The Lunar Atmosphere and Dust Environment Explorer (LADEE) Mission
NASA Technical Reports Server (NTRS)
Spremo, Stevan; Turner, Mark; Caffrey, Robert T.; Hine, Butler Preston
2010-01-01
The Lunar Atmosphere and Dust Environment Explorer (LADEE) is a Lunar science orbiter mission currently under development to address the goals of the National Research Council decadal surveys and the recent "Scientific Context for Exploration of the Moon" (SCEM) [1] report to study the pristine state of the lunar atmosphere and dust environment prior to significant human activities. LADEE will determine the composition of the lunar atmosphere and investigate the processes that control its distribution and variability, including sources, sinks, and surface interactions. LADEE will also determine whether dust is present in the lunar exosphere, and reveal the processes that contribute to its sources and variability. These investigations are relevant to our understanding of surface boundary exospheres and dust processes throughout the solar system, address questions regarding the origin and evolution of lunar volatiles, and have potential implications for future exploration activities. LADEE employs a high heritage science instrument payload including a neutral mass spectrometer, ultraviolet spectrometer, and dust sensor. In addition to the science payloads, LADEE will fly a laser communications system technology demonstration that could provide a building block for future space communications architectures. LADEE is an important component in NASA's portfolio of near-term lunar missions, addressing objectives that are currently not covered by other U.S. or international efforts, and whose observations must be conducted before large-scale human or robotic activities irrevocably perturb the tenuous and fragile lunar atmosphere. LADEE will also demonstrate the effectiveness of a low-cost, rapid-development program utilizing a modular bus design launched on the new Minotaur V launch vehicle. Once proven, this capability could enable future lunar missions in a highly cost constrained environment. This paper describes the LADEE objectives, mission design, and technical approach.
2013-09-05
NASA Lunar Atmosphere and Dust Environment Explorer (LADEE) Program Scientist Sarah Noble talks during a NASA Social about the LADEE mission at NASA Wallops Flight Facility, Thursday, Sept. 5, 2013 on Wallops Island, VA. Fifty of NASA's social media followers are attending a two-day event in support of the LADEE launch. Data from LADEE will provide unprecedented information about the environment around the moon and give scientists a better understanding of other planetary bodies in our solar system and beyond. LADEE is scheduled to launch at 11:27 p.m. Friday, Sept. 6, from NASA's Wallops Flight Facility. Photo Credit: (NASA/Carla Cioffi)
The Lunar Atmosphere and Dust Environment Explorer (LADEE): Initial Science Results
NASA Technical Reports Server (NTRS)
Elphic, R. C.; Hine, B.; Delory, G. T.; Salute, J. S.; Noble, S.; Colaprete, A.; Horanyi, M.; Mahaffy, P.
2014-01-01
On September 6, 2013, a nearperfect launch of the first Minotaur V rocket successfully carried NASA's Lunar Atmosphere and Dust Environment Explorer (LADEE) into a higheccentricity geocentric orbit. The launch, from NASA's Wallops Flight Facility in Virginia, was visible from much of the eastern seaboard. Over the next 30 days, LADEE performed three phasing orbits, with near-perfect maneuvers that placed apogee at ever higher altitudes in preparation for rendezvous with the Moon. LADEE arrived at the Moon on October 6, 2013, during the government shutdown. LADEE's science objectives are twofold: (1) Determine the composition of the lunar atmosphere, investigate processes controlling its distribution and variability, including sources, sinks, and surface interactions; (2) Characterize the lunar exospheric dust environment, measure its spatial and temporal variability, and effects on the lunar atmosphere, if any.
Lunar Atmosphere and Dust Environment Explorer Integration and Test
NASA Technical Reports Server (NTRS)
Wright, Michael R.; McCormick, John L.
2010-01-01
The Lunar Atmosphere and Dust Environment Explorer (LADEE) is a NASA collaborative flight project to explore the lunar exosphere. It is being developed through a unique partnership between NASA's Ames Research Center (ARC) and Goddard Space Flight Center (GSFC). Each center brings its own experience and flight systems heritage to the task of integrating and testing the LADEE subsystems, instruments, and spacecraft. As an "in-house" flight project being implemented at low-cost and moderate risk, LADEE relies on single-string subsystems and protoflight hardware to accomplish its mission. Integration and test (l&T) of the LADEE spacecraft with the instruments will be performed at GSFC, and includes assembly, integration, functional testing, and flight qualification and acceptance testing. Due to the nature of the LADEE mission, l&T requirements include strict contamination control measures and instrument calibration procedures. Environmental testing will include electromagnetic compatibility (EMC), vibro-acoustic testing, and thermal-balance/vacuum. Upon successful completion of spacecraft l&T, LADEE will be launched from NASA's Wallops Flight Facility. Launch of the LADEE spacecraft is currently scheduled for December 2012.
2013-09-05
A participant at a NASA Social on the Lunar Atmosphere and Dust Environment Explorer (LADEE) mission asks a question, Thursday, Sept. 5, 2013 on Wallops Island, VA. Fifty of NASA's social media followers are attending a two-day event in support of the LADEE launch. Data from LADEE will provide unprecedented information about the environment around the moon and give scientists a better understanding of other planetary bodies in our solar system and beyond. LADEE is scheduled to launch at 11:27 p.m. Friday, Sept. 6, from NASA's Wallops Flight Facility. Photo Credit: (NASA/Carla Cioffi)
2013-09-05
Bob Barber, Lunar Atmosphere and Dust Environment Explorer (LADEE) Spacecraft Systems Engineer at NASA Ames Research Center, points to a model of the LADEE spacecraft a NASA Social, Thursday, Sept. 5, 2013 at NASA Wallops Flight Facility in Virginia. Fifty of NASA's social media followers are attending a two-day event in support of the LADEE launch. Data from LADEE will provide unprecedented information about the environment around the moon and give scientists a better understanding of other planetary bodies in our solar system and beyond. LADEE is scheduled to launch at 11:27 p.m. Friday, Sept. 6, from NASA's Wallops Flight Facility. Photo Credit: (NASA/Carla Cioffi)
Early Results from the Lunar Atmosphere and Dust Environment Explorer (LADEE)
NASA Technical Reports Server (NTRS)
Elphic, R. C.; Hine, B.; Delory, G. T.; Mahaffy, Paul; Benna, Mehdi; Horanyi, Mihaly; Colaprete, Anthony; Noble, Sarah
2014-01-01
On 6 September, 2013, a near-perfect launch of the first Minotaur V rocket successfully carried NASA's Lunar Atmosphere and Dust Environment Explorer (LADEE) into a high-eccentricity geocentric orbit. After 30 days of phasing, LADEE arrived at the Moon on 6 October, 2013. LADEE's science objectives are twofold: (1) Determine the composition of the lunar atmosphere, investigate processes controlling its distribution and variability, including sources, sinks, and surface interactions; (2) Characterize the lunar exospheric dust environment, measure its spatial and temporal variability, and effects on the lunar atmosphere, if any. After a successful commissioning phase, the three science instruments have made systematic observations of the lunar dust and exospheric environment. These include initial observations of argon, neon and helium exospheres, and their diurnal variations; the lunar micrometeoroid impact ejecta cloud and its variations; spatial and temporal variations of the sodium exosphere; and the search for sunlight extinction caused by dust. LADEE also made observations of the effects of the Chang'e 3 landing on 14 December 2013.
2013-09-05
Jason Townsend, NASA's Deputy Social Media Manager, kicks off the Lunar Atmosphere and Dust Environment Explorer (LADEE) NASA Social at Wallops Flight Facility, Thursday, Sept. 5, 2013 on Wallops Island, VA. Fifty of NASA's social media followers are attending a two-day event in support of the LADEE launch. Data from LADEE will provide unprecedented information about the environment around the moon and give scientists a better understanding of other planetary bodies in our solar system and beyond. LADEE is scheduled to launch at 11:27 p.m. Friday, Sept. 6, from NASA's Wallops Flight Facility. Photo Credit: (NASA/Carla Cioffi)
2013-09-05
A participant at a NASA Social on the Lunar Atmosphere and Dust Environment Explorer (LADEE) mission asks NASA Associate Administrator for the Science Mission Directorate John Grunsfeld a question, Thursday, Sept. 5, 2013 on Wallops Island, VA. Fifty of NASA's social media followers are attending a two-day event in support of the LADEE launch. Data from LADEE will provide unprecedented information about the environment around the moon and give scientists a better understanding of other planetary bodies in our solar system and beyond. LADEE is scheduled to launch at 11:27 p.m. Friday, Sept. 6, from NASA's Wallops Flight Facility. Photo Credit: (NASA/Carla Cioffi)
2013-09-05
NASA Associate Administrator for the Science Mission Directorate John Grunsfeld is seen in a video monitor during a NASA Social about the Lunar Atmosphere and Dust Environment Explorer (LADEE) mission at the NASA Wallops Flight Facility, Thursday, Sept. 5, 2013 on Wallops Island, VA. Fifty of NASA's social media followers are attending a two-day event in support of the LADEE launch. Data from LADEE will provide unprecedented information about the environment around the moon and give scientists a better understanding of other planetary bodies in our solar system and beyond. LADEE is scheduled to launch at 11:27 p.m. Friday, Sept. 6, from NASA's Wallops Flight Facility. Photo Credit: (NASA/Carla Cioffi)
2013-09-05
NASA Associate Administrator for the Science Mission Directorate John Grunsfeld talks during a NASA Social about the Lunar Atmosphere and Dust Environment Explorer (LADEE) mission at the NASA Wallops Flight Facility, Thursday, Sept. 5, 2013 on Wallops Island, VA. Fifty of NASA's social media followers are attending a two-day event in support of the LADEE launch. Data from LADEE will provide unprecedented information about the environment around the moon and give scientists a better understanding of other planetary bodies in our solar system and beyond. LADEE is scheduled to launch at 11:27 p.m. Friday, Sept. 6, from NASA's Wallops Flight Facility. Photo Credit: (NASA/Carla Cioffi)
NASA Technical Reports Server (NTRS)
Kuroda, Vanessa M.; Allard, Mark R.; Lewis, Brian; Lindsay, Michael
2014-01-01
September 6, 2013 through April 21, 2014 marked the mission lifecycle of the highly successful LADEE (Lunar Atmosphere and Dust Environment Explorer) mission that orbited the moon to gather detailed information about the thin lunar atmosphere. This paper will address the development, risks, and lessons learned regarding the specification, selection, and deployment of LADEE's unique Radio Frequency based communications subsystem and supporting tools. This includes the Electronic Ground Support Equipment (EGSE), test regimes, and RF dynamic link analysis environment developed to meet mission requirements for small, flexible, low cost, high performance, fast turnaround, and reusable spacecraft communication capabilities with easy and reliable application to future similar low cost small satellite missions over widely varying needs for communications and communications system complexity. LADEE communication subsystem key components, architecture, and mission performance will be reviewed toward applicability for future mission planning, design, and utilization.
Lunar Atmosphere and Dust Environment Explorer Integration and Test
NASA Technical Reports Server (NTRS)
Wright, Michael R.; McCormick, John L.; Hoffman, Richard G.
2010-01-01
Integration and test (I&T) of the Lunar Atmosphere and Dust Environment Explorer (LADEE) is presented. A collaborative NASA project between Goddard Space Flight Center and Ames Research Center, LADEE's mission is to explore the low lunar orbit environment and exosphere for constituents. Its instruments include two spectrometers, a dust detector, and a laser communication technology demonstration. Although a relatively low-cost spacecraft, LADEE has I&T requirements typical of most planetary probes, such as prelaunch contamination control, sterilization, and instrument calibration. To lead to a successful mission, I&T at the spacecraft, instrument, and observatory level must include step-by-step and end-to-end functional, environmental, and performance testing. Due to its compressed development schedule, LADEE I&T planning requires adjusting test flows and sequences to account for long-lead critical-path items and limited spares. A protoflight test-level strategy is also baselined. However, the program benefits from having two independent but collaborative teams of engineers, managers, and technicians that have a wealth of flight project experience. This paper summarizes the LADEE I&T planning, flow, facilities, and probe-unique processes. Coordination of requirements and approaches to I&T when multiple organizations are involved is discussed. Also presented are cost-effective approaches to I&T that are transferable to most any spaceflight project I&T program.
2013-09-06
The doors of the gantry support structure are opened to reveal the Minotaur V rocket on Pad 0B at the Mid-Atlantic Regional Spaceport (MARS) at NASA's Wallops Flight Facility, Friday, Sept. 6, 2013 in Virginia. The Minotaur V will launch NASA's Lunar Atmosphere and Dust Environment Explorer (LADEE). LADEE is a robotic mission that will orbit the moon where it will provide unprecedented information about the environment around the moon and give scientists a better understanding of other planetary bodies in our solar system and beyond. LADEE is scheduled to launch at 11:27 p.m. Friday, Sept. 6, from NASA's Wallops Flight Facility. Photo Credit: (NASA/Carla Cioffi)
LADEE Science Results and Implications for Exploration
NASA Technical Reports Server (NTRS)
Elphic, R. C.; M. Horanyi; Colaprete, A.; Benna; Mahaffy, P.; Delory, G. T.; Noble, S. K.; Halekas, J. S.; Hurley, D. M.; Stubbs, T. J.;
2015-01-01
NASA's Lunar Atmosphere and Dust Environment Explorer, LADEE, concluded a fully successful investigation of the Moon's tenuous gas and dust atmosphere on April 18, 2014. LADEE hosted three science instruments to address atmospheric and dust objectives, and a technology demonstration of deep-space optical communication. The three science instruments were an ultraviolet-visible spectrometer (UVS), a neutral mass spectrometer (NMS), and a lunar dust experiment (LDEX). All data acquired by these instruments have been submitted to the Planetary Data System. A mission overview and science instrument descriptions are readily available. LADEE inserted into a low-altitude, retrograde lunar orbit optimized for observations at the sunrise terminator, where surface temperatures rise abruptly. LADEE also carried out observations over a wide range of local times and altitudes. Here we describe some of the initial results.
NASA Technical Reports Server (NTRS)
Collier, Michael R.; Mahaffy, Paul R.; Benna, Mehdi; King, Todd T.; Hodges, Richard
2011-01-01
The Lunar Atmosphere and Dust Environment Explorer (LADEE) mission currently scheduled for launch in early 2013 aboard a Minotaur V will orbit the moon at a nominal periselene of 50 km to characterized the lunar atmosphere and dust environment. The science instrument payload includes a neutral mass spectrometer as well as an ultraviolet spectrometer and a dust detector. Although to date only He, Ar-40, K, Na and Rn-222 have been firmly identified in the lunar exosphere and arise from the solar wind (He), the lunar regolith (K and Na) and the lunar interior (Ar-40, Rn-222), upper limits have been set for a large number of other species, LADEE Neutral Mass Spectrometer (NMS) observations will determine the abundance of several species and substantially lower the present upper limits for many others. Additionally, LADEE NMS will observe the spatial distribution and temporal variability of species which condense at nighttime and show peak concentrations at the dawn terminator (e,g, Ar-40), possible episodic release from the lunar interior, and the results of sputtering or desorption processes from the regolith. In this presentation, we describe the LADEE NMS hardware and the anticipated science results.
NASA Technical Reports Server (NTRS)
Genova, Anthony L.; Loucks, Michael; Carrico, John
2014-01-01
The purpose of this extended abstract is to present results from a failed lunar-orbit insertion (LOI) maneuver contingency analysis for the Lunar Atmosphere Dust Environment Explorer (LADEE) mission, managed and operated by NASA Ames Research Center in Moffett Field, CA. The LADEE spacecrafts nominal trajectory implemented multiple sub-lunar phasing orbits centered at Earth before eventually reaching the Moon (Fig. 1) where a critical LOI maneuver was to be performed [1,2,3]. If this LOI was missed, the LADEE spacecraft would be on an Earth-escape trajectory, bound for heliocentric space. Although a partial mission recovery is possible from a heliocentric orbit (to be discussed in the full paper), it was found that an escape-prevention maneuver could be performed several days after a hypothetical LOI-miss, allowing a return to the desired science orbit around the Moon without leaving the Earths sphere-of-influence (SOI).
NASA Technical Reports Server (NTRS)
Stubbs, T. J.; Glenar, D. A.; Wang, Y.; Hermalyn, B.; Sarantos, M.; Colaprete, A.; Elphic, R. C.
2015-01-01
The scientific objectives of the Lunar Atmosphere and Dust Environment Explorer (LADEE) mission are: (1) determine the composition of the lunar atmosphere, investigate processes controlling distribution and variability - sources, sinks, and surface interactions; and (2) characterize the lunar exospheric dust environment, measure spatial and temporal variability, and influences on the lunar atmosphere. Impacts on the lunar surface from meteoroid streams encountered by the Earth-Moon system are anticipated to result in enhancements in the both the lunar atmosphere and dust environment. Here we describe the annual meteoroid streams expected to be incident at the Moon during the LADEE mission, and their anticipated effects on the lunar environment.
2017-12-08
Engineers at NASA's Ames Research Center, Moffett Field, Calif., prepare NASA's Lunar Atmosphere and Dust Environment Explorer (LADEE) Observatory for acoustic environmental testing. Credit: NASA/Ames ----- What is LADEE? The Lunar Atmosphere and Dust Environment Explorer (LADEE) is designed to study the Moon's thin exosphere and the lunar dust environment. An "exosphere" is an atmosphere that is so thin and tenuous that molecules don't collide with each other. Studying the Moon's exosphere will help scientists understand other planetary bodies with exospheres too, like Mercury and some of Jupiter's bigger moons. The orbiter will determine the density, composition and temporal and spatial variability of the Moon's exosphere to help us understand where the species in the exosphere come from and the role of the solar wind, lunar surface and interior, and meteoric infall as sources. The mission will also examine the density and temporal and spatial variability of dust particles that may get lofted into the atmosphere. The mission also will test several new technologies, including a modular spacecraft bus that may reduce the cost of future deep space missions and demonstrate two-way high rate laser communication for the first time from the Moon. LADEE now is ready to launch when the window opens on Sept. 6, 2013. Read more: www.nasa.gov/ladee NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
2013-09-04
NASA's Lunar Atmosphere and Dust Environment Explorer (LADEE) spacecraft being prepared in the clean room at Wallops Flight Facility. Credit: NASA ----- What is LADEE? The Lunar Atmosphere and Dust Environment Explorer (LADEE) is designed to study the Moon's thin exosphere and the lunar dust environment. An "exosphere" is an atmosphere that is so thin and tenuous that molecules don't collide with each other. Studying the Moon's exosphere will help scientists understand other planetary bodies with exospheres too, like Mercury and some of Jupiter's bigger moons. The orbiter will determine the density, composition and temporal and spatial variability of the Moon's exosphere to help us understand where the species in the exosphere come from and the role of the solar wind, lunar surface and interior, and meteoric infall as sources. The mission will also examine the density and temporal and spatial variability of dust particles that may get lofted into the atmosphere. The mission also will test several new technologies, including a modular spacecraft bus that may reduce the cost of future deep space missions and demonstrate two-way high rate laser communication for the first time from the Moon. LADEE now is ready to launch when the window opens on Sept. 6, 2013. Read more: www.nasa.gov/ladee NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
LADEE Mission Update 2 (Beginning of Science Operations) Reporter Package
2013-11-19
NASA's Lunar Atmosphere and Dust Environment Explorer, or LADEE, spacecraft has completed the check-out phase of its mission and has begun science operations around the moon. All the science instruments on-board have been examined by the LADEE team and have been cleared to begin collecting and analyzing the dust in the exosphere, or very thin atmosphere, that surrounds the moon.
2013-09-04
An artist's concept showing the Lunar Atmosphere and Dust Environment Explorer (LADEE) spacecraft is seen orbiting the moon as it prepares to fire its maneuvering thrusters to maintain a safe orbital altitude. Credit: NASA Ames / Dana Berry ----- What is LADEE? The Lunar Atmosphere and Dust Environment Explorer (LADEE) is designed to study the Moon's thin exosphere and the lunar dust environment. An "exosphere" is an atmosphere that is so thin and tenuous that molecules don't collide with each other. Studying the Moon's exosphere will help scientists understand other planetary bodies with exospheres too, like Mercury and some of Jupiter's bigger moons. The orbiter will determine the density, composition and temporal and spatial variability of the Moon's exosphere to help us understand where the species in the exosphere come from and the role of the solar wind, lunar surface and interior, and meteoric infall as sources. The mission will also examine the density and temporal and spatial variability of dust particles that may get lofted into the atmosphere. The mission also will test several new technologies, including a modular spacecraft bus that may reduce the cost of future deep space missions and demonstrate two-way high rate laser communication for the first time from the Moon. LADEE now is ready to launch when the window opens on Sept. 6, 2013. Read more: www.nasa.gov/ladee NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
LADEE Fires Thrusters Artist's Concept
2013-09-04
An artist's concept of NASA's Lunar Atmosphere and Dust Environment Explorer (LADEE) spacecraft firing its maneuvering thrusters in order to maintain a safe altitude as it orbits the moon. Credit: NASA Ames / Dana Berry ----- What is LADEE? The Lunar Atmosphere and Dust Environment Explorer (LADEE) is designed to study the Moon's thin exosphere and the lunar dust environment. An "exosphere" is an atmosphere that is so thin and tenuous that molecules don't collide with each other. Studying the Moon's exosphere will help scientists understand other planetary bodies with exospheres too, like Mercury and some of Jupiter's bigger moons. The orbiter will determine the density, composition and temporal and spatial variability of the Moon's exosphere to help us understand where the species in the exosphere come from and the role of the solar wind, lunar surface and interior, and meteoric infall as sources. The mission will also examine the density and temporal and spatial variability of dust particles that may get lofted into the atmosphere. The mission also will test several new technologies, including a modular spacecraft bus that may reduce the cost of future deep space missions and demonstrate two-way high rate laser communication for the first time from the Moon. LADEE now is ready to launch when the window opens on Sept. 6, 2013. Read more: www.nasa.gov/ladee NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
Observations of Titanium, Aluminum and Magnesium in the Lunar Exosphere by LADEE UVS
NASA Technical Reports Server (NTRS)
Colaprete, A.; Wooden, D.; Cook, A.; Shirley, M.; Sarantos, M.
2016-01-01
The Lunar Atmosphere and Dust Environment Explorer (LADEE) was an orbital lunar science mission designed to address the goals of the 2003 National Research Council decadal survey, the Lunar Exploration Analysis Group Roadmap, and the "Scientific Context for Exploration of the Moon" (SCEM) report, and has been recommended for execution by the 2011 Planetary Missions Decadal Survey. The LADEE mission goal was to determine the composition of the lunar atmosphere and investigate the processes that control its distribution and variability, including sources, sinks, and surface interactions. It will monitor variations in known gasses, such as sodium, potassium, argon and helium, and will search for other, as-yet-undetected gasses of both lunar and extra-lunar origin. Another goal of LADEE was to determine whether dust is present in the lunar exosphere, and reveal the processes that contribute to its sources and variability.
Transient Plume Model Testing Using LADEE Spacecraft Attitude Control System Operations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Woronowicz, M. S.
2011-05-20
The Lunar Atmosphere Dust Environment Explorer (LADEE) spacecraft is being designed for a mission featuring low altitude orbits of the Moon to take relevant ambient measurements before that environment becomes altered by future exploration activities. Instruments include a neutral mass spectrometer capable of measuring ambient species density levels below 100 molecules/cm{sup 3}. Coincidentally, with a favorable combination of spacecraft orientations, it is also possible to measure plume gases from LADEE attitude control system thruster operations as they are reflected from the daytime lunar surface and subsequently intercepted by the spacecraft as it orbits overhead. Under such circumstances, it may bemore » possible to test a variety of properties and assumptions associated with various transient plume models or to infer certain aspects regarding lunar surface properties.« less
Transient Plume Model Testing Using LADEE Spacecraft Attitude Control System Operations
NASA Technical Reports Server (NTRS)
Woronowicz, M. S.
2010-01-01
The Lunar Atmosphere Dust Environment Explorer (LADEE) spacecraft is being designed for a mission featuring low altitude orbits of the Moon to take relevant ambient measurements before that environment becomes altered by future exploration activities. Instruments include a neutral mass spectrometer capable of measuring ambient species density levels below 100 molecules/cu cm. Coincidentally, with a favorable combination of spacecraft orientations, it is also possible to measure plume gases from LADEE attitude control system thruster operations as they are reflected from the daytime lunar surface and subsequently intercepted by the spacecraft as it orbits overhead. Under such circumstances, it may be possible to test a variety of properties and assumptions associated with various transient plume models or to infer certain aspects regarding lunar surface properties.
2014 Summer Series - Brian Lewis - Skimming the Lunar Surface for Science: The LADEE Mission
2014-07-15
On Sept. 6, 2013, a near-perfect launch of the first Minotaur V rocket successfully carried NASA's Lunar Atmosphere and Dust Environment Explorer (LADEE) into space. LADEE arrived at the Moon on October 6, 2013, during the government shutdown. With commissioning completed, LADEE lowered periapsis over the sunrise terminator on Nov. 10, and on Nov. 20 lowered apoapsis as well. On April 11, after its primary mission was complete, LADEE performed it's final maneuver, placing it in a very low-altitude orbit that would yield a short period of highly valuable science while guaranteeing impact on the far side of the moon. On April 15, LADEE flew through a four hour lunar eclipse, demonstrating an ability to survive low temperatures and a deep drain on battery systems. LADEE ultimately impacted on the lunar surface between 9:30 pm and 10:22 pm PDT on April 17, 2014.
NASA Astrophysics Data System (ADS)
Janches, D.; Pokorny, P.; Sarantos, M.; Nesvorny, D.
2017-12-01
Recent observations by the Lunar Dust Experiment (LDEX) on board NASA's Lunar Atmosphere and Dust Environment Explorer (LADEE) were perceived to indicate an unbalanced influence of meteoroids impacting from the Helion and the Anti-Helion directions. These observations were interpreted without proper consideration of the dynamical characteristics of the meteoroid environment and its spatio-temporal influence on the Moon's surface. In this work, a dynamical model of meteoroids originating from Jupiter Family Comets is utilized to model the secondary dust ejecta cloud engulfing the Moon. It is shown that the combination of the dynamical properties of these meteoroids, together with the orbital geometry of LADEE, introduce a bias in the observations and causes LADEE LDEX to be more sensitive to the Helion source. This effect must be considered in order to draw accurate conclusions regarding the meteoroid environment and its influence on the Moon's surface.
First Results from NASA's Lunar Atmosphere and Dust Environment Explorer (LADEE)
NASA Technical Reports Server (NTRS)
Elphic, R.; Colaprete, A.; Horanyi, M; Mahaffy, Paul; Boroson, D.; Delory, G.; Noble, s; Hine, B; Salute, J.
2013-01-01
As of early August, 2013, the Lunar Atmosphere and Dust Environment Explorer (LADEE) mission is scheduled for launch on a Minotaur V rocket from Wallops Flight Facility during a five-day launch period that opens on Sept. 6, 2013 (early Sept. 7 UTC). LADEE will address 40 year-old mysteries of the lunar atmosphere and the question of levitated lunar dust. It will also pioneer the next generation of optical space communications. LADEE will assess the composition of the lunar atmosphere and investigate the processes that control its distribution and variability, including sources, sinks, and surface interactions. LADEE will also determine whether dust is present in the lunar exosphere, and reveal its sources and variability. These investigations are relevant to our understanding of surface boundary exospheres and dust processes occurring at many objects throughout the solar system, address questions regarding the origin and evolution of lunar volatiles, and have potential implications for future exploration activities. Following a successful launch, LADEE will enter a series of phasing orbits, which allows the spacecraft to arrive at the Moon at the proper time and phase. This approach accommodates any dispersion in the Minotaur V launch injection. LADEE's arrival at the moon in early October. The spacecraft will approach the moon from its leading edge, travel behind the Moon out of sight of the Earth, and then re-emerge and execute a three-minute Lunar Orbit Insertion maneuver. This will place LADEE in an elliptical retrograde equatorial orbit with an orbital period of approximately 24 hours. A series of maneuvers is then performed to reduce the orbit to become nearly circular with a 156-mile (250- kilometer) altitude. Spacecraft checkout and science instrument commissioning will commence in early-October and will nominally span 30 days but can be extended for an additional 30 days in the event of contingencies. Following commissioning, the 100-day Science Phase is performed at an orbit with periapsis between 20-60 km. This orbit must be constantly managed due to the Moon's highly inhomogeneous gravity field. During the Science Phase, the moon will rotate more than three times underneath the LADEE orbit. LADEE employs a high heritage instrument payload: a Neutral Mass Spectrometer (NMS) from Goddard Space Flight Center, an Ultraviolet/Visible Spectrometer (UVS) from Ames Research Center, and a dust detection experiment (LDEX) from the University of Colorado/LASP. It will also carry the Lunar Laser Communications Demonstration (LLCD) as a technology demonstration. The LLCD is funded by the Human Exploration Operations Mission Directorate (HEOMD), managed by GSFC, and built by the MIT Lincoln Lab. Contingent upon LADEE's successful lunar orbit insertion and checkout, we will report the early results from the science investigations.
Overview of the LADEE Ultraviolet-visible Spectrometer: Design, Performance and Planned Operations
NASA Technical Reports Server (NTRS)
Colaprete, A.; Elphic, R. C.; Landis, D.; Karcz, J.; Osetinsky, L.; Shirley, M.; Vargo, K.; Wooden, D.
2013-01-01
The Lunar Atmosphere and Dust Environment Explorer (LADEE) is an orbital lunar science mission currently under development to address the goals of the 2003 National Research Council decadal survey, the Lunar Exploration Analysis Group Roadmap, and the "Scientific Context for Exploration of the Moon" (SCEM) report, and has been recommended for execution by the 2011 Planetary Missions Decadal Survey. The mission s focus is to study the pristine state of the lunar atmosphere and dust environment prior to possible lunar exploration activities by countries, including the United States, China, India, and Japan, among others. Activity on the lunar surface has the potential of altering the tenuous lunar atmosphere, but changing the type and concentration of gases in the atmosphere. Before these activities occur it is important to make measurements of the current lunar atmosphere in its unmodified state. LADEE will determine the composition of the lunar atmosphere and investigate the processes that control its distribution and variability, including sources, sinks, and surface interactions. It will monitor variations in known gases, such as sodium, potassium, argon and helium, and will search for other, as-yet-undetected gases of both lunar and extra-lunar origin. LADEE will also determine whether dust is present in the lunar exosphere, and reveal the processes that contribute to its sources and variability. Launch is planned for August, 2013.
Sun Safe Mode Controller Design for LADEE
NASA Technical Reports Server (NTRS)
Fusco, Jesse C.; Swei, Sean S. M.; Nakamura, Robert H.
2015-01-01
This paper presents the development of sun safe controllers which are designed to keep the spacecraft power positive and thermally balanced in the event an anomaly is detected. Employed by NASA's Lunar Atmosphere and Dust Environment Explorer (LADEE), the controllers utilize the measured sun vector and the spacecraft body rates for feedback control. To improve the accuracy of sun vector estimation, the least square minimization approach is applied to process the sensor data, which is proven to be effective and accurate. To validate the controllers, the LADEE spacecraft model engaging the sun safe mode was first simulated and then compared with the actual LADEE orbital fight data. The results demonstrated the applicability of the proposed sun safe controllers.
First Results from NASA's Lunar Atmosphere and Dust Environment Explorer (LADEE)
NASA Astrophysics Data System (ADS)
Elphic, R. C.; Colaprete, A.; Horanyi, M.; Mahaffy, P. R.; Delory, G. T.; Noble, S. K.; Boroson, D.; Hine, B.; Salute, J.
2013-12-01
As of early August, 2013, the Lunar Atmosphere and Dust Environment Explorer (LADEE) mission is scheduled for launch on a Minotaur V rocket from Wallops Flight Facility during a five-day launch period that opens on Sept. 6, 2013 (early Sept. 7 UTC). LADEE will address 40 year-old mysteries of the lunar atmosphere and the question of levitated lunar dust. It will also pioneer the next generation of optical space communications. LADEE will assess the composition of the lunar atmosphere and investigate the processes that control its distribution and variability, including sources, sinks, and surface interactions. LADEE will also determine whether dust is present in the lunar exosphere, and reveal its sources and variability. These investigations are relevant to our understanding of surface boundary exospheres and dust processes occurring at many objects throughout the solar system, address questions regarding the origin and evolution of lunar volatiles, and have potential implications for future exploration activities. Following a successful launch, LADEE will enter a series of phasing orbits, which allows the spacecraft to arrive at the Moon at the proper time and phase. This approach accommodates any dispersion in the Minotaur V launch injection. LADEE's arrival at the moon depends on the launch date, but with the Sept. 6 launch date it should arrive at the Moon in early October. The spacecraft will approach the moon from its leading edge, travel behind the Moon out of sight of the Earth, and then re-emerge and execute a three-minute Lunar Orbit Insertion maneuver. This will place LADEE in an elliptical retrograde equatorial orbit with an orbital period of approximately 24 hours. A series of maneuvers is then performed to reduce the orbit to become nearly circular with a 156-mile (250-kilometer) altitude. Spacecraft checkout and science instrument commissioning will commence in early-October and will nominally span 30 days but can be extended for an additional 30 days in the event of contingencies. Following commissioning, the 100-day Science Phase is performed at an orbit with periapsis between 20-60 km. This orbit must be constantly managed due to the Moon's highly inhomogeneous gravity field. During the Science Phase, the moon will rotate more than three times underneath the LADEE orbit. LADEE employs a high heritage instrument payload: a Neutral Mass Spectrometer (NMS) from Goddard Space Flight Center, an Ultraviolet/Visible Spectrometer (UVS) from Ames Research Center, and a dust detection experiment (LDEX) from the University of Colorado/LASP. It will also carry the Lunar Laser Communications Demonstration (LLCD) as a technology demonstration. The LLCD is funded by the Human Exploration Operations Mission Directorate (HEOMD), managed by GSFC, and built by the MIT Lincoln Lab. Contingent upon LADEE's successful lunar orbit insertion and checkout, we will report the early results from the science investigations.
LADEE Encapsulated in the Fairing
2013-09-04
Engineers at NASA's Wallops Flight Facility in Virginia prepare to encapsulate the LADEE spacecraft into the fairing of the Minotaur V launch vehicle nose-cone. Credit: NASA/Wallops/Terry Zaperach ----- What is LADEE? The Lunar Atmosphere and Dust Environment Explorer (LADEE) is designed to study the Moon's thin exosphere and the lunar dust environment. An "exosphere" is an atmosphere that is so thin and tenuous that molecules don't collide with each other. Studying the Moon's exosphere will help scientists understand other planetary bodies with exospheres too, like Mercury and some of Jupiter's bigger moons. The orbiter will determine the density, composition and temporal and spatial variability of the Moon's exosphere to help us understand where the species in the exosphere come from and the role of the solar wind, lunar surface and interior, and meteoric infall as sources. The mission will also examine the density and temporal and spatial variability of dust particles that may get lofted into the atmosphere. The mission also will test several new technologies, including a modular spacecraft bus that may reduce the cost of future deep space missions and demonstrate two-way high rate laser communication for the first time from the Moon. LADEE now is ready to launch when the window opens on Sept. 6, 2013. Read more: www.nasa.gov/ladee NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
NASA's First Laser Communication System
2017-12-08
A new NASA-developed, laser-based space communication system will enable higher rates of satellite communications similar in capability to high-speed fiber optic networks on Earth. The space terminal for the Lunar Laser Communication Demonstration (LLCD), NASA's first high-data-rate laser communication system, was recently integrated onto the Lunar Atmosphere and Dust Environment Explorer (LADEE) spacecraft. LLCD will demonstrate laser communications from lunar orbit to Earth at six times the rate of the best modern-day advanced radio communication systems. Credit: NASA ----- What is LADEE? The Lunar Atmosphere and Dust Environment Explorer (LADEE) is designed to study the Moon's thin exosphere and the lunar dust environment. An "exosphere" is an atmosphere that is so thin and tenuous that molecules don't collide with each other. Studying the Moon's exosphere will help scientists understand other planetary bodies with exospheres too, like Mercury and some of Jupiter's bigger moons. The orbiter will determine the density, composition and temporal and spatial variability of the Moon's exosphere to help us understand where the species in the exosphere come from and the role of the solar wind, lunar surface and interior, and meteoric infall as sources. The mission will also examine the density and temporal and spatial variability of dust particles that may get lofted into the atmosphere. The mission also will test several new technologies, including a modular spacecraft bus that may reduce the cost of future deep space missions and demonstrate two-way high rate laser communication for the first time from the Moon. LADEE now is ready to launch when the window opens on Sept. 6, 2013. Read more: www.nasa.gov/ladee NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
Trajectory Design for the Phobos and Deimos & Mars Environment Spacecraft
NASA Technical Reports Server (NTRS)
Genova, Anthony L.; Korsmeyer, David J.; Loucks, Michel E.; Yang, Fan Yang; Lee, Pascal
2016-01-01
The presented trajectory design and analysis was performed for the Phobos and Deimos & Mars Environment (PADME) mission concept as part of a NASA proposal submission managed by NASA Ames Research Center in the 2014-2015 timeframe. The PADME spacecraft would be a derivative of the successfully flown Lunar Atmosphere & Dust Environment Explorer (LADEE) spacecraft. While LADEE was designed to enter low-lunar orbit, the PADME spacecraft would instead enter an elliptical Mars orbit of 2-week period. This Mars orbit would pass by Phobos near periapsis on successive orbits and then raise periapsis to yield close approaches of Deimos every orbit thereafter.
NASA Technical Reports Server (NTRS)
Lukash, James A.; Daley, Earl
2011-01-01
This work describes the design and development effort to adapt rapid-development space hardware by creating a ground system using solutions of low complexity, mass, & cost. The Lunar Atmosphere and Dust Environment Explorer (LADEE) spacecraft is based on the modular common spacecraft bus architecture developed at NASA Ames Research Center. The challenge was building upon the existing modular common bus design and development work and improving the LADEE spacecraft design by adding an Equipotential Voltage Reference (EVeR) system, commonly referred to as a ground system. This would aid LADEE in meeting Electromagnetic Environmental Effects (E3) requirements, thereby making the spacecraft more compatible with itself and its space environment. The methods used to adapt existing hardware are presented, including provisions which may be used on future spacecraft.
2017-12-08
During preparations for NASA's Lunar Atmosphere and Dust Environment Explorer (LADEE) observatory launch on Sept. 6, 2013, the spacecraft went through final preparations and close-outs, which included checking alignment after its cross-country shipment, checking the propulsion system for leaks, inspecting and repairing solar panels, and final electrical tests. After these activities were completed, more challenging portions of the launch preparations began: spin testing and fueling. To make sure that the spacecraft is perfectly balanced for flight, engineers mounted it onto a spin table and rotate it at high speeds, approximately one revolution per second. The team measured any offsets during the spinning, and then added small weights to the spacecraft to balance it. Once the spacecraft was balanced dry, the team loaded the propulsion tanks with fuel, oxidizer, and pressurant. The spin testing was performed again "wet," or with fuel, in order to see if the balance changed with the full fuel tanks. Engineers from NASA's Ames Research Center in Moffett Field, Calif., have now successfully completed launch preparation activities for LADEE, which has been encapsulated into the nose-cone of the Minotaur V rocket at NASA's Wallops Flight Facility in Virginia. LADEE is ready to launch when the window opens on Friday. Image Credit: NASA ----- What is LADEE? The Lunar Atmosphere and Dust Environment Explorer (LADEE) is designed to study the Moon's thin exosphere and the lunar dust environment. An "exosphere" is an atmosphere that is so thin and tenuous that molecules don't collide with each other. Studying the Moon's exosphere will help scientists understand other planetary bodies with exospheres too, like Mercury and some of Jupiter's bigger moons. The orbiter will determine the density, composition and temporal and spatial variability of the Moon's exosphere to help us understand where the species in the exosphere come from and the role of the solar wind, lunar surface and interior, and meteoric infall as sources. The mission will also examine the density and temporal and spatial variability of dust particles that may get lofted into the atmosphere. The mission also will test several new technologies, including a modular spacecraft bus that may reduce the cost of future deep space missions and demonstrate two-way high rate laser communication for the first time from the Moon. LADEE now is ready to launch when the window opens on Sept. 6, 2013. Read more: www.nasa.gov/ladee NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
Contingency Trajectory Design for a Lunar Orbit Insertion Maneuver Failure by the LADEE Spacecraft
NASA Technical Reports Server (NTRS)
Genova, A. L.
2014-01-01
This paper presents results from a contingency trajectory analysis performed for the Lunar Atmosphere & Dust Environment Explorer (LADEE) mission in the event of a missed lunar-orbit insertion (LOI) maneuver by the LADEE spacecraft. The effects of varying solar perturbations in the vicinity of the weak stability boundary (WSB) in the Sun-Earth system on the trajectory design are analyzed and discussed. It is shown that geocentric recovery trajectory options existed for the LADEE spacecraft, depending on the spacecraft's recovery time to perform an Earth escape-prevention maneuver after the hypothetical LOI maneuver failure and subsequent path traveled through the Sun-Earth WSB. If Earth-escape occurred, a heliocentric recovery option existed, but with reduced science capacapability for the spacecraft in an eccentric, not circular near-equatorial retrograde lunar orbit.
The Neutral Mass Spectrometer on the Lunar Atmosphere and Dust Environment Explorer Mission
NASA Technical Reports Server (NTRS)
Mahaffy, Paul R.; Hodges, R. Richard; Benna, Mehdi; King, Todd; Arvey, Robert; Barciniak, Michael; Bendt, Mirl; Carigan, Daniel; Errigo, Therese; Harpold, Daniel N.;
2014-01-01
The Neutral Mass Spectrometer (NMS) of the Lunar Atmosphere and Dust Environment Explorer (LADEE) Mission is designed to measure the composition and variability of the tenuous lunar atmosphere. The NMS complements two other instruments on the LADEE spacecraft designed to secure spectroscopic measurements of lunar composition and in situ measurement of lunar dust over the course of a 100-day mission in order to sample multiple lunation periods. The NMS utilizes a dual ion source designed to measure both surface reactive and inert species and a quadrupole analyzer. The NMS is expected to secure time resolved measurements of helium and argon and determine abundance or upper limits for many other species either sputtered or thermally evolved from the lunar surface.
Marshall Team Complete Testing for Lunar Atmosphere and Dust Environment Explorer
NASA Technical Reports Server (NTRS)
Swofford, Philip
2013-01-01
Dr. Huu Trinh and his team with the Propulsion Systems and Test Departments at Marshall Space Flight Center in Huntsville, Ala. successfully complete a simulated cold-flow test series on the propulsion system used for the Lunar Atmosphere and Dust Environment Explorer (LADEE) spacecraft. NASA Ames Research Center, Moffett Field, Calif., is leading NASA s work on the development of the LADEE spacecraft, and the Marshall center is the program office for the project. The spacecraft, scheduled for launch this fall, will orbit the Moon and gather information about the lunar atmosphere, conditions near the surface of the Moon, and collect samples of lunar dust. A thorough understanding of these characteristics will address long-standing unknowns, and help scientists understand other planetary bodies as well. The test team at the Marshall center conducted the cold flow test to identify how the fluid flows through the propulsion system feed lines, especially during critical operation modes. The test data will be used to assist the LADEE team in identifying any potential flow issues in the propulsion system, and allow them to address and correct them in advance of the launch.
Calibration of the Neutral Mass Spectrometer for the Lunar Atmosphere and Dust Environment Explorer
NASA Technical Reports Server (NTRS)
Mahaffy, P. R.; Hodges, R. R.; Harpold, D. N.; King, T. T.; Jaeger, F.; Raaen, E.; Lyness, E.; Collier, M.; Benna, M.
2012-01-01
Science objectives of the LADEE Mission are to (1) determine the composition, and time variability of the tenuous lunar atmosphere and (2) to characterize the dust environment and its variability. These studies will extend the in-situ characterization of the environment that were carried out decades ago with the Apollo missions and a variety of ground based studies. The focused LADEE measurements will enable a more complete understanding of dust and gas sources and sinks. Sources of gas include UV photo-stimulated desorption, sputtering by plasma and micrometeorites, as well as thermal release of species such as argon from the cold service or venting from the lunar interior. Sinks include recondensation on the surface and escape through a variety of mechanisms. The LADEE science payload consists of an Ultraviolet Spectrometer, a Neutral Mass Spectrometer, and a Dust Detector. The LADEE orbit will include multiple passes at or below 50 km altitude and will target repeated sampling at the sunrise terminator where exospheric density will be highest for some thermally released species. The science mission will be implemented in approximately three months to allow measurements to be made over a period of one or more lunations In addition to the science mission NASA will use this mission to demonstrate optical communication technology away from low Earth orbit.
NASA's Lunar Atmosphere and Dust Environment Explorer (LADEE)
NASA Technical Reports Server (NTRS)
Elphic, Richard; Delory, Gregory; Colaprete, Anthony; Horanyi, Mihaly; Mahaffy, Paul; Hine, Butler; McClard, Steven; Grayzeck, Edwin; Boroson, Don
2011-01-01
Nearly 40 years have passed since the last Apollo missions investigated the mysteries of the lunar atmosphere and the question of levitated lunar dust. The most important questions remain: what is the composition, structure and variability of the tenuous lunar exosphere? What are its origins, transport mechanisms, and loss processes? Is lofted lunar dust the cause of the horizon glow observed by the Surveyor missions and Apollo astronauts? How does such levitated dust arise and move, what is its density, and what is its ultimate fate? The US National Academy of Sciences/National Research Council decadal surveys and the recent "Scientific Context for Exploration of the Moon" (SCEM) reports have identified studies of the pristine state of the lunar atmosphere and dust environment as among the leading priorities for future lunar science missions. These measurements have become particularly important since recent observations by the Lunar Crater Observation and Sensing Satellite (LCROSS) mission point to significant amounts of water and other volatiles sequestered within polar lunar cold traps. Moreover Chandrayaan/M3, EPOXI and Cassini/VIMS have identified molecular water and hydroxyl on lunar surface regolith grains. Variability in concentration suggests these species are likely to be present in the exosphere, and thus constitute a source for the cold traps. NASA s Lunar Atmosphere and Dust Environment Explorer (LADEE) is currently under development to address these goals. LADEE will determine the composition of the lunar atmosphere and investigate the processes that control its distribution and variability, including sources, sinks, and surface interactions. LADEE will also determine whether dust is present in the lunar exosphere, and reveal its sources and variability. LADEE s results are relevant to surface boundary exospheres and dust processes throughout the solar system, will address questions regarding the origin and evolution of lunar volatiles, and will have implications for future exploration activities. LADEE will be the first mission based on the Ames Common Bus design. LADEE employs a high heritage instrument payload: a Neutral Mass Spectrometer (NMS), an Ultraviolet/Visible Spectrometer (UVS), and the Lunar Dust Experiment (LDEX). It will also carry a space terminal as part of the Lunar Laser Communication Demonstration (LLCD), which is a technology demonstration. LLCD will also supply a ground terminal. LLCD is funded by the Space Operations Mission Directorate (SOMD), managed by GSFC, and built by MIT Lincoln Lab. NMS was directed to the Goddard Space Flight Center (GSFC) and UVS to Ames Research Center (ARC). LDEX was selected through the Stand Alone Missions of Opportunity Notice (SALMON) Acquisition Process, and is provided by the University of Colorado at Boulder. The LADEE NMS covers a m/z range of 2-150 and draws its design from mass spectrometers developed at GSFC for the MSL/SAM, Cassini Orbiter, CONTOUR, and MAVEN missions. The UVS instrument is a next-generation, high-reliability version of the LCROSS UV-Vis spectrometer, spanning 250-800 nm wavelength, with high (<1 nm) spectral resolution. UVS will also perform dust occultation measurements via a solar viewer optic. LDEX senses dust impacts in situ, at LADEE orbital altitudes of 50 km and below, with a particle size range of between 100 nm and 5 micron. Dust particle impacts on a large hemispherical target create electron and ion pairs. The latter are focused and accelerated in an electric field and detected at a microchannel plate. LADEE is an important part of NASA s portfolio of near-term lunar missions; launch is planned for May, 2013. The lunar atmosphere is the most accessible example of a surface boundary exosphere, and may reveal the sources and cycling of volatiles. Dynamic dust activity must be accounted for in the design and operation of lunar surface operations.
NASA Astrophysics Data System (ADS)
Grava, C.; Stubbs, T. J.; Glenar, D. A.; Retherford, K. D.; Kaufmann, D. E.
2017-05-01
The Lyman-Alpha Mapping Project (LAMP) UV spectrograph on board the Lunar Reconnaissance Orbiter (LRO) performed a campaign to observe the Moon's nanodust exosphere, evidence for which was provided by the Lunar Atmosphere and Dust Environment Explorer (LADEE) Ultraviolet and Visible Spectrometer (UVS) during the 2014 Quadrantid meteoroid stream. These LADEE/UVS observations were consistent with a nanodust exosphere modulated by meteoroid impacts. LRO performed off-nadir maneuvers around the peak of the 2016 Quadrantids, in order to reproduce, as closely as possible, the active meteoroid environment and observing geometry of LADEE/UVS. We analyzed LAMP spectra to search for sunlight backscattering from nanodust. No brightness enhancement attributable to dust, of any size, was observed. We determine an upper limit for dust column concentration of 105 cm-2 for grains of radius 25 nm, and an upper limit for dust column mass of 10-11 g cm-2, nearly independent of grain size for radii <100 nm.
NASA Technical Reports Server (NTRS)
Hurley, Dana M.; Cook, Jason C.; Benna, Mehdi; Halekas, Jasper S.; Feldman, Paul D.; Retherford, Kurt D.; Hodges, R. Richard; Grava, Cesare; Mahaffy, Paul; Gladstone, G. Randall;
2015-01-01
Simultaneous measurements of helium in the exosphere of the Moon are made from the Lunar Reconnaissance Orbiter (LRO) Lyman Alpha Mapping Project (LAMP) and the Lunar Atmosphere and Dust Environment Explorer (LADEE) Neutral Mass Spectrometer (NMS) through the entire 5-month span of the LADEE mission. In addition, the ARTEMIS mission monitored the solar wind alpha particle flux to the Moon. Modeling the lunar helium exosphere, we relate the LAMP polar observations to the LADEE equatorial observations. Further, using the ARTEMIS alpha flux in the Monte Carlo model reproduces the temporal variations in helium density. Comparing the LAMP data to the LADEE data shows excellent agreement. Comparing those with the ARTEMIS data reveals that the solar wind alpha flux is the primary driver to variability in the helium exosphere throughout the LADEE mission. Using a decay time for exospheric helium of 5 days, we determine that the solar wind contributes 64 +/- 5% of the helium to the lunar exosphere. The remaining 36 +/- 5% is presumed to come from outgassing of radiogenic helium from the interior of the Moon. Furthermore, the model reproduces the measurements if 63 +/- 6% of the incident alpha particles are converted to thermalized helium atoms through the interaction between the alphas and the lunar surface. However, these values are dependent on both inferred source rates from LAMP and LADEE observations and on the assumed time constant of the exospheric decay rate.
NASA Astrophysics Data System (ADS)
Hurley, Dana M.; Cook, Jason C.; Benna, Mehdi; Halekas, Jasper S.; Feldman, Paul D.; Retherford, Kurt D.; Hodges, R. Richard; Grava, Cesare; Mahaffy, Paul; Gladstone, G. Randall; Greathouse, Thomas; Kaufmann, David E.; Elphic, Richard C.; Stern, S. Alan
2016-07-01
Simultaneous measurements of helium in the exosphere of the Moon are made from the Lunar Reconnaissance Orbiter (LRO) Lyman Alpha Mapping Project (LAMP) and the Lunar Atmosphere and Dust Environment Explorer (LADEE) Neutral Mass Spectrometer (NMS) through the entire 5-month span of the LADEE mission. In addition, the ARTEMIS mission monitored the solar wind alpha particle flux to the Moon. Modeling the lunar helium exosphere, we relate the LAMP polar observations to the LADEE equatorial observations. Further, using the ARTEMIS alpha flux in the Monte Carlo model reproduces the temporal variations in helium density. Comparing the LAMP data to the LADEE data shows excellent agreement. Comparing those with the ARTEMIS data reveals that the solar wind alpha flux is the primary driver to variability in the helium exosphere throughout the LADEE mission. Using a decay time for exospheric helium of 5 days, we determine that the solar wind contributes 64 ± 5% of the helium to the lunar exosphere. The remaining 36 ± 5% is presumed to come from outgassing of radiogenic helium from the interior of the Moon. Furthermore, the model reproduces the measurements if 63 ± 6% of the incident alpha particles are converted to thermalized helium atoms through the interaction between the alphas and the lunar surface. However, these values are dependent on both inferred source rates from LAMP and LADEE observations and on the assumed time constant of the exospheric decay rate.
The Lunar Atmosphere and Dust Environment Explorer (LADEE): Initial Science Results
NASA Technical Reports Server (NTRS)
Elphic, R. C.; Hine, B.; Delory, G. T.; Salute, J. S.; Noble, S.; Colaprete, A.; Horanyi, M.; Mahaffy, P.
2014-01-01
On September 6, 2013, a near-perfect launch of the first Minotaur V rocket successfully carried NASA's Lunar Atmosphere and Dust Environment Explorer (LADEE) into a high-eccentricity geocentric orbit. LADEE arrived at the Moon on October 6, 2013, dur-ing the government shutdown. The spacecraft impact-ed the lunar surface on April 18, 2014, following a completely successful mission. LADEE's science objectives were twofold: (1) De-termine the composition and variability of the lunar atmosphere; (2) Characterize the lunar exospheric dust environment, and its variability. The LADEE science payload consisted of the Lunar Dust Experiment (LDEX), which sensed dust impacts in situ, for parti-cles between 100 nm and 5 micrometers; a neutral mass spectrometer (NMS), which sampled lunar exo-spheric gases in situ, over the 2-150 Dalton mass range; an ultraviolet/visible spectrometer (UVS) ac-quired spectra of atmospheric emissions and scattered light from tenuous dust, spanning a 250-800 nm wave-length range. UVS also performed dust extinction measurements via a separate solar viewer optic. The following are preliminary results for the lunar exosphere: (1) The helium exosphere of the Moon, first observed during Apollo, is clearly dominated by the delivery of solar wind He++. (2) Neon 20 is clearly seen as an important constituent of the exosphere. (3) Argon 40, also observed during Apollo and arising from interior outgassing, exhibits variations related to surface temperature-driven condensation and release, and is also enhanced over specific selenographic longi-tudes. (4) The sodium abundance varies with both lu-nar phase and with meteoroid influx, implicating both solar wind sputtering and impact vaporization process-es. (5) Potassium was also routinely monitored and exhibits some of the same properties as sodium. (6) Other candidate species were seen by both NMS and UVS, and await confirmation. Dust measurements have revealed a persistent "shroud" of small dust particles between 0.7 and sev-eral micrometers in size, present over the pre-dawn and morning sector of the Moon. This tenuous dust exosphere, with densities of approximately 10(exp -5) m(exp -3), appears to be sustained by the ejecta of micrometeoroid impacts.
Transient Plume Model Testing Using LADEE Spacecraft Attitude Control System Operations
NASA Technical Reports Server (NTRS)
Woronowicz, Michael
2011-01-01
We have learned it is conceivable that the Neutral Mass Spectrometer on board the Lunarr Atmosphere Dust Environment Explorer (LADEE) could measure gases from surface-reflected Attitude Control System (ACS) thruster plume. At minimum altitude, the measurement would be maximized, and gravitational influence minimized ("short" time-of-flight (TOF) situation) Could use to verify aspects of thruster plume modeling Model the transient disturbance to NMS measurements due to ACS gases reflected from lunar surface Observe evolution of various model characteristics as measured by NMS Species magnitudes, TOF measurements, angular distribution, species separation effects
Flight Software for the LADEE Mission
NASA Technical Reports Server (NTRS)
Cannon, Howard N.
2015-01-01
The Lunar Atmosphere and Dust Environment Explorer (LADEE) spacecraft was launched on September 6, 2013, and completed its mission on April 17, 2014 with a directed impact to the Lunar Surface. Its primary goals were to examine the lunar atmosphere, measure lunar dust, and to demonstrate high rate laser communications. The LADEE mission was a resounding success, achieving all mission objectives, much of which can be attributed to careful planning and preparation. This paper discusses some of the highlights from the mission, and then discusses the techniques used for developing the onboard Flight Software. A large emphasis for the Flight Software was to develop it within tight schedule and cost constraints. To accomplish this, the Flight Software team leveraged heritage software, used model based development techniques, and utilized an automated test infrastructure. This resulted in the software being delivered on time and within budget. The resulting software was able to meet all system requirements, and had very problems in flight.
Synodic and Semiannual Oscillations of Argon-40 in the Lunar Exosphere
NASA Technical Reports Server (NTRS)
Hodges, R. Richard, Jr.; Mahaffy, Paul R.
2016-01-01
The neutral mass spectrometer on the Lunar Atmosphere and Dust Environment Explorer (LADEE) spacecraft collected a trove of exospheric data, including a set of high-quality measurements of radiogenic Ar-40 over a period of 142 days. Data synthesis studies, using well-established exosphere simulation tools, show that the LADEE argon data are consistent with an exosphere-regolith interaction that is dominated by adsorption and that the desorption process generates the Armand distribution of exit velocities. The synthesis work has uncovered an apparent semiannual oscillation of argon that is consistent with temporal sequestration in the seasonal cold traps created at the poles by the obliquity of the Moon. In addition, the LADEE data provide new insight into the pristine nature of lunar regolith, its spatially varying sorption properties, and the influence of sorption processes on the synodic oscillation of the argon exosphere.
LADEE/LDEX observations of lunar pickup ion distribution and variability
NASA Astrophysics Data System (ADS)
Poppe, A. R.; Halekas, J. S.; Szalay, J. R.; Horányi, M.; Levin, Z.; Kempf, S.
2016-04-01
We report fortuitous observations of low-energy lunar pickup ion fluxes near the Moon while in the solar wind by the Lunar Dust Experiment (LDEX) on board the Lunar Atmosphere and Dust Environment Explorer (LADEE). We describe the method of observation and the empirical calibration of the instrument for ion observations. LDEX observes several trends in the exospheric ion production rate, including a scale height of approximately 100 km, a positive, linear correlation with solar wind flux, and evidence of a slight enhancement near 7-8 h local time. We compare the LDEX observations to both LADEE Neutral Mass Spectrometer ion mode observations and theoretical models. The LDEX data are best fit by total exospheric ion production rates of ≈6 × 103 m-3 s-1 with dominant contributions from Al+, CO+, and Ar+, although the LDEX data suggest that the aluminum neutral density and corresponding ion production rate are lower than predicted by recent models.
LADEE Satellite Modeling and Simulation Development
NASA Technical Reports Server (NTRS)
Adams, Michael; Cannon, Howard; Frost, Chad
2011-01-01
As human activity on and around the Moon increases, so does the likelihood that our actions will have an impact on its atmosphere. The Lunar Atmosphere and Dust Environment Explorer (LADEE), a NASA satellite scheduled to launch in 2013, will orbit the Moon collecting composition, density, and time variability data to characterize the current state of the lunar atmosphere. LADEE will also test the concept of the "Modular Common Bus" spacecraft architecture, an effort to reduce both development time and cost by designing reusable, modular components for use in multiple missions with similar requirements. An important aspect of this design strategy is to both simulate the spacecraft and develop the flight code in Simulink, a block diagram-style programming language that allows easy algorithm visualization and performance testing. Before flight code can be tested, however, a realistic simulation of the satellite and its dynamics must be generated and validated. This includes all of the satellite control system components such as actuators used for force and torque generation and sensors used for inertial orientation reference. My primary responsibilities have included designing, integrating, and testing models for the LADEE thrusters, reaction wheels, star trackers, and rate gyroscopes.
LADEE UVS Observations of Atoms and Dust in the Lunar Tail
NASA Technical Reports Server (NTRS)
Wooden, Diane H.; Colaprete, Anthony; Cook, Amanda M.; Shirley, Mark H.; Vargo, Kara E.; Elphic, Richard C.; Stubbs, Timothy J.; Glenar, David A.
2014-01-01
The Lunar Atmosphere and Dust Environment Explorer (LADEE) was a lunar orbiter launched in September 2013 that investigated the composition and temporal variation of the tenuous lunar exosphere and dust environment. A major goal of the mission was to characterize the dust exosphere prior to future lunar exploration activities, which may alter the lunar environment. The Ultraviolet/Visible Spectrometer (UVS) onboard LADEE addresses this goal, utilizing two sets of optics: a limbviewing telescope, and a solar-viewing telescope. We report on spectroscopic (approximately 280 - 820 nm) observations viewing down the lunar wake or along the 'lunar tail' from lunar orbit. Prior groundbased studies have observed the emission from neutral sodium atoms extended along the lunar tail, so often this region is referred to as the lunar sodium tail. UVS measurements were made on the dark side of the moon, with the UVS limb-viewing telescope pointed outward in the direction of the Moon's wake (almost anti-sun), during different lunar phases. These UVS observation activities sample a long column and allow the characterization of scattered light from dust and emission lines from atoms in the lunar tail. Observations in this UVS configuration show the largest excess of scattered blue light in our data set, indicative of the presence of small dust grains in the tail. Once lofted, nanoparticles may become charged and picked up by the solar wind, similar to the phenomena witnessed above Enceladus's northern hemisphere or by the STEREO/WAVES instrument while close to Earth's orbit. The UVS data show that small dust grains as well as atoms become entrained in the lunar tail.
Attitude Design for the LADEE Mission
NASA Technical Reports Server (NTRS)
Galal, Ken; Nickel, Craig; Sherman, Ryan
2015-01-01
The Lunar Atmosphere and Dust Environment Explorer (LADEE) satellite successfully completed its 148-day science investigation in a low-altitude, near-equatorial lunar orbit on April 18, 2014. The LADEE spacecraft was built, managed and operated by NASA's Ames Research Center (ARC). The Mission Operations Center (MOC) was located at Ames and was responsible for activity planning, command sequencing, trajectory and attitude design, orbit determination, and spacecraft operations. The Science Operations Center (SOC) was located at Goddard Space Flight Center and was responsible for science planning, data archiving and distribution. This paper details attitude design and operations support for the LADEE mission. LADEE's attitude design was shaped by a wide range of instrument pointing requirements that necessitated regular excursions from the baseline one revolution per orbit "Ram" attitude. Such attitude excursions were constrained by a number of flight rules levied to protect instruments from the Sun, avoid geometries that would result in simultaneous occlusion of LADEE's two star tracker heads, and maintain the spacecraft within its thermal and power operating limits. To satisfy LADEE's many attitude requirements and constraints, a set of rules and conventions was adopted to manage the complexity of this design challenge and facilitate the automation of ground software that generated pointing commands spanning multiple days of operations at a time. The resulting LADEE Flight Dynamics System (FDS) that was developed used Visual Basic scripts that generated instructions to AGI's Satellite Tool Kit (STK) in order to derive quaternion commands at regular intervals that satisfied LADEE's pointing requirements. These scripts relied heavily on the powerful "align and constrain" capability of STK's attitude module to construct LADEE's attitude profiles and the slews to get there. A description of the scripts and the attitude modeling they embodied is provided. One particular challenge analysts faced was in the design of LADEE maneuver attitudes. A flight rule requiring pre-maneuver verification of in-flight maneuver conditions by ground operators prior to burn execution resulted in the need to accommodate long periods in the maneuver attitude. This in turn complicated efforts to satisfy star tracker interference and communication constraints in lunar orbit. In response to this challenge, a graphical method was developed and used to survey candidate rotation angles about the thrust vector. This survey method is described and an example of its use on a particular LADEE maneuver is discussed. Finally, the software and methodology used to satisfy LADEE's attitude requirements are also discussed in the context of LADEE's overall activity planning effort. In particular, the way in which strategic schedules of instrument and engineering activities were translated into actual attitude profiles at the tactical level, then converted into precise quaternion commands to achieve those pointing goals is explained. In order to reduce the risk of time-consuming re-planning efforts, this process included the generation of long-term projections of constraint violation predictions for individual attitude profiles that could be used to establish keep-out time-frames for particular attitude profiles. The challenges experienced and overall efficacy of both the overall LADEE ground system and the attitude components of the Flight Dynamics System in meeting LADEE's varied pointing requirements are discussed.
NASA Technical Reports Server (NTRS)
Peabody, Hume; Yang, Kan; Nguyen, Daniel; Cornwell, Donald
2015-01-01
The Lunar Atmosphere and Dust Environment Explorer (LADEE) mission launched on September 7, 2013 with a one month cruise before lunar insertion. The LADEE spacecraft is a power limited, octagonal, composite bus structure with solar panels on all eight sides with four vertical segments per side and 2 panels dedicated to instruments. One of these panels has the Lunar Laser Communications Demonstration (LLCD), which represents a furthering of the laser communications technology demonstration proved out by the Lunar Reconnaissance Orbiter (LRO). LLCD increases the bandwidth of communication to and from the moon with less mass and power than LROs technology demonstrator. The LLCD Modem and Controller boxes are mounted to an internal cruciform composite panel and have no dedicated radiator. The thermal design relies on power cycling of the boxes and radiation of waste heat to the inside of the panels, which then reject the heat when facing cold space. The LADEE mission includes a slow roll and numerous attitudes to accommodate the challenging thermal requirements for all the instruments on board. During the cruise phase, the internal Modem and Controller avionics for LLCD were warmer than predicted by more than modeling uncertainty would suggest. This caused concern that if the boxes were considerably warmer than expected while off, they would also be warmer when operating and could limit the operational time when in lunar orbit. The thermal group at Goddard Space Flight Center evaluated the models and design for these critical avionics for LLCD. Upon receipt of the spacecraft models and audit was performed and data was collected from the flight telemetry to perform a sanity check of the models and to correlate to flight where possible. This paper describes the efforts to correlate the model to flight data and to predict the thermal performance when in lunar orbit and presents some lessons learned.
Extracting lunar dust parameters from image charge signals produced by the Lunar Dust Experiment
NASA Astrophysics Data System (ADS)
Stanley, J.; Kempf, S.; Horanyi, M.; Szalay, J.
2015-12-01
The Lunar Dust Experiment (LDEX) onboard the Lunar Atmosphere and Dust Environment Explorer (LADEE) is an impact ionization dust detector used to characterize the lunar dust exosphere generated by the impacts of large interplanetary particles and meteor streams (Horanyi et al., 2015). In addition to the mass and speed of these lofted particles, LDEX is sensitive to their charge. The resulting signatures of impact events therefore provide valuable information about not only the ambient plasma environment, but also the speed vectors of these dust grains. Here, impact events produced from LDEX's calibration at the Dust Accelerator Laboratory are analyzed using an image charge model derived from the electrostatic simulation program, Coulomb. We show that parameters such as dust grain speed, size, charge, and position of entry into LDEX can be recovered and applied to data collected during LADEE's seven-month mission.
NASA Technical Reports Server (NTRS)
Wooden, Diane H.; Cook, Amanda; Colaprete, Anthony; Shirley, Mark; Vargo, Kara; Elphic, Richard C.; Hermalyn, Brendan; Stubbs, Timothy John; Glenar, David A.
2014-01-01
The Lunar Atmosphere and Dust Environment Explorer (LADEE) executed science observations in lunar orbit spanning 2013-Oct-16- 2014-04-18 UT. LADEE's Ultraviolet/Visible Spectrometer (UVS) studies the composition and temporal variations of the tenuous lunar exosphere and dust environment, utilizing two sets of optics: a limb-viewing telescope, and a solar-viewer. The limb-viewing telescope observes illuminated dust and emitting gas species while the Sun is just behind the lunar limb. The solar viewer, with its diffuser, allows UVS to also stare directly at the solar disk as it approaches the limb, sampling progressively lower exosphere altitudes. Solar viewer "Occultation" activities occur at the lunar sunrise limb, as the LADEE spacecraft passes into the lunar night side, facing the Sun (the spacecraft orbit is near-equatorial retrograde). A loss of transmission of sunlight occurs by the occultation of dust grains along the line-of-sight. So-called "Inertial Limb" activities have the limb-viewing telescope pointed at the lit exosphere just after the Sun has set. Inertial Limb activities follow a similar progression of diminishing sampling altitudes but hold the solar elongation angle constant so the zodiacal light contribution remains constant while seeking to observe the weak lunar horizon glow. On the dark side of the moon, "Sodium Tail" activities pointed the limb-viewing telescope in the direction of the Moon's sodium tail (similar to anti-sunward), during different lunar phases. Of the UVS data sets, these show the largest excess of scattered blue light, indicative of the presence of small (approximately 100 nm) dust grains in the tail. Correlations are sought between dust in the sodium tail and meteor streams and magnetotail crossings to investigate impact- versus electrostatic-lofting. Once lofted, nanoparticles can become charged and picked up by the solar wind. The LADEE UVS Occultation, Inertial Limb, and Sodium Tail spectral datasets provide evidence of a lunar dust exosphere.
The effects of spacecraft charging and outgassing on the LADEE ion measurements
NASA Astrophysics Data System (ADS)
Xie, Lianghai; Zhang, Xiaoping; Zheng, Yongchun; Guo, Dawei
2017-05-01
Abnormal ion signals can be usually seen in the Lunar Atmosphere and Dust Environment Explorer (LADEE) mission, including a suddenly enhanced current observed by the Lunar Dust Experiment (LDEX) near the sunlight-shadow boundary and an unexpected water ion measured by the neutral mass spectrometer (NMS), with their magnitudes insensitive to the convection electric field of solar wind but dependent on the SW density and the elapsed time of LADEE mission. By analyzing both the LDEX measurements and the NMS measurements, we find that the current enhancement can be caused by a negatively charged spacecraft in the shadow region while the significant water ions should be some artificial ions from spacecraft outgassing. The artificial water ions show a peak near 8:00 LT that may be related to a sunlight-controlled surface outgassing. In addition, the H2O flux can be enhanced near the end of the mission when the spacecraft has a lower altitude. It is found that the H2O enhancement is actually caused by an exosphere-contributed return flux, rather than a real water exosphere.
NASA Technical Reports Server (NTRS)
Sarantos, Menelaos; Killen, Rosemary Margaret; Glenar, David A.; Benna, Mehdi; Stubbs, Timothy J.
2012-01-01
The only species that have been so far detected in the lunar exosphere are Na, K, Ar,and He. However, models for the production and loss of species derived from the lunarregolith through micrometeoroid impact vaporization, sputtering, and photon-stimulateddesorption, predict that a host of other species should exist in the lunar exosphere.Assuming that loss processes are limited to ballistic escape, photoionization, and recyclingto the surface, we have computed column abundances and compared them to publishedupper limits for the Moon. Only for Ca do modeled abundances clearly exceed theavailable measurements. This result suggests the relevance of some loss processes thatwere not included in the model, such as the possibility of gas-to-solid phasecondensation during micrometeoroid impacts or the formation of stable metallic oxides.Our simulations and the recalculation of efficiencies for resonant light scattering showthat models for other species studied are not well constrained by existingmeasurements. This fact underlines the need for improved remote and in situmeasurements of the lunar exosphere such as those planned by the Lunar Atmosphereand Dust Environment Explorer (LADEE) spacecraft. Our simulations of the LADEEneutral mass spectrometer and visibleultraviolet spectrometer indicate that LADEE measurements promise to provide definitive observations or set stringent upper limitsfor all regolith-driven exospheric species. We predict that observations by LADEE willconstrain assumed model parameters for the exosphere of the Moon.
NASA Technical Reports Server (NTRS)
Sarantos, Menelaos; Killen, Rosemary M.; Glenar, David A.; Benna, Mehdi; Stubbs, Timothy J.
2011-01-01
The only species that have been continued in the lunar exosphere are Na, K, Ar, and He. Models for the production and loss of lunar regolith-derived exospheric species from source processes including micrometeoroid impact vaporization, sputtering. and, for Na and K, photon-stimulated desorption, predict a host of other species should exist in the lunar exosphere. Assuming that loss processes are limited to ballistic escape and recycling to the surface, we have computed column abundances and compared them to published upper limits from the Moon and to detected abundances from Mercury. Only for Ca do the available measurements show a clear deficiency compared to the model estimates. This result suggests the importance of loss processes not included in the model, such as the possibility of gas-to-solid phase condensation during micrometeoroid impacts or the formation of stable metallic oxides, and underlines the need for improved spectroscopic measurements of the lunar exosphere. Simulations of the neutral mass (NMS) and visible/ultraviolet spectrometry (UVS) investigations planned by the Lunar Atmosphere and Dust Environment Explorer (LADEE) spacecraft are presented. Our calculations indicate that LADEE measurements promise to make definitive observations or set stringent upper limits for all regolith-driven exospheric species. Our models, along with LADEE observations, will constrain assumed model parameters for the Moon, such as sticking coefficients, source processes. and velocity distributions.
Simulations of Water Migration in the Lunar Exosphere
NASA Astrophysics Data System (ADS)
Hurley, D.; Benna, M.; Mahaffy, P. R.; Elphic, R. C.; Goldstein, D. B.
2014-12-01
We perform modeling and analysis of water in the lunar exosphere. There were two controlled experiments of water interactions with the surface of the Moon observed by the Lunar Atmosphere and Dust Environment Explorer (LADEE) Neutral Mass Spectrometer (NMS). The Chang'e 3 landing on the Moon on 14 Dec 2013 putatively sprayed ~120 kg of water on the surface on the Moon at a mid-morning local time. Observations by LADEE near the noon meridian on six of the orbits in the 24 hours following the landing constrain the propagation of water vapor. Further, on 4 Apr 2014, LADEE's Orbital Maintenance Manuever (OMM) #21 sprayed the surface of the Moon with an estimated 0.73 kg of water in the pre-dawn sector. Observations of this maneuver and later in the day constrain the adsorption and release at dawn of adsorbed materials. Using the Chang'e 3 exhaust plume and LADEE's OMM-21 as control experiments, we set limits to the adsorption and thermalization of water with lunar regolith. This enables us to predict the efficiency of the migration of water as a delivery mechanism to the lunar poles. Then we simulate the migration of water through the lunar exosphere using the rate of sporadic inputs from meteoritic sources (Benna et al., this session). Simulations predict the amount of water adsorbed to the surface of the Moon and the effective delivery rate to the lunar polar cold traps.
LADEE Propulsion System Cold Flow Test
NASA Technical Reports Server (NTRS)
Williams, Jonathan Hunter; Chapman, Jack M.; Trinh, Hau, P.; Bell, James H.
2013-01-01
Lunar Atmosphere and Dust Environment Explorer (LADEE) is a NASA mission that will orbit the Moon. Its main objective is to characterize the atmosphere and lunar dust environment. The spacecraft development is being led by NASA Ames Research Center and scheduled for launch in 2013. The LADEE spacecraft will be operated with a bi-propellant hypergolic propulsion system using MMH and NTO as the fuel and oxidizer, respectively. The propulsion system utilizes flight-proven hardware on major components. The propulsion layout is composed of one 100-lbf main thruster and four 5-lbf RCS thrusters. The propellants are stored in four tanks (two parallel-connected tanks per propellant component). The propellants will be pressurized by regulated helium. A simulated propulsion system has been built for conducting cold flow test series to characterize the transient fluid flow of the propulsion system feed lines and to verify the critical operation modes, such as system priming, waterhammer, and crucial mission duty cycles. Propellant drainage differential between propellant tanks will also be assessed. Since the oxidizer feed line system has a higher flow demand than the fuel system does, the cold flow test focuses on the oxidizer system. The objective of the cold flow test is to simulate the LADEE propulsion fluid flow operation through water cold flow test and to obtain data for anchoring analytical models. The models will be used to predict the transient and steady state flow behaviors in the actual flight operations. The test activities, including the simulated propulsion test article, cold flow test, and analytical modeling, are being performed at NASA Marshall Space Flight Center. At the time of the abstract submission, the test article checkout is being performed. The test series will be completed by November, 2012
The Use of Standards on the LADEE Mission
NASA Technical Reports Server (NTRS)
Gundy-Burlet, Karen
2015-01-01
The Lunar Atmosphere Dust Environment Explorer (LADEE) was a small explorer class mission that launched Sept 7, 2013 and successfully de-orbited and impacted the moon's surface on April 17, 2014. The spacecraft was the first to launch from a Minotaur 5 and was the first deep space mission to launch from the Wallops flight facility. Figure 1 shows the famous image of a frog unlucky enough to be launched from the facility at the same time as LADEE. The science mission for the spacecraft was to determine the density, composition and variability of the lunar exosphere. In addition, it performed a first-of-a-kind demonstration of laser-based communications from deep space that exhibited a record downlink rate of 622 megabits per second from the moon. In order to perform the lunar dust surveys, the spacecraft was placed in a retrograde equatorial orbit with periapsis between 20 and 60 kilometers. The mission was granted an extension in which final science surveys were performed at altitudes as low as 2 kilometers over the moon's surface. The cadence for spacecraft operations was demanding: the moon's highly inhomogeneous gravity field distorted the orbit, the regular maneuvers were subject to strict payload-induced pointing requirements, and there were periodic attitude changes to keep the spacecraft thermally safe. This led to a need for high reliability in the operation of the spacecraft while obeying strict budget and schedule guidelines.
Methane in the lunar exosphere: Implications for solar wind carbon escape
NASA Astrophysics Data System (ADS)
Hodges, R. Richard
2016-07-01
A positive identification of methane in the lunar exosphere has been made in data from the neutral mass spectrometer on the Lunar Atmosphere and Dust Environment Explorer (LADEE) spacecraft. Like argon-40, methane is adsorbed on the lunar surface during nighttime. However, higher activation energies for methane delay its desorption at sunrise by about an hour local time, creating a postsunrise bulge with peak concentration of approximately 400-450 molecules cm-3 at a reference altitude of 12 km, which is just above the highest topographic feature on the Moon. The rate of escape of carbon as methane derived from the LADEE data is estimated to be in the range 1.5-4.5 × 1021 s-1. A lower bound for solar carbon escape derived separately from Apollo sample analyses is 3.4 × 1021 s-1.
NASA Satellite Gives a Clear View for NASA's LADEE Launch
2013-09-06
NASA's Wallops Flight Facility is located on Wallops Island, Va. and is the site of tonight's moon mission launch. Satellite imagery from NOAA's GOES-East satellite shows that high pressure remains in control over the Mid-Atlantic region, providing an almost cloud-free sky. This visible image of the Mid-Atlantic was captured by NOAA's GOES-East satellite at 17:31 UTC/1:31 p.m. EDT and shows some fair weather clouds over the Delmarva Peninsula (which consists of the state of Delaware and parts of Maryland and Virginia - which together is "Delmarva") and eastern Virginia and North Carolina. Most of the region is cloud-free, making for a perfect viewing night to see a launch. NOAA operates GOES-East and NASA's GOES Project at the NASA Goddard Space Flight Center in Greenbelt, Md. creates images and animations from the data. NOAA's National Weather Service forecast for tonight, Sept. 6 calls for winds blowing from the east to 11 mph, with clear skies and overnight temperatures dropping to the mid-fifties. The Lunar Atmosphere and Dust Environment Explorer, known as LADEE (pronounced like "laddie"), launches tonight at 11:27 p.m. EDT from Pad 0B at the Mid-Atlantic Regional Spaceport, at NASA Wallops and will be visible along the Mid-Atlantic with tonight's perfect weather conditions. LADEE is managed by NASA's Ames Research Center in Moffett Field, Calif. This will be the first launch to lunar orbit from NASA Wallops and the first launch of a Minotaur V rocket – the biggest ever launched from Wallops. NASA's LADEE is a robotic mission that will orbit the moon to gather detailed information about the lunar atmosphere, conditions near the surface and environmental influences on lunar dust. A thorough understanding of these characteristics will address long-standing unknowns, and help scientists understand other planetary bodies as well. LADEE also carries an important secondary payload, the Lunar Laser Communication Demonstration, or LLCD, which will help us open a new era of space communications by becoming NASA's first high rate, two-way, space laser system. Live coverage of the launch can be seen beginning at 9:30 p.m. EDT on NASA-TV at: www.nasa.gov/ntv For more information about LADEE, visit: www.nasa.gov/ladee NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
Light Scattering by Lunar Exospheric Dust: What could be Learned from LRO LAMP and LADEE UVS?
NASA Astrophysics Data System (ADS)
Glenar, D. A.; Stubbs, T. J.; Richard, D. T.; Stern, S. A.; Retherford, K. D.; Gladstone, R.; Feldman, P. D.; Colaprete, A.; Delory, G. T.
2011-12-01
Two complementary spectrometers, namely the Lunar Reconnaissance Orbiter, Lyman Alpha Mapping Project (LAMP) and the planned Lunar Atmosphere and Dust Environment Explorer (LADEE) Ultraviolet Explorer (UVS) will carry out sensitive searches for high altitude exospheric dust, via detection of scattered sunlight. The combined spectral coverage of these instruments extends from far-UV to near-IR wavelengths. Over this wavelength range, grain size parameter (X=2πr/λ, with r the grain radius and λ the wavelength) changes dramatically, which makes broad wavelength coverage a good diagnostic of grain size. Utilizing different pointing geometries, both LAMP and UVS are able to observe dust over a range of scattering angles, as well as measure the dust vertical profile via limb measurements at multiple tangent heights. We summarize several categories of information that can be inferred from the data sets, using broadband simulations of horizon glow as observed at the limb. Grain scattering properties used in these simulations were computed for multiple grain shapes using Discrete-Dipole theory. Some cautionary remarks are included regarding the use of Mie theory to interpret scattering measurements.
Enabling the Commercial Space Transportation Industry at the Mid-Atlantic Regional Spaceport
2011-09-01
International Space Station xiv ITAR International Traffic in Arms Regulation LADEE Lunar Atmosphere & Dust Environment Explorer LEO Low Earth...Orbit LOC Loss of Crew LVM&SI Launch Vehicle Manufacturing and Services Industry MARS Mid-Atlantic Regional Spaceport MIST Mid-Atlantic Institute of...of its own space services. It is only recently that NASA has changed policy to focus on space travel beyond Low Earth Orbit ( LEO ). With the
Advances in Lunar Science and Observational Opportunities
NASA Technical Reports Server (NTRS)
Heldmann, Jennifer
2012-01-01
Lunar science is currently undergoing a renaissance as our understanding of our Moon continues to evolve given new data from multiple lunar mission and new analyses. This talk will overview NASA's recent and future lunar missions to explain the scientific questions addressed by missions such as the Lunar Reconnaissance Orbiter (LRO), Lunar Crater Observation and Sensing Satellite (LCROSS), Gravity Recovery and Interior Laboratory (Grail), Acceleration, Reconnection, Turbulence and Electrodynamics of the Moon's Interaction with the Sun (ARTEMIS), and the Lunar Atmosphere and Dust Environment Explorer (LADEE). The talk will also overview opportunities for participatory exploration whereby professional and amateur astronomers are encouraged to participate in lunar exploration in conjunction with NASA.
Lunar Hydrospheric Explorer (HYDROX)
NASA Technical Reports Server (NTRS)
Cooper, J. F.; Paschalidis, N.; Sittler, E. C., Jr.; Jones, S. L.; Stubbs, T. J.; Sarantos, M.; Khurana, K. K.; Angelopoulos, V.; Jordan, A. P.; Schwadron, N. A.
2015-01-01
The Lunar Hydrospheric Explorer (HYDROX) is a 6U CubeSat designed to further confirm the existence of lunar exospheric water, and to determine source processes and surface sites, through ion mass spectrometer measurements of water group (O+, OH+, H2O+) and related ions at energy charge up to 2 keV/e. and mass/charge 1-40amu/e. HYDROX would follow up on the now-concluded exospheric compositional measurements by the Neutral Mass Spectrometer on the NASA LADEE mission and on other remote sensing surface and exospheric measurements (LADEE,LRO, etc.).
Validation and Verification of LADEE Models and Software
NASA Technical Reports Server (NTRS)
Gundy-Burlet, Karen
2013-01-01
The Lunar Atmosphere Dust Environment Explorer (LADEE) mission will orbit the moon in order to measure the density, composition and time variability of the lunar dust environment. The ground-side and onboard flight software for the mission is being developed using a Model-Based Software methodology. In this technique, models of the spacecraft and flight software are developed in a graphical dynamics modeling package. Flight Software requirements are prototyped and refined using the simulated models. After the model is shown to work as desired in this simulation framework, C-code software is automatically generated from the models. The generated software is then tested in real time Processor-in-the-Loop and Hardware-in-the-Loop test beds. Travelling Road Show test beds were used for early integration tests with payloads and other subsystems. Traditional techniques for verifying computational sciences models are used to characterize the spacecraft simulation. A lightweight set of formal methods analysis, static analysis, formal inspection and code coverage analyses are utilized to further reduce defects in the onboard flight software artifacts. These techniques are applied early and often in the development process, iteratively increasing the capabilities of the software and the fidelity of the vehicle models and test beds.
NASA's Optical Communications Program for 2015 and Beyond
NASA Technical Reports Server (NTRS)
Cornwell, Donald M.
2015-01-01
NASA's Space Communications and Navigation (SCaN) program at NASA headquarters is pursuing a vibrant and wide-ranging optical communications program for further planetary and near-Earth missions following the spectacular success of NASA's Lunar Laser Communication Demonstration (LLCD) from the Lunar Atmosphere and Dust Environment Explorer (LADEE) spacecraft orbiting the moon in 2013. This invited paper will discuss NASA's new laser communication missions, key scenarios and details, and the plans to infuse this new technology into NASA's existing communications networks.
NASA Astrophysics Data System (ADS)
Boroson, Don M.; Robinson, Bryan S.
2014-12-01
Future NASA missions for both Science and Exploration will have needs for much higher data rates than are presently available, even with NASA's highly-capable Space- and Deep-Space Networks. As a first step towards this end, for one month in late 2013, NASA's Lunar Laser Communication Demonstration (LLCD) successfully demonstrated for the first time high-rate duplex laser communications between a satellite in lunar orbit, the Lunar Atmosphere and Dust Environment Explorer (LADEE), and multiple ground stations on the Earth. It constituted the longest-range laser communication link ever built and demonstrated the highest communication data rates ever achieved to or from the Moon.
LRO-LAMP Observations of the Lunar Exosphere Coordinated with LADEE
NASA Astrophysics Data System (ADS)
Grava, C.; Retherford, K. D.; Greathouse, T. K.; Gladstone, R.; Hurley, D.; Cook, J. C.; Stern, S. A.; Feldman, P. D.; Kaufmann, D. E.; Miles, P. F.; Pryor, W. R.; Halekas, J. S.
2014-12-01
The polar orbiting Lunar Reconnaissance Orbiter's (LRO) Lyman Alpha Mapping Project (LAMP) carried out an atmospheric campaign during the month of December 2013, at the same time the Lunar Atmospheric and Dust Environment Explorer (LADEE) mission was sampling the lunar exosphere in a retrograde equatorial orbit. Observations of the lunar exosphere were performed by LAMP during a solar "beta-90" geometry, i.e. riding along the lunar terminator. During this geometry, the LAMP nadir-pointed line of sight to the nightside surface also includes illuminated columns of foreground emissions from exospheric species, which is invaluable in the study of the tenuous lunar exosphere. Other types of maneuvers to probe the lunar exosphere were also performed by LAMP/LRO during this campaign. During backward pitch slews, the LRO spacecraft was pitched to look opposite its direction of motion to a point just inside the limb in the nightside region around the polar terminator. Forward pitch slews were also obtained, and the angles of 63 deg or 77 deg from nadir were set depending on the polar region observed. Finally, during lateral roll slews, LRO rotated by ~60 deg towards the nightside limb, maximizing the amount of illuminated atmosphere in the foreground probed by the LAMP field of view. We extract day to day density variations on helium and/or upper limits for numerous other species that were accessible to both LAMP and LADEE (e.g., Ar, Ne, O, and H2). Moreover, constraints on helium density will complement measurements of solar wind alpha particles (He++) from the ARTEMIS (Acceleration, Reconnection, Turbulence, & Electrodynamics of Moon's Interaction with the Sun) mission. This comparison will provide a comprehensive picture of composition, abundance, and spatial and temporal variations of volatiles of the lunar exosphere, combining equatorial (LADEE) and polar (LAMP) measurements for the first time. Volatiles in the lunar exosphere, especially water, are of paramount importance in the context of lunar exploration, since the compelling hypothesis of their storage in Permanently Shaded Regions (PSRs) was advanced in the second half of the last century.
Generation of Simulated Tracking Data for LADEE Operational Readiness Testing
NASA Technical Reports Server (NTRS)
Woodburn, James; Policastri, Lisa; Owens, Brandon
2015-01-01
Operational Readiness Tests were an important part of the pre-launch preparation for the LADEE mission. The generation of simulated tracking data to stress the Flight Dynamics System and the Flight Dynamics Team was important for satisfying the testing goal of demonstrating that the software and the team were ready to fly the operational mission. The simulated tracking was generated in a manner to incorporate the effects of errors in the baseline dynamical model, errors in maneuver execution and phenomenology associated with various tracking system based components. The ability of the mission team to overcome these challenges in a realistic flight dynamics scenario indicated that the team and flight dynamics system were ready to fly the LADEE mission. Lunar Atmosphere and Dust Environment.
NASA Astrophysics Data System (ADS)
Szalay, Jamey Robert
Planetary bodies throughout the solar system are continually bombarded by dust particles, largely originating from cometary activities and asteroidal collisions. Surfaces of bodies with thick atmospheres, such as Venus, Earth, Mars and Titan are mostly protected from incoming dust impacts as these particles ablate in their atmospheres as 'shooting stars'. However, the majority of bodies in the solar system have no appreciable atmosphere and their surfaces are directly exposed to the flux of high speed dust grains. Impacts onto solid surfaces in space generate charged and neutral gas clouds, as well as solid secondary ejecta dust particles. Gravitationally bound ejecta clouds forming dust exospheres were recognized by in situ dust instruments around the icy moons of Jupiter and Saturn, and had not yet been observed near bodies with refractory regolith surfaces before NASA's Lunar Dust and Environment Explorer (LADEE) mission. In this thesis, we first present the measurements taken by the Lunar Dust Explorer (LDEX), aboard LADEE, which discovered a permanently present, asymmetric dust cloud surrounding the Moon. The global characteristics of the lunar dust cloud are discussed as a function of a variety of variables such as altitude, solar longitude, local time, and lunar phase. These results are compared with models for lunar dust cloud generation. Second, we present an analysis of the groupings of impacts measured by LDEX, which represent detections of dense ejecta plumes above the lunar surface. These measurements are put in the context of understanding the response of the lunar surface to meteoroid bombardment and how to use other airless bodies in the solar system as detectors for their local meteoroid environment. Third, we present the first in-situ dust measurements taken over the lunar sunrise terminator. Having found no excess of small grains in this region, we discuss its implications for the putative population of electrostatically lofted dust.
Evidence for a Dynamic Nanodust Cloud Enveloping the Moon
NASA Technical Reports Server (NTRS)
Wooden, D. H.; Cook, A. M.; Colaprete, A.; Glenar, D. A.; Stubbs, T. J.; Shirley, M.
2015-01-01
The exospheres that surround airless bodies such as the Moon are tenuous, atmosphere-like layers whose constituent particles rarely collide with one another. Some particles contained within such exospheres are the product of direct interactions between airless bodies and the space environment, and offer insights into space weathering processes. NASAs Lunar Atmosphere and Dust Environment Explorer (LADEE) mission studied the Moons exospheric constituents in situ and detected a permanent dust exosphere1 of particles with radii as small as 300 nm. Here we present evidence from LADEE spectral data for an additional fluctuating nanodust exosphere at the Moon containing a population of particles sufficiently dense to be detectable via scattered sunlight. We compare two anti-Sun spectral observations: one near the peak of the Quadrantidmeteoroid stream, the other during a period of comparativelyweak stream activity. The former shows a negative spectralslope consistent with backscattering of sunlight by nanodustgrains with radii less than 20 to 30 nm; the latter has a flatterspectral slope. We hypothesize that a spatially and temporallyvariable nanodust exosphere may exist at the Moon, and thatit is modulated by changes in meteoroid impact rates, suchas during encounters with meteoroid streams. The findingssuggest that similar nanodust exospheresand the particle ejection and transport processes that form themmay occurat other airless bodies.
Low-Cost, Class D Testing of Spacecraft Photovoltaic Systems Can Reduce Risk
NASA Technical Reports Server (NTRS)
Forgione, Joshua B.; Kojima, Gilbert K.; Hanel, Robert; Mallinson, Mark
2014-01-01
The end-to-end verification of a spacecraft photovoltaic power generation system requires light! A lowcost, portable, and end-to-end photovoltaic-system test appropriate for NASA's new generation of Class D missions is presented. High risk, low-cost, and quick-turn satellites rarely have the resources to execute the traditional approaches from higher-class (A-C) missions. The Class D approach, as demonstrated on the Lunar Atmospheric and Dust Environment Explorer (LADEE), utilizes a portable, metalhalide, theatre lamp for an end-to-end photovoltaic system test. While not as precise and comprehensive as the traditional Large Area Pulsed Solar Simulator (LAPSS) test, the LADEE method leverages minimal resources into an ongoing assessment program that can be applied through numerous stages of the mission. The project takes a true Class D approach in assessing the technical value of a costly, highfidelity performance test versus a simpler approach with less programmatic risk. The resources required are a fraction of that for a LAPSS test, and is easy to repeat due to its portability. Further, the test equipment can be handed down to future projects without building an on-site facility. At the vanguard of Class D missions, the LADEE team frequently wrestled with and challenged the status quo. The philosophy of risk avoidance at all cost, typical to Class A-C missions, simply could not be executed. This innovative and simple testing solution is contextualized to NASA Class D programs and a specific risk encountered during development of the LADEE Electrical Power System (EPS). Selection of the appropriate lamp and safety concerns are discussed, with examples of test results. Combined with the vendor's panellevel data and periodic inspection, the method ensures system integrity from Integration and Test (I&T) through launch. Following launch, mission operations tools are utilized to assess system performance based on a scant amount of available data.
NASA Technical Reports Server (NTRS)
Cohen, Barbara A.
2009-01-01
There are two slide presentations contained in this document. The first reviews the lunar missions from Surveyor, Galileo, Clementine, the Lunar Prospector, to upcoming lunar missions, Lunar Reconnaissance Orbiter (LRO), Lunar Crater Observation & Sensing Satellite (LCROSS), Acceleration, Reconnection, Turbulence and Electrodynamics of Moon's Interaction with the Sun (ARTEMIS), Gravity Recovery and Interior Laboratory (GRAIL), Lunar Atmosphere, Dust and Environment Explorer (LADEE), ILN and a possible Robotic sample return mission. The information that the missions about the moon is reviewed. The second set of slides reviews the lunar meteorites, and the importance of lunar meteorites to adding to our understanding of the moon.
Ground-based Efforts to Support a Space-based Experiment: the Latest LADEE Results (Abstract)
NASA Astrophysics Data System (ADS)
Cudnik, B.; Rahman, M.
2014-12-01
(Abstract only) The much anticipated launch of NASA’s Lunar Atmosphere and Dust Environment Explorer happened flawlessly last October and the satellite has been doing science (and sending a few images) since late Novermber. [The LADEE mission ended with the crash-landing of the spacecraft on the lunar far side on April 17, 2014, capping a successful 140-day mission.] We also have launched our campaign to document lunar meteroid impact flashes from the ground to supply ground truth to inform of any changes in dust concentration encountered by the spacecraft in orbit around the moon. To date I have received six reports of impact flashes or flash candidates from the group I am coordinating; other groups around the world may have more to add when all is said and done. In addition, plans are underway to prepare a program at Prairie View A&M University to involve our physics majors in lunar meteoroid, asteroid occultation, and other astronomical work through our Center for Astronomical Sciences and Technology. This facility will be a control center to not only involve physics majors, but also to include pre-service teachers and members of the outside community to promote pro-am collaborations.
Ground-based Efforts to Support a Space-Based Experiment: the Latest LADEE Results
NASA Astrophysics Data System (ADS)
Cudnik, Brian; Rahman, Mahmudur
2014-05-01
The much anticipated launch of the Lunar Atmosphere and Dust Environment Explorer happened flawlessly last October and the satellite has been doing science (and sending a few images) since late November. [the LADEE mission ended with the crash-landing of the spacecraft on the lunar far side on April 17, 2014, capping a successful 140 day mission] .We also have launched our campaign to document lunar meteoroid impact flashes from the ground to supply ground truth to inform of any changes in dust concentration encountered by the spacecraft in orbit around the moon. To date I have received six reports of impact flashes or flash candidates from the group I am coordinating; other groups around the world may have more to add when all is said and done. In addition, plans are underway to prepare a program at Prairie View A&M University to involve our physics majors in lunar meteoroid, asteroid occultation, and other astronomical work through our Center for Astronomical Sciences and Technology. This facility will be a control center to not only involve physics majors, but also to include pre-service teachers and member of the outside community to promote pro-am collaborations.
Optical Communications Telescope Laboratory (OCTL) Support of Space to Ground Link Demonstrations
NASA Technical Reports Server (NTRS)
Biswas, Abhijit; Kovalik, Joseph M.; Wright, Malcolm W.; Roberts, William T.
2014-01-01
The NASA/JPL Optical Communication Telescope Laboratory (OCTL) was built for dedicated research and development toward supporting free-space laser communications from space. Recently, the OCTL telescope was used to support the Lunar Laser Communication Demonstration (LLCD) from the Lunar Atmospheric Dust Environment Explorer (LADEE) spacecraft and is planned for use with the upcoming Optical Payload for Lasercomm Science (OPALS) demonstration from the International Space Station (ISS). The use of OCTL to support these demonstrations is discussed in this report. The discussion will feed forward to ongoing and future space-to-ground laser communications as it advances toward becoming an operational capability.
Lunar Exploration Missions Since 2006
NASA Technical Reports Server (NTRS)
Lawrence, S. J. (Editor); Gaddis, L. R.; Joy, K. H.; Petro, N. E.
2017-01-01
The announcement of the Vision for Space Exploration in 2004 sparked a resurgence in lunar missions worldwide. Since the publication of the first "New Views of the Moon" volume, as of 2017 there have been 11 science-focused missions to the Moon. Each of these missions explored different aspects of the Moon's geology, environment, and resource potential. The results from this flotilla of missions have revolutionized lunar science, and resulted in a profoundly new emerging understanding of the Moon. The New Views of the Moon II initiative itself, which is designed to engage the large and vibrant lunar science community to integrate the results of these missions into new consensus viewpoints, is a direct outcome of this impressive array of missions. The "Lunar Exploration Missions Since 2006" chapter will "set the stage" for the rest of the volume, introducing the planetary community at large to the diverse array of missions that have explored the Moon in the last decade. Content: This chapter will encompass the following missions: Kaguya; ARTEMIS (Acceleration, Reconnection, Turbulence, and Electrodynamics of the Moon’s Interaction with the Sun); Chang’e-1; Chandrayaan-1; Moon Impact Probe; Lunar Reconnaissance Orbiter (LRO); Lunar Crater Observation Sensing Satellite (LCROSS); Chang’e-2; Gravity Recovery and Interior Laboratory (GRAIL); Lunar Atmosphere and Dust Environment Explorer (LADEE); Chang’e-3.
Observation of Signatures of Meteoroidal Water in the Lunar Exosphere by the LADEE NMS Instrument
NASA Astrophysics Data System (ADS)
Benna, M.; Elphic, R. C.; Hurley, D.; Stubbs, T. J.; Mahaffy, P. R.
2017-12-01
During its seven months in orbit, the Neutral Mass Spectrometer (NMS) of the Lunar Atmosphere and Dust Environment Explorer (LADEE) Mission measured the composition and variability of the tenuous lunar atmosphere. These measurements led to the detection of signatures of water group neutrals (H2O and/or OH) in the exosphere of the Moon. The signature of water has been measured as sporadic, short-lived signal increases above instrument background levels. The NMS data show that the occurrence rate of the high signal water "spikes" is correlated with periods of major annual meteoroid streams. Moreover, the daily water detection rate is in agreement with the expected evolution of the incoming meteoroidal impact flux at the Moon. Monte Carlo modeling of the evolution of vaporized water indicates that the signatures detected by the NMS instrument are commensurate in size and distribution of the energetic fraction of the vapors released by impacts that occurred near the location of the spacecraft. These measurements provide the first direct constraints on the contribution of meteoroid-delivered water to the sequestered ice in the permanently shadow regions of the lunar poles. They also provide a new technique for real-time observations of meteoroid impacts on airless bodies of the solar system through the detection of their associated volatile signatures.
CONSTRUCTION OF A SMALL AUTOMATED CORONAGRAPH FOR OBSERVATIONS OF THE LUNAR Na EXOSPHERE
NASA Astrophysics Data System (ADS)
Tucker, Roy; Morgan, T. H.; Killen, R. M.
2013-10-01
We report on the final optical and mechanical design and the construction and initial testing of a small coronagraph at the Winer Observatory, near Sonoita, Arizona. The coronagraph includes a narrow band filter and low-light level camera to observe lunar exospheric sodium in the resonance lines of that element near 590 nm. Without the use of a coronagraph, the signal from sodium would be lost against light scattered by the Earth’s atmosphere and scattered light in the telescope. The design uses Commercial Off the Shelf Technology (COTS), and our goal is to obtain observations while the Lunar Atmosphere and Dust Environment Explorer (LADEE) mission is still in orbit.
Do Bare Rocks Exist on the Moon?
NASA Technical Reports Server (NTRS)
Allen, Carlton; Bandfield, Joshua; Greenhagen, Benjamin; Hayne, Paul; Leader, Frank; Paige, David
2017-01-01
Astronaut surface observations and close-up images at the Apollo and Chang'e 1 landing sites confirm that at least some lunar rocks have no discernable dust cover. However, ALSEP (Apollo Lunar Surface Experiments Package) measurements as well as astronaut and LADEE (Lunar Atmosphere and Dust Environment Explorer) orbital observations and laboratory experiments possibly suggest that a fine fraction of dust is levitated and moves across and above the lunar surface. Over millions of years such dust might be expected to coat all exposed rock surfaces. This study uses thermal modeling, combined with Diviner (a Lunar Reconnaissance Orbiter experiment) orbital lunar eclipse temperature data, to further document the existence of bare rocks on the lunar surface.
48 CFR 847.303-1 - F.o.b. origin.
Code of Federal Regulations, 2013 CFR
2013-10-01
... assistance in determining when to issue the applicable bill of lading (VA Commercial Bill of Lading for domestic use or Government Bill of Lading for international shipments and domestic off-shore shipments) and...
48 CFR 847.303-1 - F.o.b. origin.
Code of Federal Regulations, 2012 CFR
2012-10-01
... assistance in determining when to issue the applicable bill of lading (VA Commercial Bill of Lading for domestic use or Government Bill of Lading for international shipments and domestic off-shore shipments) and...
48 CFR 847.303-1 - F.o.b. origin.
Code of Federal Regulations, 2011 CFR
2011-10-01
... assistance in determining when to issue the applicable bill of lading (VA Commercial Bill of Lading for domestic use or Government Bill of Lading for international shipments and domestic off-shore shipments) and...
48 CFR 847.303-1 - F.o.b. origin.
Code of Federal Regulations, 2014 CFR
2014-10-01
... assistance in determining when to issue the applicable bill of lading (VA Commercial Bill of Lading for domestic use or Government Bill of Lading for international shipments and domestic off-shore shipments) and...
27 CFR 28.43 - Evidence of exportation and lading for use on vessels and aircraft: beer.
Code of Federal Regulations, 2012 CFR
2012-04-01
.... L. 85-859, 72 Stat. 1334, as amended, 1335, as amended (26 U.S.C. 5053, 5055)) [T.D. ATF-224, 51 FR...) or Form 1689 (5130.12) under § 28.275; or (3) A bill of lading (§ 28.250), a railway express receipt (§ 28.251), or an air express or air freight bill of lading (§ 28.252), when such bills of lading or...
27 CFR 28.43 - Evidence of exportation and lading for use on vessels and aircraft: beer.
Code of Federal Regulations, 2013 CFR
2013-04-01
.... L. 85-859, 72 Stat. 1334, as amended, 1335, as amended (26 U.S.C. 5053, 5055)) [T.D. ATF-224, 51 FR...) or Form 1689 (5130.12) under § 28.275; or (3) A bill of lading (§ 28.250), a railway express receipt (§ 28.251), or an air express or air freight bill of lading (§ 28.252), when such bills of lading or...
27 CFR 28.43 - Evidence of exportation and lading for use on vessels and aircraft: beer.
Code of Federal Regulations, 2014 CFR
2014-04-01
.... L. 85-859, 72 Stat. 1334, as amended, 1335, as amended (26 U.S.C. 5053, 5055)) [T.D. ATF-224, 51 FR...) or Form 1689 (5130.12) under § 28.275; or (3) A bill of lading (§ 28.250), a railway express receipt (§ 28.251), or an air express or air freight bill of lading (§ 28.252), when such bills of lading or...
It's a Trap! A Review of MOMA and Other Ion Traps in Space or Under Development
NASA Technical Reports Server (NTRS)
Arevalo, R., Jr.; Brinckerhoff, W. B.; Mahaffy, P. R.; van Amerom, F. H. W.; Danell, R. M.; Pinnick, V. T.; Li, X.; Hovmand, L.; Getty, S. A.; Goesmann, F.;
2014-01-01
Since the Viking Program, quadrupole mass spectrometer (QMS) instruments have been used to explore a wide survey of planetary targets in our solar system, including (from the inner to outer reaches): Venus (Pioneer); our moon (LADEE); Mars (Viking, Phoenix, and Mars Science Laboratory); and, Saturns largest moon Titan (Cassini-Huygens). More recently, however, ion trap mass spectrometer (ITMS) instruments have found a niche as smaller, versatile alternatives to traditional quadrupole mass analyzers, capable of in situ characterization of planetary environments and the search for organic matter. For example, whereas typical QMS systems are limited to a mass range up to 500 Da and normally require multiple RF frequencies and pressures of less than 10(exp -6) mbar for optimal operation, ITMS instruments commonly reach upwards of 1000 Da or more on a single RF frequency, and function in higher pressure environments up to 10(exp -3) mbar.
Code of Federal Regulations, 2011 CFR
2011-07-01
... delivery of goods. (1) Carriers issue commercial bills of lading. (2) Transportation officers issue government bills of lading (GBL). GBLs include the terms and conditions of commercial bills of lading with... for international shipments. (c) Military Traffic Management Command (MTMC). The Department of Defense...
Code of Federal Regulations, 2013 CFR
2013-07-01
... delivery of goods. (1) Carriers issue commercial bills of lading. (2) Transportation officers issue government bills of lading (GBL). GBLs include the terms and conditions of commercial bills of lading with... for international shipments. (c) Military Traffic Management Command (MTMC). The Department of Defense...
Code of Federal Regulations, 2011 CFR
2011-10-01
... accepted by the initial carrier. (b) Shipment is normally under Government bills of lading. However, for small orders, ordering offices may specify other shipment methods. (c) When shipments are under Government bills of lading, the bills of lading may accompany orders or be otherwise furnished promptly...
Code of Federal Regulations, 2014 CFR
2014-10-01
... accepted by the initial carrier. (b) Shipment is normally under Government bills of lading. However, for small orders, ordering offices may specify other shipment methods. (c) When shipments are under Government bills of lading, the bills of lading may accompany orders or be otherwise furnished promptly...
Code of Federal Regulations, 2010 CFR
2010-10-01
... accepted by the initial carrier. (b) Shipment is normally under Government bills of lading. However, for small orders, ordering offices may specify other shipment methods. (c) When shipments are under Government bills of lading, the bills of lading may accompany orders or be otherwise furnished promptly...
Code of Federal Regulations, 2013 CFR
2013-10-01
... accepted by the initial carrier. (b) Shipment is normally under Government bills of lading. However, for small orders, ordering offices may specify other shipment methods. (c) When shipments are under Government bills of lading, the bills of lading may accompany orders or be otherwise furnished promptly...
Code of Federal Regulations, 2012 CFR
2012-10-01
... accepted by the initial carrier. (b) Shipment is normally under Government bills of lading. However, for small orders, ordering offices may specify other shipment methods. (c) When shipments are under Government bills of lading, the bills of lading may accompany orders or be otherwise furnished promptly...
An Updated Process for Automated Deepspace Conjunction Assessment
NASA Technical Reports Server (NTRS)
Tarzi, Zahi B.; Berry, David S.; Roncoli, Ralph B.
2015-01-01
There is currently a high level of interest in the areas of conjunction assessment and collision avoidance from organizations conducting space operations. Current conjunction assessment activity is mainly focused on spacecraft and debris in the Earth orbital environment [1]. However, collisions are possible in other orbital environments as well [2]. This paper will focus on the current operations of and recent updates to the Multimission Automated Deep Space Conjunction Assessment Process (MADCAP) used at the Jet Propulsion Laboratory for NASA to perform conjunction assessment at Mars and the Moon. Various space agencies have satellites in orbit at Mars and the Moon with additional future missions planned. The consequences of collisions are catastrophically high. Intuitive notions predict low probability of collisions in these sparsely populated environments, but may be inaccurate due to several factors. Orbits of scientific interest often tend to have similar characteristics as do the orbits of spacecraft that provide a communications relay for surface missions. The MADCAP process is controlled by an automated scheduler which initializes analysis based on a set timetable or the appearance of new ephemeris files either locally or on the Deep Space Network (DSN) Portal. The process then generates and communicates reports which are used to facilitate collision avoidance decisions. The paper also describes the operational experience and utilization of the automated tool during periods of high activity and interest such as: the close approaches of NASA's Lunar Atmosphere & Dust Environment Explorer (LADEE) and Lunar Reconnaissance Orbiter (LRO) during the LADEE mission. In addition, special consideration was required for the treatment of missions with rapidly varying orbits and less reliable long term downtrack estimates; in particular this was necessitated by perturbations to MAVEN's orbit induced by the Martian atmosphere. The application of special techniques to non-operational spacecraft with large uncertainties is also studied. Areas for future work are also described. Although the applications discussed in this paper are in the Martian and Lunar environments, the techniques are not unique to these bodies and could be applied to other orbital environments.
41 CFR 109-40.5004 - Government bills of lading.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 41 Public Contracts and Property Management 3 2011-01-01 2011-01-01 false Government bills of... Government bills of lading. In those instances where DOE cost-type contractors are authorized to use Government bills of lading, specific employees of cost-type contractors will be authorized by the contracting...
41 CFR 109-40.5004 - Government bills of lading.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 41 Public Contracts and Property Management 3 2010-07-01 2010-07-01 false Government bills of... Government bills of lading. In those instances where DOE cost-type contractors are authorized to use Government bills of lading, specific employees of cost-type contractors will be authorized by the contracting...
27 CFR 28.264 - Lading for exportation.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 27 Alcohol, Tobacco Products and Firearms 1 2011-04-01 2011-04-01 false Lading for exportation. 28.264 Section 28.264 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY LIQUORS EXPORTATION OF ALCOHOL Proceedings at Ports of Export § 28.264 Lading for...
27 CFR 28.250 - Bills of lading required.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 27 Alcohol, Tobacco Products and Firearms 1 2011-04-01 2011-04-01 false Bills of lading required. 28.250 Section 28.250 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY LIQUORS EXPORTATION OF ALCOHOL Shipment or Delivery for Export Bills of Lading...
27 CFR 28.250 - Bills of lading required.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 27 Alcohol, Tobacco Products and Firearms 1 2012-04-01 2012-04-01 false Bills of lading required. 28.250 Section 28.250 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY LIQUORS EXPORTATION OF ALCOHOL Shipment or Delivery for Export Bills of Lading...
27 CFR 28.250 - Bills of lading required.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 27 Alcohol, Tobacco Products and Firearms 1 2014-04-01 2014-04-01 false Bills of lading required. 28.250 Section 28.250 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY ALCOHOL EXPORTATION OF ALCOHOL Shipment or Delivery for Export Bills of Lading...
27 CFR 28.264 - Lading for exportation.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Lading for exportation. 28.264 Section 28.264 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY LIQUORS EXPORTATION OF ALCOHOL Proceedings at Ports of Export § 28.264 Lading for...
27 CFR 28.264 - Lading for exportation.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 27 Alcohol, Tobacco Products and Firearms 1 2013-04-01 2013-04-01 false Lading for exportation. 28.264 Section 28.264 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY ALCOHOL EXPORTATION OF ALCOHOL Proceedings at Ports of Export § 28.264 Lading for...
27 CFR 28.264 - Lading for exportation.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 27 Alcohol, Tobacco Products and Firearms 1 2014-04-01 2014-04-01 false Lading for exportation. 28.264 Section 28.264 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY ALCOHOL EXPORTATION OF ALCOHOL Proceedings at Ports of Export § 28.264 Lading for...
27 CFR 28.264 - Lading for exportation.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 27 Alcohol, Tobacco Products and Firearms 1 2012-04-01 2012-04-01 false Lading for exportation. 28.264 Section 28.264 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY LIQUORS EXPORTATION OF ALCOHOL Proceedings at Ports of Export § 28.264 Lading for...
27 CFR 28.250 - Bills of lading required.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 27 Alcohol, Tobacco Products and Firearms 1 2013-04-01 2013-04-01 false Bills of lading required. 28.250 Section 28.250 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY ALCOHOL EXPORTATION OF ALCOHOL Shipment or Delivery for Export Bills of Lading...
LADES: a software for constructing and analyzing longitudinal designs in biomedical research.
Vázquez-Alcocer, Alan; Garzón-Cortes, Daniel Ladislao; Sánchez-Casas, Rosa María
2014-01-01
One of the most important steps in biomedical longitudinal studies is choosing a good experimental design that can provide high accuracy in the analysis of results with a minimum sample size. Several methods for constructing efficient longitudinal designs have been developed based on power analysis and the statistical model used for analyzing the final results. However, development of this technology is not available to practitioners through user-friendly software. In this paper we introduce LADES (Longitudinal Analysis and Design of Experiments Software) as an alternative and easy-to-use tool for conducting longitudinal analysis and constructing efficient longitudinal designs. LADES incorporates methods for creating cost-efficient longitudinal designs, unequal longitudinal designs, and simple longitudinal designs. In addition, LADES includes different methods for analyzing longitudinal data such as linear mixed models, generalized estimating equations, among others. A study of European eels is reanalyzed in order to show LADES capabilities. Three treatments contained in three aquariums with five eels each were analyzed. Data were collected from 0 up to the 12th week post treatment for all the eels (complete design). The response under evaluation is sperm volume. A linear mixed model was fitted to the results using LADES. The complete design had a power of 88.7% using 15 eels. With LADES we propose the use of an unequal design with only 14 eels and 89.5% efficiency. LADES was developed as a powerful and simple tool to promote the use of statistical methods for analyzing and creating longitudinal experiments in biomedical research.
19 CFR 141.111 - Carrier's release order.
Code of Federal Regulations, 2013 CFR
2013-04-01
... given to release the articles covered by this certified duplicate bill of lading or air waybill to: (c) Blanket release order. Merchandise may be released to the person named in the bill of lading or air...)(4); or (4) If a certified duplicate bill of lading or air waybill is used for entry purposes in...
19 CFR 141.111 - Carrier's release order.
Code of Federal Regulations, 2014 CFR
2014-04-01
... given to release the articles covered by this certified duplicate bill of lading or air waybill to: (c) Blanket release order. Merchandise may be released to the person named in the bill of lading or air...)(4); or (4) If a certified duplicate bill of lading or air waybill is used for entry purposes in...
19 CFR 141.111 - Carrier's release order.
Code of Federal Regulations, 2010 CFR
2010-04-01
... given to release the articles covered by this certified duplicate bill of lading or air waybill to: (c) Blanket release order. Merchandise may be released to the person named in the bill of lading or air...)(4); or (4) If a certified duplicate bill of lading or air waybill is used for entry purposes in...
19 CFR 141.111 - Carrier's release order.
Code of Federal Regulations, 2012 CFR
2012-04-01
... given to release the articles covered by this certified duplicate bill of lading or air waybill to: (c) Blanket release order. Merchandise may be released to the person named in the bill of lading or air...)(4); or (4) If a certified duplicate bill of lading or air waybill is used for entry purposes in...
19 CFR 141.111 - Carrier's release order.
Code of Federal Regulations, 2011 CFR
2011-04-01
... given to release the articles covered by this certified duplicate bill of lading or air waybill to: (c) Blanket release order. Merchandise may be released to the person named in the bill of lading or air...)(4); or (4) If a certified duplicate bill of lading or air waybill is used for entry purposes in...
Overview and Status of the Lunar Laser Communication Demonstration
NASA Technical Reports Server (NTRS)
Boroson, D. M.; Robinson, B. S.; Burianek, D. A.; Murphy, D. V.; Biswas, A.
2012-01-01
The Lunar Laser Communication Demonstration (LLCD), a project being undertaken by MIT Lincoln Laboratory, NASA's Goddard Space Flight Center, and the Jet Propulsion Laboratory, will be NASA's first attempt to demonstrate optical communications between a lunar orbiting spacecraft and Earth-based ground receivers. The LLCD space terminal will be flown on the Lunar Atmosphere and Dust Environment Explorer (LADEE) spacecraft, presently scheduled to launch in 2013. LLCD will demonstrate downlink optical communications at rates up to 620 Mbps, uplink optical communications at rates up to 20 Mbps, and two-way time-of-flight measurements with the potential to perform ranging with sub-centimeter accuracy. We describe the objectives of the LLCD program, key technologies employed in the space and ground terminals, and show the status of development of the several systems.
How Surface Composition and Meteoroid Impacts Mediate Sodium and Potassium in the Lunar Exosphere
NASA Technical Reports Server (NTRS)
Colaprete, A.; Sarantos, M.; Wooden, D. H.; Stubbs, T. J.; Cook, A. M.; Shirley, M.
2016-01-01
Despite being trace constituents of the lunar exosphere, sodium and potassium are the most readily observed species due to their bright line emission. Measurements of these species by the Ultraviolet and Visible Spectrometer (UVS) on the Lunar Atmosphere and Dust Environment Explorer (LADEE) have revealed unambiguous temporal and spatial variations indicative of a strong role for meteoroid bombardment and surface composition in determining the composition and local time dependence of the Moon's exosphere. Observations show distinct lunar day (monthly) cycles for both species as well as an annual cycle for sodium. The first continuous measurements for potassium show a more repeatable variation across lunations and an enhancement over KREEP (Potassium Rare Earth Elements and Phosphorus) surface regions, revealing a strong dependence on surface composition.
27 CFR 28.41 - Evidence of lading for use on vessels or aircraft: distilled spirits and wine.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Evidence of lading for use on vessels or aircraft: distilled spirits and wine. 28.41 Section 28.41 Alcohol, Tobacco Products and... vessels or aircraft: distilled spirits and wine. The lading of distilled spirits or wine for use on...
27 CFR 28.43 - Evidence of exportation and lading for use on vessels and aircraft: beer.
Code of Federal Regulations, 2010 CFR
2010-04-01
... and lading for use on vessels and aircraft: beer. 28.43 Section 28.43 Alcohol, Tobacco Products and... lading for use on vessels and aircraft: beer. (a) Exportation. The exportation of beer to a foreign... certificate issued by an official of the country or possession where the beer has actually landed; or (6) Any...
19 CFR 123.8 - Permit or special license to unlade or lade a vessel or vehicle.
Code of Federal Regulations, 2010 CFR
2010-04-01
... the application and permission to unlade be on Customs Form 3171. (2) Special license to unlade or lade at night, on a Sunday or holiday. Application for permission to unlade passengers or merchandise... § 123.8 Permit or special license to unlade or lade a vessel or vehicle. (a) Permission to unlade or...
2013-09-07
This image shows an evening view gantry at Pad 0B at the Mid-Atlantic Regional Spaceport, at NASA's Wallops Flight Facility in Wallops Island, Va., on Sept. 4, 2013. In this photograph, the gantry surrounds the Minotaur V rocket that will launch NASA LADEE. The gantry is now removed and the Minotaur is getting ready to launch LADEE at 11:27 p.m. EDT tonight. Image credit: NASA Wallops/Patrick Black
2014-01-24
2013 was a big year for Ames Research Center's space exploration programs, including several new launches, and continuing a long history of cutting-edge innovations. Projects listed include: LADEE, IRIS, Kepler, PhoneSat, TechEdSat, NLAS, K10 Rover, Seedling Growth-1, Cell Biology Tech Demonstration, ADEPT, Spaceloft 7 and 8, CheMin, MSL, MRO, Bion-M1, Pioneer 11.
Scattering Properties of Lunar Dust Analogs
NASA Technical Reports Server (NTRS)
Davis, S.; Marshall, J.; Richard, D.; Adler, D.; Adler, B.
2013-01-01
A number of space missions are planned to explore the lunar exosphere which may contain a small population of dust particles. The objective of this paper is to present preliminary results from scattering experiments on a suspension of lunar simulants to support one such mission. The intensity of the light scattered from a lunar simulant is measured with a commercial version of the spectrometer used in the forthcoming LADEE mission. Physical properties of the lunar simulant are described along with two similarly-sized reference microspheres. We confirm that micron-sized particles tend to form agglomerates rather than remaining isolated entities and that certain general characteristic of the target particles can be predicted from intensity measurements alone. These results can be used directly to assess general features of the lunar exosphere from LADEE instrument data. Further analysis of particle properties from such remote sensing data will require measurements of polarization signatures.
Colaprete, A; Sarantos, M; Wooden, D H; Stubbs, T J; Cook, A M; Shirley, M
2016-01-15
Despite being trace constituents of the lunar exosphere, sodium and potassium are the most readily observed species due to their bright line emission. Measurements of these species by the Ultraviolet and Visible Spectrometer (UVS) on the Lunar Atmosphere and Dust Environment Explorer (LADEE) have revealed unambiguous temporal and spatial variations indicative of a strong role for meteoroid bombardment and surface composition in determining the composition and local time dependence of the Moon's exosphere. Observations show distinct lunar day (monthly) cycles for both species as well as an annual cycle for sodium. The first continuous measurements for potassium show a more repeatable variation across lunations and an enhancement over KREEP (Potassium Rare Earth Elements and Phosphorus) surface regions, revealing a strong dependence on surface composition. Copyright © 2016, American Association for the Advancement of Science.
41 CFR 109-40.5004 - Government bills of lading.
Code of Federal Regulations, 2012 CFR
2012-01-01
... Management Regulations System (Continued) DEPARTMENT OF ENERGY PROPERTY MANAGEMENT REGULATIONS AVIATION... officer to issue such Government bills of lading (see Title V, U.S. Government Accounting Office Policy...
41 CFR 109-40.5004 - Government bills of lading.
Code of Federal Regulations, 2013 CFR
2013-07-01
... Management Regulations System (Continued) DEPARTMENT OF ENERGY PROPERTY MANAGEMENT REGULATIONS AVIATION... officer to issue such Government bills of lading (see Title V, U.S. Government Accounting Office Policy...
NASA Astrophysics Data System (ADS)
Horanyi, Mihaly
2016-07-01
The Lunar Dust Experiment (LDEX) onboard the Lunar Atmosphere and Dust Environment Explorer (LADEE) mission (9/2013 - 4/2014) discovered a permanently present dust cloud engulfing the Moon. The size, velocity, and density distributions of the dust particles are consistent with ejecta clouds generated from the continual bombardment of the lunar surface by sporadic interplanetary dust particles. Intermittent density enhancements were observed during several of the annual meteoroid streams, especially during the Geminids. LDEX found no evidence of the expected density enhancements over the terminators where electrostatic processes were predicted to efficiently loft small grains. LDEX is an impact ionization dust detector, it captures coincident signals and full waveforms to reliably identify dust impacts. LDEX recorded average impact rates of approximately 1 and 0.1 hits/minute of particles with impact charges of q > 0.5 and q > 5 fC, corresponding to particles with radii of a > 0.3 and a> 0.7~μm, respectively. Several of the yearly meteor showers generated sustained elevated levels of impact rates, especially if their radiant direction intersected the lunar surface near the equatorial plane, greatly enhancing the probability of crossing their ejecta plumes. The characteristic velocities of dust particles in the cloud are on the order of ~100 m/s which we neglect compared to the typical spacecraft speeds of 1.6 km/s. Hence, with the knowledge of the spacecraft orbit and attitude, impact rates can be directly turned into particle densities as functions of time and position. LDEX observations are the first to identify the ejecta clouds around the Moon sustained by the continual bombardment of interplanetary dust particles. Most of the dust particles generated in impacts have insufficient energy to escape and follow ballistic orbits, returning to the surface, 'gardening' the regolith. Similar ejecta clouds are expected to engulf all airless planetary objects, including the Moon, Mercury, and the moons of Mars: Phobos and Deimos.
Modular Infrastructure for Rapid Flight Software Development
NASA Technical Reports Server (NTRS)
Pires, Craig
2010-01-01
This slide presentation reviews the use of modular infrastructure to assist in the development of flight software. A feature of this program is the use of model based approach for application unique software. A review of two programs that this approach was use on are: the development of software for Hover Test Vehicle (HTV), and Lunar Atmosphere and Dust Environment Experiment (LADEE).
48 CFR 801.670-1 - Issuing bills of lading.
Code of Federal Regulations, 2010 CFR
2010-10-01
... with only micro-purchase authority may not issue bills of lading or otherwise procure transportation... for goods only shall comply with the Education, Experience, and Training requirements, if any, in Part...
Mars-Moons Exploration, Reconnaissance and Landed Investigation (MERLIN)
NASA Astrophysics Data System (ADS)
Murchie, S. L.; Chabot, N. L.; Buczkowski, D.; Arvidson, R. E.; Castillo, J. C.; Peplowski, P. N.; Ernst, C. M.; Rivkin, A.; Eng, D.; Chmielewski, A. B.; Maki, J.; trebi-Ollenu, A.; Ehlmann, B. L.; Spence, H. E.; Horanyi, M.; Klingelhoefer, G.; Christian, J. A.
2015-12-01
The Mars-Moons Exploration, Reconnaissance and Landed Investigation (MERLIN) is a NASA Discovery mission proposal to explore the moons of Mars. Previous Mars-focused spacecraft have raised fundamental questions about Mars' moons: What are their origins and compositions? Why do the moons resemble primitive outer solar system D-type objects? How do geologic processes modify their surfaces? MERLIN answers these questions through a combination of orbital and landed measurements, beginning with reconnaissance of Deimos and investigation of the hypothesized Martian dust belts. Orbital reconnaissance of Phobos occurs, followed by low flyovers to characterize a landing site. MERLIN lands on Phobos, conducting a 90-day investigation. Radiation measurements are acquired throughout all mission phases. Phobos' size and mass provide a low-risk landing environment: controlled descent is so slow that the landing is rehearsed, but gravity is high enough that surface operations do not require anchoring. Existing imaging of Phobos reveals low regional slope regions suitable for landing, and provides knowledge for planning orbital and landed investigations. The payload leverages past NASA investments. Orbital imaging is accomplished by a dual multispectral/high-resolution imager rebuilt from MESSENGER/MDIS. Mars' dust environment is measured by the refurbished engineering model of LADEE/LDEX, and the radiation environment by the flight spare of LRO/CRaTER. The landed workspace is characterized by a color stereo imager updated from MER/HazCam. MERLIN's arm deploys landed instrumentation using proven designs from MER, Phoenix, and MSL. Elemental measurements are acquired by a modified version of Rosetta/APXS, and an uncooled gamma-ray spectrometer. Mineralogical measurements are acquired by a microscopic imaging spectrometer developed under MatISSE. MERLIN delivers seminal science traceable to NASA's Strategic Goals and Objectives, Science Plan, and the Decadal Survey. MERLIN's science-driven investigations also provide insight into Mars' particulate and radiation environment, Phobos' composition and regolith properties, and Phobos' inventory of in situ resources, filling strategic knowledge gaps to pioneer the way for future human exploration of the Mars system.
49 CFR 373.101 - Motor carrier bills of lading.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 49 Transportation 5 2010-10-01 2010-10-01 false Motor carrier bills of lading. 373.101 Section 373.101 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL MOTOR CARRIER SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION FEDERAL MOTOR CARRIER SAFETY REGULATIONS RECEIPTS AND...
49 CFR 373.101 - Motor carrier bills of lading.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 49 Transportation 5 2011-10-01 2011-10-01 false Motor carrier bills of lading. 373.101 Section 373.101 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL MOTOR CARRIER SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION FEDERAL MOTOR CARRIER SAFETY REGULATIONS RECEIPTS AND...
41 CFR 109-40.5003 - Commercial bills of lading.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 41 Public Contracts and Property Management 3 2010-07-01 2010-07-01 false Commercial bills of lading. 109-40.5003 Section 109-40.5003 Public Contracts and Property Management Federal Property Management Regulations System (Continued) DEPARTMENT OF ENERGY PROPERTY MANAGEMENT REGULATIONS AVIATION...
Code of Federal Regulations, 2011 CFR
2011-10-01
... shipments on commercial bills of lading (CBL's). Government bills of lading (GBL's) may be used for... transportation-related services as prescribed in part 19. (g) Agencies shall comply with the Fly America Act, the Cargo Preference Act, and related statutes as prescribed in subparts 47.4, Air Transportation by U.S...
Code of Federal Regulations, 2013 CFR
2013-10-01
... shipments on commercial bills of lading (CBL's). Government bills of lading (GBL's) may be used for... transportation-related services as prescribed in part 19. (g) Agencies shall comply with the Fly America Act, the Cargo Preference Act, and related statutes as prescribed in subparts 47.4, Air Transportation by U.S...
Code of Federal Regulations, 2014 CFR
2014-10-01
... shipments on commercial bills of lading (CBL's). Government bills of lading (GBL's) may be used for... transportation-related services as prescribed in part 19. (g) Agencies shall comply with the Fly America Act, the Cargo Preference Act, and related statutes as prescribed in subparts 47.4, Air Transportation by U.S...
Code of Federal Regulations, 2012 CFR
2012-10-01
... shipments on commercial bills of lading (CBL's). Government bills of lading (GBL's) may be used for... transportation-related services as prescribed in part 19. (g) Agencies shall comply with the Fly America Act, the Cargo Preference Act, and related statutes as prescribed in subparts 47.4, Air Transportation by U.S...
27 CFR 28.22 - Vessels employed in the fisheries.
Code of Federal Regulations, 2010 CFR
2010-04-01
... event of a failure on the part of the withdrawer or the master of the vessel to comply with the... withdrawal or lading shall be conditioned upon compliance with the applicable provisions of this part. Lading... customs of a special written application by the withdrawer or the vessel's master on customs Form 5125 (in...
19 CFR 146.34 - Merchandise transiting a zone.
Code of Federal Regulations, 2010 CFR
2010-04-01
... territory through the zone for immediate lading on any carrier in the zone: (a) Application. Application for permission to lade or unlade will be filed with the port director on Customs Form 3171 prior to transfer of... subject of an application for admission in accordance with § 146.32(a). (c) Treatment of merchandise. Upon...
Code of Federal Regulations, 2010 CFR
2010-04-01
... Customs Form 7514 may be filed either before or after the lading of the articles. If filed after lading, the notice shall be filed within 3 years after exportation of the articles. (d) Contents of notice... articles were or are to be laden; (2) The number and kind of packages and their marks and numbers; (3) A...
Code of Federal Regulations, 2010 CFR
2010-07-01
... 41 Public Contracts and Property Management 3 2010-07-01 2010-07-01 false What is the difference... Contracts and Property Management Federal Property Management Regulations System (Continued) FEDERAL MANAGEMENT REGULATION TRANSPORTATION 117-TRANSPORTATION MANAGEMENT Acquiring Transportation or Related...
49 CFR 173.9 - Transport vehicles or freight containers containing lading which has been fumigated.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 49 Transportation 2 2012-10-01 2012-10-01 false Transport vehicles or freight containers containing lading which has been fumigated. 173.9 Section 173.9 Transportation Other Regulations Relating to Transportation PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION HAZARDOUS MATERIALS REGULATIONS SHIPPERS-GENERAL...
49 CFR 173.9 - Transport vehicles or freight containers containing lading which has been fumigated.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 49 Transportation 2 2014-10-01 2014-10-01 false Transport vehicles or freight containers containing lading which has been fumigated. 173.9 Section 173.9 Transportation Other Regulations Relating to Transportation PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION HAZARDOUS MATERIALS REGULATIONS SHIPPERS-GENERAL...
An Ongoing Program for Monitoring the Moon for Meteoroid Impacts (Abstract)
NASA Astrophysics Data System (ADS)
Cudnik, B.; Saganti, S.; Ali, F.; Ali, S.; Beharie, T.; Anugwom, B.
2017-12-01
(Abstract only) Lunar meteor impacts are surprisingly frequent phenomena, with well over one hundred observable events occurring each year. Of these a little over half arise from members of annual meteor showers (e.g. Perseids, Leonids, etc.), with the rest being sporadic in origin. Five years ago, I (BC) introduced to the SAS Symposium the idea of observing lunar meteoroid impact phenomena and applying these observations to a space mission (LADEE-Lunar Atmosphere and Dust Environment Explorer) that launched the following year. Now, five years later I revisit and reintroduce the activities of the Association of Lunar and Planetary Observers-Lunar Meteoritic Impact Search (ALPO-LMIS) section and share some of the latest observations that have been received. For over 17 years now, ALPO has hosted the LMIS section, for which I have served as coordinator since its inception. In this paper, I will revisit the main ideas of the earlier paper, share some recent observations of lunar meteors, and provide new initiatives and projects interested persons can participate in.
19 CFR 10.151 - Importations not over $200.
Code of Federal Regulations, 2012 CFR
2012-04-01
... evidenced by an oral declaration or the bill of lading (or other document filed as the entry) or manifest listing each bill of lading, in the country of shipment not exceeding $200, unless he has reason to... informal entry procedures (see subpart C, part 143, and §§ 128.24, 145.31, 148.12, and 148.62, of this...
19 CFR 10.151 - Importations not over $200.
Code of Federal Regulations, 2013 CFR
2013-04-01
... evidenced by an oral declaration or the bill of lading (or other document filed as the entry) or manifest listing each bill of lading, in the country of shipment not exceeding $200, unless he has reason to... informal entry procedures (see subpart C, part 143, and §§ 128.24, 145.31, 148.12, and 148.62, of this...
19 CFR 10.151 - Importations not over $200.
Code of Federal Regulations, 2010 CFR
2010-04-01
... evidenced by an oral declaration or the bill of lading (or other document filed as the entry) or manifest listing each bill of lading, in the country of shipment not exceeding $200, unless he has reason to... informal entry procedures (see subpart C, part 143, and §§ 128.24, 145.31, 148.12, and 148.62, of this...
19 CFR 10.151 - Importations not over $200.
Code of Federal Regulations, 2014 CFR
2014-04-01
... evidenced by an oral declaration or the bill of lading (or other document filed as the entry) or manifest listing each bill of lading, in the country of shipment not exceeding $200, unless he has reason to... informal entry procedures (see subpart C, part 143, and §§ 128.24, 145.31, 148.12, and 148.62, of this...
19 CFR 10.151 - Importations not over $200.
Code of Federal Regulations, 2011 CFR
2011-04-01
... evidenced by an oral declaration or the bill of lading (or other document filed as the entry) or manifest listing each bill of lading, in the country of shipment not exceeding $200, unless he has reason to... informal entry procedures (see subpart C, part 143, and §§ 128.24, 145.31, 148.12, and 148.62, of this...
49 CFR 173.24b - Additional general requirements for bulk packagings.
Code of Federal Regulations, 2012 CFR
2012-10-01
... test specimen. (c) Air pressure in excess of ambient atmospheric pressure may not be used to load or unload any lading which may create an air-enriched mixture within the flammability range of the lading in... subchapter) or a pressure vessel design code approved by the Associate Administrator; (iv) Be approved by the...
49 CFR 173.24b - Additional general requirements for bulk packagings.
Code of Federal Regulations, 2011 CFR
2011-10-01
... test specimen. (c) Air pressure in excess of ambient atmospheric pressure may not be used to load or unload any lading which may create an air-enriched mixture within the flammability range of the lading in... subchapter) or a pressure vessel design code approved by the Associate Administrator; (iv) Be approved by the...
49 CFR 173.24b - Additional general requirements for bulk packagings.
Code of Federal Regulations, 2013 CFR
2013-10-01
... test specimen. (c) Air pressure in excess of ambient atmospheric pressure may not be used to load or unload any lading which may create an air-enriched mixture within the flammability range of the lading in... subchapter) or a pressure vessel design code approved by the Associate Administrator; (iv) Be approved by the...
49 CFR 173.24b - Additional general requirements for bulk packagings.
Code of Federal Regulations, 2014 CFR
2014-10-01
... test specimen. (c) Air pressure in excess of ambient atmospheric pressure may not be used to load or unload any lading which may create an air-enriched mixture within the flammability range of the lading in... subchapter) or a pressure vessel design code approved by the Associate Administrator; (iv) Be approved by the...
49 CFR 178.345-8 - Accident damage protection.
Code of Federal Regulations, 2010 CFR
2010-10-01
... accidental loss of lading. The device must break at no more than 70 percent of the load that would be... major radius of the tank shell. The device must break at no more than 70 percent of the load that would... for the loss of lading due to an accident. (1) Any dome, sump, or washout cover plate projecting from...
NASA Completes LADEE Mission with Planned Impact on Moon's Surface (Reporter Package)
2014-04-23
NASA's LADEE mission came to an end as the spacecraft executed a planned de-orbit into the surface of the Moon at nearly three thousand, six hundred miles per hour. The primary goal of the mission was to collect data about the thin lunar atmosphere and the amounts of dust that are in it at multiple altitudes.
32 CFR 623.4 - Accounting procedures.
Code of Federal Regulations, 2011 CFR
2011-07-01
... or O) indicating which loan of the day is first; e.g., A-first, B-second, etc. 51 “M”. 52-53 “G4” for... commercial bills of lading (CBL). Freight charges will be paid by the borrower. The CBL will cite proper project codes. NOTE: In emergencies where use of CBL would delay shipment, government bills of lading (GBL...
32 CFR 623.4 - Accounting procedures.
Code of Federal Regulations, 2013 CFR
2013-07-01
... or O) indicating which loan of the day is first; e.g., A-first, B-second, etc. 51 “M”. 52-53 “G4” for... commercial bills of lading (CBL). Freight charges will be paid by the borrower. The CBL will cite proper project codes. NOTE: In emergencies where use of CBL would delay shipment, government bills of lading (GBL...
27 CFR 28.40 - Evidence of exportation: distilled spirits and wine.
Code of Federal Regulations, 2013 CFR
2013-04-01
... exportation of any shipment of distilled spirits or wine may be evidenced by: (a) A copy of the export bill of lading (§ 28.250); or (b) A copy of the railway express receipt (§ 28.251); or (c) A copy of the air express receipt (§ 28.252); or (d) A copy of the through bill of lading where exportation is to a...
27 CFR 28.40 - Evidence of exportation: distilled spirits and wine.
Code of Federal Regulations, 2014 CFR
2014-04-01
... exportation of any shipment of distilled spirits or wine may be evidenced by: (a) A copy of the export bill of lading (§ 28.250); or (b) A copy of the railway express receipt (§ 28.251); or (c) A copy of the air express receipt (§ 28.252); or (d) A copy of the through bill of lading where exportation is to a...
27 CFR 28.40 - Evidence of exportation: distilled spirits and wine.
Code of Federal Regulations, 2011 CFR
2011-04-01
... exportation of any shipment of distilled spirits or wine may be evidenced by: (a) A copy of the export bill of lading (§ 28.250); or (b) A copy of the railway express receipt (§ 28.251); or (c) A copy of the air express receipt (§ 28.252); or (d) A copy of the through bill of lading where exportation is to a...
27 CFR 28.40 - Evidence of exportation: distilled spirits and wine.
Code of Federal Regulations, 2012 CFR
2012-04-01
... exportation of any shipment of distilled spirits or wine may be evidenced by: (a) A copy of the export bill of lading (§ 28.250); or (b) A copy of the railway express receipt (§ 28.251); or (c) A copy of the air express receipt (§ 28.252); or (d) A copy of the through bill of lading where exportation is to a...
Using the Geminids to Characterize the Surface Response of an Airless Body to Meteoroid Bombardment
NASA Astrophysics Data System (ADS)
Szalay, J.; Pokorny, P.; Jenniskens, P. M. M.; Horanyi, M.
2017-12-01
All airless bodies in the solar system are exposed to the continual bombardment by interplanetary meteoroids. These impacts can eject orders of magnitude more mass than the primary impactors, sustaining bound and/or unbound ejecta clouds that vary both spatially and temporally from changes in impactor fluxes. The dust environment in the vicinity of an airless body provides both a scientific resource and a hazard for exploration. Characterizing the spatial and temporal variability of the dust environment of airless planetary bodies provides a novel way to understand their meteoroid environment by effectively using these objects as large surface area meteoroid detectors. Additionally, were a dust detector with chemical sensing capability to be flown near such a body, it would be able to directly measure the composition of the body without requiring the mission design complexity involved in landing and sampling surface material. Paramount to understanding the current and future impact ejecta measurements is a sufficient understanding of the impact ejecta processes at the surface. In this presentation, we focus on data taken by the Lunar Dust Experiment (LDEX), an impact ionization dust detector onboard the Lunar Atmosphere and Dust Environment Explorer (LADEE) mission, designed to measure impact ejecta around the Moon. We use the Geminids meteoroid shower as a well constrained input function, and via comparison to existing ground-based measurements of this shower, to "calibrate" the response of the lunar surface to meteoroid bombardment. Understanding the response of the lunar surface to meteoroid bombardment can by extension allow us to better understand the ejecta response at other regolith airless bodies in the solar system. Future missions equipped with dust detectors sent to the Moon, large Near Earth Asteroids, the Martian moons Phobos and Deimos, or many other airless bodies in the solar system would greatly improve our knowledge of their local meteoroid environments, characterize their chemical compositions, and improve the safety for future manned and unmanned missions to these bodies.
Low-Cost, Class D Testing of Spacecraft Photovoltaic Systems Can Reduce Risk
NASA Technical Reports Server (NTRS)
Forgione, Joshua B.; Kojima, Gilbert K.; Hanel, Robert; Mallinson, Mark V.
2014-01-01
The end-to-end verification of a spacecraft photovoltaic power generation system requires light! Specifically, the standard practice for doing so is the Large Area Pulsed Solar Simulation (LAPSS). A LAPSS test can characterize a photovoltaic system's efficiency via its response to rapidly applied impulses of simulated sunlight. However, a Class D program on a constrained budget and schedule may not have the resources to ship an entire satellite for a LAPSS test alone. Such was the case with the Lunar Atmospheric and Dust Environment Explorer (LADEE) program, which was also averse to the risk of hardware damage during shipment. When the Electrical Power System (EPS) team was denied a spacecraft-level LAPSS test, the lack of an end-to-end power generation test elevated to a project-level technical risk. The team pulled together very limited resources to not only eliminate the risk, but build a process to monitor the health of the system through mission operations. We discuss a process for performing a low-cost, end-to-end test of the LADEE photovoltaic system. The approach combines system-level functional test, panel-level performance results, and periodic inspection (and repair) up until launch. Following launch, mission operations tools are utilized to assess system performance based on a scant amount of data. The process starts in manufacturing at the subcontractor. The panel manufacturer provides functional test and LAPSS data on each individual panel. We apply an initial assumption that the per-panel performance is sufficient to meet the power generation requirements. The manufacturer's data is also carried as the performance allocation for each panel during EPS system modeling and initial mission operations. During integration and test, a high-power, professional theater lamp system provides simulated sunlight to each panel on the spacecraft, thereby permitting a true end-to-end system test. A passing test results in a step response to nearly full-rated current at the appropriate solar array switch in the power system. A metal-halide bulb, infrared imagers, and onboard spacecraft measurements are utilized to minimize risk of thermal damage during test. Data is provided to support test results for both passing and marginal panels. Prior to encapsulation in the launch vehicle, each panel is inspected for damage by the panel manufacturer. Cracked cells or other damage is amended on-site. Because the photovoltaic test system is inexpensive and portable, each repaired panel can be re-verified immediately. Post-launch, the photovoltaic system is again characterized for per-panel deviations from the manufacturer's performance test. This proved especially tricky as the LADEE spacecraft performs only one current measurement on the entire array. The algorithm for Matlab tools to assess panel performance based on spacecraft attitude is discussed. While not as precise and comprehensive as LAPSS, the LADEE approach leverages minimal resources into an ongoing assessment program that can be applied through numerous stages of the mission. The project takes a true Class D approach in assessing the technical value of a spacecraft level performance test versus the programmatic risk of shipping the spacecraft to another facility. The resources required are a fraction of that for a LAPSS test, and is easy to repeat. Further, the test equipment can be handed down to future projects without building an on-site facility.
NASA Astrophysics Data System (ADS)
Hermalyn, B.; Colaprete, A.
2013-12-01
A considerable body of evidence indicates the presence of lofted regolith dust above the lunar surface. These observations range from multiple in-situ and orbital horizon glow detections to direct measurement of dust motion on the surface, as by the Apollo 17 Lunar Ejecta and Meteorites (LEAM) experiment. Despite this evidence, the specific mechanisms responsible for the lofting of regolith are still actively debated. These include impact ejection, electrostatic lofting, effects of high energy radiation, UV/X- rays, and interplay with solar wind plasma. These processes are highly relevant to one of the two main scientific objectives of the Lunar Atmosphere and Dust Environment Explorer (LADEE) mission (due to launch September, 2013): to directly measure the lunar exospheric dust environment and its spatial and temporal variability towards the goal of better understanding the dust flux. Of all the proposed mechanisms taking place on the lunar surface, the only unequivocal ongoing process is impact cratering. Hypervelocity impact events, which mobilize and redistribute regolith across planetary surfaces, are arguably the most pervasive geologic process on rocky bodies. While many studies of dust lofting state that the impact flux rate is orders of magnitude too low to account for the lunar horizon glow phenomenon and discount its contribution, it is imperative to re-examine these assumptions in light of new data on impact ejecta, particularly from the contributions from mesoscale (impactor size on the order of grain size) and macroscale (impactor > grain size) cratering. This is in large part due to a previous lack of data, for while past studies have established a canonical ejecta model for main-stage ejection of sand targets from vertical impacts, only recent studies have been able to begin quantitatively probing the intricacies of the ejection process outside this main-stage, vertical regime. In particular, it is the high-speed early-time ejecta that will reach significant altitude above the surface and remain aloft ballistically for hours. In addition, ejecta dynamics in the transition regime between microcratering and macro scale events is not yet well understood. As such, there is no currently accepted encompassing model of impact ejecta delivery to the lunar exosphere. It is important to note that the work described here is not to duplicate or exclude other lofting mechanisms -- in reality, the lofting of dust is almost definitely a complex combination of processes -- but instead to provide essential constraints on the impact contribution. This study attempts to constrain the expected contributions from cratering to the lunar exosphere by assessing the ejecta 'background' signal lofted above the surface and the effects of transient focused events (meteor showers) which can produce significant increases in ejecta. In particular, this work couples scaling of previous ejecta studies with Monte-Carlo and ballistics models and will present LADEE data analysis (particularly from the UVS and LDEX instruments) and interpretation in context of constraining the ejected mass distribution. These results are relevant to both our understanding of exospheric dust and for constraint of hazards for future human habitation.
LADEE Search for a Dust Exosphere: A Historical Perspective
NASA Technical Reports Server (NTRS)
Glenar, D. A.; Stubbs, T. J.; Elphic, R.
2014-01-01
The LADEE search for exospheric dust is strongly motivated by putative detections of forward-scattered sunlight from exospheric dust grains which were observed during the Apollo era. This dust population, if it exists, has been associated with charging and transport of dust near the terminators. It is likely that the concentration of these dust grains is governed by a saltation mechanism originated by micrometeoroid impacts, which are the source of the more tenuous ejecta cloud.
Generalized Phenomenological Cyclic Stress-Strain-Strength Characterization of Granular Media.
1984-09-02
could be fitted to a comprehensive data set. i ’../., Unfortunately, such equipment is not available at present, and most researchers still rely on the...notably, Lade and Duncan (1975), using a comprehensive series of test data obtained from a true triaxial device (Lade, 1973), have suggested that failure...0 VV 2. Shear Strain, low indeterminate (prior to failure) (at failure) 3. Deformation small large 4. Void Ratio (e) any e ecritical 5. Grain
Hypervelocity Dust Impacts in Space and the Laboratory
NASA Astrophysics Data System (ADS)
Horanyi, Mihaly; Colorado CenterLunar Dust; Atmospheric Studies (CCLDAS) Team
2013-10-01
Interplanetary dust particles continually bombard all objects in the solar system, leading to the excavation of material from the target surfaces, the production of secondary ejecta particles, plasma, neutral gas, and electromagnetic radiation. These processes are of interest to basic plasma science, planetary and space physics, and engineering to protect humans and instruments against impact damages. The Colorado Center for Lunar Dust and Atmospheric Studies (CCLDAS) has recently completed a 3 MV dust accelerator, and this talk will summarize our initial science results. The 3 MV Pelletron contains a dust source, feeding positively charged micron and sub-micron sized particles into the accelerator. We will present the technical details of the facility and its capabilities, as well as the results of our initial experiments for damage assessment of optical devices, and penetration studies of thin films. We will also report on the completion of our dust impact detector, the Lunar Dust Experiment (LDEX), is expected to be flying onboard the Lunar Atmosphere and Dust Environment Explorer (LADEE) mission by the time of this presentation. LDEX was tested, and calibrated at our dust accelerator. We will close by offering the opportunity to use this facility by the planetary, space and plasma physics communities.
Optical overview and qualification of the LLCD space terminal
NASA Astrophysics Data System (ADS)
DeVoe, C. E.; Pillsbury, A. D.; Khatri, F.; Burnside, J. M.; Raudenbush, A. C.; Petrilli, L. J.; Williams, T.
2017-11-01
In October 2013 the Lunar Laser Communications Demonstration (LLCD) made communications history by successfully demonstrating 622 megabits per second laser communication from the moon's orbit to earth. The LLCD consisted of the Lunar Laser Communication Space Terminal (LLST), developed by MIT Lincoln Laboratory, mounted on NASA's Lunar Atmosphere and Dust Environment Explorer (LADEE) spacecraft and a primary ground terminal located in New Mexico, the Lunar Laser Communications Ground Terminal (LLGT), and two alternate ground terminals. This paper presents the optical layout of the LLST, the approach for testing the optical subsystems, and the results of the optical qualification of the LLST. Also described is the optical test set used to qualify the LLST. The architecture philosophy for the optics was to keep a small, simple optical backend that provided excellent boresighting and high isolation between the optical paths, high quality wavefront on axis, with minimal throughput losses on all paths. The front end large optics consisted of a Cassegrain 107mm telescope with an f/0.7 parabolic primary mirror and a solar window to reduce the thermal load on the telescope and to minimize background light received at the sensors.
An Extensible, User- Modifiable Framework for Planning Activities
NASA Technical Reports Server (NTRS)
Joshing, Joseph C.; Abramyan, Lucy; Mickelson, Megan C.; Wallick, Michael N.; Kurien, James A.; Crockett, Thomasa M.; Powell, Mark W.; Pyrzak, Guy; Aghevli, Arash
2013-01-01
This software provides a development framework that allows planning activities for the Mars Science Laboratory rover to be altered at any time, based on changes of the Activity Dictionary. The Activity Dictionary contains the definition of all activities that can be carried out by a particular asset (robotic or human). These definitions (and combinations of these definitions) are used by mission planners to give a daily plan of what a mission should do. During the development and course of the mission, the Activity Dictionary and actions that are going to be carried out will often be changed. Previously, such changes would require a change to the software and redeployment. Now, the Activity Dictionary authors are able to customize activity definitions, parameters, and resource usage without requiring redeployment. This software provides developers and end users the ability to modify the behavior of automatically generated activities using a script. This allows changes to the software behavior without incurring the burden of redeployment. This software is currently being used for the Mars Science Laboratory, and is in the process of being integrated into the LADEE (Lunar Atmosphere and Dust Environment Explorer) mission, as well as the International Space Station.
Hydrogen Bearing Material in the Lunar Exosphere
NASA Astrophysics Data System (ADS)
Hurley, D.; Benna, M.; Colaprete, A.; Retherford, K. D.; Cook, J. C.; Elphic, R. C.; Farrell, W. M.; Killen, R. M.; Sarantos, M.
2015-12-01
We report on observations of water and its daughters in the lunar exosphere. Data from LADEE NMS, LADEE UVS, and LRO LAMP indicating the presence of H, H2, OH, and H2O are presented in terms of their relationship to external drivers. These observations point to the roles of solar wind and micrometeoroids in the source and release of hydrogen-bearing atoms and molecules in the exosphere. In particular, the implantation of H via solar wind is found to be the largest contributor to H2 in the moon's exosphere. However, the spatial distribution is more consistent with a release mechanism centered on the morning hemisphere. Thus the data are consistent with H2 created through a 2-step process involving the implantation of solar wind and subsequent release by micrometeoroids. This accounts for >12% of the solar wind H budget, leaving < 50% of the solar wind proton budget unobserved. LADEE data are consistent with water mainly being released by micrometeoroids. We present an overall picture of the present-day water cycle occurring on the Moon.
Yield surfaces for frictional sphere assemblages
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goddard, J.D.; Didwania, A.K.
1995-12-31
By means of a recently developed computer algorithm for simulation of the quasi-static I mechanics of sphere assemblages, we have performed extensive computations of the dilatancy and plasticity of such systems for various proportional loading histories. We have investigated the effect of initial packing density or void ratio, size polydispersity, friction coefficient and plastic strain on the evolution of the yield surface. We find that all the yield surfaces tend to an asymptotic form which is well represented by the Lade-Duncan yield surface, developed originally for sand, suggesting that the Lade-Duncan form may reflect some universality in the behavior ofmore » assemblages of rigid frictional particles.« less
19 CFR 10.711 - Imported directly.
Code of Federal Regulations, 2010 CFR
2010-04-01
... ARTICLES CONDITIONALLY FREE, SUBJECT TO A REDUCED RATE, ETC. United States-Jordan Free Trade Agreement... lading, airway bills, packing lists, commercial invoices, receiving and inventory records, and customs...
49 CFR 178.345-11 - Tank outlets.
Code of Federal Regulations, 2010 CFR
2010-10-01
... unloading of lading, as distinguished from outlets such as manhole covers, vents, vapor recovery devices... away from the loading/unloading outlet. The actuating mechanism must be corrosion-resistant and...
Code of Federal Regulations, 2014 CFR
2014-10-01
... means a compartment below deck that is used exclusively for the stowage of cargo. Hot-molded briquettes... sea. Shipping paper means a shipping order, bill of lading, manifest, or other shipping document...
Code of Federal Regulations, 2013 CFR
2013-10-01
... means a compartment below deck that is used exclusively for the stowage of cargo. Hot-molded briquettes... sea. Shipping paper means a shipping order, bill of lading, manifest, or other shipping document...
Code of Federal Regulations, 2011 CFR
2011-10-01
....8. Hold means a compartment below deck that is used exclusively for the stowage of cargo. Hot-molded... sea. Shipping paper means a shipping order, bill of lading, manifest, or other shipping document...
Code of Federal Regulations, 2012 CFR
2012-10-01
....8. Hold means a compartment below deck that is used exclusively for the stowage of cargo. Hot-molded... sea. Shipping paper means a shipping order, bill of lading, manifest, or other shipping document...
Tang, Hexiao; Liao, Yongde; Xu, Liqiang; Zhang, Chao; Liu, Zhaoguo; Deng, Yu; Jiang, Zhixiao; Fu, Shengling; Chen, Zhenguang; Zhou, Sheng
2013-11-15
Estrogen receptor (ER) and insulin-like growth factor-1 receptor (IGF-1R) signaling are implicated in lung cancer progression. Based on their previous findings, the authors sought to investigate whether estrogen and IGF-1 act synergistically to promote lung adenocarcinoma (LADE) development in mice. LADE was induced with urethane in ovariectomized Kunming mice. Tumor-bearing mice were divided into seven groups: 17β-estradiol (E2), E2+fulvestrant (Ful; estrogen inhibitor), IGF-1, IGF-1+AG1024 (IGF-1 inhibitor), E2+IGF-1, E2+IGF-1+Ful+AG1024 and control groups. After 14 weeks, the mice were sacrificed, and then the tumor growth was determined. The expression of ERα/ERβ, IGF-1, IGF-1R and Ki67 was examined using tissue-microarray-immunohistochemistry, and IGF-1, p-ERβ, p-IGF-1R, p-MAPK and p-AKT levels were determined based on Western blot analysis. Fluorescence-quantitative polymerase chain reaction was used to detect the mRNA expression of ERβ, ERβ2 and IGF-1R. Tumors were found in 93.88% (46/49) of urethane-treated mice, and pathologically proven LADE was noted in 75.51% (37/49). In the E2+IGF-1 group, tumor growth was significantly higher than in the E2 group (p < 0.05), the IGF-1 group (p < 0.05) and control group (p < 0.05). Similarly, the expression of ERβ, p-ERβ, ERβ2, IGF-1, IGF-1R, p-IGF-1R, p-MAPK, p-AKT and Ki67 at the protein and/or mRNA levels was markedly higher in the ligand group than in the ligand + inhibitor groups (all p < 0.05). This study demonstrated for the first time that estrogen and IGF-1 act to synergistically promote the development of LADE in mice, and this may be related to the activation of the MAPK and AKT signaling pathways in which ERβ1, ERβ2 and IGF-1R play important roles. Copyright © 2013 UICC.
19 CFR 10.153 - Conditions for exemption.
Code of Federal Regulations, 2012 CFR
2012-04-01
..., bill of lading, or other shipping document. (e) No alcoholic beverage, perfume containing alcohol... the shipment does not exceed $5), cigars, or cigarettes shall be exempted from the payment of duty and...
19 CFR 10.153 - Conditions for exemption.
Code of Federal Regulations, 2014 CFR
2014-04-01
..., bill of lading, or other shipping document. (e) No alcoholic beverage, perfume containing alcohol... the shipment does not exceed $5), cigars, or cigarettes shall be exempted from the payment of duty and...
19 CFR 10.153 - Conditions for exemption.
Code of Federal Regulations, 2013 CFR
2013-04-01
..., bill of lading, or other shipping document. (e) No alcoholic beverage, perfume containing alcohol... the shipment does not exceed $5), cigars, or cigarettes shall be exempted from the payment of duty and...
19 CFR 10.153 - Conditions for exemption.
Code of Federal Regulations, 2011 CFR
2011-04-01
..., bill of lading, or other shipping document. (e) No alcoholic beverage, perfume containing alcohol... the shipment does not exceed $5), cigars, or cigarettes shall be exempted from the payment of duty and...
41 CFR 109-40.5005 - Description of property for shipment.
Code of Federal Regulations, 2013 CFR
2013-07-01
... AVIATION, TRANSPORTATION, AND MOTOR VEHICLES 40-TRANSPORTATION AND TRAFFIC MANAGEMENT 40.50-Bills of Lading... explosives, radioactive materials, flammable liquids, flammable solids, oxidizers, or poison A or poison B...
41 CFR 109-40.5005 - Description of property for shipment.
Code of Federal Regulations, 2010 CFR
2010-07-01
... AVIATION, TRANSPORTATION, AND MOTOR VEHICLES 40-TRANSPORTATION AND TRAFFIC MANAGEMENT 40.50-Bills of Lading... explosives, radioactive materials, flammable liquids, flammable solids, oxidizers, or poison A or poison B...
41 CFR 109-40.5005 - Description of property for shipment.
Code of Federal Regulations, 2011 CFR
2011-01-01
... AVIATION, TRANSPORTATION, AND MOTOR VEHICLES 40-TRANSPORTATION AND TRAFFIC MANAGEMENT 40.50-Bills of Lading... explosives, radioactive materials, flammable liquids, flammable solids, oxidizers, or poison A or poison B...
41 CFR 109-40.5005 - Description of property for shipment.
Code of Federal Regulations, 2012 CFR
2012-01-01
... AVIATION, TRANSPORTATION, AND MOTOR VEHICLES 40-TRANSPORTATION AND TRAFFIC MANAGEMENT 40.50-Bills of Lading... explosives, radioactive materials, flammable liquids, flammable solids, oxidizers, or poison A or poison B...
41 CFR 109-40.5005 - Description of property for shipment.
Code of Federal Regulations, 2014 CFR
2014-01-01
... AVIATION, TRANSPORTATION, AND MOTOR VEHICLES 40-TRANSPORTATION AND TRAFFIC MANAGEMENT 40.50-Bills of Lading... explosives, radioactive materials, flammable liquids, flammable solids, oxidizers, or poison A or poison B...
49 CFR 1005.4 - Investigation of claims.
Code of Federal Regulations, 2014 CFR
2014-10-01
... be supported by the original bill of lading, evidence of the freight charges, if any, and either the... voluntarily paying a claim, require the claimant to establish the destination value in the quantity, shipped...
49 CFR 1005.4 - Investigation of claims.
Code of Federal Regulations, 2012 CFR
2012-10-01
... be supported by the original bill of lading, evidence of the freight charges, if any, and either the... voluntarily paying a claim, require the claimant to establish the destination value in the quantity, shipped...
49 CFR 1005.4 - Investigation of claims.
Code of Federal Regulations, 2011 CFR
2011-10-01
... be supported by the original bill of lading, evidence of the freight charges, if any, and either the... voluntarily paying a claim, require the claimant to establish the destination value in the quantity, shipped...
49 CFR 1005.4 - Investigation of claims.
Code of Federal Regulations, 2013 CFR
2013-10-01
... be supported by the original bill of lading, evidence of the freight charges, if any, and either the... voluntarily paying a claim, require the claimant to establish the destination value in the quantity, shipped...
49 CFR 1005.4 - Investigation of claims.
Code of Federal Regulations, 2010 CFR
2010-10-01
... be supported by the original bill of lading, evidence of the freight charges, if any, and either the... voluntarily paying a claim, require the claimant to establish the destination value in the quantity, shipped...
Investigation on the Practicality of Developing Reduced Thermal Models
NASA Technical Reports Server (NTRS)
Lombardi, Giancarlo; Yang, Kan
2015-01-01
Throughout the spacecraft design and development process, detailed instrument thermal models are created to simulate their on-orbit behavior and to ensure that they do not exceed any thermal limits. These detailed models, while generating highly accurate predictions, can sometimes lead to long simulation run times, especially when integrated with a spacecraft observatory model. Therefore, reduced models containing less detail are typically produced in tandem with the detailed models so that results may be more readily available, albeit less accurate. In the current study, both reduced and detailed instrument models are integrated with their associated spacecraft bus models to examine the impact of instrument model reduction on run time and accuracy. Preexisting instrument bus thermal model pairs from several projects were used to determine trends between detailed and reduced thermal models; namely, the Mirror Optical Bench (MOB) on the Gravity and Extreme Magnetism Small Explorer (GEMS) spacecraft, Advanced Topography Laser Altimeter System (ATLAS) on the Ice, Cloud, and Elevation Satellite 2 (ICESat-2), and the Neutral Mass Spectrometer (NMS) on the Lunar Atmosphere and Dust Environment Explorer (LADEE). Hot and cold cases were run for each model to capture the behavior of the models at both thermal extremes. It was found that, though decreasing the number of nodes from a detailed to reduced model brought about a reduction in the run-time, a large time savings was not observed, nor was it a linear relationship between the percentage of nodes reduced and time saved. However, significant losses in accuracy were observed with greater model reduction. It was found that while reduced models are useful in decreasing run time, there exists a threshold of reduction where, once exceeded, the loss in accuracy outweighs the benefit from reduced model runtime.
The 2-10 keV unabsorbed luminosity function of AGN from the LSS, CDFS, and COSMOS surveys
NASA Astrophysics Data System (ADS)
Ranalli, P.; Koulouridis, E.; Georgantopoulos, I.; Fotopoulou, S.; Hsu, L.-T.; Salvato, M.; Comastri, A.; Pierre, M.; Cappelluti, N.; Carrera, F. J.; Chiappetti, L.; Clerc, N.; Gilli, R.; Iwasawa, K.; Pacaud, F.; Paltani, S.; Plionis, E.; Vignali, C.
2016-05-01
The XMM-Large scale structure (XMM-LSS), XMM-Cosmological evolution survey (XMM-COSMOS), and XMM-Chandra deep field south (XMM-CDFS) surveys are complementary in terms of sky coverage and depth. Together, they form a clean sample with the least possible variance in instrument effective areas and point spread function. Therefore this is one of the best samples available to determine the 2-10 keV luminosity function of active galactic nuclei (AGN) and their evolution. The samples and the relevant corrections for incompleteness are described. A total of 2887 AGN is used to build the LF in the luminosity interval 1042-1046 erg s-1 and in the redshift interval 0.001-4. A new method to correct for absorption by considering the probability distribution for the column density conditioned on the hardness ratio is presented. The binned luminosity function and its evolution is determined with a variant of the Page-Carrera method, which is improved to include corrections for absorption and to account for the full probability distribution of photometric redshifts. Parametric models, namely a double power law with luminosity and density evolution (LADE) or luminosity-dependent density evolution (LDDE), are explored using Bayesian inference. We introduce the Watanabe-Akaike information criterion (WAIC) to compare the models and estimate their predictive power. Our data are best described by the LADE model, as hinted by the WAIC indicator. We also explore the recently proposed 15-parameter extended LDDE model and find that this extension is not supported by our data. The strength of our method is that it provides unabsorbed, non-parametric estimates, credible intervals for luminosity function parameters, and a model choice based on predictive power for future data. Based on observations obtained with XMM-Newton, an ESA science mission with instruments and contributions directly funded by ESA member states and NASA.Tables with the samples of the posterior probability distributions are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/590/A80
ILEWG report and discussion on Lunar Science and Exploration
NASA Astrophysics Data System (ADS)
Foing, Bernard
2015-04-01
The EGU PS2.2 session "Lunar Science and Exploration" will include oral papers and posters, and a series of discussions. Members of ILEWG International Lunar Exploration Working Group will debate: - Recent lunar results: geochemistry, geophysics in the context of open - Celebrating the lunar legacy of pioneers Gerhard Neukum, Colin Pillinger and Manfred Fuchs planetary science and exploration - Latest results from LADEE and Chang'e 3/4 - Synthesis of results from SMART-1, Kaguya, Chang-E1 and Chang-E2, Chandrayaan-1, Lunar Reconnaissance Orbiter and LCROSS impactor, Artemis and GRAIL - Goals and Status of missions under preparation: orbiters, Luna-Glob, Google Lunar X Prize, Luna Resurs, Chang'E 5, Future landers, Lunar sample return - Precursor missions, instruments and investigations for landers, rovers, sample return, and human cis-lunar activities and human lunar sorties - Preparation: databases, instruments, terrestrial field campaigns - The future international lunar exploration programme towards ILEWG roadmap of a global robotic village and permanent international lunar base - The proposals for an International Lunar Decade and International Lunar Research Parks - Strategic Knowledge Gaps, and key science Goals relevant to Human Lunar Global Exploration Lunar science and exploration are developing further with new and exciting missions being developed by China, the US, Japan, India, Russia, Korea and Europe, and with the perspective of robotic and human exploration. The session will include invited and contributed talks as well as a panel discussion and interactive posters with short oral introduction.
49 CFR 179.400-17 - Inner tank piping.
Code of Federal Regulations, 2014 CFR
2014-10-01
.... Suitable provison must be made to allow for thermal expansion and contraction. (1) Loading and unloading... vapor space of the inner tank to facilitate unloading the liquid lading must be approved. [Amdt. 179-32...
48 CFR 52.247-68 - Report of Shipment (REPSHIP).
Code of Federal Regulations, 2010 CFR
2010-10-01
..., N.J. *Name of rail carrier, trucker, or other carrier. **Vehicle identification. ***Bill of lading... the full visible capacity of a railway car or motor vehicle, is given to any carrier (common, contract...
48 CFR 52.247-68 - Report of Shipment (REPSHIP).
Code of Federal Regulations, 2014 CFR
2014-10-01
..., N.J. *Name of rail carrier, trucker, or other carrier. **Vehicle identification. ***Bill of lading... the full visible capacity of a railway car or motor vehicle, is given to any carrier (common, contract...
48 CFR 52.247-68 - Report of Shipment (REPSHIP).
Code of Federal Regulations, 2013 CFR
2013-10-01
..., N.J. *Name of rail carrier, trucker, or other carrier. **Vehicle identification. ***Bill of lading... the full visible capacity of a railway car or motor vehicle, is given to any carrier (common, contract...
48 CFR 52.247-68 - Report of Shipment (REPSHIP).
Code of Federal Regulations, 2011 CFR
2011-10-01
..., N.J. *Name of rail carrier, trucker, or other carrier. **Vehicle identification. ***Bill of lading... the full visible capacity of a railway car or motor vehicle, is given to any carrier (common, contract...
48 CFR 52.247-68 - Report of Shipment (REPSHIP).
Code of Federal Regulations, 2012 CFR
2012-10-01
..., N.J. *Name of rail carrier, trucker, or other carrier. **Vehicle identification. ***Bill of lading... the full visible capacity of a railway car or motor vehicle, is given to any carrier (common, contract...
Code of Federal Regulations, 2011 CFR
2011-10-01
... where susceptible to attack by the lading. (d) The seats and disks shall be of suitable corrosion resistant material. Seats and disks of cast iron or malleable iron shall not be used. Springs shall be of...
19 CFR 181.48 - Person entitled to receive drawback.
Code of Federal Regulations, 2013 CFR
2013-04-01
... named as exporter on the notice of exportation or on the bill of lading, air waybill, freight waybill... writing to receive the drawback of duties. (b) Nonconforming or improperly shipped goods drawback. Only...
19 CFR 181.48 - Person entitled to receive drawback.
Code of Federal Regulations, 2012 CFR
2012-04-01
... named as exporter on the notice of exportation or on the bill of lading, air waybill, freight waybill... writing to receive the drawback of duties. (b) Nonconforming or improperly shipped goods drawback. Only...
19 CFR 181.48 - Person entitled to receive drawback.
Code of Federal Regulations, 2014 CFR
2014-04-01
... named as exporter on the notice of exportation or on the bill of lading, air waybill, freight waybill... writing to receive the drawback of duties. (b) Nonconforming or improperly shipped goods drawback. Only...
19 CFR 181.48 - Person entitled to receive drawback.
Code of Federal Regulations, 2011 CFR
2011-04-01
... named as exporter on the notice of exportation or on the bill of lading, air waybill, freight waybill... writing to receive the drawback of duties. (b) Nonconforming or improperly shipped goods drawback. Only...
49 CFR 178.337-10 - Accident damage protection.
Code of Federal Regulations, 2010 CFR
2010-10-01
... failure of the sacrificial device must leave the protected lading protection device and its attachment to the cargo tank wall intact and capable of retaining product. [Order 59-B, 30 FR 581, Jan. 16, 1965...
49 CFR 179.400-17 - Inner tank piping.
Code of Federal Regulations, 2010 CFR
2010-10-01
... Specification for Cryogenic Liquid Tank Car Tanks and Seamless Steel Tanks (Classes DOT-113 and 107A) § 179.400... lading temperature. The outlets of all vapor phase and liquid phase lines must be located so that...
49 CFR 179.400-19 - Valves and gages.
Code of Federal Regulations, 2010 CFR
2010-10-01
... Specification for Cryogenic Liquid Tank Car Tanks and Seamless Steel Tanks (Classes DOT-113 and 107A) § 179.400... satisfactory properties at the lading temperature. (1) Liquid control valves must be of extended stem design...
ScienceCast 117: NASA Mission Seeks Lunar Air
2013-08-29
A NASA spacecraft slated for launch in September will fly to the Moon to investigate the tenuous lunar atmosphere. Researchers hope "LADEE" will solve a mystery that has been puzzling them since the days of Apollo.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-11-20
... technology; and (e) the annual cost burden to respondents or record keepers from the collection of... Responses: 399,000. Estimated Time per Response: 8 minutes. Estimated Total Annual Burden Hours: 51,870...
19 CFR 19.6 - Deposits, withdrawals, blanket permits to withdraw and sealing requirements.
Code of Federal Regulations, 2011 CFR
2011-04-01
...), the value of the goods, import and export lading information, the duty rate and amount, and any..., reflecting the balance of merchandise covered by the warehouse entry. Any joint discrepancy report of the...
Code of Federal Regulations, 2014 CFR
2014-10-01
... by or under the control of a licensee for the purpose of rendering intermediary services, which.... (l) Non-vessel-operating common carrier services refers to the provision of transportation by water... agreements with underlying shippers; (4) Issuing bills of lading or equivalent documents; (5) Arranging for...
Code of Federal Regulations, 2011 CFR
2011-10-01
... by or under the control of a licensee for the purpose of rendering intermediary services, which.... (l) Non-vessel-operating common carrier services refers to the provision of transportation by water... agreements with underlying shippers; (4) Issuing bills of lading or equivalent documents; (5) Arranging for...
Code of Federal Regulations, 2013 CFR
2013-01-01
..., exemption or exclusions legends. (c) Exports of rough diamonds classified under HS subheadings 7102.10, 7102.21, and 7102.31, in accordance with the Clean Diamond Trade Act, will require the proof of filing...
Code of Federal Regulations, 2012 CFR
2012-01-01
..., exemption or exclusions legends. (c) Exports of rough diamonds classified under HS subheadings 7102.10, 7102.21, and 7102.31, in accordance with the Clean Diamond Trade Act, will require the proof of filing...
Code of Federal Regulations, 2011 CFR
2011-01-01
..., exemption or exclusions legends. (c) Exports of rough diamonds classified under HS subheadings 7102.10, 7102.21, and 7102.31, in accordance with the Clean Diamond Trade Act, will require the proof of filing...
Code of Federal Regulations, 2010 CFR
2010-01-01
..., exemption or exclusions legends. (c) Exports of rough diamonds classified under HS subheadings 7102.10, 7102.21, and 7102.31, in accordance with the Clean Diamond Trade Act, will require the proof of filing...
Code of Federal Regulations, 2014 CFR
2014-10-01
... Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY... Containers for Motor Vehicle Transportation § 178.338-7 Openings. (a) The inlet to the liquid product discharge opening of each tank intended for flammable ladings must be at the bottom centerline of the tank...
Code of Federal Regulations, 2011 CFR
2011-10-01
... Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY... Containers for Motor Vehicle Transportation § 178.338-7 Openings. (a) The inlet to the liquid product discharge opening of each tank intended for flammable ladings must be at the bottom centerline of the tank...
Code of Federal Regulations, 2010 CFR
2010-10-01
... Transportation Other Regulations Relating to Transportation PIPELINE AND HAZARDOUS MATERIALS SAFETY... Specifications for Containers for Motor Vehicle Transportation § 178.338-7 Openings. (a) The inlet to the liquid product discharge opening of each tank intended for flammable ladings must be at the bottom centerline of...
Code of Federal Regulations, 2013 CFR
2013-10-01
... Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY... Containers for Motor Vehicle Transportation § 178.338-7 Openings. (a) The inlet to the liquid product discharge opening of each tank intended for flammable ladings must be at the bottom centerline of the tank...
Code of Federal Regulations, 2012 CFR
2012-10-01
... Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY... Containers for Motor Vehicle Transportation § 178.338-7 Openings. (a) The inlet to the liquid product discharge opening of each tank intended for flammable ladings must be at the bottom centerline of the tank...
NASA Astrophysics Data System (ADS)
Murdin, P.
2000-11-01
Radiophysicist and astronomer, born Ararat, Victoria, Australia, pioneered the use of a Lloyd's mirror arrangement for radio interferometry at Dover Heights in Australia, and located the source of solar radio noise within the disc of the Sun. As John Hey had suggested, the radio noise came from sunspots....
NASA Astrophysics Data System (ADS)
Champlain, A.; Matéo-Vélez, J.-C.; Roussel, J.-F.; Hess, S.; Sarrailh, P.; Murat, G.; Chardon, J.-P.; Gajan, A.
2016-01-01
Recent high-altitude observations, made by the Lunar Dust Experiment (LDEX) experiment on board LADEE orbiting the Moon, indicate that high-altitude (>10 km) dust particle densities are well correlated with interplanetary dust impacts. They show no evidence of high dust density suggested by Apollo 15 and 17 observations and possibly explained by electrostatic forces imposed by the plasma environment and photon irradiation. This paper deals with near-surface conditions below the domain of observation of LDEX where electrostatic forces could clearly be at play. The upper and lower limits of the cohesive force between dusts are obtained by comparing experiments and numerical simulations of dust charging under ultraviolet irradiation in the presence of an electric field and mechanical vibrations. It is suggested that dust ejection by electrostatic forces is made possible by microscopic-scale amplifications due to soil irregularities. At low altitude, this process may be complementary to interplanetary dust impacts.
NASA Astrophysics Data System (ADS)
Colaprete, A.; Sarantos, M.; Poppe, A. R.; Bennett, C.; Orlando, T. M.
2015-12-01
We present numerical simulations of the generation and loss of the sodium (Na) and potassium (K) exospheres of the Moon and compare these results to recent LADEE observations. While both species appear to migrate towards the poles like other volatiles, Na resides on the soil and exosphere for one to two months before getting lost to the solar wind or the subsurface. K exhibits a different evolutionary trend: it is lost much more quickly than ionization and sputtering rates allow for, suggesting that it is lost to the ground in just a few bounces. Thus, the two alkalis exhibit very different interactions with the lunar surface. Reproducing the monthly variation exhibited by Na requires higher source rates at Mare, or higher sink rates at Highlands, or a combination of both. The very different behavior of Na on Mare and Highlands soils is reminiscent of laboratory experiments of water binding on Apollo fine soils.
48 CFR 47.207-10 - Discrepancies incident to shipments.
Code of Federal Regulations, 2011 CFR
2011-10-01
..., shortage, loss, damage, and other discrepancies between the quantity and/or condition of supplies received from commercial carrier and the quantity and/or condition of these supplies as shown on the covering bill of lading or other transportation document. Regulations and procedures for reporting and adjusting...
48 CFR 52.247-57 - Transportation Transit Privilege Credits.
Code of Federal Regulations, 2014 CFR
2014-10-01
... can be applied to the supplies when shipped from the original source, the offeror is invited to... offeror will ship these supplies under commercial bills of lading, paying all remaining transportation... offeror represents the transportation costs in cents per 100 pounds (freight rate) for full carload...
48 CFR 47.303-17 - Contractor-prepaid commercial bills of lading, small package shipments.
Code of Federal Regulations, 2010 CFR
2010-10-01
... Regulations System FEDERAL ACQUISITION REGULATION CONTRACT MANAGEMENT TRANSPORTATION Transportation in Supply... advantageous to the Government, the contracting officer may authorize the contractor to ship supplies, which... subsection, do not require a contract modification. Unless otherwise provided in the contract, the supplies...
19 CFR 123.72 - Written agreement requirement.
Code of Federal Regulations, 2010 CFR
2010-04-01
... law, including Customs regulations, especially those concerned with trafficking in illegal drugs; and... techniques, drug awareness, and conveyance searches; (b) To establish security systems at the place of... lading of illegal drugs while the conveyance is en route to the United States; (c) To conduct, to the...
49 CFR 172.302 - General marking requirements for bulk packagings.
Code of Federal Regulations, 2010 CFR
2010-10-01
...) Size of markings. Except as otherwise provided, markings required by this subpart on bulk packagings... to remove any potential hazard; or (2) Refilled, with a material requiring different markings or no... body or trailer in which the lading has been fumigated with any hazardous material, or is undergoing...
Code of Federal Regulations, 2011 CFR
2011-01-01
... Practices), DEPARTMENT OF AGRICULTURE COMMODITY STANDARDS AND STANDARD CONTAINER REGULATIONS EXPORT GRAPES... exporting carrier on which movement of the grapes from the United States is effected. The date of the on board bill of lading (or loading tally sheet) shall be considered to be the date the grapes were loaded...
7 CFR 17.2 - Definition of terms.
Code of Federal Regulations, 2013 CFR
2013-01-01
.... United States. The 50 States, the District of Columbia, and Puerto Rico. ... date shown on the ocean bill of lading. Destination country The foreign country to which the commodity... required to repay the funds to CCC. For example, this part refers to CCC “financing” both the ocean freight...
7 CFR 17.2 - Definition of terms.
Code of Federal Regulations, 2014 CFR
2014-01-01
.... United States. The 50 States, the District of Columbia, and Puerto Rico. ... date shown on the ocean bill of lading. Destination country The foreign country to which the commodity... required to repay the funds to CCC. For example, this part refers to CCC “financing” both the ocean freight...
7 CFR 17.2 - Definition of terms.
Code of Federal Regulations, 2011 CFR
2011-01-01
.... United States. The 50 States, the District of Columbia, and Puerto Rico. ... date shown on the ocean bill of lading. Destination country The foreign country to which the commodity... required to repay the funds to CCC. For example, this part refers to CCC “financing” both the ocean freight...
7 CFR 17.2 - Definition of terms.
Code of Federal Regulations, 2012 CFR
2012-01-01
.... United States. The 50 States, the District of Columbia, and Puerto Rico. ... date shown on the ocean bill of lading. Destination country The foreign country to which the commodity... required to repay the funds to CCC. For example, this part refers to CCC “financing” both the ocean freight...
41 CFR 109-40.5000 - Scope of subpart.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 41 Public Contracts and Property Management 3 2012-01-01 2012-01-01 false Scope of subpart. 109-40... Regulations System (Continued) DEPARTMENT OF ENERGY PROPERTY MANAGEMENT REGULATIONS AVIATION, TRANSPORTATION, AND MOTOR VEHICLES 40-TRANSPORTATION AND TRAFFIC MANAGEMENT 40.50-Bills of Lading § 109-40.5000 Scope...
41 CFR 109-40.5000 - Scope of subpart.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 41 Public Contracts and Property Management 3 2011-01-01 2011-01-01 false Scope of subpart. 109-40... Regulations System (Continued) DEPARTMENT OF ENERGY PROPERTY MANAGEMENT REGULATIONS AVIATION, TRANSPORTATION, AND MOTOR VEHICLES 40-TRANSPORTATION AND TRAFFIC MANAGEMENT 40.50-Bills of Lading § 109-40.5000 Scope...
41 CFR 109-40.5000 - Scope of subpart.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 41 Public Contracts and Property Management 3 2013-07-01 2013-07-01 false Scope of subpart. 109-40... Regulations System (Continued) DEPARTMENT OF ENERGY PROPERTY MANAGEMENT REGULATIONS AVIATION, TRANSPORTATION, AND MOTOR VEHICLES 40-TRANSPORTATION AND TRAFFIC MANAGEMENT 40.50-Bills of Lading § 109-40.5000 Scope...
41 CFR 109-40.5000 - Scope of subpart.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 41 Public Contracts and Property Management 3 2014-01-01 2014-01-01 false Scope of subpart. 109-40... Regulations System (Continued) DEPARTMENT OF ENERGY PROPERTY MANAGEMENT REGULATIONS AVIATION, TRANSPORTATION, AND MOTOR VEHICLES 40-TRANSPORTATION AND TRAFFIC MANAGEMENT 40.50-Bills of Lading § 109-40.5000 Scope...
41 CFR 109-40.5000 - Scope of subpart.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 41 Public Contracts and Property Management 3 2010-07-01 2010-07-01 false Scope of subpart. 109-40... Regulations System (Continued) DEPARTMENT OF ENERGY PROPERTY MANAGEMENT REGULATIONS AVIATION, TRANSPORTATION, AND MOTOR VEHICLES 40-TRANSPORTATION AND TRAFFIC MANAGEMENT 40.50-Bills of Lading § 109-40.5000 Scope...
49 CFR 173.33 - Hazardous materials in cargo tank motor vehicles.
Code of Federal Regulations, 2012 CFR
2012-10-01
... SHIPPERS-GENERAL REQUIREMENTS FOR SHIPMENTS AND PACKAGINGS Preparation of Hazardous Materials for... excess of ambient atmospheric pressure may not be used to load or unload any lading which may create an... tank motor vehicle having a MAWP of 25 psig or greater. (6) Substitute packagings. Unless otherwise...
49 CFR 173.316 - Cryogenic liquids in cylinders.
Code of Federal Regulations, 2011 CFR
2011-10-01
... filling density for hydrogen, cryogenic liquid is defined as the percent ratio of the weight of lading in... 49 Transportation 2 2011-10-01 2011-10-01 false Cryogenic liquids in cylinders. 173.316 Section... REQUIREMENTS FOR SHIPMENTS AND PACKAGINGS Gases; Preparation and Packaging § 173.316 Cryogenic liquids in...
15 CFR 758.5 - Conformity of documents and unloading of items.
Code of Federal Regulations, 2013 CFR
2013-01-01
...., the SED or AES record, bill of lading or air waybill) must be consistent with the license. (c... and Shipper's Export Declaration (SED) or AES electronic equivalent. (2) Optional ports of unloading... ultimate destination or are included on the BIS license and SED or AES electronic equivalent. (ii...
15 CFR 758.5 - Conformity of documents and unloading of items.
Code of Federal Regulations, 2012 CFR
2012-01-01
...., the SED or AES record, bill of lading or air waybill) must be consistent with the license. (c... and Shipper's Export Declaration (SED) or AES electronic equivalent. (2) Optional ports of unloading... ultimate destination or are included on the BIS license and SED or AES electronic equivalent. (ii...
49 CFR 178.345-10 - Pressure relief.
Code of Federal Regulations, 2010 CFR
2010-10-01
... applicable individual specification. The pressure and vacuum relief system must be designed to operate and... resulting from loading, unloading, or from heating and cooling of lading. Pressure relief systems are not required to conform to the ASME Code. (b) Type and construction of relief systems and devices. (1) Each...
22 CFR 211.4 - Availability and shipment of commodities.
Code of Federal Regulations, 2012 CFR
2012-04-01
.... (d) Payment or reimbursement of ocean freight costs. When A.I.D. contracts for ocean carriage... chapter) for ocean freight authorized by the United States upon presentation to AID/W of proof of payment to the ocean carrier. However, freight prepaid bills of lading which indicate firm incurrence of...
22 CFR 211.4 - Availability and shipment of commodities.
Code of Federal Regulations, 2014 CFR
2014-04-01
.... (d) Payment or reimbursement of ocean freight costs. When A.I.D. contracts for ocean carriage... chapter) for ocean freight authorized by the United States upon presentation to AID/W of proof of payment to the ocean carrier. However, freight prepaid bills of lading which indicate firm incurrence of...
22 CFR 211.4 - Availability and shipment of commodities.
Code of Federal Regulations, 2013 CFR
2013-04-01
.... (d) Payment or reimbursement of ocean freight costs. When A.I.D. contracts for ocean carriage... chapter) for ocean freight authorized by the United States upon presentation to AID/W of proof of payment to the ocean carrier. However, freight prepaid bills of lading which indicate firm incurrence of...
49 CFR 179.400-25 - Stenciling.
Code of Federal Regulations, 2010 CFR
2010-10-01
... Specification for Cryogenic Liquid Tank Car Tanks and Seamless Steel Tanks (Classes DOT-113 and 107A) § 179.400... design service temperature and maximum lading weight, in letters and figures at least 11/2 inches high... at its coldest operating temperature, after deduction for the volume above the inlet to the pressure...
49 CFR 179.400-20 - Pressure relief devices.
Code of Federal Regulations, 2010 CFR
2010-10-01
... TANK CARS Specification for Cryogenic Liquid Tank Car Tanks and Seamless Steel Tanks (Classes DOT-113... pressure relief devices must be suitable for use at the temperature of the lading and otherwise compatible... inner tank must be attached to vapor phase piping and mounted so as to remain at ambient temperature...
46 CFR 520.13 - Exemptions and exceptions.
Code of Federal Regulations, 2012 CFR
2012-10-01
... Pacific Slope states barging containers and containerized cargo by barge between points in the United... common carrier by water transporting the containers or containerized cargo under a through bill of lading...) The cargo is moving between a point in a foreign country or a non-contiguous State, territory, or...
46 CFR 520.13 - Exemptions and exceptions.
Code of Federal Regulations, 2014 CFR
2014-10-01
... Pacific Slope states barging containers and containerized cargo by barge between points in the United... common carrier by water transporting the containers or containerized cargo under a through bill of lading...) The cargo is moving between a point in a foreign country or a non-contiguous State, territory, or...
46 CFR 520.13 - Exemptions and exceptions.
Code of Federal Regulations, 2013 CFR
2013-10-01
... Pacific Slope states barging containers and containerized cargo by barge between points in the United... common carrier by water transporting the containers or containerized cargo under a through bill of lading...) The cargo is moving between a point in a foreign country or a non-contiguous State, territory, or...
46 CFR 520.13 - Exemptions and exceptions.
Code of Federal Regulations, 2011 CFR
2011-10-01
... Pacific Slope states barging containers and containerized cargo by barge between points in the United... common carrier by water transporting the containers or containerized cargo under a through bill of lading...) The cargo is moving between a point in a foreign country or a non-contiguous State, territory, or...
Code of Federal Regulations, 2012 CFR
2012-01-01
... GBL attached to Standard Form (SF) 1113, Public Voucher for Transportation Charges, to the paying... notice must be given to the TSP, or a claim must be filed, or suit must be instituted, shall not apply if...
Code of Federal Regulations, 2013 CFR
2013-07-01
... GBL attached to Standard Form (SF) 1113, Public Voucher for Transportation Charges, to the paying... notice must be given to the TSP, or a claim must be filed, or suit must be instituted, shall not apply if...
Code of Federal Regulations, 2014 CFR
2014-01-01
... GBL attached to Standard Form (SF) 1113, Public Voucher for Transportation Charges, to the paying... notice must be given to the TSP, or a claim must be filed, or suit must be instituted, shall not apply if...
Code of Federal Regulations, 2010 CFR
2010-07-01
... GBL attached to Standard Form (SF) 1113, Public Voucher for Transportation Charges, to the paying... notice must be given to the TSP, or a claim must be filed, or suit must be instituted, shall not apply if...
Code of Federal Regulations, 2011 CFR
2011-01-01
... GBL attached to Standard Form (SF) 1113, Public Voucher for Transportation Charges, to the paying... notice must be given to the TSP, or a claim must be filed, or suit must be instituted, shall not apply if...
7 CFR 1488.9 - Evidence of export.
Code of Federal Regulations, 2011 CFR
2011-01-01
... Export Sales of Agricultural Commodities From Private Stocks Under CCC Export Credit Sales Program (GSM-5... truck, the exporter shall furnish to the Treasurer, CCC, one copy of the bill of lading covering the... carrier, the exporter shall furnish to the Treasurer, CCC, one non-negotiable copy or photo copy or other...
7 CFR 1488.9 - Evidence of export.
Code of Federal Regulations, 2014 CFR
2014-01-01
... Agricultural Commodities From Private Stocks Under CCC Export Credit Sales Program (GSM-5) Documents Required... exporter shall furnish to the Treasurer, CCC, one copy of the bill of lading covering the commodity..., the exporter shall furnish to the Treasurer, CCC, one non-negotiable copy or photo copy or other type...
7 CFR 1488.9 - Evidence of export.
Code of Federal Regulations, 2013 CFR
2013-01-01
... Agricultural Commodities From Private Stocks Under CCC Export Credit Sales Program (GSM-5) Documents Required... exporter shall furnish to the Treasurer, CCC, one copy of the bill of lading covering the commodity..., the exporter shall furnish to the Treasurer, CCC, one non-negotiable copy or photo copy or other type...
7 CFR 1488.9 - Evidence of export.
Code of Federal Regulations, 2012 CFR
2012-01-01
... Agricultural Commodities From Private Stocks Under CCC Export Credit Sales Program (GSM-5) Documents Required... exporter shall furnish to the Treasurer, CCC, one copy of the bill of lading covering the commodity..., the exporter shall furnish to the Treasurer, CCC, one non-negotiable copy or photo copy or other type...
The 1990 Amendments to the Clean Air Act have stimulated strong interest in the use of biofiltration for the economical engineered control of VOCs in effluent air streams. rickle bed air biofilters (TBABS) are especially applicable for treating VOCs at high loadings. or long term...
20 CFR 617.48 - Time and method of payment.
Code of Federal Regulations, 2010 CFR
2010-04-01
... to the State agency a copy of the bill of lading prepared by the carrier, including a receipt... shall release a carrier from liability otherwise provided by law or contract for loss or damage to the individual's goods and effects. The United States shall not be or become liable to either party for personal...
20 CFR 617.48 - Time and method of payment.
Code of Federal Regulations, 2011 CFR
2011-04-01
... to the State agency a copy of the bill of lading prepared by the carrier, including a receipt... shall release a carrier from liability otherwise provided by law or contract for loss or damage to the individual's goods and effects. The United States shall not be or become liable to either party for personal...
20 CFR 617.48 - Time and method of payment.
Code of Federal Regulations, 2014 CFR
2014-04-01
... to the State agency a copy of the bill of lading prepared by the carrier, including a receipt... shall release a carrier from liability otherwise provided by law or contract for loss or damage to the individual's goods and effects. The United States shall not be or become liable to either party for personal...
20 CFR 617.48 - Time and method of payment.
Code of Federal Regulations, 2013 CFR
2013-04-01
... to the State agency a copy of the bill of lading prepared by the carrier, including a receipt... shall release a carrier from liability otherwise provided by law or contract for loss or damage to the individual's goods and effects. The United States shall not be or become liable to either party for personal...
20 CFR 617.48 - Time and method of payment.
Code of Federal Regulations, 2012 CFR
2012-04-01
... to the State agency a copy of the bill of lading prepared by the carrier, including a receipt... shall release a carrier from liability otherwise provided by law or contract for loss or damage to the individual's goods and effects. The United States shall not be or become liable to either party for personal...
49 CFR 178.338-13 - Supporting and anchoring.
Code of Federal Regulations, 2011 CFR
2011-10-01
... the structural member used in place of a motor vehicle frame, the cargo tank or the jacket must be... for the supports and load-bearing tank or jacket, and the support attachments must include beam stress... uses the weight of the cargo tank and its attachments when filled to the design weight of the lading...
49 CFR 178.345-11 - Tank outlets.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 49 Transportation 3 2012-10-01 2012-10-01 false Tank outlets. 178.345-11 Section 178.345-11... Containers for Motor Vehicle Transportation § 178.345-11 Tank outlets. (a) General. As used in this section, “loading/unloading outlet” means any opening in the cargo tank wall used for loading or unloading of lading...
49 CFR 178.345-11 - Tank outlets.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 49 Transportation 3 2013-10-01 2013-10-01 false Tank outlets. 178.345-11 Section 178.345-11... Containers for Motor Vehicle Transportation § 178.345-11 Tank outlets. (a) General. As used in this section, “loading/unloading outlet” means any opening in the cargo tank wall used for loading or unloading of lading...
49 CFR 178.345-11 - Tank outlets.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 49 Transportation 3 2014-10-01 2014-10-01 false Tank outlets. 178.345-11 Section 178.345-11... Containers for Motor Vehicle Transportation § 178.345-11 Tank outlets. (a) General. As used in this section, “loading/unloading outlet” means any opening in the cargo tank wall used for loading or unloading of lading...
49 CFR 178.345-11 - Tank outlets.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 49 Transportation 3 2011-10-01 2011-10-01 false Tank outlets. 178.345-11 Section 178.345-11... Containers for Motor Vehicle Transportation § 178.345-11 Tank outlets. (a) General. As used in this section, “loading/unloading outlet” means any opening in the cargo tank wall used for loading or unloading of lading...
Code of Federal Regulations, 2013 CFR
2013-07-01
..., bills of lading, checks, drafts, negotiable notes and other commercial paper. 26 “Goods” includes gold... or rented; 33 ice; 34 containers, as, for example, cigar boxes or wrapping paper and packing... of the four dissenting justices in 10 E. 40th St. Bldg. v. Callus, 325 U.S. at p. 586. Waste paper...
Code of Federal Regulations, 2014 CFR
2014-07-01
..., bills of lading, checks, drafts, negotiable notes and other commercial paper. 26 “Goods” includes gold... or rented; 33 ice; 34 containers, as, for example, cigar boxes or wrapping paper and packing... of the four dissenting justices in 10 E. 40th St. Bldg. v. Callus, 325 U.S. at p. 586. Waste paper...
Code of Federal Regulations, 2012 CFR
2012-07-01
..., bills of lading, checks, drafts, negotiable notes and other commercial paper. 26 “Goods” includes gold... or rented; 33 ice; 34 containers, as, for example, cigar boxes or wrapping paper and packing... of the four dissenting justices in 10 E. 40th St. Bldg. v. Callus, 325 U.S. at p. 586. Waste paper...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-06-29
... contract clause and clause prescription to cover both commercial and Government bills of lading, and to... CONTACT: Ms. Meredith Murphy, Procurement Analyst, telephone 571-372-6098. SUPPLEMENTARY INFORMATION: I... relocate information from DFARS subpart 242.14 to DFARS part 247 to align with changes to the Federal...
49 CFR Appendix D to Part 215 - Pre-departure Inspection Procedure
Code of Federal Regulations, 2014 CFR
2014-10-01
... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION RAILROAD FREIGHT CAR SAFETY STANDARDS Pt. 215, App. D Appendix D to Part 215—Pre-departure Inspection Procedure At each location where a freight car is placed in a train... missing safety appliance. (h) Lading leaking from a placarded hazardous material car. 2. Insecure coupling...
49 CFR Appendix D to Part 215 - Pre-departure Inspection Procedure
Code of Federal Regulations, 2012 CFR
2012-10-01
... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION RAILROAD FREIGHT CAR SAFETY STANDARDS Pt. 215, App. D Appendix D to Part 215—Pre-departure Inspection Procedure At each location where a freight car is placed in a train... missing safety appliance. (h) Lading leaking from a placarded hazardous material car. 2. Insecure coupling...
49 CFR Appendix D to Part 215 - Pre-departure Inspection Procedure
Code of Federal Regulations, 2013 CFR
2013-10-01
... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION RAILROAD FREIGHT CAR SAFETY STANDARDS Pt. 215, App. D Appendix D to Part 215—Pre-departure Inspection Procedure At each location where a freight car is placed in a train... missing safety appliance. (h) Lading leaking from a placarded hazardous material car. 2. Insecure coupling...
49 CFR Appendix D to Part 215 - Pre-departure Inspection Procedure
Code of Federal Regulations, 2011 CFR
2011-10-01
... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION RAILROAD FREIGHT CAR SAFETY STANDARDS Pt. 215, App. D Appendix D to Part 215—Pre-departure Inspection Procedure At each location where a freight car is placed in a train... missing safety appliance. (h) Lading leaking from a placarded hazardous material car. 2. Insecure coupling...
49 CFR Appendix D to Part 215 - Pre-departure Inspection Procedure
Code of Federal Regulations, 2010 CFR
2010-10-01
... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION RAILROAD FREIGHT CAR SAFETY STANDARDS Pt. 215, App. D Appendix D to Part 215—Pre-departure Inspection Procedure At each location where a freight car is placed in a train... missing safety appliance. (h) Lading leaking from a placarded hazardous material car. 2. Insecure coupling...
49 CFR 174.200 - Special handling requirements.
Code of Federal Regulations, 2014 CFR
2014-10-01
....1 (flammable gas) materials may not be loaded, transported, or stored in a rail car equipped with any type of lighted heater or open-flame device, or in a rail car equipped with any apparatus or... (flammable gas) materials only if: (1) The lading space is not equipped with any electrical apparatus that is...
49 CFR 174.200 - Special handling requirements.
Code of Federal Regulations, 2012 CFR
2012-10-01
....1 (flammable gas) materials may not be loaded, transported, or stored in a rail car equipped with any type of lighted heater or open-flame device, or in a rail car equipped with any apparatus or... (flammable gas) materials only if: (1) The lading space is not equipped with any electrical apparatus that is...
49 CFR 174.200 - Special handling requirements.
Code of Federal Regulations, 2013 CFR
2013-10-01
....1 (flammable gas) materials may not be loaded, transported, or stored in a rail car equipped with any type of lighted heater or open-flame device, or in a rail car equipped with any apparatus or... (flammable gas) materials only if: (1) The lading space is not equipped with any electrical apparatus that is...
49 CFR Appendix A to Part 1035 - Uniform Straight Bill of Lading
Code of Federal Regulations, 2010 CFR
2010-10-01
... as indicated below, which said company (the word company being understood throughout this contract as... at any time interested in all or any of said property, that every service to be performed hereunder... of articles, special marks, and exceptions *Weight (subject to correction) Class or rate Check column...
49 CFR 179.102-17 - Hydrogen chloride, refrigerated liquid.
Code of Federal Regulations, 2011 CFR
2011-10-01
..., see § 171.7 of this subchapter); (B) include impact test specimens of weld metal and heat affected...) meet the same impact requirements as the plate material. (c) Insulation must be of approved material... insulation must be designed to prevent the pressure of the lading from increasing from the pressure at the...
49 CFR 179.102-17 - Hydrogen chloride, refrigerated liquid.
Code of Federal Regulations, 2012 CFR
2012-10-01
..., see § 171.7 of this subchapter); (B) include impact test specimens of weld metal and heat affected...) meet the same impact requirements as the plate material. (c) Insulation must be of approved material... insulation must be designed to prevent the pressure of the lading from increasing from the pressure at the...
49 CFR 179.102-17 - Hydrogen chloride, refrigerated liquid.
Code of Federal Regulations, 2013 CFR
2013-10-01
..., see § 171.7 of this subchapter); (B) include impact test specimens of weld metal and heat affected...) meet the same impact requirements as the plate material. (c) Insulation must be of approved material... insulation must be designed to prevent the pressure of the lading from increasing from the pressure at the...
49 CFR 179.102-17 - Hydrogen chloride, refrigerated liquid.
Code of Federal Regulations, 2010 CFR
2010-10-01
..., see § 171.7 of this subchapter); (B) include impact test specimens of weld metal and heat affected...) meet the same impact requirements as the plate material. (c) Insulation must be of approved material... insulation must be designed to prevent the pressure of the lading from increasing from the pressure at the...
49 CFR 179.102-17 - Hydrogen chloride, refrigerated liquid.
Code of Federal Regulations, 2014 CFR
2014-10-01
..., see § 171.7 of this subchapter); (B) include impact test specimens of weld metal and heat affected...) meet the same impact requirements as the plate material. (c) Insulation must be of approved material... insulation must be designed to prevent the pressure of the lading from increasing from the pressure at the...
17 CFR Appendix A to Part 190 - Bankruptcy Forms
Code of Federal Regulations, 2011 CFR
2011-04-01
...)(3) (“all other property”). 10. Be aware of any contracts in delivery position and rules pertaining... an open commodity contract and is: —registered in your name, —not transferable by delivery, and —not... neither in bearer form nor otherwise transferable by delivery. 4. Any warehouse receipt bill of lading or...
22 CFR 201.32 - Suppliers of delivery services.
Code of Federal Regulations, 2010 CFR
2010-04-01
... Financial Management, USAID, Washington, DC 20523-7792, all adjustments in the purchase price in favor of..., flight or inland carrier run number), date of the bill(s) of lading, the identity and address of the assured, and the identity and address of the assignee of the assured to whom payment has actually been...
19 CFR 10.850 - Verification of claim for duty-free treatment.
Code of Federal Regulations, 2010 CFR
2010-04-01
...; DEPARTMENT OF THE TREASURY ARTICLES CONDITIONALLY FREE, SUBJECT TO A REDUCED RATE, ETC. Haitian Hemispheric... information regarding all apparel articles that meet the requirements specified in § 10.843(a) of this subpart... articles in question, such as purchase orders, invoices, bills of lading and other shipping documents, and...
49 CFR 178.345-9 - Pumps, piping, hoses and connections.
Code of Federal Regulations, 2010 CFR
2010-10-01
... there will be no leakage when connected. (d) Suitable provision must be made to allow for and prevent... any load applied by loading/unloading or charging lines connected to the cargo tank cannot cause damage resulting in loss of lading from the cargo tank. (h) Use of a nonmetallic pipe, valve or...
49 CFR 178.338-9 - Holding time.
Code of Federal Regulations, 2014 CFR
2014-10-01
... cryogenic liquid having a boiling point, at a pressure of one atmosphere, absolute, no lower than the design... that liquid and stabilized to the lowest practical pressure, which must be equal to or less than the... combined liquid and vapor lading at the pressure offered for transportation, and the set pressure of the...
49 CFR 173.9 - Transport vehicles or freight containers containing lading which has been fumigated.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 49 Transportation 2 2010-10-01 2010-10-01 false Transport vehicles or freight containers... MATERIALS REGULATIONS SHIPPERS-GENERAL REQUIREMENTS FOR SHIPMENTS AND PACKAGINGS General § 173.9 Transport... hazardous material. (b) No person may offer for transportation or transport a rail car, freight container...
48 CFR 47.303-17 - Contractor-prepaid commercial bills of lading, small package shipments.
Code of Federal Regulations, 2011 CFR
2011-10-01
... advantageous to the Government, the contracting officer may authorize the contractor to ship supplies, which... with its own shipments so that the Government can take advantage of lower carload or truckload freight... charges with a copy of the carrier's receipted freight bill or other evidence of receipt, except as...
48 CFR 47.303-17 - Contractor-prepaid commercial bills of lading, small package shipments.
Code of Federal Regulations, 2014 CFR
2014-10-01
... advantageous to the Government, the contracting officer may authorize the contractor to ship supplies, which... with its own shipments so that the Government can take advantage of lower carload or truckload freight... charges with a copy of the carrier's receipted freight bill or other evidence of receipt, except as...
48 CFR 52.247-33 - F.o.b. Origin, With Differentials.
Code of Federal Regulations, 2014 CFR
2014-10-01
..., and placed on, the carrier's wharf (at shipside, within reach of the ship's loading tackle, when the shipping point is within a port area having water transportation service) or the carrier's freight station... lading shall show— (i) A description of the shipment in terms of the governing freight classification or...
48 CFR 47.303-17 - Contractor-prepaid commercial bills of lading, small package shipments.
Code of Federal Regulations, 2013 CFR
2013-10-01
... advantageous to the Government, the contracting officer may authorize the contractor to ship supplies, which... with its own shipments so that the Government can take advantage of lower carload or truckload freight... charges with a copy of the carrier's receipted freight bill or other evidence of receipt, except as...
48 CFR 47.303-17 - Contractor-prepaid commercial bills of lading, small package shipments.
Code of Federal Regulations, 2012 CFR
2012-10-01
... advantageous to the Government, the contracting officer may authorize the contractor to ship supplies, which... with its own shipments so that the Government can take advantage of lower carload or truckload freight... charges with a copy of the carrier's receipted freight bill or other evidence of receipt, except as...
49 CFR 173.33 - Hazardous materials in cargo tank motor vehicles.
Code of Federal Regulations, 2014 CFR
2014-10-01
... air-enriched mixture within the flammability range of the lading in the vapor space of the tank. (4... the following conditions: (i) For compressed gases and certain refrigerated liquids that are not cryogenic liquids, the pressure prescribed in § 173.315 of this subchapter. (ii) For cryogenic liquids, the...
49 CFR 174.200 - Special handling requirements.
Code of Federal Regulations, 2011 CFR
2011-10-01
....1 (flammable gas) materials may not be loaded, transported, or stored in a rail car equipped with any type of lighted heater or open-flame device, or in a rail car equipped with any apparatus or... (flammable gas) materials only if: (1) The lading space is not equipped with any electrical apparatus that is...
49 CFR 174.200 - Special handling requirements.
Code of Federal Regulations, 2010 CFR
2010-10-01
....1 (flammable gas) materials may not be loaded, transported, or stored in a rail car equipped with any type of lighted heater or open-flame device, or in a rail car equipped with any apparatus or... (flammable gas) materials only if: (1) The lading space is not equipped with any electrical apparatus that is...
22 CFR 202.7 - Documentation required for reimbursement.
Code of Federal Regulations, 2010 CFR
2010-04-01
... Voucher for Purchases and Services Other than Personal”—Voucher SF 1034 in original and three copies to be... relevant weights, cubic measurements, rates, and any applicable tariff surcharges. (2) To points of entry. (i) Where the shipment is made to a point of entry and through bills of lading to designated point of...
19 CFR 4.30 - Permits and special licenses for unlading and lading.
Code of Federal Regulations, 2010 CFR
2010-04-01
... which transits the Panama Canal and no cargo, baggage, or other article shall be laden on a vessel... in paper form or by electronic transmission through a Customs-approved electronic data interchange system, the submission of an electronic manifest for the cargo in this regard, as opposed to a paper...
22 CFR 201.52 - Required documents.
Code of Federal Regulations, 2010 CFR
2010-04-01
... by an endorsement on or attachment to the invoice that payment has been made in the amount shown on... by USAID, the supplier has airmailed to the USAID Mission in the capital city of the cooperating... attachment to a copy of the invoice, a copy of the bill of lading (bearing a notation of the freight cost...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-12-13
... occasion. Estimated Total Annual Burden: 5,524,500 hours [Informational documents provided to prospective shippers at 43,500 hours + Written Cost estimates for prospective shippers at 4,620,000 hours + Service orders, bills of lading at 805,300 hours + In-transit service notifications at 22,600 hours + Complaint...
22 CFR 126.4 - Shipments by or for United States Government agencies.
Code of Federal Regulations, 2012 CFR
2012-04-01
..., including technical data or the performance of a defense service, by or for any agency of the U.S... Bill of Lading. This exemption, however, does not apply when a U.S. Government agency acts as a... military purposes beyond the possibility of restoration. Note: Special definition. For purposes of this...
26 CFR 48.4041-16 - Sales for export.
Code of Federal Regulations, 2012 CFR
2012-04-01
... (1) a copy of the export bill of lading issued by the delivering carrier, (2) a certificate by the... (4) a statement of the foreign consignee showing receipt of the liquid. (c) Shipment to possessions.... 7536, 43 FR 13516, Mar. 31, 1978. Redesignated by T.D. 8066, 51 FR 14, Jan. 2, 1986] ...
48 CFR 52.247-51 - Evaluation of Export Offers.
Code of Federal Regulations, 2012 CFR
2012-10-01
... Offers. 52.247-51 Section 52.247-51 Federal Acquisition Regulations System FEDERAL ACQUISITION REGULATION....247-51 Evaluation of Export Offers. As prescribed in 47.305-6(e), insert the following provision... Government bill of lading. (1) Offers shall be evaluated and awards made on the basis of the lowest laid down...
48 CFR 52.247-51 - Evaluation of Export Offers.
Code of Federal Regulations, 2011 CFR
2011-10-01
... Offers. 52.247-51 Section 52.247-51 Federal Acquisition Regulations System FEDERAL ACQUISITION REGULATION....247-51 Evaluation of Export Offers. As prescribed in 47.305-6(e), insert the following provision... Government bill of lading. (1) Offers shall be evaluated and awards made on the basis of the lowest laid down...
48 CFR 52.247-51 - Evaluation of Export Offers.
Code of Federal Regulations, 2014 CFR
2014-10-01
... Offers. 52.247-51 Section 52.247-51 Federal Acquisition Regulations System FEDERAL ACQUISITION REGULATION....247-51 Evaluation of Export Offers. As prescribed in 47.305-6(e), insert the following provision... Government bill of lading. (1) Offers shall be evaluated and awards made on the basis of the lowest laid down...
19 CFR 10.175 - Imported directly defined.
Code of Federal Regulations, 2011 CFR
2011-04-01
... country while en route to the U.S., and the invoice, bills of lading, and other shipping documents show the U.S. as the final destination; or (c) If shipped from the beneficiary developing country to the... amended (19 U.S.C. 2467(2)), through the territory of a former beneficiary developing country whose...
19 CFR 10.175 - Imported directly defined.
Code of Federal Regulations, 2013 CFR
2013-04-01
... country while en route to the U.S., and the invoice, bills of lading, and other shipping documents show the U.S. as the final destination; or (c) If shipped from the beneficiary developing country to the... amended (19 U.S.C. 2467(2)), through the territory of a former beneficiary developing country whose...
19 CFR 10.175 - Imported directly defined.
Code of Federal Regulations, 2014 CFR
2014-04-01
... country while en route to the U.S., and the invoice, bills of lading, and other shipping documents show the U.S. as the final destination; or (c) If shipped from the beneficiary developing country to the... amended (19 U.S.C. 2467(2)), through the territory of a former beneficiary developing country whose...
26 CFR 48.4041-16 - Sales for export.
Code of Federal Regulations, 2013 CFR
2013-04-01
... (1) a copy of the export bill of lading issued by the delivering carrier, (2) a certificate by the... (4) a statement of the foreign consignee showing receipt of the liquid. (c) Shipment to possessions.... 7536, 43 FR 13516, Mar. 31, 1978. Redesignated by T.D. 8066, 51 FR 14, Jan. 2, 1986] ...
19 CFR 10.175 - Imported directly defined.
Code of Federal Regulations, 2012 CFR
2012-04-01
... country while en route to the U.S., and the invoice, bills of lading, and other shipping documents show the U.S. as the final destination; or (c) If shipped from the beneficiary developing country to the... amended (19 U.S.C. 2467(2)), through the territory of a former beneficiary developing country whose...
48 CFR 52.247-51 - Evaluation of Export Offers.
Code of Federal Regulations, 2013 CFR
2013-10-01
... Offers. 52.247-51 Section 52.247-51 Federal Acquisition Regulations System FEDERAL ACQUISITION REGULATION....247-51 Evaluation of Export Offers. As prescribed in 47.305-6(e), insert the following provision... Government bill of lading. (1) Offers shall be evaluated and awards made on the basis of the lowest laid down...
26 CFR 48.4041-16 - Sales for export.
Code of Federal Regulations, 2011 CFR
2011-04-01
... (1) a copy of the export bill of lading issued by the delivering carrier, (2) a certificate by the... (4) a statement of the foreign consignee showing receipt of the liquid. (c) Shipment to possessions.... 7536, 43 FR 13516, Mar. 31, 1978. Redesignated by T.D. 8066, 51 FR 14, Jan. 2, 1986] ...
Bar Coding the U. S. Government Bill of Lading and the Material Inspection and Receiving Report.
1984-12-01
of respondents K because some of the replies did not respond to this question.) TABLE 3-2. DD 250 PROCESSING CAPABILITIES AUTOMiATED - BAR CODE...Proposed minimum data elements (both human readable and bar coded) required and why? (3) Proposed signature requirement changes and why? (4) Proposed
15 CFR 758.1 - The Automated Export System (AES) record.
Code of Federal Regulations, 2014 CFR
2014-01-01
... entered on the loading document (e.g., Cargo Declaration, manifest, bill of lading, (master) air waybill... for all items being exported under the NLR provisions that have a reason for control other than anti-terrorism (AT). The designator “TSPA” may be used, but is not required, when the export consists of...
27 CFR 28.281 - Certificate of use for distilled spirits and wines.
Code of Federal Regulations, 2010 CFR
2010-04-01
... distilled spirits and wines. 28.281 Section 28.281 Alcohol, Tobacco Products and Firearms ALCOHOL AND... Ports of Export Lading for Use on Aircraft § 28.281 Certificate of use for distilled spirits and wines. When all of the distilled spirits or wines represented by a single application, notice, or claim, TTB...
49 CFR 180.407 - Requirements for test and inspection of specification cargo tanks.
Code of Federal Regulations, 2010 CFR
2010-10-01
... dents, cuts, gouges, corroded or abraded areas, leakage, or any other condition that might render it... accordance with the criteria prescribed in § 180.411. Any signs of leakage must be repaired in accordance...: All lined cargo tanks transporting lading corrosive to the tank September 1, 1991 1 year. Leakage Test...
46 CFR 151.50-50 - Elemental phosphorus in water.
Code of Federal Regulations, 2012 CFR
2012-10-01
.... (b) When a water displacement method of discharge is used, pressure vessel type cargo tanks, designed... 46 Shipping 5 2012-10-01 2012-10-01 false Elemental phosphorus in water. 151.50-50 Section 151.50... phosphorus in water. (a) Tanks shall be designed and tested for a head equivalent to the design lading of...
27 CFR 28.250 - Bills of lading required.
Code of Federal Regulations, 2010 CFR
2010-04-01
... wines, for deposit in a foreign-trade zone, with benefit of drawback, and the principal has filed bond... denatured spirits, and wines: (1) The name of the exporter (if different from the shipper), (2) The name and... the case may be, and (5) The total quantity in wine gallons or liters, (b) As to beer: (1) The name of...
46 CFR 151.50-50 - Elemental phosphorus in water.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 5 2011-10-01 2011-10-01 false Elemental phosphorus in water. 151.50-50 Section 151.50... phosphorus in water. (a) Tanks shall be designed and tested for a head equivalent to the design lading of phosphorus and its water blanket extended to 8 feet above the tank top. In addition, tank design calculations...
46 CFR 151.50-50 - Elemental phosphorus in water.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 5 2010-10-01 2010-10-01 false Elemental phosphorus in water. 151.50-50 Section 151.50... phosphorus in water. (a) Tanks shall be designed and tested for a head equivalent to the design lading of phosphorus and its water blanket extended to 8 feet above the tank top. In addition, tank design calculations...
49 CFR 375.217 - How must I collect charges upon delivery?
Code of Federal Regulations, 2010 CFR
2010-10-01
... service and the bill of lading. (c) Charge or credit card payments: (1) If you agree to accept payment by charge or credit card, you must arrange with the individual shipper for the delivery only at a time when you can obtain authorization for the shipper's credit card transaction. (2) Paragraph (c)(1) of this...
49 CFR 178.345-8 - Accident damage protection.
Code of Federal Regulations, 2011 CFR
2011-10-01
... accidental loss of lading. The device must break at no more than 70 percent of the load that would be... major radius of the tank shell. The device must break at no more than 70 percent of the load that would... requirements of this section and the applicable individual specification to minimize the potential for the loss...
49 CFR 178.345-8 - Accident damage protection.
Code of Federal Regulations, 2013 CFR
2013-10-01
... accidental loss of lading. The device must break at no more than 70 percent of the load that would be... major radius of the tank shell. The device must break at no more than 70 percent of the load that would... requirements of this section and the applicable individual specification to minimize the potential for the loss...
49 CFR 178.345-8 - Accident damage protection.
Code of Federal Regulations, 2014 CFR
2014-10-01
... accidental loss of lading. The device must break at no more than 70 percent of the load that would be... major radius of the tank shell. The device must break at no more than 70 percent of the load that would... requirements of this section and the applicable individual specification to minimize the potential for the loss...
49 CFR 178.345-8 - Accident damage protection.
Code of Federal Regulations, 2012 CFR
2012-10-01
... accidental loss of lading. The device must break at no more than 70 percent of the load that would be... major radius of the tank shell. The device must break at no more than 70 percent of the load that would... requirements of this section and the applicable individual specification to minimize the potential for the loss...
48 CFR 47.303-10 - F.o.b. inland carrier, point of exportation.
Code of Federal Regulations, 2014 CFR
2014-10-01
... the goods and to ensure assessment of the lowest applicable transportation charge; (2) Prepare and distribute commercial bills of lading; (3)(i) Deliver the shipment in good order and condition in or on the conveyance of the carrier on the date or within the period specified; and (ii) Pay and bear all applicable...
48 CFR 47.303-10 - F.o.b. inland carrier, point of exportation.
Code of Federal Regulations, 2012 CFR
2012-10-01
... the goods and to ensure assessment of the lowest applicable transportation charge; (2) Prepare and distribute commercial bills of lading; (3)(i) Deliver the shipment in good order and condition in or on the conveyance of the carrier on the date or within the period specified; and (ii) Pay and bear all applicable...
48 CFR 47.303-10 - F.o.b. inland carrier, point of exportation.
Code of Federal Regulations, 2011 CFR
2011-10-01
... the goods and to ensure assessment of the lowest applicable transportation charge; (2) Prepare and distribute commercial bills of lading; (3)(i) Deliver the shipment in good order and condition in or on the conveyance of the carrier on the date or within the period specified; and (ii) Pay and bear all applicable...
48 CFR 47.303-10 - F.o.b. inland carrier, point of exportation.
Code of Federal Regulations, 2013 CFR
2013-10-01
... the goods and to ensure assessment of the lowest applicable transportation charge; (2) Prepare and distribute commercial bills of lading; (3)(i) Deliver the shipment in good order and condition in or on the conveyance of the carrier on the date or within the period specified; and (ii) Pay and bear all applicable...
49 CFR 375.217 - How must I collect charges upon delivery?
Code of Federal Regulations, 2014 CFR
2014-10-01
... service and the bill of lading. (c) Charge or credit card payments: (1) If you agree to accept payment by charge or credit card, you must arrange with the individual shipper for the delivery only at a time when you can obtain authorization for the shipper's credit card transaction. (2) Paragraph (c)(1) of this...
49 CFR 375.217 - How must I collect charges upon delivery?
Code of Federal Regulations, 2013 CFR
2013-10-01
... service and the bill of lading. (c) Charge or credit card payments: (1) If you agree to accept payment by charge or credit card, you must arrange with the individual shipper for the delivery only at a time when you can obtain authorization for the shipper's credit card transaction. (2) Paragraph (c)(1) of this...
49 CFR 375.217 - How must I collect charges upon delivery?
Code of Federal Regulations, 2011 CFR
2011-10-01
... service and the bill of lading. (c) Charge or credit card payments: (1) If you agree to accept payment by charge or credit card, you must arrange with the individual shipper for the delivery only at a time when you can obtain authorization for the shipper's credit card transaction. (2) Paragraph (c)(1) of this...
49 CFR 375.217 - How must I collect charges upon delivery?
Code of Federal Regulations, 2012 CFR
2012-10-01
... service and the bill of lading. (c) Charge or credit card payments: (1) If you agree to accept payment by charge or credit card, you must arrange with the individual shipper for the delivery only at a time when you can obtain authorization for the shipper's credit card transaction. (2) Paragraph (c)(1) of this...
48 CFR 6103.302 - Filing claims [Rule 302].
Code of Federal Regulations, 2014 CFR
2014-10-01
... machine number, and e-mail address, if available, of the claimant; (2) The Government bill of lading or... facsimile machine number is: (202) 606-0019. The Clerk's e-mail address for receipt of filings is: [email protected] The Board's working hours are 8:00 a.m. to 4:30 p.m., Eastern Time, on each day other...
48 CFR 6103.302 - Filing claims [Rule 302].
Code of Federal Regulations, 2012 CFR
2012-10-01
... machine number, and e-mail address, if available, of the claimant; (2) The Government bill of lading or... facsimile machine number is: (202) 606-0019. The Clerk's e-mail address for receipt of filings is: [email protected] The Board's working hours are 8:00 a.m. to 4:30 p.m., Eastern Time, on each day other...
41 CFR 102-117.180 - What transportation documents must I use to ship freight?
Code of Federal Regulations, 2011 CFR
2011-01-01
... documents must I use to ship freight? 102-117.180 Section 102-117.180 Public Contracts and Property... TRANSPORTATION 117-TRANSPORTATION MANAGEMENT Shipping Freight § 102-117.180 What transportation documents must I use to ship freight? To ship freight: (a) By land (domestic shipments), use a bill of lading; (b) By...
41 CFR 102-117.180 - What transportation documents must I use to ship freight?
Code of Federal Regulations, 2013 CFR
2013-07-01
... documents must I use to ship freight? 102-117.180 Section 102-117.180 Public Contracts and Property... TRANSPORTATION 117-TRANSPORTATION MANAGEMENT Shipping Freight § 102-117.180 What transportation documents must I use to ship freight? To ship freight: (a) By land (domestic shipments), use a bill of lading; (b) By...
41 CFR 102-117.180 - What transportation documents must I use to ship freight?
Code of Federal Regulations, 2010 CFR
2010-07-01
... documents must I use to ship freight? 102-117.180 Section 102-117.180 Public Contracts and Property... TRANSPORTATION 117-TRANSPORTATION MANAGEMENT Shipping Freight § 102-117.180 What transportation documents must I use to ship freight? To ship freight: (a) By land (domestic shipments), use a bill of lading; (b) By...
41 CFR 102-117.180 - What transportation documents must I use to ship freight?
Code of Federal Regulations, 2014 CFR
2014-01-01
... documents must I use to ship freight? 102-117.180 Section 102-117.180 Public Contracts and Property... TRANSPORTATION 117-TRANSPORTATION MANAGEMENT Shipping Freight § 102-117.180 What transportation documents must I use to ship freight? To ship freight: (a) By land (domestic shipments), use a bill of lading; (b) By...
41 CFR 102-117.180 - What transportation documents must I use to ship freight?
Code of Federal Regulations, 2012 CFR
2012-01-01
... documents must I use to ship freight? 102-117.180 Section 102-117.180 Public Contracts and Property... TRANSPORTATION 117-TRANSPORTATION MANAGEMENT Shipping Freight § 102-117.180 What transportation documents must I use to ship freight? To ship freight: (a) By land (domestic shipments), use a bill of lading; (b) By...
49 CFR 179.400-17 - Inner tank piping.
Code of Federal Regulations, 2011 CFR
2011-10-01
... vapor space of the inner tank to facilitate unloading the liquid lading must be approved. [Amdt. 179-32... Liquid Tank Car Tanks and Seamless Steel Tanks (Classes DOT-113 and 107A) § 179.400-17 Inner tank piping. (a) Product lines. The piping system for vapor and liquid phase transfer and venting must be made for...
49 CFR 179.400-17 - Inner tank piping.
Code of Federal Regulations, 2013 CFR
2013-10-01
... vapor space of the inner tank to facilitate unloading the liquid lading must be approved. [Amdt. 179-32... Liquid Tank Car Tanks and Seamless Steel Tanks (Classes DOT-113 and 107A) § 179.400-17 Inner tank piping. (a) Product lines. The piping system for vapor and liquid phase transfer and venting must be made for...
49 CFR 179.400-17 - Inner tank piping.
Code of Federal Regulations, 2012 CFR
2012-10-01
... vapor space of the inner tank to facilitate unloading the liquid lading must be approved. [Amdt. 179-32... Liquid Tank Car Tanks and Seamless Steel Tanks (Classes DOT-113 and 107A) § 179.400-17 Inner tank piping. (a) Product lines. The piping system for vapor and liquid phase transfer and venting must be made for...
46 CFR 151.50-50 - Elemental phosphorus in water.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 5 2014-10-01 2014-10-01 false Elemental phosphorus in water. 151.50-50 Section 151.50... phosphorus in water. (a) Tanks shall be designed and tested for a head equivalent to the design lading of phosphorus and its water blanket extended to 8 feet above the tank top. In addition, tank design calculations...
46 CFR 151.50-50 - Elemental phosphorus in water.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 5 2013-10-01 2013-10-01 false Elemental phosphorus in water. 151.50-50 Section 151.50... phosphorus in water. (a) Tanks shall be designed and tested for a head equivalent to the design lading of phosphorus and its water blanket extended to 8 feet above the tank top. In addition, tank design calculations...
49 CFR 375.505 - Must I write up a bill of lading?
Code of Federal Regulations, 2011 CFR
2011-10-01
... TRANSPORTATION OF HOUSEHOLD GOODS IN INTERSTATE COMMERCE; CONSUMER PROTECTION REGULATIONS Pick Up of Shipments of... combined with an order for service to include all the items required by § 375.501 of this subpart. You must... that was entered on the estimate and order for service. (5) When you transport on a collect-on-delivery...
7 CFR 1499.13 - Recordkeeping and reporting requirements.
Code of Federal Regulations, 2012 CFR
2012-01-01
... required by paragraphs (c)(1) and (2) of this section as prescribed by FAS. (b) A participant shall, within... to FAS, in the manner set forth in the agreement. The evidence may be submitted through an electronic media approved by FAS or by providing the carrier's on board bill of lading. The evidence of export must...
7 CFR 1499.13 - Recordkeeping and reporting requirements.
Code of Federal Regulations, 2014 CFR
2014-01-01
... required by paragraphs (c)(1) and (2) of this section as prescribed by FAS. (b) A participant shall, within... to FAS, in the manner set forth in the agreement. The evidence may be submitted through an electronic media approved by FAS or by providing the carrier's on board bill of lading. The evidence of export must...
7 CFR 1499.13 - Recordkeeping and reporting requirements.
Code of Federal Regulations, 2013 CFR
2013-01-01
... required by paragraphs (c)(1) and (2) of this section as prescribed by FAS. (b) A participant shall, within... to FAS, in the manner set forth in the agreement. The evidence may be submitted through an electronic media approved by FAS or by providing the carrier's on board bill of lading. The evidence of export must...
49 CFR 375.505 - Must I write up a bill of lading?
Code of Federal Regulations, 2010 CFR
2010-10-01
... that was entered on the estimate and order for service. (5) When you transport on a collect-on-delivery basis, the name, address, and if furnished, the telephone number, facsimile number, or e-mail address of... certified mail, return receipt requested. (6) For non-guaranteed service, the agreed date or period of time...
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 5 2014-10-01 2014-10-01 false Cargo viscosity and melting point information; measuring... Cargo viscosity and melting point information; measuring cargo temperature during discharge: Categories... lading, a written statement of the following: (1) For Category A or B NLS, the cargo's viscosity at 20 °C...
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 5 2013-10-01 2013-10-01 false Cargo viscosity and melting point information; measuring... Cargo viscosity and melting point information; measuring cargo temperature during discharge: Categories... lading, a written statement of the following: (1) For Category A or B NLS, the cargo's viscosity at 20 °C...
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 5 2012-10-01 2012-10-01 false Cargo viscosity and melting point information; measuring... Cargo viscosity and melting point information; measuring cargo temperature during discharge: Categories... lading, a written statement of the following: (1) For Category A or B NLS, the cargo's viscosity at 20 °C...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-10-03
... country of origin of the fish or wildlife. In addition, certain information, such as the airway bill or bill of lading number, the location of the fish or wildlife for inspection, and the number of cartons.... Campbell, Chief, Division of Policy and Directives Management, U.S. Fish and Wildlife Service. [FR Doc...
19 CFR 191.52 - Rejecting, perfecting or amending claims.
Code of Federal Regulations, 2011 CFR
2011-04-01
... determined to be incomplete (see § 191.51(a)(1)), the claim will be rejected and Customs will notify the.... If Customs determines that the claim is complete according to the requirements of § 191.51(a)(1), but... include, but is not limited to: (1) The export bill of lading or other actual evidence of exportation, as...
19 CFR 191.52 - Rejecting, perfecting or amending claims.
Code of Federal Regulations, 2010 CFR
2010-04-01
... determined to be incomplete (see § 191.51(a)(1)), the claim will be rejected and Customs will notify the.... If Customs determines that the claim is complete according to the requirements of § 191.51(a)(1), but... include, but is not limited to: (1) The export bill of lading or other actual evidence of exportation, as...
21 CFR 1312.14 - Distribution of copies of import permit.
Code of Federal Regulations, 2012 CFR
2012-04-01
... the proper governmental authorities of the exporting country. (c) The quadruplet copy (Copy 4) shall... original copy (Copy 1) and the bill of lading upon arrival of the merchandise. If a discrepancy is noted... 74715, Nov. 12, 1980; 51 FR 5319, Feb. 13, 1986; 53 FR 48244, Nov. 30, 1988; 62 FR 13969, Mar. 24, 1997] ...
21 CFR 1312.14 - Distribution of copies of import permit.
Code of Federal Regulations, 2011 CFR
2011-04-01
... the proper governmental authorities of the exporting country. (c) The quadruplet copy (Copy 4) shall... original copy (Copy 1) and the bill of lading upon arrival of the merchandise. If a discrepancy is noted... 74715, Nov. 12, 1980; 51 FR 5319, Feb. 13, 1986; 53 FR 48244, Nov. 30, 1988; 62 FR 13969, Mar. 24, 1997] ...
19 CFR 191.52 - Rejecting, perfecting or amending claims.
Code of Federal Regulations, 2014 CFR
2014-04-01
... determined to be incomplete (see § 191.51(a)(1)), the claim will be rejected and Customs will notify the.... If Customs determines that the claim is complete according to the requirements of § 191.51(a)(1), but... include, but is not limited to: (1) The export bill of lading or other actual evidence of exportation, as...
21 CFR 1312.14 - Distribution of copies of import permit.
Code of Federal Regulations, 2014 CFR
2014-04-01
... the proper governmental authorities of the exporting country. (c) The quadruplet copy (Copy 4) shall... original copy (Copy 1) and the bill of lading upon arrival of the merchandise. If a discrepancy is noted... 74715, Nov. 12, 1980; 51 FR 5319, Feb. 13, 1986; 53 FR 48244, Nov. 30, 1988; 62 FR 13969, Mar. 24, 1997] ...
19 CFR 191.52 - Rejecting, perfecting or amending claims.
Code of Federal Regulations, 2013 CFR
2013-04-01
... determined to be incomplete (see § 191.51(a)(1)), the claim will be rejected and Customs will notify the.... If Customs determines that the claim is complete according to the requirements of § 191.51(a)(1), but... include, but is not limited to: (1) The export bill of lading or other actual evidence of exportation, as...
19 CFR 191.52 - Rejecting, perfecting or amending claims.
Code of Federal Regulations, 2012 CFR
2012-04-01
... determined to be incomplete (see § 191.51(a)(1)), the claim will be rejected and Customs will notify the.... If Customs determines that the claim is complete according to the requirements of § 191.51(a)(1), but... include, but is not limited to: (1) The export bill of lading or other actual evidence of exportation, as...
21 CFR 1312.14 - Distribution of copies of import permit.
Code of Federal Regulations, 2010 CFR
2010-04-01
... the proper governmental authorities of the exporting country. (c) The quadruplet copy (Copy 4) shall... original copy (Copy 1) and the bill of lading upon arrival of the merchandise. If a discrepancy is noted... 74715, Nov. 12, 1980; 51 FR 5319, Feb. 13, 1986; 53 FR 48244, Nov. 30, 1988; 62 FR 13969, Mar. 24, 1997] ...
21 CFR 1312.14 - Distribution of copies of import permit.
Code of Federal Regulations, 2013 CFR
2013-04-01
... the proper governmental authorities of the exporting country. (c) The quadruplet copy (Copy 4) shall... original copy (Copy 1) and the bill of lading upon arrival of the merchandise. If a discrepancy is noted... 74715, Nov. 12, 1980; 51 FR 5319, Feb. 13, 1986; 53 FR 48244, Nov. 30, 1988; 62 FR 13969, Mar. 24, 1997] ...
15 CFR 758.1 - The Shipper's Export Declaration (SED) or Automated Export System (AES) record.
Code of Federal Regulations, 2013 CFR
2013-01-01
... entered on the loading document (e.g., Cargo Declaration, manifest, bill of lading, (master) air waybill... for all items being exported under the NLR provisions that have a reason for control other than anti-terrorism (AT). The designator “TSPA” may be used, but is not required, when the export consists of...
Code of Federal Regulations, 2011 CFR
2011-01-01
... than anti-terrorism (AT). The only exception to this requirement would be the return of unwanted... be entered on the invoice and on the bill of lading, air waybill, or other export control document... THE EAR § 732.5 Steps regarding Shipper's Export Declaration or Automated Export System record...
Code of Federal Regulations, 2013 CFR
2013-01-01
... than anti-terrorism (AT). The only exception to this requirement would be the return of unwanted... be entered on the invoice and on the bill of lading, air waybill, or other export control document... THE EAR § 732.5 Steps regarding Shipper's Export Declaration or Automated Export System record...
15 CFR 758.1 - The Shipper's Export Declaration (SED) or Automated Export System (AES) record.
Code of Federal Regulations, 2012 CFR
2012-01-01
... entered on the loading document (e.g., Cargo Declaration, manifest, bill of lading, (master) air waybill... for all items being exported under the NLR provisions that have a reason for control other than anti-terrorism (AT). The designator “TSPA” may be used, but is not required, when the export consists of...
Code of Federal Regulations, 2012 CFR
2012-01-01
... than anti-terrorism (AT). The only exception to this requirement would be the return of unwanted... be entered on the invoice and on the bill of lading, air waybill, or other export control document... THE EAR § 732.5 Steps regarding Shipper's Export Declaration or Automated Export System record...
Code of Federal Regulations, 2014 CFR
2014-01-01
... than anti-terrorism (AT). The only exception to this requirement would be the return of unwanted... be entered on the invoice and on the bill of lading, air waybill, or other export control document... THE EAR § 732.5 Steps regarding Shipper's Export Declaration or Automated Export System record...
15 CFR 758.6 - Destination control statement.
Code of Federal Regulations, 2010 CFR
2010-01-01
... be entered on the invoice and on the bill of lading, air waybill, or other export control document... Control List that are not classified as EAR99, unless the export may be made under License Exception BAG or GFT (see part 740 of the EAR). At a minimum, the DCS must state: “These commodities, technology or...
15 CFR 758.1 - The Shipper's Export Declaration (SED) or Automated Export System (AES) record.
Code of Federal Regulations, 2010 CFR
2010-01-01
... that relate to EAR License Exceptions: (1) License Exception Baggage (BAG), as set forth in § 740.14 of.... See 15 CFR 30.53 of the FTSR; (5) License Exception Technology and Software Under Restriction (TSR... entered on the loading document (e.g., Cargo Declaration, manifest, bill of lading, (master) air waybill...
15 CFR 758.6 - Destination control statement.
Code of Federal Regulations, 2011 CFR
2011-01-01
... be entered on the invoice and on the bill of lading, air waybill, or other export control document... Control List that are not classified as EAR99, unless the export may be made under License Exception BAG or GFT (see part 740 of the EAR). At a minimum, the DCS must state: “These commodities, technology or...
15 CFR 758.1 - The Shipper's Export Declaration (SED) or Automated Export System (AES) record.
Code of Federal Regulations, 2011 CFR
2011-01-01
... that relate to EAR License Exceptions: (1) License Exception Baggage (BAG), as set forth in § 740.14 of.... See 15 CFR 30.53 of the FTSR; (5) License Exception Technology and Software Under Restriction (TSR... entered on the loading document (e.g., Cargo Declaration, manifest, bill of lading, (master) air waybill...
44 CFR 11.75 - Claims involving carriers and insurers.
Code of Federal Regulations, 2010 CFR
2010-10-01
... Government under this subpart. (1) If more than one bill of lading or contract was issued, a separate demand should be made against the last carrier on each such document. (2) The demand should be made within the... custody of the Government, no demand need be made against the carrier. (b) Whenever property which is...
Lunar Dust: Properties and Investigation Techniques
NASA Astrophysics Data System (ADS)
Kuznetsov, I. A.; Zakharov, A. V.; Dolnikov, G. G.; Lyash, A. N.; Afonin, V. V.; Popel, S. I.; Shashkova, I. A.; Borisov, N. D.
2017-12-01
Physical conditions in the near-surface layer of the Moon are overviewed. This medium is formed in the course of the permanent micrometeoroid bombardment of the lunar regolith and due to the exposure of the regolith to solar radiation and high-energy charged particles of solar and galactic origin. During a considerable part of a lunar day (more than 20%), the Moon is passing through the Earth's magnetosphere, where the conditions strongly differ from those in the interplanetary space. The external effects on the lunar regolith form the plasma-dusty medium above the lunar surface, the so-called lunar exosphere, whose characteristic altitude may reach several tens of kilometers. Observations of the near-surface dusty exosphere were carried out with the TV cameras onboard the landers Surveyor 5, 6, and 7 (1967-1968) and with the astrophotometer of Lunokhod-2 (1973). Their results showed that the near-surface layer glows above the sunlit surface of the Moon. This was interpreted as the scattering of solar light by dust particles. Direct detection of particles on the lunar surface was made by the Lunar Ejects and Meteorite (LEAM) instrument deployed by the Apollo 17 astronauts. Recently, the investigations of dust particles were performed by the Lunar Atmosphere and Dust Environment Explorer (LADEE) instrument at an altitude of several tens of kilometers. These observations urged forward the development of theoretical models for the lunar exosphere formation, and these models are being continuously improved. However, to date, many issues related to the dynamics of dust and the near-surface electric fields remain unresolved. Further investigations of the lunar exosphere are planned to be performed onboard the Russian landers Luna-Glob and Luna-Resurs.
SimSup's Loop: A Control Theory Approach to Spacecraft Operator Training
NASA Technical Reports Server (NTRS)
Owens, Brandon Dewain; Crocker, Alan R.
2015-01-01
Immersive simulation is a staple of training for many complex system operators, including astronauts and ground operators of spacecraft. However, while much has been written about simulators, simulation facilities, and operator certification programs, the topic of how one develops simulation scenarios to train a spacecraft operator is relatively understated in the literature. In this paper, an approach is presented for using control theory as the basis for developing the immersive simulation scenarios for a spacecraft operator training program. The operator is effectively modeled as a high level controller of lower level hardware and software control loops that affect a select set of system state variables. Simulation scenarios are derived from a STAMP-based hazard analysis of the operator's high and low level control loops. The immersive simulation aspect of the overall training program is characterized by selecting a set of scenarios that expose the operator to the various inadequate control actions that stem from control flaws and inadequate control executions in the different sections of the typical control loop. Results from the application of this approach to the Lunar Atmosphere and Dust Environment Explorer (LADEE) mission are provided through an analysis of the simulation scenarios used for operator training and the actual anomalies that occurred during the mission. The simulation scenarios and inflight anomalies are mapped to specific control flaws and inadequate control executions in the different sections of the typical control loop to illustrate the characteristics of anomalies arising from the different sections of the typical control loop (and why it is important for operators to have exposure to these characteristics). Additionally, similarities between the simulation scenarios and inflight anomalies are highlighted to make the case that the simulation scenarios prepared the operators for the mission.
Code of Federal Regulations, 2014 CFR
2014-01-01
..., exemption or exclusions legends. (c) Exports of rough diamonds classified under HS subheadings 7102.10, 7102.21, and 7102.31, in accordance with the Clean Diamond Trade Act, will require the proof of filing... citations, and exemption legends. (c) Exports of rough diamonds classified under HS subheading 7102.10, 7102...
31 CFR 560.603 - Reports on oil transactions engaged in by foreign affiliates.
Code of Federal Regulations, 2010 CFR
2010-07-01
... transaction means any purchase, sale, or swap of Iranian-origin crude oil or natural gas. For purposes of this paragraph (b), a purchase, sale, or swap is deemed to have occurred as of the date of the bill of lading... each reportable transaction): (i) The nature of the transaction, e.g., purchase, sale, swap; (ii) A...
Code of Federal Regulations, 2011 CFR
2011-10-01
... Liquid Tank Car Tanks and Seamless Steel Tanks (Classes DOT-113 and 107A) § 179.400-5 Materials. (a) Stainless steel of ASTM A 240/A 240M (IBR, see § 171.7 of this subchapter), Type 304 or 304L must be used... the lading. (b) Any steel casting, steel forging, steel structural shape or carbon steel plate used to...
Code of Federal Regulations, 2014 CFR
2014-10-01
... Liquid Tank Car Tanks and Seamless Steel Tanks (Classes DOT-113 and 107A) § 179.400-5 Materials. (a) Stainless steel of ASTM A 240/A 240M (IBR, see § 171.7 of this subchapter), Type 304 or 304L must be used... the lading. (b) Any steel casting, steel forging, steel structural shape or carbon steel plate used to...
Code of Federal Regulations, 2013 CFR
2013-10-01
... Liquid Tank Car Tanks and Seamless Steel Tanks (Classes DOT-113 and 107A) § 179.400-5 Materials. (a) Stainless steel of ASTM A 240/A 240M (IBR, see § 171.7 of this subchapter), Type 304 or 304L must be used... the lading. (b) Any steel casting, steel forging, steel structural shape or carbon steel plate used to...
Code of Federal Regulations, 2012 CFR
2012-10-01
... Liquid Tank Car Tanks and Seamless Steel Tanks (Classes DOT-113 and 107A) § 179.400-5 Materials. (a) Stainless steel of ASTM A 240/A 240M (IBR, see § 171.7 of this subchapter), Type 304 or 304L must be used... the lading. (b) Any steel casting, steel forging, steel structural shape or carbon steel plate used to...
Code of Federal Regulations, 2010 CFR
2010-01-01
... shipping permit, an official health certificate, an official brand inspection certificate, a bill of lading... a brand registered with an official brand inspection agency and are accompanied by an official brand... should obtain a statement to that effect from the management of the establishment and retain it for a...
49 CFR 178.345-9 - Pumps, piping, hoses and connections.
Code of Federal Regulations, 2014 CFR
2014-10-01
... greater of 120 psig or 4.8 times the MAWP of the cargo tank, and must be designed so that there will be no... sufficient strength, or be protected by a sacrificial device, such that any load applied by loading/unloading or charging lines connected to the cargo tank cannot cause damage resulting in loss of lading from...
49 CFR 178.345-9 - Pumps, piping, hoses and connections.
Code of Federal Regulations, 2011 CFR
2011-10-01
... greater of 120 psig or 4.8 times the MAWP of the cargo tank, and must be designed so that there will be no... sufficient strength, or be protected by a sacrificial device, such that any load applied by loading/unloading or charging lines connected to the cargo tank cannot cause damage resulting in loss of lading from...
49 CFR 178.345-9 - Pumps, piping, hoses and connections.
Code of Federal Regulations, 2012 CFR
2012-10-01
... greater of 120 psig or 4.8 times the MAWP of the cargo tank, and must be designed so that there will be no... sufficient strength, or be protected by a sacrificial device, such that any load applied by loading/unloading or charging lines connected to the cargo tank cannot cause damage resulting in loss of lading from...
49 CFR 178.345-9 - Pumps, piping, hoses and connections.
Code of Federal Regulations, 2013 CFR
2013-10-01
... greater of 120 psig or 4.8 times the MAWP of the cargo tank, and must be designed so that there will be no... sufficient strength, or be protected by a sacrificial device, such that any load applied by loading/unloading or charging lines connected to the cargo tank cannot cause damage resulting in loss of lading from...
15 CFR 758.5 - Conformity of documents and unloading of items.
Code of Federal Regulations, 2014 CFR
2014-01-01
... documents (e.g., the AES record, bill of lading or air waybill) must be consistent with the license. (c... end user named on the BIS license and in the AES record. (2) Optional ports of unloading. (i) Licensed... destination or are included on the BIS license and in the AES record. (ii) Unlicensed items. For shipments of...
2009-12-10
Korean High Level Delegation Visit Ames Certer Director and various Senior staff: John Hines, Ames Center Chief Technologist (middel left) explains operations at the LADEE lab to Soon-Duk Bae, Deputy Director, Big Science Policy Division, Ministry of Educaiton, Science Technology, Young-Mok Hyun, Deputy Director, Space Development Division, Ministry of Educaiton, Science Technology, Seorium Lee, Senior Researcher, International Relations Korea Aerospace Research Institute.
46 CFR 35.01-10 - Shipping papers-TB/ALL.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 1 2011-10-01 2011-10-01 false Shipping papers-TB/ALL. 35.01-10 Section 35.01-10... Requirements § 35.01-10 Shipping papers—TB/ALL. Each loaded tank vessel shall have on board a bill of lading... agent of the owner: Provided, however, That in the case of unmanned barges where shipping papers are not...
46 CFR 35.01-10 - Shipping papers-TB/ALL.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 1 2010-10-01 2010-10-01 false Shipping papers-TB/ALL. 35.01-10 Section 35.01-10... Requirements § 35.01-10 Shipping papers—TB/ALL. Each loaded tank vessel shall have on board a bill of lading... agent of the owner: Provided, however, That in the case of unmanned barges where shipping papers are not...
9 CFR 381.175 - Records required to be kept.
Code of Federal Regulations, 2011 CFR
2011-01-01
... slaughter. (b) The required records are: (1) Records, such as bills of sale, invoices, bills of lading, and... § 381.144. (3) Records of canning as required by subpart X of this part 381, of subchapter C, 9 CFR... 47 FR 746, Jan. 7, 1982; 49 FR 2236, Jan. 19, 1984; 51 FR 45633, Dec. 19, 1986; 57 FR 43600, Sept. 21...
9 CFR 381.175 - Records required to be kept.
Code of Federal Regulations, 2014 CFR
2014-01-01
... are: (1) Records, such as bills of sale, invoices, bills of lading, and receiving and shipping papers... by subpart X of this part 381, of subchapter C, 9 CFR chapter III. (4) Records of irradiation as..., Jan. 19, 1984; 51 FR 45633, Dec. 19, 1986; 57 FR 43600, Sept. 21, 1992; 58 FR 675, Jan. 6, 1993; 60 FR...
Dusty plasmas in the lunar exosphere: Effects of meteoroids
NASA Astrophysics Data System (ADS)
Popel, S. I.; Golub', A. P.; Zelenyi, L. M.; Horányi, M.
2018-01-01
A possibility of the formation in the lunar exosphere of dust cloud due to meteoroid impacts onto the lunar surface is studied. The main attention is paid to the high altitudes over the lunar surface including the range of the altitudes between 30 and 110 km where the measurements of dust were performed within the NASA LADEE mission. From the viewpoint of the formation of dust cloud at high altitudes over the Moon, the most important zone formed by the meteoroid impact is the zone of melting of substance. Only the droplets originated from this zone have the speeds between the first and second astronautical velocities (for the Moon). Correspondingly, only such droplets can perform finite movement around the Moon. The liquid droplets harden when rising over the lunar surface. Furthermore, they aquire electric charges due to the action, in particular, of the solar wind electrons and ions, as well as of the solar radiation. Thus dusty plasmas exist in the lunar exosphere with the characteristic number density ≲ 10-2 m-3 of dust particles with the sizes from 300 nm to 1 μm which is in accordance with the results of measurements performed by LADEE.
1993-09-23
dioxide ( TeO2 ) crystal which splits a beam of light entering the sensor into a set of two narrow band, orthogonally polarized images for each...See Figure 3) These laws hold true for Light ry V m .Li t ray , &o r air RefairRefractive lade: a, )’i i .- t 1 V Refractive inaex n’ Glass or
Code of Federal Regulations, 2011 CFR
2011-10-01
... closed; pick-up and delivery. All of that portion of the lading of any motor vehicle transporting Class 4... vehicle and shall be covered by such body, by tarpaulins, or other suitable means, and if such motor vehicle has a tailboard or tailgate, it shall be closed and secured in place during such transportation...
MOMA and other next-generation ion trap mass spectrometers for planetary exploration
NASA Astrophysics Data System (ADS)
Arevalo, R. D., Jr.; Brinckerhoff, W. B.; Getty, S.; Mahaffy, P. R.; van Amerom, F. H. W.; Danell, R.; Pinnick, V. T.; Li, X.; Grubisic, A.; Southard, A. E.; Hovmand, L.; Cottin, H.; Makarov, A.
2016-12-01
Since the 1970's, quadrupole mass spectrometer (QMS) systems have served as low-risk, cost-efficient means to explore the inner and outer reaches of the solar system. These legacy instruments have interrogated the compositions of the lunar exosphere (LADEE), surface materials on Mars (MSL), and the atmospheres of Venus (Pioneer Venus), Mars (MAVEN) and outer planets (Galileo and Cassini-Huygens). However, the in situ detection of organic compounds on Mars and Titan, coupled with ground-based measurements of amino acids in meteorites and a variety of organics in comets, has underlined the importance of molecular disambiguation in the characterization of high-priority planetary environments. The Mars Organic Molecule Analyzer (MOMA) flight instrument, centered on a linear ion trap, enables the in situ detection of volatile and non-volatile organics, but also the characterization of molecular structures through SWIFT ion isolation/excitation and tandem mass spectrometry (MSn). Like the SAM instrument on MSL, the MOMA investigation also includes a gas chromatograph (GC), thereby enabling the chemical separation of potential isobaric interferences based on retention times. The Linear Ion Trap Mass Spectrometer (LITMS; PI: William Brinckerhoff), developed to TRL 6 via the ROSES MatISSE Program, augments the core MOMA design and adds: expanded mass range (from 20 - 2000 Da); high-temperature evolved gas analysis (up to 1300°C); and, dual polarity detector assemblies (supporting the measurement of negative ions). The LITMS instrument will be tested in the field in 2017 through the Atacama Rover Astrobiology Drilling Studies (ARADS; PI: Brian Glass) ROSES PSTAR award. Following on these advancements, the Advanced Resolution Organic Molecule Analyzer (AROMA; PI: Ricardo Arevalo Jr.), supported through the ROSES PICASSO Program, combines a highly capable MOMA/LITMS-like linear ion trap and the ultrahigh resolution CosmOrbitrap mass analyzer developed by a consortium of five French laboratories. Phase I of this project has seen the development of a dedicated testbed that enables performance characterization of an Orbitrap analyzer as a function of compromised environmental conditions, simulating the reduced resources expected for planetary missions to small bodies and/or cryogenic worlds.
NASA Astrophysics Data System (ADS)
Ehrenfreund, Pascale; Foing, Bernard
2014-05-01
In response to the growing importance of space exploration, the objectives of the COSPAR Panel on Exploration (PEX) are to provide high quality, independent science input to support the development of a global space exploration program while working to safeguard the scientific assets of solar system bodies. PEX engages with COSPAR Commissions and Panels, science foundations, IAA, IAF, UN bodies, and IISL to support in particular national and international space exploration working groups and the new era of planetary exploration. COSPAR's input, as gathered by PEX, is intended to express the consensus view of the international scientific community and should ultimately provide a series of guidelines to support future space exploration activities and cooperative efforts, leading to outstanding scientific discoveries, opportunities for innovation, strategic partnerships, technology progression, and inspiration for people of all ages and cultures worldwide. We shall focus on the lunar exploration aspects, where the COSPAR PEX is building on previous COSPAR, ILEWG and community conferences. An updated COSPAR PEX report is published and available online (Ehrenfreund P. et al, COSPAR planetary exploration panel report, http://www.gwu.edu/~spi/assets/COSPAR_PEX2012.pdf). We celebrate 20 years after the 1st International Conference on Exploration and Utilisation of the Moon at Beatenberg in June 1994. The International Lunar Exploration Working Group (ILEWG) was established the year after in April 1995 at an EGS meeting in Hamburg, Germany. As established in its charter, this working group reports to COSPAR and is charged with developing an international strategy for the exploration of the Moon (http://sci.esa.int/ilewg/ ). It discusses coordination between missions, and a road map for future international lunar exploration and utilisation. It fosters information exchange or potential and real future lunar robotic and human missions, as well as for new scientific and exploration information about the Moon. We present the GLUC/ICEUM11 declaration (with emphasis on Science and exploration; Technologies and resources, Infrastructures and human aspects; Moon, Space, Society and Young Explorers) (http://sci.esa.int/iceum11). We give a report on ongoing relevant ILEWG community activities. We discuss how lunar missions SMART-1, Kaguya, Chang'E1&2, Chandrayaan-1, LCROSS, LRO, GRAIL, LADEE, Chang'E3 and upcoming missions contribute to lunar exploration objectives & roadmap.
1991-05-22
plasticity, including those of DiMaggio and Sandier (1971), Baladi and Rohani (1979), Lade (1977), Prevost (1978, 1985), Dafalias and Herrmann (1982). In...distribution can be achieved only if the behavior at the contact is fully understood and rigorously modelled. 18 REFERENCES Baladi , G.Y. and Rohani, B. (1979
27 CFR 28.43 - Evidence of exportation and lading for use on vessels and aircraft: beer.
Code of Federal Regulations, 2011 CFR
2011-04-01
...; or (2) For shipment to the armed forces, certification by a military officer on Form 1582-B (5130.6.... L. 85-859, 72 Stat. 1334, as amended, 1335, as amended (26 U.S.C. 5053, 5055)) [T.D. ATF-224, 51 FR 7698, Mar. 5, 1986, as amended by T.D. TTB-8, 69 FR 3832, Jan. 27, 2004] Retention of Records ...
Code of Federal Regulations, 2011 CFR
2011-10-01
... material must be placed in a tightly closed glass, plastic or metal inner packaging with a maximum capacity... placed in a hermetically sealed barrier bag which is impervious to the lading. (v) The intermediate... hazardous material must be placed in a tightly closed glass, plastic or metal inner packaging. The net...
Code of Federal Regulations, 2013 CFR
2013-10-01
... material must be placed in a tightly closed glass, plastic or metal inner packaging with a maximum capacity... placed in a hermetically sealed barrier bag which is impervious to the lading. (v) The intermediate... hazardous material must be placed in a tightly closed glass, plastic or metal inner packaging. The net...
Code of Federal Regulations, 2014 CFR
2014-10-01
... material must be placed in a tightly closed glass, plastic or metal inner packaging with a maximum capacity... placed in a hermetically sealed barrier bag which is impervious to the lading. (v) The intermediate... hazardous material must be placed in a tightly closed glass, plastic or metal inner packaging. The net...
Code of Federal Regulations, 2012 CFR
2012-10-01
... material must be placed in a tightly closed glass, plastic or metal inner packaging with a maximum capacity... placed in a hermetically sealed barrier bag which is impervious to the lading. (v) The intermediate... hazardous material must be placed in a tightly closed glass, plastic or metal inner packaging. The net...
Code of Federal Regulations, 2010 CFR
2010-10-01
... material must be placed in a tightly closed glass, plastic or metal inner packaging with a maximum capacity... placed in a hermetically sealed barrier bag which is impervious to the lading. (v) The intermediate... hazardous material must be placed in a tightly closed glass, plastic or metal inner packaging. The net...
The Enigma of Lunar Dust Transport
NASA Technical Reports Server (NTRS)
Farrell, W. M.; Stubbs, T. J.; Vondrak, R. R.; Delory, G. T.; Halekas, J. S.
2011-01-01
We will review the highly contrasting points of view regarding the ability of fine dust grains to become transported in the near-space lunar environment. While Surveyor and Apollo camera images suggest the presence of a horizon glow that has been provocatively interpreted as levitated and/or lofted dust, there is contrasting geological evidence to indicate that surface regolith has not been moved in a substantial way. While electric forces have been suggested as a driver for grain dynamics, recent detailed modeling of near-surface non-monotonic potentials would suggest grains could not get to large heights. While lofting models require submicron grains to hold/contain 100's of elementary charges, it can be shown analytical1y that a grain residing on a flat surface would have an extremely low probability of having even a single electron on its surface, Can these diametrically opposing viewpoints be reconciled? We will review the pros and cons on both sides. and suggest that the UVS and LDEX instrument on LADEE will provide key new insights on dust transport at the Moon.
Transportability Testing of the Army Tactical Missile System (ATACMS)
1989-09-01
QUANTITY OP TIEDOWN ANCHORS LATERALLY ADJACENT TO BACH 0OTHER. WIUIIN 114 CARRYING VEHICLE It WARY K NECESSARY TO LOCATE 341 LADING LONGITUDINALLY IN/ON...camdl4f DSI - ---- -. =~24 F.otG f 6AP".K WQ S TH~6IS inft6 at CASS -a- CI.L=4%. APO A COAST Cusco ClAsS -C. fti Cu11GsfletG .’COL*LS IUCW1D IIMit’ CAN4
49 CFR 176.9 - “Order-Notify” or “C.O.D.” shipments.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 49 Transportation 2 2010-10-01 2010-10-01 false âOrder-Notifyâ or âC.O.D.â shipments. 176.9... General § 176.9 “Order-Notify” or “C.O.D.” shipments. A carrier may not transport Division 1.1 or 1.2... “C.O.D.”, except on a through bill of lading to a place outside the United States; or (b) Consigned...
Gravity measured at the apollo 14 lading site.
Nance, R L
1971-12-03
The gravity at the Apollo 14 landing site has been determined from the accelerometer data that were telemetered from the lunar module. The values for the lunar gravity measured at the Apollo 11, 12, and 14 sites were reduced to a common elevation and were then compared between sites. A theoretical gravity, based on the assumption of a spherical moon, was computed for each landing site and compared with the observed value. The observed gravity was also used to compute the lunar radius at each landing site.
49 CFR 174.106 - “Order-Notify” or “C.O.D.” shipments, Division 1.1 or 1.2 (explosive) materials.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 49 Transportation 2 2010-10-01 2010-10-01 false âOrder-Notifyâ or âC.O.D.â shipments, Division 1.1... MATERIALS REGULATIONS CARRIAGE BY RAIL Class I (Explosive) Materials § 174.106 “Order-Notify” or “C.O.D... to “order-notify” or “C.O.D.”, except on a through bill of lading to a place outside the United...
NASA Astrophysics Data System (ADS)
Mao, D.; Sun, X.; Neumann, G. A.; Barker, M. K.; Mazarico, E. M.; Hoffman, E.; Zagwodzki, T. W.; Torrence, M. H.; Mcgarry, J.; Smith, D. E.; Zuber, M. T.
2017-12-01
Satellite Laser Ranging (SLR) has established time-of-flight measurements with mm precision to targets orbiting the Earth and the Moon using single-ended round-trip laser ranging to passive optical retro-reflectors. These high-precision measurements enable advances in fundamental physics, solar system dynamics. However, the received signal strength suffers from a 1/R4 decay, which makes it impractical for measuring distances beyond the Moon's orbit. On the other hand, for a two-way laser transponder pair, where laser pulses are both transmitted to and received from each end of the laser links, the signal strength at both terminals only decreases by 1/R2, thus allowing a greater range of distances to be covered. The asynchronous transponder concept has been previously demonstrated by a test in 2005 between the Mercury Laser Altimeter (MLA) aboard the MESSENGER (MErcury Surface, Space ENvironment, Geochemistry, and Ranging) spacecraft and NASA's Goddard Geophysical and Astronomical Observatory (GGAO) at a distance of ˜0.16 AU. In October 2013, regular two-way transponder-type range measurements were obtained over 15 days between the Lunar Laser Communication Demonstration (LLCD) aboard the Lunar Atmosphere and Dust Environment Explorer (LADEE) spacecraft and NASA's ground station at White Sands, NM. The Lunar Orbiter Laser Altimeter (LOLA) aboard the Lunar Reconnaissance Orbiter (LRO) provides us a unique capability to test time-transfer beyond near Earth orbit. Here we present results from two-way transponder-type experiments between LOLA and GGAO conducted in March 2014 and 2017. As in the time-transfer by laser link (T2L2) experiments between a ground station and an earth-orbiting satellite, LOLA and GGAO ranged to each other simultaneously in these two-way tests at lunar distance. We measured the time-of-flight while cross-referencing the spacecraft clock to the ground station time. On May 4th, 2017, about 20 minutes of two-way measurements were collected. The uplink observations were fit with a RMS residual of 9 ns, while the downlink observations yielded a RMS residual of 2 ns. The time offset between the spacecraft and ground station clocks as well as the spacecraft clock drift rate were determined from these measurements. More tests are expected in the coming months and the results will be reported.
NASA Astrophysics Data System (ADS)
Wei, Ding; Cong-cong, Yu; Chen-hui, Wu; Zheng-yi, Shu
2018-03-01
To analyse the strain localization behavior of geomaterials, the forward Euler schemes and the tangent modulus matrix are formulated based on the transversely isotropic yield criterion with non-coaxial flow rule developed by Lade, the program code is implemented based on the user subroutine (UMAT) of ABAQUS. The influence of the material principal direction on the strain localization and the bearing capacity of the structure are investigated and analyzed. Numerical results show the validity and performance of the proposed model in simulating the strain localization behavior of geostructures.
Probing Gravity with Next Generation Lunar Laser Ranging
NASA Astrophysics Data System (ADS)
Martini, Manuele; Dell'Agnello, Simone
Lunar and satellite laser ranging (LLR/SLR) are consolidated techniques which provide a precise, and at the same time, cost-effective method to determine the orbits of the Moon and of satellites equipped with laser retroreflectors with respect to the International Celestial Reference System. We describe the precision tests of general relativity and of new theories of gravity that can be performed with second-generation LLR payloads on the surface of the Moon (NASA/ASI MoonLIGHT project), and with SLR/LLR payloads deployed on spacecraft in the Earth-Moon system. A new wave of lunar exploration and lunar science started in 2007-2008 with the launch of three missions (Chang'e by China, Kaguya by Japan, Chandrayaan by India), missions in preparation (LCROSS, LRO, GRAIL/LADEE by NASA) and other proposed missions (like MAGIA in Italy). This research activity will be greatly enhanced by the future robotic deployment of a lunar geophysics network (LGN) on the surface of the Moon. A scientific concept of the latter is the International Lunar Network (ILN, see http://iln.arc.nasa.gov/). The LLR retroreflector payload developed by a US-Italy team described here and under space qualification at the National Laboratories of Frascati (LNF) is the optimum candidate for the LGN, which will be populated in the future by any lunar landing mission.
Apollo 9 Lunar Module in lunar landing configuration
1969-03-07
AS09-21-3181 (7 March 1969) --- A View of the Apollo 9 Lunar Module (LM), "Spider," in a lunar lading configuration, as photographed from the Command and Service Modules (CSM) on the fifth day of the Apollo 9 Earth-orbital mission. The landing gear on the "Spider" has been deployed. Inside the "Spider" were astronauts James A. McDivitt, Apollo 9 commander; and Russell L. Schweickart, lunar module pilot. Astronaut David R. Scott, command module pilot, remained at the controls in the Command Module (CM), "Gumdrop," while the other two astronauts checked out the LM.
1993-02-01
Segment: BX General Shipment Information Level: A Sequence: 30 Usage: M Max Use: 1 Loop: Purpose: To transmit identification numbers and other basic ...official code as- signed to a city or point (for ratemaking purposes) within a city. 930210 10.7.25 DEPARTM•B•T OF DOOM4N GOVERMET SILL OF LAD#M wDI...development group as the official code as- signed to a city or point (for ratemaking purposes) within a city. 930210 10.7.27 DEPARTMENT OF DG:dEI GOVWERJT
Analysis of large optical ground stations for deep-space optical communications
NASA Astrophysics Data System (ADS)
Garcia-Talavera, M. Reyes; Rivera, C.; Murga, G.; Montilla, I.; Alonso, A.
2017-11-01
Inter-satellite and ground to satellite optical communications have been successfully demonstrated over more than a decade with several experiments, the most recent being NASA's lunar mission Lunar Atmospheric Dust Environment Explorer (LADEE). The technology is in a mature stage that allows to consider optical communications as a high-capacity solution for future deep-space communications [1][2], where there is an increasing demand on downlink data rate to improve science return. To serve these deep-space missions, suitable optical ground stations (OGS) have to be developed providing large collecting areas. The design of such OGSs must face both technical and cost constraints in order to achieve an optimum implementation. To that end, different approaches have already been proposed and analyzed, namely, a large telescope based on a segmented primary mirror, telescope arrays, and even the combination of RF and optical receivers in modified versions of existing Deep-Space Network (DSN) antennas [3][4][5]. Array architectures have been proposed to relax some requirements, acting as one of the key drivers of the present study. The advantages offered by the array approach are attained at the expense of adding subsystems. Critical issues identified for each implementation include their inherent efficiency and losses, as well as its performance under high-background conditions, and the acquisition, pointing, tracking, and synchronization capabilities. It is worth noticing that, due to the photon-counting nature of detection, the system performance is not solely given by the signal-to-noise ratio parameter. To start with the analysis, first the main implications of the deep space scenarios are summarized, since they are the driving requirements to establish the technical specifications for the large OGS. Next, both the main characteristics of the OGS and the potential configuration approaches are presented, getting deeper in key subsystems with strong impact in the performance. The different configurations are compared from the technical point of view, taking into account the effect of atmospheric conditions. Finally a very preliminary cost analysis for a large aperture OGS is presented.
Lunar exospheric argon modeling
NASA Astrophysics Data System (ADS)
Grava, Cesare; Chaufray, J.-Y.; Retherford, K. D.; Gladstone, G. R.; Greathouse, T. K.; Hurley, D. M.; Hodges, R. R.; Bayless, A. J.; Cook, J. C.; Stern, S. A.
2015-07-01
Argon is one of the few known constituents of the lunar exosphere. The surface-based mass spectrometer Lunar Atmosphere Composition Experiment (LACE) deployed during the Apollo 17 mission first detected argon, and its study is among the subjects of the Lunar Reconnaissance Orbiter (LRO) Lyman Alpha Mapping Project (LAMP) and Lunar Atmospheric and Dust Environment Explorer (LADEE) mission investigations. We performed a detailed Monte Carlo simulation of neutral atomic argon that we use to better understand its transport and storage across the lunar surface. We took into account several loss processes: ionization by solar photons, charge-exchange with solar protons, and cold trapping as computed by recent LRO/Lunar Orbiter Laser Altimeter (LOLA) mapping of Permanently Shaded Regions (PSRs). Recycling of photo-ions and solar radiation acceleration are also considered. We report that (i) contrary to previous assumptions, charge exchange is a loss process as efficient as photo-ionization, (ii) the PSR cold-trapping flux is comparable to the ionization flux (photo-ionization and charge-exchange), and (iii) solar radiation pressure has negligible effect on the argon density, as expected. We determine that the release of 2.6 × 1028 atoms on top of a pre-existing argon exosphere is required to explain the maximum amount of argon measured by LACE. The total number of atoms (1.0 × 1029) corresponds to ∼6700 kg of argon, 30% of which (∼1900 kg) may be stored in the cold traps after 120 days in the absence of space weathering processes. The required population is consistent with the amount of argon that can be released during a High Frequency Teleseismic (HFT) Event, i.e. a big, rare and localized moonquake, although we show that LACE could not distinguish between a localized and a global event. The density of argon measured at the time of LACE appears to have originated from no less than four such episodic events. Finally, we show that the extent of the PSRs that trap argon, 0.007% of the total lunar surface, is consistent with the presence of adsorbed water in such PSRs.
Editorial Introduction: Lunar Reconnaissance Orbiter, Part II
NASA Technical Reports Server (NTRS)
Petro, Noah E.; Keller, John W.; Gaddis, Lisa R.
2016-01-01
The Lunar Reconnaissance Orbiter (LRO) mission has shifted our understanding of the history of the Moon. The seven instruments on LRO each have contributed to creating new paradigms for the evolution of the Moon by providing unprecedented measurements of the surface, subsurface, and lunar environment. In this second volume of the LRO Special Issue, we present 21 papers from a broad range of the areas of investigation from LRO, from the volatile inventory, to the shape of the Moon's surface, to its rich volcanic history, and the interactions between the lunar surface and the space environment. These themes provide rich science for the instrument teams, as well as for the broader science com- munity who continue to use the LRO data in their research. Each paper uses publicly available data from one or more instruments on LRO, illustrating the value of a robust spacecraft. For example, the production of high-resolution topographic data products from the LRO Camera Narrow Angle Camera (Henriksen et al., pp. 122-137, this issue) rely on the accurate geodetic grid produced by the LOLA instrument (Mao et al., pp. 55-69, this issue; Smith et al., pp. 70-91, this issue). Additionally, analysis of LRO data coupled with other spacecraft data, such as LADEE (Hurley et al., pp. 31-37, this issue) and GRAIL (e.g., Jozwiak et al., pp. 224-231, this issue) illustrate the utility of merging not only data from multiple instruments, but also multiple orbital platforms. These synergistic studies show the value of the inter-team approach adopted by the LRO mission. This second volume represents the culmination of an extensive effort to highlight the high-quality science still being produced by the LRO instrument teams, even after more than seven years in orbit at the Moon.
2008-09-01
as represented by the Minister of National Defence, 2008 © Sa Majesté la Reine (en droit du Canada), telle que représentée par le ministre de la...des mines ventouses d’entraînement réelles, sur un disque de un mètre de diamètre qui était suspendu dans le bassin d’étalonnage acoustique de RDDC...Atlantique à l’aide d’une perche rotative. Deux disques ont été examinés : un en aluminium et l’autre en fibre de verre . Ces disques ont été tournés
U.S. spacewalk on ISS on This Week @NASA - October 10, 2014
2014-10-10
Aboard the International Space Station, Expedition 41 Flight Engineers Reid Wiseman of NASA and Alexander Gerst of the European Space Agency donned U.S. spacesuits for an October 7 spacewalk to relocate a failed cooling pump and to install a backup power cable device for the station’s rail car system. The failed pump was replaced with a spare and is being temporarily stowed near the Quest airlock and the back-up power cables are for the unlikely event that the Mobile Transporter rail car on the station’s truss loses power. Also, A comet’s Mars flyby, Brightest pulsar! Total Lunar Eclipse and LADEE wins Popular Mechanics award!
JPL Developments in Retrieval Algorithms for Geostationary Observations - Applications to H2CO
NASA Technical Reports Server (NTRS)
Kurosu, Thomas P.; Kulawik, Susan; Natraj, Vijay
2012-01-01
JPL has strong expertise in atmospheric retrievals from UV and thermal IR, and a wide range of tools to apply to observations and instrument characterization. Radiative Transfer, AMF, Inversion, Fitting, Assimilation. Tools were applied for a preliminary study of H2CO sensitivities from GEO. Results show promise for moderate/strong H2CO lading but also that low background conditions will prove a challenge. H2CO DOF are not too strongly dependent on FWHM. GEMS (Geostationary Environmental Monitoring Spectrometer) choice of 0.6 nm FWHM (?) spectral resolution is adequate for H2CO retrievals. Case study can easily be adapted to GEMS observations/instrument model for more in-depth sensitivity characterization.
Lunar Quest in Second Life, Lunar Exploration Island, Phase II
NASA Astrophysics Data System (ADS)
Ireton, F. M.; Day, B. H.; Mitchell, B.; Hsu, B. C.
2010-12-01
Linden Lab’s Second Life is a virtual 3D metaverse created by users. At any one time there may be 40,000-50,000 users on line. Users develop a persona and are seen on screen as a human figure or avatar. Avatars move through Second Life by walking, flying, or teleporting. Users form communities or groups of mutual interest such as music, computer graphics, and education. These groups communicate via e-mail, voice, and text within Second Life. Information on downloading the Second Life browser and joining can be found on the Second Life website: www.secondlife.com. This poster details Phase II in the development of Lunar Exploration Island (LEI) located in Second Life. Phase I LEI highlighted NASA’s LRO/LCROSS mission. Avatars enter LEI via teleportation arriving at a hall of flight housing interactive exhibits on the LRO/ LCROSS missions including full size models of the two spacecraft and launch vehicle. Storyboards with information about the missions interpret the exhibits while links to external websites provide further information on the mission, both spacecraft’s instrument suites, and related EPO. Other lunar related activities such as My Moon and NLSI EPO programs. A special exhibit was designed for International Observe the Moon Night activities with links to websites for further information. The sim includes several sites for meetings, a conference stage to host talks, and a screen for viewing NASATV coverage of mission and other televised events. In Phase II exhibits are updated to reflect on-going lunar exploration highlights, discoveries, and future missions. A new section of LEI has been developed to showcase NASA’s Lunar Quest program. A new exhibit hall with Lunar Quest information has been designed and is being populated with Lunar Quest information, spacecraft models (LADEE is in place) and kiosks. A two stage interactive demonstration illustrates lunar phases with static and 3-D stations. As NASA’s Lunar Quest program matures further exhibits are planned. One proposal is to develop a teacher-training program to acquaint teachers with the Lunar Quest program and to provide resources.
Exploring a novel environment improves motivation and promotes recall of words.
Schomaker, Judith; van Bronkhorst, Marthe L V; Meeter, Martijn
2014-01-01
Active exploration of novel environments is known to increase plasticity in animals, promoting long-term potentiation in the hippocampus and enhancing memory formation. These effects can occur during as well as after exploration. In humans novelty's effects on memory have been investigated with other methods, but never in an active exploration paradigm. We therefore investigated whether active spatial exploration of a novel compared to a previously familiarized virtual environment promotes performance on an unrelated word learning task. Exploration of the novel environment enhanced recall, generally thought to be hippocampus-dependent, but not recognition, believed to rely less on the hippocampus. Recall was better for participants that gave higher presence ratings for their experience in the virtual environment. These ratings were higher for the novel compared to the familiar virtual environment, suggesting that novelty increased attention for the virtual rather than real environment; however, this did not explain the effect of novelty on recall.
A steady-state model of the lunar ejecta cloud
NASA Astrophysics Data System (ADS)
Christou, Apostolos
2014-05-01
Every airless body in the solar system is surrounded by a cloud of ejecta produced by the impact of interplanetary meteoroids on its surface [1]. Such ``dust exospheres'' have been observed around the Galilean satellites of Jupiter [2,3]. The prospect of long-term robotic and human operations on the Moon by the US and other countries has rekindled interest on the subject [4]. This interest has culminated with the - currently ongoing - investigation of the Moon's dust exosphere by the LADEE spacecraft [5]. Here a model is presented of a ballistic, collisionless, steady state population of ejecta launched vertically at randomly distributed times and velocities and moving under constant gravity. Assuming a uniform distribution of launch times I derive closed form solutions for the probability density functions (pdfs) of the height distribution of particles and the distribution of their speeds in a rest frame both at the surface and at altitude. The treatment is then extended to particle motion with respect to a moving platform such as an orbiting spacecraft. These expressions are compared with numerical simulations under lunar surface gravity where the underlying ejection speed distribution is (a) uniform (b) a power law. I discuss the predictions of the model, its limitations, and how it can be validated against near-surface and orbital measurements.[1] Gault, D. Shoemaker, E.M., Moore, H.J., 1963, NASA TN-D 1767. [2] Kruger, H., Krivov, A.V., Hamilton, D. P., Grun, E., 1999, Nature, 399, 558. [3] Kruger, H., Krivov, A.V., Sremcevic, M., Grun, E., 2003, Icarus, 164, 170. [4] Grun, E., Horanyi, M., Sternovsky, Z., 2011, Planetary and Space Science, 59, 1672. [5] Elphic, R.C., Hine, B., Delory, G.T., Salute, J.S., Noble, S., Colaprete, A., Horanyi, M., Mahaffy, P., and the LADEE Science Team, 2014, LPSC XLV, LPI Contr. 1777, 2677.
NCS-1 dependent learning bonus and behavior outputs of self-directed exploration
NASA Astrophysics Data System (ADS)
Mun, Ho-Suk
Animals explore a new environment and learn about their surroundings. "Exploration" refers to all activities that increase the information obtained from an animal. For this study, I determined a molecule that mediates self-directed exploration, with a particular focus on rearing behavior and vocalization. Rearing can be either self-directed exploration or escape-oriented exploration. Self-directed exploration can be driven by the desire to gather information about environments while escape-oriented exploration can be driven by fear or anxiety. To differentiate between these two concepts, I compared rearing and other behaviors in three different conditions 1) novel dim (safe environment), which induces exploration based rearing; 2) novel bright (fearful environment), which elicits fear driven rearing; and 3) familiar environment as a control. First, I characterized the effects on two distinct types of environment in exploratory behavior and its effect on learning. From this, I determined that self-directed exploration enhances spatial learning while escape-oriented exploration does not produce a learning bonus. Second, I found that NCS-1 is involved in exploration, as well as learning and memory, by testing mice with reduced levels of Ncs-1 by point mutation and also siRNA injection. Finally, I illustrated other behavior outputs and neural substrate activities, which co-occurred during either self-directed or escape-oriented exploration. I found that high-frequency ultrasonic vocalizations occurred during self-directed exploration while low-frequency calls were emitted during escape-oriented exploration. Also, with immediate early gene imaging techniques, I found hippocampus and nucleus accumbens activation in self-directed exploration. This study is the first comprehensive molecular analysis of learning bonus in self-directed exploration. These results may be beneficial for studying underlying mechanisms of neuropsychiatric disease, and also reveal therapeutic targets for them.
Introduction to EGU session "Lunar Science and Exploration Towards Moon Village"
NASA Astrophysics Data System (ADS)
Foing, Bernard
2017-04-01
The EGU PS2.2 session "Lunar Science and Exploration" Towards Moon Village" will address: - Recent lunar results: geochemistry, geophysics in the context of open planetary science and exploration - Synthesis of results from SMART-1, Kaguya, Chang'e 1, 2 and 3, Chandrayaan-1, LCROSS, LADEE, Lunar Reconnaissance Orbiter and, Artemis and GRAIL - Goals and Status of missions under preparation: orbiters, Luna-Glob, Google Lunar X Prize, Luna Resurs polar lander, SLIM, Chandrayaan2, Chang'E 4 & 5, Lunar Resource Prospector, Future landers, Lunar sample return missions - Precursor missions, instruments and investigations for landers, rovers, sample return, and human cis-lunar activities and human lunar surface sorties - Preparation for International Lunar Decade: databases, instruments, missions, terrestrial field campaigns, support studies - ILEWG and Global Exploration roadmaps towards a global robotic/human Moon village - Strategic Knowledge Gaps, and key science Goals relevant to Lunar Global Exploration Lunar science and exploration are developing further with new and exciting missions being developed by China, the US, Japan, India, Russia, Korea and Europe, and with new stakeholders. The Moon Village is an open concept proposed by ESA DG with the goal of a sustainable human and robotic presence on the lunar surface as an ensemble where multiple users can carry out multiple activities. Multiple goals of the Moon Village include planetary science, life sciences, astronomy, fundamental research, resources utilisation, human spaceflight, peaceful cooperation, economical development, inspiration, training and capacity building. ESA director general has revitalized and enhanced the original concept of MoonVillage discussed in the last decade. Space exploration builds on international collaboration. COSPAR and its ILEWG International Lunar Exploration Working Group (created in 1994) have fostered collaboration between lunar missions [4-8]. A flotilla of lunar orbiters has flown in the last international lunar decade (SMART-1, Kaguya, Chang'Eal1 &2, Chandrayaan-1, LCROSS, LRO, GRAIL, LADEE). Chinese Chang'E 3 lander and Yutu rover, and upcoming 2017 other landers from 2017 (GLXP, Chang'E 4 & 5, SLIM, Luna , LRP) will constitute a Robotic Village on the Moon. A number of MoonVillage talks and/or interactive jam sessions have been conducted at International workshops and symposia 2016. Moon Village Workshops were held at ESA centres: they were held with senior experts as well as Young ESA professionals to discuss general topics and specific issues ( habitat design, technology, science and precursor missions; public and stakeholder engagement) . Many workshops were complemented with ILEWG EuroMoonMars simulation campaigns. Moon Village Workshops or Jam sessions were also conducted at international symposia or in collaboration with specific universities or institutes. The PS2.2 session will include invited and contributed talks as well as a panel discussion and interactive posters with short oral introduction. Acknowledgements We thank Prof J. Woerner (ESA DG) for energizing the concept of MoonVillage. We thank co-conveners of MoonVillage Workshops and ILEWG EuroMoonMars field campaigns in 2016 (including C. Jonglez, V.Guinet, M.Monnerie, A. Kleinschneider, A. Kapoglou, A. Kolodziejczyk, M. Harasymczuk, I. Schlacht, C. Heinicke, D. Esser, M.Grulich, T. Siruguet, H.Vos, M.Mirino, D.Sokolsky, J.Blamont) and participants to these events. We thank A.Cowley, C. Haigneré, P. Messina, G. Ortega, S.Cristoforetti, ESA colleagues involved in MoonVillage related activities. We thank colleagues from ILEWG, Young Lunar Explorers, the International Lunar Decade Group, the Moon Village Association and Moon Village Support Groups and "MoonVillagers" at large. [1] Jan Wörner, Driving #MoonVillage http://www.iafastro.org/events/iac/iac-2015/plenaryprogramme/the-moon-a-continent-and-a-gateway-for-ourfuture/ (IAC 2015, Jerusalem); [2]http://www.iafastro.org/events/iac/iac2016/globalnetworking-forum/making-the-moon-village-and-marsjourney-accessible-and-affordable-for-all/ (IAC 2016) ; [3] B. Foing et al , Highlights from Moon Village Workshop, held at ESTEC in December 2015, http://www.hou.usra.edu/meetings/lpsc2016/pdf/2719.pdf, http://www.hou.usra.edu/meetings/lpsc2016/pdf/2798.pdf [4] P. Ehrenfreund et al. "Toward a Global Space Exploration Program: A Stepping Stone Approach" (Advances in Space Research, 49, n°1, January 2012), prepared by COSPAR Panel on Exploration (PEX) [5] http://www.lpi.usra.edu/leag/GER_2011.pdf; [6] http://sci.esa.int/ilewg/47170-gluc-iceum11- beijing-2010lunar-declaration/; [7] http://www.lpi.usra.edu/meetings/leagilewg2008/ [8] http://sci.esa.int/ilewg/41506-iceum9-sorrento- 2007-lunar-declaration/ [9] National Research Council (2007), The Scientific Context for Exploration of the Moon [10] P. Ehrenfreund , B.H. Foing, A. Cellino Editors, The Moon and Near Earth Objects), Advances in Space Research, Volume 37, Issue 1, pp 1-192, 2006 [11] http://sci.esa.int/ilewg/38863-iceum8-beijing- 2006declaration/ [12] W. Huntress, D. Stetson, R. Farquhar, J. Zimmerman, B. Clark, W. O'Neil, R. Bourke& B. Foing,'The next steps in exploring deep space - A cosmic study by the IAA', Acta Astronautica, Vol 58, Issues 6-7, 2006, p302-377 [13]http://sci.esa.int/ilewg/38178-iceum7-toronto-2005-declaration/ [14] H. Balsiger et al. Eds, International Lunar Workshop, 1994 May 31-June 3, Beatenberg, Switzerland. Proceedings. Ed. European Space Agency, 1994. ESA-SP-1170 [15] R.M. Bonnet et al, 'Mission to the Moon, Europe's Priorities for Scientific Exploration and Utilisation of the Moon', European Space Agency, ESA SP-1150, June 1992 [16] http://www.iafastro.org/events/iaf-spring-meetings/spring-meetings-2016/ [17] https://www.spacesymposium.org/ [18] http://www.egu2016.eu/ http://meetingorganizer.copernicus.org/EGU2016/session/20378 [19] https://els2016.arc.nasa.gov/ [20] https://nesf2016.arc.nasa.gov/ [21] https://www.cospar-assembly.org/abstractcd/COSPAR-16/ [22] https://www.iac2016.org/, [23] http://www.hou.usra.edu/meetings/leag2016/presentations/ [24] http://newworlds2016.space/ [25] http://www.stx.ox.ac.uk/happ/events/history-moon [26] https://www.cranfield.ac.uk/events/events-2016/manufacturing-2075#
ERIC Educational Resources Information Center
Guo, Ping
2012-01-01
This study was aimed at exploring the relationship between school culture and teachers' work environment and further exploring the roles of school culture, teachers' efficacy, beliefs, and behaviors for character education, and teachers' work environment in the relationship between a character education intervention and students' social emotional…
ERIC Educational Resources Information Center
Alimah, Siti; Susilo, Herawati; Amin, Moh
2016-01-01
The study reports the evaluation and analysis of the implementation of the Nature Environment Exploration approach in the Department of Biology, Universitas Negeri Semarang State University. The method used was survey method. The results showed that the implementation of the Nature Environment Exploration approach was still far from optimal…
Biosignature Preservation and Detection in Mars Analog Environments.
Hays, Lindsay E; Graham, Heather V; Des Marais, David J; Hausrath, Elisabeth M; Horgan, Briony; McCollom, Thomas M; Parenteau, M Niki; Potter-McIntyre, Sally L; Williams, Amy J; Lynch, Kennda L
2017-04-01
This review of material relevant to the Conference on Biosignature Preservation and Detection in Mars Analog Environments summarizes the meeting materials and discussions and is further expanded upon by detailed references to the published literature. From this diverse source material, there is a detailed discussion on the habitability and biosignature preservation potential of five primary analog environments: hydrothermal spring systems, subaqueous environments, subaerial environments, subsurface environments, and iron-rich systems. Within the context of exploring past habitable environments on Mars, challenges common to all of these key environments are laid out, followed by a focused discussion for each environment regarding challenges to orbital and ground-based observations and sample selection. This leads into a short section on how these challenges could influence our strategies and priorities for the astrobiological exploration of Mars. Finally, a listing of urgent needs and future research highlights key elements such as development of instrumentation as well as continued exploration into how Mars may have evolved differently from Earth and what that might mean for biosignature preservation and detection. Key Words: Biosignature preservation-Biosignature detection-Mars analog environments-Conference report-Astrobiological exploration. Astrobiology 17, 363-400.
Using Neutron Spectroscopy to Constrain the Composition and Provenance of Phobos and Deimos
NASA Technical Reports Server (NTRS)
Elphic, Richard C.
2015-01-01
The origin of the Martian moons Phobos and Deimos is obscure and enigmatic. Hypotheses include the capture of asteroids originally from the outer main belt or beyond, residual material left over from Mars' formation, and accreted ejecta from a large impact on Mars, among others. Measurements of reflectance spectra indicate a similarity to dark, red D-type asteroids, but could indicate a highly space-weathered veneer. Here we suggest a way of constraining the near-surface composition of the two moons, for comparison to known meteoritic compositions. Neutron spectroscopy, particularly the thermal and epithermal neutron flux, distinguishes clearly between various classes of meteorites and varying hydrogen (water) abundances. Perhaps most surprising of all, a rendezvous with Phobos or Deimos is not necessary to achieve this. A low-cost mission based on the LADEE spacecraft design in an eccentric orbit around Mars can encounter Phobos every 2 weeks. As few as five flyby encounters at speeds of 2.3 kilometers per second and closest-approach distance of 3 kilometers provide sufficient data to distinguish between ordinary chondrite, water-bearing carbonaceous chondrite, ureilite, Mars surface, and aubrite compositions. A one-Earth year mission design includes many more flybys at lower speeds and closer approach distances, as well as similar multiple flybys at Deimos in the second mission phase, as described in the Phobos And Deimos Mars Environment (PADME) mission concept. This presentation will describe the expected thermal and epithermal neutron fluxes based on MCNP6 (Monte Carlo N (i.e. Neutron)-Particle transport code (version 6) simulations of different meteorite compositions and their uncertainties.
ERIC Educational Resources Information Center
Ebenezer, Jazlin V.
2001-01-01
Describes the characteristics and values of hypermedia for learning chemistry. Reports on how a hypermedia environment was used to explore a group of 11th grade chemistry students' conceptions of table salt dissolving in water. Indicates that a hypermedia environment can be used to explore, negotiate, and assess students' conceptions of…
Miniature Robotic Submarine for Exploring Harsh Environments
NASA Technical Reports Server (NTRS)
Behar, Alberto; Bruhn, Fredrik; Carsey, Frank
2004-01-01
The miniature autonomous submersible explorer (MASE) has been proposed as a means of scientific exploration -- especially, looking for signs of life -- in harsh, relatively inaccessible underwater environments. Basically, the MASE would be a small instrumented robotic submarine (see figure) that could launch itself or could be launched from another vehicle. Examples of environments that might be explored by use of the MASE include subglacial lakes, deep-ocean hydrothermal vents, acidic or alkaline lakes, brine lenses in permafrost, and ocean regions under Antarctic ice shelves.
An Explorative Study on Environmental Literacy among the Secondary Level Students in Bangladesh
ERIC Educational Resources Information Center
Sarkar, Md. Mahbub Alam; Ara, Quazi Afroz Jahan; Raihan, Jahir; Ozaki, Koji
2008-01-01
This study was intended to explore the environmental literacy among the secondary level students of Bangladesh. Specifically, it was designed to: i) determine environmental knowledge of the secondary students, ii) explore their environmental attitude, iii) find out their environment related practices, and iv) explore school's environment-friendly…
The science of the lunar poles
NASA Astrophysics Data System (ADS)
Lucey, P. G.
2011-12-01
It was the great geochemist Harold Urey who first called attention to peculiar conditions at the poles of the Moon where the very small inclination of the lunar spin axis with respect to the sun causes craters and other depressions to be permanently shaded from sunlight allowing very low temperatures. Urey suggested that the expected low temperature surfaces could cold trap and collect any vapors that might transiently pass through the lunar environment. Urey's notion has led to studies of the poles as a new research area in lunar science. The conditions and science of the poles are utterly unlike those of the familiar Moon of Neil Armstrong, and the study of the poles is similar to our understanding of the Moon itself at the dawn of the space age, with possibilities outweighing current understanding. Broadly, we can treat the poles as a dynamic system of input, transport, trapping, and loss. Volatile sources range from continuous, including solar wind, the Earth's polar fountain and micrometeorites, to episodic, including comets and wet asteroids, to nearly unique events including late lunar outgassing and passage through giant molecular clouds. The lunar exosphere transports volatiles to the poles, complicated by major perturbances to the atmosphere by volatile-rich sources. Trapping includes cold trapping, but also in situ creation of more refractory species such as organics, clathrates and water-bearing minerals, as well as sequester by regolith overturn or burial by larger impacts. Finally, volatiles are lost to space by ionization and sweeping. Spacecraft results have greatly added to the understanding of the polar system. Temperatures have been precisely measured by LRO, and thermal models now allow determination of temperature over the long evolution of the lunar orbit, and show very significant changes in temperature and temperature distribution with time and depth. Polar topography is revealed in detail by Selene and LRO laser altimeters while direct imaging of interiors of polar shadowed craters has been accomplished by many instruments from the ultraviolet to the radar. Imaging radars on Chandrayaan-1 and LRO have identified anomalous craters that may contain rich water ice deposits. Neutron spectrometers on Lunar Prospector and LRO directly detected hydrogen enhancements at both poles. Spectacularly, the LCROSS impact experiment detected a wide range of volatile elements and species at Cabeus crater in the lunar south polar region. While these measurements have catapulted polar science forward, much remains to be understood about the polar system, both from analysis of the current data, and new missions planned and in development. The general state of the lunar atmosphere is planned to be addressed by the UV and neutral mass spectrometers carried by the planned NASA LADEE (Lunar Atmosphere And Dust Environment Explorer) spacecraft creating an important baseline. But more data is necessary, from an in situ direct assay of polar volatiles to measurements of species and fluxes into and out of the cold traps over lengthy timescales.
Biosignature Preservation and Detection in Mars Analog Environments
Graham, Heather V.; Des Marais, David J.; Hausrath, Elisabeth M.; Horgan, Briony; McCollom, Thomas M.; Parenteau, M. Niki; Potter-McIntyre, Sally L.; Williams, Amy J.; Lynch, Kennda L.
2017-01-01
Abstract This review of material relevant to the Conference on Biosignature Preservation and Detection in Mars Analog Environments summarizes the meeting materials and discussions and is further expanded upon by detailed references to the published literature. From this diverse source material, there is a detailed discussion on the habitability and biosignature preservation potential of five primary analog environments: hydrothermal spring systems, subaqueous environments, subaerial environments, subsurface environments, and iron-rich systems. Within the context of exploring past habitable environments on Mars, challenges common to all of these key environments are laid out, followed by a focused discussion for each environment regarding challenges to orbital and ground-based observations and sample selection. This leads into a short section on how these challenges could influence our strategies and priorities for the astrobiological exploration of Mars. Finally, a listing of urgent needs and future research highlights key elements such as development of instrumentation as well as continued exploration into how Mars may have evolved differently from Earth and what that might mean for biosignature preservation and detection. Key Words: Biosignature preservation—Biosignature detection—Mars analog environments—Conference report—Astrobiological exploration. Astrobiology 17, 363–400. PMID:28177270
ERIC Educational Resources Information Center
Wang, Wenlan; Yin, Hongbiao; Lu, Genshu; Zhang, Qiaoping
2017-01-01
This study explored the relationships between Chinese college students' perceptions of the classroom environment and some affective aspects in the study of mathematics. A total of 2529 students responded to three measures that were specifically designed to assess college students' perceptions of the mathematics classroom environment, their…
Nakamura, Ryoji; Kachi, N; Suzuki, J-I
2010-05-01
We investigated the growth of and soil exploration by Lolium perenne under a heterogeneous environment before its roots reached a nutrient-rich patch. Temporal changes in the distribution of inorganic nitrogen, i.e., NO(3)(-)-N and NH(4)(+)-N, in the heterogeneous environment during the experimental period were also examined. The results showed that roots randomly explored soil, irrespective of the patchy distribution of inorganic nitrogen and differences in the chemical composition of inorganic nitrogen distribution between heterogeneous and homogeneous environments. We have also elucidated the potential effects of patch duration and inorganic nitrogen distribution on soil exploration by roots and thus on plant growth.
Earth Trek...Explore Your Environment.
ERIC Educational Resources Information Center
Environmental Protection Agency, Washington, DC. Office of Public Affairs.
This booklet for children emphasizes the exploration and protection of the environment. An introduction discusses the interaction between humankind and the environment, emphasizing that the earth is a closed system. Chapter 1, "Mission: Protect the Water," addresses human dependence on water, water pollution, and water treatment. Chapter…
Telepresence in the human exploration of Mars: Field studies in analog environments
NASA Technical Reports Server (NTRS)
Stoker, Carol R.
1993-01-01
This paper describes the role of telepresence in performing exploration of Mars. As part of an effort to develop telepresence to support Mars exploration, NASA is developing telepresence technology and using it to perform exploration in space analog environments. This paper describes experiments to demonstrate telepresence control of an underwater remotely operated vehicle (TROV) to perform scientific field work in isolated and hostile environments. Toward this end, we have developed a telepresence control system and interfaced it to an underwater remotely operated vehicle. This vehicle was used during 1992 to study aquatic ecosystems in Antarctica including a study of the physical and biological environment of permanently ice-covered lake. We also performed a preliminary analysis of the potential for using the TROV to study the benthic ecology under the sea ice in McMurdo sound. These expeditions are opening up new areas of research by using telepresence control of remote vehicles to explore isolated and extreme environments on Earth while also providing an impetus to develop technology which will play a major role in the human exploration of Mars. Antarctic field operations, in particular, provide an excellent analog experience for telepresence operation in space.
Mobile robots exploration through cnn-based reinforcement learning.
Tai, Lei; Liu, Ming
2016-01-01
Exploration in an unknown environment is an elemental application for mobile robots. In this paper, we outlined a reinforcement learning method aiming for solving the exploration problem in a corridor environment. The learning model took the depth image from an RGB-D sensor as the only input. The feature representation of the depth image was extracted through a pre-trained convolutional-neural-networks model. Based on the recent success of deep Q-network on artificial intelligence, the robot controller achieved the exploration and obstacle avoidance abilities in several different simulated environments. It is the first time that the reinforcement learning is used to build an exploration strategy for mobile robots through raw sensor information.
Caracheo, Barak F.; Emberly, Eldon; Hadizadeh, Shirin; Hyman, James M.; Seamans, Jeremy K.
2013-01-01
Foraging typically involves two distinct phases, an exploration phase where an organism explores its local environment in search of needed resources and an exploitation phase where a discovered resource is consumed. The behavior and cognitive requirements of exploration and exploitation are quite different and yet organisms can quickly and efficiently switch between them many times during a foraging bout. The present study investigated neural activity state dynamics in the anterior cingulate sub-region of the rat medial prefrontal cortex (mPFC) when a reliable food source was introduced into an environment. Distinct and largely independent states were detected using a Hidden Markov Model (HMM) when food was present or absent in the environment. Measures of neural entropy or complexity decreased when rats went from exploring the environment to exploiting a reliable food source. Exploration in the absence of food was associated with many weak activity states, while bouts of food consumption were characterized by fewer stronger states. Widespread activity state changes in the mPFC may help to inform foraging decisions and focus behavior on what is currently most prominent or valuable in the environment. PMID:23745102
Extravehicular Activity and Planetary Protection
NASA Technical Reports Server (NTRS)
Buffington, J. A.; Mary, N. A.
2015-01-01
The first human mission to Mars will be the farthest distance that humans have traveled from Earth and the first human boots on Martian soil in the Exploration EVA Suit. The primary functions of the Exploration EVA Suit are to provide a habitable, anthropometric, pressurized environment for up to eight hours that allows crewmembers to perform autonomous and robotically assisted extravehicular exploration, science/research, construction, servicing, and repair operations on the exterior of the vehicle, in hazardous external conditions of the Mars local environment. The Exploration EVA Suit has the capability to structurally interface with exploration vehicles via next generation ingress/egress systems. Operational concepts and requirements are dependent on the mission profile, surface assets, and the Mars environment. This paper will discuss the effects and dependencies of the EVA system design with the local Mars environment and Planetary Protection. Of the three study areas listed for the workshop, EVA identifies most strongly with technology and operations for contamination control.
Costs and Benefits of Mission Participation in PDS4 Migrations
NASA Astrophysics Data System (ADS)
Mafi, J. N.; King, T. A.; Cecconi, B.; Faden, J.; Piker, C.; Kazden, D. P.; Gordon, M. K.; Joy, S. P.
2017-12-01
The Planetary Data System, Version 4 (PDS4) Standard, was a major reworking of the previous, PDS3 standard. According to PDS policy, "NASA missions confirmed for flight after [1 November 2011 were] required to archive their data according to PDS4 standards." Accordingly, NASA missions starting with LADEE (launched September 2013), and MAVEN (launched November 2013) have used the PDS4 standard. However, a large legacy of previously archived NASA planetary mission data already reside in the PDS archive in PDS3 and older formats. Plans to migrate the existing PDS archives to PDS4 have been discussed within PDS for some time, and have been reemphasized in the PDS Roadmap Study for 2017 - 2026 (https://pds.nasa.gov/roadmap/PlanetaryDataSystemRMS17-26_20jun17.pdf). Updating older PDS metadata to PDS4 would enable those data to take advantage of new capabilities offered by PDS4, and insure the full compatibility of past archives with current and future PDS4 tools and services. Responsibility for performing the migration to PDS4 falls primarily upon the PDS discipline nodes, though some support by the active (or recently active) instrument teams would be required in order to help augment the existing metadata to include information that is unique to PDS4. However, there may be some value in mission data providers becoming more actively involved in the migration process. The upfront costs of this approach may be offset by the long term benefits of data provider's understanding of PDS4, their ability to take more full advantage of PDS4 tools and services, and in their preparation for producing PDS4 archives for future missions. This presentation will explore the costs and benefits associated with this approach.
NASA Astrophysics Data System (ADS)
Goswami, J. N.
2012-07-01
The beginning of this century ushered a new era in lunar exploration. It started with the Smart-1 mission, launched in 2003, that was followed in quick succession by Kaguya, Change-1, Chandrayaan-1, LRO, LCROSS, Change-2 and the most recent GRAIL mission, launched in late 2011. Results obtained by these missions have strengthened some of the existing postulates of lunar evolution, such as the global magma hypothesis, questioned many of our earlier views on moon and generated renewed interest in laboratory studies of lunar samples. Moon can no longer be considered as a bone-dry object. Signatures of hydroxyl and water molecules were found at high latitude lunar regions by Chandrayaan-1 mission and LCROSS mission detected water in the plume generated by a planned impact on a permanently shadowed lunar polar site. Laboratory studies confirmed presence of hydroxyl as a structural component in minerals present in lunar rocks. The permanently shadowed regions turned out to be some of the coldest place in the solar system and could potentially host surface/sub-surface water ice and frozen volatiles. New results obtained by these missions suggest the presence of previously unidentified lunar rock types, young volcanic and tectonic activities, layering within the top kilometre of the lunar surface and the possibility that moon host a very tenuous exosphere. Interesting new features of solar wind interactions with the lunar surface and localized lunar magnetic field have also been delineated. The ongoing effort to reconstruct the new face of the moon will get a boost from results from the GRAIL mission on gravity anomalies and from other upcoming missions, LADEE, Chandrayaan-2, Luna Resource and Luna Glob. A general overview of our current ideas of lunar evolution will be presented along with a preview of upcoming efforts to better understand our closest neighbour in space.
Exploring Collaborative Learning Effect in Blended Learning Environments
ERIC Educational Resources Information Center
Sun, Z.; Liu, R.; Luo, L.; Wu, M.; Shi, C.
2017-01-01
The use of new technology encouraged exploration of the effectiveness and difference of collaborative learning in blended learning environments. This study investigated the social interactive network of students, level of knowledge building and perception level on usefulness in online and mobile collaborative learning environments in higher…
Drone-Augmented Human Vision: Exocentric Control for Drones Exploring Hidden Areas.
Erat, Okan; Isop, Werner Alexander; Kalkofen, Denis; Schmalstieg, Dieter
2018-04-01
Drones allow exploring dangerous or impassable areas safely from a distant point of view. However, flight control from an egocentric view in narrow or constrained environments can be challenging. Arguably, an exocentric view would afford a better overview and, thus, more intuitive flight control of the drone. Unfortunately, such an exocentric view is unavailable when exploring indoor environments. This paper investigates the potential of drone-augmented human vision, i.e., of exploring the environment and controlling the drone indirectly from an exocentric viewpoint. If used with a see-through display, this approach can simulate X-ray vision to provide a natural view into an otherwise occluded environment. The user's view is synthesized from a three-dimensional reconstruction of the indoor environment using image-based rendering. This user interface is designed to reduce the cognitive load of the drone's flight control. The user can concentrate on the exploration of the inaccessible space, while flight control is largely delegated to the drone's autopilot system. We assess our system with a first experiment showing how drone-augmented human vision supports spatial understanding and improves natural interaction with the drone.
Exploration of the Electromagnetic Environment
ERIC Educational Resources Information Center
Fullekrug, M.
2009-01-01
The electromagnetic environment is composed of electric and magnetic fields which result from man-made and natural sources. An elementary experiment is described to explore the electromagnetic environment by measuring electric fields in the frequency range from approximately equal to 10 to 24 000 Hz. The equipment required to conduct the…
Exploring the Effectiveness of Online Education in K-12 Environments
ERIC Educational Resources Information Center
Heafner, Tina L., Ed.; Hartshorne, Richard, Ed.; Petty, Teresa, Ed.
2015-01-01
The integration of technology in classrooms is rapidly emerging as a way to provide more educational opportunities for students. As virtual learning environments become more popular, evaluating the impact of this technology on student success is vital. "Exploring the Effectiveness of Online Education in K-12 Environments" combines…
NASA Astrophysics Data System (ADS)
Leuko, Stefan; Rettberg, Petra; De Waele, Jo; Sanna, Laura; Koskinen, Kaisa
2016-07-01
The quest of exploring and looking for life in new places is a human desire since centuries. Nowadays, we are not only looking on planet Earth any more, but our endeavours focus on nearby planets in our solar system. It is therefore of great importance to preserve the extra-terrestrial environment and not to contaminate it with terrestrial / human associated bacteria. At this point in time we are not able to send crewed missions to other planets; however, analysing the impact of human exploration on environments is of great planetary protection concern. This can be achieved by obtaining samples from a subterranean environment, where only expert speleologists have access and the human impact is considered very low. For this study, astronauts participating in the 2014 ESA CAVES (Cooperative Adventure for Valuing and Exercising human behaviour and performance Skills) training course, obtained samples from deep within a subterranean environment and returned them to the laboratory for molecular microbial analysis. The diversity of the returned soil samples was analysed by molecular means such as clone library and next-generation sequencing (NGS). It was found that humans have an immense impact on the microbial diversity in the environment. Although the cave system is sparsely entered by humans, a high relative abundance of Staphylococcus spp. and Propionibacteria spp., organisms that are characteristic for human skin, have been recovered. Some samples even showed the presence of human gut associated methanogenic archaea, Methanomassiliicoccus spp. The obtained data from this investigation indicate that human exploration is strongly polluting an environment and may lead to false-positive sign of life on other planets. It is therefore imperative to increase our awareness to this problem as well as work towards new protocols to protect a pristine extraterrestrial environment during exploration.
Houghton, Frank; Houghton, Sharon
2015-05-01
The concept of therapeutic landscapes, as introduced by Gesler, has had a significant impact on what has become a reformed geography (or geographies) of health. Research in this field has developed the number and type of sites that have been characterised as therapeutic landscapes. A wide range of environments have now been explored through the analytical lens of the 'therapeutic landscape'. This research further expands current descriptions of such environments by exploring Edgelands as therapeutic micro landscapes. Edgelands refer to the neglected and routinely ignored interfacial zone between urban and rural that are a routine characteristic of the urban fringe resulting from dynamic cycles of urban development and decay. Using a hybrid method of thematic analysis incorporating both inductive and deductive approaches, this research explores Richard Mabey's seminal work on this topic, The Unofficial Countryside. Previous examinations of the features of therapeutic environments are therefore scrutinised to explore both scale and the possibility of further extending the kind of environments that may be described as therapeutic to include Edgelands. This approach is informed, in part, by principles of mindfulness, a historically Eastern, but increasingly Western approach to exploring oneself and the environment. This research identifies that these overlooked and neglected landscapes are in fact vibrant, resilient and enthralling environments teeming with life, renewal and re-birth. Examination reveals that there are three crucial outcomes of this research. The first relates to the issue of scale. Mabey's book provides evidence of the importance of micro environments in providing a therapeutic environmental focus. Secondly, this research explores the potential of mindfulness as an approach in Geography. Lastly, this research also identifies Edgelands as therapeutic sites and calls for an increased understanding and appreciation of their potential. Copyright © 2014 Elsevier Ltd. All rights reserved.
PADME (Phobos And Deimos & Mars Environment): A Proposed NASA Discovery Mission
NASA Astrophysics Data System (ADS)
Lee, Pascal
2014-11-01
Ever the since their discovery in 1877 by American astronomer Asaph Hall, the two moons of Mars, Phobos and Deimos, have been enigmas. Spacecraft missions have revealed irregular-shaped small bodies with different densities, morphologies, and evolutionary histories. Spectral data suggest that they might be akin to D-type asteroids, although compositional interpretations of the spectra are ambiguous. The origin of Phobos and Deimos remains unknown. There are three prevailing hypotheses for their origin: 1) They are captured asteroids, possibly primitive D-type bodies from the outer main belt or beyond; 2) They are reaccreted impact ejecta from Mars; 3) They are remnants of Mars’s formation. Each one of these hypotheses has radically different and important implications regarding the evolution of the solar system, and/or the formation and evolution of planets and satellites, including the delivery of water and organics to the inner solar system. The Phobos And Deimos & Mars Environment (PADME) mission is a proposed NASA Discovery mission that will test these hypotheses, by investigating simultaneously the internal structure of Phobos and Deimos, and the composition and dynamics of their surface and near-surface materials. PADME would launch in 2020 and reach Mars orbit in early 2021. PADME would then begin a series of slow and increasingly close flybys of Phobos first, then of Deimos. PADME would use the proven LADEE spacecraft and mature instrument systems to enable a low-cost and low risk approach to carrying out its investigation. In addition to achieving its scientific objectives, PADME would fill strategic knowledge gaps identified by NASA’s SBAG and HEOMD for planning future, more ambitious robotic landed or sample return missions to Phobos and/or Deimos, and eventual human missions to Mars Orbit. PADME would be built, managed, and operated by NASA Ames Research Center. Partners include the SETI Institute, NASA JPL, NASA GSFC, NASA JSC, NASA KSC, LASP, Cornell U., U. of Central Florida, U. of Maryland, U. of Virginia, Lowell Observatory, Royal Observatory of Belgium, Observatoire de la Cote d’Azur, and JAXA.
Flourishing: Exploring Predictors of Mental Health within the College Environment
ERIC Educational Resources Information Center
Fink, John E.
2014-01-01
Objective: To explore the predictive factors of student mental health within the college environment. Participants: Students enrolled at 7 unique universities during years 2008 (n = 1,161) and 2009 (n = 1,459). Methods: Participants completed survey measures of mental health, consequences of alcohol use, and engagement in the college environment.…
Dynamic and Interactive Mathematics Learning Environments: The Case of Teaching the Limit Concept
ERIC Educational Resources Information Center
Martinovic, Dragana; Karadag, Zekeriya
2012-01-01
This theoretical study is an attempt to explore the potential of the dynamic and interactive mathematics learning environments (DIMLE) in relation to the technological pedagogical content knowledge (TPACK) framework. DIMLE are developed with intent to support learning mathematics through free exploration in a less constrained environment. A…
Natural Environment Definition for Exploration Missions
NASA Technical Reports Server (NTRS)
Suggs, Robert M.
2017-01-01
A comprehensive set of environment definitions is necessary from the beginning of the development of a spacecraft. The Cross-Program Design Specification for Natural Environments (DSNE, SLS-SPEC-159) was originally developed during the Constellation Program and then modified and matured for the Exploration Programs (Space Launch System and Orion). The DSNE includes launch, low-earth orbit (LEO), trans-lunar, cislunar, interplanetary, and entry/descent/landing environments developed from standard and custom databases and models. The space environments section will be discussed in detail.
Natural Environment Definition for Exploration Missions
NASA Technical Reports Server (NTRS)
Suggs, Rob
2017-01-01
A comprehensive set of environment definitions is necessary from the beginning of the development of a spacecraft. The Cross-Program Design Specification for Natural Environments (DSNE, SLS-SPEC-159) was originally developed during the Constellation Program and then modified and matured for the Exploration Programs (Space Launch System and Orion). The DSNE includes launch, low-earth orbit, trans-lunar, cis-lunar, interplanetary, and entry/descent/landing environments developed from standard and custom databases and models. The space environments section will be discussed in detail.
Theory-led confirmation bias and experimental persona
NASA Astrophysics Data System (ADS)
Allen, Michael
2011-04-01
Questionnaire and interview findings from a survey of three Year 8 (ages 12-13 years) science practical lessons (n = 52) demonstrate how pupils' data collection and inference making were sometimes biased by desires to confirm a personal theory. A variety of behaviours are described where learners knowingly rejected anomalies, manipulated apparatus, invented results or carried out other improper operations to either collect data which they believed were scientifically correct, or achieve social conformity. It is proposed that confirmation bias was a consequence of the degree to which individuals were laden by theory, and driven by this, experimenters assumed one of three different personas: becoming right answer confirmers; good scientists; or indifferent spectators. These personas have parallels with historical instances of scientific behaviour. Implications of a continued teacher-tolerance of pupil confirmation bias include the promotion of unscientific experimenting, and the persistence of unchallenged science misconceptions. Solutions are offered in the way of practical strategies that might reduce experimenters' theory-ladeness.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Holenemser, K.H.
1995-10-01
This report surveys the analysis and tests performed at Washington University in St. Louis, Missouri, on a horizontal-axis, two-laded wind turbine with teeter hub. The introduction is a brief account of results obtained during the 5-year period ending December 1985. The wind tunnel model and the test turbine (7.6 m [25 ft.] in diameter) at Washington University`s Tyson Research Center had a 67{degree} delta-three angle of the teeter axis. The introduction explains why this configuration was selected and named the passive cycle pitch (PCP) wind turbine. Through the analysis was not limited to the PCP rotor, all tests, including thosemore » done from 1986 to 1994, wee conducted with the same teetered wind rotor. The blades are rather stiff and have only a small elastic coning angle and no precone.« less
Effect of periodic fluctuation of soil particle rotation resistance on interface shear behaviour
NASA Astrophysics Data System (ADS)
Ebrahimian, Babak; Noorzad, Asadollah
2010-06-01
The interface behaviour between infinite extended narrow granular layer and bounding structure is numerically investigated using finite element method. The micro-polar (Cosserat) continuum approach within the framework of elasto-plasticity is employed to remove the numerical difficulties caused by strain-softening of materials in classical continuum mechanics. Mechanical properties of cohesionless granular soil are described with Lade's model enhanced with polar terms including Cosserat rotations, curvatures and couple stresses via mean grain diameter as the internal length. The main attention of paper is laid on the influence of spatial periodic fluctuation of rotation resistance of soil particles interlocked with the surface of bounding structure on evolution and location of shear band developed inside granular body. The finite element results demonstrate that the location and evolution of shear localization in granular body is strongly affected by prescribed non-uniform micro-polar kinematic boundary conditions along the interface.
Tisettanta case study: the interoperation of furniture production companies
NASA Astrophysics Data System (ADS)
Amarilli, Fabrizio; Spreafico, Alberto
This chapter presents the Tisettanta case study, focusing on the definition of the possible innovations that ICT technologies can bring to the Italian wood-furniture industry. This sector is characterized by industrial clusters composed mainly of a few large companies with international brand reputations and a large base of SMEs that manufacture finished products or are specialized in the production of single components/processes (such as the Brianza cluster, where Tisettanta operates). In this particular business ecosystem, ICT technologies can bring relevant support and improvements to the supply chain process, where collaborations between enterprises are put into action through the exchange of business documents such as orders, order confirmation, bills of lading, invoices, etc. The analysis methodology adopted in the Tisettanta case study refers to the TEKNE Methodology of Change (see Chapter 2), which defines a framework for supporting firms in the adoption of the Internetworked Enterprise organizational paradigm.
Sublgacial Antarctic Lake Environments (SALE)
NASA Astrophysics Data System (ADS)
Kennicutt, M. C.; Bell, R. E.; Priscu, J. C.
2004-12-01
Subglacial Antarctic lake environments are emerging as one of the new frontiers targeted for exploration during the IPY 2007-2009. Several campaigns by various nations are in the early stages of planning and implementation with timelines that will coincide with the IPY. The ambitious interdisciplinary objectives will best be realized by multiple exploration programs investigating diverse subglacial environments continent-wide over the next decade or more. A concerted, multi-target approach wil be taken to advance our understanding of the range of possible lake evolutionary histories; the character of the physical, chemical, and biological niches; the interconnectivity of subglacial lake environments; the coupling of the ice sheet, climate and the evolution of life under the ice; the tectonic settings; and the interplay of biogeochemical cycles. Research and exploration programs spanning the continent will investigate subglacial lake environments of differing ages, evolutionary histories, and biogeochemical settings. The combined efforts will provide a holistic view of these environments over millions of years and under changing climatic conditions. The IPY will provide an opportunity for an intense period of initial exploration that will advance scientific discoveries in glaciology, biogeochemistry, paleoclimate, biology, geology and tectonics, and ecology. While early discoveries and exciting findings are expected during the IPY 2007-2009, a long term sustained program of research and exploration will continue far beyond the IPY. Within the five year period that spans the IPY, specific accomplishments will be targeted, accelerating the research agenda and setting a framework for follow-on studies. Four phases of exploration and discovery are envisioned.
ERIC Educational Resources Information Center
Sohn, Johannah Eve
2014-01-01
This descriptive case study explores the implementation of a multi-user virtual environment (MUVE) in a Jewish supplemental school setting. The research was conducted to present the recollections and reflections of three constituent populations of a new technology exploring constructivist education in the context of supplemental and online…
Why ePortfolios? Student Perceptions of ePortfolio Use in Continuing Education Learning Environments
ERIC Educational Resources Information Center
Wuetherick, Brad; Dickinson, John
2015-01-01
Over the past decade, there has been an increased exploration of ePortfolios in higher education across disciplines at both the undergraduate and graduate level. ePortfolios have been significantly under-explored, however, in the context of non-traditional continuing education environments within higher education. This paper explores students'…
Exploring Pre-Service Elementary Teachers' Mental Models of the Environment
ERIC Educational Resources Information Center
Taskin-Ekici, Fatma; Ekici, Erhan; Cokadar, Hulusi
2015-01-01
This study aims to explore pre-service elementary teachers' understandings of the environment. A survey method was carried out in this study. A close-ended questionnaire and Draw-An-Environment Test (DAET) are administered to pre-service teachers (N = 255) after instruction of an Environmental Education course. A rubric (DAET-R) is used for…
Teachers' Perceptions of Their Work Environment in Swedish Junior High Schools
ERIC Educational Resources Information Center
Allodi, Mara Westling; Fischbein, Siv
2012-01-01
The aims of this study were to explore the organisational characteristics of junior high schools, to identify typologies of work environments and to explore the relationships between the type of work environment and how schools function. The educational profession and the role of teachers have been influenced by policies inspired by the principles…
Deep space environments for human exploration
NASA Technical Reports Server (NTRS)
Wilson, J. W.; Clowdsley, M. S.; Cucinotta, F. A.; Tripathi, R. K.; Nealy, J. E.; De Angelis, G.
2004-01-01
Mission scenarios outside the Earth's protective magnetic shield are being studied. Included are high usage assets in the near-Earth environment for casual trips, for research, and for commercial/operational platforms, in which career exposures will be multi-mission determined over the astronaut's lifetime. The operational platforms will serve as launching points for deep space exploration missions, characterized by a single long-duration mission during the astronaut's career. The exploration beyond these operational platforms will include missions to planets, asteroids, and planetary satellites. The interplanetary environment is evaluated using convective diffusion theory. Local environments for each celestial body are modeled by using results from the most recent targeted spacecraft, and integrated into the design environments. Design scenarios are then evaluated for these missions. The underlying assumptions in arriving at the model environments and their impact on mission exposures within various shield materials will be discussed. Published by Elsevier Ltd on behalf of COSPAR.
A Behavior-Based Strategy for Single and Multi-Robot Autonomous Exploration
Cepeda, Jesus S.; Chaimowicz, Luiz; Soto, Rogelio; Gordillo, José L.; Alanís-Reyes, Edén A.; Carrillo-Arce, Luis C.
2012-01-01
In this paper, we consider the problem of autonomous exploration of unknown environments with single and multiple robots. This is a challenging task, with several potential applications. We propose a simple yet effective approach that combines a behavior-based navigation with an efficient data structure to store previously visited regions. This allows robots to safely navigate, disperse and efficiently explore the environment. A series of experiments performed using a realistic robotic simulator and a real testbed scenario demonstrate that our technique effectively distributes the robots over the environment and allows them to quickly accomplish their mission in large open spaces, narrow cluttered environments, dead-end corridors, as well as rooms with minimum exits.
Conference Report: Biosignature Preservation and Detection in Mars Analog Environments.
Hays, Lindsay; Beaty, David
2017-01-01
The Conference on Biosignature Preservation and Detection in Mars Analog Environments held in May 2016 brought together scientists to discuss microbial biosignatures in Mars analog habitable environments. Five analog environments were discussed: (1) hydrothermal spring systems, (2) subaqueous environments, (3) subaerial environments, (4) subsurface environments, and (5) iron-rich systems. This paper details the major messages that resulted from the discussions and will be followed by a review paper that adds significant detail from the published literature and interpretations from the writing committee of the workshop for future research and application to astrobiological exploration missions. Key Words: Biosignature preservation-Biosignature detection-Mars analog environments-Conference report-Astrobiological exploration. Astrobiology 17, 1-2.
A Virtual Environment for People Who Are Blind – A Usability Study
Lahav, O.; Schloerb, D. W.; Kumar, S.; Srinivasan, M. A.
2013-01-01
For most people who are blind, exploring an unknown environment can be unpleasant, uncomfortable, and unsafe. Over the past years, the use of virtual reality as a learning and rehabilitation tool for people with disabilities has been on the rise. This research is based on the hypothesis that the supply of appropriate perceptual and conceptual information through compensatory sensorial channels may assist people who are blind with anticipatory exploration. In this research we developed and tested the BlindAid system, which allows the user to explore a virtual environment. The two main goals of the research were: (a) evaluation of different modalities (haptic and audio) and navigation tools, and (b) evaluation of spatial cognitive mapping employed by people who are blind. Our research included four participants who are totally blind. The preliminary findings confirm that the system enabled participants to develop comprehensive cognitive maps by exploring the virtual environment. PMID:24353744
Exploring the Role of the Built and Social Neighborhood Environment in Moderating Stress and Health
Yang, Tse-Chuan
2014-01-01
Background Health researchers have explored how different aspects of neighborhood characteristics contribute to health and well-being, but current understanding of built environment factors is limited. Purpose This study explores whether the association between stress and health varies by residential neighborhood, and if yes, whether built and social neighborhood environment characteristics act as moderators. Methods This study uses multilevel modeling and variables derived from geospatial data to explore the role of neighborhood environment in moderating the association of stress with health. Individual-level data (N=4,093) were drawn from residents of 45 neighborhoods within Philadelphia County, PA, collected as part of the 2006 Philadelphia Health Management Corporation's Household Health Survey. Results We find that the negative influence of high stress varied by neighborhood, that residential stability and affluence (social characteristics) attenuated the association of high stress with health, and that the presence of hazardous waste facilities (built environment characteristics) moderated health by enhancing the association with stress. Conclusions Our findings suggest that neighborhood environment has both direct and moderating associations with health, after adjusting for individual characteristics. The use of geospatial data could broaden the scope of stress–health research and advance knowledge by untangling the intertwined relationship between built and social environments, stress, and health. In particular, future studies should integrate built environment characteristics in health-related research; these characteristics are modifiable and can facilitate health promotion policies. PMID:20300905
Autonomous exploration and mapping of unknown environments
NASA Astrophysics Data System (ADS)
Owens, Jason; Osteen, Phil; Fields, MaryAnne
2012-06-01
Autonomous exploration and mapping is a vital capability for future robotic systems expected to function in arbitrary complex environments. In this paper, we describe an end-to-end robotic solution for remotely mapping buildings. For a typical mapping system, an unmanned system is directed to enter an unknown building at a distance, sense the internal structure, and, barring additional tasks, while in situ, create a 2-D map of the building. This map provides a useful and intuitive representation of the environment for the remote operator. We have integrated a robust mapping and exploration system utilizing laser range scanners and RGB-D cameras, and we demonstrate an exploration and metacognition algorithm on a robotic platform. The algorithm allows the robot to safely navigate the building, explore the interior, report significant features to the operator, and generate a consistent map - all while maintaining localization.
ERIC Educational Resources Information Center
Liu, Shu-Chiu; Lin, Huann-shyang
2015-01-01
A draw-and-explain task and questionnaire were used to explore Taiwanese undergraduate students' mental models of the environment and whether and how they relate to their environmental affect and behavioral commitment. We found that students generally held incomplete mental models of the environment, focusing on objects rather than on processes or…
ERIC Educational Resources Information Center
Treyvaud, Karli; Inder, Terrie E.; Lee, Katherine J.; Northam, Elisabeth A.; Doyle, Lex W.; Anderson, Peter J.
2012-01-01
Relationships between the home environment and early developmental outcomes were examined in 166 children born very preterm in one tertiary maternity hospital to explore whether a more optimal home environment could promote resilience. In particular, we explored whether this effect was apparent over and above social risk and children's biological…
Exploration Flight Test 1 Afterbody Aerothermal Environment Reconstruction
NASA Technical Reports Server (NTRS)
Hyatt, Andrew J.; Oliver, Brandon; Amar, Adam; Lessard, Victor
2016-01-01
The Exploration Flight Test 1 vehicle included roughly 100 near surface thermocouples on the after body of the vehicle. The temperature traces at each of these instruments have been used to perform inverse environment reconstruction to determine the aerothermal environment experienced during re-entry of the vehicle. This paper provides an overview of the reconstructed environments and identifies critical aspects of the environment. These critical aspects include transition and reaction control system jet influence. A blind test of the process and reconstruction tool was also performed to build confidence in the reconstructed environments. Finally, an uncertainty quantification analysis was also performed to identify the impact of each of the uncertainties on the reconstructed environments.
Development and Testing of Mechanism Technology for Space Exploration in Extreme Environments
NASA Technical Reports Server (NTRS)
Tyler, Tony R.; Levanas, Greg; Mojarradi, Mohammad M.; Abel, Phillip B.
2011-01-01
The NASA Jet Propulsion Lab (JPL), Glenn Research Center (GRC), Langley Research Center (LaRC), and Aeroflex, Inc. have partnered to develop and test actuator hardware that will survive the stringent environment of the moon, and which can also be leveraged for other challenging space exploration missions. Prototype actuators have been built and tested in a unique low temperature test bed with motor interface temperatures as low as 14 degrees Kelvin. Several years of work have resulted in specialized electro-mechanical hardware to survive extreme space exploration environments, a test program that verifies and finds limitations of the designs at extreme temperatures, and a growing knowledge base that can be leveraged by future space exploration missions.
Protection of the Space Environment: The First Small Steps
NASA Astrophysics Data System (ADS)
Williamson, M.
The exploration of the space environment - by robotic and manned missions - is a natural extension of mankind's desire to explore his own planet. Likewise, the development of the space environment - for industry, commerce and tourism - is a natural extension of our current business and domestic environment. Unfortunately, it appears that our ability to pollute, degrade and even destroy aspects of the space environment is also an extension of an ability we have developed and practised here on Earth. This paper reviews the evidence of mankind's pollution of the space environment - which includes the planetary bodies - in the first 45 years of the Space Age, and extrapolates the potential for further degradation into its second half-century. It considers the future development of both scientific exploration and commercial exploitation - in orbit and on the surface of the planetary bodies - and the possible detrimental effects. In presenting the case for protection of the space environment, the paper makes recommendations concerning the first steps towards a solution to the problem. Among other things, it calls for the formation of an international consultative body, to consider the issues relevant to `Protection of the Space Environment' and to raise awareness of the subject among the growing body of space professionals and practitioners. It also recommends consideration of a `set of guidelines' or `code of practice' as a precursor to more formal policies or legislation. In doing so, however, it is careful to recognise the need to strike a balance between unbridled exploration and development, and a stifling regime of rules and regulations. The discussion of this subject requires a good deal more collective knowledge, understanding and maturity than has been evident in similar discussions regarding the Earth's environment. At present, that knowledge resides largely within the professional space community. Thus there is also a need for promulgation, both within and beyond that community. As the space frontier becomes accessible to a wider variety of individuals, corporations and other bodies, the requirement for protection of the space environment grows. If the space environment is to remain available for the study of and use by successive generations of explorers and developers, we must make the first steps towards protection now. In another twenty years or so - when the second generation of lunar explorers is making footprints on the surface - it may be too late.
NASA Technical Reports Server (NTRS)
Johnson, M.; Label, K.; McCabe, J.; Powell, W.; Bolotin, G.; Kolawa, E.; Ng, T.; Hyde, D.
2007-01-01
Implementation of challenging Exploration Systems Missions Directorate objectives and strategies can be constrained by onboard computing capabilities and power efficiencies. The Radiation Hardened Electronics for Space Environments (RHESE) High Performance Processors for Space Environments project will address this challenge by significantly advancing the sustained throughput and processing efficiency of high-per$ormance radiation-hardened processors, targeting delivery of products by the end of FY12.
NASA Astrophysics Data System (ADS)
Preston, L. J.; Barber, S. J.; Grady, M. M.
2012-03-01
The Concepts for Activities in the Field for Exploration (CAFE) project is creating a complete catalogue of terrestrial analogue environments that are appropriate for testing human space exploration-related scientific field activities.
Cullis, B R; Smith, A B; Beeck, C P; Cowling, W A
2010-11-01
Exploring and exploiting variety by environment (V × E) interaction is one of the major challenges facing plant breeders. In paper I of this series, we presented an approach to modelling V × E interaction in the analysis of complex multi-environment trials using factor analytic models. In this paper, we develop a range of statistical tools which explore V × E interaction in this context. These tools include graphical displays such as heat-maps of genetic correlation matrices as well as so-called E-scaled uniplots that are a more informative alternative to the classical biplot for large plant breeding multi-environment trials. We also present a new approach to prediction for multi-environment trials that include pedigree information. This approach allows meaningful selection indices to be formed either for potential new varieties or potential parents.
NASA Technical Reports Server (NTRS)
Chough, Natacha G.; Watkins, Sharmi; Menon, Anil S.
2012-01-01
As space exploration is directed towards destinations beyond low-Earth orbit, the consequent new set of medical risks will drive requirements for new capabilities and more resources to ensure crew health. The Space Medicine Exploration Medical Conditions List (SMEMCL), developed by the Exploration Medical Capability element of the Human Research Program, addresses the risk of "unacceptable health and mission outcomes due to limitations of in-flight medical capabilities". It itemizes 85 evidence-based clinical requirements for eight different mission profiles and identifies conditions warranting further research and technology development. Each condition is given a clinical priority for each mission profile. Four conditions -- intra-abdominal infections, skin lacerations, anaphylaxis, and behavioral emergencies -- were selected as a starting point for analysis. A systematic literature review was performed to understand how these conditions are treated in austere, limited-resource, space-analog environments (i.e., high-altitude and mountain environments, submarines, military deployments, Antarctica, isolated wilderness environments, in-flight environments, and remote, resource-poor, rural environments). These environments serve as analogs to spaceflight because of their shared characteristics (limited medical resources, delay in communication, confined living quarters, difficulty with resupply, variable time to evacuation). Treatment of these four medical conditions in austere environments provides insight into medical equipment and training requirements for exploration-class missions.
The Feasibility of Wearables in an Enterprise Environment and Their Impact on IT Security
NASA Technical Reports Server (NTRS)
Scotti, Vincent, Jr.
2015-01-01
This paper is intended to explore the usability and feasibility of wearables in an enterprise environment and their impact on IT Security. In this day and age, with the advent of the Internet of Things, we must explore all the new technology emerging from the minds of the new inventors. This means exploring the use of wearables in regards to their benefits, limitations, and the new challenges they pose to securing computer networks in the Federal environment. We will explore the design of the wearables, the interfaces needed to connect them, and what it will take to connect personal devices in the Federal enterprise network environment. We will provide an overview of the wearable design, concerns of ensuring the confidentiality, integrity, and availability of information and the challenges faced by those doing so. We will also review the implications and limitations of the policies governing wearable technology and the physical efforts to enforce them.
NASA Technical Reports Server (NTRS)
Altino, Karen M.; Burns, K. Lee; Barbre, Robert E., Jr.; Leahy, Frank B.
2014-01-01
The National Aeronautics and Space Administration (NASA) is developing new capabilities for human and scientific exploration beyond Earth orbit. Natural environments information is an important asset for NASA's development of the next generation space transportation system as part of the Exploration Systems Development (ESD) Programs, which includes the Space Launch System (SLS) and Multi-Purpose Crew Vehicle (MPCV) Programs. Natural terrestrial environment conditions - such as wind, lightning and sea states - can affect vehicle safety and performance during multiple mission phases ranging from pre-launch ground processing to landing and recovery operations, including all potential abort scenarios. Space vehicles are particularly sensitive to these environments during the launch/ascent and the entry/landing phases of mission operations. The Marshall Space Flight Center (MSFC) Natural Environments Branch provides engineering design support for NASA space vehicle projects and programs by providing design engineers and mission planners with natural environments definitions as well as performing custom analyses to help characterize the impacts the natural environment may have on vehicle performance. One such analysis involves assessing the impact of natural environments to operational availability. Climatological time series of operational surface weather observations are used to calculate probabilities of meeting/exceeding various sets of hypothetical vehicle-specific parametric constraint thresholds. Outputs are tabulated by month and hour of day to show both seasonal and diurnal variation. This paper will discuss how climate analyses are performed by the MSFC Natural Environments Branch to support the ESD Launch Availability (LA) Technical Performance Measure (TPM), the SLS Launch Availability due to Natural Environments TPM, and several MPCV (Orion) launch and landing availability analyses - including the 2014 Orion Exploration Flight Test 1 (EFT-1) mission.
Environment exploration and SLAM experiment research based on ROS
NASA Astrophysics Data System (ADS)
Li, Zhize; Zheng, Wei
2017-11-01
Robots need to get the information of surrounding environment by means of map learning. SLAM or navigation based on mobile robots is developing rapidly. ROS (Robot Operating System) is widely used in the field of robots because of the convenient code reuse and open source. Numerous excellent algorithms of SLAM or navigation are ported to ROS package. hector_slam is one of them that can set up occupancy grid maps on-line fast with low computation resources requiring. Its characters above make the embedded handheld mapping system possible. Similarly, hector_navigation also does well in the navigation field. It can finish path planning and environment exploration by itself using only an environmental sensor. Combining hector_navigation with hector_slam can realize low cost environment exploration, path planning and slam at the same time
Exploring consumer exposure pathways and patterns of use for chemicals in the environment through the Chemical/Product Categories Database (CPCat) (Presented by: Kathie Dionisio, Sc.D., NERL, US EPA, Research Triangle Park, NC (1/23/2014).
Exploring Causal Models of Educational Achievement.
ERIC Educational Resources Information Center
Parkerson, Jo Ann; And Others
1984-01-01
This article evaluates five causal model of educational productivity applied to learning science in a sample of 882 fifth through eighth graders. Each model explores the relationship between achievement and a combination of eight constructs: home environment, peer group, media, ability, social environment, time on task, motivation, and…
Designing Digital Environments for Art Education/Exploration.
ERIC Educational Resources Information Center
Milekic, Slavko
2000-01-01
Examines the role of digital technology in the context of art education and art exploration. Discusses the development of digital environments as the next step in the evolution of traditional computers, whose main characteristic is support for simultaneous multiple-user interactions and for social and collaborative activities. (LRW)
EXPLORATION OF SIMULATION AS A RETIREMENT EDUCATION TECHNIQUE. FINAL REPORT.
ERIC Educational Resources Information Center
BOOCOCK, SARANE SPENCE; SPRAGUE, NORMAN
A PILOT PROJECT EXPLORED THE ADAPTATION OF SIMULATION TECHNIQUES TO FOUR RETIREMENT PROBLEMS--FINANCIAL POSITION, PHYSICAL ENVIRONMENT (HOUSING CHOICES), HEALTH, AND SOCIAL ENVIRONMENT (PLANNING AND GAINING SKILLS BEFORE RETIREMENT). A PRELIMINARY MODEL OF A GAME IN RETIREMENT FINANCE PRESENTS PLAYERS WITH THREE INVESTMENT SITUATIONS--SAVINGS…