OpenDA Open Source Generic Data Assimilation Environment and its Application in Process Models
NASA Astrophysics Data System (ADS)
El Serafy, Ghada; Verlaan, Martin; Hummel, Stef; Weerts, Albrecht; Dhondia, Juzer
2010-05-01
Data Assimilation techniques are essential elements in state-of-the-art development of models and their optimization with data in the field of groundwater, surface water and soil systems. They are essential tools in calibration of complex modelling systems and improvement of model forecasts. The OpenDA is a new and generic open source data assimilation environment for application to a choice of physical process models, applied to case dependent domains. OpenDA was introduced recently when the developers of Costa, an open-source TU Delft project [http://www.costapse.org; Van Velzen and Verlaan; 2007] and those of the DATools from the former WL|Delft Hydraulics [El Serafy et al 2007; Weerts et al. 2009] decided to join forces. OpenDA makes use of a set of interfaces that describe the interaction between models, observations and data assimilation algorithms. It focuses on flexible applications in portable systems for modelling geophysical processes. It provides a generic interfacing protocol that allows combination of the implemented data assimilation techniques with, in principle, any time-stepping model duscribing a process(atmospheric processes, 3D circulation, 2D water level, sea surface temperature, soil systems, groundwater etc.). Presently, OpenDA features filtering techniques and calibration techniques. The presentation will give an overview of the OpenDA and the results of some of its practical applications. Application of data assimilation in portable operational forecasting systems—the DATools assimilation environment, El Serafy G.Y., H. Gerritsen, S. Hummel, A. H. Weerts, A.E. Mynett and M. Tanaka (2007), Journal of Ocean Dynamics, DOI 10.1007/s10236-007-0124-3, pp.485-499. COSTA a problem solving environment for data assimilation applied for hydrodynamical modelling, Van Velzen and Verlaan (2007), Meteorologische Zeitschrift, Volume 16, Number 6, December 2007 , pp. 777-793(17). Application of generic data assimilation tools (DATools) for flood forecasting purposes, A.H. Weerts, G.Y.H. El Serafy, S. Hummel, J. Dhondia, and H. Gerritsen (2009), accepted by Geoscience & Computers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reeves, Geoffrey D; Friedel, Reiner H W; Chen, Yue
2008-01-01
The Dynamic Radiation Environment Assimilation Model (DREAM) was developed at Los Alamos National Laboratory to assess, quantify, and predict the hazards from the natural space environment and the anthropogenic environment produced by high altitude nuclear explosions (HANE). DREAM was initially developed as a basic research activity to understand and predict the dynamics of the Earth's Van Allen radiation belts. It uses Kalman filter techniques to assimilate data from space environment instruments with a physics-based model of the radiation belts. DREAM can assimilate data from a variety of types of instruments and data with various levels of resolution and fidelity bymore » assigning appropriate uncertainties to the observations. Data from any spacecraft orbit can be assimilated but DREAM was designed to function with as few as two spacecraft inputs: one from geosynchronous orbit and one from GPS orbit. With those inputs, DREAM can be used to predict the environment at any satellite in any orbit whether space environment data are available in those orbits or not. Even with very limited data input and relatively simple physics models, DREAM specifies the space environment in the radiation belts to a high level of accuracy. DREAM has been extensively tested and evaluated as we transition from research to operations. We report here on one set of test results in which we predict the environment in a highly-elliptical polar orbit. We also discuss long-duration reanalysis for spacecraft design, using DREAM for real-time operations, and prospects for 1-week forecasts of the radiation belt environment.« less
Liu, Li; Helbling, Damian E; Kohler, Hans-Peter E; Smets, Barth F
2014-11-18
Pollutants such as pesticides and their degradation products occur ubiquitously in natural aquatic environments at trace concentrations (μg L(-1) and lower). Microbial biodegradation processes have long been known to contribute to the attenuation of pesticides in contaminated environments. However, challenges remain in developing engineered remediation strategies for pesticide-contaminated environments because the fundamental processes that regulate growth-linked biodegradation of pesticides in natural environments remain poorly understood. In this research, we developed a model framework to describe growth-linked biodegradation of pesticides at trace concentrations. We used experimental data reported in the literature or novel simulations to explore three fundamental kinetic processes in isolation. We then combine these kinetic processes into a unified model framework. The three kinetic processes described were: the growth-linked biodegradation of micropollutant at environmentally relevant concentrations; the effect of coincidental assimilable organic carbon substrates; and the effect of coincidental microbes that compete for assimilable organic carbon substrates. We used Monod kinetic models to describe substrate utilization and microbial growth rates for specific pesticide and degrader pairs. We then extended the model to include terms for utilization of assimilable organic carbon substrates by the specific degrader and coincidental microbes, growth on assimilable organic carbon substrates by the specific degrader and coincidental microbes, and endogenous metabolism. The proposed model framework enables interpretation and description of a range of experimental observations on micropollutant biodegradation. The model provides a useful tool to identify environmental conditions with respect to the occurrence of assimilable organic carbon and coincidental microbes that may result in enhanced or reduced micropollutant biodegradation.
Improving Snow Modeling by Assimilating Observational Data Collected by Citizen Scientists
NASA Astrophysics Data System (ADS)
Crumley, R. L.; Hill, D. F.; Arendt, A. A.; Wikstrom Jones, K.; Wolken, G. J.; Setiawan, L.
2017-12-01
Modeling seasonal snow pack in alpine environments includes a multiplicity of challenges caused by a lack of spatially extensive and temporally continuous observational datasets. This is partially due to the difficulty of collecting measurements in harsh, remote environments where extreme gradients in topography exist, accompanied by large model domains and inclement weather. Engaging snow enthusiasts, snow professionals, and community members to participate in the process of data collection may address some of these challenges. In this study, we use SnowModel to estimate seasonal snow water equivalence (SWE) in the Thompson Pass region of Alaska while incorporating snow depth measurements collected by citizen scientists. We develop a modeling approach to assimilate hundreds of snow depth measurements from participants in the Community Snow Observations (CSO) project (www.communitysnowobs.org). The CSO project includes a mobile application where participants record and submit geo-located snow depth measurements while working and recreating in the study area. These snow depth measurements are randomly located within the model grid at irregular time intervals over the span of four months in the 2017 water year. This snow depth observation dataset is converted into a SWE dataset by employing an empirically-based, bulk density and SWE estimation method. We then assimilate this data using SnowAssim, a sub-model within SnowModel, to constrain the SWE output by the observed data. Multiple model runs are designed to represent an array of output scenarios during the assimilation process. An effort to present model output uncertainties is included, as well as quantification of the pre- and post-assimilation divergence in modeled SWE. Early results reveal pre-assimilation SWE estimations are consistently greater than the post-assimilation estimations, and the magnitude of divergence increases throughout the snow pack evolution period. This research has implications beyond the Alaskan context because it increases our ability to constrain snow modeling outputs by making use of snow measurements collected by non-expert, citizen scientists.
NASA Astrophysics Data System (ADS)
Leuenberger, D.; Rossa, A.
2007-12-01
Next-generation, operational, high-resolution numerical weather prediction models require economical assimilation schemes for radar data. In the present study we evaluate and characterise the latent heat nudging (LHN) rainfall assimilation scheme within a meso-γ scale NWP model in the framework of identical twin simulations of an idealised supercell storm. Consideration is given to the model’s dynamical response to the forcing as well as to the sensitivity of the LHN scheme to uncertainty in the observations and the environment. The results indicate that the LHN scheme is well able to capture the dynamical structure and the right rainfall amount of the storm in a perfect environment. This holds true even in degraded environments but a number of important issues arise. In particular, changes in the low-level humidity field are found to affect mainly the precipitation amplitude during the assimilation with a fast adaptation of the storm to the system dynamics determined by the environment during the free forecast. A constant bias in the environmental wind field, on the other hand, has the potential to render a successful assimilation with the LHN scheme difficult, as the velocity of the forcing is not consistent with the system propagation speed determined by the wind. If the rainfall forcing moves too fast, the system propagation is supported and the assimilated storm and forecasts initialised therefrom develop properly. A too slow forcing, on the other hand, can decelerate the system and eventually disturb the system dynamics by decoupling the low-level moisture inflow from the main updrafts during the assimilation. This distortion is sustained in the free forecast. It has further been found that a sufficient temporal resolution of the rainfall input is crucial for the successful assimilation of a fast moving, coherent convective storm and that the LHN scheme, when applied to a convective storm, appears to necessitate a careful tuning.
NASA Astrophysics Data System (ADS)
Raeder, K.; Hoar, T. J.; Anderson, J. L.; Collins, N.; Hendricks, J.; Kershaw, H.; Ha, S.; Snyder, C.; Skamarock, W. C.; Mizzi, A. P.; Liu, H.; Liu, J.; Pedatella, N. M.; Karspeck, A. R.; Karol, S. I.; Bitz, C. M.; Zhang, Y.
2017-12-01
The capabilities of the Data Assimilation Research Testbed (DART) at NCAR have been significantly expanded with the recent "Manhattan" release. DART is an ensemble Kalman filter based suite of tools, which enables researchers to use data assimilation (DA) without first becoming DA experts. Highlights: significant improvement in efficient ensemble DA for very large models on thousands of processors, direct read and write of model state files in parallel, more control of the DA output for finer-grained analysis, new model interfaces which are useful to a variety of geophysical researchers, new observation forward operators and the ability to use precomputed forward operators from the forecast model. The new model interfaces and example applications include the following: MPAS-A; Model for Prediction Across Scales - Atmosphere is a global, nonhydrostatic, variable-resolution mesh atmospheric model, which facilitates multi-scale analysis and forecasting. The absence of distinct subdomains eliminates problems associated with subdomain boundaries. It demonstrates the ability to consistently produce higher-quality analyses than coarse, uniform meshes do. WRF-Chem; Weather Research and Forecasting + (MOZART) Chemistry model assimilates observations from FRAPPÉ (Front Range Air Pollution and Photochemistry Experiment). WACCM-X; Whole Atmosphere Community Climate Model with thermosphere and ionosphere eXtension assimilates observations of electron density to investigate sudden stratospheric warming. CESM (weakly) coupled assimilation; NCAR's Community Earth System Model is used for assimilation of atmospheric and oceanic observations into their respective components using coupled atmosphere+land+ocean+sea+ice forecasts. CESM2.0; Assimilation in the atmospheric component (CAM, WACCM) of the newly released version is supported. This version contains new and extensively updated components and software environment. CICE; Los Alamos sea ice model (in CESM) is used to assimilate multivariate sea ice concentration observations to constrain the model's ice thickness, concentration, and parameters.
NASA Astrophysics Data System (ADS)
Laiolo, Paola; Gabellani, Simone; Campo, Lorenzo; Cenci, Luca; Silvestro, Francesco; Delogu, Fabio; Boni, Giorgio; Rudari, Roberto
2015-04-01
The reliable estimation of hydrological variables (e.g. soil moisture, evapotranspiration, surface temperature) in space and time is of fundamental importance in operational hydrology to improve the forecast of the rainfall-runoff response of catchments and, consequently, flood predictions. Nowadays remote sensing can offer a chance to provide good space-time estimates of several hydrological variables and then improve hydrological model performances especially in environments with scarce in-situ data. This work investigates the impact of the assimilation of different remote sensing products on the hydrological cycle by using a continuous physically based distributed hydrological model. Three soil moisture products derived by ASCAT (Advanced SCATterometer) are used to update the model state variables. The satellite-derived products are assimilated into the hydrological model using different assimilation techniques: a simple nudging and the Ensemble Kalman Filter. Moreover two assimilation strategies are evaluated to assess the impact of assimilating the satellite products at model spatial resolution or at the satellite scale. The experiments are carried out for three Italian catchments on multi year period. The benefits on the model predictions of discharge, LST, evapotranspiration and soil moisture dynamics are tested and discussed.
NASA Technical Reports Server (NTRS)
Nearing, Grey S.; Crow, Wade T.; Thorp, Kelly R.; Moran, Mary S.; Reichle, Rolf H.; Gupta, Hoshin V.
2012-01-01
Observing system simulation experiments were used to investigate ensemble Bayesian state updating data assimilation of observations of leaf area index (LAI) and soil moisture (theta) for the purpose of improving single-season wheat yield estimates with the Decision Support System for Agrotechnology Transfer (DSSAT) CropSim-Ceres model. Assimilation was conducted in an energy-limited environment and a water-limited environment. Modeling uncertainty was prescribed to weather inputs, soil parameters and initial conditions, and cultivar parameters and through perturbations to model state transition equations. The ensemble Kalman filter and the sequential importance resampling filter were tested for the ability to attenuate effects of these types of uncertainty on yield estimates. LAI and theta observations were synthesized according to characteristics of existing remote sensing data, and effects of observation error were tested. Results indicate that the potential for assimilation to improve end-of-season yield estimates is low. Limitations are due to a lack of root zone soil moisture information, error in LAI observations, and a lack of correlation between leaf and grain growth.
The dynamic radiation environment assimilation model (DREAM)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reeves, Geoffrey D; Koller, Josef; Tokar, Robert L
2010-01-01
The Dynamic Radiation Environment Assimilation Model (DREAM) is a 3-year effort sponsored by the US Department of Energy to provide global, retrospective, or real-time specification of the natural and potential nuclear radiation environments. The DREAM model uses Kalman filtering techniques that combine the strengths of new physical models of the radiation belts with electron observations from long-term satellite systems such as GPS and geosynchronous systems. DREAM includes a physics model for the production and long-term evolution of artificial radiation belts from high altitude nuclear explosions. DREAM has been validated against satellites in arbitrary orbits and consistently produces more accurate resultsmore » than existing models. Tools for user-specific applications and graphical displays are in beta testing and a real-time version of DREAM has been in continuous operation since November 2009.« less
A new approach in the design of an interactive environment for teaching Hamiltonian digraphs
NASA Astrophysics Data System (ADS)
Iordan, A. E.; Panoiu, M.
2014-03-01
In this article the authors present the necessary steps in object orientated design of an interactive environment that is dedicated to the process of acquaintances assimilation in Hamiltonian graphs theory domain, especially for the simulation of algorithms which determine the Hamiltonian trails and circuits. The modelling of the interactive environment is achieved through specific UML diagrams representing the steps of analysis, design and implementation. This interactive environment is very useful for both students and professors, because computer programming domain, especially digraphs theory domain is comprehended and assimilated with difficulty by students.
Operational aspects of asynchronous filtering for improved flood forecasting
NASA Astrophysics Data System (ADS)
Rakovec, Oldrich; Weerts, Albrecht; Sumihar, Julius; Uijlenhoet, Remko
2014-05-01
Hydrological forecasts can be made more reliable and less uncertain by recursively improving initial conditions. A common way of improving the initial conditions is to make use of data assimilation (DA), a feedback mechanism or update methodology which merges model estimates with available real world observations. The traditional implementation of the Ensemble Kalman Filter (EnKF; e.g. Evensen, 2009) is synchronous, commonly named a three dimensional (3-D) assimilation, which means that all assimilated observations correspond to the time of update. Asynchronous DA, also called four dimensional (4-D) assimilation, refers to an updating methodology, in which observations being assimilated into the model originate from times different to the time of update (Evensen, 2009; Sakov 2010). This study investigates how the capabilities of the DA procedure can be improved by applying alternative Kalman-type methods, e.g., the Asynchronous Ensemble Kalman Filter (AEnKF). The AEnKF assimilates observations with smaller computational costs than the original EnKF, which is beneficial for operational purposes. The results of discharge assimilation into a grid-based hydrological model for the Upper Ourthe catchment in Belgian Ardennes show that including past predictions and observations in the AEnKF improves the model forecasts as compared to the traditional EnKF. Additionally we show that elimination of the strongly non-linear relation between the soil moisture storage and assimilated discharge observations from the model update becomes beneficial for an improved operational forecasting, which is evaluated using several validation measures. In the current study we employed the HBV-96 model built within a recently developed open source modelling environment OpenStreams (2013). The advantage of using OpenStreams (2013) is that it enables direct communication with OpenDA (2013), an open source data assimilation toolbox. OpenDA provides a number of algorithms for model calibration and assimilation and is suitable to be connected to any kind of environmental model. This setup is embedded in the Delft Flood Early Warning System (Delft-FEWS, Werner et al., 2013) for making all simulations and forecast runs and handling of all hydrological and meteorological data. References: Evensen, G. (2009), Data Assimilation: The Ensemble Kalman Filter, Springer, doi:10.1007/978-3-642-03711-5. OpenDA (2013), The OpenDA data-assimilation toolbox, www.openda.org, (last access: 1 November 2013). OpenStreams (2013), OpenStreams, www.openstreams.nl, (last access: 1 November 2013). Sakov, P., G. Evensen, and L. Bertino (2010), Asynchronous data assimilation with the EnKF, Tellus, Series A: Dynamic Meteorology and Oceanography, 62(1), 24-29, doi:10.1111/j.1600-0870.2009.00417.x. Werner, M., J. Schellekens, P. Gijsbers, M. van Dijk, O. van den Akker, and K. Heynert (2013), The Delft-FEWS flow forecasting system, Environ. Mod. & Soft., 40(0), 65-77, doi: http://dx.doi.org/10.1016/j.envsoft.2012.07.010.
NASA Technical Reports Server (NTRS)
Pawson, Steven; Lin, Shian-Jiann; Rood, Richard B.; Stajner, Ivanka; Nebuda, Sharon; Nielsen, J. Eric; Douglass, Anne R.
2000-01-01
In order to support the EOS-Chem project, a comprehensive assimilation package for the coupled chemical-dynamical system is being developed by the Data Assimilation Office at NASA GSFC. This involves development of a coupled chemistry/meteorology model and of data assimilation techniques for trace species and meteorology. The model is being developed using the flux-form semi-Lagrangian dynamical core of Lin and Rood, the physical parameterizations from the NCAR Community Climate Model, and atmospheric chemistry modules from the Atmospheric Chemistry and Dynamics branch at NASA GSFC. To date the following results have been obtained: (i) multi-annual simulations with the dynamics-radiation model show the credibility of the package for atmospheric simulations; (ii) initial simulations including a limited number of middle atmospheric trace gases reveal the realistic nature of transport mechanisms, although there is still a need for some improvements. Samples of these results will be shown. A meteorological assimilation system is currently being constructed using the model; this will form the basis for the proposed meteorological/chemical assimilation package. The latter part of the presentation will focus on areas targeted for development in the near and far terms, with the objective of Providing a comprehensive assimilation package for the EOS-Chem science experiment. The first stage will target ozone assimilation. The plans also encompass a reanalysis (ReSTS) for the 1991-1995 period, which includes the Mt. Pinatubo eruption and the time when a large number of UARS observations were available. One of the most challenging aspects of future developments will be to couple theoretical advances in tracer assimilation with the practical considerations of a real environment and eventually a near-real-time assimilation system.
Exploring coupled 4D-Var data assimilation using an idealised atmosphere-ocean model
NASA Astrophysics Data System (ADS)
Smith, Polly; Fowler, Alison; Lawless, Amos; Haines, Keith
2014-05-01
The successful application of data assimilation techniques to operational numerical weather prediction and ocean forecasting systems has led to an increased interest in their use for the initialisation of coupled atmosphere-ocean models in prediction on seasonal to decadal timescales. Coupled data assimilation presents a significant challenge but offers a long list of potential benefits including improved use of near-surface observations, reduction of initialisation shocks in coupled forecasts, and generation of a consistent system state for the initialisation of coupled forecasts across all timescales. In this work we explore some of the fundamental questions in the design of coupled data assimilation systems within the context of an idealised one-dimensional coupled atmosphere-ocean model. The system is based on the European Centre for Medium-Range Weather Forecasts (ECMWF) Integrated Forecast System (IFS) atmosphere model and a K-Profile Parameterisation (KKP) mixed layer ocean model developed by the National Centre for Atmospheric Science (NCAS) climate group at the University of Reading. It employs a strong constraint incremental 4D-Var scheme and is designed to enable the effective exploration of various approaches to performing coupled model data assimilation whilst avoiding many of the issues associated with more complex models. Working with this simple framework enables a greater range and quantity of experiments to be performed. Here, we will describe the development of our simplified single-column coupled atmosphere-ocean 4D-Var assimilation system and present preliminary results from a series of identical twin experiments devised to investigate and compare the behaviour and sensitivities of different coupled data assimilation methodologies. This includes comparing fully and weakly coupled assimilations with uncoupled assimilation, investigating whether coupled assimilation can eliminate or lessen initialisation shock in coupled model forecasts, and exploring the effect of the assimilation window length in coupled assimilations. These experiments will facilitate a greater theoretical understanding of the coupled atmosphere-ocean data assimilation problem and thus help guide the design and implementation of different coupling strategies within operational systems. This research is funded by the European Space Agency (ESA) and the UK Natural Environment Research Council (NERC). The ESA funded component is part of the Data Assimilation Projects - Coupled Model Data Assimilation initiative whose goal is to advance data assimilation techniques in fully coupled atmosphere-ocean models (see http://www.esa-da.org/). It is being conducted in parallel to the development of prototype weakly coupled data assimilation systems at both the UK Met Office and ECMWF.
Integrated Modeling of the Battlespace Environment
2010-10-01
Office of Counsel.Code 1008.3 ADOR/Director NCST E. R. Franchi , 7000 Public Affairs (Unclassified/ Unlimited Only). Code 7030 4 Division, Code...ESMF: the Hakamada- Akasofu-Fry version 2 (HAFv2) solar wind model and the global assimilation of ionospheric mea- surements (GAIM1) forecast...ground-truth measurements for comparison with the solar wind predictions. Global Assimilation of Ionospheric Measurements The GAIMv2.3 effort
Regional ionospheric TEC data assimilation and now-casting service
NASA Astrophysics Data System (ADS)
Aa, E.; Liu, S.; Wengeng, H.
2017-12-01
Ionospheric data assimilation is a now-casting technique to incorporate irregular ionospheric measurements into certain background model, which is an effective and efficient way to overcome the limitation of the unbalanced data distribution and to improve the accuracy of the model, so that the model and the data can be optimally combined with each other to produce a more reliable and reasonable system specification. In this study, a regional total electron content (TEC) now-casting system over China and adjacent areas (70E-140E and 15N-55N) is developed on the basis of data assimilation technique. The International Reference Ionosphere (IRI) is used here as background model, and the GNSS data are derived from both the Space Environment Monitoring Network of Chinese Academy of Sciences (SEMnet) and International GNSS Service (IGS) data. A Three-dimensional variation algorithm (3DVAR) combined with Gauss-Markov Kalman filter technique is used to implement the data assimilation. The regional gridded TEC maps and the position errors of single-frequency GPS receivers can be generated and publicized online (http://sepc.ac.cn/TEC_chn.php) in quasi-real time, which is updated for every 15 min. It is one of the ionospheric now-casting systems in China based on data assimilation algorithm, which can be used not only for real-time monitoring of ionosphere environment over China and adjacent areas, but also in providing accurate and effective specification of regional ionospheric TEC and error correction for satellite navigation, radar imaging, shortwave communication, and other relevant applications.
NASA Astrophysics Data System (ADS)
Penenko, Alexey; Penenko, Vladimir; Tsvetova, Elena
2015-04-01
The paper concerns data assimilation problem for an atmospheric chemistry transport and transformation models. Data assimilation is carried out within variation approach on a single time step of the approximated model. A control function is introduced into the model source term (emission rate) to provide flexibility to adjust to data. This function is evaluated as the minimum of the target functional combining control function norm to a misfit between measured and model-simulated analog of data. This provides a flow-dependent and physically-plausible structure of the resulting analysis and reduces the need to calculate model error covariance matrices that are sought within conventional approach to data assimilation. Extension of the atmospheric transport model with a chemical transformations module influences data assimilation algorithms performance. This influence is investigated with numerical experiments for different meteorological conditions altering convection-diffusion processes characteristics, namely strong, medium and low wind conditions. To study the impact of transformation and data assimilation, we compare results for a convection-diffusion model (without data assimilation), convection-diffusion with assimilation, convection-diffusion-reaction (without data assimilation) and convection-diffusion-reaction-assimilation models. Both high dimensionalities of the atmospheric chemistry models and a real-time mode of operation demand for computational efficiency of the algorithms. Computational issues with complicated models can be solved by using a splitting technique. As the result a model is presented as a set of relatively independent simple models equipped with a kind of coupling procedure. With regard to data assimilation two approaches can be identified. In a fine-grained approach data assimilation is carried out on the separate splitting stages [1,2] independently on shared measurement data. The same situation arises when constructing a hybrid model out of two models each having its own assimilation scheme. In integrated schemes data assimilation is carried out with respect to the split model as a whole. First approach is more efficient from computational point of view, for in some important cases it can be implemented without iterations [2]. Its shortcoming is that control functions in different part of the model are adjusted independently thus having less evident physical sense. With the aid of numerical experiments we compare the two approaches. Work has been partially supported by COST Action ES1004 STSM Grants #16817 and #21654, RFBR 14-01-31482 mol a and 14-01-00125, Programmes # 4 Presidium RAS and # 3 MSD RAS, integration projects SB RAS #8 and #35. References: [1] V. V. Penenko Variational methods of data assimilation and inverse problems for studying the atmosphere, ocean, and environment Num. Anal. and Appl., 2009 V 2 No 4, 341-351. [2] A.V. Penenko and V.V. Penenko. Direct data assimilation method for convection-diffusion models based on splitting scheme. Computational technologies, 19(4):69-83, 2014.
Ergon, T; Ergon, R
2017-03-01
Genetic assimilation emerges from selection on phenotypic plasticity. Yet, commonly used quantitative genetics models of linear reaction norms considering intercept and slope as traits do not mimic the full process of genetic assimilation. We argue that intercept-slope reaction norm models are insufficient representations of genetic effects on linear reaction norms and that considering reaction norm intercept as a trait is unfortunate because the definition of this trait relates to a specific environmental value (zero) and confounds genetic effects on reaction norm elevation with genetic effects on environmental perception. Instead, we suggest a model with three traits representing genetic effects that, respectively, (i) are independent of the environment, (ii) alter the sensitivity of the phenotype to the environment and (iii) determine how the organism perceives the environment. The model predicts that, given sufficient additive genetic variation in environmental perception, the environmental value at which reaction norms tend to cross will respond rapidly to selection after an abrupt environmental change, and eventually becomes equal to the new mean environment. This readjustment of the zone of canalization becomes completed without changes in genetic correlations, genetic drift or imposing any fitness costs of maintaining plasticity. The asymptotic evolutionary outcome of this three-trait linear reaction norm generally entails a lower degree of phenotypic plasticity than the two-trait model, and maximum expected fitness does not occur at the mean trait values in the population. © 2016 The Authors. Journal of Evolutionary Biology published by John Wiley & Sons Ltd on behalf of European Society for Evolutionary Biology.
Specification and Prediction of the Radiation Environment Using Data Assimilative VERB code
NASA Astrophysics Data System (ADS)
Shprits, Yuri; Kellerman, Adam
2016-07-01
We discuss how data assimilation can be used for the reconstruction of long-term evolution, bench-marking of the physics based codes and used to improve the now-casting and focusing of the radiation belts and ring current. We also discuss advanced data assimilation methods such as parameter estimation and smoothing. We present a number of data assimilation applications using the VERB 3D code. The 3D data assimilative VERB allows us to blend together data from GOES, RBSP A and RBSP B. 1) Model with data assimilation allows us to propagate data to different pitch angles, energies, and L-shells and blends them together with the physics-based VERB code in an optimal way. We illustrate how to use this capability for the analysis of the previous events and for obtaining a global and statistical view of the system. 2) The model predictions strongly depend on initial conditions that are set up for the model. Therefore, the model is as good as the initial conditions that it uses. To produce the best possible initial conditions, data from different sources (GOES, RBSP A, B, our empirical model predictions based on ACE) are all blended together in an optimal way by means of data assimilation, as described above. The resulting initial conditions do not have gaps. This allows us to make more accurate predictions. Real-time prediction framework operating on our website, based on GOES, RBSP A, B and ACE data, and 3D VERB, is presented and discussed.
Piedra, Lissette M; Engstrom, David W
2009-07-01
The life model offers social workers a promising framework to use in assisting immigrant families. However, the complexities of adaptation to a new country may make it difficult for social workers to operate from a purely ecological approach. The authors use segmented assimilation theory to better account for the specificities of the immigrant experience. They argue that by adding concepts from segmented assimilation theory to the life model, social workers can better understand the environmental stressors that increase the vulnerabilities of immigrants to the potentially harsh experience of adapting to a new country. With these concepts, social workers who work with immigrant families will be better positioned to achieve their central goal: enhancing person and environment fit.
NASA Astrophysics Data System (ADS)
Lafont, Sebastien; Barbu, Alina; Calvet, Jean-Christophe
2013-04-01
A Land Data Assimilation System (LDAS) is an off-line data assimilation system featuring uncoupled land surface model which is driven by observation-based atmospheric forcing. In this study the experiments were conducted with a surface externalized (SURFEX) modelling platform developed at Météo-France. It encompasses the land surface model ISBA-A-gs that simulates photosynthesis and plant growth. The photosynthetic activity depends on the vegetation types. The input soil and vegetation parameters are provided by the ECOCLIMAP II global database which assigns the ecosystem classes in several plant functional types as grassland, crops, deciduous forest and coniferous forest. New versions of the model have been recently developed in order to better describe the agricultural plant functional types. We present a set of observing system simulation experiments (OSSE) which asses leaf area index (LAI) and soil moisture assimilation for improving the land surface estimates in a controlled synthetic environment. Synthetic data were assimilated into ISBA-A-gs using an Extended Kalman Filter (EKF). This allows for an understanding of model responses to an augmentation of the number of crop types and different parameters associated to this modification. In addition, the interactions between uncertainties in the model and in the observations were investigated. This study represents the first step of a process that envisages the extension of LDAS to the new versions of the ISBA-A-gs model in order to assimilate remote sensing observations.
Tropospheric and stratospheric ozone from assimilation of Aura data
NASA Technical Reports Server (NTRS)
Stajner, I.; Wargan, K.; Chang, L.-P.; Hayashi, H.; Pawwson, S.; Froidevaux, L.; Livesey, N.; Bhartia, P. K.
2006-01-01
Ozone is an atmospheric trace gas with multiple impacts on the environment. Global ozone fields are needed for air quality predictions, estimation of the ultraviolet radiation reaching the surface, climate-radiation studies, and may also have an impact on longer-term weather predictions. We estimate global ozone fields in the stratosphere and troposphere by combining the data from EOS Aura satellite with an ozone model using data assimilation. Ozone exhibits a large temporal variability in the lower stratosphere. Our previous work showed that assimilation of satellite data from limb-sounding geometry helps constrain ozone profiles in that region. We assimilated ozone data from the Aura Microwave Limb Sounder (MLS) and the Ozone Monitoring Instrument (OMI) into the ozone system at NASA's Global Modeling and Assimilation Office (GMAO). Ozone is transported within a general circulation model (GCM) which includes parameterizations for stratospheric photochemistry, tropospheric chemistry, and a simple scheme for heterogeneous ozone loss. The focus of this study is on the representation of ozone in the lower stratosphere and tropospheric ozone columns. We plan to extend studies of tropospheric ozone distribution through assimilation of ozone data from the Tropospheric Emission Spectrometer (TES). Comparisons with ozone sondes and occultation data show that assimilation of Aura data reproduces ozone gradients and variability in the lower stratosphere well. We proceed by separating the contributions to temporal changes in the ozone field into those that are due to the model and those that are due to the assimilation of Aura data. The impacts of Aura data are illustrated and their role in the representation of ozone variability in the lower stratosphere and troposphere is shown.
Terminator field-aligned current system: A new finding from model-assimilated data set (MADS)
NASA Astrophysics Data System (ADS)
Zhu, L.; Schunk, R. W.; Scherliess, L.; Sojka, J. J.; Gardner, L. C.; Eccles, J. V.; Rice, D.
2013-12-01
Physics-based data assimilation models have been recognized by the space science community as the most accurate approach to specify and forecast the space weather of the solar-terrestrial environment. The model-assimilated data sets (MADS) produced by these models constitute an internally consistent time series of global three-dimensional fields whose accuracy can be estimated. Because of its internal consistency of physics and completeness of descriptions on the status of global systems, the MADS has also been a powerful tool to identify the systematic errors in measurements, reveal the missing physics in physical models, and discover the important dynamical physical processes that are inadequately observed or missed by measurements due to observational limitations. In the past years, we developed a data assimilation model for the high-latitude ionospheric plasma dynamics and electrodynamics. With a set of physical models, an ensemble Kalman filter, and the ingestion of data from multiple observations, the data assimilation model can produce a self-consistent time-series of the complete descriptions of the global high-latitude ionosphere, which includes the convection electric field, horizontal and field-aligned currents, conductivity, as well as 3-D plasma densities and temperatures, In this presentation, we will show a new field-aligned current system discovered from the analysis of the MADS produced by our data assimilation model. This new current system appears and develops near the ionospheric terminator. The dynamical features of this current system will be described and its connection to the active role of the ionosphere in the M-I coupling will be discussed.
The Global Observing System in the Assimilation Context
NASA Technical Reports Server (NTRS)
Reinecker, Michele M.; Gelaro, R.; Pawson, S.; Reichle, R.; McCarty, W.
2011-01-01
Weather and climate analyses and predictions all rely on the global observing system. However, the observing system, whether atmosphere, ocean, or land surface, yields a diverse set of incomplete observations of the different components of Earth s environment. Data assimilation systems are essential to synthesize the wide diversity of in situ and remotely sensed observations into four-dimensional state estimates by combining the various observations with model-based estimates. Assimilation, or associated tools and products, are also useful in providing guidance for the evolution of the observing system of the future. This paper provides a brief overview of the global observing system and information gleaned through assimilation tools, and presents some evaluations of observing system gaps and issues.
NASA Astrophysics Data System (ADS)
Sandvig Mariegaard, Jesper; Huiban, Méven Robin; Tornfeldt Sørensen, Jacob; Andersson, Henrik
2017-04-01
Determining the optimal domain size and associated position of open boundaries in local high-resolution downscaling ocean models is often difficult. As an important input data set for downscaling ocean modelling, the European Copernicus Marine Environment Monitoring Service (CMEMS) provides baroclinic initial and boundary conditions for local ocean models. Tidal dynamics is often neglected in CMEMS services at large scale but tides are generally crucial for coastal ocean dynamics. To address this need, tides can be superposed via Flather (1976) boundary conditions and the combined flow downscaled using unstructured mesh. The surge component is also only partially represented in selected CMEMS products and must be modelled inside the domain and modelled independently and superposed if the domain becomes too small to model the effect in the downscaling model. The tide and surge components can generally be improved by assimilating water level from tide gauge and altimetry data. An intrinsic part of the problem is to find the limitations of local scale data assimilation and the requirement for consistency between the larger scale ocean models and the local scale assimilation methodologies. This contribution investigates the impact of domain size and associated positions of open boundaries with and without data assimilation of water level. We have used the baroclinic ocean model, MIKE 3 FM, and its newly re-factored built-in data assimilation package. We consider boundary conditions of salinity, temperature, water level and depth varying currents from the Global CMEMS 1/4 degree resolution model from 2011, where in situ ADCP velocity data is available for validation. We apply data assimilation of in-situ tide gauge water levels and along track altimetry surface elevation data from selected satellites. The MIKE 3 FM data assimilation model which use the Ensemble Kalman filter have recently been parallelized with MPI allowing for much larger applications running on HPC. The success of the downscaling is to a large degree determined by the ability to realistically describe and dynamically model the errors on the open boundaries. Three different sizes of downscaling model domains in the Northern North Sea have been examined and two different strategies for modelling the uncertainties on the open Flather boundaries are investigated. The combined downscaling and local data assimilation skill is assessed and the impact on recommended domain size is compared to pure downscaling.
The Biological Deep Sea Hydrothermal Vent as a Model to Study Carbon Dioxide Capturing Enzymes
Minic, Zoran; Thongbam, Premila D.
2011-01-01
Deep sea hydrothermal vents are located along the mid-ocean ridge system, near volcanically active areas, where tectonic plates are moving away from each other. Sea water penetrates the fissures of the volcanic bed and is heated by magma. This heated sea water rises to the surface dissolving large amounts of minerals which provide a source of energy and nutrients to chemoautotrophic organisms. Although this environment is characterized by extreme conditions (high temperature, high pressure, chemical toxicity, acidic pH and absence of photosynthesis) a diversity of microorganisms and many animal species are specially adapted to this hostile environment. These organisms have developed a very efficient metabolism for the assimilation of inorganic CO2 from the external environment. In order to develop technology for the capture of carbon dioxide to reduce greenhouse gases in the atmosphere, enzymes involved in CO2 fixation and assimilation might be very useful. This review describes some current research concerning CO2 fixation and assimilation in the deep sea environment and possible biotechnological application of enzymes for carbon dioxide capture. PMID:21673885
The biological deep sea hydrothermal vent as a model to study carbon dioxide capturing enzymes.
Minic, Zoran; Thongbam, Premila D
2011-01-01
Deep sea hydrothermal vents are located along the mid-ocean ridge system, near volcanically active areas, where tectonic plates are moving away from each other. Sea water penetrates the fissures of the volcanic bed and is heated by magma. This heated sea water rises to the surface dissolving large amounts of minerals which provide a source of energy and nutrients to chemoautotrophic organisms. Although this environment is characterized by extreme conditions (high temperature, high pressure, chemical toxicity, acidic pH and absence of photosynthesis) a diversity of microorganisms and many animal species are specially adapted to this hostile environment. These organisms have developed a very efficient metabolism for the assimilation of inorganic CO₂ from the external environment. In order to develop technology for the capture of carbon dioxide to reduce greenhouse gases in the atmosphere, enzymes involved in CO₂ fixation and assimilation might be very useful. This review describes some current research concerning CO₂ fixation and assimilation in the deep sea environment and possible biotechnological application of enzymes for carbon dioxide capture.
NASA Astrophysics Data System (ADS)
Laiolo, P.; Gabellani, S.; Campo, L.; Silvestro, F.; Delogu, F.; Rudari, R.; Pulvirenti, L.; Boni, G.; Fascetti, F.; Pierdicca, N.; Crapolicchio, R.; Hasenauer, S.; Puca, S.
2016-06-01
The reliable estimation of hydrological variables in space and time is of fundamental importance in operational hydrology to improve the flood predictions and hydrological cycle description. Nowadays remotely sensed data can offer a chance to improve hydrological models especially in environments with scarce ground based data. The aim of this work is to update the state variables of a physically based, distributed and continuous hydrological model using four different satellite-derived data (three soil moisture products and a land surface temperature measurement) and one soil moisture analysis to evaluate, even with a non optimal technique, the impact on the hydrological cycle. The experiments were carried out for a small catchment, in the northern part of Italy, for the period July 2012-June 2013. The products were pre-processed according to their own characteristics and then they were assimilated into the model using a simple nudging technique. The benefits on the model predictions of discharge were tested against observations. The analysis showed a general improvement of the model discharge predictions, even with a simple assimilation technique, for all the assimilation experiments; the Nash-Sutcliffe model efficiency coefficient was increased from 0.6 (relative to the model without assimilation) to 0.7, moreover, errors on discharge were reduced up to the 10%. An added value to the model was found in the rainfall season (autumn): all the assimilation experiments reduced the errors up to the 20%. This demonstrated that discharge prediction of a distributed hydrological model, which works at fine scale resolution in a small basin, can be improved with the assimilation of coarse-scale satellite-derived data.
Sears, Katie E; Kerkhoff, Andrew J; Messerman, Arianne; Itagaki, Haruhiko
2012-01-01
Metabolism, growth, and the assimilation of energy and materials are essential processes that are intricately related and depend heavily on animal size. However, models that relate the ontogenetic scaling of energy assimilation and metabolism to growth rely on assumptions that have yet to be rigorously tested. Based on detailed daily measurements of metabolism, growth, and assimilation in tobacco hornworms, Manduca sexta, we provide a first experimental test of the core assumptions of a metabolic scaling model of ontogenetic growth. Metabolic scaling parameters changed over development, in violation of the model assumptions. At the same time, the scaling of growth rate matches that of metabolic rate, with similar scaling exponents both across and within developmental instars. Rates of assimilation were much higher than expected during the first two instars and did not match the patterns of scaling of growth and metabolism, which suggests high costs of biosynthesis early in development. The rapid increase in size and discrete instars observed in larval insect development provide an ideal system for understanding how patterns of growth and metabolism emerge from fundamental cellular processes and the exchange of materials and energy between an organism and its environment.
a Thtee-Dimensional Variational Assimilation Scheme for Satellite Aod
NASA Astrophysics Data System (ADS)
Liang, Y.; Zang, Z.; You, W.
2018-04-01
A three-dimensional variational data assimilation scheme is designed for satellite AOD based on the IMPROVE (Interagency Monitoring of Protected Visual Environments) equation. The observation operator that simulates AOD from the control variables is established by the IMPROVE equation. All of the 16 control variables in the assimilation scheme are the mass concentrations of aerosol species from the Model for Simulation Aerosol Interactions and Chemistry scheme, so as to take advantage of this scheme in providing comprehensive analyses of species concentrations and size distributions as well as be calculating efficiently. The assimilation scheme can save computational resources as the IMPROVE equation is a quadratic equation. A single-point observation experiment shows that the information from the single-point AOD is effectively spread horizontally and vertically.
NASA Astrophysics Data System (ADS)
Orlandi, A.; Ortolani, A.; Meneguzzo, F.; Levizzani, V.; Torricella, F.; Turk, F. J.
2004-03-01
In order to improve high-resolution forecasts, a specific method for assimilating rainfall rates into the Regional Atmospheric Modelling System model has been developed. It is based on the inversion of the Kuo convective parameterisation scheme. A nudging technique is applied to 'gently' increase with time the weight of the estimated precipitation in the assimilation process. A rough but manageable technique is explained to estimate the partition of convective precipitation from stratiform one, without requiring any ancillary measurement. The method is general purpose, but it is tuned for geostationary satellite rainfall estimation assimilation. Preliminary results are presented and discussed, both through totally simulated experiments and through experiments assimilating real satellite-based precipitation observations. For every case study, Rainfall data are computed with a rapid update satellite precipitation estimation algorithm based on IR and MW satellite observations. This research was carried out in the framework of the EURAINSAT project (an EC research project co-funded by the Energy, Environment and Sustainable Development Programme within the topic 'Development of generic Earth observation technologies', Contract number EVG1-2000-00030).
Biomass assimilation in coupled ecohydrodynamical model of the Mediterranean Sea
NASA Astrophysics Data System (ADS)
Crispi, G.; Bournaski, E.; Crise, A.
2003-04-01
Data assimilation has raised new interest in the last years in the context of the environmental sciences. The swift increment of the attention paid to it in oceanography is due to the coming age of operational services for the marine environment which is going to dramatically increase the demand for accurate, timely and reliable estimates of the space and time distribution both for physical and in a near future for biogeochemical fields. Data assimilation combines information derived from measurements with knowledge of the rules that govern the evolution of the system of interest through formalization and implementation in numerical models. The importance of ocean data assimilation has been recognized by several international programmes as JGOFS, GOOS and CLIVAR. This work presents an eco-hydrodynamic model of the Mediterranean Sea developed at the Istituto Nazionale di Oceanografia e di Geofisica Sperimentale - OGS, Trieste, Italy. It includes 3-D MOM-based hydrodynamics of the Mediterranean Sea, coupled with biochemical model of Nitrogen, Phytoplankton, Zooplankton, and Detritus (NPZD). Monthly mean wind forcings are adopted to force this MOM-NPZD model. For better prediction and analysis of N, P, Z and D distributions in the sea the model needs data assimilation from biomass observations on the sea surface. Chosen approach for evaluating performances of data assimilation techniques in coupled model is the definition of a twin experiment testbed where a reference run is carried out assuming its result as the truth. We define a sampling strategy to obtain different datasets to be incorporated in another ecological model in successive runs in order to appraise the potential of the data assimilation and sampling strategy. The runs carried out with different techniques and different spatio-temporal coverages are compared in order to evaluate the sensitivity to different coverage of dataset. The discussed alternative way is to assume the ecosystem at steady state and redistribute, via nudging and according with this constraint, the informations to non-observed variables.
NASA Astrophysics Data System (ADS)
Miladinovich, D.; Datta-Barua, S.; Bust, G. S.; Ramirez, U.
2017-12-01
Understanding physical processes during storm time in the ionosphere-thermosphere (IT) system is limited, in part, due to the inability to obtain accurate estimates of IT states on a global scale. One reason for this inability is the sparsity of spatially distributed high quality data sets. Data assimilation is showing promise toward enabling global estimates by blending high quality observational data sets with established climate models. We are continuing development of an algorithm called Estimating Model Parameters for Ionospheric Reverse Engineering (EMPIRE) to enable assimilation of global datasets for storm time estimates of IT drivers. EMPIRE is a data assimilation algorithm that uses a Kalman filtering routine to ingest model and observational data. The EMPIRE algorithm is based on spherical harmonics which provide a spherically symmetric, smooth, continuous, and orthonormal set of basis functions suitable for a spherical domain such as Earth's IT region (200-600 km altitude). Once the basis function coefficients are determined, the newly fitted function represents the disagreement between observational measurements and models. We apply spherical harmonics to study the March 17, 2015 storm. Data sources include Fabry-Perot interferometer neutral wind measurements and global Ionospheric Data Assimilation 4 Dimensional (IDA4D) assimilated total electron content (TEC). Models include Weimer 2000 electric potential, International Geomagnetic Reference Field (IGRF) magnetic field, and Horizontal Wind Model 2014 (HWM14) neutral winds. We present the EMPIRE assimilation results of Earth's electric potential and thermospheric winds. We also compare EMPIRE storm time E cross B ion drift estimates to measured drifts produced from the Super Dual Auroral Radar Network (SuperDARN) and Active Magnetosphere and Planetary Electrodynamics Response Experiment (AMPERE) measurement datasets. The analysis from these results will enable the generation of globally assimilated storm time IT state estimates for future studies. In particular, the ability to provide data assimilated estimation of the drivers of the IT system from high to low latitudes is a critical step toward forecasting the influence of geomagnetic storms on the near Earth space environment.
NASA Astrophysics Data System (ADS)
Giannaros, Theodore; Kotroni, Vassiliki; Lagouvardos, Kostas
2015-04-01
Lightning data assimilation has been recently attracting increasing attention as a technique implemented in numerical weather prediction (NWP) models for improving precipitation forecasts. In the frame of TALOS project, we implemented a robust lightning data assimilation technique in the Weather Research and Forecasting (WRF) model with the aim to improve the precipitation prediction in Greece. The assimilation scheme employs lightning as a proxy for the presence or absence of deep convection. In essence, flash data are ingested in WRF to control the Kain-Fritsch (KF) convective parameterization scheme (CPS). When lightning is observed, indicating the occurrence of convective activity, the CPS is forced to attempt to produce convection, whereas the CPS may be optionally be prevented from producing convection when no lightning is observed. Eight two-day precipitation events were selected for assessing the performance of the lightning data assimilation technique. The ingestion of lightning in WRF was carried out during the first 6 h of each event and the evaluation focused on the consequent 24 h, constituting a realistic setup that could be used in operational weather forecasting applications. Results show that the implemented assimilation scheme can improve model performance in terms of precipitation prediction. Forecasts employing the assimilation of flash data were found to exhibit more skill than control simulations, particularly for the intense (>20 mm) 24 h rain accumulations. Analysis of results also revealed that the option not to suppress the KF scheme in the absence of observed lightning, leads to a generally better performance compared to the experiments employing the full control of the CPS' triggering. Overall, the implementation of the lightning data assimilation technique is found to improve the model's ability to represent convection, especially in situations when past convection has modified the mesoscale environment in ways that affect the occurrence and evolution of subsequent convection.
Understanding Earthquake Fault Systems Using QuakeSim Analysis and Data Assimilation Tools
NASA Technical Reports Server (NTRS)
Donnellan, Andrea; Parker, Jay; Glasscoe, Margaret; Granat, Robert; Rundle, John; McLeod, Dennis; Al-Ghanmi, Rami; Grant, Lisa
2008-01-01
We are using the QuakeSim environment to model interacting fault systems. One goal of QuakeSim is to prepare for the large volumes of data that spaceborne missions such as DESDynI will produce. QuakeSim has the ability to ingest distributed heterogenous data in the form of InSAR, GPS, seismicity, and fault data into various earthquake modeling applications, automating the analysis when possible. Virtual California simulates interacting faults in California. We can compare output from long time history Virtual California runs with the current state of strain and the strain history in California. In addition to spaceborne data we will begin assimilating data from UAVSAR airborne flights over the San Francisco Bay Area, the Transverse Ranges, and the Salton Trough. Results of the models are important for understanding future earthquake risk and for providing decision support following earthquakes. Improved models require this sensor web of different data sources, and a modeling environment for understanding the combined data.
NASA Astrophysics Data System (ADS)
Azzone, Rogério Guitarrari; Montecinos Munoz, Patricio; Enrich, Gaston Eduardo Rojas; Alves, Adriana; Ruberti, Excelso; Gomes, Celsode Barros
2016-09-01
Crustal assimilation plus crystal fractionation processes of different basanite magma batches control the evolution of the Ponte Nova cretaceous alkaline mafic-ultramafic massif in SE Brazil. This massif is composed of several intrusions, the main ones with a cumulate character. Disequilibrium features in the early-crystallized phases (e.g., corrosion and sieve textures in cores of clinopyroxene crystals, spongy-cellular-textured plagioclase crystals, gulf corrosion texture in olivine crystals) and classical hybridization textures (e.g., blade biotite and acicular apatite crystals) provide strong evidence of open-system behavior. All samples are olivine- and nepheline-normative rocks with basic-ultrabasic and potassic characters and variable incompatible element enrichments. The wide ranges of whole-rock 87Sr/86Sri and 143Nd/144Ndi ratios (0.70432-0.70641 and 0.512216-0.512555, respectively) are indicative of crustal contribution from the Precambrian basement host rocks. Plagioclase and apatite 87Sr/86Sr ratios (0.70422-0.70927) obtained for the most primitive samples of each intrusion indicate disequilibrium conditions from early- to principal-crystallization stages. Isotope mixing-model curves between the least contaminated alkaline basic magma and heterogeneous local crustal components indicate that each intrusion of the massif is differentiated from the others by varied degrees of crustal contribution. The primary mechanisms of crustal contribution to the Ponte Nova massif involve the assimilation of host rock xenoliths during the development of the chamber environment and the assimilation of partial melts from the surrounding host rocks. Thermodynamic models using the melts algorithm indicate that parental alkaline basic magmas can be strongly affected by contamination processes subsequently to their initial stages of crystallization when there is sufficient energy to assimilate partial melts of crustal host rocks. The assimilation processes are considered to be responsible for the increse in the K2O/Na2O, Ba/Sr and Rb/Sr ratios. This enrichment was associated with the relevant role of biotite breakdown in the assimilated host rock partial melts. The petrological model for the Ponte Nova massif is explained as repeated influxes of antecryst-laden basanite magmas that deposited most of their suspended crystals on the floor of the upper-crust magma chamber. Each intrusion is representative of relatively primitive olivine- and clinopyroxene-phyric basanites that had assimilated different degrees of partial melts of heterogeneous host rocks. This study reveals the relevant role of crustal assimilation processes in the magmatic evolution of nepheline-normative rocks, especially in upper-crust chamber environments.
Assimilation of GPM GMI Rainfall Product with WRF GSI
NASA Technical Reports Server (NTRS)
Li, Xuanli; Mecikalski, John; Zavodsky, Bradley
2015-01-01
The Global Precipitation Measurement (GPM) is an international mission to provide next-generation observations of rain and snow worldwide. The GPM built on Tropical Rainfall Measuring Mission (TRMM) legacy, while the core observatory will extend the observations to higher latitudes. The GPM observations can help advance our understanding of precipitation microphysics and storm structures. Launched on February 27th, 2014, the GPM core observatory is carrying advanced instruments that can be used to quantify when, where, and how much it rains or snows around the world. Therefore, the use of GPM data in numerical modeling work is a new area and will have a broad impact in both research and operational communities. The goal of this research is to examine the methodology of assimilation of the GPM retrieved products. The data assimilation system used in this study is the community Gridpoint Statistical Interpolation (GSI) system for the Weather Research and Forecasting (WRF) model developed by the Development Testbed Center (DTC). The community GSI system runs in independently environment, yet works functionally equivalent to operational centers. With collaboration with the NASA Short-term Prediction Research and Transition (SPoRT) Center, this research explores regional assimilation of the GPM products with case studies. Our presentation will highlight our recent effort on the assimilation of the GPM product 2AGPROFGMI, the retrieved Microwave Imager (GMI) rainfall rate data for initializing a real convective storm. WRF model simulations and storm scale data assimilation experiments will be examined, emphasizing both model initialization and short-term forecast of precipitation fields and processes. In addition, discussion will be provided on the development of enhanced assimilation procedures in the GSI system with respect to other GPM products. Further details of the methodology of data assimilation, preliminary result and test on the impact of GPM data and the influence on precipitation forecast will be presented at the conference.
Impact of GPM Rainrate Data Assimilation on Simulation of Hurricane Harvey (2017)
NASA Technical Reports Server (NTRS)
Li, Xuanli; Srikishen, Jayanthi; Zavodsky, Bradley; Mecikalski, John
2018-01-01
Built upon Tropical Rainfall Measuring Mission (TRMM) legacy for next-generation global observation of rain and snow. The GPM was launched in February 2014 with Dual-frequency Precipitation Radar (DPR) and GPM Microwave Imager (GMI) onboard. The GPM has a broad global coverage approximately 70deg S -70deg N with a swath of 245/125-km for the Ka (35.5 GHz)/Ku (13.6 GHz) band radar, and 850-km for the 13-channel GMI. GPM also features better retrievals for heavy, moderate, and light rain and snowfall To develop methodology to assimilate GPM surface precipitation data with Grid-point Statistical Interpolation (GSI) data assimilation system and WRF ARW model To investigate the potential and the value of utilizing GPM observation into NWP for operational environment The GPM rain rate data has been successfully assimilated using the GSI rain data assimilation package. Impacts of rain rate data have been found in temperature and moisture fields of initial conditions. 2.Assimilation of either GPM IMERG or GPROF rain product produces significant improvement in precipitation amount and structure for Hurricane Harvey (2017) forecast. Since IMERG data is available half-hourly, further forecast improvement is expected with continuous assimilation of IMERG data
Using Data Assimilation Methods of Prediction of Solar Activity
NASA Technical Reports Server (NTRS)
Kitiashvili, Irina N.; Collins, Nancy S.
2017-01-01
The variable solar magnetic activity known as the 11-year solar cycle has the longest history of solar observations. These cycles dramatically affect conditions in the heliosphere and the Earth's space environment. Our current understanding of the physical processes that make up global solar dynamics and the dynamo that generates the magnetic fields is sketchy, resulting in unrealistic descriptions in theoretical and numerical models of the solar cycles. The absence of long-term observations of solar interior dynamics and photospheric magnetic fields hinders development of accurate dynamo models and their calibration. In such situations, mathematical data assimilation methods provide an optimal approach for combining the available observational data and their uncertainties with theoretical models in order to estimate the state of the solar dynamo and predict future cycles. In this presentation, we will discuss the implementation and performance of an Ensemble Kalman Filter data assimilation method based on the Parker migratory dynamo model, complemented by the equation of magnetic helicity conservation and long-term sunspot data series. This approach has allowed us to reproduce the general properties of solar cycles and has already demonstrated a good predictive capability for the current cycle, 24. We will discuss further development of this approach, which includes a more sophisticated dynamo model, synoptic magnetogram data, and employs the DART Data Assimilation Research Testbed.
Putting mechanisms into crop production models.
Boote, Kenneth J; Jones, James W; White, Jeffrey W; Asseng, Senthold; Lizaso, Jon I
2013-09-01
Crop growth models dynamically simulate processes of C, N and water balance on daily or hourly time-steps to predict crop growth and development and at season-end, final yield. Their ability to integrate effects of genetics, environment and crop management have led to applications ranging from understanding gene function to predicting potential impacts of climate change. The history of crop models is reviewed briefly, and their level of mechanistic detail for assimilation and respiration, ranging from hourly leaf-to-canopy assimilation to daily radiation-use efficiency is discussed. Crop models have improved steadily over the past 30-40 years, but much work remains. Improvements are needed for the prediction of transpiration response to elevated CO₂ and high temperature effects on phenology and reproductive fertility, and simulation of root growth and nutrient uptake under stressful edaphic conditions. Mechanistic improvements are needed to better connect crop growth to genetics and to soil fertility, soil waterlogging and pest damage. Because crop models integrate multiple processes and consider impacts of environment and management, they have excellent potential for linking research from genomics and allied disciplines to crop responses at the field scale, thus providing a valuable tool for deciphering genotype by environment by management effects. © 2013 John Wiley & Sons Ltd.
NASA Technical Reports Server (NTRS)
Friedel, R. H. W.; Bourdarie, S.; Fennell, J.; Kanekal, S.; Cayton, T. E.
2004-01-01
The highly energetic electron environment in the inner magnetosphere (GEO inward) has received a lot of research attention in resent years, as the dynamics of relativistic electron acceleration and transport are not yet fully understood. These electrons can cause deep dielectric charging in any space hardware in the MEO to GEO region. We use a new and novel approach to obtain a global representation of the inner magnetospheric energetic electron environment, which can reproduce the absolute environment (flux) for any spacecraft orbit in that region to within a factor of 2 for the energy range of 100 KeV to 5 MeV electrons, for any levels of magnetospheric activity. We combine the extensive set of inner magnetospheric energetic electron observations available at Los Alamos with the physics based Salammbo transport code, using the data assimilation technique of "nudging". This in effect input in-situ data into the code and allows the diffusion mechanisms in the code to interpolate the data into regions and times of no data availability. We present here details of the methods used, both in the data assimilation process and in the necessary inter-calibration of the input data used. We will present sample runs of the model/data code and compare the results to test spacecraft data not used in the data assimilation process.
NASA Astrophysics Data System (ADS)
Tu, W.; Reeves, G. D.; Cunningham, G.; Selesnick, R. S.; Li, X.; Looper, M. D.
2012-12-01
Since its launch in 1992, SAMPEX has been continuously providing measurements of radiation belt electrons at low altitude, which are not only ideal for the direct quantification of the electron precipitation loss in the radiation belt, but also provide data coverage in a critical region for global radiation belt data assimilation models. However, quantitatively combining high-altitude and low-earth-orbit (LEO) measurements on the same L-shell is challenging because LEO measurements typically contain a dynamic mixture of trapped and precipitating populations. Specifically, the electrons measured by SAMPEX can be distinguished as trapped, quasi-trapped (in the drift loss cone), and precipitating (in the bounce loss cone). To simulate the low-altitude electron distribution observed by SAMPEX/PET, a drift-diffusion model has been developed that includes the effects of azimuthal drift and pitch angle diffusion. The simulation provides direct quantification of the rates and variations of electron loss to the atmosphere, a direct input to our Dynamic Radiation Environment Assimilation Model (DREAM) as the electron loss lifetimes. The current DREAM uses data assimilation to combine a 1D radial diffusion model with observational data of radiation belt electrons. In order to implement the mixed electron measurements from SAMPEX into DREAM, we need to map the SAMPEX data from low altitude to high altitudes. To perform the mapping, we will first examine the well-known 'global coherence' of radiation belt electrons by comparing SAMPEX electron fluxes with the energetic electron data from LANL GEO and GPS spacecraft. If the correlation is good, we can directly map the SAMPEX fluxes to high altitudes based on the global coherence; if not, we will use the derived pitch angle distribution from the drift-diffusion model to map up the field and test the mapping by comparing to the high-altitude flux measurements. Then the globally mapped electron fluxes can be assimilated into DREAM. This new implementation of SAMPEX data will greatly augment the data coverage of DREAM and contribute to the global specification of the radiation belt environment.
NASA Astrophysics Data System (ADS)
Ciavatta, Stefano; Brewin, Robert; Skakala, Jozef; Sursham, David; Ford, David
2017-04-01
Shelf-seas and coastal zones provide essential goods and services to humankind, such as fisheries, aquaculture, tourism and climate regulation. The understanding and management of these regions can be enhanced by merging ocean-colour observations and marine ecosystem simulations through data assimilation, which provides (sub)optimal estimates of key biogeochemical variables. Here we present a range of applications of ocean-colour data assimilation in the North West European shelf-sea. A reanalysis application illustrates that assimilation of error-characterized chlorophyll concentrations could provide a map of the shelf sea vulnerability to oxygen deficiency, as well as estimates of the shelf sea uptake of atmospheric carbon dioxide (CO2) in the last decade. The interannual variability of CO2 uptake and its uncertainty were related significantly to interannual fluctuations of the simulated primary production. However, the reanalysis also indicates that assimilation of total chlorophyll did not improve significantly the simulation of some other variables, e.g. nutrients. We show that the assimilation of alternative products derived from ocean colour (i.e. spectral diffuse attenuation coefficient and phytoplankton size classes) can overcome this limitation. In fact, these products can constrain a larger number of model variables, which define either the underwater light field or the structure of the lower trophic levels. Therefore, the assimilation of such ocean-colour products into marine ecosystem models is an advantageous novel approach to improve the understanding and simulation of shelf-sea environments.
DARLA: Data Assimilation and Remote Sensing for Littoral Applications
NASA Astrophysics Data System (ADS)
Jessup, A.; Holman, R. A.; Chickadel, C.; Elgar, S.; Farquharson, G.; Haller, M. C.; Kurapov, A. L.; Özkan-Haller, H. T.; Raubenheimer, B.; Thomson, J. M.
2012-12-01
DARLA is 5-year collaborative project that couples state-of-the-art remote sensing and in situ measurements with advanced data assimilation (DA) modeling to (a) evaluate and improve remote sensing retrieval algorithms for environmental parameters, (b) determine the extent to which remote sensing data can be used in place of in situ data in models, and (c) infer bathymetry for littoral environments by combining remotely-sensed parameters and data assimilation models. The project uses microwave, electro-optical, and infrared techniques to characterize the littoral ocean with a focus on wave and current parameters required for DA modeling. In conjunction with the RIVET (River and Inlets) Project, extensive in situ measurements provide ground truth for both the remote sensing retrieval algorithms and the DA modeling. Our goal is to use remote sensing to constrain data assimilation models of wave and circulation dynamics in a tidal inlet and surrounding beaches. We seek to improve environmental parameter estimation via remote sensing fusion, determine the success of using remote sensing data to drive DA models, and produce a dynamically consistent representation of the wave, circulation, and bathymetry fields in complex environments. The objectives are to test the following three hypotheses: 1. Environmental parameter estimation using remote sensing techniques can be significantly improved by fusion of multiple sensor products. 2. Data assimilation models can be adequately constrained (i.e., forced or guided) with environmental parameters derived from remote sensing measurements. 3. Bathymetry on open beaches, river mouths, and at tidal inlets can be inferred from a combination of remotely-sensed parameters and data assimilation models. Our approach is to conduct a series of field experiments combining remote sensing and in situ measurements to investigate signature physics and to gather data for developing and testing DA models. A preliminary experiment conducted at the Field Research Facility at Duck, NC in September 2010 focused on assimilation of tower-based electo-optical, infrared, and radar measurements in predictions of longshore currents. Here we provide an overview of our contribution to the RIVET I experiment at New River Inlet, NC in May 2012. During the course of the 3-week measurement period, continuous tower-based remote sensing measurements were made using electro-optical, infrared, and radar techniques covering the nearshore zone and the inlet mouth. A total of 50 hours of airborne measurements were made using high-resolution infrared imagers and a customized along track interferometric synthetic aperture radar (ATI SAR). The airborne IR imagery provides kilometer-scale mapping of frontal features that evolve as the inlet flow interacts with the oceanic wave and current fields. The ATI SAR provides maps of the two-dimensional surface currents. Near-surface measurements of turbulent velocities and surface waves using SWIFT drifters, designed to measures near-surface properties relevant to remote sensing, complimented the extensive in situ measurements by RIVET investigators.
Assimilator Ensemble Post-processor (EnsPost) Hydrologic Model Output Statistics (HMOS) Ensemble Verification capabilities (see diagram below): the Ensemble Pre-processor, the Ensemble Post-processor, the Hydrologic Model (OpenDA, http://www.openda.org/joomla/index.php) to be used within the CHPS environment. Ensemble Post
Variational data assimilation problem for the Baltic Sea thermodynamics
NASA Astrophysics Data System (ADS)
Zakharova, Natalia; Agoshkov, Valery; Parmuzin, Eugene
2015-04-01
The most versatile and promising technology for solving problems of monitoring and analysis of the natural environment is a four-dimensional variational data assimilation of observation data. In such problems not only the development and justification of algorithms for numerical solution of variational data assimilation problems but the properties of the optimal solution play an important role. In this work the variational data assimilation problems in the Baltic Sea water area were formulated and studied. Numerical experiments on restoring the ocean heat flux and obtaining solution of the system (temperature, salinity, velocity, and sea surface height) in the Baltic Sea primitive equation hydrodynamics model with assimilation procedure were carried out. In the calculations we used daily sea surface temperature observation from Danish meteorological Institute, prepared on the basis of measurements of the radiometer (AVHRR, AATSR and AMSRE) and spectroradiometer (SEVIRI and MODIS). The spatial resolution of the model grid with respect to the horizontal variables amounted to 0.0625x0.03125 degree. The results of the numerical experiments are presented. This study was supported by the Russian Foundation for Basic Research (project 13-01-00753, project 14-01-31195) and project 14-11-00609 by the Russian Science Foundation. References: 1 E.I. Parmuzin, V.I. Agoshkov, Numerical solution of the variational assimilation problem for sea surface temperature in the model of the Black Sea dynamics. Russ. J. Numer. Anal. Math. Modelling (2012) 27, No.1, 69-94 2 Zakharova N.B., Agoshkov V.I., Parmuzin E.I., The new method of ARGO buoys system observation data interpolation. Russian Journal of Numerical Analysis and Mathematical Modelling. Vol. 28, Issue 1, 2013. 3 Zalesny V.B., Gusev A.V., Chernobay S.Yu., Aps R., Tamsalu R., Kujala P., Rytkönen J. The Bal-tic Sea circulation modelling and assessment of marine pollution, Russ. J. Numer. Analysis and Math. Modelling, 2014, V 29, No. 2, pp. 129-138.
Impact of the assimilation of satellite soil moisture and LST on the hydrological cycle
NASA Astrophysics Data System (ADS)
Laiolo, Paola; Gabellani, Simone; Delogu, Fabio; Silvestro, Francesco; Rudari, Roberto; Campo, Lorenzo; Boni, Giorgio
2014-05-01
The reliable estimation of hydrological variables (e.g. soil moisture, evapotranspiration, surface temperature) in space and time is of fundamental importance in operational hydrology to improve the forecast of the rainfall-runoff response of catchments and, consequently, flood predictions. Nowadays remote sensing can offer a chance to provide good space-time estimates of several hydrological variables and then improve hydrological model performances especially in environments with scarce ground based data. The aim of this work is to investigate the impacts on the performances of a distributed hydrological model (Continuum) of the assimilation of satellite-derived soil moisture products and Land Surface (LST). In this work three different soil moisture (SM) products, derived by ASCAT sensor, are used. These data are provided by the EUMETSAT's H-SAF (Satellite Application Facility on Support to Operational Hydrology and Water Management) program. The considered soil moisture products are: large scale surface soil moisture (SM OBS 1 - H07), small scale surface soil moisture (SM OBS 2 - H08) and profile index in the roots region (SM DAS 2 - H14). These data are compared with soil moisture estimated by Continuum model on the Orba catchment (800 km2), in the northern part of Italy, for the period July 2012-June 2013. Different assimilation experiments have been performed. The first experiment consists in the assimilation of the SM products by using a simple Nudging technique; the second one is the assimilation of only LST data, derived from MSG satellite, and the third is the assimilation of both SM products and LST. The benefits on the model predictions of discharge, LST and soil moisture dynamics were tested.
NASA Astrophysics Data System (ADS)
Quaife, T. L.; Davenport, I. J.; Lines, E.; Styles, J.; Lewis, P.; Gurney, R. J.
2012-12-01
Satellite observations offer a spatially and temporally synoptic data source for constraining models of land surface processes, but exploitation of these data for such purposes has been largely ad-hoc to date. In part this is because traditional land surface models, and hence most land surface data assimilation schemes, have tended to focus on a specific component of the land surface problem; typically either surface fluxes of water and energy or biogeochemical cycles such as carbon and nitrogen. Furthermore the assimilation of satellite data into such models tends to be restricted to a single wavelength domain, for example passive microwave, thermal or optical, depending on the problem at hand. The next generation of land surface schemes, such as the Joint UK Land Environment Simulator (JULES) and the US Community Land Model (CLM) represent a broader range of processes but at the expense of increasing overall model complexity and in some cases reducing the level of detail in specific processes to accommodate this. Typically, the level of physical detail used to represent the interaction of electromagnetic radiation with the surface is not sufficient to enable prediction of intrinsic satellite observations (reflectance, brightness temperature and so on) and consequently these are not assimilated directly into the models. A seemingly attractive alternative is to assimilate high-level products derived from satellite observations but these are often only superficially related to the corresponding variables in land surface models due to conflicting assumptions between the two. This poster describes the water and energy balance modeling components of a project funded by the European Space Agency to develop a data assimilation scheme for the land surface and observation operators to translate between models and the intrinsic observations acquired by satellite missions. The rationale behind the design of the underlying process model is to represent the physics of the water and energy balance in as parsimonious manner as possible, using a force-restore approach, but describing the physics of electromagnetic radiation scattering at the surface sufficiently well that it is possible to assimilate the intrinsic observations made by remote sensing instruments. In this manner the initial configuration of the resulting scheme will be able to make optimal use of available satellite observations at arbitrary wavelengths and geometries. Model complexity can then be built up from this point whilst ensuring consistency with satellite observations.
Delavari, Maryam; Sønderlund, Anders Larrabee; Mellor, David; Mohebbi, Mohammadreza; Swinburn, Boyd
2015-01-01
While migration from low- to high-income countries is typically associated with weight gain, the obesity risks of migration from middle-income countries are less certain. In addition to changes in behaviours and cultural orientation upon migration, analyses of changes in environments are needed to explain post-migration risks for obesity. The present study examines the interaction between obesity-related environmental factors and the pattern of migrant acculturation in a sample of 152 Iranian immigrants in Victoria, Australia. Weight measurements, demographics, physical activity levels and diet habits were also surveyed. The pattern of acculturation (relative integration, assimilation, separation or marginalization) was not related to body mass index, diet, or physical activity behaviours. Three relevant aspects of participants’ perception of the Australian environment (physically active environments, social pressure to be fit, unhealthy food environments) varied considerably by demographic characteristics, but only one (physically active environments) was related to a pattern of acculturation (assimilation). Overall, this research highlighted a number of key relationships between acculturation and obesity-related environments and behaviours for our study sample. Theoretical models on migration, culture and obesity need to include environmental factors. PMID:25648171
Moving horizon estimation for assimilating H-SAF remote sensing data into the HBV hydrological model
NASA Astrophysics Data System (ADS)
Montero, Rodolfo Alvarado; Schwanenberg, Dirk; Krahe, Peter; Lisniak, Dmytro; Sensoy, Aynur; Sorman, A. Arda; Akkol, Bulut
2016-06-01
Remote sensing information has been extensively developed over the past few years including spatially distributed data for hydrological applications at high resolution. The implementation of these products in operational flow forecasting systems is still an active field of research, wherein data assimilation plays a vital role on the improvement of initial conditions of streamflow forecasts. We present a novel implementation of a variational method based on Moving Horizon Estimation (MHE), in application to the conceptual rainfall-runoff model HBV, to simultaneously assimilate remotely sensed snow covered area (SCA), snow water equivalent (SWE), soil moisture (SM) and in situ measurements of streamflow data using large assimilation windows of up to one year. This innovative application of the MHE approach allows to simultaneously update precipitation, temperature, soil moisture as well as upper and lower zones water storages of the conceptual model, within the assimilation window, without an explicit formulation of error covariance matrixes and it enables a highly flexible formulation of distance metrics for the agreement of simulated and observed variables. The framework is tested in two data-dense sites in Germany and one data-sparse environment in Turkey. Results show a potential improvement of the lead time performance of streamflow forecasts by using perfect time series of state variables generated by the simulation of the conceptual rainfall-runoff model itself. The framework is also tested using new operational data products from the Satellite Application Facility on Support to Operational Hydrology and Water Management (H-SAF) of EUMETSAT. This study is the first application of H-SAF products to hydrological forecasting systems and it verifies their added value. Results from assimilating H-SAF observations lead to a slight reduction of the streamflow forecast skill in all three cases compared to the assimilation of streamflow data only. On the other hand, the forecast skill of soil moisture shows a significant improvement.
Investigation and Development of Data-Driven D-Region Model for HF Systems Impacts
NASA Technical Reports Server (NTRS)
Eccles, J. V.; Rice, D.; Sojka, J. J.; Hunsucker, R. D.
2002-01-01
Space Environment Corporation (SEC) and RP Consultants (RPC) are to develop and validate a weather-capable D region model for making High Frequency (HF) absorption predictions in support of the HF communications and radar communities. The weather-capable model will assimilate solar and earth space observations from NASA satellites. The model will account for solar-induced impacts on HF absorption, including X-rays, Solar Proton Events (SPE's), and auroral precipitation. The work plan includes: I . Optimize D-region model to quickly obtain ion and electron densities for proper HF absorption calculations. 2. Develop indices-driven modules for D-region ionization sources for low, mid, & high latitudes including X-rays, cosmic rays, auroral precipitation, & solar protons. (Note: solar spectrum & auroral modules already exist). 3. Setup low-cost monitors of existing HF beacons and add one single-frequency beacon. 4. Use PENEX HF-link database with HF monitor data to validate D-region/HF absorption model using climatological ionization drivers. 5. Develop algorithms to assimilate NASA satellite data of solar, interplanetary, and auroral observations into ionization source modules. 6. Use PENEX HF-link & HF-beacon data for skill score comparison of assimilation versus climatological D-region/HF absorption model. Only some satellites are available for the PENEX time period, thus, HF-beacon data is necessary. 7. Use HF beacon monitors to develop HF-link data assimilation algorithms for regional improvement to the D-region/HF absorption model.
Inferring the unobserved chemical state of the atmosphere: idealized data assimilation experiments
NASA Astrophysics Data System (ADS)
Knote, C. J.; Barré, J.; Eckl, M.; Hornbrook, R. S.; Wiedinmyer, C.; Emmons, L. K.; Orlando, J. J.; Tyndall, G. S.; Arellano, A. F.
2015-12-01
Chemical data assimilation in numerical models of the atmosphere is a venture into uncharted territory, into a world populated by a vast zoo of chemical compounds with strongly non-linear interactions. Commonly assimilated observations exist for only a selected few of those key gas phase compounds (CO, O3, NO2), and assimilating those in models assuming linearity begs the question of: To what extent we can infer the remainder to create a new state of the atmosphere that is chemically sound and optimal? In our work we present the first systematic investigation of sensitivities that exist between chemical compounds under varying ambient conditions in order to inform scientists on the potential pitfalls when assimilating single/few chemical compounds into complex 3D chemistry transport models. In order to do this, we developed a box-modeling tool (BOXMOX) based on the Kinetic PreProcessor (KPP, http://people.cs.vt.edu/~asandu/Software/Kpp/) in which we can conduct simulations with a suite of 'mechanisms', sets of differential equations describing atmospheric photochemistry. The box modeling approach allows us to sample a large variety of atmospheric conditions (urban, rural, biogenically dominated, biomass burning plumes) to capture the range of chemical conditions that typically exist in the atmosphere. Included in our suite are 'lumped' mechanisms typically used in regional and global chemistry transport models (MOZART, RACM, RADM2, SAPRC99, CB05, CBMZ) as well as the Master Chemical Mechanism (MCM, U. Leeds). We will use an Observing System Simulation Experiment approach with the MCM prediction as 'nature' or 'true' state, assimilating idealized synthetic observations (from MCM) into the different ‚lumped' mechanisms under various environments. Two approaches to estimate the sensitivity of the chemical system will be compared: 1) adjoint: using Jacobians computed by KPP and 2) ensemble: by perturbing emissions, temperature, photolysis rates, entrainment, etc., in order to create gain matrices to infer the unobserved part of the photochemical system.
2010-09-30
oceans from radar , aircraft and satellite data; 2) Derive an accurate mesoscale environment of convective systems through the assimilation of satellite... radar , lidar and in-situ data; 3) Evaluate the quality of the global forecast system (e.g., Navy Operational Global Atmospheric Prediction System or...from Aqua and NASA Tropical Rainfall Measuring Mission (TRMM), 2) developing mesoscale data assimilation techniques to assimilate satellite, radar
Lande, Russell
2009-07-01
Adaptation to a sudden extreme change in environment, beyond the usual range of background environmental fluctuations, is analysed using a quantitative genetic model of phenotypic plasticity. Generations are discrete, with time lag tau between a critical period for environmental influence on individual development and natural selection on adult phenotypes. The optimum phenotype, and genotypic norms of reaction, are linear functions of the environment. Reaction norm elevation and slope (plasticity) vary among genotypes. Initially, in the average background environment, the character is canalized with minimum genetic and phenotypic variance, and no correlation between reaction norm elevation and slope. The optimal plasticity is proportional to the predictability of environmental fluctuations over time lag tau. During the first generation in the new environment the mean fitness suddenly drops and the mean phenotype jumps towards the new optimum phenotype by plasticity. Subsequent adaptation occurs in two phases. Rapid evolution of increased plasticity allows the mean phenotype to closely approach the new optimum. The new phenotype then undergoes slow genetic assimilation, with reduction in plasticity compensated by genetic evolution of reaction norm elevation in the original environment.
Transfer of Real-time Dynamic Radiation Environment Assimilation Model; Research to Operation
NASA Astrophysics Data System (ADS)
Cho, K. S. F.; Hwang, J.; Shin, D. K.; Kim, G. J.; Morley, S.; Henderson, M. G.; Friedel, R. H.; Reeves, G. D.
2015-12-01
Real-time Dynamic Radiation Environment Assimilation Model (rtDREAM) was developed by LANL for nowcast of energetic electrons' flux at the radiation belt to quantify potential risks from radiation damage at the satellites. Assimilated data are from multiple sources including LANL assets (GEO, GPS). For transfer from research to operation of the rtDREAM code, LANL/KSWC/NOAA makes a Memorandum Of Understanding (MOU) on the collaboration between three parts. By this MOU, KWSC/RRA provides all the support for transitioning the research version of DREAM to operations. KASI is primarily responsible for providing all the interfaces between the current scientific output formats of the code and useful space weather products that can be used and accessed through the web. In the second phase, KASI will be responsible in performing the work needed to transform the Van Allen Probes beacon data into "DREAM ready" inputs. KASI will also provide the "operational" code framework and additional data preparation, model output, display and web page codes back to LANL and SWPC. KASI is already a NASA partnering ground station for the Van Allen Probes' space weather beacon data and can here show use and utility of these data for comparison between rtDREAM and observations by web. NOAA has offered to take on some of the data processing tasks specific to the GOES data.
ERIC Educational Resources Information Center
Grimes, Michael K.
The panel presentation traces the development of and describes the operation of a Brentwood (California) project to prepare approximately 75 severely disabled individuals, ages 12-22, to function in the least restrictive recreation/leisure, vocational, and general community environments. Transition Steering Committee developed such project…
NASA Astrophysics Data System (ADS)
Aalstad, Kristoffer; Westermann, Sebastian; Vikhamar Schuler, Thomas; Boike, Julia; Bertino, Laurent
2018-01-01
With its high albedo, low thermal conductivity and large water storing capacity, snow strongly modulates the surface energy and water balance, which makes it a critical factor in mid- to high-latitude and mountain environments. However, estimating the snow water equivalent (SWE) is challenging in remote-sensing applications already at medium spatial resolutions of 1 km. We present an ensemble-based data assimilation framework that estimates the peak subgrid SWE distribution (SSD) at the 1 km scale by assimilating fractional snow-covered area (fSCA) satellite retrievals in a simple snow model forced by downscaled reanalysis data. The basic idea is to relate the timing of the snow cover depletion (accessible from satellite products) to the peak SSD. Peak subgrid SWE is assumed to be lognormally distributed, which can be translated to a modeled time series of fSCA through the snow model. Assimilation of satellite-derived fSCA facilitates the estimation of the peak SSD, while taking into account uncertainties in both the model and the assimilated data sets. As an extension to previous studies, our method makes use of the novel (to snow data assimilation) ensemble smoother with multiple data assimilation (ES-MDA) scheme combined with analytical Gaussian anamorphosis to assimilate time series of Moderate Resolution Imaging Spectroradiometer (MODIS) and Sentinel-2 fSCA retrievals. The scheme is applied to Arctic sites near Ny-Ålesund (79° N, Svalbard, Norway) where field measurements of fSCA and SWE distributions are available. The method is able to successfully recover accurate estimates of peak SSD on most of the occasions considered. Through the ES-MDA assimilation, the root-mean-square error (RMSE) for the fSCA, peak mean SWE and peak subgrid coefficient of variation is improved by around 75, 60 and 20 %, respectively, when compared to the prior, yielding RMSEs of 0.01, 0.09 m water equivalent (w.e.) and 0.13, respectively. The ES-MDA either outperforms or at least nearly matches the performance of other ensemble-based batch smoother schemes with regards to various evaluation metrics. Given the modularity of the method, it could prove valuable for a range of satellite-era hydrometeorological reanalyses.
NASA Astrophysics Data System (ADS)
Altenau, E. H.; Pavelsky, T.; Andreadis, K.; Bates, P. D.; Neal, J. C.
2017-12-01
Multichannel rivers continue to be challenging features to quantify, especially at regional and global scales, which is problematic because accurate representations of such environments are needed to properly monitor the earth's water cycle as it adjusts to climate change. It has been demonstrated that higher-complexity, 2D models outperform lower-complexity, 1D models in simulating multichannel river hydraulics at regional scales due to the inclusion of the channel network's connectivity. However, new remote sensing measurements from the future Surface Water and Ocean Topography (SWOT) mission and it's airborne analog AirSWOT offer new observations that can be used to try and improve the lower-complexity, 1D models to achieve accuracies closer to the higher-complexity, 2D codes. Here, we use an Ensemble Kalman Filter (EnKF) to assimilate AirSWOT water surface elevation (WSE) measurements from a 2015 field campaign into a 1D hydrodynamic model along a 90 km reach of Tanana River, AK. This work is the first to test data assimilation methods using real SWOT-like data from AirSWOT. Additionally, synthetic SWOT observations of WSE are generated across the same study site using a fine-resolution 2D model and assimilated into the coarser-resolution 1D model. Lastly, we compare the abilities of AirSWOT and the synthetic-SWOT observations to improve spatial and temporal model outputs in WSEs. Results indicate 1D model outputs of spatially distributed WSEs improve as observational coverage increases, and improvements in temporal fluctuations in WSEs depend on the number of observations. Furthermore, results reveal that assimilation of AirSWOT observations produce greater error reductions in 1D model outputs compared to synthetic SWOT observations due to lower measurement errors. Both AirSWOT and the synthetic SWOT observations significantly lower spatial and temporal errors in 1D model outputs of WSEs.
Estimating the Tropospheric Ozone Distribution by the Assimilation of Satellite Data
NASA Technical Reports Server (NTRS)
Hayashi, Hiroo; Stajner, Ivanka; Winslow, Nathan; Jones, Dylan B. A.; Pawson, Steven; Thompson, Anne M.
2003-01-01
Tropospheric ozone is important to the environment, because it acts as a strong oxidant to control the concentrations of many reduced gases (methane, carbon monoxide, ... ), its radiative forcing plays a significant role in the greenhouse effect, and direct contact with ozone is harmful to human health. Tropospheric ozone, whose main sources are intrusion from the stratosphere and chemical production from source gases associated with urban pollution or biomass burning, varies on a wide range of spatial and temporal scales. Its transport and chemistry can be influenced by weather, seasonal, or multiannual variability. Despite the importance of tropospheric ozone, it contributes only about 10% of the total ozone loading in the atmosphere. Consequently, satellite instruments lose sensitivity below the stratospheric ozone peak, and provide little information about middle and lower tropospheric ozone. This talk will discuss recent modifications made to the satellite ozone data assimilation system at NASA's Data Assimilation Office (DAO) in order to provide better tropospheric ozone columns and profiles. We use a version of the system that assimilates only the data from the Solar Backscatter UltraViolet/2 (SBUV/2) instrument. The quality of the assimilated ozone in the tropical troposphere is evaluated by comparison with independent observations obtained from the Southern Hemispheric Additional Ozonesondes (SHADOZ) network. It is shown that the quality of ozone fields is sensitive to the winds used in the transport model. Increasing the vertical resolution of the model also has a beneficial impact. The assimilated ozone in the lower troposphere was substantially improved by inclusion of tropospheric ozone production, loss, and dry deposition rates from the Harvard GEOS-CHEM model. The mechanisms behind these results will be examined and the implications for our understanding of tropospheric ozone will be discussed.
Land Surface Verification Toolkit (LVT) - A Generalized Framework for Land Surface Model Evaluation
NASA Technical Reports Server (NTRS)
Kumar, Sujay V.; Peters-Lidard, Christa D.; Santanello, Joseph; Harrison, Ken; Liu, Yuqiong; Shaw, Michael
2011-01-01
Model evaluation and verification are key in improving the usage and applicability of simulation models for real-world applications. In this article, the development and capabilities of a formal system for land surface model evaluation called the Land surface Verification Toolkit (LVT) is described. LVT is designed to provide an integrated environment for systematic land model evaluation and facilitates a range of verification approaches and analysis capabilities. LVT operates across multiple temporal and spatial scales and employs a large suite of in-situ, remotely sensed and other model and reanalysis datasets in their native formats. In addition to the traditional accuracy-based measures, LVT also includes uncertainty and ensemble diagnostics, information theory measures, spatial similarity metrics and scale decomposition techniques that provide novel ways for performing diagnostic model evaluations. Though LVT was originally designed to support the land surface modeling and data assimilation framework known as the Land Information System (LIS), it also supports hydrological data products from other, non-LIS environments. In addition, the analysis of diagnostics from various computational subsystems of LIS including data assimilation, optimization and uncertainty estimation are supported within LVT. Together, LIS and LVT provide a robust end-to-end environment for enabling the concepts of model data fusion for hydrological applications. The evolving capabilities of LVT framework are expected to facilitate rapid model evaluation efforts and aid the definition and refinement of formal evaluation procedures for the land surface modeling community.
Assimilation of Dual-Polarimetric Radar Observations with WRF GSI
NASA Technical Reports Server (NTRS)
Li, Xuanli; Mecikalski, John; Fehnel, Traci; Zavodsky, Bradley; Srikishen, Jayanthi
2014-01-01
Dual-polarimetric (dual-pol) radar typically transmits both horizontally and vertically polarized radio wave pulses. From the two different reflected power returns, more accurate estimate of liquid and solid cloud and precipitation can be provided. The upgrade of the traditional NWS WSR-88D radar to include dual-pol capabilities will soon be completed for the entire NEXRAD network. Therefore, the use of dual-pol radar network will have a broad impact in both research and operational communities. The assimilation of dual-pol radar data is especially challenging as few guidelines have been provided by previous research. It is our goal to examine how to best use dual-pol radar data to improve forecast of severe storm and forecast initialization. In recent years, the Development Testbed Center (DTC) has released the community Gridpoint Statistical Interpolation (GSI) DA system for the Weather Research and Forecasting (WRF) model. The community GSI system runs in independently environment, yet works functionally equivalent to operational centers. With collaboration with the NASA Short-term Prediction Research and Transition (SPoRT) Center, this study explores regional assimilation of the dual-pol radar variables from the WSR-88D radars for real case storms. Our presentation will highlight our recent effort on incorporating the horizontal reflectivity (ZH), differential reflectivity (ZDR), specific differential phase (KDP), and radial velocity (VR) data for initializing convective storms, with a significant focus being on an improved representation of hydrometeor fields. In addition, discussion will be provided on the development of enhanced assimilation procedures in the GSI system with respect to dual-pol variables. Beyond the dual-pol variable assimilation procedure developing within a GSI framework, highresolution (=1 km) WRF model simulations and storm scale data assimilation experiments will be examined, emphasizing both model initialization and short-term forecast of precipitation fields and processes. Further details of the methodology of data assimilation, the impact of different dual-pol variables, the influence on precipitation forecast will be presented at the conference.
NASA Astrophysics Data System (ADS)
Gustafsson, David; Pimentel, Rafael; Fabry, Pierre; Bercher, Nicolas; Roca, Mónica; Garcia-Mondejar, Albert; Fernandes, Joana; Lázaro, Clara; Ambrózio, Américo; Restano, Marco; Benveniste, Jérôme
2017-04-01
This communication is about the Sentinel-3 Hydrologic Altimetry Processor prototypE (SHAPE) project, with a focus on the components dealing with assimilation of satellite altimetry data into hydrological models. The SHAPE research and development project started in September 2015, within the Scientific Exploitation of Operational Missions (SEOM) programme of the European Space Agency. The objectives of the project are to further develop and assess recent improvement in altimetry data, processing algorithms and methods for assimilation in hydrological models, with the overarching goal to support improved scientific use of altimetry data and improved inland water information. The objective is also to take scientific steps towards a future Inland Water dedicated processor on the Sentinel-3 ground segment. The study focuses on three main variables of interest in hydrology: river stage, river discharge and lake level. The improved altimetry data from the project is used to estimate river stage, river discharge and lake level information in a data assimilation framework using the hydrological dynamic and semi-distributed model HYPE (Hydrological Predictions for the Environment). This model has been developed by SMHI and includes data assimilation module based on the Ensemble Kalman filter method. The method will be developed and assessed for a number of case studies with available in situ reference data and satellite altimetry data based on mainly the CryoSat-2 mission on which the new processor will be run; Results will be presented from case studies on the Amazon and Danube rivers and Lake Vänern (Sweden). The production of alti-hydro products (water level time series) are improved thanks to the use of water masks. This eases the geo-selection of the CryoSat-2 altimetric measurements since there are acquired from a geodetic orbit and are thus spread along the river course in space and and time. The specific processing of data from this geodetic orbit space-time pattern will be discussed as well as the subsequent possible strategies for data assimilation into models (and eventually highlight a generalized approach toward multi-mission data processing). Notably, in case of data assimilation along the course of rivers, the river slope might be estimated and compensated for, in order to produce local water level "pseudo time series" at arbitrary locations, and specifically at model's inlets.
NASA Astrophysics Data System (ADS)
Hacker, Joshua; Vandenberghe, Francois; Jung, Byoung-Jo; Snyder, Chris
2017-04-01
Effective assimilation of cloud-affected radiance observations from space-borne imagers, with the aim of improving cloud analysis and forecasting, has proven to be difficult. Large observation biases, nonlinear observation operators, and non-Gaussian innovation statistics present many challenges. Ensemble-variational data assimilation (EnVar) systems offer the benefits of flow-dependent background error statistics from an ensemble, and the ability of variational minimization to handle nonlinearity. The specific benefits of ensemble statistics, relative to static background errors more commonly used in variational systems, have not been quantified for the problem of assimilating cloudy radiances. A simple experiment framework is constructed with a regional NWP model and operational variational data assimilation system, to provide the basis understanding the importance of ensemble statistics in cloudy radiance assimilation. Restricting the observations to those corresponding to clouds in the background forecast leads to innovations that are more Gaussian. The number of large innovations is reduced compared to the more general case of all observations, but not eliminated. The Huber norm is investigated to handle the fat tails of the distributions, and allow more observations to be assimilated without the need for strict background checks that eliminate them. Comparing assimilation using only ensemble background error statistics with assimilation using only static background error statistics elucidates the importance of the ensemble statistics. Although the cost functions in both experiments converge to similar values after sufficient outer-loop iterations, the resulting cloud water, ice, and snow content are greater in the ensemble-based analysis. The subsequent forecasts from the ensemble-based analysis also retain more condensed water species, indicating that the local environment is more supportive of clouds. In this presentation we provide details that explain the apparent benefit from using ensembles for cloudy radiance assimilation in an EnVar context.
ERIC Educational Resources Information Center
Ianneo, Brittany
2014-01-01
Accommodation~assimilation relations were theorized by Kelso and Engstrom (2006) as independent and dependent complementary pairs. This study defined relationships between organisms that experienced complementary interactions of accommodation~assimilation in diverse ecologies designed with universal design for learning environments (UDLE) compared…
The potential role of genetic assimilation during maize domestication
Pedersen, Sarah; Holst, Irene; Hufford, Matthew B.; Winter, Klaus; Piperno, Dolores; Ross-Ibarra, Jeffrey
2017-01-01
Domestication research has largely focused on identification of morphological and genetic differences between extant populations of crops and their wild relatives. Little attention has been paid to the potential effects of environment despite substantial known changes in climate from the time of domestication to modern day. In recent research, the exposure of teosinte (i.e., wild maize) to environments similar to the time of domestication, resulted in a plastic induction of domesticated phenotypes in teosinte. These results suggest that early agriculturalists may have selected for genetic mechanisms that cemented domestication phenotypes initially induced by a plastic response of teosinte to environment, a process known as genetic assimilation. To better understand this phenomenon and the potential role of environment in maize domestication, we examined differential gene expression in maize (Zea mays ssp. mays) and teosinte (Zea mays ssp. parviglumis) between past and present conditions. We identified a gene set of over 2000 loci showing a change in expression across environmental conditions in teosinte and invariance in maize. In fact, overall we observed both greater plasticity in gene expression and more substantial changes in co-expressionnal networks in teosinte across environments when compared to maize. While these results suggest genetic assimilation played at least some role in domestication, genes showing expression patterns consistent with assimilation are not significantly enriched for previously identified domestication candidates, indicating assimilation did not have a genome-wide effect. PMID:28886108
Zhang, Peng; Chen, Xiaoling; Lu, Jianzhong; Zhang, Wei
2015-12-01
Numerical models are important tools that are used in studies of sediment dynamics in inland and coastal waters, and these models can now benefit from the use of integrated remote sensing observations. This study explores a scheme for assimilating remotely sensed suspended sediment (from charge-coupled device (CCD) images obtained from the Huanjing (HJ) satellite) into a two-dimensional sediment transport model of Poyang Lake, the largest freshwater lake in China. Optimal interpolation is used as the assimilation method, and model predictions are obtained by combining four remote sensing images. The parameters for optimal interpolation are determined through a series of assimilation experiments evaluating the sediment predictions based on field measurements. The model with assimilation of remotely sensed sediment reduces the root-mean-square error of the predicted sediment concentrations by 39.4% relative to the model without assimilation, demonstrating the effectiveness of the assimilation scheme. The spatial effect of assimilation is explored by comparing model predictions with remotely sensed sediment, revealing that the model with assimilation generates reasonable spatial distribution patterns of suspended sediment. The temporal effect of assimilation on the model's predictive capabilities varies spatially, with an average temporal effect of approximately 10.8 days. The current velocities which dominate the rate and direction of sediment transport most likely result in spatial differences in the temporal effect of assimilation on model predictions.
Factors Affecting Adoption of Facebook: An Exploratory Study of the LIS Community Perspective
ERIC Educational Resources Information Center
Aharony, Noa
2014-01-01
This study seeks to investigate whether information professionals, as well as LIS students, are ready to assimilate Facebook in their work and educational environments. The study uses the Technology Acceptance Model (TAM) as well as some characteristics of the "Big Five" model of personality as a theoretical base from which to predict…
Chao, Lin; Rang, Camilla Ulla; Proenca, Audrey Menegaz; Chao, Jasper Ubirajara
2016-01-01
Non-genetic phenotypic variation is common in biological organisms. The variation is potentially beneficial if the environment is changing. If the benefit is large, selection can favor the evolution of genetic assimilation, the process by which the expression of a trait is transferred from environmental to genetic control. Genetic assimilation is an important evolutionary transition, but it is poorly understood because the fitness costs and benefits of variation are often unknown. Here we show that the partitioning of damage by a mother bacterium to its two daughters can evolve through genetic assimilation. Bacterial phenotypes are also highly variable. Because gene-regulating elements can have low copy numbers, the variation is attributed to stochastic sampling. Extant Escherichia coli partition asymmetrically and deterministically more damage to the old daughter, the one receiving the mother’s old pole. By modeling in silico damage partitioning in a population, we show that deterministic asymmetry is advantageous because it increases fitness variance and hence the efficiency of natural selection. However, we find that symmetrical but stochastic partitioning can be similarly beneficial. To examine why bacteria evolved deterministic asymmetry, we modeled the effect of damage anchored to the mother’s old pole. While anchored damage strengthens selection for asymmetry by creating additional fitness variance, it has the opposite effect on symmetry. The difference results because anchored damage reinforces the polarization of partitioning in asymmetric bacteria. In symmetric bacteria, it dilutes the polarization. Thus, stochasticity alone may have protected early bacteria from damage, but deterministic asymmetry has evolved to be equally important in extant bacteria. We estimate that 47% of damage partitioning is deterministic in E. coli. We suggest that the evolution of deterministic asymmetry from stochasticity offers an example of Waddington’s genetic assimilation. Our model is able to quantify the evolution of the assimilation because it characterizes the fitness consequences of variation. PMID:26761487
Chao, Lin; Rang, Camilla Ulla; Proenca, Audrey Menegaz; Chao, Jasper Ubirajara
2016-01-01
Non-genetic phenotypic variation is common in biological organisms. The variation is potentially beneficial if the environment is changing. If the benefit is large, selection can favor the evolution of genetic assimilation, the process by which the expression of a trait is transferred from environmental to genetic control. Genetic assimilation is an important evolutionary transition, but it is poorly understood because the fitness costs and benefits of variation are often unknown. Here we show that the partitioning of damage by a mother bacterium to its two daughters can evolve through genetic assimilation. Bacterial phenotypes are also highly variable. Because gene-regulating elements can have low copy numbers, the variation is attributed to stochastic sampling. Extant Escherichia coli partition asymmetrically and deterministically more damage to the old daughter, the one receiving the mother's old pole. By modeling in silico damage partitioning in a population, we show that deterministic asymmetry is advantageous because it increases fitness variance and hence the efficiency of natural selection. However, we find that symmetrical but stochastic partitioning can be similarly beneficial. To examine why bacteria evolved deterministic asymmetry, we modeled the effect of damage anchored to the mother's old pole. While anchored damage strengthens selection for asymmetry by creating additional fitness variance, it has the opposite effect on symmetry. The difference results because anchored damage reinforces the polarization of partitioning in asymmetric bacteria. In symmetric bacteria, it dilutes the polarization. Thus, stochasticity alone may have protected early bacteria from damage, but deterministic asymmetry has evolved to be equally important in extant bacteria. We estimate that 47% of damage partitioning is deterministic in E. coli. We suggest that the evolution of deterministic asymmetry from stochasticity offers an example of Waddington's genetic assimilation. Our model is able to quantify the evolution of the assimilation because it characterizes the fitness consequences of variation.
Assimilation of satellite color observations in a coupled ocean GCM-ecosystem model
NASA Technical Reports Server (NTRS)
Sarmiento, Jorge L.
1992-01-01
Monthly average coastal zone color scanner (CZCS) estimates of chlorophyll concentration were assimilated into an ocean global circulation model(GCM) containing a simple model of the pelagic ecosystem. The assimilation was performed in the simplest possible manner, to allow the assessment of whether there were major problems with the ecosystem model or with the assimilation procedure. The current ecosystem model performed well in some regions, but failed in others to assimilate chlorophyll estimates without disrupting important ecosystem properties. This experiment gave insight into those properties of the ecosystem model that must be changed to allow data assimilation to be generally successful, while raising other important issues about the assimilation procedure.
Assimilating to Hierarchical Culture: A Grounded Theory Study on Communication among Clinical Nurses
2016-01-01
The purpose of this study was to generate a substantive model that accounts for the explanatory social processes of communication in which nurses were engaged in clinical settings in Korea. Grounded theory methodology was used in this study. A total of 15 clinical nurses participated in the in-depth interviews. “Assimilating to the hierarchical culture” emerged as the basic social process of communication in which the participants engaged in their work environments. To adapt to the cultures of their assigned wards, the nurses learned to be silent and engaged in their assimilation into the established hierarchy. The process of assimilation consisted of three phases based on the major goals that nurses worked to achieve: getting to know about unspoken rules, persevering within the culture, and acting as senior nurse. Seven strategies and actions utilized to achieve the major tasks emerged as subcategories, including receiving strong disapproval, learning by observing, going silent, finding out what is acceptable, minimizing distress, taking advantages as senior nurse, and taking responsibilities as senior nurse. The findings identified how the pattern of communication in nursing organizations affected the way in which nurses were assimilated into organizational culture, from individual nurses’ perspectives. In order to improve the rigid working atmosphere and culture in nursing organizations and increase members’ satisfaction with work and quality of life, managers and staff nurses need training that focuses on effective communication and encouraging peer opinion-sharing within horizontal relationships. Moreover, organization-level support should be provided to create an environment that encourages free expression. PMID:27253389
Kim, MinYoung; Oh, Seieun
2016-01-01
The purpose of this study was to generate a substantive model that accounts for the explanatory social processes of communication in which nurses were engaged in clinical settings in Korea. Grounded theory methodology was used in this study. A total of 15 clinical nurses participated in the in-depth interviews. "Assimilating to the hierarchical culture" emerged as the basic social process of communication in which the participants engaged in their work environments. To adapt to the cultures of their assigned wards, the nurses learned to be silent and engaged in their assimilation into the established hierarchy. The process of assimilation consisted of three phases based on the major goals that nurses worked to achieve: getting to know about unspoken rules, persevering within the culture, and acting as senior nurse. Seven strategies and actions utilized to achieve the major tasks emerged as subcategories, including receiving strong disapproval, learning by observing, going silent, finding out what is acceptable, minimizing distress, taking advantages as senior nurse, and taking responsibilities as senior nurse. The findings identified how the pattern of communication in nursing organizations affected the way in which nurses were assimilated into organizational culture, from individual nurses' perspectives. In order to improve the rigid working atmosphere and culture in nursing organizations and increase members' satisfaction with work and quality of life, managers and staff nurses need training that focuses on effective communication and encouraging peer opinion-sharing within horizontal relationships. Moreover, organization-level support should be provided to create an environment that encourages free expression.
Assimilation approach to measuring organizational change from pre- to post-intervention
Moore, Scott C; Osatuke, Katerine; Howe, Steven R
2014-01-01
AIM: To present a conceptual and measurement strategy that allows to objectively, sensitively evaluate intervention progress based on data of participants’ perceptions of presenting problems. METHODS: We used as an example an organization development intervention at a United States Veterans Affairs medical center. Within a year, the intervention addressed the hospital’s initially serious problems and multiple stakeholders (employees, management, union representatives) reported satisfaction with progress made. Traditional quantitative outcome measures, however, failed to capture the strong positive impact consistently reported by several types of stakeholders in qualitative interviews. To address the paradox, full interview data describing the medical center pre- and post- intervention were examined applying a validated theoretical framework from another discipline: Psychotherapy research. The Assimilation model is a clinical-developmental theory that describes empirically grounded change levels in problematic experiences, e.g., problems reported by participants. The model, measure Assimilation of Problematic Experiences Scale (APES), and rating procedure have been previously applied across various populations and problem types, mainly in clinical but also in non-clinical settings. We applied the APES to the transcribed qualitative data of intervention participants’ interviews, using the method closely replicating prior assimilation research (the process whereby trained clinicians familiar with the Assimilation model work with full, transcribed interview data to assign the APES ratings). The APES ratings summarized levels of progress which was defined as participants’ assimilation level of problematic experiences, and compared from pre- to post-intervention. RESULTS: The results were consistent with participants’ own reported perceptions of the intervention impact. Increase in APES levels from pre- to post-intervention suggested improvement, missed in the previous quantitative measures (the Maslach Burnout Inventory and the Work Environment Scale). The progress specifically consisted of participants’ moving from the APES stages where the problematic experience was avoided, to the APES stages where awareness and attention to the problems were steadily sustained, although the problems were not yet fully processed or resolved. These results explain why the conventional outcome measures failed to reflect the intervention progress; they narrowly defined progress as resolution of the presenting problems and alleviation of symptomatic distress. In the Assimilation model, this definition only applies to a sub-segment of the change continuum, specifically the latest APES stages. The model defines progress as change in psychological processes used in response to the problem, i.e., a growing ability to deal with problematic issues non-defensively, manifested differently depending on APES stages. At early stages, progress is an increased ability to face the problem rather than turning away. At later APES stages, progress involves naming, understanding and successfully addressing the problem. The assimilation approach provides a broader developmental context compared to exclusively symptom, problem-, or behavior- focused approaches that typically inform outcome measurement in interpersonally based interventions. In our data, this made the difference between reflecting (APES) vs missing (Maslach Burnout Inventory, Work Environment Scale) the pre-post change that was strongly perceived by the intervention recipients. CONCLUSION: The results illustrated a working solution to the challenge of objectively evaluating progress in subjectively experienced problems. This approach informs measuring change in psychologically based interventions. PMID:24660141
Assimilation of SeaWiFS Ocean Chlorophyll Data into a Three-Dimensional Global Ocean Model
NASA Technical Reports Server (NTRS)
Gregg, Watson W.
2005-01-01
Assimilation of satellite ocean color data is a relatively new phenomenon in ocean sciences. However, with routine observations from the Sea-viewing Wide Field-of-view Sensor (SeaWiFS), launched in late 1997, and now with new data from the Moderate Resolution Imaging Spectroradometer (MODIS) Aqua, there is increasing interest in ocean color data assimilation. Here SeaWiFS chlorophyll data were assimilated with an established thre-dimentional global ocean model. The assimilation improved estimates of hlorophyll and primary production relative to a free-run (no assimilation) model. This represents the first attempt at ocean color data assimilation using NASA satellites in a global model. The results suggest the potential of assimilation of satellite ocean chlorophyll data for improving models.
NASA Astrophysics Data System (ADS)
Wu, Ting-Chi
This dissertation research explores the influence of assimilating satellite-derived observations on mesoscale numerical analyses and forecasts of tropical cyclones (TC). The ultimate goal is to provide more accurate mesoscale analyses of TC and its surrounding environment for superior TC track and intensity forecasts. High spatial and temporal resolution satellite-derived observations are prepared for two TC cases, Typhoon Sinlaku and Hurricane Ike (both 2008). The Advanced Research version of the Weather and Research Forecasting Model (ARW-WRF) is employed and data is assimilated using the Ensemble Adjustment Kalman Filter (EAKF) implemented in the Data Assimilation Research Testbed. In the first part of this research, the influence of assimilating enhanced atmospheric motion vectors (AMVs) derived from geostationary satellites is examined by comparing three parallel WRF/EnKF experiments. The control experiment assimilates the same AMV dataset assimilated in NCEP operational analysis along with conventional observations from radiosondes, aircraft, and advisory TC position data. During Sinlaku and Ike, the Cooperative Institute for Meteorological Satellite Studies (CIMSS) generates hourly AMVs along with Rapid-Scan (RS) AMVs when the satellite RS mode is activated. With an order of magnitude more AMV data assimilated, the assimilation of hourly CIMSS AMV dataset exhibit superior initial TC position, intensity and structure estimates to the control analyses and the subsequent short-range forecasts. When RS AMVs are processed and assimilated, the addition of RS AMVs offers additional modification to the TC and its environment and leads to Sinlaku's recurvature toward Japan, albeit prematurely. The results demonstrate the promise of assimilating enhanced AMV data into regional TC models. The second part of this research continues the work in the first part and further explores the influence of assimilating enhanced AMV datasets by conducting parallel data-denial WRF/EnKF experiments that assimilate AMVs subsetted horizontally by their distances to the TC center (interior and exterior) and vertically by their assigned heights (upper, middle, and lower layers). For both Sinlaku and Ike, it is found: 1) interior AMVs are important for accurate TC intensity, 2) excluding upper-layer AMVs generally results in larger track errors and ensemble spread, 3) exclusion of interior AMVs has the largest impact on the forecast of TC size than exclusively removing AMVs in particular tropospheric layers, 4) the largest ensemble spreads are found in track, intensity, and size forecasts when interior and upper-layer AMVs are not included, 5) withholding the middle-layer AMVs can improve the track forecasts. Findings from this study could influence future scenarios that involve the targeted acquisition and assimilation of high-density AMV observations in TC events. The last part of the research focuses on the assimilation of hyperspectral temperature and moisture soundings and microwave based vertically-integrated total precipitable water (TPW) products derived from polar-orbiting satellites. A comparison is made between the assimilation of soundings retrieved from the combined use of Advanced Microwave Scanning Radiometer and Atmospheric Infrared Sounder (AMSU-AIRS) and sounding products provided by CIMSS (CIMSS-AIRS). AMSU-AIRS soundings provide broad spatial coverage albeit coarse resolution, whilst CIMSS-AIRS is geared towards mesoscale applications and thus provide higher spatial resolution but restricted coverage due to the use of radiance in clear sky. The assimilation of bias-corrected CIMSS-AIRS soundings provides slightly more accurate TC structure than the control case. The assimilation of AMSU-AIRS improves the track forecasts but produces weaker and smaller storm. Preliminary results of assimilating TPW product derived from the Advanced Microwave Scanning Radiometer-EOS indicate improved TC structure over the control case. However, the short-range forecasts exhibit the largest TC track errors. In all, this study demonstrates the influence of assimilating high-resolution satellite data on mesoscale analyses and forecasts of TC track and structure. The results suggest the inclusion and assimilation of observations with high temporal resolution, broad spatial coverage, and greater proximity to TCs does indeed improve TC track and structure forecasts. Such findings are beneficial for future decisions on data collecting and retrievals that are essential for TC forecasts.
Lognormal Kalman filter for assimilating phase space density data in the radiation belts
NASA Astrophysics Data System (ADS)
Kondrashov, D.; Ghil, M.; Shprits, Y.
2011-11-01
Data assimilation combines a physical model with sparse observations and has become an increasingly important tool for scientists and engineers in the design, operation, and use of satellites and other high-technology systems in the near-Earth space environment. Of particular importance is predicting fluxes of high-energy particles in the Van Allen radiation belts, since these fluxes can damage spaceborne platforms and instruments during strong geomagnetic storms. In transiting from a research setting to operational prediction of these fluxes, improved data assimilation is of the essence. The present study is motivated by the fact that phase space densities (PSDs) of high-energy electrons in the outer radiation belt—both simulated and observed—are subject to spatiotemporal variations that span several orders of magnitude. Standard data assimilation methods that are based on least squares minimization of normally distributed errors may not be adequate for handling the range of these variations. We propose herein a modification of Kalman filtering that uses a log-transformed, one-dimensional radial diffusion model for the PSDs and includes parameterized losses. The proposed methodology is first verified on model-simulated, synthetic data and then applied to actual satellite measurements. When the model errors are sufficiently smaller then observational errors, our methodology can significantly improve analysis and prediction skill for the PSDs compared to those of the standard Kalman filter formulation. This improvement is documented by monitoring the variance of the innovation sequence.
NASA Astrophysics Data System (ADS)
Smerkol, Peter; Cedilnik, Jure; Fettich, Anja; Licer, Matjaz; Strajnar, Benedikt; Jerman, Jure
2017-04-01
A two-way coupled ocean and atmosphere modeling system has been developed at Slovenian Environment Agency and the National Institute of Biology (Ličer at al., 2016). The system comprises 4.4 km ALADIN/ALARO limited-area numerical weather prediction model and Princeton Ocean Model (POM) for Adriatic sea and uses Mediterranean Forecasting System (MFS) as ocean component outside the POM model domain. The heat and momentum fluxes between sea surface and atmosphere as estimated by ALADIN model are transferred into POM every model time stamp, and sea surface temperature (SST) is returned from POM to ALADIN. A positive impact of such a coupling system with respect to one-way coupling was demonstrated mainly for sea surface variables. In this contribution we study the impact on atmospheric variables, mainly precipitation. Unlike in the previous work where the atmospheric part of the system was reinitialized every day from external (non-coupled) data assimilation cycle, we implement the two-way coupling in the data assimilation cycle for ALADIN. Rather than running long-term simulations which would presumably lack observational information given no data assimilation for the ocean component, we focus on several precipitation events and assess performance of the atmospheric model by running the coupled system for a short warm-up periods beforehand the events. We evaluate several approaches to applying the one- or two-way coupling (in the warm-up period, during the main forecast, or both) and several approaches to using SST information in ALADIN in the one-way coupled mode (POM, MFS, global atmospheric model). Preliminary results suggest that it is important that two-way coupling is applied not only during the long term (e.g. 72 h) forecast but also already in the data assimilation cycle prior to event.
2009-09-01
Forecasts ECS East China Sea ESRL Earth Systems Research Laboratory FA False alarm FARate False alarm rate xviii GDEM Generalized Digital...uses a LTM based, global ocean climatology database called Generalized Digital Environment Model ( GDEM ), in tactical decision aid (TDA) software, such...environment for USW planning. GDEM climatology is derived using temperature and salinity profiles from the Modular Ocean Data Assimilation System
NASA Astrophysics Data System (ADS)
Peters-Lidard, C. D.; Kumar, S. V.; Santanello, J. A.; Tian, Y.; Rodell, M.; Mocko, D.; Reichle, R.
2008-12-01
The Land Information System (LIS; http://lis.gsfc.nasa.gov; Kumar et al., 2006; Peters-Lidard et al., 2007) is a flexible land surface modeling framework that has been developed with the goal of integrating satellite- and ground-based observational data products and advanced land surface modeling techniques to produce optimal fields of land surface states and fluxes. The LIS software was the co-winner of NASA's 2005 Software of the Year award. LIS facilitates the integration of observations from Earth-observing systems and predictions and forecasts from Earth System and Earth science models into the decision-making processes of partnering agency and national organizations. Due to its flexible software design, LIS can serve both as a Problem Solving Environment (PSE) for hydrologic research to enable accurate global water and energy cycle predictions, and as a Decision Support System (DSS) to generate useful information for application areas including disaster management, water resources management, agricultural management, numerical weather prediction, air quality and military mobility assessment. LIS has evolved from two earlier efforts - North American Land Data Assimilation System (NLDAS; Mitchell et al. 2004) and Global Land Data Assimilation System (GLDAS; Rodell et al. 2004) that focused primarily on improving numerical weather prediction skills by improving the characterization of the land surface conditions. Both of these systems, now use specific configurations of the LIS software in their current implementations. LIS not only consolidates the capabilities of these two systems, but also enables a much larger variety of configurations with respect to horizontal spatial resolution, input datasets and choice of land surface model through 'plugins'. In addition to these capabilities, LIS has also been demonstrated for parameter estimation (Peters-Lidard et al., 2008; Santanello et al., 2007) and data assimilation (Kumar et al., 2008). Examples and case studies demonstrating the capabilities and impacts of LIS for hydrometeorological modeling, land data assimilation and parameter estimation will be presented.
Coupling Spatiotemporal Community Assembly Processes to Changes in Microbial Metabolism
DOE Office of Scientific and Technical Information (OSTI.GOV)
Graham, Emily B.; Crump, Alex R.; Resch, Charles T.
Community assembly processes govern shifts in species abundances in response to environmental change, yet our understanding of assembly remains largely decoupled from ecosystem function. Here, we test hypotheses regarding assembly and function across space and time using hyporheic microbial communities as a model system. We pair sampling of two habitat types through hydrologic fluctuation with null modeling and multivariate statistics. We demonstrate that dual selective pressures assimilate to generate compositional changes at distinct timescales among habitat types, resulting in contrasting associations of Betaproteobacteria and Thaumarchaeota with selection and with seasonal changes in aerobic metabolism. Our results culminate in a conceptualmore » model in which selection from contrasting environments regulates taxon abundance and ecosystem function through time, with increases in function when oscillating selection opposes stable selective pressures. Our model is applicable within both macrobial and microbial ecology and presents an avenue for assimilating community assembly processes into predictions of ecosystem function.« less
Early Estimation of Solar Activity Cycle: Potential Capability and Limits
NASA Technical Reports Server (NTRS)
Kitiashvili, Irina N.; Collins, Nancy S.
2017-01-01
The variable solar magnetic activity known as the 11-year solar cycle has the longest history of solar observations. These cycles dramatically affect conditions in the heliosphere and the Earth's space environment. Our current understanding of the physical processes that make up global solar dynamics and the dynamo that generates the magnetic fields is sketchy, resulting in unrealistic descriptions in theoretical and numerical models of the solar cycles. The absence of long-term observations of solar interior dynamics and photospheric magnetic fields hinders development of accurate dynamo models and their calibration. In such situations, mathematical data assimilation methods provide an optimal approach for combining the available observational data and their uncertainties with theoretical models in order to estimate the state of the solar dynamo and predict future cycles. In this presentation, we will discuss the implementation and performance of an Ensemble Kalman Filter data assimilation method based on the Parker migratory dynamo model, complemented by the equation of magnetic helicity conservation and longterm sunspot data series. This approach has allowed us to reproduce the general properties of solar cycles and has already demonstrated a good predictive capability for the current cycle, 24. We will discuss further development of this approach, which includes a more sophisticated dynamo model, synoptic magnetogram data, and employs the DART Data Assimilation Research Testbed.
Impact of Diurnal Variations of Precursors on the Prediction of Ozone
NASA Astrophysics Data System (ADS)
Hamer, P. D.; Bowman, K. W.; Henze, D. K.; Singh, K.
2009-12-01
Using a photochemical box model and its adjoint, constructed using the Kinetic Pre-Processor, we investigate the impacts of changing observational capacity, observation frequency and quality upon the ability to both understand and predict the nature of peak ozone events within a variety of polluted environments. The model consists of a chemical mechanism based on the Master Chemical Mechanism utilising 171 chemical species and 524 chemical reactions interacting with emissions, dry deposition and mixing schemes. The model was run under a variety of conditions designed to simulate a range of summertime polluted environments spanning a range of NOx and volatile organic compound regimes (VOCs). Using the forward model we were able to generate simulated atmospheric conditions representative of a particular polluted environment, which could in turn be used to generate a set of pseudo observations of key photochemical constituents. The model was then run under somewhat less polluted conditions to generate a background and then perturbed back towards the polluted trajectory using sequential data assimilation and the pseudo observations. Using a combination of the adjoint sensitivity analysis and the sequential data assimilation described here we assess the optimal time of observation and the diversity of observed chemical species required to provide acceptable forecast estimates of ozone concentrations. As the photochemical regime changes depending on NOx and VOC concentrations different observing strategies become favourable. The impact of using remote sensing based observations of the free tropospheric photochemical state are investigated to demonstrate the advantage of gaining knowledge of atmospheric trace gases away from the immediate photochemical environment.
Variational data assimilation problem for the thermodynamics model with displaced pole
NASA Astrophysics Data System (ADS)
Parmuzin, Eugene; Agosgkov, Valery; Zakharova, Natalia
2017-04-01
The most versatile and promising technology for solving problems of monitoring and analysis of the natural environment is a four-dimensional variational data assimilation of observation data. The development of computational algorithms for the solution of data assimilation problems in geophysical hydrodynamics is important in the contemporary computation and informational science to improve the quality of long-term prediction by using the hydrodynamics sea model. These problems are applied to close and solve in practice the appropriate inverse problems of the geophysical hydrodynamics. In this work the variational data assimilation problems in the Baltic Sea water area with displaced pole were formulated and studied [1]. We assume, that the unique function which is obtained by observation data processing is the function and we permit that the function is known only on a part of considering area (for example, on a part of the Baltic Sea). Numerical experiments on restoring the ocean heat flux and obtaining solution of the system (temperature, salinity, velocity, and sea surface height) in the Baltic Sea primitive equation hydrodynamics model [2] with assimilation procedure were carried out. In the calculations we used daily sea surface temperature observation from Danish meteorological Institute, prepared on the basis of measurements of the radiometer (AVHRR, AATSR and AMSRE) and spectroradiometer (SEVIRI and MODIS). The spatial resolution of the model grid with respect to the horizontal variables is uniform on latitude (0.2 degree) and varies on longitude from 0.04 to 0.0004 degree . The results of the numerical experiments are presented. This study was supported by the Russian Foundation for Basic Research (project №16-01-00548) and project №14-11-00609 by the Russian Science Foundation. References: [1] Agoshkov V.I., Parmuzin E.I., Zakharova N.B., Zalesny V.B., Shutyaev V.P., Gusev A.V. Variational assimilation of observation data in the mathematical model of the Baltic Sea dynamics // Russ. J. Numer. Anal. Math. Modelling, 2015, V. 30, No. 4, PP. 203-212. [2] Zalesny V.B., Gusev A.V., Chernobay S.Yu., Aps R., Tamsalu R., Kujala P., Rytkönen J. The Baltic Sea circulation modelling and assessment of marine pollution, Russ. J. Numer. Analysis and Math. Modelling, 2014, V 29, No. 2, pp. 129-138.
NASA Astrophysics Data System (ADS)
Meier, Walter Neil
This thesis demonstrates the applicability of data assimilation methods to improve observed and modeled ice motion fields and to demonstrate the effects of assimilated motion on Arctic processes important to the global climate and of practical concern to human activities. Ice motions derived from 85 GHz and 37 GHz SSM/I imagery and estimated from two-dimensional dynamic-thermodynamic sea ice models are compared to buoy observations. Mean error, error standard deviation, and correlation with buoys are computed for the model domain. SSM/I motions generally have a lower bias, but higher error standard deviations and lower correlation with buoys than model motions. There are notable variations in the statistics depending on the region of the Arctic, season, and ice characteristics. Assimilation methods are investigated and blending and optimal interpolation strategies are implemented. Blending assimilation improves error statistics slightly, but the effect of the assimilation is reduced due to noise in the SSM/I motions and is thus not an effective method to improve ice motion estimates. However, optimal interpolation assimilation reduces motion errors by 25--30% over modeled motions and 40--45% over SSM/I motions. Optimal interpolation assimilation is beneficial in all regions, seasons and ice conditions, and is particularly effective in regimes where modeled and SSM/I errors are high. Assimilation alters annual average motion fields. Modeled ice products of ice thickness, ice divergence, Fram Strait ice volume export, transport across the Arctic and interannual basin averages are also influenced by assimilated motions. Assimilation improves estimates of pollutant transport and corrects synoptic-scale errors in the motion fields caused by incorrect forcings or errors in model physics. The portability of the optimal interpolation assimilation method is demonstrated by implementing the strategy in an ice thickness distribution (ITD) model. This research presents an innovative method of combining a new data set of SSM/I-derived ice motions with three different sea ice models via two data assimilation methods. The work described here is the first example of assimilating remotely-sensed data within high-resolution and detailed dynamic-thermodynamic sea ice models. The results demonstrate that assimilation is a valuable resource for determining accurate ice motion in the Arctic.
Regional Ocean Data Assimilation
NASA Astrophysics Data System (ADS)
Edwards, Christopher A.; Moore, Andrew M.; Hoteit, Ibrahim; Cornuelle, Bruce D.
2015-01-01
This article reviews the past 15 years of developments in regional ocean data assimilation. A variety of scientific, management, and safety-related objectives motivate marine scientists to characterize many ocean environments, including coastal regions. As in weather prediction, the accurate representation of physical, chemical, and/or biological properties in the ocean is challenging. Models and observations alone provide imperfect representations of the ocean state, but together they can offer improved estimates. Variational and sequential methods are among the most widely used in regional ocean systems, and there have been exciting recent advances in ensemble and four-dimensional variational approaches. These techniques are increasingly being tested and adapted for biogeochemical applications.
Regional ocean data assimilation.
Edwards, Christopher A; Moore, Andrew M; Hoteit, Ibrahim; Cornuelle, Bruce D
2015-01-01
This article reviews the past 15 years of developments in regional ocean data assimilation. A variety of scientific, management, and safety-related objectives motivate marine scientists to characterize many ocean environments, including coastal regions. As in weather prediction, the accurate representation of physical, chemical, and/or biological properties in the ocean is challenging. Models and observations alone provide imperfect representations of the ocean state, but together they can offer improved estimates. Variational and sequential methods are among the most widely used in regional ocean systems, and there have been exciting recent advances in ensemble and four-dimensional variational approaches. These techniques are increasingly being tested and adapted for biogeochemical applications.
Comprehensive Solar-Terrestrial Environment Model (COSTEM) for Space Weather Predictions
2007-07-01
research in data assimilation methodologies applicable to the space environment, as well as "threat adaptive" grid computing technologies, where we...SWMF is tested by(SWMF) [29, 43] was designed in 2001 and has sse et xriig mlil ope been developed to integrate and couple several system tests...its components. The night on several computer/compiler platforms. main design goals of the SWMF were to minimizedocumented. mai deigngoas o th SWF
NASA Astrophysics Data System (ADS)
Lei, F.; Crow, W. T.; Kustas, W. P.; Yang, Y.; Anderson, M. C.
2017-12-01
Improving the water usage efficiency and maintaining water use sustainability is challenging under rapidly changed natural environments. For decades, extensive field investigations and conceptual/physical numerical modeling have been developed to quantify and track surface water and energy fluxes at different spatial and temporal scales. Meanwhile, with the development of satellite-based sensors, land surface eco-hydrological parameters can be retrieved remotely to supplement ground-based observations. However, both models and remote sensing retrievals contain various sources of errors and an accurate and spatio-temporally continuous simulation and forecasting system at the field-scale is crucial for the efficient water management in agriculture. Specifically, data assimilation technique can optimally integrate measurements acquired from various sources (including in-situ and remotely-sensed data) with numerical models through consideration of different types of uncertainties. In this presentation, we will focus on improving the estimation of water and energy fluxes over a vineyard in California, U.S. A high-resolution remotely-sensed Evaporative Fraction (EF) product from the Atmosphere-Land Exchange Inverse (ALEXI) model will be incorporated into a Soil Vegetation Atmosphere Transfer (SVAT) model via a 2-D data assimilation method. The results will show that both the accuracy and spatial variability of soil water content and evapotranspiration in SVAT model can be enhanced through the assimilation of EF data. Furthermore, we will demonstrate that by taking the optimized soil water flux as initial condition and combining it with weather forecasts, future field water status can be predicted under different irrigation scenarios. Finally, we will discuss the practical potential of these advances by leveraging our numerical experiment for the design of new irrigation strategies and water management techniques.
Exploring New Pathways in Precipitation Assimilation
NASA Technical Reports Server (NTRS)
Hou, Arthur; Zhang, Sara Q.
2004-01-01
Precipitation assimilation poses a special challenge in that the forward model for rain in a global forecast system is based on parameterized physics, which can have large systematic errors that must be rectified to use precipitation data effectively within a standard statistical analysis framework. We examine some key issues in precipitation assimilation and describe several exploratory studies in assimilating rainfall and latent heating information in NASA's global data assimilation systems using the forecast model as a weak constraint. We present results from two research activities. The first is the assimilation of surface rainfall data using a time-continuous variational assimilation based on a column model of the full moist physics. The second is the assimilation of convective and stratiform latent heating retrievals from microwave sensors using a variational technique with physical parameters in the moist physics schemes as a control variable. We will show the impact of assimilating these data on analyses and forecasts. Among the lessons learned are (1) that the time-continuous application of moisture/temperature tendency corrections to mitigate model deficiencies offers an effective strategy for assimilating precipitation information, and (2) that the model prognostic variables must be allowed to directly respond to an improved rain and latent heating field within an analysis cycle to reap the full benefit of assimilating precipitation information. of microwave radiances versus retrieval information in raining areas, and initial efforts in developing ensemble techniques such as Kalman filter/smoother for precipitation assimilation. Looking to the future, we discuss new research directions including the assimilation
NASA Technical Reports Server (NTRS)
Peters-Lidard, Christa D.
2011-01-01
The Land Information System (LIS; http://lis.gsfc.nasa.gov) is a flexible land surface modeling framework that has been developed with the goal of integrating satellite-and ground-based observational data products and advanced land surface modeling techniques to produce optimal fields of land surface states and fluxes. As such, LIS represents a step towards the next generation land component of an integrated Earth system model. In recognition of LIS object-oriented software design, use and impact in the land surface and hydrometeorological modeling community, the LIS software was selected as a co-winner of NASA?s 2005 Software of the Year award.LIS facilitates the integration of observations from Earth-observing systems and predictions and forecasts from Earth System and Earth science models into the decision-making processes of partnering agency and national organizations. Due to its flexible software design, LIS can serve both as a Problem Solving Environment (PSE) for hydrologic research to enable accurate global water and energy cycle predictions, and as a Decision Support System (DSS) to generate useful information for application areas including disaster management, water resources management, agricultural management, numerical weather prediction, air quality and military mobility assessment. LIS has e volved from two earlier efforts -- North American Land Data Assimilation System (NLDAS) and Global Land Data Assimilation System (GLDAS) that focused primarily on improving numerical weather prediction skills by improving the characterization of the land surface conditions. Both of GLDAS and NLDAS now use specific configurations of the LIS software in their current implementations.In addition, LIS was recently transitioned into operations at the US Air Force Weather Agency (AFWA) to ultimately replace their Agricultural Meteorology (AGRMET) system, and is also used routinely by NOAA's National Centers for Environmental Prediction (NCEP)/Environmental Modeling Center (EMC) for their land data assimilation systems to support weather and climate modeling. LIS not only consolidates the capabilities of these two systems, but also enables a much larger variety of configurations with respect to horizontal spatial resolution, input datasets and choice of land surface model through "plugins". LIS has been coupled to the Weather Research and Forecasting (WRF) model to support studies of land-atmosphere coupling be enabling ensembles of land surface states to be tested against multiple representations of the atmospheric boundary layer. LIS has also been demonstrated for parameter estimation, who showed that the use of sequential remotely sensed soil moisture products can be used to derive soil hydraulic and texture properties given a sufficient dynamic range in the soil moisture retrievals and accurate precipitation inputs.LIS has also recently been demonstrated for multi-model data assimilation using an Ensemble Kalman Filter for sequential assimilation of soil moisture, snow, and temperature.Ongoing work has demonstrated the value of bias correction as part of the filter, and also that of joint calibration and assimilation.Examples and case studies demonstrating the capabilities and impacts of LIS for hydrometeorological modeling, assimilation and parameter estimation will be presented as advancements towards the next generation of integrated observation and modeling systems
NASA Astrophysics Data System (ADS)
Crowley, G.; Pilinski, M.; Sutton, E. K.; Codrescu, M.; Fuller-Rowell, T. J.; Matsuo, T.; Fedrizzi, M.; Solomon, S. C.; Qian, L.; Thayer, J. P.
2016-12-01
Much as aircraft are affected by the prevailing winds and weather conditions in which they fly, satellites are affected by the variability in density and motion of the near earth space environment. Drastic changes in the neutral density of the thermosphere, caused by geomagnetic storms or other phenomena, result in perturbations of LEO satellite motions through drag on the satellite surfaces. This can lead to difficulties in locating important satellites, temporarily losing track of satellites, and errors when predicting collisions in space. We describe ongoing work to build a comprehensive nowcast and forecast system for specifying the neutral atmospheric state related to orbital drag conditions. The system outputs include neutral density, winds, temperature, composition, and the satellite drag derived from these parameters. This modeling tool is based on several state-of-the-art coupled models of the thermosphere-ionosphere as well as several empirical models running in real-time and uses assimilative techniques to produce a thermospheric nowcast. This software will also produce 72 hour predictions of the global thermosphere-ionosphere system using the nowcast as the initial condition and using near real-time and predicted space weather data and indices as the inputs. Features of this technique include: • Satellite drag specifications with errors lower than current models • Altitude coverage up to 1000km • Background state representation using both first principles and empirical models • Assimilation of satellite drag and other datatypes • Real time capability • Ability to produce 72-hour forecasts of the atmospheric state In this paper, we will summarize the model design and assimilative architecture, and present preliminary validation results. Validation results will be presented in the context of satellite orbit errors and compared with several leading atmospheric models including the High Accuracy Satellite Drag Model, which is currently used operationally by the Air Force to specify neutral densities. As part of the analysis, we compare the drag observed by a variety of satellites which were not used as part of the assimilation-dataset and whose perigee altitudes span a range from 200km to 700 km.
Assimilation of MLS and OMI Ozone Data
NASA Technical Reports Server (NTRS)
Stajner, I.; Wargan, K.; Chang, L.-P.; Hayashi, H.; Pawson, S.; Froidevaux, L.; Livesey, N.
2005-01-01
Ozone data from Aura Microwave Limb Sounder (MLS) and Ozone Monitoring Instrument (OMI) were assimilated into the ozone model at NASA's Global Modeling and Assimilation Office (GMAO). This assimilation produces ozone fields that are superior to those from the operational GMAO assimilation of Solar Backscatter Ultraviolet (SBUV/2) instrument data. Assimilation of Aura data improves the representation of the "ozone hole" and the agreement with independent Stratospheric Aerosol and Gas Experiment (SAGE) III and ozone sonde data. Ozone in the lower stratosphere is captured better: mean state, vertical gradients, spatial and temporal variability are all improved. Inclusion of OMI and MLS data together, or separately, in the assimilation system provides a way of checking how consistent OMI and MLS data are with each other, and with the ozone model. We found that differences between OMI total ozone column data and model forecasts decrease after MLS data are assimilated. This indicates that MLS stratospheric ozone profiles are consistent with OMI total ozone columns. The evaluation of error characteristics of OMI and MLS ozone will continue as data from newer versions of retrievals becomes available. We report on the initial step in obtaining global assimilated ozone fields that combine measurements from different Aura instruments, the ozone model at the GMAO, and their respective error characteristics. We plan to use assimilated ozone fields in estimation of tropospheric ozone. We also plan to investigate impacts of assimilated ozone fields on numerical weather prediction through their use in radiative models and in the assimilation of infrared nadir radiance data from NASA's Advanced Infrared Sounder (AIRS).
Skill Assessment in Ocean Biological Data Assimilation
NASA Technical Reports Server (NTRS)
Gregg, Watson W.; Friedrichs, Marjorie A. M.; Robinson, Allan R.; Rose, Kenneth A.; Schlitzer, Reiner; Thompson, Keith R.; Doney, Scott C.
2008-01-01
There is growing recognition that rigorous skill assessment is required to understand the ability of ocean biological models to represent ocean processes and distributions. Statistical analysis of model results with observations represents the most quantitative form of skill assessment, and this principle serves as well for data assimilation models. However, skill assessment for data assimilation requires special consideration. This is because there are three sets of information in the free-run model, data, and the assimilation model, which uses Data assimilation information from both the flee-run model and the data. Intercom parison of results among the three sets of information is important and useful for assessment, but is not conclusive since the three information sets are intertwined. An independent data set is necessary for an objective determination. Other useful measures of ocean biological data assimilation assessment include responses of unassimilated variables to the data assimilation, performance outside the prescribed region/time of interest, forecasting, and trend analysis. Examples of each approach from the literature are provided. A comprehensive list of ocean biological data assimilation and their applications of skill assessment, in both ecosystem/biogeochemical and fisheries efforts, is summarized.
A Unified Data Assimilation Strategy for Regional Coupled Atmosphere-Ocean Prediction Systems
NASA Astrophysics Data System (ADS)
Xie, Lian; Liu, Bin; Zhang, Fuqing; Weng, Yonghui
2014-05-01
Improving tropical cyclone (TC) forecasts is a top priority in weather forecasting. Assimilating various observational data to produce better initial conditions for numerical models using advanced data assimilation techniques has been shown to benefit TC intensity forecasts, whereas assimilating large-scale environmental circulation into regional models by spectral nudging or Scale-Selective Data Assimilation (SSDA) has been demonstrated to improve TC track forecasts. Meanwhile, taking into account various air-sea interaction processes by high-resolution coupled air-sea modelling systems has also been shown to improve TC intensity forecasts. Despite the advances in data assimilation and air-sea coupled models, large errors in TC intensity and track forecasting remain. For example, Hurricane Nate (2011) has brought considerable challenge for the TC operational forecasting community, with very large intensity forecast errors (27, 25, and 40 kts for 48, 72, and 96 h, respectively) for the official forecasts. Considering the slow-moving nature of Hurricane Nate, it is reasonable to hypothesize that air-sea interaction processes played a critical role in the intensity change of the storm, and accurate representation of the upper ocean dynamics and thermodynamics is necessary to quantitatively describe the air-sea interaction processes. Currently, data assimilation techniques are generally only applied to hurricane forecasting in stand-alone atmospheric or oceanic model. In fact, most of the regional hurricane forecasting models only included data assimilation techniques for improving the initial condition of the atmospheric model. In such a situation, the benefit of adjustments in one model (atmospheric or oceanic) by assimilating observational data can be compromised by errors from the other model. Thus, unified data assimilation techniques for coupled air-sea modelling systems, which not only simultaneously assimilate atmospheric and oceanic observations into the coupled air-sea modelling system, but also nudging the large-scale environmental flow in the regional model towards global model forecasts are of increasing necessity. In this presentation, we will outline a strategy for an integrated approach in air-sea coupled data assimilation and discuss its benefits and feasibility from incremental results for select historical hurricane cases.
A Global Data Assimilation System for Atmospheric Aerosol
NASA Technical Reports Server (NTRS)
daSilva, Arlindo
1999-01-01
We will give an overview of an aerosol data assimilation system which combines advances in remote sensing of atmospheric aerosols, aerosol modeling and data assimilation methodology to produce high spatial and temporal resolution 3D aerosol fields. Initially, the Goddard Aerosol Assimilation System (GAAS) will assimilate TOMS, AVHRR and AERONET observations; later we will include MODIS and MISR. This data assimilation capability will allows us to integrate complementing aerosol observations from these platforms, enabling the development of an assimilated aerosol climatology as well as a global aerosol forecasting system in support of field campaigns. Furthermore, this system provides an interactive retrieval framework for each aerosol observing satellites, in particular TOMS and AVHRR. The Goddard Aerosol Assimilation System (GAAS) takes advantage of recent advances in constituent data assimilation at DAO, including flow dependent parameterizations of error covariances and the proper consideration of model bias. For its prognostic transport model, GAAS will utilize the Goddard Ozone, Chemistry, Aerosol, Radiation and Transport (GOCART) model developed at NASA/GSFC Codes 916 and 910.3. GOCART includes the Lin-Rood flux-form, semi-Langrangian transport model with parameterized aerosol chemistry and physical processes for absorbing (dust and black carbon) and non-absorbing aerosols (sulfate and organic carbon). Observations and model fields are combined using a constituent version of DAO's Physical-space Statistical Analysis System (PSAS), including its adaptive quality control system. In this talk we describe the main components of this assimilation system and present preliminary results obtained by assimilating TOMS data.
Systemic Model for Examination of Countrywide School Computerization
ERIC Educational Resources Information Center
Wasserman, Egoza; Millgram, Yitzchak
2005-01-01
This article presents a study whose purpose was to examine how the educational system functions following the assimilation of a technological environment and how the relationships between the subsystems are affected and affect each other following this change. The study took place over the course of three years in schools in the State of Israel…
ERIC Educational Resources Information Center
Abraham, Michael R.; Renner, John W.
A learning cycle consists of three phases: exploration; conceptual invention; and expansion of an idea. These phases parallel Piaget's functioning model of assimilation, disequilibrium and accomodation, and organization respectively. The learning cycle perceives students as actors rather than reactors to the environment. Inherent in that…
Building occupancy simulation and data assimilation using a graph-based agent-oriented model
NASA Astrophysics Data System (ADS)
Rai, Sanish; Hu, Xiaolin
2018-07-01
Building occupancy simulation and estimation simulates the dynamics of occupants and estimates their real-time spatial distribution in a building. It requires a simulation model and an algorithm for data assimilation that assimilates real-time sensor data into the simulation model. Existing building occupancy simulation models include agent-based models and graph-based models. The agent-based models suffer high computation cost for simulating large numbers of occupants, and graph-based models overlook the heterogeneity and detailed behaviors of individuals. Recognizing the limitations of existing models, this paper presents a new graph-based agent-oriented model which can efficiently simulate large numbers of occupants in various kinds of building structures. To support real-time occupancy dynamics estimation, a data assimilation framework based on Sequential Monte Carlo Methods is also developed and applied to the graph-based agent-oriented model to assimilate real-time sensor data. Experimental results show the effectiveness of the developed model and the data assimilation framework. The major contributions of this work are to provide an efficient model for building occupancy simulation that can accommodate large numbers of occupants and an effective data assimilation framework that can provide real-time estimations of building occupancy from sensor data.
Coupled assimilation for an intermediated coupled ENSO prediction model
NASA Astrophysics Data System (ADS)
Zheng, Fei; Zhu, Jiang
2010-10-01
The value of coupled assimilation is discussed using an intermediate coupled model in which the wind stress is the only atmospheric state which is slavery to model sea surface temperature (SST). In the coupled assimilation analysis, based on the coupled wind-ocean state covariance calculated from the coupled state ensemble, the ocean state is adjusted by assimilating wind data using the ensemble Kalman filter. As revealed by a series of assimilation experiments using simulated observations, the coupled assimilation of wind observations yields better results than the assimilation of SST observations. Specifically, the coupled assimilation of wind observations can help to improve the accuracy of the surface and subsurface currents because the correlation between the wind and ocean currents is stronger than that between SST and ocean currents in the equatorial Pacific. Thus, the coupled assimilation of wind data can decrease the initial condition errors in the surface/subsurface currents that can significantly contribute to SST forecast errors. The value of the coupled assimilation of wind observations is further demonstrated by comparing the prediction skills of three 12-year (1997-2008) hindcast experiments initialized by the ocean-only assimilation scheme that assimilates SST observations, the coupled assimilation scheme that assimilates wind observations, and a nudging scheme that nudges the observed wind stress data, respectively. The prediction skills of two assimilation schemes are significantly better than those of the nudging scheme. The prediction skills of assimilating wind observations are better than assimilating SST observations. Assimilating wind observations for the 2007/2008 La Niña event triggers better predictions, while assimilating SST observations fails to provide an early warning for that event.
Effects of sounding temperature assimilation on weather forecasting - Model dependence studies
NASA Technical Reports Server (NTRS)
Ghil, M.; Halem, M.; Atlas, R.
1979-01-01
In comparing various methods for the assimilation of remote sounding information into numerical weather prediction (NWP) models, the problem of model dependence for the different results obtained becomes important. The paper investigates two aspects of the model dependence question: (1) the effect of increasing horizontal resolution within a given model on the assimilation of sounding data, and (2) the effect of using two entirely different models with the same assimilation method and sounding data. Tentative conclusions reached are: first, that model improvement as exemplified by increased resolution, can act in the same direction as judicious 4-D assimilation of remote sounding information, to improve 2-3 day numerical weather forecasts. Second, that the time continuous 4-D methods developed at GLAS have similar beneficial effects when used in the assimilation of remote sounding information into NWP models with very different numerical and physical characteristics.
NASA Astrophysics Data System (ADS)
Trudel, Mélanie; Leconte, Robert; Paniconi, Claudio
2014-06-01
Data assimilation techniques not only enhance model simulations and forecast, they also provide the opportunity to obtain a diagnostic of both the model and observations used in the assimilation process. In this research, an ensemble Kalman filter was used to assimilate streamflow observations at a basin outlet and at interior locations, as well as soil moisture at two different depths (15 and 45 cm). The simulation model is the distributed physically-based hydrological model CATHY (CATchment HYdrology) and the study site is the Des Anglais watershed, a 690 km2 river basin located in southern Quebec, Canada. Use of Latin hypercube sampling instead of a conventional Monte Carlo method to generate the ensemble reduced the size of the ensemble, and therefore the calculation time. Different post-assimilation diagnostics, based on innovations (observation minus background), analysis residuals (observation minus analysis), and analysis increments (analysis minus background), were used to evaluate assimilation optimality. An important issue in data assimilation is the estimation of error covariance matrices. These diagnostics were also used in a calibration exercise to determine the standard deviation of model parameters, forcing data, and observations that led to optimal assimilations. The analysis of innovations showed a lag between the model forecast and the observation during rainfall events. Assimilation of streamflow observations corrected this discrepancy. Assimilation of outlet streamflow observations improved the Nash-Sutcliffe efficiencies (NSE) between the model forecast (one day) and the observation at both outlet and interior point locations, owing to the structure of the state vector used. However, assimilation of streamflow observations systematically increased the simulated soil moisture values.
NASA Astrophysics Data System (ADS)
Raeder, K.; Anderson, J. L.; Lauritzen, P. H.; Hoar, T. J.; Collins, N.
2010-12-01
DART (www.image.ucar.edu/DAReS/DART) is a general purpose, freely available, ensemble Kalman filter, data assimilation system, which is being used to generate state-of-the-art, partially coupled, ocean-atmosphere re-analyses in support of the decadal predictions planned for the next IPCC report. The resulting gridded product is directly comparable to the state variables output by POP and CAM (oceanic and atmospheric components of NCAR's Community Earth System Model climate model) because those are the assimilating models. Other models could also benefit from comparison against these reanalyses, since the ocean analyses are at the leading edge of ocean state estimation, and the atmospheric analyses are competitive with operational centers'. Such comparisons can reveal model biases and predictability characteristics, and do so in a quantitative way, since the ensemble nature of the analyses provides an objective estimate of the analysis error. The analyses will also be used as initial conditions for the decadal forecasts because they are the most realistic available. The generation of such analyses has revealed errors in model formulation for several versions of the finite volume core CAM, which has led to model improvements in each case. New models can be incorporated into DART in a matter of weeks, allowing them to be compared directly against available observations. The observations currently used in the assimilations include, for the ocean; temperature and salinity from the World Ocean Database (floats, drifters, moorings, autonomous pinipeds, and others), and for the atmosphere; temperature and winds from radiosondes, satellite drift winds, ACARS and aircraft. Observations of ocean currents and atmospheric moisture and pressure are also available. Global Positioning System profiles of atmospheric temperature and moisture are available for recent years. All that is required to add new observations to the suite is the forward operator, which generates an estimate of the observation from the model state. In summary, DART provides a flexible, convenient, rigorous environment for evaluating models in the context of real observations.
DasPy – Open Source Multivariate Land Data Assimilation Framework with High Performance Computing
NASA Astrophysics Data System (ADS)
Han, Xujun; Li, Xin; Montzka, Carsten; Kollet, Stefan; Vereecken, Harry; Hendricks Franssen, Harrie-Jan
2015-04-01
Data assimilation has become a popular method to integrate observations from multiple sources with land surface models to improve predictions of the water and energy cycles of the soil-vegetation-atmosphere continuum. In recent years, several land data assimilation systems have been developed in different research agencies. Because of the software availability or adaptability, these systems are not easy to apply for the purpose of multivariate land data assimilation research. Multivariate data assimilation refers to the simultaneous assimilation of observation data for multiple model state variables into a simulation model. Our main motivation was to develop an open source multivariate land data assimilation framework (DasPy) which is implemented using the Python script language mixed with C++ and Fortran language. This system has been evaluated in several soil moisture, L-band brightness temperature and land surface temperature assimilation studies. The implementation allows also parameter estimation (soil properties and/or leaf area index) on the basis of the joint state and parameter estimation approach. LETKF (Local Ensemble Transform Kalman Filter) is implemented as the main data assimilation algorithm, and uncertainties in the data assimilation can be represented by perturbed atmospheric forcings, perturbed soil and vegetation properties and model initial conditions. The CLM4.5 (Community Land Model) was integrated as the model operator. The CMEM (Community Microwave Emission Modelling Platform), COSMIC (COsmic-ray Soil Moisture Interaction Code) and the two source formulation were integrated as observation operators for assimilation of L-band passive microwave, cosmic-ray soil moisture probe and land surface temperature measurements, respectively. DasPy is parallelized using the hybrid MPI (Message Passing Interface) and OpenMP (Open Multi-Processing) techniques. All the input and output data flow is organized efficiently using the commonly used NetCDF file format. Online 1D and 2D visualization of data assimilation results is also implemented to facilitate the post simulation analysis. In summary, DasPy is a ready to use open source parallel multivariate land data assimilation framework.
Emulator-assisted data assimilation in complex models
NASA Astrophysics Data System (ADS)
Margvelashvili, Nugzar Yu; Herzfeld, Mike; Rizwi, Farhan; Mongin, Mathieu; Baird, Mark E.; Jones, Emlyn; Schaffelke, Britta; King, Edward; Schroeder, Thomas
2016-09-01
Emulators are surrogates of complex models that run orders of magnitude faster than the original model. The utility of emulators for the data assimilation into ocean models is still not well understood. High complexity of ocean models translates into high uncertainty of the corresponding emulators which may undermine the quality of the assimilation schemes based on such emulators. Numerical experiments with a chaotic Lorenz-95 model are conducted to illustrate this point and suggest a strategy to alleviate this problem through the localization of the emulation and data assimilation procedures. Insights gained through these experiments are used to design and implement data assimilation scenario for a 3D fine-resolution sediment transport model of the Great Barrier Reef (GBR), Australia.
NASA Astrophysics Data System (ADS)
Lee, Joon-Ho; Kim, Taekyun; Pang, Ig-Chan; Moon, Jae-Hong
2018-04-01
In this study, we evaluate the performance of the recently developed incremental strong constraint 4-dimensional variational (4DVAR) data assimilation applied to the Yellow Sea (YS) using the Regional Ocean Modeling System (ROMS). Two assimilation experiments are compared: assimilating remote-sensed sea surface temperature (SST) and both the SST and in-situ profiles measured by shipboard CTD casts into a regional ocean modeling from January to December of 2011. By comparing the two assimilation experiments against a free-run without data assimilation, we investigate how the assimilation affects the hydrographic structures in the YS. Results indicate that the SST assimilation notably improves the model behavior at the surface when compared to the nonassimilative free-run. The SST assimilation also has an impact on the subsurface water structure in the eastern YS; however, the improvement is seasonally dependent, that is, the correction becomes more effective in winter than in summer. This is due to a strong stratification in summer that prevents the assimilation of SST from affecting the subsurface temperature. A significant improvement to the subsurface temperature is made when the in-situ profiles of temperature and salinity are assimilated, forming a tongue-shaped YS bottom cold water from the YS toward the southwestern seas of Jeju Island.
Assimilation of GRACE Terrestrial Water Storage Data into a Land Surface Model
NASA Technical Reports Server (NTRS)
Reichle, Rolf H.; Zaitchik, Benjamin F.; Rodell, Matt
2008-01-01
The NASA Gravity Recovery and Climate Experiment (GRACE) system of satellites provides observations of large-scale, monthly terrestrial water storage (TWS) changes. In. this presentation we describe a land data assimilation system that ingests GRACE observations and show that the assimilation improves estimates of water storage and fluxes, as evaluated against independent measurements. The ensemble-based land data assimilation system uses a Kalman smoother approach along with the NASA Catchment Land Surface Model (CLSM). We assimilated GRACE-derived TWS anomalies for each of the four major sub-basins of the Mississippi into the Catchment Land Surface Model (CLSM). Compared with the open-loop (no assimilation) CLSM simulation, assimilation estimates of groundwater variability exhibited enhanced skill with respect to measured groundwater. Assimilation also significantly increased the correlation between simulated TWS and gauged river flow for all four sub-basins and for the Mississippi River basin itself. In addition, model performance was evaluated for watersheds smaller than the scale of GRACE observations, in the majority of cases, GRACE assimilation led to increased correlation between TWS estimates and gauged river flow, indicating that data assimilation has considerable potential to downscale GRACE data for hydrological applications. We will also describe how the output from the GRACE land data assimilation system is now being prepared for use in the North American Drought Monitor.
Smith, Sarah R.; McCrow, John P.; Tan, Maxine; Lichtle, Christian; Goodenough, Ursula; Bowler, Chris P.; Dupont, Christopher L.
2017-01-01
The ecological prominence of diatoms in the ocean environment largely results from their superior competitive ability for dissolved nitrate (NO3−). To investigate the cellular and genetic basis of diatom NO3− assimilation, we generated a knockout in the nitrate reductase gene (NR-KO) of the model pennate diatom Phaeodactylum tricornutum. In NR-KO cells, N-assimilation was abolished although NO3− transport remained intact. Unassimilated NO3− accumulated in NR-KO cells, resulting in swelling and associated changes in biochemical composition and physiology. Elevated expression of genes encoding putative vacuolar NO3− chloride channel transporters plus electron micrographs indicating enlarged vacuoles suggested vacuolar storage of NO3−. Triacylglycerol concentrations in the NR-KO cells increased immediately following the addition of NO3−, and these increases coincided with elevated gene expression of key triacylglycerol biosynthesis components. Simultaneously, induction of transcripts encoding proteins involved in thylakoid membrane lipid recycling suggested more abrupt repartitioning of carbon resources in NR-KO cells compared with the wild type. Conversely, ribosomal structure and photosystem genes were immediately deactivated in NR-KO cells following NO3− addition, followed within hours by deactivation of genes encoding enzymes for chlorophyll biosynthesis and carbon fixation and metabolism. N-assimilation pathway genes respond uniquely, apparently induced simultaneously by both NO3− replete and deplete conditions. PMID:28765511
McCarthy, James K.; Smith, Sarah R.; McCrow, John P.; ...
2017-09-07
The ecological prominence of diatoms in the ocean environment largely results from their superior competitive ability for dissolved nitrate (NO 3 -). To investigate the cellular and genetic basis of diatom NO 3 - assimilation, in this paper we generated a knockout in the nitrate reductase gene (NR-KO) of the model pennate diatom Phaeodactylum tricornutum. In NR-KO cells, N-assimilation was abolished although NO 3 - transport remained intact. Unassimilated NO 3 - accumulated in NR-KO cells, resulting in swelling and associated changes in biochemical composition and physiology. Elevated expression of genes encoding putative vacuolar NO 3 - chloride channel transportersmore » plus electron micrographs indicating enlarged vacuoles suggested vacuolar storage of NO 3 -. Triacylglycerol concentrations in the NR-KO cells increased immediately following the addition of NO 3 -, and these increases coincided with elevated gene expression of key triacylglycerol biosynthesis components. Simultaneously, induction of transcripts encoding proteins involved in thylakoid membrane lipid recycling suggested more abrupt repartitioning of carbon resources in NR-KO cells compared with the wild type. Conversely, ribosomal structure and photosystem genes were immediately deactivated in NR-KO cells following NO 3 - addition, followed within hours by deactivation of genes encoding enzymes for chlorophyll biosynthesis and carbon fixation and metabolism. Finally, N-assimilation pathway genes respond uniquely, apparently induced simultaneously by both NO 3 - replete and deplete conditions.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCarthy, James K.; Smith, Sarah R.; McCrow, John P.
The ecological prominence of diatoms in the ocean environment largely results from their superior competitive ability for dissolved nitrate (NO 3 -). To investigate the cellular and genetic basis of diatom NO 3 - assimilation, in this paper we generated a knockout in the nitrate reductase gene (NR-KO) of the model pennate diatom Phaeodactylum tricornutum. In NR-KO cells, N-assimilation was abolished although NO 3 - transport remained intact. Unassimilated NO 3 - accumulated in NR-KO cells, resulting in swelling and associated changes in biochemical composition and physiology. Elevated expression of genes encoding putative vacuolar NO 3 - chloride channel transportersmore » plus electron micrographs indicating enlarged vacuoles suggested vacuolar storage of NO 3 -. Triacylglycerol concentrations in the NR-KO cells increased immediately following the addition of NO 3 -, and these increases coincided with elevated gene expression of key triacylglycerol biosynthesis components. Simultaneously, induction of transcripts encoding proteins involved in thylakoid membrane lipid recycling suggested more abrupt repartitioning of carbon resources in NR-KO cells compared with the wild type. Conversely, ribosomal structure and photosystem genes were immediately deactivated in NR-KO cells following NO 3 - addition, followed within hours by deactivation of genes encoding enzymes for chlorophyll biosynthesis and carbon fixation and metabolism. Finally, N-assimilation pathway genes respond uniquely, apparently induced simultaneously by both NO 3 - replete and deplete conditions.« less
Marsiglia, Flavio F.; Kulis, Stephen; Kellison, Joshua G.
2010-01-01
Objectives. Under an ecodevelopmental framework, we examined lifetime segmented assimilation trajectories (diverging assimilation pathways influenced by prior life conditions) and related them to quality-of-life indicators in a diverse sample of 258 men in the Pheonix, AZ, metropolitan area. Methods. We used a growth mixture model analysis of lifetime changes in socioeconomic status, and used acculturation to identify distinct lifetime segmented assimilation trajectory groups, which we compared on life satisfaction, exercise, and dietary behaviors. We hypothesized that lifetime assimilation change toward mainstream American culture (upward assimilation) would be associated with favorable health outcomes, and downward assimilation change with unfavorable health outcomes. Results. A growth mixture model latent class analysis identified 4 distinct assimilation trajectory groups. In partial support of the study hypotheses, the extreme upward assimilation trajectory group (the most successful of the assimilation pathways) exhibited the highest life satisfaction and the lowest frequency of unhealthy food consumption. Conclusions. Upward segmented assimilation is associated in adulthood with certain positive health outcomes. This may be the first study to model upward and downward lifetime segmented assimilation trajectories, and to associate these with life satisfaction, exercise, and dietary behaviors. PMID:20167890
Air Quality Modeling Using the NASA GEOS-5 Multispecies Data Assimilation System
NASA Technical Reports Server (NTRS)
Keller, Christoph A.; Pawson, Steven; Wargan, Krzysztof; Weir, Brad
2018-01-01
The NASA Goddard Earth Observing System (GEOS) data assimilation system (DAS) has been expanded to include chemically reactive tropospheric trace gases including ozone (O3), nitrogen dioxide (NO2), and carbon monoxide (CO). This system combines model analyses from the GEOS-5 model with detailed atmospheric chemistry and observations from MLS (O3), OMI (O3 and NO2), and MOPITT (CO). We show results from a variety of assimilation test experiments, highlighting the improvements in the representation of model species concentrations by up to 50% compared to an assimilation-free control experiment. Taking into account the rapid chemical cycling of NO2 when applying the assimilation increments greatly improves assimilation skills for NO2 and provides large benefits for model concentrations near the surface. Analysis of the geospatial distribution of the assimilation increments suggest that the free-running model overestimates biomass burning emissions but underestimates lightning NOx emissions by 5-20%. We discuss the capability of the chemical data assimilation system to improve atmospheric composition forecasts through improved initial value and boundary condition inputs, particularly during air pollution events. We find that the current assimilation system meaningfully improves short-term forecasts (1-3 day). For longer-term forecasts more emphasis on updating the emissions instead of initial concentration fields is needed.
NASA Astrophysics Data System (ADS)
Penenko, Alexey; Penenko, Vladimir; Nuterman, Roman; Baklanov, Alexander; Mahura, Alexander
2015-11-01
Atmospheric chemistry dynamics is studied with convection-diffusion-reaction model. The numerical Data Assimilation algorithm presented is based on the additive-averaged splitting schemes. It carries out ''fine-grained'' variational data assimilation on the separate splitting stages with respect to spatial dimensions and processes i.e. the same measurement data is assimilated to different parts of the split model. This design has efficient implementation due to the direct data assimilation algorithms of the transport process along coordinate lines. Results of numerical experiments with chemical data assimilation algorithm of in situ concentration measurements on real data scenario have been presented. In order to construct the scenario, meteorological data has been taken from EnviroHIRLAM model output, initial conditions from MOZART model output and measurements from Airbase database.
NASA Astrophysics Data System (ADS)
Androsov, Alexey; Nerger, Lars; Schnur, Reiner; Schröter, Jens; Albertella, Alberta; Rummel, Reiner; Savcenko, Roman; Bosch, Wolfgang; Skachko, Sergey; Danilov, Sergey
2018-05-01
General ocean circulation models are not perfect. Forced with observed atmospheric fluxes they gradually drift away from measured distributions of temperature and salinity. We suggest data assimilation of absolute dynamical ocean topography (DOT) observed from space geodetic missions as an option to reduce these differences. Sea surface information of DOT is transferred into the deep ocean by defining the analysed ocean state as a weighted average of an ensemble of fully consistent model solutions using an error-subspace ensemble Kalman filter technique. Success of the technique is demonstrated by assimilation into a global configuration of the ocean circulation model FESOM over 1 year. The dynamic ocean topography data are obtained from a combination of multi-satellite altimetry and geoid measurements. The assimilation result is assessed using independent temperature and salinity analysis derived from profiling buoys of the AGRO float data set. The largest impact of the assimilation occurs at the first few analysis steps where both the model ocean topography and the steric height (i.e. temperature and salinity) are improved. The continued data assimilation over 1 year further improves the model state gradually. Deep ocean fields quickly adjust in a sustained manner: A model forecast initialized from the model state estimated by the data assimilation after only 1 month shows that improvements induced by the data assimilation remain in the model state for a long time. Even after 11 months, the modelled ocean topography and temperature fields show smaller errors than the model forecast without any data assimilation.
Morphodynamic data assimilation used to understand changing coasts
Plant, Nathaniel G.; Long, Joseph W.
2015-01-01
Morphodynamic data assimilation blends observations with model predictions and comes in many forms, including linear regression, Kalman filter, brute-force parameter estimation, variational assimilation, and Bayesian analysis. Importantly, data assimilation can be used to identify sources of prediction errors that lead to improved fundamental understanding. Overall, models incorporating data assimilation yield better information to the people who must make decisions impacting safety and wellbeing in coastal regions that experience hazards due to storms, sea-level rise, and erosion. We present examples of data assimilation associated with morphologic change. We conclude that enough morphodynamic predictive capability is available now to be useful to people, and that we will increase our understanding and the level of detail of our predictions through assimilation of observations and numerical-statistical models.
NASA Astrophysics Data System (ADS)
Angling, M. J.; Jackson-Booth, N. K.
2011-12-01
The Electron Density Assimilative Model (EDAM) has been developed to provide real-time characterizations of the ionosphere by assimilating diverse data sets into a background model. Techniques have been developed to assimilate virtual height ionogram traces rather than relying on true height inversions. A test assimilation has been conducted using both GPS and ionosonde data as input. Postassimilation analysis shows that foF2 residuals can be degraded when only GPS data are assimilated. It has also been demonstrated that by using both data types it is possible to have low total electron content and foF2 residuals and that this is achieved by modifying the ionospheric slab thickness.
NASA Astrophysics Data System (ADS)
Lamouroux, Julien; Testut, Charles-Emmanuel; Lellouche, Jean-Michel; Perruche, Coralie; Paul, Julien
2017-04-01
The operational production of data-assimilated biogeochemical state of the ocean is one of the challenging core projects of the Copernicus Marine Environment Monitoring Service. In that framework - and with the April 2018 CMEMS V4 release as a target - Mercator Ocean is in charge of improving the realism of its global ¼° BIOMER coupled physical-biogeochemical (NEMO/PISCES) simulations, analyses and re-analyses, and to develop an effective capacity to routinely estimate the biogeochemical state of the ocean, through the implementation of biogeochemical data assimilation. Primary objectives are to enhance the time representation of the seasonal cycle in the real time and reanalysis systems, and to provide a better control of the production in the equatorial regions. The assimilation of BGC data will rely on a simplified version of the SEEK filter, where the error statistics do not evolve with the model dynamics. The associated forecast error covariances are based on the statistics of a collection of 3D ocean state anomalies. The anomalies are computed from a multi-year numerical experiment (free run without assimilation) with respect to a running mean in order to estimate the 7-day scale error on the ocean state at a given period of the year. These forecast error covariances rely thus on a fixed-basis seasonally variable ensemble of anomalies. This methodology, which is currently implemented in the "blue" component of the CMEMS operational forecast system, is now under adaptation to be applied to the biogeochemical part of the operational system. Regarding observations - and as a first step - the system shall rely on the CMEMS GlobColour Global Ocean surface chlorophyll concentration products, delivered in NRT. The objective of this poster is to provide a detailed overview of the implementation of the aforementioned data assimilation methodology in the CMEMS BIOMER forecasting system. Focus shall be put on (1) the assessment of the capabilities of this data assimilation methodology to provide satisfying statistics of the model variability errors (through space-time analysis of dedicated representers of satellite surface Chla observations), (2) the dedicated features of the data assimilation configuration that have been implemented so far (e.g. log-transformation of the analysis state, multivariate Chlorophyll-Nutrient control vector, etc.) and (3) the assessment of the performances of this future operational data assimilation configuration.
EMPIRE and pyenda: Two ensemble-based data assimilation systems written in Fortran and Python
NASA Astrophysics Data System (ADS)
Geppert, Gernot; Browne, Phil; van Leeuwen, Peter Jan; Merker, Claire
2017-04-01
We present and compare the features of two ensemble-based data assimilation frameworks, EMPIRE and pyenda. Both frameworks allow to couple models to the assimilation codes using the Message Passing Interface (MPI), leading to extremely efficient and fast coupling between models and the data-assimilation codes. The Fortran-based system EMPIRE (Employing Message Passing Interface for Researching Ensembles) is optimized for parallel, high-performance computing. It currently includes a suite of data assimilation algorithms including variants of the ensemble Kalman and several the particle filters. EMPIRE is targeted at models of all kinds of complexity and has been coupled to several geoscience models, eg. the Lorenz-63 model, a barotropic vorticity model, the general circulation model HadCM3, the ocean model NEMO, and the land-surface model JULES. The Python-based system pyenda (Python Ensemble Data Assimilation) allows Fortran- and Python-based models to be used for data assimilation. Models can be coupled either using MPI or by using a Python interface. Using Python allows quick prototyping and pyenda is aimed at small to medium scale models. pyenda currently includes variants of the ensemble Kalman filter and has been coupled to the Lorenz-63 model, an advection-based precipitation nowcasting scheme, and the dynamic global vegetation model JSBACH.
Nitrogen uptake and utilization by intact plants
NASA Technical Reports Server (NTRS)
Raper, C. D., Jr.; Tolley-Henry, L. C.
1986-01-01
The results of experiments support the proposed conceptual model that relates nitrogen uptake activity by plants as a balanced interdependence between the carbon-supplying function of the shoot and the nitrogen-supplying function of the roots. The data are being used to modify a dynamic simulation of plant growth, which presently describes carbon flows through the plant, to describe nitrogen uptake and assimilation within the plant system. Although several models have been proposed to predict nitrogen uptake and partitioning, they emphasize root characteristics affecting nutrient uptake and relay on empirical methods to describe the relationship between nitrogen and carbon flows within the plant. Researchers, on the other hand, propose to continue to attempt a mechanistic solution in which the effects of environment on nitrogen (as well as carbon) assimilation are incorporated through their direct effects on photosynthesis, respiration, and aging processes.
NASA Astrophysics Data System (ADS)
Folmer, Michael J.; Pasken, Robert W.; Chiao, Sen; Dunion, Jason; Halverson, Jeffrey
2016-12-01
Numerical simulations, using the weather research and forecasting (WRF) model in concert with GPS dropwindsondes released during the NASA African Monsoon Multidisciplinary Analyses 2006 Field Campaign, were conducted to provide additional insight on SAL-TC interaction. Using NCEP Final analysis datasets to initialize the WRF, a sensitivity test was performed on the assimilated (i.e., observation nudging) GPS dropwindsondes to understand the effects of individual variables (i.e., moisture, temperature, and winds) on the simulation and determine the extent of improvement when compared to available observations. The results suggested that GPS dropwindsonde temperature data provided the most significant difference in the simulated storm organization, storm strength, and synoptic environment, but all of the variables assimilated at the same time give a more representative mesoscale and synoptic picture.
NASA Technical Reports Server (NTRS)
Arellano, A. F., Jr.; Raeder, K.; Anderson, J. L.; Hess, P. G.; Emmons, L. K.; Edwards, D. P.; Pfister, G. G.; Campos, T. L.; Sachse, G. W.
2007-01-01
We present a global chemical data assimilation system using a global atmosphere model, the Community Atmosphere Model (CAM3) with simplified chemistry and the Data Assimilation Research Testbed (DART) assimilation package. DART is a community software facility for assimilation studies using the ensemble Kalman filter approach. Here, we apply the assimilation system to constrain global tropospheric carbon monoxide (CO) by assimilating meteorological observations of temperature and horizontal wind velocity and satellite CO retrievals from the Measurement of Pollution in the Troposphere (MOPITT) satellite instrument. We verify the system performance using independent CO observations taken on board the NSFINCAR C-130 and NASA DC-8 aircrafts during the April 2006 part of the Intercontinental Chemical Transport Experiment (INTEX-B). Our evaluations show that MOPITT data assimilation provides significant improvements in terms of capturing the observed CO variability relative to no MOPITT assimilation (i.e. the correlation improves from 0.62 to 0.71, significant at 99% confidence). The assimilation provides evidence of median CO loading of about 150 ppbv at 700 hPa over the NE Pacific during April 2006. This is marginally higher than the modeled CO with no MOPITT assimilation (-140 ppbv). Our ensemble-based estimates of model uncertainty also show model overprediction over the source region (i.e. China) and underprediction over the NE Pacific, suggesting model errors that cannot be readily explained by emissions alone. These results have important implications for improving regional chemical forecasts and for inverse modeling of CO sources and further demonstrate the utility of the assimilation system in comparing non-coincident measurements, e.g. comparing satellite retrievals of CO with in-situ aircraft measurements. The work described above also brought to light several short-comings of the data assimilation approach for CO profiles. Because of the limited vertical resolution of the measurement, the retrievals at different altitudes are correlated which can lead to problems with numerical error and overall efficiency. This has resulted in a manuscript that is about to be submitted to JGR:
NASA Astrophysics Data System (ADS)
Han, X.; Li, X.; He, G.; Kumbhar, P.; Montzka, C.; Kollet, S.; Miyoshi, T.; Rosolem, R.; Zhang, Y.; Vereecken, H.; Franssen, H.-J. H.
2015-08-01
Data assimilation has become a popular method to integrate observations from multiple sources with land surface models to improve predictions of the water and energy cycles of the soil-vegetation-atmosphere continuum. Multivariate data assimilation refers to the simultaneous assimilation of observation data from multiple model state variables into a simulation model. In recent years, several land data assimilation systems have been developed in different research agencies. Because of the software availability or adaptability, these systems are not easy to apply for the purpose of multivariate land data assimilation research. We developed an open source multivariate land data assimilation framework (DasPy) which is implemented using the Python script language mixed with the C++ and Fortran programming languages. LETKF (Local Ensemble Transform Kalman Filter) is implemented as the main data assimilation algorithm, and uncertainties in the data assimilation can be introduced by perturbed atmospheric forcing data, and represented by perturbed soil and vegetation parameters and model initial conditions. The Community Land Model (CLM) was integrated as the model operator. The implementation allows also parameter estimation (soil properties and/or leaf area index) on the basis of the joint state and parameter estimation approach. The Community Microwave Emission Modelling platform (CMEM), COsmic-ray Soil Moisture Interaction Code (COSMIC) and the Two-Source Formulation (TSF) were integrated as observation operators for the assimilation of L-band passive microwave, cosmic-ray soil moisture probe and land surface temperature measurements, respectively. DasPy has been evaluated in several assimilation studies of neutron count intensity (soil moisture), L-band brightness temperature and land surface temperature. DasPy is parallelized using the hybrid Message Passing Interface and Open Multi-Processing techniques. All the input and output data flows are organized efficiently using the commonly used NetCDF file format. Online 1-D and 2-D visualization of data assimilation results is also implemented to facilitate the post simulation analysis. In summary, DasPy is a ready to use open source parallel multivariate land data assimilation framework.
NASA Technical Reports Server (NTRS)
Kim, E.; Tedesco, M.; Reichle, R.; Choudhury, B.; Peters-Lidard C.; Foster, J.; Hall, D.; Riggs, G.
2006-01-01
Microwave-based retrievals of snow parameters from satellite observations have a long heritage and have so far been generated primarily by regression-based empirical "inversion" methods based on snapshots in time. Direct assimilation of microwave radiance into physical land surface models can be used to avoid errors associated with such retrieval/inversion methods, instead utilizing more straightforward forward models and temporal information. This approach has been used for years for atmospheric parameters by the operational weather forecasting community with great success. Recent developments in forward radiative transfer modeling, physical land surface modeling, and land data assimilation are converging to allow the assembly of an integrated framework for snow/cold lands modeling and radiance assimilation. The objective of the Goddard snow radiance assimilation project is to develop such a framework and explore its capabilities. The key elements of this framework include: a forward radiative transfer model (FRTM) for snow, a snowpack physical model, a land surface water/energy cycle model, and a data assimilation scheme. In fact, multiple models are available for each element enabling optimization to match the needs of a particular study. Together these form a modular and flexible framework for self-consistent, physically-based remote sensing and water/energy cycle studies. In this paper we will describe the elements and the integration plan. All modules will operate within the framework of the Land Information System (LIS), a land surface modeling framework with data assimilation capabilities running on a parallel-node computing cluster. Capabilities for assimilation of snow retrieval products are already under development for LIS. We will describe plans to add radiance-based assimilation capabilities. Plans for validation activities using field measurements will also be discussed.
NASA Technical Reports Server (NTRS)
Capotondi, Antonietta; Holland, William R.; Malanotte-Rizzoli, Paola
1995-01-01
The improvement in the climatological behavior of a numerical model as a consequence of the assimilation of surface data is investigated. The model used for this study is a quasigeostrophic (QG) model of the Gulf Stream region. The data that have been assimilated are maps of sea surface height that have been obtained as the superposition of sea surface height variability deduced from the Geosat altimeter measurements and a mean field constructed from historical hydrographic data. The method used for assimilating the data is the nudging technique. Nudging has been implemented in such a way as to achieve a high degree of convergence of the surface model fields toward the observations. Comparisons of the assimilation results with available in situ observations show a significant improvement in the degree of realism of the climatological model behavior, with respect to the model in which no data are assimilated. The remaining discrepancies in the model mean circulation seem to be mainly associated with deficiencies in the mean component of the surface data that are assimilated. On the other hand, the possibility of building into the model more realistic eddy characteristics through the assimilation of the surface eddy field proves very successful in driving components of the mean model circulation that are in relatively good agreement with the available observations. Comparisons with current meter time series during a time period partially overlapping the Geosat mission show that the model is able to 'correctly' extrapolate the instantaneous surface eddy signals to depths of approximately 1500 m. The correlation coefficient between current meter and model time series varies from values close to 0.7 in the top 1500 m to values as low as 0.1-0.2 in the deep ocean.
Response of an eddy-permitting ocean model to the assimilation of sparse in situ data
NASA Astrophysics Data System (ADS)
Li, Jian-Guo; Killworth, Peter D.; Smeed, David A.
2003-04-01
The response of an eddy-permitting ocean model to changes introduced by data assimilation is studied when the available in situ data are sparse in both space and time (typical for the majority of the ocean). Temperature and salinity (T&S) profiles from the WOCE upper ocean thermal data set were assimilated into a primitive equation ocean model over the North Atlantic, using a simple nudging scheme with a time window of about 2 days and a horizontal spatial radius of about 1°. When data are sparse the model returns to its unassimilated behavior, locally "forgetting" or rejecting the assimilation, on timescales determined by the local advection and diffusion. Increasing the spatial weighting radius effectively reduces both processes and hence lengthens the model restoring time (and with it, the impact of assimilation). Increasing the nudging factor enhances the assimilation effect but has little effect on the model restoring time.
Advances in Land Data Assimilation at the NASA Goddard Space Flight Center
NASA Technical Reports Server (NTRS)
Reichle, Rolf
2009-01-01
Research in land surface data assimilation has grown rapidly over the last decade. In this presentation we provide a brief overview of key research contributions by the NASA Goddard Space Flight Center (GSFC). The GSFC contributions to land assimilation primarily include the continued development and application of the Land Information System (US) and the ensemble Kalman filter (EnKF). In particular, we have developed a method to generate perturbation fields that are correlated in space, time, and across variables and that permit the flexible modeling of errors in land surface models and observations, along with an adaptive filtering approach that estimates observation and model error input parameters. A percentile-based scaling method that addresses soil moisture biases in model and observational estimates opened the path to the successful application of land data assimilation to satellite retrievals of surface soil moisture. Assimilation of AMSR-E surface soil moisture retrievals into the NASA Catchment model provided superior surface and root zone assimilation products (when validated against in situ measurements and compared to the model estimates or satellite observations alone). The multi-model capabilities of US were used to investigate the role of subsurface physics in the assimilation of surface soil moisture observations. Results indicate that the potential of surface soil moisture assimilation to improve root zone information is higher when the surface to root zone coupling is stronger. Building on this experience, GSFC leads the development of the Level 4 Surface and Root-Zone Soil Moisture (L4_SM) product for the planned NASA Soil-Moisture-Active-Passive (SMAP) mission. A key milestone was the design and execution of an Observing System Simulation Experiment that quantified the contribution of soil moisture retrievals to land data assimilation products as a function of retrieval and land model skill and yielded an estimate of the error budget for the SMAP L4_SM product. Terrestrial water storage observations from GRACE satellite system were also successfully assimilated into the NASA Catchment model and provided improved estimates of groundwater variability when compared to the model estimates alone. Moreover, satellite-based land surface temperature (LST) observations from the ISCCP archive were assimilated using a bias estimation module that was specifically designed for LST assimilation. As with soil moisture, LST assimilation provides modest yet statistically significant improvements when compared to the model or satellite observations alone. To achieve the improvement, however, the LST assimilation algorithm must be adapted to the specific formulation of LST in the land model. An improved method for the assimilation of snow cover observations was also developed. Finally, the coupling of LIS to the mesoscale Weather Research and Forecasting (WRF) model enabled investigations into how the sensitivity of land-atmosphere interactions to the specific choice of planetary boundary layer scheme and land surface model varies across surface moisture regimes, and how it can be quantified and evaluated against observations. The on-going development and integration of land assimilation modules into the Land Information System will enable the use of GSFC software with a variety of land models and make it accessible to the research community.
NASA Astrophysics Data System (ADS)
Sič, Bojan; El Amraoui, Laaziz; Piacentini, Andrea; Marécal, Virginie; Emili, Emanuele; Cariolle, Daniel; Prather, Michael; Attié, Jean-Luc
2016-11-01
In this study, we describe the development of the aerosol optical depth (AOD) assimilation module in the chemistry transport model (CTM) MOCAGE (Modèle de Chimie Atmosphérique à Grande Echelle). Our goal is to assimilate the spatially averaged 2-D column AOD data from the National Aeronautics and Space Administration (NASA) Moderate-resolution Imaging Spectroradiometer (MODIS) instrument, and to estimate improvements in a 3-D CTM assimilation run compared to a direct model run. Our assimilation system uses 3-D-FGAT (first guess at appropriate time) as an assimilation method and the total 3-D aerosol concentration as a control variable. In order to have an extensive validation dataset, we carried out our experiment in the northern summer of 2012 when the pre-ChArMEx (CHemistry and AeRosol MEditerranean EXperiment) field campaign TRAQA (TRAnsport à longue distance et Qualité de l'Air dans le bassin méditerranéen) took place in the western Mediterranean basin. The assimilated model run is evaluated independently against a range of aerosol properties (2-D and 3-D) measured by in situ instruments (the TRAQA size-resolved balloon and aircraft measurements), the satellite Spinning Enhanced Visible and InfraRed Imager (SEVIRI) instrument and ground-based instruments from the Aerosol Robotic Network (AERONET) network. The evaluation demonstrates that the AOD assimilation greatly improves aerosol representation in the model. For example, the comparison of the direct and the assimilated model run with AERONET data shows that the assimilation increased the correlation (from 0.74 to 0.88), and reduced the bias (from 0.050 to 0.006) and the root mean square error in the AOD (from 0.12 to 0.07). When compared to the 3-D concentration data obtained by the in situ aircraft and balloon measurements, the assimilation consistently improves the model output. The best results as expected occur when the shape of the vertical profile is correctly simulated by the direct model. We also examine how the assimilation can influence the modelled aerosol vertical distribution. The results show that a 2-D continuous AOD assimilation can improve the 3-D vertical profile, as a result of differential horizontal transport of aerosols in the model.
NASA Technical Reports Server (NTRS)
Peters-Lidard, Christa D.; Kumar, Sujay V.; Santanello, Joseph A., Jr.; Reichle, Rolf H.
2009-01-01
The Land Information System (LIS; http://lis.gsfc.nasa.gov; Kumar et al., 2006; Peters- Lidard et al.,2007) is a flexible land surface modeling framework that has been developed with the goal of integrating satellite- and ground-based observational data products and advanced land surface modeling techniques to produce optimal fields of land surface states and fluxes. As such, LIS represents a step towards the next generation land component of an integrated Earth system model. In recognition of LIS object-oriented software design, use and impact in the land surface and hydrometeorological modeling community, the LIS software was selected ase co-winner of NASA's 2005 Software of the Year award. LIS facilitates the integration of observations from Earth-observing systems and predictions and forecasts from Earth System and Earth science models into the decision-making processes of partnering agency and national organizations. Due to its flexible software design, LIS can serve both as a Problem Solving Environment (PSE) for hydrologic research to enable accurate global water and energy cycle predictions, and as a Decision Support System (DSS) to generate useful information for application areas including disaster management, water resources management, agricultural management, numerical weather prediction, air quality and military mobility assessment. LIS has evolved from two earlier efforts North American Land Data Assimilation System (NLDAS; Mitchell et al. 2004) and Global Land Data Assimilation System (GLDAS; Rodell al. 2004) that focused primarily on improving numerical weather prediction skills by improving the characterization of the land surface conditions. Both of GLDAS and NLDAS now use specific configurations of the LIS software in their current implementations. In addition, LIS was recently transitioned into operations at the US Air Force Weather Agency (AFWA) to ultimately replace their Agricultural Meteorology (AGRMET) system, and is also used routinely by NOAA's National Centers for Environmental Prediction (NCEP)/Environmental Modeling Center (EMC) for their land data assimilation systems to support weather and climate modeling. LIS not only consolidates the capabilities of these two systems, but also enables a much larger variety of configurations with respect to horizontal spatial resolution, input datasets and choice of land surface model through "plugins,". As described in Kumar et al., 2007, and demonstrated in Case et al., 2008, and Santanello et al., 2009, LIS has been coupled to the Weather Research and Forecasting (WRF) model to support studies of land-atmosphere coupling the enabling ensembles of land surface states to be tested against multiple representations of the atmospheric boundary layer. LIS has also been demonstrated for parameter estimation as described in Peters-Lidard et al. (2008) and Santanello et al. (2007), who showed that the use of sequential remotely sensed soil moisture products can be used to derive soil hydraulic and texture properties given a sufficient dynamic range in the soil moisture retrievals and accurate precipitation inputs. LIS has also recently been demonstrated for multi-model data assimilation (Kumar et al., 2008) using an Ensemble Kalman Filter for sequential assimilation of soil moisture, snow, and temperature. Ongoing work has demonstrated the value of bias correction as part of the filter, and also that of joint calibration and assimilation. Examples and case studies demonstrating the capabilities and impacts of LIS for hydrometeoroogical modeling, assimilation and parameter estimation will be presented as advancements towards the next generation of integrated observation and modeling systems.
A hybrid variational ensemble data assimilation for the HIgh Resolution Limited Area Model (HIRLAM)
NASA Astrophysics Data System (ADS)
Gustafsson, N.; Bojarova, J.; Vignes, O.
2014-02-01
A hybrid variational ensemble data assimilation has been developed on top of the HIRLAM variational data assimilation. It provides the possibility of applying a flow-dependent background error covariance model during the data assimilation at the same time as full rank characteristics of the variational data assimilation are preserved. The hybrid formulation is based on an augmentation of the assimilation control variable with localised weights to be assigned to a set of ensemble member perturbations (deviations from the ensemble mean). The flow-dependency of the hybrid assimilation is demonstrated in single simulated observation impact studies and the improved performance of the hybrid assimilation in comparison with pure 3-dimensional variational as well as pure ensemble assimilation is also proven in real observation assimilation experiments. The performance of the hybrid assimilation is comparable to the performance of the 4-dimensional variational data assimilation. The sensitivity to various parameters of the hybrid assimilation scheme and the sensitivity to the applied ensemble generation techniques are also examined. In particular, the inclusion of ensemble perturbations with a lagged validity time has been examined with encouraging results.
Chapelle, D; Fragu, M; Mallet, V; Moireau, P
2013-11-01
We present the fundamental principles of data assimilation underlying the Verdandi library, and how they are articulated with the modular architecture of the library. This translates--in particular--into the definition of standardized interfaces through which the data assimilation library interoperates with the model simulation software and the so-called observation manager. We also survey various examples of data assimilation applied to the personalization of biophysical models, in particular, for cardiac modeling applications within the euHeart European project. This illustrates the power of data assimilation concepts in such novel applications, with tremendous potential in clinical diagnosis assistance.
NASA Astrophysics Data System (ADS)
Pan, Xiaoduo; Li, Xin; Cheng, Guodong
2017-04-01
Traditionally, ground-based, in situ observations, remote sensing, and regional climate modeling, individually, cannot provide the high-quality precipitation data required for hydrological prediction, especially over complex terrain. Data assimilation techniques are often used to assimilate ground observations and remote sensing products into models for dynamic downscaling. In this study, the Weather Research and Forecasting (WRF) model was used to assimilate two satellite precipitation products (TRMM 3B42 and FY-2D) using the 4D-Var data assimilation method. The results show that the assimilation of remote sensing precipitation products can improve the initial WRF fields of humidity and temperature, thereby improving precipitation forecasting and decreasing the spin-up time. Hence, assimilating TRMM and FY-2D remote sensing precipitation products using WRF 4D-Var can be viewed as a positive step toward improving the accuracy and lead time of numerical weather prediction models, particularly for short-term weather forecasting. Future work is proposed to assimilate a suite of remote sensing data, e.g., the combination of precipitation and soil moisture data, into a WRF model to improve 7-8 day forecasts of precipitation and other atmospheric variables.
NASA Technical Reports Server (NTRS)
Manobianco, John; Uccellini, Louis W.; Brill, Keith F.; Kuo, Ying-Hwa
1992-01-01
A mesoscale numerical model is combined with a dynamic data assimilation via Newtonian relaxation, or 'nudging', to provide initial conditions for subsequent simulations of the QE II cyclone. Both the nudging technique and the inclusion of supplementary data are shown to have a large positive impact on the simulation of the QE II cyclone during the initial phase of rapid cyclone development. Within the initial development period (from 1200 to 1800 UTC 9 September 1978), the dynamic assimilation of operational and bogus data yields a coherent two-layer divergence pattern that is not well defined in the model run using only the operational data and static initialization. Diagnostic analysis based on the simulations show that the initial development of the QE II storm between 0000 UTC 9 September and 0000 UTC 10 September was embedded within an indirect circulation of an intense 300-hPa jet streak, was related to baroclinic processes extending throughout a deep portion of the troposphere, and was associated with a classic two-layer mass-divergence profile expected for an extratropical cyclone.
NASA Astrophysics Data System (ADS)
Brasseur, Pierre
2015-04-01
The MyOcean projects supported by the European Commission period have been developed during the 2008-2015 period to build an operational service of ocean physical state and ecosystem information to intermediate and downstream users in the areas of marine safety, marine resources, marine and coastal environment and weather, climate and seasonal forecasting. The "core" information provided to users is obtained through the combination of satellite and in situ observations, eddy-resolving modelling of the global ocean and regional european seas, biochemistry, ecosystem and sea-ice modelling, and data assimilation for global to basin scale circulation. A comprehensive R&D plan was established in 2010 to ensure the collection and provision of information of best possible quality for daily estimates of the ocean state (real-time), its short-term evolution, and its history over the past (reanalyses). A service validation methodology was further developed to ensure proper scientific evaluation and routine monitoring of the accuracy of MyOcean products. In this presentation, we will present an overview of the main scientific advances achieved in MyOcean using the NEMO modelling platform, ensemble-based assimilation schemes, coupled circulation-ecosystem, sea-ice assimilative models and probabilistic methodologies for ensemble validation. We will further highlight the key areas that will require additional innovation effort to support the Marine Copernicus service evolution.
Multi-parametric variational data assimilation for hydrological forecasting
NASA Astrophysics Data System (ADS)
Alvarado-Montero, R.; Schwanenberg, D.; Krahe, P.; Helmke, P.; Klein, B.
2017-12-01
Ensemble forecasting is increasingly applied in flow forecasting systems to provide users with a better understanding of forecast uncertainty and consequently to take better-informed decisions. A common practice in probabilistic streamflow forecasting is to force deterministic hydrological model with an ensemble of numerical weather predictions. This approach aims at the representation of meteorological uncertainty but neglects uncertainty of the hydrological model as well as its initial conditions. Complementary approaches use probabilistic data assimilation techniques to receive a variety of initial states or represent model uncertainty by model pools instead of single deterministic models. This paper introduces a novel approach that extends a variational data assimilation based on Moving Horizon Estimation to enable the assimilation of observations into multi-parametric model pools. It results in a probabilistic estimate of initial model states that takes into account the parametric model uncertainty in the data assimilation. The assimilation technique is applied to the uppermost area of River Main in Germany. We use different parametric pools, each of them with five parameter sets, to assimilate streamflow data, as well as remotely sensed data from the H-SAF project. We assess the impact of the assimilation in the lead time performance of perfect forecasts (i.e. observed data as forcing variables) as well as deterministic and probabilistic forecasts from ECMWF. The multi-parametric assimilation shows an improvement of up to 23% for CRPS performance and approximately 20% in Brier Skill Scores with respect to the deterministic approach. It also improves the skill of the forecast in terms of rank histogram and produces a narrower ensemble spread.
Methodological Developments in Geophysical Assimilation Modeling
NASA Astrophysics Data System (ADS)
Christakos, George
2005-06-01
This work presents recent methodological developments in geophysical assimilation research. We revisit the meaning of the term "solution" of a mathematical model representing a geophysical system, and we examine its operational formulations. We argue that an assimilation solution based on epistemic cognition (which assumes that the model describes incomplete knowledge about nature and focuses on conceptual mechanisms of scientific thinking) could lead to more realistic representations of the geophysical situation than a conventional ontologic assimilation solution (which assumes that the model describes nature as is and focuses on form manipulations). Conceptually, the two approaches are fundamentally different. Unlike the reasoning structure of conventional assimilation modeling that is based mainly on ad hoc technical schemes, the epistemic cognition approach is based on teleologic criteria and stochastic adaptation principles. In this way some key ideas are introduced that could open new areas of geophysical assimilation to detailed understanding in an integrated manner. A knowledge synthesis framework can provide the rational means for assimilating a variety of knowledge bases (general and site specific) that are relevant to the geophysical system of interest. Epistemic cognition-based assimilation techniques can produce a realistic representation of the geophysical system, provide a rigorous assessment of the uncertainty sources, and generate informative predictions across space-time. The mathematics of epistemic assimilation involves a powerful and versatile spatiotemporal random field theory that imposes no restriction on the shape of the probability distributions or the form of the predictors (non-Gaussian distributions, multiple-point statistics, and nonlinear models are automatically incorporated) and accounts rigorously for the uncertainty features of the geophysical system. In the epistemic cognition context the assimilation concept may be used to investigate critical issues related to knowledge reliability, such as uncertainty due to model structure error (conceptual uncertainty).
Tethered Satellites as Enabling Platforms for an Operational Space Weather Monitoring System
NASA Technical Reports Server (NTRS)
Krause, L. Habash; Gilchrist, B. E.; Bilen, S.; Owens, J.; Voronka, N.; Furhop, K.
2013-01-01
Space weather nowcasting and forecasting models require assimilation of near-real time (NRT) space environment data to improve the precision and accuracy of operational products. Typically, these models begin with a climatological model to provide "most probable distributions" of environmental parameters as a function of time and space. The process of NRT data assimilation gently pulls the climate model closer toward the observed state (e.g. via Kalman smoothing) for nowcasting, and forecasting is achieved through a set of iterative physics-based forward-prediction calculations. The issue of required space weather observatories to meet the spatial and temporal requirements of these models is a complex one, and we do not address that with this poster. Instead, we present some examples of how tethered satellites can be used to address the shortfalls in our ability to measure critical environmental parameters necessary to drive these space weather models. Examples include very long baseline electric field measurements, magnetized ionospheric conductivity measurements, and the ability to separate temporal from spatial irregularities in environmental parameters. Tethered satellite functional requirements will be presented for each space weather parameter considered in this study.
NASA Astrophysics Data System (ADS)
Lee, H.; Seo, D.-J.; Liu, Y.; Koren, V.; McKee, P.; Corby, R.
2012-01-01
State updating of distributed rainfall-runoff models via streamflow assimilation is subject to overfitting because large dimensionality of the state space of the model may render the assimilation problem seriously under-determined. To examine the issue in the context of operational hydrology, we carry out a set of real-world experiments in which streamflow data is assimilated into gridded Sacramento Soil Moisture Accounting (SAC-SMA) and kinematic-wave routing models of the US National Weather Service (NWS) Research Distributed Hydrologic Model (RDHM) with the variational data assimilation technique. Study basins include four basins in Oklahoma and five basins in Texas. To assess the sensitivity of data assimilation performance to dimensionality reduction in the control vector, we used nine different spatiotemporal adjustment scales, where state variables are adjusted in a lumped, semi-distributed, or distributed fashion and biases in precipitation and potential evaporation (PE) are adjusted hourly, 6-hourly, or kept time-invariant. For each adjustment scale, three different streamflow assimilation scenarios are explored, where streamflow observations at basin interior points, at the basin outlet, or at both interior points and the outlet are assimilated. The streamflow assimilation experiments with nine different basins show that the optimum spatiotemporal adjustment scale varies from one basin to another and may be different for streamflow analysis and prediction in all of the three streamflow assimilation scenarios. The most preferred adjustment scale for seven out of nine basins is found to be the distributed, hourly scale, despite the fact that several independent validation results at this adjustment scale indicated the occurrence of overfitting. Basins with highly correlated interior and outlet flows tend to be less sensitive to the adjustment scale and could benefit more from streamflow assimilation. In comparison to outlet flow assimilation, interior flow assimilation at any adjustment scale produces streamflow predictions with a spatial correlation structure more consistent with that of streamflow observations. We also describe diagnosing the complexity of the assimilation problem using the spatial correlation information associated with the streamflow process, and discuss the effect of timing errors in a simulated hydrograph on the performance of the data assimilation procedure.
NASA Astrophysics Data System (ADS)
Haussaire, Jean-Matthieu; Bocquet, Marc
2016-04-01
Atmospheric chemistry models are becoming increasingly complex, with multiphasic chemistry, size-resolved particulate matter, and possibly coupled to numerical weather prediction models. In the meantime, data assimilation methods have also become more sophisticated. Hence, it will become increasingly difficult to disentangle the merits of data assimilation schemes, of models, and of their numerical implementation in a successful high-dimensional data assimilation study. That is why we believe that the increasing variety of problems encountered in the field of atmospheric chemistry data assimilation puts forward the need for simple low-order models, albeit complex enough to capture the relevant dynamics, physics and chemistry that could impact the performance of data assimilation schemes. Following this analysis, we developped a low-order coupled chemistry meteorology model named L95-GRS [1]. The advective wind is simulated by the Lorenz-95 model, while the chemistry is made of 6 reactive species and simulates ozone concentrations. With this model, we carried out data assimilation experiments to estimate the state of the system as well as the forcing parameter of the wind and the emissions of chemical compounds. This model proved to be a powerful playground giving insights on the hardships of online and offline estimation of atmospheric pollution. Building on the results on this low-order model, we test advanced data assimilation methods on a state-of-the-art chemical transport model to check if the conclusions obtained with our low-order model still stand. References [1] Haussaire, J.-M. and Bocquet, M.: A low-order coupled chemistry meteorology model for testing online and offline data assimilation schemes, Geosci. Model Dev. Discuss., 8, 7347-7394, doi:10.5194/gmdd-8-7347-2015, 2015.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lancaster, Andrew; Menon, Angeli; Scott, Israel
2014-03-26
Although as many as half of all proteins are thought to require a metal cofactor, the metalloproteomes of microorganisms remain relatively unexplored. Microorganisms from different environments are likely to vary greatly in the metals that they assimilate, not just among the metals with well-characterized roles but also those lacking any known function. Herein we investigated the metal utilization of two microorganisms that were isolated from very similar environments and are of interest because of potential roles in the immobilization of heavy metals, such as uranium and chromium. The metals assimilated and their concentrations in the cytoplasm of Desulfovibrio vulgaris strainmore » Hildenborough (DvH) and Enterobacter cloacae strain Hanford (EcH) varied dramatically, with a larger number of metals present in Enterobacter. For example, a total of 9 and 19 metals were assimilated into their cytoplasmic fractions, respectively, and DvH did not assimilate significant amounts of zinc or copper whereas EcH assimilated both. However, bioinformatic analysis of their genome sequences revealed a comparable number of predicted metalloproteins, 813 in DvH and 953 in EcH. These allowed some rationalization of the types of metal assimilated in some cases (Fe, Cu, Mo, W, V) but not in others (Zn, Nd, Ce, Pr, Dy, Hf and Th). It was also shown that U binds an unknown soluble protein in EcH but this incorporation was the result of extracellular U binding to cytoplasmic components after cell lysis.« less
NASA Astrophysics Data System (ADS)
Rakesh, V.; Kantharao, B.
2017-03-01
Data assimilation is considered as one of the effective tools for improving forecast skill of mesoscale models. However, for optimum utilization and effective assimilation of observations, many factors need to be taken into account while designing data assimilation methodology. One of the critical components that determines the amount and propagation observation information into the analysis, is model background error statistics (BES). The objective of this study is to quantify how BES in data assimilation impacts on simulation of heavy rainfall events over a southern state in India, Karnataka. Simulations of 40 heavy rainfall events were carried out using Weather Research and Forecasting Model with and without data assimilation. The assimilation experiments were conducted using global and regional BES while the experiment with no assimilation was used as the baseline for assessing the impact of data assimilation. The simulated rainfall is verified against high-resolution rain-gage observations over Karnataka. Statistical evaluation using several accuracy and skill measures shows that data assimilation has improved the heavy rainfall simulation. Our results showed that the experiment using regional BES outperformed the one which used global BES. Critical thermo-dynamic variables conducive for heavy rainfall like convective available potential energy simulated using regional BES is more realistic compared to global BES. It is pointed out that these results have important practical implications in design of forecast platforms while decision-making during extreme weather events
NASA Astrophysics Data System (ADS)
Shprits, Y.; Zhelavskaya, I. S.; Kellerman, A. C.; Spasojevic, M.; Kondrashov, D. A.; Ghil, M.; Aseev, N.; Castillo Tibocha, A. M.; Cervantes Villa, J. S.; Kletzing, C.; Kurth, W. S.
2017-12-01
Increasing volume of satellite measurements requires deployment of new tools that can utilize such vast amount of data. Satellite measurements are usually limited to a single location in space, which complicates the data analysis geared towards reproducing the global state of the space environment. In this study we show how measurements can be combined by means of data assimilation and how machine learning can help analyze large amounts of data and can help develop global models that are trained on single point measurement. Data Assimilation: Manual analysis of the satellite measurements is a challenging task, while automated analysis is complicated by the fact that measurements are given at various locations in space, have different instrumental errors, and often vary by orders of magnitude. We show results of the long term reanalysis of radiation belt measurements along with fully operational real-time predictions using data assimilative VERB code. Machine Learning: We present application of the machine learning tools for the analysis of NASA Van Allen Probes upper-hybrid frequency measurements. Using the obtained data set we train a new global predictive neural network. The results for the Van Allen Probes based neural network are compared with historical IMAGE satellite observations. We also show examples of predictions of geomagnetic indices using neural networks. Combination of machine learning and data assimilation: We discuss how data assimilation tools and machine learning tools can be combine so that physics-based insight into the dynamics of the particular system can be combined with empirical knowledge of it's non-linear behavior.
NASA Astrophysics Data System (ADS)
Zick, Stephanie E.; Matyas, Corene J.
2015-09-01
Continued advancement in the realm of tropical cyclone (TC) forecasting requires a more accurate depiction of these storms at model initialization. This study examines the impact of precipitation assimilation on the representation of TCs in the North American Regional Reanalysis before and after the 2004 introduction of precipitation assimilation over ocean in the vicinity of TCs. The probability distribution function of rainfall rates indicates that light (heavy) precipitation was overforecast (underforecast) in the early time period. Since the precipitation assimilation is applied through an adjustment to the latent heating distribution, the data assimilation system in the later time period initializes a low-level moisture and heating profile that is more conducive to the initiation of deep convection and the generation of precipitation. Consequently, the deep convection and enhanced latent heat release lead to a more robust warm-core temperature perturbation and a better developed secondary circulation, which supplies the TC with larger quantities of moisture from the large-scale environment. Furthermore, the evolution of TC size, which was objectively estimated though the radius of outermost closed isobar, is significantly more skillful (p < 0.05) in post-2003 storms. Based on this study, precipitation assimilation leads to a better analysis of temperature, winds, and moisture in the vicinity of TCs, resulting in improved representations of the water budget and storm life cycle. Therefore, we conclude that efforts toward the development of precipitation assimilation techniques from radar and satellite data sets will be valuable toward the construction of improved TC forecasting tools with more authentic TC representation.
Usefulness of Wave Data Assimilation to the WAVE WATCH III Modeling System
NASA Astrophysics Data System (ADS)
Choi, J. K.; Dykes, J. D.; Yaremchuk, M.; Wittmann, P.
2017-12-01
In-situ and remote-sensed wave data are more abundant currently than in years past, with excellent accuracy at global scales. Forecast skill of the WAVE WATCH III model is improved by assimilation of these measurements and they are also useful for model validation and calibration. It has been known that the impact of assimilation in wind-sea conditions is not large, but spectra that result in large swell with long term propagation are identified and assimilated, the improved accuracy of the initial conditions improve the long-term forecasts. The Navy's assimilation method started with the simple Optimal Interpolation (OI) method. Operationally, Fleet Numerical Meteorology and Oceanography Center uses the sequential 2DVar scheme, but a new approach has been tested based on an adjoint-free method to variational assimilation in WAVE WATCH III. We will present the status of wave data assimilation into the WAVE WATCH III numerical model and upcoming development of this new adjoint-free variational approach.
NASA Technical Reports Server (NTRS)
Hou, Arthur Y.; Zhang, Sara Q.; Reale, Oreste
2003-01-01
We describe a variational continuous assimilation (VCA) algorithm for assimilating tropical rainfall data using moisture and temperature tendency corrections as the control variable to offset model deficiencies. For rainfall assimilation, model errors are of special concern since model-predicted precipitation is based on parameterized moist physics, which can have substantial systematic errors. This study examines whether a VCA scheme using the forecast model as a weak constraint offers an effective pathway to precipitation assimilation. The particular scheme we exarnine employs a '1+1' dimension precipitation observation operator based on a 6-h integration of a column model of moist physics from the Goddard Earth Observing System (GEOS) global data assimilation system DAS). In earlier studies, we tested a simplified version of this scheme and obtained improved monthly-mean analyses and better short-range forecast skills. This paper describes the full implementation ofthe 1+1D VCA scheme using background and observation error statistics, and examines how it may improve GEOS analyses and forecasts of prominent tropical weather systems such as hurricanes. Parallel assimilation experiments with and without rainfall data for Hurricanes Bonnie and Floyd show that assimilating 6-h TMI and SSM/I surfice rain rates leads to more realistic storm features in the analysis, which, in turn, provide better initial conditions for 5-day storm track prediction and precipitation forecast. These results provide evidence that addressing model deficiencies in moisture tendency may be crucial to making effective use of precipitation information in data assimilation.
DART: New Research Using Ensemble Data Assimilation in Geophysical Models
NASA Astrophysics Data System (ADS)
Hoar, T. J.; Raeder, K.
2015-12-01
The Data Assimilation Research Testbed (DART) is a community facilityfor ensemble data assimilation developed and supported by the NationalCenter for Atmospheric Research. DART provides a comprehensive suite of software, documentation, and tutorials that can be used for ensemble data assimilation research, operations, and education. Scientists and software engineers at NCAR are available to support DART users who want to use existing DART products or develop their own applications. Current DART users range from university professors teaching data assimilation, to individual graduate students working with simple models, through national laboratories doing operational prediction with large state-of-the-art models. DART runs efficiently on many computational platforms ranging from laptops through thousands of cores on the newest supercomputers.This poster focuses on several recent research activities using DART with geophysical models.Using CAM/DART to understand whether OCO-2 Total Precipitable Water observations can be useful in numerical weather prediction.Impacts of the synergistic use of Infra-red CO retrievals (MOPITT, IASI) in CAM-CHEM/DART assimilations.Assimilation and Analysis of Observations of Amazonian Biomass Burning Emissions by MOPITT (aerosol optical depth), MODIS (carbon monoxide) and MISR (plume height).Long term evaluation of the chemical response of MOPITT-CO assimilation in CAM-CHEM/DART OSSEs for satellite planning and emission inversion capabilities.Improved forward observation operators for land models that have multiple land use/land cover segments in a single grid cell,Simulating mesoscale convective systems (MCSs) using a variable resolution, unstructured grid in the Model for Prediction Across Scales (MPAS) and DART.The mesoscale WRF+DART system generated an ensemble of year-long, real-time initializations of a convection allowing model over the United States.Constraining WACCM with observations in the tropical band (30S-30N) using DART also constrains the polar stratosphere during the same winter. Assimilation of MOPITT carbon monoxide Compact Phase Space Retrievals (CPSR) in WRF-Chem/DART.Future work:DART interface to the CICE (CESM) sea ice model.Fully coupled assimilations in CESM.
Peltier, Drew M P; Ibáñez, Inés
2015-01-01
Predicting future forests' structure and functioning is a critical goal for ecologists, thus information on seedling recruitment will be crucial in determining the composition and structure of future forest ecosystems. In particular, seedlings' photosynthetic response to a changing environment will be a key component determining whether particular species establish enough individuals to maintain populations, as growth is a major determinant of survival. We quantified photosynthetic responses of sugar maple (Acer saccharum Marsh.), pignut hickory (Carya glabra Mill.), northern red oak (Quercus rubra L.) and eastern black oak (Quercus velutina Lam.) seedlings to environmental conditions including light habitat, temperature, soil moisture and vapor pressure deficit (VPD) using extensive in situ gas exchange measurements spanning an entire growing season. We estimated the parameters in a hierarchical Bayesian version of the Farquhar model of photosynthesis, additionally informed by soil moisture and VPD, and found that maximum Rubisco carboxylation (V(cmax)) and electron transport (J(max)) rates showed significant seasonal variation, but not the peaked patterns observed in studies of adult trees. Vapor pressure deficit and soil moisture limited J(max) and V(cmax) for all four species. Predictions indicate large declines in summer carbon assimilation rates under a 3 °C increase in mean annual temperature projected by climate models, while spring and fall assimilation rates may increase. Our model predicts decreases in summer assimilation rates in gap habitats with at least 90% probability, and with 20-99.9% probability in understory habitats depending on species. Predictions also show 70% probability of increases in fall and 52% probability in spring in understory habitats. All species were impacted, but our findings suggest that oak species may be favored in northeastern North America under projected increases in temperature due to superior assimilation rates under these conditions, though as growing seasons become longer, the effects of climate change on seedling photosynthesis may be complex. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Assimilation of Satellite-Derived Skin Temperature Observations into Land Surface Models
NASA Technical Reports Server (NTRS)
Reichle, Rolf H.; Kumar, Sujay V.; Mahanama, P. P.; Koster, Randal D.; Liu, Q.
2010-01-01
Land surface (or "skin") temperature (LST) lies at the heart of the surface energy balance and is a key variable in weather and climate models. Here we assimilate LST retrievals from the International Satellite Cloud Climatology Project (ISCCP) into the Noah and Catchment (CLSM) land surface models using an ensemble-based, off-line land data assimilation system. LST is described very differently in the two models. A priori scaling and dynamic bias estimation approaches are applied because satellite and model LST typically exhibit different mean values and variability. Performance is measured against 27 months of in situ measurements from the Coordinated Energy and Water Cycle Observations Project at 48 stations. LST estimates from Noah and CLSM without data assimilation ("open loop") are comparable to each other and superior to that of ISCCP retrievals. For LST, RMSE values are 4.9 K (CLSM), 5.6 K (Noah), and 7.6 K (ISCCP), and anomaly correlation coefficients (R) are 0.62 (CLSM), 0.61 (Noah), and 0.52 (ISCCP). Assimilation of ISCCP retrievals provides modest yet statistically significant improvements (over open loop) of up to 0.7 K in RMSE and 0.05 in anomaly R. The skill of surface turbulent flux estimates from the assimilation integrations is essentially identical to the corresponding open loop skill. Noah assimilation estimates of ground heat flux, however, can be significantly worse than open loop estimates. Provided the assimilation system is properly adapted to each land model, the benefits from the assimilation of LST retrievals are comparable for both models.
The Met Office Coupled Atmosphere/Land/Ocean/Sea-Ice Data Assimilation System
NASA Astrophysics Data System (ADS)
Lea, Daniel; Mirouze, Isabelle; King, Robert; Martin, Matthew; Hines, Adrian
2015-04-01
The Met Office has developed a weakly-coupled data assimilation (DA) system using the global coupled model HadGEM3 (Hadley Centre Global Environment Model, version 3). At present the analysis from separate ocean and atmosphere DA systems are combined to produced coupled forecasts. The aim of coupled DA is to produce a more consistent analysis for coupled forecasts which may lead to less initialisation shock and improved forecast performance. The HadGEM3 coupled model combines the atmospheric model UM (Unified Model) at 60 km horizontal resolution on 85 vertical levels, the ocean model NEMO (Nucleus for European Modelling of the Ocean) at 25 km (at the equator) horizontal resolution on 75 vertical levels, and the sea-ice model CICE at the same resolution as NEMO. The atmosphere and the ocean/sea-ice fields are coupled every 1-hour using the OASIS coupler. The coupled model is corrected using two separate 6-hour window data assimilation systems: a 4D-Var for the atmosphere with associated soil moisture content nudging and snow analysis schemes on the one hand, and a 3D-Var FGAT for the ocean and sea-ice on the other hand. The background information in the DA systems comes from a previous 6-hour forecast of the coupled model. To isolate the impact of the coupled DA, 13-month experiments have been carried out, including 1) a full atmosphere/land/ocean/sea-ice coupled DA run, 2) an atmosphere-only run forced by OSTIA SSTs and sea-ice with atmosphere and land DA, and 3) an ocean-only run forced by atmospheric fields from run 2 with ocean and sea-ice DA. In addition, 5-day and 10-day forecast runs, have been produced from initial conditions generated by either run 1 or a combination of runs 2 and 3. The different results have been compared to each other and, whenever possible, to other references such as the Met Office atmosphere and ocean operational analyses or the OSTIA SST data. The performance of the coupled DA is similar to the existing separate ocean and atmosphere DA systems. This is despite the fact that the assimilation error covariances have not yet been tuned for coupled DA. In addition, the coupled model also exhibits some biases which do not affect the uncoupled models. An example is precipitation and run off errors affecting the ocean salinity. This of course impacts the performance of the ocean data assimilation. This does, however, highlight a particular benefit of data assimilation in that it can help to identify short term model biases by using, for example, the differences between the observations and model background (innovations) and the mean increments. Coupled DA has the distinct advantage that this gives direct information about the coupled model short term biases. By identifying the biases and developing solutions this will improve the short range coupled forecasts, and may also improve the coupled model on climate timescales.
Preliminary Results from an Assimilation of TOMS Aerosol Observations Into the GOCART Model
NASA Technical Reports Server (NTRS)
daSilva, Arlindo; Weaver, Clark J.; Ginoux, Paul; Torres, Omar; Einaudi, Franco (Technical Monitor)
2000-01-01
At NASA Goddard we are developing a global aerosol data assimilation system that combines advances in remote sensing and modeling of atmospheric aerosols. The goal is to provide high resolution, 3-D aerosol distributions to the research community. Our first step is to develop a simple assimilation system for Saharan mineral aerosol. The Goddard Chemistry and Aerosol Radiation model (GOCART) provides accurate 3-D mineral aerosol size distributions that compare well with TOMS satellite observations. Surface, mobilization, wet and dry deposition, convective and long-range transport are all driven by assimilated fields from the Goddard Earth Observing System Data Assimilation System, GEOS-DAS. Our version of GOCART transports sizes from.08-10 microns and only simulates Saharan dust. TOMS radiance observations in the ultra violet provide information on the mineral and carbonaceous aerosol fields. We use two main observables in this study: the TOMS aerosol index (AI) which is directly related to the ratio of the 340 and 380 radiances and the 380 radiance. These are sensitive to the aerosol optical thickness, the single scattering albedo and the height of the aerosol layer. The Goddard Aerosol Assimilation System (GAAS) uses the Data Assimilation Office's Physical-space Statistical Analysis System (PSAS) to combine TOMS observations and GOCART model first guess fields. At this initial phase we only assimilate observations into the the GOCART model over regions of Africa and the Atlantic where mineral aerosols dominant and carbonaceous aerosols are minimal, Our preliminary results during summer show that the assimilation with TOMS data modifies both the aerosol mass loading and the single scattering albedo. Assimilated aerosol fields will be compared with assimilated aerosol fields from GOCART and AERONET observations over Cape Verde.
NASA Technical Reports Server (NTRS)
Keppenne, C. L.; Rienecker, M.; Borovikov, A. Y.
1999-01-01
Two massively parallel data assimilation systems in which the model forecast-error covariances are estimated from the distribution of an ensemble of model integrations are applied to the assimilation of 97-98 TOPEX/POSEIDON altimetry and TOGA/TAO temperature data into a Pacific basin version the NASA Seasonal to Interannual Prediction Project (NSIPP)ls quasi-isopycnal ocean general circulation model. in the first system, ensemble of model runs forced by an ensemble of atmospheric model simulations is used to calculate asymptotic error statistics. The data assimilation then occurs in the reduced phase space spanned by the corresponding leading empirical orthogonal functions. The second system is an ensemble Kalman filter in which new error statistics are computed during each assimilation cycle from the time-dependent ensemble distribution. The data assimilation experiments are conducted on NSIPP's 512-processor CRAY T3E. The two data assimilation systems are validated by withholding part of the data and quantifying the extent to which the withheld information can be inferred from the assimilation of the remaining data. The pros and cons of each system are discussed.
NASA Astrophysics Data System (ADS)
Pilinski, M.; Crowley, G.; Sutton, E.; Codrescu, M.
2016-09-01
Much as aircraft are affected by the prevailing winds and weather conditions in which they fly, satellites are affected by the variability in density and motion of the near earth space environment. Drastic changes in the neutral density of the thermosphere, caused by geomagnetic storms or other phenomena, result in perturbations of LEO satellite motions through drag on the satellite surfaces. This can lead to difficulties in locating important satellites, temporarily losing track of satellites, and errors when predicting collisions in space. As the population of satellites in Earth orbit grows, higher space-weather prediction accuracy is required for critical missions, such as accurate catalog maintenance, collision avoidance for manned and unmanned space flight, reentry prediction, satellite lifetime prediction, defining on-board fuel requirements, and satellite attitude dynamics. We describe ongoing work to build a comprehensive nowcast and forecast system for specifying the neutral atmospheric state related to orbital drag conditions. The system outputs include neutral density, winds, temperature, composition, and the satellite drag derived from these parameters. This modeling tool is based on several state-of-the-art coupled models of the thermosphere-ionosphere as well as several empirical models running in real-time and uses assimilative techniques to produce a thermospheric nowcast. This software will also produce 72 hour predictions of the global thermosphere-ionosphere system using the nowcast as the initial condition and using near real-time and predicted space weather data and indices as the inputs. In this paper, we will review the driving requirements for our model, summarize the model design and assimilative architecture, and present preliminary validation results. Validation results will be presented in the context of satellite orbit errors and compared with several leading atmospheric models. As part of the analysis, we compare the drag observed by a variety of satellites which were not used as part of the assimilation-dataset and whose perigee altitudes span a range from 200 km to 700 km.
Data Assimilation Cycling for Weather Analysis
NASA Technical Reports Server (NTRS)
Tran, Nam; Li, Yongzuo; Fitzpatrick, Patrick
2008-01-01
This software package runs the atmospheric model MM5 in data assimilation cycling mode to produce an optimized weather analysis, including the ability to insert or adjust a hurricane vortex. The program runs MM5 through a cycle of short forecasts every three hours where the vortex is adjusted to match the observed hurricane location and storm intensity. This technique adjusts the surrounding environment so that the proper steering current and environmental shear are achieved. MM5cycle uses a Cressman analysis to blend observation into model fields to get a more accurate weather analysis. Quality control of observations is also done in every cycle to remove bad data that may contaminate the analysis. This technique can assimilate and propagate data in time from intermittent and infrequent observations while maintaining the atmospheric field in a dynamically balanced state. The software consists of a C-shell script (MM5cycle.driver) and three FORTRAN programs (splitMM5files.F, comRegrid.F, and insert_vortex.F), and are contained in the pre-processor component of MM5 called "Regridder." The model is first initialized with data from a global model such as the Global Forecast System (GFS), which also provides lateral boundary conditions. These data are separated into single-time files using splitMM5.F. The hurricane vortex is then bogussed in the correct location and with the correct wind field using insert_vortex.F. The modified initial and boundary conditions are then recombined into the model fields using comRegrid.F. The model then makes a three-hour forecast. The three-hour forecast data from MM5 now become the analysis for the next short forecast run, where the vortex will again be adjusted. The process repeats itself until the desired time of analysis is achieved. This code can also assimilate observations if desired.
Global SWOT Data Assimilation of River Hydrodynamic Model; the Twin Simulation Test of CaMa-Flood
NASA Astrophysics Data System (ADS)
Ikeshima, D.; Yamazaki, D.; Kanae, S.
2016-12-01
CaMa-Flood is a global scale model for simulating hydrodynamics in large scale rivers. It can simulate river hydrodynamics such as river discharge, flooded area, water depth and so on by inputting water runoff derived from land surface model. Recently many improvements at parameters or terrestrial data are under process to enhance the reproducibility of true natural phenomena. However, there are still some errors between nature and simulated result due to uncertainties in each model. SWOT (Surface water and Ocean Topography) is a satellite, which is going to be launched in 2021, can measure open water surface elevation. SWOT observed data can be used to calibrate hydrodynamics model at river flow forecasting and is expected to improve model's accuracy. Combining observation data into model to calibrate is called data assimilation. In this research, we developed data-assimilated river flow simulation system in global scale, using CaMa-Flood as river hydrodynamics model and simulated SWOT as observation data. Generally at data assimilation, calibrating "model value" with "observation value" makes "assimilated value". However, the observed data of SWOT satellite will not be available until its launch in 2021. Instead, we simulated the SWOT observed data using CaMa-Flood. Putting "pure input" into CaMa-Flood produce "true water storage". Extracting actual daily swath of SWOT from "true water storage" made simulated observation. For "model value", we made "disturbed water storage" by putting "noise disturbed input" to CaMa-Flood. Since both "model value" and "observation value" are made by same model, we named this twin simulation. At twin simulation, simulated observation of "true water storage" is combined with "disturbed water storage" to make "assimilated value". As the data assimilation method, we used ensemble Kalman filter. If "assimilated value" is closer to "true water storage" than "disturbed water storage", the data assimilation can be marked effective. Also by changing the input disturbance of "disturbed water storage", acceptable rate of uncertainty at the input may be discussed.
Next generation initiation techniques
NASA Technical Reports Server (NTRS)
Warner, Tom; Derber, John; Zupanski, Milija; Cohn, Steve; Verlinde, Hans
1993-01-01
Four-dimensional data assimilation strategies can generally be classified as either current or next generation, depending upon whether they are used operationally or not. Current-generation data-assimilation techniques are those that are presently used routinely in operational-forecasting or research applications. They can be classified into the following categories: intermittent assimilation, Newtonian relaxation, and physical initialization. It should be noted that these techniques are the subject of continued research, and their improvement will parallel the development of next generation techniques described by the other speakers. Next generation assimilation techniques are those that are under development but are not yet used operationally. Most of these procedures are derived from control theory or variational methods and primarily represent continuous assimilation approaches, in which the data and model dynamics are 'fitted' to each other in an optimal way. Another 'next generation' category is the initialization of convective-scale models. Intermittent assimilation systems use an objective analysis to combine all observations within a time window that is centered on the analysis time. Continuous first-generation assimilation systems are usually based on the Newtonian-relaxation or 'nudging' techniques. Physical initialization procedures generally involve the use of standard or nonstandard data to force some physical process in the model during an assimilation period. Under the topic of next-generation assimilation techniques, variational approaches are currently being actively developed. Variational approaches seek to minimize a cost or penalty function which measures a model's fit to observations, background fields and other imposed constraints. Alternatively, the Kalman filter technique, which is also under investigation as a data assimilation procedure for numerical weather prediction, can yield acceptable initial conditions for mesoscale models. The third kind of next-generation technique involves strategies to initialize convective scale (non-hydrostatic) models.
Impact of glider data assimilation on the Monterey Bay model
NASA Astrophysics Data System (ADS)
Shulman, Igor; Rowley, Clark; Anderson, Stephanie; DeRada, Sergio; Kindle, John; Martin, Paul; Doyle, James; Cummings, James; Ramp, Steve; Chavez, Francisco; Fratantoni, David; Davis, Russ
2009-02-01
Glider observations were essential components of the observational program in the Autonomous Ocean Sampling Network (AOSN-II) experiment in the Monterey Bay area during summer of 2003. This paper is focused on the impact of the assimilation of glider temperature and salinity observations on the Navy Coastal Ocean Model (NCOM) predictions of surface and subsurface properties. The modeling system consists of an implementation of the NCOM model using a curvilinear, orthogonal grid with 1-4 km resolution, with finest resolution around the bay. The model receives open boundary conditions from a regional (9 km resolution) NCOM implementation for the California Current System, and surface fluxes from the Coupled Ocean-Atmosphere Mesoscale Prediction System (COAMPS) atmospheric model at 3 km resolution. The data assimilation component of the system is a version of the Navy Coupled Ocean Data Assimilation (NCODA) system, which is used for assimilation of the glider data into the NCOM model of the Monterey Bay area. The NCODA is a fully 3D multivariate optimum interpolation system that produces simultaneous analyses of temperature, salinity, geopotential, and vector velocity. Assimilation of glider data improves the surface temperature at the mooring locations for the NCOM model hindcast and nowcasts, and for the short-range (1-1.5 days) forecasts. It is shown that it is critical to have accurate atmospheric forcing for more extended forecasts. Assimilation of glider data provided better agreement with independent observations (for example, with aircraft measured SSTs) of the model-predicted and observed spatial distributions of surface temperature and salinity. Mooring observations of subsurface temperature and salinity show sharp changes in the thermocline and halocline depths during transitions from upwelling to relaxation and vice versa. The non-assimilative run also shows these transitions in subsurface temperature; but they are not as well defined. For salinity, the non-assimilative run significantly differs from the observations. However, the glider data assimilating run is able to show comparable results with observations of thermocline as well as halocline depths during upwelling and relaxation events in the Monterey Bay area. It is also shown that during the relaxation of wind, the data assimilative run has higher value of subsurface velocity complex correlation with observations than the non-assimilative run.
Operational Space Weather Models: Trials, Tribulations and Rewards
NASA Astrophysics Data System (ADS)
Schunk, R. W.; Scherliess, L.; Sojka, J. J.; Thompson, D. C.; Zhu, L.
2009-12-01
There are many empirical, physics-based, and data assimilation models that can probably be used for space weather applications and the models cover the entire domain from the surface of the Sun to the Earth’s surface. At Utah State University we developed two physics-based data assimilation models of the terrestrial ionosphere as part of a program called Global Assimilation of Ionospheric Measurements (GAIM). One of the data assimilation models is now in operational use at the Air Force Weather Agency (AFWA) in Omaha, Nebraska. This model is a Gauss-Markov Kalman Filter (GAIM-GM) model, and it uses a physics-based model of the ionosphere and a Kalman filter as a basis for assimilating a diverse set of real-time (or near real-time) measurements. The physics-based model is the Ionosphere Forecast Model (IFM), which is global and covers the E-region, F-region, and topside ionosphere from 90 to 1400 km. It takes account of five ion species (NO+, O2+, N2+, O+, H+), but the main output of the model is a 3-dimensional electron density distribution at user specified times. The second data assimilation model uses a physics-based Ionosphere-Plasmasphere Model (IPM) and an ensemble Kalman filter technique as a basis for assimilating a diverse set of real-time (or near real-time) measurements. This Full Physics model (GAIM-FP) is global, covers the altitude range from 90 to 30,000 km, includes six ions (NO+, O2+, N2+, O+, H+, He+), and calculates the self-consistent ionospheric drivers (electric fields and neutral winds). The GAIM-FP model is scheduled for delivery in 2012. Both of these GAIM models assimilate bottom-side Ne profiles from a variable number of ionosondes, slant TEC from a variable number of ground GPS/TEC stations, in situ Ne from four DMSP satellites, line-of-sight UV emissions measured by satellites, and occultation data. Quality control algorithms for all of the data types are provided as an integral part of the GAIM models and these models take account of latent data (up to 3 hours). The trials, tribulations and rewards of constructing and maintaining operational data assimilation models will be discussed.
2011-09-30
assimilating satellite, radar and in-situ observations for improved numerical simulations of major Typhoons (Jiangmi, Sinlaku, Nuri and Hagupit) during T- PARC ...oceans from radar , aircraft and satellite data; 2) Derive an accurate mesoscale environment of convective systems through the assimilation of satellite... radar , lidar and in-situ data; 3) Evaluate the quality of the global forecast system (e.g., Navy Operational Global Atmospheric Prediction System or
A comparison of linear and non-linear data assimilation methods using the NEMO ocean model
NASA Astrophysics Data System (ADS)
Kirchgessner, Paul; Tödter, Julian; Nerger, Lars
2015-04-01
The assimilation behavior of the widely used LETKF is compared with the Equivalent Weight Particle Filter (EWPF) in a data assimilation application with an idealized configuration of the NEMO ocean model. The experiments show how the different filter methods behave when they are applied to a realistic ocean test case. The LETKF is an ensemble-based Kalman filter, which assumes Gaussian error distributions and hence implicitly requires model linearity. In contrast, the EWPF is a fully nonlinear data assimilation method that does not rely on a particular error distribution. The EWPF has been demonstrated to work well in highly nonlinear situations, like in a model solving a barotropic vorticity equation, but it is still unknown how the assimilation performance compares to ensemble Kalman filters in realistic situations. For the experiments, twin assimilation experiments with a square basin configuration of the NEMO model are performed. The configuration simulates a double gyre, which exhibits significant nonlinearity. The LETKF and EWPF are both implemented in PDAF (Parallel Data Assimilation Framework, http://pdaf.awi.de), which ensures identical experimental conditions for both filters. To account for the nonlinearity, the assimilation skill of the two methods is assessed by using different statistical metrics, like CRPS and Histograms.
NASA Astrophysics Data System (ADS)
Bunge, H.; Hagelberg, C.; Travis, B.
2002-12-01
EarthScope will deliver data on structure and dynamics of continental North America and the underlying mantle on an unprecedented scale. Indeed, the scope of EarthScope makes its mission comparable to the large remote sensing efforts that are transforming the oceanographic and atmospheric sciences today. Arguably the main impact of new solid Earth observing systems is to transform our use of geodynamic models increasingly from conditions that are data poor to an environment that is data rich. Oceanographers and meteorologists already have made substantial progress in adapting to this environment, by developing new approaches of interpreting oceanographic and atmospheric data objectively through data assimilation methods in their models. However, a similarly rigorous theoretical framework for merging EarthScope derived solid Earth data with geodynamic models has yet to be devised. Here we explore the feasibility of data assimilation in mantle convection studies in an attempt to fit global geodynamic model calculations explicitly to tomographic and tectonic constraints. This is an inverse problem not quite unlike the inverse problem of finding optimal seismic velocity structures faced by seismologists. We derive the generalized inverse of mantle convection from a variational approach and present the adjoint equations of mantle flow. The substantial computational burden associated with solutions to the generalized inverse problem of mantle convection is made feasible using a highly efficient finite element approach based on the 3-D spherical fully parallelized mantle dynamics code TERRA, implemented on a cost-effective topical PC-cluster (geowulf) dedicated specifically to large-scale geophysical simulations. This dedicated geophysical modeling computer allows us to investigate global inverse convection problems having a spatial discretization of less than 50 km throughout the mantle. We present a synthetic high-resolution modeling experiment to demonstrate that mid-Cretaceous mantle structure can be inferred accurately from our inverse approach assuming present-day mantle structure is well-known, even if an initial first guess assumption about the mid-Cretaceous mantle involved only a simple 1-D radial temperature profile. We suggest that geodynamic inverse modeling should make it possible to infer a number of flow parameters from observational constraints of the mantle.
NASA Technical Reports Server (NTRS)
Roads, John; Voeroesmarty, Charles
2005-01-01
The main focus of our work was to solidify underlying data sets, the data processing tools and the modeling environment needed to perform a series of long-term global and regional hydrological simulations leading eventually to routine hydrometeorological predictions. A water and energy budget synthesis was developed for the Mississippi River Basin (Roads et al. 2003), in order to understand better what kinds of errors exist in current hydrometeorological data sets. This study is now being extended globally with a larger number of observations and model based data sets under the new NASA NEWS program. A global comparison of a number of precipitation data sets was subsequently carried out (Fekete et al. 2004) in which it was further shown that reanalysis precipitation has substantial problems, which subsequently led us to the development of a precipitation assimilation effort (Nunes and Roads 2005). We believe that with current levels of model skill in predicting precipitation that precipitation assimilation is necessary to get the appropriate land surface forcing.
NASA Astrophysics Data System (ADS)
Tian, Siyuan; Tregoning, Paul; Renzullo, Luigi J.; van Dijk, Albert I. J. M.; Walker, Jeffrey P.; Pauwels, Valentijn R. N.; Allgeyer, Sébastien
2017-03-01
The accuracy of global water balance estimates is limited by the lack of observations at large scale and the uncertainties of model simulations. Global retrievals of terrestrial water storage (TWS) change and soil moisture (SM) from satellites provide an opportunity to improve model estimates through data assimilation. However, combining these two data sets is challenging due to the disparity in temporal and spatial resolution at both vertical and horizontal scale. For the first time, TWS observations from the Gravity Recovery and Climate Experiment (GRACE) and near-surface SM observations from the Soil Moisture and Ocean Salinity (SMOS) were jointly assimilated into a water balance model using the Ensemble Kalman Smoother from January 2010 to December 2013 for the Australian continent. The performance of joint assimilation was assessed against open-loop model simulations and the assimilation of either GRACE TWS anomalies or SMOS SM alone. The SMOS-only assimilation improved SM estimates but reduced the accuracy of groundwater and TWS estimates. The GRACE-only assimilation improved groundwater estimates but did not always produce accurate estimates of SM. The joint assimilation typically led to more accurate water storage profile estimates with improved surface SM, root-zone SM, and groundwater estimates against in situ observations. The assimilation successfully downscaled GRACE-derived integrated water storage horizontally and vertically into individual water stores at the same spatial scale as the model and SMOS, and partitioned monthly averaged TWS into daily estimates. These results demonstrate that satellite TWS and SM measurements can be jointly assimilated to produce improved water balance component estimates.
Torque Balances on the Taylor Cylinders in the Geomagnetic Data Assimilation
NASA Technical Reports Server (NTRS)
Kuang, Weijia; Tangborn, Andrew
2004-01-01
In this presentation we report on our continuing effort in geomagnetic data assimilation, aiming at understanding and predicting geomagnetic secular variation on decadal time scales. In particular, we focus on the effect of the torque balances on the cylindrical surfaces in the core co-axial with the Earth's rotation axis (the Taylor cylinders) on the time evolution of assimilated solutions. We use our MoSST core dynamics,model and observed geomagnetic field at the Earth's surface derived via Comprehensive Field Model (CFM) for the geomagnetic data assimilation. In our earlier studies, a model solution is selected randomly from our numerical database. It is then assimilated with the observations such that the poloidal field possesses the same field tomography on the core-mantel boundary (CMB) continued downward from surface observations. This tomography change is assumed to be effective through out the outer core. While this approach allows rapid convergence between model solutions and the observations, it also generates sevee numerical instabilities: the delicate balance between weak fluid inertia and the magnetic torques on the Taylor cylinders are completely altered. Consequently, the assimilated solution diverges quickly (in approximately 10% of the magnetic free-decay time in the core). To improve the assimilation, we propose a partial penetration of the assimilation from the CMB: The full-scale modification at the CMB decreases linearly and vanish at an interior radius r(sub a). We shall examine from our assimilation tests possible relationships between the convergence rate of the model solutions to observations and the cut-off radius r(sub a). A better assimilation shall serve our nudging tests in near future.
Torque Balances on the Taylor Cylinders in the Geomagnetic Data Assimilation
NASA Astrophysics Data System (ADS)
Kuang, W.; Tangborn, A.
2004-05-01
In this presentation we report on our continuing effort in geomagnetic data assimilation, aiming at understanding and predicting geomagnetic secular variation on decadal time scales. In particular, we focus on the effect of the torque balances on the cylindrical surfaces in the core co-axial with the Earth's rotation axis (the Taylor cylinders) on the time evolution of assimilated solutions. We use our MoSST core dynamics model and observed geomagnetic field at the Earth's surface derived via Comprehensive Field Model (CFM) for the geomagnetic data assimilation. In our earlier studies, a model solution is selected randomly from our numerical database. It is then assimilated with the observations such that the poloidal field possesses the same field tomography on the core-mantel boundary (CMB) continued downward from surface observations. This tomography change is assumed to be effective through out the outer core. While this approach allows rapid convergence between model solutions and the observations, it also generates sever numerical instabilities: the delicate balance between weak fluid inertia and the magnetic torques on the Taylor cylinders are completely altered. Consequently, the assimilated solution diverges quickly (in approximately 10% of the magnetic free-decay time in the core). To improve the assimilation, we propose a partial penetration of the assimilation from the CMB: The full-scale modification at the CMB decreases linearly and vanish at an interior radius ra. We shall examine from our assimilation tests possible relationships between the convergence rate of the model solutions to observations and the cut-off radius ra. A better assimilation shall serve our nudging tests in near future.
Valdes-Abellan, Javier; Pachepsky, Yakov; Martinez, Gonzalo
2018-01-01
Data assimilation is becoming a promising technique in hydrologic modelling to update not only model states but also to infer model parameters, specifically to infer soil hydraulic properties in Richard-equation-based soil water models. The Ensemble Kalman Filter method is one of the most widely employed method among the different data assimilation alternatives. In this study the complete Matlab© code used to study soil data assimilation efficiency under different soil and climatic conditions is shown. The code shows the method how data assimilation through EnKF was implemented. Richards equation was solved by the used of Hydrus-1D software which was run from Matlab. •MATLAB routines are released to be used/modified without restrictions for other researchers•Data assimilation Ensemble Kalman Filter method code.•Soil water Richard equation flow solved by Hydrus-1D.
Improved Monitoring of Vegetation Productivity using Continuous Assimilation of Radiometric Data
NASA Astrophysics Data System (ADS)
Baret, F.; Lauvernet, C.; Weiss, M.; Prevot, L.; Rochdi, N.
Canopy functioning models describe crop production from meteorological and soil inputs. However, because of the large number of variables and parameters used, and the poor knowledge of the actual values of some of them, the time course of the canopy and thus final production simulated by these models is often not very accurate. Satellite observations sensors allow controlling the simulations through assimilation of the radiometric data within radiative transfer models coupled to canopy functioning models. An assimilation scheme is presented with application to wheat crops. The coupling between radiative transfer models and canopy functioning models is described. The assimilation scheme is then applied to an experiment achieved within the ReSeDA project. Several issues relative to the assimilation process are discussed. They concern the type of canopy functioning model used, the possibility to assimilate biophysical products rather than radiances, and the use of ancillary information. Further, considerations associated to the problems linked to high spatial and temporal resolution data are listed and illustrated by preliminary results acquired within the ADAM project. Further discussion is made on the required temporal sampling for space observations.
A VAS-numerical model impact study using the Gal-Chen variational approach
NASA Technical Reports Server (NTRS)
Aune, Robert M.; Tuccillo, James J.; Uccellini, Louis W.; Petersen, Ralph A.
1987-01-01
A numerical study based on the use of a variational assimilation technique of Gal-Chen (1983, 1986) was conducted to assess the impact of incorporating temperature data from the VISSR Atmospheric Sounder (VAS) into a regional-scale numerical model. A comparison with the results of a control forecast using only conventional data indicated that the assimilation technique successfully combines actual VAS temperature observations with the dynamically balanced model fields without destabilizing the model during the assimilation cycle. Moreover, increasing the temporal frequency of VAS temperature insertions during the assimilation cycle was shown to enhance the impact on the model forecast through successively longer forecast periods. The incorporation of a nudging technique, whereby the model temperature field is constrained toward the VAS 'updated' values during the assimilation cycle, further enhances the impact of the VAS temperature data.
NASA Astrophysics Data System (ADS)
Sawada, Yohei; Nakaegawa, Tosiyuki; Miyoshi, Takemasa
2018-01-01
We examine the potential of assimilating river discharge observations into the atmosphere by strongly coupled river-atmosphere ensemble data assimilation. The Japan Meteorological Agency's Non-Hydrostatic atmospheric Model (JMA-NHM) is first coupled with a simple rainfall-runoff model. Next, the local ensemble transform Kalman filter is used for this coupled model to assimilate the observations of the rainfall-runoff model variables into the JMA-NHM model variables. This system makes it possible to do hydrometeorology backward, i.e., to inversely estimate atmospheric conditions from the information of river flows or a flood on land surfaces. We perform a proof-of-concept Observing System Simulation Experiment, which reveals that the assimilation of river discharge observations into the atmospheric model variables can improve the skill of the short-term severe rainfall forecast.
Data Assimilation in the Solar Wind: Challenges and First Results
NASA Astrophysics Data System (ADS)
Lang, Matthew; Browne, Phil; van Leeuwen, Peter Jan; Owens, Matt
2017-04-01
Data assimilation (DA) is currently underused in the solar wind field to improve the modelled variables using observations. Data assimilation has been used in Numerical Weather Prediction (NWP) models with great success, and it can be seen that the improvement of DA methods in NWP modelling has led to improvements in forecasting skill over the past 20-30 years. The state of the art DA methods developed for NWP modelling have never been applied to space weather models, hence it is important to implement the improvements that can be gained from these methods to improve our understanding of the solar wind and how to model it. The ENLIL solar wind model has been coupled to the EMPIRE data assimilation library in order to apply these advanced data assimilation methods to a space weather model. This coupling allows multiple data assimilation methods to be applied to ENLIL with relative ease. I shall discuss twin experiments that have been undertaken, applying the LETKF to the ENLIL model when a CME occurs in the observation and when it does not. These experiments show that there is potential in the application of advanced data assimilation methods to the solar wind field, however, there is still a long way to go until it can be applied effectively. I shall discuss these issues and suggest potential avenues for future research in this area.
Spacebuoy: A University Nanosat Space Weather Mission (III)
2013-10-11
ionospheric forecasting models; specifically the operational Global Assimilation of Ionospheric Measurements (GAIM) model currently used by the Air Force... ionospheric forecasting models; specifically the operational Global Assimilation of Ionospheric Measurements (GAIM) model currently used by the Air...Mission Objectives • Provide critical space weather data for use in ionospheric forecasting efforts, particularly assimilated data used in the GAIM
USDA-ARS?s Scientific Manuscript database
Rates of carbon dioxide assimilation through photosynthesis are readily modeled through the Farquhar, von Caemmerer and Berry (FvCB) model based on the biochemistry of the initial Rubisco-catalyzed reaction of net C3 carbon assimilation. As models of CO2 assimilation are used more broadly for simula...
Tethered Satellites as an Enabling Platform for Operational Space Weather Monitoring Systems
NASA Technical Reports Server (NTRS)
Gilchrist, Brian E.; Krause, Linda Habash; Gallagher, Dennis Lee; Bilen, Sven Gunnar; Fuhrhop, Keith; Hoegy, Walt R.; Inderesan, Rohini; Johnson, Charles; Owens, Jerry Keith; Powers, Joseph;
2013-01-01
Tethered satellites offer the potential to be an important enabling technology to support operational space weather monitoring systems. Space weather "nowcasting" and forecasting models rely on assimilation of near-real-time (NRT) space environment data to provide warnings for storm events and deleterious effects on the global societal infrastructure. Typically, these models are initialized by a climatological model to provide "most probable distributions" of environmental parameters as a function of time and space. The process of NRT data assimilation gently pulls the climate model closer toward the observed state (e.g., via Kalman smoothing) for nowcasting, and forecasting is achieved through a set of iterative semi-empirical physics-based forward-prediction calculations. Many challenges are associated with the development of an operational system, from the top-level architecture (e.g., the required space weather observatories to meet the spatial and temporal requirements of these models) down to the individual instruments capable of making the NRT measurements. This study focuses on the latter challenge: we present some examples of how tethered satellites (from 100s of m to 20 km) are uniquely suited to address certain shortfalls in our ability to measure critical environmental parameters necessary to drive these space weather models. Examples include long baseline electric field measurements, magnetized ionospheric conductivity measurements, and the ability to separate temporal from spatial irregularities in environmental parameters. Tethered satellite functional requirements are presented for two examples of space environment observables.
A multi-source data assimilation framework for flood forecasting: Accounting for runoff routing lags
NASA Astrophysics Data System (ADS)
Meng, S.; Xie, X.
2015-12-01
In the flood forecasting practice, model performance is usually degraded due to various sources of uncertainties, including the uncertainties from input data, model parameters, model structures and output observations. Data assimilation is a useful methodology to reduce uncertainties in flood forecasting. For the short-term flood forecasting, an accurate estimation of initial soil moisture condition will improve the forecasting performance. Considering the time delay of runoff routing is another important effect for the forecasting performance. Moreover, the observation data of hydrological variables (including ground observations and satellite observations) are becoming easily available. The reliability of the short-term flood forecasting could be improved by assimilating multi-source data. The objective of this study is to develop a multi-source data assimilation framework for real-time flood forecasting. In this data assimilation framework, the first step is assimilating the up-layer soil moisture observations to update model state and generated runoff based on the ensemble Kalman filter (EnKF) method, and the second step is assimilating discharge observations to update model state and runoff within a fixed time window based on the ensemble Kalman smoother (EnKS) method. This smoothing technique is adopted to account for the runoff routing lag. Using such assimilation framework of the soil moisture and discharge observations is expected to improve the flood forecasting. In order to distinguish the effectiveness of this dual-step assimilation framework, we designed a dual-EnKF algorithm in which the observed soil moisture and discharge are assimilated separately without accounting for the runoff routing lag. The results show that the multi-source data assimilation framework can effectively improve flood forecasting, especially when the runoff routing has a distinct time lag. Thus, this new data assimilation framework holds a great potential in operational flood forecasting by merging observations from ground measurement and remote sensing retrivals.
NASA Astrophysics Data System (ADS)
Penenko, Alexey; Penenko, Vladimir; Tsvetova, Elena; Antokhin, Pavel
2016-04-01
The work is devoted to data assimilation algorithm for atmospheric chemistry transport and transformation models. In the work a control function is introduced into the model source term (emission rate) to provide flexibility to adjust to data. This function is evaluated as the constrained minimum of the target functional combining a control function norm with a norm of the misfit between measured data and its model-simulated analog. Transport and transformation processes model is acting as a constraint. The constrained minimization problem is solved with Euler-Lagrange variational principle [1] which allows reducing it to a system of direct, adjoint and control function estimate relations. This provides a physically-plausible structure of the resulting analysis without model error covariance matrices that are sought within conventional approaches to data assimilation. High dimensionality of the atmospheric chemistry models and a real-time mode of operation demand for computational efficiency of the data assimilation algorithms. Computational issues with complicated models can be solved by using a splitting technique. Within this approach a complex model is split to a set of relatively independent simpler models equipped with a coupling procedure. In a fine-grained approach data assimilation is carried out quasi-independently on the separate splitting stages with shared measurement data [2]. In integrated schemes data assimilation is carried out with respect to the split model as a whole. We compare the two approaches both theoretically and numerically. Data assimilation on the transport stage is carried out with a direct algorithm without iterations. Different algorithms to assimilate data on nonlinear transformation stage are compared. In the work we compare data assimilation results for both artificial and real measurement data. With these data we study the impact of transformation processes and data assimilation to the performance of the modeling system [3]. The work has been partially supported by RFBR grant 14-01-00125 and RAS Presidium II.4P. References: [1] Penenko V.V., Tsvetova E.A., Penenko A.V. Development of variational approach for direct and inverse problems of atmospheric hydrodynamics and chemistry // IZVESTIYA ATMOSPHERIC AND OCEANIC PHYSICS, 2015, v 51 , p. 311 - 319 [2] A.V. Penenko and V.V. Penenko. Direct data assimilation method for convection-diffusion models based on splitting scheme. Computational technologies, 19(4):69-83, 2014. [3] A. Penenko; V. Penenko; R. Nuterman; A. Baklanov and A. Mahura Direct variational data assimilation algorithm for atmospheric chemistry data with transport and transformation model, Proc. SPIE 9680, 21st International Symposium Atmospheric and Ocean Optics: Atmospheric Physics, 968076 (November 19, 2015); doi:10.1117/12.2206008;http://dx.doi.org/10.1117/12.2206008
NASA Technical Reports Server (NTRS)
Lievens, H.; Martens, B.; Verhoest, N. E. C.; Hahn, S.; Reichle, R. H.; Miralles, D. G.
2017-01-01
Active radar backscatter (s?) observations from the Advanced Scatterometer (ASCAT) and passive radiometer brightness temperature (TB) observations from the Soil Moisture Ocean Salinity (SMOS) mission are assimilated either individually or jointly into the Global Land Evaporation Amsterdam Model (GLEAM) to improve its simulations of soil moisture and land evaporation. To enable s? and TB assimilation, GLEAM is coupled to the Water Cloud Model and the L-band Microwave Emission from the Biosphere (L-MEB) model. The innovations, i.e. differences between observations and simulations, are mapped onto the model soil moisture states through an Ensemble Kalman Filter. The validation of surface (0-10 cm) soil moisture simulations over the period 2010-2014 against in situ measurements from the International Soil Moisture Network (ISMN) shows that assimilating s? or TB alone improves the average correlation of seasonal anomalies (Ran) from 0.514 to 0.547 and 0.548, respectively. The joint assimilation further improves Ran to 0.559. Associated enhancements in daily evaporative flux simulations by GLEAM are validated based on measurements from 22 FLUXNET stations. Again, the singular assimilation improves Ran from 0.502 to 0.536 and 0.533, respectively for s? and TB, whereas the best performance is observed for the joint assimilation (Ran = 0.546). These results demonstrate the complementary value of assimilating radar backscatter observations together with brightness temperatures for improving estimates of hydrological variables, as their joint assimilation outperforms the assimilation of each observation type separately.
NASA Astrophysics Data System (ADS)
Rüdiger, Christoph; Albergel, CléMent; Mahfouf, Jean-FrançOis; Calvet, Jean-Christophe; Walker, Jeffrey P.
2010-05-01
To quantify carbon and water fluxes between the vegetation and the atmosphere in a consistent manner, land surface models now include interactive vegetation components. These models treat the vegetation biomass as a prognostic model state, allowing the model to dynamically adapt the vegetation states to environmental conditions. However, it is expected that the prediction skill of such models can be greatly increased by assimilating biophysical observations such as leaf area index (LAI). The Jacobian of the observation operator, a central aspect of data assimilation methods such as the extended Kalman filter (EKF) and the variational assimilation methods, provides the required linear relationship between the observation and the model states. In this paper, the Jacobian required for assimilating LAI into the Interaction between the Soil, Biosphere and Atmosphere-A-gs land surface model using the EKF is studied. In particular, sensitivity experiments were undertaken on the size of the initial perturbation for estimating the Jacobian and on the length of the time window between initial state and available observation. It was found that small perturbations (0.1% of the state) typically lead to accurate estimates of the Jacobian. While other studies have shown that the assimilation of LAI with 10 day assimilation windows is possible, 1 day assimilation intervals can be chosen to comply with numerical weather prediction requirements. Moreover, the seasonal dependence of the Jacobian revealed contrasted groups of Jacobian values due to environmental factors. Further analyses showed the Jacobian values to vary as a function of the LAI itself, which has important implications for its assimilation in different seasons, as the size of the LAI increments will subsequently vary due to the variability of the Jacobian.
Snowpack modeling in the context of radiance assimilation for snow water equivalent mapping
NASA Astrophysics Data System (ADS)
Durand, M. T.; Kim, R. S.; Li, D.; Dumont, M.; Margulis, S. A.
2017-12-01
Data assimilation is often touted as a means of overcoming deficiences in both snowpack modeling and snowpack remote sensing. Direct assimilation of microwave radiances, rather than assimilating microwave retrievals, has shown promise, in this context. This is especially the case for deep mountain snow, which is often assumed to be infeasible to measure with microwave measurements, due to saturation issues. We first demonstrate that the typical way of understanding saturation has often been misunderstood. We show that deep snow leads to a complex microwave signature, but not to saturation per se, because of snowpack stratigraphy. This explains why radiance assimilation requires detailed snowpack models that adequatley stratgigraphy to function accurately. We examine this with two case studies. First, we show how the CROCUS predictions of snowpack stratigraphy allows for assimilation of airborne passive microwave measurements over three 1km2 CLPX Intensive Study Areas. Snowpack modeling and particle filter analysis is performed at 120 m spatial resolution. When run without the benefit of radiance assimilation, CROCUS does not fully capture spatial patterns in the data (R2=0.44; RMSE=26 cm). Assimlilation of microwave radiances for a single flight recovers the spatial pattern of snow depth (R2=0.85; RMSE = 13 cm). This is despite the presence of deep snow; measured depths range from 150 to 325 cm. Adequate results are obtained even for partial forest cover, and bias in precipitation forcing. The results are severely degraded if a three-layer snow model is used, however. The importance of modeling snowpack stratigraphy is highlighted. Second, we compare this study to a recent analysis assimilating spaceborne radiances for a 511 km2 sub-watershed of the Kern River, in the Sierra Nevada. Here, the daily Level 2A AMSR-E footprints (88 km2) are assimilated into a model running at 90 m spatial resolution. The three-layer model is specially adapted to predict "effective" stratigraphy. We compare and contrast these approaches to modeling snowpack stratigraphy, and highlight the critical role of models in radiance assimilation schemes.
NASA Technical Reports Server (NTRS)
Li, Bailing; Toll, David; Zhan, Xiwu; Cosgrove, Brian
2011-01-01
Model simulated soil moisture fields are often biased due to errors in input parameters and deficiencies in model physics. Satellite derived soil moisture estimates, if retrieved appropriately, represent the spatial mean of soil moisture in a footprint area, and can be used to reduce model bias (at locations near the surface) through data assimilation techniques. While assimilating the retrievals can reduce model bias, it can also destroy the mass balance enforced by the model governing equation because water is removed from or added to the soil by the assimilation algorithm. In addition, studies have shown that assimilation of surface observations can adversely impact soil moisture estimates in the lower soil layers due to imperfect model physics, even though the bias near the surface is decreased. In this study, an ensemble Kalman filter (EnKF) with a mass conservation updating scheme was developed to assimilate the actual value of Advanced Microwave Scanning Radiometer (AMSR-E) soil moisture retrievals to improve the mean of simulated soil moisture fields by the Noah land surface model. Assimilation results using the conventional and the mass conservation updating scheme in the Little Washita watershed of Oklahoma showed that, while both updating schemes reduced the bias in the shallow root zone, the mass conservation scheme provided better estimates in the deeper profile. The mass conservation scheme also yielded physically consistent estimates of fluxes and maintained the water budget. Impacts of model physics on the assimilation results are discussed.
NASA Astrophysics Data System (ADS)
Lee, Hak Su; Seo, Dong-Jun; Liu, Yuqiong; McKee, Paul; Corby, Robert
2010-05-01
State updating of distributed hydrologic models via assimilation of streamflow data is subject to "overfitting" because large dimensionality of the state space of the model may render the assimilation problem seriously underdetermined. To examine the issue in the context of operational hydrology, we carried out a set of real-world experiments in which we assimilate streamflow data at interior and/or outlet locations into gridded SAC and kinematic-wave routing models of the U.S. National Weather Service (NWS) Research Distributed Hydrologic Model (RDHM). We used for the experiments nine basins in the southern plains of the U.S. The experiments consist of selectively assimilating streamflow at different gauge locations, outlet and/or interior, and carrying out both dependent and independent validation. To assess the sensitivity of the quality of assimilation-aided streamflow simulation to the reduced dimensionality of the state space, we carried out data assimilation at spatially semi-distributed or lumped scale and by adjusting biases in precipitation and potential evaporation at a 6-hourly or larger scale. In this talk, we present the results and findings.
Coupled Data Assimilation in Navy ESPC
NASA Astrophysics Data System (ADS)
Barron, C. N.; Spence, P. L.; Frolov, S.; Rowley, C. D.; Bishop, C. H.; Wei, M.; Ruston, B.; Smedstad, O. M.
2017-12-01
Data assimilation under global coupled Earth System Prediction Capability (ESPC) presents significantly greater challenges than data assimilation in forecast models of a single earth system like the ocean and atmosphere. In forecasts of a single component, data assimilation has broad flexibility in adjusting boundary conditions to reduce forecast errors; coupled ESPC requires consistent simultaneous adjustment of multiple components within the earth system: air, ocean, ice, and others. Data assimilation uses error covariances to express how to consistently adjust model conditions in response to differences between forecasts and observations; in coupled ESPC, these covariances must extend from air to ice to ocean such that changes within one fluid are appropriately balanced with corresponding adjustments in the other components. We show several algorithmic solutions that allow us to resolve these challenges. Specifically, we introduce the interface solver method that augments existing stand-alone systems for ocean and atmosphere by allowing them to be influenced by relevant measurements from the coupled fluid. Plans are outlined for implementing coupled data assimilation within ESPC for the Navy's global coupled model. Preliminary results show the impact of assimilating SST-sensitive radiances in the atmospheric model and first results of hybrid DA in a 1/12 degree model of the global ocean.
Space weather forecasting with a Multimodel Ensemble Prediction System (MEPS)
NASA Astrophysics Data System (ADS)
Schunk, R. W.; Scherliess, L.; Eccles, V.; Gardner, L. C.; Sojka, J. J.; Zhu, L.; Pi, X.; Mannucci, A. J.; Butala, M.; Wilson, B. D.; Komjathy, A.; Wang, C.; Rosen, G.
2016-07-01
The goal of the Multimodel Ensemble Prediction System (MEPS) program is to improve space weather specification and forecasting with ensemble modeling. Space weather can have detrimental effects on a variety of civilian and military systems and operations, and many of the applications pertain to the ionosphere and upper atmosphere. Space weather can affect over-the-horizon radars, HF communications, surveying and navigation systems, surveillance, spacecraft charging, power grids, pipelines, and the Federal Aviation Administration (FAA's) Wide Area Augmentation System (WAAS). Because of its importance, numerous space weather forecasting approaches are being pursued, including those involving empirical, physics-based, and data assimilation models. Clearly, if there are sufficient data, the data assimilation modeling approach is expected to be the most reliable, but different data assimilation models can produce different results. Therefore, like the meteorology community, we created a Multimodel Ensemble Prediction System (MEPS) for the Ionosphere-Thermosphere-Electrodynamics (ITE) system that is based on different data assimilation models. The MEPS ensemble is composed of seven physics-based data assimilation models for the ionosphere, ionosphere-plasmasphere, thermosphere, high-latitude ionosphere-electrodynamics, and middle to low latitude ionosphere-electrodynamics. Hence, multiple data assimilation models can be used to describe each region. A selected storm event that was reconstructed with four different data assimilation models covering the middle and low latitude ionosphere is presented and discussed. In addition, the effect of different data types on the reconstructions is shown.
Potential for wind extraction from 4D-Var assimilation of aerosols and moisture
NASA Astrophysics Data System (ADS)
Zaplotnik, Žiga; Žagar, Nedjeljka
2017-04-01
We discuss the potential of the four-dimensional variational data assimilation (4D-Var) to retrieve the unobserved wind field from observations of atmospheric tracers and the mass field through internal model dynamics and the multivariate relationships in the background-error term for 4D-Var. The presence of non-linear moist dynamics makes the wind retrieval from tracers very difficult. On the other hand, it has been shown that moisture observations strongly influence both tropical and mid-latitude wind field in 4D-Var. We present an intermediate complexity model that describes nonlinear interactions between the wind, temperature, aerosols and moisture including their sinks and sources in the framework of the so-called first baroclinic mode atmosphere envisaged by A. Gill. Aerosol physical processes, which are included in the model, are the non-linear advection, diffusion and sources and sinks that exist as dry and wet deposition and diffusion. Precipitation is parametrized according to the Betts-Miller scheme. The control vector for 4D-Var includes aerosols, moisture and the three dynamical variables. The former is analysed univariately whereas wind field and mass field are analysed in a multivariate fashion taking into account quasi-geostrophic and unbalanced dynamics. The OSSE type of studies are performed for the tropical region to assess the ability of 4D-Var to extract wind-field information from the time series of observations of tracers as a function of the flow nonlinearity, the observations density and the length of the assimilation window (12 hours and 24 hours), in dry and moist environment. Results show that the 4D-Var assimilation of aerosols and temperature data is beneficial for the wind analysis with analysis errors strongly dependent on the moist processes and reliable background-error covariances.
Application of an Ensemble Smoother to Precipitation Assimilation
NASA Technical Reports Server (NTRS)
Zhang, Sara; Zupanski, Dusanka; Hou, Arthur; Zupanski, Milija
2008-01-01
Assimilation of precipitation in a global modeling system poses a special challenge in that the observation operators for precipitation processes are highly nonlinear. In the variational approach, substantial development work and model simplifications are required to include precipitation-related physical processes in the tangent linear model and its adjoint. An ensemble based data assimilation algorithm "Maximum Likelihood Ensemble Smoother (MLES)" has been developed to explore the ensemble representation of the precipitation observation operator with nonlinear convection and large-scale moist physics. An ensemble assimilation system based on the NASA GEOS-5 GCM has been constructed to assimilate satellite precipitation data within the MLES framework. The configuration of the smoother takes the time dimension into account for the relationship between state variables and observable rainfall. The full nonlinear forward model ensembles are used to represent components involving the observation operator and its transpose. Several assimilation experiments using satellite precipitation observations have been carried out to investigate the effectiveness of the ensemble representation of the nonlinear observation operator and the data impact of assimilating rain retrievals from the TMI and SSM/I sensors. Preliminary results show that this ensemble assimilation approach is capable of extracting information from nonlinear observations to improve the analysis and forecast if ensemble size is adequate, and a suitable localization scheme is applied. In addition to a dynamically consistent precipitation analysis, the assimilation system produces a statistical estimate of the analysis uncertainty.
Assimilation and Forgetting of the Educational Information: Results of Imitating Modelling
ERIC Educational Resources Information Center
Mayer, Robert V.
2017-01-01
Various approaches to the problem of computer modelling of assimilation and forgetting of the educational information are considered. With the help of the multi-component model the Ebbinghaus' curve of forgetting of poorly assimilating information to be remembered through recurrences is confirmed. It is taken into account, that while training…
Improving Estimates and Forecasts of Lake Carbon Pools and Fluxes Using Data Assimilation
NASA Astrophysics Data System (ADS)
Zwart, J. A.; Hararuk, O.; Prairie, Y.; Solomon, C.; Jones, S.
2017-12-01
Lakes are biogeochemical hotspots on the landscape, contributing significantly to the global carbon cycle despite their small areal coverage. Observations and models of lake carbon pools and fluxes are rarely explicitly combined through data assimilation despite significant use of this technique in other fields with great success. Data assimilation adds value to both observations and models by constraining models with observations of the system and by leveraging knowledge of the system formalized by the model to objectively fill information gaps. In this analysis, we highlight the utility of data assimilation in lake carbon cycling research by using the Ensemble Kalman Filter to combine simple lake carbon models with observations of lake carbon pools. We demonstrate the use of data assimilation to improve a model's representation of lake carbon dynamics, to reduce uncertainty in estimates of lake carbon pools and fluxes, and to improve the accuracy of carbon pool size estimates relative to estimates derived from observations alone. Data assimilation techniques should be embraced as valuable tools for lake biogeochemists interested in learning about ecosystem dynamics and forecasting ecosystem states and processes.
NASA Astrophysics Data System (ADS)
Pathiraja, S.; Anghileri, D.; Burlando, P.; Sharma, A.; Marshall, L.; Moradkhani, H.
2018-03-01
The global prevalence of rapid and extensive land use change necessitates hydrologic modelling methodologies capable of handling non-stationarity. This is particularly true in the context of Hydrologic Forecasting using Data Assimilation. Data Assimilation has been shown to dramatically improve forecast skill in hydrologic and meteorological applications, although such improvements are conditional on using bias-free observations and model simulations. A hydrologic model calibrated to a particular set of land cover conditions has the potential to produce biased simulations when the catchment is disturbed. This paper sheds new light on the impacts of bias or systematic errors in hydrologic data assimilation, in the context of forecasting in catchments with changing land surface conditions and a model calibrated to pre-change conditions. We posit that in such cases, the impact of systematic model errors on assimilation or forecast quality is dependent on the inherent prediction uncertainty that persists even in pre-change conditions. Through experiments on a range of catchments, we develop a conceptual relationship between total prediction uncertainty and the impacts of land cover changes on the hydrologic regime to demonstrate how forecast quality is affected when using state estimation Data Assimilation with no modifications to account for land cover changes. This work shows that systematic model errors as a result of changing or changed catchment conditions do not always necessitate adjustments to the modelling or assimilation methodology, for instance through re-calibration of the hydrologic model, time varying model parameters or revised offline/online bias estimation.
Assimilation of Stratospheric Meteorological and Constituent Observations: A Review
NASA Technical Reports Server (NTRS)
Rood, Richard B.; Pawson, Steven
2004-01-01
This talk reviews the assimilation of meteorological and constituent observations of the stratosphere. The first efforts to assimilate observations into stratospheric models were during the early 1980s, and a number of research studies followed during the next decade. Since the launch of the Upper Atmospheric Research Satellite (UARS) in 1991, model-assimilated data sets of the stratospheric meteorological state have been routinely available. These assimilated data sets were critical in bringing together observations from the different instruments on UARS as well as linking UARS observations to measurements from other platforms. Using trajectory-mapping techniques, meteorological assimilation analyses are, now, widely used in the analysis of constituent observations and have increased the level of quantitative study of stratospheric chemistry and transport. During the 1990s the use of winds and temperatures from assimilated data sets became standard for offline chemistry and transport modeling. variability in middle latitudes. The transport experiments, however, reveal a set of shortcomings that become obvious as systematic errors are integrated over time. Generally, the tropics are not well represented, mixing between the tropics and middle latitudes is overestimated, and the residual circulation is not accurate. These shortcomings reveal underlying fundamental challenges related to bias and noise. Current studies using model simulation and data assimilation in controlled experimentation are highlighting the issues that must be addressed if assimilated data sets are to be convincingly used to study interannual variability and decadal change. observations. The primary focus has been on stratospheric ozone, but there are efforts that investigate a suite of reactive chemical constituents. Recent progress in ozone assimilation shows the potential of assimilation to contribute to the validation of ozone observations and, ultimately, the retrieval of ozone profiles from space-based radiance measurements. Assimilated data sets provide accurate analyses of synoptic and planetary Scale At the same time, stratospheric assimilation is evolving to include constituent
A Comparison of Methods for a Priori Bias Correction in Soil Moisture Data Assimilation
NASA Technical Reports Server (NTRS)
Kumar, Sujay V.; Reichle, Rolf H.; Harrison, Kenneth W.; Peters-Lidard, Christa D.; Yatheendradas, Soni; Santanello, Joseph A.
2011-01-01
Data assimilation is being increasingly used to merge remotely sensed land surface variables such as soil moisture, snow and skin temperature with estimates from land models. Its success, however, depends on unbiased model predictions and unbiased observations. Here, a suite of continental-scale, synthetic soil moisture assimilation experiments is used to compare two approaches that address typical biases in soil moisture prior to data assimilation: (i) parameter estimation to calibrate the land model to the climatology of the soil moisture observations, and (ii) scaling of the observations to the model s soil moisture climatology. To enable this research, an optimization infrastructure was added to the NASA Land Information System (LIS) that includes gradient-based optimization methods and global, heuristic search algorithms. The land model calibration eliminates the bias but does not necessarily result in more realistic model parameters. Nevertheless, the experiments confirm that model calibration yields assimilation estimates of surface and root zone soil moisture that are as skillful as those obtained through scaling of the observations to the model s climatology. Analysis of innovation diagnostics underlines the importance of addressing bias in soil moisture assimilation and confirms that both approaches adequately address the issue.
Rapid prototyping of soil moisture estimates using the NASA Land Information System
NASA Astrophysics Data System (ADS)
Anantharaj, V.; Mostovoy, G.; Li, B.; Peters-Lidard, C.; Houser, P.; Moorhead, R.; Kumar, S.
2007-12-01
The Land Information System (LIS), developed at the NASA Goddard Space Flight Center, is a functional Land Data Assimilation System (LDAS) that incorporates a suite of land models in an interoperable computational framework. LIS has been integrated into a computational Rapid Prototyping Capabilities (RPC) infrastructure. LIS consists of a core, a number of community land models, data servers, and visualization systems - integrated in a high-performance computing environment. The land surface models (LSM) in LIS incorporate surface and atmospheric parameters of temperature, snow/water, vegetation, albedo, soil conditions, topography, and radiation. Many of these parameters are available from in-situ observations, numerical model analysis, and from NASA, NOAA, and other remote sensing satellite platforms at various spatial and temporal resolutions. The computational resources, available to LIS via the RPC infrastructure, support e- Science experiments involving the global modeling of land-atmosphere studies at 1km spatial resolutions as well as regional studies at finer resolutions. The Noah Land Surface Model, available with-in the LIS is being used to rapidly prototype soil moisture estimates in order to evaluate the viability of other science applications for decision making purposes. For example, LIS has been used to further extend the utility of the USDA Soil Climate Analysis Network of in-situ soil moisture observations. In addition, LIS also supports data assimilation capabilities that are used to assimilate remotely sensed soil moisture retrievals from the AMSR-E instrument onboard the Aqua satellite. The rapid prototyping of soil moisture estimates using LIS and their applications will be illustrated during the presentation.
Assimilation of snow covered area information into hydrologic and land-surface models
Clark, M.P.; Slater, A.G.; Barrett, A.P.; Hay, L.E.; McCabe, G.J.; Rajagopalan, B.; Leavesley, G.H.
2006-01-01
This paper describes a data assimilation method that uses observations of snow covered area (SCA) to update hydrologic model states in a mountainous catchment in Colorado. The assimilation method uses SCA information as part of an ensemble Kalman filter to alter the sub-basin distribution of snow as well as the basin water balance. This method permits an optimal combination of model simulations and observations, as well as propagation of information across model states. Sensitivity experiments are conducted with a fairly simple snowpack/water-balance model to evaluate effects of the data assimilation scheme on simulations of streamflow. The assimilation of SCA information results in minor improvements in the accuracy of streamflow simulations near the end of the snowmelt season. The small effect from SCA assimilation is initially surprising. It can be explained both because a substantial portion of snowmelts before any bare ground is exposed, and because the transition from 100% to 0% snow coverage occurs fairly quickly. Both of these factors are basin-dependent. Satellite SCA information is expected to be most useful in basins where snow cover is ephemeral. The data assimilation strategy presented in this study improved the accuracy of the streamflow simulation, indicating that SCA is a useful source of independent information that can be used as part of an integrated data assimilation strategy. ?? 2005 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Chatterjee, A.; Anderson, J. L.; Moncrieff, M.; Collins, N.; Danabasoglu, G.; Hoar, T.; Karspeck, A. R.; Neale, R. B.; Raeder, K.; Tribbia, J. J.
2014-12-01
We present a quantitative evaluation of the simulated MJO in analyses produced with a coupled data assimilation (CDA) framework developed at the National Center for Atmosphere Research. This system is based on the Community Earth System Model (CESM; previously known as the Community Climate System Model -CCSM) interfaced to a community facility for ensemble data assimilation (Data Assimilation Research Testbed - DART). The system (multi-component CDA) assimilates data into each of the respective ocean/atmosphere/land model components during the assimilation step followed by an exchange of information between the model components during the forecast step. Note that this is an advancement over many existing prototypes of coupled data assimilation systems, which typically assimilate observations only in one of the model components (i.e., single-component CDA). The more realistic treatment of air-sea interactions and improvements to the model mean state in the multi-component CDA recover many aspects of MJO representation, from its space-time structure and propagation (see Figure 1) to the governing relationships between precipitation and sea surface temperature on intra-seasonal scales. Standard qualitative and process-based diagnostics identified by the MJO Task Force (currently under the auspices of the Working Group on Numerical Experimentation) have been used to detect the MJO signals across a suite of coupled model experiments involving both multi-component and single-component DA experiments as well as a free run of the coupled CESM model (i.e., CMIP5 style without data assimilation). Short predictability experiments during the boreal winter are used to demonstrate that the decay rates of the MJO convective anomalies are slower in the multi-component CDA system, which allows it to retain the MJO dynamics for a longer period. We anticipate that the knowledge gained through this study will enhance our understanding of the MJO feedback mechanisms across the air-sea interface, especially regarding ocean impacts on the MJO as well as highlight the capability of coupled data assimilation systems for related tropical intraseasonal variability predictions.
Role of Forcing Uncertainty and Background Model Error Characterization in Snow Data Assimilation
NASA Technical Reports Server (NTRS)
Kumar, Sujay V.; Dong, Jiarul; Peters-Lidard, Christa D.; Mocko, David; Gomez, Breogan
2017-01-01
Accurate specification of the model error covariances in data assimilation systems is a challenging issue. Ensemble land data assimilation methods rely on stochastic perturbations of input forcing and model prognostic fields for developing representations of input model error covariances. This article examines the limitations of using a single forcing dataset for specifying forcing uncertainty inputs for assimilating snow depth retrievals. Using an idealized data assimilation experiment, the article demonstrates that the use of hybrid forcing input strategies (either through the use of an ensemble of forcing products or through the added use of the forcing climatology) provide a better characterization of the background model error, which leads to improved data assimilation results, especially during the snow accumulation and melt-time periods. The use of hybrid forcing ensembles is then employed for assimilating snow depth retrievals from the AMSR2 (Advanced Microwave Scanning Radiometer 2) instrument over two domains in the continental USA with different snow evolution characteristics. Over a region near the Great Lakes, where the snow evolution tends to be ephemeral, the use of hybrid forcing ensembles provides significant improvements relative to the use of a single forcing dataset. Over the Colorado headwaters characterized by large snow accumulation, the impact of using the forcing ensemble is less prominent and is largely limited to the snow transition time periods. The results of the article demonstrate that improving the background model error through the use of a forcing ensemble enables the assimilation system to better incorporate the observational information.
NASA Technical Reports Server (NTRS)
Berndt, Emily; Zavodsky, Bradley; Srikishen, Jayanthi; Blankenship, Clay
2015-01-01
Hyperspectral infrared sounder radiance data are assimilated into operational modeling systems however the process is computationally expensive and only approximately 1% of available data are assimilated due to data thinning as well as the fact that radiances are restricted to cloud-free fields of view. In contrast, the number of hyperspectral infrared profiles assimilated is much higher since the retrieved profiles can be assimilated in some partly cloudy scenes due to profile coupling other data, such as microwave or neural networks, as first guesses to the retrieval process. As the operational data assimilation community attempts to assimilate cloud-affected radiances, it is possible that the use of retrieved profiles might offer an alternative methodology that is less complex and more computationally efficient to solve this problem. The NASA Short-term Prediction Research and Transition (SPoRT) Center has assimilated hyperspectral infrared retrieved profiles into Weather Research and Forecasting Model (WRF) simulations using the Gridpoint Statistical Interpolation (GSI) System. Early research at SPoRT demonstrated improved initial conditions when assimilating Atmospheric Infrared Sounder (AIRS) thermodynamic profiles into WRF (using WRF-Var and assigning more appropriate error weighting to the profiles) to improve regional analysis and heavy precipitation forecasts. Successful early work has led to more recent research utilizing WRF and GSI for applications including the assimilation of AIRS profiles to improve WRF forecasts of atmospheric rivers and assimilation of AIRS, Cross-track Infrared and Microwave Sounding Suite (CrIMSS), and Infrared Atmospheric Sounding Interferometer (IASI) profiles to improve model representation of tropopause folds and associated non-convective wind events. Although more hyperspectral infrared retrieved profiles can be assimilated into model forecasts, one disadvantage is the retrieved profiles have traditionally been assigned the same error values as the rawinsonde observations when assimilated with GSI. Typically, satellitederived profile errors are larger and more difficult to quantify than traditional rawinsonde observations (especially in the boundary layer), so it is important to appropriately assign observation errors within GSI to eliminate potential spurious innovations and analysis increments that can sometimes arise when using retrieved profiles. The goal of this study is to describe modifications to the GSI source code to more appropriately assimilate hyperspectral infrared retrieved profiles and outline preliminary results that show the differences between a model simulation that assimilated the profiles as rawinsonde observations and one that assimilated the profiles in a module with the appropriate error values.
Ensemble-Based Assimilation of Aerosol Observations in GEOS-5
NASA Technical Reports Server (NTRS)
Buchard, V.; Da Silva, A.
2016-01-01
MERRA-2 is the latest Aerosol Reanalysis produced at NASA's Global Modeling Assimilation Office (GMAO) from 1979 to present. This reanalysis is based on a version of the GEOS-5 model radiatively coupled to GOCART aerosols and includes assimilation of bias corrected Aerosol Optical Depth (AOD) from AVHRR over ocean, MODIS sensors on both Terra and Aqua satellites, MISR over bright surfaces and AERONET data. In order to assimilate lidar profiles of aerosols, we are updating the aerosol component of our assimilation system to an Ensemble Kalman Filter (EnKF) type of scheme using ensembles generated routinely by the meteorological assimilation. Following the work performed with the first NASA's aerosol reanalysis (MERRAero), we first validate the vertical structure of MERRA-2 aerosol assimilated fields using CALIOP data over regions of particular interest during 2008.
Ensemble Kalman Filter Data Assimilation in a Solar Dynamo Model
NASA Astrophysics Data System (ADS)
Dikpati, M.
2017-12-01
Despite great advancement in solar dynamo models since the first model by Parker in 1955, there remain many challenges in the quest to build a dynamo-based prediction scheme that can accurately predict the solar cycle features. One of these challenges is to implement modern data assimilation techniques, which have been used in the oceanic and atmospheric prediction models. Development of data assimilation in solar models are in the early stages. Recently, observing system simulation experiments (OSSE's) have been performed using Ensemble Kalman Filter data assimilation, in the framework of Data Assimilation Research Testbed of NCAR (NCAR-DART), for estimating parameters in a solar dynamo model. I will demonstrate how the selection of ensemble size, number of observations, amount of error in observations and the choice of assimilation interval play important role in parameter estimation. I will also show how the results of parameter reconstruction improve when accuracy in low-latitude observations is increased, despite large error in polar region data. I will then describe how implementation of data assimilation in a solar dynamo model can bring more accuracy in the prediction of polar fields in North and South hemispheres during the declining phase of cycle 24. Recent evidence indicates that the strength of the Sun's polar field during the cycle minima might be a reliable predictor for the next sunspot cycle's amplitude; therefore it is crucial to accurately predict the polar field strength and pattern.
Chua, Evan M; Shimeta, Jeff; Nugegoda, Dayanthi; Morrison, Paul D; Clarke, Bradley O
2014-07-15
Microplastic particles (MPPs; <5 mm) are found in skin cleansing soaps and are released into the environment via the sewage system. MPPs in the environment can sorb persistent organic pollutants (POPs) that can potentially be assimilated by organisms mistaking MPPs for food. Amphipods (Allorchestes compressa) exposed to MPPs isolated from a commercial facial cleansing soap ingested ≤45 particles per animal and evacuated them within 36 h. Amphipods were exposed to polybrominated diphenyl ether (PBDEs) congeners (BDE-28, -47, -99, -100, -153, -154, and -183) in the presence or absence of MPPs. This study has demonstrated that PBDEs derived from MPPs can be assimilated into the tissue of a marine amphipod. MPPs reduced PBDE uptake compared to controls, but they caused greater proportional uptake of higher-brominated congeners such as BDE-154 and -153 compared to BDE-28 and -47. While MPPs in the environment may lower PBDE uptake compared to unabsorbed free chemicals, our study has demonstrated they can transfer PBDEs into a marine organism. Therefore, MPPs pose a risk of contaminating aquatic food chains with the potential for increasing public exposure through dietary sources. This study has demonstrated that MPPs can act as a vector for the assimilation of POPs into marine organisms.
NASA Astrophysics Data System (ADS)
Zhang, Rong; Zhang, Yijun; Xu, Liangtao; Zheng, Dong; Yao, Wen
2017-08-01
A large number of observational analyses have shown that lightning data can be used to indicate areas of deep convection. It is important to assimilate observed lightning data into numerical models, so that more small-scale information can be incorporated to improve the quality of the initial condition and the subsequent forecasts. In this study, the empirical relationship between flash rate, water vapor mixing ratio, and graupel mixing ratio was used to adjust the model relative humidity, which was then assimilated by using the three-dimensional variational data assimilation system of the Weather Research and Forecasting model in cycling mode at 10-min intervals. To find the appropriate assimilation time-window length that yielded significant improvement in both the initial conditions and subsequent forecasts, four experiments with different assimilation time-window lengths were conducted for a squall line case that occurred on 10 July 2007 in North China. It was found that 60 min was the appropriate assimilation time-window length for this case, and longer assimilation window length was unnecessary since no further improvement was present. Forecasts of 1-h accumulated precipitation during the assimilation period and the subsequent 3-h accumulated precipitation were significantly improved compared with the control experiment without lightning data assimilation. The simulated reflectivity was optimal after 30 min of the forecast, it remained optimal during the following 42 min, and the positive effect from lightning data assimilation began to diminish after 72 min of the forecast. Overall, the improvement from lightning data assimilation can be maintained for about 3 h.
NASA Astrophysics Data System (ADS)
Xu, Jianhui; Shu, Hong
2014-09-01
This study assesses the analysis performance of assimilating the Moderate Resolution Imaging Spectroradiometer (MODIS)-based albedo and snow cover fraction (SCF) separately or jointly into the physically based Common Land Model (CoLM). A direct insertion method (DI) is proposed to assimilate the black and white-sky albedos into the CoLM. The MODIS-based albedo is calculated with the MODIS bidirectional reflectance distribution function (BRDF) model parameters product (MCD43B1) and the solar zenith angle as estimated in the CoLM for each time step. Meanwhile, the MODIS SCF (MOD10A1) is assimilated into the CoLM using the deterministic ensemble Kalman filter (DEnKF) method. A new DEnKF-albedo assimilation scheme for integrating the DI and DEnKF assimilation schemes is proposed. Our assimilation results are validated against in situ snow depth observations from November 2008 to March 2009 at five sites in the Altay region of China. The experimental results show that all three data assimilation schemes can improve snow depth simulations. But overall, the DEnKF-albedo assimilation shows the best analysis performance as it significantly reduces the bias and root-mean-square error (RMSE) during the snow accumulation and ablation periods at all sites except for the Fuyun site. The SCF assimilation via DEnKF produces better results than the albedo assimilation via DI, implying that the albedo assimilation that indirectly updates the snow depth state variable is less efficient than the direct SCF assimilation. For the Fuyun site, the DEnKF-albedo scheme tends to overestimate the snow depth accumulation with the maximum bias and RMSE values because of the large positive innovation (observation minus forecast).
NASA Technical Reports Server (NTRS)
Wargan, K.; Stajner, I.; Pawson, S.
2003-01-01
In a data assimilation system the forecast error covariance matrix governs the way in which the data information is spread throughout the model grid. Implementation of a correct method of assigning covariances is expected to have an impact on the analysis results. The simplest models assume that correlations are constant in time and isotropic or nearly isotropic. In such models the analysis depends on the dynamics only through assumed error standard deviations. In applications to atmospheric tracer data assimilation this may lead to inaccuracies, especially in regions with strong wind shears or high gradient of potential vorticity, as well as in areas where no data are available. In order to overcome this problem we have developed a flow-dependent covariance model that is based on short term evolution of error correlations. The presentation compares performance of a static and a flow-dependent model applied to a global three- dimensional ozone data assimilation system developed at NASA s Data Assimilation Office. We will present some results of validation against WMO balloon-borne sondes and the Polar Ozone and Aerosol Measurement (POAM) III instrument. Experiments show that allowing forecast error correlations to evolve with the flow results in positive impact on assimilated ozone within the regions where data were not assimilated, particularly at high latitudes in both hemispheres and in the troposphere. We will also discuss statistical characteristics of both models; in particular we will argue that including evolution of error correlations leads to stronger internal consistency of a data assimilation ,
Joint Center for Satellite Data Assimilation Overview and Research Activities
NASA Astrophysics Data System (ADS)
Auligne, T.
2017-12-01
In 2001 NOAA/NESDIS, NOAA/NWS, NOAA/OAR, and NASA, subsequently joined by the US Navy and Air Force, came together to form the Joint Center for Satellite Data Assimilation (JCSDA) for the common purpose of accelerating the use of satellite data in environmental numerical prediction modeling by developing, using, and anticipating advances in numerical modeling, satellite-based remote sensing, and data assimilation methods. The primary focus was to bring these advances together to improve operational numerical model-based forecasting, under the premise that these partners have common technical and logistical challenges assimilating satellite observations into their modeling enterprises that could be better addressed through cooperative action and/or common solutions. Over the last 15 years, the JCSDA has made and continues to make major contributions to operational assimilation of satellite data. The JCSDA is a multi-agency U.S. government-owned-and-operated organization that was conceived as a venue for the several agencies NOAA, NASA, USAF and USN to collaborate on advancing the development and operational use of satellite observations into numerical model-based environmental analysis and forecasting. The primary mission of the JCSDA is to "accelerate and improve the quantitative use of research and operational satellite data in weather, ocean, climate and environmental analysis and prediction systems." This mission is fulfilled through directed research targeting the following key science objectives: Improved radiative transfer modeling; new instrument assimilation; assimilation of humidity, clouds, and precipitation observations; assimilation of land surface observations; assimilation of ocean surface observations; atmospheric composition; and chemistry and aerosols. The goal of this presentation is to briefly introduce the JCSDA's mission and vision, and to describe recent research activities across various JCSDA partners.
Assimilation of ASCAT near-surface soil moisture into the French SIM hydrological model
NASA Astrophysics Data System (ADS)
Draper, C.; Mahfouf, J.-F.; Calvet, J.-C.; Martin, E.; Wagner, W.
2011-06-01
The impact of assimilating near-surface soil moisture into the SAFRAN-ISBA-MODCOU (SIM) hydrological model over France is examined. Specifically, the root-zone soil moisture in the ISBA land surface model is constrained over three and a half years, by assimilating the ASCAT-derived surface degree of saturation product, using a Simplified Extended Kalman Filter. In this experiment ISBA is forced with the near-real time SAFRAN analysis, which analyses the variables required to force ISBA from relevant observations available before the real time data cut-off. The assimilation results are tested against ISBA forecasts generated with a higher quality delayed cut-off SAFRAN analysis. Ideally, assimilating the ASCAT data will constrain the ISBA surface state to correct for errors in the near-real time SAFRAN forcing, the most significant of which was a substantial dry bias caused by a dry precipitation bias. The assimilation successfully reduced the mean root-zone soil moisture bias, relative to the delayed cut-off forecasts, by close to 50 % of the open-loop value. The improved soil moisture in the model then led to significant improvements in the forecast hydrological cycle, reducing the drainage, runoff, and evapotranspiration biases (by 17 %, 11 %, and 70 %, respectively). When coupled to the MODCOU hydrogeological model, the ASCAT assimilation also led to improved streamflow forecasts, increasing the mean discharge ratio, relative to the delayed cut off forecasts, from 0.68 to 0.76. These results demonstrate that assimilating near-surface soil moisture observations can effectively constrain the SIM model hydrology, while also confirming the accuracy of the ASCAT surface degree of saturation product. This latter point highlights how assimilation experiments can contribute towards the difficult issue of validating remotely sensed land surface observations over large spatial scales.
NASA Astrophysics Data System (ADS)
Li, N.; Kinzelbach, W.; Li, H.; Li, W.; Chen, F.; Wang, L.
2017-12-01
Data assimilation techniques are widely used in hydrology to improve the reliability of hydrological models and to reduce model predictive uncertainties. This provides critical information for decision makers in water resources management. This study aims to evaluate a data assimilation system for the Guantao groundwater flow model coupled with a one-dimensional soil column simulation (Hydrus 1D) using an Unbiased Ensemble Square Root Filter (UnEnSRF) originating from the Ensemble Kalman Filter (EnKF) to update parameters and states, separately or simultaneously. To simplify the coupling between unsaturated and saturated zone, a linear relationship obtained from analyzing inputs to and outputs from Hydrus 1D is applied in the data assimilation process. Unlike EnKF, the UnEnSRF updates parameter ensemble mean and ensemble perturbations separately. In order to keep the ensemble filter working well during the data assimilation, two factors are introduced in the study. One is called damping factor to dampen the update amplitude of the posterior ensemble mean to avoid nonrealistic values. The other is called inflation factor to relax the posterior ensemble perturbations close to prior to avoid filter inbreeding problems. The sensitivities of the two factors are studied and their favorable values for the Guantao model are determined. The appropriate observation error and ensemble size were also determined to facilitate the further analysis. This study demonstrated that the data assimilation of both model parameters and states gives a smaller model prediction error but with larger uncertainty while the data assimilation of only model states provides a smaller predictive uncertainty but with a larger model prediction error. Data assimilation in a groundwater flow model will improve model prediction and at the same time make the model converge to the true parameters, which provides a successful base for applications in real time modelling or real time controlling strategies in groundwater resources management.
Information flow in an atmospheric model and data assimilation
NASA Astrophysics Data System (ADS)
Yoon, Young-noh
2011-12-01
Weather forecasting consists of two processes, model integration and analysis (data assimilation). During the model integration, the state estimate produced by the analysis evolves to the next cycle time according to the atmospheric model to become the background estimate. The analysis then produces a new state estimate by combining the background state estimate with new observations, and the cycle repeats. In an ensemble Kalman filter, the probability distribution of the state estimate is represented by an ensemble of sample states, and the covariance matrix is calculated using the ensemble of sample states. We perform numerical experiments on toy atmospheric models introduced by Lorenz in 2005 to study the information flow in an atmospheric model in conjunction with ensemble Kalman filtering for data assimilation. This dissertation consists of two parts. The first part of this dissertation is about the propagation of information and the use of localization in ensemble Kalman filtering. If we can perform data assimilation locally by considering the observations and the state variables only near each grid point, then we can reduce the number of ensemble members necessary to cover the probability distribution of the state estimate, reducing the computational cost for the data assimilation and the model integration. Several localized versions of the ensemble Kalman filter have been proposed. Although tests applying such schemes have proven them to be extremely promising, a full basic understanding of the rationale and limitations of localization is currently lacking. We address these issues and elucidate the role played by chaotic wave dynamics in the propagation of information and the resulting impact on forecasts. The second part of this dissertation is about ensemble regional data assimilation using joint states. Assuming that we have a global model and a regional model of higher accuracy defined in a subregion inside the global region, we propose a data assimilation scheme that produces the analyses for the global and the regional model simultaneously, considering forecast information from both models. We show that our new data assimilation scheme produces better results both in the subregion and the global region than the data assimilation scheme that produces the analyses for the global and the regional model separately.
A balanced Kalman filter ocean data assimilation system with application to the South Australian Sea
NASA Astrophysics Data System (ADS)
Li, Yi; Toumi, Ralf
2017-08-01
In this paper, an Ensemble Kalman Filter (EnKF) based regional ocean data assimilation system has been developed and applied to the South Australian Sea. This system consists of the data assimilation algorithm provided by the NCAR Data Assimilation Research Testbed (DART) and the Regional Ocean Modelling System (ROMS). We describe the first implementation of the physical balance operator (temperature-salinity, hydrostatic and geostrophic balance) to DART, to reduce the spurious waves which may be introduced during the data assimilation process. The effect of the balance operator is validated in both an idealised shallow water model and the ROMS model real case study. In the shallow water model, the geostrophic balance operator eliminates spurious ageostrophic waves and produces a better sea surface height (SSH) and velocity analysis and forecast. Its impact increases as the sea surface height and wind stress increase. In the real case, satellite-observed sea surface temperature (SST) and SSH are assimilated in the South Australian Sea with 50 ensembles using the Ensemble Adjustment Kalman Filter (EAKF). Assimilating SSH and SST enhances the estimation of SSH and SST in the entire domain, respectively. Assimilation with the balance operator produces a more realistic simulation of surface currents and subsurface temperature profile. The best improvement is obtained when only SSH is assimilated with the balance operator. A case study with a storm suggests that the benefit of the balance operator is of particular importance under high wind stress conditions. Implementing the balance operator could be a general benefit to ocean data assimilation systems.
Karina V.R. Schafer; Ram Oren; David S. Ellsworth; Chun-Ta Lai; Jeffrey D. Herricks; Adrien C. Finzi; Daniel D. Richter; Gabriel G. Katul
2003-01-01
We linked a leaf-level C02 assimilation model with a model that accounts for light attenuation in the canopy and measurements of sap-flux-based canopy conductance into a new canopy conductance-constrained carbon assimilation (4C-A) model. We estimated canopy C02 uptake (AnC) at...
Satellite-Scale Snow Water Equivalent Assimilation into a High-Resolution Land Surface Model
NASA Technical Reports Server (NTRS)
De Lannoy, Gabrielle J.M.; Reichle, Rolf H.; Houser, Paul R.; Arsenault, Kristi R.; Verhoest, Niko E.C.; Paulwels, Valentijn R.N.
2009-01-01
An ensemble Kalman filter (EnKF) is used in a suite of synthetic experiments to assimilate coarse-scale (25 km) snow water equivalent (SWE) observations (typical of satellite retrievals) into fine-scale (1 km) model simulations. Coarse-scale observations are assimilated directly using an observation operator for mapping between the coarse and fine scales or, alternatively, after disaggregation (re-gridding) to the fine-scale model resolution prior to data assimilation. In either case observations are assimilated either simultaneously or independently for each location. Results indicate that assimilating disaggregated fine-scale observations independently (method 1D-F1) is less efficient than assimilating a collection of neighboring disaggregated observations (method 3D-Fm). Direct assimilation of coarse-scale observations is superior to a priori disaggregation. Independent assimilation of individual coarse-scale observations (method 3D-C1) can bring the overall mean analyzed field close to the truth, but does not necessarily improve estimates of the fine-scale structure. There is a clear benefit to simultaneously assimilating multiple coarse-scale observations (method 3D-Cm) even as the entire domain is observed, indicating that underlying spatial error correlations can be exploited to improve SWE estimates. Method 3D-Cm avoids artificial transitions at the coarse observation pixel boundaries and can reduce the RMSE by 60% when compared to the open loop in this study.
Assimilating the Future for Better Forecasts and Earlier Warnings
NASA Astrophysics Data System (ADS)
Du, H.; Wheatcroft, E.; Smith, L. A.
2016-12-01
Multi-model ensembles have become popular tools to account for some of the uncertainty due to model inadequacy in weather and climate simulation-based predictions. The current multi-model forecasts focus on combining single model ensemble forecasts by means of statistical post-processing. Assuming each model is developed independently or with different primary target variables, each is likely to contain different dynamical strengths and weaknesses. Using statistical post-processing, such information is only carried by the simulations under a single model ensemble: no advantage is taken to influence simulations under the other models. A novel methodology, named Multi-model Cross Pollination in Time, is proposed for multi-model ensemble scheme with the aim of integrating the dynamical information regarding the future from each individual model operationally. The proposed approach generates model states in time via applying data assimilation scheme(s) to yield truly "multi-model trajectories". It is demonstrated to outperform traditional statistical post-processing in the 40-dimensional Lorenz96 flow. Data assimilation approaches are originally designed to improve state estimation from the past to the current time. The aim of this talk is to introduce a framework that uses data assimilation to improve model forecasts at future time (not to argue for any one particular data assimilation scheme). Illustration of applying data assimilation "in the future" to provide early warning of future high-impact events is also presented.
Wankel, Scott D.; Kendall, C.; Pennington, J.T.; Chavez, F.P.; Paytan, A.
2007-01-01
Coupled measurements of nitrate (NO3-), nitrogen (N), and oxygen (O) isotopic composition (??15NNO3 and ??18ONO3) were made in surface waters of Monterey Bay to investigate multiple N cycling processes occurring within surface waters. Profiles collected throughout the year at three sites exhibit a wide range of values, suggesting simultaneous and variable influence of both phytoplankton NO3- assimilation and nitrification within the euphotic zone. Specifically, increases ??18ONO3 were consistently greater than those in ??15NN03. A coupled isotope steady state box model was used to estimate the amount of NO3- supplied by nitrification in surface waters relative to that supplied from deeper water. The model highlights the importance of the branching reaction during ammonium (NH4+) consumption, in which NH4+ either serves as a substrate for regenerated production or for nitrification. Our observations indicate that a previously unrecognized proportion of nitrate-based productivity, on average 15 to 27%, is supported by nitrification in surface waters and should not be considered new production. This work also highlights the need for a better understanding of isotope effects of NH4+ oxidation, NH4+ assimilation, and NO4+ assimilation in marine environments.
NASA Astrophysics Data System (ADS)
Wu, Kai; Shu, Hong; Nie, Lei; Jiao, Zhenhang
2018-01-01
Spatially correlated errors are typically ignored in data assimilation, thus degenerating the observation error covariance R to a diagonal matrix. We argue that a nondiagonal R carries more observation information making assimilation results more accurate. A method, denoted TC_Cov, was proposed for soil moisture data assimilation to estimate spatially correlated observation error covariance based on triple collocation (TC). Assimilation experiments were carried out to test the performance of TC_Cov. AMSR-E soil moisture was assimilated with a diagonal R matrix computed using the TC and assimilated using a nondiagonal R matrix, as estimated by proposed TC_Cov. The ensemble Kalman filter was considered as the assimilation method. Our assimilation results were validated against climate change initiative data and ground-based soil moisture measurements using the Pearson correlation coefficient and unbiased root mean square difference metrics. These experiments confirmed that deterioration of diagonal R assimilation results occurred when model simulation is more accurate than observation data. Furthermore, nondiagonal R achieved higher correlation coefficient and lower ubRMSD values over diagonal R in experiments and demonstrated the effectiveness of TC_Cov to estimate richly structuralized R in data assimilation. In sum, compared with diagonal R, nondiagonal R may relieve the detrimental effects of assimilation when simulated model results outperform observation data.
Assimilation of SMOS Retrieved Soil Moisture into the Land Information System
NASA Technical Reports Server (NTRS)
Blankenship, Clay; Case, Jonathan; Zavodsky, Bradley; Jedlovec, Gary
2014-01-01
Soil moisture retrievals from the Soil Moisture and Ocean Salinity (SMOS) instrument are assimilated into the Noah land surface model (LSM) within the NASA Land Information System (LIS). Before assimilation, SMOS retrievals are bias-corrected to match the model climatological distribution using a Cumulative Distribution Function (CDF) matching approach. Data assimilation is done via the Ensemble Kalman Filter. The goal is to improve the representation of soil moisture within the LSM, and ultimately to improve numerical weather forecasts through better land surface initialization. We present a case study showing a large area of irrigation in the lower Mississippi River Valley, in an area with extensive rice agriculture. High soil moisture value in this region are observed by SMOS, but not captured in the forcing data. After assimilation, the model fields reflect the observed geographic patterns of soil moisture. Plans for a modeling experiment and operational use of the data are given. This work helps prepare for the assimilation of Soil Moisture Active/Passive (SMAP) retrievals in the near future.
Girotto, Manuela; De Lannoy, Gabriëlle J. M.; Reichle, Rolf H.; Rodell, Matthew; Draper, Clara; Bhanja, Soumendra N.; Mukherjee, Abhijit
2018-01-01
This study investigates some of the benefits and drawbacks of assimilating Terrestrial Water Storage (TWS) observations from the Gravity Recovery and Climate Experiment (GRACE) into a land surface model over India. GRACE observes TWS depletion associated with anthropogenic groundwater extraction in northwest India. The model, however, does not represent anthropogenic groundwater withdrawals and is not skillful in reproducing the interannual variability of groundwater. Assimilation of GRACE TWS introduces long-term trends and improves the interannual variability in groundwater. But the assimilation also introduces a negative trend in simulated evapotranspiration whereas in reality evapotranspiration is likely enhanced by irrigation, which is also unmodeled. Moreover, in situ measurements of shallow groundwater show no trend, suggesting that the trends are erroneously introduced by the assimilation into the modeled shallow groundwater, when in reality the groundwater is depleted in deeper aquifers. The results emphasize the importance of representing anthropogenic processes in land surface modeling and data assimilation systems. PMID:29643570
Girotto, Manuela; De Lannoy, Gabriëlle J M; Reichle, Rolf H; Rodell, Matthew; Draper, Clara; Bhanja, Soumendra N; Mukherjee, Abhijit
2017-05-16
This study investigates some of the benefits and drawbacks of assimilating Terrestrial Water Storage (TWS) observations from the Gravity Recovery and Climate Experiment (GRACE) into a land surface model over India. GRACE observes TWS depletion associated with anthropogenic groundwater extraction in northwest India. The model, however, does not represent anthropogenic groundwater withdrawals and is not skillful in reproducing the interannual variability of groundwater. Assimilation of GRACE TWS introduces long-term trends and improves the interannual variability in groundwater. But the assimilation also introduces a negative trend in simulated evapotranspiration whereas in reality evapotranspiration is likely enhanced by irrigation, which is also unmodeled. Moreover, in situ measurements of shallow groundwater show no trend, suggesting that the trends are erroneously introduced by the assimilation into the modeled shallow groundwater, when in reality the groundwater is depleted in deeper aquifers. The results emphasize the importance of representing anthropogenic processes in land surface modeling and data assimilation systems.
NASA Technical Reports Server (NTRS)
Girotto, Manuela; De Lannoy, Gabrielle J. M.; Reichle, Rolf H.; Rodell, Matthew; Draper, Clara S.; Bhanja, Soumendra N.; Mukherjee, Abhijit
2017-01-01
This study investigates some of the benefits and drawbacks of assimilating Terrestrial Water Storage (TWS) observations from the Gravity Recovery and Climate Experiment (GRACE) into a land surface model over India. GRACE observes TWS depletion associated with anthropogenic groundwater extraction in northwest India. The model, however, does not represent anthropogenic groundwater withdrawals and is not skillful in reproducing the interannual variability of groundwater. Assimilation of GRACE TWS introduces long-term trends and improves the interannual variability in groundwater. But the assimilation also introduces a negative trend in simulated evapotranspiration whereas in reality evapotranspiration is likely enhanced by irrigation, which is also unmodeled. Moreover, in situ measurements of shallow groundwater show no trend, suggesting that the trends are erroneously introduced by the assimilation into the modeled shallow groundwater, when in reality the groundwater is depleted in deeper aquifers. The results emphasize the importance of representing anthropogenic processes in land surface modeling and data assimilation systems.
NASA Astrophysics Data System (ADS)
Hirtl, Marcus; Mantovani, Simone; Krüger, Bernd C.; Triebnig, Gerhard; Flandorfer, Claudia
2013-04-01
Air quality is a key element for the well-being and quality of life of European citizens. Air pollution measurements and modeling tools are essential for assessment of air quality according to EU legislation. The responsibilities of ZAMG as the national weather service of Austria include the support of the federal states and the public in questions connected to the protection of the environment in the frame of advisory and counseling services as well as expert opinions. The Air Quality model for Austria (AQA) is operated at ZAMG in cooperation with the University of Natural Resources and Life Sciences in Vienna (BOKU) by order of the regional governments since 2005. AQA conducts daily forecasts of gaseous and particulate (PM10) air pollutants over Austria. In the frame of the project AQA-PM (funded by FFG), satellite measurements of the Aerosol Optical Thickness (AOT) and ground-based PM10-measurements are combined to highly-resolved initial fields using regression- and assimilation techniques. For the model simulations WRF/Chem is used with a resolution of 3 km over the alpine region. Interfaces have been developed to account for the different measurements as input data. The available local emission inventories provided by the different Austrian regional governments were harmonized and used for the model simulations. An episode in February 2010 is chosen for the model evaluation. During that month exceedances of PM10-thresholds occurred at many measurement stations of the Austrian network. Different model runs (only model/only ground stations assimilated/satellite and ground stations assimilated) are compared to the respective measurements. The goal of this project is to improve the PM10-forecasts for Austria with the integration of satellite based measurements and to provide a comprehensive product-platform.
NASA Astrophysics Data System (ADS)
Malanotte-Rizzoli, Paola; Young, Roberta E.
1995-12-01
The primary objective of this paper is to assess the relative effectiveness of data sets with different space coverage and time resolution when they are assimilated into an ocean circulation model. We focus on obtaining realistic numerical simulations of the Gulf Stream system typically of the order of 3-month duration by constructing a "synthetic" ocean simultaneously consistent with the model dynamics and the observations. The model used is the Semispectral Primitive Equation Model. The data sets are the "global" Optimal Thermal Interpolation Scheme (OTIS) 3 of the Fleet Numerical Oceanography Center providing temperature and salinity fields with global coverage and with bi-weekly frequency, and the localized measurements, mostly of current velocities, from the central and eastern array moorings of the Synoptic Ocean Prediction (SYNOP) program, with daily frequency but with a very small spatial coverage. We use a suboptimal assimilation technique ("nudging"). Even though this technique has already been used in idealized data assimilation studies, to our knowledge this is the first study in which the effectiveness of nudging is tested by assimilating real observations of the interior temperature and salinity fields. This is also the first work in which a systematic assimilation is carried out of the localized, high-quality SYNOP data sets in numerical experiments longer than 1-2 weeks, that is, not aimed to forecasting. We assimilate (1) the global OTIS 3 alone, (2) the local SYNOP observations alone, and (3) both OTIS 3 and SYNOP observations. We assess the success of the assimilations with quantitative measures of performance, both on the global and local scale. The results can be summarized as follows. The intermittent assimilation of the global OTIS 3 is necessary to keep the model "on track" over 3-month simulations on the global scale. As OTIS 3 is assimilated at every model grid point, a "gentle" weight must be prescribed to it so as not to overconstrain the model. However, in these assimilations the predicted velocity fields over the SYNOP arrays are greatly in error. The continuous assimilation of the localized SYNOP data sets with a strong weight is necessary to obtain local realistic evolutions. Then assimilation of velocity measurements alone recovers the density structure over the array area. However, the spatial coverage of the SYNOP measurements is too small to constrain the model on the global scale. Thus the blending of both types of datasets is necessary in the assimilation as they constrain different time and space scales. Our choice of "gentle" nudging weight for the global OTIS 3 and "strong" weight for the local SYNOP data provides for realistic simulations of the Gulf Stream system, both globally and locally, on the 3- to 4-month-long timescale, the one governed by the Gulf Stream jet internal dynamics.
NASA Astrophysics Data System (ADS)
Kalaroni, Sofia; Tsiaras, Kostas; Economou-Amilli, Athena; Petihakis, George; Politikos, Dimitrios; Triantafyllou, George
2013-04-01
Within the framework of the European project OPEC (Operational Ecology), a data assimilation system was implemented to describe chlorophyll-a concentrations of the North Aegean, as well the impact on the European anchovy (Engraulis encrasicolus) biomass distribution provided by a bioenergetics model, related to the density of three low trophic level functional groups of zooplankton (heterotrophic flagellates, microzooplankton and mesozooplankton). The three-dimensional hydrodynamic-biogeochemical model comprises two on-line coupled sub-models: the Princeton Ocean Model (POM) and the European Regional Seas Ecosystem Model (ERSEM). The assimilation scheme is based on the Singular Evolutive Extended Kalman (SEEK) filter and its variant that uses a fixed correction base (SFEK). For the initialization, SEEK filter uses a reduced order error covariance matrix provided by the dominant Empirical Orthogonal Functions (EOF) of model. The assimilation experiments were performed for year 2003 using SeaWiFS chlorophyll-a data during which the physical model uses the atmospheric forcing obtained from the regional climate model HIRHAM5. The assimilation system is validated by assessing the relevance of the system in fitting the data, the impact of the assimilation on non-observed biochemical parameters and the overall quality of the forecasts.
Assimilation of ASCAT near-surface soil moisture into the SIM hydrological model over France
NASA Astrophysics Data System (ADS)
Draper, C.; Mahfouf, J.-F.; Calvet, J.-C.; Martin, E.; Wagner, W.
2011-12-01
This study examines whether the assimilation of remotely sensed near-surface soil moisture observations might benefit an operational hydrological model, specifically Météo-France's SAFRAN-ISBA-MODCOU (SIM) model. Soil moisture data derived from ASCAT backscatter observations are assimilated into SIM using a Simplified Extended Kalman Filter (SEKF) over 3.5 years. The benefit of the assimilation is tested by comparison to a delayed cut-off version of SIM, in which the land surface is forced with more accurate atmospheric analyses, due to the availability of additional atmospheric observations after the near-real time data cut-off. However, comparing the near-real time and delayed cut-off SIM models revealed that the main difference between them is a dry bias in the near-real time precipitation forcing, which resulted in a dry bias in the root-zone soil moisture and associated surface moisture flux forecasts. While assimilating the ASCAT data did reduce the root-zone soil moisture dry bias (by nearly 50%), this was more likely due to a bias within the SEKF, than due to the assimilation having accurately responded to the precipitation errors. Several improvements to the assimilation are identified to address this, and a bias-aware strategy is suggested for explicitly correcting the model bias. However, in this experiment the moisture added by the SEKF was quickly lost from the model surface due to the enhanced surface fluxes (particularly drainage) induced by the wetter soil moisture states. Consequently, by the end of each winter, during which frozen conditions prevent the ASCAT data from being assimilated, the model land surface had returned to its original (dry-biased) climate. This highlights that it would be more effective to address the precipitation bias directly, than to correct it by constraining the model soil moisture through data assimilation.
NASA Technical Reports Server (NTRS)
Estes, Sue M.; Haynes, J. A.
2009-01-01
NASA's strategic Goals: a) Develop a balanced overall program of science, exploration, and aeronautics consistent with the redirection of human spaceflight program to focus on exploration. b) Study Earth from space to advance scientific understanding and meet societal needs. NASA's partnership efforts in global modeling and data assimilation over the next decade will shorten the distance from observations to answers for important, leading-edge science questions. NASA's Applied Sciences program will continue the Agency's efforts in benchmarking the assimilation of NASA research results into policy and management decision-support tools that are vital for the Nation's environment, economy, safety, and security. NASA also is working with NOAH and inter-agency forums to transition mature research capabilities to operational systems, primarily the polar and geostationary operational environmental satellites, and to utilize fully those assets for research purposes.
NASA Astrophysics Data System (ADS)
Jones, Emlyn M.; Baird, Mark E.; Mongin, Mathieu; Parslow, John; Skerratt, Jenny; Lovell, Jenny; Margvelashvili, Nugzar; Matear, Richard J.; Wild-Allen, Karen; Robson, Barbara; Rizwi, Farhan; Oke, Peter; King, Edward; Schroeder, Thomas; Steven, Andy; Taylor, John
2016-12-01
Skillful marine biogeochemical (BGC) models are required to understand a range of coastal and global phenomena such as changes in nitrogen and carbon cycles. The refinement of BGC models through the assimilation of variables calculated from observed in-water inherent optical properties (IOPs), such as phytoplankton absorption, is problematic. Empirically derived relationships between IOPs and variables such as chlorophyll-a concentration (Chl a), total suspended solids (TSS) and coloured dissolved organic matter (CDOM) have been shown to have errors that can exceed 100 % of the observed quantity. These errors are greatest in shallow coastal regions, such as the Great Barrier Reef (GBR), due to the additional signal from bottom reflectance. Rather than assimilate quantities calculated using IOP algorithms, this study demonstrates the advantages of assimilating quantities calculated directly from the less error-prone satellite remote-sensing reflectance (RSR). To assimilate the observed RSR, we use an in-water optical model to produce an equivalent simulated RSR and calculate the mismatch between the observed and simulated quantities to constrain the BGC model with a deterministic ensemble Kalman filter (DEnKF). The traditional assumption that simulated surface Chl a is equivalent to the remotely sensed OC3M estimate of Chl a resulted in a forecast error of approximately 75 %. We show this error can be halved by instead using simulated RSR to constrain the model via the assimilation system. When the analysis and forecast fields from the RSR-based assimilation system are compared with the non-assimilating model, a comparison against independent in situ observations of Chl a, TSS and dissolved inorganic nutrients (NO3, NH4 and DIP) showed that errors are reduced by up to 90 %. In all cases, the assimilation system improves the simulation compared to the non-assimilating model. Our approach allows for the incorporation of vast quantities of remote-sensing observations that have in the past been discarded due to shallow water and/or artefacts introduced by terrestrially derived TSS and CDOM or the lack of a calibrated regional IOP algorithm.
Variational data assimilative modeling of the Gulf of Maine in spring and summer 2010
NASA Astrophysics Data System (ADS)
Li, Yizhen; He, Ruoying; Chen, Ke; McGillicuddy, Dennis J.
2015-05-01
A data assimilative ocean circulation model is used to hindcast the Gulf of Maine [GOM) circulation in spring and summer 2010. Using the recently developed incremental strong constraint 4D Variational data assimilation algorithm, the model assimilates satellite sea surface temperature and in situ temperature and salinity profiles measured by expendable bathythermograph, Argo floats, and shipboard CTD casts. Validation against independent observations shows that the model skill is significantly improved after data assimilation. The data-assimilative model hindcast reproduces the temporal and spatial evolution of the ocean state, showing that a sea level depression southwest of the Scotian Shelf played a critical role in shaping the gulf-wide circulation. Heat budget analysis further demonstrates that both advection and surface heat flux contribute to temperature variability. The estimated time scale for coastal water to travel from the Scotian Shelf to the Jordan Basin is around 60 days, which is consistent with previous estimates based on in situ observations. Our study highlights the importance of resolving upstream and offshore forcing conditions in predicting the coastal circulation in the GOM.
BEATBOX v1.0: Background Error Analysis Testbed with Box Models
NASA Astrophysics Data System (ADS)
Knote, Christoph; Barré, Jérôme; Eckl, Max
2018-02-01
The Background Error Analysis Testbed (BEATBOX) is a new data assimilation framework for box models. Based on the BOX Model eXtension (BOXMOX) to the Kinetic Pre-Processor (KPP), this framework allows users to conduct performance evaluations of data assimilation experiments, sensitivity analyses, and detailed chemical scheme diagnostics from an observation simulation system experiment (OSSE) point of view. The BEATBOX framework incorporates an observation simulator and a data assimilation system with the possibility of choosing ensemble, adjoint, or combined sensitivities. A user-friendly, Python-based interface allows for the tuning of many parameters for atmospheric chemistry and data assimilation research as well as for educational purposes, for example observation error, model covariances, ensemble size, perturbation distribution in the initial conditions, and so on. In this work, the testbed is described and two case studies are presented to illustrate the design of a typical OSSE experiment, data assimilation experiments, a sensitivity analysis, and a method for diagnosing model errors. BEATBOX is released as an open source tool for the atmospheric chemistry and data assimilation communities.
Continuous Evaluation of Fast Processes in Climate Models Using ARM Measurements
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Zhijin; Sha, Feng; Liu, Yangang
2016-02-02
This five-year award supports the project “Continuous Evaluation of Fast Processes in Climate Models Using ARM Measurements (FASTER)”. The goal of this project is to produce accurate, consistent and comprehensive data sets for initializing both single column models (SCMs) and cloud resolving models (CRMs) using data assimilation. A multi-scale three-dimensional variational data assimilation scheme (MS-3DVAR) has been implemented. This MS-3DVAR system is built on top of WRF/GSI. The Community Gridpoint Statistical Interpolation (GSI) system is an operational data assimilation system at the National Centers for Environmental Prediction (NCEP) and has been implemented in the Weather Research and Forecast (WRF) model.more » This MS-3DVAR is further enhanced by the incorporation of a land surface 3DVAR scheme and a comprehensive aerosol 3DVAR scheme. The data assimilation implementation focuses in the ARM SGP region. ARM measurements are assimilated along with other available satellite and radar data. Reanalyses are then generated for a few selected period of time. This comprehensive data assimilation system has also been employed for other ARM-related applications.« less
NASA Technical Reports Server (NTRS)
Reager, John T.; Thomas, Alys C.; Sproles, Eric A.; Rodell, Matthew; Beaudoing, Hiroko K.; Li, Bailing; Famiglietti, James S.
2015-01-01
We evaluate performance of the Catchment Land Surface Model (CLSM) under flood conditions after the assimilation of observations of the terrestrial water storage anomaly (TWSA) from NASA's Gravity Recovery and Climate Experiment (GRACE). Assimilation offers three key benefits for the viability of GRACE observations to operational applications: (1) near-real time analysis; (2) a downscaling of GRACE's coarse spatial resolution; and (3) state disaggregation of the vertically-integrated TWSA. We select the 2011 flood event in the Missouri river basin as a case study, and find that assimilation generally made the model wetter in the months preceding flood. We compare model outputs with observations from 14 USGS groundwater wells to assess improvements after assimilation. Finally, we examine disaggregated water storage information to improve the mechanistic understanding of event generation. Validation establishes that assimilation improved the model skill substantially, increasing regional groundwater anomaly correlation from 0.58 to 0.86. For the 2011 flood event in the Missouri river basin, results show that groundwater and snow water equivalent were contributors to pre-event flood potential, providing spatially-distributed early warning information.
POD/DEIM reduced-order strategies for efficient four dimensional variational data assimilation
NASA Astrophysics Data System (ADS)
Ştefănescu, R.; Sandu, A.; Navon, I. M.
2015-08-01
This work studies reduced order modeling (ROM) approaches to speed up the solution of variational data assimilation problems with large scale nonlinear dynamical models. It is shown that a key requirement for a successful reduced order solution is that reduced order Karush-Kuhn-Tucker conditions accurately represent their full order counterparts. In particular, accurate reduced order approximations are needed for the forward and adjoint dynamical models, as well as for the reduced gradient. New strategies to construct reduced order based are developed for proper orthogonal decomposition (POD) ROM data assimilation using both Galerkin and Petrov-Galerkin projections. For the first time POD, tensorial POD, and discrete empirical interpolation method (DEIM) are employed to develop reduced data assimilation systems for a geophysical flow model, namely, the two dimensional shallow water equations. Numerical experiments confirm the theoretical framework for Galerkin projection. In the case of Petrov-Galerkin projection, stabilization strategies must be considered for the reduced order models. The new reduced order shallow water data assimilation system provides analyses similar to those produced by the full resolution data assimilation system in one tenth of the computational time.
NASA Astrophysics Data System (ADS)
Huang, Chunlin; Chen, Weijin; Wang, Weizhen; Gu, Juan
2017-04-01
Uncertainties in model parameters can easily cause systematic differences between model states and observations from ground or satellites, which significantly affect the accuracy of soil moisture estimation in data assimilation systems. In this paper, a novel soil moisture assimilation scheme is developed to simultaneously assimilate AMSR-E brightness temperature (TB) and MODIS Land Surface Temperature (LST), which can correct model bias by simultaneously updating model states and parameters with dual ensemble Kalman filter (DEnKS). The Common Land Model (CoLM) and a Q-h Radiative Transfer Model (RTM) are adopted as model operator and observation operator, respectively. The assimilation experiment is conducted in Naqu, Tibet Plateau, from May 31 to September 27, 2011. Compared with in-situ measurements, the accuracy of soil moisture estimation is tremendously improved in terms of a variety of scales. The updated soil temperature by assimilating MODIS LST as input of RTM can reduce the differences between the simulated and observed brightness temperatures to a certain degree, which helps to improve the estimation of soil moisture and model parameters. The updated parameters show large discrepancy with the default ones and the former effectively reduces the states bias of CoLM. Results demonstrate the potential of assimilating both microwave TB and MODIS LST to improve the estimation of soil moisture and related parameters. Furthermore, this study also indicates that the developed scheme is an effective soil moisture downscaling approach for coarse-scale microwave TB.
NASA Astrophysics Data System (ADS)
Stampoulis, D.; Reager, J. T., II; David, C. H.; Famiglietti, J. S.; Andreadis, K.
2017-12-01
Despite the numerous advances in hydrologic modeling and improvements in Land Surface Models, an accurate representation of the water table depth (WTD) still does not exist. Data assimilation of observations of the joint NASA and DLR mission, Gravity Recovery and Climate Experiment (GRACE) leads to statistically significant improvements in the accuracy of hydrologic models, ultimately resulting in more reliable estimates of water storage. However, the usually shallow groundwater compartment of the models presents a problem with GRACE assimilation techniques, as these satellite observations account for much deeper aquifers. To improve the accuracy of groundwater estimates and allow the representation of the WTD at fine spatial scales we implemented a novel approach that enables a large-scale data integration system to assimilate GRACE data. This was achieved by augmenting the Variable Infiltration Capacity (VIC) hydrologic model, which is the core component of the Regional Hydrologic Extremes Assessment System (RHEAS), a high-resolution modeling framework developed at the Jet Propulsion Laboratory (JPL) for hydrologic modeling and data assimilation. The model has insufficient subsurface characterization and therefore, to reproduce groundwater variability not only in shallow depths but also in deep aquifers, as well as to allow GRACE assimilation, a fourth soil layer of varying depth ( 1000 meters) was added in VIC as the bottom layer. To initialize a water table in the model we used gridded global WTD data at 1 km resolution which were spatially aggregated to match the model's resolution. Simulations were then performed to test the augmented model's ability to capture seasonal and inter-annual trends of groundwater. The 4-layer version of VIC was run with and without assimilating GRACE Total Water Storage anomalies (TWSA) over the Central Valley in California. This is the first-ever assimilation of GRACE TWSA for the determination of realistic water table depths, at fine scales that are required for local water management. In addition, Open Loop and GRACE-assimilation simulations of water table depth were compared to in-situ data over the state of California, derived from observation wells operated/maintained by the U.S. Geological Service.
Land Surface Model Biases and their Impacts on the Assimilation of Snow-related Observations
NASA Astrophysics Data System (ADS)
Arsenault, K. R.; Kumar, S.; Hunter, S. M.; Aman, R.; Houser, P. R.; Toll, D.; Engman, T.; Nigro, J.
2007-12-01
Some recent snow modeling studies have employed a wide range of assimilation methods to incorporate snow cover or other snow-related observations into different hydrological or land surface models. These methods often include taking both model and observation biases into account throughout the model integration. This study focuses more on diagnosing the model biases and presenting their subsequent impacts on assimilating snow observations and modeled snowmelt processes. In this study, the land surface model, the Community Land Model (CLM), is used within the Land Information System (LIS) modeling framework to show how such biases impact the assimilation of MODIS snow cover observations. Alternative in-situ and satellite-based observations are used to help guide the CLM LSM in better predicting snowpack conditions and more realistic timing of snowmelt for a western US mountainous region. Also, MODIS snow cover observation biases will be discussed, and validation results will be provided. The issues faced with inserting or assimilating MODIS snow cover at moderate spatial resolutions (like 1km or less) will be addressed, and the impacts on CLM will be presented.
Ocean Data Assimilation in Support of Climate Applications: Status and Perspectives.
Stammer, D; Balmaseda, M; Heimbach, P; Köhl, A; Weaver, A
2016-01-01
Ocean data assimilation brings together observations with known dynamics encapsulated in a circulation model to describe the time-varying ocean circulation. Its applications are manifold, ranging from marine and ecosystem forecasting to climate prediction and studies of the carbon cycle. Here, we address only climate applications, which range from improving our understanding of ocean circulation to estimating initial or boundary conditions and model parameters for ocean and climate forecasts. Because of differences in underlying methodologies, data assimilation products must be used judiciously and selected according to the specific purpose, as not all related inferences would be equally reliable. Further advances are expected from improved models and methods for estimating and representing error information in data assimilation systems. Ultimately, data assimilation into coupled climate system components is needed to support ocean and climate services. However, maintaining the infrastructure and expertise for sustained data assimilation remains challenging.
An OSSE Study for Deep Argo Array using the GFDL Ensemble Coupled Data Assimilation System
NASA Astrophysics Data System (ADS)
Chang, You-Soon; Zhang, Shaoqing; Rosati, Anthony; Vecchi, Gabriel A.; Yang, Xiaosong
2018-03-01
An observing system simulation experiment (OSSE) using an ensemble coupled data assimilation system was designed to investigate the impact of deep ocean Argo profile assimilation in a biased numerical climate system. Based on the modern Argo observational array and an artificial extension to full depth, "observations" drawn from one coupled general circulation model (CM2.0) were assimilated into another model (CM2.1). Our results showed that coupled data assimilation with simultaneous atmospheric and oceanic constraints plays a significant role in preventing deep ocean drift. However, the extension of the Argo array to full depth did not significantly improve the quality of the oceanic climate estimation within the bias magnitude in the twin experiment. Even in the "identical" twin experiment for the deep Argo array from the same model (CM2.1) with the assimilation model, no significant changes were shown in the deep ocean, such as in the Atlantic meridional overturning circulation and the Antarctic bottom water cell. The small ensemble spread and corresponding weak constraints by the deep Argo profiles with medium spatial and temporal resolution may explain why the deep Argo profiles did not improve the deep ocean features in the assimilation system. Additional studies using different assimilation methods with improved spatial and temporal resolution of the deep Argo array are necessary in order to more thoroughly understand the impact of the deep Argo array on the assimilation system.
Numerical assessment of nutrient assimilative capacity of Khur-e-Musa in the Persian Gulf.
Payandeh, A; Zaker, N Hadjizadeh; Niksokhan, M H
2015-01-01
Khur-e-Musa is a predominantly tide-driven marine creek located in the northwestern part of the Persian Gulf. The port city of Mahshahr and several important industrial enterprises are located in the vicinity of this marine creek. Therefore, marine pollution due to discharge from regional industries into this water body has been a matter of interest for environmental studies. In this paper, nutrient assimilative capacity of the Khur-e-Musa during the summer time was studied. In order to perform any engineering project or marine environment study related to Khur-e-Musa, the prediction of currents is an essential task. Therefore, MIKE 3-FM hydrodynamic and quality model was used to simulate nutrients and chlorophyll a concentrations. OECD open boundary index was used to determine the trophic status probabilities. Different scenarios were defined and simulated to find the minimum nutrient load that causes eutrophication in all parts of Khur-e-Musa simultaneously. The results showed assimilative capacity of 7,180 kg/day TN and 1,305 kg/day TP for Khur-e-Musa.
NASA Astrophysics Data System (ADS)
Tanajura, C. A. S.; Lima, L. N.; Belyaev, K. P.
2015-09-01
The data of sea height anomalies calculated along the tracks of the Jason-1 and Jason-2 satellites are assimilated into the HYCOM hydrodynamic ocean model developed at the University of Miami, USA. We used a known method of data assimilation, the so-called ensemble method of the optimal interpolation scheme (EnOI). In this work, we study the influence of the assimilation of sea height anomalies on other variables of the model. The behavior of the time series of the analyzed and predicted values of the model is compared with a reference calculation (free run), i.e., with the behavior of model variables without assimilation but under the same initial and boundary conditions. The results of the simulation are also compared with the independent data of observations on moorings of the Pilot Research Array in the Tropical Atlantic (PIRATA) and the data of the ARGO floats using objective metrics. The investigations demonstrate that data assimilation under specific conditions results in a significant improvement of the 24-h prediction of the ocean state. The experiments also show that the assimilated fields of the ocean level contain a clearly pronounced mesoscale variability; thus they quantitatively differ from the dynamics obtained in the reference experiment.
Basto, Isabel; Pinheiro, Patrícia; Stiles, William B; Rijo, Daniel; Salgado, João
2017-07-01
The assimilation model describes the change process in psychotherapy. In this study we analyzed the relation of assimilation with changes in symptom intensity, measured session by session, and changes in emotional valence, measured for each emotional episode, in the case of a 33-year-old woman treated for depression with cognitive-behavioral therapy. Results showed the theoretically expected negative relation between assimilation of the client's main concerns and symptom intensity, and the relation between assimilation levels and emotional valence corresponded closely to the assimilation model's theoretical feelings curve. The results show how emotions work as markers of the client's current assimilation level, which could help the therapist adjust the intervention, moment by moment, to the client's needs.
A Global Carbon Assimilation System using a modified EnKF assimilation method
NASA Astrophysics Data System (ADS)
Zhang, S.; Zheng, X.; Chen, Z.; Dan, B.; Chen, J. M.; Yi, X.; Wang, L.; Wu, G.
2014-10-01
A Global Carbon Assimilation System based on Ensemble Kalman filter (GCAS-EK) is developed for assimilating atmospheric CO2 abundance data into an ecosystem model to simultaneously estimate the surface carbon fluxes and atmospheric CO2 distribution. This assimilation approach is based on the ensemble Kalman filter (EnKF), but with several new developments, including using analysis states to iteratively estimate ensemble forecast errors, and a maximum likelihood estimation of the inflation factors of the forecast and observation errors. The proposed assimilation approach is tested in observing system simulation experiments and then used to estimate the terrestrial ecosystem carbon fluxes and atmospheric CO2 distributions from 2002 to 2008. The results showed that this assimilation approach can effectively reduce the biases and uncertainties of the carbon fluxes simulated by the ecosystem model.
NASA Astrophysics Data System (ADS)
Singh, K.; Sandu, A.; Bowman, K. W.; Parrington, M.; Jones, D. B. A.; Lee, M.
2011-08-01
Chemistry transport models determine the evolving chemical state of the atmosphere by solving the fundamental equations that govern physical and chemical transformations subject to initial conditions of the atmospheric state and surface boundary conditions, e.g., surface emissions. The development of data assimilation techniques synthesize model predictions with measurements in a rigorous mathematical framework that provides observational constraints on these conditions. Two families of data assimilation methods are currently widely used: variational and Kalman filter (KF). The variational approach is based on control theory and formulates data assimilation as a minimization problem of a cost functional that measures the model-observations mismatch. The Kalman filter approach is rooted in statistical estimation theory and provides the analysis covariance together with the best state estimate. Suboptimal Kalman filters employ different approximations of the covariances in order to make the computations feasible with large models. Each family of methods has both merits and drawbacks. This paper compares several data assimilation methods used for global chemical data assimilation. Specifically, we evaluate data assimilation approaches for improving estimates of the summertime global tropospheric ozone distribution in August 2006 based on ozone observations from the NASA Tropospheric Emission Spectrometer and the GEOS-Chem chemistry transport model. The resulting analyses are compared against independent ozonesonde measurements to assess the effectiveness of each assimilation method. All assimilation methods provide notable improvements over the free model simulations, which differ from the ozonesonde measurements by about 20 % (below 200 hPa). Four dimensional variational data assimilation with window lengths between five days and two weeks is the most accurate method, with mean differences between analysis profiles and ozonesonde measurements of 1-5 %. Two sequential assimilation approaches (three dimensional variational and suboptimal KF), although derived from different theoretical considerations, provide similar ozone estimates, with relative differences of 5-10 % between the analyses and ozonesonde measurements. Adjoint sensitivity analysis techniques are used to explore the role of of uncertainties in ozone precursors and their emissions on the distribution of tropospheric ozone. A novel technique is introduced that projects 3-D-Variational increments back to an equivalent initial condition, which facilitates comparison with 4-D variational techniques.
NASA Technical Reports Server (NTRS)
Zhang, Yong-Fei; Hoar, Tim J.; Yang, Zong-Liang; Anderson, Jeffrey L.; Toure, Ally M.; Rodell, Matthew
2014-01-01
To improve snowpack estimates in Community Land Model version 4 (CLM4), the Moderate Resolution Imaging Spectroradiometer (MODIS) snow cover fraction (SCF) was assimilated into the Community Land Model version 4 (CLM4) via the Data Assimilation Research Testbed (DART). The interface between CLM4 and DART is a flexible, extensible approach to land surface data assimilation. This data assimilation system has a large ensemble (80-member) atmospheric forcing that facilitates ensemble-based land data assimilation. We use 40 randomly chosen forcing members to drive 40 CLM members as a compromise between computational cost and the data assimilation performance. The localization distance, a parameter in DART, was tuned to optimize the data assimilation performance at the global scale. Snow water equivalent (SWE) and snow depth are adjusted via the ensemble adjustment Kalman filter, particularly in regions with large SCF variability. The root-mean-square error of the forecast SCF against MODIS SCF is largely reduced. In DJF (December-January-February), the discrepancy between MODIS and CLM4 is broadly ameliorated in the lower-middle latitudes (2345N). Only minimal modifications are made in the higher-middle (4566N) and high latitudes, part of which is due to the agreement between model and observation when snow cover is nearly 100. In some regions it also reveals that CLM4-modeled snow cover lacks heterogeneous features compared to MODIS. In MAM (March-April-May), adjustments to snowmove poleward mainly due to the northward movement of the snowline (i.e., where largest SCF uncertainty is and SCF assimilation has the greatest impact). The effectiveness of data assimilation also varies with vegetation types, with mixed performance over forest regions and consistently good performance over grass, which can partly be explained by the linearity of the relationship between SCF and SWE in the model ensembles. The updated snow depth was compared to the Canadian Meteorological Center (CMC) data. Differences between CMC and CLM4 are generally reduced in densely monitored regions.
NASA Technical Reports Server (NTRS)
Keppenne, Christian L.; Rienecker, Michele M.; Kovach, Robin M.; Vernieres, Guillaume; Koster, Randal D. (Editor)
2014-01-01
An attractive property of ensemble data assimilation methods is that they provide flow dependent background error covariance estimates which can be used to update fields of observed variables as well as fields of unobserved model variables. Two methods to estimate background error covariances are introduced which share the above property with ensemble data assimilation methods but do not involve the integration of multiple model trajectories. Instead, all the necessary covariance information is obtained from a single model integration. The Space Adaptive Forecast error Estimation (SAFE) algorithm estimates error covariances from the spatial distribution of model variables within a single state vector. The Flow Adaptive error Statistics from a Time series (FAST) method constructs an ensemble sampled from a moving window along a model trajectory. SAFE and FAST are applied to the assimilation of Argo temperature profiles into version 4.1 of the Modular Ocean Model (MOM4.1) coupled to the GEOS-5 atmospheric model and to the CICE sea ice model. The results are validated against unassimilated Argo salinity data. They show that SAFE and FAST are competitive with the ensemble optimal interpolation (EnOI) used by the Global Modeling and Assimilation Office (GMAO) to produce its ocean analysis. Because of their reduced cost, SAFE and FAST hold promise for high-resolution data assimilation applications.
Ngodock, Hans; Carrier, Matthew; Fabre, Josette; Zingarelli, Robert; Souopgui, Innocent
2017-07-01
This study presents the theoretical framework for variational data assimilation of acoustic pressure observations into an acoustic propagation model, namely, the range dependent acoustic model (RAM). RAM uses the split-step Padé algorithm to solve the parabolic equation. The assimilation consists of minimizing a weighted least squares cost function that includes discrepancies between the model solution and the observations. The minimization process, which uses the principle of variations, requires the derivation of the tangent linear and adjoint models of the RAM. The mathematical derivations are presented here, and, for the sake of brevity, a companion study presents the numerical implementation and results from the assimilation simulated acoustic pressure observations.
NASA Astrophysics Data System (ADS)
Fukumori, Ichiro; Raghunath, Ramanujam; Fu, Lee-Lueng; Chao, Yi
1999-11-01
The feasibility of assimilating satellite altimetry data into a global ocean general circulation model is studied. Three years of TOPEX/Poseidon data are analyzed using a global, three-dimensional, nonlinear primitive equation model. The assimilation's success is examined by analyzing its consistency and reliability measured by formal error estimates with respect to independent measurements. Improvements in model solution are demonstrated, in particular, properties not directly measured. Comparisons are performed with sea level measured by tide gauges, subsurface temperatures and currents from moorings, and bottom pressure measurements. Model representation errors dictate what can and cannot be resolved by assimilation, and its identification is emphasized.
Surface Temperature Assimilation in Land Surface Models
NASA Technical Reports Server (NTRS)
Lakshmi, Venkataraman
1997-01-01
This paper examines the utilization of surface temperature as a variable to be assimilated in offline land surface hydrological models. Comparisons between the model computed and satellite observed surface temperatures have been carried out. The assimilation of surface temperature is carried out twice a day (corresponding to the AM and PM overpass of the NOAA10) over the Red- Arkansas basin in the Southwestern United States (31 deg 50 min N - 36 deg N, 94 deg 30 min W - 104 deg 30 min W) for a period of one year (August 1987 to July 1988). The effect of assimilation is to reduce the difference between the surface soil moisture computed for the precipitation and/or shortwave radiation perturbed case and the unperturbed case compared to no assimilation.
Surface Temperature Assimilation in Land Surface Models
NASA Technical Reports Server (NTRS)
Lakshmi, Venkataraman
1999-01-01
This paper examines the utilization of surface temperature as a variable to be assimilated in offline land surface hydrological models. Comparisons between the model computed and satellite observed surface temperatures have been carried out. The assimilation of surface temperature is carried out twice a day (corresponding to the AM and PM overpass of the NOAA10) over the Red-Arkansas basin in the Southwestern United States (31 degs 50 sec N - 36 degrees N, 94 degrees 30 seconds W - 104 degrees 3 seconds W) for a period of one year (August 1987 to July 1988). The effect of assimilation is to reduce the difference between the surface soil moisture computed for the precipitation and/or shortwave radiation perturbed case and the unperturbed case compared to no assimilation.
Data Assimilation using Artificial Neural Networks for the global FSU atmospheric model
NASA Astrophysics Data System (ADS)
Cintra, Rosangela; Cocke, Steven; Campos Velho, Haroldo
2015-04-01
Data assimilation is the process by which measurements and model predictions are combined to obtain an accurate representation of the state of the modeled system. Uncertainty is the characteristic of the atmosphere, coupled with inevitable inadequacies in observations and computer models and increase errors in weather forecasts. Data assimilation is a technique to generate an initial condition to a weather or climate forecasts. This paper shows the results of a data assimilation technique using artificial neural networks (ANN) to obtain the initial condition to the atmospheric general circulation model (AGCM) for the Florida State University in USA. The Local Ensemble Transform Kalman filter (LETKF) is implemented with Florida State University Global Spectral Model (FSUGSM). The ANN data assimilation is made to emulate the initial condition from LETKF to run the FSUGSM. LETKF is a version of Kalman filter with Monte-Carlo ensembles of short-term forecasts to solve the data assimilation problem. The model FSUGSM is a multilevel (27 vertical levels) spectral primitive equation model with a vertical sigma coordinate. All variables are expanded horizontally in a truncated series of spherical harmonic functions (at resolution T63) and a transform technique is applied to calculate the physical processes in real space. The LETKF data assimilation experiments are based in synthetic observations data (surface pressure, absolute temperature, zonal component wind, meridional component wind and humidity). For the ANN data assimilation scheme, we use Multilayer Perceptron (MLP-DA) with supervised training algorithm where ANN receives input vectors with their corresponding response or target output from LETKF scheme. An automatic tool that finds the optimal representation to these ANNs configures the MLP-DA in this experiment. After the training process, the scheme MLP-DA is seen as a function of data assimilation where the inputs are observations and a short-range forecast to each model grid point. The ANNs were trained with data from each month of 2001, 2002, 2003, and 2004. A hind-casting experiment for data assimilation cycle using MLP-DA was performed with synthetic observations for January 2005. The numerical results demonstrate the effectiveness of the ANN technique for atmospheric data assimilation, since the analyses (initial conditions) have similar quality to LETKF analyses. The major advantage of using MLP-DA is the computational performance, which is faster than LETKF. The reduced computational cost allows the inclusion of greater number of observations and new data sources and the use of high resolution of models, which ensures the accuracy of analysis and of its weather prediction
DART: Tools and Support for Ensemble Data Assimilation Research, Operations, and Education
NASA Astrophysics Data System (ADS)
Hoar, T. J.; Anderson, J. L.; Collins, N.; Raeder, K.; Kershaw, H.; Romine, G. S.; Mizzi, A. P.; Chatterjee, A.; Karspeck, A. R.; Zarzycki, C. M.; Ha, S. Y.; Barre, J.; Gaubert, B.
2014-12-01
The Data Assimilation Research Testbed (DART) is a community facility for ensemble data assimilation developed and supported by the National Center for Atmospheric Research. DART provides a comprehensive suite of software, documentation, examples and tutorials that can be used for ensemble data assimilation research, operations, and education. Scientists and software engineers from the Data Assimilation Research Section at NCAR are available to actively support DART users who want to use existing DART products or develop their own new applications. Current DART users range from university professors teaching data assimilation, to individual graduate students working with simple models, through national laboratories doing operational prediction with large state-of-the-art models. DART runs efficiently on many computational platforms ranging from laptops through thousands of cores on the newest supercomputers. This poster focuses on several recent research activities using DART with geophysical models. First, DART is being used with the Community Atmosphere Model Spectral Element (CAM-SE) and Model for Prediction Across Scales (MPAS) global atmospheric models that support locally enhanced grid resolution. Initial results from ensemble assimilation with both models are presented. DART is also being used to produce ensemble analyses of atmospheric tracers, in particular CO, in both the global CAM-Chem model and the regional Weather Research and Forecast with chemistry (WRF-Chem) model by assimilating observations from the Measurements of Pollution in the Troposphere (MOPITT) and Infrared Atmospheric Sounding Interferometer (IASI) instruments. Results from ensemble analyses in both models are presented. An interface between DART and the Community Atmosphere Biosphere Land Exchange (CABLE) model has been completed and ensemble land surface analyses with DART/CABLE will be discussed. Finally, an update on ensemble analyses in the fully-coupled Community Earth System (CESM) is presented. The poster includes instructions on how to get started using DART for research or educational applications.
Land Surface Data Assimilation
NASA Astrophysics Data System (ADS)
Houser, P. R.
2012-12-01
Information about land surface water, energy and carbon conditions is of critical importance to real-world applications such as agricultural production, water resource management, flood prediction, water supply, weather and climate forecasting, and environmental preservation. While ground-based observational networks are improving, the only practical way to observe these land surface states on continental to global scales is via satellites. Remote sensing can make spatially comprehensive measurements of various components of the terrestrial system, but it cannot provide information on the entire system (e.g. evaporation), and the observations represent only an instant in time. Land surface process models may be used to predict temporal and spatial terrestrial dynamics, but these predictions are often poor, due to model initialization, parameter and forcing, and physics errors. Therefore, an attractive prospect is to combine the strengths of land surface models and observations (and minimize the weaknesses) to provide a superior terrestrial state estimate. This is the goal of land surface data assimilation. Data Assimilation combines observations into a dynamical model, using the model's equations to provide time continuity and coupling between the estimated fields. Land surface data assimilation aims to utilize both our land surface process knowledge, as embodied in a land surface model, and information that can be gained from observations. Both model predictions and observations are imperfect and we wish to use both synergistically to obtain a more accurate result. Moreover, both contain different kinds of information, that when used together, provide an accuracy level that cannot be obtained individually. Model biases can be mitigated using a complementary calibration and parameterization process. Limited point measurements are often used to calibrate the model(s) and validate the assimilation results. This presentation will provide a brief background on land surface observation, modeling and data assimilation, followed by a discussion of various hydrologic data assimilation challenges, and finally conclude with several land surface data assimilation case studies.
NASA Technical Reports Server (NTRS)
Gourdeau, L.; Verron, J.; Murtugudde, R.; Busalacchi, A. J.
1997-01-01
A new implementation of the extended Kaman filter is developed for the purpose of assimilating altimetric observations into a primitive equation model of the tropical Pacific. Its specificity consists in defining the errors into a reduced basis that evolves in time with the model dynamic. Validation by twin experiments is conducted and the method is shown to be efficient in quasi real conditions. Data from the first 2 years of the Topex/Poseidon mission are assimilated into the Gent & Cane [1989] model. Assimilation results are evaluated against independent in situ data, namely TAO mooring observations.
Sensitivity of WRF precipitation field to assimilation sources in northeastern Spain
NASA Astrophysics Data System (ADS)
Lorenzana, Jesús; Merino, Andrés; García-Ortega, Eduardo; Fernández-González, Sergio; Gascón, Estíbaliz; Hermida, Lucía; Sánchez, José Luis; López, Laura; Marcos, José Luis
2015-04-01
Numerical weather prediction (NWP) of precipitation is a challenge. Models predict precipitation after solving many physical processes. In particular, mesoscale NWP models have different parameterizations, such as microphysics, cumulus or radiation schemes. These facilitate, according to required spatial and temporal resolutions, precipitation fields with increasing reliability. Nevertheless, large uncertainties are inherent to precipitation forecasting. Consequently, assimilation methods are very important. The Atmospheric Physics Group at the University of León in Spain and the Castile and León Supercomputing Center carry out daily weather prediction based on the Weather Research and Forecasting (WRF) model, covering the entire Iberian Peninsula. Forecasts of severe precipitation affecting the Ebro Valley, in the southern Pyrenees range of northeastern Spain, are crucial in the decision-making process for managing reservoirs or initializing runoff models. These actions can avert floods and ensure uninterrupted economic activity in the area. We investigated a set of cases corresponding to intense or severe precipitation patterns, using a rain gauge network. Simulations were performed with a dual objective, i.e., to analyze forecast improvement using a specific assimilation method, and to study the sensitivity of model outputs to different types of assimilation data. A WRF forecast model initialized by an NCEP SST analysis was used as the control run. The assimilation was based on the Meteorological Assimilation Data Ingest System (MADIS) developed by NOAA. The MADIS data used were METAR, maritime, ACARS, radiosonde, and satellite products. The results show forecast improvement using the suggested assimilation method, and differences in the accuracy of forecast precipitation patterns varied with the assimilation data source.
NASA Technical Reports Server (NTRS)
Koster, Randal D. (Editor); Rousseaux, Cecile Severine; Gregg, Watson W.
2014-01-01
In this paper, we investigated whether the assimilation of remotely-sensed chlorophyll data can improve the estimates of air-sea carbon dioxide fluxes (FCO2). Using a global, established biogeochemical model (NASA Ocean Biogeochemical Model, NOBM) for the period 2003-2010, we found that the global FCO2 values produced in the free-run and after assimilation were within -0.6 mol C m(sup -2) y(sup -1) of the observations. The effect of satellite chlorophyll assimilation was assessed in 12 major oceanographic regions. The region with the highest bias was the North Atlantic. Here the model underestimated the fluxes by 1.4 mol C m(sup -2) y(sup -1) whereas all the other regions were within 1 mol C m(sup -2) y(sup -1) of the data. The FCO2 values were not strongly impacted by the assimilation, and the uncertainty in FCO2 was not decreased, despite the decrease in the uncertainty in chlorophyll concentration. Chlorophyll concentrations were within approximately 25% of the database in 7 out of the 12 regions, and the assimilation improved the chlorophyll concentration in the regions with the highest bias by 10-20%. These results suggest that the assimilation of chlorophyll data does not considerably improve FCO2 estimates and that other components of the carbon cycle play a role that could further improve our FCO2 estimates.
The dynamics of the HSCT environment. [air pollution from High Speed Civil Transport Aircraft
NASA Technical Reports Server (NTRS)
Douglass, Anne R.; Rood, Richard B.
1991-01-01
Assessments of the impact of aircraft engine exhausts on stratospheric ozone levels are currently limited to 2D zonally-averaged models which, while completely representing chemistry, involve high parameterization of transport processes. Prospective 3D models under development by NASA-Goddard will use winds from a data-assimilation procedure; the upper troposphere/lower stratosphere behavior of one such model has been verified by direct comparison of model simulations with satellite, balloon, and sonde measurements. Attention is presently given to the stratosphere/troposphere exchange and nonzonal distribution of aircraft engine exhaust.
Regulation of assimilate partitioning by daylength and spectral quality
NASA Technical Reports Server (NTRS)
Britz, Steve J.
1994-01-01
The effects of daylength and spectral quality on assimilate partitioning and leaf carbohydrate content should be considered when conducting controlled environment experiments or comparing results between studies obtained under different lighting conditions. Changes in partitioning may indicate alterations to photoregulatory processes within the source leaf rather than disruptions in sink strength. Moreover, it may be possible to use photoregulatory responses of assimilate partitioning to probe mechanisms of growth and development involving translocation of carbon or adaptation to environmental factors such as elevated CO2. It may also be possible to steer assimilate partitioning for the benefit of controlled environment agriculture using energy-efficient manipulations such as daylength extensions with dim irradiances, end-of-day alterations in light quality, or shifting plants between different spectral qualities as a part of phasic control of growth and development. Note that high starch levels measured on a one-time basis provide little information, since it is the proportion of photosynthate stored as starch that is meaningful. Large differences in starch content can result from small changes in partitioning integrated over several days. Rate information is required.
Continued Development and Validation of the USU GAIM Models
2010-08-01
Markov data assimilation model (GAIM-GM) uses a physics-based model of the ionosphere ( IFM ) and a Kalman filter as a basis for assimilating a diverse... a data assimilation model of the ionosphere that is based on the Ionosphere Forecast Model ( IFM ) (Schunk, 1988; Sojka, 1989; Schunk et al., 1997...Monograph 181, (ed. R M . Kitner. A . J. Coster, T. Fuller-Rowell, A J. Mannucci, M . Mendill, and R. Heelis), pp. 35-49, AGU. Washington, DC, 2008
NASA Technical Reports Server (NTRS)
Keppenne, Christian L.; Rienecker, Michele; Kovach, Robin M.; Vernieres, Guillaume
2014-01-01
An attractive property of ensemble data assimilation methods is that they provide flow dependent background error covariance estimates which can be used to update fields of observed variables as well as fields of unobserved model variables. Two methods to estimate background error covariances are introduced which share the above property with ensemble data assimilation methods but do not involve the integration of multiple model trajectories. Instead, all the necessary covariance information is obtained from a single model integration. The Space Adaptive Forecast error Estimation (SAFE) algorithm estimates error covariances from the spatial distribution of model variables within a single state vector. The Flow Adaptive error Statistics from a Time series (FAST) method constructs an ensemble sampled from a moving window along a model trajectory.SAFE and FAST are applied to the assimilation of Argo temperature profiles into version 4.1 of the Modular Ocean Model (MOM4.1) coupled to the GEOS-5 atmospheric model and to the CICE sea ice model. The results are validated against unassimilated Argo salinity data. They show that SAFE and FAST are competitive with the ensemble optimal interpolation (EnOI) used by the Global Modeling and Assimilation Office (GMAO) to produce its ocean analysis. Because of their reduced cost, SAFE and FAST hold promise for high-resolution data assimilation applications.
Multi-Scale 4DVAR Assimilation of Glider Teams on the North Carolina Shelf
NASA Astrophysics Data System (ADS)
Osborne, J. J. V.; Carrier, M.; Book, J. W.; Barron, C. N.; Rice, A. E.; Rowley, C. D.; Smedstad, L.; Souopgui, I.; Teague, W. J.
2017-12-01
We demonstrate a method to assimilate glider profile data from multiple gliders in close proximity ( 10 km or less). Gliders were deployed in a field experiment from 17 May until 4 June 2017, north of Cape Hatteras and inshore of the Gulf Stream. Gliders were divided into two teams, generally two or three gliders per team. One team was tasked with station keeping and the other with moving and sampling regions of high variability in temperature and salinity. Glider data are assimilated into the Relocatable Navy Coastal Ocean Model (RELO NCOM) with four dimensional variational assimilation (NCOM-4DVAR). RELO NCOM is used by the US Navy to predict the ocean. RELO NCOM is a baroclinic, Boussinesq, free-surface, and hydrostatic ocean model with a flexible sigma-z vertical coordinate. Two domains are used, one focused north and one focused south of Cape Hatteras. The domains overlap near the gliders, thus providing two forecasts near the gliders. Both domains have 1 km horizontal resolution. Data are assimilated in a newly-developed multi-scale data-processing and assimilating approach using NCOM-4DVAR. This enables NCOM-4DVAR to use many more observations than standard NCOM-4DVAR, improving the analysis and forecast. Assimilation experiments use station-keeping glider data, moving glider data, or all glider data. Sea surface temperature (SST) data and satellite altimeter (SSH) data are also assimilated. An additional experiment omits glider data but still assimilates SST and SSH data. Conductivity, temperature, and depth (CTD) profiles from the R/V Savannah are used for validation, including data from an underway CTD (UCTD). Data from glider teams have the potential to significantly improve model forecasts. Missions using teams of gliders can be planned to maximize data assimilation for optimal impact on model predictions.
SMOS brightness temperature assimilation into the Community Land Model
NASA Astrophysics Data System (ADS)
Rains, Dominik; Han, Xujun; Lievens, Hans; Montzka, Carsten; Verhoest, Niko E. C.
2017-11-01
SMOS (Soil Moisture and Ocean Salinity mission) brightness temperatures at a single incident angle are assimilated into the Community Land Model (CLM) across Australia to improve soil moisture simulations. Therefore, the data assimilation system DasPy is coupled to the local ensemble transform Kalman filter (LETKF) as well as to the Community Microwave Emission Model (CMEM). Brightness temperature climatologies are precomputed to enable the assimilation of brightness temperature anomalies, making use of 6 years of SMOS data (2010-2015). Mean correlation R with in situ measurements increases moderately from 0.61 to 0.68 (11 %) for upper soil layers if the root zone is included in the updates. A reduced improvement of 5 % is achieved if the assimilation is restricted to the upper soil layers. Root-zone simulations improve by 7 % when updating both the top layers and root zone, and by 4 % when only updating the top layers. Mean increments and increment standard deviations are compared for the experiments. The long-term assimilation impact is analysed by looking at a set of quantiles computed for soil moisture at each grid cell. Within hydrological monitoring systems, extreme dry or wet conditions are often defined via their relative occurrence, adding great importance to assimilation-induced quantile changes. Although still being limited now, longer L-band radiometer time series will become available and make model output improved by assimilating such data that are more usable for extreme event statistics.
Role of Subsurface Physics in the Assimilation of Surface Soil Moisture Observations
NASA Technical Reports Server (NTRS)
Reichle, R. H.
2010-01-01
Root zone soil moisture controls the land-atmosphere exchange of water and energy and exhibits memory that may be useful for climate prediction at monthly scales. Assimilation of satellite-based surface soil moisture observations into a land surface model is an effective way to estimate large-scale root zone soil moisture. The propagation of surface information into deeper soil layers depends on the model-specific representation of subsurface physics that is used in the assimilation system. In a suite of experiments we assimilate synthetic surface soil moisture observations into four different models (Catchment, Mosaic, Noah and CLM) using the Ensemble Kalman Filter. We demonstrate that identical twin experiments significantly overestimate the information that can be obtained from the assimilation of surface soil moisture observations. The second key result indicates that the potential of surface soil moisture assimilation to improve root zone information is higher when the surface to root zone coupling is stronger. Our experiments also suggest that (faced with unknown true subsurface physics) overestimating surface to root zone coupling in the assimilation system provides more robust skill improvements in the root zone compared with underestimating the coupling. When CLM is excluded from the analysis, the skill improvements from using models with different vertical coupling strengths are comparable for different subsurface truths. Finally, the skill improvements through assimilation were found to be sensitive to the regional climate and soil types.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Xiaofeng; Schimel, Joshua; Thornton, Peter E
2014-01-01
Microbial assimilation of soil organic carbon is one of the fundamental processes of global carbon cycling and it determines the magnitude of microbial biomass in soils. Mechanistic understanding of microbial assimilation of soil organic carbon and its controls is important for to improve Earth system models ability to simulate carbon-climate feedbacks. Although microbial assimilation of soil organic carbon is broadly considered to be an important parameter, it really comprises two separate physiological processes: one-time assimilation efficiency and time-dependent microbial maintenance energy. Representing of these two mechanisms is crucial to more accurately simulate carbon cycling in soils. In this study, amore » simple modeling framework was developed to evaluate the substrate and environmental controls on microbial assimilation of soil organic carbon using a new term: microbial annual active period (the length of microbes remaining active in one year). Substrate quality has a positive effect on microbial assimilation of soil organic carbon: higher substrate quality (lower C:N ratio) leads to higher ratio of microbial carbon to soil organic carbon and vice versa. Increases in microbial annual active period from zero stimulate microbial assimilation of soil organic carbon; however, when microbial annual active period is longer than an optimal threshold, increasing this period decreases microbial biomass. The simulated ratios of soil microbial biomass to soil organic carbon are reasonably consistent with a recently compiled global dataset at the biome-level. The modeling framework of microbial assimilation of soil organic carbon and its controls developed in this study offers an applicable ways to incorporate microbial contributions to the carbon cycling into Earth system models for simulating carbon-climate feedbacks and to explain global patterns of microbial biomass.« less
Dai, Tie; Schutgens, Nick A J; Goto, Daisuke; Shi, Guangyu; Nakajima, Teruyuki
2014-12-01
A new global aerosol assimilation system adopting a more complex icosahedral grid configuration is developed. Sensitivity tests for the assimilation system are performed utilizing satellite retrieved aerosol optical depth (AOD) from the Moderate Resolution Imaging Spectroradiometer (MODIS), and the results over Eastern Asia are analyzed. The assimilated results are validated through independent Aerosol Robotic Network (AERONET) observations. Our results reveal that the ensemble and local patch sizes have little effect on the assimilation performance, whereas the ensemble perturbation method has the largest effect. Assimilation leads to significantly positive effect on the simulated AOD field, improving agreement with all of the 12 AERONET sites over the Eastern Asia based on both the correlation coefficient and the root mean square difference (assimilation efficiency). Meanwhile, better agreement of the Ångström Exponent (AE) field is achieved for 8 of the 12 sites due to the assimilation of AOD only. Copyright © 2014 Elsevier Ltd. All rights reserved.
Grove, T.L.; Kinzler, R.J.; Baker, M.B.; Donnelly-Nolan, J. M.; Lesher, C.E.
1988-01-01
At Medicine Lake volcano, California, andesite of the Holocene Burnt Lava flow has been produced by fractional crystallization of parental high alumina basalt (HAB) accompanied by assimilation of granitic crustal material. Burnt Lava contains inclusions of quenched HAB liquid, a potential parent magma of the andesite, highly melted granitic crustal xenoliths, and xenocryst assemblages which provide a record of the fractional crystallization and crustal assimilation process. Samples of granitic crustal material occur as xenoliths in other Holocene and Pleistocene lavas, and these xenoliths are used to constrain geochemical models of the assimilation process. A large amount of assimilation accompanied fractional crystallization to produce the contaminated Burnt lava andesites. Models which assume that assimilation and fractionation occurred simultaneously estimate the ratio of assimilation to fractional crystallization (R) to be >1 and best fits to all geochemical data are at an R value of 1.35 at F=0.68. Petrologic evidence, however, indicates that the assimilation process did not involve continuous addition of granitic crust as fractionation occurred. Instead, heat and mass transfer were separated in space and time. During the assimilation process, HAB magma underwent large amounts of fractional crystallization which was not accompanied by significant amounts of assimilation. This fractionation process supplied heat to melt granitic crust. The models proposed to explain the contamination process involve fractionation, replenishment by parental HAB, and mixing of evolved and parental magmas with melted granitic crust. ?? 1988 Springer-Verlag.
A study on characteristics of retrospective optimal interpolation with WRF testbed
NASA Astrophysics Data System (ADS)
Kim, S.; Noh, N.; Lim, G.
2012-12-01
This study presents the application of retrospective optimal interpolation (ROI) with Weather Research and Forecasting model (WRF). Song et al. (2009) suggest ROI method which is an optimal interpolation (OI) that gradually assimilates observations over the analysis window for variance-minimum estimate of an atmospheric state at the initial time of the analysis window. Song and Lim (2011) improve the method by incorporating eigen-decomposition and covariance inflation. ROI method assimilates the data at post analysis time using perturbation method (Errico and Raeder, 1999) without adjoint model. In this study, ROI method is applied to WRF model to validate the algorithm and to investigate the capability. The computational costs for ROI can be reduced due to the eigen-decomposition of background error covariance. Using the background error covariance in eigen-space, 1-profile assimilation experiment is performed. The difference between forecast errors with assimilation and without assimilation is obviously increased as time passed, which means the improvement of forecast error by assimilation. The characteristics and strength/weakness of ROI method are investigated by conducting the experiments with other data assimilation method.
Maso Talou, Gonzalo D.; Blanco, Pablo J.; Ares, Gonzalo D.; Guedes Bezerra, Cristiano; Lemos, Pedro A.; Feijóo, Raúl A.
2018-01-01
Atherosclerotic plaque rupture and erosion are the most important mechanisms underlying the sudden plaque growth, responsible for acute coronary syndromes and even fatal cardiac events. Advances in the understanding of the culprit plaque structure and composition are already reported in the literature, however, there is still much work to be done toward in-vivo plaque visualization and mechanical characterization to assess plaque stability, patient risk, diagnosis and treatment prognosis. In this work, a methodology for the mechanical characterization of the vessel wall plaque and tissues is proposed based on the combination of intravascular ultrasound (IVUS) imaging processing, data assimilation and continuum mechanics models within a high performance computing (HPC) environment. Initially, the IVUS study is gated to obtain volumes of image sequences corresponding to the vessel of interest at different cardiac phases. These sequences are registered against the sequence of the end-diastolic phase to remove transversal and longitudinal rigid motions prescribed by the moving environment due to the heartbeat. Then, optical flow between the image sequences is computed to obtain the displacement fields of the vessel (each associated to a certain pressure level). The obtained displacement fields are regarded as observations within a data assimilation paradigm, which aims to estimate the material parameters of the tissues within the vessel wall. Specifically, a reduced order unscented Kalman filter is employed, endowed with a forward operator which amounts to address the solution of a hyperelastic solid mechanics model in the finite strain regime taking into account the axially stretched state of the vessel, as well as the effect of internal and external forces acting on the arterial wall. Due to the computational burden, a HPC approach is mandatory. Hence, the data assimilation and computational solid mechanics computations are parallelized at three levels: (i) a Kalman filter level; (ii) a cardiac phase level; and (iii) a mesh partitioning level. To illustrate the capabilities of this novel methodology toward the in-vivo analysis of patient-specific vessel constituents, mechanical material parameters are estimated using in-silico and in-vivo data retrieved from IVUS studies. Limitations and potentials of this approach are exposed and discussed. PMID:29643815
NASA Astrophysics Data System (ADS)
Dodla, Venkata B.; Srinivas, Desamsetti; Dasari, Hari Prasad; Gubbala, Chinna Satyanarayana
2016-05-01
Tropical cyclone prediction, in terms of intensification and movement, is important for disaster management and mitigation. Hitherto, research studies were focused on this issue that lead to improvement in numerical models, initial data with data assimilation, physical parameterizations and application of ensemble prediction. Weather Research and Forecasting (WRF) model is the state-of-art model for cyclone prediction. In the present study, prediction of tropical cyclone (Phailin, 2013) that formed in the North Indian Ocean (NIO) with and without data assimilation using WRF model has been made to assess impacts of data assimilation. WRF model was designed to have nested two domains of 15 and 5 km resolutions. In the present study, numerical experiments are made without and with the assimilation of scatterometer winds, and radiances from ATOVS and ATMS. The model performance was assessed in respect to the movement and intensification of cyclone. ATOVS data assimilation experiment had produced the best prediction with least errors less than 100 km up to 60 hours and producing pre-deepening and deepening periods accurately. The Control and SCAT wind assimilation experiments have shown good track but the errors were 150-200 km and gradual deepening from the beginning itself instead of sudden deepening.
Data Assimilation for Applied Meteorology
NASA Astrophysics Data System (ADS)
Haupt, S. E.
2012-12-01
Although atmospheric models provide a best estimate of the future state of the atmosphere, due to sensitivity to initial condition, it is difficult to predict the precise future state. For applied problems, however, users often depend on having accurate knowledge of that future state. To improve prediction of a particular realization of an evolving flow field requires knowledge of the current state of that field and assimilation of local observations into the model. This talk will consider how dynamic assimilation can help address the concerns of users of atmospheric forecasts. First, we will look at the value of assimilation for the renewable energy industry. If the industry decision makers can have confidence in the wind and solar power forecasts, they can build their power allocations around the expected renewable resource, saving money for the ratepayers as well as reducing carbon emissions. We will assess the value to that industry of assimilating local real-time observations into the model forecasts and the value that is provided. The value of the forecasts with assimilation is important on both short (several hour) to medium range (within two days). A second application will be atmospheric transport and dispersion problems. In particular, we will look at assimilation of concentration data into a prediction model. An interesting aspect of this problem is that the dynamics are a one-way coupled system, with the fluid dynamic equations affecting the concentration equation, but not vice versa. So when the observations are of the concentration, one must infer the fluid dynamics. This one-way coupled system presents a challenge: one must first infer the changes in the flow field from observations of the contaminant, then assimilate that to recover both the advecting flow and information on the subgrid processes that provide the mixing. To accomplish such assimilation requires a robust method to match the observed contaminant field to that modeled. One approach is to separate the problem into a transport portion and a dispersion portion, representing the resolved flow and the unresolved portion. One then treats the resolved portion in a Lagrangian framework and the unresolved in an Eulerian framework to pose an optimization problem for both the transport and dispersion variables. We demonstrate how this problem can be solved by assimilating the data dynamically using a genetic algorithm variation approach (GA-Var). This technique is demonstrated on both a basic Gaussian puff problem and a Large Eddy Simulation. Finally we will show how assimilation can help bridge the gap between modeling flows at the mesoscale and flows at the fine scale that is often important for resolving flow around local features. By assimilating mesoscale model data into a computational fluid dynamics model, we can force the fine scale model to with the features at the mesoscale, providing a coupling mechanism.
2016-06-01
Richter-Menge (2009), (b) Source: Jack Cook, Woods Hole Oceanographic Institute. Four forcing mechanisms, as well as the Coriolis force, influence...changing Arctic environment which is critical to personnel safety, effective use of assets, and operational support (Arctic Roadmap 2014). 18 Canada...Navy to pursue continued Arctic presence, and maximize the effectiveness of the military operations assimilated with civilian science (Showstack 2013
Acoustic Impact of Short-Term Ocean Variability in the Okinawa Trough
2010-01-20
nature run: Generalized Digital Environment Model ( GDEM ) 3.0 climatologyfl], Modular Ocean Data Assimilation System (MODAS) synthetic profiles[2], Navy...potentially preferred for a particular class of applications, and thus a possible source of sound speed for estimates of acoustic transmission. Three, GDEM ...MODAS, and NCODA, are statistical products, and the other three are dynamic forecasts from NCOM. GDEM is a climatology based solely on historical
Benefits and Pitfalls of GRACE Terrestrial Water Storage Data Assimilation
NASA Technical Reports Server (NTRS)
Girotto, Manuela
2018-01-01
Satellite observations of terrestrial water storage (TWS) from the Gravity Recovery and Climate Experiment (GRACE) mission have a coarse resolution in time (monthly) and space (roughly 150,000 sq km at midlatitudes) and vertically integrate all water storage components over land, including soil moisture and groundwater. Nonetheless, data assimilation can be used to horizontally downscale and vertically partition GRACE-TWS observations. This presentation illustrates some of the benefits and drawbacks of assimilating TWS observations from GRACE into a land surface model over the continental United States and India. The assimilation scheme yields improved skill metrics for groundwater compared to the no-assimilation simulations. A smaller impact is seen for surface and root-zone soil moisture. Further, GRACE observes TWS depletion associated with anthropogenic groundwater extraction. Results from the assimilation emphasize the importance of representing anthropogenic processes in land surface modeling and data assimilation systems.
Assimilation of NUCAPS Retrieved Profiles in GSI for Unique Forecasting Applications
NASA Technical Reports Server (NTRS)
Berndt, Emily Beth; Zavodsky, Bradley; Srikishen, Jayanthi; Blankenship, Clay
2015-01-01
Hyperspectral IR profiles can be assimilated in GSI as a separate observation other than radiosondes with only changes to tables in the fix directory. Assimilation of profiles does produce changes to analysis fields and evidenced by: Innovations larger than +/-2.0 K are present and represent where individual profiles impact the final temperature analysis.The updated temperature analysis is colder behind the cold front and warmer in the warm sector. The updated moisture analysis is modified more in the low levels and tends to be drier than the original model background Analysis of model output shows: Differences relative to 13-km RAP analyses are smaller when profiles are assimilated with NUCAPS errors. CAPE is under-forecasted when assimilating NUCAPS profiles, which could be problematic for severe weather forecasting Refining the assimilation technique to incorporate an error covariance matrix and creating a separate GSI module to assimilate satellite profiles may improve results.
Assimilation of LAI time-series in crop production models
NASA Astrophysics Data System (ADS)
Kooistra, Lammert; Rijk, Bert; Nannes, Louis
2014-05-01
Agriculture is worldwide a large consumer of freshwater, nutrients and land. Spatial explicit agricultural management activities (e.g., fertilization, irrigation) could significantly improve efficiency in resource use. In previous studies and operational applications, remote sensing has shown to be a powerful method for spatio-temporal monitoring of actual crop status. As a next step, yield forecasting by assimilating remote sensing based plant variables in crop production models would improve agricultural decision support both at the farm and field level. In this study we investigated the potential of remote sensing based Leaf Area Index (LAI) time-series assimilated in the crop production model LINTUL to improve yield forecasting at field level. The effect of assimilation method and amount of assimilated observations was evaluated. The LINTUL-3 crop production model was calibrated and validated for a potato crop on two experimental fields in the south of the Netherlands. A range of data sources (e.g., in-situ soil moisture and weather sensors, destructive crop measurements) was used for calibration of the model for the experimental field in 2010. LAI from cropscan field radiometer measurements and actual LAI measured with the LAI-2000 instrument were used as input for the LAI time-series. The LAI time-series were assimilated in the LINTUL model and validated for a second experimental field on which potatoes were grown in 2011. Yield in 2011 was simulated with an R2 of 0.82 when compared with field measured yield. Furthermore, we analysed the potential of assimilation of LAI into the LINTUL-3 model through the 'updating' assimilation technique. The deviation between measured and simulated yield decreased from 9371 kg/ha to 8729 kg/ha when assimilating weekly LAI measurements in the LINTUL model over the season of 2011. LINTUL-3 furthermore shows the main growth reducing factors, which are useful for farm decision support. The combination of crop models and sensor techniques shows promising results for precision agriculture application and thereby for reduction of the footprint agriculture has on the world's resources.
NASA Astrophysics Data System (ADS)
Kim, M. J.; Jin, J.; McCarty, W.; Todling, R.; Holdaway, D. R.; Gelaro, R.
2014-12-01
The NASA Global Modeling and Assimilation Office (GMAO) works to maximize the impact of satellite observations in the analysis and prediction of climate and weather through integrated Earth system modeling and data assimilation. To achieve this goal, the GMAO undertakes model and assimilation development, generates products to support NASA instrument teams and the NASA Earth science program. Currently Atmospheric Data Assimilation System (ADAS) in the Goddard Earth Observing System Model, Version 5(GEOS-5) system combines millions of observations and short-term forecasts to determine the best estimate, or analysis, of the instantaneous atmospheric state. However, ADAS has been geared towards utilization of observations in clear sky conditions and the majority of satellite channel data affected by clouds are discarded. Microwave imager data from satellites can be a significant source of information for clouds and precipitation but the data are presently underutilized, as only surface rain rates from the Tropical Rainfall Measurement Mission (TRMM) Microwave Imager (TMI) are assimilated with small weight assigned in the analysis process. As clouds and precipitation often occur in regions with high forecast sensitivity, improvements in the temperature, moisture, wind and cloud analysis of these regions are likely to contribute to significant gains in numerical weather prediction accuracy. This presentation is intended to give an overview of GMAO's recent progress in assimilating the all-sky GPM Microwave Imager (GMI) radiance data in GEOS-5 system. This includes development of various new components to assimilate cloud and precipitation affected data in addition to data in clear sky condition. New observation operators, quality controls, moisture control variables, observation and background error models, and a methodology to incorporate the linearlized moisture physics in the assimilation system are described. In addition preliminary results showing impacts of assimilating all-sky GMI data on GEOS-5 forecasts are discussed.
NASA Astrophysics Data System (ADS)
Laiolo, Leonardo; Matear, Richard; Baird, Mark E.; Soja-Woźniak, Monika; Doblin, Martina A.
2018-07-01
Chlorophyll-a measurements in the form of in situ observations and satellite ocean colour products are commonly used in data assimilation to calibrate marine biogeochemical models. Here, a two size-class phytoplankton biogeochemical model, with a 0D configuration, was used to simulate the surface chlorophyll-a dynamics (simulated surface Chl-a) for cyclonic and anticyclonic eddies off East Australia. An optical model was then used to calculate the inherent optical properties from the simulation and convert them into remote-sensing reflectance (Rrs). Subsequently, Rrs was used to produce a satellite-like estimate of the simulated surface Chl-a concentrations through the MODIS OC3M algorithm (simulated OC3M Chl-a). Identical parameter optimisation experiments were performed through the assimilation of the two separate datasets (simulated surface Chl-a and simulated OC3M Chl-a), with the purpose of investigating the contrasting information content of simulated surface Chl-a and remotely-sensed data sources. The results we present are based on the analysis of the distribution of a cost function, varying four parameters of the biogeochemical model. In our idealized experiments the simulated OC3M Chl-a product is a poor proxy for the total simulated surface Chl-a concentration. Furthermore, our result show the OC3M algorithm can underestimate the simulated chlorophyll-a concentration in offshore eddies off East Australia (Case I waters), because of the weak relationship between large-sized phytoplankton and remote-sensing reflectance. Although Case I waters are usually characteristic of oligotrophic environments, with a photosynthetic community typically represented by relatively small-sized phytoplankton, mesoscale features such as eddies can generate seasonally favourable conditions for a photosynthetic community with a greater proportion of large phytoplankton cells. Furthermore, our results show that in mesoscale features such as eddies, in situ chlorophyll-a observations and the ocean colour products can carry different information related to phytoplankton sizes. Assimilating both remote-sensing reflectance and measurements of in situ chlorophyll-a concentration reduces the uncertainty of the parameter values more than either data set alone, thus reducing the spread of acceptable solutions, giving an improved simulation of the natural environment.
A gridded global description of the ionosphere and thermosphere for 1996 - 2000
NASA Astrophysics Data System (ADS)
Ridley, A.; Kihn, E.; Kroehl, H.
The modeling and simulation community has asked for a realistic representation of the near-Earth space environment covering a significant number of years to be used in scientific and engineering applications. The data, data management systems, assimilation techniques, physical models, and computer resources are now available to construct a realistic description of the ionosphere and thermosphere over a 5 year period. DMSP and NOAA POES satellite data and solar emissions were used to compute Hall and Pederson conductances in the ionosphere. Interplanetary magnetic field measurements on the ACE satellite define average electrostatic potential patterns over the northern and southern Polar Regions. These conductances, electric field patterns, and ground-based magnetometer data were input to the Assimilative Mapping of Ionospheric Electrodynamics model to compute the distribution of electric fields and currents in the ionosphere. The Global Thermosphere Ionosphere Model (GITM) used the ionospheric electrodynamic parameters to compute the distribution of particles and fields in the ionosphere and thermosphere. GITM uses a general circulation approach to solve the fundamental equations. Model results offer a unique opportunity to assess the relative importance of different forcing terms under a variety of conditions as well as the accuracies of different estimates of ionospheric electrodynamic parameters.
NASA Astrophysics Data System (ADS)
Rienecker, M. M.; Adamec, D.
1995-01-01
An ensemble of fraternal-twin experiments is used to assess the utility of optimal interpolation and model-based vertical empirical orthogonal functions (eofs) of streamfunction variability to assimilate satellite altimeter data into ocean models. Simulated altimeter data are assimilated into a basin-wide 3-layer quasi-geostrophic model with a horizontal grid spacing of 15 km. The effects of bottom topography are included and the model is forced by a wind stress curl distribution which is constant in time. The simulated data are extracted, along altimeter tracks with spatial and temporal characteristics of Geosat, from a reference model ocean with a slightly different climatology from that generated by the model used for assimilation. The use of vertical eofs determined from the model-generated streamfunction variability is shown to be effective in aiding the model's dynamical extrapolation of the surface information throughout the rest of the water column. After a single repeat cycle (17 days), the analysis errors are reduced markedly from the initial level, by 52% in the surface layer, 41% in the second layer and 11% in the bottom layer. The largest differences between the assimilation analysis and the reference ocean are found in the nonlinear regime of the mid-latitude jet in all layers. After 100 days of assimilation, the error in the upper two layers has been reduced by over 50% and that in the bottom layer by 38%. The essence of the method is that the eofs capture the statistics of the dynamical balances in the model and ensure that this balance is not inappropriately disturbed during the assimilation process. This statistical balance includes any potential vorticity homogeneity which may be associated with the eddy stirring by mid-latitude surface jets.
Assimilation of satellite altimeter data into an open ocean model
NASA Astrophysics Data System (ADS)
Vogeler, Armin; SchröTer, Jens
1995-08-01
Geosat sea surface height data are assimilated into an eddy-resolving quasi-geostrophic open ocean model using the adjoint technique. The method adjusts the initial conditions for all layers and is successful on the timescale of a few weeks. Time-varying values for the open boundaries are prescribed by a much larger quasi-geostrophic model of the Antarctic Circumpolar Current (ACC). Both models have the same resolution of approximately 20×20 km (1/3°×1/6°), have three layers, and include realistic bottom topography and coastlines. The open model box is embedded in the African sector of the ACC. For continuous assimilation of satellite data into the larger model the nudging technique is applied. These results are used for the adjoint optimization procedure as boundary conditions and as a first guess for the initial condition. For the open model box the difference between model and satellite sea surface height that remains after the nudging experiment amounts to a 19-cm root-mean-square error (rmse). By assimilation into the regional model this value can be reduced to a 6-cm rmse for an assimilation period of 20 days. Several experiments which attempt to improve the convergence of the iterative optimization method are reported. Scaling and regularization by smoothing have to be applied carefully. Especially during the first 10 iterations, the convergence can be improved considerably by low-pass filtering of the cost function gradient. The result of a perturbation experiment shows that for longer assimilation periods the influence of the boundary values becomes dominant and they should be determined inversely by data assimilation into the open ocean model.
Newtonian nudging for a Richards equation-based distributed hydrological model
NASA Astrophysics Data System (ADS)
Paniconi, Claudio; Marrocu, Marino; Putti, Mario; Verbunt, Mark
The objective of data assimilation is to provide physically consistent estimates of spatially distributed environmental variables. In this study a relatively simple data assimilation method has been implemented in a relatively complex hydrological model. The data assimilation technique is Newtonian relaxation or nudging, in which model variables are driven towards observations by a forcing term added to the model equations. The forcing term is proportional to the difference between simulation and observation (relaxation component) and contains four-dimensional weighting functions that can incorporate prior knowledge about the spatial and temporal variability and characteristic scales of the state variable(s) being assimilated. The numerical model couples a three-dimensional finite element Richards equation solver for variably saturated porous media and a finite difference diffusion wave approximation based on digital elevation data for surface water dynamics. We describe the implementation of the data assimilation algorithm for the coupled model and report on the numerical and hydrological performance of the resulting assimilation scheme. Nudging is shown to be successful in improving the hydrological simulation results, and it introduces little computational cost, in terms of CPU and other numerical aspects of the model's behavior, in some cases even improving numerical performance compared to model runs without nudging. We also examine the sensitivity of the model to nudging term parameters including the spatio-temporal influence coefficients in the weighting functions. Overall the nudging algorithm is quite flexible, for instance in dealing with concurrent observation datasets, gridded or scattered data, and different state variables, and the implementation presented here can be readily extended to any of these features not already incorporated. Moreover the nudging code and tests can serve as a basis for implementation of more sophisticated data assimilation techniques in a Richards equation-based hydrological model.
Satellite Sounder Data Assimilation for Improving Alaska Region Weather Forecast
NASA Technical Reports Server (NTRS)
Zhu, Jiang; Stevens, E.; Zavodsky, B. T.; Zhang, X.; Heinrichs, T.; Broderson, D.
2014-01-01
Data assimilation has been demonstrated very useful in improving both global and regional numerical weather prediction. Alaska has very coarser surface observation sites. On the other hand, it gets much more satellite overpass than lower 48 states. How to utilize satellite data to improve numerical prediction is one of hot topics among weather forecast community in Alaska. The Geographic Information Network of Alaska (GINA) at University of Alaska is conducting study on satellite data assimilation for WRF model. AIRS/CRIS sounder profile data are used to assimilate the initial condition for the customized regional WRF model (GINA-WRF model). Normalized standard deviation, RMSE, and correlation statistic analysis methods are applied to analyze one case of 48 hours forecasts and one month of 24-hour forecasts in order to evaluate the improvement of regional numerical model from Data assimilation. The final goal of the research is to provide improved real-time short-time forecast for Alaska regions.
Parametrization of turbulence models using 3DVAR data assimilation in laboratory conditions
NASA Astrophysics Data System (ADS)
Olbert, A. I.; Nash, S.; Ragnoli, E.; Hartnett, M.
2013-12-01
In this research the 3DVAR data assimilation scheme is implemented in the numerical model DIVAST in order to optimize the performance of the numerical model by selecting an appropriate turbulence scheme and tuning its parameters. Two turbulence closure schemes: the Prandtl mixing length model and the two-equation k-ɛ model were incorporated into DIVAST and examined with respect to their universality of application, complexity of solutions, computational efficiency and numerical stability. A square harbour with one symmetrical entrance subject to tide-induced flows was selected to investigate the structure of turbulent flows. The experimental part of the research was conducted in a tidal basin. A significant advantage of such laboratory experiment is a fully controlled environment where domain setup and forcing are user-defined. The research shows that the Prandtl mixing length model and the two-equation k-ɛ model, with default parameterization predefined according to literature recommendations, overestimate eddy viscosity which in turn results in a significant underestimation of velocity magnitudes in the harbour. The data assimilation of the model-predicted velocity and laboratory observations significantly improves model predictions for both turbulence models by adjusting modelled flows in the harbour to match de-errored observations. Such analysis gives an optimal solution based on which numerical model parameters can be estimated. The process of turbulence model optimization by reparameterization and tuning towards optimal state led to new constants that may be potentially applied to complex turbulent flows, such as rapidly developing flows or recirculating flows. This research further demonstrates how 3DVAR can be utilized to identify and quantify shortcomings of the numerical model and consequently to improve forecasting by correct parameterization of the turbulence models. Such improvements may greatly benefit physical oceanography in terms of understanding and monitoring of coastal systems and the engineering sector through applications in coastal structure design, marine renewable energy and pollutant transport.
Evaluation of Oceanic Surface Observation for Reproducing the Upper Ocean Structure in ECHAM5/MPI-OM
NASA Astrophysics Data System (ADS)
Luo, Hao; Zheng, Fei; Zhu, Jiang
2017-12-01
Better constraints of initial conditions from data assimilation are necessary for climate simulations and predictions, and they are particularly important for the ocean due to its long climate memory; as such, ocean data assimilation (ODA) is regarded as an effective tool for seasonal to decadal predictions. In this work, an ODA system is established for a coupled climate model (ECHAM5/MPI-OM), which can assimilate all available oceanic observations using an ensemble optimal interpolation approach. To validate and isolate the performance of different surface observations in reproducing air-sea climate variations in the model, a set of observing system simulation experiments (OSSEs) was performed over 150 model years. Generally, assimilating sea surface temperature, sea surface salinity, and sea surface height (SSH) can reasonably reproduce the climate variability and vertical structure of the upper ocean, and assimilating SSH achieves the best results compared to the true states. For the El Niño-Southern Oscillation (ENSO), assimilating different surface observations captures true aspects of ENSO well, but assimilating SSH can further enhance the accuracy of ENSO-related feedback processes in the coupled model, leading to a more reasonable ENSO evolution and air-sea interaction over the tropical Pacific. For ocean heat content, there are still limitations in reproducing the long time-scale variability in the North Atlantic, even if SSH has been taken into consideration. These results demonstrate the effectiveness of assimilating surface observations in capturing the interannual signal and, to some extent, the decadal signal but still highlight the necessity of assimilating profile data to reproduce specific decadal variability.
Han, Xujun; Li, Xin; Rigon, Riccardo; Jin, Rui; Endrizzi, Stefano
2015-01-01
The observation could be used to reduce the model uncertainties with data assimilation. If the observation cannot cover the whole model area due to spatial availability or instrument ability, how to do data assimilation at locations not covered by observation? Two commonly used strategies were firstly described: One is covariance localization (CL); the other is observation localization (OL). Compared with CL, OL is easy to parallelize and more efficient for large-scale analysis. This paper evaluated OL in soil moisture profile characterizations, in which the geostatistical semivariogram was used to fit the spatial correlated characteristics of synthetic L-Band microwave brightness temperature measurement. The fitted semivariogram model and the local ensemble transform Kalman filter algorithm are combined together to weight and assimilate the observations within a local region surrounding the grid cell of land surface model to be analyzed. Six scenarios were compared: 1_Obs with one nearest observation assimilated, 5_Obs with no more than five nearest local observations assimilated, and 9_Obs with no more than nine nearest local observations assimilated. The scenarios with no more than 16, 25, and 36 local observations were also compared. From the results we can conclude that more local observations involved in assimilation will improve estimations with an upper bound of 9 observations in this case. This study demonstrates the potentials of geostatistical correlation representation in OL to improve data assimilation of catchment scale soil moisture using synthetic L-band microwave brightness temperature, which cannot cover the study area fully in space due to vegetation effects.
NASA Technical Reports Server (NTRS)
Jones, Thomas A.; Stensrud, David; Wicker, Louis; Minnis, Patrick; Palikonda, Rabindra
2015-01-01
Assimilating high-resolution radar reflectivity and radial velocity into convection-permitting numerical weather prediction models has proven to be an important tool for improving forecast skill of convection. The use of satellite data for the application is much less well understood, only recently receiving significant attention. Since both radar and satellite data provide independent information, combing these two sources of data in a robust manner potentially represents the future of high-resolution data assimilation. This research combines Geostationary Operational Environmental Satellite 13 (GOES-13) cloud water path (CWP) retrievals with Weather Surveillance Radar-1988 Doppler (WSR-88D) reflectivity and radial velocity to examine the impacts of assimilating each for a severe weather event occurring in Oklahoma on 24 May 2011. Data are assimilated into a 3-km model using an ensemble adjustment Kalman filter approach with 36 members over a 2-h assimilation window between 1800 and 2000 UTC. Forecasts are then generated for 90 min at 5-min intervals starting at 1930 and 2000 UTC. Results show that both satellite and radar data are able to initiate convection, but that assimilating both spins up a storm much faster. Assimilating CWP also performs well at suppressing spurious precipitation and cloud cover in the model as well as capturing the anvil characteristics of developed storms. Radar data are most effective at resolving the 3D characteristics of the core convection. Assimilating both satellite and radar data generally resulted in the best model analysis and most skillful forecast for this event.
Han, Xujun; Li, Xin; Rigon, Riccardo; Jin, Rui; Endrizzi, Stefano
2015-01-01
The observation could be used to reduce the model uncertainties with data assimilation. If the observation cannot cover the whole model area due to spatial availability or instrument ability, how to do data assimilation at locations not covered by observation? Two commonly used strategies were firstly described: One is covariance localization (CL); the other is observation localization (OL). Compared with CL, OL is easy to parallelize and more efficient for large-scale analysis. This paper evaluated OL in soil moisture profile characterizations, in which the geostatistical semivariogram was used to fit the spatial correlated characteristics of synthetic L-Band microwave brightness temperature measurement. The fitted semivariogram model and the local ensemble transform Kalman filter algorithm are combined together to weight and assimilate the observations within a local region surrounding the grid cell of land surface model to be analyzed. Six scenarios were compared: 1_Obs with one nearest observation assimilated, 5_Obs with no more than five nearest local observations assimilated, and 9_Obs with no more than nine nearest local observations assimilated. The scenarios with no more than 16, 25, and 36 local observations were also compared. From the results we can conclude that more local observations involved in assimilation will improve estimations with an upper bound of 9 observations in this case. This study demonstrates the potentials of geostatistical correlation representation in OL to improve data assimilation of catchment scale soil moisture using synthetic L-band microwave brightness temperature, which cannot cover the study area fully in space due to vegetation effects. PMID:25635771
Assimilating NOAA SST data into BSH operational circulation model for North and Baltic Seas
NASA Astrophysics Data System (ADS)
Losa, Svetlana; Schroeter, Jens; Nerger, Lars; Janjic, Tijana; Danilov, Sergey; Janssen, Frank
A data assimilation (DA) system is developed for BSH operational circulation model in order to improve forecast of current velocities, sea surface height, temperature and salinity in the North and Baltic Seas. Assimilated data are NOAA sea surface temperature (SST) data for the following period: 01.10.07 -30.09.08. All data assimilation experiments are based on im-plementation of one of the so-called statistical DA methods -Singular Evolutive Interpolated Kalman (SEIK) filter, -with different ways of prescribing assumed model and data errors statis-tics. Results of the experiments will be shown and compared against each other. Hydrographic data from MARNET stations and sea level at series of tide gauges are used as independent information to validate the data assimilation system. Keywords: Operational Oceanography and forecasting
Assimilation of spatially sparse in situ soil moisture networks into a continuous model domain
USDA-ARS?s Scientific Manuscript database
Growth in the availability of near-real-time soil moisture observations from ground-based networks has spurred interest in the assimilation of these observations into land surface models via a two-dimensional data assimilation system. However, the design of such systems is currently hampered by our ...
Data Assimilation to Extract Soil Moisture Information From SMAP Observations
NASA Technical Reports Server (NTRS)
Kolassa, J.; Reichle, R. H.; Liu, Q.; Alemohammad, S. H.; Gentine, P.
2017-01-01
Statistical techniques permit the retrieval of soil moisture estimates in a model climatology while retaining the spatial and temporal signatures of the satellite observations. As a consequence, they can be used to reduce the need for localized bias correction techniques typically implemented in data assimilation (DA) systems that tend to remove some of the independent information provided by satellite observations. Here, we use a statistical neural network (NN) algorithm to retrieve SMAP (Soil Moisture Active Passive) surface soil moisture estimates in the climatology of the NASA Catchment land surface model. Assimilating these estimates without additional bias correction is found to significantly reduce the model error and increase the temporal correlation against SMAP CalVal in situ observations over the contiguous United States. A comparison with assimilation experiments using traditional bias correction techniques shows that the NN approach better retains the independent information provided by the SMAP observations and thus leads to larger model skill improvements during the assimilation. A comparison with the SMAP Level 4 product shows that the NN approach is able to provide comparable skill improvements and thus represents a viable assimilation approach.
SOYCHMBR.I - A model designed for the study of plant growth in a closed chamber
NASA Technical Reports Server (NTRS)
Reinhold, C.
1982-01-01
The analytical model SOYCHMBER.I, an update and alteration of the SOYMOD/OARDC model, for describing the total processes experienced by a plant in a controlled mass environment is outlined. The model is intended for use with growth chambers for examining plant growth in a completely controlled environment, leading toward a data base for the design of spacecraft food supply systems. SOYCHMBER.I accounts for the assimilation, respiration, and partitioning of photosynthate and nitrogen compounds among leaves, stems, roots, and potentially, flowers of the soybean plant. The derivation of the governing equations is traced, and the results of the prediction of CO2 dynamics for a seven day experiment with rice in a closed chamber are reported, together with data from three model runs for soybean. It is concluded that the model needs expansion to account for factors such as relative humidity.
NASA Astrophysics Data System (ADS)
Khaki, M.; Schumacher, M.; Forootan, E.; Kuhn, M.; Awange, J. L.; van Dijk, A. I. J. M.
2017-10-01
Assimilation of terrestrial water storage (TWS) information from the Gravity Recovery And Climate Experiment (GRACE) satellite mission can provide significant improvements in hydrological modelling. However, the rather coarse spatial resolution of GRACE TWS and its spatially correlated errors pose considerable challenges for achieving realistic assimilation results. Consequently, successful data assimilation depends on rigorous modelling of the full error covariance matrix of the GRACE TWS estimates, as well as realistic error behavior for hydrological model simulations. In this study, we assess the application of local analysis (LA) to maximize the contribution of GRACE TWS in hydrological data assimilation. For this, we assimilate GRACE TWS into the World-Wide Water Resources Assessment system (W3RA) over the Australian continent while applying LA and accounting for existing spatial correlations using the full error covariance matrix. GRACE TWS data is applied with different spatial resolutions including 1° to 5° grids, as well as basin averages. The ensemble-based sequential filtering technique of the Square Root Analysis (SQRA) is applied to assimilate TWS data into W3RA. For each spatial scale, the performance of the data assimilation is assessed through comparison with independent in-situ ground water and soil moisture observations. Overall, the results demonstrate that LA is able to stabilize the inversion process (within the implementation of the SQRA filter) leading to less errors for all spatial scales considered with an average RMSE improvement of 54% (e.g., 52.23 mm down to 26.80 mm) for all the cases with respect to groundwater in-situ measurements. Validating the assimilated results with groundwater observations indicates that LA leads to 13% better (in terms of RMSE) assimilation results compared to the cases with Gaussian errors assumptions. This highlights the great potential of LA and the use of the full error covariance matrix of GRACE TWS estimates for improved data assimilation results.
POD/DEIM reduced-order strategies for efficient four dimensional variational data assimilation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ştefănescu, R., E-mail: rstefane@vt.edu; Sandu, A., E-mail: sandu@cs.vt.edu; Navon, I.M., E-mail: inavon@fsu.edu
2015-08-15
This work studies reduced order modeling (ROM) approaches to speed up the solution of variational data assimilation problems with large scale nonlinear dynamical models. It is shown that a key requirement for a successful reduced order solution is that reduced order Karush–Kuhn–Tucker conditions accurately represent their full order counterparts. In particular, accurate reduced order approximations are needed for the forward and adjoint dynamical models, as well as for the reduced gradient. New strategies to construct reduced order based are developed for proper orthogonal decomposition (POD) ROM data assimilation using both Galerkin and Petrov–Galerkin projections. For the first time POD, tensorialmore » POD, and discrete empirical interpolation method (DEIM) are employed to develop reduced data assimilation systems for a geophysical flow model, namely, the two dimensional shallow water equations. Numerical experiments confirm the theoretical framework for Galerkin projection. In the case of Petrov–Galerkin projection, stabilization strategies must be considered for the reduced order models. The new reduced order shallow water data assimilation system provides analyses similar to those produced by the full resolution data assimilation system in one tenth of the computational time.« less
NASA Astrophysics Data System (ADS)
Luo, Y.; Huang, Y.; Jiang, J.; MA, S.; Saruta, V.; Liang, G.; Hanson, P. J.; Ricciuto, D. M.; Milcu, A.; Roy, J.
2017-12-01
The past two decades have witnessed rapid development in sensor technology. Built upon the sensor development, large research infrastructure facilities, such as National Ecological Observatory Network (NEON) and FLUXNET, have been established. Through networking different kinds of sensors and other data collections at many locations all over the world, those facilities generate large volumes of ecological data every day. The big data from those facilities offer an unprecedented opportunity for advancing our understanding of ecological processes, educating teachers and students, supporting decision-making, and testing ecological theory. The big data from the major research infrastructure facilities also provides foundation for developing predictive ecology. Indeed, the capability to predict future changes in our living environment and natural resources is critical to decision making in a world where the past is no longer a clear guide to the future. We are living in a period marked by rapid climate change, profound alteration of biogeochemical cycles, unsustainable depletion of natural resources, and deterioration of air and water quality. Projecting changes in future ecosystem services to the society becomes essential not only for science but also for policy making. We will use this panel format to outline major opportunities and challenges in integrating research infrastructure and ecosystem models toward developing predictive ecology. Meanwhile, we will also show results from an interactive model-experiment System - Ecological Platform for Assimilating Data into models (EcoPAD) - that have been implemented at the Spruce and Peatland Responses Under Climatic and Environmental change (SPRUCE) experiment in Northern Minnesota and Montpellier Ecotron, France. EcoPAD is developed by integrating web technology, eco-informatics, data assimilation techniques, and ecosystem modeling. EcoPAD is designed to streamline data transfer seamlessly from research infrastructure facilities to model simulation, data assimilation, and ecological forecasting.
NASA Astrophysics Data System (ADS)
Penenko, Alexey; Penenko, Vladimir
2014-05-01
Contact concentration measurement data assimilation problem is considered for convection-diffusion-reaction models originating from the atmospheric chemistry study. High dimensionality of models imposes strict requirements on the computational efficiency of the algorithms. Data assimilation is carried out within the variation approach on a single time step of the approximated model. A control function is introduced into the source term of the model to provide flexibility for data assimilation. This function is evaluated as the minimum of the target functional that connects its norm to a misfit between measured and model-simulated data. In the case mathematical model acts as a natural Tikhonov regularizer for the ill-posed measurement data inversion problem. This provides flow-dependent and physically-plausible structure of the resulting analysis and reduces a need to calculate model error covariance matrices that are sought within conventional approach to data assimilation. The advantage comes at the cost of the adjoint problem solution. This issue is solved within the frameworks of splitting-based realization of the basic convection-diffusion-reaction model. The model is split with respect to physical processes and spatial variables. A contact measurement data is assimilated on each one-dimensional convection-diffusion splitting stage. In this case a computationally-efficient direct scheme for both direct and adjoint problem solution can be constructed based on the matrix sweep method. Data assimilation (or regularization) parameter that regulates ratio between model and data in the resulting analysis is obtained with Morozov discrepancy principle. For the proper performance the algorithm takes measurement noise estimation. In the case of Gaussian errors the probability that the used Chi-squared-based estimate is the upper one acts as the assimilation parameter. A solution obtained can be used as the initial guess for data assimilation algorithms that assimilate outside the splitting stages and involve iterations. Splitting method stage that is responsible for chemical transformation processes is realized with the explicit discrete-analytical scheme with respect to time. The scheme is based on analytical extraction of the exponential terms from the solution. This provides unconditional positive sign for the evaluated concentrations. Splitting-based structure of the algorithm provides means for efficient parallel realization. The work is partially supported by the Programs No 4 of Presidium RAS and No 3 of Mathematical Department of RAS, by RFBR project 11-01-00187 and Integrating projects of SD RAS No 8 and 35. Our studies are in the line with the goals of COST Action ES1004.
NASA Technical Reports Server (NTRS)
Li, Y.; Navon, I. M.; Courtier, P.; Gauthier, P.
1993-01-01
An adjoint model is developed for variational data assimilation using the 2D semi-Lagrangian semi-implicit (SLSI) shallow-water equation global model of Bates et al. with special attention being paid to the linearization of the interpolation routines. It is demonstrated that with larger time steps the limit of the validity of the tangent linear model will be curtailed due to the interpolations, especially in regions where sharp gradients in the interpolated variables coupled with strong advective wind occur, a synoptic situation common in the high latitudes. This effect is particularly evident near the pole in the Northern Hemisphere during the winter season. Variational data assimilation experiments of 'identical twin' type with observations available only at the end of the assimilation period perform well with this adjoint model. It is confirmed that the computational efficiency of the semi-Lagrangian scheme is preserved during the minimization process, related to the variational data assimilation procedure.
Impact of archeomagnetic field model data on modern era geomagnetic forecasts
NASA Astrophysics Data System (ADS)
Tangborn, Andrew; Kuang, Weijia
2018-03-01
A series of geomagnetic data assimilation experiments have been carried out to demonstrate the impact of assimilating archeomagnetic data via the CALS3k.4 geomagnetic field model from the period between 10 and 1590 CE. The assimilation continues with the gufm1 model from 1590 to 1990 and CM4 model from 1990 to 2000 as observations, and comparisons between these models and the geomagnetic forecasts are used to determine an optimal maximum degree for the archeomagnetic observations, and to independently estimate errors for these observations. These are compared with an assimilation experiment that uses the uncertainties provided with CALS3k.4. Optimal 20 year forecasts in 1990 are found when the Gauss coefficients up to degree 3 are assimilated. In addition we demonstrate how a forecast and observation bias correction scheme could be used to reduce bias in modern era forecasts. Initial experiments show that this approach can reduce modern era forecast biases by as much as 50%.
Assimilation of glider and mooring data into a coastal ocean model
NASA Astrophysics Data System (ADS)
Jones, Emlyn M.; Oke, Peter R.; Rizwi, Farhan; Murray, Lawrence M.
We have applied an ensemble optimal interpolation (EnOI) data assimilation system to a high resolution coastal ocean model of south-east Tasmania, Australia. The region is characterised by a complex coastline with water masses influenced by riverine input and the interaction between two offshore current systems. Using a large static ensemble to estimate the systems background error covariance, data from a coastal observing network of fixed moorings and a Slocum glider are assimilated into the model at daily intervals. We demonstrate that the EnOI algorithm can successfully correct a biased high resolution coastal model. In areas with dense observations, the assimilation scheme reduces the RMS difference between the model and independent GHRSST observations by 90%, while the domain-wide RMS difference is reduced by a more modest 40%. Our findings show that errors introduced by surface forcing and boundary conditions can be identified and reduced by a relatively sparse observing array using an inexpensive ensemble-based data assimilation system.
Multi-Scale Three-Dimensional Variational Data Assimilation System for Coastal Ocean Prediction
NASA Technical Reports Server (NTRS)
Li, Zhijin; Chao, Yi; Li, P. Peggy
2012-01-01
A multi-scale three-dimensional variational data assimilation system (MS-3DVAR) has been formulated and the associated software system has been developed for improving high-resolution coastal ocean prediction. This system helps improve coastal ocean prediction skill, and has been used in support of operational coastal ocean forecasting systems and field experiments. The system has been developed to improve the capability of data assimilation for assimilating, simultaneously and effectively, sparse vertical profiles and high-resolution remote sensing surface measurements into coastal ocean models, as well as constraining model biases. In this system, the cost function is decomposed into two separate units for the large- and small-scale components, respectively. As such, data assimilation is implemented sequentially from large to small scales, the background error covariance is constructed to be scale-dependent, and a scale-dependent dynamic balance is incorporated. This scheme then allows effective constraining large scales and model bias through assimilating sparse vertical profiles, and small scales through assimilating high-resolution surface measurements. This MS-3DVAR enhances the capability of the traditional 3DVAR for assimilating highly heterogeneously distributed observations, such as along-track satellite altimetry data, and particularly maximizing the extraction of information from limited numbers of vertical profile observations.
NASA Astrophysics Data System (ADS)
Shulman, Igor; Gould, Richard W.; Frolov, Sergey; McCarthy, Sean; Penta, Brad; Anderson, Stephanie; Sakalaukus, Peter
2018-03-01
An ensemble-based approach to specify observational error covariance in the data assimilation of satellite bio-optical properties is proposed. The observational error covariance is derived from statistical properties of the generated ensemble of satellite MODIS-Aqua chlorophyll (Chl) images. The proposed observational error covariance is used in the Optimal Interpolation scheme for the assimilation of MODIS-Aqua Chl observations. The forecast error covariance is specified in the subspace of the multivariate (bio-optical, physical) empirical orthogonal functions (EOFs) estimated from a month-long model run. The assimilation of surface MODIS-Aqua Chl improved surface and subsurface model Chl predictions. Comparisons with surface and subsurface water samples demonstrate that data assimilation run with the proposed observational error covariance has higher RMSE than the data assimilation run with "optimistic" assumption about observational errors (10% of the ensemble mean), but has smaller or comparable RMSE than data assimilation run with an assumption that observational errors equal to 35% of the ensemble mean (the target error for satellite data product for chlorophyll). Also, with the assimilation of the MODIS-Aqua Chl data, the RMSE between observed and model-predicted fractions of diatoms to the total phytoplankton is reduced by a factor of two in comparison to the nonassimilative run.
Regime-dependence of Impacts of Radar Rainfall Data Assimilation
NASA Astrophysics Data System (ADS)
Craig, G. C.; Keil, C.
2009-04-01
Experience from the first operational trials of assimilation of radar data in kilometre scale numerical weather prediction models (operating without cumulus parameterisation) shows that the positive impact of the radar data on convective precipitation forecasts typically decay within a few hours, although certain cases show much longer impacts. Here the impact time of radar data assimilation is related to characteristics of the meteorological environment. This QPF uncertainty is investigated using an ensemble of 10 forecasts at 2.8 km horizontal resolution based on different initial and boundary conditions from a global forecast ensemble. Control forecasts are compared with forecasts where radar reflectivity data is assimilated using latent heat nudging. Examination of different cases of convection in southern Germany suggests that the forecasts can be separated into two regimes using a convective timescale. Short impact times are associated with short convective timescales that are characteristic of equilibrium convection. In this regime the statistical properties of the convection are constrained by the large-scale forcing, and effects of the radar data are lost within a few hours as the convection rapidly returns to equilibrium. When the convective timescale is large (non-equilibrium conditions), the impact of the radar data is longer since convective systems are triggered by the latent heat nudging and are able to persist for many hours in the very unstable conditions present in these cases.
New Developments in the Data Assimilation Research Testbed
NASA Astrophysics Data System (ADS)
Hoar, T. J.; Anderson, J. L.; Raeder, K.; Karspeck, A. R.; Romine, G.; Liu, H.; Collins, N.
2011-12-01
NCAR's Data Assimilation Research Testbed (DART) is a community facility that provides ensemble data assimilation tools for geophysical applications. DART works with an expanding set of models and a wide range of conventional and novel observations, and provides a variety of assimilation algorithms and diagnostic tools. The Kodiak release of DART became available in July 2011 and includes more than 20 major feature enhancements, support for 24 models, support for (at least) 14 observation formats, expanded documentation and diagnostic tools, and 12 new utilities. A few examples of research projects that demonstrate the effectiveness and flexibility of the DART are described. The Community Atmosphere Model (CAM) and DART assimilated all the observations that were used in the NCEP/NCAR Reanalysis to produce a global, 6-hourly, 80-member ensemble reanalysis for 1998 through the present. The dataset is ideal for research applications that would benefit from an ensemble of equally-likely atmospheric states that are consistent with observations. Individual ensemble members may be used as a "data atmosphere" in any Community Earth System Model (CESM) experiment. The CESM interfaces for the Parallel Ocean Program (POP) and the Community Land Model (CLM) also support multiple instances, allowing data assimilation experiments exploiting unique atmospheric forcing for each POP or CLM model instance. A multi-year DART ocean assimilation has been completed and provides valuable insight into the successes and challenges of oceanic data assimilation. The DART/CLM research focuses on snow cover fraction and snow depth. The Weather Research and Forecasting (WRF) model was used with DART to perform a real-time CONUS domain mesoscale ensemble analysis with continuous cycling for 47 days. A member was selected once daily for high-resolution convective forecasts supporting a test phase of the Deep Convective Clouds and Chemistry experiment and the Storm Prediction Center spring experiment. The impacts of Moderate Resolution Imaging Spectroradiometer (MODIS) infrared and Advanced Microwave Scanning Radiometer (AMSR) microwave total precipitable water (TPW) observations on analyses and forecasts of tropical cyclone Sinlaku (2008) are investigated by performing assimilations with a 45km resolution WRF model over the Western Pacific domain for 8-14 Septmber, 2008. Particular emphasis is on the performance of the assimilation algorithms in the hurricane core and the impact of novel observations in the hurricane core.
Design of Field Experiments for Adaptive Sampling of the Ocean with Autonomous Vehicles
NASA Astrophysics Data System (ADS)
Zheng, H.; Ooi, B. H.; Cho, W.; Dao, M. H.; Tkalich, P.; Patrikalakis, N. M.
2010-05-01
Due to the highly non-linear and dynamical nature of oceanic phenomena, the predictive capability of various ocean models depends on the availability of operational data. A practical method to improve the accuracy of the ocean forecast is to use a data assimilation methodology to combine in-situ measured and remotely acquired data with numerical forecast models of the physical environment. Autonomous surface and underwater vehicles with various sensors are economic and efficient tools for exploring and sampling the ocean for data assimilation; however there is an energy limitation to such vehicles, and thus effective resource allocation for adaptive sampling is required to optimize the efficiency of exploration. In this paper, we use physical oceanography forecasts of the coastal zone of Singapore for the design of a set of field experiments to acquire useful data for model calibration and data assimilation. The design process of our experiments relied on the oceanography forecast including the current speed, its gradient, and vorticity in a given region of interest for which permits for field experiments could be obtained and for time intervals that correspond to strong tidal currents. Based on these maps, resources available to our experimental team, including Autonomous Surface Craft (ASC) are allocated so as to capture the oceanic features that result from jets and vortices behind bluff bodies (e.g., islands) in the tidal current. Results are summarized from this resource allocation process and field experiments conducted in January 2009.
NASA Astrophysics Data System (ADS)
Khaki, M.; Hoteit, I.; Kuhn, M.; Awange, J.; Forootan, E.; van Dijk, A. I. J. M.; Schumacher, M.; Pattiaratchi, C.
2017-09-01
The time-variable terrestrial water storage (TWS) products from the Gravity Recovery And Climate Experiment (GRACE) have been increasingly used in recent years to improve the simulation of hydrological models by applying data assimilation techniques. In this study, for the first time, we assess the performance of the most popular data assimilation sequential techniques for integrating GRACE TWS into the World-Wide Water Resources Assessment (W3RA) model. We implement and test stochastic and deterministic ensemble-based Kalman filters (EnKF), as well as Particle filters (PF) using two different resampling approaches of Multinomial Resampling and Systematic Resampling. These choices provide various opportunities for weighting observations and model simulations during the assimilation and also accounting for error distributions. Particularly, the deterministic EnKF is tested to avoid perturbing observations before assimilation (that is the case in an ordinary EnKF). Gaussian-based random updates in the EnKF approaches likely do not fully represent the statistical properties of the model simulations and TWS observations. Therefore, the fully non-Gaussian PF is also applied to estimate more realistic updates. Monthly GRACE TWS are assimilated into W3RA covering the entire Australia. To evaluate the filters performances and analyze their impact on model simulations, their estimates are validated by independent in-situ measurements. Our results indicate that all implemented filters improve the estimation of water storage simulations of W3RA. The best results are obtained using two versions of deterministic EnKF, i.e. the Square Root Analysis (SQRA) scheme and the Ensemble Square Root Filter (EnSRF), respectively, improving the model groundwater estimations errors by 34% and 31% compared to a model run without assimilation. Applying the PF along with Systematic Resampling successfully decreases the model estimation error by 23%.
Does Ocean Color Data Assimilation Improve Estimates of Global Ocean Inorganic Carbon?
NASA Technical Reports Server (NTRS)
Gregg, Watson
2012-01-01
Ocean color data assimilation has been shown to dramatically improve chlorophyll abundances and distributions globally and regionally in the oceans. Chlorophyll is a proxy for phytoplankton biomass (which is explicitly defined in a model), and is related to the inorganic carbon cycle through the interactions of the organic carbon (particulate and dissolved) and through primary production where inorganic carbon is directly taken out of the system. Does ocean color data assimilation, whose effects on estimates of chlorophyll are demonstrable, trickle through the simulated ocean carbon system to produce improved estimates of inorganic carbon? Our emphasis here is dissolved inorganic carbon, pC02, and the air-sea flux. We use a sequential data assimilation method that assimilates chlorophyll directly and indirectly changes nutrient concentrations in a multi-variate approach. The results are decidedly mixed. Dissolved organic carbon estimates from the assimilation model are not meaningfully different from free-run, or unassimilated results, and comparisons with in situ data are similar. pC02 estimates are generally worse after data assimilation, with global estimates diverging 6.4% from in situ data, while free-run estimates are only 4.7% higher. Basin correlations are, however, slightly improved: r increase from 0.78 to 0.79, and slope closer to unity at 0.94 compared to 0.86. In contrast, air-sea flux of C02 is noticeably improved after data assimilation. Global differences decline from -0.635 mol/m2/y (stronger model sink from the atmosphere) to -0.202 mol/m2/y. Basin correlations are slightly improved from r=O.77 to r=0.78, with slope closer to unity (from 0.93 to 0.99). The Equatorial Atlantic appears as a slight sink in the free-run, but is correctly represented as a moderate source in the assimilation model. However, the assimilation model shows the Antarctic to be a source, rather than a modest sink and the North Indian basin is represented incorrectly as a sink rather than the source indicated by the free-run model and data estimates.
Regional Precipitation Forecast with Atmospheric InfraRed Sounder (AIRS) Profile Assimilation
NASA Technical Reports Server (NTRS)
Chou, S.-H.; Zavodsky, B. T.; Jedloved, G. J.
2010-01-01
Advanced technology in hyperspectral sensors such as the Atmospheric InfraRed Sounder (AIRS; Aumann et al. 2003) on NASA's polar orbiting Aqua satellite retrieve higher vertical resolution thermodynamic profiles than their predecessors due to increased spectral resolution. Although these capabilities do not replace the robust vertical resolution provided by radiosondes, they can serve as a complement to radiosondes in both space and time. These retrieved soundings can have a significant impact on weather forecasts if properly assimilated into prediction models. Several recent studies have evaluated the performance of specific operational weather forecast models when AIRS data are included in the assimilation process. LeMarshall et al. (2006) concluded that AIRS radiances significantly improved 500 hPa anomaly correlations in medium-range forecasts of the Global Forecast System (GFS) model. McCarty et al. (2009) demonstrated similar forecast improvement in 0-48 hour forecasts in an offline version of the operational North American Mesoscale (NAM) model when AIRS radiances were assimilated at the regional scale. Reale et al. (2008) showed improvements to Northern Hemisphere 500 hPa height anomaly correlations in NASA's Goddard Earth Observing System Model, Version 5 (GEOS-5) global system with the inclusion of partly cloudy AIRS temperature profiles. Singh et al. (2008) assimilated AIRS temperature and moisture profiles into a regional modeling system for a study of a heavy rainfall event during the summer monsoon season in Mumbai, India. This paper describes an approach to assimilate AIRS temperature and moisture profiles into a regional configuration of the Advanced Research Weather Research and Forecasting (WRF-ARW) model using its three-dimensional variational (3DVAR) assimilation system (WRF-Var; Barker et al. 2004). Section 2 describes the AIRS instrument and how the quality indicators are used to intelligently select the highest-quality data for assimilation. Section 3 presents an overall precipitation improvement with AIRS assimilation during a 37-day case study period, and Section 4 focuses on a single case study to further investigate the meteorological impact of AIRS profiles on synoptic scale models. Finally, Section 5 provides a summary of the paper.
Contribution Of The SWOT Mission To Large-Scale Hydrological Modeling Using Data Assimilation
NASA Astrophysics Data System (ADS)
Emery, C. M.; Biancamaria, S.; Boone, A. A.; Ricci, S. M.; Rochoux, M. C.; Garambois, P. A.; Paris, A.; Calmant, S.
2016-12-01
The purpose of this work is to improve water fluxes estimation on the continental surfaces, at interanual and interseasonal scale (from few years to decennial time period). More specifically, it studies contribution of the incoming SWOT satellite mission to improve hydrology model at global scale, and using the land surface model ISBA-TRIP. This model corresponds to the continental component of the CNRM (French meteorological research center)'s climatic model. This study explores the potential of satellite data to correct either input parameters of the river routing scheme TRIP or its state variables. To do so, a data assimilation platform (using an Ensemble Kalman Filter, EnKF) has been implemented to assimilate SWOT virtual observations as well as discharges estimated from real nadir altimetry data. A series of twin experiments is used to test and validate the parameter estimation module of the platform. SWOT virtual-observations of water heights along SWOT tracks (with a 10 cm white noise model error) are assimilated to correct the river routing model parameters. To begin with, we chose to focus exclusively on the river manning coefficient, with the possibility to easily extend to other parameters such as the river widths. First results show that the platform is able to recover the "true" Manning distribution assimilating SWOT-like water heights. The error on the coefficients goes from 35 % before assimilation to 9 % after four SWOT orbit repeat period of 21 days. In the state estimation mode, daily assimilation cycles are realized to correct TRIP river water storage initial state by assimilating ENVISAT-based discharge. Those observations are derived from ENVISAT water elevation measures, using rating curves from the MGB-IPH hydrological model (calibrated over the Amazon using in situ gages discharge). Using such kind of observation allows going beyond idealized twin experiments and also to test contribution of a remotely-sensed discharge product, which could prefigure the SWOT discharge product. The results show that discharge after assimilation are globally improved : the root-mean-square error between the analysis discharge ensemble mean and in situ discharges is reduced by 30 %, compared to the root-mean-square error between the free run and in situ discharges.
Assimilating Eulerian and Lagrangian data in traffic-flow models
NASA Astrophysics Data System (ADS)
Xia, Chao; Cochrane, Courtney; DeGuire, Joseph; Fan, Gaoyang; Holmes, Emma; McGuirl, Melissa; Murphy, Patrick; Palmer, Jenna; Carter, Paul; Slivinski, Laura; Sandstede, Björn
2017-05-01
Data assimilation of traffic flow remains a challenging problem. One difficulty is that data come from different sources ranging from stationary sensors and camera data to GPS and cell phone data from moving cars. Sensors and cameras give information about traffic density, while GPS data provide information about the positions and velocities of individual cars. Previous methods for assimilating Lagrangian data collected from individual cars relied on specific properties of the underlying computational model or its reformulation in Lagrangian coordinates. These approaches make it hard to assimilate both Eulerian density and Lagrangian positional data simultaneously. In this paper, we propose an alternative approach that allows us to assimilate both Eulerian and Lagrangian data. We show that the proposed algorithm is accurate and works well in different traffic scenarios and regardless of whether ensemble Kalman or particle filters are used. We also show that the algorithm is capable of estimating parameters and assimilating real traffic observations and synthetic observations obtained from microscopic models.
Mesoscale Assimilation of TMI Rainfall Data with 4DVAR: Sensitivity Studies
NASA Technical Reports Server (NTRS)
Tao, Wei-Kuo; Pu, Zhaoxia
2003-01-01
Sensitivity studies are performed on the assimilation of TRMM (Tropical Rainfall Measurement Mission) Microwave Imager (TMI) derived rainfall data into a mesoscale model using a four-dimensional variational data assimilation (4DVAR) technique. A series of numerical experiments is conducted to evaluate the impact of TMI rainfall data on the numerical simulation of Hurricane Bonnie (1998). The results indicate that rainfall data assimilation is sensitive to the error characteristics of the data and the inclusion of physics in the adjoint and forward models. In addition, assimilating the rainfall data alone is helpful for producing a more realistic eye and rain bands in the hurricane but does not ensure improvements in hurricane intensity forecasts. Further study indicated that it is necessary to incorporate TMI rainfall data together with other types of data such as wind data into the model, in which case the inclusion of the rainfall data further improves the intensity forecast of the hurricane. This implies that proper constraints may be needed for rainfall assimilation.
Assimilation of Freeze - Thaw Observations into the NASA Catchment Land Surface Model
NASA Technical Reports Server (NTRS)
Farhadi, Leila; Reichle, Rolf H.; DeLannoy, Gabrielle J. M.; Kimball, John S.
2014-01-01
The land surface freeze-thaw (F-T) state plays a key role in the hydrological and carbon cycles and thus affects water and energy exchanges and vegetation productivity at the land surface. In this study, we developed an F-T assimilation algorithm for the NASA Goddard Earth Observing System, version 5 (GEOS-5) modeling and assimilation framework. The algorithm includes a newly developed observation operator that diagnoses the landscape F-T state in the GEOS-5 Catchment land surface model. The F-T analysis is a rule-based approach that adjusts Catchment model state variables in response to binary F-T observations, while also considering forecast and observation errors. A regional observing system simulation experiment was conducted using synthetically generated F-T observations. The assimilation of perfect (error-free) F-T observations reduced the root-mean-square errors (RMSE) of surface temperature and soil temperature by 0.206 C and 0.061 C, respectively, when compared to model estimates (equivalent to a relative RMSE reduction of 6.7 percent and 3.1 percent, respectively). For a maximum classification error (CEmax) of 10 percent in the synthetic F-T observations, the F-T assimilation reduced the RMSE of surface temperature and soil temperature by 0.178 C and 0.036 C, respectively. For CEmax=20 percent, the F-T assimilation still reduces the RMSE of model surface temperature estimates by 0.149 C but yields no improvement over the model soil temperature estimates. The F-T assimilation scheme is being developed to exploit planned operational F-T products from the NASA Soil Moisture Active Passive (SMAP) mission.
NASA Technical Reports Server (NTRS)
Lien, Guo-Yuan; Kalnay, Eugenia; Miyoshi, Takemasa; Huffman, George J.
2016-01-01
Assimilation of satellite precipitation data into numerical models presents several difficulties, with two of the most important being the non-Gaussian error distributions associated with precipitation, and large model and observation errors. As a result, improving the model forecast beyond a few hours by assimilating precipitation has been found to be difficult. To identify the challenges and propose practical solutions to assimilation of precipitation, statistics are calculated for global precipitation in a low-resolution NCEP Global Forecast System (GFS) model and the TRMM Multisatellite Precipitation Analysis (TMPA). The samples are constructed using the same model with the same forecast period, observation variables, and resolution as in the follow-on GFSTMPA precipitation assimilation experiments presented in the companion paper.The statistical results indicate that the T62 and T126 GFS models generally have positive bias in precipitation compared to the TMPA observations, and that the simulation of the marine stratocumulus precipitation is not realistic in the T62 GFS model. It is necessary to apply to precipitation either the commonly used logarithm transformation or the newly proposed Gaussian transformation to obtain a better relationship between the model and observational precipitation. When the Gaussian transformations are separately applied to the model and observational precipitation, they serve as a bias correction that corrects the amplitude-dependent biases. In addition, using a spatially andor temporally averaged precipitation variable, such as the 6-h accumulated precipitation, should be advantageous for precipitation assimilation.
NASA Astrophysics Data System (ADS)
Mitchell, C. N.; Rankov, N. R.; Bust, G. S.; Miller, E.; Gaussiran, T.; Calfas, R.; Doyle, J. D.; Teig, L. J.; Werth, J. L.; Dekine, I.
2017-07-01
Ionospheric data assimilation is a technique to evaluate the 3-D time varying distribution of electron density using a combination of a physics-based model and observations. A new ionospheric data assimilation method is introduced that has the capability to resolve traveling ionospheric disturbances (TIDs). TIDs are important because they cause strong delay and refraction to radio signals that are detrimental to the accuracy of high-frequency (HF) geolocation systems. The capability to accurately specify the ionosphere through data assimilation can correct systems for the error caused by the unknown ionospheric refraction. The new data assimilation method introduced here uses ionospheric models in combination with observations of HF signals from known transmitters. The assimilation methodology was tested by the ability to predict the incoming angles of HF signals from transmitters at a set of nonassimilated test locations. The technique is demonstrated and validated using observations collected during 2 days of a dedicated campaign of ionospheric measurements at White Sands Missile Range in New Mexico in January 2014. This is the first time that full HF ionospheric data assimilation using an ensemble run of a physics-based model of ionospheric TIDs has been demonstrated. The results show a significant improvement over HF angle-of-arrival prediction using an empirical model and also over the classic method of single-site location using an ionosonde close to the midpoint of the path. The assimilative approach is extendable to include other types of ionospheric measurements.
NASA Technical Reports Server (NTRS)
Schubert, Siegfried
2008-01-01
This talk will review the status and progress of the NASA/Global Modeling and Assimilation Office (GMAO) atmospheric global reanalysis project called the Modern Era Retrospective-Analysis for Research and Applications (MERRA). An overview of NASA's emerging capabilities for assimilating a variety of other Earth Science observations of the land, ocean, and atmospheric constituents will also be presented. MERRA supports NASA Earth science by synthesizing the current suite of research satellite observations in a climate data context (covering the period 1979-present), and by providing the science and applications communities with of a broad range of weather and climate data with an emphasis on improved estimates of the hydrological cycle. MERRA is based on a major new version of the Goddard Earth Observing System Data Assimilation System (GEOS-5), that includes the Earth System Modeling Framework (ESMF)-based GEOS-5 atmospheric general circulation model and the new NOAA National Centers for Environmental Prediction (NCEP) unified grid-point statistical interpolation (GST) analysis scheme developed as a collaborative effort between NCEP and the GMAO. In addition to MERRA, the GMAO is developing new capabilities in aerosol and constituent assimilation, ocean, ocean biology, and land surface assimilation. This includes the development of an assimilation capability for tropospheric air quality monitoring and prediction, the development of a carbon-cycle modeling and assimilation system, and an ocean data assimilation system for use in coupled short-term climate forecasting.
NASA Technical Reports Server (NTRS)
Ghil, M.
1980-01-01
A unified theoretical approach to both the four-dimensional assimilation of asynoptic data and the initialization problem is attempted. This approach relies on the derivation of certain relationships between geopotential tendencies and tendencies of the horizontal velocity field in primitive-equation models of atmospheric flow. The approach is worked out and analyzed in detail for some simple barotropic models. Certain independent results of numerical experiments for the time-continuous assimilation of real asynoptic meteorological data into a complex, baroclinic weather prediction model are discussed in the context of the present approach. Tentative inferences are drawn for practical assimilation procedures.
The OSSE Framework at the NASA Global Modeling and Assimilation Office (GMAO)
NASA Astrophysics Data System (ADS)
Moradi, I.; Prive, N.; McCarty, W.; Errico, R. M.; Gelaro, R.
2017-12-01
This abstract summarizes the OSSE framework developed at the Global Modeling and Assimilation Office at the National Aeronautics and Space Administration (NASA/GMAO). Some of the OSSE techniques developed at GMAO including simulation of realistic observations, e.g., adding errors to simulated observations, are now widely used by the community to evaluate the impact of new observations on the weather forecasts. This talk presents some of the recent progresses and challenges in simulating realistic observations, radiative transfer modeling support for the GMAO OSSE activities, assimilation of OSSE observations into data assimilation systems, and evaluating the impact of simulated observations on the forecast skills.
The OSSE Framework at the NASA Global Modeling and Assimilation Office (GMAO)
NASA Technical Reports Server (NTRS)
Moradi, Isaac; Prive, Nikki; McCarty, Will; Errico, Ronald M.; Gelaro, Ron
2017-01-01
This abstract summarizes the OSSE framework developed at the Global Modeling and Assimilation Office at the National Aeronautics and Space Administration (NASA/GMAO). Some of the OSSE techniques developed at GMAO including simulation of realistic observations, e.g., adding errors to simulated observations, are now widely used by the community to evaluate the impact of new observations on the weather forecasts. This talk presents some of the recent progresses and challenges in simulating realistic observations, radiative transfer modeling support for the GMAO OSSE activities, assimilation of OSSE observations into data assimilation systems, and evaluating the impact of simulated observations on the forecast skills.
NASA Astrophysics Data System (ADS)
Dumedah, Gift; Walker, Jeffrey P.
2017-03-01
The sources of uncertainty in land surface models are numerous and varied, from inaccuracies in forcing data to uncertainties in model structure and parameterizations. Majority of these uncertainties are strongly tied to the overall makeup of the model, but the input forcing data set is independent with its accuracy usually defined by the monitoring or the observation system. The impact of input forcing data on model estimation accuracy has been collectively acknowledged to be significant, yet its quantification and the level of uncertainty that is acceptable in the context of the land surface model to obtain a competitive estimation remain mostly unknown. A better understanding is needed about how models respond to input forcing data and what changes in these forcing variables can be accommodated without deteriorating optimal estimation of the model. As a result, this study determines the level of forcing data uncertainty that is acceptable in the Joint UK Land Environment Simulator (JULES) to competitively estimate soil moisture in the Yanco area in south eastern Australia. The study employs hydro genomic mapping to examine the temporal evolution of model decision variables from an archive of values obtained from soil moisture data assimilation. The data assimilation (DA) was undertaken using the advanced Evolutionary Data Assimilation. Our findings show that the input forcing data have significant impact on model output, 35% in root mean square error (RMSE) for 5cm depth of soil moisture and 15% in RMSE for 15cm depth of soil moisture. This specific quantification is crucial to illustrate the significance of input forcing data spread. The acceptable uncertainty determined based on dominant pathway has been validated and shown to be reliable for all forcing variables, so as to provide optimal soil moisture. These findings are crucial for DA in order to account for uncertainties that are meaningful from the model standpoint. Moreover, our results point to a proper treatment of input forcing data in general land surface and hydrological model estimation.
NASA Astrophysics Data System (ADS)
Ferri, Michele; Baruffi, Francesco; Norbiato, Daniele; Monego, Martina; Tomei, Giovanni; Solomatine, Dimitri; Alfonso, Leonardo; Mazzoleni, Maurizio; Chacon, Juan Carlos; Wehn, Uta; Ciravegna, Fabio
2016-04-01
Citizen observatories (COs) present an interesting case of strong multi-facet feedback between the physical (water) system and humans. CO is a form of crowdsourcing ensuring a data flow from citizens observing environment (e.g. water level in a river) to a central data processing unit which is typically part of a more complex social arrangement (e.g. water authorities responsible for flood forecasting). The EU-funded project WeSenseIt (www.wesenseit.eu) aims at developing technologies and tools supporting creation of such COs [1,2,3,4]. Citizens which form a CO play the role of "social sensors" which however are very specific. The data streams from such sensors have varying temporal and spatial coverage and information value (uncertainty). The crowdsourced data can be of course simply visualized and presented to public, but it is much more interesting to consider cases when such data are assimilated into the existing forecasting systems, e.g. flood early warning systems based on hydrological and hydraulic models. COs may also affect water management and governance [4], and in fact can be seen as data engines supporting the people-hydrology nexus. In the framework of WeSenseIt project several approaches were developed allowing for optimal assimilation of intermittent data streams with varying spatial coverage into distributed hydrological models [1, 2]. The mentioned specific features of CO data required updates of the existing data assimilation algorithms (Ensemble Kalman Filter was used as the basic algorithm). The developed algorithms have been implemented in the operational flood forecasting systems of the Alto Adriatico Water Authority (AAWA), Venice. In this paper we analyse various scenarios of employing citizens data (COs) for flood forecasting. This study is partly supported by the FP7 European Project WeSenseIt Citizen Water Observatory (www.http://wesenseit.eu/). References [1] Mazzoleni, M., Alfonso, L., Chacon-Hurtado, J., Solomatine, D. (2015). Assimilating uncertain, dynamic and intermittent streamflow observations in hydrological models. Advances in Water Res., 83, 323-339 (Online on September 1, 2015). [2] Mazzoleni M., Verlaan M., Alfonso L., Monego M., Norbiato D., Ferri M., and Solomatine D.P. (2015) Can assimilation of crowdsourced streamflow observations in hydrological modelling improve flood prediction?, Hydrology and Earth System Sciences, under review. [3] Mazzoleni M., Alfonso L. and Solomatine D.P. (2015) Effect of spatial distribution and quality of sensors on the assimilation of distributed streamflow observations in hydrological modeling, Hydrological Sciences Journal, under review. [4] Wehn, U., McCarty, S., Lanfranchi, V. and Tapsell, S. (2015) Citizen observatories as facilitators of change in water governance? Experiences from three European cases, Special Issue on ICTs and Water, Journal of Environmental Engineering and Management, 2073-2086.
Adjoint-Based Climate Model Tuning: Application to the Planet Simulator
NASA Astrophysics Data System (ADS)
Lyu, Guokun; Köhl, Armin; Matei, Ion; Stammer, Detlef
2018-01-01
The adjoint method is used to calibrate the medium complexity climate model "Planet Simulator" through parameter estimation. Identical twin experiments demonstrate that this method can retrieve default values of the control parameters when using a long assimilation window of the order of 2 months. Chaos synchronization through nudging, required to overcome limits in the temporal assimilation window in the adjoint method, is employed successfully to reach this assimilation window length. When assimilating ERA-Interim reanalysis data, the observations of air temperature and the radiative fluxes are the most important data for adjusting the control parameters. The global mean net longwave fluxes at the surface and at the top of the atmosphere are significantly improved by tuning two model parameters controlling the absorption of clouds and water vapor. The global mean net shortwave radiation at the surface is improved by optimizing three model parameters controlling cloud optical properties. The optimized parameters improve the free model (without nudging terms) simulation in a way similar to that in the assimilation experiments. Results suggest a promising way for tuning uncertain parameters in nonlinear coupled climate models.
Satellite Sounder Data Assimilation for Improving Alaska Region Weather Forecast
NASA Technical Reports Server (NTRS)
Zhu, Jiang; Stevens, E.; Zhang, X.; Zavodsky, B. T.; Heinrichs, T.; Broderson, D.
2014-01-01
A case study and monthly statistical analysis using sounder data assimilation to improve the Alaska regional weather forecast model are presented. Weather forecast in Alaska faces challenges as well as opportunities. Alaska has a large land with multiple types of topography and coastal area. Weather forecast models must be finely tuned in order to accurately predict weather in Alaska. Being in the high-latitudes provides Alaska greater coverage of polar orbiting satellites for integration into forecasting models than the lower 48. Forecasting marine low stratus clouds is critical to the Alaska aviation and oil industry and is the current focus of the case study. NASA AIRS/CrIS sounder profiles data are used to do data assimilation for the Alaska regional weather forecast model to improve Arctic marine stratus clouds forecast. Choosing physical options for the WRF model is discussed. Preprocess of AIRS/CrIS sounder data for data assimilation is described. Local observation data, satellite data, and global data assimilation data are used to verify and/or evaluate the forecast results by the MET tools Model Evaluation Tools (MET).
Data assimilation and bathymetric inversion in a two-dimensional horizontal surf zone model
NASA Astrophysics Data System (ADS)
Wilson, G. W.; Ã-Zkan-Haller, H. T.; Holman, R. A.
2010-12-01
A methodology is described for assimilating observations in a steady state two-dimensional horizontal (2-DH) model of nearshore hydrodynamics (waves and currents), using an ensemble-based statistical estimator. In this application, we treat bathymetry as a model parameter, which is subject to a specified prior uncertainty. The statistical estimator uses state augmentation to produce posterior (inverse, updated) estimates of bathymetry, wave height, and currents, as well as their posterior uncertainties. A case study is presented, using data from a 2-D array of in situ sensors on a natural beach (Duck, NC). The prior bathymetry is obtained by interpolation from recent bathymetric surveys; however, the resulting prior circulation is not in agreement with measurements. After assimilating data (significant wave height and alongshore current), the accuracy of modeled fields is improved, and this is quantified by comparing with observations (both assimilated and unassimilated). Hence, for the present data, 2-DH bathymetric uncertainty is an important source of error in the model and can be quantified and corrected using data assimilation. Here the bathymetric uncertainty is ascribed to inadequate temporal sampling; bathymetric surveys were conducted on a daily basis, but bathymetric change occurred on hourly timescales during storms, such that hydrodynamic model skill was significantly degraded. Further tests are performed to analyze the model sensitivities used in the assimilation and to determine the influence of different observation types and sampling schemes.
NASA Astrophysics Data System (ADS)
Camporese, M.; Botto, A.
2017-12-01
Data assimilation is becoming increasingly popular in hydrological and earth system modeling, as it allows for direct integration of multisource observation data in modeling predictions and uncertainty reduction. For this reason, data assimilation has been recently the focus of much attention also for integrated surface-subsurface hydrological models, whereby multiple terrestrial compartments (e.g., snow cover, surface water, groundwater) are solved simultaneously, in an attempt to tackle environmental problems in a holistic approach. Recent examples include the joint assimilation of water table, soil moisture, and river discharge measurements in catchment models of coupled surface-subsurface flow using the ensemble Kalman filter (EnKF). Although the EnKF has been specifically developed to deal with nonlinear models, integrated hydrological models based on the Richards equation still represent a challenge, due to strong nonlinearities that may significantly affect the filter performance. Thus, more studies are needed to investigate the capabilities of EnKF to correct the system state and identify parameters in cases where the unsaturated zone dynamics are dominant. Here, the model CATHY (CATchment HYdrology) is applied to reproduce the hydrological dynamics observed in an experimental hillslope, equipped with tensiometers, water content reflectometer probes, and tipping bucket flow gages to monitor the hillslope response to a series of artificial rainfall events. We assimilate pressure head, soil moisture, and subsurface outflow with EnKF in a number of assimilation scenarios and discuss the challenges, issues, and tradeoffs arising from the assimilation of multisource data in a real-world test case, with particular focus on the capability of DA to update the subsurface parameters.
Examples of data assimilation in mesoscale models
NASA Technical Reports Server (NTRS)
Carr, Fred; Zack, John; Schmidt, Jerry; Snook, John; Benjamin, Stan; Stauffer, David
1993-01-01
The keynote address was the problem of physical initialization of mesoscale models. The classic purpose of physical or diabatic initialization is to reduce or eliminate the spin-up error caused by the lack, at the initial time, of the fully developed vertical circulations required to support regions of large rainfall rates. However, even if a model has no spin-up problem, imposition of observed moisture and heating rate information during assimilation can improve quantitative precipitation forecasts, especially early in the forecast. The two key issues in physical initialization are the choice of assimilating technique and sources of hydrologic/hydrometeor data. Another example of data assimilation in mesoscale models was presented in a series of meso-beta scale model experiments with and 11 km version of the MASS model designed to investigate the sensitivity of convective initiation forced by thermally direct circulations resulting from differential surface heating to four dimensional assimilation of surface and radar data. The results of these simulations underscore the need to accurately initialize and simulate grid and sub-grid scale clouds in meso- beta scale models. The status of the application of the CSU-RAMS mesoscale model by the NOAA Forecast Systems Lab for producing real-time forecasts with 10-60 km mesh resolutions over (4000 km)(exp 2) domains for use by the aviation community was reported. Either MAPS or LAPS model data are used to initialize the RAMS model on a 12-h cycle. The use of MAPS (Mesoscale Analysis and Prediction System) model was discussed. Also discussed was the mesobeta-scale data assimilation using a triply-nested nonhydrostatic version of the MM5 model.
NASA Astrophysics Data System (ADS)
Scholze, Marko; Buchwitz, Michael; Dorigo, Wouter; Guanter, Luis; Quegan, Shaun
2017-07-01
The global carbon cycle is an important component of the Earth system and it interacts with the hydrology, energy and nutrient cycles as well as ecosystem dynamics. A better understanding of the global carbon cycle is required for improved projections of climate change including corresponding changes in water and food resources and for the verification of measures to reduce anthropogenic greenhouse gas emissions. An improved understanding of the carbon cycle can be achieved by data assimilation systems, which integrate observations relevant to the carbon cycle into coupled carbon, water, energy and nutrient models. Hence, the ingredients for such systems are a carbon cycle model, an algorithm for the assimilation and systematic and well error-characterised observations relevant to the carbon cycle. Relevant observations for assimilation include various in situ measurements in the atmosphere (e.g. concentrations of CO2 and other gases) and on land (e.g. fluxes of carbon water and energy, carbon stocks) as well as remote sensing observations (e.g. atmospheric composition, vegetation and surface properties).We briefly review the different existing data assimilation techniques and contrast them to model benchmarking and evaluation efforts (which also rely on observations). A common requirement for all assimilation techniques is a full description of the observational data properties. Uncertainty estimates of the observations are as important as the observations themselves because they similarly determine the outcome of such assimilation systems. Hence, this article reviews the requirements of data assimilation systems on observations and provides a non-exhaustive overview of current observations and their uncertainties for use in terrestrial carbon cycle data assimilation. We report on progress since the review of model-data synthesis in terrestrial carbon observations by Raupach et al.(2005), emphasising the rapid advance in relevant space-based observations.
NASA Astrophysics Data System (ADS)
Liu, Yin; Zhang, Wei
2016-12-01
This study develops a proper way to incorporate Atmospheric Infrared Sounder (AIRS) ozone data into the bogus data assimilation (BDA) initialization scheme for improving hurricane prediction. First, the observation operator at some model levels with the highest correlation coefficients is established to assimilate AIRS ozone data based on the correlation between total column ozone and potential vorticity (PV) ranging from 400 to 50 hPa level. Second, AIRS ozone data act as an augmentation to a BDA procedure using a four-dimensional variational (4D-Var) data assimilation system. Case studies of several hurricanes are performed to demonstrate the effectiveness of the bogus and ozone data assimilation (BODA) scheme. The statistical result indicates that assimilating AIRS ozone data at 4, 5, or 6 model levels can produce a significant improvement in hurricane track and intensity prediction, with reasonable computation time for the hurricane initialization. Moreover, a detailed analysis of how BODA scheme affects hurricane prediction is conducted for Hurricane Earl (2010). It is found that the new scheme developed in this study generates significant adjustments in the initial conditions (ICs) from the lower levels to the upper levels, compared with the BDA scheme. With the BODA scheme, hurricane development is found to be much more sensitive to the number of ozone data assimilation levels. In particular, the experiment with the assimilation of AIRS ozone data at proper number of model levels shows great capabilities in reproducing the intensity and intensity changes of Hurricane Earl, as well as improve the track prediction. These results suggest that AIRS ozone data convey valuable meteorological information in the upper troposphere, which can be assimilated into a numerical model to improve hurricane initialization when the low-level bogus data are included.
NASA Astrophysics Data System (ADS)
Hoshiba, Yasuhiro; Hirata, Takafumi; Shigemitsu, Masahito; Nakano, Hideyuki; Hashioka, Taketo; Masuda, Yoshio; Yamanaka, Yasuhiro
2018-06-01
Ecosystem models are used to understand ecosystem dynamics and ocean biogeochemical cycles and require optimum physiological parameters to best represent biological behaviours. These physiological parameters are often tuned up empirically, while ecosystem models have evolved to increase the number of physiological parameters. We developed a three-dimensional (3-D) lower-trophic-level marine ecosystem model known as the Nitrogen, Silicon and Iron regulated Marine Ecosystem Model (NSI-MEM) and employed biological data assimilation using a micro-genetic algorithm to estimate 23 physiological parameters for two phytoplankton functional types in the western North Pacific. The estimation of the parameters was based on a one-dimensional simulation that referenced satellite data for constraining the physiological parameters. The 3-D NSI-MEM optimized by the data assimilation improved the timing of a modelled plankton bloom in the subarctic and subtropical regions compared to the model without data assimilation. Furthermore, the model was able to improve not only surface concentrations of phytoplankton but also their subsurface maximum concentrations. Our results showed that surface data assimilation of physiological parameters from two contrasting observatory stations benefits the representation of vertical plankton distribution in the western North Pacific.
NASA Astrophysics Data System (ADS)
Li, J.; Shi, P.; Chen, J.; Zhu, Y.; Li, B.
2016-12-01
There are many islands (or reefs) in the South China Sea. The hydrological properties (currents and waves) around the islands are highly spatially variable compared to those of coastal region of mainland, because the shorelines are more complex with much smaller scale, and the topographies are step-shape with a much sharper slope. The currents and waves with high spatial variations may destroy the buildings or engineering on shorelines, or even influence the structural stability of reefs. Therefore, it is necessary to establish monitoring systems to obtain the high-resolution hydrological information. This study propose a plan for developing a hydrological monitoring system based on HF radar on the shoreline of a typical island in the southern South China Sea: firstly, the HF radar are integrated with auxiliary equipment (such as dynamo, fuel tank, air conditioner, communication facilities) in a container to build a whole monitoring platform; synchronously, several buoys are set within the radar visibility for data calibration and validation; and finally, the current and wave observations collected by the HF radar are assimilated with numerical models to obtain long-term and high-precision reanalysis products. To test the feasibility of this plan, our research group has built two HF radar sites at the western coastal region of Guangdong Province. The collected data were used to extract surface current information and assimilated with an ocean model. The results show that the data assimilation can highly improve the surface current simulation, especially for typhoon periods. Continuous data with intervals between 6 and 12 hour are the most suitable for ideal assimilations. On the other hand, the test also reveal that developing similar monitoring system on island environments need advanced radars that have higher resolutions and a better performance for persistent work.
NASA Technical Reports Server (NTRS)
Lapenta, William M.; Suggs, Ron; Jedlovec, Gary; McNider, Richard T.
1999-01-01
As the parameterizations of surface energy budgets in regional models have become more complete physically, models have the potential to be much more realistic in simulations of coupling between surface radiation, hydrology, and surface energy transfer. Realizing the importance of properly specifying the surface energy budget, many institutions are using land-surface models to represent the lower boundary forcing associated with biophysical processes and soil hydrology. However, the added degrees of freedom due to inclusion of such land-surface schemes require the specification of additional parameters within the model system such as vegetative resistances, green vegetation fraction, leaf area index, soil physical and hydraulic characteristics, stream flow, runoff, and the vertical distribution of soil moisture. Spatial heterogeneity of these parameters makes correct specification problematic since measurements are not routinely available. A technique has been developed for assimilating GOES-IR skin temperature tendencies, solar insolation, and surface albedo into the surface energy budget equation of a mesoscale model so that the simulated rate of temperature change closely agrees with the satellite observations. The technique has been successfully employed in a number of mesoscale models in case-study mode. We have taken the next step and developed a study to determine if assimilating these types of data into mesoscale models in real-time can improve short-term (648h) forecasts of temperature, relative humidity, and QPF on a daily basis over relatively large regions. Therefore, an operational modeling/assimilation system has been developed at the GHCC during the past summer that allows us to produce simulations out to 48 hours in a timely manor. The PSU/NCAR MM5 is used in a nested configuration with a 25 km grid covering the southeastern third of the US. The model has been on-line since 1 July 1998 and forecast products are posted on our web site. The satellite algorithms that generate data to be assimilated came on-line 17 October 1998. Quantitative assessment of the forecast quality is performed via traditional verification statistics. In addition, invaluable qualitative information is obtained through close collaboration with several NWSFO's who are using the MM5 products in real-time on a daily basis. The assimilation technique has been applied in an off-line mode since 17 October. Results based on bulk statistical verification of surface meteorology over the entire Southeastern US show that assimilating the GOES-derived land surface tendencies and solar radiation results in a significant reduction of the shelter air temperature and RH bias on a daily basis. In fact, the assimilation technique has produced improved temperature and RH forecasts for 97% of the 100 simulations performed to date. Work is currently underway to determine the sensitivity of the assimilation procedure to the availability of satellite data, length of assimilation period, model initialization, and synoptic-scale meteorological conditions. In addition, results from a detailed energy budget analysis using the Early Eta, our operational MM5, and the assimilation runs will help us to better understand the satellite assimilation the land-surface energy budge. Research during the spring-summer of 1999 will focus on the impact of the assimilation technique during the warm season where it is hypothesized that it can have a positive impact on QPF during conditions of weak synoptic-scale forcing.
Preliminary Results from an Assimilation of Saharan Dust Using TOMS Radiances and the GOCART Model
NASA Technical Reports Server (NTRS)
Weaver, C. J.; daSilva, Arlindo; Ginoux, Paul; Torres, Omar; Einaudi, Franco (Technical Monitor)
2000-01-01
At NASA Goddard we are developing a global aerosol data assimilation system that combines advances in remote sensing and modeling of atmospheric aerosols. The goal is to provide high resolution, 3-D aerosol distributions to the research community. Our first step is to develop a simple assimilation system for Saharan mineral aerosol. The Goddard Chemistry and Aerosol Radiation model (GOCART) provides accurate 3-D mineral aerosol size distributions. Surface mobilization, wet and dry deposition, convective and long-range transport are all driven by assimilated fields from the Goddard Earth Observing System Data Assimilation System, GEOS-DAS. Our version of GOCART transports sizes from .08-10 microns and only simulates Saharan dust. We draw the assimilation to two observables in this study: the TOMS aerosol index (Al) which is directly related to the ratio of the 340 and 380 radiances and the 380 radiance alone. The forward model that simulates the observables requires the aerosol optical thickness, the single scattering albedo and the height of the aerosol layer from the GOCART fields. The forward model also requires a refractive index for the dust. We test three index values to see which best fits the TOMS observables. These are 1) for Saharan dust reported by Patterson, 2) for a mixture of Saharan dust and a highly reflective material (sea salt or sulfate) and 3) for pure illite. The assimilation works best assuming either pure illite or the dust mixture. Our assimilation cycle first determines values of the aerosol index (Al) and the radiance at 380 nm based on the GOCART aerosol fields. Differences between the observed and GOCART model calculated Al and 380 nm radiance are first analyzed horizontally using the Physical-space Statistical Analysis System (PSAS). A quasi-Newton iteration is then performed to produce analyzed 3D aerosol fields according to parameterized background and observation error covariances. We only assimilate observations into the the GOCART model over regions of Africa and the Atlantic where mineral aerosols are dominant and carbonaceous aerosols are minimal.
Model Uncertainty Quantification Methods In Data Assimilation
NASA Astrophysics Data System (ADS)
Pathiraja, S. D.; Marshall, L. A.; Sharma, A.; Moradkhani, H.
2017-12-01
Data Assimilation involves utilising observations to improve model predictions in a seamless and statistically optimal fashion. Its applications are wide-ranging; from improving weather forecasts to tracking targets such as in the Apollo 11 mission. The use of Data Assimilation methods in high dimensional complex geophysical systems is an active area of research, where there exists many opportunities to enhance existing methodologies. One of the central challenges is in model uncertainty quantification; the outcome of any Data Assimilation study is strongly dependent on the uncertainties assigned to both observations and models. I focus on developing improved model uncertainty quantification methods that are applicable to challenging real world scenarios. These include developing methods for cases where the system states are only partially observed, where there is little prior knowledge of the model errors, and where the model error statistics are likely to be highly non-Gaussian.
SPoRT - An End-to-End R2O Activity
NASA Technical Reports Server (NTRS)
Jedlovec, Gary J.
2009-01-01
Established in 2002 to demonstrate the weather and forecasting application of real-time EOS measurements, the Short-term Prediction Research and Transition (SPoRT) program has grown to be an end-to-end research to operations activity focused on the use of advanced NASA modeling and data assimilation approaches, nowcasting techniques, and unique high-resolution multispectral observational data applications from EOS satellites to improve short-term weather forecasts on a regional and local scale. SPoRT currently partners with several universities and other government agencies for access to real-time data and products, and works collaboratively with them and operational end users at 13 WFOs to develop and test the new products and capabilities in a "test-bed" mode. The test-bed simulates key aspects of the operational environment without putting constraints on the forecaster workload. Products and capabilities which show utility in the test-bed environment are then transitioned experimentally into the operational environment for further evaluation and assessment. SPoRT focuses on a suite of data and products from MODIS, AMSR-E, and AIRS on the NASA Terra and Aqua satellites, and total lightning measurements from ground-based networks. Some of the observations are assimilated into or used with various versions of the WRF model to provide supplemental forecast guidance to operational end users. SPoRT is enhancing partnerships with NOAA / NESDIS for new product development and data access to exploit the remote sensing capabilities of instruments on the NPOESS satellites to address short term weather forecasting problems. The VIIRS and CrIS instruments on the NPP and follow-on NPOESS satellites provide similar observing capabilities to the MODIS and AIRS instruments on Terra and Aqua. SPoRT will be transitioning existing and new capabilities into the AWIIPS II environment to continue the continuity of its activities.
NASA Astrophysics Data System (ADS)
Wang, J.; Xue, Y.; Forman, B. A.; Girotto, M.; Reichle, R. H.
2017-12-01
The Gravity and Recovery Climate Experiment (GRACE) has revolutionized large-scale remote sensing of the Earth's terrestrial hydrologic cycle and has provided an unprecedented observational constraint for global land surface models. However, the coarse-scale (in space and time), vertically-integrated measure of terrestrial water storage (TWS) limits GRACE's applicability to smaller scale hydrologic applications. In order to enhance model-based estimates of TWS while effectively adding resolution (in space and time) to the coarse-scale TWS retrievals, a multi-variate, multi-sensor data assimilation framework is presented here that simultaneously assimilates gravimetric retrievals of TWS in conjunction with passive microwave (PMW) brightness temperature (Tb) observations over snow-covered terrain. The framework uses the NASA Catchment Land Surface Model (Catchment) and an ensemble Kalman filter (EnKF). A synthetic assimilation experiment is presented for the Volga river basin in Russia. The skill of the output from the assimilation of synthetic observations is compared with that of model estimates generated without the benefit of assimilating the synthetic observations. It is shown that the EnKF framework improves modeled estimates of TWS, snow depth, and snow mass (a.k.a. snow water equivalent). The data assimilation routine produces a conditioned (updated) estimate that is more accurate and contains less uncertainty during both the snow accumulation phase of the snow season as well as during the snow ablation season.
NASA Astrophysics Data System (ADS)
Barton, N. P.; Metzger, E. J.; Smedstad, O. M.; Ruston, B. C.; Wallcraft, A. J.; Whitcomb, T.; Ridout, J. A.; Zamudio, L.; Posey, P.; Reynolds, C. A.; Richman, J. G.; Phelps, M.
2017-12-01
The Naval Research Laboratory is developing an Earth System Model (NESM) to provide global environmental information to meet Navy and Department of Defense (DoD) operations and planning needs from the upper atmosphere to under the sea. This system consists of a global atmosphere, ocean, ice, wave, and land prediction models and the individual models include: atmosphere - NAVy Global Environmental Model (NAVGEM); ocean - HYbrid Coordinate Ocean Model (HYCOM); sea ice - Community Ice CodE (CICE); WAVEWATCH III™; and land - NAVGEM Land Surface Model (LSM). Data assimilation is currently loosely coupled between the atmosphere component using a 6-hour update cycle in the Naval Research Laboratory (NRL) Atmospheric Variational Data Assimilation System - Accelerated Representer (NAVDAS-AR) and the ocean/ice components using a 24-hour update cycle in the Navy Coupled Ocean Data Assimilation (NCODA) with 3 hours of incremental updating. This presentation will describe the US Navy's coupled forecast model, the loosely coupled data assimilation, and compare results against stand-alone atmosphere and ocean/ice models. In particular, we will focus on the unique aspects of this modeling system, which includes an eddy resolving ocean model and challenges associated with different update-windows and solvers for the data assimilation in the atmosphere and ocean. Results will focus on typical operational diagnostics for atmosphere, ocean, and ice analyses including 500 hPa atmospheric height anomalies, low-level winds, temperature/salinity ocean depth profiles, ocean acoustical proxies, sea ice edge, and sea ice drift. Overall, the global coupled system is performing with comparable skill to the stand-alone systems.
Data assimialation for real-time prediction and reanalysis
NASA Astrophysics Data System (ADS)
Shprits, Y.; Kellerman, A. C.; Podladchikova, T.; Kondrashov, D. A.; Ghil, M.
2015-12-01
We discuss the how data assimilation can be used for the analysis of individual satellite anomalies, development of long-term evolution reconstruction that can be used for the specification models, and use of data assimilation to improve the now-casting and focusing of the radiation belts. We also discuss advanced data assimilation methods such as parameter estimation and smoothing.The 3D data assimilative VERB allows us to blend together data from GOES, RBSP A and RBSP B. Real-time prediction framework operating on our web site based on GOES, RBSP A, B and ACE data and 3D VERB is presented and discussed. In this paper we present a number of application of the data assimilation with the VERB 3D code. 1) Model with data assimilation allows to propagate data to different pitch angles, energies, and L-shells and blends them together with the physics based VERB code in an optimal way. We illustrate how we use this capability for the analysis of the previous events and for obtaining a global and statistical view of the system. 2) The model predictions strongly depend on initial conditions that are set up for the model. Therefore the model is as good as the initial conditions that it uses. To produce the best possible initial condition data from different sources ( GOES, RBSP A, B, our empirical model predictions based on ACE) are all blended together in an optimal way by means of data assimilation as described above. The resulting initial condition does not have gaps. That allows us to make a more accurate predictions.
NASA Astrophysics Data System (ADS)
Hoar, T. J.; Anderson, J. L.; Collins, N.; Kershaw, H.; Hendricks, J.; Raeder, K.; Mizzi, A. P.; Barré, J.; Gaubert, B.; Madaus, L. E.; Aydogdu, A.; Raeder, J.; Arango, H.; Moore, A. M.; Edwards, C. A.; Curchitser, E. N.; Escudier, R.; Dussin, R.; Bitz, C. M.; Zhang, Y. F.; Shrestha, P.; Rosolem, R.; Rahman, M.
2016-12-01
Strongly-coupled ensemble data assimilation with multiple high-resolution model components requires massive state vectors which need to be efficiently stored and accessed throughout the assimilation process. Supercomputer architectures are tending towards increasing the number of cores per node but have the same or less memory per node. Recent advances in the Data Assimilation Research Testbed (DART), a freely-available community ensemble data assimilation facility that works with dozens of large geophysical models, have addressed the need to run with a smaller memory footprint on a higher node count by utilizing MPI-2 one-sided communication to do non-blocking asynchronous access of distributed data. DART runs efficiently on many computational platforms ranging from laptops through thousands of cores on the newest supercomputers. Benefits of the new DART implementation will be shown. In addition, overviews of the most recently supported models will be presented: CAM-CHEM, WRF-CHEM, CM1, OpenGGCM, FESOM, ROMS, CICE5, TerrSysMP (COSMO, CLM, ParFlow), JULES, and CABLE. DART provides a comprehensive suite of software, documentation, and tutorials that can be used for ensemble data assimilation research, operations, and education. Scientists and software engineers at NCAR are available to support DART users who want to use existing DART products or develop their own applications. Current DART users range from university professors teaching data assimilation, to individual graduate students working with simple models, through national laboratories and state agencies doing operational prediction with large state-of-the-art models.
NASA Technical Reports Server (NTRS)
Troccoli, Alberto; Rienecker, Michele M.; Keppenne, Christian L.; Johnson, Gregory C.
2003-01-01
The NASA Seasonal-to-Interannual Prediction Project (NSIPP) has developed an Ocean data assimilation system to initialize the quasi-isopycnal ocean model used in our experimental coupled-model forecast system. Initial tests of the system have focused on the assimilation of temperature profiles in an optimal interpolation framework. It is now recognized that correction of temperature only often introduces spurious water masses. The resulting density distribution can be statically unstable and also have a detrimental impact on the velocity distribution. Several simple schemes have been developed to try to correct these deficiencies. Here the salinity field is corrected by using a scheme which assumes that the temperature-salinity relationship of the model background is preserved during the assimilation. The scheme was first introduced for a zlevel model by Troccoli and Haines (1999). A large set of subsurface observations of salinity and temperature is used to cross-validate two data assimilation experiments run for the 6-year period 1993-1998. In these two experiments only subsurface temperature observations are used, but in one case the salinity field is also updated whenever temperature observations are available.
A reanalysis of ozone on Mars from assimilation of SPICAM observations
NASA Astrophysics Data System (ADS)
Holmes, James A.; Lewis, Stephen R.; Patel, Manish R.; Lefèvre, Franck
2018-03-01
We have assimilated for the first time SPICAM retrievals of total ozone into a Martian global circulation model to provide a global reanalysis of the ozone cycle. Disagreement in total ozone between model prediction and assimilation is observed between 45°S-10°S from LS = 135-180° and at northern polar (60°N-90°N) latitudes during northern fall (LS = 150-195°). Large percentage differences in total ozone at northern fall polar latitudes identified through the assimilation process are linked with excessive northward transport of water vapour west of Tharsis and over Arabia Terra. Modelling biases in water vapour can also explain the underestimation of total ozone between 45°S-10°S from LS = 135-180°. Heterogeneous uptake of odd hydrogen radicals are unable to explain the outstanding underestimation of northern polar total ozone in late northern fall. Assimilation of total ozone retrievals results in alterations of the modelled spatial distribution of ozone in the southern polar winter high altitude ozone layer. This illustrates the potential use of assimilation methods in constraining total ozone where SPICAM cannot observe, in a region where total ozone is especially important for potential investigations of the polar dynamics.
Assimilation of Spatially Sparse In Situ Soil Moisture Networks into a Continuous Model Domain
NASA Astrophysics Data System (ADS)
Gruber, A.; Crow, W. T.; Dorigo, W. A.
2018-02-01
Growth in the availability of near-real-time soil moisture observations from ground-based networks has spurred interest in the assimilation of these observations into land surface models via a two-dimensional data assimilation system. However, the design of such systems is currently hampered by our ignorance concerning the spatial structure of error afflicting ground and model-based soil moisture estimates. Here we apply newly developed triple collocation techniques to provide the spatial error information required to fully parameterize a two-dimensional (2-D) data assimilation system designed to assimilate spatially sparse observations acquired from existing ground-based soil moisture networks into a spatially continuous Antecedent Precipitation Index (API) model for operational agricultural drought monitoring. Over the contiguous United States (CONUS), the posterior uncertainty of surface soil moisture estimates associated with this 2-D system is compared to that obtained from the 1-D assimilation of remote sensing retrievals to assess the value of ground-based observations to constrain a surface soil moisture analysis. Results demonstrate that a fourfold increase in existing CONUS ground station density is needed for ground network observations to provide a level of skill comparable to that provided by existing satellite-based surface soil moisture retrievals.
NASA Astrophysics Data System (ADS)
Fast, Jerome D.; Osteen, B. Lance
In this study, a four-dimensional data assimilation technique based on Newtonian relaxation is incorporated into the Colorado State University (CSU) Regional Atmospheric Modeling System (RAMS) and evaluated using data taken from one experiment of the US Department of Energy's (DOE) 1991 Atmospheric Studies in COmplex Terrain (ASCOT) field study along the front range of the Rockies in Colorado. The main objective of this study is to determine the ability of the model to predict small-scale circulations influenced by terrain, such as drainage flows, and assess the impact of data assimilation on the numerical results. In contrast to previous studies in which the smallest horizontal grid spacing was 10 km and 8 km, data assimilation is applied in this study to domains with a horizontal grid spacing as small as 1 km. The prognostic forecasts made by RAMS are evaluated by comparing simulations that employ static initial conditions, with simulations that incorporate continuous data assimilation, and data assimilation for a fixed period of time (dynamic initialization). This paper will also elaborate on the application and limitation of the Newtonian relaxation technique in limited-area mesoscale models with a relatively small grid spacing.
Development Of A Data Assimilation Capability For RAPID
NASA Astrophysics Data System (ADS)
Emery, C. M.; David, C. H.; Turmon, M.; Hobbs, J.; Allen, G. H.; Famiglietti, J. S.
2017-12-01
The global decline of in situ observations associated with the increasing ability to monitor surface water from space motivates the creation of data assimilation algorithms that merge computer models and space-based observations to produce consistent estimates of terrestrial hydrology that fill the spatiotemporal gaps in observations. RAPID is a routing model based on the Muskingum method that is capable of estimating river streamflow over large scales with a relatively short computing time. This model only requires limited inputs: a reach-based river network, and lateral surface and subsurface flow into the rivers. The relatively simple model physics imply that RAPID simulations could be significantly improved by including a data assimilation capability. Here we present the early developments of such data assimilation approach into RAPID. Given the linear and matrix-based structure of the model, we chose to apply a direct Kalman filter, hence allowing for the preservation of high computational speed. We correct the simulated streamflows by assimilating streamflow observations and our early results demonstrate the feasibility of the approach. Additionally, the use of in situ gauges at continental scales motivates the application of our new data assimilation scheme to altimetry measurements from existing (e.g. EnviSat, Jason 2) and upcoming satellite missions (e.g. SWOT), and ultimately apply the scheme globally.
NASA Astrophysics Data System (ADS)
Tang, Youhua; Pagowski, Mariusz; Chai, Tianfeng; Pan, Li; Lee, Pius; Baker, Barry; Kumar, Rajesh; Delle Monache, Luca; Tong, Daniel; Kim, Hyun-Cheol
2017-12-01
This study applies the Gridpoint Statistical Interpolation (GSI) 3D-Var assimilation tool originally developed by the National Centers for Environmental Prediction (NCEP), to improve surface PM2.5 predictions over the contiguous United States (CONUS) by assimilating aerosol optical depth (AOD) and surface PM2.5 in version 5.1 of the Community Multi-scale Air Quality (CMAQ) modeling system. An optimal interpolation (OI) method implemented earlier (Tang et al., 2015) for the CMAQ modeling system is also tested for the same period (July 2011) over the same CONUS. Both GSI and OI methods assimilate surface PM2.5 observations at 00:00, 06:00, 12:00 and 18:00 UTC, and MODIS AOD at 18:00 UTC. The assimilations of observations using both GSI and OI generally help reduce the prediction biases and improve correlation between model predictions and observations. In the GSI experiments, assimilation of surface PM2.5 (particle matter with diameter < 2.5 µm) leads to stronger increments in surface PM2.5 compared to its MODIS AOD assimilation at the 550 nm wavelength. In contrast, we find a stronger OI impact of the MODIS AOD on surface aerosols at 18:00 UTC compared to the surface PM2.5 OI method. GSI produces smoother result and yields overall better correlation coefficient and root mean squared error (RMSE). It should be noted that the 3D-Var and OI methods used here have several big differences besides the data assimilation schemes. For instance, the OI uses relatively big model uncertainties, which helps yield smaller mean biases, but sometimes causes the RMSE to increase. We also examine and discuss the sensitivity of the assimilation experiments' results to the AOD forward operators.
NASA Astrophysics Data System (ADS)
Widiastuti, E.; Steele-Dunne, S. C.; Gunter, B.; Weerts, A.; van de Giesen, N.
2009-12-01
Terrestrial water storage (TWS) is a key component of the terrestrial and global hydrological cycles, and plays a major role in the Earth’s climate. The Gravity Recovery and Climate Experiment (GRACE) twin satellite mission provided the first space-based dataset of TWS variations, albeit with coarse resolution and limited accuracy. Here, we examine the value of assimilating GRACE observations into a well-calibrated conceptual hydrology model of the Rhine river basin. In this study, the ensemble Kalman filter (EnKF) and smoother (EnKS) were applied to assimilate the GRACE TWS variation data into the HBV-96 rainfall run-off model, from February 2003 to December 2006. Two GRACE datasets were used, the DMT-1 models produced at TU Delft, and the CSR-RL04 models produced by UT-Austin . Each center uses its own data processing and filtering methods, yielding two different estimates of TWS variations and therefore two sets of assimilated TWS estimates. To validate the results, the model estimated discharge after the data assimilation was compared with measured discharge at several stations. As expected, the updated TWS was generally somewhere between the modeled and observed TWS in both experiments and the variance was also lower than both the prior error covariance and the assumed GRACE observation error. However, the impact on the discharge was found to depend heavily on the assimilation strategy used, in particular on how the TWS increments were applied to the individual storage terms of the hydrology model.
The Met Office Coupled Atmosphere/Land/Ocean/Sea-Ice Data Assimilation System
NASA Astrophysics Data System (ADS)
Lea, Daniel; Mirouze, Isabelle; Martin, Matthew; Hines, Adrian; Guiavarch, Catherine; Shelly, Ann
2014-05-01
The Met Office has developed a weakly-coupled data assimilation (DA) system using the global coupled model HADGEM3 (Hadley Centre Global Environment Model, version 3). This model combines the atmospheric model UM (Unified Model) at 60 km horizontal resolution on 85 vertical levels, the ocean model NEMO (Nucleus for European Modeling of the Ocean) at 25 km (at the equator) horizontal resolution on 75 vertical levels, and the sea-ice model CICE at the same resolution as NEMO. The atmosphere and the ocean/sea-ice fields are coupled every 1-hour using the OASIS coupler. The coupled model is corrected using two separate 6-hour window data assimilation systems: a 4D-Var for the atmosphere with associated soil moisture content nudging and snow analysis schemes on the one hand, and a 3D-Var FGAT for the ocean and sea-ice on the other hand. The background information in the DA systems comes from a previous 6-hour forecast of the coupled model. To show the impact of coupled DA, one-month experiments have been carried out, including 1) a full atmosphere/land/ocean/sea-ice coupled DA run, 2) an atmosphere-only run forced by OSTIA SSTs and sea-ice with atmosphere and land DA, and 3) an ocean-only run forced by atmospheric fields from run 2 with ocean and sea-ice DA. In addition, 5-day forecast runs, started twice a day, have been produced from initial conditions generated by either run 1 or a combination of runs 2 and 3. The different results have been compared to each other and, whenever possible, to other references such as the Met Office atmosphere and ocean operational analyses or the OSTIA data. These all show the coupled DA system functioning well. Evidence of imbalances and initialisation shocks has also been looked for.
Development of WRF-ROI system by incorporating eigen-decomposition
NASA Astrophysics Data System (ADS)
Kim, S.; Noh, N.; Song, H.; Lim, G.
2011-12-01
This study presents the development of WRF-ROI system, which is the implementation of Retrospective Optimal Interpolation (ROI) to the Weather Research and Forecasting model (WRF). ROI is a new data assimilation algorithm introduced by Song et al. (2009) and Song and Lim (2009). The formulation of ROI is similar with that of Optimal Interpolation (OI), but ROI iteratively assimilates an observation set at a post analysis time into a prior analysis, possibly providing the high quality reanalysis data. ROI method assimilates the data at post analysis time using perturbation method (Errico and Raeder, 1999) without adjoint model. In previous study, ROI method is applied to Lorenz 40-variable model (Lorenz, 1996) to validate the algorithm and to investigate the capability. It is therefore required to apply this ROI method into a more realistic and complicated model framework such as WRF. In this research, the reduced-rank formulation of ROI is used instead of a reduced-resolution method. The computational costs can be reduced due to the eigen-decomposition of background error covariance in the reduced-rank method. When single profile of observations is assimilated in the WRF-ROI system by incorporating eigen-decomposition, the analysis error tends to be reduced if compared with the background error. The difference between forecast errors with assimilation and without assimilation is obviously increased as time passed, which means the improvement of forecast error by assimilation.
NASA Astrophysics Data System (ADS)
Kerry, Colette; Powell, Brian; Roughan, Moninya; Oke, Peter
2016-10-01
As with other Western Boundary Currents globally, the East Australian Current (EAC) is highly variable making it a challenge to model and predict. For the EAC region, we combine a high-resolution state-of-the-art numerical ocean model with a variety of traditional and newly available observations using an advanced variational data assimilation scheme. The numerical model is configured using the Regional Ocean Modelling System (ROMS 3.4) and takes boundary forcing from the BlueLink ReANalysis (BRAN3). For the data assimilation, we use an Incremental Strong-Constraint 4-Dimensional Variational (IS4D-Var) scheme, which uses the model dynamics to perturb the initial conditions, atmospheric forcing, and boundary conditions, such that the modelled ocean state better fits and is in balance with the observations. This paper describes the data assimilative model configuration that achieves a significant reduction of the difference between the modelled solution and the observations to give a dynamically consistent "best estimate" of the ocean state over a 2-year period. The reanalysis is shown to represent both assimilated and non-assimilated observations well. It achieves mean spatially averaged root mean squared (rms) residuals with the observations of 7.6 cm for sea surface height (SSH) and 0.4 °C for sea surface temperature (SST) over the assimilation period. The time-mean rms residual for subsurface temperature measured by Argo floats is a maximum of 0.9 °C between water depths of 100 and 300 m and smaller throughout the rest of the water column. Velocities at several offshore and continental shelf moorings are well represented in the reanalysis with complex correlations between 0.8 and 1 for all observations in the upper 500 m. Surface radial velocities from a high-frequency radar array are assimilated and the reanalysis provides surface velocity estimates with complex correlations with observed velocities of 0.8-1 across the radar footprint. A comparison with independent (non-assimilated) shipboard conductivity temperature depth (CTD) cast observations shows a marked improvement in the representation of the subsurface ocean in the reanalysis, with the rms residual in potential density reduced to about half of the residual with the free-running model in the upper eddy-influenced part of the water column. This shows that information is successfully propagated from observed variables to unobserved regions as the assimilation system uses the model dynamics to adjust the model state estimate. This is the first study to generate a reanalysis of the region at such a high resolution, making use of an unprecedented observational data set and using an assimilation method that uses the time-evolving model physics to adjust the model in a dynamically consistent way. As such, the reanalysis potentially represents a marked improvement in our ability to capture important circulation dynamics in the EAC. The reanalysis is being used to study EAC dynamics, observation impact in state-estimation, and as forcing for a variety of downscaling studies.
NASA Astrophysics Data System (ADS)
Hu, Shun; Shi, Liangsheng; Zha, Yuanyuan; Williams, Mathew; Lin, Lin
2017-12-01
Improvements to agricultural water and crop managements require detailed information on crop and soil states, and their evolution. Data assimilation provides an attractive way of obtaining these information by integrating measurements with model in a sequential manner. However, data assimilation for soil-water-atmosphere-plant (SWAP) system is still lack of comprehensive exploration due to a large number of variables and parameters in the system. In this study, simultaneous state-parameter estimation using ensemble Kalman filter (EnKF) was employed to evaluate the data assimilation performance and provide advice on measurement design for SWAP system. The results demonstrated that a proper selection of state vector is critical to effective data assimilation. Especially, updating the development stage was able to avoid the negative effect of ;phenological shift;, which was caused by the contrasted phenological stage in different ensemble members. Simultaneous state-parameter estimation (SSPE) assimilation strategy outperformed updating-state-only (USO) assimilation strategy because of its ability to alleviate the inconsistency between model variables and parameters. However, the performance of SSPE assimilation strategy could deteriorate with an increasing number of uncertain parameters as a result of soil stratification and limited knowledge on crop parameters. In addition to the most easily available surface soil moisture (SSM) and leaf area index (LAI) measurements, deep soil moisture, grain yield or other auxiliary data were required to provide sufficient constraints on parameter estimation and to assure the data assimilation performance. This study provides an insight into the response of soil moisture and grain yield to data assimilation in SWAP system and is helpful for soil moisture movement and crop growth modeling and measurement design in practice.
Assimilating satellite soil moisture into rainfall-runoff modelling: towards a systematic study
NASA Astrophysics Data System (ADS)
Massari, Christian; Tarpanelli, Angelica; Brocca, Luca; Moramarco, Tommaso
2015-04-01
Soil moisture is the main factor for the repartition of the mass and energy fluxes between the land surface and the atmosphere thus playing a fundamental role in the hydrological cycle. Indeed, soil moisture represents the initial condition of rainfall-runoff modelling that determines the flood response of a catchment. Different initial soil moisture conditions can discriminate between catastrophic and minor effects of a given rainfall event. Therefore, improving the estimation of initial soil moisture conditions will reduce uncertainties in early warning flood forecasting models addressing the mitigation of flood hazard. In recent years, satellite soil moisture products have become available with fine spatial-temporal resolution and a good accuracy. Therefore, a number of studies have been published in which the impact of the assimilation of satellite soil moisture data into rainfall-runoff modelling is investigated. Unfortunately, data assimilation involves a series of assumptions and choices that significantly affect the final result. Given a satellite soil moisture observation, a rainfall-runoff model and a data assimilation technique, an improvement or a deterioration of discharge predictions can be obtained depending on the choices made in the data assimilation procedure. Consequently, large discrepancies have been obtained in the studies published so far likely due to the differences in the implementation of the data assimilation technique. On this basis, a comprehensive and robust procedure for the assimilation of satellite soil moisture data into rainfall-runoff modelling is developed here and applied to six subcatchment of the Upper Tiber River Basin for which high-quality hydrometeorological hourly observations are available in the period 1989-2013. The satellite soil moisture product used in this study is obtained from the Advanced SCATterometer (ASCAT) onboard Metop-A satellite and it is available since 2007. The MISDc ("Modello Idrologico SemiDistribuito in continuo") continuous hydrological model is used for flood simulation. The Ensemble Kalman Filter (EnKF) is employed as data assimilation technique for its flexibility and good performance in a number of previous applications. Different components are involved in the developed data assimilation procedure. For the correction of the bias between satellite and modelled soil moisture data three different techniques are considered: mean-variance matching, Cumulative Density Function (CDF) matching and least square linear regression. For properly generating the ensembles of model states, required in the application of EnKF technique, an exhaustive search of the model error parameterization and structure is carried out, differentiated for each study catchments. A number of scores and statistics are employed for the evaluation the reliability of the ensemble. Similarly, different configurations for the observation error are investigated. Results show that for four out six catchments the assimilation of the ASCAT soil moisture product improves discharge simulation in the validation period 2010-2013, mainly during flood events. The two catchments in which the assimilation does not improve the results are located in the mountainous part of the region where both MISDc and satellite data perform worse. The analysis on the data assimilation choices highlights that the selection of the observation error seems to have the largest influence on discharge simulation. Finally, the bias correction approaches have a lower effect and the selection of linear techniques is preferable. The assessment of all the components involved in the data assimilation procedure provides a clear understanding of results and it is advised to follow a similar procedure in this kind of studies.
Data Assimilation Results from PLASMON
NASA Astrophysics Data System (ADS)
Jorgensen, A. M.; Lichtenberger, J.; Duffy, J.; Friedel, R. H.; Clilverd, M.; Heilig, B.; Vellante, M.; Manninen, J. K.; Raita, T.; Rodger, C. J.; Collier, A.; Reda, J.; Holzworth, R. H.; Ober, D. M.; Boudouridis, A.; Zesta, E.; Chi, P. J.
2013-12-01
VLF and magnetometer observations can be used to remotely sense the plasmasphere. VLF whistler waves can be used to measure the electron density and magnetic Field Line Resonance (FLR) measurements can be used to measure the mass density. In principle it is then possible to remotely map the plasmasphere with a network of ground-based stations which are also less expensive and more permanent than satellites. The PLASMON project, funded by the EU FP-7 program, is in the process of doing just this. A large number of ground-based observations will be input into a data assimilative framework which models the plasmasphere structure and dynamics. The data assimilation framework combines the Ensemble Kalman Filter with the Dynamic Global Core Plasma Model. In this presentation we will describe the plasmasphere model, the data assimilation approach that we have taken, PLASMON data and data assimilation results for specific events.
2015-01-01
over data-dense regions. After that, a perfect twin data assimilation experiment framework is designed to study the effect of the GDF on the state...is designed to study the effect of the GDF on the state estimation based on an intermediate coupled model. In this framework, the assimilation model...observation. Considering = , (4) is equal to () = 1 2 + 1 2 ( − ) −1 ( − ) . (5) The effect of in (5) can
Improved Decadal Climate Prediction in the North Atlantic using EnOI-Assimilated Initial Condition
NASA Astrophysics Data System (ADS)
Li, Q.; Xin, X.; Wei, M.; Zhou, W.
2017-12-01
Decadal prediction experiments of Beijing Climate Center climate system model version 1.1(BCC-CSM1.1) participated in Coupled Model Intercomparison Project Phase 5 (CMIP5) had poor skill in extratropics of the North Atlantic, the initialization of which was done by relaxing modeled ocean temperature to the Simple Ocean Data Assimilation (SODA) reanalysis data. This study aims to improve the prediction skill of this model by using the assimilation technique in the initialization. New ocean data are firstly generated by assimilating the sea surface temperature (SST) of the Hadley Centre Sea Ice and Sea Surface Temperature (HadISST) dataset to the ocean model of BCC-CSM1.1 via Ensemble Optimum Interpolation (EnOI). Then a suite of decadal re-forecasts launched annually over the period 1961-2005 is carried out with simulated ocean temperature restored to the assimilated ocean data. Comparisons between the re-forecasts and previous CMIP5 forecasts show that the re-forecasts are more skillful in mid-to-high latitude SST of the North Atlantic. Improved prediction skill is also found for the Atlantic multi-decadal Oscillation (AMO), which is consistent with the better skill of Atlantic meridional overturning circulation (AMOC) predicted by the re-forecasts. We conclude that the EnOI assimilation generates better ocean data than the SODA reanalysis for initializing decadal climate prediction of BCC-CSM1.1 model.
Assimilating uncertain, dynamic and intermittent streamflow observations in hydrological models
NASA Astrophysics Data System (ADS)
Mazzoleni, Maurizio; Alfonso, Leonardo; Chacon-Hurtado, Juan; Solomatine, Dimitri
2015-09-01
Catastrophic floods cause significant socio-economical losses. Non-structural measures, such as real-time flood forecasting, can potentially reduce flood risk. To this end, data assimilation methods have been used to improve flood forecasts by integrating static ground observations, and in some cases also remote sensing observations, within water models. Current hydrologic and hydraulic research works consider assimilation of observations coming from traditional, static sensors. At the same time, low-cost, mobile sensors and mobile communication devices are becoming also increasingly available. The main goal and innovation of this study is to demonstrate the usefulness of assimilating uncertain streamflow observations that are dynamic in space and intermittent in time in the context of two different semi-distributed hydrological model structures. The developed method is applied to the Brue basin, where the dynamic observations are imitated by the synthetic observations of discharge. The results of this study show how model structures and sensors locations affect in different ways the assimilation of streamflow observations. In addition, it proves how assimilation of such uncertain observations from dynamic sensors can provide model improvements similar to those of streamflow observations coming from a non-optimal network of static physical sensors. This can be a potential application of recent efforts to build citizen observatories of water, which can make the citizens an active part in information capturing, evaluation and communication, helping simultaneously to improvement of model-based flood forecasting.
Implementation of a GPS-RO data processing system for the KIAPS-LETKF data assimilation system
NASA Astrophysics Data System (ADS)
Kwon, H.; Kang, J.-S.; Jo, Y.; Kang, J. H.
2014-11-01
The Korea Institute of Atmospheric Prediction Systems (KIAPS) has been developing a new global numerical weather prediction model and an advanced data assimilation system. As part of the KIAPS Package for Observation Processing (KPOP) system for data assimilation, preprocessing and quality control modules for bending angle measurements of global positioning system radio occultation (GPS-RO) data have been implemented and examined. GPS-RO data processing system is composed of several steps for checking observation locations, missing values, physical values for Earth radius of curvature, and geoid undulation. An observation-minus-background check is implemented by use of a one-dimensional observational bending angle operator and tangent point drift is also considered in the quality control process. We have tested GPS-RO observations utilized by the Korean Meteorological Administration (KMA) within KPOP, based on both the KMA global model and the National Center for Atmospheric Research (NCAR) Community Atmosphere Model-Spectral Element (CAM-SE) as a model background. Background fields from the CAM-SE model are incorporated for the preparation of assimilation experiments with the KIAPS-LETKF data assimilation system, which has been successfully implemented to a cubed-sphere model with fully unstructured quadrilateral meshes. As a result of data processing, the bending angle departure statistics between observation and background shows significant improvement. Also, the first experiment in assimilating GPS-RO bending angle resulting from KPOP within KIAPS-LETKF shows encouraging results.
NASA Technical Reports Server (NTRS)
Draper, Clara; Reichle, Rolf; De Lannoy, Gabrielle; Scarino, Benjamin
2015-01-01
In land data assimilation, bias in the observation-minus-forecast (O-F) residuals is typically removed from the observations prior to assimilation by rescaling the observations to have the same long-term mean (and higher-order moments) as the corresponding model forecasts. Such observation rescaling approaches require a long record of observed and forecast estimates, and an assumption that the O-F mean differences are stationary. A two-stage observation bias and state estimation filter is presented, as an alternative to observation rescaling that does not require a long data record or assume stationary O-F mean differences. The two-stage filter removes dynamic (nonstationary) estimates of the seasonal scale O-F mean difference from the assimilated observations, allowing the assimilation to correct the model for synoptic-scale errors without adverse effects from observation biases. The two-stage filter is demonstrated by assimilating geostationary skin temperature (Tsk) observations into the Catchment land surface model. Global maps of the O-F mean differences are presented, and the two-stage filter is evaluated for one year over the Americas. The two-stage filter effectively removed the Tsk O-F mean differences, for example the GOES-West O-F mean difference at 21:00 UTC was reduced from 5.1 K for a bias-blind assimilation to 0.3 K. Compared to independent in situ and remotely sensed Tsk observations, the two-stage assimilation reduced the unbiased Root Mean Square Difference (ubRMSD) of the modeled Tsk by 10 of the open-loop values.
NASA Astrophysics Data System (ADS)
Ling, X.; Fu, C.; Yang, Z. L.; Guo, W.
2017-12-01
Information of the spatial and temporal patterns of leaf area index (LAI) is crucial to understand the exchanges of momentum, carbon, energy, and water between the terrestrial ecosystem and the atmosphere, while both in-situ observation and model simulation usually show distinct deficiency in terms of LAI coverage and value. Land data assimilation, combined with observation and simulation together, is a promising way to provide variable estimation. The Data Assimilation Research Testbed (DART) developed and maintained by the National Centre for Atmospheric Research (NCAR) provides a powerful tool to facilitate the combination of assimilation algorithms, models, and real (as well as synthetic) observations to better understanding of all three. Here we systematically investigated the effects of data assimilation on improving LAI simulation based on NCAR Community Land Model with the prognostic carbon-nitrogen option (CLM4CN) linked with DART using the deterministic Ensemble Adjustment Kalman Filter (EAKF). Random 40-member atmospheric forcing was used to drive the CLM4CN with or without LAI assimilation. The Global Land Surface Satellite LAI data (GLASS LAI) LAI is assimilated into the CLM4CN at a frequency of 8 days, and LAI (and leaf carbon / nitrogen) are adjusted at each time step. The results show that assimilating remotely sensed LAI into the CLM4CN is an effective method for improving model performance. In detail, the CLM4-CN simulated LAI systematically overestimates global LAI, especially in low latitude with the largest bias of 5 m2/m2. While if updating both LAI and leaf carbon and leaf nitrogen simultaneously during assimilation, the analyzed LAI can be corrected, especially in low latitude regions with the bias controlled around ±1 m2/m2. Analyzed LAI could also represent the seasonal variation except for the Southern Temperate (23°S-90°S). The obviously improved regions located in the center of Africa, Amazon, the South of Eurasia, the northeast of China, and the west of Europe, where were mainly covered by evergreen/deciduous forests and mixed forests. In addition, the best method for LAI assimilation should include the EAKF method, the accepted percentage of all observation, as well as the carbon-nitrogen control.
NASA Astrophysics Data System (ADS)
Tian, X.; Xie, Z.; Liu, Y.; Cai, Z.; Fu, Y.; Zhang, H.; Feng, L.
2014-12-01
We have developed a novel framework ("Tan-Tracker") for assimilating observations of atmospheric CO2 concentrations, based on the POD-based (proper orthogonal decomposition) ensemble four-dimensional variational data assimilation method (PODEn4DVar). The high flexibility and the high computational efficiency of the PODEn4DVar approach allow us to include both the atmospheric CO2 concentrations and the surface CO2 fluxes as part of the large state vector to be simultaneously estimated from assimilation of atmospheric CO2 observations. Compared to most modern top-down flux inversion approaches, where only surface fluxes are considered as control variables, one major advantage of our joint data assimilation system is that, in principle, no assumption on perfect transport models is needed. In addition, the possibility for Tan-Tracker to use a complete dynamic model to consistently describe the time evolution of CO2 surface fluxes (CFs) and the atmospheric CO2 concentrations represents a better use of observation information for recycling the analyses at each assimilation step in order to improve the forecasts for the following assimilations. An experimental Tan-Tracker system has been built based on a complete augmented dynamical model, where (1) the surface atmosphere CO2 exchanges are prescribed by using a persistent forecasting model for the scaling factors of the first-guess net CO2 surface fluxes and (2) the atmospheric CO2 transport is simulated by using the GEOS-Chem three-dimensional global chemistry transport model. Observing system simulation experiments (OSSEs) for assimilating synthetic in situ observations of surface CO2 concentrations are carefully designed to evaluate the effectiveness of the Tan-Tracker system. In particular, detailed comparisons are made with its simplified version (referred to as TT-S) with only CFs taken as the prognostic variables. It is found that our Tan-Tracker system is capable of outperforming TT-S with higher assimilation precision for both CO2 concentrations and CO2 fluxes, mainly due to the simultaneous estimation of CO2 concentrations and CFs in our Tan-Tracker data assimilation system. A experiment for assimilating the real dry-air column CO2 retrievals (XCO2) from the Japanese Greenhouse Gases Observation Satellite (GOSAT) further demonstrates its potential wide applications.
Improving Weather Forecasts Through Reduced Precision Data Assimilation
NASA Astrophysics Data System (ADS)
Hatfield, Samuel; Düben, Peter; Palmer, Tim
2017-04-01
We present a new approach for improving the efficiency of data assimilation, by trading numerical precision for computational speed. Future supercomputers will allow a greater choice of precision, so that models can use a level of precision that is commensurate with the model uncertainty. Previous studies have already indicated that the quality of climate and weather forecasts is not significantly degraded when using a precision less than double precision [1,2], but so far these studies have not considered data assimilation. Data assimilation is inherently uncertain due to the use of relatively long assimilation windows, noisy observations and imperfect models. Thus, the larger rounding errors incurred from reducing precision may be within the tolerance of the system. Lower precision arithmetic is cheaper, and so by reducing precision in ensemble data assimilation, we can redistribute computational resources towards, for example, a larger ensemble size. Because larger ensembles provide a better estimate of the underlying distribution and are less reliant on covariance inflation and localisation, lowering precision could actually allow us to improve the accuracy of weather forecasts. We will present results on how lowering numerical precision affects the performance of an ensemble data assimilation system, consisting of the Lorenz '96 toy atmospheric model and the ensemble square root filter. We run the system at half precision (using an emulation tool), and compare the results with simulations at single and double precision. We estimate that half precision assimilation with a larger ensemble can reduce assimilation error by 30%, with respect to double precision assimilation with a smaller ensemble, for no extra computational cost. This results in around half a day extra of skillful weather forecasts, if the error-doubling characteristics of the Lorenz '96 model are mapped to those of the real atmosphere. Additionally, we investigate the sensitivity of these results to observational error and assimilation window length. Half precision hardware will become available very shortly, with the introduction of Nvidia's Pascal GPU architecture and the Intel Knights Mill coprocessor. We hope that the results presented here will encourage the uptake of this hardware. References [1] Peter D. Düben and T. N. Palmer, 2014: Benchmark Tests for Numerical Weather Forecasts on Inexact Hardware, Mon. Weather Rev., 142, 3809-3829 [2] Peter D. Düben, Hugh McNamara and T. N. Palmer, 2014: The use of imprecise processing to improve accuracy in weather & climate prediction, J. Comput. Phys., 271, 2-18
NASA Astrophysics Data System (ADS)
Dietze, M.; Raiho, A.; Fer, I.; Dawson, A.; Heilman, K.; Hooten, M.; McLachlan, J. S.; Moore, D. J.; Paciorek, C. J.; Pederson, N.; Rollinson, C.; Tipton, J.
2017-12-01
The pre-industrial period serves as an essential baseline against which we judge anthropogenic impacts on the earth's systems. However, direct measurements of key biogeochemical processes, such as carbon, water, and nutrient cycling, are absent for this period and there is no direct way to link paleoecological proxies, such as pollen and tree rings, to these processes. Process-based terrestrial ecosystem models provide a way to make inferences about the past, but have large uncertainties and by themselves often fail to capture much of the observed variability. Here we investigate the ability to improve inferences about pre-industrial biogeochemical cycles through the formal assimilation of proxy data into multiple process-based models. A Tobit ensemble filter with explicit estimation of process error was run at five sites across the eastern US for three models (LINKAGES, ED2, LPJ-GUESS). In addition to process error, the ensemble accounted for parameter uncertainty, estimated through the assimilation of the TRY and BETY trait databases, and driver uncertainty, accommodated by probabilistically downscaling and debiasing CMIP5 GCM output then filtering based on paleoclimate reconstructions. The assimilation was informed by four PalEON data products, each of which includes an explicit Bayesian error estimate: (1) STEPPS forest composition estimated from fossil pollen; (2) REFAB aboveground biomass (AGB) estimated from fossil pollen; (3) tree ring AGB and woody net primary productivity (wNPP); and (4) public land survey composition, stem density, and AGB. By comparing ensemble runs with and without data assimilation we are able to assess the information contribution of the proxy data to constraining biogeochemical fluxes, which is driven by the combination of model uncertainty, data uncertainty, and the strength of correlation between observed and unobserved quantities in the model ensemble. To our knowledge this is the first attempt at multi-model data assimilation with terrestrial ecosystem models. Results from the data-model assimilation allow us to assess the consistency across models in post-assimilation inferences about indirectly inferred quantities, such as GPP, soil carbon, and the water budget.
Tropospheric Ozone from Assimilation of Aura Data using Different Definitions of the Tropopause
NASA Technical Reports Server (NTRS)
Stajner, Ivanka; Wargan, K.; Chang, L.-P.; Hayashi, H.; Pawson, S.; Pawson, Steven; Livesey, N.; Bhartia, P. K.
2006-01-01
Ozone data from Aura OMI and MLS instruments were assimilated into the general circulation model (GCM) constrained by assimilated meteorological fields from the Global Modeling and Assimilation Office at NASA Goddard. Properties of tropospheric ozone and their sensitivity to the definition of the tropopause are investigated. Three definitions of the tropopause are considered: (1) dynamical (using potential vorticity and potential temperature), (2) using temperature lapse rate, and (3) using a fixed ozone value. Comparisons of the tropospheric ozone columns using these tropopause definitions will be presented and evaluated against coincident profiles from ozone sondes. Assimilated ozone profiles are used to identify possible tropopause folding events, which are important for stratosphere-troposphere exchange. Each profile is searched for multiple levels at which ozone attains the value typical of the troposphere-stratosphere transition in order to identify possible tropopause folds. Constrained by the dynamics from a global model and by assimilation of Aura ozone data every 3-hours, this data set provides an opportunity to study ozone evolution in the upper troposphere and lower stratosphere with high temporal resolution.
NASA Astrophysics Data System (ADS)
Stauffer, David R.
1990-01-01
The application of dynamic relationships to the analysis problem for the atmosphere is extended to use a full-physics limited-area mesoscale model as the dynamic constraint. A four-dimensional data assimilation (FDDA) scheme based on Newtonian relaxation or "nudging" is developed and evaluated in the Penn State/National Center for Atmospheric Research (PSU/NCAR) mesoscale model, which is used here as a dynamic-analysis tool. The thesis is to determine what assimilation strategies and what meterological fields (mass, wind or both) have the greatest positive impact on the 72-h numerical simulations (dynamic analyses) of two mid-latitude, real-data cases. The basic FDDA methodology is tested in a 10-layer version of the model with a bulk-aerodynamic (single-layer) representation of the planetary boundary layer (PBL), and refined in a 15-layer version of the model by considering the effects of data assimilation within a multi-layer PBL scheme. As designed, the model solution can be relaxed toward either gridded analyses ("analysis nudging"), or toward the actual observations ("obs nudging"). The data used for assimilation include standard 12-hourly rawinsonde data, and also 3-hourly mesoalpha-scale surface data which are applied within the model's multi-layer PBL. Continuous assimilation of standard-resolution rawinsonde data into the 10-layer model successfully reduced large-scale amplitude and phase errors while the model realistically simulated mesoscale structures poorly defined or absent in the rawinsonde analyses and in the model simulations without FDDA. Nudging the model fields directly toward the rawinsonde observations generally produced results comparable to nudging toward gridded analyses. This obs -nudging technique is especially attractive for the assimilation of high-frequency, asynoptic data. Assimilation of 3-hourly surface wind and moisture data into the 15-layer FDDA system was most effective for improving the simulated precipitation fields because a significant portion of the vertically integrated moisture convergence often occurs in the PBL. Overall, the best dynamic analyses for the PBL, mass, wind and precipitation fields were obtained by nudging toward analyses of rawinsonde wind, temperature and moisture (the latter uses a weaker nudging coefficient) above the model PBL and toward analyses of surface-layer wind and moisture within the model PBL.
Assimilation for skin SST in the NASA GEOS atmospheric data assimilation system.
Akella, Santha; Todling, Ricardo; Suarez, Max
2017-01-01
The present article describes the sea surface temperature (SST) developments implemented in the Goddard Earth Observing System, Version 5 (GEOS-5) Atmospheric Data Assimilation System (ADAS). These are enhancements that contribute to the development of an atmosphere-ocean coupled data assimilation system using GEOS. In the current quasi-operational GEOS-ADAS, the SST is a boundary condition prescribed based on the OSTIA product, therefore SST and skin SST (Ts) are identical. This work modifies the GEOS-ADAS Ts by modeling and assimilating near sea surface sensitive satellite infrared (IR) observations. The atmosphere-ocean interface layer of the GEOS atmospheric general circulation model (AGCM) is updated to include near surface diurnal warming and cool-skin effects. The GEOS analysis system is also updated to directly assimilate SST-relevant Advanced Very High Resolution Radiometer (AVHRR) radiance observations. Data assimilation experiments designed to evaluate the Ts modification in GEOS-ADAS show improvements in the assimilation of radiance observations that extends beyond the thermal IR bands of AVHRR. In particular, many channels of hyperspectral sensors, such as those of the Atmospheric Infrared Sounder (AIRS), and Infrared Atmospheric Sounding Interferometer (IASI) are also better assimilated. We also obtained improved fit to withheld, in-situ buoy measurement of near-surface SST. Evaluation of forecast skill scores show marginal to neutral benefit from the modified Ts.
Assimilation for Skin SST in the NASA GEOS Atmospheric Data Assimilation System
NASA Technical Reports Server (NTRS)
Akella, Santha; Todling, Ricardo; Suarez, Max
2017-01-01
The present article describes the sea surface temperature (SST) developments implemented in the Goddard Earth Observing System, Version 5 (GEOS) Atmospheric Data Assimilation System (ADAS). These are enhancements that contribute to the development of an atmosphere-ocean coupled data assimilation system using GEOS. In the current quasi-operational GEOS-ADAS, the SST is a boundary condition prescribed based on the OSTIA product, therefore SST and skin SST (Ts) are identical. This work modifies the GEOS-ADAS Ts by modelling and assimilating near sea surface sensitive satellite infrared (IR) observations. The atmosphere-ocean interface layer of the GEOS atmospheric general circulation model (AGCM) is updated to include near-surface diurnal warming and cool-skin effects. The GEOS analysis system is also updated to directly assimilate SST-relevant Advanced Very High Resolution Radiometer (AVHRR) radiance observations. Data assimilation experiments designed to evaluate the Ts modification in GEOS-ADAS show improvements in the assimilation of radiance observations that extend beyond the thermal infrared bands of AVHRR. In particular, many channels of hyperspectral sensors, such as those of the Atmospheric Infrared Sounder (AIRS), and Infrared Atmospheric Sounding Interferometer (IASI) are also better assimilated. We also obtained improved fit to withheld insitu buoy measurement of near-surface SST. Evaluation of forecast skill scores show neutral to marginal benefit from the modified Ts.
NASA Astrophysics Data System (ADS)
Saynisch, Jan; Semmling, Maximilian; Wickert, Jens; Thomas, Maik
2015-11-01
The Agulhas current system transports warm and salty water masses from the Indian Ocean into the Southern Ocean and into the Atlantic. The transports impact past, present, and future climate on local and global scales. The size and variability, however, of the respective transports are still much debated. In this study, an idealized model based twin experiment is used to study whether sea surface height (SSH) anomalies estimated from reflected signals of the Global Navigation Satellite System reflectometry (GNSS-R) can be used to determine the internal water mass properties and transports of the Agulhas region. A space-borne GNSS-R detector on the International Space Station (ISS) is assumed and simulated. The detector is able to observe daily SSH fields with a spatial resolution of 1-5∘. Depending on reflection geometry, the precision of a single SSH observation is estimated to reach 3 cm (20 cm) when the carrier phase (code delay) information of the reflected GNSS signal is used. The average precision over the Agulhas region is 7 cm (42 cm). The proposed GNSS-R measurements surpass the radar-based satellite altimetry missions in temporal and spatial resolution but are less precise. Using the estimated GNSS-R characteristics, measurements of SSH are generated by sampling a regional nested general circulation model of the South African oceans. The artificial observations are subsequently assimilated with a 4DVAR adjoint data assimilation method into the same ocean model but with a different initial state and forcing. The assimilated and the original, i.e., the sampled model state, are compared to systematically identify improvements and degradations in the model variables that arise due to the assimilation of GNSS-R based SSH observations. We show that SSH and the independent, i.e., not assimilated model variables velocity, temperature, and salinity improve by the assimilation of GNSS-R based SSH observations. After the assimilation of 90 days of SSH observations, improvements in the independent variables cover the whole water column. Locally, up to 39 % of the original model state are recovered. Shorter assimilation windows result in enhanced reproduction of the observed and assimilated SSH but are accompanied by an insufficient or wrong recovery of sub-surface water properties. The assimilation of real GNSS-R observations, when available, and consequently the estimation of Agulhas water mass properties and the leakage of heat and salt into the Atlantic will benefit from this model-based study.
Wang, Wen-Long; Wu, Qian-Yuan; Huang, Nan; Xu, Zi-Bin; Lee, Min-Yong; Hu, Hong-Ying
2018-05-15
UV based advanced oxidation processes (UV-AOPs) that efficiently eliminate organic pollutants during water treatment have been the subject of numerous investigations. Most organic pollutants are not completely mineralized during UV-AOPs but are partially oxidized into transformation products (TPs), thereby adding complexity to the treated water and posing risks to humans, ecological systems, and the environment. While the degradation kinetics and mechanisms of pollutants have been widely documented, there is little information about the risks associated with TPs. In this review, we have collated recent knowledge about the harmful TPs that are generated in UV/H 2 O 2 and UV photocatalysis, two UV-AOPs that have been studied extensively. Toxic and assimilable TPs were ubiquitously observed in more than 80% of UV-AOPs of organic pollutants, of which the toxicity and assimilability levels changed with variations in the reaction conditions, such as the UV fluence and oxidant dosage. Previous studies and modeling assessments showed that toxic and assimilable TPs may be generated during hydroxylation, dealkylation, decarboxylation, and deamination. Among various reactions, TPs generated from dealkylation and decarboxylation were generally less and more toxic than the parent pollutants, respectively; TPs generated from decarboxylation and deamination were generally less and more assimilable than the parent pollutants, respectively. There is also potential concern about the sensory-unpleasant TPs generated by oxidations and subsequent metabolism of microorganisms. In this overview, we stress the need to include both the concentrations of organic pollutants and the evaluations of the risks from TPs for the quality assessments of the water treated by UV-AOPs. Copyright © 2018 Elsevier Ltd. All rights reserved.
Preconditioning of the background error covariance matrix in data assimilation for the Caspian Sea
NASA Astrophysics Data System (ADS)
Arcucci, Rossella; D'Amore, Luisa; Toumi, Ralf
2017-06-01
Data Assimilation (DA) is an uncertainty quantification technique used for improving numerical forecasted results by incorporating observed data into prediction models. As a crucial point into DA models is the ill conditioning of the covariance matrices involved, it is mandatory to introduce, in a DA software, preconditioning methods. Here we present first studies concerning the introduction of two different preconditioning methods in a DA software we are developing (we named S3DVAR) which implements a Scalable Three Dimensional Variational Data Assimilation model for assimilating sea surface temperature (SST) values collected into the Caspian Sea by using the Regional Ocean Modeling System (ROMS) with observations provided by the Group of High resolution sea surface temperature (GHRSST). We also present the algorithmic strategies we employ.
Toward the S3DVAR data assimilation software for the Caspian Sea
NASA Astrophysics Data System (ADS)
Arcucci, Rossella; Celestino, Simone; Toumi, Ralf; Laccetti, Giuliano
2017-07-01
Data Assimilation (DA) is an uncertainty quantification technique used to incorporate observed data into a prediction model in order to improve numerical forecasted results. The forecasting model used for producing oceanographic prediction into the Caspian Sea is the Regional Ocean Modeling System (ROMS). Here we propose the computational issues we are facing in a DA software we are developing (we named S3DVAR) which implements a Scalable Three Dimensional Variational Data Assimilation model for assimilating sea surface temperature (SST) values collected into the Caspian Sea with observations provided by the Group of High resolution sea surface temperature (GHRSST). We present the algorithmic strategies we employ and the numerical issues on data collected in two of the months which present the most significant variability in water temperature: August and March.
NASA Astrophysics Data System (ADS)
Amicarelli, A.; Gariazzo, C.; Finardi, S.; Pelliccioni, A.; Silibello, C.
2008-05-01
Data assimilation techniques are methods to limit the growth of errors in a dynamical model by allowing observations distributed in space and time to force (nudge) model solutions. They have become common for meteorological model applications in recent years, especially to enhance weather forecast and to support air-quality studies. In order to investigate the influence of different data assimilation techniques on the meteorological fields produced by RAMS model, and to evaluate their effects on the ozone and PM10 concentrations predicted by FARM model, several numeric experiments were conducted over the urban area of Rome, Italy, during a summer episode.
Using Sensor Web Processes and Protocols to Assimilate Satellite Data into a Forecast Model
NASA Technical Reports Server (NTRS)
Goodman, H. Michael; Conover, Helen; Zavodsky, Bradley; Maskey, Manil; Jedlovec, Gary; Regner, Kathryn; Li, Xiang; Lu, Jessica; Botts, Mike; Berthiau, Gregoire
2008-01-01
The goal of the Sensor Management Applied Research Technologies (SMART) On-Demand Modeling project is to develop and demonstrate the readiness of the Open Geospatial Consortium (OGC) Sensor Web Enablement (SWE) capabilities to integrate both space-based Earth observations and forecast model output into new data acquisition and assimilation strategies. The project is developing sensor web-enabled processing plans to assimilate Atmospheric Infrared Sounding (AIRS) satellite temperature and moisture retrievals into a regional Weather Research and Forecast (WRF) model over the southeastern United States.
Object schemas for grounding language in a responsive robot
NASA Astrophysics Data System (ADS)
Hsiao, Kai-Yuh; Tellex, Stefanie; Vosoughi, Soroush; Kubat, Rony; Roy, Deb
2008-12-01
An approach is introduced for physically grounded natural language interpretation by robots that reacts appropriately to unanticipated physical changes in the environment and dynamically assimilates new information pertinent to ongoing tasks. At the core of the approach is a model of object schemas that enables a robot to encode beliefs about physical objects in its environment using collections of coupled processes responsible for sensorimotor interaction. These interaction processes run concurrently in order to ensure responsiveness to the environment, while co-ordinating sensorimotor expectations, action planning and language use. The model has been implemented on a robot that manipulates objects on a tabletop in response to verbal input. The implementation responds to verbal requests such as 'Group the green block and the red apple', while adapting in real time to unexpected physical collisions and taking opportunistic advantage of any new information it may receive through perceptual and linguistic channels.
Scalable and balanced dynamic hybrid data assimilation
NASA Astrophysics Data System (ADS)
Kauranne, Tuomo; Amour, Idrissa; Gunia, Martin; Kallio, Kari; Lepistö, Ahti; Koponen, Sampsa
2017-04-01
Scalability of complex weather forecasting suites is dependent on the technical tools available for implementing highly parallel computational kernels, but to an equally large extent also on the dependence patterns between various components of the suite, such as observation processing, data assimilation and the forecast model. Scalability is a particular challenge for 4D variational assimilation methods that necessarily couple the forecast model into the assimilation process and subject this combination to an inherently serial quasi-Newton minimization process. Ensemble based assimilation methods are naturally more parallel, but large models force ensemble sizes to be small and that results in poor assimilation accuracy, somewhat akin to shooting with a shotgun in a million-dimensional space. The Variational Ensemble Kalman Filter (VEnKF) is an ensemble method that can attain the accuracy of 4D variational data assimilation with a small ensemble size. It achieves this by processing a Gaussian approximation of the current error covariance distribution, instead of a set of ensemble members, analogously to the Extended Kalman Filter EKF. Ensemble members are re-sampled every time a new set of observations is processed from a new approximation of that Gaussian distribution which makes VEnKF a dynamic assimilation method. After this a smoothing step is applied that turns VEnKF into a dynamic Variational Ensemble Kalman Smoother VEnKS. In this smoothing step, the same process is iterated with frequent re-sampling of the ensemble but now using past iterations as surrogate observations until the end result is a smooth and balanced model trajectory. In principle, VEnKF could suffer from similar scalability issues as 4D-Var. However, this can be avoided by isolating the forecast model completely from the minimization process by implementing the latter as a wrapper code whose only link to the model is calling for many parallel and totally independent model runs, all of them implemented as parallel model runs themselves. The only bottleneck in the process is the gathering and scattering of initial and final model state snapshots before and after the parallel runs which requires a very efficient and low-latency communication network. However, the volume of data communicated is small and the intervening minimization steps are only 3D-Var, which means their computational load is negligible compared with the fully parallel model runs. We present example results of scalable VEnKF with the 4D lake and shallow sea model COHERENS, assimilating simultaneously continuous in situ measurements in a single point and infrequent satellite images that cover a whole lake, with the fully scalable VEnKF.
NASA Astrophysics Data System (ADS)
Dreano, Denis; Tsiaras, Kostas; Triantafyllou, George; Hoteit, Ibrahim
2017-07-01
Forecasting the state of large marine ecosystems is important for many economic and public health applications. However, advanced three-dimensional (3D) ecosystem models, such as the European Regional Seas Ecosystem Model (ERSEM), are computationally expensive, especially when implemented within an ensemble data assimilation system requiring several parallel integrations. As an alternative to 3D ecological forecasting systems, we propose to implement a set of regional one-dimensional (1D) water-column ecological models that run at a fraction of the computational cost. The 1D model domains are determined using a Gaussian mixture model (GMM)-based clustering method and satellite chlorophyll-a (Chl-a) data. Regionally averaged Chl-a data is assimilated into the 1D models using the singular evolutive interpolated Kalman (SEIK) filter. To laterally exchange information between subregions and improve the forecasting skills, we introduce a new correction step to the assimilation scheme, in which we assimilate a statistical forecast of future Chl-a observations based on information from neighbouring regions. We apply this approach to the Red Sea and show that the assimilative 1D ecological models can forecast surface Chl-a concentration with high accuracy. The statistical assimilation step further improves the forecasting skill by as much as 50%. This general approach of clustering large marine areas and running several interacting 1D ecological models is very flexible. It allows many combinations of clustering, filtering and regression technics to be used and can be applied to build efficient forecasting systems in other large marine ecosystems.
Optimizing spectral wave estimates with adjoint-based sensitivity maps
NASA Astrophysics Data System (ADS)
Orzech, Mark; Veeramony, Jay; Flampouris, Stylianos
2014-04-01
A discrete numerical adjoint has recently been developed for the stochastic wave model SWAN. In the present study, this adjoint code is used to construct spectral sensitivity maps for two nearshore domains. The maps display the correlations of spectral energy levels throughout the domain with the observed energy levels at a selected location or region of interest (LOI/ROI), providing a full spectrum of values at all locations in the domain. We investigate the effectiveness of sensitivity maps based on significant wave height ( H s ) in determining alternate offshore instrument deployment sites when a chosen nearshore location or region is inaccessible. Wave and bathymetry datasets are employed from one shallower, small-scale domain (Duck, NC) and one deeper, larger-scale domain (San Diego, CA). The effects of seasonal changes in wave climate, errors in bathymetry, and multiple assimilation points on sensitivity map shapes and model performance are investigated. Model accuracy is evaluated by comparing spectral statistics as well as with an RMS skill score, which estimates a mean model-data error across all spectral bins. Results indicate that data assimilation from identified high-sensitivity alternate locations consistently improves model performance at nearshore LOIs, while assimilation from low-sensitivity locations results in lesser or no improvement. Use of sub-sampled or alongshore-averaged bathymetry has a domain-specific effect on model performance when assimilating from a high-sensitivity alternate location. When multiple alternate assimilation locations are used from areas of lower sensitivity, model performance may be worse than with a single, high-sensitivity assimilation point.
NASA Astrophysics Data System (ADS)
Pinnington, Ewan; Casella, Eric; Dance, Sarah; Lawless, Amos; Morison, James; Nichols, Nancy; Wilkinson, Matthew; Quaife, Tristan
2016-04-01
Forest ecosystems play an important role in sequestering human emitted carbon-dioxide from the atmosphere and therefore greatly reduce the effect of anthropogenic induced climate change. For that reason understanding their response to climate change is of great importance. Efforts to implement variational data assimilation routines with functional ecology models and land surface models have been limited, with sequential and Markov chain Monte Carlo data assimilation methods being prevalent. When data assimilation has been used with models of carbon balance, background "prior" errors and observation errors have largely been treated as independent and uncorrelated. Correlations between background errors have long been known to be a key aspect of data assimilation in numerical weather prediction. More recently, it has been shown that accounting for correlated observation errors in the assimilation algorithm can considerably improve data assimilation results and forecasts. In this paper we implement a 4D-Var scheme with a simple model of forest carbon balance, for joint parameter and state estimation and assimilate daily observations of Net Ecosystem CO2 Exchange (NEE) taken at the Alice Holt forest CO2 flux site in Hampshire, UK. We then investigate the effect of specifying correlations between parameter and state variables in background error statistics and the effect of specifying correlations in time between observation error statistics. The idea of including these correlations in time is new and has not been previously explored in carbon balance model data assimilation. In data assimilation, background and observation error statistics are often described by the background error covariance matrix and the observation error covariance matrix. We outline novel methods for creating correlated versions of these matrices, using a set of previously postulated dynamical constraints to include correlations in the background error statistics and a Gaussian correlation function to include time correlations in the observation error statistics. The methods used in this paper will allow the inclusion of time correlations between many different observation types in the assimilation algorithm, meaning that previously neglected information can be accounted for. In our experiments we compared the results using our new correlated background and observation error covariance matrices and those using diagonal covariance matrices. We found that using the new correlated matrices reduced the root mean square error in the 14 year forecast of daily NEE by 44 % decreasing from 4.22 g C m-2 day-1 to 2.38 g C m-2 day-1.
NASA Astrophysics Data System (ADS)
Yang, Kun; Chen, Yingying; Qin, Jun; Lu, Hui
2017-04-01
Multi-sphere interactions over the Tibetan Plateau directly impact its surrounding climate and environment at a variety of spatiotemporal scales. Remote sensing and modeling are expected to provide hydro-meteorological data needed for these process studies, but in situ observations are required to support their calibration and validation. For this purpose, we have established two networks on the Tibetan Plateau to measure densely two state variables (soil moisture and temperature) and four soil depths (0 5, 10, 20, and 40 cm). The experimental area is characterized by low biomass, high soil moisture dynamic range, and typical freeze-thaw cycle. As auxiliary parameters of these networks, soil texture and soil organic carbon content are measured at each station to support further studies. In order to guarantee continuous and high-quality data, tremendous efforts have been made to protect the data logger from soil water intrusion, to calibrate soil moisture sensors, and to upscale the point measurements. One soil moisture network is located in a semi-humid area in central Tibetan Plateau (Naqu), which consists of 56 stations with their elevation varying over 4470 4950 m and covers three spatial scales (1.0, 0.3, 0.1 degree). The other is located in a semi-arid area in southern Tibetan Plateau (Pali), which consists of 25 stations and covers an area of 0.25 degree. The spatiotemporal characteristics of the former network were analyzed, and a new spatial upscaling method was developed to obtain the regional mean soil moisture truth from the point measurements. Our networks meet the requirement for evaluating a variety of soil moisture products, developing new algorithms, and analyzing soil moisture scaling. Three applications with the network data are presented in this paper. 1. Evaluation of Current remote sensing and LSM products. The in situ data have been used to evaluate AMSR-E, AMSR2, SMOS and SMAP products and four modeled outputs by the Global Land Data Assimilation System (GLDAS). 2. Development of New Products. We developed a dual-pass land data assimilation system. The essential idea of the system is to calibrate a land data assimilation system before a normal data assimilation. The calibration is based on satellite data rather than in situ data. Through this way, we may alleviate the impact of uncertainties in determining the error covariance of both observation operator and model operation, as it is always tough to determine the covariance. The performance of the data assimilation system is presented through comparison against the Tibetan Plateau soil moisture measuring networks. And the results are encouraging. 3. Estimation of Soil Parameter Values in a Land Surface Model. We explored the possibility to estimate soil parameter values by assimilating AMSR-E brightness temperature (TB) data. In the assimilation system, the TB is simulated by the coupled system of a land surface model (LSM) and a radiative transfer model (RTM), and the simulation errors highly depend on parameters in both the LSM and the RTM. Thus, sensitive soil parameters may be inversely estimated through minimizing the TB errors. The effectiveness of the estimated parameter values is evaluated against intensive measurements of soil parameters and soil moisture in three grasslands of the Tibetan Plateau and the Mongolian Plateau. The results indicate that this satellite data-based approach can improve the data quality of soil porosity, a key parameter for soil moisture modeling, and LSM simulations with the estimated parameter values reasonably reproduce the measured soil moisture. This demonstrates it is feasible to calibrate LSMs for soil moisture simulations at grid scale by assimilating microwave satellite data, although more efforts are expected to improve the robustness of the model calibration.
NASA Astrophysics Data System (ADS)
Le Galloudec, Olivier; Lellouche, Jean-Michel; Greiner, Eric; Garric, Gilles; Régnier, Charly; Drévillon, Marie; Drillet, Yann
2017-04-01
Since May 2015, Mercator Ocean opened the Copernicus Marine Environment and Monitoring Service (CMEMS) and is in charge of the global eddy resolving ocean analyses and forecast. In this context, Mercator Ocean currently delivers in real-time daily services (weekly analyses and daily forecast) with a global 1/12° high resolution system. The model component is the NEMO platform driven at the surface by the IFS ECMWF atmospheric analyses and forecasts. Observations are assimilated by means of a reduced-order Kalman filter with a 3D multivariate modal decomposition of the forecast error. It includes an adaptive-error estimate and a localization algorithm. Along track altimeter data, satellite Sea Surface Temperature and in situ temperature and salinity vertical profiles are jointly assimilated to estimate the initial conditions for numerical ocean forecasting. A 3D-Var scheme provides a correction for the slowly-evolving large-scale biases in temperature and salinity. R&D activities have been conducted at Mercator Ocean these last years to improve the real-time 1/12° global system for recent updated CMEMS version in 2016. The ocean/sea-ice model and the assimilation scheme benefited of the following improvements: large-scale and objective correction of atmospheric quantities with satellite data, new Mean Dynamic Topography taking into account the last version of GOCE geoid, new adaptive tuning of some observational errors, new Quality Control on the assimilated temperature and salinity vertical profiles based on dynamic height criteria, assimilation of satellite sea-ice concentration, new freshwater runoff from ice sheets melting, … This presentation will show the impact of some updates separately, with a particular focus on adaptive tuning experiments of satellite Sea Level Anomaly (SLA) and Sea Surface Temperature (SST) observations errors. For the SLA, the a priori prescribed observation error is globally greatly reduced. The median value of the error changed from 5cm to 2.5cm in a few assimilation cycles. For the SST, we chose to maintain the median value of the error to 0.4°C. The spatial distribution of the SST error follows the model physics and atmospheric variability. Either for SLA or SST, we improve the performances of the system using this adaptive tuning. The overall behavior of the system integrating all updates reporting on the products quality improvements will be also discussed, highlighting the level of performance and the reliability of the new system.
McHenry, John N; Vukovich, Jeffery M; Hsu, N Christina
2015-12-01
This two-part paper reports on the development, implementation, and improvement of a version of the Community Multi-Scale Air Quality (CMAQ) model that assimilates real-time remotely-sensed aerosol optical depth (AOD) information and ground-based PM2.5 monitor data in routine prognostic application. The model is being used by operational air quality forecasters to help guide their daily issuance of state or local-agency-based air quality alerts (e.g. action days, health advisories). Part 1 describes the development and testing of the initial assimilation capability, which was implemented offline in partnership with NASA and the Visibility Improvement State and Tribal Association of the Southeast (VISTAS) Regional Planning Organization (RPO). In the initial effort, MODIS-derived aerosol optical depth (AOD) data are input into a variational data-assimilation scheme using both the traditional Dark Target and relatively new "Deep Blue" retrieval methods. Evaluation of the developmental offline version, reported in Part 1 here, showed sufficient promise to implement the capability within the online, prognostic operational model described in Part 2. In Part 2, the addition of real-time surface PM2.5 monitoring data to improve the assimilation and an initial evaluation of the prognostic modeling system across the continental United States (CONUS) is presented. Air quality forecasts are now routinely used to understand when air pollution may reach unhealthy levels. For the first time, an operational air quality forecast model that includes the assimilation of remotely-sensed aerosol optical depth and ground based PM2.5 observations is being used. The assimilation enables quantifiable improvements in model forecast skill, which improves confidence in the accuracy of the officially-issued forecasts. This helps air quality stakeholders be more effective in taking mitigating actions (reducing power consumption, ride-sharing, etc.) and avoiding exposures that could otherwise result in more serious air quality episodes or more deleterious health effects.
NASA Astrophysics Data System (ADS)
Fontana, C.; Brasseur, P.; Brankart, J.-M.
2012-04-01
Today, the routine assimilation of satellite data into operational models of the ocean circulation is mature enough to enable the production of global reanalyses describing the ocean circulation variability during the past decades. The expansion of the "reanalysis" concept from ocean physics to biogeochemistry is a timely challenge that motivates the present study. The objective of this paper is to investigate the potential benefits of assimilating satellite-estimated chlorophyll data into a basin-scale three-dimensional coupled physical-biogeochemical model of the North-Atlantic. The aim is on one hand to improve forecasts of ocean biogeochemical properties and on the other hand to define a methodology for producing data-driven climatologies based on coupled physical-biogeochemical modelling. A simplified variant of the Kalman filter is used to assimilate ocean color data during a 9 year-long period. In this frame, two experiences are carried out, with and without anamorphic transformations of the state vector variables. Data assimilation efficiency is assessed with respect to the assimilated data set, the nitrate World Ocean Atlas database and a derived climatology. Along the simulation period, the non-linear assimilation scheme clearly improves the surface chlorophyll concentrations analysis and forecast, especially in the North Atlantic bloom region. Nitrate concentration forecasts are also improved thanks to the assimilation of ocean color data while this improvement is limited to the upper layer of the water column, in agreement with recent related litterature. This feature is explained by the weak correlation taken into account by the assimilation between surface phytoplankton and nitrate concentration deeper than 50 m. The assessement of the non-linear assimilation experiments indicates that the proposed methodology provides the skeleton of an assimilative system suitable for reanalysing the ocean biogeochemistry based on ocean color data.
NASA Astrophysics Data System (ADS)
Fontana, C.; Brasseur, P.; Brankart, J.-M.
2013-01-01
Today, the routine assimilation of satellite data into operational models of ocean circulation is mature enough to enable the production of global reanalyses describing the ocean circulation variability during the past decades. The expansion of the "reanalysis" concept from ocean physics to biogeochemistry is a timely challenge that motivates the present study. The objective of this paper is to investigate the potential benefits of assimilating satellite-estimated chlorophyll data into a basin-scale three-dimensional coupled physical-biogeochemical model of the North Atlantic. The aim is on the one hand to improve forecasts of ocean biogeochemical properties and on the other hand to define a methodology for producing data-driven climatologies based on coupled physical-biogeochemical modeling. A simplified variant of the Kalman filter is used to assimilate ocean color data during a 9-year period. In this frame, two experiments are carried out, with and without anamorphic transformations of the state vector variables. Data assimilation efficiency is assessed with respect to the assimilated data set, nitrate of the World Ocean Atlas database and a derived climatology. Along the simulation period, the non-linear assimilation scheme clearly improves the surface analysis and forecast chlorophyll concentrations, especially in the North Atlantic bloom region. Nitrate concentration forecasts are also improved thanks to the assimilation of ocean color data while this improvement is limited to the upper layer of the water column, in agreement with recent related literature. This feature is explained by the weak correlation taken into account by the assimilation between surface phytoplankton and nitrate concentrations deeper than 50 meters. The assessment of the non-linear assimilation experiments indicates that the proposed methodology provides the skeleton of an assimilative system suitable for reanalyzing the ocean biogeochemistry based on ocean color data.
CDEP Consortium on Ocean Data Assimilation for Seasonal-to-Interannual Prediction (ODASI)
NASA Technical Reports Server (NTRS)
Rienecker, Michele; Zebiak, Stephen; Kinter, James; Behringer, David; Rosati, Antonio; Kaplan, Alexey
2005-01-01
The ODASI consortium is focused activity of the NOAA/OGP/Climate Diagnostics and Experimental Prediction Program with the goal of improving ocean data assimilation methods and their implementations in support of seasonal forecasts with coupled general circulation models. The consortium is undertaking coordinated assimilation experiments, with common forcing data sets and common input data streams. With different assimilation systems and different models, we aim to understand what approach works best in improving forecast skill in the equatorial Pacific. The presentation will provide an overview of the consortium goals and plans and recent results focused towards evaluating data impacts.
NASA Astrophysics Data System (ADS)
Arellano, A. F., Jr.; Tang, W.
2017-12-01
Assimilating observational data of chemical constituents into a modeling system is a powerful approach in assessing changes in atmospheric composition and estimating associated emissions. However, the results of such chemical data assimilation (DA) experiments are largely subject to various key factors such as: a) a priori information, b) error specification and representation, and c) structural biases in the modeling system. Here we investigate the sensitivity of an ensemble-based data assimilation state and emission estimates to these key factors. We focus on investigating the assimilation performance of the Community Earth System Model (CESM)/CAM-Chem with the Data Assimilation Research Testbed (DART) in representing biomass burning plumes in the Amazonia during the 2008 fire season. We conduct the following ensemble DA MOPITT CO experiments: 1) use of monthly-average NCAR's FINN surface fire emissionss, 2) use of daily FINN surface fire emissions, 3) use of daily FINN emissions with climatological injection heights, and 4) use of perturbed FINN emission parameters to represent not only the uncertainties in combustion activity but also in combustion efficiency. We show key diagnostics of assimilation performance for these experiments and verify with available ground-based and aircraft-based measurements.
Multi-scale assimilation of remotely sensed snow observations for hydrologic estimation
NASA Astrophysics Data System (ADS)
Andreadis, K.; Lettenmaier, D.
2008-12-01
Data assimilation provides a framework for optimally merging model predictions and remote sensing observations of snow properties (snow cover extent, water equivalent, grain size, melt state), ideally overcoming limitations of both. A synthetic twin experiment is used to evaluate a data assimilation system that would ingest remotely sensed observations from passive microwave and visible wavelength sensors (brightness temperature and snow cover extent derived products, respectively) with the objective of estimating snow water equivalent. Two data assimilation techniques are used, the Ensemble Kalman filter and the Ensemble Multiscale Kalman filter (EnMKF). One of the challenges inherent in such a data assimilation system is the discrepancy in spatial scales between the different types of snow-related observations. The EnMKF represents the sample model error covariance with a tree that relates the system state variables at different locations and scales through a set of parent-child relationships. This provides an attractive framework to efficiently assimilate observations at different spatial scales. This study provides a first assessment of the feasibility of a system that would assimilate observations from multiple sensors (MODIS snow cover and AMSR-E brightness temperatures) and at different spatial scales for snow water equivalent estimation. The relative value of the different types of observations is examined. Additionally, the error characteristics of both model and observations are discussed.
NASA Technical Reports Server (NTRS)
Seinfeld, J. H. (Principal Investigator)
1982-01-01
The problem of the assimilation of remote sensing data into mathematical models of atmospheric pollutant species was investigated. The data assimilation problem is posed in terms of the matching of spatially integrated species burden measurements to the predicted three-dimensional concentration fields from atmospheric diffusion models. General conditions were derived for the reconstructability of atmospheric concentration distributions from data typical of remote sensing applications, and a computational algorithm (filter) for the processing of remote sensing data was developed.
Fundamentals of Modeling, Data Assimilation, and High-performance Computing
NASA Technical Reports Server (NTRS)
Rood, Richard B.
2005-01-01
This lecture will introduce the concepts of modeling, data assimilation and high- performance computing as it relates to the study of atmospheric composition. The lecture will work from basic definitions and will strive to provide a framework for thinking about development and application of models and data assimilation systems. It will not provide technical or algorithmic information, leaving that to textbooks, technical reports, and ultimately scientific journals. References to a number of textbooks and papers will be provided as a gateway to the literature.
Building an environment model using depth information
NASA Technical Reports Server (NTRS)
Roth-Tabak, Y.; Jain, Ramesh
1989-01-01
Modeling the environment is one of the most crucial issues for the development and research of autonomous robot and tele-perception. Though the physical robot operates (navigates and performs various tasks) in the real world, any type of reasoning, such as situation assessment, planning or reasoning about action, is performed based on information in its internal world. Hence, the robot's intentional actions are inherently constrained by the models it has. These models may serve as interfaces between sensing modules and reasoning modules, or in the case of telerobots serve as interface between the human operator and the distant robot. A robot operating in a known restricted environment may have a priori knowledge of its whole possible work domain, which will be assimilated in its World Model. As the information in the World Model is relatively fixed, an Environment Model must be introduced to cope with the changes in the environment and to allow exploring entirely new domains. Introduced here is an algorithm that uses dense range data collected at various positions in the environment to refine and update or generate a 3-D volumetric model of an environment. The model, which is intended for autonomous robot navigation and tele-perception, consists of cubic voxels with the possible attributes: Void, Full, and Unknown. Experimental results from simulations of range data in synthetic environments are given. The quality of the results show great promise for dealing with noisy input data. The performance measures for the algorithm are defined, and quantitative results for noisy data and positional uncertainty are presented.
NASA Astrophysics Data System (ADS)
Pan, M.; Wood, E. F.
2004-05-01
This study explores a method to estimate various components of the water cycle (ET, runoff, land storage, etc.) based on a number of different info sources, including both observations and observation-enhanced model simulations. Different from existing data assimilations, this constrained Kalman filtering approach keeps the water budget perfectly closed while updating the states of the underlying model (VIC model) optimally using observations. Assimilating different data sources in this way has several advantages: (1) physical model is included to make estimation time series smooth, missing-free, and more physically consistent; (2) uncertainties in the model and observations are properly addressed; (3) model is constrained by observation thus to reduce model biases; (4) balance of water is always preserved along the assimilation. Experiments are carried out in Southern Great Plain region where necessary observations have been collected. This method may also be implemented in other applications with physical constraints (e.g. energy cycles) and at different scales.
The SMAP Level-4 ECO Project: Linking the Terrestrial Water and Carbon Cycles
NASA Technical Reports Server (NTRS)
Kolassa, J.; Reichle, R. H.; Liu, Qing; Koster, Randal D.
2017-01-01
The SMAP (Soil Moisture Active Passive) Level-4 projects aims to develop a fully coupled hydrology-vegetation data assimilation algorithm to generate improved estimates of modeled hydrological fields and carbon fluxes. This includes using the new NASA Catchment-CN (Catchment-Carbon-Nitrogen) model, which combines the Catchment land surface hydrology model with dynamic vegetation components from the Community Land Model version 4 (CLM4). As such, Catchment-CN allows a more realistic, fully coupled feedback between the land hydrology and the biosphere. The L4 ECO project further aims to inform the model through the assimilation of Soil Moisture Active Passive (SMAP) brightness temperature observations as well as observations of Moderate Resolution Imaging Spectroradiometer (MODIS) fraction of absorbed photosynthetically active radiation (FPAR). Preliminary results show that the assimilation of SMAP observations leads to consistent improvements in the model soil moisture skill. An evaluation of the Catchment-CN modeled vegetation characteristics showed that a calibration of the model's vegetation parameters is required before an assimilation of MODIS FPAR observations is feasible.
Ensemble-Based Parameter Estimation in a Coupled General Circulation Model
Liu, Y.; Liu, Z.; Zhang, S.; ...
2014-09-10
Parameter estimation provides a potentially powerful approach to reduce model bias for complex climate models. Here, in a twin experiment framework, the authors perform the first parameter estimation in a fully coupled ocean–atmosphere general circulation model using an ensemble coupled data assimilation system facilitated with parameter estimation. The authors first perform single-parameter estimation and then multiple-parameter estimation. In the case of the single-parameter estimation, the error of the parameter [solar penetration depth (SPD)] is reduced by over 90% after ~40 years of assimilation of the conventional observations of monthly sea surface temperature (SST) and salinity (SSS). The results of multiple-parametermore » estimation are less reliable than those of single-parameter estimation when only the monthly SST and SSS are assimilated. Assimilating additional observations of atmospheric data of temperature and wind improves the reliability of multiple-parameter estimation. The errors of the parameters are reduced by 90% in ~8 years of assimilation. Finally, the improved parameters also improve the model climatology. With the optimized parameters, the bias of the climatology of SST is reduced by ~90%. Altogether, this study suggests the feasibility of ensemble-based parameter estimation in a fully coupled general circulation model.« less
NASA Technical Reports Server (NTRS)
Kozlowski, Danielle; Zavodsky, Bradley T.; Jedlovec, Gary J.
2011-01-01
The Short-term Prediction Research and Transition Center (SPoRT) is a collaborative partnership between NASA and operational forecasting partners, including a number of National Weather Service (NWS) Weather Forecasting Offices (WFO). As a part of the transition to operations process, SPoRT attempts to identify possible limitations in satellite observations and provide operational forecasters a product that will result in the most impact on their forecasts. One operational forecast challenge that some NWS offices face, is forecasting convection in data-void regions such as large bodies of water. The Atmospheric Infrared Sounder (AIRS) is a sounding instrument aboard NASA's Aqua satellite that provides temperature and moisture profiles of the atmosphere. This paper will demonstrate an approach to assimilate AIRS profile data into a regional configuration of the WRF model using its three-dimensional variational (3DVAR) assimilation component to be used as a proxy for the individual profiles.
NASA Technical Reports Server (NTRS)
Pi, Xiaoqing; Mannucci, Anthony J.; Verkhoglyadova, Olga P.; Stephens, Philip; Wilson, Brian D.; Akopian, Vardan; Komjathy, Attila; Lijima, Byron A.
2013-01-01
ISOGAME is designed and developed to assess quantitatively the impact of new observation systems on the capability of imaging and modeling the ionosphere. With ISOGAME, one can perform observation system simulation experiments (OSSEs). A typical OSSE using ISOGAME would involve: (1) simulating various ionospheric conditions on global scales; (2) simulating ionospheric measurements made from a constellation of low-Earth-orbiters (LEOs), particularly Global Navigation Satellite System (GNSS) radio occultation data, and from ground-based global GNSS networks; (3) conducting ionospheric data assimilation experiments with the Global Assimilative Ionospheric Model (GAIM); and (4) analyzing modeling results with visualization tools. ISOGAME can provide quantitative assessment of the accuracy of assimilative modeling with the interested observation system. Other observation systems besides those based on GNSS are also possible to analyze. The system is composed of a suite of software that combines the GAIM, including a 4D first-principles ionospheric model and data assimilation modules, an Internal Reference Ionosphere (IRI) model that has been developed by international ionospheric research communities, observation simulator, visualization software, and orbit design, simulation, and optimization software. The core GAIM model used in ISOGAME is based on the GAIM++ code (written in C++) that includes a new high-fidelity geomagnetic field representation (multi-dipole). New visualization tools and analysis algorithms for the OSSEs are now part of ISOGAME.
USDA-ARS?s Scientific Manuscript database
To evaluate the response of CO2 assimilation (PN) and various chlorophyll fluorescence (CF) parameters to phosphorus (P) nutrition soybean plants were grown in controlled environment growth chambers with sufficient (0.50 mM) and deficient (0.10 and 0.01 mM) P supply under ambient and elevated CO2 (a...
Ensemble streamflow assimilation with the National Water Model.
NASA Astrophysics Data System (ADS)
Rafieeinasab, A.; McCreight, J. L.; Noh, S.; Seo, D. J.; Gochis, D.
2017-12-01
Through case studies of flooding across the US, we compare the performance of the National Water Model (NWM) data assimilation (DA) scheme to that of a newly implemented ensemble Kalman filter approach. The NOAA National Water Model (NWM) is an operational implementation of the community WRF-Hydro modeling system. As of August 2016, the NWM forecasts of distributed hydrologic states and fluxes (including soil moisture, snowpack, ET, and ponded water) over the contiguous United States have been publicly disseminated by the National Center for Environmental Prediction (NCEP) . It also provides streamflow forecasts at more than 2.7 million river reaches up to 30 days in advance. The NWM employs a nudging scheme to assimilate more than 6,000 USGS streamflow observations and provide initial conditions for its forecasts. A problem with nudging is how the forecasts relax quickly to open-loop bias in the forecast. This has been partially addressed by an experimental bias correction approach which was found to have issues with phase errors during flooding events. In this work, we present an ensemble streamflow data assimilation approach combining new channel-only capabilities of the NWM and HydroDART (a coupling of the offline WRF-Hydro model and NCAR's Data Assimilation Research Testbed; DART). Our approach focuses on the single model state of discharge and incorporates error distributions on channel-influxes (overland and groundwater) in the assimilation via an ensemble Kalman filter (EnKF). In order to avoid filter degeneracy associated with a limited number of ensemble at large scale, DART's covariance inflation (Anderson, 2009) and localization capabilities are implemented and evaluated. The current NWM data assimilation scheme is compared to preliminary results from the EnKF application for several flooding case studies across the US.
NASA Astrophysics Data System (ADS)
Hartzell, S. R.; Bartlett, M. S., Jr.; Porporato, A. M.
2017-12-01
The ability to depict all three photosynthetic types (C3, C4, and CAM) has important implications for the study of both natural and agroecosystems. Currently no model exists which covers all types of photosynthesis in a consistent way and which can be fully integrated with environmental conditions. This is partially because, despite the fact that Crassulacean acid metabolism (CAM) photosynthesis is prevalent in many plants in arid and semi-arid ecosystems, where it may comprise nearly 50% of all plant biomass, CAM modelling remains understudied. The Photo-3 model takes advantage of recent advances in mechanistic modeling of CAM photosynthesis to provide a direct comparison of CAM functioning with C3 and C4 functioning under a wide range of soil and atmospheric conditions. The model is based on a core Farquhar photosynthetic model with additional functions to represent the spatial and temporal separations of carbon uptake and assimilation in the case of C4 and CAM photosynthesis. We have parameterized the model for one representative species of each photosynthetic type: Opuntia ficus-indica (CAM), Sorghum bicolor (C4), and Triticum aestivum (C3). Results agree well with experimental data on carbon assimilation and water use for the three species. Model runs using climate data from Temple, TX; Sicily, Italy; Zacatecas, Mexico; Pernambuco, Brazil and Adias Ababa, Ethiopia illustrate the high water use efficiency of CAM plants and its cumulative effects on long-term productivity in water-limited environments. The Photo-3 model, which is written in Python, will be made publicly available on GitHub and its outputs may be coupled to existing models of plant growth and phenology. The model may be used to evaluate potential productivity and water use for C3, C4, and CAM plants, and to devise optimal strategies for cropping systems and irrigation in water-limited environments.
NASA Astrophysics Data System (ADS)
Yan, Yajing; Barth, Alexander; Beckers, Jean-Marie; Candille, Guillem; Brankart, Jean-Michel; Brasseur, Pierre
2016-04-01
In this paper, four assimilation schemes, including an intermittent assimilation scheme (INT) and three incremental assimilation schemes (IAU 0, IAU 50 and IAU 100), are compared in the same assimilation experiments with a realistic eddy permitting primitive equation model of the North Atlantic Ocean using the Ensemble Kalman Filter. The three IAU schemes differ from each other in the position of the increment update window that has the same size as the assimilation window. 0, 50 and 100 correspond to the degree of superposition of the increment update window on the current assimilation window. Sea surface height, sea surface temperature, and temperature profiles at depth collected between January and December 2005 are assimilated. Sixty ensemble members are generated by adding realistic noise to the forcing parameters related to the temperature. The ensemble is diagnosed and validated by comparison between the ensemble spread and the model/observation difference, as well as by rank histogram before the assimilation experiments The relevance of each assimilation scheme is evaluated through analyses on thermohaline variables and the current velocities. The results of the assimilation are assessed according to both deterministic and probabilistic metrics with independent/semi-independent observations. For deterministic validation, the ensemble means, together with the ensemble spreads are compared to the observations, in order to diagnose the ensemble distribution properties in a deterministic way. For probabilistic validation, the continuous ranked probability score (CRPS) is used to evaluate the ensemble forecast system according to reliability and resolution. The reliability is further decomposed into bias and dispersion by the reduced centered random variable (RCRV) score in order to investigate the reliability properties of the ensemble forecast system.
NASA Astrophysics Data System (ADS)
Noh, S. J.; Tachikawa, Y.; Shiiba, M.; Yorozu, K.; Kim, S.
2012-04-01
Data assimilation methods have received increased attention to accomplish uncertainty assessment and enhancement of forecasting capability in various areas. Despite of their potentials, applicable software frameworks to probabilistic approaches and data assimilation are still limited because the most of hydrologic modeling software are based on a deterministic approach. In this study, we developed a hydrological modeling framework for sequential data assimilation, so called MPI-OHyMoS. MPI-OHyMoS allows user to develop his/her own element models and to easily build a total simulation system model for hydrological simulations. Unlike process-based modeling framework, this software framework benefits from its object-oriented feature to flexibly represent hydrological processes without any change of the main library. Sequential data assimilation based on the particle filters is available for any hydrologic models based on MPI-OHyMoS considering various sources of uncertainty originated from input forcing, parameters and observations. The particle filters are a Bayesian learning process in which the propagation of all uncertainties is carried out by a suitable selection of randomly generated particles without any assumptions about the nature of the distributions. In MPI-OHyMoS, ensemble simulations are parallelized, which can take advantage of high performance computing (HPC) system. We applied this software framework for short-term streamflow forecasting of several catchments in Japan using a distributed hydrologic model. Uncertainty of model parameters and remotely-sensed rainfall data such as X-band or C-band radar is estimated and mitigated in the sequential data assimilation.
Skin Temperature Analysis and Bias Correction in a Coupled Land-Atmosphere Data Assimilation System
NASA Technical Reports Server (NTRS)
Bosilovich, Michael G.; Radakovich, Jon D.; daSilva, Arlindo; Todling, Ricardo; Verter, Frances
2006-01-01
In an initial investigation, remotely sensed surface temperature is assimilated into a coupled atmosphere/land global data assimilation system, with explicit accounting for biases in the model state. In this scheme, an incremental bias correction term is introduced in the model's surface energy budget. In its simplest form, the algorithm estimates and corrects a constant time mean bias for each gridpoint; additional benefits are attained with a refined version of the algorithm which allows for a correction of the mean diurnal cycle. The method is validated against the assimilated observations, as well as independent near-surface air temperature observations. In many regions, not accounting for the diurnal cycle of bias caused degradation of the diurnal amplitude of background model air temperature. Energy fluxes collected through the Coordinated Enhanced Observing Period (CEOP) are used to more closely inspect the surface energy budget. In general, sensible heat flux is improved with the surface temperature assimilation, and two stations show a reduction of bias by as much as 30 Wm(sup -2) Rondonia station in Amazonia, the Bowen ratio changes direction in an improvement related to the temperature assimilation. However, at many stations the monthly latent heat flux bias is slightly increased. These results show the impact of univariate assimilation of surface temperature observations on the surface energy budget, and suggest the need for multivariate land data assimilation. The results also show the need for independent validation data, especially flux stations in varied climate regimes.
Spectral characteristics of background error covariance and multiscale data assimilation
Li, Zhijin; Cheng, Xiaoping; Gustafson, Jr., William I.; ...
2016-05-17
The steady increase of the spatial resolutions of numerical atmospheric and oceanic circulation models has occurred over the past decades. Horizontal grid spacing down to the order of 1 km is now often used to resolve cloud systems in the atmosphere and sub-mesoscale circulation systems in the ocean. These fine resolution models encompass a wide range of temporal and spatial scales, across which dynamical and statistical properties vary. In particular, dynamic flow systems at small scales can be spatially localized and temporarily intermittent. Difficulties of current data assimilation algorithms for such fine resolution models are numerically and theoretically examined. Ourmore » analysis shows that the background error correlation length scale is larger than 75 km for streamfunctions and is larger than 25 km for water vapor mixing ratios, even for a 2-km resolution model. A theoretical analysis suggests that such correlation length scales prevent the currently used data assimilation schemes from constraining spatial scales smaller than 150 km for streamfunctions and 50 km for water vapor mixing ratios. Moreover, our results highlight the need to fundamentally modify currently used data assimilation algorithms for assimilating high-resolution observations into the aforementioned fine resolution models. Lastly, within the framework of four-dimensional variational data assimilation, a multiscale methodology based on scale decomposition is suggested and challenges are discussed.« less
Assimilation of Ocean-Color Plankton Functional Types to Improve Marine Ecosystem Simulations
NASA Astrophysics Data System (ADS)
Ciavatta, S.; Brewin, R. J. W.; Skákala, J.; Polimene, L.; de Mora, L.; Artioli, Y.; Allen, J. I.
2018-02-01
We assimilated phytoplankton functional types (PFTs) derived from ocean color into a marine ecosystem model, to improve the simulation of biogeochemical indicators and emerging properties in a shelf sea. Error-characterized chlorophyll concentrations of four PFTs (diatoms, dinoflagellates, nanoplankton, and picoplankton), as well as total chlorophyll for comparison, were assimilated into a physical-biogeochemical model of the North East Atlantic, applying a localized Ensemble Kalman filter. The reanalysis simulations spanned the years 1998-2003. The skill of the reference and reanalysis simulations in estimating ocean color and in situ biogeochemical data were compared by using robust statistics. The reanalysis outperformed both the reference and the assimilation of total chlorophyll in estimating the ocean-color PFTs (except nanoplankton), as well as the not-assimilated total chlorophyll, leading the model to simulate better the plankton community structure. Crucially, the reanalysis improved the estimates of not-assimilated in situ data of PFTs, as well as of phosphate and pCO2, impacting the simulation of the air-sea carbon flux. However, the reanalysis increased further the model overestimation of nitrate, in spite of increases in plankton nitrate uptake. The method proposed here is easily adaptable for use with other ecosystem models that simulate PFTs, for, e.g., reanalysis of carbon fluxes in the global ocean and for operational forecasts of biogeochemical indicators in shelf-sea ecosystems.
Recent Advances in Ionospheric Modeling Using the USU GAIM Data Assimilation Models
NASA Astrophysics Data System (ADS)
Scherliess, L.; Thompson, D. C.; Schunk, R. W.
2009-12-01
The ionospheric plasma distribution at low and mid latitudes has been shown to display both a background state (climatology) and a disturbed state (weather). Ionospheric climatology has been successfully modeled, but ionospheric weather has been much more difficult to model because the ionosphere can vary significantly on an hour-by-hour basis. Unfortunately, ionospheric weather can have detrimental effects on several human activities and systems, including high-frequency communications, over-the-horizon radars, and survey and navigation systems using Global Positioning System (GPS) satellites. As shown by meteorologists and oceanographers, the most reliable weather models are physics-based, data-driven models that use Kalman filter or other data assimilation techniques. Since the state of a medium (ocean, lower atmosphere, ionosphere) is driven by complex and frequently nonlinear internal and external processes, it is not possible to accurately specify all of the drivers and initial conditions of the medium. Therefore physics-based models alone cannot provide reliable specifications and forecasts. In an effort to better understand the ionosphere and to mitigate its adverse effects on military and civilian operations, specification and forecast models are being developed that use state-of-the-art data assimilation techniques. Over the past decade, Utah State University (USU) has developed two data assimilation models for the ionosphere as part of the USU Global Assimilation of Ionospheric Measurements (GAIM) program and one of these models has been implemented at the Air Force Weather Agency for operational use. The USU-GAIM models are also being used for scientific studies, and this should lead to a dramatic advance in our understanding of ionospheric physics; similar to what occurred in meteorology and oceanography after the introduction of data assimilation models in those fields. Both USU-GAIM models are capable of assimilating data from a variety of data sources, including in situ electron densities from satellites, bottomside electron density profiles from ionosondes, total electron content (TEC) measurements between ground receivers and the GPS satellites, occultation data from satellite constellations, and ultraviolet emissions from the ionosphere measured by satellites. We will present the current status of the model development and discuss the employed data assimilation technique. Recent examples of the ionosphere specifications obtained from our model runs will be presented with an emphasis on the ionospheric plasma distribution during the current low solar activity conditions. Various comparisons with independent data will also be shown in an effort to validate the models.
Treatment of systematic errors in land data assimilation systems
NASA Astrophysics Data System (ADS)
Crow, W. T.; Yilmaz, M.
2012-12-01
Data assimilation systems are generally designed to minimize the influence of random error on the estimation of system states. Yet, experience with land data assimilation systems has also revealed the presence of large systematic differences between model-derived and remotely-sensed estimates of land surface states. Such differences are commonly resolved prior to data assimilation through implementation of a pre-processing rescaling step whereby observations are scaled (or non-linearly transformed) to somehow "match" comparable predictions made by an assimilation model. While the rationale for removing systematic differences in means (i.e., bias) between models and observations is well-established, relatively little theoretical guidance is currently available to determine the appropriate treatment of higher-order moments during rescaling. This talk presents a simple analytical argument to define an optimal linear-rescaling strategy for observations prior to their assimilation into a land surface model. While a technique based on triple collocation theory is shown to replicate this optimal strategy, commonly-applied rescaling techniques (e.g., so called "least-squares regression" and "variance matching" approaches) are shown to represent only sub-optimal approximations to it. Since the triple collocation approach is likely infeasible in many real-world circumstances, general advice for deciding between various feasible (yet sub-optimal) rescaling approaches will be presented with an emphasis of the implications of this work for the case of directly assimilating satellite radiances. While the bulk of the analysis will deal with linear rescaling techniques, its extension to nonlinear cases will also be discussed.
Assimilation of Quality Controlled AIRS Temperature Profiles using the NCEP GFS
NASA Technical Reports Server (NTRS)
Susskind, Joel; Reale, Oreste; Iredell, Lena; Rosenberg, Robert
2013-01-01
We have previously conducted a number of data assimilation experiments using AIRS Version-5 quality controlled temperature profiles as a step toward finding an optimum balance of spatial coverage and sounding accuracy with regard to improving forecast skill. The data assimilation and forecast system we used was the Goddard Earth Observing System Model , Version-5 (GEOS-5) Data Assimilation System (DAS), which represents a combination of the NASA GEOS-5 forecast model with the National Centers for Environmental Prediction (NCEP) operational Grid Point Statistical Interpolation (GSI) global analysis scheme. All analyses and forecasts were run at a 0.5deg x 0.625deg spatial resolution. Data assimilation experiments were conducted in four different seasons, each in a different year. Three different sets of data assimilation experiments were run during each time period: Control; AIRS T(p); and AIRS Radiance. In the "Control" analysis, all the data used operationally by NCEP was assimilated, but no AIRS data was assimilated. Radiances from the Aqua AMSU-A instrument were also assimilated operationally by NCEP and are included in the "Control". The AIRS Radiance assimilation adds AIRS observed radiance observations for a select set of channels to the data set being assimilated, as done operationally by NCEP. In the AIRS T(p) assimilation, all information used in the Control was assimilated as well as Quality Controlled AIRS Version-5 temperature profiles, i.e., AIRS T(p) information was substituted for AIRS radiance information. The AIRS Version-5 temperature profiles were presented to the GSI analysis as rawinsonde profiles, assimilated down to a case-by-case appropriate pressure level p(sub best) determined using the Quality Control procedure. Version-5 also determines case-by-case, level-by-level error estimates of the temperature profiles, which were used as the uncertainty of each temperature measurement. These experiments using GEOS-5 have shown that forecasts resulting from analyses using the AIRS T(p) assimilation system were superior to those from the Radiance assimilation system, both with regard to global 7 day forecast skill and also the ability to predict storm tracks and intensity.
NASA Astrophysics Data System (ADS)
Yu, Liuqian; Fennel, Katja; Bertino, Laurent; Gharamti, Mohamad El; Thompson, Keith R.
2018-06-01
Effective data assimilation methods for incorporating observations into marine biogeochemical models are required to improve hindcasts, nowcasts and forecasts of the ocean's biogeochemical state. Recent assimilation efforts have shown that updating model physics alone can degrade biogeochemical fields while only updating biogeochemical variables may not improve a model's predictive skill when the physical fields are inaccurate. Here we systematically investigate whether multivariate updates of physical and biogeochemical model states are superior to only updating either physical or biogeochemical variables. We conducted a series of twin experiments in an idealized ocean channel that experiences wind-driven upwelling. The forecast model was forced with biased wind stress and perturbed biogeochemical model parameters compared to the model run representing the "truth". Taking advantage of the multivariate nature of the deterministic Ensemble Kalman Filter (DEnKF), we assimilated different combinations of synthetic physical (sea surface height, sea surface temperature and temperature profiles) and biogeochemical (surface chlorophyll and nitrate profiles) observations. We show that when biogeochemical and physical properties are highly correlated (e.g., thermocline and nutricline), multivariate updates of both are essential for improving model skill and can be accomplished by assimilating either physical (e.g., temperature profiles) or biogeochemical (e.g., nutrient profiles) observations. In our idealized domain, the improvement is largely due to a better representation of nutrient upwelling, which results in a more accurate nutrient input into the euphotic zone. In contrast, assimilating surface chlorophyll improves the model state only slightly, because surface chlorophyll contains little information about the vertical density structure. We also show that a degradation of the correlation between observed subsurface temperature and nutrient fields, which has been an issue in several previous assimilation studies, can be reduced by multivariate updates of physical and biogeochemical fields.
NASA Astrophysics Data System (ADS)
Mecikalski, John; Smith, Tracy; Weygandt, Stephen
2014-05-01
Latent heating profiles derived from GOES satellite-based cloud-top cooling rates are being assimilated into a retrospective version of the Rapid Refresh system (RAP) being run at the Global Systems Division. Assimilation of these data may help reduce the time lag for convection initiation (CI) in both the RAP model forecasts and in 3-km High Resolution Rapid Refresh (HRRR) model runs that are initialized off of the RAP model grids. These data may also improve both the location and organization of developing convective storm clusters, especially in the nested HRRR runs. These types of improvements are critical for providing better convective storm guidance around busy hub airports and aviation corridor routes, especially in the highly congested Ohio Valley - Northeast - Mid-Atlantic region. Additional work is focusing on assimilating GOES-R CI algorithm cloud-top cooling-based latent heating profiles directly into the HRRR model. Because of the small-scale nature of the convective phenomena depicted in the cloud-top cooling rate data (on the order of 1-4 km scale), direct assimilation of these data in the HRRR may be more effective than assimilation in the RAP. The RAP is an hourly assimilation system developed at NOAA/ESRL and was implemented at NCEP as a NOAA operational model in May 2012. The 3-km HRRR runs hourly out to 15 hours as a nest within the ESRL real-time experimental RAP. The RAP and HRRR both use the WRF ARW model core, and the Gridpoint Statistical Interpolation (GSI) is used within an hourly cycle to assimilate a wide variety of observations (including radar data) to initialize the RAP. Within this modeling framework, the cloud-top cooling rate-based latent heating profiles are applied as prescribed heating during the diabatic forward model integration part of the RAP digital filter initialization (DFI). No digital filtering is applied on the 3-km HRRR grid, but similar forward model integration with prescribed heating is used to assimilate information from radar reflectivity, lightning flash density and the satellite based cloud-top cooling rate data. In the current HRRR configuration, 4 15-min cycles of latent heating are applied during a pre-forecast hour of integration. This is followed by a final application of GSI at 3-km to fit the latest conventional observation data. At the conference, results from a 5-day retrospective period (July 5-10, 2012) will be shown, focusing on assessment of data impact for both the RAP and HRRR, as well as the sensitivity to various assimilation parameters, including assumed heating strength. Emphasis will be given to documenting the forecast impacts for aviation applications in the Eastern U.S.
eWaterCycle: A high resolution global hydrological model
NASA Astrophysics Data System (ADS)
van de Giesen, Nick; Bierkens, Marc; Drost, Niels; Hut, Rolf; Sutanudjaja, Edwin
2014-05-01
In 2013, the eWaterCycle project was started, which has the ambitious goal to run a high resolution global hydrological model. Starting point was the PCR-GLOBWB built by Utrecht University. The software behind this model will partially be re-engineered in order to enable to run it in a High Performance Computing (HPC) environment. The aim is to have a spatial resolution of 1km x 1km. The idea is also to run the model in real-time and forecasting mode, using data assimilation. An on-demand hydraulic model will be available for detailed flow and flood forecasting in support of navigation and disaster management. The project faces a set of scientific challenges. First, to enable the model to run in a HPC environment, model runs were analyzed to examine on which parts of the program most CPU time was spent. These parts were re-coded in Open MPI to allow for parallel processing. Different parallelization strategies are thinkable. In our case, it was decided to use watershed logic as a first step to distribute the analysis. There is rather limited recent experience with HPC in hydrology and there is much to be learned and adjusted, both on the hydrological modeling side and the computer science side. For example, an interesting early observation was that hydrological models are, due to their localized parameterization, much more memory intensive than models of sister-disciplines such as meteorology and oceanography. Because it would be deadly to have to swap information between CPU and hard drive, memory management becomes crucial. A standard Ensemble Kalman Filter (enKF) would, for example, have excessive memory demands. To circumvent these problems, an alternative to the enKF was developed that produces equivalent results. This presentation shows the most recent results from the model, including a 5km x 5km simulation and a proof of concept for the new data assimilation approach. Finally, some early ideas about financial sustainability of an operational global hydrological model are presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dodds, W. K.; Collins, S. M.; Hamilton, S. K.
Analyses of 21 15N stable isotope tracer experiments, designed to examine food web dynamics in streams around the world, indicated that the isotopic composition of food resources assimilated by primary consumers (mostly invertebrates) poorly reflected the presumed food sources. Modeling indicated that consumers assimilated only 33–50% of the N available in sampled food sources such as decomposing leaves, epilithon, and fine particulate detritus over feeding periods of weeks or more. Thus, common methods of sampling food sources consumed by animals in streams do not sufficiently reflect the pool of N they assimilate. Lastly, Isotope tracer studies, combined with modeling andmore » food separation techniques, can improve estimation of N pools in food sources that are assimilated by consumers.« less
Dodds, W. K.; Collins, S. M.; Hamilton, S. K.; ...
2014-10-01
Analyses of 21 15N stable isotope tracer experiments, designed to examine food web dynamics in streams around the world, indicated that the isotopic composition of food resources assimilated by primary consumers (mostly invertebrates) poorly reflected the presumed food sources. Modeling indicated that consumers assimilated only 33–50% of the N available in sampled food sources such as decomposing leaves, epilithon, and fine particulate detritus over feeding periods of weeks or more. Thus, common methods of sampling food sources consumed by animals in streams do not sufficiently reflect the pool of N they assimilate. Lastly, Isotope tracer studies, combined with modeling andmore » food separation techniques, can improve estimation of N pools in food sources that are assimilated by consumers.« less
The pre-Argo ocean reanalyses may be seriously affected by the spatial coverage of moored buoys
Sivareddy, S.; Paul, Arya; Sluka, Travis; Ravichandran, M.; Kalnay, Eugenia
2017-01-01
Assimilation methods, meant to constrain divergence of model trajectory from reality using observations, do not exactly satisfy the physical laws governing the model state variables. This allows mismatches in the analysis in the vicinity of observation locations where the effect of assimilation is most prominent. These mismatches are usually mitigated either by the model dynamics in between the analysis cycles and/or by assimilation at the next analysis cycle. However, if the observations coverage is limited in space, as it was in the ocean before the Argo era, these mechanisms may be insufficient to dampen the mismatches, which we call shocks, and they may remain and grow. Here we show through controlled experiments, using real and simulated observations in two different ocean models and assimilation systems, that such shocks are generated in the ocean at the lateral boundaries of the moored buoy network. They thrive and propagate westward as Rossby waves along these boundaries. However, these shocks are essentially eliminated by the assimilation of near-homogenous global Argo distribution. These findings question the fidelity of ocean reanalysis products in the pre-Argo era. For example, a reanalysis that ignores Argo floats and assimilates only moored buoys, wrongly represents 2008 as a negative Indian Ocean Dipole year. PMID:28429748
Assimilation of Terrestrial Water Storage from GRACE in a Snow-Dominated Basin
NASA Technical Reports Server (NTRS)
Forman, Barton A.; Reichle, R. H.; Rodell, M.
2011-01-01
Terrestrial water storage (TWS) information derived from Gravity Recovery and Climate Experiment (GRACE) measurements is assimilated into a land surface model over the Mackenzie River basin located in northwest Canada. Assimilation is conducted using an ensemble Kalman smoother (EnKS). Model estimates with and without assimilation are compared against independent observational data sets of snow water equivalent (SWE) and runoff. For SWE, modest improvements in mean difference (MD) and root mean squared difference (RMSD) are achieved as a result of the assimilation. No significant differences in temporal correlations of SWE resulted. Runoff statistics of MD remain relatively unchanged while RMSD statistics, in general, are improved in most of the sub-basins. Temporal correlations are degraded within the most upstream sub-basin, but are, in general, improved at the downstream locations, which are more representative of an integrated basin response. GRACE assimilation using an EnKS offers improvements in hydrologic state/flux estimation, though comparisons with observed runoff would be enhanced by the use of river routing and lake storage routines within the prognostic land surface model. Further, GRACE hydrology products would benefit from the inclusion of better constrained models of post-glacial rebound, which significantly affects GRACE estimates of interannual hydrologic variability in the Mackenzie River basin.
NASA Technical Reports Server (NTRS)
Kuang, Weijia; Tangborn, Andrew
2014-01-01
Assimilation of surface geomagnetic observations and geodynamo models has advanced very quickly in recent years. However, compared to advanced data assimilation systems in meteorology, geomagnetic data assimilation (GDAS) is still in an early stage. Among many challenges ranging from data to models is the disparity between the short observation records and the long time scales of the core dynamics. To better utilize available observational information, we have made an effort in this study to directly assimilate the Gauss coefficients of both the core field and its secular variation (SV) obtained via global geomagnetic field modeling, aiming at understanding the dynamical responses of the core fluid to these additional observational constraints. Our studies show that the SV assimilation helps significantly to shorten the dynamo model spin-up process. The flow beneath the core-mantle boundary (CMB) responds significantly to the observed field and its SV. The strongest responses occur in the relatively small scale flow (of the degrees L is approx. 30 in spherical harmonic expansions). This part of the flow includes the axisymmetric toroidal flow (of order m = 0) and non-axisymmetric poloidal flow with m (is) greater than 5. These responses can be used to better understand the core flow and, in particular, to improve accuracies of predicting geomagnetic variability in future.
NASA Astrophysics Data System (ADS)
Kwon, Y.; Forman, B. A.; Yoon, Y.; Kumar, S.
2017-12-01
High Mountain Asia (HMA) has been progressively losing ice and snow in recent decades, which could negatively impact regional water supply and native ecosystems. One goal of this study is to characterize the spatiotemporal variability of snow (and ice) across the HMA region. In addition, modeled snow water equivalent (SWE) estimates will be enhanced through the assimilation of passive microwave brightness temperatures (TB) collected by the Advanced Microwave Scanning Radiometer for Earth Observing System (AMSR-E) as part of a radiance assimilation system. The radiance assimilation framework includes the NASA Land Information System (LIS) in conjunction with a well-trained support vector machine (SVM) that acts as the observation operator. The Noah Land Surface Model with multi-parameterization options (Noah-MP) is used as the prior model for simulating snow dynamics. Noah-MP is forced by meteorological fields from the NASA Modern-Era Retrospective analysis for Research and Applications, version 2 (MERRA-2) atmospheric reanalysis for the periods 01 Sep. 2002 to 01 Sep. 2011. The radiance assimilation system requires two separate phases: 1) training and 2) assimilation. During the training phase, a nonlinear SVM is generated for three different AMSR-E frequencies - 10.65, 18.7, and 36.5 GHz - at both vertical and horizontal polarization. The trained SVM is then used to predict TB during the assimilation phase. An ensemble Kalman filter will be used to condition the model on AMSR-E brightness temperatures not used during SVM training. The performance of the Noah-MP (with and without radiance assimilation) will be assessed via comparison to in-situ measurements, remotely-sensing geophysical retrievals, and other reanalysis products.
NASA Technical Reports Server (NTRS)
Zavodsky, Bradley; Chou, Shih-Hung; Jedlovec, Gary
2012-01-01
Improvements to global and regional numerical weather prediction (NWP) have been demonstrated through assimilation of data from NASA s Atmospheric Infrared Sounder (AIRS). Current operational data assimilation systems use AIRS radiances, but impact on regional forecasts has been much smaller than for global forecasts. Retrieved profiles from AIRS contain much of the information that is contained in the radiances and may be able to reveal reasons for this reduced impact. Assimilating AIRS retrieved profiles in an identical analysis configuration to the radiances, tracking the quantity and quality of the assimilated data in each technique, and examining analysis increments and forecast impact from each data type can yield clues as to the reasons for the reduced impact. By doing this with regional scale models individual synoptic features (and the impact of AIRS on these features) can be more easily tracked. This project examines the assimilation of hyperspectral sounder data used in operational numerical weather prediction by comparing operational techniques used for AIRS radiances and research techniques used for AIRS retrieved profiles. Parallel versions of a configuration of the Weather Research and Forecasting (WRF) model with Gridpoint Statistical Interpolation (GSI) that mimics the analysis methodology, domain, and observational datasets for the regional North American Mesoscale (NAM) model run at the National Centers for Environmental Prediction (NCEP)/Environmental Modeling Center (EMC) are run to examine the impact of each type of AIRS data set. The first configuration will assimilate the AIRS radiance data along with other conventional and satellite data using techniques implemented within the operational system; the second configuration will assimilate AIRS retrieved profiles instead of AIRS radiances in the same manner. Preliminary results of this study will be presented and focus on the analysis impact of the radiances and profiles for selected cases.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ramamurthy, M.K.; Xu, T.Y.
1993-11-01
The current major expansion in observational capability of the National Weather Service is principally in the volume of asynchronous data rather than synchronous observations at the standard synoptic times. Hence, the National Meteorological Center is considering a continuous data assimilation system to replace at some time the intermittent system now used by its regional and global operational models. We describe this system, based on the Newtonian relaxation technique, as developed for the eta model. Experiments are performed for the first intensive observing period of the Genesis of Atlantic Lows Experiment (GALE) in January 1986, when strong upper-level cyclogenesis occurred, withmore » a pronounced tropopause fold but only modest surface development. The GALE level IIIb dataset was used for initializing and updating the model. Issues addressed in the experiments include choice of update variable, number, and length of update segments; need for updating moisture and surface pressure information; nudging along boundaries; and noise control. Assimilation of data from a single level was also studied. Use of a preforecast assimilation cycle was found to eliminate the spinup problem almost entirely. Multiple, shorter assimilation segments produced better forecasts than a single, longer cycle. Updating the mass field was less effective than nudging the wind field but assimilating both was best. Assimilation of moisture data, surprisingly, affected the spinup adversely, but nudging the surface pressure information reduced the spurious pillow effect. Assimilation of single-level information was ineffective unless accompanied by increased vertical coupling, obtained from a control integration. 52 refs., 19 figs., 1 tab.« less
Open source data assimilation framework for hydrological modeling
NASA Astrophysics Data System (ADS)
Ridler, Marc; Hummel, Stef; van Velzen, Nils; Katrine Falk, Anne; Madsen, Henrik
2013-04-01
An open-source data assimilation framework is proposed for hydrological modeling. Data assimilation (DA) in hydrodynamic and hydrological forecasting systems has great potential to improve predictions and improve model result. The basic principle is to incorporate measurement information into a model with the aim to improve model results by error minimization. Great strides have been made to assimilate traditional in-situ measurements such as discharge, soil moisture, hydraulic head and snowpack into hydrologic models. More recently, remotely sensed data retrievals of soil moisture, snow water equivalent or snow cover area, surface water elevation, terrestrial water storage and land surface temperature have been successfully assimilated in hydrological models. The assimilation algorithms have become increasingly sophisticated to manage measurement and model bias, non-linear systems, data sparsity (time & space) and undetermined system uncertainty. It is therefore useful to use a pre-existing DA toolbox such as OpenDA. OpenDA is an open interface standard for (and free implementation of) a set of tools to quickly implement DA and calibration for arbitrary numerical models. The basic design philosophy of OpenDA is to breakdown DA into a set of building blocks programmed in object oriented languages. To implement DA, a model must interact with OpenDA to create model instances, propagate the model, get/set variables (or parameters) and free the model once DA is completed. An open-source interface for hydrological models exists capable of all these tasks: OpenMI. OpenMI is an open source standard interface already adopted by key hydrological model providers. It defines a universal approach to interact with hydrological models during simulation to exchange data during runtime, thus facilitating the interactions between models and data sources. The interface is flexible enough so that models can interact even if the model is coded in a different language, represent processes from a different domain or have different spatial and temporal resolutions. An open source framework that bridges OpenMI and OpenDA is presented. The framework provides a generic and easy means for any OpenMI compliant model to assimilate observation measurements. An example test case will be presented using MikeSHE, and OpenMI compliant fully coupled integrated hydrological model that can accurately simulate the feedback dynamics of overland flow, unsaturated zone and saturated zone.
NASA Astrophysics Data System (ADS)
Aberson, Sim David
In 1997, the National Hurricane Center and the Hurricane Research Division began conducting operational synoptic surveillance missions with the Gulfstream IV-SP jet aircraft to improve operational forecast models. During the first two years, twenty-four missions were conducted around tropical cyclones threatening the continental United States, Puerto Rico, and the Virgin Islands. Global Positioning System dropwindsondes were released from the aircraft at 150--200 km intervals along the flight track in the tropical cyclone environment to obtain wind, temperature, and humidity profiles from flight level (around 150 hPa) to the surface. The observations were processed and formatted aboard the aircraft and transmitted to the National Centers for Environmental Prediction (NCEP). There, they were ingested into the Global Data Assimilation System that subsequently provides initial and time-dependent boundary conditions for numerical models that forecast tropical cyclone track and intensity. Three dynamical models were employed in testing the targeting and sampling strategies. With the assimilation into the numerical guidance of all the observations gathered during the surveillance missions, only the 12-h Geophysical Fluid Dynamics Laboratory Hurricane Model forecast showed statistically significant improvement. Neither the forecasts from the Aviation run of the Global Spectral Model nor the shallow-water VICBAR model were improved with the assimilation of the dropwindsonde data. This mediocre result is found to be due mainly to the difficulty in operationally quantifying the storm-motion vector used to create accurate synthetic data to represent the tropical cyclone vortex in the models. A secondary limit on forecast improvements from the surveillance missions is the limited amount of data provided by the one surveillance aircraft in regular missions. The inability of some surveillance missions to surround the tropical cyclone with dropwindsonde observations is a possible third limit, though the results are inconclusive. Due to limited aircraft resources, optimal observing strategies for these missions must be developed. Since observations in areas of decaying error modes are unlikely to have large impact on subsequent forecasts, such strategies should be based on taking observations in those geographic locations corresponding to the most rapidly growing error modes in the numerical models and on known deficiencies in current data assimilation systems. Here, the most rapidly growing modes are represented by areas of large forecast spread in the NCEP bred-mode global ensemble forecasting system. The sampling strategy requires sampling the entire target region at approximately the same resolution as the North American rawinsonde network to limit the possibly spurious spread of information from dropwindsonde observations into data-sparse regions where errors are likely to grow. When only the subset of data in these fully-sampled target regions is assimilated into the numerical models, statistically significant reduction of the track forecast errors of up to 25% within the critical first two days of the forecast are seen. These model improvements are comparable with the cumulative business-as-usual track forecast model improvements expected over eighteen years.
Implementation of a GPS-RO data processing system for the KIAPS-LETKF data assimilation system
NASA Astrophysics Data System (ADS)
Kwon, H.; Kang, J.-S.; Jo, Y.; Kang, J. H.
2015-03-01
The Korea Institute of Atmospheric Prediction Systems (KIAPS) has been developing a new global numerical weather prediction model and an advanced data assimilation system. As part of the KIAPS package for observation processing (KPOP) system for data assimilation, preprocessing, and quality control modules for bending-angle measurements of global positioning system radio occultation (GPS-RO) data have been implemented and examined. The GPS-RO data processing system is composed of several steps for checking observation locations, missing values, physical values for Earth radius of curvature, and geoid undulation. An observation-minus-background check is implemented by use of a one-dimensional observational bending-angle operator, and tangent point drift is also considered in the quality control process. We have tested GPS-RO observations utilized by the Korean Meteorological Administration (KMA) within KPOP, based on both the KMA global model and the National Center for Atmospheric Research Community Atmosphere Model with Spectral Element dynamical core (CAM-SE) as a model background. Background fields from the CAM-SE model are incorporated for the preparation of assimilation experiments with the KIAPS local ensemble transform Kalman filter (LETKF) data assimilation system, which has been successfully implemented to a cubed-sphere model with unstructured quadrilateral meshes. As a result of data processing, the bending-angle departure statistics between observation and background show significant improvement. Also, the first experiment in assimilating GPS-RO bending angle from KPOP within KIAPS-LETKF shows encouraging results.
NASA Astrophysics Data System (ADS)
Kunii, M.; Ito, K.; Wada, A.
2015-12-01
An ensemble Kalman filter (EnKF) using a regional mesoscale atmosphere-ocean coupled model was developed to represent the uncertainties of sea surface temperature (SST) in ensemble data assimilation strategies. The system was evaluated through data assimilation cycle experiments over a one-month period from July to August 2014, during which a tropical cyclone as well as severe rainfall events occurred. The results showed that the data assimilation cycle with the coupled model could reproduce SST distributions realistically even without updating SST and salinity during the data assimilation cycle. Therefore, atmospheric variables and radiation applied as a forcing to ocean models can control oceanic variables to some extent in the current data assimilation configuration. However, investigations of the forecast error covariance estimated in EnKF revealed that the correlation between atmospheric and oceanic variables could possibly lead to less flow-dependent error covariance for atmospheric variables owing to the difference in the time scales between atmospheric and oceanic variables. A verification of the analyses showed positive impacts of applying the ocean model to EnKF on precipitation forecasts. The use of EnKF with the coupled model system captured intensity changes of a tropical cyclone better than it did with an uncoupled atmosphere model, even though the impact on the track forecast was negligibly small.
A parsimonious land data assimilation system for the SMAP/GPM satellite era
USDA-ARS?s Scientific Manuscript database
Land data assimilation systems typically require complex parameterizations in order to: define required observation operators, quantify observing/forecasting errors and calibrate a land surface assimilation model. These parameters are commonly defined in an arbitrary manner and, if poorly specified,...
The Estimation Theory Framework of Data Assimilation
NASA Technical Reports Server (NTRS)
Cohn, S.; Atlas, Robert (Technical Monitor)
2002-01-01
Lecture 1. The Estimation Theory Framework of Data Assimilation: 1. The basic framework: dynamical and observation models; 2. Assumptions and approximations; 3. The filtering, smoothing, and prediction problems; 4. Discrete Kalman filter and smoother algorithms; and 5. Example: A retrospective data assimilation system
Assimilation of SMOS Brightness Temperatures or Soil Moisture Retrievals into a Land Surface Model
NASA Technical Reports Server (NTRS)
De Lannoy, Gabrielle J. M.; Reichle, Rolf H.
2016-01-01
Three different data products from the Soil Moisture Ocean Salinity (SMOS) mission are assimilated separately into the Goddard Earth Observing System Model, version 5 (GEOS-5) to improve estimates of surface and root-zone soil moisture. The first product consists of multi-angle, dual-polarization brightness temperature (Tb) observations at the bottom of the atmosphere extracted from Level 1 data. The second product is a derived SMOS Tb product that mimics the data at a 40 degree incidence angle from the Soil Moisture Active Passive (SMAP) mission. The third product is the operational SMOS Level 2 surface soil moisture (SM) retrieval product. The assimilation system uses a spatially distributed ensemble Kalman filter (EnKF) with seasonally varying climatological bias mitigation for Tb assimilation, whereas a time-invariant cumulative density function matching is used for SM retrieval assimilation. All assimilation experiments improve the soil moisture estimates compared to model-only simulations in terms of unbiased root-mean-square differences and anomaly correlations during the period from 1 July 2010 to 1 May 2015 and for 187 sites across the US. Especially in areas where the satellite data are most sensitive to surface soil moisture, large skill improvements (e.g., an increase in the anomaly correlation by 0.1) are found in the surface soil moisture. The domain-average surface and root-zone skill metrics are similar among the various assimilation experiments, but large differences in skill are found locally. The observation-minus-forecast residuals and analysis increments reveal large differences in how the observations add value in the Tb and SM retrieval assimilation systems. The distinct patterns of these diagnostics in the two systems reflect observation and model errors patterns that are not well captured in the assigned EnKF error parameters. Consequently, a localized optimization of the EnKF error parameters is needed to further improve Tb or SM retrieval assimilation.
Assimilation of sea ice concentration data in the Arctic via DART/CICE5 in the CESM1
NASA Astrophysics Data System (ADS)
Zhang, Y.; Bitz, C. M.; Anderson, J. L.; Collins, N.; Hendricks, J.; Hoar, T. J.; Raeder, K.
2016-12-01
Arctic sea ice cover has been experiencing significant reduction in the past few decades. Climate models predict that the Arctic Ocean may be ice-free in late summer within a few decades. Better sea ice prediction is crucial for regional and global climate prediction that are vital to human activities such as maritime shipping and subsistence hunting, as well as wildlife protection as animals face habitat loss. The physical processes involved with the persistence and re-emergence of sea ice cover are found to extend the predictability of sea ice concentration (SIC) and thickness at the regional scale up to several years. This motivates us to investigate sea ice predictability stemming from initial values of the sea ice cover. Data assimilation is a useful technique to combine observations and model forecasts to reconstruct the states of sea ice in the past and provide more accurate initial conditions for sea ice prediction. This work links the most recent version of the Los Alamos sea ice model (CICE5) within the Community Earth System Model version 1.5 (CESM1.5) and the Data Assimilation Research Testbed (DART). The linked DART/CICE5 is ideal to assimilate multi-scale and multivariate sea ice observations using an ensemble Kalman filter (EnKF). The study is focused on the assimilation of SIC data that impact SIC, sea ice thickness, and snow thickness. The ensemble sea ice model states are constructed by introducing uncertainties in atmospheric forcing and key model parameters. The ensemble atmospheric forcing is a reanalysis product generated with DART and the Community Atmosphere Model (CAM). We also perturb two model parameters that are found to contribute significantly to the model uncertainty in previous studies. This study applies perfect model observing system simulation experiments (OSSEs) to investigate data assimilation algorithms and post-processing methods. One of the ensemble members of a CICE5 free run is chosen as the truth. Daily synthetic observations are obtained by adding 15% random noise to the truth. Experiments assimilating the synthetic observations are then conducted to test the effectiveness of different data assimilation algorithms (e.g., localization and inflation) and post-processing methods (e.g., how to distribute the total increment of SIC into each ice thickness category).
USDA-ARS?s Scientific Manuscript database
In Ensemble Kalman Filter (EnKF)-based data assimilation, the background prediction of a model is updated using observations and relative weights based on the model prediction and observation uncertainties. In practice, both model and observation uncertainties are difficult to quantify and they have...
Model accuracy impact through rescaled observations in hydrological data assimilation studies
USDA-ARS?s Scientific Manuscript database
Signal and noise time-series variability of soil moisture datasets (e.g. satellite-, model-, station-based) vary greatly. Optimality of the analysis obtained after observations are assimilated into the model depends on the degree that the differences between the signal variances of model and observa...
Variational assimilation of VAS data into the mass model
NASA Technical Reports Server (NTRS)
Cram, J. M.; Kaplan, M. L.
1984-01-01
Experiments are reported in which VAS data at 1200, 1500, and 1800 GMT 20 July 1981 were assimilated using both the adiabatic and full physics version of the Mesoscale Atmospheric Simulation System (MASS). A nonassimilation forecast is compared with forecasts assimilating temperature gradients only and forecasts assimilating both temperature and humidity gradients. The effects of successive vs single assimilations are also examined. It is noted that the greatest improvements to the forecast resulted when the VAS data resolved the mesoscale structure of the temperature and relative humidity fields. When this structure was assimilated into MASS, the ensuing simulations more clearly defined a mesoscale structure in the developing instabilities.
Assimilation for skin SST in the NASA GEOS atmospheric data assimilation system
Akella, Santha; Todling, Ricardo; Suarez, Max
2018-01-01
The present article describes the sea surface temperature (SST) developments implemented in the Goddard Earth Observing System, Version 5 (GEOS-5) Atmospheric Data Assimilation System (ADAS). These are enhancements that contribute to the development of an atmosphere-ocean coupled data assimilation system using GEOS. In the current quasi-operational GEOS-ADAS, the SST is a boundary condition prescribed based on the OSTIA product, therefore SST and skin SST (Ts) are identical. This work modifies the GEOS-ADAS Ts by modeling and assimilating near sea surface sensitive satellite infrared (IR) observations. The atmosphere-ocean interface layer of the GEOS atmospheric general circulation model (AGCM) is updated to include near surface diurnal warming and cool-skin effects. The GEOS analysis system is also updated to directly assimilate SST-relevant Advanced Very High Resolution Radiometer (AVHRR) radiance observations. Data assimilation experiments designed to evaluate the Ts modification in GEOS-ADAS show improvements in the assimilation of radiance observations that extends beyond the thermal IR bands of AVHRR. In particular, many channels of hyperspectral sensors, such as those of the Atmospheric Infrared Sounder (AIRS), and Infrared Atmospheric Sounding Interferometer (IASI) are also better assimilated. We also obtained improved fit to withheld, in-situ buoy measurement of near-surface SST. Evaluation of forecast skill scores show marginal to neutral benefit from the modified Ts. PMID:29628531
Joint Sentinel-1 and SMAP data assimilation to improve soil moisture estimates
NASA Astrophysics Data System (ADS)
Lievens, H.; Reichle, R. H.; Liu, Q.; De Lannoy, G.; Dunbar, R. S.; Kim, S.; Das, N. N.; Cosh, M. H.; Walker, J. P.; Wagner, W.
2017-12-01
SMAP (Soil Moisture Active and Passive) radiometer observations at 40 km resolution are routinely assimilated into the NASA Catchment Land Surface Model (CLSM) to generate the SMAP Level 4 Soil Moisture product. The use of C-band radar backscatter observations from Sentinel-1 has the potential to add value to the radiance assimilation by increasing the level of spatial detail. The specifications of Sentinel-1 are appealing, particularly its high spatial resolution (5 by 20 m in interferometric wide swath mode) and frequent revisit time (6 day repeat cycle for the Sentinel-1A and Sentinel-1B constellation). However, the shorter wavelength of Sentinel-1 observations implies less sensitivity to soil moisture. This study investigates the value of Sentinel-1 data for hydrologic simulations by assimilating the radar observations into CLSM, either separately from or simultaneously with SMAP radiometer observations. To facilitate the assimilation of the radar observations, CLSM is coupled to the water cloud model, simulating the radar backscatter as observed by Sentinel-1. The innovations, i.e. differences between observations and simulations, are converted into increments to the model soil moisture state through an Ensemble Kalman Filter. The assimilation impact is assessed by comparing 3-hourly, 9 km surface and root-zone soil moisture simulations with in situ measurements from 9 km SMAP core validation sites and sparse networks, from May 2015 to 2017. The Sentinel-1 assimilation consistently improves surface soil moisture, whereas root-zone impacts are mostly neutral. Relatively larger improvements are obtained from SMAP assimilation. The joint assimilation of SMAP and Sentinel-1 observations performs best, demonstrating the complementary value of radar and radiometer observations.
NASA Astrophysics Data System (ADS)
Shi, Y.; Davis, K. J.; Zhang, F.; Duffy, C.; Yu, X.
2014-12-01
A coupled physically based land surface hydrologic model, Flux-PIHM, has been developed by incorporating a land surface scheme into the Penn State Integrated Hydrologic Model (PIHM). The land surface scheme is adapted from the Noah land surface model. Flux-PIHM has been implemented and manually calibrated at the Shale Hills watershed (0.08 km2) in central Pennsylvania. Model predictions of discharge, point soil moisture, point water table depth, sensible and latent heat fluxes, and soil temperature show good agreement with observations. When calibrated only using discharge, and soil moisture and water table depth at one point, Flux-PIHM is able to resolve the observed 101 m scale soil moisture pattern at the Shale Hills watershed when an appropriate map of soil hydraulic properties is provided. A Flux-PIHM data assimilation system has been developed by incorporating EnKF for model parameter and state estimation. Both synthetic and real data assimilation experiments have been performed at the Shale Hills watershed. Synthetic experiment results show that the data assimilation system is able to simultaneously provide accurate estimates of multiple parameters. In the real data experiment, the EnKF estimated parameters and manually calibrated parameters yield similar model performances, but the EnKF method significantly decreases the time and labor required for calibration. The data requirements for accurate Flux-PIHM parameter estimation via data assimilation using synthetic observations have been tested. Results show that by assimilating only in situ outlet discharge, soil water content at one point, and the land surface temperature averaged over the whole watershed, the data assimilation system can provide an accurate representation of watershed hydrology. Observations of these key variables are available with national and even global spatial coverage (e.g., MODIS surface temperature, SMAP soil moisture, and the USGS gauging stations). National atmospheric reanalysis products, soil databases and land cover databases (e.g., NLDAS-2, SSURGO, NLCD) can provide high resolution forcing and input data. Therefore the Flux-PIHM data assimilation system could be readily expanded to other watersheds to provide regional scale land surface and hydrologic reanalysis with high spatial temporal resolution.
NASA Astrophysics Data System (ADS)
Adebiyi, S. J.; Adebesin, B. O.; Ikubanni, S. O.; Joshua, B. W.
2017-05-01
Empirical models of the ionosphere, such as the International Reference Ionosphere (IRI) model, play a vital role in evaluating the environmental effect on the operation of space-based communication and navigation technologies. The IRI extended to Plasmasphere (IRI-Plas) model can be adjusted with external data to update its electron density profile while still maintaining the overall integrity of the model representations. In this paper, the performance of the total electron content (TEC) assimilation option of the IRI-Plas at two equatorial stations, Jicamarca, Peru (geographic: 12°S, 77°W, dip angle 0.8°) and Cachoeira Paulista, Brazil (Geographic: 22.7°S, 45°W, dip angle -26°), is examined during quiet and disturbed conditions. TEC, F2 layer critical frequency (foF2), and peak height (hmF2) predicted when the model is operated without external input were used as a baseline in our model evaluation. Results indicate that TEC predicted by the assimilation option generally produced smaller estimation errors compared to the "no extra input" option during quiet and disturbed conditions. Generally, the error is smaller at the equatorial trough than near the crest for both quiet and disturbed days. With assimilation option, there is a substantial improvement of storm time estimations when compared with quiet time predictions. The improvement is, however, independent on storm's severity. Furthermore, the modeled foF2 and hmF2 are generally poor with TEC assimilation, particularly the hmF2 prediction, at the two locations during both quiet and disturbed conditions. Consequently, IRI-Plas model assimilated with TEC value only may not be sufficient where more realistic instantaneous values of peak parameters are required.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Y.; Liu, Z.; Zhang, S.
Parameter estimation provides a potentially powerful approach to reduce model bias for complex climate models. Here, in a twin experiment framework, the authors perform the first parameter estimation in a fully coupled ocean–atmosphere general circulation model using an ensemble coupled data assimilation system facilitated with parameter estimation. The authors first perform single-parameter estimation and then multiple-parameter estimation. In the case of the single-parameter estimation, the error of the parameter [solar penetration depth (SPD)] is reduced by over 90% after ~40 years of assimilation of the conventional observations of monthly sea surface temperature (SST) and salinity (SSS). The results of multiple-parametermore » estimation are less reliable than those of single-parameter estimation when only the monthly SST and SSS are assimilated. Assimilating additional observations of atmospheric data of temperature and wind improves the reliability of multiple-parameter estimation. The errors of the parameters are reduced by 90% in ~8 years of assimilation. Finally, the improved parameters also improve the model climatology. With the optimized parameters, the bias of the climatology of SST is reduced by ~90%. Altogether, this study suggests the feasibility of ensemble-based parameter estimation in a fully coupled general circulation model.« less
NASA Technical Reports Server (NTRS)
Tangborn, Andrew; Cooper, Robert; Pawson, Steven; Sun, Zhibin
2009-01-01
We present a source inversion technique for chemical constituents that uses assimilated constituent observations rather than directly using the observations. The method is tested with a simple model problem, which is a two-dimensional Fourier-Galerkin transport model combined with a Kalman filter for data assimilation. Inversion is carried out using a Green's function method and observations are simulated from a true state with added Gaussian noise. The forecast state uses the same spectral spectral model, but differs by an unbiased Gaussian model error, and emissions models with constant errors. The numerical experiments employ both simulated in situ and satellite observation networks. Source inversion was carried out by either direct use of synthetically generated observations with added noise, or by first assimilating the observations and using the analyses to extract observations. We have conducted 20 identical twin experiments for each set of source and observation configurations, and find that in the limiting cases of a very few localized observations, or an extremely large observation network there is little advantage to carrying out assimilation first. However, in intermediate observation densities, there decreases in source inversion error standard deviation using the Kalman filter algorithm followed by Green's function inversion by 50% to 95%.
Radiance Assimilation Shows Promise for Snowpack Characterization: A 1-D Case Study
NASA Technical Reports Server (NTRS)
Durand, Michael; Kim, Edward; Margulis, Steve
2008-01-01
We demonstrate an ensemble-based radiometric data assimilation (DA) methodology for estimating snow depth and snow grain size using ground-based passive microwave (PM) observations at 18.7 and 36.5 GHz collected during the NASA CLPX-1, March 2003, Colorado, USA. A land surface model was used to develop a prior estimate of the snowpack states, and a radiative transfer model was used to relate the modeled states to the observations. Snow depth bias was -53.3 cm prior to the assimilation, and -7.3 cm after the assimilation. Snow depth estimated by a non-DA-based retrieval algorithm using the same PM data had a bias of -18.3 cm. The sensitivity of the assimilation scheme to the grain size uncertainty was evaluated; over the range of grain size uncertainty tested, the posterior snow depth estimate bias ranges from -2.99 cm to -9.85 cm, which is uniformly better than both the prior and retrieval estimates. This study demonstrates the potential applicability of radiometric DA at larger scales.
Data Assimilation in the ADAPT Photospheric Flux Transport Model
Hickmann, Kyle S.; Godinez, Humberto C.; Henney, Carl J.; ...
2015-03-17
Global maps of the solar photospheric magnetic flux are fundamental drivers for simulations of the corona and solar wind and therefore are important predictors of geoeffective events. However, observations of the solar photosphere are only made intermittently over approximately half of the solar surface. The Air Force Data Assimilative Photospheric Flux Transport (ADAPT) model uses localized ensemble Kalman filtering techniques to adjust a set of photospheric simulations to agree with the available observations. At the same time, this information is propagated to areas of the simulation that have not been observed. ADAPT implements a local ensemble transform Kalman filter (LETKF)more » to accomplish data assimilation, allowing the covariance structure of the flux-transport model to influence assimilation of photosphere observations while eliminating spurious correlations between ensemble members arising from a limited ensemble size. We give a detailed account of the implementation of the LETKF into ADAPT. Advantages of the LETKF scheme over previously implemented assimilation methods are highlighted.« less
NASA Technical Reports Server (NTRS)
Neal, C. R.; Taylor, L. A.; Schmitt, R. A.; Hughes, S. S.; Lindstrom, M. M.
1989-01-01
The understanding of basalt petrogenesis at the Apollo 14 site has increased markedly due to the study of 'new' samples from breccia 'pull-apart' efforts. Whole-rock compositions of 26 new high alumina (HA) and 7 very high potassium (VHK) basalts emphasize the importance of combined assimilation and fractional crystallization in a lunar regime. Previously formulated models for HA and VHK basalt petrogenesis are modified in order to accomodate these new data, although modeling parameters are essentially the same. The required range in HA basalt compositions is generated by the assimilation of KREEP by a 'primitive' parental magma. The VHK basalts can be generated by three parental HA basalts assimilating granite. Results indicate that VHK basalt compositions are dominated by the parental magma, and only up to 8 percent granite assimilation is required. This modeling indicates that at least three VHK basalt flows must be present at the Apollo 14 site.
NASA Astrophysics Data System (ADS)
Wu, Mousong; Sholze, Marko
2017-04-01
We investigated the importance of soil moisture data on assimilation of a terrestrial biosphere model (BETHY) for a long time period from 2010 to 2015. Totally, 101 parameters related to carbon turnover, soil respiration, as well as soil texture were selected for optimization within a carbon cycle data assimilation system (CCDAS). Soil moisture data from Soil Moisture and Ocean Salinity (SMOS) product was derived for 10 sites representing different plant function types (PFTs) as well as different climate zones. Uncertainty of SMOS soil moisture data was also estimated using triple collocation analysis (TCA) method by comparing with ASCAT dataset and BETHY forward simulation results. Assimilation of soil moisture to the system improved soil moisture as well as net primary productivity(NPP) and net ecosystem productivity (NEP) when compared with soil moisture derived from in-situ measurements and fluxnet datasets. Parameter uncertainties were largely reduced relatively to prior values. Using SMOS soil moisture data for assimilation of a terrestrial biosphere model proved to be an efficient approach in reducing uncertainty in ecosystem fluxes simulation. It could be further used in regional an global assimilation work to constrain carbon dioxide concentration simulation by combining with other sources of measurements.
Multi-RTM-based Radiance Assimilation to Improve Snow Estimates
NASA Astrophysics Data System (ADS)
Kwon, Y.; Zhao, L.; Hoar, T. J.; Yang, Z. L.; Toure, A. M.
2015-12-01
Data assimilation of microwave brightness temperature (TB) observations (i.e., radiance assimilation (RA)) has been proven to improve snowpack characterization at relatively small scales. However, large-scale applications of RA require a considerable amount of further efforts. Our objective in this study is to explore global-scale snow RA. In a RA scheme, a radiative transfer model (RTM) is an observational operator predicting TB; therefore, the quality of the assimilation results may strongly depend upon the RTM used as well as the land surface model (LSM). Several existing RTMs show different sensitivities to snowpack properties and thus they simulate significantly different TB. At the global scale, snow physical properties vary widely with local climate conditions. No single RTM has been shown to be able to accurately reproduce the observed TB for such a wide range of snow conditions. In this study, therefore, we hypothesize that snow estimates using a microwave RA scheme can be improved through the use of multiple RTMs (i.e., multi-RTM-based approaches). As a first step, here we use two snowpack RTMs, i.e., the Dense Media Radiative Transfer-Multi Layers model (DMRT-ML) and the Microwave Emission Model for Layered Snowpacks (MEMLS). The Community Land Model version 4 (CLM4) is used to simulate snow dynamics. The assimilation process is conducted by the Data Assimilation Research Testbed (DART), which is a community facility developed by the National Center for Atmospheric Research (NCAR) for ensemble-based data assimilation studies. In the RA experiments, the Advanced Microwave Scanning Radiometer-Earth Observing System (AMSR-E) TB at 18.7 and 36.5 GHz vertical polarization channels are assimilated into the RA system using the ensemble adjustment Kalman filter. The results are evaluated using the Canadian Meteorological Centre (CMC) daily snow depth, the Moderate Resolution Imaging Spectroradiometer (MODIS) snow cover fraction, and in-situ snowpack and river discharge observations.
NASA Technical Reports Server (NTRS)
Menard, Richard; Chang, Lang-Ping
1998-01-01
A Kalman filter system designed for the assimilation of limb-sounding observations of stratospheric chemical tracers, which has four tunable covariance parameters, was developed in Part I (Menard et al. 1998) The assimilation results of CH4 observations from the Cryogenic Limb Array Etalon Sounder instrument (CLAES) and the Halogen Observation Experiment instrument (HALOE) on board of the Upper Atmosphere Research Satellite are described in this paper. A robust (chi)(sup 2) criterion, which provides a statistical validation of the forecast and observational error covariances, was used to estimate the tunable variance parameters of the system. In particular, an estimate of the model error variance was obtained. The effect of model error on the forecast error variance became critical after only three days of assimilation of CLAES observations, although it took 14 days of forecast to double the initial error variance. We further found that the model error due to numerical discretization as arising in the standard Kalman filter algorithm, is comparable in size to the physical model error due to wind and transport modeling errors together. Separate assimilations of CLAES and HALOE observations were compared to validate the state estimate away from the observed locations. A wave-breaking event that took place several thousands of kilometers away from the HALOE observation locations was well captured by the Kalman filter due to highly anisotropic forecast error correlations. The forecast error correlation in the assimilation of the CLAES observations was found to have a structure similar to that in pure forecast mode except for smaller length scales. Finally, we have conducted an analysis of the variance and correlation dynamics to determine their relative importance in chemical tracer assimilation problems. Results show that the optimality of a tracer assimilation system depends, for the most part, on having flow-dependent error correlation rather than on evolving the error variance.
Data assimilation to extract soil moisture information from SMAP observations
USDA-ARS?s Scientific Manuscript database
This study compares different methods to extract soil moisture information through the assimilation of Soil Moisture Active Passive (SMAP) observations. Neural Network(NN) and physically-based SMAP soil moisture retrievals were assimilated into the NASA Catchment model over the contiguous United Sta...
The COsmic-ray Soil Moisture Interaction Code (COSMIC) for use in data assimilation
NASA Astrophysics Data System (ADS)
Shuttleworth, J.; Rosolem, R.; Zreda, M.; Franz, T.
2013-08-01
Soil moisture status in land surface models (LSMs) can be updated by assimilating cosmic-ray neutron intensity measured in air above the surface. This requires a fast and accurate model to calculate the neutron intensity from the profiles of soil moisture modeled by the LSM. The existing Monte Carlo N-Particle eXtended (MCNPX) model is sufficiently accurate but too slow to be practical in the context of data assimilation. Consequently an alternative and efficient model is needed which can be calibrated accurately to reproduce the calculations made by MCNPX and used to substitute for MCNPX during data assimilation. This paper describes the construction and calibration of such a model, COsmic-ray Soil Moisture Interaction Code (COSMIC), which is simple, physically based and analytic, and which, because it runs at least 50 000 times faster than MCNPX, is appropriate in data assimilation applications. The model includes simple descriptions of (a) degradation of the incoming high-energy neutron flux with soil depth, (b) creation of fast neutrons at each depth in the soil, and (c) scattering of the resulting fast neutrons before they reach the soil surface, all of which processes may have parameterized dependency on the chemistry and moisture content of the soil. The site-to-site variability in the parameters used in COSMIC is explored for 42 sample sites in the COsmic-ray Soil Moisture Observing System (COSMOS), and the comparative performance of COSMIC relative to MCNPX when applied to represent interactions between cosmic-ray neutrons and moist soil is explored. At an example site in Arizona, fast-neutron counts calculated by COSMIC from the average soil moisture profile given by an independent network of point measurements in the COSMOS probe footprint are similar to the fast-neutron intensity measured by the COSMOS probe. It was demonstrated that, when used within a data assimilation framework to assimilate COSMOS probe counts into the Noah land surface model at the Santa Rita Experimental Range field site, the calibrated COSMIC model provided an effective mechanism for translating model-calculated soil moisture profiles into aboveground fast-neutron count when applied with two radically different approaches used to remove the bias between data and model.
Assimilation of Passive and Active Microwave Soil Moisture Retrievals
NASA Technical Reports Server (NTRS)
Draper, C. S.; Reichle, R. H.; DeLannoy, G. J. M.; Liu, Q.
2012-01-01
Root-zone soil moisture is an important control over the partition of land surface energy and moisture, and the assimilation of remotely sensed near-surface soil moisture has been shown to improve model profile soil moisture [1]. To date, efforts to assimilate remotely sensed near-surface soil moisture at large scales have focused on soil moisture derived from the passive microwave Advanced Microwave Scanning Radiometer (AMSR-E) and the active Advanced Scatterometer (ASCAT; together with its predecessor on the European Remote Sensing satellites (ERS. The assimilation of passive and active microwave soil moisture observations has not yet been directly compared, and so this study compares the impact of assimilating ASCAT and AMSR-E soil moisture data, both separately and together. Since the soil moisture retrieval skill from active and passive microwave data is thought to differ according to surface characteristics [2], the impact of each assimilation on the model soil moisture skill is assessed according to land cover type, by comparison to in situ soil moisture observations.
Bias Correction for Assimilation of Retrieved AIRS Profiles of Temperature and Humidity
NASA Technical Reports Server (NTRS)
Blakenship, Clay; Zavodsky, Bradley; Blackwell, William
2014-01-01
The Atmospheric Infrared Sounder (AIRS) is a hyperspectral radiometer aboard NASA's Aqua satellite designed to measure atmospheric profiles of temperature and humidity. AIRS retrievals are assimilated into the Weather Research and Forecasting (WRF) model over the North Pacific for some cases involving "atmospheric rivers". These events bring a large flux of water vapor to the west coast of North America and often lead to extreme precipitation in the coastal mountain ranges. An advantage of assimilating retrievals rather than radiances is that information in partly cloudy fields of view can be used. Two different Level 2 AIRS retrieval products are compared: the Version 6 AIRS Science Team standard retrievals and a neural net retrieval from MIT. Before assimilation, a bias correction is applied to adjust each layer of retrieved temperature and humidity so the layer mean values agree with a short-term model climatology. WRF runs assimilating each of the products are compared against each other and against a control run with no assimilation. Forecasts are against ERA reanalyses.
NASA Technical Reports Server (NTRS)
Fukumori, I.; Fu, L. L.; Chao, Y.
1998-01-01
The feasibility of assimilating satellite altimetry data into a global ocean general ocean general circulation model is studied. Three years of TOPEX/POSEIDON data is analyzed using a global, three-dimensional, nonlinear primitive equation model.
The Improvement of Spatial-Temporal PM2.5 Resolution in Taiwan by Using Data Assimilation Method
NASA Astrophysics Data System (ADS)
Lin, Yong-Qing; Lin, Yuan-Chien
2017-04-01
Forecasting air pollution concentration, e.g., the concentration of PM2.5, is of great significance to protect human health and the environment. Accurate prediction of PM2.5 concentrations is limited in number and the data quality of air quality monitoring stations. The spatial and temporal variations of PM2.5 concentrations are measured by 76 National Air Quality Monitoring Stations (built by the TW-EPA) in Taiwan. The National Air Quality Monitoring Stations are costly and scarce because of the highly precise instrument and their size. Therefore, many places still out of the range of National Air Quality Monitoring Stations. Recently, there are an enormous number of portable air quality sensors called "AirBox" developed jointly by the Taiwan government and a private company. By virtue of its price and portative, the AirBox can provide higher resolution of space-time PM2.5 measurement. However, the spatiotemporal distribution and data quality are different between AirBox and National Air Quality Monitoring Stations. To integrate the heterogeneous PM2.5 data, the data assimilation method should be performed before further analysis. In this study, we propose a data assimilation method based on Ensemble Kalman Filter (EnKF), which is a variant of classic Kalman Filter, can be used to combine additional heterogeneous data from different source while modeling to improve the estimation of spatial-temporal PM2.5 concentration. The assimilation procedure uses the advantages of the two kinds of heterogeneous data and merges them to produce the final estimation. The results have shown that by combining AirBox PM2.5 data as additional information in our model based EnKF can bring the better estimation of spatial-temporal PM2.5 concentration and improve the it's space-time resolution. Under the approach proposed in this study, higher spatial-temporal resoultion could provide a very useful information for a better spatial-temporal data analysis and further environmental management, such as air pollution source localization and micro-scale air pollution analysis. Keywords: PM2.5, Data Assimilation, Ensemble Kalman Filter, Air Quality
Impact of Ozone Radiative Feedbacks on Global Weather Forecasting
NASA Astrophysics Data System (ADS)
Ivanova, I.; de Grandpré, J.; Rochon, Y. J.; Sitwell, M.
2017-12-01
A coupled Chemical Data Assimilation system for ozone is being developed at Environment and Climate Change Canada (ECCC) with the goals to improve the forecasting of UV index and the forecasting of air quality with the Global Environmental Multi-scale (GEM) Model for Air quality and Chemistry (MACH). Furthermore, this system provides an opportunity to evaluate the benefit of ozone assimilation for improving weather forecasting with the ECCC Global Deterministic Prediction System (GDPS) for Numerical Weather Prediction (NWP). The present UV index forecasting system uses a statistical approach for evaluating the impact of ozone in clear-sky and cloudy conditions, and the use of real-time ozone analysis and ozone forecasts is highly desirable. Improving air quality forecasting with GEM-MACH further necessitates the development of integrated dynamical-chemical assimilation system. Upon its completion, real-time ozone analysis and ozone forecasts will also be available for piloting the regional air quality system, and for the computation of ozone heating rates, in replacement of the monthly mean ozone distribution currently used in the GDPS. Experiments with ozone radiative feedbacks were run with the GDPS at 25km resolution and 84 levels with a lid at 0.1 hPa and were initialized with ozone analysis that has assimilated total ozone column from OMI, OMPS, and GOME satellite instruments. The results show that the use of prognostic ozone for the computation of the heating/cooling rates has a significant impact on the temperature distribution throughout the stratosphere and upper troposphere regions. The impact of ozone assimilation is especially significant in the tropopause region, where ozone heating in the infrared wavelengths is important and ozone lifetime is relatively long. The implementation of the ozone radiative feedback in the GDPS requires addressing various issues related to model biases (temperature and humidity) and biases in equilibrium state (ozone mixing ratio, air temperature and overhead column ozone) used for the calculation of the linearized photochemical production and loss of ozone. Furthermore the radiative budget in the tropopause region is strongly affected by water vapor cooling, which impact requires further evaluation for the use in chemically coupled operational NWP systems.
Impact of Flow-Dependent Error Correlations and Tropospheric Chemistry on Assimilated Ozone
NASA Technical Reports Server (NTRS)
Wargan, K.; Stajner, I.; Hayashi, H.; Pawson, S.; Jones, D. B. A.
2003-01-01
The presentation compares different versions of a global three-dimensional ozone data assimilation system developed at NASA's Data Assimilation Office. The Solar Backscatter Ultraviolet/2 (SBUV/2) total and partial ozone column retrievals are the sole data assimilated in all of the experiments presented. We study the impact of changing the forecast error covariance model from a version assuming static correlations with a one that captures a short-term Lagrangian evolution of those correlations. This is further combined with a study of the impact of neglecting the tropospheric ozone production, loss and dry deposition rates, which are obtained from the Harvard GEOS-CHEM model. We compare statistical characteristics of the assimilated data and the results of validation against independent observations, obtained from WMO balloon-borne sondes and the Polar Ozone and Aerosol Measurement (POAM) III instrument. Experiments show that allowing forecast error correlations to evolve with the flow results in positive impact on assimilated ozone within the regions where data were not assimilated, particularly at high latitudes in both hemispheres. On the other hand, the main sensitivity to tropospheric chemistry is in the Tropics and sub-Tropics. The best agreement between the assimilated ozone and the in-situ sonde data is in the experiment using both flow-dependent error covariances and tropospheric chemistry.
Patterns and Variability in Global Ocean Chlorophyll: Satellite Observations and Modeling
NASA Technical Reports Server (NTRS)
Gregg, Watson
2004-01-01
Recent analyses of SeaWiFS data have shown that global ocean chlorophyll has increased more than 4% since 1998. The North Pacific ocean basin has increased nearly 19%. These trend analyses follow earlier results showing decadal declines in global ocean chlorophyll and primary production. To understand the causes of these changes and trends we have applied the newly developed NASA Ocean Biogeochemical Assimilation Model (OBAM), which is driven in mechanistic fashion by surface winds, sea surface temperature, atmospheric iron deposition, sea ice, and surface irradiance. The model utilizes chlorophyll from SeaWiFS in a daily assimilation. The model has in place many of the climatic variables that can be expected to produce the changes observed in SeaWiFS data. This enables us to diagnose the model performance, the assimilation performance, and possible causes for the increase in chlorophyll. A full discussion of the changes and trends, possible causes, modeling approaches, and data assimilation will be the focus of the seminar.
A study of regional-scale aerosol assimilation using a Stretch-NICAM
NASA Astrophysics Data System (ADS)
Misawa, S.; Dai, T.; Schutgens, N.; Nakajima, T.
2013-12-01
Although aerosol is considered to be harmful to human health and it became a social issue, aerosol models and emission inventories include large uncertainties. In recent studies, data assimilation is applied to aerosol simulation to get more accurate aerosol field and emission inventory. Most of these studies, however, are carried out only on global scale, and there are only a few researches about regional scale aerosol assimilation. In this study, we have created and verified an aerosol assimilation system on regional scale, in hopes to reduce an error associated with the aerosol emission inventory. Our aerosol assimilation system has been developed using an atmospheric climate model, NICAM (Non-hydrostaric ICosahedral Atmospheric Model; Satoh et al., 2008) with a stretch grid system and coupled with an aerosol transport model, SPRINTARS (Takemura et al., 2000). Also, this assimilation system is based on local ensemble transform Kalman filter (LETKF). To validate this system, we used a simulated observational data by adding some artificial errors to the surface aerosol fields constructed by Stretch-NICAM-SPRINTARS. We also included a small perturbation in original emission inventory. This assimilation with modified observational data and emission inventory was performed in Kanto-plane region around Tokyo, Japan, and the result indicates the system reducing a relative error of aerosol concentration by 20%. Furthermore, we examined a sensitivity of the aerosol assimilation system by varying the number of total ensemble (5, 10 and 15 ensembles) and local patch (domain) size (radius of 50km, 100km and 200km), both of which are the tuning parameters in LETKF. The result of the assimilation with different ensemble number 5, 10 and 15 shows that the larger the number of ensemble is, the smaller the relative error become. This is consistent with ensemble Kalman filter theory and imply that this assimilation system works properly. Also we found that assimilation system does not work well in a case of 200km radius, while a domain of 50km radius is less efficient than when domain of 100km radius is used.Therefore, we expect that the optimized size lies somewhere between 50km to 200km. We will show a real analysis of real data from suspended particle matter (SPM) network in the Kanto-plane region.
Ensemble data assimilation in the Red Sea: sensitivity to ensemble selection and atmospheric forcing
NASA Astrophysics Data System (ADS)
Toye, Habib; Zhan, Peng; Gopalakrishnan, Ganesh; Kartadikaria, Aditya R.; Huang, Huang; Knio, Omar; Hoteit, Ibrahim
2017-07-01
We present our efforts to build an ensemble data assimilation and forecasting system for the Red Sea. The system consists of the high-resolution Massachusetts Institute of Technology general circulation model (MITgcm) to simulate ocean circulation and of the Data Research Testbed (DART) for ensemble data assimilation. DART has been configured to integrate all members of an ensemble adjustment Kalman filter (EAKF) in parallel, based on which we adapted the ensemble operations in DART to use an invariant ensemble, i.e., an ensemble Optimal Interpolation (EnOI) algorithm. This approach requires only single forward model integration in the forecast step and therefore saves substantial computational cost. To deal with the strong seasonal variability of the Red Sea, the EnOI ensemble is then seasonally selected from a climatology of long-term model outputs. Observations of remote sensing sea surface height (SSH) and sea surface temperature (SST) are assimilated every 3 days. Real-time atmospheric fields from the National Center for Environmental Prediction (NCEP) and the European Center for Medium-Range Weather Forecasts (ECMWF) are used as forcing in different assimilation experiments. We investigate the behaviors of the EAKF and (seasonal-) EnOI and compare their performances for assimilating and forecasting the circulation of the Red Sea. We further assess the sensitivity of the assimilation system to various filtering parameters (ensemble size, inflation) and atmospheric forcing.
CATS Near Real Time Data Products: Applications for Assimilation Into the NASA GEOS-5 AGCM
NASA Technical Reports Server (NTRS)
Hlavka, D. L.; Nowottnick, E. P.; Yorks, J. E.; Da Silva, A.; McGill, M. J.; Palm, S. P.; Selmer, P. A.; Pauly, R. M.; Ozog, S.
2017-01-01
From February 2015 through October 2017, the NASA Cloud-Aerosol Transport System (CATS) backscatter lidar operated on the International Space Station (ISS) as a technology demonstration for future Earth Science Missions, providing vertical measurements of cloud and aerosols properties. Owing to its location on the ISS, a cornerstone technology demonstration of CATS was the capability to acquire, process, and disseminate near-real time (NRT) data within 6 hours of observation time. CATS NRT data has several applications, including providing notification of hazardous events for air traffic control and air quality advisories, field campaign flight planning, as well as for constraining cloud and aerosol distributions in via data assimilation in aerosol transport models. Â Recent developments in aerosol data assimilation techniques have permitted the assimilation of aerosol optical thickness (AOT), a 2-dimensional column integrated quantity that is reflective of the simulated aerosol loading in aerosol transport models. While this capability has greatly improved simulated AOT forecasts, the vertical position, a key control on aerosol transport, is often not impacted when 2-D AOT is assimilated. Here, we present preliminary efforts to assimilate CATS aerosol observations into the NASA Goddard Earth Observing System version 5 (GEOS-5) atmospheric general circulation model and assimilation system using a 1-D Variational (1-D VAR) ensemble approach, demonstrating the utility of CATS for future Earth Science Missions.
IASI Radiance Data Assimilation in Local Ensemble Transform Kalman Filter
NASA Astrophysics Data System (ADS)
Cho, K.; Hyoung-Wook, C.; Jo, Y.
2016-12-01
Korea institute of Atmospheric Prediction Systems (KIAPS) is developing NWP model with data assimilation systems. Local Ensemble Transform Kalman Filter (LETKF) system, one of the data assimilation systems, has been developed for KIAPS Integrated Model (KIM) based on cubed-sphere grid and has successfully assimilated real data. LETKF data assimilation system has been extended to 4D- LETKF which considers time-evolving error covariance within assimilation window and IASI radiance data assimilation using KPOP (KIAPS package for observation processing) with RTTOV (Radiative Transfer for TOVS). The LETKF system is implementing semi operational prediction including conventional (sonde, aircraft) observation and AMSU-A (Advanced Microwave Sounding Unit-A) radiance data from April. Recently, the semi operational prediction system updated radiance observations including GPS-RO, AMV, IASI (Infrared Atmospheric Sounding Interferometer) data at July. A set of simulation of KIM with ne30np4 and 50 vertical levels (of top 0.3hPa) were carried out for short range forecast (10days) within semi operation prediction LETKF system with ensemble forecast 50 members. In order to only IASI impact, our experiments used only conventional and IAIS radiance data to same semi operational prediction set. We carried out sensitivity test for IAIS thinning method (3D and 4D). IASI observation number was increased by temporal (4D) thinning and the improvement of IASI radiance data impact on the forecast skill of model will expect.
NASA Technical Reports Server (NTRS)
Suarez, Max J. (Editor); Pfaendtner, James; Bloom, Stephen; Lamich, David; Seablom, Michael; Sienkiewicz, Meta; Stobie, James; Dasilva, Arlindo
1995-01-01
This report describes the analysis component of the Goddard Earth Observing System, Data Assimilation System, Version 1 (GEOS-1 DAS). The general features of the data assimilation system are outlined, followed by a thorough description of the statistical interpolation algorithm, including specification of error covariances and quality control of observations. We conclude with a discussion of the current status of development of the GEOS data assimilation system. The main components of GEOS-1 DAS are an atmospheric general circulation model and an Optimal Interpolation algorithm. The system is cycled using the Incremental Analysis Update (IAU) technique in which analysis increments are introduced as time independent forcing terms in a forecast model integration. The system is capable of producing dynamically balanced states without the explicit use of initialization, as well as a time-continuous representation of non- observables such as precipitation and radiational fluxes. This version of the data assimilation system was used in the five-year reanalysis project completed in April 1994 by Goddard's Data Assimilation Office (DAO) Data from this reanalysis are available from the Goddard Distributed Active Center (DAAC), which is part of NASA's Earth Observing System Data and Information System (EOSDIS). For information on how to obtain these data sets, contact the Goddard DAAC at (301) 286-3209, EMAIL daac@gsfc.nasa.gov.
Assimilation of CryoSat-2 altimetry to a hydrodynamic model of the Brahmaputra river
NASA Astrophysics Data System (ADS)
Schneider, Raphael; Nygaard Godiksen, Peter; Ridler, Marc-Etienne; Madsen, Henrik; Bauer-Gottwein, Peter
2016-04-01
Remote sensing provides valuable data for parameterization and updating of hydrological models, for example water level measurements of inland water bodies from satellite radar altimeters. Satellite altimetry data from repeat-orbit missions such as Envisat, ERS or Jason has been used in many studies, also synthetic wide-swath altimetry data as expected from the SWOT mission. This study is one of the first hydrologic applications of altimetry data from a drifting orbit satellite mission, namely CryoSat-2. CryoSat-2 is equipped with the SIRAL instrument, a new type of radar altimeter similar to SRAL on Sentinel-3. CryoSat-2 SARIn level 2 data is used to improve a 1D hydrodynamic model of the Brahmaputra river basin in South Asia set up in the DHI MIKE 11 software. CryoSat-2 water levels were extracted over river masks derived from Landsat imagery. After discharge calibration, simulated water levels were fitted to the CryoSat-2 data along the Assam valley by adapting cross section shapes and datums. The resulting hydrodynamic model shows accurate spatio-temporal representation of water levels, which is a prerequisite for real-time model updating by assimilation of CryoSat-2 altimetry or multi-mission data in general. For this task, a data assimilation framework has been developed and linked with the MIKE 11 model. It is a flexible framework that can assimilate water level data which are arbitrarily distributed in time and space. Different types of error models, data assimilation methods, etc. can easily be used and tested. Furthermore, it is not only possible to update the water level of the hydrodynamic model, but also the states of the rainfall-runoff models providing the forcing of the hydrodynamic model. The setup has been used to assimilate CryoSat-2 observations over the Assam valley for the years 2010 to 2013. Different data assimilation methods and localizations were tested, together with different model error representations. Furthermore, the impact of different filtering and clustering methods and error descriptions of the CryoSat-2 observations was evaluated. Performance improvement in terms of discharge and water level forecast due to the assimilation of satellite altimetry data was then evaluated. The model forecasts were also compared to climatology and persistence forecasts. Using ensemble based filters, the evaluation was done not only based on performance criteria for the central forecast such as root-mean-square error (RMSE) and Nash-Sutcliffe model efficiency (NSE), but also based on sharpness, reliability and continuous ranked probability score (CRPS) of the ensemble of probabilistic forecasts.
The use of satellite data assimilation methods in regional NWP for solar irradiance forecasting
NASA Astrophysics Data System (ADS)
Kurzrock, Frederik; Cros, Sylvain; Chane-Ming, Fabrice; Potthast, Roland; Linguet, Laurent; Sébastien, Nicolas
2016-04-01
As an intermittent energy source, the injection of solar power into electricity grids requires irradiance forecasting in order to ensure grid stability. On time scales of more than six hours ahead, numerical weather prediction (NWP) is recognized as the most appropriate solution. However, the current representation of clouds in NWP models is not sufficiently precise for an accurate forecast of solar irradiance at ground level. Dynamical downscaling does not necessarily increase the quality of irradiance forecasts. Furthermore, incorrectly simulated cloud evolution is often the cause of inaccurate atmospheric analyses. In non-interconnected tropical areas, the large amplitudes of solar irradiance variability provide abundant solar yield but present significant problems for grid safety. Irradiance forecasting is particularly important for solar power stakeholders in these regions where PV electricity penetration is increasing. At the same time, NWP is markedly more challenging in tropic areas than in mid-latitudes due to the special characteristics of tropical homogeneous convective air masses. Numerous data assimilation methods and strategies have evolved and been applied to a large variety of global and regional NWP models in the recent decades. Assimilating data from geostationary meteorological satellites is an appropriate approach. Indeed, models converting radiances measured by satellites into cloud properties already exist. Moreover, data are available at high temporal frequencies, which enable a pertinent cloud cover evolution modelling for solar energy forecasts. In this work, we present a survey of different approaches which aim at improving cloud cover forecasts using the assimilation of geostationary meteorological satellite data into regional NWP models. Various approaches have been applied to a variety of models and satellites and in different regions of the world. Current methods focus on the assimilation of cloud-top information, derived from infrared channels. For example, those information have been directly assimilated by modifying the water vapour profile in the initial conditions of the WRF model in California using GOES satellite imagery. In Europe, the assimilation of cloud-top height and relative humidity has been performed in an indirect approach using an ensemble Kalman filter. In this case Meteosat SEVIRI cloud information has been assimilated in the COSMO model. Although such methods generally provide improved cloud cover forecasts in mid-latitudes, the major limitation is that only clear-sky or completely cloudy cases can be considered. Indeed, fractional clouds cause a measured signal mixing cold clouds and warmer Earth surface. If the model's initial state is directly forced by cloud properties observed by satellite, the changed model fields have to be smoothed in order to avoid numerical instability. Other crucial aspects which influence forecast quality in the case of satellite radiance assimilation are channel selection, bias and error treatment. The overall promising satellite data assimilation methods in regional NWP have not yet been explicitly applied and tested under tropical conditions. Therefore, a deeper understanding on the benefits of such methods is necessary to improve irradiance forecast schemes.
On the problem of data assimilation by means of synchronization
NASA Astrophysics Data System (ADS)
Szendro, Ivan G.; RodríGuez, Miguel A.; López, Juan M.
2009-10-01
The potential use of synchronization as a method for data assimilation is investigated in a Lorenz96 model. Data representing the reality are obtained from a Lorenz96 model with added noise. We study the assimilation scheme by means of synchronization for different noise intensities. We use a novel plot representation of the synchronization error in a phase diagram consisting of two variables: the amplitude and the width of the error after a suitable logarithmic transformation (the so-called mean-variance of logarithms diagram). Our main result concerns the existence of an "optimal" coupling for which the synchronization is maximal. We finally show how this allows us to quantify the degree of assimilation, providing a criterion for the selection of optimal couplings and validity of models.
NASA Technical Reports Server (NTRS)
Keppenne, Christian; Vernieres, Guillaume; Rienecker, Michele; Jacob, Jossy; Kovach, Robin
2011-01-01
Satellite altimetry measurements have provided global, evenly distributed observations of the ocean surface since 1993. However, the difficulties introduced by the presence of model biases and the requirement that data assimilation systems extrapolate the sea surface height (SSH) information to the subsurface in order to estimate the temperature, salinity and currents make it difficult to optimally exploit these measurements. This talk investigates the potential of the altimetry data assimilation once the biases are accounted for with an ad hoc bias estimation scheme. Either steady-state or state-dependent multivariate background-error covariances from an ensemble of model integrations are used to address the problem of extrapolating the information to the sub-surface. The GMAO ocean data assimilation system applied to an ensemble of coupled model instances using the GEOS-5 AGCM coupled to MOM4 is used in the investigation. To model the background error covariances, the system relies on a hybrid ensemble approach in which a small number of dynamically evolved model trajectories is augmented on the one hand with past instances of the state vector along each trajectory and, on the other, with a steady state ensemble of error estimates from a time series of short-term model forecasts. A state-dependent adaptive error-covariance localization and inflation algorithm controls how the SSH information is extrapolated to the sub-surface. A two-step predictor corrector approach is used to assimilate future information. Independent (not-assimilated) temperature and salinity observations from Argo floats are used to validate the assimilation. A two-step projection method in which the system first calculates a SSH increment and then projects this increment vertically onto the temperature, salt and current fields is found to be most effective in reconstructing the sub-surface information. The performance of the system in reconstructing the sub-surface fields is particularly impressive for temperature, but not as satisfactory for salt.
NASA Astrophysics Data System (ADS)
Jackson-Booth, N.; Parker, J.; Pryse, S. E.; Buckland, R.
2017-12-01
The Electron Density Assimilative Model (EDAM) is an ionospheric model that assimilates data sources into a background model, currently provided by IRI2007, to generate a global, or regional, 3D representation of the ionospheric electron density. In this study, slant total electron content (sTEC) between GPS satellites and 43 ground receivers in Europe were assimilated into EDAM to model the ionospheric electron density over western Europe. For the evaluation of the model an additional ground receiver (the truth station) was considered, which was not used in the assimilation process. Slant total electron contents for this station were calculated through the EDAM model along satellite-to-receiver paths corresponding to those of the observations made by the receiver. The modelled and observed sTEC were compared for each satellite and every day, between September 2002 and August 2003. For the comparison standard deviations of the modelled and observed sTEC were determined. These were used in modified Taylor Diagrams to display the mean-removed rms difference between the model and observations, the correlation between the two data sets and the bias of the modelled data. Taylor diagrams were obtained for the entire year, and each season and month. Results of the comparisons are presented and discussed, with a specific interest in times that show increased rms differences and decreased correlations between the data sets. The effect of the satellite calibration biases on the results are also considered.
NASA Astrophysics Data System (ADS)
Dumitrache, Rodica Claudia; Iriza, Amalia; Maco, Bogdan Alexandru; Barbu, Cosmin Danut; Hirtl, Marcus; Mantovani, Simone; Nicola, Oana; Irimescu, Anisoara; Craciunescu, Vasile; Ristea, Alina; Diamandi, Andrei
2016-10-01
The numerical forecast of particulate matter concentrations in general, and PM10 in particular is a theme of high socio-economic relevance. The aim of this study was to investigate the impact of ground and satellite data assimilation of PM10 observations into the Weather Research and Forecasting model coupled with Chemistry (WRF-CHEM) numerical air quality model for Romanian territory. This is the first initiative of the kind for this domain of interest. Assimilation of satellite information - e.g. AOT's in air quality models is of interest due to the vast spatial coverage of the observations. Support Vector Regression (SVR) techniques are used to estimate the PM content from heterogeneous data sources, including EO products (Aerosol Optical Thickness), ground measurements and numerical model data (temperature, humidity, wind, etc.). In this study we describe the modeling framework employed and present the evaluation of the impact from the data assimilation of PM10 observations on the forecast of the WRF-CHEM model. Integrations of the WRF-CHEM model in data assimilation enabled/disabled configurations allowed the evaluation of satellite and ground data assimilation impact on the PM10 forecast performance for the Romanian territory. The model integration and evaluation were performed for two months, one in winter conditions (January 2013) and one in summer conditions (June 2013).
Boomerang recruitment: bridging the gap.
Hart, Karen A
2009-01-01
In today's competitive health care recruitment environment, one of the most cost-effective and successful recruitment strategies is alumni or "boomerang" recruitment. A proven business model, alumni recruitment is just beginning to be used in a significant way in the health care arena. The cost to recruit alumni is much lower than for those in the general workforce and the alumni population is a known quantity. Alumni will assimilate much more easily into your corporate culture, will need less orientation and onboarding, and will be more productive.
Air Quality Activities in the Global Modeling and Assimilation Office
NASA Technical Reports Server (NTRS)
Pawson, Steven
2016-01-01
GMAO's mission is to enhance the use of NASA's satellite observations in weather and climate modeling. This presentation will be discussing GMAO's mission, value of data assimilation, and some relevant (available) GMAO data products.
NASA Astrophysics Data System (ADS)
Losa, Svetlana; Danilov, Sergey; Schröter, Jens; Nerger, Lars; Maßmann, Silvia; Janssen, Frank
2014-05-01
In order to improve the hydrography forecast of the North and Baltic Seas, the operational circulation model of the German Federal Maritime and Hydrographic Agency (BSH) has been augmented by a data assimilation (DA) system. The DA system has been developed based on the Singular Evolution Interpolated Kalman (SEIK) filter algorithm (Pham, 1998) coded within the Parallel Data Assimilation Framework (Nerger et al., 2004, Nerger and Hiller, 2012). Previously the only data assimilated were sea surface temperature (SST) measurements obtained with the Advanced Very High Resolution Radiometer (AVHRR) aboard NOAA's polar orbiting satellites. While the quality of the forecast has been significantly improved by assimilating the satellite data (Losa et al., 2012, Losa et al., 2014), assimilation of in situ observational temperature (T) and salinity (S) profiles has allowed for further improvement. Assimilating MARNET time series and CTD and Scanfish measurements, however, required a careful calibration of the DA system with respect to local analysis. The study addresses the problem of the local SEIK analysis accounting for the data within a certain radius. The localisation radius is considered spatially variable and dependent on the system local dynamics. As such, we define the radius of the data influence based on the energy ratio of the baroclinic and barotropic flows. D. T. Pham, J. Verron, L. Gourdeau, 1998. Singular evolutive Kalman filters for data assimilation in oceanography, C. R. Acad. Sci. Paris, Earth and Planetary Sciences, 326, 255-260. L. Nerger, W. Hiller, J. Schröter, 2004. PDAF - The Parallel Data Assimilation Framework: Experiences with Kalman Filtering, In: Zwieflhofer, W., Mozdzynski, G. (Eds.), Use of high performance computing in meteorology: proceedings of the Eleventh ECMWF Workshop on the Use of High Performance Computing in Meteorology. Singapore: World Scientific, Reading, UK, 63-83. L. Nerger, W. Hiller, 2012. Software for Ensemble-based Data Assimilation Systems —Implementation Strategies and Scalability, Computers and Geosciences, 55, 110-118. S. N. Losa, S. Danilov, J. Schröter, L. Nerger, S. Maßmann, F. Janssen, 2012. Assimilating NOAA SST data into the BSH operational circulation model for the North and Baltic Seas: Inference about the data. Journal of Marine Systems, 105-108, 152-162. S. N. Losa, S. Danilov, J. Schröter, L. Nerger, S. Maßmann, F. Janssen, 2014. Assimilating NOAA SST data into the BSH operational circulation model for the North and Baltic Seas: Part.2 Sensitivity of the forecast's skill to the prior model error statistics. Journal of Marine Systems, 129, 259-270.
Ensemble Data Assimilation Without Ensembles: Methodology and Application to Ocean Data Assimilation
NASA Technical Reports Server (NTRS)
Keppenne, Christian L.; Rienecker, Michele M.; Kovach, Robin M.; Vernieres, Guillaume
2013-01-01
Two methods to estimate background error covariances for data assimilation are introduced. While both share properties with the ensemble Kalman filter (EnKF), they differ from it in that they do not require the integration of multiple model trajectories. Instead, all the necessary covariance information is obtained from a single model integration. The first method is referred-to as SAFE (Space Adaptive Forecast error Estimation) because it estimates error covariances from the spatial distribution of model variables within a single state vector. It can thus be thought of as sampling an ensemble in space. The second method, named FAST (Flow Adaptive error Statistics from a Time series), constructs an ensemble sampled from a moving window along a model trajectory. The underlying assumption in these methods is that forecast errors in data assimilation are primarily phase errors in space and/or time.
Real-data tests of a single-Doppler radar assimilation system
NASA Astrophysics Data System (ADS)
Nehrkorn, Thomas; Hegarty, James; Hamill, Thomas M.
1994-06-01
Real data tests of a single-Doppler radar data assimilation and forecast system have been conducted for a Florida sea breeze case. The system consists of a hydrostatic mesoscale model used for prediction of the preconvective boundary layer, an objective analysis that combines model first guess fields with radar derived horizontal winds, a thermodynamic retrieval scheme that obtains temperature information from the three-dimensional wind field and its temporal evolution, and a Newtonian nudging scheme for forcing the model forecast to closer agreement with the analysis. As was found in earlier experiments with simulated data, assimilation using Newtonian nudging benefits from temperature data in addition to wind data. The thermodynamic retrieval technique was successful in retrieving a horizontal temperature gradient from the radar-derived wind fields that, when assimilated into the model, led to a significantly improved forecast of the seabreeze strength and position.
A new data assimilation engine for physics-based thermospheric density models
NASA Astrophysics Data System (ADS)
Sutton, E. K.; Henney, C. J.; Hock-Mysliwiec, R.
2017-12-01
The successful assimilation of data into physics-based coupled Ionosphere-Thermosphere models requires rethinking the filtering techniques currently employed in fields such as tropospheric weather modeling. In the realm of Ionospheric-Thermospheric modeling, the estimation of system drivers is a critical component of any reliable data assimilation technique. How to best estimate and apply these drivers, however, remains an open question and active area of research. The recently developed method of Iterative Re-Initialization, Driver Estimation and Assimilation (IRIDEA) accounts for the driver/response time-delay characteristics of the Ionosphere-Thermosphere system relative to satellite accelerometer observations. Results from two near year-long simulations are shown: (1) from a period of elevated solar and geomagnetic activity during 2003, and (2) from a solar minimum period during 2007. This talk will highlight the challenges and successes of implementing a technique suited for both solar min and max, as well as expectations for improving neutral density forecasts.
NASA Astrophysics Data System (ADS)
Albergel, Clément; Munier, Simon; Leroux, Delphine; Fairbairn, David; Dorigo, Wouter; Decharme, Bertrand; Calvet, Jean-Christophe
2017-04-01
Modelling platforms including Land Surface Models (LSMs), forced by gridded atmospheric variables and coupled to river routing models are necessary to increase our understanding of the terrestrial water cycle. These LSMs need to simulate biogeophysical variables like Surface and Root Zone Soil Moisture (SSM, RZSM), Leaf Area Index (LAI) in a way that is fully consistent with the representation of surface/energy fluxes and river discharge simulations. Global SSM and LAI products are now operationally available from spaceborne instruments and they can be used to constrain LSMs through Data Assimilation (DA) techniques. In this study, an offline data assimilation system implemented in Météo-France's modelling platform (SURFEX) is tested over Europe and the Mediterranean basin to increase prediction accuracy for land surface variables. The resulting Land Data Assimilation System (LDAS) makes use of a simplified Extended Kalman Filter (SEKF). It is able to ingests information from satellite derived (i) SSM from the latest version of the ESA Climate Change Initiative as well as (ii) LAI from the Copernicus GLS project to constrain the multilayer, CO2-responsive version of the Interactions Between Soil, Biosphere, and Atmosphere model (ISBA) coupled with Météo-France's version of the Total Runoff Integrating Pathways continental hydrological system (ISBA-CTRIP). ERA-Interim observations based atmospheric forcing with precipitations corrected from Global Precipitation Climatology Centre observations (GPCC) is used to force ISBA-CTRIP at a resolution of 0.5 degree over 2000-2015. The model sensitivity to the assimilated observations is presented and a set of statistical diagnostics used to evaluate the impact of assimilating SSM and LAI on different model biogeophysical variables are provided. It is demonstrated that the assimilation scheme works effectively. The SEKF is able to extract useful information from the data signal at the grid scale and distribute the RZSM and LAI increments throughout the model impacting soil moisture, terrestrial vegetation and water cycle, surface carbon and energy fluxes.
Mapping surface heat fluxes by assimilating GOES land surface temperature and SMAP products
NASA Astrophysics Data System (ADS)
Lu, Y.; Steele-Dunne, S. C.; Van De Giesen, N.
2017-12-01
Surface heat fluxes significantly affect the land-atmosphere interaction, but their modelling is often hindered by the lack of in-situ measurements and the high spatial heterogeneity. Here, we propose a hybrid particle assimilation strategy to estimate surface heat fluxes by assimilating GOES land surface temperature (LST) data and SMAP products into a simple dual-source surface energy balance model, in which the requirement for in-situ data is minimized. The study aims to estimate two key parameters: a neutral bulk heat transfer coefficient (CHN) and an evaporative fraction (EF). CHN scales the sum of surface energy fluxes, and EF represents the partitioning between flux components. To bridge the huge resolution gap between GOES and SMAP data, SMAP data are assimilated using a particle filter to update soil moisture which constrains EF, and GOES data are assimilated with an adaptive particle batch smoother to update CHN. The methodology is applied to an area in the US Southern Great Plains with forcing data from NLDAS-2 and the GPM mission. Assessment against in-situ observations suggests that the sensible and latent heat flux estimates are greatly improved at both daytime and 30-min scale after assimilation, particularly for latent heat fluxes. Comparison against an LST-only assimilation case demonstrates that despite the coarse resolution, assimilating SMAP data is not only beneficial but also crucial for successful and robust flux estimation, particularly when the modelling uncertainties are large. Since the methodology is independent on in-situ data, it can be easily applied to other areas.
Effects of data assimilation on the global aerosol key optical properties simulations
NASA Astrophysics Data System (ADS)
Yin, Xiaomei; Dai, Tie; Schutgens, Nick A. J.; Goto, Daisuke; Nakajima, Teruyuki; Shi, Guangyu
2016-09-01
We present the one month results of global aerosol optical properties for April 2006, using the Spectral Radiation Transport Model for Aerosol Species (SPRINTARS) coupled with the Non-hydrostatic ICosahedral Atmospheric Model (NICAM), by assimilating Moderate Resolution Imaging Spectroradiometer (MODIS) aerosol optical depth (AOD) with Local Ensemble Transform Kalman Filter (LETKF). The simulated AOD, Ångström Exponent (AE) and single scattering albedo (SSA) are validated by independent Aerosol Robotic Network (AERONET) observations over the global sites. The data assimilation has the strongest positive effect on the AOD simulation and slight positive influences on the AE and SSA simulations. For the time-averaged globally spatial distribution, the data assimilation increases the model skill score (S) of AOD, AE, and SSA from 0.55, 0.92, and 0.75 to 0.79, 0.94, and 0.80, respectively. Over the North Africa (NAF) and Middle East region where the aerosol composition is simple (mainly dust), the simulated AODs are best improved by the data assimilation, indicating the assimilation correctly modifies the wrong dust burdens caused by the uncertainties of the dust emission parameterization. Assimilation also improves the simulation of the temporal variations of the aerosol optical properties over the AERONET sites, with improved S at 60 (62%), 45 (55%) and 11 (50%) of 97, 82 and 22 sites for AOD, AE and SSA. By analyzing AOD and AE at five selected sites with best S improvement, this study further indicates that the assimilation can reproduce short duration events and ratios between fine and coarse aerosols more accurately.
NASA Astrophysics Data System (ADS)
Lefever, K.; van der A, R.; Baier, F.; Christophe, Y.; Errera, Q.; Eskes, H.; Flemming, J.; Inness, A.; Jones, L.; Lambert, J.-C.; Langerock, B.; Schultz, M. G.; Stein, O.; Wagner, A.; Chabrillat, S.
2014-05-01
This paper evaluates the performance of the stratospheric ozone analyses delivered in near real time by the MACC (Monitoring Atmospheric Composition and Climate) project during the 3 year period between September 2009 and September 2012. Ozone analyses produced by four different chemistry transport models and data assimilation techniques are examined: the ECMWF Integrated Forecast System (IFS) coupled to MOZART-3 (IFS-MOZART), the BIRA-IASB Belgian Assimilation System for Chemical ObsErvations (BASCOE), the DLR/RIU Synoptic Analysis of Chemical Constituents by Advanced Data Assimilation (SACADA), and the KNMI Data Assimilation Model based on Transport Model version 3 (TM3DAM). The assimilated satellite ozone retrievals differed for each system: SACADA and TM3DAM assimilated only total ozone observations, BASCOE assimilated profiles for ozone and some related species, while IFS-MOZART assimilated both types of ozone observations. The stratospheric ozone analyses are compared to independent ozone observations from ground-based instruments, ozone sondes and the ACE-FTS (Atmospheric Chemistry Experiment - Fourier Transform Spectrometer) satellite instrument. All analyses show total column values which are generally in good agreement with groundbased observations (biases <5%) and a realistic seasonal cycle. The only exceptions are found for BASCOE which systematically underestimates total ozone in the Tropics with about 7-10% at Chengkung (Taiwan, 23.1° N/121.365° E), resulting from the fact that BASCOE does not include any tropospheric processes, and for SACADA which overestimates total ozone in the absence of UV observations for the assimilation. Due to the large weight given to column observations in the assimilation procedure, IFS-MOZART is able to reproduce total column observations very well, but alternating positive and negative biases compared to ozonesonde and ACE-FTS satellite data are found in the vertical as well as an overestimation of 30 to 60% in the polar lower stratosphere during ozone depletion events. The assimilation of near real-time (NRT) Microwave Limb Sounder (MLS) profiles which only go down to 68 hPa is not able to correct for the deficiency of the underlying MOZART model, which may be related to the applied meteorological fields. Biases of BASCOE compared to ozonesonde or ACE-FTS ozone profiles do not exceed 10% over the entire vertical stratospheric range, thanks to the good performance of the model in ozone hole conditions and the assimilation of offline MLS profiles going down to 215 hPa. TM3DAM provides very realistic total ozone columns, but is not designed to provide information on the vertical distribution of ozone. Compared to ozonesondes and ACE-FTS satellite data, SACADA performs best in the Arctic, but shows large biases (>50%) for ozone in the lower stratosphere in the Tropics and in the Antarctic, especially during ozone hole conditions. This study shows that ozone analyses with realistic total ozone column densities do not necessarily yield good agreement with the observed ozone profiles. It also shows the large benefit obtained from the assimilation of a single limb-scanning instrument (Aura MLS) with a high density of observations. Hence even state-of-the-art models of stratospheric chemistry still require the assimilation of limb observations for a correct representation of the vertical distribution of ozone in the stratosphere.
NASA Astrophysics Data System (ADS)
Schunk, R. W.; Scherliess, L.; Eccles, V.; Gardner, L. C.; Sojka, J. J.; Zhu, L.; Pi, X.; Mannucci, A. J.; Komjathy, A.; Wang, C.; Rosen, G.
2016-12-01
As part of the NASA-NSF Space Weather Modeling Collaboration, we created a Multimodel Ensemble Prediction System (MEPS) for the Ionosphere-Thermosphere-Electrodynamics system that is based on Data Assimilation (DA) models. MEPS is composed of seven physics-based data assimilation models that cover the globe. Ensemble modeling can be conducted for the mid-low latitude ionosphere using the four GAIM data assimilation models, including the Gauss Markov (GM), Full Physics (FP), Band Limited (BL) and 4DVAR DA models. These models can assimilate Total Electron Content (TEC) from a constellation of satellites, bottom-side electron density profiles from digisondes, in situ plasma densities, occultation data and ultraviolet emissions. The four GAIM models were run for the March 16-17, 2013, geomagnetic storm period with the same data, but we also systematically added new data types and re-ran the GAIM models to see how the different data types affected the GAIM results, with the emphasis on elucidating differences in the underlying ionospheric dynamics and thermospheric coupling. Also, for each scenario the outputs from the four GAIM models were used to produce an ensemble mean for TEC, NmF2, and hmF2. A simple average of the models was used in the ensemble averaging to see if there was an improvement of the ensemble average over the individual models. For the scenarios considered, the ensemble average yielded better specifications than the individual GAIM models. The model differences and averages, and the consequent differences in ionosphere-thermosphere coupling and dynamics will be discussed.
USDA-ARS?s Scientific Manuscript database
Soil water flow models are based on a set of simplified assumptions about the mechanisms, processes, and parameters of water retention and flow. That causes errors in soil water flow model predictions. Soil water content monitoring data can be used to reduce the errors in models. Data assimilation (...
SSDA code to apply data assimilation in soil water flow modeling: Documentation and user manual
USDA-ARS?s Scientific Manuscript database
Soil water flow models are based on simplified assumptions about the mechanisms, processes, and parameters of water retention and flow. That causes errors in soil water flow model predictions. Data assimilation (DA) with the ensemble Kalman filter (EnKF) corrects modeling results based on measured s...
Information Flow in an Atmospheric Model and Data Assimilation
ERIC Educational Resources Information Center
Yoon, Young-noh
2011-01-01
Weather forecasting consists of two processes, model integration and analysis (data assimilation). During the model integration, the state estimate produced by the analysis evolves to the next cycle time according to the atmospheric model to become the background estimate. The analysis then produces a new state estimate by combining the background…
NASA Astrophysics Data System (ADS)
Fu, Xiao Lei; Jin, Bao Ming; Jiang, Xiao Lei; Chen, Cheng
2018-06-01
Data assimilation is an efficient way to improve the simulation/prediction accuracy in many fields of geosciences especially in meteorological and hydrological applications. This study takes unscented particle filter (UPF) as an example to test its performance at different two probability distribution, Gaussian and Uniform distributions with two different assimilation frequencies experiments (1) assimilating hourly in situ soil surface temperature, (2) assimilating the original Moderate Resolution Imaging Spectroradiometer (MODIS) Land Surface Temperature (LST) once per day. The numerical experiment results show that the filter performs better when increasing the assimilation frequency. In addition, UPF is efficient for improving the soil variables (e.g., soil temperature) simulation/prediction accuracy, though it is not sensitive to the probability distribution for observation error in soil temperature assimilation.
NASA Astrophysics Data System (ADS)
López López, Patricia; Wanders, Niko; Sutanudjaja, Edwin; Renzullo, Luigi; Sterk, Geert; Schellekens, Jaap; Bierkens, Marc
2015-04-01
The coarse spatial resolution of global hydrological models (typically > 0.25o) often limits their ability to resolve key water balance processes for many river basins and thus compromises their suitability for water resources management, especially when compared to locally-tunes river models. A possible solution to the problem may be to drive the coarse resolution models with high-resolution meteorological data as well as to assimilate ground-based and remotely-sensed observations of key water cycle variables. While this would improve the modelling resolution of the global model, the impact of prediction accuracy remains largely an open question. In this study we investigated the impact that assimilating streamflow and satellite soil moisture observations have on global hydrological model estimation, driven by coarse- and high-resolution meteorological observations, for the Murrumbidgee river basin in Australia. The PCR-GLOBWB global hydrological model is forced with downscaled global climatological data (from 0.5o downscaled to 0.1o resolution) obtained from the WATCH Forcing Data (WFDEI) and local high resolution gauging station based gridded datasets (0.05o), sourced from the Australian Bureau of Meteorology. Downscaled satellite derived soil moisture (from 0.5o downscaled to 0.1o resolution) from AMSR-E and streamflow observations collected from 25 gauging stations are assimilated using an ensemble Kalman filter. Several scenarios are analysed to explore the added value of data assimilation considering both local and global climatological data. Results show that the assimilation of streamflow observations result in the largest improvement of the model estimates. The joint assimilation of both streamflow and downscaled soil moisture observations leads to further improved in streamflow simulations (10% reduction in RMSE), mainly in the headwater catchments (up to 10,000 km2). Results also show that the added contribution of data assimilation, for both soil moisture and streamflow, is more pronounced when the global meteorological data are used to force the models. This is caused by the higher uncertainty and coarser resolution of the global forcing. This study demonstrates that it is possible to improve hydrological simulations forced by coarse resolution meteorological data with downscaled satellite soil moisture and streamflow observations and bring them closer to a hydrological model forced with local climatological data. These findings are important in light of the efforts that are currently done to go to global hyper-resolution modelling and can significantly help to advance this research.
NASA Technical Reports Server (NTRS)
Li, Bailing; Rodell, Matthew; Zaitchik, Benjamin F.; Reichle, Rolf H.; Koster, Randal D.; van Dam, Tonie M.
2012-01-01
A land surface model s ability to simulate states (e.g., soil moisture) and fluxes (e.g., runoff) is limited by uncertainties in meteorological forcing and parameter inputs as well as inadequacies in model physics. In this study, anomalies of terrestrial water storage (TWS) observed by the Gravity Recovery and Climate Experiment (GRACE) satellite mission were assimilated into the NASA Catchment land surface model in western and central Europe for a 7-year period, using a previously developed ensemble Kalman smoother. GRACE data assimilation led to improved runoff correlations with gauge data in 17 out of 18 hydrological basins, even in basins smaller than the effective resolution of GRACE. Improvements in root zone soil moisture were less conclusive, partly due to the shortness of the in situ data record. In addition to improving temporal correlations, GRACE data assimilation also reduced increasing trends in simulated monthly TWS and runoff associated with increasing rates of precipitation. GRACE assimilated root zone soil moisture and TWS fields exhibited significant changes in their dryness rankings relative to those without data assimilation, suggesting that GRACE data assimilation could have a substantial impact on drought monitoring. Signals of drought in GRACE TWS correlated well with MODIS Normalized Difference Vegetation Index (NDVI) data in most areas. Although they detected the same droughts during warm seasons, drought signatures in GRACE derived TWS exhibited greater persistence than those in NDVI throughout all seasons, in part due to limitations associated with the seasonality of vegetation.
NASA Astrophysics Data System (ADS)
Fridman, Sergey V.; Nickisch, L. J.; Hausman, Mark; Zunich, George
2016-03-01
We describe the development of new HF data assimilation capabilities for our ionospheric inversion algorithm called GPSII (GPS Ionospheric Inversion). Previously existing capabilities of this algorithm included assimilation of GPS total electron content data as well as assimilation of backscatter ionograms. In the present effort we concentrated on developing assimilation tools for data related to HF propagation channels. Measurements of propagation delay, angle of arrival, and the ionosphere-induced Doppler from any number of known propagation links can now be utilized by GPSII. The resulting ionospheric model is consistent with all assimilated measurements. This means that ray tracing simulations of the assimilated propagation links are guaranteed to be in agreement with measured data within the errors of measurement. The key theoretical element for assimilating HF data is the raypath response operator (RPRO) which describes response of raypath parameters to infinitesimal variations of electron density in the ionosphere. We construct the RPRO out of the fundamental solution of linearized ray tracing equations for a dynamic magnetoactive plasma. We demonstrate performance and internal consistency of the algorithm using propagation delay data from multiple oblique ionograms (courtesy of Defence Science and Technology Organisation, Australia) as well as with time series of near-vertical incidence sky wave data (courtesy of the Intelligence Advanced Research Projects Activity HFGeo Program Government team). In all cases GPSII produces electron density distributions which are smooth in space and in time. We simulate the assimilated propagation links by performing ray tracing through GPSII-produced ionosphere and observe that simulated data are indeed in agreement with assimilated measurements.
Impact of Assimilated and Interactive Aerosol on Tropical Cyclogenesis
NASA Technical Reports Server (NTRS)
Reale, O.; Lau, K. M.; daSilva, A.; Matsui, T.
2014-01-01
This article investigates the impact 3 of Saharan dust on the development of tropical cyclones in the Atlantic. A global data assimilation and forecast system, the NASA GEOS-5, is used to assimilate all satellite and conventional data sets used operationally for numerical weather prediction. In addition, this new GEOS-5 version includes assimilation of aerosol optical depth from the Moderate Resolution Imaging Spectroradiometer (MODIS). The analysis so obtained comprises atmospheric quantities and a realistic 3-d aerosol and cloud distribution, consistent with the meteorology and validated against Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) and CloudSat data. These improved analyses are used to initialize GEOS-5 forecasts, explicitly accounting for aerosol direct radiative effects and their impact on the atmospheric dynamics. Parallel simulations with/without aerosol radiative effects show that effects of dust on static stability increase with time, becoming highly significant after day 5 and producing an environment less favorable to tropical cyclogenesis.
Assimilation of Sentinel-1 and SMAP observations to improve GEOS-5 soil moisture
NASA Astrophysics Data System (ADS)
Lievens, Hans; Reichle, Rolf; Wagner, Wolfgang; De Lannoy, Gabrielle; Liu, Qing; Verhoest, Niko
2017-04-01
The SMAP (Soil Moisture Active and Passive) mission carries an L-band radiometer that provides brightness temperature observations at a nominal resolution of 40 km. These radiance observations are routinely assimilated into GEOS-5 (Goddard Earth Observing System version 5) to generate the SMAP Level 4 Soil Moisture product. The use of C-band radar backscatter observations from Sentinel-1 has the potential to add value to the radiance assimilation by increasing the level of spatial detail. The specifications of Sentinel-1 are appealing, particularly its high spatial resolution (5 by 20 m in interferometric wide swath mode) and frequent revisit time (potentially every 3 days for the Sentinel-1A and Sentinel-1B constellation). However, the shorter wavelength of Sentinel-1 observations implies less sensitivity to soil moisture. This study investigates the value of Sentinel-1 data for hydrologic simulations by assimilating the radar observations into GEOS-5, either separately from or simultaneously with SMAP radiometer observations. The assimilation can be performed if either or both Sentinel-1 or SMAP observations are available, and is thus not restricted to synchronised overpasses. To facilitate the assimilation of the radar observations, GEOS-5 is coupled to the water cloud model, simulating the radar backscatter as observed by Sentinel-1. The innovations, i.e. differences between observations and simulations, are converted into increments to the model soil moisture state through an Ensemble Kalman Filter. The model runs are performed at 9-km spatial and 3-hourly temporal resolution, over the period from May 2015 to October 2016. The impact of the assimilation on surface and root-zone soil moisture simulations is assessed using in situ measurements from SMAP core validation sites and sparse networks. The assimilation of Sentinel-1 backscatter is found to consistently improve surface and root-zone soil moisture, relative to the open loop (no assimilation). However, the improvements are less pronounced than those with the assimilation of SMAP observations, likely because of less frequent observations. The best performance was obtained with the simultaneous assimilation of Sentinel-1 and SMAP data, indicating the complementary value of both types of observations for improving hydrologic simulations.
NASA Technical Reports Server (NTRS)
Buchard, V.; da Silva, A. M.; Randles, C. A.; Colarco, P.; Ferrare, R.; Hair, J.; Hostetler, C.; Tackett, J.; Winker, D.
2015-01-01
We use surface fine particulate matter (PM2.5) measurements collected by the United States Environmental Protection Agency (US EPA) and the Interagency Monitoring of Protected Visual Environments (IMPROVE) networks as independent validation for Version 1 of the Modern Era Retrospective analysis for Research and Applications Aerosol Reanalysis (MERRAero) developed by the Global Modeling Assimilation Office (GMAO). MERRAero is based on a version of the GEOS-5 model that is radiatively coupled to the Goddard Chemistry, Aerosol, Radiation, and Transport (GOCART) aerosol module and includes assimilation of bias corrected Aerosol Optical Depth (AOD) from Moderate Resolution Imaging Spectroradiometer (MODIS) sensors on both Terra and Aqua satellites. By combining the spatial and temporal coverage of GEOS-5 with observational constraints on AOD, MERRAero has the potential to provide improved estimates of PM2.5 compared to the model alone and with greater coverage than available observations.Importantly, assimilation of AOD data constrains the total column aerosol mass in MERRAero subject to assumptions about optical properties for each of the species represented in GOGART. However, single visible wavelength AOD data does not contain sufficient information content to correct errors in either aerosol vertical placement or composition, critical elements for a proper characterization of surface PM2.5. Despite this, we find that the data-assimilation equipped version of GEOS-5 better represents observed PM2.5 between 2003 and 2012 compared to the same version of the model without AOD assimilation. Compared to measurements from the EPA-AQS network, MERRAero shows better PM2.5 agreement with the IMPROVE network measurements, which are composed essentially of rural stations. Regardless the data network, MERRAero PM2.5 are closer to observation values during the summer while larger discrepancies are observed during the winter. Comparing MERRAero to PM2.5 data collected by the Chemical Speciation Network (CSN) offers greater insight on the species MERRAero predicts well and those for which there are biases relative to the EPA observations. Analysis of this speciated data indicates that the lack of nitrate emissions in MERRAero and an underestimation of carbonaceous emissions in the Western US explains much of the reanalysis bias during the winter. To further understand discrepancies between the reanalysis and observations, we use complimentary data to assess two important aspects of MERRAero that are of relevance to the diagnosis of PM2.5, in particular AOD and vertical structure
NASA Astrophysics Data System (ADS)
Buchard, V.; da Silva, A. M.; Randles, C. A.; Colarco, P.; Ferrare, R.; Hair, J.; Hostetler, C.; Tackett, J.; Winker, D.
2016-01-01
We use surface fine particulate matter (PM2.5) measurements collected by the United States Environmental Protection Agency (US EPA) and the Interagency Monitoring of Protected Visual Environments (IMPROVE) networks as independent validation for Version 1 of the Modern Era Retrospective analysis for Research and Applications Aerosol Reanalysis (MERRAero) developed by the Global Modeling Assimilation Office (GMAO). MERRAero is based on a version of the GEOS-5 model that is radiatively coupled to the Goddard Chemistry, Aerosol, Radiation, and Transport (GOCART) aerosol module and includes assimilation of bias corrected Aerosol Optical Depth (AOD) from Moderate Resolution Imaging Spectroradiometer (MODIS) sensors on both Terra and Aqua satellites. By combining the spatial and temporal coverage of GEOS-5 with observational constraints on AOD, MERRAero has the potential to provide improved estimates of PM2.5 compared to the model alone and with greater coverage than available observations. Importantly, assimilation of AOD data constrains the total column aerosol mass in MERRAero subject to assumptions about optical properties for each of the species represented in GOGART. However, single visible wavelength AOD data does not contain sufficient information content to correct errors in either aerosol vertical placement or composition, critical elements for a proper characterization of surface PM2.5. Despite this, we find that the data-assimilation equipped version of GEOS-5 better represents observed PM2.5 between 2003 and 2012 compared to the same version of the model without AOD assimilation. Compared to measurements from the EPA-AQS network, MERRAero shows better PM2.5 agreement with the IMPROVE network measurements, which are composed essentially of rural stations. Regardless the data network, MERRAero PM2.5 are closer to observation values during the summer while larger discrepancies are observed during the winter. Comparing MERRAero to PM2.5 data collected by the Chemical Speciation Network (CSN) offers greater insight on the species MERRAero predicts well and those for which there are biases relative to the EPA observations. Analysis of this speciated data indicates that the lack of nitrate emissions in MERRAero and an underestimation of carbonaceous emissions in the Western US explains much of the reanalysis bias during the winter. To further understand discrepancies between the reanalysis and observations, we use complimentary data to assess two important aspects of MERRAero that are of relevance to the diagnosis of PM2.5, in particular AOD and vertical structure.
Assimilating bio-optical glider data during a phytoplankton bloom in the southern Ross Sea
NASA Astrophysics Data System (ADS)
Kaufman, Daniel E.; Friedrichs, Marjorie A. M.; Hemmings, John C. P.; Smith, Walker O., Jr.
2018-01-01
The Ross Sea is a region characterized by high primary productivity in comparison to other Antarctic coastal regions, and its productivity is marked by considerable variability both spatially (1-50 km) and temporally (days to weeks). This variability presents a challenge for inferring phytoplankton dynamics from observations that are limited in time or space, which is often the case due to logistical limitations of sampling. To better understand the spatiotemporal variability in Ross Sea phytoplankton dynamics and to determine how restricted sampling may skew dynamical interpretations, high-resolution bio-optical glider measurements were assimilated into a one-dimensional biogeochemical model adapted for the Ross Sea. The assimilation of data from the entire glider track using the micro-genetic and local search algorithms in the Marine Model Optimization Testbed improves the model-data fit by ˜ 50 %, generating rates of integrated primary production of 104 g C m-2 yr-1 and export at 200 m of 27 g C m-2 yr-1. Assimilating glider data from three different latitudinal bands and three different longitudinal bands results in minimal changes to the simulations, improves the model-data fit with respect to unassimilated data by ˜ 35 %, and confirms that analyzing these glider observations as a time series via a one-dimensional model is reasonable on these scales. Whereas assimilating the full glider data set produces well-constrained simulations, assimilating subsampled glider data at a frequency consistent with cruise-based sampling results in a wide range of primary production and export estimates. These estimates depend strongly on the timing of the assimilated observations, due to the presence of high mesoscale variability in this region. Assimilating surface glider data subsampled at a frequency consistent with available satellite-derived data results in 40 % lower carbon export, primarily resulting from optimized rates generating more slowly sinking diatoms. This analysis highlights the need for the strategic consideration of the impacts of data frequency, duration, and coverage when combining observations with biogeochemical modeling in regions with strong mesoscale variability.
USDA-ARS?s Scientific Manuscript database
This paper aims to investigate how surface soil moisture data assimilation affects each hydrologic process and how spatially varying inputs affect the potential capability of surface soil moisture assimilation at the watershed scale. The Ensemble Kalman Filter (EnKF) is coupled with a watershed scal...
USDA-ARS?s Scientific Manuscript database
Land data assimilations are typically based on highly uncertain assumptions regarding the statistical structure of observation and modeling errors. Left uncorrected, poor assumptions can degrade the quality of analysis products generated by land data assimilation systems. Recently, Crow and van de...
NASA Astrophysics Data System (ADS)
Bartlett, M. S.; Vico, G.; Porporato, A. M.
2012-12-01
In view of the pressing needs to sustainably manage water and soil resources, especially in arid and semi-arid regions, here we propose a new carbon assimilation model that couples a simple yet mechanistic description of Crassulacean acid metabolism (CAM) photosynthesis to the soil-plant-atmosphere continuum. The model captures the full coupling of the CAM photosynthetic pathway with fluctuations in environmental conditions (cycles of light availability and air humidity, changes in soil moisture as driven by plant transpiration and rainfall occurrence). As such, the model is capable of reproducing the different phases of CAM, including daytime stomatal closure and photosynthesis from malic acid, afternoon stomatal opening for direct carbon assimilation, and nighttime stomatal opening for CO2 uptake and malic acid synthesis. Thanks to its versatility, our model allows us to relate CAM productivity, for both obligate and facultative CAM plants, to various soil moisture conditions including hydroclimatic scenarios of rainfall frequency and intensity as well as different night-time conditions of temperature, wind speed, and humidity. Our analyses show the potential productive benefits of CAM cultivation in dryland environments as feedstock and possible biofuel source, in terms of sustainable water use and economic benefits. In particular, the model is used to explore conditions where CAM plant resiliency to water stress makes these plants a more sustainable alternative to C3 and C4 species for potential deficit irrigation.
Land-surface parameter optimisation using data assimilation techniques: the adJULES system V1.0
NASA Astrophysics Data System (ADS)
Raoult, Nina M.; Jupp, Tim E.; Cox, Peter M.; Luke, Catherine M.
2016-08-01
Land-surface models (LSMs) are crucial components of the Earth system models (ESMs) that are used to make coupled climate-carbon cycle projections for the 21st century. The Joint UK Land Environment Simulator (JULES) is the land-surface model used in the climate and weather forecast models of the UK Met Office. JULES is also extensively used offline as a land-surface impacts tool, forced with climatologies into the future. In this study, JULES is automatically differentiated with respect to JULES parameters using commercial software from FastOpt, resulting in an analytical gradient, or adjoint, of the model. Using this adjoint, the adJULES parameter estimation system has been developed to search for locally optimum parameters by calibrating against observations. This paper describes adJULES in a data assimilation framework and demonstrates its ability to improve the model-data fit using eddy-covariance measurements of gross primary production (GPP) and latent heat (LE) fluxes. adJULES also has the ability to calibrate over multiple sites simultaneously. This feature is used to define new optimised parameter values for the five plant functional types (PFTs) in JULES. The optimised PFT-specific parameters improve the performance of JULES at over 85 % of the sites used in the study, at both the calibration and evaluation stages. The new improved parameters for JULES are presented along with the associated uncertainties for each parameter.
NASA Technical Reports Server (NTRS)
Joiner, J.; Dee, D. P.
1998-01-01
One of the outstanding problems in data assimilation has been and continues to be how best to utilize satellite data while balancing the tradeoff between accuracy and computational cost. A number of weather prediction centers have recently achieved remarkable success in improving their forecast skill by changing the method by which satellite data are assimilated into the forecast model from the traditional approach of assimilating retrievals to the direct assimilation of radiances in a variational framework. The operational implementation of such a substantial change in methodology involves a great number of technical details, e.g., pertaining to quality control procedures, systematic error correction techniques, and tuning of the statistical parameters in the analysis algorithm. Although there are clear theoretical advantages to the direct radiance assimilation approach, it is not obvious at all to what extent the improvements that have been obtained so far can be attributed to the change in methodology, or to various technical aspects of the implementation. The issue is of interest because retrieval assimilation retains many practical and logistical advantages which may become even more significant in the near future when increasingly high-volume data sources become available. The central question we address here is: how much improvement can we expect from assimilating radiances rather than retrievals, all other things being equal? We compare the two approaches in a simplified one-dimensional theoretical framework, in which problems related to quality control and systematic error correction are conveniently absent. By assuming a perfect radiative transfer model and perfect knowledge of radiance and background error covariances, we are able to formulate a nonlinear local error analysis for each assimilation method. Direct radiance assimilation is optimal in this idealized context, while the traditional method of assimilating retrievals is suboptimal because it ignores the cross-covariances between background errors and retrieval errors. We show that interactive retrieval assimilation (where the same background used for assimilation is also used in the retrieval step) is equivalent to direct assimilation of radiances with suboptimal analysis weights. We illustrate and extend these theoretical arguments with several one-dimensional assimilation experiments, where we estimate vertical atmospheric profiles using simulated data from both the High-resolution InfraRed Sounder 2 (HIRS2) and the future Atmospheric InfraRed Sounder (AIRS).
Four-dimensional data assimilation applied to photochemical air quality modeling is used to suggest adjustments to the emissions inventory of the Atlanta, Georgia metropolitan area. In this approach, a three-dimensional air quality model, coupled with direct sensitivity analys...
Comparisons between data assimilated HYCOM output and in situ Argo measurements in the Bay of Bengal
NASA Astrophysics Data System (ADS)
Wilson, E. A.; Riser, S.
2014-12-01
This study evaluates the performance of data assimilated Hybrid Coordinate Ocean Model (HYCOM) output for the Bay of Bengal from September 2008 through July 2013. We find that while HYCOM assimilates Argo data, the model still suffers from significant temperature and salinity biases in this region. These biases are most severe in the northern Bay of Bengal, where the model tends to be too saline near the surface and too fresh at depth. The maximum magnitude of these biases is approximately 0.6 PSS. We also find that the model's salinity biases have a distinct seasonal cycle. The most problematic periods are the months following the summer monsoon (Oct-Jan). HYCOM's near surface temperature estimates compare more favorably with Argo, but significant errors exist at deeper levels. We argue that optimal interpolation will tend to induce positive salinity biases in the northern regions of the Bay. Further, we speculate that these biases are introduced when the model relaxes to climatology and assimilates real-time data.
Paleo Data Assimilation of Pseudo-Tree-Ring-Width Chronologies in a Climate Model
NASA Astrophysics Data System (ADS)
Fallah Hassanabadi, B.; Acevedo, W.; Reich, S.; Cubasch, U.
2016-12-01
Using the Time-Averaged Ensemble Kalman Filter (EnKF) and a forward model, we assimilate the pseudo Tree-Ring-Width (TRW) chronologies into an Atmospheric Global Circulation model. This study investigates several aspects of Paleo-Data Assimilation (PDA) within a perfect-model set-up: (i) we test the performance of several forward operators in the framework of a PDA-based climate reconstruction, (ii) compare the PDA-based simulations' skill against the free ensemble runs and (iii) inverstigate the skill of the "online" (with cycling) DA and the "off-line" (no-cycling) DA. In our experiments, the "online" (with cycling) PDA approach did not outperform the "off-line" (no-cycling) one, despite its considerable additional implementation complexity. On the other hand, it was observed that the error reduction achieved by assimilating a particular pseudo-TRW chronology is modulated by the strength of the yearly internal variability of the model at the chronology site. This result might help the dendrochronology community to optimize their sampling efforts.
Decadal Prediction Efforts in GMAO (Global Modeling and Assimilation Office)
NASA Technical Reports Server (NTRS)
Rienecker, Michele M.; Suarez, Max; Schubert, Siegfried
2010-01-01
The Global Modeling and Assimilation Office (GMAO) plans to use our GEOS-5 atmosphere-ocean general circulation model (AOGCM) to explore issues associated with predictability on decadal time scales and to contribute to the decadal prediction project that is part ofCMIP5. The GEOS-5 AOGCM is comprised of the GEOS-5 AGCM with the Catchment Land Surface Model, coupled to GFDL's MOM, version 4. We have assimilation systems for both the atmosphere and ocean. For our climate prediction efforts, the atmosphere will be initialized from the GEOS-5 Modem Era Retrospective-analysis for Research and Applications (MERRA), available from 1979 to present at 112 resolution, and from 1948 to present at 2 resolution. The ocean assimilation is conducted within the coupled model framework, using the MERRA as a constraint for both the atmosphere and the ocean. The decadal prediction experiments will be conducted with a 1 atmosphere and a 112 ocean. Some initial results will be presented, focusing on initialization aspects of the GEOS-5 system.
Sulfate and Pb-210 Simulated in a Global Model Using Assimilated Meteorological Fields
NASA Technical Reports Server (NTRS)
Chin, Mian; Rood, Richard; Lin, S.-J.; Jacob, Daniel; Muller, Jean-Francois
1999-01-01
This report presents the results of distributions of tropospheric sulfate, Pb-210 and their precursors from a global 3-D model. This model is driven by assimilated meteorological fields generated by the Goddard Data Assimilation Office. Model results are compared with observations from surface sites and from multiplatform field campaigns of Pacific Exploratory Missions (PEM) and Advanced Composition Explorer (ACE). The model generally captures the seasonal variation of sulfate at the surface sites, and reproduces well the short-term in-situ observations. We will discuss the roles of various processes contributing to the sulfate levels in the troposphere, and the roles of sulfate aerosol in regional and global radiative forcing.
NASA Astrophysics Data System (ADS)
Ding, Huang; Cui, Fang; Wang, Zhijia; Zhou, Hai; Chen, Weidong
2018-03-01
Based on the meteorological observation of the DG plants in East China, the assimilation effect of the WRF in the summer of 2016 was studied. The results show that, in the case of using data assimilation, the model correctly predicted the occurrence time of precipitation, as well as the variation of the precipitation along with the time were well consistent with the observations, which gives more accurate downward shortwave radiation. The application of data assimilation techniques can provide reliable information to adapt to the high resolution of meso-scale meteorological model. Therefore, it provides the necessary technical support for the development of the distributed power generation.
NASA Astrophysics Data System (ADS)
Lee, H.; Seo, D.; Koren, V.
2008-12-01
A prototype 4DVAR (four-dimensional variational) data assimilator for gridded Sacramento soil-moisture accounting and kinematic-wave routing models in the Hydrology Laboratory's Research Distributed Hydrologic Model (HL-RDHM) has been developed. The prototype assimilates streamflow and in-situ soil moisture data and adjusts gridded precipitation and climatological potential evaporation data to reduce uncertainty in the model initial conditions for improved monitoring and prediction of streamflow and soil moisture at the outlet and interior locations within the catchment. Due to large degrees of freedom involved, data assimilation (DA) into distributed hydrologic models is complex. To understand and assess sensitivity of the performance of DA to uncertainties in the model initial conditions and in the data, two synthetic experiments have been carried out in an ensemble framework. Results from the synthetic experiments shed much light on the potential and limitations with DA into distributed models. For initial real-world assessment, the prototype DA has also been applied to the headwater basin at Eldon near the Oklahoma-Arkansas border. We present these results and describe the next steps.
Metabolic changes sustain the plant life in low-sulfur environments.
Maruyama-Nakashita, Akiko
2017-10-01
Plants assimilate inorganic sulfate into various organic sulfur (S) compounds, which contributes to the global sulfur cycle in the environment as well as the nutritional supply of this essential element to animals. Plants, to sustain their lives, adapt the flow of their S metabolism to respond to external S status by activating S assimilation and catabolism of stored S compounds, and by repressing the synthesis of secondary S metabolites like glucosinolates. The molecular mechanism of this response has been gradually revealed, including the discovery of several regulatory proteins and enzymes involved in S deficiency responses. Recent progress in this research area and the remaining issues are reviewed here. Copyright © 2017 Elsevier Ltd. All rights reserved.
Li, Xue Jian; Mao, Fang Jie; Du, Hua Qiang; Zhou, Guo Mo; Xu, Xiao Jun; Li, Ping Heng; Liu, Yu Li; Cui, Lu
2016-12-01
LAI is one of the most important observation data in the research of carbon cycle of forest ecosystem, and it is also an important parameter to drive process-based ecosystem model. The Moso bamboo forest (MBF) and Lei bamboo forest (LBF) were selected as the study targets. Firstly, the MODIS LAI time series data during 2014-2015 was assimilated with Dual Ensemble Kalman Filter method. Secondly, the high quality assimilated MBF LAI and LBF LAI were used as input dataset to drive BEPS model for simulating the gross primary productivity (GPP), net ecosystem exchange (NEE) and total ecosystem respiration (TER) of the two types of bamboo forest ecosystem, respectively. The modeled carbon fluxes were evaluated by the observed carbon fluxes data, and the effects of different quality LAI inputs on carbon cycle simulation were also studied. The LAI assimilated using Dual Ensemble Kalman Filter of MBF and LBF were significantly correlated with the observed LAI, with high R 2 of 0.81 and 0.91 respectively, and lower RMSE and absolute bias, which represented the great improvement of the accuracy of MODIS LAI products. With the driving of assimilated LAI, the modeled GPP, NEE, and TER were also highly correlated with the flux observation data, with the R 2 of 0.66, 0.47, and 0.64 for MBF, respectively, and 0.66, 0.45, and 0.73 for LBF, respectively. The accuracy of carbon fluxes modeled with assimilated LAI was higher than that acquired by the locally adjusted cubic-spline capping method, in which, the accuracy of mo-deled NEE for MBF and LBF increased by 11.2% and 11.8% at the most degrees, respectively.
Assimilation of enterprise technology upgrades: a factor-based study
NASA Astrophysics Data System (ADS)
Claybaugh, Craig C.; Ramamurthy, Keshavamurthy; Haseman, William D.
2017-02-01
The purpose of this study is to gain a better understanding of the differences in the propensity of firms to initiate and commit to the assimilation of an enterprise technology upgrade. A research model is proposed that examines the influences that four technological and four organisational factors have on predicting assimilation of a technology upgrade. Results show that firms with a greater propensity to assimilate the new enterprise resource planning (ERP) version have a higher assessment of relative advantage, IS technical competence, and the strategic role of IS relative to those firms with a lower propensity to assimilate a new ERP version.
Continuous data assimilation for downscaling large-footprint soil moisture retrievals
NASA Astrophysics Data System (ADS)
Altaf, Muhammad U.; Jana, Raghavendra B.; Hoteit, Ibrahim; McCabe, Matthew F.
2016-10-01
Soil moisture is a key component of the hydrologic cycle, influencing processes leading to runoff generation, infiltration and groundwater recharge, evaporation and transpiration. Generally, the measurement scale for soil moisture is found to be different from the modeling scales for these processes. Reducing this mismatch between observation and model scales in necessary for improved hydrological modeling. An innovative approach to downscaling coarse resolution soil moisture data by combining continuous data assimilation and physically based modeling is presented. In this approach, we exploit the features of Continuous Data Assimilation (CDA) which was initially designed for general dissipative dynamical systems and later tested numerically on the incompressible Navier-Stokes equation, and the Benard equation. A nudging term, estimated as the misfit between interpolants of the assimilated coarse grid measurements and the fine grid model solution, is added to the model equations to constrain the model's large scale variability by available measurements. Soil moisture fields generated at a fine resolution by a physically-based vadose zone model (HYDRUS) are subjected to data assimilation conditioned upon coarse resolution observations. This enables nudging of the model outputs towards values that honor the coarse resolution dynamics while still being generated at the fine scale. Results show that the approach is feasible to generate fine scale soil moisture fields across large extents, based on coarse scale observations. Application of this approach is likely in generating fine and intermediate resolution soil moisture fields conditioned on the radiometerbased, coarse resolution products from remote sensing satellites.
NASA Technical Reports Server (NTRS)
Lin, Xin; Zhang, Sara Q.; Hou, Arthur Y.
2006-01-01
Global microwave rainfall retrievals from a 5-satellite constellation, including TMI from TRMM, SSWI from DMSP F13, F14 and F15, and AMSR-E from EOS-AQUA, are assimilated into the NASA Goddard Earth Observing System (GEOS) Data Assimilation System (DAS) using a 1-D variational continuous assimilation (VCA) algorithm. The physical and dynamical impact of rainfall assimilation on GEOS analyses and forecasts is examined at various temporal and spatial scales. This study demonstrates that the 1-D VCA algorithm, which was originally developed and evaluated for rainfall assimilations over tropical oceans, can effectively assimilate satellite microwave rainfall retrievals and improve GEOS analyses over both the Tropics and the extratropics where the atmospheric processes are dominated by different large-scale dynamics and moist physics, and also over the land, where rainfall estimates from passive microwave radiometers are believed to be less accurate. Results show that rainfall assimilation renders the GEOS analysis physically and dynamically more consistent with the observed precipitation at the monthly-mean and 6-hour time scales. Over regions where the model precipitation tends to misbehave in distinctly different rainy regimes, the 1-D VCA algorithm, by compensating for errors in the model s moist time-tendency in a 6-h analysis window, is able to bring the rainfall analysis closer to the observed. The radiation and cloud fields also tend to be in better agreement with independent satellite observations in the rainfall-assimilation m especially over regions where rainfall analyses indicate large improvements. Assimilation experiments with and without rainfall data for a midlatitude frontal system clearly indicates that the GEOS analysis is improved through changes in the thermodynamic and dynamic fields that respond to the rainfall assimilation. The synoptic structures of temperature, moisture, winds, divergence, and vertical motion, as well as vorticity are more realistically captured across the front. Short-term forecasts using initial conditions assimilated with rainfall data also show slight improvements. 1
Specification of the Surface Charging Environment with SHIELDS
NASA Astrophysics Data System (ADS)
Jordanova, V.; Delzanno, G. L.; Henderson, M. G.; Godinez, H. C.; Jeffery, C. A.; Lawrence, E. C.; Meierbachtol, C.; Moulton, J. D.; Vernon, L.; Woodroffe, J. R.; Brito, T.; Toth, G.; Welling, D. T.; Yu, Y.; Albert, J.; Birn, J.; Borovsky, J.; Denton, M.; Horne, R. B.; Lemon, C.; Markidis, S.; Thomsen, M. F.; Young, S. L.
2016-12-01
Predicting variations in the near-Earth space environment that can lead to spacecraft damage and failure, i.e. "space weather", remains a big space physics challenge. A recently funded project through the Los Alamos National Laboratory (LANL) Directed Research and Development (LDRD) program aims at developing a new capability to understand, model, and predict Space Hazards Induced near Earth by Large Dynamic Storms, the SHIELDS framework. The project goals are to understand the dynamics of the surface charging environment (SCE), the hot (keV) electrons representing the source and seed populations for the radiation belts, on both macro- and microscale. Important physics questions related to rapid particle injection and acceleration associated with magnetospheric storms and substorms as well as plasma waves are investigated. These challenging problems are addressed using a team of world-class experts in the fields of space science and computational plasma physics, and state-of-the-art models and computational facilities. In addition to physics-based models (like RAM-SCB, BATS-R-US, and iPIC3D), new data assimilation techniques employing data from LANL instruments on the Van Allen Probes and geosynchronous satellites are developed. Simulations with the SHIELDS framework of the near-Earth space environment where operational satellites reside are presented. Further model development and the organization of a "Spacecraft Charging Environment Challenge" by the SHIELDS project at LANL in collaboration with the NSF Geospace Environment Modeling (GEM) Workshop and the multi-agency Community Coordinated Modeling Center (CCMC) to assess the accuracy of SCE predictions are discussed.
A Hybrid Approach to Data Assimilation for Reconstructing the Evolution of Mantle Dynamics
NASA Astrophysics Data System (ADS)
Zhou, Quan; Liu, Lijun
2017-11-01
Quantifying past mantle dynamic processes represents a major challenge in understanding the temporal evolution of the solid earth. Mantle convection modeling with data assimilation is one of the most powerful tools to investigate the dynamics of plate subduction and mantle convection. Although various data assimilation methods, both forward and inverse, have been created, these methods all have limitations in their capabilities to represent the real earth. Pure forward models tend to miss important mantle structures due to the incorrect initial condition and thus may lead to incorrect mantle evolution. In contrast, pure tomography-based models cannot effectively resolve the fine slab structure and would fail to predict important subduction-zone dynamic processes. Here we propose a hybrid data assimilation approach that combines the unique power of the sequential and adjoint algorithms, which can properly capture the detailed evolution of the downgoing slab and the tomographically constrained mantle structures, respectively. We apply this new method to reconstructing mantle dynamics below the western U.S. while considering large lateral viscosity variations. By comparing this result with those from several existing data assimilation methods, we demonstrate that the hybrid modeling approach recovers the realistic 4-D mantle dynamics the best.
NASA Astrophysics Data System (ADS)
Zhou, Q.; Liu, L.
2017-12-01
Quantifying past mantle dynamic processes represents a major challenge in understanding the temporal evolution of the solid earth. Mantle convection modeling with data assimilation is one of the most powerful tools to investigate the dynamics of plate subduction and mantle convection. Although various data assimilation methods, both forward and inverse, have been created, these methods all have limitations in their capabilities to represent the real earth. Pure forward models tend to miss important mantle structures due to the incorrect initial condition and thus may lead to incorrect mantle evolution. In contrast, pure tomography-based models cannot effectively resolve the fine slab structure and would fail to predict important subduction-zone dynamic processes. Here we propose a hybrid data assimilation method that combines the unique power of the sequential and adjoint algorithms, which can properly capture the detailed evolution of the downgoing slab and the tomographically constrained mantle structures, respectively. We apply this new method to reconstructing mantle dynamics below the western U.S. while considering large lateral viscosity variations. By comparing this result with those from several existing data assimilation methods, we demonstrate that the hybrid modeling approach recovers the realistic 4-D mantle dynamics to the best.
Implicit assimilation for marine ecological models
NASA Astrophysics Data System (ADS)
Weir, B.; Miller, R.; Spitz, Y. H.
2012-12-01
We use a new data assimilation method to estimate the parameters of a marine ecological model. At a given point in the ocean, the estimated values of the parameters determine the behaviors of the modeled planktonic groups, and thus indicate which species are dominant. To begin, we assimilate in situ observations, e.g., the Bermuda Atlantic Time-series Study, the Hawaii Ocean Time-series, and Ocean Weather Station Papa. From there, we estimate the parameters at surrounding points in space based on satellite observations of ocean color. Given the variation of the estimated parameters, we divide the ocean into regions meant to represent distinct ecosystems. An important feature of the data assimilation approach is that it refines the confidence limits of the optimal Gaussian approximation to the distribution of the parameters. This enables us to determine the ecological divisions with greater accuracy.
NASA Astrophysics Data System (ADS)
Hirpa, F. A.; Gebremichael, M.; Hopson, T. M.; Wojick, R.
2011-12-01
We present results of data assimilation of ground discharge observation and remotely sensed soil moisture observations into Sacramento Soil Moisture Accounting (SACSMA) model in a small watershed (1593 km2) in Minnesota, the Unites States. Specifically, we perform assimilation experiments with Ensemble Kalman Filter (EnKF) and Particle Filter (PF) in order to improve streamflow forecast accuracy at six hourly time step. The EnKF updates the soil moisture states in the SACSMA from the relative errors of the model and observations, while the PF adjust the weights of the state ensemble members based on the likelihood of the forecast. Results of the improvements of each filter over the reference model (without data assimilation) will be presented. Finally, the EnKF and PF are coupled together to further improve the streamflow forecast accuracy.
NASA Technical Reports Server (NTRS)
Case, Jonathan L.; Blakenship, Clay B.; Zavodsky, Bradley T.
2014-01-01
As part of the NASA Soil Moisture Active Passive (SMAP) Early Adopter (EA) program, the NASA Shortterm Prediction Research and Transition (SPoRT) Center has implemented a data assimilation (DA) routine into the NASA Land Information System (LIS) for soil moisture retrievals from the European Space Agency's Soil Moisture Ocean Salinity (SMOS) satellite. The SMAP EA program promotes application-driven research to provide a fundamental understanding of how SMAP data products will be used to improve decision-making at operational agencies. SPoRT has partnered with select NOAA/NWS Weather Forecast Offices (WFOs) that use output from a real-time regional configuration of LIS, without soil moisture DA, to initialize local numerical weather prediction (NWP) models and enhance situational awareness. Improvements to local NWP with the current LIS have been demonstrated; however, a better representation of the land surface through assimilation of SMOS (and eventually SMAP) retrievals is expected to lead to further model improvement, particularly during warm-season months. SPoRT will collaborate with select WFOs to assess the impact of soil moisture DA on operational forecast situations. Assimilation of the legacy SMOS instrument data provides an opportunity to develop expertise in preparation for using SMAP data products shortly after the scheduled launch on 5 November 2014. SMOS contains a passive L-band radiometer that is used to retrieve surface soil moisture at 35-km resolution with an accuracy of 0.04 cu cm cm (exp -3). SMAP will feature a comparable passive L-band instrument in conjunction with a 3-km resolution active radar component of slightly degraded accuracy. A combined radar-radiometer product will offer unprecedented global coverage of soil moisture at high spatial resolution (9 km) for hydrometeorological applications, balancing the resolution and accuracy of the active and passive instruments, respectively. The LIS software framework manages land surface model (LSM) simulations and includes an Ensemble Kalman Filter for conducting land surface DA. SPoRT has added a module to read, quality-control and bias-correct swaths of Level II SMOS soil moisture retrievals prior to assimilation within LIS. The impact of SMOS DA is being tested using the Noah LSM. Experiments are being conducted to examine the impacts of SMOS soil moisture DA on the resulting LISNoah fields and subsequent NWP simulations using the Weather Research and Forecasting (WRF) model initialized with LIS-Noah output. LIS-Noah soil moisture will be validated against in situ observations from Texas A&M's North American Soil Moisture Database to reveal the impact and possible improvement in soil moisture trends through DA. WRF model NWP case studies will test the impacts of DA on the simulated near-surface and boundary-layer environments, and precipitation during both quiescent and disturbed weather scenarios. Emphasis will be placed on cases with large analysis increments, especially due to contributions from regional irrigation patterns that are not represented by precipitation input in the baseline LIS-Noah run. This poster presentation will describe the soil moisture DA methodology and highlight LIS-Noah and WRF simulation results with and without assimilation.
Initialization and assimilation of cloud and rainwater in a regional model
NASA Technical Reports Server (NTRS)
Raymond, William H.; Olson, William S.
1990-01-01
The initialization and assimilation of cloud and rainwater quantities in a mesoscale regional model was examined. Forecasts of explicit cloud and rainwater are made using conservation equations. The physical processes include condensation, evaporation, autoconversion, accretion, and the removal of rainwater by fallout. These physical processes, some of which are parameterized, represent source and sink in terms in the conservation equations. The question of how to initialize the explicit liquid water calculations in numerical models and how to retain information about precipitation processes during the 4-D assimilation cycle are important issues that are addressed.
The role of data assimilation in maximizing the utility of geospace observations (Invited)
NASA Astrophysics Data System (ADS)
Matsuo, T.
2013-12-01
Data assimilation can facilitate maximizing the utility of existing geospace observations by offering an ultimate marriage of inductive (data-driven) and deductive (first-principles based) approaches to addressing critical questions in space weather. Assimilative approaches that incorporate dynamical models are, in particular, capable of making a diverse set of observations consistent with physical processes included in a first-principles model, and allowing unobserved physical states to be inferred from observations. These points will be demonstrated in the context of the application of an ensemble Kalman filter (EnKF) to a thermosphere and ionosphere general circulation model. An important attribute of this approach is that the feedback between plasma and neutral variables is self-consistently treated both in the forecast model as well as in the assimilation scheme. This takes advantage of the intimate coupling between the thermosphere and ionosphere described in general circulation models to enable the inference of unobserved thermospheric states from the relatively plentiful observations of the ionosphere. Given the ever-growing infrastructure for the global navigation satellite system, this is indeed a promising prospect for geospace data assimilation. In principle, similar approaches can be applied to any geospace observing systems to extract more geophysical information from a given set of observations than would otherwise be possible.
Assimilation of Real-Time Satellite And Human Sensor Networks for Modeling Natural Disasters
NASA Astrophysics Data System (ADS)
Aulov, O.; Halem, M.; Lary, D. J.
2011-12-01
We describe the development of underlying technologies needed to address the merging of a web of real time satellite sensor Web (SSW) and Human Sensor Web (HSW) needed to augment the US response to extreme events. As an initial prototyping step and use case scenario, we consider the development of two major system tools that can be transitioned from research to the responding operational agency for mitigating coastal oil spills. These tools consist of the capture of Situation Aware (SA) Social Media (SM) Data, and assimilation of the processed information into forecasting models to provide incident decision managers with interactive virtual spatial temporal animations superimposed with probabilistic data estimates. The system methodologies are equally applicable to the wider class of extreme events such as plume dispersions from volcanoes or massive fires, major floods, hurricane impacts, radioactive isotope dispersions from nuclear accidents, etc. A successful feasibility demonstration of this technology has been shown in the case of the Deepwater Horizon Oil Spill where Human Sensor Networks have been combined with a geophysical model to perform parameter assessments. Flickr images of beached oil were mined from the spill area, geolocated and timestamped and converted into geophysical data. This data was incorporated into General NOAA Operational Modeling Environment (GNOME), a Lagrangian forecast model that uses near real-time surface winds, ocean currents, and satellite shape profiles of oil to generate a forecast of plume movement. As a result, improved estimates of diffusive coefficients and rates of oil spill were determined. Current approaches for providing satellite derived oil distributions are collected from a satellite sensor web of operational and research sensors from many countries, and a manual analysis is performed by NESDIS. A real time SA HSW processing system based on geolocated SM data from sources such as Twitter, Flickr, YouTube etc., greatly supplements the current operational practice of sending out teams of humans to gather samples of tarballs reaching coastal locations. We show that ensemble Kalman filter assimilation of the combination of SM data with model forecast background data fields can minimize the false positive cases of satellite observations alone. Our future framework consists of two parts, a real time SA HSW processing system and an on-demand SSW processing system. HSW processing system uses a geolocated SM data to provide observations of coastal oil contact. SSW system is composed of selected instruments from NASA EOS, NPP and available Decadal Survey mission satellites along with other in situ data to form a real time regional oil spill observing system. We will automate the NESDIS manual process of providing oil spill maps by using Self Organizing Feature Map (SOFM) algorithm. We use the LETKF scheme for assimilating the satellite sensor web and HSW observations into the GNOME model to reduce the uncertainty of the observations. We intend to infuse these developments in an SOA implementation for execution of event driven model forecast assimilation cycles in a dedicated HPC cloud.
NASA Astrophysics Data System (ADS)
Kaurkin, M. N.; Ibrayev, R. A.; Belyaev, K. P.
2018-01-01
A parallel realization of the Ensemble Optimal Interpolation (EnOI) data assimilation (DA) method in conjunction with the eddy-resolving global circulation model is implemented. The results of DA experiments in the North Atlantic with the assimilation of the Archiving, Validation and Interpretation of Satellite Oceanographic (AVISO) data from the Jason-1 satellite are analyzed. The results of simulation are compared with the independent temperature and salinity data from the ARGO drifters.
NASA Astrophysics Data System (ADS)
McCreight, J. L.; Wu, Y.; Gochis, D.; Rafieeinasab, A.; Dugger, A. L.; Yu, W.; Cosgrove, B.; Cui, Z.; Oubeidillah, A.; Briar, D.
2016-12-01
The streamflow (discharge) data assimilation capability in version 1 of the National Water Model (NWM; a WRF-Hydro configuration) is applied and evaluated in a 5-year (2011-2015) retrospective study using NLDAS2 forcing data over CONUS. This talk will describe the NWM V1 operational nudging (continuous-time) streamflow data assimilation approach, its motivation, and its relationship to this retrospective evaluation. Results from this study will provide a an analysis-based (not forecast-based) benchmark for streamflow DA in the NWM. The goal of the assimilation is to reduce discharge bias and improve channel initial conditions for discharge forecasting (though forecasts are not considered here). The nudging method assimilates discharge observations at nearly 7,000 USGS gages (at frequency up to 1/15 minutes) to produce a (univariate) discharge reanalysis (i.e. this is the only variable affected by the assimilation). By withholding 14% nested gages throughout CONUS in a separate validation run, we evaluate the downstream impact of assimilation at upstream gages. Based on this sample, we estimate the skill of the streamflow reanalysis at ungaged locations and examine factors governing the skill of the assimilation. Comparison of assimilation and open-loop runs is presented. Performance of DA under both high and low flow regimes and selected flooding events is examined. Preliminary evaluation of nudging parameter sensitivity and its relationship to flow regime will be presented.
NASA Technical Reports Server (NTRS)
Reichle, Rolf H.; De Lannoy, Gabrielle J. M.
2012-01-01
The Soil Moisture and Ocean Salinity (SMOS) satellite mission provides global measurements of L-band brightness temperatures at horizontal and vertical polarization and a variety of incidence angles that are sensitive to moisture and temperature conditions in the top few centimeters of the soil. These L-band observations can therefore be assimilated into a land surface model to obtain surface and root zone soil moisture estimates. As part of the observation operator, such an assimilation system requires a radiative transfer model (RTM) that converts geophysical fields (including soil moisture and soil temperature) into modeled L-band brightness temperatures. At the global scale, the RTM parameters and the climatological soil moisture conditions are still poorly known. Using look-up tables from the literature to estimate the RTM parameters usually results in modeled L-band brightness temperatures that are strongly biased against the SMOS observations, with biases varying regionally and seasonally. Such biases must be addressed within the land data assimilation system. In this presentation, the estimation of the RTM parameters is discussed for the NASA GEOS-5 land data assimilation system, which is based on the ensemble Kalman filter (EnKF) and the Catchment land surface model. In the GEOS-5 land data assimilation system, soil moisture and brightness temperature biases are addressed in three stages. First, the global soil properties and soil hydraulic parameters that are used in the Catchment model were revised to minimize the bias in the modeled soil moisture, as verified against available in situ soil moisture measurements. Second, key parameters of the "tau-omega" RTM were calibrated prior to data assimilation using an objective function that minimizes the climatological differences between the modeled L-band brightness temperatures and the corresponding SMOS observations. Calibrated parameters include soil roughness parameters, vegetation structure parameters, and the single scattering albedo. After this climatological calibration, the modeling system can provide L-band brightness temperatures with a global mean absolute bias of less than 10K against SMOS observations, across multiple incidence angles and for horizontal and vertical polarization. Third, seasonal and regional variations in the residual biases are addressed by estimating the vegetation optical depth through state augmentation during the assimilation of the L-band brightness temperatures. This strategy, tested here with SMOS data, is part of the baseline approach for the Level 4 Surface and Root Zone Soil Moisture data product from the planned Soil Moisture Active Passive (SMAP) satellite mission.
Forward-looking Assimilation of MODIS-derived Snow Covered Area into a Land Surface Model
NASA Technical Reports Server (NTRS)
Zaitchik, Benjamin F.; Rodell, Matthew
2008-01-01
Snow cover over land has a significant impact on the surface radiation budget, turbulent energy fluxes to the atmosphere, and local hydrological fluxes. For this reason, inaccuracies in the representation of snow covered area (SCA) within a land surface model (LSM) can lead to substantial errors in both offline and coupled simulations. Data assimilation algorithms have the potential to address this problem. However, the assimilation of SCA observations is complicated by an information deficit in the observation SCA indicates only the presence or absence of snow, and not snow volume and by the fact that assimilated SCA observations can introduce inconsistencies with atmospheric forcing data, leading to non-physical artifacts in the local water balance. In this paper we present a novel assimilation algorithm that introduces MODIS SCA observations to the Noah LSM in global, uncoupled simulations. The algorithm utilizes observations from up to 72 hours ahead of the model simulation in order to correct against emerging errors in the simulation of snow cover while preserving the local hydrologic balance. This is accomplished by using future snow observations to adjust air temperature and, when necessary, precipitation within the LSM. In global, offline integrations, this new assimilation algorithm provided improved simulation of SCA and snow water equivalent relative to open loop integrations and integrations that used an earlier SCA assimilation algorithm. These improvements, in turn, influenced the simulation of surface water and energy fluxes both during the snow season and, in some regions, on into the following spring.
CATS Near Real Time Data Products: Applications for Assimilation into the NASA GEOS-5 AGCM
NASA Astrophysics Data System (ADS)
Nowottnick, E. P.; Hlavka, D. L.; Yorks, J. E.; da Silva, A. M., Jr.; McGill, M. J.; Palm, S. P.; Selmer, P. A.; Pauly, R.; Ozog, S.
2017-12-01
Since February 2015, the NASA Cloud-Aerosol Transport System (CATS) backscatter lidar has been operating on the International Space Station (ISS) as a technology demonstration for future Earth Science Missions, providing vertical measurements of cloud and aerosols properties. Owing to its location on the ISS, a cornerstone technology demonstration of CATS is the capability to acquire, process, and disseminate near-real time (NRT) data within 6 hours of observation time. Here, we present CATS NRT data products and outline improved CATS algorithms used to discriminate clouds from aerosols, and subsequently identify cloud and aerosol type. CATS NRT data has several applications, including providing notification of hazardous events for air traffic control and air quality advisories, field campaign flight planning, as well as for constraining cloud and aerosol distributions in via data assimilation in aerosol transport models. Recent developments in aerosol data assimilation techniques have permitted the assimilation of aerosol optical thickness (AOT), a 2-dimensional column integrated quantity that is reflective of the simulated aerosol loading in aerosol transport models. While this capability has greatly improved simulated AOT forecasts, the vertical position, a key control on aerosol transport, is often not impacted when 2-D AOT is assimilated. Here, we also present preliminary efforts to assimilate CATS observations into the NASA Goddard Earth Observing System version 5 (GEOS-5) atmospheric general circulation model and assimilation system using a 1-D Variational (1-D VAR) approach, demonstrating the utility of CATS for future Earth Science Missions.
A Case Study of Using a Multilayered Thermodynamical Snow Model for Radiance Assimilation
NASA Technical Reports Server (NTRS)
Toure, Ally M.; Goita, Kalifa; Royer, Alain; Kim, Edward J.; Durand, Michael; Margulis, Steven A.; Lu, Huizhong
2011-01-01
A microwave radiance assimilation (RA) scheme for the retrieval of snow physical state variables requires a snowpack physical model (SM) coupled to a radiative transfer model. In order to assimilate microwave brightness temperatures (Tbs) at horizontal polarization (h-pol), an SM capable of resolving melt-refreeze crusts is required. To date, it has not been shown whether an RA scheme is tractable with the large number of state variables present in such an SM or whether melt-refreeze crust densities can be estimated. In this paper, an RA scheme is presented using the CROCUS SM which is capable of resolving melt-refreeze crusts. We assimilated both vertical (v) and horizontal (h) Tbs at 18.7 and 36.5 GHz. We found that assimilating Tb at both h-pol and vertical polarization (v-pol) into CROCUS dramatically improved snow depth estimates, with a bias of 1.4 cm compared to-7.3 cm reported by previous studies. Assimilation of both h-pol and v-pol led to more accurate results than assimilation of v-pol alone. The snow water equivalent (SWE) bias of the RA scheme was 0.4 cm, while the bias of the SWE estimated by an empirical retrieval algorithm was -2.9 cm. Characterization of melt-refreeze crusts via an RA scheme is demonstrated here for the first time; the RA scheme correctly identified the location of melt-refreeze crusts observed in situ.
NASA Astrophysics Data System (ADS)
Schaap, Martijn; Segers, Arjo; Curier, Lyana; Timmermans, Renske
2016-04-01
Consistent and long time series of remotely sensed trace gas levels may provide a useful tool to estimate surface emissions and emission trends. We use the OMI-NO2 product in conjunction with the LOTOS-EUROS CTM to estimate European emission trends through correction of the OMI-time series for meteorological variability as well as through assimilation using an ensemble kalman filter system (EnKF). The chemistry transport model captures a large fraction of the variability in NO2 columns at a synoptic timescale, although a seasonal signal in the bias between the modeled and retrieved column data remains. Prior to the assimilation, the OMI-NO2 data have been analyzed to establish the spatially variable temporal and spatial correlation lengths, required for the settings in the EnKF system. The assimilation run for 2005-2013 was performed using constant 2005 emissions to be able to quantify the emission change. The assimilation reduces the model-observation differences considerably. Significant negative trends of 2-3 % per year (as compared to 2005) were found in highly industrialized areas across Western Europe. The assimilation system also identifies the areas with major emission reductions in e.g. northern Spain as identified in earlier studies. Comparison of the trends derived from the assimilation and the data itself shows a high level of agreement, both the trends found in this way are smaller than those reported.
NASA Astrophysics Data System (ADS)
Edwards, David; Barre, Jerome; Worden, Helen; Gaubert, Benjamin
2017-04-01
Intense and costly wildfires tend are predicted to increase in frequency under a warming climate. For example, the recent August 2015 Washington State fires were the largest in the state's history. Also in September and October 2015 very intense fires over Indonesia produced some of the highest concentrations of carbon monoxide (CO) ever seen from satellite. Such larges fires impact not only the local environment but also affect air quality far downwind through the long-range transport of pollutants. Global to continental scale coverage showing the evolution of CO resulting from fire emission is available from satellite observations. Carbon monoxide is the only atmospheric trace gas for which satellite multispectral retrievals have demonstrated reliable independent profile information close to the surface and also higher in the free troposphere. The unique CO profile product from Terra/MOPITT clearly distinguishes near-surface CO from the free troposphere CO. Also previous studies have suggested strong correlations between primary emissions of fire organic and black carbon aerosols and CO. We will present results from the Ensemble Adjustement Kalman Filter (DART) system that has been developed to assimilate MOPITT CO in the global-scale chemistry-climate model CAM-Chem. The ensemble technique allows inference on various fire model state variables such as CO emissions, and also aerosol species resulting from fires such as organic and black carbon. The benefit of MOPITT CO profile assimilation for estimating the CO emissions from the Washington and Indonesian fire cases will be discussed, along with the ability of the ensemble approach to infer information on the black and organic carbon aerosol distribution. This study builds on capability to quantitatively integrate satellite observations and models developed in recent years through projects funded by the NASA ACMAP Program.
NASA Astrophysics Data System (ADS)
Montzka, Carsten; Hendricks Franssen, Harrie-Jan; Moradkhani, Hamid; Pütz, Thomas; Han, Xujun; Vereecken, Harry
2013-04-01
An adequate description of soil hydraulic properties is essential for a good performance of hydrological forecasts. So far, several studies showed that data assimilation could reduce the parameter uncertainty by considering soil moisture observations. However, these observations and also the model forcings were recorded with a specific measurement error. It seems a logical step to base state updating and parameter estimation on observations made at multiple time steps, in order to reduce the influence of outliers at single time steps given measurement errors and unknown model forcings. Such outliers could result in erroneous state estimation as well as inadequate parameters. This has been one of the reasons to use a smoothing technique as implemented for Bayesian data assimilation methods such as the Ensemble Kalman Filter (i.e. Ensemble Kalman Smoother). Recently, an ensemble-based smoother has been developed for state update with a SIR particle filter. However, this method has not been used for dual state-parameter estimation. In this contribution we present a Particle Smoother with sequentially smoothing of particle weights for state and parameter resampling within a time window as opposed to the single time step data assimilation used in filtering techniques. This can be seen as an intermediate variant between a parameter estimation technique using global optimization with estimation of single parameter sets valid for the whole period, and sequential Monte Carlo techniques with estimation of parameter sets evolving from one time step to another. The aims are i) to improve the forecast of evaporation and groundwater recharge by estimating hydraulic parameters, and ii) to reduce the impact of single erroneous model inputs/observations by a smoothing method. In order to validate the performance of the proposed method in a real world application, the experiment is conducted in a lysimeter environment.
Evaluation of a cosmic-ray neutron sensor network for improved land surface model prediction
NASA Astrophysics Data System (ADS)
Baatz, Roland; Hendricks Franssen, Harrie-Jan; Han, Xujun; Hoar, Tim; Reemt Bogena, Heye; Vereecken, Harry
2017-05-01
In situ soil moisture sensors provide highly accurate but very local soil moisture measurements, while remotely sensed soil moisture is strongly affected by vegetation and surface roughness. In contrast, cosmic-ray neutron sensors (CRNSs) allow highly accurate soil moisture estimation on the field scale which could be valuable to improve land surface model predictions. In this study, the potential of a network of CRNSs installed in the 2354 km2 Rur catchment (Germany) for estimating soil hydraulic parameters and improving soil moisture states was tested. Data measured by the CRNSs were assimilated with the local ensemble transform Kalman filter in the Community Land Model version 4.5. Data of four, eight and nine CRNSs were assimilated for the years 2011 and 2012 (with and without soil hydraulic parameter estimation), followed by a verification year 2013 without data assimilation. This was done using (i) a regional high-resolution soil map, (ii) the FAO soil map and (iii) an erroneous, biased soil map as input information for the simulations. For the regional soil map, soil moisture characterization was only improved in the assimilation period but not in the verification period. For the FAO soil map and the biased soil map, soil moisture predictions improved strongly to a root mean square error of 0.03 cm3 cm-3 for the assimilation period and 0.05 cm3 cm-3 for the evaluation period. Improvements were limited by the measurement error of CRNSs (0.03 cm3 cm-3). The positive results obtained with data assimilation of nine CRNSs were confirmed by the jackknife experiments with four and eight CRNSs used for assimilation. The results demonstrate that assimilated data of a CRNS network can improve the characterization of soil moisture content on the catchment scale by updating spatially distributed soil hydraulic parameters of a land surface model.
Discharge data assimilation in a distributed hydrologic model for flood forecasting purposes
NASA Astrophysics Data System (ADS)
Ercolani, G.; Castelli, F.
2017-12-01
Flood early warning systems benefit from accurate river flow forecasts, and data assimilation may improve their reliability. However, the actual enhancement that can be obtained in the operational practice should be investigated in detail and quantified. In this work we assess the benefits that the simultaneous assimilation of discharge observations at multiple locations can bring to flow forecasting through a distributed hydrologic model. The distributed model, MOBIDIC, is part of the operational flood forecasting chain of Tuscany Region in Central Italy. The assimilation system adopts a mixed variational-Monte Carlo approach to update efficiently initial river flow, soil moisture, and a parameter related to runoff production. The evaluation of the system is based on numerous hindcast experiments of real events. The events are characterized by significant rainfall that resulted in both high and relatively low flow in the river network. The area of study is the main basin of Tuscany Region, i.e. Arno river basin, which extends over about 8300 km2 and whose mean annual precipitation is around 800 mm. Arno's mainstream, with its nearly 240 km length, passes through major Tuscan cities, as Florence and Pisa, that are vulnerable to floods (e.g. flood of November 1966). The assimilation tests follow the usage of the model in the forecasting chain, employing the operational resolution in both space and time (500 m and 15 minutes respectively) and releasing new flow forecasts every 6 hours. The assimilation strategy is evaluated in respect to open loop simulations, i.e. runs that do not exploit discharge observations through data assimilation. We compare hydrographs in their entirety, as well as classical performance indexes, as error on peak flow and Nash-Sutcliffe efficiency. The dependence of performances on lead time and location is assessed. Results indicate that the operational forecasting chain can benefit from the developed assimilation system, although with a significant variability due to the specific characteristics of any single event, and with downstream locations more sensitive to observations than upstream sites.