihiro.mm@ehime-u.ac.jp; Hiraide, Koichi

    2015-10-15

    We present a novel computational method to estimate the topological entropy and Lyapunov exponent of nonlinear maps using a shift transform. Unlike the computation of periodic orbits or the symbolic dynamical approach by the Markov partition, the method presented here does not require any special techniques in computational and mathematical fields to calculate these quantities. In spite of its simplicity, our method can accurately capture not only the chaotic region but also the non-chaotic region (window region) such that it is important physically but the (Lebesgue) measure zero and usually hard to calculate or observe. Furthermore, it is shown thatmore » the Kolmogorov-Sinai entropy of the Sinai-Ruelle-Bowen measure (the physical measure) coincides with the topological entropy.« less

  10. Convex Accelerated Maximum Entropy Reconstruction

    PubMed Central

    Worley, Bradley

    2016-01-01

    Maximum entropy (MaxEnt) spectral reconstruction methods provide a powerful framework for spectral estimation of nonuniformly sampled datasets. Many methods exist within this framework, usually defined based on the magnitude of a Lagrange multiplier in the MaxEnt objective function. An algorithm is presented here that utilizes accelerated first-order convex optimization techniques to rapidly and reliably reconstruct nonuniformly sampled NMR datasets using the principle of maximum entropy. This algorithm – called CAMERA for Convex Accelerated Maximum Entropy Reconstruction Algorithm – is a new approach to spectral reconstruction that exhibits fast, tunable convergence in both constant-aim and constant-lambda modes. A high-performance, open source NMR data processing tool is described that implements CAMERA, and brief comparisons to existing reconstruction methods are made on several example spectra. PMID:26894476

  11. Complexity Measures in Magnetoencephalography: Measuring "Disorder" in Schizophrenia

    PubMed Central

    Brookes, Matthew J.; Hall, Emma L.; Robson, Siân E.; Price, Darren; Palaniyappan, Lena; Liddle, Elizabeth B.; Liddle, Peter F.; Robinson, Stephen E.; Morris, Peter G.

    2015-01-01

    This paper details a methodology which, when applied to magnetoencephalography (MEG) data, is capable of measuring the spatio-temporal dynamics of ‘disorder’ in the human brain. Our method, which is based upon signal entropy, shows that spatially separate brain regions (or networks) generate temporally independent entropy time-courses. These time-courses are modulated by cognitive tasks, with an increase in local neural processing characterised by localised and transient increases in entropy in the neural signal. We explore the relationship between entropy and the more established time-frequency decomposition methods, which elucidate the temporal evolution of neural oscillations. We observe a direct but complex relationship between entropy and oscillatory amplitude, which suggests that these metrics are complementary. Finally, we provide a demonstration of the clinical utility of our method, using it to shed light on aberrant neurophysiological processing in schizophrenia. We demonstrate significantly increased task induced entropy change in patients (compared to controls) in multiple brain regions, including a cingulo-insula network, bilateral insula cortices and a right fronto-parietal network. These findings demonstrate potential clinical utility for our method and support a recent hypothesis that schizophrenia can be characterised by abnormalities in the salience network (a well characterised distributed network comprising bilateral insula and cingulate cortices). PMID:25886553

  12. Unification of field theory and maximum entropy methods for learning probability densities

    NASA Astrophysics Data System (ADS)

    Kinney, Justin B.

    2015-09-01

    The need to estimate smooth probability distributions (a.k.a. probability densities) from finite sampled data is ubiquitous in science. Many approaches to this problem have been described, but none is yet regarded as providing a definitive solution. Maximum entropy estimation and Bayesian field theory are two such approaches. Both have origins in statistical physics, but the relationship between them has remained unclear. Here I unify these two methods by showing that every maximum entropy density estimate can be recovered in the infinite smoothness limit of an appropriate Bayesian field theory. I also show that Bayesian field theory estimation can be performed without imposing any boundary conditions on candidate densities, and that the infinite smoothness limit of these theories recovers the most common types of maximum entropy estimates. Bayesian field theory thus provides a natural test of the maximum entropy null hypothesis and, furthermore, returns an alternative (lower entropy) density estimate when the maximum entropy hypothesis is falsified. The computations necessary for this approach can be performed rapidly for one-dimensional data, and software for doing this is provided.

  13. Unification of field theory and maximum entropy methods for learning probability densities.

    PubMed

    Kinney, Justin B

    2015-09-01

    The need to estimate smooth probability distributions (a.k.a. probability densities) from finite sampled data is ubiquitous in science. Many approaches to this problem have been described, but none is yet regarded as providing a definitive solution. Maximum entropy estimation and Bayesian field theory are two such approaches. Both have origins in statistical physics, but the relationship between them has remained unclear. Here I unify these two methods by showing that every maximum entropy density estimate can be recovered in the infinite smoothness limit of an appropriate Bayesian field theory. I also show that Bayesian field theory estimation can be performed without imposing any boundary conditions on candidate densities, and that the infinite smoothness limit of these theories recovers the most common types of maximum entropy estimates. Bayesian field theory thus provides a natural test of the maximum entropy null hypothesis and, furthermore, returns an alternative (lower entropy) density estimate when the maximum entropy hypothesis is falsified. The computations necessary for this approach can be performed rapidly for one-dimensional data, and software for doing this is provided.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rosales-Zarate, Laura E. C.; Drummond, P. D.

    We calculate the quantum Renyi entropy in a phase-space representation for either fermions or bosons. This can also be used to calculate purity and fidelity, or the entanglement between two systems. We show that it is possible to calculate the entropy from sampled phase-space distributions in normally ordered representations, although this is not possible for all quantum states. We give an example of the use of this method in an exactly soluble thermal case. The quantum entropy cannot be calculated at all using sampling methods in classical symmetric (Wigner) or antinormally ordered (Husimi) phase spaces, due to inner-product divergences. Themore » preferred method is to use generalized Gaussian phase-space methods, which utilize a distribution over stochastic Green's functions. We illustrate this approach by calculating the reduced entropy and entanglement of bosonic or fermionic modes coupled to a time-evolving, non-Markovian reservoir.« less

  15. A new assessment method for urbanization environmental impact: urban environment entropy model and its application.

    PubMed

    Ouyang, Tingping; Fu, Shuqing; Zhu, Zhaoyu; Kuang, Yaoqiu; Huang, Ningsheng; Wu, Zhifeng

    2008-11-01

    The thermodynamic law is one of the most widely used scientific principles. The comparability between the environmental impact of urbanization and the thermodynamic entropy was systematically analyzed. Consequently, the concept "Urban Environment Entropy" was brought forward and the "Urban Environment Entropy" model was established for urbanization environmental impact assessment in this study. The model was then utilized in a case study for the assessment of river water quality in the Pearl River Delta Economic Zone. The results indicated that the assessing results of the model are consistent to that of the equalized synthetic pollution index method. Therefore, it can be concluded that the Urban Environment Entropy model has high reliability and can be applied widely in urbanization environmental assessment research using many different environmental parameters.

  16. Applications of quantum entropy to statistics

    NASA Astrophysics Data System (ADS)

    Silver, R. N.; Martz, H. F.

    This paper develops two generalizations of the maximum entropy (ME) principle. First, Shannon classical entropy is replaced by von Neumann quantum entropy to yield a broader class of information divergences (or penalty functions) for statistics applications. Negative relative quantum entropy enforces convexity, positivity, non-local extensivity and prior correlations such as smoothness. This enables the extension of ME methods from their traditional domain of ill-posed in-verse problems to new applications such as non-parametric density estimation. Second, given a choice of information divergence, a combination of ME and Bayes rule is used to assign both prior and posterior probabilities. Hyperparameters are interpreted as Lagrange multipliers enforcing constraints. Conservation principles are proposed to act statistical regularization and other hyperparameters, such as conservation of information and smoothness. ME provides an alternative to hierarchical Bayes methods.

  17. Fast and Efficient Stochastic Optimization for Analytic Continuation

    DOE PAGES

    Bao, Feng; Zhang, Guannan; Webster, Clayton G; ...

    2016-09-28

    In this analytic continuation of imaginary-time quantum Monte Carlo data to extract real-frequency spectra remains a key problem in connecting theory with experiment. Here we present a fast and efficient stochastic optimization method (FESOM) as a more accessible variant of the stochastic optimization method introduced by Mishchenko et al. [Phys. Rev. B 62, 6317 (2000)], and we benchmark the resulting spectra with those obtained by the standard maximum entropy method for three representative test cases, including data taken from studies of the two-dimensional Hubbard model. Genearally, we find that our FESOM approach yields spectra similar to the maximum entropy results.more » In particular, while the maximum entropy method yields superior results when the quality of the data is strong, we find that FESOM is able to resolve fine structure with more detail when the quality of the data is poor. In addition, because of its stochastic nature, the method provides detailed information on the frequency-dependent uncertainty of the resulting spectra, while the maximum entropy method does so only for the spectral weight integrated over a finite frequency region. Therefore, we believe that this variant of the stochastic optimization approach provides a viable alternative to the routinely used maximum entropy method, especially for data of poor quality.« less

  18. An entropy correction method for unsteady full potential flows with strong shocks

    NASA Technical Reports Server (NTRS)

    Whitlow, W., Jr.; Hafez, M. M.; Osher, S. J.

    1986-01-01

    An entropy correction method for the unsteady full potential equation is presented. The unsteady potential equation is modified to account for entropy jumps across shock waves. The conservative form of the modified equation is solved in generalized coordinates using an implicit, approximate factorization method. A flux-biasing differencing method, which generates the proper amounts of artificial viscosity in supersonic regions, is used to discretize the flow equations in space. Comparisons between the present method and solutions of the Euler equations and between the present method and experimental data are presented. The comparisons show that the present method more accurately models solutions of the Euler equations and experiment than does the isentropic potential formulation.

  19. Multiwavelet packet entropy and its application in transmission line fault recognition and classification.

    PubMed

    Liu, Zhigang; Han, Zhiwei; Zhang, Yang; Zhang, Qiaoge

    2014-11-01

    Multiwavelets possess better properties than traditional wavelets. Multiwavelet packet transformation has more high-frequency information. Spectral entropy can be applied as an analysis index to the complexity or uncertainty of a signal. This paper tries to define four multiwavelet packet entropies to extract the features of different transmission line faults, and uses a radial basis function (RBF) neural network to recognize and classify 10 fault types of power transmission lines. First, the preprocessing and postprocessing problems of multiwavelets are presented. Shannon entropy and Tsallis entropy are introduced, and their difference is discussed. Second, multiwavelet packet energy entropy, time entropy, Shannon singular entropy, and Tsallis singular entropy are defined as the feature extraction methods of transmission line fault signals. Third, the plan of transmission line fault recognition using multiwavelet packet entropies and an RBF neural network is proposed. Finally, the experimental results show that the plan with the four multiwavelet packet energy entropies defined in this paper achieves better performance in fault recognition. The performance with SA4 (symmetric antisymmetric) multiwavelet packet Tsallis singular entropy is the best among the combinations of different multiwavelet packets and the four multiwavelet packet entropies.

  20. An improved method for predicting the evolution of the characteristic parameters of an information system

    NASA Astrophysics Data System (ADS)

    Dushkin, A. V.; Kasatkina, T. I.; Novoseltsev, V. I.; Ivanov, S. V.

    2018-03-01

    The article proposes a forecasting method that allows, based on the given values of entropy and error level of the first and second kind, to determine the allowable time for forecasting the development of the characteristic parameters of a complex information system. The main feature of the method under consideration is the determination of changes in the characteristic parameters of the development of the information system in the form of the magnitude of the increment in the ratios of its entropy. When a predetermined value of the prediction error ratio is reached, that is, the entropy of the system, the characteristic parameters of the system and the depth of the prediction in time are estimated. The resulting values of the characteristics and will be optimal, since at that moment the system possessed the best ratio of entropy as a measure of the degree of organization and orderliness of the structure of the system. To construct a method for estimating the depth of prediction, it is expedient to use the maximum principle of the value of entropy.

  1. Information Entropy Analysis of the H1N1 Genetic Code

    NASA Astrophysics Data System (ADS)

    Martwick, Andy

    2010-03-01

    During the current H1N1 pandemic, viral samples are being obtained from large numbers of infected people world-wide and are being sequenced on the NCBI Influenza Virus Resource Database. The information entropy of the sequences was computed from the probability of occurrence of each nucleotide base at every position of each set of sequences using Shannon's definition of information entropy, [ H=∑bpb,2( 1pb ) ] where H is the observed information entropy at each nucleotide position and pb is the probability of the base pair of the nucleotides A, C, G, U. Information entropy of the current H1N1 pandemic is compared to reference human and swine H1N1 entropy. As expected, the current H1N1 entropy is in a low entropy state and has a very large mutation potential. Using the entropy method in mature genes we can identify low entropy regions of nucleotides that generally correlate to critical protein function.

  2. Infrared image segmentation method based on spatial coherence histogram and maximum entropy

    NASA Astrophysics Data System (ADS)

    Liu, Songtao; Shen, Tongsheng; Dai, Yao

    2014-11-01

    In order to segment the target well and suppress background noises effectively, an infrared image segmentation method based on spatial coherence histogram and maximum entropy is proposed. First, spatial coherence histogram is presented by weighting the importance of the different position of these pixels with the same gray-level, which is obtained by computing their local density. Then, after enhancing the image by spatial coherence histogram, 1D maximum entropy method is used to segment the image. The novel method can not only get better segmentation results, but also have a faster computation time than traditional 2D histogram-based segmentation methods.

  3. Bayesian or Laplacien inference, entropy and information theory and information geometry in data and signal processing

    NASA Astrophysics Data System (ADS)

    Mohammad-Djafari, Ali

    2015-01-01

    The main object of this tutorial article is first to review the main inference tools using Bayesian approach, Entropy, Information theory and their corresponding geometries. This review is focused mainly on the ways these tools have been used in data, signal and image processing. After a short introduction of the different quantities related to the Bayes rule, the entropy and the Maximum Entropy Principle (MEP), relative entropy and the Kullback-Leibler divergence, Fisher information, we will study their use in different fields of data and signal processing such as: entropy in source separation, Fisher information in model order selection, different Maximum Entropy based methods in time series spectral estimation and finally, general linear inverse problems.

  4. State fusion entropy for continuous and site-specific analysis of landslide stability changing regularities

    NASA Astrophysics Data System (ADS)

    Liu, Yong; Qin, Zhimeng; Hu, Baodan; Feng, Shuai

    2018-04-01

    Stability analysis is of great significance to landslide hazard prevention, especially the dynamic stability. However, many existing stability analysis methods are difficult to analyse the continuous landslide stability and its changing regularities in a uniform criterion due to the unique landslide geological conditions. Based on the relationship between displacement monitoring data, deformation states and landslide stability, a state fusion entropy method is herein proposed to derive landslide instability through a comprehensive multi-attribute entropy analysis of deformation states, which are defined by a proposed joint clustering method combining K-means and a cloud model. Taking Xintan landslide as the detailed case study, cumulative state fusion entropy presents an obvious increasing trend after the landslide entered accelerative deformation stage and historical maxima match highly with landslide macroscopic deformation behaviours in key time nodes. Reasonable results are also obtained in its application to several other landslides in the Three Gorges Reservoir in China. Combined with field survey, state fusion entropy may serve for assessing landslide stability and judging landslide evolutionary stages.

  5. Entropy-based artificial viscosity stabilization for non-equilibrium Grey Radiation-Hydrodynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Delchini, Marc O., E-mail: delchinm@email.tamu.edu; Ragusa, Jean C., E-mail: jean.ragusa@tamu.edu; Morel, Jim, E-mail: jim.morel@tamu.edu

    2015-09-01

    The entropy viscosity method is extended to the non-equilibrium Grey Radiation-Hydrodynamic equations. The method employs a viscous regularization to stabilize the numerical solution. The artificial viscosity coefficient is modulated by the entropy production and peaks at shock locations. The added dissipative terms are consistent with the entropy minimum principle. A new functional form of the entropy residual, suitable for the Radiation-Hydrodynamic equations, is derived. We demonstrate that the viscous regularization preserves the equilibrium diffusion limit. The equations are discretized with a standard Continuous Galerkin Finite Element Method and a fully implicit temporal integrator within the MOOSE multiphysics framework. The methodmore » of manufactured solutions is employed to demonstrate second-order accuracy in both the equilibrium diffusion and streaming limits. Several typical 1-D radiation-hydrodynamic test cases with shocks (from Mach 1.05 to Mach 50) are presented to establish the ability of the technique to capture and resolve shocks.« less

  6. Renyi entanglement entropy of interacting fermions calculated using the continuous-time quantum Monte Carlo method.

    PubMed

    Wang, Lei; Troyer, Matthias

    2014-09-12

    We present a new algorithm for calculating the Renyi entanglement entropy of interacting fermions using the continuous-time quantum Monte Carlo method. The algorithm only samples the interaction correction of the entanglement entropy, which by design ensures the efficient calculation of weakly interacting systems. Combined with Monte Carlo reweighting, the algorithm also performs well for systems with strong interactions. We demonstrate the potential of this method by studying the quantum entanglement signatures of the charge-density-wave transition of interacting fermions on a square lattice.

  7. Understanding materials behavior from atomistic simulations: Case study of al-containing high entropy alloys and thermally grown aluminum oxide

    NASA Astrophysics Data System (ADS)

    Yinkai Lei

    Atomistic simulation refers to a set of simulation methods that model the materials on the atomistic scale. These simulation methods are faster and cheaper alternative approaches to investigate thermodynamics and kinetics of materials compared to experiments. In this dissertation, atomistic simulation methods have been used to study the thermodynamic and kinetic properties of two material systems, i.e. the entropy of Al-containing high entropy alloys (HEAs) and the vacancy migration energy of thermally grown aluminum oxide. (Abstract shortened by ProQuest.).

  8. Surface entropy of liquids via a direct Monte Carlo approach - Application to liquid Si

    NASA Technical Reports Server (NTRS)

    Wang, Z. Q.; Stroud, D.

    1990-01-01

    Two methods are presented for a direct Monte Carlo evaluation of the surface entropy S(s) of a liquid interacting by specified, volume-independent potentials. The first method is based on an application of the approach of Ferrenberg and Swendsen (1988, 1989) to Monte Carlo simulations at two different temperatures; it gives much more reliable results for S(s) in liquid Si than previous calculations based on numerical differentiation. The second method expresses the surface entropy directly as a canonical average at fixed temperature.

  9. Dissecting Protein Configurational Entropy into Conformational and Vibrational Contributions.

    PubMed

    Chong, Song-Ho; Ham, Sihyun

    2015-10-01

    Quantifying how the rugged nature of the underlying free-energy landscape determines the entropic cost a protein must incur upon folding and ligand binding is a challenging problem. Here, we present a novel computational approach that dissects the protein configurational entropy on the basis of the classification of protein dynamics on the landscape into two separate components: short-term vibrational dynamics related to individual free-energy wells and long-term conformational dynamics associated with transitions between wells. We apply this method to separate the configurational entropy of the protein villin headpiece subdomain into its conformational and vibrational components. We find that the change in configurational entropy upon folding is dominated by the conformational entropy despite the fact that the magnitude of the vibrational entropy is the significantly larger component in each of the folded and unfolded states, which is in accord with the previous empirical estimations. The straightforward applicability of our method to unfolded proteins promises a wide range of applications, including those related to intrinsically disordered proteins.

  10. Modeling Information Content Via Dirichlet-Multinomial Regression Analysis.

    PubMed

    Ferrari, Alberto

    2017-01-01

    Shannon entropy is being increasingly used in biomedical research as an index of complexity and information content in sequences of symbols, e.g. languages, amino acid sequences, DNA methylation patterns and animal vocalizations. Yet, distributional properties of information entropy as a random variable have seldom been the object of study, leading to researchers mainly using linear models or simulation-based analytical approach to assess differences in information content, when entropy is measured repeatedly in different experimental conditions. Here a method to perform inference on entropy in such conditions is proposed. Building on results coming from studies in the field of Bayesian entropy estimation, a symmetric Dirichlet-multinomial regression model, able to deal efficiently with the issue of mean entropy estimation, is formulated. Through a simulation study the model is shown to outperform linear modeling in a vast range of scenarios and to have promising statistical properties. As a practical example, the method is applied to a data set coming from a real experiment on animal communication.

  11. Efficient Transfer Entropy Analysis of Non-Stationary Neural Time Series

    PubMed Central

    Vicente, Raul; Díaz-Pernas, Francisco J.; Wibral, Michael

    2014-01-01

    Information theory allows us to investigate information processing in neural systems in terms of information transfer, storage and modification. Especially the measure of information transfer, transfer entropy, has seen a dramatic surge of interest in neuroscience. Estimating transfer entropy from two processes requires the observation of multiple realizations of these processes to estimate associated probability density functions. To obtain these necessary observations, available estimators typically assume stationarity of processes to allow pooling of observations over time. This assumption however, is a major obstacle to the application of these estimators in neuroscience as observed processes are often non-stationary. As a solution, Gomez-Herrero and colleagues theoretically showed that the stationarity assumption may be avoided by estimating transfer entropy from an ensemble of realizations. Such an ensemble of realizations is often readily available in neuroscience experiments in the form of experimental trials. Thus, in this work we combine the ensemble method with a recently proposed transfer entropy estimator to make transfer entropy estimation applicable to non-stationary time series. We present an efficient implementation of the approach that is suitable for the increased computational demand of the ensemble method's practical application. In particular, we use a massively parallel implementation for a graphics processing unit to handle the computationally most heavy aspects of the ensemble method for transfer entropy estimation. We test the performance and robustness of our implementation on data from numerical simulations of stochastic processes. We also demonstrate the applicability of the ensemble method to magnetoencephalographic data. While we mainly evaluate the proposed method for neuroscience data, we expect it to be applicable in a variety of fields that are concerned with the analysis of information transfer in complex biological, social, and artificial systems. PMID:25068489

  12. Application of Bayesian Maximum Entropy Filter in parameter calibration of groundwater flow model in PingTung Plain

    NASA Astrophysics Data System (ADS)

    Cheung, Shao-Yong; Lee, Chieh-Han; Yu, Hwa-Lung

    2017-04-01

    Due to the limited hydrogeological observation data and high levels of uncertainty within, parameter estimation of the groundwater model has been an important issue. There are many methods of parameter estimation, for example, Kalman filter provides a real-time calibration of parameters through measurement of groundwater monitoring wells, related methods such as Extended Kalman Filter and Ensemble Kalman Filter are widely applied in groundwater research. However, Kalman Filter method is limited to linearity. This study propose a novel method, Bayesian Maximum Entropy Filtering, which provides a method that can considers the uncertainty of data in parameter estimation. With this two methods, we can estimate parameter by given hard data (certain) and soft data (uncertain) in the same time. In this study, we use Python and QGIS in groundwater model (MODFLOW) and development of Extended Kalman Filter and Bayesian Maximum Entropy Filtering in Python in parameter estimation. This method may provide a conventional filtering method and also consider the uncertainty of data. This study was conducted through numerical model experiment to explore, combine Bayesian maximum entropy filter and a hypothesis for the architecture of MODFLOW groundwater model numerical estimation. Through the virtual observation wells to simulate and observe the groundwater model periodically. The result showed that considering the uncertainty of data, the Bayesian maximum entropy filter will provide an ideal result of real-time parameters estimation.

  13. Entropy-based goodness-of-fit test: Application to the Pareto distribution

    NASA Astrophysics Data System (ADS)

    Lequesne, Justine

    2013-08-01

    Goodness-of-fit tests based on entropy have been introduced in [13] for testing normality. The maximum entropy distribution in a class of probability distributions defined by linear constraints induces a Pythagorean equality between the Kullback-Leibler information and an entropy difference. This allows one to propose a goodness-of-fit test for maximum entropy parametric distributions which is based on the Kullback-Leibler information. We will focus on the application of the method to the Pareto distribution. The power of the proposed test is computed through Monte Carlo simulation.

  14. Entropy of nonrotating isolated horizons in Lovelock theory from loop quantum gravity

    NASA Astrophysics Data System (ADS)

    Wang, Jing-Bo; Huang, Chao-Guang; Li, Lin

    2016-08-01

    In this paper, the BF theory method is applied to the nonrotating isolated horizons in Lovelock theory. The final entropy matches the Wald entropy formula for this theory. We also confirm the conclusion obtained by Bodendorfer et al. that the entropy is related to the flux operator rather than the area operator in general diffeomorphic-invariant theory. Supported by National Natural Science Foundation of China (11275207)

  15. Path length entropy analysis of diastolic heart sounds.

    PubMed

    Griffel, Benjamin; Zia, Mohammad K; Fridman, Vladamir; Saponieri, Cesare; Semmlow, John L

    2013-09-01

    Early detection of coronary artery disease (CAD) using the acoustic approach, a noninvasive and cost-effective method, would greatly improve the outcome of CAD patients. To detect CAD, we analyze diastolic sounds for possible CAD murmurs. We observed diastolic sounds to exhibit 1/f structure and developed a new method, path length entropy (PLE) and a scaled version (SPLE), to characterize this structure to improve CAD detection. We compare SPLE results to Hurst exponent, Sample entropy and Multiscale entropy for distinguishing between normal and CAD patients. SPLE achieved a sensitivity-specificity of 80%-81%, the best of the tested methods. However, PLE and SPLE are not sufficient to prove nonlinearity, and evaluation using surrogate data suggests that our cardiovascular sound recordings do not contain significant nonlinear properties. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Path Length Entropy Analysis of Diastolic Heart Sounds

    PubMed Central

    Griffel, B.; Zia, M. K.; Fridman, V.; Saponieri, C.; Semmlow, J. L.

    2013-01-01

    Early detection of coronary artery disease (CAD) using the acoustic approach, a noninvasive and cost-effective method, would greatly improve the outcome of CAD patients. To detect CAD, we analyze diastolic sounds for possible CAD murmurs. We observed diastolic sounds to exhibit 1/f structure and developed a new method, path length entropy (PLE) and a scaled version (SPLE), to characterize this structure to improve CAD detection. We compare SPLE results to Hurst exponent, Sample entropy and Multi-scale entropy for distinguishing between normal and CAD patients. SPLE achieved a sensitivity-specificity of 80%–81%, the best of the tested methods. However, PLE and SPLE are not sufficient to prove nonlinearity, and evaluation using surrogate data suggests that our cardiovascular sound recordings do not contain significant nonlinear properties. PMID:23930808

  17. On the statistical equivalence of restrained-ensemble simulations with the maximum entropy method

    PubMed Central

    Roux, Benoît; Weare, Jonathan

    2013-01-01

    An issue of general interest in computer simulations is to incorporate information from experiments into a structural model. An important caveat in pursuing this goal is to avoid corrupting the resulting model with spurious and arbitrary biases. While the problem of biasing thermodynamic ensembles can be formulated rigorously using the maximum entropy method introduced by Jaynes, the approach can be cumbersome in practical applications with the need to determine multiple unknown coefficients iteratively. A popular alternative strategy to incorporate the information from experiments is to rely on restrained-ensemble molecular dynamics simulations. However, the fundamental validity of this computational strategy remains in question. Here, it is demonstrated that the statistical distribution produced by restrained-ensemble simulations is formally consistent with the maximum entropy method of Jaynes. This clarifies the underlying conditions under which restrained-ensemble simulations will yield results that are consistent with the maximum entropy method. PMID:23464140

  18. Using Rényi parameter to improve the predictive power of singular value decomposition entropy on stock market

    NASA Astrophysics Data System (ADS)

    Jiang, Jiaqi; Gu, Rongbao

    2016-04-01

    This paper generalizes the method of traditional singular value decomposition entropy by incorporating orders q of Rényi entropy. We analyze the predictive power of the entropy based on trajectory matrix using Shanghai Composite Index and Dow Jones Index data in both static test and dynamic test. In the static test on SCI, results of global granger causality tests all turn out to be significant regardless of orders selected. But this entropy fails to show much predictability in American stock market. In the dynamic test, we find that the predictive power can be significantly improved in SCI by our generalized method but not in DJI. This suggests that noises and errors affect SCI more frequently than DJI. In the end, results obtained using different length of sliding window also corroborate this finding.

  19. EEG entropy measures in anesthesia

    PubMed Central

    Liang, Zhenhu; Wang, Yinghua; Sun, Xue; Li, Duan; Voss, Logan J.; Sleigh, Jamie W.; Hagihira, Satoshi; Li, Xiaoli

    2015-01-01

    Highlights: ► Twelve entropy indices were systematically compared in monitoring depth of anesthesia and detecting burst suppression.► Renyi permutation entropy performed best in tracking EEG changes associated with different anesthesia states.► Approximate Entropy and Sample Entropy performed best in detecting burst suppression. Objective: Entropy algorithms have been widely used in analyzing EEG signals during anesthesia. However, a systematic comparison of these entropy algorithms in assessing anesthesia drugs' effect is lacking. In this study, we compare the capability of 12 entropy indices for monitoring depth of anesthesia (DoA) and detecting the burst suppression pattern (BSP), in anesthesia induced by GABAergic agents. Methods: Twelve indices were investigated, namely Response Entropy (RE) and State entropy (SE), three wavelet entropy (WE) measures [Shannon WE (SWE), Tsallis WE (TWE), and Renyi WE (RWE)], Hilbert-Huang spectral entropy (HHSE), approximate entropy (ApEn), sample entropy (SampEn), Fuzzy entropy, and three permutation entropy (PE) measures [Shannon PE (SPE), Tsallis PE (TPE) and Renyi PE (RPE)]. Two EEG data sets from sevoflurane-induced and isoflurane-induced anesthesia respectively were selected to assess the capability of each entropy index in DoA monitoring and BSP detection. To validate the effectiveness of these entropy algorithms, pharmacokinetic/pharmacodynamic (PK/PD) modeling and prediction probability (Pk) analysis were applied. The multifractal detrended fluctuation analysis (MDFA) as a non-entropy measure was compared. Results: All the entropy and MDFA indices could track the changes in EEG pattern during different anesthesia states. Three PE measures outperformed the other entropy indices, with less baseline variability, higher coefficient of determination (R2) and prediction probability, and RPE performed best; ApEn and SampEn discriminated BSP best. Additionally, these entropy measures showed an advantage in computation efficiency compared with MDFA. Conclusion: Each entropy index has its advantages and disadvantages in estimating DoA. Overall, it is suggested that the RPE index was a superior measure. Investigating the advantages and disadvantages of these entropy indices could help improve current clinical indices for monitoring DoA. PMID:25741277

  20. Comparison of Texture Analysis Techniques in Both Frequency and Spatial Domains for Cloud Feature Extraction

    DTIC Science & Technology

    1992-01-01

    entropy , energy. variance, skewness, and object. It can also be applied to an image of a phenomenon. It kurtosis. These parameters are then used as...statistic. The co-occurrence matrix method is used in this study to derive texture values of entropy . Limogeneity. energy (similar to the GLDV angular...from working with the co-occurrence matrix method. Seven convolution sizes were chosen to derive the texture values of entropy , local homogeneity, and

  1. Global sensitivity analysis for fuzzy inputs based on the decomposition of fuzzy output entropy

    NASA Astrophysics Data System (ADS)

    Shi, Yan; Lu, Zhenzhou; Zhou, Yicheng

    2018-06-01

    To analyse the component of fuzzy output entropy, a decomposition method of fuzzy output entropy is first presented. After the decomposition of fuzzy output entropy, the total fuzzy output entropy can be expressed as the sum of the component fuzzy entropy contributed by fuzzy inputs. Based on the decomposition of fuzzy output entropy, a new global sensitivity analysis model is established for measuring the effects of uncertainties of fuzzy inputs on the output. The global sensitivity analysis model can not only tell the importance of fuzzy inputs but also simultaneously reflect the structural composition of the response function to a certain degree. Several examples illustrate the validity of the proposed global sensitivity analysis, which is a significant reference in engineering design and optimization of structural systems.

  2. Entropy coders for image compression based on binary forward classification

    NASA Astrophysics Data System (ADS)

    Yoo, Hoon; Jeong, Jechang

    2000-12-01

    Entropy coders as a noiseless compression method are widely used as final step compression for images, and there have been many contributions to increase of entropy coder performance and to reduction of entropy coder complexity. In this paper, we propose some entropy coders based on the binary forward classification (BFC). The BFC requires overhead of classification but there is no change between the amount of input information and the total amount of classified output information, which we prove this property in this paper. And using the proved property, we propose entropy coders that are the BFC followed by Golomb-Rice coders (BFC+GR) and the BFC followed by arithmetic coders (BFC+A). The proposed entropy coders introduce negligible additional complexity due to the BFC. Simulation results also show better performance than other entropy coders that have similar complexity to the proposed coders.

  3. A practical comparison of algorithms for the measurement of multiscale entropy in neural time series data.

    PubMed

    Kuntzelman, Karl; Jack Rhodes, L; Harrington, Lillian N; Miskovic, Vladimir

    2018-06-01

    There is a broad family of statistical methods for capturing time series regularity, with increasingly widespread adoption by the neuroscientific community. A common feature of these methods is that they permit investigators to quantify the entropy of brain signals - an index of unpredictability/complexity. Despite the proliferation of algorithms for computing entropy from neural time series data there is scant evidence concerning their relative stability and efficiency. Here we evaluated several different algorithmic implementations (sample, fuzzy, dispersion and permutation) of multiscale entropy in terms of their stability across sessions, internal consistency and computational speed, accuracy and precision using a combination of electroencephalogram (EEG) and synthetic 1/ƒ noise signals. Overall, we report fair to excellent internal consistency and longitudinal stability over a one-week period for the majority of entropy estimates, with several caveats. Computational timing estimates suggest distinct advantages for dispersion and permutation entropy over other entropy estimates. Considered alongside the psychometric evidence, we suggest several ways in which researchers can maximize computational resources (without sacrificing reliability), especially when working with high-density M/EEG data or multivoxel BOLD time series signals. Copyright © 2018 Elsevier Inc. All rights reserved.

  4. Inability of the entropy vector method to certify nonclassicality in linelike causal structures

    NASA Astrophysics Data System (ADS)

    Weilenmann, Mirjam; Colbeck, Roger

    2016-10-01

    Bell's theorem shows that our intuitive understanding of causation must be overturned in light of quantum correlations. Nevertheless, quantum mechanics does not permit signaling and hence a notion of cause remains. Understanding this notion is not only important at a fundamental level, but also for technological applications such as key distribution and randomness expansion. It has recently been shown that a useful way to decide which classical causal structures could give rise to a given set of correlations is to use entropy vectors. These are vectors whose components are the entropies of all subsets of the observed variables in the causal structure. The entropy vector method employs causal relationships among the variables to restrict the set of possible entropy vectors. Here, we consider whether the same approach can lead to useful certificates of nonclassicality within a given causal structure. Surprisingly, we find that for a family of causal structures that includes the usual bipartite Bell structure they do not. For all members of this family, no function of the entropies of the observed variables gives such a certificate, in spite of the existence of nonclassical correlations. It is therefore necessary to look beyond entropy vectors to understand cause from a quantum perspective.

  5. Conditional maximum-entropy method for selecting prior distributions in Bayesian statistics

    NASA Astrophysics Data System (ADS)

    Abe, Sumiyoshi

    2014-11-01

    The conditional maximum-entropy method (abbreviated here as C-MaxEnt) is formulated for selecting prior probability distributions in Bayesian statistics for parameter estimation. This method is inspired by a statistical-mechanical approach to systems governed by dynamics with largely separated time scales and is based on three key concepts: conjugate pairs of variables, dimensionless integration measures with coarse-graining factors and partial maximization of the joint entropy. The method enables one to calculate a prior purely from a likelihood in a simple way. It is shown, in particular, how it not only yields Jeffreys's rules but also reveals new structures hidden behind them.

  6. Computing a Non-trivial Lower Bound on the Joint Entropy between Two Images

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perumalla, Kalyan S.

    In this report, a non-trivial lower bound on the joint entropy of two non-identical images is developed, which is greater than the individual entropies of the images. The lower bound is the least joint entropy possible among all pairs of images that have the same histograms as those of the given images. New algorithms are presented to compute the joint entropy lower bound with a computation time proportional to S log S where S is the number of histogram bins of the images. This is faster than the traditional methods of computing the exact joint entropy with a computation timemore » that is quadratic in S .« less

  7. Time-series analysis of multiple foreign exchange rates using time-dependent pattern entropy

    NASA Astrophysics Data System (ADS)

    Ishizaki, Ryuji; Inoue, Masayoshi

    2018-01-01

    Time-dependent pattern entropy is a method that reduces variations to binary symbolic dynamics and considers the pattern of symbols in a sliding temporal window. We use this method to analyze the instability of daily variations in multiple foreign exchange rates. The time-dependent pattern entropy of 7 foreign exchange rates (AUD/USD, CAD/USD, CHF/USD, EUR/USD, GBP/USD, JPY/USD, and NZD/USD) was found to be high in the long period after the Lehman shock, and be low in the long period after Mar 2012. We compared the correlation matrix between exchange rates in periods of high and low of the time-dependent pattern entropy.

  8. Autonomous entropy-based intelligent experimental design

    NASA Astrophysics Data System (ADS)

    Malakar, Nabin Kumar

    2011-07-01

    The aim of this thesis is to explore the application of probability and information theory in experimental design, and to do so in a way that combines what we know about inference and inquiry in a comprehensive and consistent manner. Present day scientific frontiers involve data collection at an ever-increasing rate. This requires that we find a way to collect the most relevant data in an automated fashion. By following the logic of the scientific method, we couple an inference engine with an inquiry engine to automate the iterative process of scientific learning. The inference engine involves Bayesian machine learning techniques to estimate model parameters based upon both prior information and previously collected data, while the inquiry engine implements data-driven exploration. By choosing an experiment whose distribution of expected results has the maximum entropy, the inquiry engine selects the experiment that maximizes the expected information gain. The coupled inference and inquiry engines constitute an autonomous learning method for scientific exploration. We apply it to a robotic arm to demonstrate the efficacy of the method. Optimizing inquiry involves searching for an experiment that promises, on average, to be maximally informative. If the set of potential experiments is described by many parameters, the search involves a high-dimensional entropy space. In such cases, a brute force search method will be slow and computationally expensive. We develop an entropy-based search algorithm, called nested entropy sampling, to select the most informative experiment. This helps to reduce the number of computations necessary to find the optimal experiment. We also extended the method of maximizing entropy, and developed a method of maximizing joint entropy so that it could be used as a principle of collaboration between two robots. This is a major achievement of this thesis, as it allows the information-based collaboration between two robotic units towards a same goal in an automated fashion.

  9. The coupling analysis between stock market indices based on permutation measures

    NASA Astrophysics Data System (ADS)

    Shi, Wenbin; Shang, Pengjian; Xia, Jianan; Yeh, Chien-Hung

    2016-04-01

    Many information-theoretic methods have been proposed for analyzing the coupling dependence between time series. And it is significant to quantify the correlation relationship between financial sequences since the financial market is a complex evolved dynamic system. Recently, we developed a new permutation-based entropy, called cross-permutation entropy (CPE), to detect the coupling structures between two synchronous time series. In this paper, we extend the CPE method to weighted cross-permutation entropy (WCPE), to address some of CPE's limitations, mainly its inability to differentiate between distinct patterns of a certain motif and the sensitivity of patterns close to the noise floor. It shows more stable and reliable results than CPE does when applied it to spiky data and AR(1) processes. Besides, we adapt the CPE method to infer the complexity of short-length time series by freely changing the time delay, and test it with Gaussian random series and random walks. The modified method shows the advantages in reducing deviations of entropy estimation compared with the conventional one. Finally, the weighted cross-permutation entropy of eight important stock indices from the world financial markets is investigated, and some useful and interesting empirical results are obtained.

  10. Maximum entropy PDF projection: A review

    NASA Astrophysics Data System (ADS)

    Baggenstoss, Paul M.

    2017-06-01

    We review maximum entropy (MaxEnt) PDF projection, a method with wide potential applications in statistical inference. The method constructs a sampling distribution for a high-dimensional vector x based on knowing the sampling distribution p(z) of a lower-dimensional feature z = T (x). Under mild conditions, the distribution p(x) having highest possible entropy among all distributions consistent with p(z) may be readily found. Furthermore, the MaxEnt p(x) may be sampled, making the approach useful in Monte Carlo methods. We review the theorem and present a case study in model order selection and classification for handwritten character recognition.

  11. Crowd macro state detection using entropy model

    NASA Astrophysics Data System (ADS)

    Zhao, Ying; Yuan, Mengqi; Su, Guofeng; Chen, Tao

    2015-08-01

    In the crowd security research area a primary concern is to identify the macro state of crowd behaviors to prevent disasters and to supervise the crowd behaviors. The entropy is used to describe the macro state of a self-organization system in physics. The entropy change indicates the system macro state change. This paper provides a method to construct crowd behavior microstates and the corresponded probability distribution using the individuals' velocity information (magnitude and direction). Then an entropy model was built up to describe the crowd behavior macro state. Simulation experiments and video detection experiments were conducted. It was verified that in the disordered state, the crowd behavior entropy is close to the theoretical maximum entropy; while in ordered state, the entropy is much lower than half of the theoretical maximum entropy. The crowd behavior macro state sudden change leads to the entropy change. The proposed entropy model is more applicable than the order parameter model in crowd behavior detection. By recognizing the entropy mutation, it is possible to detect the crowd behavior macro state automatically by utilizing cameras. Results will provide data support on crowd emergency prevention and on emergency manual intervention.

  12. Two aspects of black hole entropy in Lanczos-Lovelock models of gravity

    NASA Astrophysics Data System (ADS)

    Kolekar, Sanved; Kothawala, Dawood; Padmanabhan, T.

    2012-03-01

    We consider two specific approaches to evaluate the black hole entropy which are known to produce correct results in the case of Einstein’s theory and generalize them to Lanczos-Lovelock models. In the first approach (which could be called extrinsic), we use a procedure motivated by earlier work by Pretorius, Vollick, and Israel, and by Oppenheim, and evaluate the entropy of a configuration of densely packed gravitating shells on the verge of forming a black hole in Lanczos-Lovelock theories of gravity. We find that this matter entropy is not equal to (it is less than) Wald entropy, except in the case of Einstein theory, where they are equal. The matter entropy is proportional to the Wald entropy if we consider a specific mth-order Lanczos-Lovelock model, with the proportionality constant depending on the spacetime dimensions D and the order m of the Lanczos-Lovelock theory as (D-2m)/(D-2). Since the proportionality constant depends on m, the proportionality between matter entropy and Wald entropy breaks down when we consider a sum of Lanczos-Lovelock actions involving different m. In the second approach (which could be called intrinsic), we generalize a procedure, previously introduced by Padmanabhan in the context of general relativity, to study off-shell entropy of a class of metrics with horizon using a path integral method. We consider the Euclidean action of Lanczos-Lovelock models for a class of metrics off shell and interpret it as a partition function. We show that in the case of spherically symmetric metrics, one can interpret the Euclidean action as the free energy and read off both the entropy and energy of a black hole spacetime. Surprisingly enough, this leads to exactly the Wald entropy and the energy of the spacetime in Lanczos-Lovelock models obtained by other methods. We comment on possible implications of the result.

  13. Dispersion entropy for the analysis of resting-state MEG regularity in Alzheimer's disease.

    PubMed

    Azami, Hamed; Rostaghi, Mostafa; Fernandez, Alberto; Escudero, Javier

    2016-08-01

    Alzheimer's disease (AD) is a progressive degenerative brain disorder affecting memory, thinking, behaviour and emotion. It is the most common form of dementia and a big social problem in western societies. The analysis of brain activity may help to diagnose this disease. Changes in entropy methods have been reported useful in research studies to characterize AD. We have recently proposed dispersion entropy (DisEn) as a very fast and powerful tool to quantify the irregularity of time series. The aim of this paper is to evaluate the ability of DisEn, in comparison with fuzzy entropy (FuzEn), sample entropy (SampEn), and permutation entropy (PerEn), to discriminate 36 AD patients from 26 elderly control subjects using resting-state magnetoencephalogram (MEG) signals. The results obtained by DisEn, FuzEn, and SampEn, unlike PerEn, show that the AD patients' signals are more regular than controls' time series. The p-values obtained by DisEn, FuzEn, SampEn, and PerEn based methods demonstrate the superiority of DisEn over PerEn, SampEn, and PerEn. Moreover, the computation time for the newly proposed DisEn-based method is noticeably less than for the FuzEn, SampEn, and PerEn based approaches.

  14. Weighted fractional permutation entropy and fractional sample entropy for nonlinear Potts financial dynamics

    NASA Astrophysics Data System (ADS)

    Xu, Kaixuan; Wang, Jun

    2017-02-01

    In this paper, recently introduced permutation entropy and sample entropy are further developed to the fractional cases, weighted fractional permutation entropy (WFPE) and fractional sample entropy (FSE). The fractional order generalization of information entropy is utilized in the above two complexity approaches, to detect the statistical characteristics of fractional order information in complex systems. The effectiveness analysis of proposed methods on the synthetic data and the real-world data reveals that tuning the fractional order allows a high sensitivity and more accurate characterization to the signal evolution, which is useful in describing the dynamics of complex systems. Moreover, the numerical research on nonlinear complexity behaviors is compared between the returns series of Potts financial model and the actual stock markets. And the empirical results confirm the feasibility of the proposed model.

  15. Magnetization and isothermal magnetic entropy change of a mixed spin-1 and spin-2 Heisenberg superlattice

    NASA Astrophysics Data System (ADS)

    Xu, Ping; Du, An

    2017-09-01

    A superlattice composed of spin-1 and spin-2 with ABAB … structure was described with Heisenberg model. The magnetizations and magnetic entropy changes under different magnetic fields were calculated by the Green's function method. The magnetization compensation phenomenon could be observed by altering the intralayer exchange interactions and the single-ion anisotropies of spins. Along with the temperature increasing, the system in the absence of magnetization compensation shows normal magnetic entropy change and displays a peak near the critical temperature, and yet the system with magnetization compensation shows normal magnetic entropy change near the compensation temperature but inverse magnetic entropy change near the critical temperature. Finally, we illustrated the reasons of different behaviors of magnetic entropy change by analyzing the contributions of two sublattices to the total magnetic entropy change.

  16. Measuring entanglement entropy of a generic many-body system with a quantum switch.

    PubMed

    Abanin, Dmitry A; Demler, Eugene

    2012-07-13

    Entanglement entropy has become an important theoretical concept in condensed matter physics because it provides a unique tool for characterizing quantum mechanical many-body phases and new kinds of quantum order. However, the experimental measurement of entanglement entropy in a many-body system is widely believed to be unfeasible, owing to the nonlocal character of this quantity. Here, we propose a general method to measure the entanglement entropy. The method is based on a quantum switch (a two-level system) coupled to a composite system consisting of several copies of the original many-body system. The state of the switch controls how different parts of the composite system connect to each other. We show that, by studying the dynamics of the quantum switch only, the Rényi entanglement entropy of the many-body system can be extracted. We propose a possible design of the quantum switch, which can be realized in cold atomic systems. Our work provides a route towards testing the scaling of entanglement in critical systems as well as a method for a direct experimental detection of topological order.

  17. Application of the Maximum Entropy Method to Risk Analysis of Mergers and Acquisitions

    NASA Astrophysics Data System (ADS)

    Xie, Jigang; Song, Wenyun

    The maximum entropy (ME) method can be used to analyze the risk of mergers and acquisitions when only pre-acquisition information is available. A practical example of the risk analysis of China listed firms’ mergers and acquisitions is provided to testify the feasibility and practicality of the method.

  18. Binarized cross-approximate entropy in crowdsensing environment.

    PubMed

    Skoric, Tamara; Mohamoud, Omer; Milovanovic, Branislav; Japundzic-Zigon, Nina; Bajic, Dragana

    2017-01-01

    Personalised monitoring in health applications has been recognised as part of the mobile crowdsensing concept, where subjects equipped with sensors extract information and share them for personal or common benefit. Limited transmission resources impose the use of local analyses methodology, but this approach is incompatible with analytical tools that require stationary and artefact-free data. This paper proposes a computationally efficient binarised cross-approximate entropy, referred to as (X)BinEn, for unsupervised cardiovascular signal processing in environments where energy and processor resources are limited. The proposed method is a descendant of the cross-approximate entropy ((X)ApEn). It operates on binary, differentially encoded data series split into m-sized vectors. The Hamming distance is used as a distance measure, while a search for similarities is performed on the vector sets. The procedure is tested on rats under shaker and restraint stress, and compared to the existing (X)ApEn results. The number of processing operations is reduced. (X)BinEn captures entropy changes in a similar manner to (X)ApEn. The coding coarseness yields an adverse effect of reduced sensitivity, but it attenuates parameter inconsistency and binary bias. A special case of (X)BinEn is equivalent to Shannon's entropy. A binary conditional entropy for m =1 vectors is embedded into the (X)BinEn procedure. (X)BinEn can be applied to a single time series as an auto-entropy method, or to a pair of time series, as a cross-entropy method. Its low processing requirements makes it suitable for mobile, battery operated, self-attached sensing devices, with limited power and processor resources. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Event by event analysis and entropy of multiparticle systems

    NASA Astrophysics Data System (ADS)

    Bialas, A.; Czyz, W.

    2000-04-01

    The coincidence method of measuring the entropy of a system, proposed some time ago by Ma, is generalized to include systems out of equilibrium. It is suggested that the method can be adapted to analyze multiparticle states produced in high-energy collisions.

  20. Fine structure of the entanglement entropy in the O(2) model.

    PubMed

    Yang, Li-Ping; Liu, Yuzhi; Zou, Haiyuan; Xie, Z Y; Meurice, Y

    2016-01-01

    We compare two calculations of the particle density in the superfluid phase of the O(2) model with a chemical potential μ in 1+1 dimensions. The first relies on exact blocking formulas from the Tensor Renormalization Group (TRG) formulation of the transfer matrix. The second is a worm algorithm. We show that the particle number distributions obtained with the two methods agree well. We use the TRG method to calculate the thermal entropy and the entanglement entropy. We describe the particle density, the two entropies and the topology of the world lines as we increase μ to go across the superfluid phase between the first two Mott insulating phases. For a sufficiently large temporal size, this process reveals an interesting fine structure: the average particle number and the winding number of most of the world lines in the Euclidean time direction increase by one unit at a time. At each step, the thermal entropy develops a peak and the entanglement entropy increases until we reach half-filling and then decreases in a way that approximately mirrors the ascent. This suggests an approximate fermionic picture.

  1. Probing the extensive nature of entropy

    NASA Astrophysics Data System (ADS)

    Salagaram, T.; Chetty, N.

    2013-08-01

    We have devised a general numerical scheme applied to a system of independent, distinguishable, non-interacting particles, to demonstrate in a direct manner the extensive nature of statistical entropy. Working within the microcanonical ensemble, our methods enable one to directly monitor the approach to the thermodynamic limit (N → ∞) in a manner that has not been known before. We show that (sN - s∞) → N-α where sN is the entropy per particle for N particles and S∞ is the entropy per particle in the thermodynamic limit. We demonstrate universal behaviour by considering a number of different systems each defined by its unique single-particle spectrum. Various thermodynamic quantities as a function of N may be computed using our methods; in this paper, we focus on the entropy, the chemical potential and the temperature. Our results are applicable to systems of finite size, e.g. nano-particle systems. Furthermore, we demonstrate a new phenomenon, referred to as entropic interference, which manifests as a cancellation of terms in the thermodynamic limit and which results in the additive nature of entropy.

  2. Entropy-Based Registration of Point Clouds Using Terrestrial Laser Scanning and Smartphone GPS.

    PubMed

    Chen, Maolin; Wang, Siying; Wang, Mingwei; Wan, Youchuan; He, Peipei

    2017-01-20

    Automatic registration of terrestrial laser scanning point clouds is a crucial but unresolved topic that is of great interest in many domains. This study combines terrestrial laser scanner with a smartphone for the coarse registration of leveled point clouds with small roll and pitch angles and height differences, which is a novel sensor combination mode for terrestrial laser scanning. The approximate distance between two neighboring scan positions is firstly calculated with smartphone GPS coordinates. Then, 2D distribution entropy is used to measure the distribution coherence between the two scans and search for the optimal initial transformation parameters. To this end, we propose a method called Iterative Minimum Entropy (IME) to correct initial transformation parameters based on two criteria: the difference between the average and minimum entropy and the deviation from the minimum entropy to the expected entropy. Finally, the presented method is evaluated using two data sets that contain tens of millions of points from panoramic and non-panoramic, vegetation-dominated and building-dominated cases and can achieve high accuracy and efficiency.

  3. Judging The Effectiveness Of Wool Combing By The Entropy Of The Images Of Wool Slivers

    NASA Astrophysics Data System (ADS)

    Rodrigues, F. Carvalho; Carvalho, Fernando D.; Peixoto, J. Pinto; Silva, M. Santos

    1989-04-01

    In general it can be said that the textile industry endeavours to render a bunch of fibers chaotically distributed in space into an ordered spatial distribution. This fact is independent of the nature the fibers, i.e., the aim of getting into higher order states in the spatial distribution of the fibers dictates different industrial processes depending on whether the fibers are wool, cotton or man made but the all effect is centred on obtaining at every step of any of the processes a more ordered state regarding the spatial distribution of the fibers. Thinking about the textile processes as a method of getting order out of chaos, the concept of entropy appears as the most appropriate judging parameter on the effectiveness of a step in the chain of an industrial process to produce a regular textile. In fact, entropy is the hidden parameter not only for the textile industry but also for the non woven and paper industrial processes. It happens that in these industries the state of order is linked with the spatial distribution of fibers and to obtain an image of a spatial distribution is an easy matter. To compute the image entropy from the grey level distribution requires only the use of the Shannon formula. In this paper to illustrate the usefulness of employing the entropy of an image concept to textiles the evolution of the entropy of wool slivers along the combing process is matched against the state of parallelization of the fibbers along the seven steps as measured by the existing method. The advantages of the entropy method over the previous method based on diffraction is also demonstrated.

  4. Critical evaluation of methods to incorporate entropy loss upon binding in high-throughput docking.

    PubMed

    Salaniwal, Sumeet; Manas, Eric S; Alvarez, Juan C; Unwalla, Rayomand J

    2007-02-01

    Proper accounting of the positional/orientational/conformational entropy loss associated with protein-ligand binding is important to obtain reliable predictions of binding affinity. Herein, we critically examine two simplified statistical mechanics-based approaches, namely a constant penalty per rotor method, and a more rigorous method, referred to here as the partition function-based scoring (PFS) method, to account for such entropy losses in high-throughput docking calculations. Our results on the estrogen receptor beta and dihydrofolate reductase proteins demonstrate that, while the constant penalty method over-penalizes molecules for their conformational flexibility, the PFS method behaves in a more "DeltaG-like" manner by penalizing different rotors differently depending on their residual entropy in the bound state. Furthermore, in contrast to no entropic penalty or the constant penalty approximation, the PFS method does not exhibit any bias towards either rigid or flexible molecules in the hit list. Preliminary enrichment studies using a lead-like random molecular database suggest that an accurate representation of the "true" energy landscape of the protein-ligand complex is critical for reliable predictions of relative binding affinities by the PFS method. Copyright 2006 Wiley-Liss, Inc.

  5. Shannon information entropy in heavy-ion collisions

    NASA Astrophysics Data System (ADS)

    Ma, Chun-Wang; Ma, Yu-Gang

    2018-03-01

    The general idea of information entropy provided by C.E. Shannon "hangs over everything we do" and can be applied to a great variety of problems once the connection between a distribution and the quantities of interest is found. The Shannon information entropy essentially quantify the information of a quantity with its specific distribution, for which the information entropy based methods have been deeply developed in many scientific areas including physics. The dynamical properties of heavy-ion collisions (HICs) process make it difficult and complex to study the nuclear matter and its evolution, for which Shannon information entropy theory can provide new methods and observables to understand the physical phenomena both theoretically and experimentally. To better understand the processes of HICs, the main characteristics of typical models, including the quantum molecular dynamics models, thermodynamics models, and statistical models, etc., are briefly introduced. The typical applications of Shannon information theory in HICs are collected, which cover the chaotic behavior in branching process of hadron collisions, the liquid-gas phase transition in HICs, and the isobaric difference scaling phenomenon for intermediate mass fragments produced in HICs of neutron-rich systems. Even though the present applications in heavy-ion collision physics are still relatively simple, it would shed light on key questions we are seeking for. It is suggested to further develop the information entropy methods in nuclear reactions models, as well as to develop new analysis methods to study the properties of nuclear matters in HICs, especially the evolution of dynamics system.

  6. Entropy Viscosity and L1-based Approximations of PDEs: Exploiting Sparsity

    DTIC Science & Technology

    2015-10-23

    AFRL-AFOSR-VA-TR-2015-0337 Entropy Viscosity and L1-based Approximations of PDEs: Exploiting Sparsity Jean-Luc Guermond TEXAS A & M UNIVERSITY 750...REPORT DATE (DD-MM-YYYY) 09-05-2015 2. REPORT TYPE Final report 3. DATES COVERED (From - To) 01-07-2012 - 30-06-2015 4. TITLE AND SUBTITLE Entropy ...conservation equations can be stabilized by using the so-called entropy viscosity method and we proposed to to investigate this new technique. We

  7. Bayesian framework inspired no-reference region-of-interest quality measure for brain MRI images

    PubMed Central

    Osadebey, Michael; Pedersen, Marius; Arnold, Douglas; Wendel-Mitoraj, Katrina

    2017-01-01

    Abstract. We describe a postacquisition, attribute-based quality assessment method for brain magnetic resonance imaging (MRI) images. It is based on the application of Bayes theory to the relationship between entropy and image quality attributes. The entropy feature image of a slice is segmented into low- and high-entropy regions. For each entropy region, there are three separate observations of contrast, standard deviation, and sharpness quality attributes. A quality index for a quality attribute is the posterior probability of an entropy region given any corresponding region in a feature image where quality attribute is observed. Prior belief in each entropy region is determined from normalized total clique potential (TCP) energy of the slice. For TCP below the predefined threshold, the prior probability for a region is determined by deviation of its percentage composition in the slice from a standard normal distribution built from 250 MRI volume data provided by Alzheimer’s Disease Neuroimaging Initiative. For TCP above the threshold, the prior is computed using a mathematical model that describes the TCP–noise level relationship in brain MRI images. Our proposed method assesses the image quality of each entropy region and the global image. Experimental results demonstrate good correlation with subjective opinions of radiologists for different types and levels of quality distortions. PMID:28630885

  8. The entropy of the life table: A reappraisal.

    PubMed

    Fernandez, Oscar E; Beltrán-Sánchez, Hiram

    2015-09-01

    The life table entropy provides useful information for understanding improvements in mortality and survival in a population. In this paper we take a closer look at the life table entropy and use advanced mathematical methods to provide additional insights for understanding how it relates to changes in mortality and survival. By studying the entropy (H) as a functional, we show that changes in the entropy depend on both the relative change in life expectancy lost due to death (e(†)) and in life expectancy at birth (e0). We also show that changes in the entropy can be further linked to improvements in premature and older deaths. We illustrate our methods with empirical data from Latin American countries, which suggests that at high mortality levels declines in H (which are associated with survival increases) linked with larger improvements in e0, whereas at low mortality levels e(†) made larger contributions to H. We additionally show that among countries with low mortality level, contributions of e(†) to changes in the life table entropy resulted from averting early deaths. These findings indicate that future increases in overall survival in low mortality countries will likely result from improvements in e(†). Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Optimization of a Circular Microchannel With Entropy Generation Minimization Method

    NASA Astrophysics Data System (ADS)

    Jafari, Arash; Ghazali, Normah Mohd

    2010-06-01

    New advances in micro and nano scales are being realized and the contributions of micro and nano heat dissipation devices are of high importance in this novel technology development. Past studies showed that microchannel design depends on its thermal resistance and pressure drop. However, entropy generation minimization (EGM) as a new optimization theory stated that the rate of entropy generation should be also optimized. Application of EGM in microchannel heat sink design is reviewed and discussed in this paper. Latest principles for deriving the entropy generation relations are discussed to present how this approach can be achieved. An optimization procedure using EGM method with the entropy generation rate is derived for a circular microchannel heat sink based upon thermal resistance and pressure drop. The equations are solved using MATLAB and the obtained results are compared to similar past studies. The effects of channel diameter, number of channels, heat flux, and pumping power on the entropy generation rate and Reynolds number are investigated. Analytical correlations are utilized for heat transfer and friction coefficients. A minimum entropy generation has been observed for N = 40 and channel diameter of 90μm. It is concluded that for N = 40 and channel hydraulic diameter of 90μm, the circular microchannel heat sink is on its optimum operating point based on second law of thermodynamics.

  10. An entropy-based statistic for genomewide association studies.

    PubMed

    Zhao, Jinying; Boerwinkle, Eric; Xiong, Momiao

    2005-07-01

    Efficient genotyping methods and the availability of a large collection of single-nucleotide polymorphisms provide valuable tools for genetic studies of human disease. The standard chi2 statistic for case-control studies, which uses a linear function of allele frequencies, has limited power when the number of marker loci is large. We introduce a novel test statistic for genetic association studies that uses Shannon entropy and a nonlinear function of allele frequencies to amplify the differences in allele and haplotype frequencies to maintain statistical power with large numbers of marker loci. We investigate the relationship between the entropy-based test statistic and the standard chi2 statistic and show that, in most cases, the power of the entropy-based statistic is greater than that of the standard chi2 statistic. The distribution of the entropy-based statistic and the type I error rates are validated using simulation studies. Finally, we apply the new entropy-based test statistic to two real data sets, one for the COMT gene and schizophrenia and one for the MMP-2 gene and esophageal carcinoma, to evaluate the performance of the new method for genetic association studies. The results show that the entropy-based statistic obtained smaller P values than did the standard chi2 statistic.

  11. Microscopic insights into the NMR relaxation based protein conformational entropy meter

    PubMed Central

    Kasinath, Vignesh; Sharp, Kim A.; Wand, A. Joshua

    2013-01-01

    Conformational entropy is a potentially important thermodynamic parameter contributing to protein function. Quantitative measures of conformational entropy are necessary for an understanding of its role but have been difficult to obtain. An empirical method that utilizes changes in conformational dynamics as a proxy for changes in conformational entropy has recently been introduced. Here we probe the microscopic origins of the link between conformational dynamics and conformational entropy using molecular dynamics simulations. Simulation of seven pro! teins gave an excellent correlation with measures of side-chain motion derived from NMR relaxation. The simulations show that the motion of methyl-bearing side-chains are sufficiently coupled to that of other side chains to serve as excellent reporters of the overall side-chain conformational entropy. These results tend to validate the use of experimentally accessible measures of methyl motion - the NMR-derived generalized order parameters - as a proxy from which to derive changes in protein conformational entropy. PMID:24007504

  12. Secure self-calibrating quantum random-bit generator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fiorentino, M.; Santori, C.; Spillane, S. M.

    2007-03-15

    Random-bit generators (RBGs) are key components of a variety of information processing applications ranging from simulations to cryptography. In particular, cryptographic systems require 'strong' RBGs that produce high-entropy bit sequences, but traditional software pseudo-RBGs have very low entropy content and therefore are relatively weak for cryptography. Hardware RBGs yield entropy from chaotic or quantum physical systems and therefore are expected to exhibit high entropy, but in current implementations their exact entropy content is unknown. Here we report a quantum random-bit generator (QRBG) that harvests entropy by measuring single-photon and entangled two-photon polarization states. We introduce and implement a quantum tomographicmore » method to measure a lower bound on the 'min-entropy' of the system, and we employ this value to distill a truly random-bit sequence. This approach is secure: even if an attacker takes control of the source of optical states, a secure random sequence can be distilled.« less

  13. Consistent Application of the Boltzmann Distribution to Residual Entropy in Crystals

    ERIC Educational Resources Information Center

    Kozliak, Evguenii I.

    2007-01-01

    Four different approaches to residual entropy (the entropy remaining in crystals comprised of nonsymmetric molecules like CO, N[subscript 2]O, FClO[subscript 3], and H[subscript 2]O as temperatures approach 0 K) are analyzed and a new method of its calculation is developed based on application of the Boltzmann distribution. The inherent connection…

  14. How multiplicity determines entropy and the derivation of the maximum entropy principle for complex systems.

    PubMed

    Hanel, Rudolf; Thurner, Stefan; Gell-Mann, Murray

    2014-05-13

    The maximum entropy principle (MEP) is a method for obtaining the most likely distribution functions of observables from statistical systems by maximizing entropy under constraints. The MEP has found hundreds of applications in ergodic and Markovian systems in statistical mechanics, information theory, and statistics. For several decades there has been an ongoing controversy over whether the notion of the maximum entropy principle can be extended in a meaningful way to nonextensive, nonergodic, and complex statistical systems and processes. In this paper we start by reviewing how Boltzmann-Gibbs-Shannon entropy is related to multiplicities of independent random processes. We then show how the relaxation of independence naturally leads to the most general entropies that are compatible with the first three Shannon-Khinchin axioms, the (c,d)-entropies. We demonstrate that the MEP is a perfectly consistent concept for nonergodic and complex statistical systems if their relative entropy can be factored into a generalized multiplicity and a constraint term. The problem of finding such a factorization reduces to finding an appropriate representation of relative entropy in a linear basis. In a particular example we show that path-dependent random processes with memory naturally require specific generalized entropies. The example is to our knowledge the first exact derivation of a generalized entropy from the microscopic properties of a path-dependent random process.

  15. Modeling Loop Entropy

    PubMed Central

    Chirikjian, Gregory S.

    2011-01-01

    Proteins fold from a highly disordered state into a highly ordered one. Traditionally, the folding problem has been stated as one of predicting ‘the’ tertiary structure from sequential information. However, new evidence suggests that the ensemble of unfolded forms may not be as disordered as once believed, and that the native form of many proteins may not be described by a single conformation, but rather an ensemble of its own. Quantifying the relative disorder in the folded and unfolded ensembles as an entropy difference may therefore shed light on the folding process. One issue that clouds discussions of ‘entropy’ is that many different kinds of entropy can be defined: entropy associated with overall translational and rotational Brownian motion, configurational entropy, vibrational entropy, conformational entropy computed in internal or Cartesian coordinates (which can even be different from each other), conformational entropy computed on a lattice; each of the above with different solvation and solvent models; thermodynamic entropy measured experimentally, etc. The focus of this work is the conformational entropy of coil/loop regions in proteins. New mathematical modeling tools for the approximation of changes in conformational entropy during transition from unfolded to folded ensembles are introduced. In particular, models for computing lower and upper bounds on entropy for polymer models of polypeptide coils both with and without end constraints are presented. The methods reviewed here include kinematics (the mathematics of rigid-body motions), classical statistical mechanics and information theory. PMID:21187223

  16. Measurement of entanglement entropy in the two-dimensional Potts model using wavelet analysis.

    PubMed

    Tomita, Yusuke

    2018-05-01

    A method is introduced to measure the entanglement entropy using a wavelet analysis. Using this method, the two-dimensional Haar wavelet transform of a configuration of Fortuin-Kasteleyn (FK) clusters is performed. The configuration represents a direct snapshot of spin-spin correlations since spin degrees of freedom are traced out in FK representation. A snapshot of FK clusters loses image information at each coarse-graining process by the wavelet transform. It is shown that the loss of image information measures the entanglement entropy in the Potts model.

  17. Nonlinear dynamics applied to the study of cardiovascular effects of stress

    NASA Astrophysics Data System (ADS)

    Anishchenko, T. G.; Igosheva, N. B.

    1998-03-01

    We study cardiovascular responses to emotional stresses in humans and rats using traditional physiological parameters and methods of nonlinear dynamics. We found that emotional stress results in significant changes of chaos degree of ECG and blood pressure signals, estimated using a normalized entropy. We demonstrate that the normalized entropy is a more sensitive indicator of the stress-induced changes in cardiovascular systems compared with traditional physiological parameters Using the normalized entropy we discovered the significant individual differences in cardiovascular stress-reactivity that was impossible to obtain by traditional physiological methods.

  18. Time-series analysis of foreign exchange rates using time-dependent pattern entropy

    NASA Astrophysics Data System (ADS)

    Ishizaki, Ryuji; Inoue, Masayoshi

    2013-08-01

    Time-dependent pattern entropy is a method that reduces variations to binary symbolic dynamics and considers the pattern of symbols in a sliding temporal window. We use this method to analyze the instability of daily variations in foreign exchange rates, in particular, the dollar-yen rate. The time-dependent pattern entropy of the dollar-yen rate was found to be high in the following periods: before and after the turning points of the yen from strong to weak or from weak to strong, and the period after the Lehman shock.

  19. Inverting ion images without Abel inversion: maximum entropy reconstruction of velocity maps.

    PubMed

    Dick, Bernhard

    2014-01-14

    A new method for the reconstruction of velocity maps from ion images is presented, which is based on the maximum entropy concept. In contrast to other methods used for Abel inversion the new method never applies an inversion or smoothing to the data. Instead, it iteratively finds the map which is the most likely cause for the observed data, using the correct likelihood criterion for data sampled from a Poissonian distribution. The entropy criterion minimizes the information content in this map, which hence contains no information for which there is no evidence in the data. Two implementations are proposed, and their performance is demonstrated with simulated and experimental data: Maximum Entropy Velocity Image Reconstruction (MEVIR) obtains a two-dimensional slice through the velocity distribution and can be compared directly to Abel inversion. Maximum Entropy Velocity Legendre Reconstruction (MEVELER) finds one-dimensional distribution functions Q(l)(v) in an expansion of the velocity distribution in Legendre polynomials P((cos θ) for the angular dependence. Both MEVIR and MEVELER can be used for the analysis of ion images with intensities as low as 0.01 counts per pixel, with MEVELER performing significantly better than MEVIR for images with low intensity. Both methods perform better than pBASEX, in particular for images with less than one average count per pixel.

  20. Measuring Complexity and Predictability of Time Series with Flexible Multiscale Entropy for Sensor Networks

    PubMed Central

    Zhou, Renjie; Yang, Chen; Wan, Jian; Zhang, Wei; Guan, Bo; Xiong, Naixue

    2017-01-01

    Measurement of time series complexity and predictability is sometimes the cornerstone for proposing solutions to topology and congestion control problems in sensor networks. As a method of measuring time series complexity and predictability, multiscale entropy (MSE) has been widely applied in many fields. However, sample entropy, which is the fundamental component of MSE, measures the similarity of two subsequences of a time series with either zero or one, but without in-between values, which causes sudden changes of entropy values even if the time series embraces small changes. This problem becomes especially severe when the length of time series is getting short. For solving such the problem, we propose flexible multiscale entropy (FMSE), which introduces a novel similarity function measuring the similarity of two subsequences with full-range values from zero to one, and thus increases the reliability and stability of measuring time series complexity. The proposed method is evaluated on both synthetic and real time series, including white noise, 1/f noise and real vibration signals. The evaluation results demonstrate that FMSE has a significant improvement in reliability and stability of measuring complexity of time series, especially when the length of time series is short, compared to MSE and composite multiscale entropy (CMSE). The proposed method FMSE is capable of improving the performance of time series analysis based topology and traffic congestion control techniques. PMID:28383496

  1. Measuring Complexity and Predictability of Time Series with Flexible Multiscale Entropy for Sensor Networks.

    PubMed

    Zhou, Renjie; Yang, Chen; Wan, Jian; Zhang, Wei; Guan, Bo; Xiong, Naixue

    2017-04-06

    Measurement of time series complexity and predictability is sometimes the cornerstone for proposing solutions to topology and congestion control problems in sensor networks. As a method of measuring time series complexity and predictability, multiscale entropy (MSE) has been widely applied in many fields. However, sample entropy, which is the fundamental component of MSE, measures the similarity of two subsequences of a time series with either zero or one, but without in-between values, which causes sudden changes of entropy values even if the time series embraces small changes. This problem becomes especially severe when the length of time series is getting short. For solving such the problem, we propose flexible multiscale entropy (FMSE), which introduces a novel similarity function measuring the similarity of two subsequences with full-range values from zero to one, and thus increases the reliability and stability of measuring time series complexity. The proposed method is evaluated on both synthetic and real time series, including white noise, 1/f noise and real vibration signals. The evaluation results demonstrate that FMSE has a significant improvement in reliability and stability of measuring complexity of time series, especially when the length of time series is short, compared to MSE and composite multiscale entropy (CMSE). The proposed method FMSE is capable of improving the performance of time series analysis based topology and traffic congestion control techniques.

  2. Radiative entropy generation in a gray absorbing, emitting, and scattering planar medium at radiative equilibrium

    NASA Astrophysics Data System (ADS)

    Sadeghi, Pegah; Safavinejad, Ali

    2017-11-01

    Radiative entropy generation through a gray absorbing, emitting, and scattering planar medium at radiative equilibrium with diffuse-gray walls is investigated. The radiative transfer equation and radiative entropy generation equations are solved using discrete ordinates method. Components of the radiative entropy generation are considered for two different boundary conditions: two walls are at a prescribed temperature and mixed boundary conditions, which one wall is at a prescribed temperature and the other is at a prescribed heat flux. The effect of wall emissivities, optical thickness, single scattering albedo, and anisotropic-scattering factor on the entropy generation is attentively investigated. The results reveal that entropy generation in the system mainly arises from irreversible radiative transfer at wall with lower temperature. Total entropy generation rate for the system with prescribed temperature at walls remarkably increases as wall emissivity increases; conversely, for system with mixed boundary conditions, total entropy generation rate slightly decreases. Furthermore, as the optical thickness increases, total entropy generation rate remarkably decreases for the system with prescribed temperature at walls; nevertheless, for the system with mixed boundary conditions, total entropy generation rate increases. The variation of single scattering albedo does not considerably affect total entropy generation rate. This parametric analysis demonstrates that the optical thickness and wall emissivities have a significant effect on the entropy generation in the system at radiative equilibrium. Considering the parameters affecting radiative entropy generation significantly, provides an opportunity to optimally design or increase overall performance and efficiency by applying entropy minimization techniques for the systems at radiative equilibrium.

  3. Simultaneous Multi-Scale Diffusion Estimation and Tractography Guided by Entropy Spectrum Pathways

    PubMed Central

    Galinsky, Vitaly L.; Frank, Lawrence R.

    2015-01-01

    We have developed a method for the simultaneous estimation of local diffusion and the global fiber tracts based upon the information entropy flow that computes the maximum entropy trajectories between locations and depends upon the global structure of the multi-dimensional and multi-modal diffusion field. Computation of the entropy spectrum pathways requires only solving a simple eigenvector problem for the probability distribution for which efficient numerical routines exist, and a straight forward integration of the probability conservation through ray tracing of the convective modes guided by a global structure of the entropy spectrum coupled with a small scale local diffusion. The intervoxel diffusion is sampled by multi b-shell multi q-angle DWI data expanded in spherical waves. This novel approach to fiber tracking incorporates global information about multiple fiber crossings in every individual voxel and ranks it in the most scientifically rigorous way. This method has potential significance for a wide range of applications, including studies of brain connectivity. PMID:25532167

  4. Computing the Entropy of Kerr-Newman Black Hole Without Brick Walls Method

    NASA Astrophysics Data System (ADS)

    Zhang, Li-Chun; Wu, Yue-Qin; Li, Huai-Fan; Ren, Zhao

    By using the entanglement entropy method, the statistical entropy of the Bose and Fermi fields in a thin film is calculated and the Bekenstein-Hawking entropy of Kerr-Newman black hole is obtained. Here, the Bose and Fermi fields are entangled with the quantum states in Kerr-Newman black hole and are outside of the horizon. The divergence of brick-wall model is avoided without any cutoff by the new equation of state density obtained with the generalized uncertainty principle. The calculation implies that the high density quantum states near the event horizon are strongly correlated with the quantum states in black hole. The black hole entropy is a quantum effect. It is an intrinsic characteristic of space-time. The ultraviolet cutoff in the brick-wall model is unreasonable. The generalized uncertainty principle should be considered in the high energy quantum field near the event horizon. From the calculation, the constant λ introduced in the generalized uncertainty principle is related to polar angle θ in an axisymmetric space-time.

  5. Entropy and convexity for nonlinear partial differential equations

    PubMed Central

    Ball, John M.; Chen, Gui-Qiang G.

    2013-01-01

    Partial differential equations are ubiquitous in almost all applications of mathematics, where they provide a natural mathematical description of many phenomena involving change in physical, chemical, biological and social processes. The concept of entropy originated in thermodynamics and statistical physics during the nineteenth century to describe the heat exchanges that occur in the thermal processes in a thermodynamic system, while the original notion of convexity is for sets and functions in mathematics. Since then, entropy and convexity have become two of the most important concepts in mathematics. In particular, nonlinear methods via entropy and convexity have been playing an increasingly important role in the analysis of nonlinear partial differential equations in recent decades. This opening article of the Theme Issue is intended to provide an introduction to entropy, convexity and related nonlinear methods for the analysis of nonlinear partial differential equations. We also provide a brief discussion about the content and contributions of the papers that make up this Theme Issue. PMID:24249768

  6. A modified belief entropy in Dempster-Shafer framework.

    PubMed

    Zhou, Deyun; Tang, Yongchuan; Jiang, Wen

    2017-01-01

    How to quantify the uncertain information in the framework of Dempster-Shafer evidence theory is still an open issue. Quite a few uncertainty measures have been proposed in Dempster-Shafer framework, however, the existing studies mainly focus on the mass function itself, the available information represented by the scale of the frame of discernment (FOD) in the body of evidence is ignored. Without taking full advantage of the information in the body of evidence, the existing methods are somehow not that efficient. In this paper, a modified belief entropy is proposed by considering the scale of FOD and the relative scale of a focal element with respect to FOD. Inspired by Deng entropy, the new belief entropy is consistent with Shannon entropy in the sense of probability consistency. What's more, with less information loss, the new measure can overcome the shortage of some other uncertainty measures. A few numerical examples and a case study are presented to show the efficiency and superiority of the proposed method.

  7. A modified belief entropy in Dempster-Shafer framework

    PubMed Central

    Zhou, Deyun; Jiang, Wen

    2017-01-01

    How to quantify the uncertain information in the framework of Dempster-Shafer evidence theory is still an open issue. Quite a few uncertainty measures have been proposed in Dempster-Shafer framework, however, the existing studies mainly focus on the mass function itself, the available information represented by the scale of the frame of discernment (FOD) in the body of evidence is ignored. Without taking full advantage of the information in the body of evidence, the existing methods are somehow not that efficient. In this paper, a modified belief entropy is proposed by considering the scale of FOD and the relative scale of a focal element with respect to FOD. Inspired by Deng entropy, the new belief entropy is consistent with Shannon entropy in the sense of probability consistency. What’s more, with less information loss, the new measure can overcome the shortage of some other uncertainty measures. A few numerical examples and a case study are presented to show the efficiency and superiority of the proposed method. PMID:28481914

  8. Monitoring of Time-Dependent System Profiles by Multiplex Gas Chromatography with Maximum Entropy Demodulation

    NASA Technical Reports Server (NTRS)

    Becker, Joseph F.; Valentin, Jose

    1996-01-01

    The maximum entropy technique was successfully applied to the deconvolution of overlapped chromatographic peaks. An algorithm was written in which the chromatogram was represented as a vector of sample concentrations multiplied by a peak shape matrix. Simulation results demonstrated that there is a trade off between the detector noise and peak resolution in the sense that an increase of the noise level reduced the peak separation that could be recovered by the maximum entropy method. Real data originated from a sample storage column was also deconvoluted using maximum entropy. Deconvolution is useful in this type of system because the conservation of time dependent profiles depends on the band spreading processes in the chromatographic column, which might smooth out the finer details in the concentration profile. The method was also applied to the deconvolution of previously interpretted Pioneer Venus chromatograms. It was found in this case that the correct choice of peak shape function was critical to the sensitivity of maximum entropy in the reconstruction of these chromatograms.

  9. A Discrete Constraint for Entropy Conservation and Sound Waves in Cloud-Resolving Modeling

    NASA Technical Reports Server (NTRS)

    Zeng, Xi-Ping; Tao, Wei-Kuo; Simpson, Joanne

    2003-01-01

    Ideal cloud-resolving models contain little-accumulative errors. When their domain is so large that synoptic large-scale circulations are accommodated, they can be used for the simulation of the interaction between convective clouds and the large-scale circulations. This paper sets up a framework for the models, using moist entropy as a prognostic variable and employing conservative numerical schemes. The models possess no accumulative errors of thermodynamic variables when they comply with a discrete constraint on entropy conservation and sound waves. Alternatively speaking, the discrete constraint is related to the correct representation of the large-scale convergence and advection of moist entropy. Since air density is involved in entropy conservation and sound waves, the challenge is how to compute sound waves efficiently under the constraint. To address the challenge, a compensation method is introduced on the basis of a reference isothermal atmosphere whose governing equations are solved analytically. Stability analysis and numerical experiments show that the method allows the models to integrate efficiently with a large time step.

  10. Logarithmic entropy of Kehagias-Sfetsos black hole with self-gravitation in asymptotically flat IR modified Hořava gravity

    NASA Astrophysics Data System (ADS)

    Liu, Molin; Lu, Junwang

    2011-05-01

    Motivated by recent logarithmic entropy of Hořava-Lifshitz gravity, we investigate Hawking radiation for Kehagias-Sfetsos black hole from tunneling perspective. After considering the effect of self-gravitation, we calculate the emission rate and entropy of quantum tunneling by using Kraus-Parikh-Wilczek method. Meanwhile, both massless and massive particles are considered in this Letter. Interestingly, two types tunneling particles have the same emission rate Γ and entropy Sb whose analytical formulae are Γ=exp[π(rin2-rout2)/2+π/αln rin/rout] and Sb=A/4+π/αln(A/4), respectively. Here, α is the Hořava-Lifshitz field parameter. The results show that the logarithmic entropy of Hořava-Lifshitz gravity could be explained well by the self-gravitation, which is totally different from other methods. The study of this semiclassical tunneling process may shed light on understanding the Hořava-Lifshitz gravity.

  11. Entropy and convexity for nonlinear partial differential equations.

    PubMed

    Ball, John M; Chen, Gui-Qiang G

    2013-12-28

    Partial differential equations are ubiquitous in almost all applications of mathematics, where they provide a natural mathematical description of many phenomena involving change in physical, chemical, biological and social processes. The concept of entropy originated in thermodynamics and statistical physics during the nineteenth century to describe the heat exchanges that occur in the thermal processes in a thermodynamic system, while the original notion of convexity is for sets and functions in mathematics. Since then, entropy and convexity have become two of the most important concepts in mathematics. In particular, nonlinear methods via entropy and convexity have been playing an increasingly important role in the analysis of nonlinear partial differential equations in recent decades. This opening article of the Theme Issue is intended to provide an introduction to entropy, convexity and related nonlinear methods for the analysis of nonlinear partial differential equations. We also provide a brief discussion about the content and contributions of the papers that make up this Theme Issue.

  12. Viscous regularization of the full set of nonequilibrium-diffusion Grey Radiation-Hydrodynamic equations

    DOE PAGES

    Delchini, Marc O.; Ragusa, Jean C.; Ferguson, Jim

    2017-02-17

    A viscous regularization technique, based on the local entropy residual, was proposed by Delchini et al. (2015) to stabilize the nonequilibrium-diffusion Grey Radiation-Hydrodynamic equations using an artificial viscosity technique. This viscous regularization is modulated by the local entropy production and is consistent with the entropy minimum principle. However, Delchini et al. (2015) only based their work on the hyperbolic parts of the Grey Radiation-Hydrodynamic equations and thus omitted the relaxation and diffusion terms present in the material energy and radiation energy equations. Here in this paper, we extend the theoretical grounds for the method and derive an entropy minimum principlemore » for the full set of nonequilibrium-diffusion Grey Radiation-Hydrodynamic equations. This further strengthens the applicability of the entropy viscosity method as a stabilization technique for radiation-hydrodynamic shock simulations. Radiative shock calculations using constant and temperature-dependent opacities are compared against semi-analytical reference solutions, and we present a procedure to perform spatial convergence studies of such simulations.« less

  13. Teaching Entropy Analysis in the First-Year High School Course and Beyond

    ERIC Educational Resources Information Center

    Bindel, Thomas H.

    2004-01-01

    A new method is presented, which educates and empowers the teachers and assists them in incorporating entropy analysis in their curricula and also provides an entropy-analysis unit that can be used in classrooms. The topics that the teachers can cover depending on the ability of the students and the comfort level of the teacher are included.

  14. Automatic event detection in low SNR microseismic signals based on multi-scale permutation entropy and a support vector machine

    NASA Astrophysics Data System (ADS)

    Jia, Rui-Sheng; Sun, Hong-Mei; Peng, Yan-Jun; Liang, Yong-Quan; Lu, Xin-Ming

    2017-07-01

    Microseismic monitoring is an effective means for providing early warning of rock or coal dynamical disasters, and its first step is microseismic event detection, although low SNR microseismic signals often cannot effectively be detected by routine methods. To solve this problem, this paper presents permutation entropy and a support vector machine to detect low SNR microseismic events. First, an extraction method of signal features based on multi-scale permutation entropy is proposed by studying the influence of the scale factor on the signal permutation entropy. Second, the detection model of low SNR microseismic events based on the least squares support vector machine is built by performing a multi-scale permutation entropy calculation for the collected vibration signals, constructing a feature vector set of signals. Finally, a comparative analysis of the microseismic events and noise signals in the experiment proves that the different characteristics of the two can be fully expressed by using multi-scale permutation entropy. The detection model of microseismic events combined with the support vector machine, which has the features of high classification accuracy and fast real-time algorithms, can meet the requirements of online, real-time extractions of microseismic events.

  15. EEG artifacts reduction by multivariate empirical mode decomposition and multiscale entropy for monitoring depth of anaesthesia during surgery.

    PubMed

    Liu, Quan; Chen, Yi-Feng; Fan, Shou-Zen; Abbod, Maysam F; Shieh, Jiann-Shing

    2017-08-01

    Electroencephalography (EEG) has been widely utilized to measure the depth of anaesthesia (DOA) during operation. However, the EEG signals are usually contaminated by artifacts which have a consequence on the measured DOA accuracy. In this study, an effective and useful filtering algorithm based on multivariate empirical mode decomposition and multiscale entropy (MSE) is proposed to measure DOA. Mean entropy of MSE is used as an index to find artifacts-free intrinsic mode functions. The effect of different levels of artifacts on the performances of the proposed filtering is analysed using simulated data. Furthermore, 21 patients' EEG signals are collected and analysed using sample entropy to calculate the complexity for monitoring DOA. The correlation coefficients of entropy and bispectral index (BIS) results show 0.14 ± 0.30 and 0.63 ± 0.09 before and after filtering, respectively. Artificial neural network (ANN) model is used for range mapping in order to correlate the measurements with BIS. The ANN method results show strong correlation coefficient (0.75 ± 0.08). The results in this paper verify that entropy values and BIS have a strong correlation for the purpose of DOA monitoring and the proposed filtering method can effectively filter artifacts from EEG signals. The proposed method performs better than the commonly used wavelet denoising method. This study provides a fully adaptive and automated filter for EEG to measure DOA more accuracy and thus reduce risk related to maintenance of anaesthetic agents.

  16. Foreign exchange rate entropy evolution during financial crises

    NASA Astrophysics Data System (ADS)

    Stosic, Darko; Stosic, Dusan; Ludermir, Teresa; de Oliveira, Wilson; Stosic, Tatijana

    2016-05-01

    This paper examines the effects of financial crises on foreign exchange (FX) markets, where entropy evolution is measured for different exchange rates, using the time-dependent block entropy method. Empirical results suggest that financial crises are associated with significant increase of exchange rate entropy, reflecting instability in FX market dynamics. In accordance with phenomenological expectations, it is found that FX markets with large liquidity and large trading volume are more inert - they recover quicker from a crisis than markets with small liquidity and small trading volume. Moreover, our numerical analysis shows that periods of economic uncertainty are preceded by periods of low entropy values, which may serve as a tool for anticipating the onset of financial crises.

  17. Entanglement entropy and mutual information production rates in acoustic black holes.

    PubMed

    Giovanazzi, Stefano

    2011-01-07

    A method to investigate acoustic Hawking radiation is proposed, where entanglement entropy and mutual information are measured from the fluctuations of the number of particles. The rate of entropy radiated per one-dimensional (1D) channel is given by S=κ/12, where κ is the sound acceleration on the sonic horizon. This entropy production is accompanied by a corresponding formation of mutual information to ensure the overall conservation of information. The predictions are confirmed using an ab initio analytical approach in transonic flows of 1D degenerate ideal Fermi fluids.

  18. Calculation of Five Thermodynamic Molecular Descriptors by Means of a General Computer Algorithm Based on the Group-Additivity Method: Standard Enthalpies of Vaporization, Sublimation and Solvation, and Entropy of Fusion of Ordinary Organic Molecules and Total Phase-Change Entropy of Liquid Crystals.

    PubMed

    Naef, Rudolf; Acree, William E

    2017-06-25

    The calculation of the standard enthalpies of vaporization, sublimation and solvation of organic molecules is presented using a common computer algorithm on the basis of a group-additivity method. The same algorithm is also shown to enable the calculation of their entropy of fusion as well as the total phase-change entropy of liquid crystals. The present method is based on the complete breakdown of the molecules into their constituting atoms and their immediate neighbourhood; the respective calculations of the contribution of the atomic groups by means of the Gauss-Seidel fitting method is based on experimental data collected from literature. The feasibility of the calculations for each of the mentioned descriptors was verified by means of a 10-fold cross-validation procedure proving the good to high quality of the predicted values for the three mentioned enthalpies and for the entropy of fusion, whereas the predictive quality for the total phase-change entropy of liquid crystals was poor. The goodness of fit ( Q ²) and the standard deviation (σ) of the cross-validation calculations for the five descriptors was as follows: 0.9641 and 4.56 kJ/mol ( N = 3386 test molecules) for the enthalpy of vaporization, 0.8657 and 11.39 kJ/mol ( N = 1791) for the enthalpy of sublimation, 0.9546 and 4.34 kJ/mol ( N = 373) for the enthalpy of solvation, 0.8727 and 17.93 J/mol/K ( N = 2637) for the entropy of fusion and 0.5804 and 32.79 J/mol/K ( N = 2643) for the total phase-change entropy of liquid crystals. The large discrepancy between the results of the two closely related entropies is discussed in detail. Molecules for which both the standard enthalpies of vaporization and sublimation were calculable, enabled the estimation of their standard enthalpy of fusion by simple subtraction of the former from the latter enthalpy. For 990 of them the experimental enthalpy-of-fusion values are also known, allowing their comparison with predictions, yielding a correlation coefficient R ² of 0.6066.

  19. Germinal center texture entropy as possible indicator of humoral immune response: immunophysiology viewpoint.

    PubMed

    Pantic, Igor; Pantic, Senka

    2012-10-01

    In this article, we present the results indicating that spleen germinal center (GC) texture entropy determined by gray-level co-occurrence matrix (GLCM) method is related to humoral immune response. Spleen tissue was obtained from eight outbred male short-haired guinea pigs previously immunized by sheep red blood cells (SRBC). A total of 312 images from 39 germinal centers (156 GC light zone images and 156 GC dark zone images) were acquired and analyzed by GLCM method. Angular second moment, contrast, correlation, entropy, and inverse difference moment were calculated for each image. Humoral immune response to SRBC was measured using T cell-dependent antibody response (TDAR) assay. Statistically highly significant negative correlation was detected between light zone entropy and the number of TDAR plaque-forming cells (r (s) = -0.86, p < 0.01). The entropy decreased as the plaque-forming cells increased and vice versa. A statistically significant negative correlation was also detected between dark zone entropy values and the number of plaque-forming cells (r (s) = -0.69, p < 0.05). Germinal center texture entropy may be a powerful indicator of humoral immune response. This study is one of the first to point out the potential scientific value of GLCM image texture analysis in lymphoid tissue cytoarchitecture evaluation. Lymphoid tissue texture analysis could become an important and affordable addition to the conventional immunophysiology techniques.

  20. Classic maximum entropy recovery of the average joint distribution of apparent FRET efficiency and fluorescence photons for single-molecule burst measurements.

    PubMed

    DeVore, Matthew S; Gull, Stephen F; Johnson, Carey K

    2012-04-05

    We describe a method for analysis of single-molecule Förster resonance energy transfer (FRET) burst measurements using classic maximum entropy. Classic maximum entropy determines the Bayesian inference for the joint probability describing the total fluorescence photons and the apparent FRET efficiency. The method was tested with simulated data and then with DNA labeled with fluorescent dyes. The most probable joint distribution can be marginalized to obtain both the overall distribution of fluorescence photons and the apparent FRET efficiency distribution. This method proves to be ideal for determining the distance distribution of FRET-labeled biomolecules, and it successfully predicts the shape of the recovered distributions.

  1. Research on Sustainable Development Level Evaluation of Resource-based Cities Based on Shapely Entropy and Chouqet Integral

    NASA Astrophysics Data System (ADS)

    Zhao, Hui; Qu, Weilu; Qiu, Weiting

    2018-03-01

    In order to evaluate sustainable development level of resource-based cities, an evaluation method with Shapely entropy and Choquet integral is proposed. First of all, a systematic index system is constructed, the importance of each attribute is calculated based on the maximum Shapely entropy principle, and then the Choquet integral is introduced to calculate the comprehensive evaluation value of each city from the bottom up, finally apply this method to 10 typical resource-based cities in China. The empirical results show that the evaluation method is scientific and reasonable, which provides theoretical support for the sustainable development path and reform direction of resource-based cities.

  2. Large Eddy Simulation of Entropy Generation in a Turbulent Mixing Layer

    NASA Astrophysics Data System (ADS)

    Sheikhi, Reza H.; Safari, Mehdi; Hadi, Fatemeh

    2013-11-01

    Entropy transport equation is considered in large eddy simulation (LES) of turbulent flows. The irreversible entropy generation in this equation provides a more general description of subgrid scale (SGS) dissipation due to heat conduction, mass diffusion and viscosity effects. A new methodology is developed, termed the entropy filtered density function (En-FDF), to account for all individual entropy generation effects in turbulent flows. The En-FDF represents the joint probability density function of entropy, frequency, velocity and scalar fields within the SGS. An exact transport equation is developed for the En-FDF, which is modeled by a system of stochastic differential equations, incorporating the second law of thermodynamics. The modeled En-FDF transport equation is solved by a Lagrangian Monte Carlo method. The methodology is employed to simulate a turbulent mixing layer involving transport of passive scalars and entropy. Various modes of entropy generation are obtained from the En-FDF and analyzed. Predictions are assessed against data generated by direct numerical simulation (DNS). The En-FDF predictions are in good agreements with the DNS data.

  3. Respiration-Averaged CT for Attenuation Correction of PET Images – Impact on PET Texture Features in Non-Small Cell Lung Cancer Patients

    PubMed Central

    Cheng, Nai-Ming; Fang, Yu-Hua Dean; Tsan, Din-Li

    2016-01-01

    Purpose We compared attenuation correction of PET images with helical CT (PET/HCT) and respiration-averaged CT (PET/ACT) in patients with non-small-cell lung cancer (NSCLC) with the goal of investigating the impact of respiration-averaged CT on 18F FDG PET texture parameters. Materials and Methods A total of 56 patients were enrolled. Tumors were segmented on pretreatment PET images using the adaptive threshold. Twelve different texture parameters were computed: standard uptake value (SUV) entropy, uniformity, entropy, dissimilarity, homogeneity, coarseness, busyness, contrast, complexity, grey-level nonuniformity, zone-size nonuniformity, and high grey-level large zone emphasis. Comparisons of PET/HCT and PET/ACT were performed using Wilcoxon signed-rank tests, intraclass correlation coefficients, and Bland-Altman analysis. Receiver operating characteristic (ROC) curves as well as univariate and multivariate Cox regression analyses were used to identify the parameters significantly associated with disease-specific survival (DSS). A fixed threshold at 45% of the maximum SUV (T45) was used for validation. Results SUV maximum and total lesion glycolysis (TLG) were significantly higher in PET/ACT. However, texture parameters obtained with PET/ACT and PET/HCT showed a high degree of agreement. The lowest levels of variation between the two modalities were observed for SUV entropy (9.7%) and entropy (9.8%). SUV entropy, entropy, and coarseness from both PET/ACT and PET/HCT were significantly associated with DSS. Validation analyses using T45 confirmed the usefulness of SUV entropy and entropy in both PET/HCT and PET/ACT for the prediction of DSS, but only coarseness from PET/ACT achieved the statistical significance threshold. Conclusions Our results indicate that 1) texture parameters from PET/ACT are clinically useful in the prediction of survival in NSCLC patients and 2) SUV entropy and entropy are robust to attenuation correction methods. PMID:26930211

  4. Perceptual suppression revealed by adaptive multi-scale entropy analysis of local field potential in monkey visual cortex.

    PubMed

    Hu, Meng; Liang, Hualou

    2013-04-01

    Generalized flash suppression (GFS), in which a salient visual stimulus can be rendered invisible despite continuous retinal input, provides a rare opportunity to directly study the neural mechanism of visual perception. Previous work based on linear methods, such as spectral analysis, on local field potential (LFP) during GFS has shown that the LFP power at distinctive frequency bands are differentially modulated by perceptual suppression. Yet, the linear method alone may be insufficient for the full assessment of neural dynamic due to the fundamentally nonlinear nature of neural signals. In this study, we set forth to analyze the LFP data collected from multiple visual areas in V1, V2 and V4 of macaque monkeys while performing the GFS task using a nonlinear method - adaptive multi-scale entropy (AME) - to reveal the neural dynamic of perceptual suppression. In addition, we propose a new cross-entropy measure at multiple scales, namely adaptive multi-scale cross-entropy (AMCE), to assess the nonlinear functional connectivity between two cortical areas. We show that: (1) multi-scale entropy exhibits percept-related changes in all three areas, with higher entropy observed during perceptual suppression; (2) the magnitude of the perception-related entropy changes increases systematically over successive hierarchical stages (i.e. from lower areas V1 to V2, up to higher area V4); and (3) cross-entropy between any two cortical areas reveals higher degree of asynchrony or dissimilarity during perceptual suppression, indicating a decreased functional connectivity between cortical areas. These results, taken together, suggest that perceptual suppression is related to a reduced functional connectivity and increased uncertainty of neural responses, and the modulation of perceptual suppression is more effective at higher visual cortical areas. AME is demonstrated to be a useful technique in revealing the underlying dynamic of nonlinear/nonstationary neural signal.

  5. An Information Transmission Measure for the Analysis of Effective Connectivity among Cortical Neurons

    PubMed Central

    Law, Andrew J.; Sharma, Gaurav; Schieber, Marc H.

    2014-01-01

    We present a methodology for detecting effective connections between simultaneously recorded neurons using an information transmission measure to identify the presence and direction of information flow from one neuron to another. Using simulated and experimentally-measured data, we evaluate the performance of our proposed method and compare it to the traditional transfer entropy approach. In simulations, our measure of information transmission outperforms transfer entropy in identifying the effective connectivity structure of a neuron ensemble. For experimentally recorded data, where ground truth is unavailable, the proposed method also yields a more plausible connectivity structure than transfer entropy. PMID:21096617

  6. Minimum entropy density method for the time series analysis

    NASA Astrophysics Data System (ADS)

    Lee, Jeong Won; Park, Joongwoo Brian; Jo, Hang-Hyun; Yang, Jae-Suk; Moon, Hie-Tae

    2009-01-01

    The entropy density is an intuitive and powerful concept to study the complicated nonlinear processes derived from physical systems. We develop the minimum entropy density method (MEDM) to detect the structure scale of a given time series, which is defined as the scale in which the uncertainty is minimized, hence the pattern is revealed most. The MEDM is applied to the financial time series of Standard and Poor’s 500 index from February 1983 to April 2006. Then the temporal behavior of structure scale is obtained and analyzed in relation to the information delivery time and efficient market hypothesis.

  7. Random versus maximum entropy models of neural population activity

    NASA Astrophysics Data System (ADS)

    Ferrari, Ulisse; Obuchi, Tomoyuki; Mora, Thierry

    2017-04-01

    The principle of maximum entropy provides a useful method for inferring statistical mechanics models from observations in correlated systems, and is widely used in a variety of fields where accurate data are available. While the assumptions underlying maximum entropy are intuitive and appealing, its adequacy for describing complex empirical data has been little studied in comparison to alternative approaches. Here, data from the collective spiking activity of retinal neurons is reanalyzed. The accuracy of the maximum entropy distribution constrained by mean firing rates and pairwise correlations is compared to a random ensemble of distributions constrained by the same observables. For most of the tested networks, maximum entropy approximates the true distribution better than the typical or mean distribution from that ensemble. This advantage improves with population size, with groups as small as eight being almost always better described by maximum entropy. Failure of maximum entropy to outperform random models is found to be associated with strong correlations in the population.

  8. Estimating Temporal Causal Interaction between Spike Trains with Permutation and Transfer Entropy

    PubMed Central

    Li, Zhaohui; Li, Xiaoli

    2013-01-01

    Estimating the causal interaction between neurons is very important for better understanding the functional connectivity in neuronal networks. We propose a method called normalized permutation transfer entropy (NPTE) to evaluate the temporal causal interaction between spike trains, which quantifies the fraction of ordinal information in a neuron that has presented in another one. The performance of this method is evaluated with the spike trains generated by an Izhikevich’s neuronal model. Results show that the NPTE method can effectively estimate the causal interaction between two neurons without influence of data length. Considering both the precision of time delay estimated and the robustness of information flow estimated against neuronal firing rate, the NPTE method is superior to other information theoretic method including normalized transfer entropy, symbolic transfer entropy and permutation conditional mutual information. To test the performance of NPTE on analyzing simulated biophysically realistic synapses, an Izhikevich’s cortical network that based on the neuronal model is employed. It is found that the NPTE method is able to characterize mutual interactions and identify spurious causality in a network of three neurons exactly. We conclude that the proposed method can obtain more reliable comparison of interactions between different pairs of neurons and is a promising tool to uncover more details on the neural coding. PMID:23940662

  9. Ladar imaging detection of salient map based on PWVD and Rényi entropy

    NASA Astrophysics Data System (ADS)

    Xu, Yuannan; Zhao, Yuan; Deng, Rong; Dong, Yanbing

    2013-10-01

    Spatial-frequency information of a given image can be extracted by associating the grey-level spatial data with one of the well-known spatial/spatial-frequency distributions. The Wigner-Ville distribution (WVD) has a good characteristic that the images can be represented in spatial/spatial-frequency domains. For intensity and range images of ladar, through the pseudo Wigner-Ville distribution (PWVD) using one or two dimension window, the statistical property of Rényi entropy is studied. We also analyzed the change of Rényi entropy's statistical property in the ladar intensity and range images when the man-made objects appear. From this foundation, a novel method for generating saliency map based on PWVD and Rényi entropy is proposed. After that, target detection is completed when the saliency map is segmented using a simple and convenient threshold method. For the ladar intensity and range images, experimental results show the proposed method can effectively detect the military vehicles from complex earth background with low false alarm.

  10. Discrimination of isotrigon textures using the Rényi entropy of Allan variances.

    PubMed

    Gabarda, Salvador; Cristóbal, Gabriel

    2008-09-01

    We present a computational algorithm for isotrigon texture discrimination. The aim of this method consists in discriminating isotrigon textures against a binary random background. The extension of the method to the problem of multitexture discrimination is considered as well. The method relies on the fact that the information content of time or space-frequency representations of signals, including images, can be readily analyzed by means of generalized entropy measures. In such a scenario, the Rényi entropy appears as an effective tool, given that Rényi measures can be used to provide information about a local neighborhood within an image. Localization is essential for comparing images on a pixel-by-pixel basis. Discrimination is performed through a local Rényi entropy measurement applied on a spatially oriented 1-D pseudo-Wigner distribution (PWD) of the test image. The PWD is normalized so that it may be interpreted as a probability distribution. Prior to the calculation of the texture's PWD, a preprocessing filtering step replaces the original texture with its localized spatially oriented Allan variances. The anisotropic structure of the textures, as revealed by the Allan variances, turns out to be crucial later to attain a high discrimination by the extraction of Rényi entropy measures. The method has been empirically evaluated with a family of isotrigon textures embedded in a binary random background. The extension to the case of multiple isotrigon mosaics has also been considered. Discrimination results are compared with other existing methods.

  11. Music viewed by its entropy content: A novel window for comparative analysis

    PubMed Central

    Febres, Gerardo; Jaffe, Klaus

    2017-01-01

    Polyphonic music files were analyzed using the set of symbols that produced the Minimal Entropy Description, which we call the Fundamental Scale. This allowed us to create a novel space to represent music pieces by developing: (a) a method to adjust a textual description from its original scale of observation to an arbitrarily selected scale, (b) a method to model the structure of any textual description based on the shape of the symbol frequency profiles, and (c) the concept of higher order entropy as the entropy associated with the deviations of a frequency-ranked symbol profile from a perfect Zipfian profile. We call this diversity index the ‘2nd Order Entropy’. Applying these methods to a variety of musical pieces showed how the space of ‘symbolic specific diversity-entropy’ and that of ‘2nd order entropy’ captures characteristics that are unique to each music type, style, composer and genre. Some clustering of these properties around each musical category is shown. These methods allow us to visualize a historic trajectory of academic music across this space, from medieval to contemporary academic music. We show that the description of musical structures using entropy, symbol frequency profiles and specific symbolic diversity allows us to characterize traditional and popular expressions of music. These classification techniques promise to be useful in other disciplines for pattern recognition and machine learning. PMID:29040288

  12. Optimized Kernel Entropy Components.

    PubMed

    Izquierdo-Verdiguier, Emma; Laparra, Valero; Jenssen, Robert; Gomez-Chova, Luis; Camps-Valls, Gustau

    2017-06-01

    This brief addresses two main issues of the standard kernel entropy component analysis (KECA) algorithm: the optimization of the kernel decomposition and the optimization of the Gaussian kernel parameter. KECA roughly reduces to a sorting of the importance of kernel eigenvectors by entropy instead of variance, as in the kernel principal components analysis. In this brief, we propose an extension of the KECA method, named optimized KECA (OKECA), that directly extracts the optimal features retaining most of the data entropy by means of compacting the information in very few features (often in just one or two). The proposed method produces features which have higher expressive power. In particular, it is based on the independent component analysis framework, and introduces an extra rotation to the eigen decomposition, which is optimized via gradient-ascent search. This maximum entropy preservation suggests that OKECA features are more efficient than KECA features for density estimation. In addition, a critical issue in both the methods is the selection of the kernel parameter, since it critically affects the resulting performance. Here, we analyze the most common kernel length-scale selection criteria. The results of both the methods are illustrated in different synthetic and real problems. Results show that OKECA returns projections with more expressive power than KECA, the most successful rule for estimating the kernel parameter is based on maximum likelihood, and OKECA is more robust to the selection of the length-scale parameter in kernel density estimation.

  13. Partial knowledge, entropy, and estimation

    PubMed Central

    MacQueen, James; Marschak, Jacob

    1975-01-01

    In a growing body of literature, available partial knowledge is used to estimate the prior probability distribution p≡(p1,...,pn) by maximizing entropy H(p)≡-Σpi log pi, subject to constraints on p which express that partial knowledge. The method has been applied to distributions of income, of traffic, of stock-price changes, and of types of brand-article purchases. We shall respond to two justifications given for the method: (α) It is “conservative,” and therefore good, to maximize “uncertainty,” as (uniquely) represented by the entropy parameter. (β) One should apply the mathematics of statistical thermodynamics, which implies that the most probable distribution has highest entropy. Reason (α) is rejected. Reason (β) is valid when “complete ignorance” is defined in a particular way and both the constraint and the estimator's loss function are of certain kinds. PMID:16578733

  14. Entropic criterion for model selection

    NASA Astrophysics Data System (ADS)

    Tseng, Chih-Yuan

    2006-10-01

    Model or variable selection is usually achieved through ranking models according to the increasing order of preference. One of methods is applying Kullback-Leibler distance or relative entropy as a selection criterion. Yet that will raise two questions, why use this criterion and are there any other criteria. Besides, conventional approaches require a reference prior, which is usually difficult to get. Following the logic of inductive inference proposed by Caticha [Relative entropy and inductive inference, in: G. Erickson, Y. Zhai (Eds.), Bayesian Inference and Maximum Entropy Methods in Science and Engineering, AIP Conference Proceedings, vol. 707, 2004 (available from arXiv.org/abs/physics/0311093)], we show relative entropy to be a unique criterion, which requires no prior information and can be applied to different fields. We examine this criterion by considering a physical problem, simple fluids, and results are promising.

  15. Entropy of black holes with multiple horizons

    NASA Astrophysics Data System (ADS)

    He, Yun; Ma, Meng-Sen; Zhao, Ren

    2018-05-01

    We examine the entropy of black holes in de Sitter space and black holes surrounded by quintessence. These black holes have multiple horizons, including at least the black hole event horizon and a horizon outside it (cosmological horizon for de Sitter black holes and "quintessence horizon" for the black holes surrounded by quintessence). Based on the consideration that the two horizons are not independent each other, we conjecture that the total entropy of these black holes should not be simply the sum of entropies of the two horizons, but should have an extra term coming from the correlations between the two horizons. Different from our previous works, in this paper we consider the cosmological constant as the variable and employ an effective method to derive the explicit form of the entropy. We also try to discuss the thermodynamic stabilities of these black holes according to the entropy and the effective temperature.

  16. Studies on entanglement entropy for Hubbard model with hole-doping and external magnetic field [rapid communication

    NASA Astrophysics Data System (ADS)

    Yao, K. L.; Li, Y. C.; Sun, X. Z.; Liu, Q. M.; Qin, Y.; Fu, H. H.; Gao, G. Y.

    2005-10-01

    By using the density matrix renormalization group (DMRG) method for the one-dimensional (1D) Hubbard model, we have studied the von Neumann entropy of a quantum system, which describes the entanglement of the system block and the rest of the chain. It is found that there is a close relation between the entanglement entropy and properties of the system. The hole-doping can alter the charge charge and spin spin interactions, resulting in charge polarization along the chain. By comparing the results before and after the doping, we find that doping favors increase of the von Neumann entropy and thus also favors the exchange of information along the chain. Furthermore, we calculated the spin and entropy distribution in external magnetic filed. It is confirmed that both the charge charge and the spin spin interactions affect the exchange of information along the chain, making the entanglement entropy redistribute.

  17. Entropy of finite random binary sequences with weak long-range correlations.

    PubMed

    Melnik, S S; Usatenko, O V

    2014-11-01

    We study the N-step binary stationary ergodic Markov chain and analyze its differential entropy. Supposing that the correlations are weak we express the conditional probability function of the chain through the pair correlation function and represent the entropy as a functional of the pair correlator. Since the model uses the two-point correlators instead of the block probability, it makes it possible to calculate the entropy of strings at much longer distances than using standard methods. A fluctuation contribution to the entropy due to finiteness of random chains is examined. This contribution can be of the same order as its regular part even at the relatively short lengths of subsequences. A self-similar structure of entropy with respect to the decimation transformations is revealed for some specific forms of the pair correlation function. Application of the theory to the DNA sequence of the R3 chromosome of Drosophila melanogaster is presented.

  18. Entropy of finite random binary sequences with weak long-range correlations

    NASA Astrophysics Data System (ADS)

    Melnik, S. S.; Usatenko, O. V.

    2014-11-01

    We study the N -step binary stationary ergodic Markov chain and analyze its differential entropy. Supposing that the correlations are weak we express the conditional probability function of the chain through the pair correlation function and represent the entropy as a functional of the pair correlator. Since the model uses the two-point correlators instead of the block probability, it makes it possible to calculate the entropy of strings at much longer distances than using standard methods. A fluctuation contribution to the entropy due to finiteness of random chains is examined. This contribution can be of the same order as its regular part even at the relatively short lengths of subsequences. A self-similar structure of entropy with respect to the decimation transformations is revealed for some specific forms of the pair correlation function. Application of the theory to the DNA sequence of the R3 chromosome of Drosophila melanogaster is presented.

  19. Separability of a family of one-parameter W and Greenberger-Horne-Zeilinger multiqubit states using the Abe-Rajagopal q-conditional-entropy approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prabhu, R.; Usha Devi, A. R.; Inspire Institute Inc., McLean, Virginia 22101

    2007-10-15

    We employ conditional Tsallis q entropies to study the separability of symmetric one parameter W and GHZ multiqubit mixed states. The strongest limitation on separability is realized in the limit q{yields}{infinity}, and is found to be much superior to the condition obtained using the von Neumann conditional entropy (q=1 case). Except for the example of two qubit and three qubit symmetric states of GHZ family, the q-conditional entropy method leads to sufficient--but not necessary--conditions on separability.

  20. Discontinuous Galerkin finite element method for the nonlinear hyperbolic problems with entropy-based artificial viscosity stabilization

    NASA Astrophysics Data System (ADS)

    Zingan, Valentin Nikolaevich

    This work develops a discontinuous Galerkin finite element discretization of non- linear hyperbolic conservation equations with efficient and robust high order stabilization built on an entropy-based artificial viscosity approximation. The solutions of equations are represented by elementwise polynomials of an arbitrary degree p > 0 which are continuous within each element but discontinuous on the boundaries. The discretization of equations in time is done by means of high order explicit Runge-Kutta methods identified with respective Butcher tableaux. To stabilize a numerical solution in the vicinity of shock waves and simultaneously preserve the smooth parts from smearing, we add some reasonable amount of artificial viscosity in accordance with the physical principle of entropy production in the interior of shock waves. The viscosity coefficient is proportional to the local size of the residual of an entropy equation and is bounded from above by the first-order artificial viscosity defined by a local wave speed. Since the residual of an entropy equation is supposed to be vanishingly small in smooth regions (of the order of the Local Truncation Error) and arbitrarily large in shocks, the entropy viscosity is almost zero everywhere except the shocks, where it reaches the first-order upper bound. One- and two-dimensional benchmark test cases are presented for nonlinear hyperbolic scalar conservation laws and the system of compressible Euler equations. These tests demonstrate the satisfactory stability properties of the method and optimal convergence rates as well. All numerical solutions to the test problems agree well with the reference solutions found in the literature. We conclude that the new method developed in the present work is a valuable alternative to currently existing techniques of viscous stabilization.

  1. Multidimensional scaling analysis of financial time series based on modified cross-sample entropy methods

    NASA Astrophysics Data System (ADS)

    He, Jiayi; Shang, Pengjian; Xiong, Hui

    2018-06-01

    Stocks, as the concrete manifestation of financial time series with plenty of potential information, are often used in the study of financial time series. In this paper, we utilize the stock data to recognize their patterns through out the dissimilarity matrix based on modified cross-sample entropy, then three-dimensional perceptual maps of the results are provided through multidimensional scaling method. Two modified multidimensional scaling methods are proposed in this paper, that is, multidimensional scaling based on Kronecker-delta cross-sample entropy (MDS-KCSE) and multidimensional scaling based on permutation cross-sample entropy (MDS-PCSE). These two methods use Kronecker-delta based cross-sample entropy and permutation based cross-sample entropy to replace the distance or dissimilarity measurement in classical multidimensional scaling (MDS). Multidimensional scaling based on Chebyshev distance (MDSC) is employed to provide a reference for comparisons. Our analysis reveals a clear clustering both in synthetic data and 18 indices from diverse stock markets. It implies that time series generated by the same model are easier to have similar irregularity than others, and the difference in the stock index, which is caused by the country or region and the different financial policies, can reflect the irregularity in the data. In the synthetic data experiments, not only the time series generated by different models can be distinguished, the one generated under different parameters of the same model can also be detected. In the financial data experiment, the stock indices are clearly divided into five groups. Through analysis, we find that they correspond to five regions, respectively, that is, Europe, North America, South America, Asian-Pacific (with the exception of mainland China), mainland China and Russia. The results also demonstrate that MDS-KCSE and MDS-PCSE provide more effective divisions in experiments than MDSC.

  2. An adaptable binary entropy coder

    NASA Technical Reports Server (NTRS)

    Kiely, A.; Klimesh, M.

    2001-01-01

    We present a novel entropy coding technique which is based on recursive interleaving of variable-to-variable length binary source codes. We discuss code design and performance estimation methods, as well as practical encoding and decoding algorithms.

  3. Image Analysis Using Quantum Entropy Scale Space and Diffusion Concepts

    DTIC Science & Technology

    2009-11-01

    images using a combination of analytic methods and prototype Matlab and Mathematica programs. We investigated concepts of generalized entropy and...Schmidt strength from quantum logic gate decomposition. This form of entropy gives a measure of the nonlocal content of an entangling logic gate...11 We recall that the Schmidt number is an indicator of entanglement , but not a measure of entanglement . For instance, let us compare

  4. Classic Maximum Entropy Recovery of the Average Joint Distribution of Apparent FRET Efficiency and Fluorescence Photons for Single-molecule Burst Measurements

    PubMed Central

    DeVore, Matthew S.; Gull, Stephen F.; Johnson, Carey K.

    2012-01-01

    We describe a method for analysis of single-molecule Förster resonance energy transfer (FRET) burst measurements using classic maximum entropy. Classic maximum entropy determines the Bayesian inference for the joint probability describing the total fluorescence photons and the apparent FRET efficiency. The method was tested with simulated data and then with DNA labeled with fluorescent dyes. The most probable joint distribution can be marginalized to obtain both the overall distribution of fluorescence photons and the apparent FRET efficiency distribution. This method proves to be ideal for determining the distance distribution of FRET-labeled biomolecules, and it successfully predicts the shape of the recovered distributions. PMID:22338694

  5. Out-of-equilibrium protocol for Rényi entropies via the Jarzynski equality.

    PubMed

    Alba, Vincenzo

    2017-06-01

    In recent years entanglement measures, such as the von Neumann and the Rényi entropies, provided a unique opportunity to access elusive features of quantum many-body systems. However, extracting entanglement properties analytically, experimentally, or in numerical simulations can be a formidable task. Here, by combining the replica trick and the Jarzynski equality we devise an alternative effective out-of-equilibrium protocol for measuring the equilibrium Rényi entropies. The key idea is to perform a quench in the geometry of the replicas. The Rényi entropies are obtained as the exponential average of the work performed during the quench. We illustrate an application of the method in classical Monte Carlo simulations, although it could be useful in different contexts, such as in quantum Monte Carlo, or experimentally in cold-atom systems. The method is most effective in the quasistatic regime, i.e., for a slow quench. As a benchmark, we compute the Rényi entropies in the Ising universality class in 1+1 dimensions. We find perfect agreement with the well-known conformal field theory predictions.

  6. Identification of breathing cracks in a beam structure with entropy

    NASA Astrophysics Data System (ADS)

    Wimarshana, Buddhi; Wu, Nan; Wu, Christine

    2016-04-01

    A cantilever beam with a breathing crack is studied to detect and evaluate the crack using entropy measures. Closed cracks in engineering structures lead to proportional complexities to their vibration responses due to weak bi-linearity imposed by the crack breathing phenomenon. Entropy is a measure of system complexity and has the potential in quantifying the complexity. The weak bi-linearity in vibration signals can be amplified using wavelet transformation to increase the sensitivity of the measurements. A mathematical model of harmonically excited unit length steel cantilever beam with a breathing crack located near the fixed end is established, and an iterative numerical method is applied to generate accurate time domain dynamic responses. The bi-linearity in time domain signals due to the crack breathing are amplified by wavelet transformation first, and then the complexities due to bi-linearity is quantified using sample entropy to detect the possible crack and estimate the crack depth. It is observed that the method is capable of identifying crack depths even at very early stages of 3% with the increase in the entropy values more than 10% compared with the healthy beam. The current study extends the entropy based damage detection of rotary machines to structural analysis and takes a step further in high-sensitivity structural health monitoring by combining wavelet transformation with entropy calculations. The proposed technique can also be applied to other types of structures, such as plates and shells.

  7. Rényi entropy of the totally asymmetric exclusion process

    NASA Astrophysics Data System (ADS)

    Wood, Anthony J.; Blythe, Richard A.; Evans, Martin R.

    2017-11-01

    The Rényi entropy is a generalisation of the Shannon entropy that is sensitive to the fine details of a probability distribution. We present results for the Rényi entropy of the totally asymmetric exclusion process (TASEP). We calculate explicitly an entropy whereby the squares of configuration probabilities are summed, using the matrix product formalism to map the problem to one involving a six direction lattice walk in the upper quarter plane. We derive the generating function across the whole phase diagram, using an obstinate kernel method. This gives the leading behaviour of the Rényi entropy and corrections in all phases of the TASEP. The leading behaviour is given by the result for a Bernoulli measure and we conjecture that this holds for all Rényi entropies. Within the maximal current phase the correction to the leading behaviour is logarithmic in the system size. Finally, we remark upon a special property of equilibrium systems whereby discontinuities in the Rényi entropy arise away from phase transitions, which we refer to as secondary transitions. We find no such secondary transition for this nonequilibrium system, supporting the notion that these are specific to equilibrium cases.

  8. Entropic Imaging of Cataract Lens: An In Vitro Study

    PubMed Central

    Shung, K. Kirk; Tsui, Po-Hsiang; Fang, Jui; Ma, Hsiang-Yang; Wu, Shuicai; Lin, Chung-Chih

    2014-01-01

    Phacoemulsification is a common surgical method for treating advanced cataracts. Determining the optimal phacoemulsification energy depends on the hardness of the lens involved. Previous studies have shown that it is possible to evaluate lens hardness via ultrasound parametric imaging based on statistical models that require data to follow a specific distribution. To make the method more system-adaptive, nonmodel-based imaging approach may be necessary in the visualization of lens hardness. This study investigated the feasibility of applying an information theory derived parameter – Shannon entropy from ultrasound backscatter to quantify lens hardness. To determine the physical significance of entropy, we performed computer simulations to investigate the relationship between the signal-to-noise ratio (SNR) based on the Rayleigh distribution and Shannon entropy. Young's modulus was measured in porcine lenses, in which cataracts had been artificially induced by the immersion in formalin solution in vitro. A 35-MHz ultrasound transducer was used to scan the cataract lenses for entropy imaging. The results showed that the entropy is 4.8 when the backscatter data form a Rayleigh distribution corresponding to an SNR of 1.91. The Young's modulus of the lens increased from approximately 8 to 100 kPa when we increased the immersion time from 40 to 160 min (correlation coefficient r = 0.99). Furthermore, the results indicated that entropy imaging seemed to facilitate visualizing different degrees of lens hardening. The mean entropy value increased from 2.7 to 4.0 as the Young's modulus increased from 8 to 100 kPa (r = 0.85), suggesting that entropy imaging may have greater potential than that of conventional statistical parametric imaging in determining the optimal energy to apply during phacoemulsification. PMID:24760103

  9. Using constrained information entropy to detect rare adverse drug reactions from medical forums.

    PubMed

    Yi Zheng; Chaowang Lan; Hui Peng; Jinyan Li

    2016-08-01

    Adverse drug reactions (ADRs) detection is critical to avoid malpractices yet challenging due to its uncertainty in pre-marketing review and the underreporting in post-marketing surveillance. To conquer this predicament, social media based ADRs detection methods have been proposed recently. However, existing researches are mostly co-occurrence based methods and face several issues, in particularly, leaving out the rare ADRs and unable to distinguish irrelevant ADRs. In this work, we introduce a constrained information entropy (CIE) method to solve these problems. CIE first recognizes the drug-related adverse reactions using a predefined keyword dictionary and then captures high- and low-frequency (rare) ADRs by information entropy. Extensive experiments on medical forums dataset demonstrate that CIE outperforms the state-of-the-art co-occurrence based methods, especially in rare ADRs detection.

  10. Spatial-dependence recurrence sample entropy

    NASA Astrophysics Data System (ADS)

    Pham, Tuan D.; Yan, Hong

    2018-03-01

    Measuring complexity in terms of the predictability of time series is a major area of research in science and engineering, and its applications are spreading throughout many scientific disciplines, where the analysis of physiological signals is perhaps the most widely reported in literature. Sample entropy is a popular measure for quantifying signal irregularity. However, the sample entropy does not take sequential information, which is inherently useful, into its calculation of sample similarity. Here, we develop a method that is based on the mathematical principle of the sample entropy and enables the capture of sequential information of a time series in the context of spatial dependence provided by the binary-level co-occurrence matrix of a recurrence plot. Experimental results on time-series data of the Lorenz system, physiological signals of gait maturation in healthy children, and gait dynamics in Huntington's disease show the potential of the proposed method.

  11. Entropy production of doubly stochastic quantum channels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Müller-Hermes, Alexander, E-mail: muellerh@posteo.net; Department of Mathematical Sciences, University of Copenhagen, 2100 Copenhagen; Stilck França, Daniel, E-mail: dsfranca@mytum.de

    2016-02-15

    We study the entropy increase of quantum systems evolving under primitive, doubly stochastic Markovian noise and thus converging to the maximally mixed state. This entropy increase can be quantified by a logarithmic-Sobolev constant of the Liouvillian generating the noise. We prove a universal lower bound on this constant that stays invariant under taking tensor-powers. Our methods involve a new comparison method to relate logarithmic-Sobolev constants of different Liouvillians and a technique to compute logarithmic-Sobolev inequalities of Liouvillians with eigenvectors forming a projective representation of a finite abelian group. Our bounds improve upon similar results established before and as an applicationmore » we prove an upper bound on continuous-time quantum capacities. In the last part of this work we study entropy production estimates of discrete-time doubly stochastic quantum channels by extending the framework of discrete-time logarithmic-Sobolev inequalities to the quantum case.« less

  12. Text mining by Tsallis entropy

    NASA Astrophysics Data System (ADS)

    Jamaati, Maryam; Mehri, Ali

    2018-01-01

    Long-range correlations between the elements of natural languages enable them to convey very complex information. Complex structure of human language, as a manifestation of natural languages, motivates us to apply nonextensive statistical mechanics in text mining. Tsallis entropy appropriately ranks the terms' relevance to document subject, taking advantage of their spatial correlation length. We apply this statistical concept as a new powerful word ranking metric in order to extract keywords of a single document. We carry out an experimental evaluation, which shows capability of the presented method in keyword extraction. We find that, Tsallis entropy has reliable word ranking performance, at the same level of the best previous ranking methods.

  13. A Multi-level Fuzzy Evaluation Method for Smart Distribution Network Based on Entropy Weight

    NASA Astrophysics Data System (ADS)

    Li, Jianfang; Song, Xiaohui; Gao, Fei; Zhang, Yu

    2017-05-01

    Smart distribution network is considered as the future trend of distribution network. In order to comprehensive evaluate smart distribution construction level and give guidance to the practice of smart distribution construction, a multi-level fuzzy evaluation method based on entropy weight is proposed. Firstly, focus on both the conventional characteristics of distribution network and new characteristics of smart distribution network such as self-healing and interaction, a multi-level evaluation index system which contains power supply capability, power quality, economy, reliability and interaction is established. Then, a combination weighting method based on Delphi method and entropy weight method is put forward, which take into account not only the importance of the evaluation index in the experts’ subjective view, but also the objective and different information from the index values. Thirdly, a multi-level evaluation method based on fuzzy theory is put forward. Lastly, an example is conducted based on the statistical data of some cites’ distribution network and the evaluation method is proved effective and rational.

  14. Measuring Ambiguity in HLA Typing Methods

    PubMed Central

    Madbouly, Abeer; Freeman, John; Maiers, Martin

    2012-01-01

    In hematopoietic stem cell transplantation, donor selection is based primarily on matching donor and patient HLA genes. These genes are highly polymorphic and their typing can result in exact allele assignment at each gene (the resolution at which patients and donors are matched), but it can also result in a set of ambiguous assignments, depending on the typing methodology used. To facilitate rapid identification of matched donors, registries employ statistical algorithms to infer HLA alleles from ambiguous genotypes. Linkage disequilibrium information encapsulated in haplotype frequencies is used to facilitate prediction of the most likely haplotype assignment. An HLA typing with less ambiguity produces fewer high-probability haplotypes and a more reliable prediction. We estimated ambiguity for several HLA typing methods across four continental populations using an information theory-based measure, Shannon's entropy. We used allele and haplotype frequencies to calculate entropy for different sets of 1,000 subjects with simulated HLA typing. Using allele frequencies we calculated an average entropy in Caucasians of 1.65 for serology, 1.06 for allele family level, 0.49 for a 2002-era SSO kit, and 0.076 for single-pass SBT. When using haplotype frequencies in entropy calculations, we found average entropies of 0.72 for serology, 0.73 for allele family level, 0.05 for SSO, and 0.002 for single-pass SBT. Application of haplotype frequencies further reduces HLA typing ambiguity. We also estimated expected confirmatory typing mismatch rates for simulated subjects. In a hypothetical registry with all donors typed using the same method, the entropy values based on haplotype frequencies correspond to confirmatory typing mismatch rates of 1.31% for SSO versus only 0.08% for SBT. Intermediate-resolution single-pass SBT contains the least ambiguity of the methods we evaluated and therefore the most certainty in allele prediction. The presented measure objectively evaluates HLA typing methods and can help define acceptable HLA typing for donor recruitment. PMID:22952712

  15. The maximum entropy method of moments and Bayesian probability theory

    NASA Astrophysics Data System (ADS)

    Bretthorst, G. Larry

    2013-08-01

    The problem of density estimation occurs in many disciplines. For example, in MRI it is often necessary to classify the types of tissues in an image. To perform this classification one must first identify the characteristics of the tissues to be classified. These characteristics might be the intensity of a T1 weighted image and in MRI many other types of characteristic weightings (classifiers) may be generated. In a given tissue type there is no single intensity that characterizes the tissue, rather there is a distribution of intensities. Often this distributions can be characterized by a Gaussian, but just as often it is much more complicated. Either way, estimating the distribution of intensities is an inference problem. In the case of a Gaussian distribution, one must estimate the mean and standard deviation. However, in the Non-Gaussian case the shape of the density function itself must be inferred. Three common techniques for estimating density functions are binned histograms [1, 2], kernel density estimation [3, 4], and the maximum entropy method of moments [5, 6]. In the introduction, the maximum entropy method of moments will be reviewed. Some of its problems and conditions under which it fails will be discussed. Then in later sections, the functional form of the maximum entropy method of moments probability distribution will be incorporated into Bayesian probability theory. It will be shown that Bayesian probability theory solves all of the problems with the maximum entropy method of moments. One gets posterior probabilities for the Lagrange multipliers, and, finally, one can put error bars on the resulting estimated density function.

  16. Entanglement entropy in critical phenomena and analog models of quantum gravity

    NASA Astrophysics Data System (ADS)

    Fursaev, Dmitri V.

    2006-06-01

    A general geometrical structure of the entanglement entropy for spatial partition of a relativistic QFT system is established by using methods of the effective gravity action and the spectral geometry. A special attention is payed to the subleading terms in the entropy in different dimensions and to behavior in different states. It is conjectured, on the base of relation between the entropy and the action, that in a fundamental theory the ground state entanglement entropy per unit area equals 1/(4GN), where GN is the Newton constant in the low-energy gravity sector of the theory. The conjecture opens a new avenue in analogue gravity models. For instance, in higher-dimensional condensed matter systems, which near a critical point are described by relativistic QFT’s, the entanglement entropy density defines an effective gravitational coupling. By studying the properties of this constant one can get new insights in quantum gravity phenomena, such as the universality of the low-energy physics, the renormalization group behavior of GN, the statistical meaning of the Bekenstein-Hawking entropy.

  17. Entropy stable high order discontinuous Galerkin methods for ideal compressible MHD on structured meshes

    NASA Astrophysics Data System (ADS)

    Liu, Yong; Shu, Chi-Wang; Zhang, Mengping

    2018-02-01

    We present a discontinuous Galerkin (DG) scheme with suitable quadrature rules [15] for ideal compressible magnetohydrodynamic (MHD) equations on structural meshes. The semi-discrete scheme is analyzed to be entropy stable by using the symmetrizable version of the equations as introduced by Godunov [32], the entropy stable DG framework with suitable quadrature rules [15], the entropy conservative flux in [14] inside each cell and the entropy dissipative approximate Godunov type numerical flux at cell interfaces to make the scheme entropy stable. The main difficulty in the generalization of the results in [15] is the appearance of the non-conservative "source terms" added in the modified MHD model introduced by Godunov [32], which do not exist in the general hyperbolic system studied in [15]. Special care must be taken to discretize these "source terms" adequately so that the resulting DG scheme satisfies entropy stability. Total variation diminishing / bounded (TVD/TVB) limiters and bound-preserving limiters are applied to control spurious oscillations. We demonstrate the accuracy and robustness of this new scheme on standard MHD examples.

  18. Entropy stable discontinuous interfaces coupling for the three-dimensional compressible Navier-Stokes equations

    NASA Astrophysics Data System (ADS)

    Parsani, Matteo; Carpenter, Mark H.; Nielsen, Eric J.

    2015-06-01

    Non-linear entropy stability and a summation-by-parts (SBP) framework are used to derive entropy stable interior interface coupling for the semi-discretized three-dimensional (3D) compressible Navier-Stokes equations. A complete semi-discrete entropy estimate for the interior domain is achieved combining a discontinuous entropy conservative operator of any order [1,2] with an entropy stable coupling condition for the inviscid terms, and a local discontinuous Galerkin (LDG) approach with an interior penalty (IP) procedure for the viscous terms. The viscous penalty contributions scale with the inverse of the Reynolds number (Re) so that for Re → ∞ their contributions vanish and only the entropy stable inviscid interface penalty term is recovered. This paper extends the interface couplings presented [1,2] and provides a simple and automatic way to compute the magnitude of the viscous IP term. The approach presented herein is compatible with any diagonal norm summation-by-parts (SBP) spatial operator, including finite element, finite volume, finite difference schemes and the class of high-order accurate methods which include the large family of discontinuous Galerkin discretizations and flux reconstruction schemes.

  19. Distribution entropy analysis of epileptic EEG signals.

    PubMed

    Li, Peng; Yan, Chang; Karmakar, Chandan; Liu, Changchun

    2015-01-01

    It is an open-ended challenge to accurately detect the epileptic seizures through electroencephalogram (EEG) signals. Recently published studies have made elaborate attempts to distinguish between the normal and epileptic EEG signals by advanced nonlinear entropy methods, such as the approximate entropy, sample entropy, fuzzy entropy, and permutation entropy, etc. Most recently, a novel distribution entropy (DistEn) has been reported to have superior performance compared with the conventional entropy methods for especially short length data. We thus aimed, in the present study, to show the potential of DistEn in the analysis of epileptic EEG signals. The publicly-accessible Bonn database which consisted of normal, interictal, and ictal EEG signals was used in this study. Three different measurement protocols were set for better understanding the performance of DistEn, which are: i) calculate the DistEn of a specific EEG signal using the full recording; ii) calculate the DistEn by averaging the results for all its possible non-overlapped 5 second segments; and iii) calculate it by averaging the DistEn values for all the possible non-overlapped segments of 1 second length, respectively. Results for all three protocols indicated a statistically significantly increased DistEn for the ictal class compared with both the normal and interictal classes. Besides, the results obtained under the third protocol, which only used very short segments (1 s) of EEG recordings showed a significantly (p <; 0.05) increased DistEn for the interictal class in compassion with the normal class, whereas both analyses using relatively long EEG signals failed in tracking this difference between them, which may be due to a nonstationarity effect on entropy algorithm. The capability of discriminating between the normal and interictal EEG signals is of great clinical relevance since it may provide helpful tools for the detection of a seizure onset. Therefore, our study suggests that the DistEn analysis of EEG signals is very promising for clinical and even portable EEG monitoring.

  20. An explorative investigation of functional differences in plantar center of pressure of four foot types using sample entropy method.

    PubMed

    Mei, Zhanyong; Ivanov, Kamen; Zhao, Guoru; Li, Huihui; Wang, Lei

    2017-04-01

    In the study of biomechanics of different foot types, temporal or spatial parameters derived from plantar pressure are often used. However, there is no comparative study of complexity and regularity of the center of pressure (CoP) during the stance phase among pes valgus, pes cavus, hallux valgus and normal foot. We aim to analyze whether CoP sample entropy characteristics differ among these four foot types. In our experiment participated 40 subjects with normal feet, 40 with pes cavus, 19 with pes valgus and 36 with hallux valgus. A Footscan ® system was used to collect CoP data. We used sample entropy to quantify several parameters of the investigated four foot types. These are the displacement in medial-lateral (M/L) and anterior-posterior (A/P) directions, as well as the vertical ground reaction force of CoP during the stance phase. To fully examine the potential of the sample entropy method for quantification of CoP components, we provide results for two cases: calculating the sample entropy of normalized CoP components, as well as calculating it using the raw data of CoP components. We also explored what are the optimal values of parameters m (the matching length) and r (the tolerance range) when calculating the sample entropy of CoP data obtained during the stance phases. According to statistical results, some factors significantly influenced the sample entropy of CoP components. The sample entropies of non-normalized A/P values for the left foot, as well as for the right foot, were different between the normal foot and pes valgus, and between the normal foot and hallux valgus. The sample entropy of normalized M/L displacement of the right foot was different between the normal foot and pes cavus. The measured variable for A/P and M/L displacements could serve for the study of foot function.

  1. Two-phase thermodynamic model for efficient and accurate absolute entropy of water from molecular dynamics simulations.

    PubMed

    Lin, Shiang-Tai; Maiti, Prabal K; Goddard, William A

    2010-06-24

    Presented here is the two-phase thermodynamic (2PT) model for the calculation of energy and entropy of molecular fluids from the trajectory of molecular dynamics (MD) simulations. In this method, the density of state (DoS) functions (including the normal modes of translation, rotation, and intramolecular vibration motions) are determined from the Fourier transform of the corresponding velocity autocorrelation functions. A fluidicity parameter (f), extracted from the thermodynamic state of the system derived from the same MD, is used to partition the translation and rotation modes into a diffusive, gas-like component (with 3Nf degrees of freedom) and a nondiffusive, solid-like component. The thermodynamic properties, including the absolute value of entropy, are then obtained by applying quantum statistics to the solid component and applying hard sphere/rigid rotor thermodynamics to the gas component. The 2PT method produces exact thermodynamic properties of the system in two limiting states: the nondiffusive solid state (where the fluidicity is zero) and the ideal gas state (where the fluidicity becomes unity). We examine the 2PT entropy for various water models (F3C, SPC, SPC/E, TIP3P, and TIP4P-Ew) at ambient conditions and find good agreement with literature results obtained based on other simulation techniques. We also validate the entropy of water in the liquid and vapor phases along the vapor-liquid equilibrium curve from the triple point to the critical point. We show that this method produces converged liquid phase entropy in tens of picoseconds, making it an efficient means for extracting thermodynamic properties from MD simulations.

  2. Entropic benefit of a cross-link in protein association.

    PubMed

    Zaman, Muhammad H; Berry, R Stephen; Sosnick, Tobin R

    2002-08-01

    We introduce a method to estimate the loss of configurational entropy upon insertion of a cross-link to a dimeric system. First, a clear distinction is established between the loss of entropy upon tethering and binding, two quantities that are often considered to be equivalent. By comparing the probability distribution of the center-to-center distances for untethered and cross-linked versions, we are able to calculate the loss of translational entropy upon cross-linking. The distribution function for the untethered helices is calculated from the probability that a given helix is closer to its partner than to all other helices, the "Nearest Neighbor" method. This method requires no assumptions about the nature of the solvent, and hence resolves difficulties normally associated with calculations for systems in liquids. Analysis of the restriction of angular freedom upon tethering indicates that the loss of rotational entropy is negligible. The method is applied in the context of the folding of a ten turn helical coiled coil with the tether modeled as a Gaussian chain or a flexible amino acid chain. After correcting for loop closure entropy in the docked state, we estimate the introduction of a six-residue tether in the coiled coil results in an effective concentration of the chain to be about 4 or 100 mM, depending upon whether the helices are denatured or pre-folded prior to their association. Thus, tethering results in significant stabilization for systems with millimolar or stronger dissociation constants. Copyright 2002 Wiley-Liss, Inc.

  3. Estimation of absolute solvent and solvation shell entropies via permutation reduction

    NASA Astrophysics Data System (ADS)

    Reinhard, Friedemann; Grubmüller, Helmut

    2007-01-01

    Despite its prominent contribution to the free energy of solvated macromolecules such as proteins or DNA, and although principally contained within molecular dynamics simulations, the entropy of the solvation shell is inaccessible to straightforward application of established entropy estimation methods. The complication is twofold. First, the configurational space density of such systems is too complex for a sufficiently accurate fit. Second, and in contrast to the internal macromolecular dynamics, the configurational space volume explored by the diffusive motion of the solvent molecules is too large to be exhaustively sampled by current simulation techniques. Here, we develop a method to overcome the second problem and to significantly alleviate the first one. We propose to exploit the permutation symmetry of the solvent by transforming the trajectory in a way that renders established estimation methods applicable, such as the quasiharmonic approximation or principal component analysis. Our permutation-reduced approach involves a combinatorial problem, which is solved through its equivalence with the linear assignment problem, for which O(N3) methods exist. From test simulations of dense Lennard-Jones gases, enhanced convergence and improved entropy estimates are obtained. Moreover, our approach renders diffusive systems accessible to improved fit functions.

  4. Classification of Partial Discharge Signals by Combining Adaptive Local Iterative Filtering and Entropy Features

    PubMed Central

    Morison, Gordon; Boreham, Philip

    2018-01-01

    Electromagnetic Interference (EMI) is a technique for capturing Partial Discharge (PD) signals in High-Voltage (HV) power plant apparatus. EMI signals can be non-stationary which makes their analysis difficult, particularly for pattern recognition applications. This paper elaborates upon a previously developed software condition-monitoring model for improved EMI events classification based on time-frequency signal decomposition and entropy features. The idea of the proposed method is to map multiple discharge source signals captured by EMI and labelled by experts, including PD, from the time domain to a feature space, which aids in the interpretation of subsequent fault information. Here, instead of using only one permutation entropy measure, a more robust measure, called Dispersion Entropy (DE), is added to the feature vector. Multi-Class Support Vector Machine (MCSVM) methods are utilized for classification of the different discharge sources. Results show an improved classification accuracy compared to previously proposed methods. This yields to a successful development of an expert’s knowledge-based intelligent system. Since this method is demonstrated to be successful with real field data, it brings the benefit of possible real-world application for EMI condition monitoring. PMID:29385030

  5. Understanding the Thermodynamic Properties of the Elastocaloric Effect Through Experimentation and Modelling

    NASA Astrophysics Data System (ADS)

    Tušek, Jaka; Engelbrecht, Kurt; Mañosa, Lluis; Vives, Eduard; Pryds, Nini

    2016-12-01

    This paper presents direct and indirect methods for studying the elastocaloric effect (eCE) in shape memory materials and its comparison. The eCE can be characterized by the adiabatic temperature change or the isothermal entropy change (both as a function of applied stress/strain). To get these quantities, the evaluation of the eCE can be done using either direct methods, where one measures (adiabatic) temperature changes or indirect methods where one can measure the stress-strain-temperature characteristics of the materials and from these deduce the adiabatic temperature and isothermal entropy changes. The former can be done using the basic thermodynamic relations, i.e. Maxwell relation and Clausius-Clapeyron equation. This paper further presents basic thermodynamic properties of shape memory materials, such as the adiabatic temperature change, isothermal entropy change and total entropy-temperature diagrams (all as a function of temperature and applied stress/strain) of two groups of materials (Ni-Ti and Cu-Zn-Al alloys) obtained using indirect methods through phenomenological modelling and Maxwell relation. In the last part of the paper, the basic definition of the efficiency of the elastocaloric thermodynamic cycle (coefficient of performance) is defined and discussed.

  6. Measuring an entropy in heavy ion collisions

    NASA Astrophysics Data System (ADS)

    Bialas, A.; Czyz, W.; Wosiek, J.

    1999-03-01

    We propose to use the coincidence method of Ma to measure an entropy of the system created in heavy ion collisions. Moreover we estimate, in a simple model, the values of parameters for which the thermodynamical behaviour sets in.

  7. Continuous time wavelet entropy of auditory evoked potentials.

    PubMed

    Cek, M Emre; Ozgoren, Murat; Savaci, F Acar

    2010-01-01

    In this paper, the continuous time wavelet entropy (CTWE) of auditory evoked potentials (AEP) has been characterized by evaluating the relative wavelet energies (RWE) in specified EEG frequency bands. Thus, the rapid variations of CTWE due to the auditory stimulation could be detected in post-stimulus time interval. This approach removes the probability of missing the information hidden in short time intervals. The discrete time and continuous time wavelet based wavelet entropy variations were compared on non-target and target AEP data. It was observed that CTWE can also be an alternative method to analyze entropy as a function of time. 2009 Elsevier Ltd. All rights reserved.

  8. Connecting complexity with spectral entropy using the Laplace transformed solution to the fractional diffusion equation

    NASA Astrophysics Data System (ADS)

    Liang, Yingjie; Chen, Wen; Magin, Richard L.

    2016-07-01

    Analytical solutions to the fractional diffusion equation are often obtained by using Laplace and Fourier transforms, which conveniently encode the order of the time and the space derivatives (α and β) as non-integer powers of the conjugate transform variables (s, and k) for the spectral and the spatial frequencies, respectively. This study presents a new solution to the fractional diffusion equation obtained using the Laplace transform and expressed as a Fox's H-function. This result clearly illustrates the kinetics of the underlying stochastic process in terms of the Laplace spectral frequency and entropy. The spectral entropy is numerically calculated by using the direct integration method and the adaptive Gauss-Kronrod quadrature algorithm. Here, the properties of spectral entropy are investigated for the cases of sub-diffusion and super-diffusion. We find that the overall spectral entropy decreases with the increasing α and β, and that the normal or Gaussian case with α = 1 and β = 2, has the lowest spectral entropy (i.e., less information is needed to describe the state of a Gaussian process). In addition, as the neighborhood over which the entropy is calculated increases, the spectral entropy decreases, which implies a spatial averaging or coarse graining of the material properties. Consequently, the spectral entropy is shown to provide a new way to characterize the temporal correlation of anomalous diffusion. Future studies should be designed to examine changes of spectral entropy in physical, chemical and biological systems undergoing phase changes, chemical reactions and tissue regeneration.

  9. Multi-Scale Low-Entropy Method for Optimizing the Processing Parameters during Automated Fiber Placement

    PubMed Central

    Han, Zhenyu; Sun, Shouzheng; Fu, Hongya; Fu, Yunzhong

    2017-01-01

    Automated fiber placement (AFP) process includes a variety of energy forms and multi-scale effects. This contribution proposes a novel multi-scale low-entropy method aiming at optimizing processing parameters in an AFP process, where multi-scale effect, energy consumption, energy utilization efficiency and mechanical properties of micro-system could be taken into account synthetically. Taking a carbon fiber/epoxy prepreg as an example, mechanical properties of macro–meso–scale are obtained by Finite Element Method (FEM). A multi-scale energy transfer model is then established to input the macroscopic results into the microscopic system as its boundary condition, which can communicate with different scales. Furthermore, microscopic characteristics, mainly micro-scale adsorption energy, diffusion coefficient entropy–enthalpy values, are calculated under different processing parameters based on molecular dynamics method. Low-entropy region is then obtained in terms of the interrelation among entropy–enthalpy values, microscopic mechanical properties (interface adsorbability and matrix fluidity) and processing parameters to guarantee better fluidity, stronger adsorption, lower energy consumption and higher energy quality collaboratively. Finally, nine groups of experiments are carried out to verify the validity of the simulation results. The results show that the low-entropy optimization method can reduce void content effectively, and further improve the mechanical properties of laminates. PMID:28869520

  10. Low-dimensional approximation searching strategy for transfer entropy from non-uniform embedding

    PubMed Central

    2018-01-01

    Transfer entropy from non-uniform embedding is a popular tool for the inference of causal relationships among dynamical subsystems. In this study we present an approach that makes use of low-dimensional conditional mutual information quantities to decompose the original high-dimensional conditional mutual information in the searching procedure of non-uniform embedding for significant variables at different lags. We perform a series of simulation experiments to assess the sensitivity and specificity of our proposed method to demonstrate its advantage compared to previous algorithms. The results provide concrete evidence that low-dimensional approximations can help to improve the statistical accuracy of transfer entropy in multivariate causality analysis and yield a better performance over other methods. The proposed method is especially efficient as the data length grows. PMID:29547669

  11. Optimal quantum networks and one-shot entropies

    NASA Astrophysics Data System (ADS)

    Chiribella, Giulio; Ebler, Daniel

    2016-09-01

    We develop a semidefinite programming method for the optimization of quantum networks, including both causal networks and networks with indefinite causal structure. Our method applies to a broad class of performance measures, defined operationally in terms of interative tests set up by a verifier. We show that the optimal performance is equal to a max relative entropy, which quantifies the informativeness of the test. Building on this result, we extend the notion of conditional min-entropy from quantum states to quantum causal networks. The optimization method is illustrated in a number of applications, including the inversion, charge conjugation, and controlization of an unknown unitary dynamics. In the non-causal setting, we show a proof-of-principle application to the maximization of the winning probability in a non-causal quantum game.

  12. A Maximum Entropy Method for Particle Filtering

    NASA Astrophysics Data System (ADS)

    Eyink, Gregory L.; Kim, Sangil

    2006-06-01

    Standard ensemble or particle filtering schemes do not properly represent states of low priori probability when the number of available samples is too small, as is often the case in practical applications. We introduce here a set of parametric resampling methods to solve this problem. Motivated by a general H-theorem for relative entropy, we construct parametric models for the filter distributions as maximum-entropy/minimum-information models consistent with moments of the particle ensemble. When the prior distributions are modeled as mixtures of Gaussians, our method naturally generalizes the ensemble Kalman filter to systems with highly non-Gaussian statistics. We apply the new particle filters presented here to two simple test cases: a one-dimensional diffusion process in a double-well potential and the three-dimensional chaotic dynamical system of Lorenz.

  13. An Extension to Deng's Entropy in the Open World Assumption with an Application in Sensor Data Fusion.

    PubMed

    Tang, Yongchuan; Zhou, Deyun; Chan, Felix T S

    2018-06-11

    Quantification of uncertain degree in the Dempster-Shafer evidence theory (DST) framework with belief entropy is still an open issue, even a blank field for the open world assumption. Currently, the existed uncertainty measures in the DST framework are limited to the closed world where the frame of discernment (FOD) is assumed to be complete. To address this issue, this paper focuses on extending a belief entropy to the open world by considering the uncertain information represented as the FOD and the nonzero mass function of the empty set simultaneously. An extension to Deng’s entropy in the open world assumption (EDEOW) is proposed as a generalization of the Deng’s entropy and it can be degenerated to the Deng entropy in the closed world wherever necessary. In order to test the reasonability and effectiveness of the extended belief entropy, an EDEOW-based information fusion approach is proposed and applied to sensor data fusion under uncertainty circumstance. The experimental results verify the usefulness and applicability of the extended measure as well as the modified sensor data fusion method. In addition, a few open issues still exist in the current work: the necessary properties for a belief entropy in the open world assumption, whether there exists a belief entropy that satisfies all the existed properties, and what is the most proper fusion frame for sensor data fusion under uncertainty.

  14. Estimation of Lithological Classification in Taipei Basin: A Bayesian Maximum Entropy Method

    NASA Astrophysics Data System (ADS)

    Wu, Meng-Ting; Lin, Yuan-Chien; Yu, Hwa-Lung

    2015-04-01

    In environmental or other scientific applications, we must have a certain understanding of geological lithological composition. Because of restrictions of real conditions, only limited amount of data can be acquired. To find out the lithological distribution in the study area, many spatial statistical methods used to estimate the lithological composition on unsampled points or grids. This study applied the Bayesian Maximum Entropy (BME method), which is an emerging method of the geological spatiotemporal statistics field. The BME method can identify the spatiotemporal correlation of the data, and combine not only the hard data but the soft data to improve estimation. The data of lithological classification is discrete categorical data. Therefore, this research applied Categorical BME to establish a complete three-dimensional Lithological estimation model. Apply the limited hard data from the cores and the soft data generated from the geological dating data and the virtual wells to estimate the three-dimensional lithological classification in Taipei Basin. Keywords: Categorical Bayesian Maximum Entropy method, Lithological Classification, Hydrogeological Setting

  15. Local statistics adaptive entropy coding method for the improvement of H.26L VLC coding

    NASA Astrophysics Data System (ADS)

    Yoo, Kook-yeol; Kim, Jong D.; Choi, Byung-Sun; Lee, Yung Lyul

    2000-05-01

    In this paper, we propose an adaptive entropy coding method to improve the VLC coding efficiency of H.26L TML-1 codec. First of all, we will show that the VLC coding presented in TML-1 does not satisfy the sibling property of entropy coding. Then, we will modify the coding method into the local statistics adaptive one to satisfy the property. The proposed method based on the local symbol statistics dynamically changes the mapping relationship between symbol and bit pattern in the VLC table according to sibling property. Note that the codewords in the VLC table of TML-1 codec is not changed. Since this changed mapping relationship also derived in the decoder side by using the decoded symbols, the proposed VLC coding method does not require any overhead information. The simulation results show that the proposed method gives about 30% and 37% reduction in average bit rate for MB type and CBP information, respectively.

  16. Gender-specific heart rate dynamics in severe intrauterine growth-restricted fetuses.

    PubMed

    Gonçalves, Hernâni; Bernardes, João; Ayres-de-Campos, Diogo

    2013-06-01

    Management of intrauterine growth restriction (IUGR) remains a major issue in perinatology. The objective of this paper was the assessment of gender-specific fetal heart rate (FHR) dynamics as a diagnostic tool in severe IUGR. FHR was analyzed in the antepartum period in 15 severe IUGR fetuses and 18 controls, matched for gestational age, in relation to fetal gender. Linear and entropy methods, such as mean FHR (mFHR), low (LF), high (HF) and movement frequency (MF), approximate, sample and multiscale entropy. Sensitivities and specificities were estimated using Fisher linear discriminant analysis and the leave-one-out method. Overall, IUGR fetuses presented significantly lower mFHR and entropy compared with controls. However, gender-specific analysis showed that significantly lower mFHR was only evident in IUGR males and lower entropy in IUGR females. In addition, lower LF/(MF+HF) was patent in IUGR females compared with controls, but not in males. Rather high sensitivities and specificities were achieved in the detection of the FHR recordings related with IUGR male fetuses, when gender-specific analysis was performed at gestational ages less than 34 weeks. Severe IUGR fetuses present gender-specific linear and entropy FHR changes, compared with controls, characterized by a significantly lower entropy and sympathetic-vagal balance in females than in males. These findings need to be considered in order to achieve better diagnostic results. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Calculation of Cyclodextrin Binding Affinities: Energy, Entropy, and Implications for Drug Design

    PubMed Central

    Chen, Wei; Chang, Chia-En; Gilson, Michael K.

    2004-01-01

    The second generation Mining Minima method yields binding affinities accurate to within 0.8 kcal/mol for the associations of α-, β-, and γ-cyclodextrin with benzene, resorcinol, flurbiprofen, naproxen, and nabumetone. These calculations require hours to a day on a commodity computer. The calculations also indicate that the changes in configurational entropy upon binding oppose association by as much as 24 kcal/mol and result primarily from a narrowing of energy wells in the bound versus the free state, rather than from a drop in the number of distinct low-energy conformations on binding. Also, the configurational entropy is found to vary substantially among the bound conformations of a given cyclodextrin-guest complex. This result suggests that the configurational entropy must be accounted for to reliably rank docked conformations in both host-guest and ligand-protein complexes. In close analogy with the common experimental observation of entropy-enthalpy compensation, the computed entropy changes show a near-linear relationship with the changes in mean potential plus solvation energy. PMID:15339804

  18. A Surrogate Technique for Investigating Deterministic Dynamics in Discrete Human Movement.

    PubMed

    Taylor, Paul G; Small, Michael; Lee, Kwee-Yum; Landeo, Raul; O'Meara, Damien M; Millett, Emma L

    2016-10-01

    Entropy is an effective tool for investigation of human movement variability. However, before applying entropy, it can be beneficial to employ analyses to confirm that observed data are not solely the result of stochastic processes. This can be achieved by contrasting observed data with that produced using surrogate methods. Unlike continuous movement, no appropriate method has been applied to discrete human movement. This article proposes a novel surrogate method for discrete movement data, outlining the processes for determining its critical values. The proposed technique reliably generated surrogates for discrete joint angle time series, destroying fine-scale dynamics of the observed signal, while maintaining macro structural characteristics. Comparison of entropy estimates indicated observed signals had greater regularity than surrogates and were not only the result of stochastic but also deterministic processes. The proposed surrogate method is both a valid and reliable technique to investigate determinism in other discrete human movement time series.

  19. Conflict management based on belief function entropy in sensor fusion.

    PubMed

    Yuan, Kaijuan; Xiao, Fuyuan; Fei, Liguo; Kang, Bingyi; Deng, Yong

    2016-01-01

    Wireless sensor network plays an important role in intelligent navigation. It incorporates a group of sensors to overcome the limitation of single detection system. Dempster-Shafer evidence theory can combine the sensor data of the wireless sensor network by data fusion, which contributes to the improvement of accuracy and reliability of the detection system. However, due to different sources of sensors, there may be conflict among the sensor data under uncertain environment. Thus, this paper proposes a new method combining Deng entropy and evidence distance to address the issue. First, Deng entropy is adopted to measure the uncertain information. Then, evidence distance is applied to measure the conflict degree. The new method can cope with conflict effectually and improve the accuracy and reliability of the detection system. An example is illustrated to show the efficiency of the new method and the result is compared with that of the existing methods.

  20. Beyond maximum entropy: Fractal pixon-based image reconstruction

    NASA Technical Reports Server (NTRS)

    Puetter, R. C.; Pina, R. K.

    1994-01-01

    We have developed a new Bayesian image reconstruction method that has been shown to be superior to the best implementations of other methods, including Goodness-of-Fit (e.g. Least-Squares and Lucy-Richardson) and Maximum Entropy (ME). Our new method is based on the concept of the pixon, the fundamental, indivisible unit of picture information. Use of the pixon concept provides an improved image model, resulting in an image prior which is superior to that of standard ME.

  1. Noise reduction algorithm with the soft thresholding based on the Shannon entropy and bone-conduction speech cross- correlation bands.

    PubMed

    Na, Sung Dae; Wei, Qun; Seong, Ki Woong; Cho, Jin Ho; Kim, Myoung Nam

    2018-01-01

    The conventional methods of speech enhancement, noise reduction, and voice activity detection are based on the suppression of noise or non-speech components of the target air-conduction signals. However, air-conduced speech is hard to differentiate from babble or white noise signals. To overcome this problem, the proposed algorithm uses the bone-conduction speech signals and soft thresholding based on the Shannon entropy principle and cross-correlation of air- and bone-conduction signals. A new algorithm for speech detection and noise reduction is proposed, which makes use of the Shannon entropy principle and cross-correlation with the bone-conduction speech signals to threshold the wavelet packet coefficients of the noisy speech. The proposed method can be get efficient result by objective quality measure that are PESQ, RMSE, Correlation, SNR. Each threshold is generated by the entropy and cross-correlation approaches in the decomposed bands using the wavelet packet decomposition. As a result, the noise is reduced by the proposed method using the MATLAB simulation. To verify the method feasibility, we compared the air- and bone-conduction speech signals and their spectra by the proposed method. As a result, high performance of the proposed method is confirmed, which makes it quite instrumental to future applications in communication devices, noisy environment, construction, and military operations.

  2. Entropy from State Probabilities: Hydration Entropy of Cations

    PubMed Central

    2013-01-01

    Entropy is an important energetic quantity determining the progression of chemical processes. We propose a new approach to obtain hydration entropy directly from probability density functions in state space. We demonstrate the validity of our approach for a series of cations in aqueous solution. Extensive validation of simulation results was performed. Our approach does not make prior assumptions about the shape of the potential energy landscape and is capable of calculating accurate hydration entropy values. Sampling times in the low nanosecond range are sufficient for the investigated ionic systems. Although the presented strategy is at the moment limited to systems for which a scalar order parameter can be derived, this is not a principal limitation of the method. The strategy presented is applicable to any chemical system where sufficient sampling of conformational space is accessible, for example, by computer simulations. PMID:23651109

  3. Information entropy to measure the spatial and temporal complexity of solute transport in heterogeneous porous media

    NASA Astrophysics Data System (ADS)

    Li, Weiyao; Huang, Guanhua; Xiong, Yunwu

    2016-04-01

    The complexity of the spatial structure of porous media, randomness of groundwater recharge and discharge (rainfall, runoff, etc.) has led to groundwater movement complexity, physical and chemical interaction between groundwater and porous media cause solute transport in the medium more complicated. An appropriate method to describe the complexity of features is essential when study on solute transport and conversion in porous media. Information entropy could measure uncertainty and disorder, therefore we attempted to investigate complexity, explore the contact between the information entropy and complexity of solute transport in heterogeneous porous media using information entropy theory. Based on Markov theory, two-dimensional stochastic field of hydraulic conductivity (K) was generated by transition probability. Flow and solute transport model were established under four conditions (instantaneous point source, continuous point source, instantaneous line source and continuous line source). The spatial and temporal complexity of solute transport process was characterized and evaluated using spatial moment and information entropy. Results indicated that the entropy increased as the increase of complexity of solute transport process. For the point source, the one-dimensional entropy of solute concentration increased at first and then decreased along X and Y directions. As time increased, entropy peak value basically unchanged, peak position migrated along the flow direction (X direction) and approximately coincided with the centroid position. With the increase of time, spatial variability and complexity of solute concentration increase, which result in the increases of the second-order spatial moment and the two-dimensional entropy. Information entropy of line source was higher than point source. Solute entropy obtained from continuous input was higher than instantaneous input. Due to the increase of average length of lithoface, media continuity increased, flow and solute transport complexity weakened, and the corresponding information entropy also decreased. Longitudinal macro dispersivity declined slightly at early time then rose. Solute spatial and temporal distribution had significant impacts on the information entropy. Information entropy could reflect the change of solute distribution. Information entropy appears a tool to characterize the spatial and temporal complexity of solute migration and provides a reference for future research.

  4. Application of the new Cross Recurrence Plots to multivariate data

    NASA Astrophysics Data System (ADS)

    Thiel, M.; Romano, C.; Kurths, J.

    2003-04-01

    We extend and then apply the method of the new Cross Recurrence Plots (XRPs) to multivariate data. After introducing the new method we carry out an analysis of spatiotemporal ecological data. We compute not only the Rényi entropies and cross entropies by XRP, that allow to draw conclusions about the coupling of the systems, but also find a prediction horizon for intermediate time scales.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rozhdestvensky, Yu V

    The possibility is studied for obtaining intense cold atomic beams by using the Renyi entropy to optimise the laser cooling process. It is shown in the case of a Gaussian velocity distribution of atoms, the Renyi entropy coincides with the density of particles in the phase space. The optimisation procedure for cooling atoms by resonance optical radiation is described, which is based on the thermodynamic law of increasing the Renyi entropy in time. Our method is compared with the known methods for increasing the laser cooling efficiency such as the tuning of a laser frequency in time and a changemore » of the atomic transition frequency in an inhomogeneous transverse field of a magnetic solenoid. (laser cooling)« less

  6. Entanglement Entropy of the Six-Dimensional Horowitz-Strominger Black Hole

    NASA Astrophysics Data System (ADS)

    Li, Huai-Fan; Zhang, Sheng-Li; Wu, Yue-Qin; Ren, Zhao

    By using the entanglement entropy method, the statistical entropy of the Bose and Fermi fields in a thin film is calculated and the Bekenstein-Hawking entropy of six-dimensional Horowitz-Strominger black hole is obtained. Here, the Bose and Fermi fields are entangled with the quantum states in six-dimensional Horowitz-Strominger black hole and the fields are outside of the horizon. The divergence of brick-wall model is avoided without any cutoff by the new equation of state density obtained with the generalized uncertainty principle. The calculation implies that the high density quantum states near the event horizon are strongly correlated with the quantum states in black hole. The black hole entropy is a quantum effect. It is an intrinsic characteristic of space-time. The ultraviolet cutoff in the brick-wall model is unreasonable. The generalized uncertainty principle should be considered in the high energy quantum field near the event horizon. Using the quantum statistical method, we directly calculate the partition function of the Bose and Fermi fields under the background of the six-dimensional black hole. The difficulty in solving the wave equations of various particles is overcome.

  7. Analysis of crude oil markets with improved multiscale weighted permutation entropy

    NASA Astrophysics Data System (ADS)

    Niu, Hongli; Wang, Jun; Liu, Cheng

    2018-03-01

    Entropy measures are recently extensively used to study the complexity property in nonlinear systems. Weighted permutation entropy (WPE) can overcome the ignorance of the amplitude information of time series compared with PE and shows a distinctive ability to extract complexity information from data having abrupt changes in magnitude. Improved (or sometimes called composite) multi-scale (MS) method possesses the advantage of reducing errors and improving the accuracy when applied to evaluate multiscale entropy values of not enough long time series. In this paper, we combine the merits of WPE and improved MS to propose the improved multiscale weighted permutation entropy (IMWPE) method for complexity investigation of a time series. Then it is validated effective through artificial data: white noise and 1 / f noise, and real market data of Brent and Daqing crude oil. Meanwhile, the complexity properties of crude oil markets are explored respectively of return series, volatility series with multiple exponents and EEMD-produced intrinsic mode functions (IMFs) which represent different frequency components of return series. Moreover, the instantaneous amplitude and frequency of Brent and Daqing crude oil are analyzed by the Hilbert transform utilized to each IMF.

  8. Probabilistic modelling of flood events using the entropy copula

    NASA Astrophysics Data System (ADS)

    Li, Fan; Zheng, Qian

    2016-11-01

    The estimation of flood frequency is vital for the flood control strategies and hydraulic structure design. Generating synthetic flood events according to statistical properties of observations is one of plausible methods to analyze the flood frequency. Due to the statistical dependence among the flood event variables (i.e. the flood peak, volume and duration), a multidimensional joint probability estimation is required. Recently, the copula method is widely used for multivariable dependent structure construction, however, the copula family should be chosen before application and the choice process is sometimes rather subjective. The entropy copula, a new copula family, employed in this research proposed a way to avoid the relatively subjective process by combining the theories of copula and entropy. The analysis shows the effectiveness of the entropy copula for probabilistic modelling the flood events of two hydrological gauges, and a comparison of accuracy with the popular copulas was made. The Gibbs sampling technique was applied for trivariate flood events simulation in order to mitigate the calculation difficulties of extending to three dimension directly. The simulation results indicate that the entropy copula is a simple and effective copula family for trivariate flood simulation.

  9. Entropy as a Gene-Like Performance Indicator Promoting Thermoelectric Materials.

    PubMed

    Liu, Ruiheng; Chen, Hongyi; Zhao, Kunpeng; Qin, Yuting; Jiang, Binbin; Zhang, Tiansong; Sha, Gang; Shi, Xun; Uher, Ctirad; Zhang, Wenqing; Chen, Lidong

    2017-10-01

    High-throughput explorations of novel thermoelectric materials based on the Materials Genome Initiative paradigm only focus on digging into the structure-property space using nonglobal indicators to design materials with tunable electrical and thermal transport properties. As the genomic units, following the biogene tradition, such indicators include localized crystal structural blocks in real space or band degeneracy at certain points in reciprocal space. However, this nonglobal approach does not consider how real materials differentiate from others. Here, this study successfully develops a strategy of using entropy as the global gene-like performance indicator that shows how multicomponent thermoelectric materials with high entropy can be designed via a high-throughput screening method. Optimizing entropy works as an effective guide to greatly improve the thermoelectric performance through either a significantly depressed lattice thermal conductivity down to its theoretical minimum value and/or via enhancing the crystal structure symmetry to yield large Seebeck coefficients. The entropy engineering using multicomponent crystal structures or other possible techniques provides a new avenue for an improvement of the thermoelectric performance beyond the current methods and approaches. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Measurement of Renyi Entropies in Multiparticle Production: a Do-List II

    NASA Astrophysics Data System (ADS)

    Bialas, A.; Czyz, W.; Zalewski, K.

    2006-09-01

    Recently suggested method of measuring Renyi entropies of multiparticle systems produced in high-energy collisions is presented in the form of a ``do-list'', explaining explicitely how to perform the measurement and suggesting improvements in the treatment of the data.

  11. A comparison of performance of automatic cloud coverage assessment algorithm for Formosat-2 image using clustering-based and spatial thresholding methods

    NASA Astrophysics Data System (ADS)

    Hsu, Kuo-Hsien

    2012-11-01

    Formosat-2 image is a kind of high-spatial-resolution (2 meters GSD) remote sensing satellite data, which includes one panchromatic band and four multispectral bands (Blue, Green, Red, near-infrared). An essential sector in the daily processing of received Formosat-2 image is to estimate the cloud statistic of image using Automatic Cloud Coverage Assessment (ACCA) algorithm. The information of cloud statistic of image is subsequently recorded as an important metadata for image product catalog. In this paper, we propose an ACCA method with two consecutive stages: preprocessing and post-processing analysis. For pre-processing analysis, the un-supervised K-means classification, Sobel's method, thresholding method, non-cloudy pixels reexamination, and cross-band filter method are implemented in sequence for cloud statistic determination. For post-processing analysis, Box-Counting fractal method is implemented. In other words, the cloud statistic is firstly determined via pre-processing analysis, the correctness of cloud statistic of image of different spectral band is eventually cross-examined qualitatively and quantitatively via post-processing analysis. The selection of an appropriate thresholding method is very critical to the result of ACCA method. Therefore, in this work, We firstly conduct a series of experiments of the clustering-based and spatial thresholding methods that include Otsu's, Local Entropy(LE), Joint Entropy(JE), Global Entropy(GE), and Global Relative Entropy(GRE) method, for performance comparison. The result shows that Otsu's and GE methods both perform better than others for Formosat-2 image. Additionally, our proposed ACCA method by selecting Otsu's method as the threshoding method has successfully extracted the cloudy pixels of Formosat-2 image for accurate cloud statistic estimation.

  12. Numerical calculation of the entanglement entropy for scalar field in dilaton spacetimes

    NASA Astrophysics Data System (ADS)

    Huang, Shifeng; Fang, Xiongjun; Jing, Jiliang

    2018-06-01

    Using coupled harmonic oscillators model, we numerical analyze the entanglement entropy of massless scalar field in Gafinkle-Horowitz-Strominger (GHS) dilaton spacetime and Gibbons-Maeda (GM) dilaton spacetime. By numerical fitting, we find that the entanglement entropy of the dilaton black holes receive contribution from dilaton charge and is proportional to the area of the event horizon. It is interesting to note that the results of numerical fitting are coincide with ones obtained by using brick wall method and Euclidean path integral approach.

  13. Functional entropy variables: A new methodology for deriving thermodynamically consistent algorithms for complex fluids, with particular reference to the isothermal Navier–Stokes–Korteweg equations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Ju, E-mail: jliu@ices.utexas.edu; Gomez, Hector; Evans, John A.

    2013-09-01

    We propose a new methodology for the numerical solution of the isothermal Navier–Stokes–Korteweg equations. Our methodology is based on a semi-discrete Galerkin method invoking functional entropy variables, a generalization of classical entropy variables, and a new time integration scheme. We show that the resulting fully discrete scheme is unconditionally stable-in-energy, second-order time-accurate, and mass-conservative. We utilize isogeometric analysis for spatial discretization and verify the aforementioned properties by adopting the method of manufactured solutions and comparing coarse mesh solutions with overkill solutions. Various problems are simulated to show the capability of the method. Our methodology provides a means of constructing unconditionallymore » stable numerical schemes for nonlinear non-convex hyperbolic systems of conservation laws.« less

  14. A Markovian Entropy Measure for the Analysis of Calcium Activity Time Series.

    PubMed

    Marken, John P; Halleran, Andrew D; Rahman, Atiqur; Odorizzi, Laura; LeFew, Michael C; Golino, Caroline A; Kemper, Peter; Saha, Margaret S

    2016-01-01

    Methods to analyze the dynamics of calcium activity often rely on visually distinguishable features in time series data such as spikes, waves, or oscillations. However, systems such as the developing nervous system display a complex, irregular type of calcium activity which makes the use of such methods less appropriate. Instead, for such systems there exists a class of methods (including information theoretic, power spectral, and fractal analysis approaches) which use more fundamental properties of the time series to analyze the observed calcium dynamics. We present a new analysis method in this class, the Markovian Entropy measure, which is an easily implementable calcium time series analysis method which represents the observed calcium activity as a realization of a Markov Process and describes its dynamics in terms of the level of predictability underlying the transitions between the states of the process. We applied our and other commonly used calcium analysis methods on a dataset from Xenopus laevis neural progenitors which displays irregular calcium activity and a dataset from murine synaptic neurons which displays activity time series that are well-described by visually-distinguishable features. We find that the Markovian Entropy measure is able to distinguish between biologically distinct populations in both datasets, and that it can separate biologically distinct populations to a greater extent than other methods in the dataset exhibiting irregular calcium activity. These results support the benefit of using the Markovian Entropy measure to analyze calcium dynamics, particularly for studies using time series data which do not exhibit easily distinguishable features.

  15. Maximum entropy formalism for the analytic continuation of matrix-valued Green's functions

    NASA Astrophysics Data System (ADS)

    Kraberger, Gernot J.; Triebl, Robert; Zingl, Manuel; Aichhorn, Markus

    2017-10-01

    We present a generalization of the maximum entropy method to the analytic continuation of matrix-valued Green's functions. To treat off-diagonal elements correctly based on Bayesian probability theory, the entropy term has to be extended for spectral functions that are possibly negative in some frequency ranges. In that way, all matrix elements of the Green's function matrix can be analytically continued; we introduce a computationally cheap element-wise method for this purpose. However, this method cannot ensure important constraints on the mathematical properties of the resulting spectral functions, namely positive semidefiniteness and Hermiticity. To improve on this, we present a full matrix formalism, where all matrix elements are treated simultaneously. We show the capabilities of these methods using insulating and metallic dynamical mean-field theory (DMFT) Green's functions as test cases. Finally, we apply the methods to realistic material calculations for LaTiO3, where off-diagonal matrix elements in the Green's function appear due to the distorted crystal structure.

  16. The Cross-Entropy Based Multi-Filter Ensemble Method for Gene Selection.

    PubMed

    Sun, Yingqiang; Lu, Chengbo; Li, Xiaobo

    2018-05-17

    The gene expression profile has the characteristics of a high dimension, low sample, and continuous type, and it is a great challenge to use gene expression profile data for the classification of tumor samples. This paper proposes a cross-entropy based multi-filter ensemble (CEMFE) method for microarray data classification. Firstly, multiple filters are used to select the microarray data in order to obtain a plurality of the pre-selected feature subsets with a different classification ability. The top N genes with the highest rank of each subset are integrated so as to form a new data set. Secondly, the cross-entropy algorithm is used to remove the redundant data in the data set. Finally, the wrapper method, which is based on forward feature selection, is used to select the best feature subset. The experimental results show that the proposed method is more efficient than other gene selection methods and that it can achieve a higher classification accuracy under fewer characteristic genes.

  17. Singular spectrum and singular entropy used in signal processing of NC table

    NASA Astrophysics Data System (ADS)

    Wang, Linhong; He, Yiwen

    2011-12-01

    NC (numerical control) table is a complex dynamic system. The dynamic characteristics caused by backlash, friction and elastic deformation among each component are so complex that they have become the bottleneck of enhancing the positioning accuracy, tracking accuracy and dynamic behavior of NC table. This paper collects vibration acceleration signals from NC table, analyzes the signals with SVD (singular value decomposition) method, acquires the singular spectrum and calculates the singular entropy of the signals. The signal characteristics and their regulations of NC table are revealed via the characteristic quantities such as singular spectrum, singular entropy etc. The steep degrees of singular spectrums can be used to discriminate complex degrees of signals. The results show that the signals in direction of driving axes are the simplest and the signals in perpendicular direction are the most complex. The singular entropy values can be used to study the indetermination of signals. The results show that the signals of NC table are not simple signal nor white noise, the entropy values in direction of driving axe are lower, the entropy values increase along with the increment of driving speed and the entropy values at the abnormal working conditions such as resonance or creeping etc decrease obviously.

  18. n-Order and maximum fuzzy similarity entropy for discrimination of signals of different complexity: Application to fetal heart rate signals.

    PubMed

    Zaylaa, Amira; Oudjemia, Souad; Charara, Jamal; Girault, Jean-Marc

    2015-09-01

    This paper presents two new concepts for discrimination of signals of different complexity. The first focused initially on solving the problem of setting entropy descriptors by varying the pattern size instead of the tolerance. This led to the search for the optimal pattern size that maximized the similarity entropy. The second paradigm was based on the n-order similarity entropy that encompasses the 1-order similarity entropy. To improve the statistical stability, n-order fuzzy similarity entropy was proposed. Fractional Brownian motion was simulated to validate the different methods proposed, and fetal heart rate signals were used to discriminate normal from abnormal fetuses. In all cases, it was found that it was possible to discriminate time series of different complexity such as fractional Brownian motion and fetal heart rate signals. The best levels of performance in terms of sensitivity (90%) and specificity (90%) were obtained with the n-order fuzzy similarity entropy. However, it was shown that the optimal pattern size and the maximum similarity measurement were related to intrinsic features of the time series. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Thermodynamic contribution of backbone conformational entropy in the binding between SH3 domain and proline-rich motif.

    PubMed

    Zeng, Danyun; Shen, Qingliang; Cho, Jae-Hyun

    2017-02-26

    Biological functions of intrinsically disordered proteins (IDPs), and proteins containing intrinsically disordered regions (IDRs) are often mediated by short linear motifs, like proline-rich motifs (PRMs). Upon binding to their target proteins, IDPs undergo a disorder-to-order transition which is accompanied by a large conformational entropy penalty. Hence, the molecular mechanisms underlying control of conformational entropy are critical for understanding the binding affinity and selectivity of IDPs-mediated protein-protein interactions (PPIs). Here, we investigated the backbone conformational entropy change accompanied by binding of the N-terminal SH3 domain (nSH3) of CrkII and PRM derived from guanine nucleotide exchange factor 1 (C3G). In particular, we focused on the estimation of conformational entropy change of disordered PRM upon binding to the nSH3 domain. Quantitative characterization of conformational dynamics of disordered peptides like PRMs is limited. Hence, we combined various methods, including NMR model-free analysis, δ2D, DynaMine, and structure-based calculation of entropy loss. This study demonstrates that the contribution of backbone conformational entropy change is significant in the PPIs mediated by IDPs/IDRs. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Relative entropy and optimization-driven coarse-graining methods in VOTCA

    DOE PAGES

    Mashayak, S. Y.; Jochum, Mara N.; Koschke, Konstantin; ...

    2015-07-20

    We discuss recent advances of the VOTCA package for systematic coarse-graining. Two methods have been implemented, namely the downhill simplex optimization and the relative entropy minimization. We illustrate the new methods by coarse-graining SPC/E bulk water and more complex water-methanol mixture systems. The CG potentials obtained from both methods are then evaluated by comparing the pair distributions from the coarse-grained to the reference atomistic simulations.We have also added a parallel analysis framework to improve the computational efficiency of the coarse-graining process.

  1. 78 FR 30399 - United States v. Anheuser-Busch InBev SA/NV, Grupo Modelo S.A.B de C.V.; Proposed Final Judgment...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-22

    ..., Mexico. Modelo is the third-largest brewer of beer sold in the United States. Modelo's Corona Extra brand... include Corona Light, Modelo Especial, Negra Modelo, Victoria, and Pacifico. 19. ABI currently holds a 35... such as Dogfish Head, Flying Dog, and also imported beers, the best selling of which is Modelo's Corona...

  2. Entropy for Mechanically Vibrating Systems

    NASA Astrophysics Data System (ADS)

    Tufano, Dante

    The research contained within this thesis deals with the subject of entropy as defined for and applied to mechanically vibrating systems. This work begins with an overview of entropy as it is understood in the fields of classical thermodynamics, information theory, statistical mechanics, and statistical vibroacoustics. Khinchin's definition of entropy, which is the primary definition used for the work contained in this thesis, is introduced in the context of vibroacoustic systems. The main goal of this research is to to establish a mathematical framework for the application of Khinchin's entropy in the field of statistical vibroacoustics by examining the entropy context of mechanically vibrating systems. The introduction of this thesis provides an overview of statistical energy analysis (SEA), a modeling approach to vibroacoustics that motivates this work on entropy. The objective of this thesis is given, and followed by a discussion of the intellectual merit of this work as well as a literature review of relevant material. Following the introduction, an entropy analysis of systems of coupled oscillators is performed utilizing Khinchin's definition of entropy. This analysis develops upon the mathematical theory relating to mixing entropy, which is generated by the coupling of vibroacoustic systems. The mixing entropy is shown to provide insight into the qualitative behavior of such systems. Additionally, it is shown that the entropy inequality property of Khinchin's entropy can be reduced to an equality using the mixing entropy concept. This equality can be interpreted as a facet of the second law of thermodynamics for vibroacoustic systems. Following this analysis, an investigation of continuous systems is performed using Khinchin's entropy. It is shown that entropy analyses using Khinchin's entropy are valid for continuous systems that can be decomposed into a finite number of modes. The results are shown to be analogous to those obtained for simple oscillators, which demonstrates the applicability of entropy-based approaches to real-world systems. Three systems are considered to demonstrate these findings: 1) a rod end-coupled to a simple oscillator, 2) two end-coupled rods, and 3) two end-coupled beams. The aforementioned work utilizes the weak coupling assumption to determine the entropy of composite systems. Following this discussion, a direct method of finding entropy is developed which does not rely on this limiting assumption. The resulting entropy provides a useful benchmark for evaluating the accuracy of the weak coupling approach, and is validated using systems of coupled oscillators. The later chapters of this work discuss Khinchin's entropy as applied to nonlinear and nonconservative systems, respectively. The discussion of entropy for nonlinear systems is motivated by the desire to expand the applicability of SEA techniques beyond the linear regime. The discussion of nonconservative systems is also crucial, since real-world systems interact with their environment, and it is necessary to confirm the validity of an entropy approach for systems that are relevant in the context of SEA. Having developed a mathematical framework for determining entropy under a number of previously unexplored cases, the relationship between thermodynamics and statistical vibroacoustics can be better understood. Specifically, vibroacoustic temperatures can be obtained for systems that are not necessarily linear or weakly coupled. In this way, entropy provides insight into how the power flow proportionality of statistical energy analysis (SEA) can be applied to a broader class of vibroacoustic systems. As such, entropy is a useful tool for both justifying and expanding the foundational results of SEA.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li Zhiming; Radboud University/NIKHEF, NL-6525 ED Nijmegen

    We report on an entropy analysis using Ma's coincidence method on {pi}+p and K+p collisions at {radical}(s) = 22 GeV. A scaling law and additivity properties of Renyi entropies and their charged-particle multiplicity dependence are investigated. The results are compared with those from the PYTHIA Monte Carlo model.

  4. Formation of soft magnetic high entropy amorphous alloys composites containing in situ solid solution phase

    NASA Astrophysics Data System (ADS)

    Wei, Ran; Sun, Huan; Chen, Chen; Tao, Juan; Li, Fushan

    2018-03-01

    Fe-Co-Ni-Si-B high entropy amorphous alloys composites (HEAACs), which containing high entropy solid solution phase in amorphous matrix, show good soft magnetic properties and bending ductility even in optimal annealed state, were successfully developed by melt spinning method. The crystallization phase of the HEAACs is solid solution phase with body centered cubic (BCC) structure instead of brittle intermetallic phase. In addition, the BCC phase can transformed into face centered cubic (FCC) phase with temperature rise. Accordingly, Fe-Co-Ni-Si-B high entropy alloys (HEAs) with FCC structure and a small amount of BCC phase was prepared by copper mold casting method. The HEAs exhibit high yield strength (about 1200 MPa) and good plastic strain (about 18%). Meanwhile, soft magnetic characteristics of the HEAs are largely reserved from HEAACs. This work provides a new strategy to overcome the annealing induced brittleness of amorphous alloys and design new advanced materials with excellent comprehensive properties.

  5. Information and Entropy

    NASA Astrophysics Data System (ADS)

    Caticha, Ariel

    2007-11-01

    What is information? Is it physical? We argue that in a Bayesian theory the notion of information must be defined in terms of its effects on the beliefs of rational agents. Information is whatever constrains rational beliefs and therefore it is the force that induces us to change our minds. This problem of updating from a prior to a posterior probability distribution is tackled through an eliminative induction process that singles out the logarithmic relative entropy as the unique tool for inference. The resulting method of Maximum relative Entropy (ME), which is designed for updating from arbitrary priors given information in the form of arbitrary constraints, includes as special cases both MaxEnt (which allows arbitrary constraints) and Bayes' rule (which allows arbitrary priors). Thus, ME unifies the two themes of these workshops—the Maximum Entropy and the Bayesian methods—into a single general inference scheme that allows us to handle problems that lie beyond the reach of either of the two methods separately. I conclude with a couple of simple illustrative examples.

  6. Particle swarm optimization-based local entropy weighted histogram equalization for infrared image enhancement

    NASA Astrophysics Data System (ADS)

    Wan, Minjie; Gu, Guohua; Qian, Weixian; Ren, Kan; Chen, Qian; Maldague, Xavier

    2018-06-01

    Infrared image enhancement plays a significant role in intelligent urban surveillance systems for smart city applications. Unlike existing methods only exaggerating the global contrast, we propose a particle swam optimization-based local entropy weighted histogram equalization which involves the enhancement of both local details and fore-and background contrast. First of all, a novel local entropy weighted histogram depicting the distribution of detail information is calculated based on a modified hyperbolic tangent function. Then, the histogram is divided into two parts via a threshold maximizing the inter-class variance in order to improve the contrasts of foreground and background, respectively. To avoid over-enhancement and noise amplification, double plateau thresholds of the presented histogram are formulated by means of particle swarm optimization algorithm. Lastly, each sub-image is equalized independently according to the constrained sub-local entropy weighted histogram. Comparative experiments implemented on real infrared images prove that our algorithm outperforms other state-of-the-art methods in terms of both visual and quantized evaluations.

  7. Ectopic beats in approximate entropy and sample entropy-based HRV assessment

    NASA Astrophysics Data System (ADS)

    Singh, Butta; Singh, Dilbag; Jaryal, A. K.; Deepak, K. K.

    2012-05-01

    Approximate entropy (ApEn) and sample entropy (SampEn) are the promising techniques for extracting complex characteristics of cardiovascular variability. Ectopic beats, originating from other than the normal site, are the artefacts contributing a serious limitation to heart rate variability (HRV) analysis. The approaches like deletion and interpolation are currently in use to eliminate the bias produced by ectopic beats. In this study, normal R-R interval time series of 10 healthy and 10 acute myocardial infarction (AMI) patients were analysed by inserting artificial ectopic beats. Then the effects of ectopic beats editing by deletion, degree-zero and degree-one interpolation on ApEn and SampEn have been assessed. Ectopic beats addition (even 2%) led to reduced complexity, resulting in decreased ApEn and SampEn of both healthy and AMI patient data. This reduction has been found to be dependent on level of ectopic beats. Editing of ectopic beats by interpolation degree-one method is found to be superior to other methods.

  8. A pairwise maximum entropy model accurately describes resting-state human brain networks

    PubMed Central

    Watanabe, Takamitsu; Hirose, Satoshi; Wada, Hiroyuki; Imai, Yoshio; Machida, Toru; Shirouzu, Ichiro; Konishi, Seiki; Miyashita, Yasushi; Masuda, Naoki

    2013-01-01

    The resting-state human brain networks underlie fundamental cognitive functions and consist of complex interactions among brain regions. However, the level of complexity of the resting-state networks has not been quantified, which has prevented comprehensive descriptions of the brain activity as an integrative system. Here, we address this issue by demonstrating that a pairwise maximum entropy model, which takes into account region-specific activity rates and pairwise interactions, can be robustly and accurately fitted to resting-state human brain activities obtained by functional magnetic resonance imaging. Furthermore, to validate the approximation of the resting-state networks by the pairwise maximum entropy model, we show that the functional interactions estimated by the pairwise maximum entropy model reflect anatomical connexions more accurately than the conventional functional connectivity method. These findings indicate that a relatively simple statistical model not only captures the structure of the resting-state networks but also provides a possible method to derive physiological information about various large-scale brain networks. PMID:23340410

  9. Refined composite multivariate generalized multiscale fuzzy entropy: A tool for complexity analysis of multichannel signals

    NASA Astrophysics Data System (ADS)

    Azami, Hamed; Escudero, Javier

    2017-01-01

    Multiscale entropy (MSE) is an appealing tool to characterize the complexity of time series over multiple temporal scales. Recent developments in the field have tried to extend the MSE technique in different ways. Building on these trends, we propose the so-called refined composite multivariate multiscale fuzzy entropy (RCmvMFE) whose coarse-graining step uses variance (RCmvMFEσ2) or mean (RCmvMFEμ). We investigate the behavior of these multivariate methods on multichannel white Gaussian and 1/ f noise signals, and two publicly available biomedical recordings. Our simulations demonstrate that RCmvMFEσ2 and RCmvMFEμ lead to more stable results and are less sensitive to the signals' length in comparison with the other existing multivariate multiscale entropy-based methods. The classification results also show that using both the variance and mean in the coarse-graining step offers complexity profiles with complementary information for biomedical signal analysis. We also made freely available all the Matlab codes used in this paper.

  10. A synergistic approach to protein crystallization: Combination of a fixed-arm carrier with surface entropy reduction

    PubMed Central

    Moon, Andrea F; Mueller, Geoffrey A; Zhong, Xuejun; Pedersen, Lars C

    2010-01-01

    Protein crystallographers are often confronted with recalcitrant proteins not readily crystallizable, or which crystallize in problematic forms. A variety of techniques have been used to surmount such obstacles: crystallization using carrier proteins or antibody complexes, chemical modification, surface entropy reduction, proteolytic digestion, and additive screening. Here we present a synergistic approach for successful crystallization of proteins that do not form diffraction quality crystals using conventional methods. This approach combines favorable aspects of carrier-driven crystallization with surface entropy reduction. We have generated a series of maltose binding protein (MBP) fusion constructs containing different surface mutations designed to reduce surface entropy and encourage crystal lattice formation. The MBP advantageously increases protein expression and solubility, and provides a streamlined purification protocol. Using this technique, we have successfully solved the structures of three unrelated proteins that were previously unattainable. This crystallization technique represents a valuable rescue strategy for protein structure solution when conventional methods fail. PMID:20196072

  11. Nighttime images fusion based on Laplacian pyramid

    NASA Astrophysics Data System (ADS)

    Wu, Cong; Zhan, Jinhao; Jin, Jicheng

    2018-02-01

    This paper expounds method of the average weighted fusion, image pyramid fusion, the wavelet transform and apply these methods on the fusion of multiple exposures nighttime images. Through calculating information entropy and cross entropy of fusion images, we can evaluate the effect of different fusion. Experiments showed that Laplacian pyramid image fusion algorithm is suitable for processing nighttime images fusion, it can reduce the halo while preserving image details.

  12. Discrimination of coherent features in turbulent boundary layers by the entropy method

    NASA Technical Reports Server (NTRS)

    Corke, T. C.; Guezennec, Y. G.

    1984-01-01

    Entropy in information theory is defined as the expected or mean value of the measure of the amount of self-information contained in the ith point of a distribution series x sub i, based on its probability of occurrence p(x sub i). If p(x sub i) is the probability of the ith state of the system in probability space, then the entropy, E(X) = - sigma p(x sub i) logp (x sub i), is a measure of the disorder in the system. Based on this concept, a method was devised which sought to minimize the entropy in a time series in order to construct the signature of the most coherent motions. The constrained minimization was performed using a Lagrange multiplier approach which resulted in the solution of a simultaneous set of non-linear coupled equations to obtain the coherent time series. The application of the method to space-time data taken by a rake of sensors in the near-wall region of a turbulent boundary layer was presented. The results yielded coherent velocity motions made up of locally decelerated or accelerated fluid having a streamwise scale of approximately 100 nu/u(tau), which is in qualitative agreement with the results from other less objective discrimination methods.

  13. Refined composite multiscale weighted-permutation entropy of financial time series

    NASA Astrophysics Data System (ADS)

    Zhang, Yongping; Shang, Pengjian

    2018-04-01

    For quantifying the complexity of nonlinear systems, multiscale weighted-permutation entropy (MWPE) has recently been proposed. MWPE has incorporated amplitude information and been applied to account for the multiple inherent dynamics of time series. However, MWPE may be unreliable, because its estimated values show large fluctuation for slight variation of the data locations, and a significant distinction only for the different length of time series. Therefore, we propose the refined composite multiscale weighted-permutation entropy (RCMWPE). By comparing the RCMWPE results with other methods' results on both synthetic data and financial time series, RCMWPE method shows not only the advantages inherited from MWPE but also lower sensitivity to the data locations, more stable and much less dependent on the length of time series. Moreover, we present and discuss the results of RCMWPE method on the daily price return series from Asian and European stock markets. There are significant differences between Asian markets and European markets, and the entropy values of Hang Seng Index (HSI) are close to but higher than those of European markets. The reliability of the proposed RCMWPE method has been supported by simulations on generated and real data. It could be applied to a variety of fields to quantify the complexity of the systems over multiple scales more accurately.

  14. Entropy-aware projected Landweber reconstruction for quantized block compressive sensing of aerial imagery

    NASA Astrophysics Data System (ADS)

    Liu, Hao; Li, Kangda; Wang, Bing; Tang, Hainie; Gong, Xiaohui

    2017-01-01

    A quantized block compressive sensing (QBCS) framework, which incorporates the universal measurement, quantization/inverse quantization, entropy coder/decoder, and iterative projected Landweber reconstruction, is summarized. Under the QBCS framework, this paper presents an improved reconstruction algorithm for aerial imagery, QBCS, with entropy-aware projected Landweber (QBCS-EPL), which leverages the full-image sparse transform without Wiener filter and an entropy-aware thresholding model for wavelet-domain image denoising. Through analyzing the functional relation between the soft-thresholding factors and entropy-based bitrates for different quantization methods, the proposed model can effectively remove wavelet-domain noise of bivariate shrinkage and achieve better image reconstruction quality. For the overall performance of QBCS reconstruction, experimental results demonstrate that the proposed QBCS-EPL algorithm significantly outperforms several existing algorithms. With the experiment-driven methodology, the QBCS-EPL algorithm can obtain better reconstruction quality at a relatively moderate computational cost, which makes it more desirable for aerial imagery applications.

  15. Generalized permutation entropy analysis based on the two-index entropic form S q , δ

    NASA Astrophysics Data System (ADS)

    Xu, Mengjia; Shang, Pengjian

    2015-05-01

    Permutation entropy (PE) is a novel measure to quantify the complexity of nonlinear time series. In this paper, we propose a generalized permutation entropy ( P E q , δ ) based on the recently postulated entropic form, S q , δ , which was proposed as an unification of the well-known Sq of nonextensive-statistical mechanics and S δ , a possibly appropriate candidate for the black-hole entropy. We find that P E q , δ with appropriate parameters can amplify minor changes and trends of complexities in comparison to PE. Experiments with this generalized permutation entropy method are performed with both synthetic and stock data showing its power. Results show that P E q , δ is an exponential function of q and the power ( k ( δ ) ) is a constant if δ is determined. Some discussions about k ( δ ) are provided. Besides, we also find some interesting results about power law.

  16. Effect of extreme data loss on heart rate signals quantified by entropy analysis

    NASA Astrophysics Data System (ADS)

    Li, Yu; Wang, Jun; Li, Jin; Liu, Dazhao

    2015-02-01

    The phenomenon of data loss always occurs in the analysis of large databases. Maintaining the stability of analysis results in the event of data loss is very important. In this paper, we used a segmentation approach to generate a synthetic signal that is randomly wiped from data according to the Gaussian distribution and the exponential distribution of the original signal. Then, the logistic map is used as verification. Finally, two methods of measuring entropy-base-scale entropy and approximate entropy-are comparatively analyzed. Our results show the following: (1) Two key parameters-the percentage and the average length of removed data segments-can change the sequence complexity according to logistic map testing. (2) The calculation results have preferable stability for base-scale entropy analysis, which is not sensitive to data loss. (3) The loss percentage of HRV signals should be controlled below the range (p = 30 %), which can provide useful information in clinical applications.

  17. Investigation on thermo-acoustic instability dynamic characteristics of hydrocarbon fuel flowing in scramjet cooling channel based on wavelet entropy method

    NASA Astrophysics Data System (ADS)

    Zan, Hao; Li, Haowei; Jiang, Yuguang; Wu, Meng; Zhou, Weixing; Bao, Wen

    2018-06-01

    As part of our efforts to find ways and means to further improve the regenerative cooling technology in scramjet, the experiments of thermo-acoustic instability dynamic characteristics of hydrocarbon fuel flowing have been conducted in horizontal circular tubes at different conditions. The experimental results indicate that there is a developing process from thermo-acoustic stability to instability. In order to have a deep understanding on the developing process of thermo-acoustic instability, the method of Multi-scale Shannon Wavelet Entropy (MSWE) based on Wavelet Transform Correlation Filter (WTCF) and Multi-Scale Shannon Entropy (MSE) is adopted in this paper. The results demonstrate that the developing process of thermo-acoustic instability from noise and weak signals is well detected by MSWE method and the differences among the stability, the developing process and the instability can be identified. These properties render the method particularly powerful for warning thermo-acoustic instability of hydrocarbon fuel flowing in scramjet cooling channels. The mass flow rate and the inlet pressure will make an influence on the developing process of the thermo-acoustic instability. The investigation on thermo-acoustic instability dynamic characteristics at supercritical pressure based on wavelet entropy method offers guidance on the control of scramjet fuel supply, which can secure stable fuel flowing in regenerative cooling system.

  18. Free energy calculations along entropic pathways. I. Homogeneous vapor-liquid nucleation for atomic and molecular systems

    NASA Astrophysics Data System (ADS)

    Desgranges, Caroline; Delhommelle, Jerome

    2016-11-01

    Using the entropy S as a reaction coordinate, we determine the free energy barrier associated with the formation of a liquid droplet from a supersaturated vapor for atomic and molecular fluids. For this purpose, we develop the μ V T -S simulation method that combines the advantages of the grand-canonical ensemble, that allows for a direct evaluation of the entropy, and of the umbrella sampling method, that is well suited to the study of an activated process like nucleation. Applying this approach to an atomic system such as Ar allows us to test the method. The results show that the μ V T -S method gives the correct dependence on supersaturation of the height of the free energy barrier and of the size of the critical droplet, when compared to predictions from the classical nucleation theory and to previous simulation results. In addition, it provides insight into the relation between the entropy and droplet formation throughout this process. An additional advantage of the μ V T -S approach is its direct transferability to molecular systems, since it uses the entropy of the system as the reaction coordinate. Applications of the μ V T -S simulation method to N2 and CO2 are presented and discussed in this work, showing the versatility of the μ V T -S approach.

  19. Cross-entropy clustering framework for catchment classification

    NASA Astrophysics Data System (ADS)

    Tongal, Hakan; Sivakumar, Bellie

    2017-09-01

    There is an increasing interest in catchment classification and regionalization in hydrology, as they are useful for identification of appropriate model complexity and transfer of information from gauged catchments to ungauged ones, among others. This study introduces a nonlinear cross-entropy clustering (CEC) method for classification of catchments. The method specifically considers embedding dimension (m), sample entropy (SampEn), and coefficient of variation (CV) to represent dimensionality, complexity, and variability of the time series, respectively. The method is applied to daily streamflow time series from 217 gauging stations across Australia. The results suggest that a combination of linear and nonlinear parameters (i.e. m, SampEn, and CV), representing different aspects of the underlying dynamics of streamflows, could be useful for determining distinct patterns of flow generation mechanisms within a nonlinear clustering framework. For the 217 streamflow time series, nine hydrologically homogeneous clusters that have distinct patterns of flow regime characteristics and specific dominant hydrological attributes with different climatic features are obtained. Comparison of the results with those obtained using the widely employed k-means clustering method (which results in five clusters, with the loss of some information about the features of the clusters) suggests the superiority of the cross-entropy clustering method. The outcomes from this study provide a useful guideline for employing the nonlinear dynamic approaches based on hydrologic signatures and for gaining an improved understanding of streamflow variability at a large scale.

  20. Noise and Complexity in Human Postural Control: Interpreting the Different Estimations of Entropy

    PubMed Central

    Rhea, Christopher K.; Silver, Tobin A.; Hong, S. Lee; Ryu, Joong Hyun; Studenka, Breanna E.; Hughes, Charmayne M. L.; Haddad, Jeffrey M.

    2011-01-01

    Background Over the last two decades, various measures of entropy have been used to examine the complexity of human postural control. In general, entropy measures provide information regarding the health, stability and adaptability of the postural system that is not captured when using more traditional analytical techniques. The purpose of this study was to examine how noise, sampling frequency and time series length influence various measures of entropy when applied to human center of pressure (CoP) data, as well as in synthetic signals with known properties. Such a comparison is necessary to interpret data between and within studies that use different entropy measures, equipment, sampling frequencies or data collection durations. Methods and Findings The complexity of synthetic signals with known properties and standing CoP data was calculated using Approximate Entropy (ApEn), Sample Entropy (SampEn) and Recurrence Quantification Analysis Entropy (RQAEn). All signals were examined at varying sampling frequencies and with varying amounts of added noise. Additionally, an increment time series of the original CoP data was examined to remove long-range correlations. Of the three measures examined, ApEn was the least robust to sampling frequency and noise manipulations. Additionally, increased noise led to an increase in SampEn, but a decrease in RQAEn. Thus, noise can yield inconsistent results between the various entropy measures. Finally, the differences between the entropy measures were minimized in the increment CoP data, suggesting that long-range correlations should be removed from CoP data prior to calculating entropy. Conclusions The various algorithms typically used to quantify the complexity (entropy) of CoP may yield very different results, particularly when sampling frequency and noise are different. The results of this study are discussed within the context of the neural noise and loss of complexity hypotheses. PMID:21437281

  1. Secondary structural entropy in RNA switch (Riboswitch) identification.

    PubMed

    Manzourolajdad, Amirhossein; Arnold, Jonathan

    2015-04-28

    RNA regulatory elements play a significant role in gene regulation. Riboswitches, a widespread group of regulatory RNAs, are vital components of many bacterial genomes. These regulatory elements generally function by forming a ligand-induced alternative fold that controls access to ribosome binding sites or other regulatory sites in RNA. Riboswitch-mediated mechanisms are ubiquitous across bacterial genomes. A typical class of riboswitch has its own unique structural and biological complexity, making de novo riboswitch identification a formidable task. Traditionally, riboswitches have been identified through comparative genomics based on sequence and structural homology. The limitations of structural-homology-based approaches, coupled with the assumption that there is a great diversity of undiscovered riboswitches, suggests the need for alternative methods for riboswitch identification, possibly based on features intrinsic to their structure. As of yet, no such reliable method has been proposed. We used structural entropy of riboswitch sequences as a measure of their secondary structural dynamics. Entropy values of a diverse set of riboswitches were compared to that of their mutants, their dinucleotide shuffles, and their reverse complement sequences under different stochastic context-free grammar folding models. Significance of our results was evaluated by comparison to other approaches, such as the base-pairing entropy and energy landscapes dynamics. Classifiers based on structural entropy optimized via sequence and structural features were devised as riboswitch identifiers and tested on Bacillus subtilis, Escherichia coli, and Synechococcus elongatus as an exploration of structural entropy based approaches. The unusually long untranslated region of the cotH in Bacillus subtilis, as well as upstream regions of certain genes, such as the sucC genes were associated with significant structural entropy values in genome-wide examinations. Various tests show that there is in fact a relationship between higher structural entropy and the potential for the RNA sequence to have alternative structures, within the limitations of our methodology. This relationship, though modest, is consistent across various tests. Understanding the behavior of structural entropy as a fairly new feature for RNA conformational dynamics, however, may require extensive exploratory investigation both across RNA sequences and folding models.

  2. Entropy Methods For Univariate Distributions in Decision Analysis

    NASA Astrophysics Data System (ADS)

    Abbas, Ali E.

    2003-03-01

    One of the most important steps in decision analysis practice is the elicitation of the decision-maker's belief about an uncertainty of interest in the form of a representative probability distribution. However, the probability elicitation process is a task that involves many cognitive and motivational biases. Alternatively, the decision-maker may provide other information about the distribution of interest, such as its moments, and the maximum entropy method can be used to obtain a full distribution subject to the given moment constraints. In practice however, decision makers cannot readily provide moments for the distribution, and are much more comfortable providing information about the fractiles of the distribution of interest or bounds on its cumulative probabilities. In this paper we present a graphical method to determine the maximum entropy distribution between upper and lower probability bounds and provide an interpretation for the shape of the maximum entropy distribution subject to fractile constraints, (FMED). We also discuss the problems with the FMED in that it is discontinuous and flat over each fractile interval. We present a heuristic approximation to a distribution if in addition to its fractiles, we also know it is continuous and work through full examples to illustrate the approach.

  3. Weighted multiscale Rényi permutation entropy of nonlinear time series

    NASA Astrophysics Data System (ADS)

    Chen, Shijian; Shang, Pengjian; Wu, Yue

    2018-04-01

    In this paper, based on Rényi permutation entropy (RPE), which has been recently suggested as a relative measure of complexity in nonlinear systems, we propose multiscale Rényi permutation entropy (MRPE) and weighted multiscale Rényi permutation entropy (WMRPE) to quantify the complexity of nonlinear time series over multiple time scales. First, we apply MPRE and WMPRE to the synthetic data and make a comparison of modified methods and RPE. Meanwhile, the influence of the change of parameters is discussed. Besides, we interpret the necessity of considering not only multiscale but also weight by taking the amplitude into account. Then MRPE and WMRPE methods are employed to the closing prices of financial stock markets from different areas. By observing the curves of WMRPE and analyzing the common statistics, stock markets are divided into 4 groups: (1) DJI, S&P500, and HSI, (2) NASDAQ and FTSE100, (3) DAX40 and CAC40, and (4) ShangZheng and ShenCheng. Results show that the standard deviations of weighted methods are smaller, showing WMRPE is able to ensure the results more robust. Besides, WMPRE can provide abundant dynamical properties of complex systems, and demonstrate the intrinsic mechanism.

  4. Calculating binding free energies of host-guest systems using the AMOEBA polarizable force field.

    PubMed

    Bell, David R; Qi, Rui; Jing, Zhifeng; Xiang, Jin Yu; Mejias, Christopher; Schnieders, Michael J; Ponder, Jay W; Ren, Pengyu

    2016-11-09

    Molecular recognition is of paramount interest in many applications. Here we investigate a series of host-guest systems previously used in the SAMPL4 blind challenge by using molecular simulations and the AMOEBA polarizable force field. The free energy results computed by Bennett's acceptance ratio (BAR) method using the AMOEBA polarizable force field ranked favorably among the entries submitted to the SAMPL4 host-guest competition [Muddana, et al., J. Comput.-Aided Mol. Des., 2014, 28, 305-317]. In this work we conduct an in-depth analysis of the AMOEBA force field host-guest binding thermodynamics by using both BAR and the orthogonal space random walk (OSRW) methods. The binding entropy-enthalpy contributions are analyzed for each host-guest system. For systems of inordinate binding entropy-enthalpy values, we further examine the hydrogen bonding patterns and configurational entropy contribution. The binding mechanism of this series of host-guest systems varies from ligand to ligand, driven by enthalpy and/or entropy changes. Convergence of BAR and OSRW binding free energy methods is discussed. Ultimately, this work illustrates the value of molecular modelling and advanced force fields for the exploration and interpretation of binding thermodynamics.

  5. Le Chatelier's Principle, Temperature Effects, and Entropy.

    ERIC Educational Resources Information Center

    Campbell, J. Arthur

    1985-01-01

    One of the most useful methods of understanding chemical equilibria is provided by Le Chatelier's principle. The relationships between this principle, temperature, and entropy are discussed. Tables with thermodynamic data for some net reactions commonly used to illustrate the principle and for reactions involving gases are included. (JN)

  6. Computer program for calculation of real gas turbulent boundary layers with variable edge entropy

    NASA Technical Reports Server (NTRS)

    Boney, L. R.

    1974-01-01

    A user's manual for a computer program which calculates real gas turbulent boundary layers with variable edge entropy on a blunt cone or flat plate at zero angle of attack is presented. An integral method is used. The method includes the effect of real gas in thermodynamic equilibrium and variable edge entropy. A modified Crocco enthalpy velocity relationship is used for the enthalpy profiles and an empirical correlation of the N-power law profile is used for the velocity profile. The skin-friction-coefficient expressions of Spalding and Chi and Van Driest are used in the solution of the momentum equation and in the heat-transfer predictions that use several modified forms of Reynolds analogy.

  7. Markov and non-Markov processes in complex systems by the dynamical information entropy

    NASA Astrophysics Data System (ADS)

    Yulmetyev, R. M.; Gafarov, F. M.

    1999-12-01

    We consider the Markov and non-Markov processes in complex systems by the dynamical information Shannon entropy (DISE) method. The influence and important role of the two mutually dependent channels of entropy alternation (creation or generation of correlation) and anti-correlation (destroying or annihilation of correlation) have been discussed. The developed method has been used for the analysis of the complex systems of various natures: slow neutron scattering in liquid cesium, psychology (short-time numeral and pattern human memory and effect of stress on the dynamical taping-test), random dynamics of RR-intervals in human ECG (problem of diagnosis of various disease of the human cardio-vascular systems), chaotic dynamics of the parameters of financial markets and ecological systems.

  8. Wang-Landau method for calculating Rényi entropies in finite-temperature quantum Monte Carlo simulations.

    PubMed

    Inglis, Stephen; Melko, Roger G

    2013-01-01

    We implement a Wang-Landau sampling technique in quantum Monte Carlo (QMC) simulations for the purpose of calculating the Rényi entanglement entropies and associated mutual information. The algorithm converges an estimate for an analog to the density of states for stochastic series expansion QMC, allowing a direct calculation of Rényi entropies without explicit thermodynamic integration. We benchmark results for the mutual information on two-dimensional (2D) isotropic and anisotropic Heisenberg models, a 2D transverse field Ising model, and a three-dimensional Heisenberg model, confirming a critical scaling of the mutual information in cases with a finite-temperature transition. We discuss the benefits and limitations of broad sampling techniques compared to standard importance sampling methods.

  9. Maximum entropy, fluctuations and priors

    NASA Astrophysics Data System (ADS)

    Caticha, A.

    2001-05-01

    The method of maximum entropy (ME) is extended to address the following problem: Once one accepts that the ME distribution is to be preferred over all others, the question is to what extent are distributions with lower entropy supposed to be ruled out. Two applications are given. The first is to the theory of thermodynamic fluctuations. The formulation is exact, covariant under changes of coordinates, and allows fluctuations of both the extensive and the conjugate intensive variables. The second application is to the construction of an objective prior for Bayesian inference. The prior obtained by following the ME method to its inevitable conclusion turns out to be a special case (α=1) of what are currently known under the name of entropic priors. .

  10. Polarimetric Decomposition Analysis of the Deepwater Horizon Oil Slick Using L-Band UAVSAR Data

    NASA Technical Reports Server (NTRS)

    Jones, Cathleen; Minchew, Brent; Holt, Benjamin

    2011-01-01

    We report here an analysis of the polarization dependence of L-band radar backscatter from the main slick of the Deepwater Horizon oil spill, with specific attention to the utility of polarimetric decomposition analysis for discrimination of oil from clean water and identification of variations in the oil characteristics. For this study we used data collected with the UAVSAR instrument from opposing look directions directly over the main oil slick. We find that both the Cloude-Pottier and Shannon entropy polarimetric decomposition methods offer promise for oil discrimination, with the Shannon entropy method yielding the same information as contained in the Cloude-Pottier entropy and averaged in tensity parameters, but with significantly less computational complexity

  11. A unified approach to computational drug discovery.

    PubMed

    Tseng, Chih-Yuan; Tuszynski, Jack

    2015-11-01

    It has been reported that a slowdown in the development of new medical therapies is affecting clinical outcomes. The FDA has thus initiated the Critical Path Initiative project investigating better approaches. We review the current strategies in drug discovery and focus on the advantages of the maximum entropy method being introduced in this area. The maximum entropy principle is derived from statistical thermodynamics and has been demonstrated to be an inductive inference tool. We propose a unified method to drug discovery that hinges on robust information processing using entropic inductive inference. Increasingly, applications of maximum entropy in drug discovery employ this unified approach and demonstrate the usefulness of the concept in the area of pharmaceutical sciences. Copyright © 2015. Published by Elsevier Ltd.

  12. Spatial Decomposition of Translational Water–Water Correlation Entropy in Binding Pockets

    PubMed Central

    2015-01-01

    A number of computational tools available today compute the thermodynamic properties of water at surfaces and in binding pockets by using inhomogeneous solvation theory (IST) to analyze explicit-solvent simulations. Such methods enable qualitative spatial mappings of both energy and entropy around a solute of interest and can also be applied quantitatively. However, the entropy estimates of existing methods have, to date, been almost entirely limited to the first-order terms in the IST’s entropy expansion. These first-order terms account for localization and orientation of water molecules in the field of the solute but not for the modification of water–water correlations by the solute. Here, we present an extension of the Grid Inhomogeneous Solvation Theory (GIST) approach which accounts for water–water translational correlations. The method involves rewriting the two-point density of water in terms of a conditional density and utilizes the efficient nearest-neighbor entropy estimation approach. Spatial maps of this second order term, for water in and around the synthetic host cucurbit[7]uril and in the binding pocket of the enzyme Factor Xa, reveal mainly negative contributions, indicating solute-induced water–water correlations relative to bulk water; particularly strong signals are obtained for sites at the entrances of cavities or pockets. This second-order term thus enters with the same, negative, sign as the first order translational and orientational terms. Numerical and convergence properties of the methodology are examined. PMID:26636620

  13. Characterization of time dynamical evolution of electroencephalographic epileptic records

    NASA Astrophysics Data System (ADS)

    Rosso, Osvaldo A.; Mairal, María. Liliana

    2002-09-01

    Since traditional electrical brain signal analysis is mostly qualitative, the development of new quantitative methods is crucial for restricting the subjectivity in the study of brain signals. These methods are particularly fruitful when they are strongly correlated with intuitive physical concepts that allow a better understanding of the brain dynamics. The processing of information by the brain is reflected in dynamical changes of the electrical activity in time, frequency, and space. Therefore, the concomitant studies require methods capable of describing the qualitative variation of the signal in both time and frequency. The entropy defined from the wavelet functions is a measure of the order/disorder degree present in a time series. In consequence, this entropy evaluates over EEG time series gives information about the underlying dynamical process in the brain, more specifically of the synchrony of the group cells involved in the different neural responses. The total wavelet entropy results independent of the signal energy and becomes a good tool for detecting dynamical changes in the system behavior. In addition the total wavelet entropy has advantages over the Lyapunov exponents, because it is parameter free and independent of the stationarity of the time series. In this work we compared the results of the time evolution of the chaoticity (Lyapunov exponent as a function of time) with the corresponding time evolution of the total wavelet entropy in two different EEG records, one provide by depth electrodes and other by scalp ones.

  14. Selection of entropy-measure parameters for knowledge discovery in heart rate variability data

    PubMed Central

    2014-01-01

    Background Heart rate variability is the variation of the time interval between consecutive heartbeats. Entropy is a commonly used tool to describe the regularity of data sets. Entropy functions are defined using multiple parameters, the selection of which is controversial and depends on the intended purpose. This study describes the results of tests conducted to support parameter selection, towards the goal of enabling further biomarker discovery. Methods This study deals with approximate, sample, fuzzy, and fuzzy measure entropies. All data were obtained from PhysioNet, a free-access, on-line archive of physiological signals, and represent various medical conditions. Five tests were defined and conducted to examine the influence of: varying the threshold value r (as multiples of the sample standard deviation σ, or the entropy-maximizing rChon), the data length N, the weighting factors n for fuzzy and fuzzy measure entropies, and the thresholds rF and rL for fuzzy measure entropy. The results were tested for normality using Lilliefors' composite goodness-of-fit test. Consequently, the p-value was calculated with either a two sample t-test or a Wilcoxon rank sum test. Results The first test shows a cross-over of entropy values with regard to a change of r. Thus, a clear statement that a higher entropy corresponds to a high irregularity is not possible, but is rather an indicator of differences in regularity. N should be at least 200 data points for r = 0.2 σ and should even exceed a length of 1000 for r = rChon. The results for the weighting parameters n for the fuzzy membership function show different behavior when coupled with different r values, therefore the weighting parameters have been chosen independently for the different threshold values. The tests concerning rF and rL showed that there is no optimal choice, but r = rF = rL is reasonable with r = rChon or r = 0.2σ. Conclusions Some of the tests showed a dependency of the test significance on the data at hand. Nevertheless, as the medical conditions are unknown beforehand, compromises had to be made. Optimal parameter combinations are suggested for the methods considered. Yet, due to the high number of potential parameter combinations, further investigations of entropy for heart rate variability data will be necessary. PMID:25078574

  15. Studies of Entanglement Entropy, and Relativistic Fluids for Thermal Field Theories

    NASA Astrophysics Data System (ADS)

    Spillane, Michael

    In this dissertation we consider physical consequences of adding a finite temperature to quantum field theories. At small length scales entanglement is a critically important feature. It is therefore unsurprising that entanglement entropy and Renyi entropy are useful tools in studying quantum phase transition, and quantum information. In this thesis we consider the corrections to entanglement and Renyi entropies due to addition of a finite temperature. More specifically, we investigate the entanglement entropy of a massive scalar field in 1+1 dimensions at nonzero temperature. In the small mass ( m) and temperature (T) limit, we put upper and lower bounds on the two largest eigenvalues of the covariance matrix used to compute the entanglement entropy. We argue that the entanglement entropy has e-m/T scaling in the limit T << m.. Additionally, we calculate thermal corrections to Renyi entropies for free massless fermions on R x S d-1. By expanding the density matrix in a Boltzmann sum, the problem of finding the Renyi entropies can be mapped to the problem of calculating a two point function on an n-sheeted cover of the sphere. We map the problem on the sphere to a conical region in Euclidean space. By using the method of images, we calculate the two point function and recover the Renyi entropies. At large length scales hydrodynamics is a useful way to study quantum field theories. We review recent interest in the Riemann problem as a method for generating a non-equilibrium steady state. The initial conditions consist of a planar interface between two halves of a system held at different temperatures in a hydrodynamic regime. The resulting fluid flow contains a fixed temperature region with a nonzero flux. We briefly discuss the effects of a conserved charge. Next we discuss deforming the relativistic equations with a nonlinear term and how that deformation affects the temperature and velocity in the region connecting the asymptotic fluids. Finally, we study properties of a non-equilibrium steady state generated when two heat baths are initially in contact with one another. The dynamics of the system in question are governed by holographic duality to a blackhole. We discuss the "phase diagram" associated with the steady state of the dual, dynamical black hole and its relation to the fluid/gravity correspondence.

  16. Entropy Generation Minimization in Dimethyl Ether Synthesis: A Case Study

    NASA Astrophysics Data System (ADS)

    Kingston, Diego; Razzitte, Adrián César

    2018-04-01

    Entropy generation minimization is a method that helps improve the efficiency of real processes and devices. In this article, we study the entropy production (due to chemical reactions, heat exchange and friction) in a conventional reactor that synthesizes dimethyl ether and minimize it by modifying different operating variables of the reactor, such as composition, temperature and pressure, while aiming at a fixed production of dimethyl ether. Our results indicate that it is possible to reduce the entropy production rate by nearly 70 % and that, by changing only the inlet composition, it is possible to cut it by nearly 40 %, though this comes at the expense of greater dissipation due to heat transfer. We also study the alternative of coupling the reactor with another, where dehydrogenation of methylcyclohexane takes place. In that case, entropy generation can be reduced by 54 %, when pressure, temperature and inlet molar flows are varied. These examples show that entropy generation analysis can be a valuable tool in engineering design and applications aiming at process intensification and efficient operation of plant equipment.

  17. Entropy information of heart rate variability and its power spectrum during day and night

    NASA Astrophysics Data System (ADS)

    Jin, Li; Jun, Wang

    2013-07-01

    Physiologic systems generate complex fluctuations in their output signals that reflect the underlying dynamics. We employed the base-scale entropy method and the power spectral analysis to study the 24 hours heart rate variability (HRV) signals. The results show that such profound circadian-, age- and pathologic-dependent changes are accompanied by changes in base-scale entropy and power spectral distribution. Moreover, the base-scale entropy changes reflect the corresponding changes in the autonomic nerve outflow. With the suppression of the vagal tone and dominance of the sympathetic tone in congestive heart failure (CHF) subjects, there is more variability in the date fluctuation mode. So the higher base-scale entropy belongs to CHF subjects. With the decrease of the sympathetic tone and the respiratory frequency (RSA) becoming more pronounced with slower breathing during sleeping, the base-scale entropy drops in CHF subjects. The HRV series of the two healthy groups have the same diurnal/nocturnal trend as the CHF series. The fluctuation dynamics trend of data in the three groups can be described as “HF effect”.

  18. Brain Entropy Mapping Using fMRI

    PubMed Central

    Wang, Ze; Li, Yin; Childress, Anna Rose; Detre, John A.

    2014-01-01

    Entropy is an important trait for life as well as the human brain. Characterizing brain entropy (BEN) may provide an informative tool to assess brain states and brain functions. Yet little is known about the distribution and regional organization of BEN in normal brain. The purpose of this study was to examine the whole brain entropy patterns using a large cohort of normal subjects. A series of experiments were first performed to validate an approximate entropy measure regarding its sensitivity, specificity, and reliability using synthetic data and fMRI data. Resting state fMRI data from a large cohort of normal subjects (n = 1049) from multi-sites were then used to derive a 3-dimensional BEN map, showing a sharp low-high entropy contrast between the neocortex and the rest of brain. The spatial heterogeneity of resting BEN was further studied using a data-driven clustering method, and the entire brain was found to be organized into 7 hierarchical regional BEN networks that are consistent with known structural and functional brain parcellations. These findings suggest BEN mapping as a physiologically and functionally meaningful measure for studying brain functions. PMID:24657999

  19. Irreversible entropy model for damage diagnosis in resistors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cuadras, Angel, E-mail: angel.cuadras@upc.edu; Crisóstomo, Javier; Ovejas, Victoria J.

    2015-10-28

    We propose a method to characterize electrical resistor damage based on entropy measurements. Irreversible entropy and the rate at which it is generated are more convenient parameters than resistance for describing damage because they are essentially positive in virtue of the second law of thermodynamics, whereas resistance may increase or decrease depending on the degradation mechanism. Commercial resistors were tested in order to characterize the damage induced by power surges. Resistors were biased with constant and pulsed voltage signals, leading to power dissipation in the range of 4–8 W, which is well above the 0.25 W nominal power to initiate failure. Entropymore » was inferred from the added power and temperature evolution. A model is proposed to understand the relationship among resistance, entropy, and damage. The power surge dissipates into heat (Joule effect) and damages the resistor. The results show a correlation between entropy generation rate and resistor failure. We conclude that damage can be conveniently assessed from irreversible entropy generation. Our results for resistors can be easily extrapolated to other systems or machines that can be modeled based on their resistance.« less

  20. A method of solid-solid phase equilibrium calculation by molecular dynamics

    NASA Astrophysics Data System (ADS)

    Karavaev, A. V.; Dremov, V. V.

    2016-12-01

    A method for evaluation of solid-solid phase equilibrium curves in molecular dynamics simulation for a given model of interatomic interaction is proposed. The method allows to calculate entropies of crystal phases and provides an accuracy comparable with that of the thermodynamic integration method by Frenkel and Ladd while it is much simpler in realization and less intense computationally. The accuracy of the proposed method was demonstrated in MD calculations of entropies for EAM potential for iron and for MEAM potential for beryllium. The bcc-hcp equilibrium curves for iron calculated for the EAM potential by the thermodynamic integration method and by the proposed one agree quite well.

  1. Generalized composite multiscale permutation entropy and Laplacian score based rolling bearing fault diagnosis

    NASA Astrophysics Data System (ADS)

    Zheng, Jinde; Pan, Haiyang; Yang, Shubao; Cheng, Junsheng

    2018-01-01

    Multiscale permutation entropy (MPE) is a recently proposed nonlinear dynamic method for measuring the randomness and detecting the nonlinear dynamic change of time series and can be used effectively to extract the nonlinear dynamic fault feature from vibration signals of rolling bearing. To solve the drawback of coarse graining process in MPE, an improved MPE method called generalized composite multiscale permutation entropy (GCMPE) was proposed in this paper. Also the influence of parameters on GCMPE and its comparison with the MPE are studied by analyzing simulation data. GCMPE was applied to the fault feature extraction from vibration signal of rolling bearing and then based on the GCMPE, Laplacian score for feature selection and the Particle swarm optimization based support vector machine, a new fault diagnosis method for rolling bearing was put forward in this paper. Finally, the proposed method was applied to analyze the experimental data of rolling bearing. The analysis results show that the proposed method can effectively realize the fault diagnosis of rolling bearing and has a higher fault recognition rate than the existing methods.

  2. Minimum entropy deconvolution optimized sinusoidal synthesis and its application to vibration based fault detection

    NASA Astrophysics Data System (ADS)

    Li, Gang; Zhao, Qing

    2017-03-01

    In this paper, a minimum entropy deconvolution based sinusoidal synthesis (MEDSS) filter is proposed to improve the fault detection performance of the regular sinusoidal synthesis (SS) method. The SS filter is an efficient linear predictor that exploits the frequency properties during model construction. The phase information of the harmonic components is not used in the regular SS filter. However, the phase relationships are important in differentiating noise from characteristic impulsive fault signatures. Therefore, in this work, the minimum entropy deconvolution (MED) technique is used to optimize the SS filter during the model construction process. A time-weighted-error Kalman filter is used to estimate the MEDSS model parameters adaptively. Three simulation examples and a practical application case study are provided to illustrate the effectiveness of the proposed method. The regular SS method and the autoregressive MED (ARMED) method are also implemented for comparison. The MEDSS model has demonstrated superior performance compared to the regular SS method and it also shows comparable or better performance with much less computational intensity than the ARMED method.

  3. Characterizing Brain Structures and Remodeling after TBI Based on Information Content, Diffusion Entropy

    PubMed Central

    Fozouni, Niloufar; Chopp, Michael; Nejad-Davarani, Siamak P.; Zhang, Zheng Gang; Lehman, Norman L.; Gu, Steven; Ueno, Yuji; Lu, Mei; Ding, Guangliang; Li, Lian; Hu, Jiani; Bagher-Ebadian, Hassan; Hearshen, David; Jiang, Quan

    2013-01-01

    Background To overcome the limitations of conventional diffusion tensor magnetic resonance imaging resulting from the assumption of a Gaussian diffusion model for characterizing voxels containing multiple axonal orientations, Shannon's entropy was employed to evaluate white matter structure in human brain and in brain remodeling after traumatic brain injury (TBI) in a rat. Methods Thirteen healthy subjects were investigated using a Q-ball based DTI data sampling scheme. FA and entropy values were measured in white matter bundles, white matter fiber crossing areas, different gray matter (GM) regions and cerebrospinal fluid (CSF). Axonal densities' from the same regions of interest (ROIs) were evaluated in Bielschowsky and Luxol fast blue stained autopsy (n = 30) brain sections by light microscopy. As a case demonstration, a Wistar rat subjected to TBI and treated with bone marrow stromal cells (MSC) 1 week after TBI was employed to illustrate the superior ability of entropy over FA in detecting reorganized crossing axonal bundles as confirmed by histological analysis with Bielschowsky and Luxol fast blue staining. Results Unlike FA, entropy was less affected by axonal orientation and more affected by axonal density. A significant agreement (r = 0.91) was detected between entropy values from in vivo human brain and histologically measured axonal density from post mortum from the same brain structures. The MSC treated TBI rat demonstrated that the entropy approach is superior to FA in detecting axonal remodeling after injury. Compared with FA, entropy detected new axonal remodeling regions with crossing axons, confirmed with immunohistological staining. Conclusions Entropy measurement is more effective in distinguishing axonal remodeling after injury, when compared with FA. Entropy is also more sensitive to axonal density than axonal orientation, and thus may provide a more accurate reflection of axonal changes that occur in neurological injury and disease. PMID:24143186

  4. Quantifying ‘Causality’ in Complex Systems: Understanding Transfer Entropy

    PubMed Central

    Abdul Razak, Fatimah; Jensen, Henrik Jeldtoft

    2014-01-01

    ‘Causal’ direction is of great importance when dealing with complex systems. Often big volumes of data in the form of time series are available and it is important to develop methods that can inform about possible causal connections between the different observables. Here we investigate the ability of the Transfer Entropy measure to identify causal relations embedded in emergent coherent correlations. We do this by firstly applying Transfer Entropy to an amended Ising model. In addition we use a simple Random Transition model to test the reliability of Transfer Entropy as a measure of ‘causal’ direction in the presence of stochastic fluctuations. In particular we systematically study the effect of the finite size of data sets. PMID:24955766

  5. Entanglement entropy of AdS5 × S5 with massive flavors

    NASA Astrophysics Data System (ADS)

    Hu, Sen; Wu, Guozhen

    2018-01-01

    We consider backreacted AdS5 × S5 coupled with Nf massive flavors introduced by D7 branes. The backreacted geometry is in the Veneziano limit with fixed Nf/Nc. By dividing one of the directions into a line segment with length l, we get two subspaces. Then we calculate the entanglement entropy between them. With the method of [I. R. Klebanov, D. Kutasov and A. Murugan, Nucl. Phys. B 796, 274 (2008)], we are able to find the cut-off independent part of the entanglement entropy and finally find that this geometry shows no confinement/deconfinement phase transition at zero temperature from the holographic entanglement entropy point of view similar to the case in pure AdS5 × S5.

  6. Investigation of Heat and Mass Transfer and Irreversibility Phenomena Within a Three-Dimensional Tilted Enclosure for Different Shapes

    NASA Astrophysics Data System (ADS)

    Oueslati, F.; Ben-Beya, B.

    2018-01-01

    Three-dimensional thermosolutal natural convection and entropy generation within an inclined enclosure is investigated in the current study. A numerical method based on the finite volume method and a full multigrid technique is implemented to solve the governing equations. Effects of various parameters, namely, the aspect ratio, buoyancy ratio, and tilt angle on the flow patterns and entropy generation are predicted and discussed.

  7. Advanced image fusion algorithms for Gamma Knife treatment planning. Evaluation and proposal for clinical use.

    PubMed

    Apostolou, N; Papazoglou, Th; Koutsouris, D

    2006-01-01

    Image fusion is a process of combining information from multiple sensors. It is a useful tool implemented in the treatment planning programme of Gamma Knife Radiosurgery. In this paper we evaluate advanced image fusion algorithms for Matlab platform and head images. We develop nine level grayscale image fusion methods: average, principal component analysis (PCA), discrete wavelet transform (DWT) and Laplacian, filter - subtract - decimate (FSD), contrast, gradient, morphological pyramid and a shift invariant discrete wavelet transform (SIDWT) method in Matlab platform. We test these methods qualitatively and quantitatively. The quantitative criteria we use are the Root Mean Square Error (RMSE), the Mutual Information (MI), the Standard Deviation (STD), the Entropy (H), the Difference Entropy (DH) and the Cross Entropy (CEN). The qualitative are: natural appearance, brilliance contrast, presence of complementary features and enhancement of common features. Finally we make clinically useful suggestions.

  8. Black-hole entropy and thermodynamics from symmetries

    NASA Astrophysics Data System (ADS)

    Silva, Sebastián

    2002-08-01

    Given a boundary of spacetime preserved by a Diff(S1) sub-algebra, we propose a systematic method to compute the zero mode and the central extension of the associated Virasoro algebra of charges. Using these values in the Cardy formula, we may derive an associated statistical entropy to be compared with the Bekenstein-Hawking result. To illustrate our method, we study in detail the BTZ and the rotating Kerr-adS4 black holes (at spatial infinity and on the horizon). In both cases, we are able to reproduce the area law with the correct factor of 1/4 for the entropy. We also recover within our framework the first law of black-hole thermodynamics. We compare our results with the analogous derivations proposed by Carlip and others. Although similar, our method differs in the computation of the zero mode. In particular, the normalization of the ground state is automatically fixed by our construction.

  9. Study of thermodynamic properties of liquid binary alloys by a pseudopotential method

    NASA Astrophysics Data System (ADS)

    Vora, Aditya M.

    2010-11-01

    On the basis of the Percus-Yevick hard-sphere model as a reference system and the Gibbs-Bogoliubov inequality, a thermodynamic perturbation method is applied with the use of the well-known model potential. By applying a variational method, the hard-core diameters are found which correspond to a minimum free energy. With this procedure, the thermodynamic properties such as the internal energy, entropy, Helmholtz free energy, entropy of mixing, and heat of mixing are computed for liquid NaK binary systems. The influence of the local-field correction functions of Hartree, Taylor, Ichimaru-Utsumi, Farid-Heine-Engel-Robertson, and Sarkar-Sen-Haldar-Roy is also investigated. The computed excess entropy is in agreement with available experimental data in the case of liquid alloys, whereas the agreement for the heat of mixing is poor. This may be due to the sensitivity of the latter to the potential parameters and dielectric function.

  10. Entropy-Based Search Algorithm for Experimental Design

    NASA Astrophysics Data System (ADS)

    Malakar, N. K.; Knuth, K. H.

    2011-03-01

    The scientific method relies on the iterated processes of inference and inquiry. The inference phase consists of selecting the most probable models based on the available data; whereas the inquiry phase consists of using what is known about the models to select the most relevant experiment. Optimizing inquiry involves searching the parameterized space of experiments to select the experiment that promises, on average, to be maximally informative. In the case where it is important to learn about each of the model parameters, the relevance of an experiment is quantified by Shannon entropy of the distribution of experimental outcomes predicted by a probable set of models. If the set of potential experiments is described by many parameters, we must search this high-dimensional entropy space. Brute force search methods will be slow and computationally expensive. We present an entropy-based search algorithm, called nested entropy sampling, to select the most informative experiment for efficient experimental design. This algorithm is inspired by Skilling's nested sampling algorithm used in inference and borrows the concept of a rising threshold while a set of experiment samples are maintained. We demonstrate that this algorithm not only selects highly relevant experiments, but also is more efficient than brute force search. Such entropic search techniques promise to greatly benefit autonomous experimental design.

  11. Spatio-temporal scaling effects on longshore sediment transport pattern along the nearshore zone

    NASA Astrophysics Data System (ADS)

    Khorram, Saeed; Ergil, Mustafa

    2018-03-01

    A measure of uncertainties, entropy has been employed in such different applications as coastal engineering probability inferences. Entropy sediment transport integration theories present novel visions in coastal analyses/modeling the application and development of which are still far-reaching. Effort has been made in the present paper to propose a method that needs an entropy-power index for spatio-temporal patterns analyses. Results have shown that the index is suitable for marine/hydrological ecosystem components analyses based on a beach area case study. The method makes use of six Makran Coastal monthly data (1970-2015) and studies variables such as spatio-temporal patterns, LSTR (long-shore sediment transport rate), wind speed, and wave height all of which are time-dependent and play considerable roles in terrestrial coastal investigations; the mentioned variables show meaningful spatio-temporal variability most of the time, but explanation of their combined performance is not easy. Accordingly, the use of an entropy-power index can show considerable signals that facilitate the evaluation of water resources and will provide an insight regarding hydrological parameters' interactions at scales as large as beach areas. Results have revealed that an STDDPI (entropy based spatio-temporal disorder dynamics power index) can simulate wave, long-shore sediment transport rate, and wind when granulometry, concentration, and flow conditions vary.

  12. Chatter detection in milling process based on VMD and energy entropy

    NASA Astrophysics Data System (ADS)

    Liu, Changfu; Zhu, Lida; Ni, Chenbing

    2018-05-01

    This paper presents a novel approach to detect the milling chatter based on Variational Mode Decomposition (VMD) and energy entropy. VMD has already been employed in feature extraction from non-stationary signals. The parameters like number of modes (K) and the quadratic penalty (α) need to be selected empirically when raw signal is decomposed by VMD. Aimed at solving the problem how to select K and α, the automatic selection method of VMD's based on kurtosis is proposed in this paper. When chatter occurs in the milling process, energy will be absorbed to chatter frequency bands. To detect the chatter frequency bands automatically, the chatter detection method based on energy entropy is presented. The vibration signal containing chatter frequency is simulated and three groups of experiments which represent three cutting conditions are conducted. To verify the effectiveness of method presented by this paper, chatter feather extraction has been successfully employed on simulation signals and experimental signals. The simulation and experimental results show that the proposed method can effectively detect the chatter.

  13. Bayesian Approach to Spectral Function Reconstruction for Euclidean Quantum Field Theories

    NASA Astrophysics Data System (ADS)

    Burnier, Yannis; Rothkopf, Alexander

    2013-11-01

    We present a novel approach to the inference of spectral functions from Euclidean time correlator data that makes close contact with modern Bayesian concepts. Our method differs significantly from the maximum entropy method (MEM). A new set of axioms is postulated for the prior probability, leading to an improved expression, which is devoid of the asymptotically flat directions present in the Shanon-Jaynes entropy. Hyperparameters are integrated out explicitly, liberating us from the Gaussian approximations underlying the evidence approach of the maximum entropy method. We present a realistic test of our method in the context of the nonperturbative extraction of the heavy quark potential. Based on hard-thermal-loop correlator mock data, we establish firm requirements in the number of data points and their accuracy for a successful extraction of the potential from lattice QCD. Finally we reinvestigate quenched lattice QCD correlators from a previous study and provide an improved potential estimation at T=2.33TC.

  14. Bayesian approach to spectral function reconstruction for Euclidean quantum field theories.

    PubMed

    Burnier, Yannis; Rothkopf, Alexander

    2013-11-01

    We present a novel approach to the inference of spectral functions from Euclidean time correlator data that makes close contact with modern Bayesian concepts. Our method differs significantly from the maximum entropy method (MEM). A new set of axioms is postulated for the prior probability, leading to an improved expression, which is devoid of the asymptotically flat directions present in the Shanon-Jaynes entropy. Hyperparameters are integrated out explicitly, liberating us from the Gaussian approximations underlying the evidence approach of the maximum entropy method. We present a realistic test of our method in the context of the nonperturbative extraction of the heavy quark potential. Based on hard-thermal-loop correlator mock data, we establish firm requirements in the number of data points and their accuracy for a successful extraction of the potential from lattice QCD. Finally we reinvestigate quenched lattice QCD correlators from a previous study and provide an improved potential estimation at T=2.33T(C).

  15. EEG-Based Computer Aided Diagnosis of Autism Spectrum Disorder Using Wavelet, Entropy, and ANN

    PubMed Central

    AlSharabi, Khalil; Ibrahim, Sutrisno; Alsuwailem, Abdullah

    2017-01-01

    Autism spectrum disorder (ASD) is a type of neurodevelopmental disorder with core impairments in the social relationships, communication, imagination, or flexibility of thought and restricted repertoire of activity and interest. In this work, a new computer aided diagnosis (CAD) of autism ‎based on electroencephalography (EEG) signal analysis is investigated. The proposed method is based on discrete wavelet transform (DWT), entropy (En), and artificial neural network (ANN). DWT is used to decompose EEG signals into approximation and details coefficients to obtain EEG subbands. The feature vector is constructed by computing Shannon entropy values from each EEG subband. ANN classifies the corresponding EEG signal into normal or autistic based on the extracted features. The experimental results show the effectiveness of the proposed method for assisting autism diagnosis. A receiver operating characteristic (ROC) curve metric is used to quantify the performance of the proposed method. The proposed method obtained promising results tested using real dataset provided by King Abdulaziz Hospital, Jeddah, Saudi Arabia. PMID:28484720

  16. Entanglement entropy of electromagnetic edge modes.

    PubMed

    Donnelly, William; Wall, Aron C

    2015-03-20

    The vacuum entanglement entropy of Maxwell theory, when evaluated by standard methods, contains an unexpected term with no known statistical interpretation. We resolve this two-decades old puzzle by showing that this term is the entanglement entropy of edge modes: classical solutions determined by the electric field normal to the entangling surface. We explain how the heat kernel regularization applied to this term leads to the negative divergent expression found by Kabat. This calculation also resolves a recent puzzle concerning the logarithmic divergences of gauge fields in 3+1 dimensions.

  17. Entropic Inference

    NASA Astrophysics Data System (ADS)

    Caticha, Ariel

    2011-03-01

    In this tutorial we review the essential arguments behing entropic inference. We focus on the epistemological notion of information and its relation to the Bayesian beliefs of rational agents. The problem of updating from a prior to a posterior probability distribution is tackled through an eliminative induction process that singles out the logarithmic relative entropy as the unique tool for inference. The resulting method of Maximum relative Entropy (ME), includes as special cases both MaxEnt and Bayes' rule, and therefore unifies the two themes of these workshops—the Maximum Entropy and the Bayesian methods—into a single general inference scheme.

  18. Hidden messenger revealed in Hawking radiation: A resolution to the paradox of black hole information loss

    NASA Astrophysics Data System (ADS)

    Zhang, Baocheng; Cai, Qing-yu; You, Li; Zhan, Ming-sheng

    2009-05-01

    Using standard statistical method, we discover the existence of correlations among Hawking radiations (of tunneled particles) from a black hole. The information carried by such correlations is quantified by mutual information between sequential emissions. Through a careful counting of the entropy taken out by the emitted particles, we show that the black hole radiation as tunneling is an entropy conservation process. While information is leaked out through the radiation, the total entropy is conserved. Thus, we conclude the black hole evaporation process is unitary.

  19. Rolling bearing fault detection and diagnosis based on composite multiscale fuzzy entropy and ensemble support vector machines

    NASA Astrophysics Data System (ADS)

    Zheng, Jinde; Pan, Haiyang; Cheng, Junsheng

    2017-02-01

    To timely detect the incipient failure of rolling bearing and find out the accurate fault location, a novel rolling bearing fault diagnosis method is proposed based on the composite multiscale fuzzy entropy (CMFE) and ensemble support vector machines (ESVMs). Fuzzy entropy (FuzzyEn), as an improvement of sample entropy (SampEn), is a new nonlinear method for measuring the complexity of time series. Since FuzzyEn (or SampEn) in single scale can not reflect the complexity effectively, multiscale fuzzy entropy (MFE) is developed by defining the FuzzyEns of coarse-grained time series, which represents the system dynamics in different scales. However, the MFE values will be affected by the data length, especially when the data are not long enough. By combining information of multiple coarse-grained time series in the same scale, the CMFE algorithm is proposed in this paper to enhance MFE, as well as FuzzyEn. Compared with MFE, with the increasing of scale factor, CMFE obtains much more stable and consistent values for a short-term time series. In this paper CMFE is employed to measure the complexity of vibration signals of rolling bearings and is applied to extract the nonlinear features hidden in the vibration signals. Also the physically meanings of CMFE being suitable for rolling bearing fault diagnosis are explored. Based on these, to fulfill an automatic fault diagnosis, the ensemble SVMs based multi-classifier is constructed for the intelligent classification of fault features. Finally, the proposed fault diagnosis method of rolling bearing is applied to experimental data analysis and the results indicate that the proposed method could effectively distinguish different fault categories and severities of rolling bearings.

  20. Evaluation index system of steel industry sustainable development based on entropy method and topsis method

    NASA Astrophysics Data System (ADS)

    Ronglian, Yuan; Mingye, Ai; Qiaona, Jia; Yuxuan, Liu

    2018-03-01

    Sustainable development is the only way for the development of human society. As an important part of the national economy, the steel industry is an energy-intensive industry and needs to go further for sustainable development. In this paper, we use entropy method and Topsis method to evaluate the development of China’s steel industry during the “12th Five-Year Plan” from four aspects: resource utilization efficiency, main energy and material consumption, pollution status and resource reuse rate. And we also put forward some suggestions for the development of China’s steel industry.

  1. A Markovian Entropy Measure for the Analysis of Calcium Activity Time Series

    PubMed Central

    Rahman, Atiqur; Odorizzi, Laura; LeFew, Michael C.; Golino, Caroline A.; Kemper, Peter; Saha, Margaret S.

    2016-01-01

    Methods to analyze the dynamics of calcium activity often rely on visually distinguishable features in time series data such as spikes, waves, or oscillations. However, systems such as the developing nervous system display a complex, irregular type of calcium activity which makes the use of such methods less appropriate. Instead, for such systems there exists a class of methods (including information theoretic, power spectral, and fractal analysis approaches) which use more fundamental properties of the time series to analyze the observed calcium dynamics. We present a new analysis method in this class, the Markovian Entropy measure, which is an easily implementable calcium time series analysis method which represents the observed calcium activity as a realization of a Markov Process and describes its dynamics in terms of the level of predictability underlying the transitions between the states of the process. We applied our and other commonly used calcium analysis methods on a dataset from Xenopus laevis neural progenitors which displays irregular calcium activity and a dataset from murine synaptic neurons which displays activity time series that are well-described by visually-distinguishable features. We find that the Markovian Entropy measure is able to distinguish between biologically distinct populations in both datasets, and that it can separate biologically distinct populations to a greater extent than other methods in the dataset exhibiting irregular calcium activity. These results support the benefit of using the Markovian Entropy measure to analyze calcium dynamics, particularly for studies using time series data which do not exhibit easily distinguishable features. PMID:27977764

  2. Moisture sorption isotherms and thermodynamic properties of bovine leather

    NASA Astrophysics Data System (ADS)

    Fakhfakh, Rihab; Mihoubi, Daoued; Kechaou, Nabil

    2018-04-01

    This study was aimed at the determination of bovine leather moisture sorption characteristics using a static gravimetric method at 30, 40, 50, 60 and 70 °C. The curves exhibit type II behaviour according to the BET classification. The sorption isotherms fitting by seven equations shows that GAB model is able to reproduce the equilibrium moisture content evolution with water activity for moisture range varying from 0.02 to 0.83 kg/kg d.b (0.9898 < R2 < 0.999). The sorption isotherms exhibit hysteresis effect. Additionally, sorption isotherms data were used to determine the thermodynamic properties such as isosteric heat of sorption, sorption entropy, spreading pressure, net integral enthalpy and entropy. Net isosteric heat of sorption and differential entropy were evaluated through direct use of moisture isotherms by applying the Clausius-Clapeyron equation and used to investigate the enthalpy-entropy compensation theory. Both sorption enthalpy and entropy for desorption increase to a maximum with increasing moisture content, and then decrease sharply with rising moisture content. Adsorption enthalpy decreases with increasing moisture content. Whereas, adsorption entropy increases smoothly with increasing moisture content to a maximum of 6.29 J/K.mol. Spreading pressure increases with rising water activity. The net integral enthalpy seemed to decrease and then increase to become asymptotic. The net integral entropy decreased with moisture content increase.

  3. [Quantitative assessment of urban ecosystem services flow based on entropy theory: A case study of Beijing, China].

    PubMed

    Li, Jing Xin; Yang, Li; Yang, Lei; Zhang, Chao; Huo, Zhao Min; Chen, Min Hao; Luan, Xiao Feng

    2018-03-01

    Quantitative evaluation of ecosystem service is a primary premise for rational resources exploitation and sustainable development. Examining ecosystem services flow provides a scientific method to quantity ecosystem services. We built an assessment indicator system based on land cover/land use under the framework of four types of ecosystem services. The types of ecosystem services flow were reclassified. Using entropy theory, disorder degree and developing trend of indicators and urban ecosystem were quantitatively assessed. Beijing was chosen as the study area, and twenty-four indicators were selected for evaluation. The results showed that the entropy value of Beijing urban ecosystem during 2004 to 2015 was 0.794 and the entropy flow was -0.024, suggesting a large disordered degree and near verge of non-health. The system got maximum values for three times, while the mean annual variation of the system entropy value increased gradually in three periods, indicating that human activities had negative effects on urban ecosystem. Entropy flow reached minimum value in 2007, implying the environmental quality was the best in 2007. The determination coefficient for the fitting function of total permanent population in Beijing and urban ecosystem entropy flow was 0.921, indicating that urban ecosystem health was highly correlated with total permanent population.

  4. Multiscale Persistent Functions for Biomolecular Structure Characterization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xia, Kelin; Li, Zhiming; Mu, Lin

    Here in this paper, we introduce multiscale persistent functions for biomolecular structure characterization. The essential idea is to combine our multiscale rigidity functions (MRFs) with persistent homology analysis, so as to construct a series of multiscale persistent functions, particularly multiscale persistent entropies, for structure characterization. To clarify the fundamental idea of our method, the multiscale persistent entropy (MPE) model is discussed in great detail. Mathematically, unlike the previous persistent entropy (Chintakunta et al. in Pattern Recognit 48(2):391–401, 2015; Merelli et al. in Entropy 17(10):6872–6892, 2015; Rucco et al. in: Proceedings of ECCS 2014, Springer, pp 117–128, 2016), a special resolutionmore » parameter is incorporated into our model. Various scales can be achieved by tuning its value. Physically, our MPE can be used in conformational entropy evaluation. More specifically, it is found that our method incorporates in it a natural classification scheme. This is achieved through a density filtration of an MRF built from angular distributions. To further validate our model, a systematical comparison with the traditional entropy evaluation model is done. Additionally, it is found that our model is able to preserve the intrinsic topological features of biomolecular data much better than traditional approaches, particularly for resolutions in the intermediate range. Moreover, by comparing with traditional entropies from various grid sizes, bond angle-based methods and a persistent homology-based support vector machine method (Cang et al. in Mol Based Math Biol 3:140–162, 2015), we find that our MPE method gives the best results in terms of average true positive rate in a classic protein structure classification test. More interestingly, all-alpha and all-beta protein classes can be clearly separated from each other with zero error only in our model. Finally, a special protein structure index (PSI) is proposed, for the first time, to describe the “regularity” of protein structures. Basically, a protein structure is deemed as regular if it has a consistent and orderly configuration. Our PSI model is tested on a database of 110 proteins; we find that structures with larger portions of loops and intrinsically disorder regions are always associated with larger PSI, meaning an irregular configuration, while proteins with larger portions of secondary structures, i.e., alpha-helix or beta-sheet, have smaller PSI. Essentially, PSI can be used to describe the “regularity” information in any systems.« less

  5. Using the principle of entropy maximization to infer genetic interaction networks from gene expression patterns.

    PubMed

    Lezon, Timothy R; Banavar, Jayanth R; Cieplak, Marek; Maritan, Amos; Fedoroff, Nina V

    2006-12-12

    We describe a method based on the principle of entropy maximization to identify the gene interaction network with the highest probability of giving rise to experimentally observed transcript profiles. In its simplest form, the method yields the pairwise gene interaction network, but it can also be extended to deduce higher-order interactions. Analysis of microarray data from genes in Saccharomyces cerevisiae chemostat cultures exhibiting energy metabolic oscillations identifies a gene interaction network that reflects the intracellular communication pathways that adjust cellular metabolic activity and cell division to the limiting nutrient conditions that trigger metabolic oscillations. The success of the present approach in extracting meaningful genetic connections suggests that the maximum entropy principle is a useful concept for understanding living systems, as it is for other complex, nonequilibrium systems.

  6. Inferring Markov chains: Bayesian estimation, model comparison, entropy rate, and out-of-class modeling.

    PubMed

    Strelioff, Christopher C; Crutchfield, James P; Hübler, Alfred W

    2007-07-01

    Markov chains are a natural and well understood tool for describing one-dimensional patterns in time or space. We show how to infer kth order Markov chains, for arbitrary k , from finite data by applying Bayesian methods to both parameter estimation and model-order selection. Extending existing results for multinomial models of discrete data, we connect inference to statistical mechanics through information-theoretic (type theory) techniques. We establish a direct relationship between Bayesian evidence and the partition function which allows for straightforward calculation of the expectation and variance of the conditional relative entropy and the source entropy rate. Finally, we introduce a method that uses finite data-size scaling with model-order comparison to infer the structure of out-of-class processes.

  7. Multifractal diffusion entropy analysis: Optimal bin width of probability histograms

    NASA Astrophysics Data System (ADS)

    Jizba, Petr; Korbel, Jan

    2014-11-01

    In the framework of Multifractal Diffusion Entropy Analysis we propose a method for choosing an optimal bin-width in histograms generated from underlying probability distributions of interest. The method presented uses techniques of Rényi’s entropy and the mean squared error analysis to discuss the conditions under which the error in the multifractal spectrum estimation is minimal. We illustrate the utility of our approach by focusing on a scaling behavior of financial time series. In particular, we analyze the S&P500 stock index as sampled at a daily rate in the time period 1950-2013. In order to demonstrate a strength of the method proposed we compare the multifractal δ-spectrum for various bin-widths and show the robustness of the method, especially for large values of q. For such values, other methods in use, e.g., those based on moment estimation, tend to fail for heavy-tailed data or data with long correlations. Connection between the δ-spectrum and Rényi’s q parameter is also discussed and elucidated on a simple example of multiscale time series.

  8. A novel rail defect detection method based on undecimated lifting wavelet packet transform and Shannon entropy-improved adaptive line enhancer

    NASA Astrophysics Data System (ADS)

    Hao, Qiushi; Zhang, Xin; Wang, Yan; Shen, Yi; Makis, Viliam

    2018-07-01

    Acoustic emission (AE) technology is sensitive to subliminal rail defects, however strong wheel-rail contact rolling noise under high-speed condition has gravely impeded detecting of rail defects using traditional denoising methods. In this context, the paper develops an adaptive detection method for rail cracks, which combines multiresolution analysis with an improved adaptive line enhancer (ALE). To obtain elaborate multiresolution information of transient crack signals with low computational cost, lifting scheme-based undecimated wavelet packet transform is adopted. In order to feature the impulsive property of crack signals, a Shannon entropy-improved ALE is proposed as a signal enhancing approach, where Shannon entropy is introduced to improve the cost function. Then a rail defect detection plan based on the proposed method for high-speed condition is put forward. From theoretical analysis and experimental verification, it is demonstrated that the proposed method has superior performance in enhancing the rail defect AE signal and reducing the strong background noise, offering an effective multiresolution approach for rail defect detection under high-speed and strong-noise condition.

  9. Entropy Transfer between Residue Pairs and Allostery in Proteins: Quantifying Allosteric Communication in Ubiquitin.

    PubMed

    Hacisuleyman, Aysima; Erman, Burak

    2017-01-01

    It has recently been proposed by Gunasakaran et al. that allostery may be an intrinsic property of all proteins. Here, we develop a computational method that can determine and quantify allosteric activity in any given protein. Based on Schreiber's transfer entropy formulation, our approach leads to an information transfer landscape for the protein that shows the presence of entropy sinks and sources and explains how pairs of residues communicate with each other using entropy transfer. The model can identify the residues that drive the fluctuations of others. We apply the model to Ubiquitin, whose allosteric activity has not been emphasized until recently, and show that there are indeed systematic pathways of entropy and information transfer between residues that correlate well with the activities of the protein. We use 600 nanosecond molecular dynamics trajectories for Ubiquitin and its complex with human polymerase iota and evaluate entropy transfer between all pairs of residues of Ubiquitin and quantify the binding susceptibility changes upon complex formation. We explain the complex formation propensities of Ubiquitin in terms of entropy transfer. Important residues taking part in allosteric communication in Ubiquitin predicted by our approach are in agreement with results of NMR relaxation dispersion experiments. Finally, we show that time delayed correlation of fluctuations of two interacting residues possesses an intrinsic causality that tells which residue controls the interaction and which one is controlled. Our work shows that time delayed correlations, entropy transfer and causality are the required new concepts for explaining allosteric communication in proteins.

  10. ATP-induced conformational changes of nucleotide-binding domains in an ABC transporter. Importance of the water-mediated entropic force.

    PubMed

    Hayashi, Tomohiko; Chiba, Shuntaro; Kaneta, Yusuke; Furuta, Tadaomi; Sakurai, Minoru

    2014-11-06

    ATP binding cassette (ABC) proteins belong to a superfamily of active transporters. Recent experimental and computational studies have shown that binding of ATP to the nucleotide binding domains (NBDs) of ABC proteins drives the dimerization of NBDs, which, in turn, causes large conformational changes within the transmembrane domains (TMDs). To elucidate the active substrate transport mechanism of ABC proteins, it is first necessary to understand how the NBD dimerization is driven by ATP binding. In this study, we selected MalKs (NBDs of a maltose transporter) as a representative NBD and calculated the free-energy change upon dimerization using molecular mechanics calculations combined with a statistical thermodynamic theory of liquids, as well as a method to calculate the translational, rotational, and vibrational entropy change. This combined method is applied to a large number of snapshot structures obtained from molecular dynamics simulations containing explicit water molecules. The results suggest that the NBD dimerization proceeds with a large gain of water entropy when ATP molecules bind to the NBDs. The energetic gain arising from direct NBD-NBD interactions is canceled by the dehydration penalty and the configurational-entropy loss. ATP hydrolysis induces a loss of the shape complementarity between the NBDs, which leads to the dissociation of the dimer, due to a decrease in the water-entropy gain and an increase in the configurational-entropy loss. This interpretation of the NBD dimerization mechanism in concert with ATP, especially focused on the water-mediated entropy force, is potentially applicable to a wide variety of the ABC transporters.

  11. Detecting entanglement with Jarzynski's equality

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hide, Jenny; Vedral, Vlatko; Centre for Quantum Technologies, National University of Singapore, 3 Science Drive 2, Singapore 117543

    2010-06-15

    We present a method for detecting the entanglement of a state using nonequilibrium processes. A comparison of relative entropies allows us to construct an entanglement witness. The relative entropy can further be related to the quantum Jarzynski equality, allowing nonequilibrium work to be used in entanglement detection. To exemplify our results, we consider two different spin chains.

  12. Deep learning for classification of islanding and grid disturbance based on multi-resolution singular spectrum entropy

    NASA Astrophysics Data System (ADS)

    Li, Tie; He, Xiaoyang; Tang, Junci; Zeng, Hui; Zhou, Chunying; Zhang, Nan; Liu, Hui; Lu, Zhuoxin; Kong, Xiangrui; Yan, Zheng

    2018-02-01

    Forasmuch as the distinguishment of islanding is easy to be interfered by grid disturbance, island detection device may make misjudgment thus causing the consequence of photovoltaic out of service. The detection device must provide with the ability to differ islanding from grid disturbance. In this paper, the concept of deep learning is introduced into classification of islanding and grid disturbance for the first time. A novel deep learning framework is proposed to detect and classify islanding or grid disturbance. The framework is a hybrid of wavelet transformation, multi-resolution singular spectrum entropy, and deep learning architecture. As a signal processing method after wavelet transformation, multi-resolution singular spectrum entropy combines multi-resolution analysis and spectrum analysis with entropy as output, from which we can extract the intrinsic different features between islanding and grid disturbance. With the features extracted, deep learning is utilized to classify islanding and grid disturbance. Simulation results indicate that the method can achieve its goal while being highly accurate, so the photovoltaic system mistakenly withdrawing from power grids can be avoided.

  13. Chemical Synthesis of Circular Proteins*

    PubMed Central

    Tam, James P.; Wong, Clarence T. T.

    2012-01-01

    Circular proteins, once thought to be rare, are now commonly found in plants. Their chemical synthesis, once thought to be difficult, is now readily achievable. The enabling methodology is largely due to the advances in entropic chemical ligation to overcome the entropy barrier in coupling the N- and C-terminal ends of large peptide segments for either intermolecular ligation or intramolecular ligation in end-to-end cyclization. Key elements of an entropic chemical ligation consist of a chemoselective capture step merging the N and C termini as a covalently linked O/S-ester intermediate to permit the subsequent step of an intramolecular O/S-N acyl shift to form an amide. Many ligation methods exploit the supernucleophilicity of a thiol side chain at the N terminus for the capture reaction, which makes cysteine-rich peptides ideal candidates for the entropy-driven macrocyclization. Advances in desulfurization and modification of the thiol-containing amino acids at the ligation sites to other amino acids add extra dimensions to the entropy-driven ligation methods. This minireview describes recent advances of entropy-driven ligation to prepare circular proteins with or without a cysteinyl side chain. PMID:22700959

  14. An entropy stable nodal discontinuous Galerkin method for the two dimensional shallow water equations on unstructured curvilinear meshes with discontinuous bathymetry

    NASA Astrophysics Data System (ADS)

    Wintermeyer, Niklas; Winters, Andrew R.; Gassner, Gregor J.; Kopriva, David A.

    2017-07-01

    We design an arbitrary high-order accurate nodal discontinuous Galerkin spectral element approximation for the non-linear two dimensional shallow water equations with non-constant, possibly discontinuous, bathymetry on unstructured, possibly curved, quadrilateral meshes. The scheme is derived from an equivalent flux differencing formulation of the split form of the equations. We prove that this discretization exactly preserves the local mass and momentum. Furthermore, combined with a special numerical interface flux function, the method exactly preserves the mathematical entropy, which is the total energy for the shallow water equations. By adding a specific form of interface dissipation to the baseline entropy conserving scheme we create a provably entropy stable scheme. That is, the numerical scheme discretely satisfies the second law of thermodynamics. Finally, with a particular discretization of the bathymetry source term we prove that the numerical approximation is well-balanced. We provide numerical examples that verify the theoretical findings and furthermore provide an application of the scheme for a partial break of a curved dam test problem.

  15. Investigation of thermal protection systems effects on viscid and inviscid flow fields for manned entry systems

    NASA Technical Reports Server (NTRS)

    Bartlett, E. P.; Morse, H. L.; Tong, H.

    1971-01-01

    Procedures and methods for predicting aerothermodynamic heating to delta orbiter shuttle vehicles were reviewed. A number of approximate methods were found to be adequate for large scale parameter studies, but are considered inadequate for final design calculations. It is recommended that final design calculations be based on a computer code which accounts for nonequilibrium chemistry, streamline spreading, entropy swallowing, and turbulence. It is further recommended that this code be developed with the intent that it can be directly coupled with an exact inviscid flow field calculation when the latter becomes available. A nonsimilar, equilibrium chemistry computer code (BLIMP) was used to evaluate the effects of entropy swallowing, turbulence, and various three dimensional approximations. These solutions were compared with available wind tunnel data. It was found study that, for wind tunnel conditions, the effect of entropy swallowing and three dimensionality are small for laminar boundary layers but entropy swallowing causes a significant increase in turbulent heat transfer. However, it is noted that even small effects (say, 10-20%) may be important for the shuttle reusability concept.

  16. Analysis of swarm behaviors based on an inversion of the fluctuation theorem.

    PubMed

    Hamann, Heiko; Schmickl, Thomas; Crailsheim, Karl

    2014-01-01

    A grand challenge in the field of artificial life is to find a general theory of emergent self-organizing systems. In swarm systems most of the observed complexity is based on motion of simple entities. Similarly, statistical mechanics focuses on collective properties induced by the motion of many interacting particles. In this article we apply methods from statistical mechanics to swarm systems. We try to explain the emergent behavior of a simulated swarm by applying methods based on the fluctuation theorem. Empirical results indicate that swarms are able to produce negative entropy within an isolated subsystem due to frozen accidents. Individuals of a swarm are able to locally detect fluctuations of the global entropy measure and store them, if they are negative entropy productions. By accumulating these stored fluctuations over time the swarm as a whole is producing negative entropy and the system ends up in an ordered state. We claim that this indicates the existence of an inverted fluctuation theorem for emergent self-organizing dissipative systems. This approach bears the potential of general applicability.

  17. Symbolic phase transfer entropy method and its application

    NASA Astrophysics Data System (ADS)

    Zhang, Ningning; Lin, Aijing; Shang, Pengjian

    2017-10-01

    In this paper, we introduce symbolic phase transfer entropy (SPTE) to infer the direction and strength of information flow among systems. The advantages of the proposed method are investigated by simulations on synthetic signals and real-world data. We demonstrate that symbolic phase transfer entropy is a robust and efficient tool to infer the information flow between complex systems. Based on the study of the synthetic data, we find a significant advantage of SPTE is its reduced sensitivity to noise. In addition, SPTE requires less amount of data than symbolic transfer entropy(STE). We analyze the direction and strength of information flow between six stock markets during the period from 2006 to 2016. The results indicate that the information flow among stocks varies over different periods. We also find that the interaction network pattern among stocks undergoes hierarchial reorganization with transition from one period to another. It is shown that the clusters are mainly classified according to period, and then by region. The stocks during the same time period are shown to drop into the same cluster.

  18. Analysis of the Influence of Complexity and Entropy of Odorant on Fractal Dynamics and Entropy of EEG Signal.

    PubMed

    Namazi, Hamidreza; Akrami, Amin; Nazeri, Sina; Kulish, Vladimir V

    2016-01-01

    An important challenge in brain research is to make out the relation between the features of olfactory stimuli and the electroencephalogram (EEG) signal. Yet, no one has discovered any relation between the structures of olfactory stimuli and the EEG signal. This study investigates the relation between the structures of EEG signal and the olfactory stimulus (odorant). We show that the complexity of the EEG signal is coupled with the molecular complexity of the odorant, where more structurally complex odorant causes less fractal EEG signal. Also, odorant having higher entropy causes the EEG signal to have lower approximate entropy. The method discussed here can be applied and investigated in case of patients with brain diseases as the rehabilitation purpose.

  19. Identifying topological-band insulator transitions in silicene and other 2D gapped Dirac materials by means of Rényi-Wehrl entropy

    NASA Astrophysics Data System (ADS)

    Calixto, M.; Romera, E.

    2015-02-01

    We propose a new method to identify transitions from a topological insulator to a band insulator in silicene (the silicon equivalent of graphene) in the presence of perpendicular magnetic and electric fields, by using the Rényi-Wehrl entropy of the quantum state in phase space. Electron-hole entropies display an inversion/crossing behavior at the charge neutrality point for any Landau level, and the combined entropy of particles plus holes turns out to be maximum at this critical point. The result is interpreted in terms of delocalization of the quantum state in phase space. The entropic description presented in this work will be valid in general 2D gapped Dirac materials, with a strong intrinsic spin-orbit interaction, isostructural with silicene.

  20. Analysis of the Influence of Complexity and Entropy of Odorant on Fractal Dynamics and Entropy of EEG Signal

    PubMed Central

    Akrami, Amin; Nazeri, Sina

    2016-01-01

    An important challenge in brain research is to make out the relation between the features of olfactory stimuli and the electroencephalogram (EEG) signal. Yet, no one has discovered any relation between the structures of olfactory stimuli and the EEG signal. This study investigates the relation between the structures of EEG signal and the olfactory stimulus (odorant). We show that the complexity of the EEG signal is coupled with the molecular complexity of the odorant, where more structurally complex odorant causes less fractal EEG signal. Also, odorant having higher entropy causes the EEG signal to have lower approximate entropy. The method discussed here can be applied and investigated in case of patients with brain diseases as the rehabilitation purpose. PMID:27699169

  1. Block entropy and quantum phase transition in the anisotropic Kondo necklace model

    NASA Astrophysics Data System (ADS)

    Mendoza-Arenas, J. J.; Franco, R.; Silva-Valencia, J.

    2010-06-01

    We study the von Neumann block entropy in the Kondo necklace model for different anisotropies η in the XY interaction between conduction spins using the density matrix renormalization group method. It was found that the block entropy presents a maximum for each η considered, and, comparing it with the results of the quantum criticality of the model based on the behavior of the energy gap, we observe that the maximum block entropy occurs at the quantum critical point between an antiferromagnetic and a Kondo singlet state, so this measure of entanglement is useful for giving information about where a quantum phase transition occurs in this model. We observe that the block entropy also presents a maximum at the quantum critical points that are obtained when an anisotropy Δ is included in the Kondo exchange between localized and conduction spins; when Δ diminishes for a fixed value of η, the critical point increases, favoring the antiferromagnetic phase.

  2. Characterising Dynamic Instability in High Water-Cut Oil-Water Flows Using High-Resolution Microwave Sensor Signals

    NASA Astrophysics Data System (ADS)

    Liu, Weixin; Jin, Ningde; Han, Yunfeng; Ma, Jing

    2018-06-01

    In the present study, multi-scale entropy algorithm was used to characterise the complex flow phenomena of turbulent droplets in high water-cut oil-water two-phase flow. First, we compared multi-scale weighted permutation entropy (MWPE), multi-scale approximate entropy (MAE), multi-scale sample entropy (MSE) and multi-scale complexity measure (MCM) for typical nonlinear systems. The results show that MWPE presents satisfied variability with scale and anti-noise ability. Accordingly, we conducted an experiment of vertical upward oil-water two-phase flow with high water-cut and collected the signals of a high-resolution microwave resonant sensor, based on which two indexes, the entropy rate and mean value of MWPE, were extracted. Besides, the effects of total flow rate and water-cut on these two indexes were analysed. Our researches show that MWPE is an effective method to uncover the dynamic instability of oil-water two-phase flow with high water-cut.

  3. Integrated design of multivariable hydrometric networks using entropy theory with a multiobjective optimization approach

    NASA Astrophysics Data System (ADS)

    Kim, Y.; Hwang, T.; Vose, J. M.; Martin, K. L.; Band, L. E.

    2016-12-01

    Obtaining quality hydrologic observations is the first step towards a successful water resources management. While remote sensing techniques have enabled to convert satellite images of the Earth's surface to hydrologic data, the importance of ground-based observations has never been diminished because in-situ data are often highly accurate and can be used to validate remote measurements. The existence of efficient hydrometric networks is becoming more important to obtain as much as information with minimum redundancy. The World Meteorological Organization (WMO) has recommended a guideline for the minimum hydrometric network density based on physiography; however, this guideline is not for the optimum network design but for avoiding serious deficiency from a network. Moreover, all hydrologic variables are interconnected within the hydrologic cycle, while monitoring networks have been designed individually. This study proposes an integrated network design method using entropy theory with a multiobjective optimization approach. In specific, a precipitation and a streamflow networks in a semi-urban watershed in Ontario, Canada were designed simultaneously by maximizing joint entropy, minimizing total correlation, and maximizing conditional entropy of streamflow network given precipitation network. After comparing with the typical individual network designs, the proposed design method would be able to determine more efficient optimal networks by avoiding the redundant stations, in which hydrologic information is transferable. Additionally, four quantization cases were applied in entropy calculations to assess their implications on the station rankings and the optimal networks. The results showed that the selection of quantization method should be considered carefully because the rankings and optimal networks are subject to change accordingly.

  4. Integrated design of multivariable hydrometric networks using entropy theory with a multiobjective optimization approach

    NASA Astrophysics Data System (ADS)

    Keum, J.; Coulibaly, P. D.

    2017-12-01

    Obtaining quality hydrologic observations is the first step towards a successful water resources management. While remote sensing techniques have enabled to convert satellite images of the Earth's surface to hydrologic data, the importance of ground-based observations has never been diminished because in-situ data are often highly accurate and can be used to validate remote measurements. The existence of efficient hydrometric networks is becoming more important to obtain as much as information with minimum redundancy. The World Meteorological Organization (WMO) has recommended a guideline for the minimum hydrometric network density based on physiography; however, this guideline is not for the optimum network design but for avoiding serious deficiency from a network. Moreover, all hydrologic variables are interconnected within the hydrologic cycle, while monitoring networks have been designed individually. This study proposes an integrated network design method using entropy theory with a multiobjective optimization approach. In specific, a precipitation and a streamflow networks in a semi-urban watershed in Ontario, Canada were designed simultaneously by maximizing joint entropy, minimizing total correlation, and maximizing conditional entropy of streamflow network given precipitation network. After comparing with the typical individual network designs, the proposed design method would be able to determine more efficient optimal networks by avoiding the redundant stations, in which hydrologic information is transferable. Additionally, four quantization cases were applied in entropy calculations to assess their implications on the station rankings and the optimal networks. The results showed that the selection of quantization method should be considered carefully because the rankings and optimal networks are subject to change accordingly.

  5. Research of Planetary Gear Fault Diagnosis Based on Permutation Entropy of CEEMDAN and ANFIS

    PubMed Central

    Kuai, Moshen; Cheng, Gang; Li, Yong

    2018-01-01

    For planetary gear has the characteristics of small volume, light weight and large transmission ratio, it is widely used in high speed and high power mechanical system. Poor working conditions result in frequent failures of planetary gear. A method is proposed for diagnosing faults in planetary gear based on permutation entropy of Complete Ensemble Empirical Mode Decomposition with Adaptive Noise (CEEMDAN) Adaptive Neuro-fuzzy Inference System (ANFIS) in this paper. The original signal is decomposed into 6 intrinsic mode functions (IMF) and residual components by CEEMDAN. Since the IMF contains the main characteristic information of planetary gear faults, time complexity of IMFs are reflected by permutation entropies to quantify the fault features. The permutation entropies of each IMF component are defined as the input of ANFIS, and its parameters and membership functions are adaptively adjusted according to training samples. Finally, the fuzzy inference rules are determined, and the optimal ANFIS is obtained. The overall recognition rate of the test sample used for ANFIS is 90%, and the recognition rate of gear with one missing tooth is relatively high. The recognition rates of different fault gears based on the method can also achieve better results. Therefore, the proposed method can be applied to planetary gear fault diagnosis effectively. PMID:29510569

  6. Research of Planetary Gear Fault Diagnosis Based on Permutation Entropy of CEEMDAN and ANFIS.

    PubMed

    Kuai, Moshen; Cheng, Gang; Pang, Yusong; Li, Yong

    2018-03-05

    For planetary gear has the characteristics of small volume, light weight and large transmission ratio, it is widely used in high speed and high power mechanical system. Poor working conditions result in frequent failures of planetary gear. A method is proposed for diagnosing faults in planetary gear based on permutation entropy of Complete Ensemble Empirical Mode Decomposition with Adaptive Noise (CEEMDAN) Adaptive Neuro-fuzzy Inference System (ANFIS) in this paper. The original signal is decomposed into 6 intrinsic mode functions (IMF) and residual components by CEEMDAN. Since the IMF contains the main characteristic information of planetary gear faults, time complexity of IMFs are reflected by permutation entropies to quantify the fault features. The permutation entropies of each IMF component are defined as the input of ANFIS, and its parameters and membership functions are adaptively adjusted according to training samples. Finally, the fuzzy inference rules are determined, and the optimal ANFIS is obtained. The overall recognition rate of the test sample used for ANFIS is 90%, and the recognition rate of gear with one missing tooth is relatively high. The recognition rates of different fault gears based on the method can also achieve better results. Therefore, the proposed method can be applied to planetary gear fault diagnosis effectively.

  7. Information theory-based decision support system for integrated design of multivariable hydrometric networks

    NASA Astrophysics Data System (ADS)

    Keum, Jongho; Coulibaly, Paulin

    2017-07-01

    Adequate and accurate hydrologic information from optimal hydrometric networks is an essential part of effective water resources management. Although the key hydrologic processes in the water cycle are interconnected, hydrometric networks (e.g., streamflow, precipitation, groundwater level) have been routinely designed individually. A decision support framework is proposed for integrated design of multivariable hydrometric networks. The proposed method is applied to design optimal precipitation and streamflow networks simultaneously. The epsilon-dominance hierarchical Bayesian optimization algorithm was combined with Shannon entropy of information theory to design and evaluate hydrometric networks. Specifically, the joint entropy from the combined networks was maximized to provide the most information, and the total correlation was minimized to reduce redundant information. To further optimize the efficiency between the networks, they were designed by maximizing the conditional entropy of the streamflow network given the information of the precipitation network. Compared to the traditional individual variable design approach, the integrated multivariable design method was able to determine more efficient optimal networks by avoiding the redundant stations. Additionally, four quantization cases were compared to evaluate their effects on the entropy calculations and the determination of the optimal networks. The evaluation results indicate that the quantization methods should be selected after careful consideration for each design problem since the station rankings and the optimal networks can change accordingly.

  8. Entropy vs. energy waveform processing: A comparison based on the heat equation

    DOE PAGES

    Hughes, Michael S.; McCarthy, John E.; Bruillard, Paul J.; ...

    2015-05-25

    Virtually all modern imaging devices collect electromagnetic or acoustic waves and use the energy carried by these waves to determine pixel values to create what is basically an “energy” picture. However, waves also carry “information”, as quantified by some form of entropy, and this may also be used to produce an “information” image. Numerous published studies have demonstrated the advantages of entropy, or “information imaging”, over conventional methods. The most sensitive information measure appears to be the joint entropy of the collected wave and a reference signal. The sensitivity of repeated experimental observations of a slowly-changing quantity may be definedmore » as the mean variation (i.e., observed change) divided by mean variance (i.e., noise). Wiener integration permits computation of the required mean values and variances as solutions to the heat equation, permitting estimation of their relative magnitudes. There always exists a reference, such that joint entropy has larger variation and smaller variance than the corresponding quantities for signal energy, matching observations of several studies. Moreover, a general prescription for finding an “optimal” reference for the joint entropy emerges, which also has been validated in several studies.« less

  9. MHD effects on heat transfer and entropy generation of nanofluid flow in an open cavity

    NASA Astrophysics Data System (ADS)

    Mehrez, Zouhaier; El Cafsi, Afif; Belghith, Ali; Le Quéré, Patrick

    2015-01-01

    The present numerical work investigates the effect of an external oriented magnetic field on heat transfer and entropy generation of Cu-water nanofluid flow in an open cavity heated from below. The governing equations are solved numerically by the finite-volume method. The study has been carried out for a wide range of solid volume fraction 0≤φ≤0.06, Hartmann number 0≤Ha≤100, Reynolds number 100≤Re≤500 and Richardson number 0.001≤Ri≤1 at three inclination angles of magnetic field γ: 0°, 45° and 90°. The numerical results are given by streamlines, isotherms, average Nusselt number, average entropy generation and Bejan number. The results show that flow behavior, temperature distribution, heat transfer and entropy generation are strongly affected by the presence of a magnetic field. The average Nusselt number and entropy generation, which increase by increasing volume fraction of nanoparticles, depend mainly on the Hartmann number and inclination angle of the magnetic field. The variation rates of heat transfer and entropy generation while adding nanoparticles or applying a magnetic field depend on the Richardson and Reynolds numbers.

  10. Comparison of Different Features and Classifiers for Driver Fatigue Detection Based on a Single EEG Channel

    PubMed Central

    2017-01-01

    Driver fatigue has become an important factor to traffic accidents worldwide, and effective detection of driver fatigue has major significance for public health. The purpose method employs entropy measures for feature extraction from a single electroencephalogram (EEG) channel. Four types of entropies measures, sample entropy (SE), fuzzy entropy (FE), approximate entropy (AE), and spectral entropy (PE), were deployed for the analysis of original EEG signal and compared by ten state-of-the-art classifiers. Results indicate that optimal performance of single channel is achieved using a combination of channel CP4, feature FE, and classifier Random Forest (RF). The highest accuracy can be up to 96.6%, which has been able to meet the needs of real applications. The best combination of channel + features + classifier is subject-specific. In this work, the accuracy of FE as the feature is far greater than the Acc of other features. The accuracy using classifier RF is the best, while that of classifier SVM with linear kernel is the worst. The impact of channel selection on the Acc is larger. The performance of various channels is very different. PMID:28255330

  11. Comparison of Different Features and Classifiers for Driver Fatigue Detection Based on a Single EEG Channel.

    PubMed

    Hu, Jianfeng

    2017-01-01

    Driver fatigue has become an important factor to traffic accidents worldwide, and effective detection of driver fatigue has major significance for public health. The purpose method employs entropy measures for feature extraction from a single electroencephalogram (EEG) channel. Four types of entropies measures, sample entropy (SE), fuzzy entropy (FE), approximate entropy (AE), and spectral entropy (PE), were deployed for the analysis of original EEG signal and compared by ten state-of-the-art classifiers. Results indicate that optimal performance of single channel is achieved using a combination of channel CP4, feature FE, and classifier Random Forest (RF). The highest accuracy can be up to 96.6%, which has been able to meet the needs of real applications. The best combination of channel + features + classifier is subject-specific. In this work, the accuracy of FE as the feature is far greater than the Acc of other features. The accuracy using classifier RF is the best, while that of classifier SVM with linear kernel is the worst. The impact of channel selection on the Acc is larger. The performance of various channels is very different.

  12. Noise, chaos, and (ɛ, τ)-entropy per unit time

    NASA Astrophysics Data System (ADS)

    Gaspard, Pierre; Wang, Xiao-Jing

    1993-12-01

    The degree of dynamical randomness of different time processes is characterized in terms of the (ε, τ)-entropy per unit time. The (ε, τ)-entropy is the amount of information generated per unit time, at different scales τ of time and ε of the observables. This quantity generalizes the Kolmogorov-Sinai entropy per unit time from deterministic chaotic processes, to stochastic processes such as fluctuations in mesoscopic physico-chemical phenomena or strong turbulence in macroscopic spacetime dynamics. The random processes that are characterized include chaotic systems, Bernoulli and Markov chains, Poisson and birth-and-death processes, Ornstein-Uhlenbeck and Yaglom noises, fractional Brownian motions, different regimes of hydrodynamical turbulence, and the Lorentz-Boltzmann process of nonequilibrium statistical mechanics. We also extend the (ε, τ)-entropy to spacetime processes like cellular automata, Conway's game of life, lattice gas automata, coupled maps, spacetime chaos in partial differential equations, as well as the ideal, the Lorentz, and the hard sphere gases. Through these examples it is demonstrated that the (ε, τ)-entropy provides a unified quantitative measure of dynamical randomness to both chaos and noises, and a method to detect transitions between dynamical states of different degrees of randomness as a parameter of the system is varied.

  13. Joint Entropy for Space and Spatial Frequency Domains Estimated from Psychometric Functions of Achromatic Discrimination

    PubMed Central

    Silveira, Vladímir de Aquino; Souza, Givago da Silva; Gomes, Bruno Duarte; Rodrigues, Anderson Raiol; Silveira, Luiz Carlos de Lima

    2014-01-01

    We used psychometric functions to estimate the joint entropy for space discrimination and spatial frequency discrimination. Space discrimination was taken as discrimination of spatial extent. Seven subjects were tested. Gábor functions comprising unidimensionalsinusoidal gratings (0.4, 2, and 10 cpd) and bidimensionalGaussian envelopes (1°) were used as reference stimuli. The experiment comprised the comparison between reference and test stimulithat differed in grating's spatial frequency or envelope's standard deviation. We tested 21 different envelope's standard deviations around the reference standard deviation to study spatial extent discrimination and 19 different grating's spatial frequencies around the reference spatial frequency to study spatial frequency discrimination. Two series of psychometric functions were obtained for 2%, 5%, 10%, and 100% stimulus contrast. The psychometric function data points for spatial extent discrimination or spatial frequency discrimination were fitted with Gaussian functions using the least square method, and the spatial extent and spatial frequency entropies were estimated from the standard deviation of these Gaussian functions. Then, joint entropy was obtained by multiplying the square root of space extent entropy times the spatial frequency entropy. We compared our results to the theoretical minimum for unidimensional Gábor functions, 1/4π or 0.0796. At low and intermediate spatial frequencies and high contrasts, joint entropy reached levels below the theoretical minimum, suggesting non-linear interactions between two or more visual mechanisms. We concluded that non-linear interactions of visual pathways, such as the M and P pathways, could explain joint entropy values below the theoretical minimum at low and intermediate spatial frequencies and high contrasts. These non-linear interactions might be at work at intermediate and high contrasts at all spatial frequencies once there was a substantial decrease in joint entropy for these stimulus conditions when contrast was raised. PMID:24466158

  14. Studying the dynamics of interbeat interval time series of healthy and congestive heart failure subjects using scale based symbolic entropy analysis

    PubMed Central

    Awan, Imtiaz; Aziz, Wajid; Habib, Nazneen; Alowibdi, Jalal S.; Saeed, Sharjil; Nadeem, Malik Sajjad Ahmed; Shah, Syed Ahsin Ali

    2018-01-01

    Considerable interest has been devoted for developing a deeper understanding of the dynamics of healthy biological systems and how these dynamics are affected due to aging and disease. Entropy based complexity measures have widely been used for quantifying the dynamics of physical and biological systems. These techniques have provided valuable information leading to a fuller understanding of the dynamics of these systems and underlying stimuli that are responsible for anomalous behavior. The single scale based traditional entropy measures yielded contradictory results about the dynamics of real world time series data of healthy and pathological subjects. Recently the multiscale entropy (MSE) algorithm was introduced for precise description of the complexity of biological signals, which was used in numerous fields since its inception. The original MSE quantified the complexity of coarse-grained time series using sample entropy. The original MSE may be unreliable for short signals because the length of the coarse-grained time series decreases with increasing scaling factor τ, however, MSE works well for long signals. To overcome the drawback of original MSE, various variants of this method have been proposed for evaluating complexity efficiently. In this study, we have proposed multiscale normalized corrected Shannon entropy (MNCSE), in which instead of using sample entropy, symbolic entropy measure NCSE has been used as an entropy estimate. The results of the study are compared with traditional MSE. The effectiveness of the proposed approach is demonstrated using noise signals as well as interbeat interval signals from healthy and pathological subjects. The preliminary results of the study indicate that MNCSE values are more stable and reliable than original MSE values. The results show that MNCSE based features lead to higher classification accuracies in comparison with the MSE based features. PMID:29771977

  15. 15N backbone dynamics of the S-peptide from ribonuclease A in its free and S-protein bound forms: toward a site-specific analysis of entropy changes upon folding.

    PubMed Central

    Alexandrescu, A. T.; Rathgeb-Szabo, K.; Rumpel, K.; Jahnke, W.; Schulthess, T.; Kammerer, R. A.

    1998-01-01

    Backbone 15N relaxation parameters (R1, R2, 1H-15N NOE) have been measured for a 22-residue recombinant variant of the S-peptide in its free and S-protein bound forms. NMR relaxation data were analyzed using the "model-free" approach (Lipari & Szabo, 1982). Order parameters obtained from "model-free" simulations were used to calculate 1H-15N bond vector entropies using a recently described method (Yang & Kay, 1996), in which the form of the probability density function for bond vector fluctuations is derived from a diffusion-in-a-cone motional model. The average change in 1H-15N bond vector entropies for residues T3-S15, which become ordered upon binding of the S-peptide to the S-protein, is -12.6+/-1.4 J/mol.residue.K. 15N relaxation data suggest a gradient of decreasing entropy values moving from the termini toward the center of the free peptide. The difference between the entropies of the terminal and central residues is about -12 J/mol residue K, a value comparable to that of the average entropy change per residue upon complex formation. Similar entropy gradients are evident in NMR relaxation studies of other denatured proteins. Taken together, these observations suggest denatured proteins may contain entropic contributions from non-local interactions. Consequently, calculations that model the entropy of a residue in a denatured protein as that of a residue in a di- or tri-peptide, might over-estimate the magnitude of entropy changes upon folding. PMID:9521116

  16. Joint entropy for space and spatial frequency domains estimated from psychometric functions of achromatic discrimination.

    PubMed

    Silveira, Vladímir de Aquino; Souza, Givago da Silva; Gomes, Bruno Duarte; Rodrigues, Anderson Raiol; Silveira, Luiz Carlos de Lima

    2014-01-01

    We used psychometric functions to estimate the joint entropy for space discrimination and spatial frequency discrimination. Space discrimination was taken as discrimination of spatial extent. Seven subjects were tested. Gábor functions comprising unidimensionalsinusoidal gratings (0.4, 2, and 10 cpd) and bidimensionalGaussian envelopes (1°) were used as reference stimuli. The experiment comprised the comparison between reference and test stimulithat differed in grating's spatial frequency or envelope's standard deviation. We tested 21 different envelope's standard deviations around the reference standard deviation to study spatial extent discrimination and 19 different grating's spatial frequencies around the reference spatial frequency to study spatial frequency discrimination. Two series of psychometric functions were obtained for 2%, 5%, 10%, and 100% stimulus contrast. The psychometric function data points for spatial extent discrimination or spatial frequency discrimination were fitted with Gaussian functions using the least square method, and the spatial extent and spatial frequency entropies were estimated from the standard deviation of these Gaussian functions. Then, joint entropy was obtained by multiplying the square root of space extent entropy times the spatial frequency entropy. We compared our results to the theoretical minimum for unidimensional Gábor functions, 1/4π or 0.0796. At low and intermediate spatial frequencies and high contrasts, joint entropy reached levels below the theoretical minimum, suggesting non-linear interactions between two or more visual mechanisms. We concluded that non-linear interactions of visual pathways, such as the M and P pathways, could explain joint entropy values below the theoretical minimum at low and intermediate spatial frequencies and high contrasts. These non-linear interactions might be at work at intermediate and high contrasts at all spatial frequencies once there was a substantial decrease in joint entropy for these stimulus conditions when contrast was raised.

  17. Studying the dynamics of interbeat interval time series of healthy and congestive heart failure subjects using scale based symbolic entropy analysis.

    PubMed

    Awan, Imtiaz; Aziz, Wajid; Shah, Imran Hussain; Habib, Nazneen; Alowibdi, Jalal S; Saeed, Sharjil; Nadeem, Malik Sajjad Ahmed; Shah, Syed Ahsin Ali

    2018-01-01

    Considerable interest has been devoted for developing a deeper understanding of the dynamics of healthy biological systems and how these dynamics are affected due to aging and disease. Entropy based complexity measures have widely been used for quantifying the dynamics of physical and biological systems. These techniques have provided valuable information leading to a fuller understanding of the dynamics of these systems and underlying stimuli that are responsible for anomalous behavior. The single scale based traditional entropy measures yielded contradictory results about the dynamics of real world time series data of healthy and pathological subjects. Recently the multiscale entropy (MSE) algorithm was introduced for precise description of the complexity of biological signals, which was used in numerous fields since its inception. The original MSE quantified the complexity of coarse-grained time series using sample entropy. The original MSE may be unreliable for short signals because the length of the coarse-grained time series decreases with increasing scaling factor τ, however, MSE works well for long signals. To overcome the drawback of original MSE, various variants of this method have been proposed for evaluating complexity efficiently. In this study, we have proposed multiscale normalized corrected Shannon entropy (MNCSE), in which instead of using sample entropy, symbolic entropy measure NCSE has been used as an entropy estimate. The results of the study are compared with traditional MSE. The effectiveness of the proposed approach is demonstrated using noise signals as well as interbeat interval signals from healthy and pathological subjects. The preliminary results of the study indicate that MNCSE values are more stable and reliable than original MSE values. The results show that MNCSE based features lead to higher classification accuracies in comparison with the MSE based features.

  18. Investigating dynamical complexity in the magnetosphere using various entropy measures

    NASA Astrophysics Data System (ADS)

    Balasis, Georgios; Daglis, Ioannis A.; Papadimitriou, Constantinos; Kalimeri, Maria; Anastasiadis, Anastasios; Eftaxias, Konstantinos

    2009-09-01

    The complex system of the Earth's magnetosphere corresponds to an open spatially extended nonequilibrium (input-output) dynamical system. The nonextensive Tsallis entropy has been recently introduced as an appropriate information measure to investigate dynamical complexity in the magnetosphere. The method has been employed for analyzing Dst time series and gave promising results, detecting the complexity dissimilarity among different physiological and pathological magnetospheric states (i.e., prestorm activity and intense magnetic storms, respectively). This paper explores the applicability and effectiveness of a variety of computable entropy measures (e.g., block entropy, Kolmogorov entropy, T complexity, and approximate entropy) to the investigation of dynamical complexity in the magnetosphere. We show that as the magnetic storm approaches there is clear evidence of significant lower complexity in the magnetosphere. The observed higher degree of organization of the system agrees with that inferred previously, from an independent linear fractal spectral analysis based on wavelet transforms. This convergence between nonlinear and linear analyses provides a more reliable detection of the transition from the quiet time to the storm time magnetosphere, thus showing evidence that the occurrence of an intense magnetic storm is imminent. More precisely, we claim that our results suggest an important principle: significant complexity decrease and accession of persistency in Dst time series can be confirmed as the magnetic storm approaches, which can be used as diagnostic tools for the magnetospheric injury (global instability). Overall, approximate entropy and Tsallis entropy yield superior results for detecting dynamical complexity changes in the magnetosphere in comparison to the other entropy measures presented herein. Ultimately, the analysis tools developed in the course of this study for the treatment of Dst index can provide convenience for space weather applications.

  19. Approximate convective heating equations for hypersonic flows

    NASA Technical Reports Server (NTRS)

    Zoby, E. V.; Moss, J. N.; Sutton, K.

    1979-01-01

    Laminar and turbulent heating-rate equations appropriate for engineering predictions of the convective heating rates about blunt reentry spacecraft at hypersonic conditions are developed. The approximate methods are applicable to both nonreacting and reacting gas mixtures for either constant or variable-entropy edge conditions. A procedure which accounts for variable-entropy effects and is not based on mass balancing is presented. Results of the approximate heating methods are in good agreement with existing experimental results as well as boundary-layer and viscous-shock-layer solutions.

  20. Assessing criticality in seismicity by entropy

    NASA Astrophysics Data System (ADS)

    Goltz, C.

    2003-04-01

    There is an ongoing discussion whether the Earth's crust is in a critical state and whether this state is permanent or intermittent. Intermittent criticality would allow specification of time-dependent hazard in principle. Analysis of a spatio-temporally evolving synthetic critical point phenomenon and of real seismicity using configurational entropy shows that the method is a suitable approach for the characterisation of critical point dynamics. Results obtained rather support the notion of intermittent criticality in earthquakes. Statistical significance of the findings is assessed by the method of surrogate data.

  1. REMARKS ON THE MAXIMUM ENTROPY METHOD APPLIED TO FINITE TEMPERATURE LATTICE QCD.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    UMEDA, T.; MATSUFURU, H.

    2005-07-25

    We make remarks on the Maximum Entropy Method (MEM) for studies of the spectral function of hadronic correlators in finite temperature lattice QCD. We discuss the virtues and subtlety of MEM in the cases that one does not have enough number of data points such as at finite temperature. Taking these points into account, we suggest several tests which one should examine to keep the reliability for the results, and also apply them using mock and lattice QCD data.

  2. Recoverability in quantum information theory

    NASA Astrophysics Data System (ADS)

    Wilde, Mark

    The fact that the quantum relative entropy is non-increasing with respect to quantum physical evolutions lies at the core of many optimality theorems in quantum information theory and has applications in other areas of physics. In this work, we establish improvements of this entropy inequality in the form of physically meaningful remainder terms. One of the main results can be summarized informally as follows: if the decrease in quantum relative entropy between two quantum states after a quantum physical evolution is relatively small, then it is possible to perform a recovery operation, such that one can perfectly recover one state while approximately recovering the other. This can be interpreted as quantifying how well one can reverse a quantum physical evolution. Our proof method is elementary, relying on the method of complex interpolation, basic linear algebra, and the recently introduced Renyi generalization of a relative entropy difference. The theorem has a number of applications in quantum information theory, which have to do with providing physically meaningful improvements to many known entropy inequalities. This is based on arXiv:1505.04661, now accepted for publication in Proceedings of the Royal Society A. I acknowledge support from startup funds from the Department of Physics and Astronomy at LSU, the NSF under Award No. CCF-1350397, and the DARPA Quiness Program through US Army Research Office award W31P4Q-12-1-0019.

  3. Eigen solutions and entropic system for Hellmann potential in the presence of the Schrödinger equation

    NASA Astrophysics Data System (ADS)

    Onate, C. A.; Onyeaju, M. C.; Ikot, A. N.; Ebomwonyi, O.

    2017-11-01

    By using the supersymmetric approach, we studied the approximate analytic solutions of the three-dimensional Schrödinger equation with the Hellmann potential by applying a suitable approximation scheme to the centrifugal term. The solutions of other useful potentials, such as Coulomb potential and Yukawa potential, are obtained by transformation of variables from the Hellmann potential. Finally, we calculated the Tsallis entropy and Rényi entropy both in position and momentum spaces under the Hellmann potential using integral method. The effects of these entropies on the angular momentum quantum number are investigated in detail.

  4. Statistical mechanical theory for steady state systems. II. Reciprocal relations and the second entropy.

    PubMed

    Attard, Phil

    2005-04-15

    The concept of second entropy is introduced for the dynamic transitions between macrostates. It is used to develop a theory for fluctuations in velocity, and is exemplified by deriving Onsager reciprocal relations for Brownian motion. The cases of free, driven, and pinned Brownian particles are treated in turn, and Stokes' law is derived. The second entropy analysis is applied to the general case of thermodynamic fluctuations, and the Onsager reciprocal relations for these are derived using the method. The Green-Kubo formulas for the transport coefficients emerge from the analysis, as do Langevin dynamics.

  5. The Baldwin-Lomax model for separated and wake flows using the entropy envelope concept

    NASA Technical Reports Server (NTRS)

    Brock, J. S.; Ng, W. F.

    1992-01-01

    Implementation of the Baldwin-Lomax algebraic turbulence model is difficult and ambiguous within flows characterized by strong viscous-inviscid interactions and flow separations. A new method of implementation is proposed which uses an entropy envelope concept and is demonstrated to ensure the proper evaluation of modeling parameters. The method is simple, computationally fast, and applicable to both wake and boundary layer flows. The method is general, making it applicable to any turbulence model which requires the automated determination of the proper maxima of a vorticity-based function. The new method is evalulated within two test cases involving strong viscous-inviscid interaction.

  6. Parameters Selection for Bivariate Multiscale Entropy Analysis of Postural Fluctuations in Fallers and Non-Fallers Older Adults.

    PubMed

    Ramdani, Sofiane; Bonnet, Vincent; Tallon, Guillaume; Lagarde, Julien; Bernard, Pierre Louis; Blain, Hubert

    2016-08-01

    Entropy measures are often used to quantify the regularity of postural sway time series. Recent methodological developments provided both multivariate and multiscale approaches allowing the extraction of complexity features from physiological signals; see "Dynamical complexity of human responses: A multivariate data-adaptive framework," in Bulletin of Polish Academy of Science and Technology, vol. 60, p. 433, 2012. The resulting entropy measures are good candidates for the analysis of bivariate postural sway signals exhibiting nonstationarity and multiscale properties. These methods are dependant on several input parameters such as embedding parameters. Using two data sets collected from institutionalized frail older adults, we numerically investigate the behavior of a recent multivariate and multiscale entropy estimator; see "Multivariate multiscale entropy: A tool for complexity analysis of multichannel data," Physics Review E, vol. 84, p. 061918, 2011. We propose criteria for the selection of the input parameters. Using these optimal parameters, we statistically compare the multivariate and multiscale entropy values of postural sway data of non-faller subjects to those of fallers. These two groups are discriminated by the resulting measures over multiple time scales. We also demonstrate that the typical parameter settings proposed in the literature lead to entropy measures that do not distinguish the two groups. This last result confirms the importance of the selection of appropriate input parameters.

  7. A Comparison of Multiscale Permutation Entropy Measures in On-Line Depth of Anesthesia Monitoring

    PubMed Central

    Li, Xiaoli; Li, Duan; Li, Yongwang; Ursino, Mauro

    2016-01-01

    Objective Multiscale permutation entropy (MSPE) is becoming an interesting tool to explore neurophysiological mechanisms in recent years. In this study, six MSPE measures were proposed for on-line depth of anesthesia (DoA) monitoring to quantify the anesthetic effect on the real-time EEG recordings. The performance of these measures in describing the transient characters of simulated neural populations and clinical anesthesia EEG were evaluated and compared. Methods Six MSPE algorithms—derived from Shannon permutation entropy (SPE), Renyi permutation entropy (RPE) and Tsallis permutation entropy (TPE) combined with the decomposition procedures of coarse-graining (CG) method and moving average (MA) analysis—were studied. A thalamo-cortical neural mass model (TCNMM) was used to generate noise-free EEG under anesthesia to quantitatively assess the robustness of each MSPE measure against noise. Then, the clinical anesthesia EEG recordings from 20 patients were analyzed with these measures. To validate their effectiveness, the ability of six measures were compared in terms of tracking the dynamical changes in EEG data and the performance in state discrimination. The Pearson correlation coefficient (R) was used to assess the relationship among MSPE measures. Results CG-based MSPEs failed in on-line DoA monitoring at multiscale analysis. In on-line EEG analysis, the MA-based MSPE measures at 5 decomposed scales could track the transient changes of EEG recordings and statistically distinguish the awake state, unconsciousness and recovery of consciousness (RoC) state significantly. Compared to single-scale SPE and RPE, MSPEs had better anti-noise ability and MA-RPE at scale 5 performed best in this aspect. MA-TPE outperformed other measures with faster tracking speed of the loss of unconsciousness. Conclusions MA-based multiscale permutation entropies have the potential for on-line anesthesia EEG analysis with its simple computation and sensitivity to drug effect changes. CG-based multiscale permutation entropies may fail to describe the characteristics of EEG at high decomposition scales. PMID:27723803

  8. [Application of entropy-weight TOPSIS model in synthetical quality evaluation of Angelica sinensis growing in Gansu Province].

    PubMed

    Gu, Zhi-rong; Wang, Ya-li; Sun, Yu-jing; Dind, Jun-xia

    2014-09-01

    To investigate the establishment and application methods of entropy-weight TOPSIS model in synthetical quality evaluation of traditional Chinese medicine with Angelica sinensis growing in Gansu Province as an example. The contents of ferulic acid, 3-butylphthalide, Z-butylidenephthalide, Z-ligustilide, linolic acid, volatile oil, and ethanol soluble extractive were used as an evaluation index set. The weights of each evaluation index were determined by information entropy method. The entropyweight TOPSIS model was established to synthetically evaluate the quality of Angelica sinensis growing in Gansu Province by Euclid closeness degree. The results based on established model were in line with the daodi meaning and the knowledge of clinical experience. The established model was simple in calculation, objective, reliable, and can be applied to synthetical quality evaluation of traditional Chinese medicine.

  9. Using the principle of entropy maximization to infer genetic interaction networks from gene expression patterns

    PubMed Central

    Lezon, Timothy R.; Banavar, Jayanth R.; Cieplak, Marek; Maritan, Amos; Fedoroff, Nina V.

    2006-01-01

    We describe a method based on the principle of entropy maximization to identify the gene interaction network with the highest probability of giving rise to experimentally observed transcript profiles. In its simplest form, the method yields the pairwise gene interaction network, but it can also be extended to deduce higher-order interactions. Analysis of microarray data from genes in Saccharomyces cerevisiae chemostat cultures exhibiting energy metabolic oscillations identifies a gene interaction network that reflects the intracellular communication pathways that adjust cellular metabolic activity and cell division to the limiting nutrient conditions that trigger metabolic oscillations. The success of the present approach in extracting meaningful genetic connections suggests that the maximum entropy principle is a useful concept for understanding living systems, as it is for other complex, nonequilibrium systems. PMID:17138668

  10. Determination of LEDs degradation with entropy generation rate

    NASA Astrophysics Data System (ADS)

    Cuadras, Angel; Yao, Jiaqiang; Quilez, Marcos

    2017-10-01

    We propose a method to assess the degradation and aging of light emitting diodes (LEDs) based on irreversible entropy generation rate. We degraded several LEDs and monitored their entropy generation rate ( S ˙ ) in accelerated tests. We compared the thermoelectrical results with the optical light emission evolution during degradation. We find a good relationship between aging and S ˙ (t), because S ˙ is both related to device parameters and optical performance. We propose a threshold of S ˙ (t) as a reliable damage indicator of LED end-of-life that can avoid the need to perform optical measurements to assess optical aging. The method lays beyond the typical statistical laws for lifetime prediction provided by manufacturers. We tested different LED colors and electrical stresses to validate the electrical LED model and we analyzed the degradation mechanisms of the devices.

  11. Moments of the phase-space density, coincidence probabilities, and entropies of a multiparticle system

    NASA Astrophysics Data System (ADS)

    Bialas, A.

    2006-04-01

    A method to estimate moments of the phase-space density from event-by-event fluctuations is reviewed and its accuracy analyzed. Relation of these measurements to the determination of the entropy of the system is discussed. This is a summary of the results obtained recently together with W.Czyz and K.Zalewski.

  12. Detecting Genetic Interactions for Quantitative Traits Using m-Spacing Entropy Measure

    PubMed Central

    Yee, Jaeyong; Kwon, Min-Seok; Park, Taesung; Park, Mira

    2015-01-01

    A number of statistical methods for detecting gene-gene interactions have been developed in genetic association studies with binary traits. However, many phenotype measures are intrinsically quantitative and categorizing continuous traits may not always be straightforward and meaningful. Association of gene-gene interactions with an observed distribution of such phenotypes needs to be investigated directly without categorization. Information gain based on entropy measure has previously been successful in identifying genetic associations with binary traits. We extend the usefulness of this information gain by proposing a nonparametric evaluation method of conditional entropy of a quantitative phenotype associated with a given genotype. Hence, the information gain can be obtained for any phenotype distribution. Because any functional form, such as Gaussian, is not assumed for the entire distribution of a trait or a given genotype, this method is expected to be robust enough to be applied to any phenotypic association data. Here, we show its use to successfully identify the main effect, as well as the genetic interactions, associated with a quantitative trait. PMID:26339620

  13. Discontinuous Galerkin Methods for NonLinear Differential Systems

    NASA Technical Reports Server (NTRS)

    Barth, Timothy; Mansour, Nagi (Technical Monitor)

    2001-01-01

    This talk considers simplified finite element discretization techniques for first-order systems of conservation laws equipped with a convex (entropy) extension. Using newly developed techniques in entropy symmetrization theory, simplified forms of the discontinuous Galerkin (DG) finite element method have been developed and analyzed. The use of symmetrization variables yields numerical schemes which inherit global entropy stability properties of the PDE (partial differential equation) system. Central to the development of the simplified DG methods is the Eigenvalue Scaling Theorem which characterizes right symmetrizers of an arbitrary first-order hyperbolic system in terms of scaled eigenvectors of the corresponding flux Jacobian matrices. A constructive proof is provided for the Eigenvalue Scaling Theorem with detailed consideration given to the Euler equations of gas dynamics and extended conservation law systems derivable as moments of the Boltzmann equation. Using results from kinetic Boltzmann moment closure theory, we then derive and prove energy stability for several approximate DG fluxes which have practical and theoretical merit.

  14. Reduced Data Dualscale Entropy Analysis of HRV Signals for Improved Congestive Heart Failure Detection

    NASA Astrophysics Data System (ADS)

    Kuntamalla, Srinivas; Lekkala, Ram Gopal Reddy

    2014-10-01

    Heart rate variability (HRV) is an important dynamic variable of the cardiovascular system, which operates on multiple time scales. In this study, Multiscale entropy (MSE) analysis is applied to HRV signals taken from Physiobank to discriminate Congestive Heart Failure (CHF) patients from healthy young and elderly subjects. The discrimination power of the MSE method is decreased as the amount of the data reduces and the lowest amount of the data at which there is a clear discrimination between CHF and normal subjects is found to be 4000 samples. Further, this method failed to discriminate CHF from healthy elderly subjects. In view of this, the Reduced Data Dualscale Entropy Analysis method is proposed to reduce the data size required (as low as 500 samples) for clearly discriminating the CHF patients from young and elderly subjects with only two scales. Further, an easy to interpret index is derived using this new approach for the diagnosis of CHF. This index shows 100 % accuracy and correlates well with the pathophysiology of heart failure.

  15. Cross-entropy embedding of high-dimensional data using the neural gas model.

    PubMed

    Estévez, Pablo A; Figueroa, Cristián J; Saito, Kazumi

    2005-01-01

    A cross-entropy approach to mapping high-dimensional data into a low-dimensional space embedding is presented. The method allows to project simultaneously the input data and the codebook vectors, obtained with the Neural Gas (NG) quantizer algorithm, into a low-dimensional output space. The aim of this approach is to preserve the relationship defined by the NG neighborhood function for each pair of input and codebook vectors. A cost function based on the cross-entropy between input and output probabilities is minimized by using a Newton-Raphson method. The new approach is compared with Sammon's non-linear mapping (NLM) and the hierarchical approach of combining a vector quantizer such as the self-organizing feature map (SOM) or NG with the NLM recall algorithm. In comparison with these techniques, our method delivers a clear visualization of both data points and codebooks, and it achieves a better mapping quality in terms of the topology preservation measure q(m).

  16. Edge theory approach to topological entanglement entropy, mutual information, and entanglement negativity in Chern-Simons theories

    NASA Astrophysics Data System (ADS)

    Wen, Xueda; Matsuura, Shunji; Ryu, Shinsei

    2016-06-01

    We develop an approach based on edge theories to calculate the entanglement entropy and related quantities in (2+1)-dimensional topologically ordered phases. Our approach is complementary to, e.g., the existing methods using replica trick and Witten's method of surgery, and applies to a generic spatial manifold of genus g , which can be bipartitioned in an arbitrary way. The effects of fusion and braiding of Wilson lines can be also straightforwardly studied within our framework. By considering a generic superposition of states with different Wilson line configurations, through an interference effect, we can detect, by the entanglement entropy, the topological data of Chern-Simons theories, e.g., the R symbols, monodromy, and topological spins of quasiparticles. Furthermore, by using our method, we calculate other entanglement/correlation measures such as the mutual information and the entanglement negativity. In particular, it is found that the entanglement negativity of two adjacent noncontractible regions on a torus provides a simple way to distinguish Abelian and non-Abelian topological orders.

  17. Entropy Transfer between Residue Pairs and Allostery in Proteins: Quantifying Allosteric Communication in Ubiquitin

    PubMed Central

    2017-01-01

    It has recently been proposed by Gunasakaran et al. that allostery may be an intrinsic property of all proteins. Here, we develop a computational method that can determine and quantify allosteric activity in any given protein. Based on Schreiber's transfer entropy formulation, our approach leads to an information transfer landscape for the protein that shows the presence of entropy sinks and sources and explains how pairs of residues communicate with each other using entropy transfer. The model can identify the residues that drive the fluctuations of others. We apply the model to Ubiquitin, whose allosteric activity has not been emphasized until recently, and show that there are indeed systematic pathways of entropy and information transfer between residues that correlate well with the activities of the protein. We use 600 nanosecond molecular dynamics trajectories for Ubiquitin and its complex with human polymerase iota and evaluate entropy transfer between all pairs of residues of Ubiquitin and quantify the binding susceptibility changes upon complex formation. We explain the complex formation propensities of Ubiquitin in terms of entropy transfer. Important residues taking part in allosteric communication in Ubiquitin predicted by our approach are in agreement with results of NMR relaxation dispersion experiments. Finally, we show that time delayed correlation of fluctuations of two interacting residues possesses an intrinsic causality that tells which residue controls the interaction and which one is controlled. Our work shows that time delayed correlations, entropy transfer and causality are the required new concepts for explaining allosteric communication in proteins. PMID:28095404

  18. Correlations of multiscale entropy in the FX market

    NASA Astrophysics Data System (ADS)

    Stosic, Darko; Stosic, Dusan; Ludermir, Teresa; Stosic, Tatijana

    2016-09-01

    The regularity of price fluctuations in exchange rates plays a crucial role in FX market dynamics. Distinct variations in regularity arise from economic, social and political events, such as interday trading and financial crisis. This paper applies a multiscale time-dependent entropy method on thirty-three exchange rates to analyze price fluctuations in the FX. Correlation matrices of entropy values, termed entropic correlations, are in turn used to describe global behavior of the market. Empirical results suggest a weakly correlated market with pronounced collective behavior at bi-weekly trends. Correlations arise from cycles of low and high regularity in long-term trends. Eigenvalues of the correlation matrix also indicate a dominant European market, followed by shifting American, Asian, African, and Pacific influences. As a result, we find that entropy is a powerful tool for extracting important information from the FX market.

  19. Iterative variational mode decomposition based automated detection of glaucoma using fundus images.

    PubMed

    Maheshwari, Shishir; Pachori, Ram Bilas; Kanhangad, Vivek; Bhandary, Sulatha V; Acharya, U Rajendra

    2017-09-01

    Glaucoma is one of the leading causes of permanent vision loss. It is an ocular disorder caused by increased fluid pressure within the eye. The clinical methods available for the diagnosis of glaucoma require skilled supervision. They are manual, time consuming, and out of reach of common people. Hence, there is a need for an automated glaucoma diagnosis system for mass screening. In this paper, we present a novel method for an automated diagnosis of glaucoma using digital fundus images. Variational mode decomposition (VMD) method is used in an iterative manner for image decomposition. Various features namely, Kapoor entropy, Renyi entropy, Yager entropy, and fractal dimensions are extracted from VMD components. ReliefF algorithm is used to select the discriminatory features and these features are then fed to the least squares support vector machine (LS-SVM) for classification. Our proposed method achieved classification accuracies of 95.19% and 94.79% using three-fold and ten-fold cross-validation strategies, respectively. This system can aid the ophthalmologists in confirming their manual reading of classes (glaucoma or normal) using fundus images. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. An EGR performance evaluation and decision-making approach based on grey theory and grey entropy analysis

    PubMed Central

    2018-01-01

    Exhaust gas recirculation (EGR) is one of the main methods of reducing NOX emissions and has been widely used in marine diesel engines. This paper proposes an optimized comprehensive assessment method based on multi-objective grey situation decision theory, grey relation theory and grey entropy analysis to evaluate the performance and optimize rate determination of EGR, which currently lack clear theoretical guidance. First, multi-objective grey situation decision theory is used to establish the initial decision-making model according to the main EGR parameters. The optimal compromise between diesel engine combustion and emission performance is transformed into a decision-making target weight problem. After establishing the initial model and considering the characteristics of EGR under different conditions, an optimized target weight algorithm based on grey relation theory and grey entropy analysis is applied to generate the comprehensive evaluation and decision-making model. Finally, the proposed method is successfully applied to a TBD234V12 turbocharged diesel engine, and the results clearly illustrate the feasibility of the proposed method for providing theoretical support and a reference for further EGR optimization. PMID:29377956

  1. An EGR performance evaluation and decision-making approach based on grey theory and grey entropy analysis.

    PubMed

    Zu, Xianghuan; Yang, Chuanlei; Wang, Hechun; Wang, Yinyan

    2018-01-01

    Exhaust gas recirculation (EGR) is one of the main methods of reducing NOX emissions and has been widely used in marine diesel engines. This paper proposes an optimized comprehensive assessment method based on multi-objective grey situation decision theory, grey relation theory and grey entropy analysis to evaluate the performance and optimize rate determination of EGR, which currently lack clear theoretical guidance. First, multi-objective grey situation decision theory is used to establish the initial decision-making model according to the main EGR parameters. The optimal compromise between diesel engine combustion and emission performance is transformed into a decision-making target weight problem. After establishing the initial model and considering the characteristics of EGR under different conditions, an optimized target weight algorithm based on grey relation theory and grey entropy analysis is applied to generate the comprehensive evaluation and decision-making model. Finally, the proposed method is successfully applied to a TBD234V12 turbocharged diesel engine, and the results clearly illustrate the feasibility of the proposed method for providing theoretical support and a reference for further EGR optimization.

  2. Effect of rotation preference on spontaneous alternation behavior on Y maze and introduction of a new analytical method, entropy of spontaneous alternation.

    PubMed

    Bak, Jia; Pyeon, Hae-In; Seok, Jin-I; Choi, Yun-Sik

    2017-03-01

    Y maze has been used to test spatial working memory in rodents. To this end, the percentage of spontaneous alternation has been employed. Alternation indicates sequential entries into all three arms; e.g., when an animal visits all three arms clockwise or counterclockwise sequentially, alternation is achieved. Interestingly, animals have a tendency to rotate or turn to a preferred side. Thus, when an animal has a high rotation preference, this may influence their alternation behavior. Here, we have generated a new analytical method, termed entropy of spontaneous alternation, to offset the effect of rotation preference on Y maze. To validate the entropy of spontaneous alternation, we employed a free rotation test using a cylinder and a spatial working memory test on Y maze. We identified that mice showed 65.1% rotation preference on average. Importantly, the percentage of spontaneous alternation in the high preference group (more than 70% rotation to a preferred side) was significantly higher than that in the no preference group (<55%). In addition, there was a clear correlation between rotation preference on cylinder and turning preference on Y maze. On the other hand, this potential leverage effect that arose from rotation preference disappeared when the animal behavior on Y maze was analyzed with the entropy of spontaneous alternation. Further, entropy of spontaneous alternation significantly determined the loss of spatial working memory by scopolamine administration. Combined, these data indicate that the entropy of spontaneous alternation provides higher credibility when spatial working memory is evaluated using Y maze. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Critical behaviour and filed dependence of magnetic entropy change in K-doped manganites Pr0.8Na0.2-xKxMnO3 (x = 0.10 and 0.15)

    NASA Astrophysics Data System (ADS)

    Ben Khlifa, H.; M'nassri, R.; Tarhouni, S.; Regaieg, Y.; Cheikhrouhou-Koubaa, W.; Chniba-Boudjada, N.; Cheikhrouhou, A.

    2018-01-01

    The orthorhombic Pr0.8Na0.2-xKxMnO3 (x = 0.10 and 0.15) manganites are prepared by using the solid state reaction at high temperatures. The critical exponents (β, γ, δ) are investigated through various techniques such as modified Arrott plot, Kouvel-Fisher method and critical isotherm analysis based on the data of the magnetic measurements recorded around the Curie temperature. The critical exponents are derived from the magnetization data using the Kouvel-Fisher method, are found to be β = 0.32(4) and γ = 1.29(2) at TC 123 K for x = 0.10 and β = 0.31(1) and γ = 1.25(2) at TC 133 K for x = 0.15. The critical exponent values obtained for both samples are comparable to the values predicted by the 3D-Ising model, and have also been verified by the scaling equation of state. Such results demonstrate the existence of ferromagnetic short-range order in our materials. The magnetic entropy changes of polycrystalline samples with a second-order phase transition are investigated. A large magnetic entropy change deduced from isothermal magnetization curves, is observed in our samples with a peak centered on their respective Curie temperatures (TC). The field dependence of the magnetic entropy changes are analyzed, which show power law dependence ΔSmax ≈ a(μ0 H) n at transition temperature. The values of n obey to the Curie Weiss law above the transition temperature. It is shown that for the investigated materials, the magnetic entropy change follow a master curve behaviour. The rescaled magnetic entropy change curves for different applied fields collapse onto a single curve for both samples.

  4. Minimal entropy probability paths between genome families.

    PubMed

    Ahlbrandt, Calvin; Benson, Gary; Casey, William

    2004-05-01

    We develop a metric for probability distributions with applications to biological sequence analysis. Our distance metric is obtained by minimizing a functional defined on the class of paths over probability measures on N categories. The underlying mathematical theory is connected to a constrained problem in the calculus of variations. The solution presented is a numerical solution, which approximates the true solution in a set of cases called rich paths where none of the components of the path is zero. The functional to be minimized is motivated by entropy considerations, reflecting the idea that nature might efficiently carry out mutations of genome sequences in such a way that the increase in entropy involved in transformation is as small as possible. We characterize sequences by frequency profiles or probability vectors, in the case of DNA where N is 4 and the components of the probability vector are the frequency of occurrence of each of the bases A, C, G and T. Given two probability vectors a and b, we define a distance function based as the infimum of path integrals of the entropy function H( p) over all admissible paths p(t), 0 < or = t< or =1, with p(t) a probability vector such that p(0)=a and p(1)=b. If the probability paths p(t) are parameterized as y(s) in terms of arc length s and the optimal path is smooth with arc length L, then smooth and "rich" optimal probability paths may be numerically estimated by a hybrid method of iterating Newton's method on solutions of a two point boundary value problem, with unknown distance L between the abscissas, for the Euler-Lagrange equations resulting from a multiplier rule for the constrained optimization problem together with linear regression to improve the arc length estimate L. Matlab code for these numerical methods is provided which works only for "rich" optimal probability vectors. These methods motivate a definition of an elementary distance function which is easier and faster to calculate, works on non-rich vectors, does not involve variational theory and does not involve differential equations, but is a better approximation of the minimal entropy path distance than the distance //b-a//(2). We compute minimal entropy distance matrices for examples of DNA myostatin genes and amino-acid sequences across several species. Output tree dendograms for our minimal entropy metric are compared with dendograms based on BLAST and BLAST identity scores.

  5. Development and application of the maximum entropy method and other spectral estimation techniques

    NASA Astrophysics Data System (ADS)

    King, W. R.

    1980-09-01

    This summary report is a collection of four separate progress reports prepared under three contracts, which are all sponsored by the Office of Naval Research in Arlington, Virginia. This report contains the results of investigations into the application of the maximum entropy method (MEM), a high resolution, frequency and wavenumber estimation technique. The report also contains a description of two, new, stable, high resolution spectral estimation techniques that is provided in the final report section. Many examples of wavenumber spectral patterns for all investigated techniques are included throughout the report. The maximum entropy method is also known as the maximum entropy spectral analysis (MESA) technique, and both names are used in the report. Many MEM wavenumber spectral patterns are demonstrated using both simulated and measured radar signal and noise data. Methods for obtaining stable MEM wavenumber spectra are discussed, broadband signal detection using the MEM prediction error transform (PET) is discussed, and Doppler radar narrowband signal detection is demonstrated using the MEM technique. It is also shown that MEM cannot be applied to randomly sampled data. The two new, stable, high resolution, spectral estimation techniques discussed in the final report section, are named the Wiener-King and the Fourier spectral estimation techniques. The two new techniques have a similar derivation based upon the Wiener prediction filter, but the two techniques are otherwise quite different. Further development of the techniques and measurement of the technique spectral characteristics is recommended for subsequent investigation.

  6. Rényi entropy and Lempel-Ziv complexity of mechanomyographic recordings of diaphragm muscle as indexes of respiratory effort.

    PubMed

    Torres, Abel; Fiz, Jose A; Jane, Raimon; Laciar, Eric; Galdiz, Juan B; Gea, Joaquim; Morera, Josep

    2008-01-01

    The study of the mechanomyographic (MMG) signals of respiratory muscles is a promising technique in order to evaluate the respiratory muscles effort. A new approach for quantifying the relationship between respiratory MMG signals and respiratory effort is presented by analyzing the spatio-temporal patterns in the MMG signal using two non-linear methods: Rényi entropy and Lempel-Ziv (LZ) complexity analysis. Both methods are well suited to the analysis of non-stationary biomedical signals of short length. In this study, MMG signals of the diaphragm muscle acquired by means of a capacitive accelerometer applied on the costal wall were analyzed. The method was tested on an animal model (dogs), and the diaphragmatic MMG signal was recorded continuously while two non anesthetized mongrel dogs performed a spontaneous ventilation protocol with an incremental inspiratory load. The performance in discriminating high and low respiratory effort levels with these two methods was analyzed with the evaluation of the Pearson correlation coefficient between the MMG parameters and respiratory effort parameters extracted from the inspiratory pressure signal. The results obtained show an increase of the MMG signal Rényi entropy and LZ complexity values with the increase of the respiratory effort. Compared with other parameters analyzed in previous works, both Rényi entropy and LZ complexity indexes demonstrates better performance in all the signals analyzed. Our results suggest that these non-linear techniques are useful to detect and quantify changes in the respiratory effort by analyzing MMG respiratory signals.

  7. Coherent entropy induced and acoustic noise separation in compact nozzles

    NASA Astrophysics Data System (ADS)

    Tao, Wenjie; Schuller, Thierry; Huet, Maxime; Richecoeur, Franck

    2017-04-01

    A method to separate entropy induced noise from an acoustic pressure wave in an harmonically perturbed flow through a nozzle is presented. It is tested on an original experimental setup generating simultaneously acoustic and temperature fluctuations in an air flow that is accelerated by a convergent nozzle. The setup mimics the direct and indirect noise contributions to the acoustic pressure field in a confined combustion chamber by producing synchronized acoustic and temperature fluctuations, without dealing with the complexity of the combustion process. It allows generating temperature fluctuations with amplitude up to 10 K in the frequency range from 10 to 100 Hz. The noise separation technique uses experiments with and without temperature fluctuations to determine the relative level of acoustic and entropy fluctuations in the system and to identify the nozzle response to these forcing waves. It requires multi-point measurements of acoustic pressure and temperature. The separation method is first validated with direct numerical simulations of the nonlinear Euler equations. These simulations are used to investigate the conditions for which the separation technique is valid and yield similar trends as the experiments for the investigated flow operating conditions. The separation method then gives successfully the acoustic reflection coefficient but does not recover the same entropy reflection coefficient as predicted by the compact nozzle theory due to the sensitivity of the method to signal noises in the explored experimental conditions. This methodology provides a framework for experimental investigation of direct and indirect combustion noises originating from synchronized perturbations.

  8. Video and accelerometer-based motion analysis for automated surgical skills assessment.

    PubMed

    Zia, Aneeq; Sharma, Yachna; Bettadapura, Vinay; Sarin, Eric L; Essa, Irfan

    2018-03-01

    Basic surgical skills of suturing and knot tying are an essential part of medical training. Having an automated system for surgical skills assessment could help save experts time and improve training efficiency. There have been some recent attempts at automated surgical skills assessment using either video analysis or acceleration data. In this paper, we present a novel approach for automated assessment of OSATS-like surgical skills and provide an analysis of different features on multi-modal data (video and accelerometer data). We conduct a large study for basic surgical skill assessment on a dataset that contained video and accelerometer data for suturing and knot-tying tasks. We introduce "entropy-based" features-approximate entropy and cross-approximate entropy, which quantify the amount of predictability and regularity of fluctuations in time series data. The proposed features are compared to existing methods of Sequential Motion Texture, Discrete Cosine Transform and Discrete Fourier Transform, for surgical skills assessment. We report average performance of different features across all applicable OSATS-like criteria for suturing and knot-tying tasks. Our analysis shows that the proposed entropy-based features outperform previous state-of-the-art methods using video data, achieving average classification accuracies of 95.1 and 92.2% for suturing and knot tying, respectively. For accelerometer data, our method performs better for suturing achieving 86.8% average accuracy. We also show that fusion of video and acceleration features can improve overall performance for skill assessment. Automated surgical skills assessment can be achieved with high accuracy using the proposed entropy features. Such a system can significantly improve the efficiency of surgical training in medical schools and teaching hospitals.

  9. [Maximum entropy model versus remote sensing-based methods for extracting Oncomelania hupensis snail habitats].

    PubMed

    Cong-Cong, Xia; Cheng-Fang, Lu; Si, Li; Tie-Jun, Zhang; Sui-Heng, Lin; Yi, Hu; Ying, Liu; Zhi-Jie, Zhang

    2016-12-02

    To explore the technique of maximum entropy model for extracting Oncomelania hupensis snail habitats in Poyang Lake zone. The information of snail habitats and related environment factors collected in Poyang Lake zone were integrated to set up the maximum entropy based species model and generate snail habitats distribution map. Two Landsat 7 ETM+ remote sensing images of both wet and drought seasons in Poyang Lake zone were obtained, where the two indices of modified normalized difference water index (MNDWI) and normalized difference vegetation index (NDVI) were applied to extract snail habitats. The ROC curve, sensitivities and specificities were applied to assess their results. Furthermore, the importance of the variables for snail habitats was analyzed by using Jackknife approach. The evaluation results showed that the area under receiver operating characteristic curve (AUC) of testing data by the remote sensing-based method was only 0.56, and the sensitivity and specificity were 0.23 and 0.89 respectively. Nevertheless, those indices above-mentioned of maximum entropy model were 0.876, 0.89 and 0.74 respectively. The main concentration of snail habitats in Poyang Lake zone covered the northeast part of Yongxiu County, northwest of Yugan County, southwest of Poyang County and middle of Xinjian County, and the elevation was the most important environment variable affecting the distribution of snails, and the next was land surface temperature (LST). The maximum entropy model is more reliable and accurate than the remote sensing-based method for the sake of extracting snail habitats, which has certain guiding significance for the relevant departments to carry out measures to prevent and control high-risk snail habitats.

  10. Identification of a Threshold Value for the DEMATEL Method: Using the Maximum Mean De-Entropy Algorithm

    NASA Astrophysics Data System (ADS)

    Chung-Wei, Li; Gwo-Hshiung, Tzeng

    To deal with complex problems, structuring them through graphical representations and analyzing causal influences can aid in illuminating complex issues, systems, or concepts. The DEMATEL method is a methodology which can be used for researching and solving complicated and intertwined problem groups. The end product of the DEMATEL process is a visual representation—the impact-relations map—by which respondents organize their own actions in the world. The applicability of the DEMATEL method is widespread, ranging from analyzing world problematique decision making to industrial planning. The most important property of the DEMATEL method used in the multi-criteria decision making (MCDM) field is to construct interrelations between criteria. In order to obtain a suitable impact-relations map, an appropriate threshold value is needed to obtain adequate information for further analysis and decision-making. In this paper, we propose a method based on the entropy approach, the maximum mean de-entropy algorithm, to achieve this purpose. Using real cases to find the interrelationships between the criteria for evaluating effects in E-learning programs as an examples, we will compare the results obtained from the respondents and from our method, and discuss that the different impact-relations maps from these two methods.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khosla, D.; Singh, M.

    The estimation of three-dimensional dipole current sources on the cortical surface from the measured magnetoencephalogram (MEG) is a highly under determined inverse problem as there are many {open_quotes}feasible{close_quotes} images which are consistent with the MEG data. Previous approaches to this problem have concentrated on the use of weighted minimum norm inverse methods. While these methods ensure a unique solution, they often produce overly smoothed solutions and exhibit severe sensitivity to noise. In this paper we explore the maximum entropy approach to obtain better solutions to the problem. This estimation technique selects that image from the possible set of feasible imagesmore » which has the maximum entropy permitted by the information available to us. In order to account for the presence of noise in the data, we have also incorporated a noise rejection or likelihood term into our maximum entropy method. This makes our approach mirror a Bayesian maximum a posteriori (MAP) formulation. Additional information from other functional techniques like functional magnetic resonance imaging (fMRI) can be incorporated in the proposed method in the form of a prior bias function to improve solutions. We demonstrate the method with experimental phantom data from a clinical 122 channel MEG system.« less

  12. The entropy reduction engine: Integrating planning, scheduling, and control

    NASA Technical Reports Server (NTRS)

    Drummond, Mark; Bresina, John L.; Kedar, Smadar T.

    1991-01-01

    The Entropy Reduction Engine, an architecture for the integration of planning, scheduling, and control, is described. The architecture is motivated, presented, and analyzed in terms of its different components; namely, problem reduction, temporal projection, and situated control rule execution. Experience with this architecture has motivated the recent integration of learning. The learning methods are described along with their impact on architecture performance.

  13. Prediction of G-protein-coupled receptor classes in low homology using Chou's pseudo amino acid composition with approximate entropy and hydrophobicity patterns.

    PubMed

    Gu, Q; Ding, Y S; Zhang, T L

    2010-05-01

    We use approximate entropy and hydrophobicity patterns to predict G-protein-coupled receptors. Adaboost classifier is adopted as the prediction engine. A low homology dataset is used to validate the proposed method. Compared with the results reported, the successful rate is encouraging. The source code is written by Matlab.

  14. Heat capacty, relative enthalpy, and calorimetric entropy of silicate minerals: an empirical method of prediction.

    USGS Publications Warehouse

    Robinson, G.R.; Haas, J.L.

    1983-01-01

    Through the evaluation of experimental calorimetric data and estimates of the molar isobaric heat capacities, relative enthalpies and entropies of constituent oxides, a procedure for predicting the thermodynamic properties of silicates is developed. Estimates of the accuracy and precision of the technique and examples of its application are also presented. -J.A.Z.

  15. Research on early-warning index of the spatial temperature field in concrete dams.

    PubMed

    Yang, Guang; Gu, Chongshi; Bao, Tengfei; Cui, Zhenming; Kan, Kan

    2016-01-01

    Warning indicators of the dam body's temperature are required for the real-time monitoring of the service conditions of concrete dams to ensure safety and normal operations. Warnings theories are traditionally targeted at a single point which have limitations, and the scientific warning theories on global behavior of the temperature field are non-existent. In this paper, first, in 3D space, the behavior of temperature field has regional dissimilarity. Through the Ward spatial clustering method, the temperature field was divided into regions. Second, the degree of order and degree of disorder of the temperature monitoring points were defined by the probability method. Third, the weight values of monitoring points of each regions were explored via projection pursuit. Forth, a temperature entropy expression that can describe degree of order of the spatial temperature field in concrete dams was established. Fifth, the early-warning index of temperature entropy was set up according to the calculated sequential value of temperature entropy. Finally, project cases verified the feasibility of the proposed theories. The early-warning index of temperature entropy is conducive to the improvement of early-warning ability and safety management levels during the operation of high concrete dams.

  16. Multiscale Symbolic Phase Transfer Entropy in Financial Time Series Classification

    NASA Astrophysics Data System (ADS)

    Zhang, Ningning; Lin, Aijing; Shang, Pengjian

    We address the challenge of classifying financial time series via a newly proposed multiscale symbolic phase transfer entropy (MSPTE). Using MSPTE method, we succeed to quantify the strength and direction of information flow between financial systems and classify financial time series, which are the stock indices from Europe, America and China during the period from 2006 to 2016 and the stocks of banking, aviation industry and pharmacy during the period from 2007 to 2016, simultaneously. The MSPTE analysis shows that the value of symbolic phase transfer entropy (SPTE) among stocks decreases with the increasing scale factor. It is demonstrated that MSPTE method can well divide stocks into groups by areas and industries. In addition, it can be concluded that the MSPTE analysis quantify the similarity among the stock markets. The symbolic phase transfer entropy (SPTE) between the two stocks from the same area is far less than the SPTE between stocks from different areas. The results also indicate that four stocks from America and Europe have relatively high degree of similarity and the stocks of banking and pharmaceutical industry have higher similarity for CA. It is worth mentioning that the pharmaceutical industry has weaker particular market mechanism than banking and aviation industry.

  17. Charged Dirac Particles' Hawking Radiation via Tunneling of Both Horizons and Thermodynamics Properties of Kerr-Newman-Kasuya-Taub-NUT-AdS Black Holes

    NASA Astrophysics Data System (ADS)

    Ali, M. Hossain; Sultana, Kausari

    2013-12-01

    We investigate Hawking radiation of electrically and magnetically charged Dirac particles from a dyonic Kerr-Newman-Kasuya-Taub-NUT-Anti-de Sitter (KNKTN-AdS) black hole by considering thermal characters of both the outer and inner horizons. We apply Damour-Ruffini method and membrane method to calculate the temperature and the entropy of the inner horizon of the KNKTN-AdS black hole. The inner horizon admits thermal character with positive temperature and entropy proportional to its area. The inner horizon entropy contributes to the total entropy of the black hole in the context of Nernst theorem. Considering conservation of energy, charges, angular momentum, and the back-reaction of emitting particles to the spacetime, we obtain the emission spectra for both the inner and outer horizons. The total emission rate is obtained as the product of the emission rates of the inner and outer horizons. It deviates from the purely thermal spectrum with the leading term exactly the Boltzman factor and can bring some information out. The result thus can be treated as an explanation to the information loss paradox.

  18. A fault diagnosis scheme for rolling bearing based on local mean decomposition and improved multiscale fuzzy entropy

    NASA Astrophysics Data System (ADS)

    Li, Yongbo; Xu, Minqiang; Wang, Rixin; Huang, Wenhu

    2016-01-01

    This paper presents a new rolling bearing fault diagnosis method based on local mean decomposition (LMD), improved multiscale fuzzy entropy (IMFE), Laplacian score (LS) and improved support vector machine based binary tree (ISVM-BT). When the fault occurs in rolling bearings, the measured vibration signal is a multi-component amplitude-modulated and frequency-modulated (AM-FM) signal. LMD, a new self-adaptive time-frequency analysis method can decompose any complicated signal into a series of product functions (PFs), each of which is exactly a mono-component AM-FM signal. Hence, LMD is introduced to preprocess the vibration signal. Furthermore, IMFE that is designed to avoid the inaccurate estimation of fuzzy entropy can be utilized to quantify the complexity and self-similarity of time series for a range of scales based on fuzzy entropy. Besides, the LS approach is introduced to refine the fault features by sorting the scale factors. Subsequently, the obtained features are fed into the multi-fault classifier ISVM-BT to automatically fulfill the fault pattern identifications. The experimental results validate the effectiveness of the methodology and demonstrate that proposed algorithm can be applied to recognize the different categories and severities of rolling bearings.

  19. Confidence intervals and hypothesis testing for the Permutation Entropy with an application to epilepsy

    NASA Astrophysics Data System (ADS)

    Traversaro, Francisco; O. Redelico, Francisco

    2018-04-01

    In nonlinear dynamics, and to a lesser extent in other fields, a widely used measure of complexity is the Permutation Entropy. But there is still no known method to determine the accuracy of this measure. There has been little research on the statistical properties of this quantity that characterize time series. The literature describes some resampling methods of quantities used in nonlinear dynamics - as the largest Lyapunov exponent - but these seems to fail. In this contribution, we propose a parametric bootstrap methodology using a symbolic representation of the time series to obtain the distribution of the Permutation Entropy estimator. We perform several time series simulations given by well-known stochastic processes: the 1/fα noise family, and show in each case that the proposed accuracy measure is as efficient as the one obtained by the frequentist approach of repeating the experiment. The complexity of brain electrical activity, measured by the Permutation Entropy, has been extensively used in epilepsy research for detection in dynamical changes in electroencephalogram (EEG) signal with no consideration of the variability of this complexity measure. An application of the parametric bootstrap methodology is used to compare normal and pre-ictal EEG signals.

  20. Topological terms, AdS2 n gravity, and renormalized entanglement entropy of holographic CFTs

    NASA Astrophysics Data System (ADS)

    Anastasiou, Giorgos; Araya, Ignacio J.; Olea, Rodrigo

    2018-05-01

    We extend our topological renormalization scheme for entanglement entropy to holographic CFTs of arbitrary odd dimensions in the context of the AdS /CFT correspondence. The procedure consists in adding the Chern form as a boundary term to the area functional of the Ryu-Takayanagi minimal surface. The renormalized entanglement entropy thus obtained can be rewritten in terms of the Euler characteristic and the AdS curvature of the minimal surface. This prescription considers the use of the replica trick to express the renormalized entanglement entropy in terms of the renormalized gravitational action evaluated on the conically singular replica manifold extended to the bulk. This renormalized action is obtained in turn by adding the Chern form as the counterterm at the boundary of the 2 n -dimensional asymptotically AdS bulk manifold. We explicitly show that, up to next-to-leading order in the holographic radial coordinate, the addition of this boundary term cancels the divergent part of the entanglement entropy. We discuss possible applications of the method for studying CFT parameters like central charges.

  1. Estimation of conformational entropy in protein-ligand interactions: a computational perspective.

    PubMed

    Polyansky, Anton A; Zubac, Ruben; Zagrovic, Bojan

    2012-01-01

    Conformational entropy is an important component of the change in free energy upon binding of a ligand to its target protein. As a consequence, development of computational techniques for reliable estimation of conformational entropies is currently receiving an increased level of attention in the context of computational drug design. Here, we review the most commonly used techniques for conformational entropy estimation from classical molecular dynamics simulations. Although by-and-large still not directly used in practical drug design, these techniques provide a golden standard for developing other, computationally less-demanding methods for such applications, in addition to furthering our understanding of protein-ligand interactions in general. In particular, we focus on the quasi-harmonic approximation and discuss different approaches that can be used to go beyond it, most notably, when it comes to treating anharmonic and/or correlated motions. In addition to reviewing basic theoretical formalisms, we provide a concrete set of steps required to successfully calculate conformational entropy from molecular dynamics simulations, as well as discuss a number of practical issues that may arise in such calculations.

  2. Investigations on entropy layer along hypersonic hyperboloids using a defect boundary layer

    NASA Technical Reports Server (NTRS)

    Brazier, J. P.; Aupoix, B.; Cousteix, J.

    1992-01-01

    A defect approach coupled with matched asymptotic expansions is used to derive a new set of boundary layer equations. This method ensures a smooth matching of the boundary layer with the inviscid solution. These equations are solved to calculate boundary layers over hypersonic blunt bodies involving the entropy gradient effect. Systematic comparisons are made for both axisymmetric and plane flows in several cases with different Mach and Reynolds numbers. After a brief survey of the entropy layer characteristics, the defect boundary layer results are compared with standard boundary layer and full Navier-Stokes solutions. The entropy gradient effects are found to be more important in the axisymmetric case than in the plane one. The wall temperature has a great influence on the results through the displacement effect. Good predictions can be obtained with the defect approach over a cold wall in the nose region, with a first order solution. However, the defect approach gives less accurate results far from the nose on axisymmetric bodies because of the thinning of the entropy layer.

  3. Entropy of dynamical social networks

    NASA Astrophysics Data System (ADS)

    Zhao, Kun; Karsai, Marton; Bianconi, Ginestra

    2012-02-01

    Dynamical social networks are evolving rapidly and are highly adaptive. Characterizing the information encoded in social networks is essential to gain insight into the structure, evolution, adaptability and dynamics. Recently entropy measures have been used to quantify the information in email correspondence, static networks and mobility patterns. Nevertheless, we still lack methods to quantify the information encoded in time-varying dynamical social networks. In this talk we present a model to quantify the entropy of dynamical social networks and use this model to analyze the data of phone-call communication. We show evidence that the entropy of the phone-call interaction network changes according to circadian rhythms. Moreover we show that social networks are extremely adaptive and are modified by the use of technologies such as mobile phone communication. Indeed the statistics of duration of phone-call is described by a Weibull distribution and is significantly different from the distribution of duration of face-to-face interactions in a conference. Finally we investigate how much the entropy of dynamical social networks changes in realistic models of phone-call or face-to face interactions characterizing in this way different type human social behavior.

  4. On the ab initio calculation of vibrational formation entropy of point defect: the case of the silicon vacancy

    NASA Astrophysics Data System (ADS)

    Seeberger, Pia; Vidal, Julien

    2017-08-01

    Formation entropy of point defects is one of the last crucial elements required to fully describe the temperature dependence of point defect formation. However, while many attempts have been made to compute them for very complicated systems, very few works have been carried out such as to assess the different effects of finite size effects and precision on such quantity. Large discrepancies can be found in the literature for a system as primitive as the silicon vacancy. In this work, we have proposed a systematic study of formation entropy for silicon vacancy in its 3 stable charge states: neutral, +2 and -2 for supercells with size not below 432 atoms. Rationalization of the formation entropy is presented, highlighting importance of finite size error and the difficulty to compute such quantities due to high numerical requirement. It is proposed that the direct calculation of formation entropy of VSi using first principles methods will be plagued by very high computational workload (or large numerical errors) and finite size dependent results.

  5. Melting curves and entropy of fusion of body-centered cubic tungsten under pressure

    NASA Astrophysics Data System (ADS)

    Liu, Chun-Mei; Chen, Xiang-Rong; Xu, Chao; Cai, Ling-Cang; Jing, Fu-Qian

    2012-07-01

    The melting curves and entropy of fusion of body-centered cubic (bcc) tungsten (W) under pressure are investigated via molecular dynamics (MD) simulations with extended Finnis-Sinclair (EFS) potential. The zero pressure melting point obtained is better than other theoretical results by MD simulations with the embedded-atom-method (EAM), Finnis-Sinclair (FS) and modified EAM potentials, and by ab initio MD simulations. Our radial distribution function and running coordination number analyses indicate that apart from the expected increase in disorder, the main change on going from solid to liquid is thus a slight decrease in coordination number. Our entropy of fusion of W during melting, ΔS, at zero pressure, 7.619 J/mol.K, is in good agreement with the experimental and other theoretical data. We found that, with the increasing pressure, the entropy of fusion ΔS decreases fast first and then oscillates with pressure; when the pressure is higher than 100 GPa, the entropy of fusion ΔS is about 6.575 ± 0.086 J/mol.K, which shows less pressure effect.

  6. Epoch-based Entropy for Early Screening of Alzheimer's Disease.

    PubMed

    Houmani, N; Dreyfus, G; Vialatte, F B

    2015-12-01

    In this paper, we introduce a novel entropy measure, termed epoch-based entropy. This measure quantifies disorder of EEG signals both at the time level and spatial level, using local density estimation by a Hidden Markov Model on inter-channel stationary epochs. The investigation is led on a multi-centric EEG database recorded from patients at an early stage of Alzheimer's disease (AD) and age-matched healthy subjects. We investigate the classification performances of this method, its robustness to noise, and its sensitivity to sampling frequency and to variations of hyperparameters. The measure is compared to two alternative complexity measures, Shannon's entropy and correlation dimension. The classification accuracies for the discrimination of AD patients from healthy subjects were estimated using a linear classifier designed on a development dataset, and subsequently tested on an independent test set. Epoch-based entropy reached a classification accuracy of 83% on the test dataset (specificity = 83.3%, sensitivity = 82.3%), outperforming the two other complexity measures. Furthermore, it was shown to be more stable to hyperparameter variations, and less sensitive to noise and sampling frequency disturbances than the other two complexity measures.

  7. NOTE: Entropy-based automated classification of independent components separated from fMCG

    NASA Astrophysics Data System (ADS)

    Comani, S.; Srinivasan, V.; Alleva, G.; Romani, G. L.

    2007-03-01

    Fetal magnetocardiography (fMCG) is a noninvasive technique suitable for the prenatal diagnosis of the fetal heart function. Reliable fetal cardiac signals can be reconstructed from multi-channel fMCG recordings by means of independent component analysis (ICA). However, the identification of the separated components is usually accomplished by visual inspection. This paper discusses a novel automated system based on entropy estimators, namely approximate entropy (ApEn) and sample entropy (SampEn), for the classification of independent components (ICs). The system was validated on 40 fMCG datasets of normal fetuses with the gestational age ranging from 22 to 37 weeks. Both ApEn and SampEn were able to measure the stability and predictability of the physiological signals separated with ICA, and the entropy values of the three categories were significantly different at p <0.01. The system performances were compared with those of a method based on the analysis of the time and frequency content of the components. The outcomes of this study showed a superior performance of the entropy-based system, in particular for early gestation, with an overall ICs detection rate of 98.75% and 97.92% for ApEn and SampEn respectively, as against a value of 94.50% obtained with the time-frequency-based system.

  8. Rényi entropies after releasing the Néel state in the XXZ spin-chain

    NASA Astrophysics Data System (ADS)

    Alba, Vincenzo; Calabrese, Pasquale

    2017-11-01

    We study the Rényi entropies in the spin-1/2 anisotropic Heisenberg chain after a quantum quench starting from the Néel state. The quench action method allows us to obtain the stationary Rényi entropies for arbitrary values of the index α as generalised free energies evaluated over a calculable thermodynamic macrostate depending on α. We work out this macrostate for several values of α and of the anisotropy Δ by solving the thermodynamic Bethe ansatz equations. By varying α different regions of the Hamiltonian spectrum are accessed. The two extremes are α\\to∞ for which the thermodynamic macrostate is either the ground state or a low-lying excited state (depending on Δ) and α=0 when the macrostate is the infinite temperature state. The Rényi entropies are easily obtained from the macrostate as function of α and a few interesting limits are analytically characterised. We provide robust numerical evidence to confirm our results using exact diagonalisation and a stochastic numerical implementation of Bethe ansatz. Finally, using tDMRG we calculate the time evolution of the Rényi entanglement entropies. For large subsystems and for any α, their density turns out to be compatible with that of the thermodynamic Rényi entropies.

  9. Detection of structural damage in multiwire cables by monitoring the entropy evolution of wavelet coefficients

    NASA Astrophysics Data System (ADS)

    Ibáñez, Flor; Baltazar, Arturo; Mijarez, Rito; Aranda, Jorge

    2015-03-01

    Multiwire cables are widely used in important civil structures. Since they are exposed to several dynamic and static loads, their structural health can be compromised. The cables can also be submitted to mechanical contact, tension and energy propagation in addition to changes in size and material within their wires. Due to the critical role played by multiwire cables, it is necessary to develop a non-destructive health monitoring method to maintain their structure and proper performance. Ultrasonic inspection using guided waves is a promising non-destructive damage monitoring technique for rods, single wires and multiwire cables. The propagated guided waves are composed by an infinite number of vibrational modes making their analysis difficult. In this work, an entropy-based method to identify small changes in non-stationary signals is proposed. A system to capture and post-process acoustic signals is implemented. The Discrete Wavelet Transform (DWT) is computed in order to obtain the reconstructed wavelet coefficients of the signals and to analyze the energy at different scales. The feasibility of using the concept of entropy evolution of non-stationary signals to detect damage in multiwire cables is evaluated. The results show that there is a high correlation between the entropy value and damage level of the cable. The proposed method has low sensitivity to noise and reduces the computational complexity found in a typical time-frequency analysis.

  10. Automatic Detection of Atrial Fibrillation Using Basic Shannon Entropy of RR Interval Feature

    NASA Astrophysics Data System (ADS)

    Afdala, Adfal; Nuryani, Nuryani; Satriyo Nugroho, Anto

    2017-01-01

    Atrial Fibrillation is one of heart disease, that common characterized by irregularity heart beat. Atrial fibrillation leads to severe complications such as cardiac failure with the subsequent risk of a stroke. A method to detect atrial fibrillation is needed to prevent a risk of atrial fibrillation. This research uses data from physionet in atrial fibrillation database category. The performance of Shannon entropy has the highest accuracy if a threshold is 0.5 with accuracy 89.79%, sensitivity 91.04% and specificity 89.01%. Based on the result we get a conclusion, the ability of Shannon entropy to detect atrial fibrillation is good.

  11. Entropy in sound and vibration: towards a new paradigm.

    PubMed

    Le Bot, A

    2017-01-01

    This paper describes a discussion on the method and the status of a statistical theory of sound and vibration, called statistical energy analysis (SEA). SEA is a simple theory of sound and vibration in elastic structures that applies when the vibrational energy is diffusely distributed. We show that SEA is a thermodynamical theory of sound and vibration, based on a law of exchange of energy analogous to the Clausius principle. We further investigate the notion of entropy in this context and discuss its meaning. We show that entropy is a measure of information lost in the passage from the classical theory of sound and vibration and SEA, its thermodynamical counterpart.

  12. Risk Evaluation of Bogie System Based on Extension Theory and Entropy Weight Method

    PubMed Central

    Du, Yanping; Zhang, Yuan; Zhao, Xiaogang; Wang, Xiaohui

    2014-01-01

    A bogie system is the key equipment of railway vehicles. Rigorous practical evaluation of bogies is still a challenge. Presently, there is overreliance on part-specific experiments in practice. In the present work, a risk evaluation index system of a bogie system has been established based on the inspection data and experts' evaluation. Then, considering quantitative and qualitative aspects, the risk state of a bogie system has been evaluated using an extension theory and an entropy weight method. Finally, the method has been used to assess the bogie system of four different samples. Results show that this method can assess the risk state of a bogie system exactly. PMID:25574159

  13. Risk evaluation of bogie system based on extension theory and entropy weight method.

    PubMed

    Du, Yanping; Zhang, Yuan; Zhao, Xiaogang; Wang, Xiaohui

    2014-01-01

    A bogie system is the key equipment of railway vehicles. Rigorous practical evaluation of bogies is still a challenge. Presently, there is overreliance on part-specific experiments in practice. In the present work, a risk evaluation index system of a bogie system has been established based on the inspection data and experts' evaluation. Then, considering quantitative and qualitative aspects, the risk state of a bogie system has been evaluated using an extension theory and an entropy weight method. Finally, the method has been used to assess the bogie system of four different samples. Results show that this method can assess the risk state of a bogie system exactly.

  14. Use of Multiscale Entropy to Facilitate Artifact Detection in Electroencephalographic Signals

    PubMed Central

    Mariani, Sara; Borges, Ana F. T.; Henriques, Teresa; Goldberger, Ary L.; Costa, Madalena D.

    2016-01-01

    Electroencephalographic (EEG) signals present a myriad of challenges to analysis, beginning with the detection of artifacts. Prior approaches to noise detection have utilized multiple techniques, including visual methods, independent component analysis and wavelets. However, no single method is broadly accepted, inviting alternative ways to address this problem. Here, we introduce a novel approach based on a statistical physics method, multiscale entropy (MSE) analysis, which quantifies the complexity of a signal. We postulate that noise corrupted EEG signals have lower information content, and, therefore, reduced complexity compared with their noise free counterparts. We test the new method on an open-access database of EEG signals with and without added artifacts due to electrode motion. PMID:26738116

  15. Path-integral Monte Carlo method for Rényi entanglement entropies.

    PubMed

    Herdman, C M; Inglis, Stephen; Roy, P-N; Melko, R G; Del Maestro, A

    2014-07-01

    We introduce a quantum Monte Carlo algorithm to measure the Rényi entanglement entropies in systems of interacting bosons in the continuum. This approach is based on a path-integral ground state method that can be applied to interacting itinerant bosons in any spatial dimension with direct relevance to experimental systems of quantum fluids. We demonstrate how it may be used to compute spatial mode entanglement, particle partitioned entanglement, and the entanglement of particles, providing insights into quantum correlations generated by fluctuations, indistinguishability, and interactions. We present proof-of-principle calculations and benchmark against an exactly soluble model of interacting bosons in one spatial dimension. As this algorithm retains the fundamental polynomial scaling of quantum Monte Carlo when applied to sign-problem-free models, future applications should allow for the study of entanglement entropy in large-scale many-body systems of interacting bosons.

  16. Nonlinear dynamic analysis of voices before and after surgical excision of vocal polyps

    NASA Astrophysics Data System (ADS)

    Zhang, Yu; McGilligan, Clancy; Zhou, Liang; Vig, Mark; Jiang, Jack J.

    2004-05-01

    Phase space reconstruction, correlation dimension, and second-order entropy, methods from nonlinear dynamics, are used to analyze sustained vowels generated by patients before and after surgical excision of vocal polyps. Two conventional acoustic perturbation parameters, jitter and shimmer, are also employed to analyze voices before and after surgery. Presurgical and postsurgical analyses of jitter, shimmer, correlation dimension, and second-order entropy are statistically compared. Correlation dimension and second-order entropy show a statistically significant decrease after surgery, indicating reduced complexity and higher predictability of postsurgical voice dynamics. There is not a significant postsurgical difference in shimmer, although jitter shows a significant postsurgical decrease. The results suggest that jitter and shimmer should be applied to analyze disordered voices with caution; however, nonlinear dynamic methods may be useful for analyzing abnormal vocal function and quantitatively evaluating the effects of surgical excision of vocal polyps.

  17. On the Maxwellian distribution, symmetric form, and entropy conservation for the Euler equations

    NASA Technical Reports Server (NTRS)

    Deshpande, S. M.

    1986-01-01

    The Euler equations of gas dynamics have some very interesting properties in that the flux vector is a homogeneous function of the unknowns and the equations can be cast in symmetric hyperbolic form and satisfy the entropy conservation. The Euler equations are the moments of the Boltzmann equation of the kinetic theory of gases when the velocity distribution function is a Maxwellian. The present paper shows the relationship between the symmetrizability and the Maxwellian velocity distribution. The entropy conservation is in terms of the H-function, which is a slight modification of the H-function first introduced by Boltzmann in his famous H-theorem. In view of the H-theorem, it is suggested that the development of total H-diminishing (THD) numerical methods may be more profitable than the usual total variation diminishing (TVD) methods for obtaining wiggle-free solutions.

  18. Comparison of hemodynamic effects of intravenous etomidate versus propofol during induction and intubation using entropy guided hypnosis levels

    PubMed Central

    Shah, Shagun Bhatia; Chowdhury, Itee; Bhargava, Ajay Kumar; Sabbharwal, Bhawnish

    2015-01-01

    Background and Aims: This study aimed to compare the hemodynamic responses during induction and intubation between propofol and etomidate using entropy guided hypnosis. Material and Methods: Sixty ASA I & II patients in the age group 20-60 yrs, scheduled for modified radical mastectomy were randomly allocated in two groups based on induction agent Etomidate or Propofol. Both groups received intravenous midazolam 0.03 mg kg-1 and fentanyl 2 μg kg-1 as premedication. After induction with the desired agent titrated to entropy 40, vecuronium 0.1 mg kg-1 was administered for neuromuscular blockade. Heart rate, systolic, diastolic and mean arterial pressures, response entropy [RE] and state entropy [SE] were recorded at baseline, induction and upto three minutes post intubation. Data was subject to statistical analysis SPSS (version 12.0) the paired and the unpaired Student's T-tests for equality of means. Results: Etomidate provided hemodynamic stability without the requirement of any rescue drug in 96.6% patients whereas rescue drug ephedrine was required in 36.6% patients in propofol group. Reduced induction doses 0.15mg kg-1 for etomidate and 0.98 mg kg-1 for propofol, sufficed to give an adequate anaesthetic depth based on entropy. Conclusion: Etomidate provides more hemodynamic stability than propofol during induction and intubation. Reduced induction doses of etomidate and propofol titrated to entropy translated into increased hemodynamic stability for both drugs and sufficed to give an adequate anaesthetic depth. PMID:25948897

  19. Thermodynamics phase transition and Hawking radiation of the Schwarzschild black hole with quintessence-like matter and a deficit solid angle

    NASA Astrophysics Data System (ADS)

    Rodrigue, Kamiko Kouemeni Jean; Saleh, Mahamat; Thomas, Bouetou Bouetou; Kofane, Timoleon Crepin

    2018-05-01

    In this paper, we investigate the thermodynamics and Hawking radiation of Schwarzschild black hole with quintessence-like matter and deficit solid angle. From the metric of the black hole, we derive the expressions of temperature and specific heat using the laws of black hole thermodynamics. Using the null geodesics method and Parikh-Wilczeck tunneling method, we derive the expressions of Boltzmann factor and the change of Bekenstein-Hawking entropy for the black hole. The behaviors of the temperature, specific heat, Boltzmann factor and the change of Bekenstein entropy versus the deficit solid angle (ɛ 2) and the density of static spherically symmetric quintessence-like matter (ρ 0) were explicitly plotted. The results show that, when the deficit solid angle (ɛ 2) and the density of static spherically symmetric quintessence-like matter at r=1 (ρ 0) vanish (ρ 0=ɛ =0), these four thermodynamics quantities are reduced to those obtained for the simple case of Schwarzschild black hole. For low entropies, the presence of quintessence-like matter induces a first order phase transition of the black hole and for the higher values of the entropies, we observe the second order phase transition. When increasing ρ 0, the transition points are shifted to lower entropies. The same thing is observed when increasing ɛ 2. In the absence of quintessence-like matter (ρ 0=0), these transition phenomena disappear. Moreover the rate of radiation decreases when increasing ρ 0 or (ɛ ^2).

  20. Regeneration of aluminum hydride

    DOEpatents

    Graetz, Jason Allan; Reilly, James J.

    2009-04-21

    The present invention provides methods and materials for the formation of hydrogen storage alanes, AlH.sub.x, where x is greater than 0 and less than or equal to 6 at reduced H.sub.2 pressures and temperatures. The methods rely upon reduction of the change in free energy of the reaction between aluminum and molecular H.sub.2. The change in free energy is reduced by lowering the entropy change during the reaction by providing aluminum in a state of high entropy, by increasing the magnitude of the change in enthalpy of the reaction or combinations thereof.

  1. On the deduction of chemical reaction pathways from measurements of time series of concentrations.

    PubMed

    Samoilov, Michael; Arkin, Adam; Ross, John

    2001-03-01

    We discuss the deduction of reaction pathways in complex chemical systems from measurements of time series of chemical concentrations of reacting species. First we review a technique called correlation metric construction (CMC) and show the construction of a reaction pathway from measurements on a part of glycolysis. Then we present two new improved methods for the analysis of time series of concentrations, entropy metric construction (EMC), and entropy reduction method (ERM), and illustrate (EMC) with calculations on a model reaction system. (c) 2001 American Institute of Physics.

  2. Data Decomposition Techniques with Multi-Scale Permutation Entropy Calculations for Bearing Fault Diagnosis

    PubMed Central

    Yasir, Muhammad Naveed; Koh, Bong-Hwan

    2018-01-01

    This paper presents the local mean decomposition (LMD) integrated with multi-scale permutation entropy (MPE), also known as LMD-MPE, to investigate the rolling element bearing (REB) fault diagnosis from measured vibration signals. First, the LMD decomposed the vibration data or acceleration measurement into separate product functions that are composed of both amplitude and frequency modulation. MPE then calculated the statistical permutation entropy from the product functions to extract the nonlinear features to assess and classify the condition of the healthy and damaged REB system. The comparative experimental results of the conventional LMD-based multi-scale entropy and MPE were presented to verify the authenticity of the proposed technique. The study found that LMD-MPE’s integrated approach provides reliable, damage-sensitive features when analyzing the bearing condition. The results of REB experimental datasets show that the proposed approach yields more vigorous outcomes than existing methods. PMID:29690526

  3. Shannon entropies and Fisher information of K-shell electrons of neutral atoms

    NASA Astrophysics Data System (ADS)

    Sekh, Golam Ali; Saha, Aparna; Talukdar, Benoy

    2018-02-01

    We represent the two K-shell electrons of neutral atoms by Hylleraas-type wave function which fulfils the exact behavior at the electron-electron and electron-nucleus coalescence points and, derive a simple method to construct expressions for single-particle position- and momentum-space charge densities, ρ (r) and γ (p) respectively. We make use of the results for ρ (r) and γ (p) to critically examine the effect of correlation on bare (uncorrelated) values of Shannon information entropies (S) and of Fisher information (F) for the K-shell electrons of atoms from helium to neon. Due to inter-electronic repulsion the values of the uncorrelated Shannon position-space entropies are augmented while those of the momentum-space entropies are reduced. The corresponding Fisher information are found to exhibit opposite behavior in respect of this. Attempts are made to provide some plausible explanation for the observed response of S and F to electronic correlation.

  4. On entropy determination from magnetic and calorimetric experiments in conventional giant magnetocaloric materials

    NASA Astrophysics Data System (ADS)

    Chen, Jing-Han; Us Saleheen, Ahmad; Adams, Philip W.; Young, David P.; Ali, Naushad; Stadler, Shane

    2018-04-01

    In this work, we discuss measurement protocols for the determination of the magnetic entropy change associated with first-order magneto-structural transitions from both magnetization and calorimetric experiments. The Cu-doped Ni2MnGa Heusler alloy with a first-order magneto-structural phase transition is used as a case study to illustrate how commonly-used magnetization measurement protocols result in spurious entropy evaluations. Two magnetization measurement protocols which allow for the accurate assessment of the magnetic entropy change across first-order magneto-structural transitions are presented. In addition, calorimetric measurements were performed to validate the results from the magnetization measurements. Self-consistent results between the magnetization and calorimetric measurements were obtained when the non-equilibrium thermodynamic state was carefully handled. Such methods could be applicable to other systems displaying giant magnetocaloric effects caused by first-order phase transitions with magnetic and thermal hysteresis.

  5. A computational study of entropy generation in magnetohydrodynamic flow and heat transfer over an unsteady stretching permeable sheet

    NASA Astrophysics Data System (ADS)

    Saeed Butt, Adnan; Ali, Asif

    2014-01-01

    The present article aims to investigate the entropy effects in magnetohydrodynamic flow and heat transfer over an unsteady permeable stretching surface. The time-dependent partial differential equations are converted into non-linear ordinary differential equations by suitable similarity transformations. The solutions of these equations are computed analytically by the Homotopy Analysis Method (HAM) then solved numerically by the MATLAB built-in routine. Comparison of the obtained results is made with the existing literature under limiting cases to validate our study. The effects of unsteadiness parameter, magnetic field parameter, suction/injection parameter, Prandtl number, group parameter and Reynolds number on flow and heat transfer characteristics are checked and analysed with the aid of graphs and tables. Moreover, the effects of these parameters on entropy generation number and Bejan number are also shown graphically. It is examined that the unsteadiness and presence of magnetic field augments the entropy production.

  6. Hawking radiation and entropy of a black hole in Lovelock-Born-Infeld gravity from the quantum tunneling approach

    NASA Astrophysics Data System (ADS)

    Li, Gu-Qiang

    2017-04-01

    The tunneling radiation of particles from black holes in Lovelock-Born-Infeld (LBI) gravity is studied by using the Parikh-Wilczek (PW) method, and the emission rate of a particle is calculated. It is shown that the emission spectrum deviates from the purely thermal spectrum but is consistent with an underlying unitary theory. Compared to the conventional tunneling rate related to the increment of black hole entropy, the entropy of the black hole in LBI gravity is obtained. The entropy does not obey the area law unless all the Lovelock coefficients equal zero, but it satisfies the first law of thermodynamics and is in accordance with earlier results. It is distinctly shown that the PW tunneling framework is related to the thermodynamic laws of the black hole. Supported by Guangdong Natural Science Foundation (2016A030307051, 2015A030313789)

  7. Data Decomposition Techniques with Multi-Scale Permutation Entropy Calculations for Bearing Fault Diagnosis.

    PubMed

    Yasir, Muhammad Naveed; Koh, Bong-Hwan

    2018-04-21

    This paper presents the local mean decomposition (LMD) integrated with multi-scale permutation entropy (MPE), also known as LMD-MPE, to investigate the rolling element bearing (REB) fault diagnosis from measured vibration signals. First, the LMD decomposed the vibration data or acceleration measurement into separate product functions that are composed of both amplitude and frequency modulation. MPE then calculated the statistical permutation entropy from the product functions to extract the nonlinear features to assess and classify the condition of the healthy and damaged REB system. The comparative experimental results of the conventional LMD-based multi-scale entropy and MPE were presented to verify the authenticity of the proposed technique. The study found that LMD-MPE’s integrated approach provides reliable, damage-sensitive features when analyzing the bearing condition. The results of REB experimental datasets show that the proposed approach yields more vigorous outcomes than existing methods.

  8. Evaluating convex roof entanglement measures.

    PubMed

    Tóth, Géza; Moroder, Tobias; Gühne, Otfried

    2015-04-24

    We show a powerful method to compute entanglement measures based on convex roof constructions. In particular, our method is applicable to measures that, for pure states, can be written as low order polynomials of operator expectation values. We show how to compute the linear entropy of entanglement, the linear entanglement of assistance, and a bound on the dimension of the entanglement for bipartite systems. We discuss how to obtain the convex roof of the three-tangle for three-qubit states. We also show how to calculate the linear entropy of entanglement and the quantum Fisher information based on partial information or device independent information. We demonstrate the usefulness of our method by concrete examples.

  9. An evidential link prediction method and link predictability based on Shannon entropy

    NASA Astrophysics Data System (ADS)

    Yin, Likang; Zheng, Haoyang; Bian, Tian; Deng, Yong

    2017-09-01

    Predicting missing links is of both theoretical value and practical interest in network science. In this paper, we empirically investigate a new link prediction method base on similarity and compare nine well-known local similarity measures on nine real networks. Most of the previous studies focus on the accuracy, however, it is crucial to consider the link predictability as an initial property of networks itself. Hence, this paper has proposed a new link prediction approach called evidential measure (EM) based on Dempster-Shafer theory. Moreover, this paper proposed a new method to measure link predictability via local information and Shannon entropy.

  10. Generating intrinsically disordered protein conformational ensembles from a Markov chain

    NASA Astrophysics Data System (ADS)

    Cukier, Robert I.

    2018-03-01

    Intrinsically disordered proteins (IDPs) sample a diverse conformational space. They are important to signaling and regulatory pathways in cells. An entropy penalty must be payed when an IDP becomes ordered upon interaction with another protein or a ligand. Thus, the degree of conformational disorder of an IDP is of interest. We create a dichotomic Markov model that can explore entropic features of an IDP. The Markov condition introduces local (neighbor residues in a protein sequence) rotamer dependences that arise from van der Waals and other chemical constraints. A protein sequence of length N is characterized by its (information) entropy and mutual information, MIMC, the latter providing a measure of the dependence among the random variables describing the rotamer probabilities of the residues that comprise the sequence. For a Markov chain, the MIMC is proportional to the pair mutual information MI which depends on the singlet and pair probabilities of neighbor residue rotamer sampling. All 2N sequence states are generated, along with their probabilities, and contrasted with the probabilities under the assumption of independent residues. An efficient method to generate realizations of the chain is also provided. The chain entropy, MIMC, and state probabilities provide the ingredients to distinguish different scenarios using the terminologies: MoRF (molecular recognition feature), not-MoRF, and not-IDP. A MoRF corresponds to large entropy and large MIMC (strong dependence among the residues' rotamer sampling), a not-MoRF corresponds to large entropy but small MIMC, and not-IDP corresponds to low entropy irrespective of the MIMC. We show that MorFs are most appropriate as descriptors of IDPs. They provide a reasonable number of high-population states that reflect the dependences between neighbor residues, thus classifying them as IDPs, yet without very large entropy that might lead to a too high entropy penalty.

  11. Using Wavelet Entropy to Demonstrate how Mindfulness Practice Increases Coordination between Irregular Cerebral and Cardiac Activities.

    PubMed

    Sik, Hin Hung; Gao, Junling; Fan, Jicong; Wu, Bonnie Wai Yan; Leung, Hang Kin; Hung, Yeung Sam

    2017-05-10

    In both the East and West, traditional teachings say that the mind and heart are somehow closely correlated, especially during spiritual practice. One difficulty in proving this objectively is that the natures of brain and heart activities are quite different. In this paper, we propose a methodology that uses wavelet entropy to measure the chaotic levels of both electroencephalogram (EEG) and electrocardiogram (ECG) data and show how this may be used to explore the potential coordination between the mind and heart under different experimental conditions. Furthermore, Statistical Parametric Mapping (SPM) was used to identify the brain regions in which the EEG wavelet entropy was the most affected by the experimental conditions. As an illustration, the EEG and ECG were recorded under two different conditions (normal rest and mindful breathing) at the beginning of an 8-week standard Mindfulness-based Stress Reduction (MBSR) training course (pretest) and after the course (posttest). Using the proposed method, the results consistently showed that the wavelet entropy of the brain EEG decreased during the MBSR mindful breathing state as compared to that during the closed-eye resting state. Similarly, a lower wavelet entropy of heartrate was found during MBSR mindful breathing. However, no difference in wavelet entropy during MBSR mindful breathing was found between the pretest and posttest. No correlation was observed between the entropy of brain waves and the entropy of heartrate during normal rest in all participants, whereas a significant correlation was observed during MBSR mindful breathing. Additionally, the most well-correlated brain regions were located in the central areas of the brain. This study provides a methodology for the establishment of evidence that mindfulness practice (i.e., mindful breathing) may increase the coordination between mind and heart activities.

  12. Entropy of balance - some recent results

    PubMed Central

    2010-01-01

    Background Entropy when applied to biological signals is expected to reflect the state of the biological system. However the physiological interpretation of the entropy is not always straightforward. When should high entropy be interpreted as a healthy sign, and when as marker of deteriorating health? We address this question for the particular case of human standing balance and the Center of Pressure data. Methods We have measured and analyzed balance data of 136 participants (young, n = 45; elderly, n = 91) comprising in all 1085 trials, and calculated the Sample Entropy (SampEn) for medio-lateral (M/L) and anterior-posterior (A/P) Center of Pressure (COP) together with the Hurst self-similariy (ss) exponent α using Detrended Fluctuation Analysis (DFA). The COP was measured with a force plate in eight 30 seconds trials with eyes closed, eyes open, foam, self-perturbation and nudge conditions. Results 1) There is a significant difference in SampEn for the A/P-direction between the elderly and the younger groups Old > young. 2) For the elderly we have in general A/P > M/L. 3) For the younger group there was no significant A/P-M/L difference with the exception for the nudge trials where we had the reverse situation, A/P < M/L. 4) For the elderly we have, Eyes Closed > Eyes Open. 5) In case of the Hurst ss-exponent we have for the elderly, M/L > A/P. Conclusions These results seem to be require some modifications of the more or less established attention-constraint interpretation of entropy. This holds that higher entropy correlates with a more automatic and a less constrained mode of balance control, and that a higher entropy reflects, in this sense, a more efficient balancing. PMID:20670457

  13. Using Wavelet Entropy to Demonstrate how Mindfulness Practice Increases Coordination between Irregular Cerebral and Cardiac Activities

    PubMed Central

    Sik, Hin Hung; Gao, Junling; Fan, Jicong; Wu, Bonnie Wai Yan; Leung, Hang Kin; Hung, Yeung Sam

    2017-01-01

    In both the East and West, traditional teachings say that the mind and heart are somehow closely correlated, especially during spiritual practice. One difficulty in proving this objectively is that the natures of brain and heart activities are quite different. In this paper, we propose a methodology that uses wavelet entropy to measure the chaotic levels of both electroencephalogram (EEG) and electrocardiogram (ECG) data and show how this may be used to explore the potential coordination between the mind and heart under different experimental conditions. Furthermore, Statistical Parametric Mapping (SPM) was used to identify the brain regions in which the EEG wavelet entropy was the most affected by the experimental conditions. As an illustration, the EEG and ECG were recorded under two different conditions (normal rest and mindful breathing) at the beginning of an 8-week standard Mindfulness-based Stress Reduction (MBSR) training course (pretest) and after the course (posttest). Using the proposed method, the results consistently showed that the wavelet entropy of the brain EEG decreased during the MBSR mindful breathing state as compared to that during the closed-eye resting state. Similarly, a lower wavelet entropy of heartrate was found during MBSR mindful breathing. However, no difference in wavelet entropy during MBSR mindful breathing was found between the pretest and posttest. No correlation was observed between the entropy of brain waves and the entropy of heartrate during normal rest in all participants, whereas a significant correlation was observed during MBSR mindful breathing. Additionally, the most well-correlated brain regions were located in the central areas of the brain. This study provides a methodology for the establishment of evidence that mindfulness practice (i.e., mindful breathing) may increase the coordination between mind and heart activities. PMID:28518101

  14. Interatomic potentials in condensed matter via the maximum-entropy principle

    NASA Astrophysics Data System (ADS)

    Carlsson, A. E.

    1987-09-01

    A general method is described for the calculation of interatomic potentials in condensed-matter systems by use of a maximum-entropy Ansatz for the interatomic correlation functions. The interatomic potentials are given explicitly in terms of statistical correlation functions involving the potential energy and the structure factor of a ``reference medium.'' Illustrations are given for Al-Cu alloys and a model transition metal.

  15. A comparison of entropy balance and probability weighting methods to generalize observational cohorts to a population: a simulation and empirical example.

    PubMed

    Harvey, Raymond A; Hayden, Jennifer D; Kamble, Pravin S; Bouchard, Jonathan R; Huang, Joanna C

    2017-04-01

    We compared methods to control bias and confounding in observational studies including inverse probability weighting (IPW) and stabilized IPW (sIPW). These methods often require iteration and post-calibration to achieve covariate balance. In comparison, entropy balance (EB) optimizes covariate balance a priori by calibrating weights using the target's moments as constraints. We measured covariate balance empirically and by simulation by using absolute standardized mean difference (ASMD), absolute bias (AB), and root mean square error (RMSE), investigating two scenarios: the size of the observed (exposed) cohort exceeds the target (unexposed) cohort and vice versa. The empirical application weighted a commercial health plan cohort to a nationally representative National Health and Nutrition Examination Survey target on the same covariates and compared average total health care cost estimates across methods. Entropy balance alone achieved balance (ASMD ≤ 0.10) on all covariates in simulation and empirically. In simulation scenario I, EB achieved the lowest AB and RMSE (13.64, 31.19) compared with IPW (263.05, 263.99) and sIPW (319.91, 320.71). In scenario II, EB outperformed IPW and sIPW with smaller AB and RMSE. In scenarios I and II, EB achieved the lowest mean estimate difference from the simulated population outcome ($490.05, $487.62) compared with IPW and sIPW, respectively. Empirically, only EB differed from the unweighted mean cost indicating IPW, and sIPW weighting was ineffective. Entropy balance demonstrated the bias-variance tradeoff achieving higher estimate accuracy, yet lower estimate precision, compared with IPW methods. EB weighting required no post-processing and effectively mitigated observed bias and confounding. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  16. Monitoring the Depth of Anesthesia Using a New Adaptive Neurofuzzy System.

    PubMed

    Shalbaf, Ahmad; Saffar, Mohsen; Sleigh, Jamie W; Shalbaf, Reza

    2018-05-01

    Accurate and noninvasive monitoring of the depth of anesthesia (DoA) is highly desirable. Since the anesthetic drugs act mainly on the central nervous system, the analysis of brain activity using electroencephalogram (EEG) is very useful. This paper proposes a novel automated method for assessing the DoA using EEG. First, 11 features including spectral, fractal, and entropy are extracted from EEG signal and then, by applying an algorithm according to exhaustive search of all subsets of features, a combination of the best features (Beta-index, sample entropy, shannon permutation entropy, and detrended fluctuation analysis) is selected. Accordingly, we feed these extracted features to a new neurofuzzy classification algorithm, adaptive neurofuzzy inference system with linguistic hedges (ANFIS-LH). This structure can successfully model systems with nonlinear relationships between input and output, and also classify overlapped classes accurately. ANFIS-LH, which is based on modified classical fuzzy rules, reduces the effects of the insignificant features in input space, which causes overlapping and modifies the output layer structure. The presented method classifies EEG data into awake, light, general, and deep states during anesthesia with sevoflurane in 17 patients. Its accuracy is 92% compared to a commercial monitoring system (response entropy index) successfully. Moreover, this method reaches the classification accuracy of 93% to categorize EEG signal to awake and general anesthesia states by another database of propofol and volatile anesthesia in 50 patients. To sum up, this method is potentially applicable to a new real-time monitoring system to help the anesthesiologist with continuous assessment of DoA quickly and accurately.

  17. Complexity analysis of brain activity in attention-deficit/hyperactivity disorder: A multiscale entropy analysis.

    PubMed

    Chenxi, Li; Chen, Yanni; Li, Youjun; Wang, Jue; Liu, Tian

    2016-06-01

    The multiscale entropy (MSE) is a novel method for quantifying the intrinsic dynamical complexity of physiological systems over several scales. To evaluate this method as a promising way to explore the neural mechanisms in ADHD, we calculated the MSE in EEG activity during the designed task. EEG data were collected from 13 outpatient boys with a confirmed diagnosis of ADHD and 13 age- and gender-matched normal control children during their doing multi-source interference task (MSIT). We estimated the MSE by calculating the sample entropy values of delta, theta, alpha and beta frequency bands over twenty time scales using coarse-grained procedure. The results showed increased complexity of EEG data in delta and theta frequency bands and decreased complexity in alpha frequency bands in ADHD children. The findings of this study revealed aberrant neural connectivity of kids with ADHD during interference task. The results showed that MSE method may be a new index to identify and understand the neural mechanism of ADHD. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Interaction entropy for protein-protein binding

    NASA Astrophysics Data System (ADS)

    Sun, Zhaoxi; Yan, Yu N.; Yang, Maoyou; Zhang, John Z. H.

    2017-03-01

    Protein-protein interactions are at the heart of signal transduction and are central to the function of protein machine in biology. The highly specific protein-protein binding is quantitatively characterized by the binding free energy whose accurate calculation from the first principle is a grand challenge in computational biology. In this paper, we show how the interaction entropy approach, which was recently proposed for protein-ligand binding free energy calculation, can be applied to computing the entropic contribution to the protein-protein binding free energy. Explicit theoretical derivation of the interaction entropy approach for protein-protein interaction system is given in detail from the basic definition. Extensive computational studies for a dozen realistic protein-protein interaction systems are carried out using the present approach and comparisons of the results for these protein-protein systems with those from the standard normal mode method are presented. Analysis of the present method for application in protein-protein binding as well as the limitation of the method in numerical computation is discussed. Our study and analysis of the results provided useful information for extracting correct entropic contribution in protein-protein binding from molecular dynamics simulations.

  19. Direct 4D reconstruction of parametric images incorporating anato-functional joint entropy.

    PubMed

    Tang, Jing; Kuwabara, Hiroto; Wong, Dean F; Rahmim, Arman

    2010-08-07

    We developed an anatomy-guided 4D closed-form algorithm to directly reconstruct parametric images from projection data for (nearly) irreversible tracers. Conventional methods consist of individually reconstructing 2D/3D PET data, followed by graphical analysis on the sequence of reconstructed image frames. The proposed direct reconstruction approach maintains the simplicity and accuracy of the expectation-maximization (EM) algorithm by extending the system matrix to include the relation between the parametric images and the measured data. A closed-form solution was achieved using a different hidden complete-data formulation within the EM framework. Furthermore, the proposed method was extended to maximum a posterior reconstruction via incorporation of MR image information, taking the joint entropy between MR and parametric PET features as the prior. Using realistic simulated noisy [(11)C]-naltrindole PET and MR brain images/data, the quantitative performance of the proposed methods was investigated. Significant improvements in terms of noise versus bias performance were demonstrated when performing direct parametric reconstruction, and additionally upon extending the algorithm to its Bayesian counterpart using the MR-PET joint entropy measure.

  20. Thermodynamic properties of water solvating biomolecular surfaces

    NASA Astrophysics Data System (ADS)

    Heyden, Matthias

    Changes in the potential energy and entropy of water molecules hydrating biomolecular interfaces play a significant role for biomolecular solubility and association. Free energy perturbation and thermodynamic integration methods allow calculations of free energy differences between two states from simulations. However, these methods are computationally demanding and do not provide insights into individual thermodynamic contributions, i.e. changes in the solvent energy or entropy. Here, we employ methods to spatially resolve distributions of hydration water thermodynamic properties in the vicinity of biomolecular surfaces. This allows direct insights into thermodynamic signatures of the hydration of hydrophobic and hydrophilic solvent accessible sites of proteins and small molecules and comparisons to ideal model surfaces. We correlate dynamic properties of hydration water molecules, i.e. translational and rotational mobility, to their thermodynamics. The latter can be used as a guide to extract thermodynamic information from experimental measurements of site-resolved water dynamics. Further, we study energy-entropy compensations of water at different hydration sites of biomolecular surfaces. This work is supported by the Cluster of Excellence RESOLV (EXC 1069) funded by the Deutsche Forschungsgemeinschaft.

  1. Congestion detection of pedestrians using the velocity entropy: A case study of Love Parade 2010 disaster

    NASA Astrophysics Data System (ADS)

    Huang, Lida; Chen, Tao; Wang, Yan; Yuan, Hongyong

    2015-12-01

    Gatherings of large human crowds often result in crowd disasters such as the Love Parade Disaster in Duisburg, Germany on July 24, 2010. To avoid these tragedies, video surveillance and early warning are becoming more and more significant. In this paper, the velocity entropy is first defined as the criterion for congestion detection, which represents the motion magnitude distribution and the motion direction distribution simultaneously. Then the detection method is verified by the simulation data based on AnyLogic software. To test the generalization performance of this method, video recordings of a real-world case, the Love Parade disaster, are also used in the experiments. The velocity histograms of the foreground object in the videos are extracted by the Gaussian Mixture Model (GMM) and optical flow computation. With a sequential change-point detection algorithm, the velocity entropy can be applied to detect congestions of the Love Parade festival. It turned out that without recognizing and tracking individual pedestrian, our method can detect abnormal crowd behaviors in real-time.

  2. Bivariate Rainfall and Runoff Analysis Using Shannon Entropy Theory

    NASA Astrophysics Data System (ADS)

    Rahimi, A.; Zhang, L.

    2012-12-01

    Rainfall-Runoff analysis is the key component for many hydrological and hydraulic designs in which the dependence of rainfall and runoff needs to be studied. It is known that the convenient bivariate distribution are often unable to model the rainfall-runoff variables due to that they either have constraints on the range of the dependence or fixed form for the marginal distributions. Thus, this paper presents an approach to derive the entropy-based joint rainfall-runoff distribution using Shannon entropy theory. The distribution derived can model the full range of dependence and allow different specified marginals. The modeling and estimation can be proceeded as: (i) univariate analysis of marginal distributions which includes two steps, (a) using the nonparametric statistics approach to detect modes and underlying probability density, and (b) fitting the appropriate parametric probability density functions; (ii) define the constraints based on the univariate analysis and the dependence structure; (iii) derive and validate the entropy-based joint distribution. As to validate the method, the rainfall-runoff data are collected from the small agricultural experimental watersheds located in semi-arid region near Riesel (Waco), Texas, maintained by the USDA. The results of unviariate analysis show that the rainfall variables follow the gamma distribution, whereas the runoff variables have mixed structure and follow the mixed-gamma distribution. With this information, the entropy-based joint distribution is derived using the first moments, the first moments of logarithm transformed rainfall and runoff, and the covariance between rainfall and runoff. The results of entropy-based joint distribution indicate: (1) the joint distribution derived successfully preserves the dependence between rainfall and runoff, and (2) the K-S goodness of fit statistical tests confirm the marginal distributions re-derived reveal the underlying univariate probability densities which further assure that the entropy-based joint rainfall-runoff distribution are satisfactorily derived. Overall, the study shows the Shannon entropy theory can be satisfactorily applied to model the dependence between rainfall and runoff. The study also shows that the entropy-based joint distribution is an appropriate approach to capture the dependence structure that cannot be captured by the convenient bivariate joint distributions. Joint Rainfall-Runoff Entropy Based PDF, and Corresponding Marginal PDF and Histogram for W12 Watershed The K-S Test Result and RMSE on Univariate Distributions Derived from the Maximum Entropy Based Joint Probability Distribution;

  3. Entanglement entropy of dispersive media from thermodynamic entropy in one higher dimension.

    PubMed

    Maghrebi, M F; Reid, M T H

    2015-04-17

    A dispersive medium becomes entangled with zero-point fluctuations in the vacuum. We consider an arbitrary array of material bodies weakly interacting with a quantum field and compute the quantum mutual information between them. It is shown that the mutual information in D dimensions can be mapped to classical thermodynamic entropy in D+1 dimensions. As a specific example, we compute the mutual information both analytically and numerically for a range of separation distances between two bodies in D=2 dimensions and find a logarithmic correction to the area law at short separations. A key advantage of our method is that it allows the strong subadditivity property to be easily verified.

  4. Chapman Enskog-maximum entropy method on time-dependent neutron transport equation

    NASA Astrophysics Data System (ADS)

    Abdou, M. A.

    2006-09-01

    The time-dependent neutron transport equation in semi and infinite medium with linear anisotropic and Rayleigh scattering is proposed. The problem is solved by means of the flux-limited, Chapman Enskog-maximum entropy for obtaining the solution of the time-dependent neutron transport. The solution gives the neutron distribution density function which is used to compute numerically the radiant energy density E(x,t), net flux F(x,t) and reflectivity Rf. The behaviour of the approximate flux-limited maximum entropy neutron density function are compared with those found by other theories. Numerical calculations for the radiant energy, net flux and reflectivity of the proposed medium are calculated at different time and space.

  5. A contour for the entanglement entropies in harmonic lattices

    NASA Astrophysics Data System (ADS)

    Coser, Andrea; De Nobili, Cristiano; Tonni, Erik

    2017-08-01

    We construct a contour function for the entanglement entropies in generic harmonic lattices. In one spatial dimension, numerical analysis are performed by considering harmonic chains with either periodic or Dirichlet boundary conditions. In the massless regime and for some configurations where the subsystem is a single interval, the numerical results for the contour function are compared to the inverse of the local weight function which multiplies the energy-momentum tensor in the corresponding entanglement hamiltonian, found through conformal field theory methods, and a good agreement is observed. A numerical analysis of the contour function for the entanglement entropy is performed also in a massless harmonic chain for a subsystem made by two disjoint intervals.

  6. Entropy in sound and vibration: towards a new paradigm

    PubMed Central

    2017-01-01

    This paper describes a discussion on the method and the status of a statistical theory of sound and vibration, called statistical energy analysis (SEA). SEA is a simple theory of sound and vibration in elastic structures that applies when the vibrational energy is diffusely distributed. We show that SEA is a thermodynamical theory of sound and vibration, based on a law of exchange of energy analogous to the Clausius principle. We further investigate the notion of entropy in this context and discuss its meaning. We show that entropy is a measure of information lost in the passage from the classical theory of sound and vibration and SEA, its thermodynamical counterpart. PMID:28265190

  7. Numerical optimization using flow equations.

    PubMed

    Punk, Matthias

    2014-12-01

    We develop a method for multidimensional optimization using flow equations. This method is based on homotopy continuation in combination with a maximum entropy approach. Extrema of the optimizing functional correspond to fixed points of the flow equation. While ideas based on Bayesian inference such as the maximum entropy method always depend on a prior probability, the additional step in our approach is to perform a continuous update of the prior during the homotopy flow. The prior probability thus enters the flow equation only as an initial condition. We demonstrate the applicability of this optimization method for two paradigmatic problems in theoretical condensed matter physics: numerical analytic continuation from imaginary to real frequencies and finding (variational) ground states of frustrated (quantum) Ising models with random or long-range antiferromagnetic interactions.

  8. Numerical optimization using flow equations

    NASA Astrophysics Data System (ADS)

    Punk, Matthias

    2014-12-01

    We develop a method for multidimensional optimization using flow equations. This method is based on homotopy continuation in combination with a maximum entropy approach. Extrema of the optimizing functional correspond to fixed points of the flow equation. While ideas based on Bayesian inference such as the maximum entropy method always depend on a prior probability, the additional step in our approach is to perform a continuous update of the prior during the homotopy flow. The prior probability thus enters the flow equation only as an initial condition. We demonstrate the applicability of this optimization method for two paradigmatic problems in theoretical condensed matter physics: numerical analytic continuation from imaginary to real frequencies and finding (variational) ground states of frustrated (quantum) Ising models with random or long-range antiferromagnetic interactions.

  9. An information-theoretical perspective on weighted ensemble forecasts

    NASA Astrophysics Data System (ADS)

    Weijs, Steven V.; van de Giesen, Nick

    2013-08-01

    This paper presents an information-theoretical method for weighting ensemble forecasts with new information. Weighted ensemble forecasts can be used to adjust the distribution that an existing ensemble of time series represents, without modifying the values in the ensemble itself. The weighting can, for example, add new seasonal forecast information in an existing ensemble of historically measured time series that represents climatic uncertainty. A recent article in this journal compared several methods to determine the weights for the ensemble members and introduced the pdf-ratio method. In this article, a new method, the minimum relative entropy update (MRE-update), is presented. Based on the principle of minimum discrimination information, an extension of the principle of maximum entropy (POME), the method ensures that no more information is added to the ensemble than is present in the forecast. This is achieved by minimizing relative entropy, with the forecast information imposed as constraints. From this same perspective, an information-theoretical view on the various weighting methods is presented. The MRE-update is compared with the existing methods and the parallels with the pdf-ratio method are analysed. The paper provides a new, information-theoretical justification for one version of the pdf-ratio method that turns out to be equivalent to the MRE-update. All other methods result in sets of ensemble weights that, seen from the information-theoretical perspective, add either too little or too much (i.e. fictitious) information to the ensemble.

  10. Maximum Entropy Approach in Dynamic Contrast-Enhanced Magnetic Resonance Imaging.

    PubMed

    Farsani, Zahra Amini; Schmid, Volker J

    2017-01-01

    In the estimation of physiological kinetic parameters from Dynamic Contrast-Enhanced Magnetic Resonance Imaging (DCE-MRI) data, the determination of the arterial input function (AIF) plays a key role. This paper proposes a Bayesian method to estimate the physiological parameters of DCE-MRI along with the AIF in situations, where no measurement of the AIF is available. In the proposed algorithm, the maximum entropy method (MEM) is combined with the maximum a posterior approach (MAP). To this end, MEM is used to specify a prior probability distribution of the unknown AIF. The ability of this method to estimate the AIF is validated using the Kullback-Leibler divergence. Subsequently, the kinetic parameters can be estimated with MAP. The proposed algorithm is evaluated with a data set from a breast cancer MRI study. The application shows that the AIF can reliably be determined from the DCE-MRI data using MEM. Kinetic parameters can be estimated subsequently. The maximum entropy method is a powerful tool to reconstructing images from many types of data. This method is useful for generating the probability distribution based on given information. The proposed method gives an alternative way to assess the input function from the existing data. The proposed method allows a good fit of the data and therefore a better estimation of the kinetic parameters. In the end, this allows for a more reliable use of DCE-MRI. Schattauer GmbH.

  11. Numerical study of entropy generation in MHD water-based carbon nanotubes along an inclined permeable surface

    NASA Astrophysics Data System (ADS)

    Soomro, Feroz Ahmed; Rizwan-ul-Haq; Khan, Z. H.; Zhang, Qiang

    2017-10-01

    Main theme of the article is to examine the entropy generation analysis for the magneto-hydrodynamic mixed convection flow of water functionalized carbon nanotubes along an inclined stretching surface. Thermophysical properties of both particles and working fluid are incorporated in the system of governing partial differential equations. Rehabilitation of nonlinear system of equations is obtained via similarity transformations. Moreover, solutions of these equations are further utilized to determine the volumetric entropy and characteristic entropy generation. Solutions of governing boundary layer equations are obtained numerically using the finite difference method. Effects of two types of carbon nanotubes, namely, single-wall carbon nanotubes (SWCNTs) and multi-wall carbon nanotubes (MWCNTs) with water as base fluid have been analyzed over the physical quantities of interest, namely, surface skin friction, heat transfer rate and entropy generation coefficients. Influential results of velocities, temperature, entropy generation and isotherms are plotted against the emerging parameter, namely, nanoparticle fraction 0≤φ ≤ 0.2, thermal convective parameter 0≤ λ ≤ 5, Hartmann number 0≤ M≤ 2, suction/injection parameter -1≤ S≤ 1, and Eckert number 0≤ Ec ≤ 2. It is finally concluded that skin friction increases due to the increase in the magnetic parameter, suction/injection and nanoparticle volume fraction, whereas the Nusselt number shows an increasing trend due to the increase in the suction parameter, mixed convection parameter and nanoparticle volume fraction. Similarly, entropy generation shows an opposite behavior for the Hartmann number and mixed convection parameter for both single-wall and multi-wall carbon nanotubes.

  12. Facial muscle activity, Response Entropy, and State Entropy indices during noxious stimuli in propofol-nitrous oxide or propofol-nitrous oxide-remifentanil anaesthesia without neuromuscular block.

    PubMed

    Aho, A J; Yli-Hankala, A; Lyytikäinen, L-P; Jäntti, V

    2009-02-01

    Entropy is an anaesthetic EEG monitoring method, calculating two numerical parameters: State Entropy (SE, range 0-91) and Response Entropy (RE, range 0-100). Low Entropy numbers indicate unconsciousness. SE uses the frequency range 0.8-32 Hz, representing predominantly the EEG activity. RE is calculated at 0.8-47 Hz, consisting of both EEG and facial EMG. RE-SE difference (RE-SE) can indicate EMG, reflecting nociception. We studied RE-SE and EMG in patients anaesthetized without neuromuscular blockers. Thirty-one women were studied in propofol-nitrous oxide (P) or propofol-nitrous oxide-remifentanil (PR) anaesthesia. Target SE value was 40-60. RE-SE was measured before and after endotracheal intubation, and before and after the commencement of surgery. The spectral content of the signal was analysed off-line. Appearance of EMG on EEG was verified visually. RE, SE, and RE-SE increased during intubation in both groups. Elevated RE was followed by increased SE values in most cases. In these patients, spectral analysis of the signal revealed increased activity starting from low (<20 Hz) frequency area up to the highest measured frequencies. This was associated with appearance of EMG in raw signal. No spectral alterations or EMG were seen in patients with stable Entropy values. Increased RE is followed by increased SE at nociceptive stimuli in patients not receiving neuromuscular blockers. Owing to their overlapping power spectra, the contribution of EMG and EEG cannot be accurately separated with frequency analysis in the range of 10-40 Hz.

  13. Conditional Entropy and Location Error in Indoor Localization Using Probabilistic Wi-Fi Fingerprinting.

    PubMed

    Berkvens, Rafael; Peremans, Herbert; Weyn, Maarten

    2016-10-02

    Localization systems are increasingly valuable, but their location estimates are only useful when the uncertainty of the estimate is known. This uncertainty is currently calculated as the location error given a ground truth, which is then used as a static measure in sometimes very different environments. In contrast, we propose the use of the conditional entropy of a posterior probability distribution as a complementary measure of uncertainty. This measure has the advantage of being dynamic, i.e., it can be calculated during localization based on individual sensor measurements, does not require a ground truth, and can be applied to discrete localization algorithms. Furthermore, for every consistent location estimation algorithm, both the location error and the conditional entropy measures must be related, i.e., a low entropy should always correspond with a small location error, while a high entropy can correspond with either a small or large location error. We validate this relationship experimentally by calculating both measures of uncertainty in three publicly available datasets using probabilistic Wi-Fi fingerprinting with eight different implementations of the sensor model. We show that the discrepancy between these measures, i.e., many location estimates having a high location error while simultaneously having a low conditional entropy, is largest for the least realistic implementations of the probabilistic sensor model. Based on the results presented in this paper, we conclude that conditional entropy, being dynamic, complementary to location error, and applicable to both continuous and discrete localization, provides an important extra means of characterizing a localization method.

  14. Conditional Entropy and Location Error in Indoor Localization Using Probabilistic Wi-Fi Fingerprinting

    PubMed Central

    Berkvens, Rafael; Peremans, Herbert; Weyn, Maarten

    2016-01-01

    Localization systems are increasingly valuable, but their location estimates are only useful when the uncertainty of the estimate is known. This uncertainty is currently calculated as the location error given a ground truth, which is then used as a static measure in sometimes very different environments. In contrast, we propose the use of the conditional entropy of a posterior probability distribution as a complementary measure of uncertainty. This measure has the advantage of being dynamic, i.e., it can be calculated during localization based on individual sensor measurements, does not require a ground truth, and can be applied to discrete localization algorithms. Furthermore, for every consistent location estimation algorithm, both the location error and the conditional entropy measures must be related, i.e., a low entropy should always correspond with a small location error, while a high entropy can correspond with either a small or large location error. We validate this relationship experimentally by calculating both measures of uncertainty in three publicly available datasets using probabilistic Wi-Fi fingerprinting with eight different implementations of the sensor model. We show that the discrepancy between these measures, i.e., many location estimates having a high location error while simultaneously having a low conditional entropy, is largest for the least realistic implementations of the probabilistic sensor model. Based on the results presented in this paper, we conclude that conditional entropy, being dynamic, complementary to location error, and applicable to both continuous and discrete localization, provides an important extra means of characterizing a localization method. PMID:27706099

  15. Moisture sorption isotherms and thermodynamic properties of mexican mennonite-style cheese.

    PubMed

    Martinez-Monteagudo, Sergio I; Salais-Fierro, Fabiola

    2014-10-01

    Moisture adsorption isotherms of fresh and ripened Mexican Mennonite-style cheese were investigated using the static gravimetric method at 4, 8, and 12 °C in a water activity range (aw) of 0.08-0.96. These isotherms were modeled using GAB, BET, Oswin and Halsey equations through weighed non-linear regression. All isotherms were sigmoid in shape, showing a type II BET isotherm, and the data were best described by GAB model. GAB model coefficients revealed that water adsorption by cheese matrix is a multilayer process characterized by molecules that are strongly bound in the monolayer and molecules that are slightly structured in a multilayer. Using the GAB model, it was possible to estimate thermodynamic functions (net isosteric heat, differential entropy, integral enthalpy and entropy, and enthalpy-entropy compensation) as function of moisture content. For both samples, the isosteric heat and differential entropy decreased with moisture content in exponential fashion. The integral enthalpy gradually decreased with increasing moisture content after reached a maximum value, while the integral entropy decreased with increasing moisture content after reached a minimum value. A linear compensation was found between integral enthalpy and entropy suggesting enthalpy controlled adsorption. Determination of moisture content and aw relationship yields to important information of controlling the ripening, drying and storage operations as well as understanding of the water state within a cheese matrix.

  16. The Root Cause of the Overheating Problem

    NASA Technical Reports Server (NTRS)

    Liou, Meng-Sing

    2017-01-01

    Previously we identified the receding flow, where two fluid streams recede from each other, as an open numerical problem, because all well-known numerical fluxes give an anomalous temperature rise, thus called the overheating problem. This phenomenon, although presented in several textbooks, and many previous publications, has scarcely been satisfactorily addressed and the root cause of the overheating problem not well understood. We found that this temperature rise was solely connected to entropy rise and proposed to use the method of characteristics to eradicate the problem. However, the root cause of the entropy production was still unclear. In the present study, we identify the cause of this problem: the entropy rise is rooted in the pressure flux in a finite volume formulation and is implanted at the first time step. It is found theoretically inevitable for all existing numerical flux schemes used in the finite volume setting, as confirmed by numerical tests. This difficulty cannot be eliminated by manipulating time step, grid size, spatial accuracy, etc, although the rate of overheating depends on the flux scheme used. Finally, we incorporate the entropy transport equation, in place of the energy equation, to ensure preservation of entropy, thus correcting this temperature anomaly. Its applicability is demonstrated for some relevant 1D and 2D problems. Thus, the present study validates that the entropy generated ab initio is the genesis of the overheating problem.

  17. Settlement Dynamics and Hierarchy from Agent Decision-Making: a Method Derived from Entropy Maximization.

    PubMed

    Altaweel, Mark

    2015-01-01

    This paper presents an agent-based complex system simulation of settlement structure change using methods derived from entropy maximization modeling. The approach is applied to model the movement of people and goods in urban settings to study how settlement size hierarchy develops. While entropy maximization is well known for assessing settlement structure change over different spatiotemporal settings, approaches have rarely attempted to develop and apply this methodology to understand how individual and household decisions may affect settlement size distributions. A new method developed in this paper allows individual decision-makers to chose where to settle based on social-environmental factors, evaluate settlements based on geography and relative benefits, while retaining concepts derived from entropy maximization with settlement size affected by movement ability and site attractiveness feedbacks. To demonstrate the applicability of the theoretical and methodological approach, case study settlement patterns from the Middle Bronze (MBA) and Iron Ages (IA) in the Iraqi North Jazirah Survey (NJS) are used. Results indicate clear differences in settlement factors and household choices in simulations that lead to settlement size hierarchies comparable to the two evaluated periods. Conflict and socio-political cohesion, both their presence and absence, are suggested to have major roles in affecting the observed settlement hierarchy. More broadly, the model is made applicable for different empirically based settings, while being generalized to incorporate data uncertainty, making the model useful for understanding urbanism from top-down and bottom-up perspectives.

  18. Reduced-Reference Quality Assessment Based on the Entropy of DWT Coefficients of Locally Weighted Gradient Magnitudes.

    PubMed

    Golestaneh, S Alireza; Karam, Lina

    2016-08-24

    Perceptual image quality assessment (IQA) attempts to use computational models to estimate the image quality in accordance with subjective evaluations. Reduced-reference (RR) image quality assessment (IQA) methods make use of partial information or features extracted from the reference image for estimating the quality of distorted images. Finding a balance between the number of RR features and accuracy of the estimated image quality is essential and important in IQA. In this paper we propose a training-free low-cost RRIQA method that requires a very small number of RR features (6 RR features). The proposed RRIQA algorithm is based on the discrete wavelet transform (DWT) of locally weighted gradient magnitudes.We apply human visual system's contrast sensitivity and neighborhood gradient information to weight the gradient magnitudes in a locally adaptive manner. The RR features are computed by measuring the entropy of each DWT subband, for each scale, and pooling the subband entropies along all orientations, resulting in L RR features (one average entropy per scale) for an L-level DWT. Extensive experiments performed on seven large-scale benchmark databases demonstrate that the proposed RRIQA method delivers highly competitive performance as compared to the state-of-the-art RRIQA models as well as full reference ones for both natural and texture images. The MATLAB source code of REDLOG and the evaluation results are publicly available online at https://http://lab.engineering.asu.edu/ivulab/software/redlog/.

  19. Signal-Noise Identification of Magnetotelluric Signals Using Fractal-Entropy and Clustering Algorithm for Targeted De-Noising

    NASA Astrophysics Data System (ADS)

    Li, Jin; Zhang, Xian; Gong, Jinzhe; Tang, Jingtian; Ren, Zhengyong; Li, Guang; Deng, Yanli; Cai, Jin

    A new technique is proposed for signal-noise identification and targeted de-noising of Magnetotelluric (MT) signals. This method is based on fractal-entropy and clustering algorithm, which automatically identifies signal sections corrupted by common interference (square, triangle and pulse waves), enabling targeted de-noising and preventing the loss of useful information in filtering. To implement the technique, four characteristic parameters — fractal box dimension (FBD), higuchi fractal dimension (HFD), fuzzy entropy (FuEn) and approximate entropy (ApEn) — are extracted from MT time-series. The fuzzy c-means (FCM) clustering technique is used to analyze the characteristic parameters and automatically distinguish signals with strong interference from the rest. The wavelet threshold (WT) de-noising method is used only to suppress the identified strong interference in selected signal sections. The technique is validated through signal samples with known interference, before being applied to a set of field measured MT/Audio Magnetotelluric (AMT) data. Compared with the conventional de-noising strategy that blindly applies the filter to the overall dataset, the proposed method can automatically identify and purposefully suppress the intermittent interference in the MT/AMT signal. The resulted apparent resistivity-phase curve is more continuous and smooth, and the slow-change trend in the low-frequency range is more precisely reserved. Moreover, the characteristic of the target-filtered MT/AMT signal is close to the essential characteristic of the natural field, and the result more accurately reflects the inherent electrical structure information of the measured site.

  20. Conformational Entropy of Intrinsically Disordered Proteins from Amino Acid Triads

    PubMed Central

    Baruah, Anupaul; Rani, Pooja; Biswas, Parbati

    2015-01-01

    This work quantitatively characterizes intrinsic disorder in proteins in terms of sequence composition and backbone conformational entropy. Analysis of the normalized relative composition of the amino acid triads highlights a distinct boundary between globular and disordered proteins. The conformational entropy is calculated from the dihedral angles of the middle amino acid in the amino acid triad for the conformational ensemble of the globular, partially and completely disordered proteins relative to the non-redundant database. Both Monte Carlo (MC) and Molecular Dynamics (MD) simulations are used to characterize the conformational ensemble of the representative proteins of each group. The results show that the globular proteins span approximately half of the allowed conformational states in the Ramachandran space, while the amino acid triads in disordered proteins sample the entire range of the allowed dihedral angle space following Flory’s isolated-pair hypothesis. Therefore, only the sequence information in terms of the relative amino acid triad composition may be sufficient to predict protein disorder and the backbone conformational entropy, even in the absence of well-defined structure. The predicted entropies are found to agree with those calculated using mutual information expansion and the histogram method. PMID:26138206

  1. New constraints for holographic entropy from maximin: A no-go theorem

    NASA Astrophysics Data System (ADS)

    Rota, Massimiliano; Weinberg, Sean J.

    2018-04-01

    The Ryu-Takayanagi (RT) formula for static spacetimes arising in the AdS/CFT correspondence satisfies inequalities that are not yet proven in the case of the Rangamani-Hubeny-Takayanagi (HRT) formula, which applies to general dynamical spacetimes. Wall's maximin construction is the only known technique for extending inequalities of holographic entanglement entropy from the static to dynamical case. We show that this method currently has no further utility when dealing with inequalities for five or fewer regions. Despite this negative result, we propose the validity of one new inequality for covariant holographic entanglement entropy for five regions. This inequality, while not maximin provable, is much weaker than many of the inequalities satisfied by the RT formula and should therefore be easier to prove. If it is valid, then there is strong evidence that holographic entanglement entropy plays a role in general spacetimes including those that arise in cosmology. Our new inequality is obtained by the assumption that the HRT formula satisfies every known balanced inequality obeyed by the Shannon entropies of classical probability distributions. This is a property that the RT formula has been shown to possess and which has been previously conjectured to hold for quantum mechanics in general.

  2. Thyrotropin secretion in mild and severe primary hypothyroidism is distinguished by amplified burst mass and Basal secretion with increased spikiness and approximate entropy.

    PubMed

    Roelfsema, Ferdinand; Pereira, Alberto M; Adriaanse, Ria; Endert, Erik; Fliers, Eric; Romijn, Johannes A; Veldhuis, Johannes D

    2010-02-01

    Twenty-four-hour TSH secretion profiles in primary hypothyroidism have been analyzed with methods no longer in use. The insights afforded by earlier methods are limited. We studied TSH secretion in patients with primary hypothyroidism (eight patients with severe and eight patients with mild hypothyroidism) with up-to-date analytical tools and compared the results with outcomes in 38 healthy controls. Patients and controls underwent a 24-h study with 10-min blood sampling. TSH data were analyzed with a newly developed automated deconvolution program, approximate entropy, spikiness assessment, and cosinor regression. Both basal and pulsatile TSH secretion rates were increased in hypothyroid patients, the latter by increased burst mass with unchanged frequency. Secretory regularity (approximate entropy) was diminished, and spikiness was increased only in patients with severe hypothyroidism. A diurnal TSH rhythm was present in all but two patients, although with an earlier acrophase in severe hypothyroidism. The estimated slow component of the TSH half-life was shortened in all patients. Increased TSH concentrations in hypothyroidism are mediated by amplification of basal secretion and burst size. Secretory abnormalities quantitated by approximate entropy and spikiness were only present in patients with severe disease and thus are possibly related to the increased thyrotrope cell mass.

  3. Modified cross sample entropy and surrogate data analysis method for financial time series

    NASA Astrophysics Data System (ADS)

    Yin, Yi; Shang, Pengjian

    2015-09-01

    For researching multiscale behaviors from the angle of entropy, we propose a modified cross sample entropy (MCSE) and combine surrogate data analysis with it in order to compute entropy differences between original dynamics and surrogate series (MCSDiff). MCSDiff is applied to simulated signals to show accuracy and then employed to US and Chinese stock markets. We illustrate the presence of multiscale behavior in the MCSDiff results and reveal that there are synchrony containing in the original financial time series and they have some intrinsic relations, which are destroyed by surrogate data analysis. Furthermore, the multifractal behaviors of cross-correlations between these financial time series are investigated by multifractal detrended cross-correlation analysis (MF-DCCA) method, since multifractal analysis is a multiscale analysis. We explore the multifractal properties of cross-correlation between these US and Chinese markets and show the distinctiveness of NQCI and HSI among the markets in their own region. It can be concluded that the weaker cross-correlation between US markets gives the evidence for the better inner mechanism in the US stock markets than that of Chinese stock markets. To study the multiscale features and properties of financial time series can provide valuable information for understanding the inner mechanism of financial markets.

  4. Bitstream decoding processor for fast entropy decoding of variable length coding-based multiformat videos

    NASA Astrophysics Data System (ADS)

    Jo, Hyunho; Sim, Donggyu

    2014-06-01

    We present a bitstream decoding processor for entropy decoding of variable length coding-based multiformat videos. Since most of the computational complexity of entropy decoders comes from bitstream accesses and table look-up process, the developed bitstream processing unit (BsPU) has several designated instructions to access bitstreams and to minimize branch operations in the table look-up process. In addition, the instruction for bitstream access has the capability to remove emulation prevention bytes (EPBs) of H.264/AVC without initial delay, repeated memory accesses, and additional buffer. Experimental results show that the proposed method for EPB removal achieves a speed-up of 1.23 times compared to the conventional EPB removal method. In addition, the BsPU achieves speed-ups of 5.6 and 3.5 times in entropy decoding of H.264/AVC and MPEG-4 Visual bitstreams, respectively, compared to an existing processor without designated instructions and a new table mapping algorithm. The BsPU is implemented on a Xilinx Virtex5 LX330 field-programmable gate array. The MPEG-4 Visual (ASP, Level 5) and H.264/AVC (Main Profile, Level 4) are processed using the developed BsPU with a core clock speed of under 250 MHz in real time.

  5. The acoustic Green's function for swirling flow with variable entropy in a lined duct

    NASA Astrophysics Data System (ADS)

    Mathews, J. R.; Peake, N.

    2018-04-01

    This paper extends previous work by the authors (Journal of Sound and Vibration, 395:294-316,2017) on the acoustic field inside an annular duct with acoustic lining carrying mean axial and swirling flow so as to allow for non-uniform mean entropy, as would be found for instance in the turbine stage of an aeroengine. The main aim of this paper is to understand the effect of a non-uniform entropy on both the eigenmodes of the flow and the Green's function, which will allow noise prediction once we have identified acoustic sources. We first derive a new acoustic analogy in isentropic swirling flow, which allows us to derive the equation the tailored Green's function satisfies. The eigenmodes are split into two distinct families, acoustic and hydrodynamic modes, and are computed using different analytical methods; in the limit of high reduced frequency using the WKB method for the acoustic modes; and by considering a Frobenius expansion for the hydrodynamic modes. These are then compared with numerical results, with excellent agreement for all eigenmodes. The Green's function is also calculating analytically using the realistic limit of high reduced frequency, again with excellent agreement compared to numerical calculations. We see that for both the eigenmodes and Green's function the effect of non-uniform mean entropy is significant.

  6. Regeneration of aluminum hydride

    DOEpatents

    Graetz, Jason Allan; Reilly, James J; Wegrzyn, James E

    2012-09-18

    The present invention provides methods and materials for the formation of hydrogen storage alanes, AlH.sub.x, where x is greater than 0 and less than or equal to 6 at reduced H.sub.2 pressures and temperatures. The methods rely upon reduction of the change in free energy of the reaction between aluminum and molecular H.sub.2. The change in free energy is reduced by lowering the entropy change during the reaction by providing aluminum in a state of high entropy, and by increasing the magnitude of the change in enthalpy of the reaction or combinations thereof.

  7. Dynamical complexity changes during two forms of meditation

    NASA Astrophysics Data System (ADS)

    Li, Jin; Hu, Jing; Zhang, Yinhong; Zhang, Xiaofeng

    2011-06-01

    Detection of dynamical complexity changes in natural and man-made systems has deep scientific and practical meaning. We use the base-scale entropy method to analyze dynamical complexity changes for heart rate variability (HRV) series during specific traditional forms of Chinese Chi and Kundalini Yoga meditation techniques in healthy young adults. The results show that dynamical complexity decreases in meditation states for two forms of meditation. Meanwhile, we detected changes in probability distribution of m-words during meditation and explained this changes using probability distribution of sine function. The base-scale entropy method may be used on a wider range of physiologic signals.

  8. The calculation of transport properties in quantum liquids using the maximum entropy numerical analytic continuation method: Application to liquid para-hydrogen

    PubMed Central

    Rabani, Eran; Reichman, David R.; Krilov, Goran; Berne, Bruce J.

    2002-01-01

    We present a method based on augmenting an exact relation between a frequency-dependent diffusion constant and the imaginary time velocity autocorrelation function, combined with the maximum entropy numerical analytic continuation approach to study transport properties in quantum liquids. The method is applied to the case of liquid para-hydrogen at two thermodynamic state points: a liquid near the triple point and a high-temperature liquid. Good agreement for the self-diffusion constant and for the real-time velocity autocorrelation function is obtained in comparison to experimental measurements and other theoretical predictions. Improvement of the methodology and future applications are discussed. PMID:11830656

  9. Study of the Local Horizon. (Spanish Title: Estudio del Horizonte Local.) Estudo do Horizonte Local

    NASA Astrophysics Data System (ADS)

    Ros, Rosa M.

    2009-12-01

    The study of the horizon is fundamental to easy the first observations of the students at any education center. A simple model, to be developed in each center, allows to easy the study and comprehension of the rudiments of astronomy. The constructed model is presented in turn as a simple equatorial clock, other models (horizontal and vertical) may be constructed starting from it. El estudio del horizonte es fundamental para poder facilitar las primeras observaciones de los alumnos en un centro educativo. Un simple modelo, que debe realizarse para cada centro, nos permite facilitar el estudio y la comprensión de los primeros rudimentos astronómicos. El modelo construido se presenta a su vez como un sencillo modelo de reloj ecuatorial y a partir de él se pueden construir otros modelos (horizontal y vertical). O estudo do horizonte é fundamental para facilitar as primeiras observações dos alunos num centro educativo. Um modelo simples, que deve ser feito para cada centro, permite facilitar o estudo e a compreensão dos primeiros rudimentos astronômicos. O modelo construído apresenta-se, por sua vez, como um modelo simples de relógio equatorial e a partir dele pode-se construir outros modelos (horizontal e vertical)

  10. A software platform for statistical evaluation of patient respiratory patterns in radiation therapy.

    PubMed

    Dunn, Leon; Kenny, John

    2017-10-01

    The aim of this work was to design and evaluate a software tool for analysis of a patient's respiration, with the goal of optimizing the effectiveness of motion management techniques during radiotherapy imaging and treatment. A software tool which analyses patient respiratory data files (.vxp files) created by the Varian Real-Time Position Management System (RPM) was developed to analyse patient respiratory data. The software, called RespAnalysis, was created in MATLAB and provides four modules, one each for determining respiration characteristics, providing breathing coaching (biofeedback training), comparing pre and post-training characteristics and performing a fraction-by-fraction assessment. The modules analyse respiratory traces to determine signal characteristics and specifically use a Sample Entropy algorithm as the key means to quantify breathing irregularity. Simulated respiratory signals, as well as 91 patient RPM traces were analysed with RespAnalysis to test the viability of using the Sample Entropy for predicting breathing regularity. Retrospective assessment of patient data demonstrated that the Sample Entropy metric was a predictor of periodic irregularity in respiration data, however, it was found to be insensitive to amplitude variation. Additional waveform statistics assessing the distribution of signal amplitudes over time coupled with Sample Entropy method were found to be useful in assessing breathing regularity. The RespAnalysis software tool presented in this work uses the Sample Entropy method to analyse patient respiratory data recorded for motion management purposes in radiation therapy. This is applicable during treatment simulation and during subsequent treatment fractions, providing a way to quantify breathing irregularity, as well as assess the need for breathing coaching. It was demonstrated that the Sample Entropy metric was correlated to the irregularity of the patient's respiratory motion in terms of periodicity, whilst other metrics, such as percentage deviation of inhale/exhale peak positions provided insight into respiratory amplitude regularity. Copyright © 2017 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  11. Whole-Lesion Apparent Diffusion Coefficient-Based Entropy-Related Parameters for Characterizing Cervical Cancers: Initial Findings.

    PubMed

    Guan, Yue; Li, Weifeng; Jiang, Zhuoran; Chen, Ying; Liu, Song; He, Jian; Zhou, Zhengyang; Ge, Yun

    2016-12-01

    This study aimed to develop whole-lesion apparent diffusion coefficient (ADC)-based entropy-related parameters of cervical cancer to preliminarily assess intratumoral heterogeneity of this lesion in comparison to adjacent normal cervical tissues. A total of 51 women (mean age, 49 years) with cervical cancers confirmed by biopsy underwent 3-T pelvic diffusion-weighted magnetic resonance imaging with b values of 0 and 800 s/mm 2 prospectively. ADC-based entropy-related parameters including first-order entropy and second-order entropies were derived from the whole tumor volume as well as adjacent normal cervical tissues. Intraclass correlation coefficient, Wilcoxon test with Bonferroni correction, Kruskal-Wallis test, and receiver operating characteristic curve were used for statistical analysis. All the parameters showed excellent interobserver agreement (all intraclass correlation coefficients  > 0.900). Entropy, entropy(H) 0 , entropy(H) 45 , entropy(H) 90 , entropy(H) 135 , and entropy(H) mean were significantly higher, whereas entropy(H) range and entropy(H) std were significantly lower in cervical cancers compared to adjacent normal cervical tissues (all P <.0001). Kruskal-Wallis test showed that there were no significant differences among the values of various second-order entropies including entropy(H) 0, entropy(H) 45 , entropy(H) 90 , entropy(H) 135 , and entropy(H) mean. All second-order entropies had larger area under the receiver operating characteristic curve than first-order entropy in differentiating cervical cancers from adjacent normal cervical tissues. Further, entropy(H) 45 , entropy(H) 90 , entropy(H) 135 , and entropy(H) mean had the same largest area under the receiver operating characteristic curve of 0.867. Whole-lesion ADC-based entropy-related parameters of cervical cancers were developed successfully, which showed initial potential in characterizing intratumoral heterogeneity in comparison to adjacent normal cervical tissues. Copyright © 2016 The Association of University Radiologists. Published by Elsevier Inc. All rights reserved.

  12. On quantum Rényi entropies: A new generalization and some properties

    NASA Astrophysics Data System (ADS)

    Müller-Lennert, Martin; Dupuis, Frédéric; Szehr, Oleg; Fehr, Serge; Tomamichel, Marco

    2013-12-01

    The Rényi entropies constitute a family of information measures that generalizes the well-known Shannon entropy, inheriting many of its properties. They appear in the form of unconditional and conditional entropies, relative entropies, or mutual information, and have found many applications in information theory and beyond. Various generalizations of Rényi entropies to the quantum setting have been proposed, most prominently Petz's quasi-entropies and Renner's conditional min-, max-, and collision entropy. However, these quantum extensions are incompatible and thus unsatisfactory. We propose a new quantum generalization of the family of Rényi entropies that contains the von Neumann entropy, min-entropy, collision entropy, and the max-entropy as special cases, thus encompassing most quantum entropies in use today. We show several natural properties for this definition, including data-processing inequalities, a duality relation, and an entropic uncertainty relation.

  13. Modifications to holographic entanglement entropy in warped CFT

    NASA Astrophysics Data System (ADS)

    Song, Wei; Wen, Qiang; Xu, Jianfei

    2017-02-01

    In [1] it was observed that asymptotic boundary conditions play an important role in the study of holographic entanglement beyond AdS/CFT. In particular, the Ryu-Takayanagi proposal must be modified for warped AdS3 (WAdS3) with Dirichlet boundary conditions. In this paper, we consider AdS3 and WAdS3 with Dirichlet-Neumann boundary conditions. The conjectured holographic duals are warped conformal field theories (WCFTs), featuring a Virasoro-Kac-Moody algebra. We provide a holographic calculation of the entanglement entropy and Rényi entropy using AdS3/WCFT and WAdS3/WCFT dualities. Our bulk results are consistent with the WCFT results derived by Castro-Hofman-Iqbal using the Rindler method. Comparing with [1], we explicitly show that the holographic entanglement entropy is indeed affected by boundary conditions. Both results differ from the Ryu-Takayanagi proposal, indicating new relations between spacetime geometry and quantum entanglement for holographic dualities beyond AdS/CFT.

  14. A surprising role for conformational entropy in protein function

    PubMed Central

    Wand, A. Joshua; Moorman, Veronica R.; Harpole, Kyle W.

    2014-01-01

    Formation of high-affinity complexes is critical for the majority of enzymatic reactions involving proteins. The creation of the family of Michaelis and other intermediate complexes during catalysis clearly involves a complicated manifold of interactions that are diverse and complex. Indeed, computing the energetics of interactions between proteins and small molecule ligands using molecular structure alone remains a grand challenge. One of the most difficult contributions to the free energy of protein-ligand complexes to experimentally access is that due to changes in protein conformational entropy. Fortunately, recent advances in solution nuclear magnetic resonance (NMR) relaxation methods have enabled the use of measures-of-motion between conformational states of a protein as a proxy for conformational entropy. This review briefly summarizes the experimental approaches currently employed to characterize fast internal motion in proteins, how this information is used to gain insight into conformational entropy, what has been learned and what the future may hold for this emerging view of protein function. PMID:23478875

  15. An Algorithm Based Wavelet Entropy for Shadowing Effect of Human Detection Using Ultra-Wideband Bio-Radar

    PubMed Central

    Liu, Miao; Zhang, Yang; Liang, Fulai; Qi, Fugui; Lv, Hao; Wang, Jianqi; Zhang, Yang

    2017-01-01

    Ultra-wide band (UWB) radar for short-range human target detection is widely used to find and locate survivors in some rescue missions after a disaster. The results of the application of bistatic UWB radar for detecting multi-stationary human targets have shown that human targets close to the radar antennas are very often visible, while those farther from radar antennas are detected with less reliability. In this paper, on account of the significant difference of frequency content between the echo signal of the human target and that of noise in the shadowing region, an algorithm based on wavelet entropy is proposed to detect multiple targets. Our findings indicate that the entropy value of human targets was much lower than that of noise. Compared with the method of adaptive filtering and the energy spectrum, wavelet entropy can accurately detect the person farther from the radar antennas, and it can be employed as a useful tool in detecting multiple targets by bistatic UWB radar. PMID:28973988

  16. An Algorithm Based Wavelet Entropy for Shadowing Effect of Human Detection Using Ultra-Wideband Bio-Radar.

    PubMed

    Xue, Huijun; Liu, Miao; Zhang, Yang; Liang, Fulai; Qi, Fugui; Chen, Fuming; Lv, Hao; Wang, Jianqi; Zhang, Yang

    2017-09-30

    Ultra-wide band (UWB) radar for short-range human target detection is widely used to find and locate survivors in some rescue missions after a disaster. The results of the application of bistatic UWB radar for detecting multi-stationary human targets have shown that human targets close to the radar antennas are very often visible, while those farther from radar antennas are detected with less reliability. In this paper, on account of the significant difference of frequency content between the echo signal of the human target and that of noise in the shadowing region, an algorithm based on wavelet entropy is proposed to detect multiple targets. Our findings indicate that the entropy value of human targets was much lower than that of noise. Compared with the method of adaptive filtering and the energy spectrum, wavelet entropy can accurately detect the person farther from the radar antennas, and it can be employed as a useful tool in detecting multiple targets by bistatic UWB radar.

  17. An entropy-based method for determining the flow depth distribution in natural channels

    NASA Astrophysics Data System (ADS)

    Moramarco, Tommaso; Corato, Giovanni; Melone, Florisa; Singh, Vijay P.

    2013-08-01

    A methodology for determining the bathymetry of river cross-sections during floods by the sampling of surface flow velocity and existing low flow hydraulic data is developed . Similar to Chiu (1988) who proposed an entropy-based velocity distribution, the flow depth distribution in a cross-section of a natural channel is derived by entropy maximization. The depth distribution depends on one parameter, whose estimate is straightforward, and on the maximum flow depth. Applying to a velocity data set of five river gage sites, the method modeled the flow area observed during flow measurements and accurately assessed the corresponding discharge by coupling the flow depth distribution and the entropic relation between mean velocity and maximum velocity. The methodology unfolds a new perspective for flow monitoring by remote sensing, considering that the two main quantities on which the methodology is based, i.e., surface flow velocity and flow depth, might be potentially sensed by new sensors operating aboard an aircraft or satellite.

  18. The prediction of engineering cost for green buildings based on information entropy

    NASA Astrophysics Data System (ADS)

    Liang, Guoqiang; Huang, Jinglian

    2018-03-01

    Green building is the developing trend in the world building industry. Additionally, construction costs are an essential consideration in building constructions. Therefore, it is necessary to investigate the problems of cost prediction in green building. On the basis of analyzing the cost of green building, this paper proposes the forecasting method of actual cost in green building based on information entropy and provides the forecasting working procedure. Using the probability density obtained from statistical data, such as labor costs, material costs, machinery costs, administration costs, profits, risk costs a unit project quotation and etc., situations can be predicted which lead to cost variations between budgeted cost and actual cost in constructions, through estimating the information entropy of budgeted cost and actual cost. The research results of this article have a practical significance in cost control of green building. Additionally, the method proposed in this article can be generalized and applied to a variety of other aspects in building management.

  19. Multifractal characteristics of multiparticle production in heavy-ion collisions at SPS energies

    NASA Astrophysics Data System (ADS)

    Khan, Shaista; Ahmad, Shakeel

    Entropy, dimensions and other multifractal characteristics of multiplicity distributions of relativistic charged hadrons produced in ion-ion collisions at SPS energies are investigated. The analysis of the experimental data is carried out in terms of phase space bin-size dependence of multiplicity distributions following the Takagi’s approach. Yet another method is also followed to study the multifractality which, is not related to the bin-width and (or) the detector resolution, rather involves multiplicity distribution of charged particles in full phase space in terms of information entropy and its generalization, Rényi’s order-q information entropy. The findings reveal the presence of multifractal structure — a remarkable property of the fluctuations. Nearly constant values of multifractal specific heat “c” estimated by the two different methods of analysis followed indicate that the parameter “c” may be used as a universal characteristic of the particle production in high energy collisions. The results obtained from the analysis of the experimental data agree well with the predictions of Monte Carlo model AMPT.

  20. A secure image encryption method based on dynamic harmony search (DHS) combined with chaotic map

    NASA Astrophysics Data System (ADS)

    Mirzaei Talarposhti, Khadijeh; Khaki Jamei, Mehrzad

    2016-06-01

    In recent years, there has been increasing interest in the security of digital images. This study focuses on the gray scale image encryption using dynamic harmony search (DHS). In this research, first, a chaotic map is used to create cipher images, and then the maximum entropy and minimum correlation coefficient is obtained by applying a harmony search algorithm on them. This process is divided into two steps. In the first step, the diffusion of a plain image using DHS to maximize the entropy as a fitness function will be performed. However, in the second step, a horizontal and vertical permutation will be applied on the best cipher image, which is obtained in the previous step. Additionally, DHS has been used to minimize the correlation coefficient as a fitness function in the second step. The simulation results have shown that by using the proposed method, the maximum entropy and the minimum correlation coefficient, which are approximately 7.9998 and 0.0001, respectively, have been obtained.

  1. Propane spectral resolution enhancement by the maximum entropy method

    NASA Technical Reports Server (NTRS)

    Bonavito, N. L.; Stewart, K. P.; Hurley, E. J.; Yeh, K. C.; Inguva, R.

    1990-01-01

    The Burg algorithm for maximum entropy power spectral density estimation is applied to a time series of data obtained from a Michelson interferometer and compared with a standard FFT estimate for resolution capability. The propane transmittance spectrum was estimated by use of the FFT with a 2 to the 18th data sample interferogram, giving a maximum unapodized resolution of 0.06/cm. This estimate was then interpolated by zero filling an additional 2 to the 18th points, and the final resolution was taken to be 0.06/cm. Comparison of the maximum entropy method (MEM) estimate with the FFT was made over a 45/cm region of the spectrum for several increasing record lengths of interferogram data beginning at 2 to the 10th. It is found that over this region the MEM estimate with 2 to the 16th data samples is in close agreement with the FFT estimate using 2 to the 18th samples.

  2. Efficient reliability analysis of structures with the rotational quasi-symmetric point- and the maximum entropy methods

    NASA Astrophysics Data System (ADS)

    Xu, Jun; Dang, Chao; Kong, Fan

    2017-10-01

    This paper presents a new method for efficient structural reliability analysis. In this method, a rotational quasi-symmetric point method (RQ-SPM) is proposed for evaluating the fractional moments of the performance function. Then, the derivation of the performance function's probability density function (PDF) is carried out based on the maximum entropy method in which constraints are specified in terms of fractional moments. In this regard, the probability of failure can be obtained by a simple integral over the performance function's PDF. Six examples, including a finite element-based reliability analysis and a dynamic system with strong nonlinearity, are used to illustrate the efficacy of the proposed method. All the computed results are compared with those by Monte Carlo simulation (MCS). It is found that the proposed method can provide very accurate results with low computational effort.

  3. Inferring Weighted Directed Association Network from Multivariate Time Series with a Synthetic Method of Partial Symbolic Transfer Entropy Spectrum and Granger Causality

    PubMed Central

    Hu, Yanzhu; Ai, Xinbo

    2016-01-01

    Complex network methodology is very useful for complex system explorer. However, the relationships among variables in complex system are usually not clear. Therefore, inferring association networks among variables from their observed data has been a popular research topic. We propose a synthetic method, named small-shuffle partial symbolic transfer entropy spectrum (SSPSTES), for inferring association network from multivariate time series. The method synthesizes surrogate data, partial symbolic transfer entropy (PSTE) and Granger causality. A proper threshold selection is crucial for common correlation identification methods and it is not easy for users. The proposed method can not only identify the strong correlation without selecting a threshold but also has the ability of correlation quantification, direction identification and temporal relation identification. The method can be divided into three layers, i.e. data layer, model layer and network layer. In the model layer, the method identifies all the possible pair-wise correlation. In the network layer, we introduce a filter algorithm to remove the indirect weak correlation and retain strong correlation. Finally, we build a weighted adjacency matrix, the value of each entry representing the correlation level between pair-wise variables, and then get the weighted directed association network. Two numerical simulated data from linear system and nonlinear system are illustrated to show the steps and performance of the proposed approach. The ability of the proposed method is approved by an application finally. PMID:27832153

  4. Integrating the Ergonomics Techniques with Multi Criteria Decision Making as a New Approach for Risk Management: An Assessment of Repetitive Tasks -Entropy Case Study.

    PubMed

    Khandan, Mohammad; Nili, Majid; Koohpaei, Alireza; Mosaferchi, Saeedeh

    2016-01-01

    Nowadays, the health work decision makers need to analyze a huge amount of data and consider many conflicting evaluation criteria and sub-criteria. Therefore, an ergonomic evaluation in the work environment in order to the control occupational disorders is considered as the Multi Criteria Decision Making (MCDM) problem. In this study, the ergonomic risks factors, which may influence health, were evaluated in a manufacturing company in 2014. Then entropy method was applied to prioritize the different risk factors. This study was done with a descriptive-analytical approach and 13 tasks were included from total number of employees who were working in the seven halls of an ark opal manufacturing (240). Required information was gathered by the demographic questionnaire and Assessment of Repetitive Tasks (ART) method for repetitive task assessment. In addition, entropy was used to prioritize the risk factors based on the ergonomic control needs. The total exposure score based on the ART method calculated was equal to 30.07 ±12.43. Data analysis illustrated that 179 cases (74.6% of tasks) were in the high level of risk area and 13.8% were in the medium level of risk. ART- entropy results revealed that based on the weighted factors, higher value belongs to grip factor and the lowest value was related to neck and hand posture and duration. Based on the limited financial resources, it seems that MCDM in many challenging situations such as control procedures and priority approaches could be used successfully. Other MCDM methods for evaluating and prioritizing the ergonomic problems are recommended.

  5. Upper entropy axioms and lower entropy axioms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guo, Jin-Li, E-mail: phd5816@163.com; Suo, Qi

    2015-04-15

    The paper suggests the concepts of an upper entropy and a lower entropy. We propose a new axiomatic definition, namely, upper entropy axioms, inspired by axioms of metric spaces, and also formulate lower entropy axioms. We also develop weak upper entropy axioms and weak lower entropy axioms. Their conditions are weaker than those of Shannon–Khinchin axioms and Tsallis axioms, while these conditions are stronger than those of the axiomatics based on the first three Shannon–Khinchin axioms. The subadditivity and strong subadditivity of entropy are obtained in the new axiomatics. Tsallis statistics is a special case of satisfying our axioms. Moreover,more » different forms of information measures, such as Shannon entropy, Daroczy entropy, Tsallis entropy and other entropies, can be unified under the same axiomatics.« less

  6. On the rates of decay to equilibrium in degenerate and defective Fokker-Planck equations

    NASA Astrophysics Data System (ADS)

    Arnold, Anton; Einav, Amit; Wöhrer, Tobias

    2018-06-01

    We establish sharp long time asymptotic behaviour for a family of entropies to defective Fokker-Planck equations and show that, much like defective finite dimensional ODEs, their decay rate is an exponential multiplied by a polynomial in time. The novelty of our study lies in the amalgamation of spectral theory and a quantitative non-symmetric hypercontractivity result, as opposed to the usual approach of the entropy method.

  7. Entanglement Properties and Quantum Phases for a Fermionic Disordered One-Dimensional Wire with Attractive Interactions.

    PubMed

    Berkovits, Richard

    2015-11-13

    A fermionic disordered one-dimensional wire in the presence of attractive interactions is known to have two distinct phases, a localized and superconducting, depending on the strength of interaction and disorder. The localized region may also exhibit a metallic behavior if the system size is shorter than the localization length. Here we show that the superconducting phase has a distribution of the entanglement entropy distinct from the metallic regime. The entanglement entropy distribution is strongly asymmetric with a Lévy α-stable distribution (compared to the Gaussian metallic distribution), as is seen also for the second Rényi entropy distribution. Thus, entanglement properties may reveal properties which cannot be detected by other methods.

  8. Holographic entanglement for Chern-Simons terms

    NASA Astrophysics Data System (ADS)

    Azeyanagi, Tatsuo; Loganayagam, R.; Ng, Gim Seng

    2017-02-01

    We derive the holographic entanglement entropy contribution from pure and mixed gravitational Chern-Simons(CS) terms in AdS2 k+1. This is done through two different methods: first, by a direct evaluation of CS action in a holographic replica geometry and second by a descent of Dong's derivation applied to the corresponding anomaly polynomial. In lower dimensions ( k = 1 , 2), the formula coincides with the Tachikawa formula for black hole entropy from gravitational CS terms. New extrinsic curvature corrections appear for k ≥ 3: we give explicit and concise expressions for the two pure gravitational CS terms in AdS7 and present various consistency checks, including agreements with the black hole entropy formula when evaluated at the bifurcation surface.

  9. Model determination in a case of heterogeneity of variance using sampling techniques.

    PubMed

    Varona, L; Moreno, C; Garcia-Cortes, L A; Altarriba, J

    1997-01-12

    A sampling determination procedure has been described in a case of heterogeneity of variance. The procedure makes use of the predictive distributions of each data given the rest of the data and the structure of the assumed model. The computation of these predictive distributions is carried out using a Gibbs Sampling procedure. The final criterion to compare between models is the Mean Square Error between the expectation of predictive distributions and real data. The procedure has been applied to a data set of weight at 210 days in the Spanish Pirenaica beef cattle breed. Three proposed models have been compared: (a) Single Trait Animal Model; (b) Heterogeneous Variance Animal Model; and (c) Multiple Trait Animal Model. After applying the procedure, the most adjusted model was the Heterogeneous Variance Animal Model. This result is probably due to a compromise between the complexity of the model and the amount of available information. The estimated heritabilities under the preferred model have been 0.489 ± 0.076 for males and 0.331 ± 0.082 for females. RESUMEN: Contraste de modelos en un caso de heterogeneidad de varianzas usando métodos de muestreo Se ha descrito un método de contraste de modelos mediante técnicas de muestreo en un caso de heterogeneidad de varianza entre sexos. El procedimiento utiliza las distribucviones predictivas de cada dato, dado el resto de datos y la estructura del modelo. El criterio para coparar modelos es el error cuadrático medio entre la esperanza de las distribuciones predictivas y los datos reales. El procedimiento se ha aplicado en datos de peso a los 210 días en la raza bovina Pirenaica. Se han propuesto tres posibles modelos: (a) Modelo Animal Unicaracter; (b) Modelo Animal con Varianzas Heterogéneas; (c) Modelo Animal Multicaracter. El modelo mejor ajustado fue el Modelo Animal con Varianzas Heterogéneas. Este resultado es probablemente debido a un compromiso entre la complejidad del modelo y la cantidad de datos disponibles. Las heredabilidades estimadas bajo el modelo preferido han sido 0,489 ± 0,076 en los machos y 0,331 ± 0,082 en las hembras. 1997 Blackwell Verlag GmbH.

  10. Investigation of self-adaptive LED surgical lighting based on entropy contrast enhancing method

    NASA Astrophysics Data System (ADS)

    Liu, Peng; Wang, Huihui; Zhang, Yaqin; Shen, Junfei; Wu, Rengmao; Zheng, Zhenrong; Li, Haifeng; Liu, Xu

    2014-05-01

    Investigation was performed to explore the possibility of enhancing contrast by varying the spectral distribution (SPD) of the surgical lighting. The illumination scenes with different SPDs were generated by the combination of a self-adaptive white light optimization method and the LED ceiling system, the images of biological sample are taken by a CCD camera and then processed by an 'Entropy' based contrast evaluation model which is proposed specific for surgery occasion. Compared with the neutral white LED based and traditional algorithm based image enhancing methods, the illumination based enhancing method turns out a better performance in contrast enhancing and improves the average contrast value about 9% and 6%, respectively. This low cost method is simple, practicable, and thus may provide an alternative solution for the expensive visual facility medical instruments.

  11. Two dissimilar approaches to dynamical systems on hyper MV -algebras and their information entropy

    NASA Astrophysics Data System (ADS)

    Mehrpooya, Adel; Ebrahimi, Mohammad; Davvaz, Bijan

    2017-09-01

    Measuring the flow of information that is related to the evolution of a system which is modeled by applying a mathematical structure is of capital significance for science and usually for mathematics itself. Regarding this fact, a major issue in concern with hyperstructures is their dynamics and the complexity of the varied possible dynamics that exist over them. Notably, the dynamics and uncertainty of hyper MV -algebras which are hyperstructures and extensions of a central tool in infinite-valued Lukasiewicz propositional calculus that models many valued logics are of primary concern. Tackling this problem, in this paper we focus on the subject of dynamical systems on hyper MV -algebras and their entropy. In this respect, we adopt two varied approaches. One is the set-based approach in which hyper MV -algebra dynamical systems are developed by employing set functions and set partitions. By the other method that is based on points and point partitions, we establish the concept of hyper injective dynamical systems on hyper MV -algebras. Next, we study the notion of entropy for both kinds of systems. Furthermore, we consider essential ergodic characteristics of those systems and their entropy. In particular, we introduce the concept of isomorphic hyper injective and hyper MV -algebra dynamical systems, and we demonstrate that isomorphic systems have the same entropy. We present a couple of theorems in order to help calculate entropy. In particular, we prove a contemporary version of addition and Kolmogorov-Sinai Theorems. Furthermore, we provide a comparison between the indispensable properties of hyper injective and semi-independent dynamical systems. Specifically, we present and prove theorems that draw comparisons between the entropies of such systems. Lastly, we discuss some possible relationships between the theories of hyper MV -algebra and MV -algebra dynamical systems.

  12. ENTROPY VS. ENERGY WAVEFORM PROCESSING: A COMPARISON ON THE HEAT EQUATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hughes, Michael S.; McCarthy, John; Bruillard, Paul J.

    2015-05-25

    Virtually all modern imaging devices function by collecting either electromagnetic or acoustic backscattered waves and using the energy carried by these waves to determine pixel values that build up what is basically an ”energy” picture. However, waves also carry ”informa- tion” that also may be used to compute the pixel values in an image. We have employed several measures of information, all of which are based on different forms of entropy. Numerous published studies have demonstrated the advantages of entropy, or “information imaging”, over conventional methods for materials characterization and medical imaging. Similar results also have been obtained with microwaves.more » The most sensitive information measure appears to be the joint entropy of the backscattered wave and a reference signal. A typical study is comprised of repeated acquisition of backscattered waves from a specimen that is changing slowing with acquisition time or location. The sensitivity of repeated experimental observations of such a slowly changing quantity may be defined as the mean variation (i.e., observed change) divided by mean variance (i.e., observed noise). We compute the sensitivity for joint entropy and signal energy measurements assuming that noise is Gaussian and using Wiener integration to compute the required mean values and variances. These can be written as solutions to the Heat equation, which permits estimation of their magnitudes. There always exists a reference such that joint entropy has larger variation and smaller variance than the corresponding quantities for signal energy, matching observations of several studies. Moreover, a general prescription for finding an “optimal” reference for the joint entropy emerges, which also has been validated in several studies.« less

  13. Efficient Computation of Small-Molecule Configurational Binding Entropy and Free Energy Changes by Ensemble Enumeration

    PubMed Central

    2013-01-01

    Here we present a novel, end-point method using the dead-end-elimination and A* algorithms to efficiently and accurately calculate the change in free energy, enthalpy, and configurational entropy of binding for ligand–receptor association reactions. We apply the new approach to the binding of a series of human immunodeficiency virus (HIV-1) protease inhibitors to examine the effect ensemble reranking has on relative accuracy as well as to evaluate the role of the absolute and relative ligand configurational entropy losses upon binding in affinity differences for structurally related inhibitors. Our results suggest that most thermodynamic parameters can be estimated using only a small fraction of the full configurational space, and we see significant improvement in relative accuracy when using an ensemble versus single-conformer approach to ligand ranking. We also find that using approximate metrics based on the single-conformation enthalpy differences between the global minimum energy configuration in the bound as well as unbound states also correlates well with experiment. Using a novel, additive entropy expansion based on conditional mutual information, we also analyze the source of ligand configurational entropy loss upon binding in terms of both uncoupled per degree of freedom losses as well as changes in coupling between inhibitor degrees of freedom. We estimate entropic free energy losses of approximately +24 kcal/mol, 12 kcal/mol of which stems from loss of translational and rotational entropy. Coupling effects contribute only a small fraction to the overall entropy change (1–2 kcal/mol) but suggest differences in how inhibitor dihedral angles couple to each other in the bound versus unbound states. The importance of accounting for flexibility in drug optimization and design is also discussed. PMID:24250277

  14. Modelos para la Unificacion de Conceptos, Metodos y Procedimientos Administrativos (Guidelines for Uniform Administrative Concepts, Methods, and Procedures).

    ERIC Educational Resources Information Center

    Serrano, Jorge A., Ed.

    These documents, discussed and approved during the first meeting of the university administrators affiliated with the Federation of Private Universities of Central America and Panama (FUPAC), seek to establish uniform administrative concepts, methods, and procedures, particularly with respect to budgetary matters. The documents define relevant…

  15. Selection of entropy-measure parameters for knowledge discovery in heart rate variability data.

    PubMed

    Mayer, Christopher C; Bachler, Martin; Hörtenhuber, Matthias; Stocker, Christof; Holzinger, Andreas; Wassertheurer, Siegfried

    2014-01-01

    Heart rate variability is the variation of the time interval between consecutive heartbeats. Entropy is a commonly used tool to describe the regularity of data sets. Entropy functions are defined using multiple parameters, the selection of which is controversial and depends on the intended purpose. This study describes the results of tests conducted to support parameter selection, towards the goal of enabling further biomarker discovery. This study deals with approximate, sample, fuzzy, and fuzzy measure entropies. All data were obtained from PhysioNet, a free-access, on-line archive of physiological signals, and represent various medical conditions. Five tests were defined and conducted to examine the influence of: varying the threshold value r (as multiples of the sample standard deviation σ, or the entropy-maximizing rChon), the data length N, the weighting factors n for fuzzy and fuzzy measure entropies, and the thresholds rF and rL for fuzzy measure entropy. The results were tested for normality using Lilliefors' composite goodness-of-fit test. Consequently, the p-value was calculated with either a two sample t-test or a Wilcoxon rank sum test. The first test shows a cross-over of entropy values with regard to a change of r. Thus, a clear statement that a higher entropy corresponds to a high irregularity is not possible, but is rather an indicator of differences in regularity. N should be at least 200 data points for r = 0.2 σ and should even exceed a length of 1000 for r = rChon. The results for the weighting parameters n for the fuzzy membership function show different behavior when coupled with different r values, therefore the weighting parameters have been chosen independently for the different threshold values. The tests concerning rF and rL showed that there is no optimal choice, but r = rF = rL is reasonable with r = rChon or r = 0.2σ. Some of the tests showed a dependency of the test significance on the data at hand. Nevertheless, as the medical conditions are unknown beforehand, compromises had to be made. Optimal parameter combinations are suggested for the methods considered. Yet, due to the high number of potential parameter combinations, further investigations of entropy for heart rate variability data will be necessary.

  16. Thermodynamic foundations of applications of ab initio methods for determination of the adsorbate equilibria: hydrogen at the GaN(0001) surface.

    PubMed

    Kempisty, Pawel; Strąk, Paweł; Sakowski, Konrad; Kangawa, Yoshihiro; Krukowski, Stanisław

    2017-11-08

    Thermodynamic foundations of ab initio modeling of vapor-solid and vapor-surface equilibria are introduced. The chemical potential change is divided into enthalpy and entropy terms. The enthalpy path passes through vapor-solid transition at zero temperature. The entropy path avoids the singular point at zero temperature passing a solid-vapor transition under normal conditions, where evaporation entropy is employed. In addition, the thermal changes are calculated. The chemical potential difference contribution of the following terms: vaporization enthalpy, vaporization entropy, the temperature-entropy related change, the thermal enthalpy change and mechanical pressure is obtained. The latter term is negligibly small for the pressure typical for epitaxy. The thermal enthalpy change is two orders smaller than the first three terms which have to be taken into account explicitly. The configurational vaporization entropy change is derived for adsorption processes. The same formulation is derived for vapor-surface equilibria using hydrogen at the GaN(0001) surface as an example. The critical factor is the dependence of the enthalpy of evaporation (desorption energy) on the pinning of the Fermi level bringing a drastic change of the value from 2.24 eV to -2.38 eV. In addition it is shown that entropic contributions considerable change the hydrogen equilibrium pressure over the GaN(0001) surface by several orders of magnitude. Thus a complete and exact formulation of vapor-solid and vapor-surface equilibria is presented.

  17. Coarse-graining using the relative entropy and simplex-based optimization methods in VOTCA

    NASA Astrophysics Data System (ADS)

    Rühle, Victor; Jochum, Mara; Koschke, Konstantin; Aluru, N. R.; Kremer, Kurt; Mashayak, S. Y.; Junghans, Christoph

    2014-03-01

    Coarse-grained (CG) simulations are an important tool to investigate systems on larger time and length scales. Several methods for systematic coarse-graining were developed, varying in complexity and the property of interest. Thus, the question arises which method best suits a specific class of system and desired application. The Versatile Object-oriented Toolkit for Coarse-graining Applications (VOTCA) provides a uniform platform for coarse-graining methods and allows for their direct comparison. We present recent advances of VOTCA, namely the implementation of the relative entropy method and downhill simplex optimization for coarse-graining. The methods are illustrated by coarse-graining SPC/E bulk water and a water-methanol mixture. Both CG models reproduce the pair distributions accurately. SYM is supported by AFOSR under grant 11157642 and by NSF under grant 1264282. CJ was supported in part by the NSF PHY11-25915 at KITP. K. Koschke acknowledges funding by the Nestle Research Center.

  18. Analysis of entropy extraction efficiencies in random number generation systems

    NASA Astrophysics Data System (ADS)

    Wang, Chao; Wang, Shuang; Chen, Wei; Yin, Zhen-Qiang; Han, Zheng-Fu

    2016-05-01

    Random numbers (RNs) have applications in many areas: lottery games, gambling, computer simulation, and, most importantly, cryptography [N. Gisin et al., Rev. Mod. Phys. 74 (2002) 145]. In cryptography theory, the theoretical security of the system calls for high quality RNs. Therefore, developing methods for producing unpredictable RNs with adequate speed is an attractive topic. Early on, despite the lack of theoretical support, pseudo RNs generated by algorithmic methods performed well and satisfied reasonable statistical requirements. However, as implemented, those pseudorandom sequences were completely determined by mathematical formulas and initial seeds, which cannot introduce extra entropy or information. In these cases, “random” bits are generated that are not at all random. Physical random number generators (RNGs), which, in contrast to algorithmic methods, are based on unpredictable physical random phenomena, have attracted considerable research interest. However, the way that we extract random bits from those physical entropy sources has a large influence on the efficiency and performance of the system. In this manuscript, we will review and discuss several randomness extraction schemes that are based on radiation or photon arrival times. We analyze the robustness, post-processing requirements and, in particular, the extraction efficiency of those methods to aid in the construction of efficient, compact and robust physical RNG systems.

  19. Practical Aspects of Stabilized FEM Discretizations of Nonlinear Conservation Law Systems with Convex Extension

    NASA Technical Reports Server (NTRS)

    Barth, Timothy; Saini, Subhash (Technical Monitor)

    1999-01-01

    This talk considers simplified finite element discretization techniques for first-order systems of conservation laws equipped with a convex (entropy) extension. Using newly developed techniques in entropy symmetrization theory, simplified forms of the Galerkin least-squares (GLS) and the discontinuous Galerkin (DG) finite element method have been developed and analyzed. The use of symmetrization variables yields numerical schemes which inherit global entropy stability properties of the POE system. Central to the development of the simplified GLS and DG methods is the Degenerative Scaling Theorem which characterizes right symmetrizes of an arbitrary first-order hyperbolic system in terms of scaled eigenvectors of the corresponding flux Jacobean matrices. A constructive proof is provided for the Eigenvalue Scaling Theorem with detailed consideration given to the Euler, Navier-Stokes, and magnetohydrodynamic (MHD) equations. Linear and nonlinear energy stability is proven for the simplified GLS and DG methods. Spatial convergence properties of the simplified GLS and DO methods are numerical evaluated via the computation of Ringleb flow on a sequence of successively refined triangulations. Finally, we consider a posteriori error estimates for the GLS and DG demoralization assuming error functionals related to the integrated lift and drag of a body. Sample calculations in 20 are shown to validate the theory and implementation.

  20. An Improved Evidential-IOWA Sensor Data Fusion Approach in Fault Diagnosis

    PubMed Central

    Zhou, Deyun; Zhuang, Miaoyan; Fang, Xueyi; Xie, Chunhe

    2017-01-01

    As an important tool of information fusion, Dempster–Shafer evidence theory is widely applied in handling the uncertain information in fault diagnosis. However, an incorrect result may be obtained if the combined evidence is highly conflicting, which may leads to failure in locating the fault. To deal with the problem, an improved evidential-Induced Ordered Weighted Averaging (IOWA) sensor data fusion approach is proposed in the frame of Dempster–Shafer evidence theory. In the new method, the IOWA operator is used to determine the weight of different sensor data source, while determining the parameter of the IOWA, both the distance of evidence and the belief entropy are taken into consideration. First, based on the global distance of evidence and the global belief entropy, the α value of IOWA is obtained. Simultaneously, a weight vector is given based on the maximum entropy method model. Then, according to IOWA operator, the evidence are modified before applying the Dempster’s combination rule. The proposed method has a better performance in conflict management and fault diagnosis due to the fact that the information volume of each evidence is taken into consideration. A numerical example and a case study in fault diagnosis are presented to show the rationality and efficiency of the proposed method. PMID:28927017

Top