Sample records for environment phylogenetic analysis

  1. Molecular Phylogenetic Analysis of Archaeal Intron-Containing Genes Coding for rRNA Obtained from a Deep-Subsurface Geothermal Water Pool

    PubMed Central

    Takai, Ken; Horikoshi, Koki

    1999-01-01

    Molecular phylogenetic analysis of a naturally occurring microbial community in a deep-subsurface geothermal environment indicated that the phylogenetic diversity of the microbial population in the environment was extremely limited and that only hyperthermophilic archaeal members closely related to Pyrobaculum were present. All archaeal ribosomal DNA sequences contained intron-like sequences, some of which had open reading frames with repeated homing-endonuclease motifs. The sequence similarity analysis and the phylogenetic analysis of these homing endonucleases suggested the possible phylogenetic relationship among archaeal rRNA-encoded homing endonucleases. PMID:10584021

  2. Archaeal Diversity in Waters from Deep South African Gold Mines

    PubMed Central

    Takai, Ken; Moser, Duane P.; DeFlaun, Mary; Onstott, Tullis C.; Fredrickson, James K.

    2001-01-01

    A culture-independent molecular analysis of archaeal communities in waters collected from deep South African gold mines was performed by performing a PCR-mediated terminal restriction fragment length polymorphism (T-RFLP) analysis of rRNA genes (rDNA) in conjunction with a sequencing analysis of archaeal rDNA clone libraries. The water samples used represented various environments, including deep fissure water, mine service water, and water from an overlying dolomite aquifer. T-RFLP analysis revealed that the ribotype distribution of archaea varied with the source of water. The archaeal communities in the deep gold mine environments exhibited great phylogenetic diversity; the majority of the members were most closely related to uncultivated species. Some archaeal rDNA clones obtained from mine service water and dolomite aquifer water samples were most closely related to environmental rDNA clones from surface soil (soil clones) and marine environments (marine group I [MGI]). Other clones exhibited intermediate phylogenetic affiliation between soil clones and MGI in the Crenarchaeota. Fissure water samples, derived from active or dormant geothermal environments, yielded archaeal sequences that exhibited novel phylogeny, including a novel lineage of Euryarchaeota. These results suggest that deep South African gold mines harbor novel archaeal communities distinct from those observed in other environments. Based on the phylogenetic analysis of archaeal strains and rDNA clones, including the newly discovered archaeal rDNA clones, the evolutionary relationship and the phylogenetic organization of the domain Archaea are reevaluated. PMID:11722932

  3. PHYLOGEOrec: A QGIS plugin for spatial phylogeographic reconstruction from phylogenetic tree and geographical information data

    NASA Astrophysics Data System (ADS)

    Nashrulloh, Maulana Malik; Kurniawan, Nia; Rahardi, Brian

    2017-11-01

    The increasing availability of genetic sequence data associated with explicit geographic and environment (including biotic and abiotic components) information offers new opportunities to study the processes that shape biodiversity and its patterns. Developing phylogeography reconstruction, by integrating phylogenetic and biogeographic knowledge, provides richer and deeper visualization and information on diversification events than ever before. Geographical information systems such as QGIS provide an environment for spatial modeling, analysis, and dissemination by which phylogenetic models can be explicitly linked with their associated spatial data, and subsequently, they will be integrated with other related georeferenced datasets describing the biotic and abiotic environment. We are introducing PHYLOGEOrec, a QGIS plugin for building spatial phylogeographic reconstructions constructed from phylogenetic tree and geographical information data based on QGIS2threejs. By using PHYLOGEOrec, researchers can integrate existing phylogeny and geographical information data, resulting in three-dimensional geographic visualizations of phylogenetic trees in the Keyhole Markup Language (KML) format. Such formats can be overlaid on a map using QGIS and finally, spatially viewed in QGIS by means of a QGIS2threejs engine for further analysis. KML can also be viewed in reputable geobrowsers with KML-support (i.e., Google Earth).

  4. Diversity structure of culturable bacteria isolated from the Fildes Peninsula (King George Island, Antarctica): A phylogenetic analysis perspective

    PubMed Central

    González-Rocha, Gerardo; Muñoz-Cartes, Gabriel; Canales-Aguirre, Cristian B.; Lima, Celia A.; Domínguez-Yévenes, Mariana; Bello-Toledo, Helia

    2017-01-01

    It has been proposed that Antarctic environments select microorganisms with unique biochemical adaptations, based on the tenet ‘Everything is everywhere, but, the environment selects’ by Baas-Becking. However, this is a hypothesis that has not been extensively evaluated. This study evaluated the fundamental prediction contained in this hypothesis—in the sense that species are structured in the landscape according to their local habitats-, using as study model the phylogenetic diversity of the culturable bacteria of Fildes Peninsula (King George Island, Antarctica). Eighty bacterial strains isolated from 10 different locations in the area, were recovered. Based on phylogenetic analysis of 16S rRNA gene sequences, the isolates were grouped into twenty-six phylotypes distributed in three main clades, of which only six are exclusive to Antarctica. Results showed that phylotypes do not group significantly by habitat type; however, local habitat types had phylogenetic signal, which support the phylogenetic niche conservatism hypothesis and not a selective role of the environment like the Baas-Becking hypothesis suggests. We propose that, more than habitat selection resulting in new local adaptations and diversity, local historical colonization and species sorting (i.e. differences in speciation and extinction rates that arise by interaction of species level traits with the environment) play a fundamental role on the culturable bacterial diversity in Antarctica. PMID:28632790

  5. Diversity structure of culturable bacteria isolated from the Fildes Peninsula (King George Island, Antarctica): A phylogenetic analysis perspective.

    PubMed

    González-Rocha, Gerardo; Muñoz-Cartes, Gabriel; Canales-Aguirre, Cristian B; Lima, Celia A; Domínguez-Yévenes, Mariana; Bello-Toledo, Helia; Hernández, Cristián E

    2017-01-01

    It has been proposed that Antarctic environments select microorganisms with unique biochemical adaptations, based on the tenet 'Everything is everywhere, but, the environment selects' by Baas-Becking. However, this is a hypothesis that has not been extensively evaluated. This study evaluated the fundamental prediction contained in this hypothesis-in the sense that species are structured in the landscape according to their local habitats-, using as study model the phylogenetic diversity of the culturable bacteria of Fildes Peninsula (King George Island, Antarctica). Eighty bacterial strains isolated from 10 different locations in the area, were recovered. Based on phylogenetic analysis of 16S rRNA gene sequences, the isolates were grouped into twenty-six phylotypes distributed in three main clades, of which only six are exclusive to Antarctica. Results showed that phylotypes do not group significantly by habitat type; however, local habitat types had phylogenetic signal, which support the phylogenetic niche conservatism hypothesis and not a selective role of the environment like the Baas-Becking hypothesis suggests. We propose that, more than habitat selection resulting in new local adaptations and diversity, local historical colonization and species sorting (i.e. differences in speciation and extinction rates that arise by interaction of species level traits with the environment) play a fundamental role on the culturable bacterial diversity in Antarctica.

  6. Multilocus sequence analysis for assessment of phylogenetic diversity and biogeography in Thalassospira bacteria from diverse marine environments.

    PubMed

    Lai, Qiliang; Liu, Yang; Yuan, Jun; Du, Juan; Wang, Liping; Sun, Fengqin; Shao, Zongze

    2014-01-01

    Thalassospira bacteria are widespread and have been isolated from various marine environments. Less is known about their genetic diversity and biogeography, as well as their role in marine environments, many of them cannot be discriminated merely using the 16S rRNA gene. To address these issues, in this report, the phylogenetic analysis of 58 strains from seawater and deep sea sediments were carried out using the multilocus sequence analysis (MLSA) based on acsA, aroE, gyrB, mutL, rpoD and trpB genes, and the DNA-DNA hybridization (DDH) and average nucleotide identity (ANI) based on genome sequences. The MLSA analysis demonstrated that the 58 strains were clearly separated into 15 lineages, corresponding to seven validly described species and eight potential novel species. The DDH and ANI values further confirmed the validity of the MLSA analysis and eight potential novel species. The MLSA interspecies gap of the genus Thalassospira was determined to be 96.16-97.12% sequence identity on the basis of the combined analyses of the DDH and MLSA, while the ANIm interspecies gap was 95.76-97.20% based on the in silico DDH analysis. Meanwhile, phylogenetic analyses showed that the Thalassospira bacteria exhibited distribution pattern to a certain degree according to geographic regions. Moreover, they clustered together according to the habitats depth. For short, the phylogenetic analyses and biogeography of the Thalassospira bacteria were systematically investigated for the first time. These results will be helpful to explore further their ecological role and adaptive evolution in marine environments.

  7. Multilocus Sequence Analysis for Assessment of Phylogenetic Diversity and Biogeography in Thalassospira Bacteria from Diverse Marine Environments

    PubMed Central

    Yuan, Jun; Du, Juan; Wang, Liping; Sun, Fengqin; Shao, Zongze

    2014-01-01

    Thalassospira bacteria are widespread and have been isolated from various marine environments. Less is known about their genetic diversity and biogeography, as well as their role in marine environments, many of them cannot be discriminated merely using the 16S rRNA gene. To address these issues, in this report, the phylogenetic analysis of 58 strains from seawater and deep sea sediments were carried out using the multilocus sequence analysis (MLSA) based on acsA, aroE, gyrB, mutL, rpoD and trpB genes, and the DNA-DNA hybridization (DDH) and average nucleotide identity (ANI) based on genome sequences. The MLSA analysis demonstrated that the 58 strains were clearly separated into 15 lineages, corresponding to seven validly described species and eight potential novel species. The DDH and ANI values further confirmed the validity of the MLSA analysis and eight potential novel species. The MLSA interspecies gap of the genus Thalassospira was determined to be 96.16–97.12% sequence identity on the basis of the combined analyses of the DDH and MLSA, while the ANIm interspecies gap was 95.76–97.20% based on the in silico DDH analysis. Meanwhile, phylogenetic analyses showed that the Thalassospira bacteria exhibited distribution pattern to a certain degree according to geographic regions. Moreover, they clustered together according to the habitats depth. For short, the phylogenetic analyses and biogeography of the Thalassospira bacteria were systematically investigated for the first time. These results will be helpful to explore further their ecological role and adaptive evolution in marine environments. PMID:25198177

  8. Source environment feature related phylogenetic distribution pattern of anoxygenic photosynthetic bacteria as revealed by pufM analysis.

    PubMed

    Zeng, Yonghui; Jiao, Nianzhi

    2007-06-01

    Anoxygenic photosynthesis, performed primarily by anoxygenic photosynthetic bacteria (APB), has been supposed to arise on Earth more than 3 billion years ago. The long established APB are distributed in almost every corner where light can reach. However, the relationship between APB phylogeny and source environments has been largely unexplored. Here we retrieved the pufM sequences and related source information of 89 pufM containing species from the public database. Phylogenetic analysis revealed that horizontal gene transfer (HGT) most likely occurred within 11 out of a total 21 pufM subgroups, not only among species within the same class but also among species of different phyla or subphyla. A clear source environment feature related phylogenetic distribution pattern was observed, with all species from oxic habitats and those from anoxic habitats clustering into independent subgroups, respectively. HGT among ancient APB and subsequent long term evolution and adaptation to separated niches may have contributed to the coupling of environment and pufM phylogeny.

  9. geophylobuilder 1.0: an arcgis extension for creating 'geophylogenies'.

    PubMed

    Kidd, David M; Liu, Xianhua

    2008-01-01

    Evolution is inherently a spatiotemporal process; however, despite this, phylogenetic and geographical data and models remain largely isolated from one another. Geographical information systems provide a ready-made spatial modelling, analysis and dissemination environment within which phylogenetic models can be explicitly linked with their associated spatial data and subsequently integrated with other georeferenced data sets describing the biotic and abiotic environment. geophylobuilder 1.0 is an extension for the arcgis geographical information system that builds a 'geophylogenetic' data model from a phylogenetic tree and associated geographical data. Geophylogenetic database objects can subsequently be queried, spatially analysed and visualized in both 2D and 3D within a geographical information systems. © 2007 The Authors.

  10. Adaptation of metabolism and evaporative water loss along an aridity gradient.

    PubMed

    Tieleman, B Irene; Williams, Joseph B; Bloomer, Paulette

    2003-01-22

    Broad-scale comparisons of birds indicate the possibility of adaptive modification of basal metabolic rate (BMR) and total evaporative water loss (TEWL) in species from desert environments, but these might be confounded by phylogeny or phenotypic plasticity. This study relates variation in avian BMR and TEWL to a continuously varying measure of environment, aridity. We test the hypotheses that BMR and TEWL are reduced along an aridity gradient within the lark family (Alaudidae), and investigate the role of phylogenetic inertia. For 12 species of lark, BMR and TEWL decreased along a gradient of increasing aridity, a finding consistent with our proposals. We constructed a phylogeny for 22 species of lark based on sequences of two mitochondrial genes, and investigated whether phylogenetic affinity played a part in the correlation of phenotype and environment. A test for serial independence of the data for mass-corrected TEWL and aridity showed no influence of phylogeny on our findings. However, we did discover a significant phylogenetic effect in mass-corrected data for BMR, a result attributable to common phylogenetic history or to common ecological factors. A test of the relationship between BMR and aridity using phylogenetic independent constrasts was consistent with our previous analysis: BMR decreased with increasing aridity.

  11. Neutrophilic Iron-Oxidizing Zetaproteobacteria and Mild Steel Corrosion in Nearshore Marine Environments

    DTIC Science & Technology

    2011-02-16

    were checked for the presence of heterotrophic bacteria by streak- ing a sample on ASW-R2A agar plates. DNA extraction and analysis of phylogenetic ...Bellerophon v. 3 (greengenes.lbl.gov) and Pintail (www.bioinformatics -toolkit.org/Web-Pintail/). Phylogenetic trees were constructed for SSU rRNA gene...CLUSTALW (44), and phylogenetic analyses were conducted in MEGA4 (42). The evolutionary history was inferred using the neighbor-joining method (39), and

  12. Comparison of multilocus sequence typing and pulsed-field gel electrophoresis for Salmonella spp. identification in surface water

    NASA Astrophysics Data System (ADS)

    Kuo, Chun Wei; Hao Huang, Kuan; Hsu, Bing Mu; Tsai, Hsien Lung; Tseng, Shao Feng; Kao, Po Min; Shen, Shu Min; Chou Chiu, Yi; Chen, Jung Sheng

    2013-04-01

    Salmonella is one of the most important pathogens of waterborne diseases with outbreaks from contaminated water reported worldwide. In addition, Salmonella spp. can survive for long periods in aquatic environments. To realize genotypes and serovars of Salmonella in aquatic environments, we isolated the Salmonella strains by selective culture plates to identify the serovars of Salmonella by serological assay, and identify the genotypes by Multilocus sequence typing (MLST) based on the sequence data from University College Cork (UCC), respectively. The results show that 36 stream water samples (30.1%) and 18 drinking water samples (23.3%) were confirmed the existence of Salmonella using culture method combined PCR specific invA gene amplification. In this study, 24 cultured isolates of Salmonella from water samples were classified to fifteen Salmonella enterica serovars. In addition, we construct phylogenetic analysis using phylogenetic tree and Minimum spanning tree (MST) method to analyze the relationship of clinical, environmental, and geographical data. Phylogenetic tree showed that four main clusters and our strains can be distributed in all. The genotypes of isolates from stream water are more biodiversity while comparing the Salmonella strains genotypes from drinking water sources. According to MST data, we can found the positive correlation between serovars and genotypes of Salmonella. Previous studies revealed that the result of Pulsed field gel electrophoresis (PFGE) method can predict the serovars of Salmonella strain. Hence, we used the MLST data combined phylogenetic analysis to identify the serovars of Salmonella strain and achieved effectiveness. While using the geographical data combined phylogenetic analysis, the result showed that the dominant strains were existed in whole stream area in rainy season. Keywords: Salmonella spp., MLST, phylogenetic analysis, PFGE

  13. Phylogenetic Diversity and Metabolic Potential Revealed in a Glacier Ice Metagenome▿ †

    PubMed Central

    Simon, Carola; Wiezer, Arnim; Strittmatter, Axel W.; Daniel, Rolf

    2009-01-01

    The largest part of the Earth's microbial biomass is stored in cold environments, which represent almost untapped reservoirs of novel species, processes, and genes. In this study, the first metagenomic survey of the metabolic potential and phylogenetic diversity of a microbial assemblage present in glacial ice is presented. DNA was isolated from glacial ice of the Northern Schneeferner, Germany. Pyrosequencing of this DNA yielded 1,076,539 reads (239.7 Mbp). The phylogenetic composition of the prokaryotic community was assessed by evaluation of a pyrosequencing-derived data set and sequencing of 16S rRNA genes. The Proteobacteria (mainly Betaproteobacteria), Bacteroidetes, and Actinobacteria were the predominant phylogenetic groups. In addition, isolation of psychrophilic microorganisms was performed, and 13 different bacterial isolates were recovered. Analysis of the 16S rRNA gene sequences of the isolates revealed that all were affiliated to the predominant groups. As expected for microorganisms residing in a low-nutrient environment, a high metabolic versatility with respect to degradation of organic substrates was detected by analysis of the pyrosequencing-derived data set. The presence of autotrophic microorganisms was indicated by identification of genes typical for different ways of carbon fixation. In accordance with the results of the phylogenetic studies, in which mainly aerobic and facultative aerobic bacteria were detected, genes typical for central metabolism of aerobes were found. Nevertheless, the capability of growth under anaerobic conditions was indicated by genes involved in dissimilatory nitrate/nitrite reduction. Numerous characteristics for metabolic adaptations associated with a psychrophilic lifestyle, such as formation of cryoprotectants and maintenance of membrane fluidity by the incorporation of unsaturated fatty acids, were detected. Thus, analysis of the glacial metagenome provided insights into the microbial life in frozen habitats on Earth, thereby possibly shedding light onto microbial life in analogous extraterrestrial environments. PMID:19801459

  14. PhyLIS: a simple GNU/Linux distribution for phylogenetics and phyloinformatics.

    PubMed

    Thomson, Robert C

    2009-07-30

    PhyLIS is a free GNU/Linux distribution that is designed to provide a simple, standardized platform for phylogenetic and phyloinformatic analysis. The operating system incorporates most commonly used phylogenetic software, which has been pre-compiled and pre-configured, allowing for straightforward application of phylogenetic methods and development of phyloinformatic pipelines in a stable Linux environment. The software is distributed as a live CD and can be installed directly or run from the CD without making changes to the computer. PhyLIS is available for free at http://www.eve.ucdavis.edu/rcthomson/phylis/.

  15. PhyLIS: A Simple GNU/Linux Distribution for Phylogenetics and Phyloinformatics

    PubMed Central

    Thomson, Robert C.

    2009-01-01

    PhyLIS is a free GNU/Linux distribution that is designed to provide a simple, standardized platform for phylogenetic and phyloinformatic analysis. The operating system incorporates most commonly used phylogenetic software, which has been pre-compiled and pre-configured, allowing for straightforward application of phylogenetic methods and development of phyloinformatic pipelines in a stable Linux environment. The software is distributed as a live CD and can be installed directly or run from the CD without making changes to the computer. PhyLIS is available for free at http://www.eve.ucdavis.edu/rcthomson/phylis/. PMID:19812729

  16. Adaptation of metabolism and evaporative water loss along an aridity gradient.

    PubMed Central

    Tieleman, B Irene; Williams, Joseph B; Bloomer, Paulette

    2003-01-01

    Broad-scale comparisons of birds indicate the possibility of adaptive modification of basal metabolic rate (BMR) and total evaporative water loss (TEWL) in species from desert environments, but these might be confounded by phylogeny or phenotypic plasticity. This study relates variation in avian BMR and TEWL to a continuously varying measure of environment, aridity. We test the hypotheses that BMR and TEWL are reduced along an aridity gradient within the lark family (Alaudidae), and investigate the role of phylogenetic inertia. For 12 species of lark, BMR and TEWL decreased along a gradient of increasing aridity, a finding consistent with our proposals. We constructed a phylogeny for 22 species of lark based on sequences of two mitochondrial genes, and investigated whether phylogenetic affinity played a part in the correlation of phenotype and environment. A test for serial independence of the data for mass-corrected TEWL and aridity showed no influence of phylogeny on our findings. However, we did discover a significant phylogenetic effect in mass-corrected data for BMR, a result attributable to common phylogenetic history or to common ecological factors. A test of the relationship between BMR and aridity using phylogenetic independent constrasts was consistent with our previous analysis: BMR decreased with increasing aridity. PMID:12590762

  17. Using phylogeny and functional traits for assessing community assembly along environmental gradients: A deterministic process driven by elevation.

    PubMed

    Xu, Jinshi; Chen, Yu; Zhang, Lixia; Chai, Yongfu; Wang, Mao; Guo, Yaoxin; Li, Ting; Yue, Ming

    2017-07-01

    Community assembly processes is the primary focus of community ecology. Using phylogenetic-based and functional trait-based methods jointly to explore these processes along environmental gradients are useful ways to explain the change of assembly mechanisms under changing world. Our study combined these methods to test assembly processes in wide range gradients of elevation and other habitat environmental factors. We collected our data at 40 plots in Taibai Mountain, China, with more than 2,300 m altitude difference in study area and then measured traits and environmental factors. Variance partitioning was used to distinguish the main environment factors leading to phylogeny and traits change among 40 plots. Principal component analysis (PCA) was applied to colligate other environment factors. Community assembly patterns along environmental gradients based on phylogenetic and functional methods were studied for exploring assembly mechanisms. Phylogenetic signal was calculated for each community along environmental gradients in order to detect the variation of trait performance on phylogeny. Elevation showed a better explanatory power than other environment factors for phylogenetic and most traits' variance. Phylogenetic and several functional structure clustered at high elevation while some conserved traits overdispersed. Convergent tendency which might be caused by filtering or competition along elevation was detected based on functional traits. Leaf dry matter content (LDMC) and leaf nitrogen content along PCA 1 axis showed conflicting patterns comparing to patterns showed on elevation. LDMC exhibited the strongest phylogenetic signal. Only the phylogenetic signal of maximum plant height showed explicable change along environmental gradients. Synthesis . Elevation is the best environment factors for predicting phylogeny and traits change. Plant's phylogenetic and some functional structures show environmental filtering in alpine region while it shows different assembly processes in middle- and low-altitude region by different trait/phylogeny. The results highlight deterministic processes dominate community assembly in large-scale environmental gradients. Performance of phylogeny and traits along gradients may be independent with each other. The novel method for calculating functional structure which we used in this study and the focus of phylogenetic signal change along gradients may provide more useful ways to detect community assembly mechanisms.

  18. Distribution and Diversity of Symbiotic Thermophiles, Symbiobacterium thermophilum and Related Bacteria, in Natural Environments

    PubMed Central

    Ueda, Kenji; Ohno, Michiyo; Yamamoto, Kaori; Nara, Hanae; Mori, Yujiro; Shimada, Masafumi; Hayashi, Masahiko; Oida, Hanako; Terashima, Yuko; Nagata, Mitsuyo; Beppu, Teruhiko

    2001-01-01

    Symbiobacterium thermophilum is a tryptophanase-positive thermophile which shows normal growth only in coculture with its supporting bacteria. Analysis of the 16S rRNA gene (rDNA) indicated that the bacterium belongs to a novel phylogenetic branch at the outermost position of the gram-positive bacterial group without clustering to any other known genus. Here we describe the distribution and diversity of S. thermophilum and related bacteria in the environment. Thermostable tryptophanase activity and amplification of the specific 16S rDNA fragment were effectively employed to detect the presence of Symbiobacterium. Enrichment with kanamycin raised detection sensitivity. Mixed cultures of thermophiles containing Symbiobacterium species were frequently obtained from compost, soil, animal feces, and contents in the intestinal tracts, as well as feeds. Phylogenetic analysis and denaturing gradient gel electrophoresis of the specific 16S rDNA amplicons revealed a diversity of this group of bacteria in the environment. PMID:11525967

  19. PAL: an object-oriented programming library for molecular evolution and phylogenetics.

    PubMed

    Drummond, A; Strimmer, K

    2001-07-01

    Phylogenetic Analysis Library (PAL) is a collection of Java classes for use in molecular evolution and phylogenetics. PAL provides a modular environment for the rapid construction of both special-purpose and general analysis programs. PAL version 1.1 consists of 145 public classes or interfaces in 13 packages, including classes for models of character evolution, maximum-likelihood estimation, and the coalescent, with a total of more than 27000 lines of code. The PAL project is set up as a collaborative project to facilitate contributions from other researchers. AVAILIABILTY: The program is free and is available at http://www.pal-project.org. It requires Java 1.1 or later. PAL is licensed under the GNU General Public License.

  20. The Role of Edaphic Environment and Climate in Structuring Phylogenetic Pattern in Seasonally Dry Tropical Plant Communities

    PubMed Central

    Moro, Marcelo Freire; Silva, Igor Aurélio; de Araújo, Francisca Soares; Nic Lughadha, Eimear; Meagher, Thomas R.; Martins, Fernando Roberto

    2015-01-01

    Seasonally dry tropical plant formations (SDTF) are likely to exhibit phylogenetic clustering owing to niche conservatism driven by a strong environmental filter (water stress), but heterogeneous edaphic environments and life histories may result in heterogeneity in degree of phylogenetic clustering. We investigated phylogenetic patterns across ecological gradients related to water availability (edaphic environment and climate) in the Caatinga, a SDTF in Brazil. Caatinga is characterized by semiarid climate and three distinct edaphic environments – sedimentary, crystalline, and inselberg –representing a decreasing gradient in soil water availability. We used two measures of phylogenetic diversity: Net Relatedness Index based on the entire phylogeny among species present in a site, reflecting long-term diversification; and Nearest Taxon Index based on the tips of the phylogeny, reflecting more recent diversification. We also evaluated woody species in contrast to herbaceous species. The main climatic variable influencing phylogenetic pattern was precipitation in the driest quarter, particularly for herbaceous species, suggesting that environmental filtering related to minimal periods of precipitation is an important driver of Caatinga biodiversity, as one might expect for a SDTF. Woody species tended to show phylogenetic clustering whereas herbaceous species tended towards phylogenetic overdispersion. We also found phylogenetic clustering in two edaphic environments (sedimentary and crystalline) in contrast to phylogenetic overdispersion in the third (inselberg). We conclude that while niche conservatism is evident in phylogenetic clustering in the Caatinga, this is not a universal pattern likely due to heterogeneity in the degree of realized environmental filtering across edaphic environments. Thus, SDTF, in spite of a strong shared environmental filter, are potentially heterogeneous in phylogenetic structuring. Our results support the need for scientifically informed conservation strategies in the Caatinga and other SDTF regions that have not previously been prioritized for conservation in order to take into account this heterogeneity. PMID:25798584

  1. Ghost-tree: creating hybrid-gene phylogenetic trees for diversity analyses.

    PubMed

    Fouquier, Jennifer; Rideout, Jai Ram; Bolyen, Evan; Chase, John; Shiffer, Arron; McDonald, Daniel; Knight, Rob; Caporaso, J Gregory; Kelley, Scott T

    2016-02-24

    Fungi play critical roles in many ecosystems, cause serious diseases in plants and animals, and pose significant threats to human health and structural integrity problems in built environments. While most fungal diversity remains unknown, the development of PCR primers for the internal transcribed spacer (ITS) combined with next-generation sequencing has substantially improved our ability to profile fungal microbial diversity. Although the high sequence variability in the ITS region facilitates more accurate species identification, it also makes multiple sequence alignment and phylogenetic analysis unreliable across evolutionarily distant fungi because the sequences are hard to align accurately. To address this issue, we created ghost-tree, a bioinformatics tool that integrates sequence data from two genetic markers into a single phylogenetic tree that can be used for diversity analyses. Our approach starts with a "foundation" phylogeny based on one genetic marker whose sequences can be aligned across organisms spanning divergent taxonomic groups (e.g., fungal families). Then, "extension" phylogenies are built for more closely related organisms (e.g., fungal species or strains) using a second more rapidly evolving genetic marker. These smaller phylogenies are then grafted onto the foundation tree by mapping taxonomic names such that each corresponding foundation-tree tip would branch into its new "extension tree" child. We applied ghost-tree to graft fungal extension phylogenies derived from ITS sequences onto a foundation phylogeny derived from fungal 18S sequences. Our analysis of simulated and real fungal ITS data sets found that phylogenetic distances between fungal communities computed using ghost-tree phylogenies explained significantly more variance than non-phylogenetic distances. The phylogenetic metrics also improved our ability to distinguish small differences (effect sizes) between microbial communities, though results were similar to non-phylogenetic methods for larger effect sizes. The Silva/UNITE-based ghost tree presented here can be easily integrated into existing fungal analysis pipelines to enhance the resolution of fungal community differences and improve understanding of these communities in built environments. The ghost-tree software package can also be used to develop phylogenetic trees for other marker gene sets that afford different taxonomic resolution, or for bridging genome trees with amplicon trees. ghost-tree is pip-installable. All source code, documentation, and test code are available under the BSD license at https://github.com/JTFouquier/ghost-tree .

  2. Novel species in Talaromyces sect. Islandici isolated from maize and other substrates

    USDA-ARS?s Scientific Manuscript database

    Talaromyces sect. Islandici was reexamined to determine the prevalence of isolates from maize and the built environment. Using phenotypic analysis, DNA sequencing and phylogenetic and concordance analysis we discovered and described ten new species in section Islandici and one new species in section...

  3. Urbanisation and the loss of phylogenetic diversity in birds.

    PubMed

    Sol, Daniel; Bartomeus, Ignasi; González-Lagos, César; Pavoine, Sandrine

    2017-06-01

    Despite the recognised conservation value of phylogenetic diversity, little is known about how it is affected by the urbanisation process. Combining a complete avian phylogeny with surveys along urbanisation gradients from five continents, we show that highly urbanised environments supported on average 450 million fewer years of evolutionary history than the surrounding natural environments. This loss was primarily caused by species loss and could have been higher had not been partially compensated by the addition of urban exploiters and some exotic species. Highly urbanised environments also supported fewer evolutionary distinctive species, implying a disproportionate loss of evolutionary history. Compared with highly urbanised environments, changes in phylogenetic richness and evolutionary distinctiveness were less substantial in moderately urbanised environments. Protecting pristine environments is therefore essential for maintaining phylogenetic diversity, but moderate levels of urbanisation still preserve much of the original diversity. © 2017 John Wiley & Sons Ltd/CNRS.

  4. Single-cell analysis of uncultured magnetotactic bacteria via fluorescence-coupled electron microscopy approach

    NASA Astrophysics Data System (ADS)

    LI, J.; Zhang, H.; Liu, P.; Menguy, N.; Pan, Y.

    2017-12-01

    Magnetotactic bacteria (MTB) are phylogenetically diverse and can biomineralize magnetic nanocrystals of magnetite or greigite in intracellular structures termed magnetosomes. Their remains within sediments or sedimentary rocks, i.e. magnetofossils, have been used to retrieve paleomagnetic and paleoenvironmental information of deposition time, as well as to trace the origin and evolution of life on Earth and even perhaps Mars. A precise identification of magnetofossils heavily depends on our knowledge of phylogenetic diversity and magnetosomal biomineralization within natural MTB. In this paper, we will present a novel method which can rapidly characterize both the phylogenetic and biomineralogical properties of uncultured MTB at the single-cell level by coupling fluorescence and electron microscopy. Using this method, we have successfully identified several uncultured MTB strains from natural environments in China. These MTB are phylogenetically affiliated with the Alphaproteobacteria, Deltaproteobacteria, Gammaproteobacteria and Nitrospirae phylum, and form octahedral, cuboctahedral, prismatic, tooth-like and bullet-shaped magnetite magnetosomes. A corresponding analysis of magnetosome morphology and bacterial phylogenetics on each MTB strain has shown a species/strain-specific magnetosome biomineralization. The new method is not only promising for better understanding the correlation between magnetosome mineral habits and MTB phylogenies, but also crucial for unambiguously identifying magnetofossils.

  5. Analysis of Fatty Acid and Growth Profiles in Ten Shewanella spp. to Associate Phylogenetic Relationships

    DTIC Science & Technology

    2015-10-25

    in a defined medium composed of half-strength Marine Broth adjusted to pH 6, 7, or 8 in a 50 mM phosphate buffer, both growth characteristics and...work had broad phylogenetic diversity (Fig. 1) and were isolated from mostly marine environments. S. putrefaciens was the only strain that was not...the defined medium that supported growth of most of the strains tested was marine broth diluted to half strength with 50 mM phosphate buffer (½-MB

  6. New Tools For Understanding Microbial Diversity Using High-throughput Sequence Data

    NASA Astrophysics Data System (ADS)

    Knight, R.; Hamady, M.; Liu, Z.; Lozupone, C.

    2007-12-01

    High-throughput sequencing techniques such as 454 are straining the limits of tools traditionally used to build trees, choose OTUs, and perform other essential sequencing tasks. We have developed a workflow for phylogenetic analysis of large-scale sequence data sets that combines existing tools, such as the Arb phylogeny package and the NAST multiple sequence alignment tool, with new methods for choosing and clustering OTUs and for performing phylogenetic community analysis with UniFrac. This talk discusses the cyberinfrastructure we are developing to support the human microbiome project, and the application of these workflows to analyze very large data sets that contrast the gut microbiota with a range of physical environments. These tools will ultimately help to define core and peripheral microbiomes in a range of environments, and will allow us to understand the physical and biotic factors that contribute most to differences in microbial diversity.

  7. The phylogeny of swimming kinematics: The environment controls flagellar waveforms in sperm motility

    NASA Astrophysics Data System (ADS)

    Guasto, Jeffrey; Burton, Lisa; Zimmer, Richard; Hosoi, Anette; Stocker, Roman

    2013-11-01

    In recent years, phylogenetic and molecular analyses have dominated the study of ecology and evolution. However, physical interactions between organisms and their environment, a fundamental determinant of organism ecology and evolution, are mediated by organism form and function, highlighting the need to understand the mechanics of basic survival strategies, including locomotion. Focusing on spermatozoa, we combined high-speed video microscopy and singular value decomposition analysis to quantitatively compare the flagellar waveforms of eight species, ranging from marine invertebrates to humans. We found striking similarities in sperm swimming kinematics between genetically dissimilar organisms, which could not be uncovered by phylogenetic analysis. The emergence of dominant waveform patterns across species are suggestive of biological optimization for flagellar locomotion and point toward environmental cues as drivers of this convergence. These results reinforce the power of quantitative kinematic analysis to understand the physical drivers of evolution and as an approach to uncover new solutions for engineering applications, such as micro-robotics.

  8. Host influence in the genomic composition of flaviviruses: A multivariate approach.

    PubMed

    Simón, Diego; Fajardo, Alvaro; Sóñora, Martín; Delfraro, Adriana; Musto, Héctor

    2017-10-28

    Flaviviruses present substantial differences in their host range and transmissibility. We studied the evolution of base composition, dinucleotide biases, codon usage and amino acid frequencies in the genus Flavivirus within a phylogenetic framework by principal components analysis. There is a mutual interplay between the evolutionary history of flaviviruses and their respective vectors and/or hosts. Hosts associated to distinct phylogenetic groups may be driving flaviviruses at different pace and through various sequence landscapes, as can be seen for viruses associated with Aedes or Culex spp., although phylogenetic inertia cannot be ruled out. In some cases, viruses face even opposite forces. For instance, in tick-borne flaviviruses, while vertebrate hosts exert pressure to deplete their CpG, tick vectors drive them to exhibit GC-rich codons. Within a vertebrate environment, natural selection appears to be acting on the viral genome to overcome the immune system. On the other side, within an arthropod environment, mutational biases seem to be the dominant forces. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Similar microbial communities found on two distant seafloor basalts

    NASA Astrophysics Data System (ADS)

    Singer, E.; Chong, L. S.; Heidelberg, J. F.; Edwards, K. J.

    2016-12-01

    The oceanic crust forms two thirds of the Earth's surface and hosts a large phylogenetic and functional diversity of microorganisms. While advances have been made in the sedimentary realm, our understanding of the igneous rock portion as a microbial habitat has remained limited. We present a comparative metagenomic microbial community analysis from ocean floor basalt environments at the Lō'ihi Seamount, Hawai'i, and the East Pacific Rise (EPR) (9°N). Phylogenetic analysis indicates the presence of a total of 43 bacterial and archaeal mono-phyletic groups, dominated by Alpha- and Gammaproteobacteria, as well as Thaumarchaeota. Functional gene analysis suggests that these Thaumarchaeota play an important role in ammonium oxidation on seafloor basalts. In addition to ammonium oxidation, the seafloor basalt habitat reveals a wide spectrum of other metabolic potentials, including CO2 fixation, denitrification, dissimilatory sulfate reduction, and sulfur oxidation. Basalt communities from Lō'ihi and the EPR show considerable metabolic and phylogenetic overlap down to the genus level despite geographic distance and slightly different seafloor basalt mineralogy.

  10. Octocoral Species Assembly and Coexistence in Caribbean Coral Reefs.

    PubMed

    Velásquez, Johanna; Sánchez, Juan A

    2015-01-01

    What are the determinant factors of community assemblies in the most diverse ecosystem in the ocean? Coral reefs can be divided in continental (i.e., reefs that develop on the continental shelf, including siliciclastic reefs) and oceanic (i.e., far off the continental shelf, usually on volcanic substratum); whether or not these habitat differences impose community-wide ecological divergence or species exclusion/coexistence with evolutionary consequences, is unknown. Studying Caribbean octocorals as model system, we determined the phylogenetic community structure in a coral reef community, making emphasis on species coexistence evidenced on trait evolution and environmental feedbacks. Forty-nine species represented in five families constituted the species pool from which a phylogenetic tree was reconstructed using mtDNA. We included data from 11 localities in the Western Caribbean (Colombia) including most reef types. To test diversity-environment and phenotype-environment relationships, phylogenetic community structure and trait evolution we carried out comparative analyses implementing ecological and evolutionary approaches. Phylogenetic inferences suggest clustering of oceanic reefs (e.g., atolls) contrasting with phylogenetic overdispersion of continental reefs (e.g., reefs banks). Additionally, atolls and barrier reefs had the highest species diversity (Shannon index) whereas phylogenetic diversity was higher in reef banks. The discriminant component analysis supported this differentiation between oceanic and continental reefs, where continental octocoral species tend to have greater calyx apertures, thicker branches, prominent calyces and azooxanthellate species. This analysis also indicated a clear separation between the slope and the remaining habitats, caused by the presence or absence of Symbiodinium. K statistic analysis showed that this trait is conserved as well as the branch shape. There was strong octocoral community structure with opposite diversity and composition patterns between oceanic and continental reefs. Even habitats with similar depths and overall environmental conditions did not share similar communities between oceanic and continental reefs. This indicates a strong regional influence over the local communities, probably due to water transparency differences between major reef types, i.e., oceanic vs. continental shelf-neritic. This was supported by contrasting patterns found in morphology, composition and evolutionary history of the species between atolls and reef banks.

  11. Octocoral Species Assembly and Coexistence in Caribbean Coral Reefs

    PubMed Central

    Velásquez, Johanna; Sánchez, Juan A.

    2015-01-01

    Background What are the determinant factors of community assemblies in the most diverse ecosystem in the ocean? Coral reefs can be divided in continental (i.e., reefs that develop on the continental shelf, including siliciclastic reefs) and oceanic (i.e., far off the continental shelf, usually on volcanic substratum); whether or not these habitat differences impose community-wide ecological divergence or species exclusion/coexistence with evolutionary consequences, is unknown. Methods Studying Caribbean octocorals as model system, we determined the phylogenetic community structure in a coral reef community, making emphasis on species coexistence evidenced on trait evolution and environmental feedbacks. Forty-nine species represented in five families constituted the species pool from which a phylogenetic tree was reconstructed using mtDNA. We included data from 11 localities in the Western Caribbean (Colombia) including most reef types. To test diversity-environment and phenotype-environment relationships, phylogenetic community structure and trait evolution we carried out comparative analyses implementing ecological and evolutionary approaches. Results Phylogenetic inferences suggest clustering of oceanic reefs (e.g., atolls) contrasting with phylogenetic overdispersion of continental reefs (e.g., reefs banks). Additionally, atolls and barrier reefs had the highest species diversity (Shannon index) whereas phylogenetic diversity was higher in reef banks. The discriminant component analysis supported this differentiation between oceanic and continental reefs, where continental octocoral species tend to have greater calyx apertures, thicker branches, prominent calyces and azooxanthellate species. This analysis also indicated a clear separation between the slope and the remaining habitats, caused by the presence or absence of Symbiodinium. K statistic analysis showed that this trait is conserved as well as the branch shape. Discussion There was strong octocoral community structure with opposite diversity and composition patterns between oceanic and continental reefs. Even habitats with similar depths and overall environmental conditions did not share similar communities between oceanic and continental reefs. This indicates a strong regional influence over the local communities, probably due to water transparency differences between major reef types, i.e., oceanic vs. continental shelf-neritic. This was supported by contrasting patterns found in morphology, composition and evolutionary history of the species between atolls and reef banks. PMID:26177191

  12. Worldwide phylogenetic relationship of avian poxviruses

    USGS Publications Warehouse

    Gyuranecz, Miklós; Foster, Jeffrey T.; Dán, Ádám; Ip, Hon S.; Egstad, Kristina F.; Parker, Patricia G.; Higashiguchi, Jenni M.; Skinner, Michael A.; Höfle, Ursula; Kreizinger, Zsuzsa; Dorrestein, Gerry M.; Solt, Szabolcs; Sós, Endre; Kim, Young Jun; Uhart, Marcela; Pereda, Ariel; González-Hein, Gisela; Hidalgo, Hector; Blanco, Juan-Manuel; Erdélyi, Károly

    2013-01-01

    Poxvirus infections have been found in 230 species of wild and domestic birds worldwide in both terrestrial and marine environments. This ubiquity raises the question of how infection has been transmitted and globally dispersed. We present a comprehensive global phylogeny of 111 novel poxvirus isolates in addition to all available sequences from GenBank. Phylogenetic analysis of Avipoxvirus genus has traditionally relied on one gene region (4b core protein). In this study we have expanded the analyses to include a second locus (DNA polymerase gene), allowing for a more robust phylogenetic framework, finer genetic resolution within specific groups and the detection of potential recombination. Our phylogenetic results reveal several major features of avipoxvirus evolution and ecology and propose an updated avipoxvirus taxonomy, including three novel subclades. The characterization of poxviruses from 57 species of birds in this study extends the current knowledge of their host range and provides the first evidence of the phylogenetic effect of genetic recombination of avipoxviruses. The repeated occurrence of avian family or order-specific grouping within certain clades (e.g. starling poxvirus, falcon poxvirus, raptor poxvirus, etc.) indicates a marked role of host adaptation, while the sharing of poxvirus species within prey-predator systems emphasizes the capacity for cross-species infection and limited host adaptation. Our study provides a broad and comprehensive phylogenetic analysis of the Avipoxvirus genus, an ecologically and environmentally important viral group, to formulate a genome sequencing strategy that will clarify avipoxvirus taxonomy.

  13. Worldwide Phylogenetic Relationship of Avian Poxviruses

    PubMed Central

    Foster, Jeffrey T.; Dán, Ádám; Ip, Hon S.; Egstad, Kristina F.; Parker, Patricia G.; Higashiguchi, Jenni M.; Skinner, Michael A.; Höfle, Ursula; Kreizinger, Zsuzsa; Dorrestein, Gerry M.; Solt, Szabolcs; Sós, Endre; Kim, Young Jun; Uhart, Marcela; Pereda, Ariel; González-Hein, Gisela; Hidalgo, Hector; Blanco, Juan-Manuel; Erdélyi, Károly

    2013-01-01

    Poxvirus infections have been found in 230 species of wild and domestic birds worldwide in both terrestrial and marine environments. This ubiquity raises the question of how infection has been transmitted and globally dispersed. We present a comprehensive global phylogeny of 111 novel poxvirus isolates in addition to all available sequences from GenBank. Phylogenetic analysis of the Avipoxvirus genus has traditionally relied on one gene region (4b core protein). In this study we expanded the analyses to include a second locus (DNA polymerase gene), allowing for a more robust phylogenetic framework, finer genetic resolution within specific groups, and the detection of potential recombination. Our phylogenetic results reveal several major features of avipoxvirus evolution and ecology and propose an updated avipoxvirus taxonomy, including three novel subclades. The characterization of poxviruses from 57 species of birds in this study extends the current knowledge of their host range and provides the first evidence of the phylogenetic effect of genetic recombination of avipoxviruses. The repeated occurrence of avian family or order-specific grouping within certain clades (e.g., starling poxvirus, falcon poxvirus, raptor poxvirus, etc.) indicates a marked role of host adaptation, while the sharing of poxvirus species within prey-predator systems emphasizes the capacity for cross-species infection and limited host adaptation. Our study provides a broad and comprehensive phylogenetic analysis of the Avipoxvirus genus, an ecologically and environmentally important viral group, to formulate a genome sequencing strategy that will clarify avipoxvirus taxonomy. PMID:23408635

  14. Analysis of the nucleoprotein gene identifies three distinct lineages of viral haemorrhagic septicemia virus (VHSV) within the European marine environment

    USGS Publications Warehouse

    Snow, M.; Cunningham, C.O.; Melvin, W.T.; Kurath, G.

    1999-01-01

    A ribonuclease (RNase) protection assay (RPA) has been used to detect nucleotide sequence variation within the nucleoprotein gene of 39 viral haemorrhagic septicaemia virus (VHSV) isolates of European marine origin. The classification of VHSV isolates based on RPA cleavage patterns permitted the identification of ten distinct groups of viruses based on differences at the molecular level. The nucleotide sequence of representatives of each of these groupings was determined and subjected to phylogenetic analysis. This revealed grouping of the European marine isolates of VHSV into three genotypes circulating within distinct geographic areas. A fourth genotype was identified comprising isolates originating from North America. Phylogenetic analyses indicated that VHSV isolates recovered from wild caught fish around the British Isles were genetically related to isolates responsible for losses in farmed turbot. Furthermore, a relationship between naturally occurring marine isolates and VHSV isolates causing mortality among rainbow trout in continental Europe was demonstrated. Analysis of the nucleoprotein gene identifies distinct lineages of viral haemorrhagic septicaemia virus within the European marine environment. Virus Res. 63, 35-44. Available from: 

  15. High and novel genetic diversity of Francisella tularensis in Germany and indication of environmental persistence.

    PubMed

    Schulze, C; Heuner, K; Myrtennäs, K; Karlsson, E; Jacob, D; Kutzer, P; GROßE, K; Forsman, M; Grunow, R

    2016-10-01

    In Germany tularemia is a re-emerging zoonotic disease. Therefore, we investigated wild animals and environmental water samples for the presence and phylogenetic diversity of Francisella tularensis in the poorly studied Berlin/Brandenburg region. The phylogenomic analysis of three isolates from wild animals revealed three new subclades within the phylogenetic tree of F. tularensis [B.71 from a raccoon dog (Nyctereutes procyonoides); B.74 from a red fox (Vulpes vulpes), and B.75 from a Eurasian beaver (Castor fiber albicus)]. The results from histological, PCR, and genomic investigations on the dead beaver showed that the animal suffered from a systemic infection. Indications were found that the bacteria were released from the beaver carcass into the surrounding environment. We demonstrated unexpectedly high and novel phylogenetic diversity of F. tularensis in Germany and the fact that the bacteria persist in the environment for at least one climatic season. These findings support a broader host species diversity than previously known regarding Germany. Our data further support the assumption derived from previous serological studies of an underestimated frequency of occurrence of the pathogen in the environment and in wild animals. F. tularensis was isolated from animal species not previously reported as natural hosts in Germany.

  16. Phylogenetic diversity and ecological pattern of ammonia-oxidizing archaea in the surface sediments of the western Pacific.

    PubMed

    Cao, Huiluo; Hong, Yiguo; Li, Meng; Gu, Ji-Dong

    2011-11-01

    The phylogenetic diversity of ammonia-oxidizing archaea (AOA) was surveyed in the surface sediments from the northern part of the South China Sea (SCS). The distribution pattern of AOA in the western Pacific was discussed through comparing the SCS with other areas in the western Pacific including Changjiang Estuary and the adjacent East China Sea where high input of anthropogenic nitrogen was evident, the tropical West Pacific Continental Margins close to the Philippines, the deep-sea methane seep sediments in the Okhotsk Sea, the cold deep sea of Northeastern Japan Sea, and the hydrothermal field in the Southern Okinawa Trough. These various environments provide a wide spectrum of physical and chemical conditions for a better understanding of the distribution pattern and diversities of AOA in the western Pacific. Under these different conditions, the distinct community composition between shallow and deep-sea sediments was clearly delineated based on the UniFrac PCoA and Jackknife Environmental Cluster analyses. Phylogenetic analyses showed that a few ammonia-oxidizing archaeal subclades in the marine water column/sediment clade and endemic lineages were indicative phylotypes for some environments. Higher phylogenetic diversity was observed in the Philippines while lower diversity in the hydrothermal vent habitat. Water depth and possibly with other environmental factors could be the main driving forces to shape the phylogenetic diversity of AOA observed, not only in the SCS but also in the whole western Pacific. The multivariate regression tree analysis also supported this observation consistently. Moreover, the functions of current and other climate factors were also discussed in comparison of phylogenetic diversity. The information collectively provides important insights into the ecophysiological requirements of uncultured ammonia-oxidizing archaeal lineages in the western Pacific Ocean.

  17. Comparative genome analysis of 52 fish species suggests differential associations of repetitive elements with their living aquatic environments.

    PubMed

    Yuan, Zihao; Liu, Shikai; Zhou, Tao; Tian, Changxu; Bao, Lisui; Dunham, Rex; Liu, Zhanjiang

    2018-02-13

    Repetitive elements make up significant proportions of genomes. However, their roles in evolution remain largely unknown. To provide insights into the roles of repetitive elements in fish genomes, we conducted a comparative analysis of repetitive elements of 52 fish species in 22 orders in relation to their living aquatic environments. The proportions of repetitive elements in various genomes were found to be positively correlated with genome sizes, with a few exceptions. More importantly, there appeared to be specific enrichment between some repetitive element categories with species habitat. Specifically, class II transposons appear to be more abundant in freshwater bony fish than in marine bony fish when phylogenetic relationship is not considered. In contrast, marine bony fish harbor more tandem repeats than freshwater species. In addition, class I transposons appear to be more abundant in primitive species such as cartilaginous fish and lamprey than in bony fish. The enriched association of specific categories of repetitive elements with fish habitats suggests the importance of repetitive elements in genome evolution and their potential roles in fish adaptation to their living environments. However, due to the restriction of the limited sequenced species, further analysis needs to be done to alleviate the phylogenetic biases.

  18. A Deeply Branching Thermophilic Bacterium with an Ancient Acetyl-CoA Pathway Dominates a Subsurface Ecosystem

    PubMed Central

    Takami, Hideto; Noguchi, Hideki; Takaki, Yoshihiro; Uchiyama, Ikuo; Toyoda, Atsushi; Nishi, Shinro; Chee, Gab-Joo; Arai, Wataru; Nunoura, Takuro; Itoh, Takehiko; Hattori, Masahira; Takai, Ken

    2012-01-01

    A nearly complete genome sequence of Candidatus ‘Acetothermum autotrophicum’, a presently uncultivated bacterium in candidate division OP1, was revealed by metagenomic analysis of a subsurface thermophilic microbial mat community. Phylogenetic analysis based on the concatenated sequences of proteins common among 367 prokaryotes suggests that Ca. ‘A. autotrophicum’ is one of the earliest diverging bacterial lineages. It possesses a folate-dependent Wood-Ljungdahl (acetyl-CoA) pathway of CO2 fixation, is predicted to have an acetogenic lifestyle, and possesses the newly discovered archaeal-autotrophic type of bifunctional fructose 1,6-bisphosphate aldolase/phosphatase. A phylogenetic analysis of the core gene cluster of the acethyl-CoA pathway, shared by acetogens, methanogens, some sulfur- and iron-reducers and dechlorinators, supports the hypothesis that the core gene cluster of Ca. ‘A. autotrophicum’ is a particularly ancient bacterial pathway. The habitat, physiology and phylogenetic position of Ca. ‘A. autotrophicum’ support the view that the first bacterial and archaeal lineages were H2-dependent acetogens and methanogenes living in hydrothermal environments. PMID:22303444

  19. phylo-node: A molecular phylogenetic toolkit using Node.js.

    PubMed

    O'Halloran, Damien M

    2017-01-01

    Node.js is an open-source and cross-platform environment that provides a JavaScript codebase for back-end server-side applications. JavaScript has been used to develop very fast and user-friendly front-end tools for bioinformatic and phylogenetic analyses. However, no such toolkits are available using Node.js to conduct comprehensive molecular phylogenetic analysis. To address this problem, I have developed, phylo-node, which was developed using Node.js and provides a stable and scalable toolkit that allows the user to perform diverse molecular and phylogenetic tasks. phylo-node can execute the analysis and process the resulting outputs from a suite of software options that provides tools for read processing and genome alignment, sequence retrieval, multiple sequence alignment, primer design, evolutionary modeling, and phylogeny reconstruction. Furthermore, phylo-node enables the user to deploy server dependent applications, and also provides simple integration and interoperation with other Node modules and languages using Node inheritance patterns, and a customized piping module to support the production of diverse pipelines. phylo-node is open-source and freely available to all users without sign-up or login requirements. All source code and user guidelines are openly available at the GitHub repository: https://github.com/dohalloran/phylo-node.

  20. Comparative Genomics Analysis of Streptomyces Species Reveals Their Adaptation to the Marine Environment and Their Diversity at the Genomic Level

    PubMed Central

    Tian, Xinpeng; Zhang, Zhewen; Yang, Tingting; Chen, Meili; Li, Jie; Chen, Fei; Yang, Jin; Li, Wenjie; Zhang, Bing; Zhang, Zhang; Wu, Jiayan; Zhang, Changsheng; Long, Lijuan; Xiao, Jingfa

    2016-01-01

    Over 200 genomes of streptomycete strains that were isolated from various environments are available from the NCBI. However, little is known about the characteristics that are linked to marine adaptation in marine-derived streptomycetes. The particularity and complexity of the marine environment suggest that marine streptomycetes are genetically diverse. Here, we sequenced nine strains from the Streptomyces genus that were isolated from different longitudes, latitudes, and depths of the South China Sea. Then we compared these strains to 22 NCBI downloaded streptomycete strains. Thirty-one streptomycete strains are clearly grouped into a marine-derived subgroup and multiple source subgroup-based phylogenetic tree. The phylogenetic analyses have revealed the dynamic process underlying streptomycete genome evolution, and lateral gene transfer is an important driving force during the process. Pan-genomics analyses have revealed that streptomycetes have an open pan-genome, which reflects the diversity of these streptomycetes and guarantees the species a quick and economical response to diverse environments. Functional and comparative genomics analyses indicate that the marine-derived streptomycetes subgroup possesses some common characteristics of marine adaptation. Our findings have expanded our knowledge of how ocean isolates of streptomycete strains adapt to marine environments. The availability of streptomycete genomes from the South China Sea will be beneficial for further analysis on marine streptomycetes and will enrich the South China Sea’s genetic data sources. PMID:27446038

  1. Biogeographical patterns of bacterial and archaeal communities from distant hypersaline environments.

    PubMed

    Mora-Ruiz, M Del R; Cifuentes, A; Font-Verdera, F; Pérez-Fernández, C; Farias, M E; González, B; Orfila, A; Rosselló-Móra, R

    2018-03-01

    Microorganisms are globally distributed but new evidence shows that the microbial structure of their communities can vary due to geographical location and environmental parameters. In this study, 50 samples including brines and sediments from Europe, Spanish-Atlantic and South America were analysed by applying the operational phylogenetic unit (OPU) approach in order to understand whether microbial community structures in hypersaline environments exhibited biogeographical patterns. The fine-tuned identification of approximately 1000 OPUs (almost equivalent to "species") using multivariate analysis revealed regionally distinct taxa compositions. This segregation was more diffuse at the genus level and pointed to a phylogenetic and metabolic redundancy at the higher taxa level, where their different species acquired distinct advantages related to the regional physicochemical idiosyncrasies. The presence of previously undescribed groups was also shown in these environments, such as Parcubacteria, or members of Nanohaloarchaeota in anaerobic hypersaline sediments. Finally, an important OPU overlap was observed between anoxic sediments and their overlaying brines, indicating versatile metabolism for the pelagic organisms. Copyright © 2017 Elsevier GmbH. All rights reserved.

  2. Phylogenetic relatedness determined between antibiotic resistance and 16S rRNA genes in actinobacteria.

    PubMed

    Sagova-Mareckova, Marketa; Ulanova, Dana; Sanderova, Petra; Omelka, Marek; Kamenik, Zdenek; Olsovska, Jana; Kopecky, Jan

    2015-04-01

    Distribution and evolutionary history of resistance genes in environmental actinobacteria provide information on intensity of antibiosis and evolution of specific secondary metabolic pathways at a given site. To this day, actinobacteria producing biologically active compounds were isolated mostly from soil but only a limited range of soil environments were commonly sampled. Consequently, soil remains an unexplored environment in search for novel producers and related evolutionary questions. Ninety actinobacteria strains isolated at contrasting soil sites were characterized phylogenetically by 16S rRNA gene, for presence of erm and ABC transporter resistance genes and antibiotic production. An analogous analysis was performed in silico with 246 and 31 strains from Integrated Microbial Genomes (JGI_IMG) database selected by the presence of ABC transporter genes and erm genes, respectively. In the isolates, distances of erm gene sequences were significantly correlated to phylogenetic distances based on 16S rRNA genes, while ABC transporter gene distances were not. The phylogenetic distance of isolates was significantly correlated to soil pH and organic matter content of isolation sites. In the analysis of JGI_IMG datasets the correlation between phylogeny of resistance genes and the strain phylogeny based on 16S rRNA genes or five housekeeping genes was observed for both the erm genes and ABC transporter genes in both actinobacteria and streptomycetes. However, in the analysis of sequences from genomes where both resistance genes occurred together the correlation was observed for both ABC transporter and erm genes in actinobacteria but in streptomycetes only in the erm gene. The type of erm resistance gene sequences was influenced by linkage to 16S rRNA gene sequences and site characteristics. The phylogeny of ABC transporter gene was correlated to 16S rRNA genes mainly above the genus level. The results support the concept of new specific secondary metabolite scaffolds occurring more likely in taxonomically distant producers but suggest that the antibiotic selection of gene pools is also influenced by site conditions.

  3. Molecular analysis of microbial community in arsenic-rich groundwater of Kolsor, West Bengal.

    PubMed

    Sarkar, Angana; Paul, Dhiraj; Kazy, Sufia K; Sar, Pinaki

    2016-01-01

    Bacterial community composition within the highly arsenic (As) contaminated groundwater from Kolsur, West Bengal was analyzed over a period of 3 years using 16S rRNA gene clone library and Denaturing Gradient Gel Electrophoresis (DGGE). Molecular phylogenetic study revealed abundance of α-Proteobacteria (56%) and Firmicutes (29%) along with members of β-Proteobacteria, Verrucomicrobia and Sphingobacteria as relatively minor groups. Along with consistent physicochemical environment, a stable microbial community structure comprising of bacterial genera Agrobacterium-Rhizobium, Ochrobactrum, Pseudomonas, Anoxybacillus and Penibacillus was recorded over the three years study period. Presence of cytosolic arsenate reductase (arsC) gene was observed within the microbial community. Phylogenetic analyses revealed that all the arsC sequences were closely related to the same gene from γ-proteobacterial members while the community was consisted of mainly α-proteobacterial groups. Such phylogenetic incongruence between 16S rRNA and arsC genes possibly indicated horizontal gene transfer (HGT) of the ars genes within the groundwater community. Overall, the study reported a nearly stable geomicrobial environment and genetic determinant related to As homeostasis gene, and provided a better insight on biogeochemistry of As contaminated aquifer of West Bengal.

  4. The YNP Metagenome Project: Environmental Parameters Responsible for Microbial Distribution in the Yellowstone Geothermal Ecosystem

    PubMed Central

    Inskeep, William P.; Jay, Zackary J.; Tringe, Susannah G.; Herrgård, Markus J.; Rusch, Douglas B.

    2013-01-01

    The Yellowstone geothermal complex contains over 10,000 diverse geothermal features that host numerous phylogenetically deeply rooted and poorly understood archaea, bacteria, and viruses. Microbial communities in high-temperature environments are generally less diverse than soil, marine, sediment, or lake habitats and therefore offer a tremendous opportunity for studying the structure and function of different model microbial communities using environmental metagenomics. One of the broader goals of this study was to establish linkages among microbial distribution, metabolic potential, and environmental variables. Twenty geochemically distinct geothermal ecosystems representing a broad spectrum of Yellowstone hot-spring environments were used for metagenomic and geochemical analysis and included approximately equal numbers of: (1) phototrophic mats, (2) “filamentous streamer” communities, and (3) archaeal-dominated sediments. The metagenomes were analyzed using a suite of complementary and integrative bioinformatic tools, including phylogenetic and functional analysis of both individual sequence reads and assemblies of predominant phylotypes. This volume identifies major environmental determinants of a large number of thermophilic microbial lineages, many of which have not been fully described in the literature nor previously cultivated to enable functional and genomic analyses. Moreover, protein family abundance comparisons and in-depth analyses of specific genes and metabolic pathways relevant to these hot-spring environments reveal hallmark signatures of metabolic capabilities that parallel the distribution of phylotypes across specific types of geochemical environments. PMID:23653623

  5. Phylogenetic Evidence for Lateral Gene Transfer in the Intestine of Marine Iguanas

    PubMed Central

    Nelson, David M.; Cann, Isaac K. O.; Altermann, Eric; Mackie, Roderick I.

    2010-01-01

    Background Lateral gene transfer (LGT) appears to promote genotypic and phenotypic variation in microbial communities in a range of environments, including the mammalian intestine. However, the extent and mechanisms of LGT in intestinal microbial communities of non-mammalian hosts remains poorly understood. Methodology/Principal Findings We sequenced two fosmid inserts obtained from a genomic DNA library derived from an agar-degrading enrichment culture of marine iguana fecal material. The inserts harbored 16S rRNA genes that place the organism from which they originated within Clostridium cluster IV, a well documented group that habitats the mammalian intestinal tract. However, sequence analysis indicates that 52% of the protein-coding genes on the fosmids have top BLASTX hits to bacterial species that are not members of Clostridium cluster IV, and phylogenetic analysis suggests that at least 10 of 44 coding genes on the fosmids may have been transferred from Clostridium cluster XIVa to cluster IV. The fosmids encoded four transposase-encoding genes and an integrase-encoding gene, suggesting their involvement in LGT. In addition, several coding genes likely involved in sugar transport were probably acquired through LGT. Conclusion Our phylogenetic evidence suggests that LGT may be common among phylogenetically distinct members of the phylum Firmicutes inhabiting the intestinal tract of marine iguanas. PMID:20520734

  6. Genetic variation analysis and relationships among environmental strains of Scedosporium apiospermum sensu stricto in Bangkok, Thailand.

    PubMed

    Wongsuk, Thanwa; Pumeesat, Potjaman; Luplertlop, Natthanej

    2017-01-01

    The Scedosporium apiospermum species complex is an emerging filamentous fungi that has been isolated from environment. It can cause a wide range of infections in both immunocompetent and immunocompromised individuals. We aimed to study the genetic variation and relationships between 48 strains of S. apiospermum sensu stricto isolated from soil in Bangkok, Thailand. For PCR, sequencing and phylogenetic analysis, we used the following genes: actin; calmodulin exons 3 and 4; the second largest subunit of the RNA polymerase II; ß-tubulin exon 2-4; manganese superoxide dismutase; internal transcribed spacer; transcription elongation factor 1α; and beta-tubulin exons 5 and 6. The present study is the first phylogenetic analysis of relationships among S. apiospermum sensu stricto in Thailand and South-east Asia. This result provides useful information for future epidemiological study and may be correlated to clinical manifestation.

  7. Genetic variation analysis and relationships among environmental strains of Scedosporium apiospermum sensu stricto in Bangkok, Thailand

    PubMed Central

    2017-01-01

    The Scedosporium apiospermum species complex is an emerging filamentous fungi that has been isolated from environment. It can cause a wide range of infections in both immunocompetent and immunocompromised individuals. We aimed to study the genetic variation and relationships between 48 strains of S. apiospermum sensu stricto isolated from soil in Bangkok, Thailand. For PCR, sequencing and phylogenetic analysis, we used the following genes: actin; calmodulin exons 3 and 4; the second largest subunit of the RNA polymerase II; ß-tubulin exon 2–4; manganese superoxide dismutase; internal transcribed spacer; transcription elongation factor 1α; and beta-tubulin exons 5 and 6. The present study is the first phylogenetic analysis of relationships among S. apiospermum sensu stricto in Thailand and South-east Asia. This result provides useful information for future epidemiological study and may be correlated to clinical manifestation. PMID:28704511

  8. The tempo and mode of New World monkey evolution and biogeography in the context of phylogenomic analysis.

    PubMed

    Jameson Kiesling, Natalie M; Yi, Soojin V; Xu, Ke; Gianluca Sperone, F; Wildman, Derek E

    2015-01-01

    The development and evolution of organisms is heavily influenced by their environment. Thus, understanding the historical biogeography of taxa can provide insights into their evolutionary history, adaptations and trade-offs realized throughout time. In the present study we have taken a phylogenomic approach to infer New World monkey phylogeny, upon which we have reconstructed the biogeographic history of extant platyrrhines. In order to generate sufficient phylogenetic signal within the New World monkey clade, we carried out a large-scale phylogenetic analysis of approximately 40 kb of non-genic genomic DNA sequence in a 36 species subset of extant New World monkeys. Maximum parsimony, maximum likelihood and Bayesian inference analysis all converged on a single optimal tree topology. Divergence dating and biogeographic analysis reconstruct the timing and geographic location of divergence events. The ancestral area reconstruction describes the geographic locations of the last common ancestor of extant platyrrhines and provides insight into key biogeographic events occurring during platyrrhine diversification. Through these analyses we conclude that the diversification of the platyrrhines took place concurrently with the establishment and diversification of the Amazon rainforest. This suggests that an expanding rainforest environment rather than geographic isolation drove platyrrhine diversification. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Distribution of Bathyarchaeota Communities Across Different Terrestrial Settings and Their Potential Ecological Functions

    NASA Astrophysics Data System (ADS)

    Xiang, Xing; Wang, Ruicheng; Wang, Hongmei; Gong, Linfeng; Man, Baiying; Xu, Ying

    2017-03-01

    High abundance and widespread distribution of the archaeal phylum Bathyarchaeota in marine environment have been recognized recently, but knowledge about Bathyarchaeota in terrestrial settings and their correlation with environmental parameters is fairly limited. Here we reported the abundance of Bathyarchaeota members across different ecosystems and their correlation with environmental factors by constructing 16S rRNA clone libraries of peat from the Dajiuhu Peatland, coupling with bioinformatics analysis of 16S rRNA data available to date in NCBI database. In total, 1456 Bathyarchaeota sequences from 28 sites were subjected to UniFrac analysis based on phylogenetic distance and multivariate regression tree analysis of taxonomy. Both phylogenetic and taxon-based approaches showed that salinity, total organic carbon and temperature significantly influenced the distribution of Bathyarchaeota across different terrestrial habitats. By applying the ecological concept of ‘indicator species’, we identify 9 indicator groups among the 6 habitats with the most in the estuary sediments. Network analysis showed that members of Bathyarchaeota formed the “backbone” of archaeal community and often co-occurred with Methanomicrobia. These results suggest that Bathyarchaeota may play an important ecological role within archaeal communities via a potential symbiotic association with Methanomicrobia. Our results shed light on understanding of the biogeography, potential functions of Bathyarchaeota and environment conditions that influence Bathyarchaea distribution in terrestrial settings.

  10. Phylogenetic analyses provide insights into the historical biogeography and evolution of Brachyrhaphis fishes.

    PubMed

    Ingley, Spencer J; Reina, Ruth G; Bermingham, Eldredge; Johnson, Jerald B

    2015-08-01

    The livebearing fish genus Brachyrhaphis (Poeciliidae) has become an increasingly important model in evolution and ecology research, yet the phylogeny of this group is not well understood, nor has it been examined thoroughly using modern phylogenetic methods. Here, we present the first comprehensive phylogenetic analysis of Brachyrhaphis by using four molecular markers (3mtDNA, 1nucDNA) to infer relationships among species in this genus. We tested the validity of this genus as a monophyletic group using extensive outgroup sampling based on recent phylogenetic hypotheses of Poeciliidae. We also tested the validity of recently described species of Brachyrhaphis that are part of the B. episcopi complex in Panama. Finally, we examined the impact of historical events on diversification of Brachyrhaphis, and made predictions regarding the role of different ecological environments on evolutionary diversification where known historical events apparently fail to explain speciation. Based on our results, we reject the monophyly of Brachyrhaphis, and question the validity of two recently described species (B. hessfeldi and B. roswithae). Historical biogeography of Brachyrhaphis generally agrees with patterns found in other freshwater taxa in Lower Central America, which show that geological barriers frequently predict speciation. Specifically, we find evidence in support of an 'island' model of Lower Central American formation, which posits that the nascent isthmus was partitioned by several marine connections before linking North and South America. In some cases where historic events (e.g., vicariance) fail to explain allopatric species breaks in Brachyrhaphis, ecological processes (e.g., divergent predation environments) offer additional insight into our understanding of phylogenetic diversification in this group. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Environmental factors determining ammonia-oxidizing organism distribution and diversity in marine environments.

    PubMed

    Bouskill, Nicholas J; Eveillard, Damien; Chien, Diana; Jayakumar, Amal; Ward, Bess B

    2012-03-01

    Ammonia-oxidizing bacteria (AOB) and archaea (AOA) play a vital role in bridging the input of fixed nitrogen, through N-fixation and remineralization, to its loss by denitrification and anammox. Yet the major environmental factors determining AOB and AOA population dynamics are little understood, despite both groups having a wide environmental distribution. This study examined the relative abundance of both groups of ammonia-oxidizing organisms (AOO) and the diversity of AOA across large-scale gradients in temperature, salinity and substrate concentration and dissolved oxygen. The relative abundance of AOB and AOA varied across environments, with AOB dominating in the freshwater region of the Chesapeake Bay and AOA more abundant in the water column of the coastal and open ocean. The highest abundance of the AOA amoA gene was recorded in the oxygen minimum zones (OMZs) of the Eastern Tropical South Pacific (ETSP) and the Arabian Sea (AS). The ratio of AOA : AOB varied from 0.7 in the Chesapeake Bay to 1600 in the Sargasso Sea. Relative abundance of both groups strongly correlated with ammonium concentrations. AOA diversity, as determined by phylogenetic analysis of clone library sequences and archetype analysis from a functional gene DNA microarray, detected broad phylogenetic differences across the study sites. However, phylogenetic diversity within physicochemically congruent stations was more similar than would be expected by chance. This suggests that the prevailing geochemistry, rather than localized dispersal, is the major driving factor determining OTU distribution. © 2011 Society for Applied Microbiology and Blackwell Publishing Ltd.

  12. Alpine cushion plants inhibit the loss of phylogenetic diversity in severe environments.

    PubMed

    Butterfield, B J; Cavieres, L A; Callaway, R M; Cook, B J; Kikvidze, Z; Lortie, C J; Michalet, R; Pugnaire, F I; Schöb, C; Xiao, S; Zaitchek, B; Anthelme, F; Björk, R G; Dickinson, K; Gavilán, R; Kanka, R; Maalouf, J-P; Noroozi, J; Parajuli, R; Phoenix, G K; Reid, A; Ridenour, W; Rixen, C; Wipf, S; Zhao, L; Brooker, R W

    2013-04-01

    Biotic interactions can shape phylogenetic community structure (PCS). However, we do not know how the asymmetric effects of foundation species on communities extend to effects on PCS. We assessed PCS of alpine plant communities around the world, both within cushion plant foundation species and adjacent open ground, and compared the effects of foundation species and climate on alpha (within-microsite), beta (between open and cushion) and gamma (open and cushion combined) PCS. In the open, alpha PCS shifted from highly related to distantly related with increasing potential productivity. However, we found no relationship between gamma PCS and climate, due to divergence in phylogenetic composition between cushion and open sub-communities in severe environments, as demonstrated by increasing phylo-beta diversity. Thus, foundation species functioned as micro-refugia by facilitating less stress-tolerant lineages in severe environments, erasing a global productivity - phylogenetic diversity relationship that would go undetected without accounting for this important biotic interaction. © 2013 Blackwell Publishing Ltd/CNRS.

  13. Evaluation of sequence alignments and oligonucleotide probes with respect to three-dimensional structure of ribosomal RNA using ARB software package

    PubMed Central

    Kumar, Yadhu; Westram, Ralf; Kipfer, Peter; Meier, Harald; Ludwig, Wolfgang

    2006-01-01

    Background Availability of high-resolution RNA crystal structures for the 30S and 50S ribosomal subunits and the subsequent validation of comparative secondary structure models have prompted the biologists to use three-dimensional structure of ribosomal RNA (rRNA) for evaluating sequence alignments of rRNA genes. Furthermore, the secondary and tertiary structural features of rRNA are highly useful and successfully employed in designing rRNA targeted oligonucleotide probes intended for in situ hybridization experiments. RNA3D, a program to combine sequence alignment information with three-dimensional structure of rRNA was developed. Integration into ARB software package, which is used extensively by the scientific community for phylogenetic analysis and molecular probe designing, has substantially extended the functionality of ARB software suite with 3D environment. Results Three-dimensional structure of rRNA is visualized in OpenGL 3D environment with the abilities to change the display and overlay information onto the molecule, dynamically. Phylogenetic information derived from the multiple sequence alignments can be overlaid onto the molecule structure in a real time. Superimposition of both statistical and non-statistical sequence associated information onto the rRNA 3D structure can be done using customizable color scheme, which is also applied to a textual sequence alignment for reference. Oligonucleotide probes designed by ARB probe design tools can be mapped onto the 3D structure along with the probe accessibility models for evaluation with respect to secondary and tertiary structural conformations of rRNA. Conclusion Visualization of three-dimensional structure of rRNA in an intuitive display provides the biologists with the greater possibilities to carry out structure based phylogenetic analysis. Coupled with secondary structure models of rRNA, RNA3D program aids in validating the sequence alignments of rRNA genes and evaluating probe target sites. Superimposition of the information derived from the multiple sequence alignment onto the molecule dynamically allows the researchers to observe any sequence inherited characteristics (phylogenetic information) in real-time environment. The extended ARB software package is made freely available for the scientific community via . PMID:16672074

  14. Species divergence and phylogenetic variation of ecophysiological traits in lianas and trees.

    PubMed

    Rios, Rodrigo S; Salgado-Luarte, Cristian; Gianoli, Ernesto

    2014-01-01

    The climbing habit is an evolutionary key innovation in plants because it is associated with enhanced clade diversification. We tested whether patterns of species divergence and variation of three ecophysiological traits that are fundamental for plant adaptation to light environments (maximum photosynthetic rate [A(max)], dark respiration rate [R(d)], and specific leaf area [SLA]) are consistent with this key innovation. Using data reported from four tropical forests and three temperate forests, we compared phylogenetic distance among species as well as the evolutionary rate, phylogenetic distance and phylogenetic signal of those traits in lianas and trees. Estimates of evolutionary rates showed that R(d) evolved faster in lianas, while SLA evolved faster in trees. The mean phylogenetic distance was 1.2 times greater among liana species than among tree species. Likewise, estimates of phylogenetic distance indicated that lianas were less related than by chance alone (phylogenetic evenness across 63 species), and trees were more related than expected by chance (phylogenetic clustering across 71 species). Lianas showed evenness for R(d), while trees showed phylogenetic clustering for this trait. In contrast, for SLA, lianas exhibited phylogenetic clustering and trees showed phylogenetic evenness. Lianas and trees showed patterns of ecophysiological trait variation among species that were independent of phylogenetic relatedness. We found support for the expected pattern of greater species divergence in lianas, but did not find consistent patterns regarding ecophysiological trait evolution and divergence. R(d) followed the species-level pattern, i.e., greater divergence/evolution in lianas compared to trees, while the opposite occurred for SLA and no pattern was detected for A(max). R(d) may have driven lianas' divergence across forest environments, and might contribute to diversification in climber clades.

  15. Species Divergence and Phylogenetic Variation of Ecophysiological Traits in Lianas and Trees

    PubMed Central

    Rios, Rodrigo S.; Salgado-Luarte, Cristian; Gianoli, Ernesto

    2014-01-01

    The climbing habit is an evolutionary key innovation in plants because it is associated with enhanced clade diversification. We tested whether patterns of species divergence and variation of three ecophysiological traits that are fundamental for plant adaptation to light environments (maximum photosynthetic rate [Amax], dark respiration rate [Rd], and specific leaf area [SLA]) are consistent with this key innovation. Using data reported from four tropical forests and three temperate forests, we compared phylogenetic distance among species as well as the evolutionary rate, phylogenetic distance and phylogenetic signal of those traits in lianas and trees. Estimates of evolutionary rates showed that Rd evolved faster in lianas, while SLA evolved faster in trees. The mean phylogenetic distance was 1.2 times greater among liana species than among tree species. Likewise, estimates of phylogenetic distance indicated that lianas were less related than by chance alone (phylogenetic evenness across 63 species), and trees were more related than expected by chance (phylogenetic clustering across 71 species). Lianas showed evenness for Rd, while trees showed phylogenetic clustering for this trait. In contrast, for SLA, lianas exhibited phylogenetic clustering and trees showed phylogenetic evenness. Lianas and trees showed patterns of ecophysiological trait variation among species that were independent of phylogenetic relatedness. We found support for the expected pattern of greater species divergence in lianas, but did not find consistent patterns regarding ecophysiological trait evolution and divergence. Rd followed the species-level pattern, i.e., greater divergence/evolution in lianas compared to trees, while the opposite occurred for SLA and no pattern was detected for Amax. Rd may have driven lianas' divergence across forest environments, and might contribute to diversification in climber clades. PMID:24914958

  16. Evaluating community–environment relationships along fine to broad taxonomic resolutions reveals evolutionary forces underlying community assembly

    PubMed Central

    Lu, Hsiao-Pei; Yeh, Yi-Chun; Sastri, Akash R; Shiah, Fuh-Kwo; Gong, Gwo-Ching; Hsieh, Chih-hao

    2016-01-01

    We propose a method for detecting evolutionary forces underlying community assembly by quantifying the strength of community–environment relationships hierarchically along taxonomic ranks. This approach explores the potential role of phylogenetic conservatism on habitat preferences: wherein, phylogenetically related taxa are expected to exhibit similar environmental responses. Thus, when niches are conserved, broader taxonomic classification should not diminish the strength of community–environment relationships and may even yield stronger associations by summarizing occurrences and abundances of ecologically equivalent finely resolved taxa. In contrast, broader taxonomic classification should weaken community–environment relationships when niches are under great divergence (that is, by combining finer taxa with distinct environmental responses). Here, we quantified the strength of community–environment relationships using distance-based redundancy analysis, focusing on soil and seawater prokaryotic communities. We considered eight case studies (covering a variety of sampling scales and sequencing strategies) and found that the variation in community composition explained by environmental factors either increased or remained constant with broadening taxonomic resolution from species to order or even phylum level. These results support the niche conservatism hypothesis and indicate that broadening taxonomic resolution may strengthen niche-related signals by removing uncertainty in quantifying spatiotemporal distributions of finely resolved taxa, reinforcing the current notion of ecological coherence in deep prokaryotic branches. PMID:27177191

  17. Phylogenetic analysis of bacterial isolates from man-made high-pH, high-salt environments and identification of gene-cassette-associated open reading frames.

    PubMed

    Ghauri, Muhammad A; Khalid, Ahmad M; Grant, Susan; Grant, William D; Heaphy, Shaun

    2006-06-01

    Environmental samples were collected from high-pH sites in Pakistan, including a uranium heap set up for carbonate leaching, the lime unit of a tannery, and the Khewra salt mine. Another sample was collected from a hot spring on the shore of the soda lake, Magadi, in Kenya. Microbial cultures were enriched from Pakistani samples. Phylogenetic analysis of isolates was carried out by sequencing 16S rRNA genes. Genomic DNA was amplified by polymerase chain reaction using integron gene-cassette-specific primers. Different gene-cassette-linked genes were recovered from the cultured strains related to Halomonas magadiensis, Virgibacillus halodenitrificans, and Yania flava and from the uncultured environmental DNA sample. The usefulness of this technique as a tool for gene mining is indicated.

  18. A phylogenetic perspective on species diversity, β-diversity and biogeography for the microbial world.

    PubMed

    Barberán, Albert; Casamayor, Emilio O

    2014-12-01

    There is an increasing interest to combine phylogenetic data with distributional and ecological records to assess how natural communities arrange under an evolutionary perspective. In the microbial world, there is also a need to go beyond the problematic species definition to deeply explore ecological patterns using genetic data. We explored links between evolution/phylogeny and community ecology using bacterial 16S rRNA gene information from a high-altitude lakes district data set. We described phylogenetic community composition, spatial distribution, and β-diversity and biogeographical patterns applying evolutionary relatedness without relying on any particular operational taxonomic unit definition. High-altitude lakes districts usually contain a large mosaic of highly diverse small water bodies and conform a fine biogeographical model of spatially close but environmentally heterogeneous ecosystems. We sampled 18 lakes in the Pyrenees with a selection criteria focused on capturing the maximum environmental variation within the smallest geographical area. The results showed highly diverse communities nonrandomly distributed with phylogenetic β-diversity patterns mainly shaped by the environment and not by the spatial distance. Community similarity based on both bacterial taxonomic composition and phylogenetic β-diversity shared similar patterns and was primarily structured by similar environmental drivers. We observed a positive relationship between lake area and phylogenetic diversity with a slope consistent with highly dispersive planktonic organisms. The phylogenetic approach incorporated patterns of common ancestry into bacterial community analysis and emerged as a very convenient analytical tool for direct inter- and intrabiome biodiversity comparisons and sorting out microbial habitats with potential application in conservation studies. © 2014 John Wiley & Sons Ltd.

  19. Phylogenetic Distribution of the Capsid Assembly Protein Gene (g20) of Cyanophages in Paddy Floodwaters in Northeast China

    PubMed Central

    Jing, Ruiyong; Liu, Junjie; Yu, Zhenhua; Liu, Xiaobing; Wang, Guanghua

    2014-01-01

    Numerous studies have revealed the high diversity of cyanophages in marine and freshwater environments, but little is currently known about the diversity of cyanophages in paddy fields, particularly in Northeast (NE) China. To elucidate the genetic diversity of cyanophages in paddy floodwaters in NE China, viral capsid assembly protein gene (g20) sequences from five floodwater samples were amplified with the primers CPS1 and CPS8. Denaturing gradient gel electrophoresis (DGGE) was applied to distinguish different g20 clones. In total, 54 clones differing in g20 nucleotide sequences were obtained in this study. Phylogenetic analysis showed that the distribution of g20 sequences in this study was different from that in Japanese paddy fields, and all the sequences were grouped into Clusters α, β, γ and ε. Within Clusters α and β, three new small clusters (PFW-VII∼-IX) were identified. UniFrac analysis of g20 clone assemblages demonstrated that the community compositions of cyanophage varied among marine, lake and paddy field environments. In paddy floodwater, community compositions of cyanophage were also different between NE China and Japan. PMID:24533125

  20. Edge Principal Components and Squash Clustering: Using the Special Structure of Phylogenetic Placement Data for Sample Comparison

    PubMed Central

    Matsen IV, Frederick A.; Evans, Steven N.

    2013-01-01

    Principal components analysis (PCA) and hierarchical clustering are two of the most heavily used techniques for analyzing the differences between nucleic acid sequence samples taken from a given environment. They have led to many insights regarding the structure of microbial communities. We have developed two new complementary methods that leverage how this microbial community data sits on a phylogenetic tree. Edge principal components analysis enables the detection of important differences between samples that contain closely related taxa. Each principal component axis is a collection of signed weights on the edges of the phylogenetic tree, and these weights are easily visualized by a suitable thickening and coloring of the edges. Squash clustering outputs a (rooted) clustering tree in which each internal node corresponds to an appropriate “average” of the original samples at the leaves below the node. Moreover, the length of an edge is a suitably defined distance between the averaged samples associated with the two incident nodes, rather than the less interpretable average of distances produced by UPGMA, the most widely used hierarchical clustering method in this context. We present these methods and illustrate their use with data from the human microbiome. PMID:23505415

  1. Yeast species diversity in apple juice for cider production evidenced by culture-based method.

    PubMed

    Lorenzini, Marilinda; Simonato, Barbara; Zapparoli, Giacomo

    2018-05-07

    Identification of yeasts isolated from apple juices of two cider houses (one located in a plain area and one in an alpine area) was carried out by culture-based method. Wallerstein Laboratory Nutrient Agar was used as medium for isolation and preliminary yeasts identification. A total of 20 species of yeasts belonging to ten different genera were identified using both BLAST algorithm for pairwise sequence comparison and phylogenetic approaches. A wide variety of non-Saccharomyces species was found. Interestingly, Candida railenensis, Candida cylindracea, Hanseniaspora meyeri, Hanseniaspora pseudoguilliermondii, and Metschnikowia sinensis were recovered for the first time in the yeast community of an apple environment. Phylogenetic analysis revealed a better resolution in identifying Metschnikowia and Moesziomyces isolates than comparative analysis using the GenBank or YeastIP gene databases. This study provides important data on yeast microbiota of apple juice and evidenced differences between two geographical cider production areas in terms of species composition.

  2. Phylogenetic ctDNA analysis depicts early stage lung cancer evolution

    PubMed Central

    Abbosh, Christopher; Birkbak, Nicolai J.; Wilson, Gareth A.; Jamal-Hanjani, Mariam; Constantin, Tudor; Salari, Raheleh; Le Quesne, John; Moore, David A; Veeriah, Selvaraju; Rosenthal, Rachel; Marafioti, Teresa; Kirkizlar, Eser; Watkins, Thomas B K; McGranahan, Nicholas; Ward, Sophia; Martinson, Luke; Riley, Joan; Fraioli, Francesco; Al Bakir, Maise; Grönroos, Eva; Zambrana, Francisco; Endozo, Raymondo; Bi, Wenya Linda; Fennessy, Fiona M.; Sponer, Nicole; Johnson, Diana; Laycock, Joanne; Shafi, Seema; Czyzewska-Khan, Justyna; Rowan, Andrew; Chambers, Tim; Matthews, Nik; Turajlic, Samra; Hiley, Crispin; Lee, Siow Ming; Forster, Martin D.; Ahmad, Tanya; Falzon, Mary; Borg, Elaine; Lawrence, David; Hayward, Martin; Kolvekar, Shyam; Panagiotopoulos, Nikolaos; Janes, Sam M; Thakrar, Ricky; Ahmed, Asia; Blackhall, Fiona; Summers, Yvonne; Hafez, Dina; Naik, Ashwini; Ganguly, Apratim; Kareht, Stephanie; Shah, Rajesh; Joseph, Leena; Quinn, Anne Marie; Crosbie, Phil; Naidu, Babu; Middleton, Gary; Langman, Gerald; Trotter, Simon; Nicolson, Marianne; Remmen, Hardy; Kerr, Keith; Chetty, Mahendran; Gomersall, Lesley; Fennell, Dean; Nakas, Apostolos; Rathinam, Sridhar; Anand, Girija; Khan, Sajid; Russell, Peter; Ezhil, Veni; Ismail, Babikir; Irvin-sellers, Melanie; Prakash, Vineet; Lester, Jason; Kornaszewska, Malgorzata; Attanoos, Richard; Adams, Haydn; Davies, Helen; Oukrif, Dahmane; Akarca, Ayse U; Hartley, John A; Lowe, Helen L; Lock, Sara; Iles, Natasha; Bell, Harriet; Ngai, Yenting; Elgar, Greg; Szallasi, Zoltan; Schwarz, Roland F; Herrero, Javier; Stewart, Aengus; Quezada, Sergio A; Peggs, Karl S.; Van Loo, Peter; Dive, Caroline; Lin, Jimmy; Rabinowitz, Matthew; Aerts, Hugo JWL; Hackshaw, Allan; Shaw, Jacqui A; Zimmermann, Bernhard G.; Swanton, Charles

    2017-01-01

    Summary The early detection of relapse following primary surgery for non-small cell lung cancer and the characterization of emerging subclones seeding metastatic sites might offer new therapeutic approaches to limit tumor recurrence. The potential to non-invasively track tumor evolutionary dynamics in ctDNA of early-stage lung cancer is not established. Here we conduct a tumour-specific phylogenetic approach to ctDNA profiling in the first 100 TRACERx (TRAcking non-small cell lung Cancer Evolution through therapy (Rx)) study participants, including one patient co-recruited to the PEACE (Posthumous Evaluation of Advanced Cancer Environment) post-mortem study. We identify independent predictors of ctDNA release and perform tumor volume limit of detection analyses. Through blinded profiling of post-operative plasma, we observe evidence of adjuvant chemotherapy resistance and identify patients destined to experience recurrence of their lung cancer. Finally, we show that phylogenetic ctDNA profiling tracks the subclonal nature of lung cancer relapse and metastases, providing a new approach for ctDNA driven therapeutic studies PMID:28445469

  3. Phylogenetic Diversity, Distribution, and Cophylogeny of Giant Bacteria (Epulopiscium) with their Surgeonfish Hosts in the Red Sea

    PubMed Central

    Miyake, Sou; Ngugi, David K.; Stingl, Ulrich

    2016-01-01

    Epulopiscium is a group of giant bacteria found in high abundance in intestinal tracts of herbivorous surgeonfish. Despite their peculiarly large cell size (can be up to 600 μm), extreme polyploidy (some with over 100,000 genome copies per cell) and viviparity (whereby mother cells produce live offspring), details about their diversity, distribution or their role in the host gut are lacking. Previous studies have highlighted the existence of morphologically distinct Epulopiscium cell types (defined as morphotypes A to J) in some surgeonfish genera, but the corresponding genetic diversity and distribution among other surgeonfishes remain mostly unknown. Therefore, we investigated the phylogenetic diversity of Epulopiscium, distribution and co-occurrence in multiple hosts. Here, we identified eleven new phylogenetic clades, six of which were also morphologically characterized. Three of these novel clades were phylogenetically and morphologically similar to cigar-shaped type A1 cells, found in a wide range of surgeonfishes including Acanthurus nigrofuscus, while three were similar to smaller, rod-shaped type E that has not been phylogenetically classified thus far. Our results also confirmed that biogeography appears to have relatively little influence on Epulopiscium diversity, as clades found in the Great Barrier Reef and Hawaii were also recovered from the Red Sea. Although multiple symbiont clades inhabited a given species of host surgeonfish and multiple host species possessed a given symbiont clade, statistical analysis of host and symbiont phylogenies indicated significant cophylogeny, which in turn suggests co-evolutionary relationships. A cluster analysis of Epulopiscium sequences from previously published amplicon sequencing dataset revealed a similar pattern, where specific clades were consistently found in high abundance amongst closely related surgeonfishes. Differences in abundance may indicate specialization of clades to certain gut environments reflected by inferred differences in the host diets. Overall, our analysis identified a large phylogenetic diversity of Epulopiscium (up to 10% sequence divergence of 16S rRNA genes), which lets us hypothesize that there are multiple species that are spread across guts of different host species. PMID:27014209

  4. Phylogenetic stratigraphy in the Guerrero Negro hypersaline microbial mat.

    PubMed

    Harris, J Kirk; Caporaso, J Gregory; Walker, Jeffrey J; Spear, John R; Gold, Nicholas J; Robertson, Charles E; Hugenholtz, Philip; Goodrich, Julia; McDonald, Daniel; Knights, Dan; Marshall, Paul; Tufo, Henry; Knight, Rob; Pace, Norman R

    2013-01-01

    The microbial mats of Guerrero Negro (GN), Baja California Sur, Mexico historically were considered a simple environment, dominated by cyanobacteria and sulfate-reducing bacteria. Culture-independent rRNA community profiling instead revealed these microbial mats as among the most phylogenetically diverse environments known. A preliminary molecular survey of the GN mat based on only ∼1500 small subunit rRNA gene sequences discovered several new phylum-level groups in the bacterial phylogenetic domain and many previously undetected lower-level taxa. We determined an additional ∼119,000 nearly full-length sequences and 28,000 >200 nucleotide 454 reads from a 10-layer depth profile of the GN mat. With this unprecedented coverage of long sequences from one environment, we confirm the mat is phylogenetically stratified, presumably corresponding to light and geochemical gradients throughout the depth of the mat. Previous shotgun metagenomic data from the same depth profile show the same stratified pattern and suggest that metagenome properties may be predictable from rRNA gene sequences. We verify previously identified novel lineages and identify new phylogenetic diversity at lower taxonomic levels, for example, thousands of operational taxonomic units at the family-genus levels differ considerably from known sequences. The new sequences populate parts of the bacterial phylogenetic tree that previously were poorly described, but indicate that any comprehensive survey of GN diversity has only begun. Finally, we show that taxonomic conclusions are generally congruent between Sanger and 454 sequencing technologies, with the taxonomic resolution achieved dependent on the abundance of reference sequences in the relevant region of the rRNA tree of life.

  5. Prokaryotic Nucleotide Composition Is Shaped by Both Phylogeny and the Environment

    DOE PAGES

    Reichenberger, Erin R.; Rosen, Gail; Hershberg, Uri; ...

    2015-04-09

    Here, the causes of the great variation in nucleotide composition of prokaryotic genomes have long been disputed. Here, we use extensive metagenomic and whole-genome data to demonstrate that both phylogeny and the environment shape prokaryotic nucleotide content. We show that across environments, various phyla are characterized by different mean guanine and cytosine (GC) values as well as by the extent of variation on that mean value. At the same time, we show that GC-content varies greatly as a function of environment, in a manner that cannot be entirely explained by disparities in phylogenetic composition. We find environmentally driven differences inmore » nucleotide content not only between highly diverged environments (e.g., soil, vs. aquatic vs. human gut) but also within a single type of environment. More specifically, we demonstrate that some human guts are associated with a microbiome that is consistently more GC-rich across phyla, whereas others are associated with a more AT-rich microbiome. These differences appear to be driven both by variations in phylogenetic composition and by environmental differences—which are independent of these phylogenetic composition differences. Combined, our results demonstrate that both phylogeny and the environment significantly affect nucleotide composition and that the environmental differences affecting nucleotide composition are far subtler than previously appreciated.« less

  6. A genomic investigation of ecological differentiation between free-living and Drosophila-associated bacteria.

    PubMed

    Winans, Nathan J; Walter, Alec; Chouaia, Bessem; Chaston, John M; Douglas, Angela E; Newell, Peter D

    2017-09-01

    Various bacterial taxa have been identified both in association with animals and in the external environment, but the extent to which related bacteria from the two habitat types are ecologically and evolutionarily distinct is largely unknown. This study investigated the scale and pattern of genetic differentiation between bacteria of the family Acetobacteraceae isolated from the guts of Drosophila fruit flies, plant material and industrial fermentations. Genome-scale analysis of the phylogenetic relationships and predicted functions was conducted on 44 Acetobacteraceae isolates, including newly sequenced genomes from 18 isolates from wild and laboratory Drosophila. Isolates from the external environment and Drosophila could not be assigned to distinct phylogenetic groups, nor are their genomes enriched for any different sets of genes or category of predicted gene functions. In contrast, analysis of bacteria from laboratory Drosophila showed they were genetically distinct in their universal capacity to degrade uric acid (a major nitrogenous waste product of Drosophila) and absence of flagellar motility, while these traits vary among wild Drosophila isolates. Analysis of the competitive fitness of Acetobacter discordant for these traits revealed a significant fitness deficit for bacteria that cannot degrade uric acid in culture with Drosophila. We propose that, for wild populations, frequent cycling of Acetobacter between Drosophila and the external environment prevents genetic differentiation by maintaining selection for traits adaptive in both the gut and external habitats. However, laboratory isolates bear the signs of adaptation to persistent association with the Drosophila host under tightly defined environmental conditions. © 2017 John Wiley & Sons Ltd.

  7. MicRhoDE: a curated database for the analysis of microbial rhodopsin diversity and evolution

    PubMed Central

    Boeuf, Dominique; Audic, Stéphane; Brillet-Guéguen, Loraine; Caron, Christophe; Jeanthon, Christian

    2015-01-01

    Microbial rhodopsins are a diverse group of photoactive transmembrane proteins found in all three domains of life and in viruses. Today, microbial rhodopsin research is a flourishing research field in which new understandings of rhodopsin diversity, function and evolution are contributing to broader microbiological and molecular knowledge. Here, we describe MicRhoDE, a comprehensive, high-quality and freely accessible database that facilitates analysis of the diversity and evolution of microbial rhodopsins. Rhodopsin sequences isolated from a vast array of marine and terrestrial environments were manually collected and curated. To each rhodopsin sequence are associated related metadata, including predicted spectral tuning of the protein, putative activity and function, taxonomy for sequences that can be linked to a 16S rRNA gene, sampling date and location, and supporting literature. The database currently covers 7857 aligned sequences from more than 450 environmental samples or organisms. Based on a robust phylogenetic analysis, we introduce an operational classification system with multiple phylogenetic levels ranging from superclusters to species-level operational taxonomic units. An integrated pipeline for online sequence alignment and phylogenetic tree construction is also provided. With a user-friendly interface and integrated online bioinformatics tools, this unique resource should be highly valuable for upcoming studies of the biogeography, diversity, distribution and evolution of microbial rhodopsins. Database URL: http://micrhode.sb-roscoff.fr. PMID:26286928

  8. MicRhoDE: a curated database for the analysis of microbial rhodopsin diversity and evolution.

    PubMed

    Boeuf, Dominique; Audic, Stéphane; Brillet-Guéguen, Loraine; Caron, Christophe; Jeanthon, Christian

    2015-01-01

    Microbial rhodopsins are a diverse group of photoactive transmembrane proteins found in all three domains of life and in viruses. Today, microbial rhodopsin research is a flourishing research field in which new understandings of rhodopsin diversity, function and evolution are contributing to broader microbiological and molecular knowledge. Here, we describe MicRhoDE, a comprehensive, high-quality and freely accessible database that facilitates analysis of the diversity and evolution of microbial rhodopsins. Rhodopsin sequences isolated from a vast array of marine and terrestrial environments were manually collected and curated. To each rhodopsin sequence are associated related metadata, including predicted spectral tuning of the protein, putative activity and function, taxonomy for sequences that can be linked to a 16S rRNA gene, sampling date and location, and supporting literature. The database currently covers 7857 aligned sequences from more than 450 environmental samples or organisms. Based on a robust phylogenetic analysis, we introduce an operational classification system with multiple phylogenetic levels ranging from superclusters to species-level operational taxonomic units. An integrated pipeline for online sequence alignment and phylogenetic tree construction is also provided. With a user-friendly interface and integrated online bioinformatics tools, this unique resource should be highly valuable for upcoming studies of the biogeography, diversity, distribution and evolution of microbial rhodopsins. Database URL: http://micrhode.sb-roscoff.fr. © The Author(s) 2015. Published by Oxford University Press.

  9. Genetic population structure of marine viral haemorrhagic septicaemia virus (VHSV).

    PubMed

    Snow, M; Bain, N; Black, J; Taupin, V; Cunningham, C O; King, J A; Skall, H F; Raynard, R S

    2004-10-21

    The nucleotide sequences of a specific region of the nucleoprotein gene were compared in order to investigate the genetic population structure of marine viral haemorrhagic septicaemia virus (VHSV). Analysis of the sequence from 128 isolates of diverse geographic and host origin renders this the most comprehensive molecular epidemiological study of marine VHSV conducted to date. Phylogenetic analysis of nucleoprotein gene sequences confirmed the existence of the 4 major genotypes previously identified based on N- and subsequent G-gene based analyses. The range of Genotype I included subgroups of isolates associated with rainbow trout aquaculture (Genotype Ia) and those from the Baltic marine environment (Genotype Ib) to emphasise the relatively close genetic relationship between these isolates. The existence of an additional genotype circulating within the Baltic Sea (Genotype II) was also confirmed. Genotype III included marine isolates from around the British Isles in addition to those associated with turbot mariculture, highlighting a continued risk to the development of this industry. Genotype IV consisted of isolates from the marine environment in North America. Taken together, these findings suggest a marine origin of VHSV in rainbow trout aquaculture. The implications of these findings with respect to the future control of VHSV are discussed. The capacity for molecular phylogenetic analysis to resolve complex epidemiological problems is also demonstrated and its likely future importance to disease management issues highlighted.

  10. Open Reading Frame Phylogenetic Analysis on the Cloud

    PubMed Central

    2013-01-01

    Phylogenetic analysis has become essential in researching the evolutionary relationships between viruses. These relationships are depicted on phylogenetic trees, in which viruses are grouped based on sequence similarity. Viral evolutionary relationships are identified from open reading frames rather than from complete sequences. Recently, cloud computing has become popular for developing internet-based bioinformatics tools. Biocloud is an efficient, scalable, and robust bioinformatics computing service. In this paper, we propose a cloud-based open reading frame phylogenetic analysis service. The proposed service integrates the Hadoop framework, virtualization technology, and phylogenetic analysis methods to provide a high-availability, large-scale bioservice. In a case study, we analyze the phylogenetic relationships among Norovirus. Evolutionary relationships are elucidated by aligning different open reading frame sequences. The proposed platform correctly identifies the evolutionary relationships between members of Norovirus. PMID:23671843

  11. Core microbial functional activities in ocean environments revealed by global metagenomic profiling analyses.

    PubMed

    Ferreira, Ari J S; Siam, Rania; Setubal, João C; Moustafa, Ahmed; Sayed, Ahmed; Chambergo, Felipe S; Dawe, Adam S; Ghazy, Mohamed A; Sharaf, Hazem; Ouf, Amged; Alam, Intikhab; Abdel-Haleem, Alyaa M; Lehvaslaiho, Heikki; Ramadan, Eman; Antunes, André; Stingl, Ulrich; Archer, John A C; Jankovic, Boris R; Sogin, Mitchell; Bajic, Vladimir B; El-Dorry, Hamza

    2014-01-01

    Metagenomics-based functional profiling analysis is an effective means of gaining deeper insight into the composition of marine microbial populations and developing a better understanding of the interplay between the functional genome content of microbial communities and abiotic factors. Here we present a comprehensive analysis of 24 datasets covering surface and depth-related environments at 11 sites around the world's oceans. The complete datasets comprises approximately 12 million sequences, totaling 5,358 Mb. Based on profiling patterns of Clusters of Orthologous Groups (COGs) of proteins, a core set of reference photic and aphotic depth-related COGs, and a collection of COGs that are associated with extreme oxygen limitation were defined. Their inferred functions were utilized as indicators to characterize the distribution of light- and oxygen-related biological activities in marine environments. The results reveal that, while light level in the water column is a major determinant of phenotypic adaptation in marine microorganisms, oxygen concentration in the aphotic zone has a significant impact only in extremely hypoxic waters. Phylogenetic profiling of the reference photic/aphotic gene sets revealed a greater variety of source organisms in the aphotic zone, although the majority of individual photic and aphotic depth-related COGs are assigned to the same taxa across the different sites. This increase in phylogenetic and functional diversity of the core aphotic related COGs most probably reflects selection for the utilization of a broad range of alternate energy sources in the absence of light.

  12. Core Microbial Functional Activities in Ocean Environments Revealed by Global Metagenomic Profiling Analyses

    PubMed Central

    Ferreira, Ari J. S.; Siam, Rania; Setubal, João C.; Moustafa, Ahmed; Sayed, Ahmed; Chambergo, Felipe S.; Dawe, Adam S.; Ghazy, Mohamed A.; Sharaf, Hazem; Ouf, Amged; Alam, Intikhab; Abdel-Haleem, Alyaa M.; Lehvaslaiho, Heikki; Ramadan, Eman; Antunes, André; Stingl, Ulrich; Archer, John A. C.; Jankovic, Boris R.; Sogin, Mitchell; Bajic, Vladimir B.; El-Dorry, Hamza

    2014-01-01

    Metagenomics-based functional profiling analysis is an effective means of gaining deeper insight into the composition of marine microbial populations and developing a better understanding of the interplay between the functional genome content of microbial communities and abiotic factors. Here we present a comprehensive analysis of 24 datasets covering surface and depth-related environments at 11 sites around the world's oceans. The complete datasets comprises approximately 12 million sequences, totaling 5,358 Mb. Based on profiling patterns of Clusters of Orthologous Groups (COGs) of proteins, a core set of reference photic and aphotic depth-related COGs, and a collection of COGs that are associated with extreme oxygen limitation were defined. Their inferred functions were utilized as indicators to characterize the distribution of light- and oxygen-related biological activities in marine environments. The results reveal that, while light level in the water column is a major determinant of phenotypic adaptation in marine microorganisms, oxygen concentration in the aphotic zone has a significant impact only in extremely hypoxic waters. Phylogenetic profiling of the reference photic/aphotic gene sets revealed a greater variety of source organisms in the aphotic zone, although the majority of individual photic and aphotic depth-related COGs are assigned to the same taxa across the different sites. This increase in phylogenetic and functional diversity of the core aphotic related COGs most probably reflects selection for the utilization of a broad range of alternate energy sources in the absence of light. PMID:24921648

  13. Molecular Phylogenetics: Concepts for a Newcomer.

    PubMed

    Ajawatanawong, Pravech

    Molecular phylogenetics is the study of evolutionary relationships among organisms using molecular sequence data. The aim of this review is to introduce the important terminology and general concepts of tree reconstruction to biologists who lack a strong background in the field of molecular evolution. Some modern phylogenetic programs are easy to use because of their user-friendly interfaces, but understanding the phylogenetic algorithms and substitution models, which are based on advanced statistics, is still important for the analysis and interpretation without a guide. Briefly, there are five general steps in carrying out a phylogenetic analysis: (1) sequence data preparation, (2) sequence alignment, (3) choosing a phylogenetic reconstruction method, (4) identification of the best tree, and (5) evaluating the tree. Concepts in this review enable biologists to grasp the basic ideas behind phylogenetic analysis and also help provide a sound basis for discussions with expert phylogeneticists.

  14. Picante: R tools for integrating phylogenies and ecology.

    PubMed

    Kembel, Steven W; Cowan, Peter D; Helmus, Matthew R; Cornwell, William K; Morlon, Helene; Ackerly, David D; Blomberg, Simon P; Webb, Campbell O

    2010-06-01

    Picante is a software package that provides a comprehensive set of tools for analyzing the phylogenetic and trait diversity of ecological communities. The package calculates phylogenetic diversity metrics, performs trait comparative analyses, manipulates phenotypic and phylogenetic data, and performs tests for phylogenetic signal in trait distributions, community structure and species interactions. Picante is a package for the R statistical language and environment written in R and C, released under a GPL v2 open-source license, and freely available on the web (http://picante.r-forge.r-project.org) and from CRAN (http://cran.r-project.org).

  15. The episodic evolution of fibritin: traces of ancient global environmental alterations may remain in the genomes of T4-like phages

    PubMed Central

    Letarov, A V; Krisch, H M

    2013-01-01

    The evolutionary adaptation of bacteriophages to their environment is achieved by alterations of their genomes involving a combination of both point mutations and lateral gene transfer. A phylogenetic analysis of a large set of collar fiber protein (fibritin) loci from diverse T4-like phages indicates that nearly all the modular swapping involving the C-terminal domain of this gene occurred in the distant past and has since ceased. In phage T4, this fibritin domain encodes the sequence that mediates both the attachment of the long tail fibers to the virion and also controls, in an environmentally sensitive way, the phage's ability to infect its host bacteria. Subsequent to its distant period of modular exchange, the evolution of fibritin has proceeded primarily by the slow vertical divergence mechanism. We suggest that ancient and sudden changes in the environment forced the T4-like phages to alter fibritin's mode of action or function. The genome's response to such episodes of rapid environmental change could presumably only be achieved quickly enough by employing the modular evolution mechanism. A phylogenetic analysis of the fibritin locus reveals the possible traces of such events within the T4 superfamily's genomes. PMID:24223296

  16. Metagenomics and the protein universe

    PubMed Central

    Godzik, Adam

    2011-01-01

    Metagenomics sequencing projects have dramatically increased our knowledge of the protein universe and provided over one-half of currently known protein sequences; they have also introduced a much broader phylogenetic diversity into the protein databases. The full analysis of metagenomic datasets is only beginning, but it has already led to the discovery of thousands of new protein families, likely representing novel functions specific to given environments. At the same time, a deeper analysis of such novel families, including experimental structure determination of some representatives, suggests that most of them represent distant homologs of already characterized protein families, and thus most of the protein diversity present in the new environments are due to functional divergence of the known protein families rather than the emergence of new ones. PMID:21497084

  17. Comparative phyloinformatics of virus genes at micro and macro levels in a distributed computing environment.

    PubMed

    Singh, Dadabhai T; Trehan, Rahul; Schmidt, Bertil; Bretschneider, Timo

    2008-01-01

    Preparedness for a possible global pandemic caused by viruses such as the highly pathogenic influenza A subtype H5N1 has become a global priority. In particular, it is critical to monitor the appearance of any new emerging subtypes. Comparative phyloinformatics can be used to monitor, analyze, and possibly predict the evolution of viruses. However, in order to utilize the full functionality of available analysis packages for large-scale phyloinformatics studies, a team of computer scientists, biostatisticians and virologists is needed--a requirement which cannot be fulfilled in many cases. Furthermore, the time complexities of many algorithms involved leads to prohibitive runtimes on sequential computer platforms. This has so far hindered the use of comparative phyloinformatics as a commonly applied tool in this area. In this paper the graphical-oriented workflow design system called Quascade and its efficient usage for comparative phyloinformatics are presented. In particular, we focus on how this task can be effectively performed in a distributed computing environment. As a proof of concept, the designed workflows are used for the phylogenetic analysis of neuraminidase of H5N1 isolates (micro level) and influenza viruses (macro level). The results of this paper are hence twofold. Firstly, this paper demonstrates the usefulness of a graphical user interface system to design and execute complex distributed workflows for large-scale phyloinformatics studies of virus genes. Secondly, the analysis of neuraminidase on different levels of complexity provides valuable insights of this virus's tendency for geographical based clustering in the phylogenetic tree and also shows the importance of glycan sites in its molecular evolution. The current study demonstrates the efficiency and utility of workflow systems providing a biologist friendly approach to complex biological dataset analysis using high performance computing. In particular, the utility of the platform Quascade for deploying distributed and parallelized versions of a variety of computationally intensive phylogenetic algorithms has been shown. Secondly, the analysis of the utilized H5N1 neuraminidase datasets at macro and micro levels has clearly indicated a pattern of spatial clustering of the H5N1 viral isolates based on geographical distribution rather than temporal or host range based clustering.

  18. Phylogenetic Variation in the Silicon Composition of Plants

    PubMed Central

    HODSON, M. J.; WHITE, P. J.; MEAD, A.; BROADLEY, M. R.

    2005-01-01

    • Background and Aims Silicon (Si) in plants provides structural support and improves tolerance to diseases, drought and metal toxicity. Shoot Si concentrations are generally considered to be greater in monocotyledonous than in non-monocot plant species. The phylogenetic variation in the shoot Si concentration of plants reported in the primary literature has been quantified. • Methods Studies were identified which reported Si concentrations in leaf or non-woody shoot tissues from at least two plant species growing in the same environment. Each study contained at least one species in common with another study. • Key Results Meta-analysis of the data revealed that, in general, ferns, gymnosperms and angiosperms accumulated less Si in their shoots than non-vascular plant species and horsetails. Within angiosperms and ferns, differences in shoot Si concentration between species grouped by their higher-level phylogenetic position were identified. Within the angiosperms, species from the commelinoid monocot orders Poales and Arecales accumulated substantially more Si in their shoots than species from other monocot clades. • Conclusions A high shoot Si concentration is not a general feature of monocot species. Information on the phylogenetic variation in shoot Si concentration may provide useful palaeoecological and archaeological information, and inform studies of the biogeochemical cycling of Si and those of the molecular genetics of Si uptake and transport in plants. PMID:16176944

  19. Prokaryotic nucleotide composition is shaped by both phylogeny and the environment.

    PubMed

    Reichenberger, Erin R; Rosen, Gail; Hershberg, Uri; Hershberg, Ruth

    2015-04-09

    The causes of the great variation in nucleotide composition of prokaryotic genomes have long been disputed. Here, we use extensive metagenomic and whole-genome data to demonstrate that both phylogeny and the environment shape prokaryotic nucleotide content. We show that across environments, various phyla are characterized by different mean guanine and cytosine (GC) values as well as by the extent of variation on that mean value. At the same time, we show that GC-content varies greatly as a function of environment, in a manner that cannot be entirely explained by disparities in phylogenetic composition. We find environmentally driven differences in nucleotide content not only between highly diverged environments (e.g., soil, vs. aquatic vs. human gut) but also within a single type of environment. More specifically, we demonstrate that some human guts are associated with a microbiome that is consistently more GC-rich across phyla, whereas others are associated with a more AT-rich microbiome. These differences appear to be driven both by variations in phylogenetic composition and by environmental differences-which are independent of these phylogenetic composition differences. Combined, our results demonstrate that both phylogeny and the environment significantly affect nucleotide composition and that the environmental differences affecting nucleotide composition are far subtler than previously appreciated. © The Author(s) 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  20. Biogeography of thermophilic phototrophic bacteria belonging to Roseiflexus genus.

    PubMed

    Gaisin, Vasil A; Grouzdev, Denis S; Namsaraev, Zorigto B; Sukhacheva, Marina V; Gorlenko, Vladimir M; Kuznetsov, Boris B

    2016-03-01

    Isolated environments such as hot springs are particularly interesting for studying the microbial biogeography. These environments create an 'island effect' leading to genetic divergence. We studied the phylogeographic pattern of thermophilic anoxygenic phototrophic bacteria, belonging to the Roseiflexus genus. The main characteristic of the observed pattern was geographic and geochronologic fidelity to the hot springs within Circum-Pacific and Alpine-Himalayan-Indonesian orogenic belts. Mantel test revealed a correlation between genetic divergence and geographic distance among the phylotypes. Cluster analysis revealed a regional differentiation of the global phylogenetic pattern. The phylogeographic pattern is in correlation with geochronologic events during the break up of Pangaea that led to the modern configuration of continents. To our knowledge this is the first geochronological scenario of intercontinental prokaryotic taxon divergence. The existence of the modern phylogeographic pattern contradicts with the existence of the ancient evolutionary history of the Roseiflexus group proposed on the basis of its deep-branching phylogenetic position. These facts indicate that evolutionary rates in Roseiflexus varied over a wide range. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  1. Taking the First Steps towards a Standard for Reporting on Phylogenies: Minimal Information about a Phylogenetic Analysis (MIAPA)

    PubMed Central

    LEEBENS-MACK, JIM; VISION, TODD; BRENNER, ERIC; BOWERS, JOHN E.; CANNON, STEVEN; CLEMENT, MARK J.; CUNNINGHAM, CLIFFORD W.; dePAMPHILIS, CLAUDE; deSALLE, ROB; DOYLE, JEFF J.; EISEN, JONATHAN A.; GU, XUN; HARSHMAN, JOHN; JANSEN, ROBERT K.; KELLOGG, ELIZABETH A.; KOONIN, EUGENE V.; MISHLER, BRENT D.; PHILIPPE, HERVÉ; PIRES, J. CHRIS; QIU, YIN-LONG; RHEE, SEUNG Y.; SJÖLANDER, KIMMEN; SOLTIS, DOUGLAS E.; SOLTIS, PAMELA S.; STEVENSON, DENNIS W.; WALL, KERR; WARNOW, TANDY; ZMASEK, CHRISTIAN

    2011-01-01

    In the eight years since phylogenomics was introduced as the intersection of genomics and phylogenetics, the field has provided fundamental insights into gene function, genome history and organismal relationships. The utility of phylogenomics is growing with the increase in the number and diversity of taxa for which whole genome and large transcriptome sequence sets are being generated. We assert that the synergy between genomic and phylogenetic perspectives in comparative biology would be enhanced by the development and refinement of minimal reporting standards for phylogenetic analyses. Encouraged by the development of the Minimum Information About a Microarray Experiment (MIAME) standard, we propose a similar roadmap for the development of a Minimal Information About a Phylogenetic Analysis (MIAPA) standard. Key in the successful development and implementation of such a standard will be broad participation by developers of phylogenetic analysis software, phylogenetic database developers, practitioners of phylogenomics, and journal editors. PMID:16901231

  2. Phylogenetic ctDNA analysis depicts early-stage lung cancer evolution.

    PubMed

    Abbosh, Christopher; Birkbak, Nicolai J; Wilson, Gareth A; Jamal-Hanjani, Mariam; Constantin, Tudor; Salari, Raheleh; Le Quesne, John; Moore, David A; Veeriah, Selvaraju; Rosenthal, Rachel; Marafioti, Teresa; Kirkizlar, Eser; Watkins, Thomas B K; McGranahan, Nicholas; Ward, Sophia; Martinson, Luke; Riley, Joan; Fraioli, Francesco; Al Bakir, Maise; Grönroos, Eva; Zambrana, Francisco; Endozo, Raymondo; Bi, Wenya Linda; Fennessy, Fiona M; Sponer, Nicole; Johnson, Diana; Laycock, Joanne; Shafi, Seema; Czyzewska-Khan, Justyna; Rowan, Andrew; Chambers, Tim; Matthews, Nik; Turajlic, Samra; Hiley, Crispin; Lee, Siow Ming; Forster, Martin D; Ahmad, Tanya; Falzon, Mary; Borg, Elaine; Lawrence, David; Hayward, Martin; Kolvekar, Shyam; Panagiotopoulos, Nikolaos; Janes, Sam M; Thakrar, Ricky; Ahmed, Asia; Blackhall, Fiona; Summers, Yvonne; Hafez, Dina; Naik, Ashwini; Ganguly, Apratim; Kareht, Stephanie; Shah, Rajesh; Joseph, Leena; Marie Quinn, Anne; Crosbie, Phil A; Naidu, Babu; Middleton, Gary; Langman, Gerald; Trotter, Simon; Nicolson, Marianne; Remmen, Hardy; Kerr, Keith; Chetty, Mahendran; Gomersall, Lesley; Fennell, Dean A; Nakas, Apostolos; Rathinam, Sridhar; Anand, Girija; Khan, Sajid; Russell, Peter; Ezhil, Veni; Ismail, Babikir; Irvin-Sellers, Melanie; Prakash, Vineet; Lester, Jason F; Kornaszewska, Malgorzata; Attanoos, Richard; Adams, Haydn; Davies, Helen; Oukrif, Dahmane; Akarca, Ayse U; Hartley, John A; Lowe, Helen L; Lock, Sara; Iles, Natasha; Bell, Harriet; Ngai, Yenting; Elgar, Greg; Szallasi, Zoltan; Schwarz, Roland F; Herrero, Javier; Stewart, Aengus; Quezada, Sergio A; Peggs, Karl S; Van Loo, Peter; Dive, Caroline; Lin, C Jimmy; Rabinowitz, Matthew; Aerts, Hugo J W L; Hackshaw, Allan; Shaw, Jacqui A; Zimmermann, Bernhard G; Swanton, Charles

    2017-04-26

    The early detection of relapse following primary surgery for non-small-cell lung cancer and the characterization of emerging subclones, which seed metastatic sites, might offer new therapeutic approaches for limiting tumour recurrence. The ability to track the evolutionary dynamics of early-stage lung cancer non-invasively in circulating tumour DNA (ctDNA) has not yet been demonstrated. Here we use a tumour-specific phylogenetic approach to profile the ctDNA of the first 100 TRACERx (Tracking Non-Small-Cell Lung Cancer Evolution Through Therapy (Rx)) study participants, including one patient who was also recruited to the PEACE (Posthumous Evaluation of Advanced Cancer Environment) post-mortem study. We identify independent predictors of ctDNA release and analyse the tumour-volume detection limit. Through blinded profiling of postoperative plasma, we observe evidence of adjuvant chemotherapy resistance and identify patients who are very likely to experience recurrence of their lung cancer. Finally, we show that phylogenetic ctDNA profiling tracks the subclonal nature of lung cancer relapse and metastasis, providing a new approach for ctDNA-driven therapeutic studies.

  3. Accurate phylogenetic classification of DNA fragments based onsequence composition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McHardy, Alice C.; Garcia Martin, Hector; Tsirigos, Aristotelis

    2006-05-01

    Metagenome studies have retrieved vast amounts of sequenceout of a variety of environments, leading to novel discoveries and greatinsights into the uncultured microbial world. Except for very simplecommunities, diversity makes sequence assembly and analysis a verychallenging problem. To understand the structure a 5 nd function ofmicrobial communities, a taxonomic characterization of the obtainedsequence fragments is highly desirable, yet currently limited mostly tothose sequences that contain phylogenetic marker genes. We show that forclades at the rank of domain down to genus, sequence composition allowsthe very accurate phylogenetic 10 characterization of genomic sequence.We developed a composition-based classifier, PhyloPythia, for de novophylogenetic sequencemore » characterization and have trained it on adata setof 340 genomes. By extensive evaluation experiments we show that themethodis accurate across all taxonomic ranks considered, even forsequences that originate fromnovel organisms and are as short as 1kb.Application to two metagenome datasets 15 obtained from samples ofphosphorus-removing sludge showed that the method allows the accurateclassification at genus level of most sequence fragments from thedominant populations, while at the same time correctly characterizingeven larger parts of the samples at higher taxonomic levels.« less

  4. Molecular Phylogeny of the Widely Distributed Marine Protists, Phaeodaria (Rhizaria, Cercozoa).

    PubMed

    Nakamura, Yasuhide; Imai, Ichiro; Yamaguchi, Atsushi; Tuji, Akihiro; Not, Fabrice; Suzuki, Noritoshi

    2015-07-01

    Phaeodarians are a group of widely distributed marine cercozoans. These plankton organisms can exhibit a large biomass in the environment and are supposed to play an important role in marine ecosystems and in material cycles in the ocean. Accurate knowledge of phaeodarian classification is thus necessary to better understand marine biology, however, phylogenetic information on Phaeodaria is limited. The present study analyzed 18S rDNA sequences encompassing all existing phaeodarian orders, to clarify their phylogenetic relationships and improve their taxonomic classification. The monophyly of Phaeodaria was confirmed and strongly supported by phylogenetic analysis with a larger data set than in previous studies. The phaeodarian clade contained 11 subclades which generally did not correspond to the families and orders of the current classification system. Two families (Challengeriidae and Aulosphaeridae) and two orders (Phaeogromida and Phaeocalpida) are possibly polyphyletic or paraphyletic, and consequently the classification needs to be revised at both the family and order levels by integrative taxonomy approaches. Two morphological criteria, 1) the scleracoma type and 2) its surface structure, could be useful markers at the family level. Copyright © 2015 Elsevier GmbH. All rights reserved.

  5. Genome Content and Phylogenomics Reveal both Ancestral and Lateral Evolutionary Pathways in Plant-Pathogenic Streptomyces Species

    PubMed Central

    Huguet-Tapia, Jose C.; Lefebure, Tristan; Badger, Jonathan H.; Guan, Dongli; Stanhope, Michael J.

    2016-01-01

    Streptomyces spp. are highly differentiated actinomycetes with large, linear chromosomes that encode an arsenal of biologically active molecules and catabolic enzymes. Members of this genus are well equipped for life in nutrient-limited environments and are common soil saprophytes. Out of the hundreds of species in the genus Streptomyces, a small group has evolved the ability to infect plants. The recent availability of Streptomyces genome sequences, including four genomes of pathogenic species, provided an opportunity to characterize the gene content specific to these pathogens and to study phylogenetic relationships among them. Genome sequencing, comparative genomics, and phylogenetic analysis enabled us to discriminate pathogenic from saprophytic Streptomyces strains; moreover, we calculated that the pathogen-specific genome contains 4,662 orthologs. Phylogenetic reconstruction suggested that Streptomyces scabies and S. ipomoeae share an ancestor but that their biosynthetic clusters encoding the required virulence factor thaxtomin have diverged. In contrast, S. turgidiscabies and S. acidiscabies, two relatively unrelated pathogens, possess highly similar thaxtomin biosynthesis clusters, which suggests that the acquisition of these genes was through lateral gene transfer. PMID:26826232

  6. ZikaVR: An Integrated Zika Virus Resource for Genomics, Proteomics, Phylogenetic and Therapeutic Analysis

    PubMed Central

    Gupta, Amit Kumar; Kaur, Karambir; Rajput, Akanksha; Dhanda, Sandeep Kumar; Sehgal, Manika; Khan, Md. Shoaib; Monga, Isha; Dar, Showkat Ahmad; Singh, Sandeep; Nagpal, Gandharva; Usmani, Salman Sadullah; Thakur, Anamika; Kaur, Gazaldeep; Sharma, Shivangi; Bhardwaj, Aman; Qureshi, Abid; Raghava, Gajendra Pal Singh; Kumar, Manoj

    2016-01-01

    Current Zika virus (ZIKV) outbreaks that spread in several areas of Africa, Southeast Asia, and in pacific islands is declared as a global health emergency by World Health Organization (WHO). It causes Zika fever and illness ranging from severe autoimmune to neurological complications in humans. To facilitate research on this virus, we have developed an integrative multi-omics platform; ZikaVR (http://bioinfo.imtech.res.in/manojk/zikavr/), dedicated to the ZIKV genomic, proteomic and therapeutic knowledge. It comprises of whole genome sequences, their respective functional information regarding proteins, genes, and structural content. Additionally, it also delivers sophisticated analysis such as whole-genome alignments, conservation and variation, CpG islands, codon context, usage bias and phylogenetic inferences at whole genome and proteome level with user-friendly visual environment. Further, glycosylation sites and molecular diagnostic primers were also analyzed. Most importantly, we also proposed potential therapeutically imperative constituents namely vaccine epitopes, siRNAs, miRNAs, sgRNAs and repurposing drug candidates. PMID:27633273

  7. Distribution and abundance of human-specific Bacteroides and relation to traditional indicators in an urban tropical catchment

    PubMed Central

    Nshimyimana, J P; Ekklesia, E; Shanahan, P; Chua, L H C; Thompson, J R

    2014-01-01

    Aims The study goals were to determine the relationship between faecal indicator bacteria (FIB), the HF183 marker and land use, and the phylogenetic diversity of HF183 marker sequences in a tropical urban watershed. Methods and Results Total coliforms, Escherichia coli, and HF183 were quantified in 81 samples categorized as undeveloped, residential and horticultural from the Kranji Reservoir and Catchment in Singapore. Quantitative-PCR for HF183 followed by analysis of variance indicated that horticultural areas had significantly higher geometric means for marker levels (4·3 × 104 HF183-GE 100 ml−1) than nonhorticultural areas (3·07 × 103 HF183-GE 100 ml−1). E. coli and HF183 were moderately correlated in horticultural areas (R = 0·59, P = 0·0077), but not elsewhere in the catchment. Initial upstream surveys of candidate sources revealed elevated HF183 in a wastewater treatment effluent but not in aquaculture ponds. The HF183 marker was cloned, sequenced and determined by phylogenetic analysis to match the original marker description. Conclusion We show that quantification of the HF183 marker is a useful tool for mapping the spatial distribution and potential sources of human sewage contamination in tropical environments such as Singapore. Significance and Impact A major challenge for assessment of water quality in tropical environments is the natural occurrence and nonconservative behaviour of FIB. The HF183 marker has been employed in temperate environments as an alternative indicator for human sewage contamination. Our study supports the use of the HF183 marker as an indicator for human sewage in Singapore and motivates further work to determine HF183 marker levels that correspond to public health risk in tropical environments. PMID:24460587

  8. Environmental and spatial drivers of taxonomic, functional, and phylogenetic characteristics of bat communities in human-modified landscapes.

    PubMed

    Cisneros, Laura M; Fagan, Matthew E; Willig, Michael R

    2016-01-01

    Assembly of species into communities following human disturbance (e.g., deforestation, fragmentation) may be governed by spatial (e.g., dispersal) or environmental (e.g., niche partitioning) mechanisms. Variation partitioning has been used to broadly disentangle spatial and environmental mechanisms, and approaches utilizing functional and phylogenetic characteristics of communities have been implemented to determine the relative importance of particular environmental (or niche-based) mechanisms. Nonetheless, few studies have integrated these quantitative approaches to comprehensively assess the relative importance of particular structuring processes. We employed a novel variation partitioning approach to evaluate the relative importance of particular spatial and environmental drivers of taxonomic, functional, and phylogenetic aspects of bat communities in a human-modified landscape in Costa Rica. Specifically, we estimated the amount of variation in species composition (taxonomic structure) and in two aspects of functional and phylogenetic structure (i.e., composition and dispersion) along a forest loss and fragmentation gradient that are uniquely explained by landscape characteristics (i.e., environment) or space to assess the importance of competing mechanisms. The unique effects of space on taxonomic, functional and phylogenetic structure were consistently small. In contrast, landscape characteristics (i.e., environment) played an appreciable role in structuring bat communities. Spatially-structured landscape characteristics explained 84% of the variation in functional or phylogenetic dispersion, and the unique effects of landscape characteristics significantly explained 14% of the variation in species composition. Furthermore, variation in bat community structure was primarily due to differences in dispersion of species within functional or phylogenetic space along the gradient, rather than due to differences in functional or phylogenetic composition. Variation among bat communities was related to environmental mechanisms, especially niche-based (i.e., environmental) processes, rather than spatial mechanisms. High variation in functional or phylogenetic dispersion, as opposed to functional or phylogenetic composition, suggests that loss or gain of niche space is driving the progressive loss or gain of species with particular traits from communities along the human-modified gradient. Thus, environmental characteristics associated with landscape structure influence functional or phylogenetic aspects of bat communities by effectively altering the ways in which species partition niche space.

  9. Environmental and spatial drivers of taxonomic, functional, and phylogenetic characteristics of bat communities in human-modified landscapes

    PubMed Central

    Fagan, Matthew E.; Willig, Michael R.

    2016-01-01

    Background Assembly of species into communities following human disturbance (e.g., deforestation, fragmentation) may be governed by spatial (e.g., dispersal) or environmental (e.g., niche partitioning) mechanisms. Variation partitioning has been used to broadly disentangle spatial and environmental mechanisms, and approaches utilizing functional and phylogenetic characteristics of communities have been implemented to determine the relative importance of particular environmental (or niche-based) mechanisms. Nonetheless, few studies have integrated these quantitative approaches to comprehensively assess the relative importance of particular structuring processes. Methods We employed a novel variation partitioning approach to evaluate the relative importance of particular spatial and environmental drivers of taxonomic, functional, and phylogenetic aspects of bat communities in a human-modified landscape in Costa Rica. Specifically, we estimated the amount of variation in species composition (taxonomic structure) and in two aspects of functional and phylogenetic structure (i.e., composition and dispersion) along a forest loss and fragmentation gradient that are uniquely explained by landscape characteristics (i.e., environment) or space to assess the importance of competing mechanisms. Results The unique effects of space on taxonomic, functional and phylogenetic structure were consistently small. In contrast, landscape characteristics (i.e., environment) played an appreciable role in structuring bat communities. Spatially-structured landscape characteristics explained 84% of the variation in functional or phylogenetic dispersion, and the unique effects of landscape characteristics significantly explained 14% of the variation in species composition. Furthermore, variation in bat community structure was primarily due to differences in dispersion of species within functional or phylogenetic space along the gradient, rather than due to differences in functional or phylogenetic composition. Discussion Variation among bat communities was related to environmental mechanisms, especially niche-based (i.e., environmental) processes, rather than spatial mechanisms. High variation in functional or phylogenetic dispersion, as opposed to functional or phylogenetic composition, suggests that loss or gain of niche space is driving the progressive loss or gain of species with particular traits from communities along the human-modified gradient. Thus, environmental characteristics associated with landscape structure influence functional or phylogenetic aspects of bat communities by effectively altering the ways in which species partition niche space. PMID:27761338

  10. Applying phylogenetic analysis to viral livestock diseases: moving beyond molecular typing.

    PubMed

    Olvera, Alex; Busquets, Núria; Cortey, Marti; de Deus, Nilsa; Ganges, Llilianne; Núñez, José Ignacio; Peralta, Bibiana; Toskano, Jennifer; Dolz, Roser

    2010-05-01

    Changes in livestock production systems in recent years have altered the presentation of many diseases resulting in the need for more sophisticated control measures. At the same time, new molecular assays have been developed to support the diagnosis of animal viral disease. Nucleotide sequences generated by these diagnostic techniques can be used in phylogenetic analysis to infer phenotypes by sequence homology and to perform molecular epidemiology studies. In this review, some key elements of phylogenetic analysis are highlighted, such as the selection of the appropriate neutral phylogenetic marker, the proper phylogenetic method and different techniques to test the reliability of the resulting tree. Examples are given of current and future applications of phylogenetic reconstructions in viral livestock diseases. Copyright 2009 Elsevier Ltd. All rights reserved.

  11. Evolution of climatic niche specialization: a phylogenetic analysis in amphibians

    PubMed Central

    Bonetti, Maria Fernanda; Wiens, John J.

    2014-01-01

    The evolution of climatic niche specialization has important implications for many topics in ecology, evolution and conservation. The climatic niche reflects the set of temperature and precipitation conditions where a species can occur. Thus, specialization to a limited set of climatic conditions can be important for understanding patterns of biogeography, species richness, community structure, allopatric speciation, spread of invasive species and responses to climate change. Nevertheless, the factors that determine climatic niche width (level of specialization) remain poorly explored. Here, we test whether species that occur in more extreme climates are more highly specialized for those conditions, and whether there are trade-offs between niche widths on different climatic niche axes (e.g. do species that tolerate a broad range of temperatures tolerate only a limited range of precipitation regimes?). We test these hypotheses in amphibians, using phylogenetic comparative methods and global-scale datasets, including 2712 species with both climatic and phylogenetic data. Our results do not support either hypothesis. Rather than finding narrower niches in more extreme environments, niches tend to be narrower on one end of a climatic gradient but wider on the other. We also find that temperature and precipitation niche breadths are positively related, rather than showing trade-offs. Finally, our results suggest that most amphibian species occur in relatively warm and dry environments and have relatively narrow climatic niche widths on both of these axes. Thus, they may be especially imperilled by anthropogenic climate change. PMID:25274369

  12. Evolution of climatic niche specialization: a phylogenetic analysis in amphibians.

    PubMed

    Bonetti, Maria Fernanda; Wiens, John J

    2014-11-22

    The evolution of climatic niche specialization has important implications for many topics in ecology, evolution and conservation. The climatic niche reflects the set of temperature and precipitation conditions where a species can occur. Thus, specialization to a limited set of climatic conditions can be important for understanding patterns of biogeography, species richness, community structure, allopatric speciation, spread of invasive species and responses to climate change. Nevertheless, the factors that determine climatic niche width (level of specialization) remain poorly explored. Here, we test whether species that occur in more extreme climates are more highly specialized for those conditions, and whether there are trade-offs between niche widths on different climatic niche axes (e.g. do species that tolerate a broad range of temperatures tolerate only a limited range of precipitation regimes?). We test these hypotheses in amphibians, using phylogenetic comparative methods and global-scale datasets, including 2712 species with both climatic and phylogenetic data. Our results do not support either hypothesis. Rather than finding narrower niches in more extreme environments, niches tend to be narrower on one end of a climatic gradient but wider on the other. We also find that temperature and precipitation niche breadths are positively related, rather than showing trade-offs. Finally, our results suggest that most amphibian species occur in relatively warm and dry environments and have relatively narrow climatic niche widths on both of these axes. Thus, they may be especially imperilled by anthropogenic climate change. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  13. Biomass Allocation of Stoloniferous and Rhizomatous Plant in Response to Resource Availability: A Phylogenetic Meta-Analysis

    PubMed Central

    Xie, Xiu-Fang; Hu, Yu-Kun; Pan, Xu; Liu, Feng-Hong; Song, Yao-Bin; Dong, Ming

    2016-01-01

    Resource allocation to different functions is central in life-history theory. Plasticity of functional traits allows clonal plants to regulate their resource allocation to meet changing environments. In this study, biomass allocation traits of clonal plants were categorized into absolute biomass for vegetative growth vs. for reproduction, and their relative ratios based on a data set including 115 species and derived from 139 published literatures. We examined general pattern of biomass allocation of clonal plants in response to availabilities of resource (e.g., light, nutrients, and water) using phylogenetic meta-analysis. We also tested whether the pattern differed among clonal organ types (stolon vs. rhizome). Overall, we found that stoloniferous plants were more sensitive to light intensity than rhizomatous plants, preferentially allocating biomass to vegetative growth, aboveground part and clonal reproduction under shaded conditions. Under nutrient- and water-poor condition, rhizomatous plants were constrained more by ontogeny than by resource availability, preferentially allocating biomass to belowground part. Biomass allocation between belowground and aboveground part of clonal plants generally supported the optimal allocation theory. No general pattern of trade-off was found between growth and reproduction, and neither between sexual and clonal reproduction. Using phylogenetic meta-analysis can avoid possible confounding effects of phylogeny on the results. Our results shown the optimal allocation theory explained a general trend, which the clonal plants are able to plastically regulate their biomass allocation, to cope with changing resource availability, at least in stoloniferous and rhizomatous plants. PMID:27200071

  14. The `TTIME' Package: Performance Evaluation in a Cluster Computing Environment

    NASA Astrophysics Data System (ADS)

    Howe, Marico; Berleant, Daniel; Everett, Albert

    2011-06-01

    The objective of translating developmental event time across mammalian species is to gain an understanding of the timing of human developmental events based on known time of those events in animals. The potential benefits include improvements to diagnostic and intervention capabilities. The CRAN `ttime' package provides the functionality to infer unknown event timings and investigate phylogenetic proximity utilizing hierarchical clustering of both known and predicted event timings. The original generic mammalian model included nine eutherian mammals: Felis domestica (cat), Mustela putorius furo (ferret), Mesocricetus auratus (hamster), Macaca mulatta (monkey), Homo sapiens (humans), Mus musculus (mouse), Oryctolagus cuniculus (rabbit), Rattus norvegicus (rat), and Acomys cahirinus (spiny mouse). However, the data for this model is expected to grow as more data about developmental events is identified and incorporated into the analysis. Performance evaluation of the `ttime' package across a cluster computing environment versus a comparative analysis in a serial computing environment provides an important computational performance assessment. A theoretical analysis is the first stage of a process in which the second stage, if justified by the theoretical analysis, is to investigate an actual implementation of the `ttime' package in a cluster computing environment and to understand the parallelization process that underlies implementation.

  15. A Pan-Genomic Approach to Understand the Basis of Host Adaptation in Achromobacter

    PubMed Central

    Jeukens, Julie; Freschi, Luca; Vincent, Antony T.; Emond-Rheault, Jean-Guillaume; Kukavica-Ibrulj, Irena; Charette, Steve J.

    2017-01-01

    Over the past decade, there has been a rising interest in Achromobacter sp., an emerging opportunistic pathogen responsible for nosocomial and cystic fibrosis lung infections. Species of this genus are ubiquitous in the environment, can outcompete resident microbiota, and are resistant to commonly used disinfectants as well as antibiotics. Nevertheless, the Achromobacter genus suffers from difficulties in diagnosis, unresolved taxonomy and limited understanding of how it adapts to the cystic fibrosis lung, not to mention other host environments. The goals of this first genus-wide comparative genomics study were to clarify the taxonomy of this genus and identify genomic features associated with pathogenicity and host adaptation. This was done with a widely applicable approach based on pan-genome analysis. First, using all publicly available genomes, a combination of phylogenetic analysis based on 1,780 conserved genes with average nucleotide identity and accessory genome composition allowed the identification of a largely clinical lineage composed of Achromobacter xylosoxidans, Achromobacter insuavis, Achromobacter dolens, and Achromobacter ruhlandii. Within this lineage, we identified 35 positively selected genes involved in metabolism, regulation and efflux-mediated antibiotic resistance. Second, resistome analysis showed that this clinical lineage carried additional antibiotic resistance genes compared with other isolates. Finally, we identified putative mobile elements that contribute 53% of the genus’s resistome and support horizontal gene transfer between Achromobacter and other ecologically similar genera. This study provides strong phylogenetic and pan-genomic bases to motivate further research on Achromobacter, and contributes to the understanding of opportunistic pathogen evolution. PMID:28383665

  16. Genus-Wide Comparative Genomics of Malassezia Delineates Its Phylogeny, Physiology, and Niche Adaptation on Human Skin

    PubMed Central

    Wu, Guangxi; Zhao, He; Li, Chenhao; Rajapakse, Menaka Priyadarsani; Wong, Wing Cheong; Xu, Jun; Saunders, Charles W.; Reeder, Nancy L.; Reilman, Raymond A.; Scheynius, Annika; Sun, Sheng; Billmyre, Blake Robert; Li, Wenjun; Averette, Anna Floyd; Mieczkowski, Piotr; Heitman, Joseph; Theelen, Bart; Schröder, Markus S.; De Sessions, Paola Florez; Butler, Geraldine; Maurer-Stroh, Sebastian; Boekhout, Teun; Nagarajan, Niranjan; Dawson, Thomas L.

    2015-01-01

    Malassezia is a unique lipophilic genus in class Malasseziomycetes in Ustilaginomycotina, (Basidiomycota, fungi) that otherwise consists almost exclusively of plant pathogens. Malassezia are typically isolated from warm-blooded animals, are dominant members of the human skin mycobiome and are associated with common skin disorders. To characterize the genetic basis of the unique phenotypes of Malassezia spp., we sequenced the genomes of all 14 accepted species and used comparative genomics against a broad panel of fungal genomes to comprehensively identify distinct features that define the Malassezia gene repertoire: gene gain and loss; selection signatures; and lineage-specific gene family expansions. Our analysis revealed key gene gain events (64) with a single gene conserved across all Malassezia but absent in all other sequenced Basidiomycota. These likely horizontally transferred genes provide intriguing gain-of-function events and prime candidates to explain the emergence of Malassezia. A larger set of genes (741) were lost, with enrichment for glycosyl hydrolases and carbohydrate metabolism, concordant with adaptation to skin’s carbohydrate-deficient environment. Gene family analysis revealed extensive turnover and underlined the importance of secretory lipases, phospholipases, aspartyl proteases, and other peptidases. Combining genomic analysis with a re-evaluation of culture characteristics, we establish the likely lipid-dependence of all Malassezia. Our phylogenetic analysis sheds new light on the relationship between Malassezia and other members of Ustilaginomycotina, as well as phylogenetic lineages within the genus. Overall, our study provides a unique genomic resource for understanding Malassezia niche-specificity and potential virulence, as well as their abundance and distribution in the environment and on human skin. PMID:26539826

  17. Genus-Wide Comparative Genomics of Malassezia Delineates Its Phylogeny, Physiology, and Niche Adaptation on Human Skin.

    PubMed

    Wu, Guangxi; Zhao, He; Li, Chenhao; Rajapakse, Menaka Priyadarsani; Wong, Wing Cheong; Xu, Jun; Saunders, Charles W; Reeder, Nancy L; Reilman, Raymond A; Scheynius, Annika; Sun, Sheng; Billmyre, Blake Robert; Li, Wenjun; Averette, Anna Floyd; Mieczkowski, Piotr; Heitman, Joseph; Theelen, Bart; Schröder, Markus S; De Sessions, Paola Florez; Butler, Geraldine; Maurer-Stroh, Sebastian; Boekhout, Teun; Nagarajan, Niranjan; Dawson, Thomas L

    2015-11-01

    Malassezia is a unique lipophilic genus in class Malasseziomycetes in Ustilaginomycotina, (Basidiomycota, fungi) that otherwise consists almost exclusively of plant pathogens. Malassezia are typically isolated from warm-blooded animals, are dominant members of the human skin mycobiome and are associated with common skin disorders. To characterize the genetic basis of the unique phenotypes of Malassezia spp., we sequenced the genomes of all 14 accepted species and used comparative genomics against a broad panel of fungal genomes to comprehensively identify distinct features that define the Malassezia gene repertoire: gene gain and loss; selection signatures; and lineage-specific gene family expansions. Our analysis revealed key gene gain events (64) with a single gene conserved across all Malassezia but absent in all other sequenced Basidiomycota. These likely horizontally transferred genes provide intriguing gain-of-function events and prime candidates to explain the emergence of Malassezia. A larger set of genes (741) were lost, with enrichment for glycosyl hydrolases and carbohydrate metabolism, concordant with adaptation to skin's carbohydrate-deficient environment. Gene family analysis revealed extensive turnover and underlined the importance of secretory lipases, phospholipases, aspartyl proteases, and other peptidases. Combining genomic analysis with a re-evaluation of culture characteristics, we establish the likely lipid-dependence of all Malassezia. Our phylogenetic analysis sheds new light on the relationship between Malassezia and other members of Ustilaginomycotina, as well as phylogenetic lineages within the genus. Overall, our study provides a unique genomic resource for understanding Malassezia niche-specificity and potential virulence, as well as their abundance and distribution in the environment and on human skin.

  18. Conformation of phylogenetic relationship of Penaeidae shrimp based on morphometric and molecular investigations.

    PubMed

    Rajakumaran, P; Vaseeharan, B; Jayakumar, R; Chidambara, R

    2014-01-01

    Understanding of accurate phylogenetic relationship among Penaeidae shrimp is important for academic and fisheries industry. The Morphometric and Randomly amplified polymorphic DNA (RAPD) analysis was used to make the phylogenetic relationsip among 13 Penaeidae shrimp. For morphometric analysis forty variables and total lengths of shrimp were measured for each species, and removed the effect of size variation. The size normalized values obtained was subjected to UPGMA (Unweighted Pair-Group Method with Arithmetic Mean) cluster analysis. For RAPD analysis, the four primers showed reliable differentiation between species, and used correlation coefficient between the DNA banding patterns of 13 Penaeidae species to construct UPGMA dendrogram. Phylogenetic relationship from morphometric and molecular analysis for Penaeidae species found to be congruent. We concluded that as the results from morphometry investigations concur with molecular one, phylogenetic relationship obtained for the studied Penaeidae are considered to be reliable.

  19. Environmental filtering of eudicot lineages underlies phylogenetic clustering in tropical South American flooded forests.

    PubMed

    Aldana, Ana M; Carlucci, Marcos B; Fine, Paul V A; Stevenson, Pablo R

    2017-02-01

    The phylogenetic community assembly approach has been used to elucidate the role of ecological and historical processes in shaping tropical tree communities. Recent studies have shown that stressful environments, such as seasonally dry, white-sand and flooded forests tend to be phylogenetically clustered, arguing for niche conservatism as the main driver for this pattern. Very few studies have attempted to identify the lineages that contribute to such assembly patterns. We aimed to improve our understanding of the assembly of flooded forest tree communities in Northern South America by asking the following questions: are seasonally flooded forests phylogenetically clustered? If so, which angiosperm lineages are over-represented in seasonally flooded forests? To assess our hypotheses, we investigated seasonally flooded and terra firme forests from the Magdalena, Orinoco and Amazon Basins, in Colombia. Our results show that, regardless of the river basin in which they are located, seasonally flooded forests of Northern South America tend to be phylogenetically clustered, which means that the more abundant taxa in these forests are more closely related to each other than expected by chance. Based on our alpha and beta phylodiversity analyses we interpret that eudicots are more likely to adapt to extreme environments such as seasonally flooded forests, which indicates the importance of environmental filtering in the assembly of the Neotropical flora.

  20. treespace: Statistical exploration of landscapes of phylogenetic trees.

    PubMed

    Jombart, Thibaut; Kendall, Michelle; Almagro-Garcia, Jacob; Colijn, Caroline

    2017-11-01

    The increasing availability of large genomic data sets as well as the advent of Bayesian phylogenetics facilitates the investigation of phylogenetic incongruence, which can result in the impossibility of representing phylogenetic relationships using a single tree. While sometimes considered as a nuisance, phylogenetic incongruence can also reflect meaningful biological processes as well as relevant statistical uncertainty, both of which can yield valuable insights in evolutionary studies. We introduce a new tool for investigating phylogenetic incongruence through the exploration of phylogenetic tree landscapes. Our approach, implemented in the R package treespace, combines tree metrics and multivariate analysis to provide low-dimensional representations of the topological variability in a set of trees, which can be used for identifying clusters of similar trees and group-specific consensus phylogenies. treespace also provides a user-friendly web interface for interactive data analysis and is integrated alongside existing standards for phylogenetics. It fills a gap in the current phylogenetics toolbox in R and will facilitate the investigation of phylogenetic results. © 2017 The Authors. Molecular Ecology Resources Published by John Wiley & Sons Ltd.

  1. Cytochrome cd1-containing nitrite reductase encoding gene nirS as a new functional biomarker for detection of anaerobic ammonium oxidizing (Anammox) bacteria.

    PubMed

    Li, Meng; Ford, Tim; Li, Xiaoyan; Gu, Ji-Dong

    2011-04-15

    A newly designed primer set (AnnirS), together with a previously published primer set (ScnirS), was used to detect anammox bacterial nirS genes from sediments collected from three marine environments. Phylogenetic analysis demonstrated that all retrieved sequences were clearly different from typical denitrifiers' nirS, but do group together with the known anammox bacterial nirS. Sequences targeted by ScnirS are closely related to Scalindua nirS genes recovered from the Peruvian oxygen minimum zone (OMZ), whereas sequences targeted by AnnirS are more closely affiliated with the nirS of Candidatus 'Kuenenia stuttgartiensis' and even form a new phylogenetic nirS clade, which might be related to other genera of the anammox bacteria. Analysis demonstrated that retrieved sequences had higher sequence identities (>60%) with known anammox bacterial nirS genes than with denitrifiers' nirS, on both nucleotide and amino acid levels. Compared to the 16S rRNA and hydrazine oxidoreductase (hzo) genes, the anammox bacterial nirS not only showed consistent phylogenetic relationships but also demonstrated more reliable quantification of anammox bacteria because of the single copy of the nirS gene in the anammox bacterial genome and the specificity of PCR primers for different genera of anammox bacteria, thus providing a suitable functional biomarker for investigation of anammox bacteria.

  2. Global mammal beta diversity shows parallel assemblage structure in similar but isolated environments

    PubMed Central

    Graham, Catherine H.; Brooks, Thomas M.; Rondinini, Carlo; Hedges, S. Blair; Davidson, Ana D.; Costa, Gabriel C.

    2016-01-01

    The taxonomic, phylogenetic and trait dimensions of beta diversity each provide us unique insights into the importance of historical isolation and environmental conditions in shaping global diversity. These three dimensions should, in general, be positively correlated. However, if similar environmental conditions filter species with similar trait values, then assemblages located in similar environmental conditions, but separated by large dispersal barriers, may show high taxonomic, high phylogenetic, but low trait beta diversity. Conversely, we expect lower phylogenetic diversity, but higher trait biodiversity among assemblages that are connected but are in differing environmental conditions. We calculated all pairwise comparisons of approximately 110 × 110 km grid cells across the globe for more than 5000 mammal species (approx. 70 million comparisons). We considered realms as units representing geographical distance and historical isolation and biomes as units with similar environmental conditions. While beta diversity dimensions were generally correlated, we highlight geographical regions of decoupling among beta diversity dimensions. Our analysis shows that assemblages from tropical forests in different realms had low trait dissimilarity while phylogenetic beta diversity was significantly higher than expected, suggesting potential convergent evolution. Low trait beta diversity was surprisingly not found between isolated deserts, despite harsh environmental conditions. Overall, our results provide evidence for parallel assemblage structure of mammal assemblages driven by environmental conditions at a global scale. PMID:27559061

  3. A multivariate ecogeographic analysis of macaque craniodental variation.

    PubMed

    Grunstra, Nicole D S; Mitteroecker, Philipp; Foley, Robert A

    2018-06-01

    To infer the ecogeographic conditions that underlie the evolutionary diversification of macaques, we investigated the within- and between-species relationships of craniodental dimensions, geography, and environment in extant macaque species. We studied evolutionary processes by contrasting macroevolutionary patterns, phylogeny, and within-species associations. Sixty-three linear measurements of the permanent dentition and skull along with data about climate, ecology (environment), and spatial geography were collected for 711 specimens of 12 macaque species and analyzed by a multivariate approach. Phylogenetic two-block partial least squares was used to identify patterns of covariance between craniodental and environmental variation. Phylogenetic reduced rank regression was employed to analyze spatial clines in morphological variation. Between-species associations consisted of two distinct multivariate patterns. The first represents overall craniodental size and is negatively associated with temperature and habitat, but positively with latitude. The second pattern shows an antero-posterior tooth size contrast related to diet, rainfall, and habitat productivity. After controlling for phylogeny, however, the latter dimension was diminished. Within-species analyses neither revealed significant association between morphology, environment, and geography, nor evidence of isolation by distance. We found evidence for environmental adaptation in macaque body and craniodental size, primarily driven by selection for thermoregulation. This pattern cannot be explained by the within-species pattern, indicating an evolved genetic basis for the between-species relationship. The dietary signal in relative tooth size, by contrast, can largely be explained by phylogeny. This cautions against adaptive interpretations of phenotype-environment associations when phylogeny is not explicitly modelled. © 2018 Wiley Periodicals, Inc.

  4. Comparative analysis of Beggiatoa from hypersaline and marine environments.

    PubMed

    de Albuquerque, Julia Peixoto; Keim, Carolina Neumann; Lins, Ulysses

    2010-07-01

    The main criterion to classify a microorganism as belonging to the genus Beggiatoa is its morphology. All multicellular, colorless, gliding bacterial filaments containing sulfur globules described so far belong to this genus. At the ultrastructural level, they show also a very complex cell envelope structure. Here we describe uncultured vacuolated and non-vacuolated bacteria from two different environments showing all characteristics necessary to assign a bacterium to the genus Beggiatoa. We also intended to investigate whether narrow and vacuolate Beggiatoa do differ morphologically as much as they do phylogenetically. Both large, vacuolated trichomes and narrow filaments devoid of vacuoles were observed. We confirmed the identity of the narrow filaments by 16S rRNA phylogenetic analysis. The diameters of the trichomes ranged from 2.4 to 34 microm, and their lengths ranged from 10 microm to over 30 mm. Narrow trichomes moved by gliding at 3.0 microm/s; large filaments moved at 1.5 microm/s. Periplasmic sulfur inclusions were observed in both types of filaments, whereas phosphorus-rich bodies were found only in narrow trichomes. On the other hand, nitrate vacuoles were observed only in large trichomes. Ultra-thin section transmission electron microscopy showed differences between the cell ultrastructure of narrow (non-vacuolated) and large (vacuolated) Beggiatoa. We observed that cell envelopes from narrow Beggiatoa consist of five layers, whereas cell envelopes from large trichomes contain four layers. Copyright 2010 Elsevier Ltd. All rights reserved.

  5. Phylogenetic relationships and taxonomic revision of Paranoplocephala Lühe, 1910 sensu lato (Cestoda, Cyclophyllidea, Anoplocephalidae)

    USDA-ARS?s Scientific Manuscript database

    An extensive phylogenetic analysis and genus-level taxonomic revision of Paranoplocephala Lühe, 1910 -like cestodes (Cyclophyllidea, Anoplocephalidae) are presented. The phylogenetic analysis is based on DNA sequences of two partial mitochondrial genes, i.e. cytochrome c oxidase subunit 1 (cox1) and...

  6. Phylogenetically Novel LuxI/LuxR-Type Quorum Sensing Systems Isolated Using a Metagenomic Approach

    PubMed Central

    Nasuno, Eri; Fujita, Masaki J.; Nakatsu, Cindy H.; Kamagata, Yoichi; Hanada, Satoshi

    2012-01-01

    A great deal of research has been done to understand bacterial cell-to-cell signaling systems, but there is still a large gap in our current knowledge because the majority of microorganisms in natural environments do not have cultivated representatives. Metagenomics is one approach to identify novel quorum sensing (QS) systems from uncultured bacteria in environmental samples. In this study, fosmid metagenomic libraries were constructed from a forest soil and an activated sludge from a coke plant, and the target genes were detected using a green fluorescent protein (GFP)-based Escherichia coli biosensor strain whose fluorescence was screened by spectrophotometry. DNA sequence analysis revealed two pairs of new LuxI family N-acyl-l-homoserine lactone (AHL) synthases and LuxR family transcriptional regulators (clones N16 and N52, designated AubI/AubR and AusI/AusR, respectively). AubI and AusI each produced an identical AHL, N-dodecanoyl-l-homoserine lactone (C12-HSL), as determined by nuclear magnetic resonance (NMR) and mass spectrometry. Phylogenetic analysis based on amino acid sequences suggested that AusI/AusR was from an uncultured member of the Betaproteobacteria and AubI/AubR was very deeply branched from previously described LuxI/LuxR homologues in isolates of the Proteobacteria. The phylogenetic position of AubI/AubR indicates that they represent a QS system not acquired recently from the Proteobacteria by horizontal gene transfer but share a more ancient ancestry. We demonstrated that metagenomic screening is useful to provide further insight into the phylogenetic diversity of bacterial QS systems by describing two new LuxI/LuxR-type QS systems from uncultured bacteria. PMID:22983963

  7. SYNCSA--R tool for analysis of metacommunities based on functional traits and phylogeny of the community components.

    PubMed

    Debastiani, Vanderlei J; Pillar, Valério D

    2012-08-01

    SYNCSA is an R package for the analysis of metacommunities based on functional traits and phylogeny of the community components. It offers tools to calculate several matrix correlations that express trait-convergence assembly patterns, trait-divergence assembly patterns and phylogenetic signal in functional traits at the species pool level and at the metacommunity level. SYNCSA is a package for the R environment, under a GPL-2 open-source license and freely available on CRAN official web server for R (http://cran.r-project.org). vanderleidebastiani@yahoo.com.br.

  8. Fish species introductions provide novel insights into the patterns and drivers of phylogenetic structure in freshwaters

    PubMed Central

    Strecker, Angela L.; Olden, Julian D.

    2014-01-01

    Despite long-standing interest of terrestrial ecologists, freshwater ecosystems are a fertile, yet unappreciated, testing ground for applying community phylogenetics to uncover mechanisms of species assembly. We quantify phylogenetic clustering and overdispersion of native and non-native fishes of a large river basin in the American Southwest to test for the mechanisms (environmental filtering versus competitive exclusion) and spatial scales influencing community structure. Contrary to expectations, non-native species were phylogenetically clustered and related to natural environmental conditions, whereas native species were not phylogenetically structured, likely reflecting human-related changes to the basin. The species that are most invasive (in terms of ecological impacts) tended to be the most phylogenetically divergent from natives across watersheds, but not within watersheds, supporting the hypothesis that Darwin's naturalization conundrum is driven by the spatial scale. Phylogenetic distinctiveness may facilitate non-native establishment at regional scales, but environmental filtering restricts local membership to closely related species with physiological tolerances for current environments. By contrast, native species may have been phylogenetically clustered in historical times, but species loss from contemporary populations by anthropogenic activities has likely shaped the phylogenetic signal. Our study implies that fundamental mechanisms of community assembly have changed, with fundamental consequences for the biogeography of both native and non-native species. PMID:24452027

  9. SNPhylo: a pipeline to construct a phylogenetic tree from huge SNP data.

    PubMed

    Lee, Tae-Ho; Guo, Hui; Wang, Xiyin; Kim, Changsoo; Paterson, Andrew H

    2014-02-26

    Phylogenetic trees are widely used for genetic and evolutionary studies in various organisms. Advanced sequencing technology has dramatically enriched data available for constructing phylogenetic trees based on single nucleotide polymorphisms (SNPs). However, massive SNP data makes it difficult to perform reliable analysis, and there has been no ready-to-use pipeline to generate phylogenetic trees from these data. We developed a new pipeline, SNPhylo, to construct phylogenetic trees based on large SNP datasets. The pipeline may enable users to construct a phylogenetic tree from three representative SNP data file formats. In addition, in order to increase reliability of a tree, the pipeline has steps such as removing low quality data and considering linkage disequilibrium. A maximum likelihood method for the inference of phylogeny is also adopted in generation of a tree in our pipeline. Using SNPhylo, users can easily produce a reliable phylogenetic tree from a large SNP data file. Thus, this pipeline can help a researcher focus more on interpretation of the results of analysis of voluminous data sets, rather than manipulations necessary to accomplish the analysis.

  10. The complex roles of space and environment in structuring functional, taxonomic and phylogenetic beta diversity of frogs in the Atlantic Forest

    PubMed Central

    Luiz, Amom Mendes; Sawaya, Ricardo J.

    2018-01-01

    Ecological communities are complex entities that can be maintained and structured by niche-based processes such as environmental conditions, and spatial processes such as dispersal. Thus, diversity patterns may be shaped simultaneously at different spatial scales by very distinct processes. Herein we assess whether and how functional, taxonomic, and phylogenetic beta diversities of frog tadpoles are explained by environmental and/or spatial predictors. We implemented a distance–based redundancy analysis to explore variation in components of beta diversity explained by pure environmental and pure spatial predictors, as well as their interactions, at both fine and broad spatial scales. Our results indicated important but complex roles of spatial and environmental predictors in structuring phylogenetic, taxonomic and functional beta diversities. The pure fine-scales spatial fraction was more important in structuring all beta diversity components, especially to functional and taxonomical spatial turnover. Environmental variables such as canopy cover and vegetation structure were important predictors of all components, but especially to functional and taxonomic beta diversity. We emphasize that distinct factors related to environment and space are affecting distinct components of beta diversity in different ways. Although weaker, phylogenetic beta diversity, which is structured more on biogeographical scales, and thus can be represented by spatially structured processes, was more related to broad spatial processes than other components. However, selected fine-scale spatial predictors denoted negative autocorrelation, which may be revealing the existence of differences in unmeasured habitat variables among samples. Although overall important, local environmental-based processes explained better functional and taxonomic beta diversity, as these diversity components carry an important ecological value. We highlight the importance of assessing different components of diversity patterns at different scales by spatially explicit models in order to improve our understanding of community structure and help to unravel the complex nature of biodiversity. PMID:29672575

  11. Evidence of a chimpanzee-sized ancestor of humans but a gibbon-sized ancestor of apes.

    PubMed

    Grabowski, Mark; Jungers, William L

    2017-10-12

    Body mass directly affects how an animal relates to its environment and has a wide range of biological implications. However, little is known about the mass of the last common ancestor (LCA) of humans and chimpanzees, hominids (great apes and humans), or hominoids (all apes and humans), which is needed to evaluate numerous paleobiological hypotheses at and prior to the root of our lineage. Here we use phylogenetic comparative methods and data from primates including humans, fossil hominins, and a wide sample of fossil primates including Miocene apes from Africa, Europe, and Asia to test alternative hypotheses of body mass evolution. Our results suggest, contrary to previous suggestions, that the LCA of all hominoids lived in an environment that favored a gibbon-like size, but a series of selective regime shifts, possibly due to resource availability, led to a decrease and then increase in body mass in early hominins from a chimpanzee-sized LCA.The pattern of body size evolution in hominids can provide insight into historical human ecology. Here, Grabowski and Jungers use comparative phylogenetic analysis to reconstruct the likely size of the ancestor of humans and chimpanzees and the evolutionary history of selection on body size in primates.

  12. Into the dark: patterns of middle ear adaptations in subterranean eulipotyphlan mammals

    NASA Astrophysics Data System (ADS)

    Koyabu, Daisuke; Hosojima, Misato; Endo, Hideki

    2017-09-01

    Evolution of the middle ear ossicles was a key innovation for mammals, enhancing the transmission of airborne sound. Radiation into various habitats from a terrestrial environment resulted in diversification of the auditory mechanisms among mammals. However, due to the paucity of phylogenetically controlled investigations, how middle ear traits have diversified with functional specialization remains unclear. In order to identify the respective patterns for various lifestyles and to gain insights into fossil forms, we employed a high-resolution tomography technique and compared the middle ear morphology of eulipotyphlan species (moles, shrews and hedgehogs), a group that has radiated into various environments, such as terrestrial, aquatic and subterranean habitats. Three-dimensional geometric morphometric analysis was conducted within a phylogenetically controlled framework. Quantitative shapes were found to strongly reflect the degree of subterranean lifestyle and weakly involve phylogeny. Our analyses demonstrate that subterranean adaptation should include a relatively shorter anterior process of the malleus, an enlarged incus, an enlarged stapes footplate and a reduction of the orbicular apophysis. These traits arguably allow improving low-frequency sound transmission at low frequencies and inhibiting the low-frequency noise which disturbs the subterranean animals in hearing airborne sounds.

  13. Two Antarctic penguin genomes reveal insights into their evolutionary history and molecular changes related to the Antarctic environment.

    PubMed

    Li, Cai; Zhang, Yong; Li, Jianwen; Kong, Lesheng; Hu, Haofu; Pan, Hailin; Xu, Luohao; Deng, Yuan; Li, Qiye; Jin, Lijun; Yu, Hao; Chen, Yan; Liu, Binghang; Yang, Linfeng; Liu, Shiping; Zhang, Yan; Lang, Yongshan; Xia, Jinquan; He, Weiming; Shi, Qiong; Subramanian, Sankar; Millar, Craig D; Meader, Stephen; Rands, Chris M; Fujita, Matthew K; Greenwold, Matthew J; Castoe, Todd A; Pollock, David D; Gu, Wanjun; Nam, Kiwoong; Ellegren, Hans; Ho, Simon Yw; Burt, David W; Ponting, Chris P; Jarvis, Erich D; Gilbert, M Thomas P; Yang, Huanming; Wang, Jian; Lambert, David M; Wang, Jun; Zhang, Guojie

    2014-01-01

    Penguins are flightless aquatic birds widely distributed in the Southern Hemisphere. The distinctive morphological and physiological features of penguins allow them to live an aquatic life, and some of them have successfully adapted to the hostile environments in Antarctica. To study the phylogenetic and population history of penguins and the molecular basis of their adaptations to Antarctica, we sequenced the genomes of the two Antarctic dwelling penguin species, the Adélie penguin [Pygoscelis adeliae] and emperor penguin [Aptenodytes forsteri]. Phylogenetic dating suggests that early penguins arose ~60 million years ago, coinciding with a period of global warming. Analysis of effective population sizes reveals that the two penguin species experienced population expansions from ~1 million years ago to ~100 thousand years ago, but responded differently to the climatic cooling of the last glacial period. Comparative genomic analyses with other available avian genomes identified molecular changes in genes related to epidermal structure, phototransduction, lipid metabolism, and forelimb morphology. Our sequencing and initial analyses of the first two penguin genomes provide insights into the timing of penguin origin, fluctuations in effective population sizes of the two penguin species over the past 10 million years, and the potential associations between these biological patterns and global climate change. The molecular changes compared with other avian genomes reflect both shared and diverse adaptations of the two penguin species to the Antarctic environment.

  14. Environmental survey meta-analysis reveals hidden diversity among unicellular opisthokonts.

    PubMed

    del Campo, Javier; Ruiz-Trillo, Iñaki

    2013-04-01

    The Opisthokonta clade includes Metazoa, Fungi, and several unicellular lineages, such as choanoflagellates, filastereans, ichthyosporeans, and nucleariids. To date, studies of the evolutionary diversity of opisthokonts have focused exclusively on metazoans, fungi, and, very recently, choanoflagellates. Thus, very little is known about diversity among the filastereans, ichthyosporeans, and nucleariids. To better understand the evolutionary diversity and ecology of the opisthokonts, here we analyze published environmental data from nonfungal unicellular opisthokonts and report 18S ribosomal DNA phylogenetic analyses. Our data reveal extensive diversity among all unicellular opisthokonts, except for the filastereans. We identify several clades that consist exclusively of environmental sequences, especially among ichthyosporeans and choanoflagellates. Moreover, we show that the ichthyosporeans represent a significant percentage of overall unicellular opisthokont diversity, with a greater ecological role in marine environments than previously believed. Our results provide a useful phylogenetic framework for future ecological and evolutionary studies of these poorly known lineages.

  15. Intercontinental reassortment and genomic variation of low pathogenic avian influenza viruses isolated from northern pintails (Anas acuta) in Alaska: examining the evidence through space and time

    USGS Publications Warehouse

    Ramey, Andrew M.; Pearce, John M.; Flint, Paul L.; Ip, Hon S.; Derksen, Dirk V.; Franson, J. Christian; Petrula, Michael J.; Scotton, Bradley D.; Sowl, Kristine M.; Wege, Michael L.; Trust, Kimberly A.

    2010-01-01

    Migration and population genetic data for northern pintails (Anas acuta) and phylogenetic analysis of low pathogenic avian influenza (LPAI) viruses from this host in Alaska suggest that northern pintails are involved in ongoing intercontinental transmission of avian influenza. Here, we further refine this conclusion through phylogenetic analyses which demonstrate that detection of foreign lineage gene segments is spatially dependent and consistent through time. Our results show detection of foreign lineage gene segments to be most likely at sample locations on the Alaska Peninsula and least likely along the Southern Alaska Coast. Asian lineages detected at four gene segments persisted across years, suggesting maintenance in avian hosts that migrate to Alaska each year from Asia or in hosts that remain in Alaska throughout the year. Alternatively, live viruses may persist in the environment and re-infect birds in subsequent seasons.

  16. Is xenodontine snake reproduction shaped by ancestry, more than by ecology?

    PubMed

    Bellini, Gisela P; Arzamendia, Vanesa; Giraudo, Alejandro R

    2017-01-01

    One of the current challenges of evolutionary ecology is to understand the effects of phylogenetic history (PH) and/or ecological factors (EF) on the life-history traits of the species. Here, the effects of environment and phylogeny are tested for the first time on the reproductive biology of South American xenodontine snakes. We studied 60% of the tribes of this endemic and most representative clade in a temperate region of South America. A comparative method (canonical phylogenetic ordination-CPO) was used to find the relative contributions of EF and PH upon life-history aspects of snakes, comparing the reproductive mode, mean fecundity, reproductive potential, and frequency of nearly 1,000 specimens. CPO analysis showed that PH or ancestry explained most of the variation in reproduction, whereas EF explained little of this variation. The reproductive traits under study are suggested to have a strong phylogenetic signal in this clade, the ancestry playing a big role in reproduction. The EF also influenced the reproduction of South American xenodontines, although to a lesser extent. Our finding provides new evidence of how the evolutionary history is embodied in the traits of living species.

  17. Phylogenetic analysis of dissimilatory Fe(III)-reducing bacteria

    USGS Publications Warehouse

    Lonergan, D.J.; Jenter, H.L.; Coates, J.D.; Phillips, E.J.P.; Schmidt, T.M.; Lovley, D.R.

    1996-01-01

    Evolutionary relationships among strictly anaerobic dissimilatory Fe(III)- reducing bacteria obtained from a diversity of sedimentary environments were examined by phylogenetic analysis of 16S rRNA gene sequences. Members of the genera Geobacter, Desulfuromonas, Pelobacter, and Desulfuromusa formed a monophyletic group within the delta subdivision of the class Proteobacteria. On the basis of their common ancestry and the shared ability to reduce Fe(III) and/or S0, we propose that this group be considered a single family, Geobacteraceae. Bootstrap analysis, characteristic nucleotides, and higher- order secondary structures support the division of Geobacteraceae into two subgroups, designated the Geobacter and Desulfuromonas clusters. The genus Desulfuromusa and Pelobacter acidigallici make up a distinct branch with the Desulfuromonas cluster. Several members of the family Geobacteraceae, none of which reduce sulfate, were found to contain the target sequences of probes that have been previously used to define the distribution of sulfate-reducing bacteria and sulfate-reducing bacterium-like microorganisms. The recent isolations of Fe(III)-reducing microorganisms distributed throughout the domain Bacteria suggest that development of 16S rRNA probes that would specifically target all Fe(III) reducers may not be feasible. However, all of the evidence suggests that if a 16S rRNA sequence falls within the family Geobacteraceae, then the organism has the capacity for Fe(III) reduction. The suggestion, based on geological evidence, that Fe(III) reduction was the first globally significant process for oxidizing organic matter back to carbon dioxide is consistent with the finding that acetate-oxidizing Fe(III) reducers are phylogenetically diverse.

  18. A phylogenetic comparative study of flowering phenology along an elevational gradient in the Canadian subarctic.

    PubMed

    Lessard-Therrien, Malie; Davies, T Jonathan; Bolmgren, Kjell

    2014-05-01

    Climate change is affecting high-altitude and high-latitude communities in significant ways. In the short growing season of subarctic habitats, it is essential that the timing and duration of phenological phases match favorable environmental conditions. We explored the time of the first appearance of flowers (first flowering day, FFD) and flowering duration across subarctic species composing different communities, from boreal forest to tundra, along an elevational gradient (600-800 m). The study was conducted on Mount Irony (856 m), North-East Canada (54°90'N, 67°16'W) during summer 2012. First, we quantified phylogenetic signal in FFD at different spatial scales. Second, we used phylogenetic comparative methods to explore the relationship between FFD, flowering duration, and elevation. We found that the phylogenetic signal for FFD was stronger at finer spatial scales and at lower elevations, indicating that closely related species tend to flower at similar times when the local environment is less harsh. The comparatively weaker phylogenetic signal at higher elevation may be indicative of convergent evolution for FFD. Flowering duration was correlated significantly with mean FFD, with later-flowering species having a longer flowering duration, but only at the lowest elevation. Our results indicate significant evolutionary conservatism in responses to phenological cues, but high phenotypic plasticity in flowering times. We suggest that phylogenetic relationships should be considered in the search for predictions and drivers of flowering time in comparative analyses, because species cannot be considered as statistically independent. Further, phenological drivers should be measured at spatial scales such that variation in flowering matches variation in environment.

  19. Characterization of phylogenetically diverse astroviruses of marine mammals.

    PubMed

    Rivera, Rebecca; Nollens, Hendrik H; Venn-Watson, Stephanie; Gulland, Frances M D; Wellehan, James F X

    2010-01-01

    Astroviruses are small, non-enveloped, positive-stranded RNA viruses. Previously studied mammalian astroviruses have been associated with diarrhoeal disease. Knowledge of astrovirus diversity is very limited, with only six officially recognized astrovirus species from mammalian hosts and, in addition, one human and some bat astroviruses were recently described. We used consensus PCR techniques for initial identification of five astroviruses of marine mammals: three from California sea lions (Zalophus californianus), one from a Steller sea lion (Eumetopias jubatus) and one from a bottlenose dolphin (Tursiops truncatus). Bayesian and maximum-likelihood phylogenetic analysis found that these viruses showed significant diversity at a level consistent with novel species. Astroviruses that we identified from marine mammals were found across the mamastrovirus tree and did not form a monophyletic group. Recombination analysis found that a recombination event may have occurred between a human and a California sea lion astrovirus, suggesting that both lineages may have been capable of infecting the same host at one point. The diversity found amongst marine mammal astroviruses and their similarity to terrestrial astroviruses suggests that the marine environment plays an important role in astrovirus ecology.

  20. A stochastic simulator of birth-death master equations with application to phylodynamics.

    PubMed

    Vaughan, Timothy G; Drummond, Alexei J

    2013-06-01

    In this article, we present a versatile new software tool for the simulation and analysis of stochastic models of population phylodynamics and chemical kinetics. Models are specified via an expressive and human-readable XML format and can be used as the basis for generating either single population histories or large ensembles of such histories. Importantly, phylogenetic trees or networks can be generated alongside the histories they correspond to, enabling investigations into the interplay between genealogies and population dynamics. Summary statistics such as means and variances can be recorded in place of the full ensemble, allowing for a reduction in the amount of memory used--an important consideration for models including large numbers of individual subpopulations or demes. In the case of population size histories, the resulting simulation output is written to disk in the flexible JSON format, which is easily read into numerical analysis environments such as R for visualization or further processing. Simulated phylogenetic trees can be recorded using the standard Newick or NEXUS formats, with extensions to these formats used for non-tree-like inheritance relationships.

  1. A Stochastic Simulator of Birth–Death Master Equations with Application to Phylodynamics

    PubMed Central

    Vaughan, Timothy G.; Drummond, Alexei J.

    2013-01-01

    In this article, we present a versatile new software tool for the simulation and analysis of stochastic models of population phylodynamics and chemical kinetics. Models are specified via an expressive and human-readable XML format and can be used as the basis for generating either single population histories or large ensembles of such histories. Importantly, phylogenetic trees or networks can be generated alongside the histories they correspond to, enabling investigations into the interplay between genealogies and population dynamics. Summary statistics such as means and variances can be recorded in place of the full ensemble, allowing for a reduction in the amount of memory used—an important consideration for models including large numbers of individual subpopulations or demes. In the case of population size histories, the resulting simulation output is written to disk in the flexible JSON format, which is easily read into numerical analysis environments such as R for visualization or further processing. Simulated phylogenetic trees can be recorded using the standard Newick or NEXUS formats, with extensions to these formats used for non-tree-like inheritance relationships. PMID:23505043

  2. Missing Data and Influential Sites: Choice of Sites for Phylogenetic Analysis Can Be As Important As Taxon Sampling and Model Choice

    PubMed Central

    Shavit Grievink, Liat; Penny, David; Holland, Barbara R.

    2013-01-01

    Phylogenetic studies based on molecular sequence alignments are expected to become more accurate as the number of sites in the alignments increases. With the advent of genomic-scale data, where alignments have very large numbers of sites, bootstrap values close to 100% and posterior probabilities close to 1 are the norm, suggesting that the number of sites is now seldom a limiting factor on phylogenetic accuracy. This provokes the question, should we be fussy about the sites we choose to include in a genomic-scale phylogenetic analysis? If some sites contain missing data, ambiguous character states, or gaps, then why not just throw them away before conducting the phylogenetic analysis? Indeed, this is exactly the approach taken in many phylogenetic studies. Here, we present an example where the decision on how to treat sites with missing data is of equal importance to decisions on taxon sampling and model choice, and we introduce a graphical method for illustrating this. PMID:23471508

  3. ETE: a python Environment for Tree Exploration.

    PubMed

    Huerta-Cepas, Jaime; Dopazo, Joaquín; Gabaldón, Toni

    2010-01-13

    Many bioinformatics analyses, ranging from gene clustering to phylogenetics, produce hierarchical trees as their main result. These are used to represent the relationships among different biological entities, thus facilitating their analysis and interpretation. A number of standalone programs are available that focus on tree visualization or that perform specific analyses on them. However, such applications are rarely suitable for large-scale surveys, in which a higher level of automation is required. Currently, many genome-wide analyses rely on tree-like data representation and hence there is a growing need for scalable tools to handle tree structures at large scale. Here we present the Environment for Tree Exploration (ETE), a python programming toolkit that assists in the automated manipulation, analysis and visualization of hierarchical trees. ETE libraries provide a broad set of tree handling options as well as specific methods to analyze phylogenetic and clustering trees. Among other features, ETE allows for the independent analysis of tree partitions, has support for the extended newick format, provides an integrated node annotation system and permits to link trees to external data such as multiple sequence alignments or numerical arrays. In addition, ETE implements a number of built-in analytical tools, including phylogeny-based orthology prediction and cluster validation techniques. Finally, ETE's programmable tree drawing engine can be used to automate the graphical rendering of trees with customized node-specific visualizations. ETE provides a complete set of methods to manipulate tree data structures that extends current functionality in other bioinformatic toolkits of a more general purpose. ETE is free software and can be downloaded from http://ete.cgenomics.org.

  4. ETE: a python Environment for Tree Exploration

    PubMed Central

    2010-01-01

    Background Many bioinformatics analyses, ranging from gene clustering to phylogenetics, produce hierarchical trees as their main result. These are used to represent the relationships among different biological entities, thus facilitating their analysis and interpretation. A number of standalone programs are available that focus on tree visualization or that perform specific analyses on them. However, such applications are rarely suitable for large-scale surveys, in which a higher level of automation is required. Currently, many genome-wide analyses rely on tree-like data representation and hence there is a growing need for scalable tools to handle tree structures at large scale. Results Here we present the Environment for Tree Exploration (ETE), a python programming toolkit that assists in the automated manipulation, analysis and visualization of hierarchical trees. ETE libraries provide a broad set of tree handling options as well as specific methods to analyze phylogenetic and clustering trees. Among other features, ETE allows for the independent analysis of tree partitions, has support for the extended newick format, provides an integrated node annotation system and permits to link trees to external data such as multiple sequence alignments or numerical arrays. In addition, ETE implements a number of built-in analytical tools, including phylogeny-based orthology prediction and cluster validation techniques. Finally, ETE's programmable tree drawing engine can be used to automate the graphical rendering of trees with customized node-specific visualizations. Conclusions ETE provides a complete set of methods to manipulate tree data structures that extends current functionality in other bioinformatic toolkits of a more general purpose. ETE is free software and can be downloaded from http://ete.cgenomics.org. PMID:20070885

  5. Selective phylogenetic analysis targeting 16S rRNA genes of hyperthermophilic archaea in the deep-subsurface hot biosphere.

    PubMed

    Kimura, Hiroyuki; Ishibashi, Jun-Ichiro; Masuda, Harue; Kato, Kenji; Hanada, Satoshi

    2007-04-01

    International drilling projects for the study of microbial communities in the deep-subsurface hot biosphere have been expanded. Core samples obtained by deep drilling are commonly contaminated with mesophilic microorganisms in the drilling fluid, making it difficult to examine the microbial community by 16S rRNA gene clone library analysis. To eliminate mesophilic organism contamination, we previously developed a new method (selective phylogenetic analysis [SePA]) based on the strong correlation between the guanine-plus-cytosine (G+C) contents of the 16S rRNA genes and the optimal growth temperatures of prokaryotes, and we verified the method's effectiveness (H. Kimura, M. Sugihara, K. Kato, and S. Hanada, Appl. Environ. Microbiol. 72:21-27, 2006). In the present study we ascertained SePA's ability to eliminate contamination by archaeal rRNA genes, using deep-sea hydrothermal fluid (117 degrees C) and surface seawater (29.9 degrees C) as substitutes for deep-subsurface geothermal samples and drilling fluid, respectively. Archaeal 16S rRNA gene fragments, PCR amplified from the surface seawater, were denatured at 82 degrees C and completely digested with exonuclease I (Exo I), while gene fragments from the deep-sea hydrothermal fluid remained intact after denaturation at 84 degrees C because of their high G+C contents. An examination using mixtures of DNAs from the two environmental samples showed that denaturation at 84 degrees C and digestion with Exo I completely eliminated archaeal 16S rRNA genes from the surface seawater. Our method was quite useful for culture-independent community analysis of hyperthermophilic archaea in core samples recovered from deep-subsurface geothermal environments.

  6. Chemosynthetic bacteria found in bivalve species from mud volcanoes of the Gulf of Cadiz.

    PubMed

    Rodrigues, Clara F; Webster, Gordon; Cunha, Marina R; Duperron, Sébastien; Weightman, Andrew J

    2010-09-01

    As in other cold seeps, the dominant bivalves in mud volcanoes (MV) from the Gulf of Cadiz are macrofauna belonging to the families Solemyidae (Acharax sp., Petrasma sp.), Lucinidae (Lucinoma sp.), Thyasiridae (Thyasira vulcolutre) and Mytilidae (Bathymodiolus mauritanicus). The delta(13)C values measured in solemyid, lucinid and thyasirid specimens support the hypothesis of thiotrophic nutrition, whereas isotopic signatures of B. mauritanicus suggest methanotrophic nutrition. The indication by stable isotope analysis that chemosynthetic bacteria make a substantial contribution to the nutrition of the bivalves led us to investigate their associated bacteria and their phylogenetic relationships based on comparative 16S rRNA gene sequence analysis. PCR-denaturing gradient gel electrophoresis analysis and cloning of bacterial 16S rRNA-encoding genes confirmed the presence of sulfide-oxidizing symbionts within gill tissues of many of the studied specimens. Phylogenetic analysis of bacterial 16S rRNA gene sequences demonstrated that most bacteria were related to known sulfide-oxidizing endosymbionts found in other deep-sea chemosynthetic environments, with the co-occurrence of methane-oxidizing symbionts in Bathymodiolus specimens. This study confirms the presence of several chemosynthetic bivalves in the Gulf of Cadiz and further highlights the importance of sulfide- and methane-oxidizing symbionts in the trophic ecology of macrobenthic communities in MV.

  7. REFGEN and TREENAMER: Automated Sequence Data Handling for Phylogenetic Analysis in the Genomic Era

    PubMed Central

    Leonard, Guy; Stevens, Jamie R.; Richards, Thomas A.

    2009-01-01

    The phylogenetic analysis of nucleotide sequences and increasingly that of amino acid sequences is used to address a number of biological questions. Access to extensive datasets, including numerous genome projects, means that standard phylogenetic analyses can include many hundreds of sequences. Unfortunately, most phylogenetic analysis programs do not tolerate the sequence naming conventions of genome databases. Managing large numbers of sequences and standardizing sequence labels for use in phylogenetic analysis programs can be a time consuming and laborious task. Here we report the availability of an online resource for the management of gene sequences recovered from public access genome databases such as GenBank. These web utilities include the facility for renaming every sequence in a FASTA alignment file, with each sequence label derived from a user-defined combination of the species name and/or database accession number. This facility enables the user to keep track of the branching order of the sequences/taxa during multiple tree calculations and re-optimisations. Post phylogenetic analysis, these webpages can then be used to rename every label in the subsequent tree files (with a user-defined combination of species name and/or database accession number). Together these programs drastically reduce the time required for managing sequence alignments and labelling phylogenetic figures. Additional features of our platform include the automatic removal of identical accession numbers (recorded in the report file) and generation of species and accession number lists for use in supplementary materials or figure legends. PMID:19812722

  8. Disentangling environmental and spatial effects on phylogenetic structure of angiosperm tree communities in China.

    PubMed

    Qian, Hong; Chen, Shengbin; Zhang, Jin-Long

    2017-07-17

    Niche-based and neutrality-based theories are two major classes of theories explaining the assembly mechanisms of local communities. Both theories have been frequently used to explain species diversity and composition in local communities but their relative importance remains unclear. Here, we analyzed 57 assemblages of angiosperm trees in 0.1-ha forest plots across China to examine the effects of environmental heterogeneity (relevant to niche-based processes) and spatial contingency (relevant to neutrality-based processes) on phylogenetic structure of angiosperm tree assemblages distributed across a wide range of environment and space. Phylogenetic structure was quantified with six phylogenetic metrics (i.e., phylogenetic diversity, mean pairwise distance, mean nearest taxon distance, and the standardized effect sizes of these three metrics), which emphasize on different depths of evolutionary histories and account for different degrees of species richness effects. Our results showed that the variation in phylogenetic metrics explained independently by environmental variables was on average much greater than that explained independently by spatial structure, and the vast majority of the variation in phylogenetic metrics was explained by spatially structured environmental variables. We conclude that niche-based processes have played a more important role than neutrality-based processes in driving phylogenetic structure of angiosperm tree species in forest communities in China.

  9. Analyzing Phylogenetic Trees with Timed and Probabilistic Model Checking: The Lactose Persistence Case Study.

    PubMed

    Requeno, José Ignacio; Colom, José Manuel

    2014-12-01

    Model checking is a generic verification technique that allows the phylogeneticist to focus on models and specifications instead of on implementation issues. Phylogenetic trees are considered as transition systems over which we interrogate phylogenetic questions written as formulas of temporal logic. Nonetheless, standard logics become insufficient for certain practices of phylogenetic analysis since they do not allow the inclusion of explicit time and probabilities. The aim of this paper is to extend the application of model checking techniques beyond qualitative phylogenetic properties and adapt the existing logical extensions and tools to the field of phylogeny. The introduction of time and probabilities in phylogenetic specifications is motivated by the study of a real example: the analysis of the ratio of lactose intolerance in some populations and the date of appearance of this phenotype.

  10. Analyzing phylogenetic trees with timed and probabilistic model checking: the lactose persistence case study.

    PubMed

    Requeno, José Ignacio; Colom, José Manuel

    2014-10-23

    Model checking is a generic verification technique that allows the phylogeneticist to focus on models and specifications instead of on implementation issues. Phylogenetic trees are considered as transition systems over which we interrogate phylogenetic questions written as formulas of temporal logic. Nonetheless, standard logics become insufficient for certain practices of phylogenetic analysis since they do not allow the inclusion of explicit time and probabilities. The aim of this paper is to extend the application of model checking techniques beyond qualitative phylogenetic properties and adapt the existing logical extensions and tools to the field of phylogeny. The introduction of time and probabilities in phylogenetic specifications is motivated by the study of a real example: the analysis of the ratio of lactose intolerance in some populations and the date of appearance of this phenotype.

  11. Phylogenetic versus functional signals in the evolution of form-function relationships in terrestrial vision.

    PubMed

    Motani, Ryosuke; Schmitz, Lars

    2011-08-01

    Phylogeny is deeply pertinent to evolutionary studies. Traits that perform a body function are expected to be strongly influenced by physical "requirements" of the function. We investigated if such traits exhibit phylogenetic signals, and, if so, how phylogenetic noises bias quantification of form-function relationships. A form-function system that is strongly influenced by physics, namely the relationship between eye morphology and visual optics in amniotes, was used. We quantified the correlation between form (i.e., eye morphology) and function (i.e., ocular optics) while varying the level of phylogenetic bias removal through adjusting Pagel's λ. Ocular soft-tissue dimensions exhibited the highest correlation with ocular optics when 1% of phylogenetic bias expected from Brownian motion was removed (i.e., λ= 0.01); the value for hard-tissue data were 8%. A small degree of phylogenetic bias therefore exists in morphology despite of the stringent functional constraints. We also devised a phylogenetically informed discriminant analysis and recorded the effects of phylogenetic bias on this method using the same data. Use of proper λ values during phylogenetic bias removal improved misidentification rates in resulting classifications when prior probabilities were assumed to be equal. Even a small degree of phylogenetic bias affected the classification resulting from phylogenetically informed discriminant analysis. © 2011 The Author(s). Evolution© 2011 The Society for the Study of Evolution.

  12. A molecular phylogenetic appraisal of the acanthostomines Acanthostomum and Timoniella and their position within Cryptogonimidae (Trematoda: Opisthorchioidea)

    PubMed Central

    Vidal-Martínez, Victor M.

    2017-01-01

    The phylogenetic position of three taxa from two trematode genera, belonging to the subfamily Acanthostominae (Opisthorchioidea: Cryptogonimidae), were analysed using partial 28S ribosomal DNA (Domains 1–2) and internal transcribed spacers (ITS1–5.8S–ITS2). Bayesian inference and Maximum likelihood analyses of combined 28S rDNA and ITS1 + 5.8S + ITS2 sequences indicated the monophyly of the genus Acanthostomum (A. cf. americanum and A. burminis) and paraphyly of the Acanthostominae. These phylogenetic relationships were consistent in analyses of 28S alone and concatenated 28S + ITS1 + 5.8S + ITS2 sequences analyses. Based on molecular phylogenetic analyses, the subfamily Acanthostominae is therefore a paraphyletic taxon, in contrast with previous classifications based on morphological data. Phylogenetic patterns of host specificity inferred from adult stages of other cryptogonimid taxa are also well supported. However, analyses using additional genera and species are necessary to support the phylogenetic inferences from this study. Our molecular phylogenetic reconstruction linked two larval stages of A. cf. americanum cercariae and metacercariae. Here, we present the evolutionary and ecological implications of parasitic infections in freshwater and brackish environments. PMID:29250471

  13. A molecular phylogenetic appraisal of the acanthostomines Acanthostomum and Timoniella and their position within Cryptogonimidae (Trematoda: Opisthorchioidea).

    PubMed

    Martínez-Aquino, Andrés; Vidal-Martínez, Victor M; Aguirre-Macedo, M Leopoldina

    2017-01-01

    The phylogenetic position of three taxa from two trematode genera, belonging to the subfamily Acanthostominae (Opisthorchioidea: Cryptogonimidae), were analysed using partial 28S ribosomal DNA (Domains 1-2) and internal transcribed spacers (ITS1-5.8S-ITS2). Bayesian inference and Maximum likelihood analyses of combined 28S rDNA and ITS1 + 5.8S + ITS2 sequences indicated the monophyly of the genus Acanthostomum ( A. cf. americanum and A. burminis ) and paraphyly of the Acanthostominae . These phylogenetic relationships were consistent in analyses of 28S alone and concatenated 28S + ITS1 + 5.8S + ITS2 sequences analyses. Based on molecular phylogenetic analyses, the subfamily Acanthostominae is therefore a paraphyletic taxon, in contrast with previous classifications based on morphological data. Phylogenetic patterns of host specificity inferred from adult stages of other cryptogonimid taxa are also well supported. However, analyses using additional genera and species are necessary to support the phylogenetic inferences from this study. Our molecular phylogenetic reconstruction linked two larval stages of A. cf. americanum cercariae and metacercariae. Here, we present the evolutionary and ecological implications of parasitic infections in freshwater and brackish environments.

  14. Bacterial diversity in a nonsaline alkaline environment: heterotrophic aerobic populations.

    PubMed

    Tiago, Igor; Chung, Ana Paula; Veríssimo, António

    2004-12-01

    Heterotrophic populations were isolated and characterized from an alkaline groundwater environment generated by active serpentinization, which results in a Ca(OH)2-enriched, extremely diluted groundwater with pH 11.4. One hundred eighty-five strains were isolated in different media at different pH values during two sampling periods. To assess the degree of diversity present in the environment and to select representative strains for further characterization of the populations, we screened the isolates by using random amplified polymorphic DNA-PCR profiles and grouped them based on similarities determined by fatty acid methyl ester analysis. Phenotypic characterization, determinations of G+C content, phylogenetic analyses by direct sequencing of 16S rRNA genes, and determinations of pH tolerance were performed with the selected isolates. Although 38 different populations were identified and characterized, the vast majority of the isolates were gram positive with high G+C contents and were affiliated with three distinct groups, namely, strains closely related to the species Dietzia natrolimnae (32% of the isolates), to Frigoribacterium/Clavibacter lineages (29% of the isolates), and to the type strain of Microbacterium kitamiense (20% of the isolates). Other isolates were phylogenetically related to strains of the genera Agrococcus, Leifsonia, Kytococcus, Janibacter, Kocuria, Rothia, Nesterenkonia, Citrococcus, Micrococcus, Actinomyces, Rhodococcus, Bacillus, and Staphylococcus. Only five isolates were gram negative: one was related to the Sphingobacteria lineage and the other four were related to the alpha-Proteobacteria lineage. Despite the pH of the environment, the vast majority of the populations were alkali tolerant, and only two strains were able to grow at pH 11.

  15. Visualizing Phylogenetic Treespace Using Cartographic Projections

    NASA Astrophysics Data System (ADS)

    Sundberg, Kenneth; Clement, Mark; Snell, Quinn

    Phylogenetic analysis is becoming an increasingly important tool for biological research. Applications include epidemiological studies, drug development, and evolutionary analysis. Phylogenetic search is a known NP-Hard problem. The size of the data sets which can be analyzed is limited by the exponential growth in the number of trees that must be considered as the problem size increases. A better understanding of the problem space could lead to better methods, which in turn could lead to the feasible analysis of more data sets. We present a definition of phylogenetic tree space and a visualization of this space that shows significant exploitable structure. This structure can be used to develop search methods capable of handling much larger datasets.

  16. Multiple cold resistance loci confer the high cold tolerance adaptation of Dongxiang wild rice (Oryza rufipogon) to its high-latitude habitat.

    PubMed

    Mao, Donghai; Yu, Li; Chen, Dazhou; Li, Lanying; Zhu, Yuxing; Xiao, Yeqing; Zhang, Dechun; Chen, Caiyan

    2015-07-01

    Dongxiang wild rice is phylogenetically close to temperate japonica and contains multiple cold resistance loci conferring its adaptation to high-latitude habitat. Understanding the nature of adaptation in wild populations will benefit crop breeding in the development of climate-resilient crop varieties. Dongxiang wild rice (DXWR), the northernmost common wild rice known, possesses a high degree of cold tolerance and can survive overwintering in its native habitat. However, to date, it is still unclear how DXWR evolved to cope with low-temperature environment, resulting in limited application of DXWR in rice breeding programs. In this study, we carried out both QTL mapping and phylogenetic analysis to discern the genetic mechanism underlying the strong cold resistance. Through a combination of interval mapping and single locus analysis in two genetic populations, at least 13 QTLs for seedling cold tolerance were identified in DXWR. A phylogenetic study using both genome-wide InDel markers and markers associated with cold tolerance loci reveals that DXWR belongs to the Or-III group, which is most closely related to cold-tolerant Japonica rice rather than to the Indica cultivars that are predominant in the habitat where DXWR grows. Our study paves the way toward an understanding of the nature of adaptation to a northern habitat in O. rufipogon. The QTLs identified in DXWR in this study will be useful for molecular breeding of cold-tolerant rice.

  17. Multi-locus phylogeny of dolphins in the subfamily Lissodelphininae: character synergy improves phylogenetic resolution

    PubMed Central

    Harlin-Cognato, April D; Honeycutt, Rodney L

    2006-01-01

    Background Dolphins of the genus Lagenorhynchus are anti-tropically distributed in temperate to cool waters. Phylogenetic analyses of cytochrome b sequences have suggested that the genus is polyphyletic; however, many relationships were poorly resolved. In this study, we present a combined-analysis phylogenetic hypothesis for Lagenorhynchus and members of the subfamily Lissodelphininae, which is derived from two nuclear and two mitochondrial data sets and the addition of 34 individuals representing 9 species. In addition, we characterize with parsimony and Bayesian analyses the phylogenetic utility and interaction of characters with statistical measures, including the utility of highly consistent (non-homoplasious) characters as a conservative measure of phylogenetic robustness. We also explore the effects of removing sources of character conflict on phylogenetic resolution. Results Overall, our study provides strong support for the monophyly of the subfamily Lissodelphininae and the polyphyly of the genus Lagenorhynchus. In addition, the simultaneous parsimony analysis resolved and/or improved resolution for 12 nodes including: (1) L. albirostris, L. acutus; (2) L. obscurus and L. obliquidens; and (3) L. cruciger and L. australis. In addition, the Bayesian analysis supported the monophyly of the Cephalorhynchus, and resolved ambiguities regarding the relationship of L. australis/L. cruciger to other members of the genus Lagenorhynchus. The frequency of highly consistent characters varied among data partitions, but the rate of evolution was consistent within data partitions. Although the control region was the greatest source of character conflict, removal of this data partition impeded phylogenetic resolution. Conclusion The simultaneous analysis approach produced a more robust phylogenetic hypothesis for Lagenorhynchus than previous studies, thus supporting a phylogenetic approach employing multiple data partitions that vary in overall rate of evolution. Even in cases where there was apparent conflict among characters, our data suggest a synergistic interaction in the simultaneous analysis, and speak against a priori exclusion of data because of potential conflicts, primarily because phylogenetic results can be less robust. For example, the removal of the control region, the putative source of character conflict, produced spurious results with inconsistencies among and within topologies from parsimony and Bayesian analyses. PMID:17078887

  18. Phylogenetic Structure of Tree Species across Different Life Stages from Seedlings to Canopy Trees in a Subtropical Evergreen Broad-Leaved Forest.

    PubMed

    Jin, Yi; Qian, Hong; Yu, Mingjian

    2015-01-01

    Investigating patterns of phylogenetic structure across different life stages of tree species in forests is crucial to understanding forest community assembly, and investigating forest gap influence on the phylogenetic structure of forest regeneration is necessary for understanding forest community assembly. Here, we examine the phylogenetic structure of tree species across life stages from seedlings to canopy trees, as well as forest gap influence on the phylogenetic structure of forest regeneration in a forest of the subtropical region in China. We investigate changes in phylogenetic relatedness (measured as NRI) of tree species from seedlings, saplings, treelets to canopy trees; we compare the phylogenetic turnover (measured as βNRI) between canopy trees and seedlings in forest understory with that between canopy trees and seedlings in forest gaps. We found that phylogenetic relatedness generally increases from seedlings through saplings and treelets up to canopy trees, and that phylogenetic relatedness does not differ between seedlings in forest understory and those in forest gaps, but phylogenetic turnover between canopy trees and seedlings in forest understory is lower than that between canopy trees and seedlings in forest gaps. We conclude that tree species tend to be more closely related from seedling to canopy layers, and that forest gaps alter the seedling phylogenetic turnover of the studied forest. It is likely that the increasing trend of phylogenetic clustering as tree stem size increases observed in this subtropical forest is primarily driven by abiotic filtering processes, which select a set of closely related evergreen broad-leaved tree species whose regeneration has adapted to the closed canopy environments of the subtropical forest developed under the regional monsoon climate.

  19. Phylogenetic Structure of Tree Species across Different Life Stages from Seedlings to Canopy Trees in a Subtropical Evergreen Broad-Leaved Forest

    PubMed Central

    Jin, Yi; Qian, Hong; Yu, Mingjian

    2015-01-01

    Investigating patterns of phylogenetic structure across different life stages of tree species in forests is crucial to understanding forest community assembly, and investigating forest gap influence on the phylogenetic structure of forest regeneration is necessary for understanding forest community assembly. Here, we examine the phylogenetic structure of tree species across life stages from seedlings to canopy trees, as well as forest gap influence on the phylogenetic structure of forest regeneration in a forest of the subtropical region in China. We investigate changes in phylogenetic relatedness (measured as NRI) of tree species from seedlings, saplings, treelets to canopy trees; we compare the phylogenetic turnover (measured as βNRI) between canopy trees and seedlings in forest understory with that between canopy trees and seedlings in forest gaps. We found that phylogenetic relatedness generally increases from seedlings through saplings and treelets up to canopy trees, and that phylogenetic relatedness does not differ between seedlings in forest understory and those in forest gaps, but phylogenetic turnover between canopy trees and seedlings in forest understory is lower than that between canopy trees and seedlings in forest gaps. We conclude that tree species tend to be more closely related from seedling to canopy layers, and that forest gaps alter the seedling phylogenetic turnover of the studied forest. It is likely that the increasing trend of phylogenetic clustering as tree stem size increases observed in this subtropical forest is primarily driven by abiotic filtering processes, which select a set of closely related evergreen broad-leaved tree species whose regeneration has adapted to the closed canopy environments of the subtropical forest developed under the regional monsoon climate. PMID:26098916

  20. [Diversity and enzyme-producing activity of culturable halophilic bacteria in Daishan Saltern of East China].

    PubMed

    Yang, Dan-Dan; Li, Qian; Huang, Jing-Jing; Chen, Min

    2012-11-01

    Soil and saline water samples were collected from the Daishan Saltern of East China, and the halophilic bacteria were isolated and cultured by using selective media, aimed to investigate the diversity and enzyme-producing activity of culturable halophilic bacteria in saltern environment. A total of 181 strains were isolated by culture-dependent method. Specific primers were used to amplify the 16S rRNA gene of bacteria and archaea. The operation taxonomy units (OTUs) were determined by ARDRA method, and the representative strain of each OTU was sequenced. The phylogenetic position of all the isolated strains was determined by 16S rRNA sequencing. The results showed that the isolated 181 strains displayed 21 operational taxonomic units (OTUs), of which, 12 OTUs belonged to halophilic bacteria, and the others belonged to halophilic archaea. Phylogenetic analysis indicated that there were 7 genera presented among the halophilic bacteria group, and 4 genera presented among the halophilic archaea group. The dominant halophilic strains were of Halomonas and Haloarcula, with 46.8% in halophilic bacteria and 49.1% in halophilic archaea group, respectively. Enzyme-producing analysis indicated that most strains displayed enzyme-producing activity, including the activities of producing amylase, proteinase and lipase, and the dominant strains capable of enzyme-producing were of Haloarcula. Our results showed that in the environment of Daishan Saltern, there existed a higher diversity of halophilic bacteria, being a source sink for screening enzyme-producing bacterial strains.

  1. A methodological investigation of hominoid craniodental morphology and phylogenetics.

    PubMed

    Bjarnason, Alexander; Chamberlain, Andrew T; Lockwood, Charles A

    2011-01-01

    The evolutionary relationships of extant great apes and humans have been largely resolved by molecular studies, yet morphology-based phylogenetic analyses continue to provide conflicting results. In order to further investigate this discrepancy we present bootstrap clade support of morphological data based on two quantitative datasets, one dataset consisting of linear measurements of the whole skull from 5 hominoid genera and the second dataset consisting of 3D landmark data from the temporal bone of 5 hominoid genera, including 11 sub-species. Using similar protocols for both datasets, we were able to 1) compare distance-based phylogenetic methods to cladistic parsimony of quantitative data converted into discrete character states, 2) vary outgroup choice to observe its effect on phylogenetic inference, and 3) analyse male and female data separately to observe the effect of sexual dimorphism on phylogenies. Phylogenetic analysis was sensitive to methodological decisions, particularly outgroup selection, where designation of Pongo as an outgroup and removal of Hylobates resulted in greater congruence with the proposed molecular phylogeny. The performance of distance-based methods also justifies their use in phylogenetic analysis of morphological data. It is clear from our analyses that hominoid phylogenetics ought not to be used as an example of conflict between the morphological and molecular, but as an example of how outgroup and methodological choices can affect the outcome of phylogenetic analysis. Copyright © 2010 Elsevier Ltd. All rights reserved.

  2. Comparative phylogenetic analyses of Halomonas variabilis and related organisms based on 16S rRNA, gyrB and ectBC gene sequences.

    PubMed

    Okamoto, Takuji; Maruyama, Akihiko; Imura, Satoshi; Takeyama, Haruko; Naganuma, Takeshi

    2004-05-01

    Halomonas variabilis and phylogenetically related organisms were isolated from various habitats such as Antarctic terrain and saline ponds, deep-sea sediment, deep-sea waters affected by hydrothermal plumes, and hydrothermal vent fluids. Ten strains were selected for physiological and phylogenetic characterization in detail. All of those strains were found to be piezotolerant and psychrotolerant, as well as euryhaline halophilic or halotolerant. Their stress tolerance may facilitate their wide occurrence, even in so-called extreme environments. The 16S rDNA-based phylogenetic relationship was complemented by analyses of the DNA gyrase subunit B gene (gyrB) and genes involved in the synthesis of the major compatible solute, ectoine: diaminobutyric acid aminotransferase gene (ectB) and ectoine synthase gene (ectC). The phylogenetic relationships of H. variabilis and related organisms were very similar in terms of 16S rDNA, gyrB, and ectB. The ectC-based tree was inconsistent with the other phylogenetic trees. For that reason, ectC was inferred to derive from horizontal transfer.

  3. Identifying selectively important amino acid positions associated with alternative habitat environments in fish mitochondrial genomes.

    PubMed

    Xia, Jun Hong; Li, Hong Lian; Zhang, Yong; Meng, Zi Ning; Lin, Hao Ran

    2018-05-01

    Fish species inhabitating seawater (SW) or freshwater (FW) habitats have to develop genetic adaptations to alternative environment factors, especially salinity. Functional consequences of the protein variations associated with habitat environments in fish mitochondrial genomes have not yet received much attention. We analyzed 829 complete fish mitochondrial genomes and compared the amino acid differences of 13 mitochondrial protein families between FW and SW fish groups. We identified 47 specificity determining sites (SDS) that associated with FW or SW environments from 12 mitochondrial protein families. Thirty-two (68%) of the SDS sites are hydrophobic, 13 (28%) are neutral, and the remaining sites are acidic or basic. Seven of those SDS from ND1, ND2 and ND5 were scored as probably damaging to the protein structures. Furthermore, phylogenetic tree based Bayes Empirical Bayes analysis also detected 63 positive sites associated with alternative habitat environments across ten mtDNA proteins. These signatures could be important for studying mitochondrial genetic variation relevant to fish physiology and ecology.

  4. The Evolutionary Ecology of Plant Disease: A Phylogenetic Perspective.

    PubMed

    Gilbert, Gregory S; Parker, Ingrid M

    2016-08-04

    An explicit phylogenetic perspective provides useful tools for phytopathology and plant disease ecology because the traits of both plants and microbes are shaped by their evolutionary histories. We present brief primers on phylogenetic signal and the analytical tools of phylogenetic ecology. We review the literature and find abundant evidence of phylogenetic signal in pathogens and plants for most traits involved in disease interactions. Plant nonhost resistance mechanisms and pathogen housekeeping functions are conserved at deeper phylogenetic levels, whereas molecular traits associated with rapid coevolutionary dynamics are more labile at branch tips. Horizontal gene transfer disrupts the phylogenetic signal for some microbial traits. Emergent traits, such as host range and disease severity, show clear phylogenetic signals. Therefore pathogen spread and disease impact are influenced by the phylogenetic structure of host assemblages. Phylogenetically rare species escape disease pressure. Phylogenetic tools could be used to develop predictive tools for phytosanitary risk analysis and reduce disease pressure in multispecies cropping systems.

  5. Partitioning the impact of environment and spatial structure on alpha and beta components of taxonomic, functional, and phylogenetic diversity in European ants.

    PubMed

    Arnan, Xavier; Cerdá, Xim; Retana, Javier

    2015-01-01

    We analyze the relative contribution of environmental and spatial variables to the alpha and beta components of taxonomic (TD), phylogenetic (PD), and functional (FD) diversity in ant communities found along different climate and anthropogenic disturbance gradients across western and central Europe, in order to assess the mechanisms structuring ant biodiversity. To this aim we calculated alpha and beta TD, PD, and FD for 349 ant communities, which included a total of 155 ant species; we examined 10 functional traits and phylogenetic relatedness. Variation partitioning was used to examine how much variation in ant diversity was explained by environmental and spatial variables. Autocorrelation in diversity measures and each trait's phylogenetic signal were also analyzed. We found strong autocorrelation in diversity measures. Both environmental and spatial variables significantly contributed to variation in TD, PD, and FD at both alpha and beta scales; spatial structure had the larger influence. The different facets of diversity showed similar patterns along environmental gradients. Environment explained a much larger percentage of variation in FD than in TD or PD. All traits demonstrated strong phylogenetic signals. Our results indicate that environmental filtering and dispersal limitations structure all types of diversity in ant communities. Strong dispersal limitations appear to have led to clustering of TD, PD, and FD in western and central Europe, probably because different historical and evolutionary processes generated different pools of species. Remarkably, these three facets of diversity showed parallel patterns along environmental gradients. Trait-mediated species sorting and niche conservatism appear to structure ant diversity, as evidenced by the fact that more variation was explained for FD and that all traits had strong phylogenetic signals. Since environmental variables explained much more variation in FD than in PD, functional diversity should be a better indicator of community assembly processes than phylogenetic diversity.

  6. Relationships among genera of the Saccharomycotina from multigene sequence analysis

    USDA-ARS?s Scientific Manuscript database

    Most known species of the subphylum Saccharomycotina (budding ascomycetous yeasts) have now been placed in phylogenetically defined clades following multigene sequence analysis. Terminal clades, which are usually well supported from bootstrap analysis, are viewed as phylogenetically circumscribed ge...

  7. Phylogenetic inference under varying proportions of indel-induced alignment gaps

    PubMed Central

    Dwivedi, Bhakti; Gadagkar, Sudhindra R

    2009-01-01

    Background The effect of alignment gaps on phylogenetic accuracy has been the subject of numerous studies. In this study, we investigated the relationship between the total number of gapped sites and phylogenetic accuracy, when the gaps were introduced (by means of computer simulation) to reflect indel (insertion/deletion) events during the evolution of DNA sequences. The resulting (true) alignments were subjected to commonly used gap treatment and phylogenetic inference methods. Results (1) In general, there was a strong – almost deterministic – relationship between the amount of gap in the data and the level of phylogenetic accuracy when the alignments were very "gappy", (2) gaps resulting from deletions (as opposed to insertions) contributed more to the inaccuracy of phylogenetic inference, (3) the probabilistic methods (Bayesian, PhyML & "MLε, " a method implemented in DNAML in PHYLIP) performed better at most levels of gap percentage when compared to parsimony (MP) and distance (NJ) methods, with Bayesian analysis being clearly the best, (4) methods that treat gapped sites as missing data yielded less accurate trees when compared to those that attribute phylogenetic signal to the gapped sites (by coding them as binary character data – presence/absence, or as in the MLε method), and (5) in general, the accuracy of phylogenetic inference depended upon the amount of available data when the gaps resulted from mainly deletion events, and the amount of missing data when insertion events were equally likely to have caused the alignment gaps. Conclusion When gaps in an alignment are a consequence of indel events in the evolution of the sequences, the accuracy of phylogenetic analysis is likely to improve if: (1) alignment gaps are categorized as arising from insertion events or deletion events and then treated separately in the analysis, (2) the evolutionary signal provided by indels is harnessed in the phylogenetic analysis, and (3) methods that utilize the phylogenetic signal in indels are developed for distance methods too. When the true homology is known and the amount of gaps is 20 percent of the alignment length or less, the methods used in this study are likely to yield trees with 90–100 percent accuracy. PMID:19698168

  8. A Post-Genomic View of Behavioral Development and Adaptation to the Environment

    ERIC Educational Resources Information Center

    LaFreniere, Peter; MacDonald, Kevin

    2013-01-01

    Recent advances in molecular genetics and epigenetics are reviewed that have major implications for the bio-behavioral sciences and for understanding how organisms adapt to their environments at both phylogenetic and ontogenic levels. From a post-genomics perspective, the environment is as crucial as the DNA sequence for constructing the…

  9. Evolutionary lineages of marine snails identified using molecular phylogenetics and geometric morphometric analysis of shells.

    PubMed

    Vaux, Felix; Trewick, Steven A; Crampton, James S; Marshall, Bruce A; Beu, Alan G; Hills, Simon F K; Morgan-Richards, Mary

    2018-06-15

    The relationship between morphology and inheritance is of perennial interest in evolutionary biology and palaeontology. Using three marine snail genera Penion, Antarctoneptunea and Kelletia, we investigate whether systematics based on shell morphology accurately reflect evolutionary lineages indicated by molecular phylogenetics. Members of these gastropod genera have been a taxonomic challenge due to substantial variation in shell morphology, conservative radular and soft tissue morphology, few known ecological differences, and geographical overlap between numerous species. Sampling all sixteen putative taxa identified across the three genera, we infer mitochondrial and nuclear ribosomal DNA phylogenetic relationships within the group, and compare this to variation in adult shell shape and size. Results of phylogenetic analysis indicate that each genus is monophyletic, although the status of some phylogenetically derived and likely more recently evolved taxa within Penion is uncertain. The recently described species P. lineatus is supported by genetic evidence. Morphology, captured using geometric morphometric analysis, distinguishes the genera and matches the molecular phylogeny, although using the same dataset, species and phylogenetic subclades are not identified with high accuracy. Overall, despite abundant variation, we find that shell morphology accurately reflects genus-level classification and the corresponding deep phylogenetic splits identified in this group of marine snails. Copyright © 2018 Elsevier Inc. All rights reserved.

  10. On the use of cartographic projections in visualizing phylo-genetic tree space

    PubMed Central

    2010-01-01

    Phylogenetic analysis is becoming an increasingly important tool for biological research. Applications include epidemiological studies, drug development, and evolutionary analysis. Phylogenetic search is a known NP-Hard problem. The size of the data sets which can be analyzed is limited by the exponential growth in the number of trees that must be considered as the problem size increases. A better understanding of the problem space could lead to better methods, which in turn could lead to the feasible analysis of more data sets. We present a definition of phylogenetic tree space and a visualization of this space that shows significant exploitable structure. This structure can be used to develop search methods capable of handling much larger data sets. PMID:20529355

  11. Phylogenetic characterization of Clonorchis sinensis proteins homologous to the sigma-class glutathione transferase and their differential expression profiles.

    PubMed

    Bae, Young-An; Kim, Jeong-Geun; Kong, Yoon

    2016-01-01

    Glutathione transferase (GST) is one of the major antioxidant proteins with diverse supplemental activities including peroxidase, isomerase, and thiol transferase. GSTs are classified into multiple classes on the basis of their primary structures and substrate/inhibitor specificity. However, the evolutionary routes and physiological environments specific to each of the closely related bioactive enzymes remain elusive. The sigma-like GSTs exhibit amino acid conservation patterns similar to the prostaglandin D synthases (PGDSs). In this study, we analyzed the phylogenetic position of the GSTs of the biocarcinogenic liver fluke, Clonorchis sinensis. We also observed induction profile of the GSTs in association with the parasite's maturation and in response to exogenous oxidative stresses, with special attention to sigma-class GSTs and PGDSs. The C. sinensis genome encoded 12 GST protein species, which were separately assigned to cytosolic (two omega-, one zeta-, two mu-, and five sigma-class), mitochondrial (one kappa-class), and microsomal (one membrane-associated proteins in eicosanoid and glutathione metabolism-like protein) GST families. Multiple sigma GST (or PGDS) orthologs were also detected in Opisthorchis viverrini. Other trematode species possessed only a single sigma-like GST gene. A phylogenetic analysis demonstrated that one of the sigma GST lineages duplicated in the common ancestor of trematodes were specifically expanded in the opisthorchiids, but deleted in other trematodes. The induction profiles of these sigma GST genes along with the development and aging of C. sinensis, and against various exogenous chemical stimuli strongly suggest that the paralogous sigma GST genes might be undergone specialized evolution to cope with the diverse hostile biochemical environments within the mammalian hepatobiliary ductal system. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Ancient origin of endemic Iberian earth-boring dung beetles (Geotrupidae).

    PubMed

    Cunha, Regina L; Verdú, José R; Lobo, Jorge M; Zardoya, Rafael

    2011-06-01

    The earth-boring dung beetles belong to the family Geotrupidae that includes more than 350 species classified into three subfamilies Geotrupinae, Lethrinae, and Taurocerastinae, mainly distributed across temperate regions. Phylogenetic relationships within the family are based exclusively on morphology and remain controversial. In the Iberian Peninsula there are 33 species, 20 of them endemic, which suggests that these lineages might have experienced a radiation event. The evolution of morphological adaptations to the Iberian semi-arid environments such as the loss of wings (apterism) or the ability to exploit alternative food resources is thought to have promoted diversification. Here, we present a phylogenetic analysis of 31 species of Geotrupidae, 17 endemic to the Iberian Peninsula, and the remaining from southeastern Europe, Morocco, and Austral South America based on partial mitochondrial and nuclear gene sequence data. The reconstructed maximum likelihood and Bayesian inference phylogenies recovered Geotrupinae and Lethrinae as sister groups to the exclusion of Taurocerastinae. Monophyly of the analyzed geotrupid genera was supported but phylogenetic relationships among genera were poorly resolved. Ancestral character-state reconstruction of wing loss evolution, dating, and diversification tests altogether showed neither evidence of a burst of cladogenesis of the Iberian Peninsula group nor an association between apterism and higher diversification rates. Loss of flight did not accelerate speciation rates but it was likely responsible for the high levels of endemism of Iberian geotrupids by preventing their expansion to central Europe. These Iberian flightless beetle lineages are probably paleoendemics that have survived since the Tertiary in this refuge area during Plio-Pleistocene climatic fluctuations by evolving adaptations to arid and semi-arid environments. Copyright © 2011 Elsevier Inc. All rights reserved.

  13. Decoupled leaf and root carbon economics is a key component in the ecological diversity and evolutionary divergence of deciduous and evergreen lineages of genus Rhododendron.

    PubMed

    Medeiros, Juliana S; Burns, Jean H; Nicholson, Jaynell; Rogers, Louisa; Valverde-Barrantes, Oscar

    2017-06-01

    We explored trait-trait and trait-climate relationships for 27 Rhododendron species while accounting for phylogenetic relationships and within-species variation to investigate whether leaf and root traits are coordinated across environments and over evolutionary time, as part of a whole-plant economics spectrum. We examined specific leaf area (SLA) and four root traits: specific root length (SRL), specific root tip abundance (SRTA), first order diameter, and link average length, for plants growing in a cold, seasonal climate (Kirtland, Ohio) and a warmer, less seasonal climate (Federal Way, Washington) in the United States. We estimated a phylogeny and species' climate of origin, determined phylogenetic signal on mean traits and within-species variation, and used phylogenetically informed analysis to compare trait-trait and trait-climate relationships for deciduous and evergreen lineages. Mean SLA and within-species variation in SRL were more similar between close relatives than expected by chance. SLA and root traits differed according to climate of origin and across growth environments, though SLA differed within- and among-species less than roots. A negative SRL-SRTA correlation indicates investment in foraging scale vs. precision as a fundamental trade-off defining the root economic spectrum. Also, the deciduous clade exhibited a strong negative relationship between SLA and SRL, while evergreen clades showed a weaker positive or no relationship. Our work suggests that natural selection has shaped relationships between above- and belowground traits in genus Rhododendron and that leaf and root traits may evolve independently. Morphological decoupling may help explain habitat diversity among Rhododendron species, as well as the changes accompanying the divergence of deciduous and evergreen lineages. © 2017 Botanical Society of America.

  14. An integrated phylogenetic analysis on ascaridoid nematodes (Anisakidae, Raphidascarididae), including further description and intraspecific variations of Raphidascaris (Sprentascaris) lanfrediae in freshwater fishes from Brazil.

    PubMed

    Pereira, Felipe B; Luque, José L

    2017-02-01

    Genetic and morphological variations in two component populations of Raphidascaris (Sprentascaris) lanfrediae collected in the intestine of Geophagus argyrosticus and G. proximus (Cichlidae) from States of Pará and Amapá, Brazil, respectively, were explored for the first time. A phylogenetic study including two genes (18S and 28S of the rDNA) plus morphological and life history traits of "anisakid-related" nematodes (Anisakidae, Raphidascarididae) was also performed in order to clarify taxonomic and systematic issues related to these taxa. Gene alignments were subjected to maximum likelihood (ML) and Bayesian Inference (BI), and combined data of the genetic and morphological datasets was subjected to maximum parsimony (MP) analysis. Despite of the subtle differences in the morphology (mainly in male caudal papillae) and morphometry between specimens of R. (S.) lanfrediae from the two different hosts and from the type material of the species, no genetic variation was found among representatives of the newly collected material. This find may represent an example of gene-environment interactions, similar to that recently observed for Raphidascaroides brasiliensis. Phylogenetic reconstructions indicated the paraphyly of Anisakidae represented by two subfamilies, i.e., Anisakinae and Contracaecinae and the monophyly of Raphidascarididae. Analysis of the combined datasets revealed that some morphological traits may represent apomorphic characters of Raphidascarididae and Anisakidae, whereas others are highly homoplastic and some may be interpreted with careful to avoid errors. The results support the premise that taxonomists should consider Anisakidae and Raphidascarididae as separate families, and only two subfamilies of Anisakidae, i.e., Anisakinae and Contracaecinae. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  15. Identification of Burkholderia pseudomallei Near-Neighbor Species in the Northern Territory of Australia

    PubMed Central

    Ginther, Jennifer L.; Mayo, Mark; Warrington, Stephanie D.; Kaestli, Mirjam; Mullins, Travis; Wagner, David M.; Currie, Bart J.; Tuanyok, Apichai; Keim, Paul

    2015-01-01

    Identification and characterization of near-neighbor species are critical to the development of robust molecular diagnostic tools for biothreat agents. One such agent, Burkholderia pseudomallei, a soil bacterium and the causative agent of melioidosis, is lacking in this area because of its genomic diversity and widespread geographic distribution. The Burkholderia genus contains over 60 species and occupies a large range of environments including soil, plants, rhizospheres, water, animals and humans. The identification of novel species in new locations necessitates the need to identify the true global distribution of Burkholderia species, especially the members that are closely related to B. pseudomallei. In our current study, we used the Burkholderia-specific recA sequencing assay to analyze environmental samples from the Darwin region in the Northern Territory of Australia where melioidosis is endemic. Burkholderia recA PCR negative samples were further characterized using 16s rRNA sequencing for species identification. Phylogenetic analysis demonstrated that over 70% of the bacterial isolates were identified as B. ubonensis indicating that this species is common in the soil where B. pseudomallei is endemic. Bayesian phylogenetic analysis reveals many novel branches within the B. cepacia complex, one novel B. oklahomensis-like species, and one novel branch containing one isolate that is distinct from all other samples on the phylogenetic tree. During the analysis with recA sequencing, we discovered 2 single nucleotide polymorphisms in the reverse priming region of B. oklahomensis. A degenerate primer was developed and is proposed for future use. We conclude that the recA sequencing technique is an effective tool to classify Burkholderia and identify soil organisms in a melioidosis endemic area. PMID:26121041

  16. Metabolic primers for detection of (Per)chlorate-reducing bacteria in the environment and phylogenetic analysis of cld gene sequences.

    PubMed

    Bender, Kelly S; Rice, Melissa R; Fugate, William H; Coates, John D; Achenbach, Laurie A

    2004-09-01

    Natural attenuation of the environmental contaminant perchlorate is a cost-effective alternative to current removal methods. The success of natural perchlorate remediation is dependent on the presence and activity of dissimilatory (per)chlorate-reducing bacteria (DPRB) within a target site. To detect DPRB in the environment, two degenerate primer sets targeting the chlorite dismutase (cld) gene were developed and optimized. A nested PCR approach was used in conjunction with these primer sets to increase the sensitivity of the molecular detection method. Screening of environmental samples indicated that all products amplified by this method were cld gene sequences. These sequences were obtained from pristine sites as well as contaminated sites from which DPRB were isolated. More than one cld phylotype was also identified from some samples, indicating the presence of more than one DPRB strain at those sites. The use of these primer sets represents a direct and sensitive molecular method for the qualitative detection of (per)chlorate-reducing bacteria in the environment, thus offering another tool for monitoring natural attenuation. Sequences of cld genes isolated in the course of this project were also generated from various DPRB and provided the first opportunity for a phylogenetic treatment of this metabolic gene. Comparisons of the cld and 16S ribosomal DNA (rDNA) gene trees indicated that the cld gene does not track 16S rDNA phylogeny, further implicating the possible role of horizontal transfer in the evolution of (per)chlorate respiration.

  17. Metagenomic Analysis of Subtidal Sediments from Polar and Subpolar Coastal Environments Highlights the Relevance of Anaerobic Hydrocarbon Degradation Processes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Espínola, Fernando; Dionisi, Hebe M.; Borglin, Sharon

    In this work, we analyzed the community structure and metabolic potential of sediment microbial communities in high-latitude coastal environments subjected to low to moderate levels of chronic pollution. Subtidal sediments from four low-energy inlets located in polar and subpolar regions from both Hemispheres were analyzed using large-scale 16S rRNA gene and metagenomic sequencing. Communities showed high diversity (Shannon’s index 6.8 to 10.2), with distinct phylogenetic structures (<40% shared taxa at the Phylum level among regions) but similar metabolic potential in terms of sequences assigned to KOs. Environmental factors (mainly salinity, temperature, and in less extent organic pollution) were drivers ofmore » both phylogenetic and functional traits. Bacterial taxa correlating with hydrocarbon pollution included families of anaerobic or facultative anaerobic lifestyle, such as Desulfuromonadaceae, Geobacteraceae, and Rhodocyclaceae. In accordance, biomarker genes for anaerobic hydrocarbon degradation (bamA, ebdA, bcrA, and bssA) were prevalent, only outnumbered by alkB, and their sequences were taxonomically binned to the same bacterial groups. BssA-assigned metagenomic sequences showed an extremely wide diversity distributed all along the phylogeny known for this gene, including bssA sensu stricto, nmsA, assA, and other clusters from poorly or not yet described variants. This work increases our understanding of microbial community patterns in cold coastal sediments, and highlights the relevance of anaerobic hydrocarbon degradation processes in subtidal environments.« less

  18. What Shapes the Phylogenetic Structure of Anuran Communities in a Seasonal Environment? The Influence of Determinism at Regional Scale to Stochasticity or Antagonistic Forces at Local Scale

    PubMed Central

    Ferreira, Vanda Lúcia; Strüssmann, Christine; Tomas, Walfrido Moraes

    2015-01-01

    Ecological communities are structured by both deterministic and stochastic processes. We investigated phylogenetic patterns at regional and local scales to understand the influences of seasonal processes in shaping the structure of anuran communities in the southern Pantanal wetland, Brazil. We assessed the phylogenetic structure at different scales, using the Net Relatedness Index (NRI), the Nearest Taxon Index (NTI), and phylobetadiversity indexes, as well as a permutation test, to evaluate the effect of seasonality. The anuran community was represented by a non-random set of species with a high degree of phylogenetic relatedness at the regional scale. However, at the local scale the phylogenetic structure of the community was weakly related with the seasonality of the system, indicating that oriented stochastic processes (e.g. colonization, extinction and ecological drift) and/or antagonist forces drive the structure of such communities in the southern Pantanal. PMID:26102202

  19. What Shapes the Phylogenetic Structure of Anuran Communities in a Seasonal Environment? The Influence of Determinism at Regional Scale to Stochasticity or Antagonistic Forces at Local Scale.

    PubMed

    Martins, Clarissa de Araújo; Roque, Fabio de Oliveira; Santos, Bráulio A; Ferreira, Vanda Lúcia; Strüssmann, Christine; Tomas, Walfrido Moraes

    2015-01-01

    Ecological communities are structured by both deterministic and stochastic processes. We investigated phylogenetic patterns at regional and local scales to understand the influences of seasonal processes in shaping the structure of anuran communities in the southern Pantanal wetland, Brazil. We assessed the phylogenetic structure at different scales, using the Net Relatedness Index (NRI), the Nearest Taxon Index (NTI), and phylobetadiversity indexes, as well as a permutation test, to evaluate the effect of seasonality. The anuran community was represented by a non-random set of species with a high degree of phylogenetic relatedness at the regional scale. However, at the local scale the phylogenetic structure of the community was weakly related with the seasonality of the system, indicating that oriented stochastic processes (e.g. colonization, extinction and ecological drift) and/or antagonist forces drive the structure of such communities in the southern Pantanal.

  20. [Phylogenetic analysis and nitrogen removal characteristics of a heterotrophic nitrifying-aerobic denitrifying bacteria strain from marine environment].

    PubMed

    Sun, Xuemei; Li, Qiufen; Zhang, Yan; Liu, Huaide; Zhao, Jun; Qu, Keming

    2012-06-04

    We determined the phylogenetic position of a heterotrophic nitrifying-aerobic denitrifying bacterium X3, and detected its nitrogen removal characteristics for providing evidence to explain the principle of heterotrophic nitrification-aerobic denitrification and to improve the process in purification of marine-culture wastewater. The evolutionary position of the strain was determined based on its morphological, physiological, biochemical characteristics and 16SrRNA gene sequence. The nitrification-denitrification ability of this strain was detected by detecting its nitrogen removal efficiency and growth on different inorganic nitrogen source. Strain X3 was identified as Halomonas sp. It grew optimally at salinity 3%, pH 8.5, C:N 10:1 at 28 degrees C, and it could still survive at 15% salinity. The removal of NH4+ -N, NO2(-) -N and NO3(-) -N was 98.29%, 99.07%, 96.48% respectively within 24 h. When three inorganic nitrogen existed simultaneously, it always utilized ammonia firstly, and the total inorganic nitrogen removal was higher than with only one nitrogen, suggesting that strain X3 has the ability of simultaneous nitrification and denitrification and completing the whole nitrogen removing process. Strain X3 belonged to the genus of Halomonas. It had strong simultaneous nitrification and denitrification capability and could live in high-salinity environment.

  1. High endemism at cave entrances: a case study of spiders of the genus Uthina

    PubMed Central

    Yao, Zhiyuan; Dong, Tingting; Zheng, Guo; Fu, Jinzhong; Li, Shuqiang

    2016-01-01

    Endemism, which is typically high on islands and in caves, has rarely been studied in the cave entrance ecotone. We investigated the endemism of the spider genus Uthina at cave entrances. Totally 212 spiders were sampled from 46 localities, from Seychelles across Southeast Asia to Fiji. They mostly occur at cave entrances but occasionally appear at various epigean environments. Phylogenetic analysis of DNA sequence data from COI and 28S genes suggested that Uthina was grouped into 13 well-supported clades. We used three methods, the Bayesian Poisson Tree Processes (bPTP) model, the Bayesian Phylogenetics and Phylogeography (BPP) method, and the general mixed Yule coalescent (GMYC) model, to investigate species boundaries. Both bPTP and BPP identified the 13 clades as 13 separate species, while GMYC identified 19 species. Furthermore, our results revealed high endemism at cave entrances. Of the 13 provisional species, twelve (one known and eleven new) are endemic to one or a cluster of caves, and all of them occurred only at cave entrances except for one population of one species. The only widely distributed species, U. luzonica, mostly occurred in epigean environments while three populations were found at cave entrances. Additionally, eleven new species of the genus are described. PMID:27775081

  2. Insect pathogenicity in plant-beneficial pseudomonads: phylogenetic distribution and comparative genomics.

    PubMed

    Flury, Pascale; Aellen, Nora; Ruffner, Beat; Péchy-Tarr, Maria; Fataar, Shakira; Metla, Zane; Dominguez-Ferreras, Ana; Bloemberg, Guido; Frey, Joachim; Goesmann, Alexander; Raaijmakers, Jos M; Duffy, Brion; Höfte, Monica; Blom, Jochen; Smits, Theo H M; Keel, Christoph; Maurhofer, Monika

    2016-10-01

    Bacteria of the genus Pseudomonas occupy diverse environments. The Pseudomonas fluorescens group is particularly well-known for its plant-beneficial properties including pathogen suppression. Recent observations that some strains of this group also cause lethal infections in insect larvae, however, point to a more versatile ecology of these bacteria. We show that 26 P. fluorescens group strains, isolated from three continents and covering three phylogenetically distinct sub-clades, exhibited different activities toward lepidopteran larvae, ranging from lethal to avirulent. All strains of sub-clade 1, which includes Pseudomonas chlororaphis and Pseudomonas protegens, were highly insecticidal regardless of their origin (animals, plants). Comparative genomics revealed that strains in this sub-clade possess specific traits allowing a switch between plant- and insect-associated lifestyles. We identified 90 genes unique to all highly insecticidal strains (sub-clade 1) and 117 genes common to all strains of sub-clade 1 and present in some moderately insecticidal strains of sub-clade 3. Mutational analysis of selected genes revealed the importance of chitinase C and phospholipase C in insect pathogenicity. The study provides insight into the genetic basis and phylogenetic distribution of traits defining insecticidal activity in plant-beneficial pseudomonads. Strains with potent dual activity against plant pathogens and herbivorous insects have great potential for use in integrated pest management for crops.

  3. Insect pathogenicity in plant-beneficial pseudomonads: phylogenetic distribution and comparative genomics

    PubMed Central

    Flury, Pascale; Aellen, Nora; Ruffner, Beat; Péchy-Tarr, Maria; Fataar, Shakira; Metla, Zane; Dominguez-Ferreras, Ana; Bloemberg, Guido; Frey, Joachim; Goesmann, Alexander; Raaijmakers, Jos M; Duffy, Brion; Höfte, Monica; Blom, Jochen; Smits, Theo H M; Keel, Christoph; Maurhofer, Monika

    2016-01-01

    Bacteria of the genus Pseudomonas occupy diverse environments. The Pseudomonas fluorescens group is particularly well-known for its plant-beneficial properties including pathogen suppression. Recent observations that some strains of this group also cause lethal infections in insect larvae, however, point to a more versatile ecology of these bacteria. We show that 26 P. fluorescens group strains, isolated from three continents and covering three phylogenetically distinct sub-clades, exhibited different activities toward lepidopteran larvae, ranging from lethal to avirulent. All strains of sub-clade 1, which includes Pseudomonas chlororaphis and Pseudomonas protegens, were highly insecticidal regardless of their origin (animals, plants). Comparative genomics revealed that strains in this sub-clade possess specific traits allowing a switch between plant- and insect-associated lifestyles. We identified 90 genes unique to all highly insecticidal strains (sub-clade 1) and 117 genes common to all strains of sub-clade 1 and present in some moderately insecticidal strains of sub-clade 3. Mutational analysis of selected genes revealed the importance of chitinase C and phospholipase C in insect pathogenicity. The study provides insight into the genetic basis and phylogenetic distribution of traits defining insecticidal activity in plant-beneficial pseudomonads. Strains with potent dual activity against plant pathogens and herbivorous insects have great potential for use in integrated pest management for crops. PMID:26894448

  4. BuddySuite: Command-Line Toolkits for Manipulating Sequences, Alignments, and Phylogenetic Trees.

    PubMed

    Bond, Stephen R; Keat, Karl E; Barreira, Sofia N; Baxevanis, Andreas D

    2017-06-01

    The ability to manipulate sequence, alignment, and phylogenetic tree files has become an increasingly important skill in the life sciences, whether to generate summary information or to prepare data for further downstream analysis. The command line can be an extremely powerful environment for interacting with these resources, but only if the user has the appropriate general-purpose tools on hand. BuddySuite is a collection of four independent yet interrelated command-line toolkits that facilitate each step in the workflow of sequence discovery, curation, alignment, and phylogenetic reconstruction. Most common sequence, alignment, and tree file formats are automatically detected and parsed, and over 100 tools have been implemented for manipulating these data. The project has been engineered to easily accommodate the addition of new tools, is written in the popular programming language Python, and is hosted on the Python Package Index and GitHub to maximize accessibility. Documentation for each BuddySuite tool, including usage examples, is available at http://tiny.cc/buddysuite_wiki. All software is open source and freely available through http://research.nhgri.nih.gov/software/BuddySuite. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution 2017. This work is written by US Government employees and is in the public domain in the US.

  5. Comparative Analysis of Begonia Plastid Genomes and Their Utility for Species-Level Phylogenetics

    PubMed Central

    Harrison, Nicola; Harrison, Richard J.

    2016-01-01

    Recent, rapid radiations make species-level phylogenetics difficult to resolve. We used a multiplexed, high-throughput sequencing approach to identify informative genomic regions to resolve phylogenetic relationships at low taxonomic levels in Begonia from a survey of sixteen species. A long-range PCR method was used to generate draft plastid genomes to provide a strong phylogenetic backbone, identify fast evolving regions and provide informative molecular markers for species-level phylogenetic studies in Begonia. PMID:27058864

  6. Functional Manipulation of Root Endophyte Populations for Feedstock Improvement- Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dangl, Jeffery L.

    This study provides a systemic analysis of the influence of the abiotic environment on the assembly of plant microbiomes. We show that under controlled conditions, community assembly cues are robust and predictable across multiple abiotic gradients. Plant colonization patterns are largely driven by phylogeny, and colonization phenotypes are ubiquitous across different specimens of the same phylogenetic class. Subsets of the full synthetic community were shown to induce different root morphologies, and the morphology observed with the full community is an outcome of epistasis between two functional guilds.

  7. Genomic insights into the taxonomic status of the Bacillus cereus group

    PubMed Central

    Liu, Yang; Lai, Qiliang; Göker, Markus; Meier-Kolthoff, Jan P.; Wang, Meng; Sun, Yamin; Wang, Lei; Shao, Zongze

    2015-01-01

    The identification and phylogenetic relationships of bacteria within the Bacillus cereus group are controversial. This study aimed at determining the taxonomic affiliations of these strains using the whole-genome sequence-based Genome BLAST Distance Phylogeny (GBDP) approach. The GBDP analysis clearly separated 224 strains into 30 clusters, representing eleven known, partially merged species and accordingly 19–20 putative novel species. Additionally, 16S rRNA gene analysis, a novel variant of multi-locus sequence analysis (nMLSA) and screening of virulence genes were performed. The 16S rRNA gene sequence was not sufficient to differentiate the bacteria within this group due to its high conservation. The nMLSA results were consistent with GBDP. Moreover, a fast typing method was proposed using the pycA gene, and where necessary, the ccpA gene. The pXO plasmids and cry genes were widely distributed, suggesting little correlation with the phylogenetic positions of the host bacteria. This might explain why classifications based on virulence characteristics proved unsatisfactory in the past. In summary, this is the first large-scale and systematic study of the taxonomic status of the bacteria within the B. cereus group using whole-genome sequences, and is likely to contribute to further insights into their pathogenicity, phylogeny and adaptation to diverse environments. PMID:26373441

  8. Multilocus sequence analysis reveals taxonomic differences among Bradyrhizobium sp. symbionts of Lupinus albescens plants growing in arenized and non-arenized areas.

    PubMed

    Granada, Camille E; Beneduzi, Anelise; Lisboa, Bruno B; Turchetto-Zolet, Andreia C; Vargas, Luciano K; Passaglia, Luciane M P

    2015-07-01

    Lupinus albescens is a leguminous plant that belongs to "New World" lupine species, which is native to southern Brazil. This Brazilian region is characterized by poor degraded soils with low organic matter and is designated as an arenized area. The symbiosis between Lupinus plants and nitrogen-fixing bacteria belonging to the Bradyrhizobium genus may help the plant establish itself in these areas. To characterize the bradyrhizobial population symbionts of L. albescens plants grown in arenized and non-arenized areas, a multilocus phylogenetic analysis allied to genetic diversity indices were conducted. Seventy-four bradyrhizobial isolates were analyzed, 38 coming from L. albescens plants growing in an arenized area and 36 from a non-arenized area. Isolates were different between arenized and non-arenized areas. Phylogenetic analysis of the 16S rRNA, dnaK, atpD, recA, glnII, rpoB, gyrB, nodA, nodB, and nodZ genes resulted in three supported clades, which were most likely to be three different new Bradyrhizobium species: one species from the arenized area and two from the non-arenized area. Estimates of genetic diversity, which decreased in arenized areas, were positively correlated with habitat variability. These results suggested that a few resistant and efficient Bradyrhizobium sp. strains were capable of forming nodules on L. albescens plants growing in an arenized area. An in vivo inoculation experiment with L. albescens plants showed that Bradyrhizobium ssp. isolated from this extreme environment were more efficient at promoting plant growth than those from the non-arenized area. This result suggested that the environment affected the selection of more efficient plant growth promoters in order to sustain plant growth. Copyright © 2015 Elsevier GmbH. All rights reserved.

  9. A pan-genomic approach to understand the basis of host adaptation in Achromobacter.

    PubMed

    Jeukens, J; Freschi, L; Vincent, A T; Emond-Rheault, J G; Kukavica-Ibrulj, I; Charette, S J; Levesque, R C

    2017-04-05

    Over the past decade, there has been a rising interest in Achromobacter sp., an emerging opportunistic pathogen responsible for nosocomial and cystic fibrosis (CF) lung infections. Species of this genus are ubiquitous in the environment, can outcompete resident microbiota, and are resistant to commonly used disinfectants as well as antibiotics. Nevertheless, the Achromobacter genus suffers from difficulties in diagnosis, unresolved taxonomy and limited understanding of how it adapts to the CF lung, not to mention other host environments. The goals of this first genus-wide comparative genomics study were to clarify the taxonomy of this genus and identify genomic features associated with pathogenicity and host adaptation. This was done with a widely applicable approach based on pan-genome analysis. First, using all publicly available genomes, a combination of phylogenetic analysis based on 1,780 conserved genes with average nucleotide identity and accessory genome composition allowed the identification of a largely clinical lineage composed of A. xylosoxidans A insuavis A. dolens and A. ruhlandii. Within this lineage, we identified 35 positively selected genes involved in metabolism, regulation and efflux-mediated antibiotic resistance. Second, resistome analysis showed that this clinical lineage carried additional antibiotic resistance genes compared to other isolates. Finally, we identified putative mobile elements that contribute 53% of the genus's resistome and support horizontal gene transfer between Achromobacter and other ecologically similar genera. This study provides strong phylogenetic and pan-genomic bases to motivate further research on Achromobacter, and contributes to the understanding of opportunistic pathogen evolution. © The Author(s) 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  10. An attempt to reconstruct phylogenetic relationships within Caribbean nummulitids: simulating relationships and tracing character evolution

    NASA Astrophysics Data System (ADS)

    Eder, Wolfgang; Ives Torres-Silva, Ana; Hohenegger, Johann

    2017-04-01

    Phylogenetic analysis and trees based on molecular data are broadly applied and used to infer genetical and biogeographic relationship in recent larger foraminifera. Molecular phylogenetic is intensively used within recent nummulitids, however for fossil representatives these trees are only of minor informational value. Hence, within paleontological studies a phylogenetic approach through morphometric analysis is of much higher value. To tackle phylogenetic relationships within the nummulitid family, a much higher number of morphological character must be measured than are commonly used in biometric studies, where mostly parameters describing embryonic size (e.g., proloculus diameter, deuteroloculus diameter) and/or the marginal spiral (e.g., spiral diagrams, spiral indices) are studied. For this purpose 11 growth-independent and/or growth-invariant characters have been used to describe the morphological variability of equatorial thin sections of seven Carribbean nummulitid taxa (Nummulites striatoreticulatus, N. macgillavry, Palaeonummulites willcoxi, P.floridensis, P. soldadensis, P.trinitatensis and P.ocalanus) and one outgroup taxon (Ranikothalia bermudezi). Using these characters, phylogenetic trees were calculated using a restricted maximum likelihood algorithm (REML), and results are cross-checked by ordination and cluster analysis. Square-change parsimony method has been run to reconstruct ancestral states, as well as to simulate the evolution of the chosen characters along the calculated phylogenetic tree and, independent - contrast analysis was used to estimate confidence intervals. Based on these simulations, phylogenetic tendencies of certain characters proposed for nummulitids (e.g., Cope's rule or nepionic acceleration) can be tested, whether these tendencies are valid for the whole family or only for certain clades. At least, within the Carribean nummulitids, phylogenetic trends along some growth-independent characters of the embryo (e.g., first chamber length and P/D ratio) and some growth-invariant characters of the chamber sequence (e.g., backbend angle, initial chamber base length and chamber length increase) are evident.

  11. A phylogenetic analysis of the megadiverse Chalcidoidea (Hymenoptera)

    USDA-ARS?s Scientific Manuscript database

    Chalcidoidea (Hymenoptera) are extremely diverse with an estimated 500,000 species. We present the first phylogenetic analysis of the superfamily based on a cladistic analysis of both morphological and molecular data. A total of 233 morphological characters were scored for 300 taxa and 265 genera, a...

  12. Phylogenetic Analysis of Ruminant Theileria spp. from China Based on 28S Ribosomal RNA Gene

    PubMed Central

    Gou, Huitian; Guan, Guiquan; Ma, Miling; Liu, Aihong; Liu, Zhijie; Xu, Zongke; Ren, Qiaoyun; Li, Youquan; Yang, Jifei; Chen, Ze

    2013-01-01

    Species identification using DNA sequences is the basis for DNA taxonomy. In this study, we sequenced the ribosomal large-subunit RNA gene sequences (3,037-3,061 bp) in length of 13 Chinese Theileria stocks that were infective to cattle and sheep. The complete 28S rRNA gene is relatively difficult to amplify and its conserved region is not important for phylogenetic study. Therefore, we selected the D2-D3 region from the complete 28S rRNA sequences for phylogenetic analysis. Our analyses of 28S rRNA gene sequences showed that the 28S rRNA was useful as a phylogenetic marker for analyzing the relationships among Theileria spp. in ruminants. In addition, the D2-D3 region was a short segment that could be used instead of the whole 28S rRNA sequence during the phylogenetic analysis of Theileria, and it may be an ideal DNA barcode. PMID:24327775

  13. Phylogenetic analysis of ruminant Theileria spp. from China based on 28S ribosomal RNA gene.

    PubMed

    Gou, Huitian; Guan, Guiquan; Ma, Miling; Liu, Aihong; Liu, Zhijie; Xu, Zongke; Ren, Qiaoyun; Li, Youquan; Yang, Jifei; Chen, Ze; Yin, Hong; Luo, Jianxun

    2013-10-01

    Species identification using DNA sequences is the basis for DNA taxonomy. In this study, we sequenced the ribosomal large-subunit RNA gene sequences (3,037-3,061 bp) in length of 13 Chinese Theileria stocks that were infective to cattle and sheep. The complete 28S rRNA gene is relatively difficult to amplify and its conserved region is not important for phylogenetic study. Therefore, we selected the D2-D3 region from the complete 28S rRNA sequences for phylogenetic analysis. Our analyses of 28S rRNA gene sequences showed that the 28S rRNA was useful as a phylogenetic marker for analyzing the relationships among Theileria spp. in ruminants. In addition, the D2-D3 region was a short segment that could be used instead of the whole 28S rRNA sequence during the phylogenetic analysis of Theileria, and it may be an ideal DNA barcode.

  14. Phylogeny, host-parasite relationship and zoogeography

    PubMed Central

    1999-01-01

    Phylogeny is the evolutionary history of a group or the lineage of organisms and is reconstructed based on morphological, molecular and other characteristics. The genealogical relationship of a group of taxa is often expressed as a phylogenetic tree. The difficulty in categorizing the phylogeny is mainly due to the existence of frequent homoplasies that deceive observers. At the present time, cladistic analysis is believed to be one of the most effective methods of reconstructing a phylogenetic tree. Excellent computer program software for phylogenetic analysis is available. As an example, cladistic analysis was applied for nematode genera of the family Acuariidae, and the phylogenetic tree formed was compared with the system used currently. Nematodes in the genera Nippostrongylus and Heligmonoides were also analyzed, and the validity of the reconstructed phylogenetic trees was observed from a zoogeographical point of view. Some of the theories of parasite evolution were briefly reviewed as well. Coevolution of parasites and humans was discussed with special reference to the evolutionary relationship between Enterobius and primates. PMID:10634036

  15. Identification of extensive drug resistant Pseudomonas aeruginosa strains: New clone ST1725 and high-risk clone ST233

    PubMed Central

    Aguilar-Rodea, Pamela; Zúñiga, Gerardo; Rodríguez-Espino, Benjamín Antonio; Olivares Cervantes, Alma Lidia; Gamiño Arroyo, Ana Estela; Moreno-Espinosa, Sarbelio; de la Rosa Zamboni, Daniela; López Martínez, Briceida; Castellanos-Cruz, María del Carmen; Parra-Ortega, Israel; Jiménez Rojas, Verónica Leticia; Vigueras Galindo, Juan Carlos; Velázquez-Guadarrama, Norma

    2017-01-01

    Several microorganisms produce nosocomial infections (NIs), among which Pseudomonas aeruginosa stands out as an opportunist pathogen with the capacity to develop multiresistance to first-choice antibiotics. From 2007 to 2013, forty-six NIs produced by P. aeruginosa were detected at a pediatric tertiary care hospital in Mexico with a significant mortality rate (17.39%). All isolates (n = 58/46 patients) were characterized by evaluating their response to several antibiotics as panresistant (PDR), extensively resistant (XDR), multiresistant (MDR) or sensitive (S). In addition, all isolates were typified through multilocus sequencing of seven genes: acsA, aroE, guaA, mutL, nuoD, ppsA and trpE. Furthermore, to establish the genetic relationships among these isolates, we carried out a phylogenetic inference analysis using maximum likelihood to construct a phylogenetic network. To assess evolutionary parameters, recombination was evaluated using the PHI test, and the ratio of nonsynonymous to synonymous substitutions was determined. Two of the strains were PDR (ST1725); 42 were XDR; four were MDR; and ten were S. Twenty-one new sequence types were detected. Thirty-three strains exhibited novel sequence type ST1725. The ratio of nonsynonym to synonym substitutions was 1:1 considering all genes. Phylogenetic analysis showed that the genetic relationship of the PDR, XDR and MDR strains was mainly clonal; however, the PHI test and the phylogenetic network suggest that recombination events occurred to produce a non-clonal population. This study aimed not only to determine the genetic diversity of clinical P. aeruginosa but also to provide a warning regarding the identification and spreading of clone ST1725, its ability to cause outbreaks with high mortality rates, and to remain in the hospital environment for over seven years. These characteristics highlight the need to identify clonal outbreaks, especially where high resistance to most antibiotics is observed, and control measures are needed. This study also represents the first report of the PDR ST1725. PMID:28253282

  16. A Comprehensive Phylogenetic Analysis of the Scleractinia (Cnidaria, Anthozoa) Based on Mitochondrial CO1 Sequence Data

    PubMed Central

    Kitahara, Marcelo V.; Cairns, Stephen D.; Stolarski, Jarosław; Blair, David; Miller, David J.

    2010-01-01

    Background Classical morphological taxonomy places the approximately 1400 recognized species of Scleractinia (hard corals) into 27 families, but many aspects of coral evolution remain unclear despite the application of molecular phylogenetic methods. In part, this may be a consequence of such studies focusing on the reef-building (shallow water and zooxanthellate) Scleractinia, and largely ignoring the large number of deep-sea species. To better understand broad patterns of coral evolution, we generated molecular data for a broad and representative range of deep sea scleractinians collected off New Caledonia and Australia during the last decade, and conducted the most comprehensive molecular phylogenetic analysis to date of the order Scleractinia. Methodology Partial (595 bp) sequences of the mitochondrial cytochrome oxidase subunit 1 (CO1) gene were determined for 65 deep-sea (azooxanthellate) scleractinians and 11 shallow-water species. These new data were aligned with 158 published sequences, generating a 234 taxon dataset representing 25 of the 27 currently recognized scleractinian families. Principal Findings/Conclusions There was a striking discrepancy between the taxonomic validity of coral families consisting predominantly of deep-sea or shallow-water species. Most families composed predominantly of deep-sea azooxanthellate species were monophyletic in both maximum likelihood and Bayesian analyses but, by contrast (and consistent with previous studies), most families composed predominantly of shallow-water zooxanthellate taxa were polyphyletic, although Acroporidae, Poritidae, Pocilloporidae, and Fungiidae were exceptions to this general pattern. One factor contributing to this inconsistency may be the greater environmental stability of deep-sea environments, effectively removing taxonomic “noise” contributed by phenotypic plasticity. Our phylogenetic analyses imply that the most basal extant scleractinians are azooxanthellate solitary corals from deep-water, their divergence predating that of the robust and complex corals. Deep-sea corals are likely to be critical to understanding anthozoan evolution and the origins of the Scleractinia. PMID:20628613

  17. SUNPLIN: Simulation with Uncertainty for Phylogenetic Investigations

    PubMed Central

    2013-01-01

    Background Phylogenetic comparative analyses usually rely on a single consensus phylogenetic tree in order to study evolutionary processes. However, most phylogenetic trees are incomplete with regard to species sampling, which may critically compromise analyses. Some approaches have been proposed to integrate non-molecular phylogenetic information into incomplete molecular phylogenies. An expanded tree approach consists of adding missing species to random locations within their clade. The information contained in the topology of the resulting expanded trees can be captured by the pairwise phylogenetic distance between species and stored in a matrix for further statistical analysis. Thus, the random expansion and processing of multiple phylogenetic trees can be used to estimate the phylogenetic uncertainty through a simulation procedure. Because of the computational burden required, unless this procedure is efficiently implemented, the analyses are of limited applicability. Results In this paper, we present efficient algorithms and implementations for randomly expanding and processing phylogenetic trees so that simulations involved in comparative phylogenetic analysis with uncertainty can be conducted in a reasonable time. We propose algorithms for both randomly expanding trees and calculating distance matrices. We made available the source code, which was written in the C++ language. The code may be used as a standalone program or as a shared object in the R system. The software can also be used as a web service through the link: http://purl.oclc.org/NET/sunplin/. Conclusion We compare our implementations to similar solutions and show that significant performance gains can be obtained. Our results open up the possibility of accounting for phylogenetic uncertainty in evolutionary and ecological analyses of large datasets. PMID:24229408

  18. SUNPLIN: simulation with uncertainty for phylogenetic investigations.

    PubMed

    Martins, Wellington S; Carmo, Welton C; Longo, Humberto J; Rosa, Thierson C; Rangel, Thiago F

    2013-11-15

    Phylogenetic comparative analyses usually rely on a single consensus phylogenetic tree in order to study evolutionary processes. However, most phylogenetic trees are incomplete with regard to species sampling, which may critically compromise analyses. Some approaches have been proposed to integrate non-molecular phylogenetic information into incomplete molecular phylogenies. An expanded tree approach consists of adding missing species to random locations within their clade. The information contained in the topology of the resulting expanded trees can be captured by the pairwise phylogenetic distance between species and stored in a matrix for further statistical analysis. Thus, the random expansion and processing of multiple phylogenetic trees can be used to estimate the phylogenetic uncertainty through a simulation procedure. Because of the computational burden required, unless this procedure is efficiently implemented, the analyses are of limited applicability. In this paper, we present efficient algorithms and implementations for randomly expanding and processing phylogenetic trees so that simulations involved in comparative phylogenetic analysis with uncertainty can be conducted in a reasonable time. We propose algorithms for both randomly expanding trees and calculating distance matrices. We made available the source code, which was written in the C++ language. The code may be used as a standalone program or as a shared object in the R system. The software can also be used as a web service through the link: http://purl.oclc.org/NET/sunplin/. We compare our implementations to similar solutions and show that significant performance gains can be obtained. Our results open up the possibility of accounting for phylogenetic uncertainty in evolutionary and ecological analyses of large datasets.

  19. A Novel Lineage of Proteobacteria Involved in Formation of Marine Fe-Oxidizing Microbial Mat Communities

    PubMed Central

    Emerson, David; Rentz, Jeremy A.; Lilburn, Timothy G.; Davis, Richard E.; Chan, Clara; Moyer, Craig L.

    2007-01-01

    Background For decades it has been recognized that neutrophilic Fe-oxidizing bacteria (FeOB) are associated with hydrothermal venting of Fe(II)-rich fluids associated with seamounts in the world's oceans. The evidence was based almost entirely on the mineralogical remains of the microbes, which themselves had neither been brought into culture or been assigned to a specific phylogenetic clade. We have used both cultivation and cultivation-independent techniques to study Fe-rich microbial mats associated with hydrothermal venting at Loihi Seamount, a submarine volcano. Methodology/Principle Findings Using gradient enrichment techniques, two iron-oxidizing bacteria, strains PV-1 and JV-1, were isolated. Chemolithotrophic growth was observed under microaerobic conditions; Fe(II) and Fe0 were the only energy sources that supported growth. Both strains produced filamentous stalk-like structures composed of multiple nanometer sized fibrils of Fe-oxyhydroxide. These were consistent with mineralogical structures found in the iron mats. Phylogenetic analysis of the small subunit (SSU) rRNA gene demonstrated that strains PV-1 and JV-1 were identical and formed a monophyletic group deeply rooted within the Proteobacteria. The most similar sequence (85.3% similarity) from a cultivated isolate came from Methylophaga marina. Phylogenetic analysis of the RecA and GyrB protein sequences confirmed that these strains are distantly related to other members of the Proteobacteria. A cultivation-independent analysis of the SSU rRNA gene by terminal-restriction fragment (T-RF) profiling showed that this phylotype was most common in a variety of microbial mats collected at different times and locations at Loihi. Conclusions On the basis of phylogenetic and physiological data, it is proposed that isolate PV-1T ( = ATCC BAA-1019: JCM 14766) represents the type strain of a novel species in a new genus, Mariprofundus ferrooxydans gen. nov., sp. nov. Furthermore, the strain is the first cultured representative of a new candidatus class of the Proteobacteria that is widely distributed in deep-sea environments, Candidatus ζ (zeta)-Proteobacteria cl. nov. PMID:17668050

  20. Inter- and intra-specific genetic divergence of Asian tiger frogs (genus Hoplobatrachus), with special reference to the population structure of H. tigerinus in Bangladesh.

    PubMed

    Sultana, Nasrin; Igawa, Takeshi; Islam, Mohammed Mafizul; Hasan, Mahmudul; Alam, Mohammad Shafiqul; Komaki, Shohei; Kawamura, Kensuke; Khan, Md Mukhlesur Rahman; Sumida, Masayuki

    2017-03-17

    The five frog species of the genus Hoplobatrachus are widely distributed in Asia and Africa, with Asia being considered the genus' origin. However, the evolutionary relationships of Asian Hoplobatrachus species remain ambiguous. Additionally, genetic diversity and fundamental differentiation processes within species have not been studied. We conducted molecular phylogenetic analysis on Asian Hoplobatrachus frogs and population genetic analysis on H. tigerinus in Bangladesh using the mitochondrial CYTB gene and 21 microsatellite markers. The resultant phylogenetic tree revealed monophyly in each species, notwithstanding the involvement of cryptic species in H. chinensis and H. tigerinus, which are evident from the higher genetic divergence between populations. Bayesian inference of population structure revealed genetic divergence between western and eastern H. tigerinus populations in Bangladesh, suggesting restricted gene flow caused by barriers posed by major rivers. However, genetic distances among populations were generally low. A discrete population is located in the low riverine delta region, which likely reflects long-distance dispersal. These results strongly suggest that the environment specific to this river system has maintained the population structure of H. tigerinus in this region.

  1. Microbial diversity in ikaite tufa columns: an alkaline, cold ecological niche in Greenland.

    PubMed

    Stougaard, Peter; Jørgensen, Flemming; Johnsen, Mads G; Hansen, Ole C

    2002-08-01

    Ikaite tufa columns from the Ikka Fjord in south-western Greenland constitute a natural, stable environment at low temperature and with a pH ranging from neutral at the exterior to very alkaline (pH 10.4) at the interior of the column. Phylogenetic analysis of culturable organisms revealed ten different isolates representing three of the major bacterial divisions. Nine of the isolates showed 94-99% similarity to known sequences, whereas one isolate displayed a low degree of similarity (less than 90%) to a Cyclobacterium species. Seven of the isolates were shown to be cold active alkaliphiles, whereas three isolates showed optimal growth at neutral pH. Phylogenetic analysis of DNA isolated directly from the ikaite material demonstrated the presence of a microbial flora more diverse than the culturable isolates. Whereas approximately half of the phylotypes showed 90-99% similarity to known meso- or thermophilic alkaliphiles, the rest of the sequences displayed less than 90% similarity when compared to known 16S rRNA gene sequences in databases. Thus, in the present paper, we demonstrate that ikaite columns that host a specialized macroscopic flora and fauna also contain a unique, cold active, alkaliphilic microflora.

  2. Macroevolutionary patterns of glucosinolate defense and tests of defense-escalation and resource availability hypotheses.

    PubMed

    Cacho, N Ivalú; Kliebenstein, Daniel J; Strauss, Sharon Y

    2015-11-01

    We explored macroevolutionary patterns of plant chemical defense in Streptanthus (Brassicaceae), tested for evolutionary escalation of defense, as predicted by Ehrlich and Raven's plant-herbivore coevolutionary arms-race hypothesis, and tested whether species inhabiting low-resource or harsh environments invest more in defense, as predicted by the resource availability hypothesis (RAH). We conducted phylogenetically explicit analyses using glucosinolate profiles, soil nutrient analyses, and microhabitat bareness estimates across 30 species of Streptanthus inhabiting varied environments and soils. We found weak to moderate phylogenetic signal in glucosinolate classes and no signal in total glucosinolate production; a trend toward evolutionary de-escalation in the numbers and diversity of glucosinolates, accompanied by an evolutionary increase in the proportion of aliphatic glucosinolates; some support for the RAH relative to soil macronutrients, but not relative to serpentine soil use; and that the number of glucosinolates increases with microhabitat bareness, which is associated with increased herbivory and drought. Weak phylogenetic signal in chemical defense has been observed in other plant systems. A more holistic approach incorporating other forms of defense might be necessary to confidently reject escalation of defense. That defense increases with microhabitat bareness supports the hypothesis that habitat bareness is an underappreciated selective force on plants in harsh environments. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  3. Morphology of the limbs in the semi-fossorial desert rodent species of Tympanoctomys (Octodontidae, Rodentia)

    PubMed Central

    Perez, M. Julieta; Barquez, Ruben M.; Diaz, M. Monica

    2017-01-01

    Abstract Here, a detailed description of the forelimbs and hindlimbs of all living species of the genus Tympanoctomys are presented. These rodents, highly adapted to desert environments, are semi-fossorial with capacity to move on the surface as well as to build burrows. The shape, structure, and size of the limbs are described. Contrary to what was expected for scratch digging semi-fossorial species, Tympanoctomys have slender humerus, radius and ulna; with narrow epicondyles of the humerus and short olecranon of the ulna with poorly developed processes. Following our descriptions, no intrageneric morphological variation regarding to the configuration of the limbs was detected, probably due to phylogenetic proximity, and not related to specific variations in response to different use of substrates or habits. The obtained results constitute a source of previously unpublished information as well as an important base for future analysis in different studies, such as morphometric, morpho-functional, or phylogenetic researches. PMID:29118644

  4. Deep Diversity: Novel Approach to Overcoming the PCR Bias Encountered During Environmental Analysis of Microbial Populations for Alpha-Diversity

    NASA Technical Reports Server (NTRS)

    Ramirez, Gustavo A; Vaishampayan, Parag A.

    2011-01-01

    Alpha-diversity studies are of crucial importance to environmental microbiologists. The polymerase chain reaction (PCR) method has been paramount for studies interrogating microbial environmental samples for taxon richness. Phylogenetic studies using this technique are based on the amplification and comparison of the 16S rRNA coding regions. PCR, due disproportionate distribution of microbial species in the environment, increasingly favors the amplification of the most predominant phylotypes with every subsequent reaction cycle. The genetic and chemical complexity of environmental samples are intrinsic factors that exacerbate an inherit bias in PCR-based quantitative and qualitative studies of microbial communities. We report that treatment of a genetically complex total genomic environmental DNA extract with Propidium Monoazide (PMA), a DNA intercalating molecule capable of forming a covalent cross-linkage to organic moieties upon light exposure, disproportionally inactivates predominant phylotypes and results in the exponential amplification of previously shadowed microbial ?-diversity quantified as a 19.5% increase in OUTs reported via phylogenetic screening using PhyloChip.

  5. Methylobacterium variabile sp. nov., a methylotrophic bacterium isolated from an aquatic environment.

    PubMed

    Gallego, Virginia; García, Maria Teresa; Ventosa, Antonio

    2005-07-01

    Strain GR3(T) was isolated from drinking water during a screening programme to monitor the bacterial population present in the distribution system of Seville (Spain), and it was studied phenotypically, genotypically and phylogenetically. This pink-pigmented bacterium was identified as a Methylobacterium sp. Members of this genus are distributed in a wide variety of natural habitats, including soil, dust, air, freshwater and aquatic sediments. Phylogenetic analysis of the 16S rRNA gene sequence showed that strain GR3(T) was closely related to Methylobacterium aquaticum (97.4% sequence similarity), whereas sequence similarity values with respect to the rest of the species belonging to this genus were lower than 96%. Furthermore, the DNA-DNA hybridization data and its phenotypic characteristics clearly indicate that the isolate represents a novel Methylobacterium species, for which the name Methylobacterium variabile sp. nov. is proposed. GR3(T) (=DSM 16961(T)=CCM 7281(T)=CECT 7045(T)) is the type strain; the DNA G+C content of this strain is 69.2 mol%.

  6. Evolution & Phylogenetic Analysis: Classroom Activities for Investigating Molecular & Morphological Concepts

    ERIC Educational Resources Information Center

    Franklin, Wilfred A.

    2010-01-01

    In a flexible multisession laboratory, students investigate concepts of phylogenetic analysis at both the molecular and the morphological level. Students finish by conducting their own analysis on a collection of skeletons representing the major phyla of vertebrates, a collection of primate skulls, or a collection of hominid skulls.

  7. High-Performance Integrated Virtual Environment (HIVE) Tools and Applications for Big Data Analysis.

    PubMed

    Simonyan, Vahan; Mazumder, Raja

    2014-09-30

    The High-performance Integrated Virtual Environment (HIVE) is a high-throughput cloud-based infrastructure developed for the storage and analysis of genomic and associated biological data. HIVE consists of a web-accessible interface for authorized users to deposit, retrieve, share, annotate, compute and visualize Next-generation Sequencing (NGS) data in a scalable and highly efficient fashion. The platform contains a distributed storage library and a distributed computational powerhouse linked seamlessly. Resources available through the interface include algorithms, tools and applications developed exclusively for the HIVE platform, as well as commonly used external tools adapted to operate within the parallel architecture of the system. HIVE is composed of a flexible infrastructure, which allows for simple implementation of new algorithms and tools. Currently, available HIVE tools include sequence alignment and nucleotide variation profiling tools, metagenomic analyzers, phylogenetic tree-building tools using NGS data, clone discovery algorithms, and recombination analysis algorithms. In addition to tools, HIVE also provides knowledgebases that can be used in conjunction with the tools for NGS sequence and metadata analysis.

  8. High-Performance Integrated Virtual Environment (HIVE) Tools and Applications for Big Data Analysis

    PubMed Central

    Simonyan, Vahan; Mazumder, Raja

    2014-01-01

    The High-performance Integrated Virtual Environment (HIVE) is a high-throughput cloud-based infrastructure developed for the storage and analysis of genomic and associated biological data. HIVE consists of a web-accessible interface for authorized users to deposit, retrieve, share, annotate, compute and visualize Next-generation Sequencing (NGS) data in a scalable and highly efficient fashion. The platform contains a distributed storage library and a distributed computational powerhouse linked seamlessly. Resources available through the interface include algorithms, tools and applications developed exclusively for the HIVE platform, as well as commonly used external tools adapted to operate within the parallel architecture of the system. HIVE is composed of a flexible infrastructure, which allows for simple implementation of new algorithms and tools. Currently, available HIVE tools include sequence alignment and nucleotide variation profiling tools, metagenomic analyzers, phylogenetic tree-building tools using NGS data, clone discovery algorithms, and recombination analysis algorithms. In addition to tools, HIVE also provides knowledgebases that can be used in conjunction with the tools for NGS sequence and metadata analysis. PMID:25271953

  9. Phylogenetic congruence and ecological coherence in terrestrial Thaumarchaeota.

    PubMed

    Oton, Eduard Vico; Quince, Christopher; Nicol, Graeme W; Prosser, James I; Gubry-Rangin, Cécile

    2016-01-01

    Thaumarchaeota form a ubiquitously distributed archaeal phylum, comprising both the ammonia-oxidising archaea (AOA) and other archaeal groups in which ammonia oxidation has not been demonstrated (including Group 1.1c and Group 1.3). The ecology of AOA in terrestrial environments has been extensively studied using either a functional gene, encoding ammonia monooxygenase subunit A (amoA) or 16S ribosomal RNA (rRNA) genes, which show phylogenetic coherence with respect to soil pH. To test phylogenetic congruence between these two markers and to determine ecological coherence in all Thaumarchaeota, we performed high-throughput sequencing of 16S rRNA and amoA genes in 46 UK soils presenting 29 available contextual soil characteristics. Adaptation to pH and organic matter content reflected strong ecological coherence at various levels of taxonomic resolution for Thaumarchaeota (AOA and non-AOA), whereas nitrogen, total mineralisable nitrogen and zinc concentration were also important factors associated with AOA thaumarchaeotal community distribution. Other significant associations with environmental factors were also detected for amoA and 16S rRNA genes, reflecting different diversity characteristics between these two markers. Nonetheless, there was significant statistical congruence between the markers at fine phylogenetic resolution, supporting the hypothesis of low horizontal gene transfer between Thaumarchaeota. Group 1.1c Thaumarchaeota were also widely distributed, with two clusters predominating, particularly in environments with higher moisture content and organic matter, whereas a similar ecological pattern was observed for Group 1.3 Thaumarchaeota. The ecological and phylogenetic congruence identified is fundamental to understand better the life strategies, evolutionary history and ecosystem function of the Thaumarchaeota.

  10. Phylogenetic congruence and ecological coherence in terrestrial Thaumarchaeota

    PubMed Central

    Oton, Eduard Vico; Quince, Christopher; Nicol, Graeme W; Prosser, James I; Gubry-Rangin, Cécile

    2016-01-01

    Thaumarchaeota form a ubiquitously distributed archaeal phylum, comprising both the ammonia-oxidising archaea (AOA) and other archaeal groups in which ammonia oxidation has not been demonstrated (including Group 1.1c and Group 1.3). The ecology of AOA in terrestrial environments has been extensively studied using either a functional gene, encoding ammonia monooxygenase subunit A (amoA) or 16S ribosomal RNA (rRNA) genes, which show phylogenetic coherence with respect to soil pH. To test phylogenetic congruence between these two markers and to determine ecological coherence in all Thaumarchaeota, we performed high-throughput sequencing of 16S rRNA and amoA genes in 46 UK soils presenting 29 available contextual soil characteristics. Adaptation to pH and organic matter content reflected strong ecological coherence at various levels of taxonomic resolution for Thaumarchaeota (AOA and non-AOA), whereas nitrogen, total mineralisable nitrogen and zinc concentration were also important factors associated with AOA thaumarchaeotal community distribution. Other significant associations with environmental factors were also detected for amoA and 16S rRNA genes, reflecting different diversity characteristics between these two markers. Nonetheless, there was significant statistical congruence between the markers at fine phylogenetic resolution, supporting the hypothesis of low horizontal gene transfer between Thaumarchaeota. Group 1.1c Thaumarchaeota were also widely distributed, with two clusters predominating, particularly in environments with higher moisture content and organic matter, whereas a similar ecological pattern was observed for Group 1.3 Thaumarchaeota. The ecological and phylogenetic congruence identified is fundamental to understand better the life strategies, evolutionary history and ecosystem function of the Thaumarchaeota. PMID:26140533

  11. Ultramafic Terranes and Associated Springs as Analogs for Mars and Early Earth

    NASA Technical Reports Server (NTRS)

    Blake, David; Schulte, Mitch; Cullings, Ken; DeVincezi, D. (Technical Monitor)

    2002-01-01

    Putative extinct or extant Martian organisms, like their terrestrial counterparts, must adopt metabolic strategies based on the environments in which they live. In order for organisms to derive metabolic energy from the natural environment (Martian or terrestrial), a state of thermodynamic disequilibrium must exist. The most widespread environment of chemical disequilibrium on present-day Earth results from the interaction of mafic rocks of the ocean crust with liquid water. Such environments were even more pervasive and important on the Archean Earth due to increased geothermal heat flow and the absence of widespread continental crust formation. The composition of the lower crust and upper mantle of the Earth is essentially the-same as that of Mars, and the early histories of these two planets are similar. It follows that a knowledge of the mineralogy, water-rock chemistry and microbial ecology of Earth's oceanic crust could be of great value in devising a search strategy for evidence of past or present life on Mars. In some tectonic regimes, cross-sections of lower oceanic crust and upper mantle are exposed on land as so-called "ophiolite suites." Such is the case in the state of California (USA) as a result of its location adjacent to active plate margins. These mafic and ultramafic rocks contain numerous springs that offer an easily accessible field laboratory for studying water/rock interactions and the microbial communities that are supported by the resulting geochemical energy. A preliminary screen of Archaean biodiversity was conducted in a cold spring located in a presently serpentinizing ultramafic terrane. PCR and phylogenetic analysis of partial 16s rRNA, sequences were performed on water and sediment samples. Archaea of recent phylogenetic origin were detected with sequences nearly identical to those of organisms living in ultra-high pH lakes of Africa.

  12. Symbiosis between hydra and chlorella: molecular phylogenetic analysis and experimental study provide insight into its origin and evolution.

    PubMed

    Kawaida, Hitomi; Ohba, Kohki; Koutake, Yuhki; Shimizu, Hiroshi; Tachida, Hidenori; Kobayakawa, Yoshitaka

    2013-03-01

    Although many physiological studies have been reported on the symbiosis between hydra and green algae, very little information from a molecular phylogenetic aspect of symbiosis is available. In order to understand the origin and evolution of symbiosis between the two organisms, we compared the phylogenetic relationships among symbiotic green algae with the phylogenetic relationships among host hydra strains. To do so, we reconstructed molecular phylogenetic trees of several strains of symbiotic chlorella harbored in the endodermal epithelial cells of viridissima group hydra strains and investigated their congruence with the molecular phylogenetic trees of the host hydra strains. To examine the species specificity between the host and the symbiont with respect to the genetic distance, we also tried to introduce chlorella strains into two aposymbiotic strains of viridissima group hydra in which symbiotic chlorella had been eliminated in advance. We discussed the origin and history of symbiosis between hydra and green algae based on the analysis. Copyright © 2012 Elsevier Inc. All rights reserved.

  13. Evolutionary relationships of Fusobacterium nucleatum based on phylogenetic analysis and comparative genomics

    PubMed Central

    Mira, Alex; Pushker, Ravindra; Legault, Boris A; Moreira, David; Rodríguez-Valera, Francisco

    2004-01-01

    Background The phylogenetic position and evolutionary relationships of Fusobacteria remain uncertain. Especially intriguing is their relatedness to low G+C Gram positive bacteria (Firmicutes) by ribosomal molecular phylogenies, but their possession of a typical gram negative outer membrane. Taking advantage of the recent completion of the Fusobacterium nucleatum genome sequence we have examined the evolutionary relationships of Fusobacterium genes by phylogenetic analysis and comparative genomics tools. Results The data indicate that Fusobacterium has a core genome of a very different nature to other bacterial lineages, and branches out at the base of Firmicutes. However, depending on the method used, 35–56% of Fusobacterium genes appear to have a xenologous origin from bacteroidetes, proteobacteria, spirochaetes and the Firmicutes themselves. A high number of hypothetical ORFs with unusual codon usage and short lengths were found and hypothesized to be remnants of transferred genes that were discarded. Some proteins and operons are also hypothesized to be of mixed ancestry. A large portion of the Gram-negative cell wall-related genes seems to have been transferred from proteobacteria. Conclusions Many instances of similarity to other inhabitants of the dental plaque that have been sequenced were found. This suggests that the close physical contact found in this environment might facilitate horizontal gene transfer, supporting the idea of niche-specific gene pools. We hypothesize that at a point in time, probably associated to the rise of mammals, a strong selective pressure might have existed for a cell with a Clostridia-like metabolic apparatus but with the adhesive and immune camouflage features of Proteobacteria. PMID:15566569

  14. Soft-tissue anatomy of the extant hominoids: a review and phylogenetic analysis.

    PubMed

    Gibbs, S; Collard, M; Wood, B

    2002-01-01

    This paper reports the results of a literature search for information about the soft-tissue anatomy of the extant non-human hominoid genera, Pan, Gorilla, Pongo and Hylobates, together with the results of a phylogenetic analysis of these data plus comparable data for Homo. Information on the four extant non-human hominoid genera was located for 240 out of the 1783 soft-tissue structures listed in the Nomina Anatomica. Numerically these data are biased so that information about some systems (e.g. muscles) and some regions (e.g. the forelimb) are over-represented, whereas other systems and regions (e.g. the veins and the lymphatics of the vascular system, the head region) are either under-represented or not represented at all. Screening to ensure that the data were suitable for use in a phylogenetic analysis reduced the number of eligible soft-tissue structures to 171. These data, together with comparable data for modern humans, were converted into discontinuous character states suitable for phylogenetic analysis and then used to construct a taxon-by-character matrix. This matrix was used in two tests of the hypothesis that soft-tissue characters can be relied upon to reconstruct hominoid phylogenetic relationships. In the first, parsimony analysis was used to identify cladograms requiring the smallest number of character state changes. In the second, the phylogenetic bootstrap was used to determine the confidence intervals of the most parsimonious clades. The parsimony analysis yielded a single most parsimonious cladogram that matched the molecular cladogram. Similarly the bootstrap analysis yielded clades that were compatible with the molecular cladogram; a (Homo, Pan) clade was supported by 95% of the replicates, and a (Gorilla, Pan, Homo) clade by 96%. These are the first hominoid morphological data to provide statistically significant support for the clades favoured by the molecular evidence.

  15. Streptococcus massiliensis in the human mouth: a phylogenetic approach for the inference of bacterial habitats.

    PubMed

    Póntigo, F; Silva, C; Moraga, M; Flores, S V

    2015-12-29

    Streptococcus is a diverse bacterial lineage. Species of this genus occupy a myriad of environments inside humans and other animals. Despite the elucidation of several of these habitats, many remain to be identified. Here, we explore a methodological approach to reveal unknown bacterial environments. Specifically, we inferred the phylogeny of the Mitis group by analyzing the sequences of eight genes. In addition, information regarding habitat use of species belonging to this group was obtained from the scientific literature. The oral cavity emerged as a potential, previously unknown, environment of Streptococcus massiliensis. This phylogeny-based prediction was confirmed by species-specific polymerase chain reaction (PCR) amplification. We propose employing a similar approach, i.e., use of bibliographic data and molecular phylogenetics as predictive methods, and species-specific PCR as confirmation, in order to reveal other unknown habitats in further bacterial taxa.

  16. A taxonomic and phylogenetic re-appraisal of the genus Curvularia

    USDA-ARS?s Scientific Manuscript database

    Species of Curvularia are important plant and human pathogens worldwide. In this study, the genus Curvularia is re-assessed based on molecular phylogenetic analysis and morphological observations of available isolates and specimens. A multi-gene phylogenetic tree inferred from ITS, TEF and GPDH gene...

  17. Phylogenetic analysis of different breeds of domestic chickens in selected area of Peninsular Malaysia inferred from partial cytochrome b gene information and RAPD markers.

    PubMed

    Yap, Fook Choy; Yan, Yap Jin; Loon, Kiung Teh; Zhen, Justina Lee Ning; Kamau, Nelly Warau; Kumaran, Jayaraj Vijaya

    2010-10-01

    The present investigation was carried out in an attempt to study the phylogenetic analysis of different breeds of domestic chickens in Peninsular Malaysia inferred from partial cytochrome b gene information and random amplified polymorphic DNA (RAPD) markers. Phylogenetic analysis using both neighbor-joining (NJ) and maximum parsimony (MP) methods produced three clusters that encompassed Type-I village chickens, the red jungle fowl subspecies and the Japanese Chunky broilers. The phylogenetic analysis also revealed that majority of the Malaysian commercial chickens were randomly assembled with the Type-II village chickens. In RAPD assay, phylogenetic analysis using neighbor-joining produced six clusters that were completely distinguished based on the locality of chickens. High levels of genetic variations were observed among the village chickens, the commercial broilers, and between the commercial broilers and layer chickens. In this study, it was found that Type-I village chickens could be distinguished from the commercial chickens and Type-II village chickens at the position of the 27th nucleotide of the 351 bp cytochrome b gene. This study also revealed that RAPD markers were unable to differentiate the type of chickens, but it showed the effectiveness of RAPD in evaluating the genetic variation and the genetic relationships between chicken lines and populations.

  18. Complete coding sequence characterization and comparative analysis of the putative novel human rhinovirus (HRV) species C and B

    PubMed Central

    2011-01-01

    Background Human Rhinoviruses (HRVs) are well recognized viral pathogens associated with acute respiratory tract illnesses (RTIs) abundant worldwide. Although recent studies have phylogenetically identified the new HRV species (HRV-C), data on molecular epidemiology, genetic diversity, and clinical manifestation have been limited. Result To gain new insight into HRV genetic diversity, we determined the complete coding sequences of putative new members of HRV species C (HRV-CU072 with 1% prevalence) and HRV-B (HRV-CU211) identified from clinical specimens collected from pediatric patients diagnosed with a symptom of acute lower RTI. Complete coding sequence and phylogenetic analysis revealed that the HRV-CU072 strain shared a recent common ancestor with most closely related Chinese strain (N4). Comparative analysis at the protein level showed that HRV-CU072 might accumulate substitutional mutations in structural proteins, as well as nonstructural proteins 3C and 3 D. Comparative analysis of all available HRVs and HEVs indicated that HRV-C contains a relatively high G+C content and is more closely related to HEV-D. This might be correlated to their replication and capability to adapt to the high temperature environment of the human lower respiratory tract. We herein report an infrequently occurring intra-species recombination event in HRV-B species (HRV-CU211) with a crossing over having taken place at the boundary of VP2 and VP3 genes. Moreover, we observed phylogenetic compatibility in all HRV species and suggest that dynamic mechanisms for HRV evolution seem to be related to recombination events. These findings indicated that the elementary units shaping the genetic diversity of HRV-C could be found in the nonstructural 2A and 3D genes. Conclusion This study provides information for understanding HRV genetic diversity and insight into the role of selection pressure and recombination mechanisms influencing HRV evolution. PMID:21214911

  19. Complete coding sequence characterization and comparative analysis of the putative novel human rhinovirus (HRV) species C and B.

    PubMed

    Linsuwanon, Piyada; Payungporn, Sunchai; Suwannakarn, Kamol; Chieochansin, Thaweesak; Theamboonlers, Apiradee; Poovorawan, Yong

    2011-01-07

    Human Rhinoviruses (HRVs) are well recognized viral pathogens associated with acute respiratory tract illnesses (RTIs) abundant worldwide. Although recent studies have phylogenetically identified the new HRV species (HRV-C), data on molecular epidemiology, genetic diversity, and clinical manifestation have been limited. To gain new insight into HRV genetic diversity, we determined the complete coding sequences of putative new members of HRV species C (HRV-CU072 with 1% prevalence) and HRV-B (HRV-CU211) identified from clinical specimens collected from pediatric patients diagnosed with a symptom of acute lower RTI. Complete coding sequence and phylogenetic analysis revealed that the HRV-CU072 strain shared a recent common ancestor with most closely related Chinese strain (N4). Comparative analysis at the protein level showed that HRV-CU072 might accumulate substitutional mutations in structural proteins, as well as nonstructural proteins 3C and 3 D. Comparative analysis of all available HRVs and HEVs indicated that HRV-C contains a relatively high G+C content and is more closely related to HEV-D. This might be correlated to their replication and capability to adapt to the high temperature environment of the human lower respiratory tract. We herein report an infrequently occurring intra-species recombination event in HRV-B species (HRV-CU211) with a crossing over having taken place at the boundary of VP2 and VP3 genes. Moreover, we observed phylogenetic compatibility in all HRV species and suggest that dynamic mechanisms for HRV evolution seem to be related to recombination events. These findings indicated that the elementary units shaping the genetic diversity of HRV-C could be found in the nonstructural 2A and 3D genes. This study provides information for understanding HRV genetic diversity and insight into the role of selection pressure and recombination mechanisms influencing HRV evolution.

  20. Dynamics of Autotrophic Marine Planktonic Thaumarchaeota in the East China Sea

    PubMed Central

    Hu, Anyi; Yang, Zao; Yu, Chang-Ping; Jiao, Nianzhi

    2013-01-01

    The ubiquitous and abundant distribution of ammonia-oxidizing Thaumarchaeota in marine environments is now well documented, and their crucial role in the global nitrogen cycle has been highlighted. However, the potential contribution of Thaumarchaeota in the carbon cycle remains poorly understood. Here we present for the first time a seasonal investigation on the shelf region (bathymetry≤200 m) of the East China Sea (ECS) involving analysis of both thaumarchaeal 16S rRNA and autotrophy-related genes (acetyl-CoA carboxylase gene, accA). Quantitative PCR results clearly showed a higher abundance of thaumarchaeal 16S and accA genes in late-autumn (November) than summer (August), whereas the diversity and community structure of autotrophic Thaumarchaeota showed no statistically significant difference between different seasons as revealed by thaumarchaeal accA gene clone libraries. Phylogenetic analysis indicated that shallow ecotypes dominated the autotrophic Thaumarchaeota in the ECS shelf (86.3% of total sequences), while a novel non-marine thaumarchaeal accA lineage was identified in the Changjiang estuary in summer (when freshwater plumes become larger) but not in autumn, implying that Changjiang freshwater discharge played a certain role in transporting terrestrial microorganisms to the ECS. Multivariate statistical analysis indicated that the biogeography of the autotrophic Thaumarchaeota in the shelf water of the ECS was influenced by complex hydrographic conditions. However, an in silico comparative analysis suggested that the diversity and abundance of the autotrophic Thaumarchaeota might be biased by the ‘universal’ thaumarchaeal accA gene primers Cren529F/Cren981R since this primer set is likely to miss some members within particular phylogenetic groups. Collectively, this study improved our understanding of the biogeographic patterns of the autotrophic Thaumarchaeota in temperate coastal waters, and suggested that new accA primers with improved coverage and sensitivity across phylogenetic groups are needed to gain a more thorough understanding of the role of the autotrophic Thaumarchaeota in the global carbon cycle. PMID:23565298

  1. Dynamics of autotrophic marine planktonic thaumarchaeota in the East China Sea.

    PubMed

    Hu, Anyi; Yang, Zao; Yu, Chang-Ping; Jiao, Nianzhi

    2013-01-01

    The ubiquitous and abundant distribution of ammonia-oxidizing Thaumarchaeota in marine environments is now well documented, and their crucial role in the global nitrogen cycle has been highlighted. However, the potential contribution of Thaumarchaeota in the carbon cycle remains poorly understood. Here we present for the first time a seasonal investigation on the shelf region (bathymetry≤200 m) of the East China Sea (ECS) involving analysis of both thaumarchaeal 16S rRNA and autotrophy-related genes (acetyl-CoA carboxylase gene, accA). Quantitative PCR results clearly showed a higher abundance of thaumarchaeal 16S and accA genes in late-autumn (November) than summer (August), whereas the diversity and community structure of autotrophic Thaumarchaeota showed no statistically significant difference between different seasons as revealed by thaumarchaeal accA gene clone libraries. Phylogenetic analysis indicated that shallow ecotypes dominated the autotrophic Thaumarchaeota in the ECS shelf (86.3% of total sequences), while a novel non-marine thaumarchaeal accA lineage was identified in the Changjiang estuary in summer (when freshwater plumes become larger) but not in autumn, implying that Changjiang freshwater discharge played a certain role in transporting terrestrial microorganisms to the ECS. Multivariate statistical analysis indicated that the biogeography of the autotrophic Thaumarchaeota in the shelf water of the ECS was influenced by complex hydrographic conditions. However, an in silico comparative analysis suggested that the diversity and abundance of the autotrophic Thaumarchaeota might be biased by the 'universal' thaumarchaeal accA gene primers Cren529F/Cren981R since this primer set is likely to miss some members within particular phylogenetic groups. Collectively, this study improved our understanding of the biogeographic patterns of the autotrophic Thaumarchaeota in temperate coastal waters, and suggested that new accA primers with improved coverage and sensitivity across phylogenetic groups are needed to gain a more thorough understanding of the role of the autotrophic Thaumarchaeota in the global carbon cycle.

  2. Phylogenetic analysis of human immunodeficiency virus type 2 isolated from Cuban individuals.

    PubMed

    Machado, Liuber Y; Díaz, Héctor M; Noa, Enrique; Martín, Dayamí; Blanco, Madeline; Díaz, Dervel F; Sánchez, Yordank R; Nibot, Carmen; Sánchez, Lourdes; Dubed, Marta

    2014-08-01

    The presence of infection by human immunodeficiency virus type 2 (HIV-2) in Cuba has been previously documented. However, genetic information on the strains that circulate in the Cuban people is still unknown. The present work constitutes the first study concerning the phylogenetic relationship of HIV-2 Cuban isolates conducted on 13 Cuban patients who were diagnosed with HIV-2. The env sequences were analyzed for the construction of a phylogenetic tree with reference sequences of HIV-2. Phylogenetic analysis of the env gene showed that all the Cuban sequences clustered in group A of HIV-2. The analysis indicated several independent introductions of HIV-2 into Cuba. The results of the study will reinforce the program on the epidemiological surveillance of the infection in Cuba and make possible further molecular evolutionary studies.

  3. Phylogenetics.

    PubMed

    Sleator, Roy D

    2011-04-01

    The recent rapid expansion in the DNA and protein databases, arising from large-scale genomic and metagenomic sequence projects, has forced significant development in the field of phylogenetics: the study of the evolutionary relatedness of the planet's inhabitants. Advances in phylogenetic analysis have greatly transformed our view of the landscape of evolutionary biology, transcending the view of the tree of life that has shaped evolutionary theory since Darwinian times. Indeed, modern phylogenetic analysis no longer focuses on the restricted Darwinian-Mendelian model of vertical gene transfer, but must also consider the significant degree of lateral gene transfer, which connects and shapes almost all living things. Herein, I review the major tree-building methods, their strengths, weaknesses and future prospects.

  4. Pfarao: a web application for protein family analysis customized for cytoskeletal and motor proteins (CyMoBase).

    PubMed

    Odronitz, Florian; Kollmar, Martin

    2006-11-29

    Annotation of protein sequences of eukaryotic organisms is crucial for the understanding of their function in the cell. Manual annotation is still by far the most accurate way to correctly predict genes. The classification of protein sequences, their phylogenetic relation and the assignment of function involves information from various sources. This often leads to a collection of heterogeneous data, which is hard to track. Cytoskeletal and motor proteins consist of large and diverse superfamilies comprising up to several dozen members per organism. Up to date there is no integrated tool available to assist in the manual large-scale comparative genomic analysis of protein families. Pfarao (Protein Family Application for Retrieval, Analysis and Organisation) is a database driven online working environment for the analysis of manually annotated protein sequences and their relationship. Currently, the system can store and interrelate a wide range of information about protein sequences, species, phylogenetic relations and sequencing projects as well as links to literature and domain predictions. Sequences can be imported from multiple sequence alignments that are generated during the annotation process. A web interface allows to conveniently browse the database and to compile tabular and graphical summaries of its content. We implemented a protein sequence-centric web application to store, organize, interrelate, and present heterogeneous data that is generated in manual genome annotation and comparative genomics. The application has been developed for the analysis of cytoskeletal and motor proteins (CyMoBase) but can easily be adapted for any protein.

  5. Effects of species' similarity and dominance on the functional and phylogenetic structure of a plant meta-community.

    PubMed

    Chalmandrier, L; Münkemüller, T; Lavergne, S; Thuiller, W

    2015-01-01

    Different assembly processes drive the spatial structure of meta-communities (beta-diversity). Recently, functional and phylogenetic diversities have been suggested as indicators of these assembly processes. Assuming that diversity is a good proxy for niche overlap, high beta-diversity along environmental gradients should be the result of environmental filtering while low beta-diversity should stem from competitive interactions. So far, studies trying to disentangle the relative importance of these assembly processes have provided mixed results. One reason for this may be that these studies often rely on a single measure of diversity and thus implicitly make a choice on how they account for species relative abundances and how species similarities are captured by functional traits or phylogeny. Here, we tested the effect of gradually scaling the importance of dominance (the weight given to dominant vs. rare species) and species similarity (the weight given to small vs. large similarities) on resulting beta-diversity patterns of an alpine plant meta-community. To this end, we combined recent extensions of the Hill numbers framework with Pagel's phylogenetic tree transformation approach. We included functional (based on the leaf-height-seed spectrum) and phylogenetic facets of beta-diversity in our analysis and explicitly accounted for effects of environmental and spatial covariates. We found that functional beta-diversity, was high when the same weight was given to dominant vs. rare species and to large vs. small species' similarities. In contrast, phylogenetic beta-diversity was low when greater weight was given to dominant species and small species' similarities. Those results suggested that different environments along the gradients filtered different species according to their functional traits, while, the same competitive lineages dominated communities across the gradients. Our results highlight that functional vs. phylogenetic facets, presence-absence vs. abundance structure and different weights of species' dissimilarity provide complementary and important information on the drivers of meta-community structure. By utilizing the full extent of information provided by the flexible frameworks of Hill numbers and Pagel's tree transformation, we propose a new approach to disentangle the patterns resulting from different assembly processes.

  6. The evolution of body size under environmental gradients in ectotherms: why should Bergmann's rule apply to lizards?

    PubMed

    Pincheira-Donoso, Daniel; Hodgson, David J; Tregenza, Tom

    2008-02-27

    The impact of environmental gradients on the evolution of life history traits is a central issue in macroecology and evolutionary biology. A number of hypotheses have been formulated to explain factors shaping patterns of variation in animal mass. One such example is Bergmann's rule, which predicts that body size will be positively correlated with latitude and elevation, and hence, with decreasing environmental temperatures. A generally accepted explanation for this phenotypic response is that as body mass increases, body surface area gets proportionally smaller, which contributes to reduced rates of heat-loss. Phylogenetic and non-phylogenetic evidence reveals that endotherms follow Bergmann's rule. In contrast, while previous non-phylogenetic studies supported this prediction in up to 75% of ectotherms, recent phylogenetic comparative analyses suggest that its validity for these organisms is controversial and less understood. Moreover, little attention has been paid to why some ectotherms conform to this rule, while others do not. Here, we investigate Bergmann's rule in the six main clades forming the Liolaemus genus, one of the largest and most environmentally diverse genera of terrestrial vertebrates. A recent study conducted on some species belonging to four of these six clades concluded that Liolaemus species follow Bergmann's rule, representing the only known phylogenetic support for this model in lizards. However, a later reassessment of this evidence, performed on one of the four analysed clades, produced contrasting conclusions. Our results fail to support Bergmann's rule in Liolaemus lizards. Non-phylogenetic and phylogenetic analyses showed that none of the studied clades experience increasing body size with increasing latitude and elevation. Most physiological and behavioural processes in ectotherms depend directly upon their body temperature. In cold environments, adaptations to gain heat rapidly are under strong positive selection to allow optimal feeding, mating and predator avoidance. Therefore, evolution of larger body size in colder environments appears to be a disadvantageous thermoregulatory strategy. The repeated lack of support for Bergmann's rule in ectotherms suggests that this model should be recognized as a valid rule exclusively for endotherms.

  7. The evolution of body size under environmental gradients in ectotherms: why should Bergmann's rule apply to lizards?

    PubMed Central

    2008-01-01

    Background The impact of environmental gradients on the evolution of life history traits is a central issue in macroecology and evolutionary biology. A number of hypotheses have been formulated to explain factors shaping patterns of variation in animal mass. One such example is Bergmann's rule, which predicts that body size will be positively correlated with latitude and elevation, and hence, with decreasing environmental temperatures. A generally accepted explanation for this phenotypic response is that as body mass increases, body surface area gets proportionally smaller, which contributes to reduced rates of heat-loss. Phylogenetic and non-phylogenetic evidence reveals that endotherms follow Bergmann's rule. In contrast, while previous non-phylogenetic studies supported this prediction in up to 75% of ectotherms, recent phylogenetic comparative analyses suggest that its validity for these organisms is controversial and less understood. Moreover, little attention has been paid to why some ectotherms conform to this rule, while others do not. Here, we investigate Bergmann's rule in the six main clades forming the Liolaemus genus, one of the largest and most environmentally diverse genera of terrestrial vertebrates. A recent study conducted on some species belonging to four of these six clades concluded that Liolaemus species follow Bergmann's rule, representing the only known phylogenetic support for this model in lizards. However, a later reassessment of this evidence, performed on one of the four analysed clades, produced contrasting conclusions. Results Our results fail to support Bergmann's rule in Liolaemus lizards. Non-phylogenetic and phylogenetic analyses showed that none of the studied clades experience increasing body size with increasing latitude and elevation. Conclusion Most physiological and behavioural processes in ectotherms depend directly upon their body temperature. In cold environments, adaptations to gain heat rapidly are under strong positive selection to allow optimal feeding, mating and predator avoidance. Therefore, evolution of larger body size in colder environments appears to be a disadvantageous thermoregulatory strategy. The repeated lack of support for Bergmann's rule in ectotherms suggests that this model should be recognized as a valid rule exclusively for endotherms. PMID:18304333

  8. Distribution and diversity of bacterial secretion systems across metagenomic datasets.

    PubMed

    Barret, Matthieu; Egan, Frank; O'Gara, Fergal

    2013-02-01

    Bacteria can manipulate their surrounding environment through the secretion of proteins into other living organisms and into the extracellular milieu. In Gram stain negative bacteria this process is mediated by different types of secretion systems from type I through type VI secretion system (T1SS-T6SS). In this study the prevalence of these secretion systems in 312 publicly available microbiomes derived from a wide range of ecosystems was investigated by a gene-centric approach. Our analysis demonstrates that some secretion systems are over-represented in some specific samples. In addition, some T3SS and T6SS phylogenetic clusters were specifically enriched in particular ecological niches, which could indicate specific bacterial adaptation to these environments. © 2012 Society for Applied Microbiology and Blackwell Publishing Ltd.

  9. Radiating despite a Lack of Character: Ecological Divergence among Closely Related, Morphologically Similar Honeyeaters (Aves: Meliphagidae) Co-occurring in Arid Australian Environments.

    PubMed

    Miller, Eliot T; Wagner, Sarah K; Harmon, Luke J; Ricklefs, Robert E

    2017-02-01

    Quantifying the relationship between form and function can inform use of morphology as a surrogate for ecology. How the strength of this relationship varies continentally can inform understanding of evolutionary radiations; for example, does the relationship break down when certain lineages invade and diversify in novel habitats? The 75 species of Australian honeyeaters (Meliphagidae) are morphologically and ecologically diverse, with species feeding on nectar, insects, fruit, and other resources. We investigated Meliphagidae ecomorphology and community structure by (1) quantifying the concordance between morphology and ecology (foraging behavior), (2) estimating rates of trait evolution in relation to the packing of ecological space, and (3) comparing phylogenetic and trait community structure across the broad environmental gradients of the continent. We found that morphology explained 37% of the variance in ecology (and 62% vice versa), and we uncovered well-known bivariate relationships among the multivariate ecomorphological data. Ecological trait diversity declined less rapidly than phylogenetic diversity along a gradient of decreasing precipitation. We employ a new method (trait fields) and extend another (phylogenetic fields) to show that while species in phylogenetically clustered, arid-environment assemblages are similar morphologically, they are as varied in foraging behavior as those from more diverse assemblages. Thus, although closely related and similar morphologically, these arid-adapted species have diverged in ecological space to a similar degree as their mesic counterparts.

  10. Community phylogenetics at the biogeographical scale: cold tolerance, niche conservatism and the structure of North American forests.

    PubMed

    Hawkins, Bradford A; Rueda, Marta; Rangel, Thiago F; Field, Richard; Diniz-Filho, José Alexandre F; Linder, Peter

    2014-01-01

    Aim The fossil record has led to a historical explanation for forest diversity gradients within the cool parts of the Northern Hemisphere, founded on a limited ability of woody angiosperm clades to adapt to mid-Tertiary cooling. We tested four predictions of how this should be manifested in the phylogenetic structure of 91,340 communities: (1) forests to the north should comprise species from younger clades (families) than forests to the south; (2) average cold tolerance at a local site should be associated with the mean family age (MFA) of species; (3) minimum temperature should account for MFA better than alternative environmental variables; and (4) traits associated with survival in cold climates should evolve under a niche conservatism constraint. Location The contiguous United States. Methods We extracted angiosperms from the US Forest Service's Forest Inventory and Analysis database. MFA was calculated by assigning age of the family to which each species belongs and averaging across the species in each community. We developed a phylogeny to identify phylogenetic signal in five traits: realized cold tolerance, seed size, seed dispersal mode, leaf phenology and height. Phylogenetic signal representation curves and phylogenetic generalized least squares were used to compare patterns of trait evolution against Brownian motion. Eleven predictors structured at broad or local scales were generated to explore relationships between environment and MFA using random forest and general linear models. Results Consistent with predictions, (1) southern communities comprise angiosperm species from older families than northern communities, (2) cold tolerance is the trait most strongly associated with local MFA, (3) minimum temperature in the coldest month is the environmental variable that best describes MFA, broad-scale variables being much stronger correlates than local-scale variables, and (4) the phylogenetic structures of cold tolerance and at least one other trait associated with survivorship in cold climates indicate niche conservatism. Main conclusions Tropical niche conservatism in the face of long-term climate change, probably initiated in the Late Cretaceous associated with the rise of the Rocky Mountains, is a strong driver of the phylogenetic structure of the angiosperm component of forest communities across the USA. However, local deterministic and/or stochastic processes account for perhaps a quarter of the variation in the MFA of local communities.

  11. Phylogenetic diversity anomaly in angiosperms between eastern Asia and eastern North America.

    PubMed

    Qian, Hong; Jin, Yi; Ricklefs, Robert E

    2017-10-24

    Although eastern Asia (EAS) and eastern North America (ENA) have similar climates, plant species richness in EAS greatly exceeds that in ENA. The degree to which this diversity difference reflects the ages of the floras or their rates of evolutionary diversification has not been quantified. Measures of species diversity that do not incorporate the ages of lineages disregard the evolutionary distinctiveness of species. In contrast, phylogenetic diversity integrates both the number of species and their history of evolutionary diversification. Here we compared species diversity and phylogenetic diversity in a large number of flowering plant (angiosperm) floras distributed across EAS and ENA, two regions with similar contemporary environments and broadly shared floristic history. After accounting for climate and sample area, we found both species diversity and phylogenetic diversity to be significantly higher in EAS than in ENA. When we controlled the number of species statistically, we found that phylogenetic diversity remained substantially higher in EAS than in ENA, although it tended to converge at high latitude. This pattern held independently for herbs, shrubs, and trees. The anomaly in species and phylogenetic diversity likely resulted from differences in regional processes, related in part to high climatic and topographic heterogeneity, and a strong monsoon climate, in EAS. The broad connection between tropical and temperate floras in southern Asia also might have played a role in creating the phylogenetic diversity anomaly.

  12. A Gateway for Phylogenetic Analysis Powered by Grid Computing Featuring GARLI 2.0

    PubMed Central

    Bazinet, Adam L.; Zwickl, Derrick J.; Cummings, Michael P.

    2014-01-01

    We introduce molecularevolution.org, a publicly available gateway for high-throughput, maximum-likelihood phylogenetic analysis powered by grid computing. The gateway features a garli 2.0 web service that enables a user to quickly and easily submit thousands of maximum likelihood tree searches or bootstrap searches that are executed in parallel on distributed computing resources. The garli web service allows one to easily specify partitioned substitution models using a graphical interface, and it performs sophisticated post-processing of phylogenetic results. Although the garli web service has been used by the research community for over three years, here we formally announce the availability of the service, describe its capabilities, highlight new features and recent improvements, and provide details about how the grid system efficiently delivers high-quality phylogenetic results. [garli, gateway, grid computing, maximum likelihood, molecular evolution portal, phylogenetics, web service.] PMID:24789072

  13. Phylogenetic inertia and Darwin's higher law.

    PubMed

    Shanahan, Timothy

    2011-03-01

    The concept of 'phylogenetic inertia' is routinely deployed in evolutionary biology as an alternative to natural selection for explaining the persistence of characteristics that appear sub-optimal from an adaptationist perspective. However, in many of these contexts the precise meaning of 'phylogenetic inertia' and its relationship to selection are far from clear. After tracing the history of the concept of 'inertia' in evolutionary biology, I argue that treating phylogenetic inertia and natural selection as alternative explanations is mistaken because phylogenetic inertia is, from a Darwinian point of view, simply an expected effect of selection. Although Darwin did not discuss 'phylogenetic inertia,' he did assert the explanatory priority of selection over descent. An analysis of 'phylogenetic inertia' provides a perspective from which to assess Darwin's view. Copyright © 2010 Elsevier Ltd. All rights reserved.

  14. Phylogenomic and MALDI-TOF MS Analysis of Streptococcus sinensis HKU4T Reveals a Distinct Phylogenetic Clade in the Genus Streptococcus

    PubMed Central

    Tse, Herman; Chen, Jonathan H.K.; Tang, Ying; Lau, Susanna K.P.; Woo, Patrick C.Y.

    2014-01-01

    Streptococcus sinensis is a recently discovered human pathogen isolated from blood cultures of patients with infective endocarditis. Its phylogenetic position, as well as those of its closely related species, remains inconclusive when single genes were used for phylogenetic analysis. For example, S. sinensis branched out from members of the anginosus, mitis, and sanguinis groups in the 16S ribosomal RNA gene phylogenetic tree, but it was clustered with members of the anginosus and sanguinis groups when groEL gene sequences used for analysis. In this study, we sequenced the draft genome of S. sinensis and used a polyphasic approach, including concatenated genes, whole genomes, and matrix-assisted laser desorption ionization-time of flight mass spectrometry to analyze the phylogeny of S. sinensis. The size of the S. sinensis draft genome is 2.06 Mb, with GC content of 42.2%. Phylogenetic analysis using 50 concatenated genes or whole genomes revealed that S. sinensis formed a distinct cluster with Streptococcus oligofermentans and Streptococcus cristatus, and these three streptococci were clustered with the “sanguinis group.” As for phylogenetic analysis using hierarchical cluster analysis of the mass spectra of streptococci, S. sinensis also formed a distinct cluster with S. oligofermentans and S. cristatus, but these three streptococci were clustered with the “mitis group.” On the basis of the findings, we propose a novel group, named “sinensis group,” to include S. sinensis, S. oligofermentans, and S. cristatus, in the Streptococcus genus. Our study also illustrates the power of phylogenomic analyses for resolving ambiguities in bacterial taxonomy. PMID:25331233

  15. Phylogenomic and MALDI-TOF MS analysis of Streptococcus sinensis HKU4T reveals a distinct phylogenetic clade in the genus Streptococcus.

    PubMed

    Teng, Jade L L; Huang, Yi; Tse, Herman; Chen, Jonathan H K; Tang, Ying; Lau, Susanna K P; Woo, Patrick C Y

    2014-10-20

    Streptococcus sinensis is a recently discovered human pathogen isolated from blood cultures of patients with infective endocarditis. Its phylogenetic position, as well as those of its closely related species, remains inconclusive when single genes were used for phylogenetic analysis. For example, S. sinensis branched out from members of the anginosus, mitis, and sanguinis groups in the 16S ribosomal RNA gene phylogenetic tree, but it was clustered with members of the anginosus and sanguinis groups when groEL gene sequences used for analysis. In this study, we sequenced the draft genome of S. sinensis and used a polyphasic approach, including concatenated genes, whole genomes, and matrix-assisted laser desorption ionization-time of flight mass spectrometry to analyze the phylogeny of S. sinensis. The size of the S. sinensis draft genome is 2.06 Mb, with GC content of 42.2%. Phylogenetic analysis using 50 concatenated genes or whole genomes revealed that S. sinensis formed a distinct cluster with Streptococcus oligofermentans and Streptococcus cristatus, and these three streptococci were clustered with the "sanguinis group." As for phylogenetic analysis using hierarchical cluster analysis of the mass spectra of streptococci, S. sinensis also formed a distinct cluster with S. oligofermentans and S. cristatus, but these three streptococci were clustered with the "mitis group." On the basis of the findings, we propose a novel group, named "sinensis group," to include S. sinensis, S. oligofermentans, and S. cristatus, in the Streptococcus genus. Our study also illustrates the power of phylogenomic analyses for resolving ambiguities in bacterial taxonomy. © The Author(s) 2014. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  16. Ecological correlates of ex situ seed longevity: a comparative study on 195 species.

    PubMed

    Probert, Robin J; Daws, Matthew I; Hay, Fiona R

    2009-07-01

    Extended seed longevity in the dry state is the basis for the ex situ conservation of 'orthodox' seeds. However, even under identical storage conditions there is wide variation in seed life-span between species. Here, the effects of seed traits and environmental conditions at the site of collection on seed longevity is explored for195 wild species from 71 families from environments ranging from cold deserts to tropical forests. Seeds were rapidly aged at elevated temperature and relative humidity (either 45 degrees C and 60% RH or 60 degrees C and 60% RH) and regularly sampled for germination. The time taken in storage for viability to fall to 50% (p(50)) was determined using Probit analysis and used as a measure of relative seed longevity between species. Across species, p(50) at 45 degrees C and 60% RH varied from 0.1 d to 771 d. Endospermic seeds were, in general, shorter lived than non-endospermic seeds and seeds from hot, dry environments were longer lived than those from cool, wet conditions. These relationships remained significant when controlling for the effects of phylogenetic relatedness using phylogenetically independent contrasts. Seed mass and oil content were not correlated with p(50). The data suggest that the endospermic seeds of early angiosperms which evolved in forest understorey habitats are short-lived. Extended longevity presumably evolved as a response to climatic change or the invasion of drier areas. The apparent short-lived nature of endospermic seeds from cool wet environments may have implications for re-collection and re-testing strategies in ex situ conservation.

  17. PHYLOGENETIC RELATIONSHIP OF ALEXANDRIUM MONILATUM (DINOPHYCEAE) TO OTHER ALEXANDRIUM SPECIES BASED ON 18S RIBOSOMAL RNA GENE SEQUENCES

    EPA Science Inventory

    The phylogenetic relationship of Alexandrium monilatum to other Alexandrium spp. was explored using 18S rDNA sequences. Maximum likelilhood phylogenetic analysis of the combined rDNA sequences established that A. monilatum paired with Alexandrium taylori and that the pair was the...

  18. PHYLOGENETIC RELATIONSHIP OF ALEXANDRIUM MONILATUM (DINOPHYCAE)TO OTHER ALEXANDRIUM SPECIES BASED ON 18S RIBOSOMAL RNA GENE SEQUENCES

    EPA Science Inventory

    The phylogenetic relationship of Alexandrium monilatum to other Alexandrium spp. was explored using 18S rDNA sequences. Maximum likelihood phylogenetic analysis of the combined rDNA sequences established that A. monilatum paired with Alexandrium taylori and that the pair was the ...

  19. Whole-Genome Analysis of a Novel Fish Reovirus (MsReV) Discloses Aquareovirus Genomic Structure Relationship with Host in Saline Environments.

    PubMed

    Chen, Zhong-Yuan; Gao, Xiao-Chan; Zhang, Qi-Ya

    2015-08-03

    Aquareoviruses are serious pathogens of aquatic animals. Here, genome characterization and functional gene analysis of a novel aquareovirus, largemouth bass Micropterus salmoides reovirus (MsReV), was described. It comprises 11 dsRNA segments (S1-S11) covering 24,024 bp, and encodes 12 putative proteins including the inclusion forming-related protein NS87 and the fusion-associated small transmembrane (FAST) protein NS22. The function of NS22 was confirmed by expression in fish cells. Subsequently, MsReV was compared with two representative aquareoviruses, saltwater fish turbot Scophthalmus maximus reovirus (SMReV) and freshwater fish grass carp reovirus strain 109 (GCReV-109). MsReV NS87 and NS22 genes have the same structure and function with those of SMReV, whereas GCReV-109 is either missing the coiled-coil region in NS79 or the gene-encoding NS22. Significant similarities are also revealed among equivalent genome segments between MsReV and SMReV, but a difference is found between MsReV and GCReV-109. Furthermore, phylogenetic analysis showed that 13 aquareoviruses could be divided into freshwater and saline environments subgroups, and MsReV was closely related to SMReV in saline environments. Consequently, these viruses from hosts in saline environments have more genomic structural similarities than the viruses from hosts in freshwater. This is the first study of the relationships between aquareovirus genomic structure and their host environments.

  20. Determinants of plant community assembly in a mosaic of landscape units in central Amazonia: ecological and phylogenetic perspectives.

    PubMed

    Umaña, María Natalia; Norden, Natalia; Cano, Angela; Stevenson, Pablo R

    2012-01-01

    The Amazon harbours one of the richest ecosystems on Earth. Such diversity is likely to be promoted by plant specialization, associated with the occurrence of a mosaic of landscape units. Here, we integrate ecological and phylogenetic data at different spatial scales to assess the importance of habitat specialization in driving compositional and phylogenetic variation across the Amazonian forest. To do so, we evaluated patterns of floristic dissimilarity and phylogenetic turnover, habitat association and phylogenetic structure in three different landscape units occurring in terra firme (Hilly and Terrace) and flooded forests (Igapó). We established two 1-ha tree plots in each of these landscape units at the Caparú Biological Station, SW Colombia, and measured edaphic, topographic and light variables. At large spatial scales, terra firme forests exhibited higher levels of species diversity and phylodiversity than flooded forests. These two types of forests showed conspicuous differences in species and phylogenetic composition, suggesting that environmental sorting due to flood is important, and can go beyond the species level. At a local level, landscape units showed floristic divergence, driven both by geographical distance and by edaphic specialization. In terms of phylogenetic structure, Igapó forests showed phylogenetic clustering, whereas Hilly and Terrace forests showed phylogenetic evenness. Within plots, however, local communities did not show any particular trend. Overall, our findings suggest that flooded forests, characterized by stressful environments, impose limits to species occurrence, whereas terra firme forests, more environmentally heterogeneous, are likely to provide a wider range of ecological conditions and therefore to bear higher diversity. Thus, Amazonia should be considered as a mosaic of landscape units, where the strength of habitat association depends upon their environmental properties.

  1. Determinants of Plant Community Assembly in a Mosaic of Landscape Units in Central Amazonia: Ecological and Phylogenetic Perspectives

    PubMed Central

    Umaña, María Natalia; Norden, Natalia; Cano, Ángela; Stevenson, Pablo R.

    2012-01-01

    The Amazon harbours one of the richest ecosystems on Earth. Such diversity is likely to be promoted by plant specialization, associated with the occurrence of a mosaic of landscape units. Here, we integrate ecological and phylogenetic data at different spatial scales to assess the importance of habitat specialization in driving compositional and phylogenetic variation across the Amazonian forest. To do so, we evaluated patterns of floristic dissimilarity and phylogenetic turnover, habitat association and phylogenetic structure in three different landscape units occurring in terra firme (Hilly and Terrace) and flooded forests (Igapó). We established two 1-ha tree plots in each of these landscape units at the Caparú Biological Station, SW Colombia, and measured edaphic, topographic and light variables. At large spatial scales, terra firme forests exhibited higher levels of species diversity and phylodiversity than flooded forests. These two types of forests showed conspicuous differences in species and phylogenetic composition, suggesting that environmental sorting due to flood is important, and can go beyond the species level. At a local level, landscape units showed floristic divergence, driven both by geographical distance and by edaphic specialization. In terms of phylogenetic structure, Igapó forests showed phylogenetic clustering, whereas Hilly and Terrace forests showed phylogenetic evenness. Within plots, however, local communities did not show any particular trend. Overall, our findings suggest that flooded forests, characterized by stressful environments, impose limits to species occurrence, whereas terra firme forests, more environmentally heterogeneous, are likely to provide a wider range of ecological conditions and therefore to bear higher diversity. Thus, Amazonia should be considered as a mosaic of landscape units, where the strength of habitat association depends upon their environmental properties. PMID:23028844

  2. Pan-genome and phylogeny of Bacillus cereus sensu lato.

    PubMed

    Bazinet, Adam L

    2017-08-02

    Bacillus cereus sensu lato (s. l.) is an ecologically diverse bacterial group of medical and agricultural significance. In this study, I use publicly available genomes and novel bioinformatic workflows to characterize the B. cereus s. l. pan-genome and perform the largest phylogenetic and population genetic analyses of this group to date in terms of the number of genes and taxa included. With these fundamental data in hand, I identify genes associated with particular phenotypic traits (i.e., "pan-GWAS" analysis), and quantify the degree to which taxa sharing common attributes are phylogenetically clustered. A rapid k-mer based approach (Mash) was used to create reduced representations of selected Bacillus genomes, and a fast distance-based phylogenetic analysis of this data (FastME) was performed to determine which species should be included in B. cereus s. l. The complete genomes of eight B. cereus s. l. species were annotated de novo with Prokka, and these annotations were used by Roary to produce the B. cereus s. l. pan-genome. Scoary was used to associate gene presence and absence patterns with various phenotypes. The orthologous protein sequence clusters produced by Roary were filtered and used to build HaMStR databases of gene models that were used in turn to construct phylogenetic data matrices. Phylogenetic analyses used RAxML, DendroPy, ClonalFrameML, PAUP*, and SplitsTree. Bayesian model-based population genetic analysis assigned taxa to clusters using hierBAPS. The genealogical sorting index was used to quantify the phylogenetic clustering of taxa sharing common attributes. The B. cereus s. l. pan-genome currently consists of ≈60,000 genes, ≈600 of which are "core" (common to at least 99% of taxa sampled). Pan-GWAS analysis revealed genes associated with phenotypes such as isolation source, oxygen requirement, and ability to cause diseases such as anthrax or food poisoning. Extensive phylogenetic analyses using an unprecedented amount of data produced phylogenies that were largely concordant with each other and with previous studies. Phylogenetic support as measured by bootstrap probabilities increased markedly when all suitable pan-genome data was included in phylogenetic analyses, as opposed to when only core genes were used. Bayesian population genetic analysis recommended subdividing the three major clades of B. cereus s. l. into nine clusters. Taxa sharing common traits and species designations exhibited varying degrees of phylogenetic clustering. All phylogenetic analyses recapitulated two previously used classification systems, and taxa were consistently assigned to the same major clade and group. By including accessory genes from the pan-genome in the phylogenetic analyses, I produced an exceptionally well-supported phylogeny of 114 complete B. cereus s. l. genomes. The best-performing methods were used to produce a phylogeny of all 498 publicly available B. cereus s. l. genomes, which was in turn used to compare three different classification systems and to test the monophyly status of various B. cereus s. l. species. The majority of the methodology used in this study is generic and could be leveraged to produce pan-genome estimates and similarly robust phylogenetic hypotheses for other bacterial groups.

  3. PAMLX: a graphical user interface for PAML.

    PubMed

    Xu, Bo; Yang, Ziheng

    2013-12-01

    This note announces pamlX, a graphical user interface/front end for the paml (for Phylogenetic Analysis by Maximum Likelihood) program package (Yang Z. 1997. PAML: a program package for phylogenetic analysis by maximum likelihood. Comput Appl Biosci. 13:555-556; Yang Z. 2007. PAML 4: Phylogenetic analysis by maximum likelihood. Mol Biol Evol. 24:1586-1591). pamlX is written in C++ using the Qt library and communicates with paml programs through files. It can be used to create, edit, and print control files for paml programs and to launch paml runs. The interface is available for free download at http://abacus.gene.ucl.ac.uk/software/paml.html.

  4. Phylomemetics—Evolutionary Analysis beyond the Gene

    PubMed Central

    Howe, Christopher J.; Windram, Heather F.

    2011-01-01

    Genes are propagated by error-prone copying, and the resulting variation provides the basis for phylogenetic reconstruction of evolutionary relationships. Horizontal gene transfer may be superimposed on a tree-like evolutionary pattern, with some relationships better depicted as networks. The copying of manuscripts by scribes is very similar to the replication of genes, and phylogenetic inference programs can be used directly for reconstructing the copying history of different versions of a manuscript text. Phylogenetic methods have also been used for some time to analyse the evolution of languages and the development of physical cultural artefacts. These studies can help to answer a range of anthropological questions. We propose the adoption of the term “phylomemetics” for phylogenetic analysis of reproducing non-genetic elements. PMID:21655311

  5. Phylogenetic and functional diversity of metagenomic libraries of phenol degrading sludge from petroleum refinery wastewater treatment system.

    PubMed

    Silva, Cynthia C; Hayden, Helen; Sawbridge, Tim; Mele, Pauline; Kruger, Ricardo H; Rodrigues, Marili Vn; Costa, Gustavo Gl; Vidal, Ramon O; Sousa, Maíra P; Torres, Ana Paula R; Santiago, Vânia Mj; Oliveira, Valéria M

    2012-03-27

    In petrochemical refinery wastewater treatment plants (WWTP), different concentrations of pollutant compounds are received daily in the influent stream, including significant amounts of phenolic compounds, creating propitious conditions for the development of particular microorganisms that can rapidly adapt to such environment. In the present work, the microbial sludge from a refinery WWTP was enriched for phenol, cloned into fosmid vectors and pyrosequenced. The fosmid libraries yielded 13,200 clones and a comprehensive bioinformatic analysis of the sequence data set revealed a complex and diverse bacterial community in the phenol degrading sludge. The phylogenetic analyses using MEGAN in combination with RDP classifier showed a massive predominance of Proteobacteria, represented mostly by the genera Diaphorobacter, Pseudomonas, Thauera and Comamonas. The functional classification of phenol degrading sludge sequence data set generated by MG-RAST showed the wide metabolic diversity of the microbial sludge, with a high percentage of genes involved in the aerobic and anaerobic degradation of phenol and derivatives. In addition, genes related to the metabolism of many other organic and xenobiotic compounds, such as toluene, biphenyl, naphthalene and benzoate, were found. Results gathered herein demonstrated that the phenol degrading sludge has complex phylogenetic and functional diversities, showing the potential of such community to degrade several pollutant compounds. This microbiota is likely to represent a rich resource of versatile and unknown enzymes which may be exploited for biotechnological processes such as bioremediation.

  6. Phylogenetic diversity of microorganisms in subseafloor crustal fluids from Holes 1025C and 1026B along the Juan de Fuca Ridge flank

    PubMed Central

    Jungbluth, Sean P.; Lin, Huei-Ting; Cowen, James P.; Glazer, Brian T.; Rappé, Michael S.

    2014-01-01

    To expand investigations into the phylogenetic diversity of microorganisms inhabiting the subseafloor biosphere, basalt-hosted crustal fluids were sampled from Circulation Obviation Retrofit Kits (CORKs) affixed to Holes 1025C and 1026B along the Juan de Fuca Ridge (JdFR) flank using a clean fluid pumping system. These boreholes penetrate the crustal aquifer of young ocean crust (1.24 and 3.51 million years old, respectively), but differ with respect to borehole depth and temperature at the sediment-basement interface (147 m and 39°C vs. 295 m and 64°C, respectively). Cloning and sequencing of PCR-amplified small subunit ribosomal RNA genes revealed that fluids retrieved from Hole 1025C were dominated by relatives of the genus Desulfobulbus of the Deltaproteobacteria (56% of clones) and Candidatus Desulforudis of the Firmicutes (17%). Fluids sampled from Hole 1026B also contained plausible deep subseafloor inhabitants amongst the most abundant clone lineages; however, both geochemical analysis and microbial community structure reveal the borehole to be compromised by bottom seawater intrusion. Regardless, this study provides independent support for previous observations seeking to identify phylogenetic groups of microorganisms common to the deep ocean crustal biosphere, and extends previous observations by identifying additional lineages that may be prevalent in this unique environment. PMID:24723917

  7. DNA from extinct giant lemurs links archaeolemurids to extant indriids

    PubMed Central

    2008-01-01

    Background Although today 15% of living primates are endemic to Madagascar, their diversity was even greater in the recent past since dozens of extinct species have been recovered from Holocene excavation sites. Among them were the so-called "giant lemurs" some of which weighed up to 160 kg. Although extensively studied, the phylogenetic relationships between extinct and extant lemurs are still difficult to decipher, mainly due to morphological specializations that reflect ecology more than phylogeny, resulting in rampant homoplasy. Results Ancient DNA recovered from subfossils recently supported a sister relationship between giant "sloth" lemurs and extant indriids and helped to revise the phylogenetic position of Megaladapis edwardsi among lemuriformes, but several taxa – such as the Archaeolemuridae – still await analysis. We therefore used ancient DNA technology to address the phylogenetic status of the two archaeolemurid genera (Archaeolemur and Hadropithecus). Despite poor DNA preservation conditions in subtropical environments, we managed to recover 94- to 539-bp sequences for two mitochondrial genes among 5 subfossil samples. Conclusion This new sequence information provides evidence for the proximity of Archaeolemur and Hadropithecus to extant indriids, in agreement with earlier assessments of their taxonomic status (Primates, Indrioidea) and in contrast to recent suggestions of a closer relationship to the Lemuridae made on the basis of analyses of dental developmental and postcranial characters. These data provide new insights into the evolution of the locomotor apparatus among lemurids and indriids. PMID:18442367

  8. DNA from extinct giant lemurs links archaeolemurids to extant indriids.

    PubMed

    Orlando, Ludovic; Calvignac, Sébastien; Schnebelen, Céline; Douady, Christophe J; Godfrey, Laurie R; Hänni, Catherine

    2008-04-28

    Although today 15% of living primates are endemic to Madagascar, their diversity was even greater in the recent past since dozens of extinct species have been recovered from Holocene excavation sites. Among them were the so-called "giant lemurs" some of which weighed up to 160 kg. Although extensively studied, the phylogenetic relationships between extinct and extant lemurs are still difficult to decipher, mainly due to morphological specializations that reflect ecology more than phylogeny, resulting in rampant homoplasy. Ancient DNA recovered from subfossils recently supported a sister relationship between giant "sloth" lemurs and extant indriids and helped to revise the phylogenetic position of Megaladapis edwardsi among lemuriformes, but several taxa - such as the Archaeolemuridae - still await analysis. We therefore used ancient DNA technology to address the phylogenetic status of the two archaeolemurid genera (Archaeolemur and Hadropithecus). Despite poor DNA preservation conditions in subtropical environments, we managed to recover 94- to 539-bp sequences for two mitochondrial genes among 5 subfossil samples. This new sequence information provides evidence for the proximity of Archaeolemur and Hadropithecus to extant indriids, in agreement with earlier assessments of their taxonomic status (Primates, Indrioidea) and in contrast to recent suggestions of a closer relationship to the Lemuridae made on the basis of analyses of dental developmental and postcranial characters. These data provide new insights into the evolution of the locomotor apparatus among lemurids and indriids.

  9. Diversity of heavy metal resistant bacteria from Kalimas Surabaya: A phylogenetic taxonomy approach

    NASA Astrophysics Data System (ADS)

    Zulaika, Enny; Utomo, Andry Prio; Prima, Adisya; Alami, Nur Hidayatul; Kuswytasari, Nengah Dwianita; Shovitri, Maya; Sembiring, Langkah

    2017-06-01

    Bacterial resistance to heavy metal is a genetic and physiological adaptation to the environment which contaminated by heavy metal. Kalimas is an important river in Surabaya that is contaminated by some heavy metals and probably as a habitat for heavy metal resistance bacteria. Bacterial resistance to heavy metals are different for each species, and their diversity can be studied by phylogenetic taxonomy approach. Isolates screening was done using nutrient agar which contained 1 mg/L HgCl2, CdCl2 and K2Cr2O7. Bacterial viability were observed by nutrient broth which contained 10 mg/L HgCl2, 30 mg/L CdCl2 and 50 mg/L K2Cr2O7. Isolates that resistant to heavy metal and viable after exposure to heavy metal were identified using 16S rRNA gene marker by Polymerase Chain Reaction (PCR). Phylogenetic tree reconstruction was done by the neighbor-joining algorithm. Genetic assignment showed isolates that resist and viable after exposure of Hg, Cd and Cr are Bacillus S1, SS19 and DA11. Based on BLAST analysis from NCBI gene bank, 16S rRNA sequences, those isolates were similar with the member of Bacillus cereus. Depend on 16S rRNA nucleotide alignment by the neighbor-joining algorithm, Bacillus S1, SS19 and DA11 were belong to Bacillus cereus sensu-lato group.

  10. The ecological and physiological responses of the microbial community from a semiarid soil to hydrocarbon contamination and its bioremediation using compost amendment.

    PubMed

    Bastida, F; Jehmlich, N; Lima, K; Morris, B E L; Richnow, H H; Hernández, T; von Bergen, M; García, C

    2016-03-01

    The linkage between phylogenetic and functional processes may provide profound insights into the effects of hydrocarbon contamination and biodegradation processes in high-diversity environments. Here, the impacts of petroleum contamination and the bioremediation potential of compost amendment, as enhancer of the microbial activity in semiarid soils, were evaluated in a model experiment. The analysis of phospholipid fatty-acids (PLFAs) and metaproteomics allowed the study of biomass, phylogenetic and physiological responses of the microbial community in polluted semiarid soils. Petroleum pollution induced an increase of proteobacterial proteins during the contamination, while the relative abundance of Rhizobiales lowered in comparison to the non-contaminated soil. Despite only 0.55% of the metaproteome of the compost-treated soil was involved in biodegradation processes, the addition of compost promoted the removal of polycyclic aromatic hydrocarbons (PAHs) and alkanes up to 88% after 50 days. However, natural biodegradation of hydrocarbons was not significant in soils without compost. Compost-assisted bioremediation was mainly driven by Sphingomonadales and uncultured bacteria that showed an increased abundance of catabolic enzymes such as catechol 2,3-dioxygenases, cis-dihydrodiol dehydrogenase and 2-hydroxymuconic semialdehyde. For the first time, metaproteomics revealed the functional and phylogenetic relationships of petroleum contamination in soil and the microbial key players involved in the compost-assisted bioremediation. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Short Tree, Long Tree, Right Tree, Wrong Tree: New Acquisition Bias Corrections for Inferring SNP Phylogenies

    PubMed Central

    Leaché, Adam D.; Banbury, Barbara L.; Felsenstein, Joseph; de Oca, Adrián nieto-Montes; Stamatakis, Alexandros

    2015-01-01

    Single nucleotide polymorphisms (SNPs) are useful markers for phylogenetic studies owing in part to their ubiquity throughout the genome and ease of collection. Restriction site associated DNA sequencing (RADseq) methods are becoming increasingly popular for SNP data collection, but an assessment of the best practises for using these data in phylogenetics is lacking. We use computer simulations, and new double digest RADseq (ddRADseq) data for the lizard family Phrynosomatidae, to investigate the accuracy of RAD loci for phylogenetic inference. We compare the two primary ways RAD loci are used during phylogenetic analysis, including the analysis of full sequences (i.e., SNPs together with invariant sites), or the analysis of SNPs on their own after excluding invariant sites. We find that using full sequences rather than just SNPs is preferable from the perspectives of branch length and topological accuracy, but not of computational time. We introduce two new acquisition bias corrections for dealing with alignments composed exclusively of SNPs, a conditional likelihood method and a reconstituted DNA approach. The conditional likelihood method conditions on the presence of variable characters only (the number of invariant sites that are unsampled but known to exist is not considered), while the reconstituted DNA approach requires the user to specify the exact number of unsampled invariant sites prior to the analysis. Under simulation, branch length biases increase with the amount of missing data for both acquisition bias correction methods, but branch length accuracy is much improved in the reconstituted DNA approach compared to the conditional likelihood approach. Phylogenetic analyses of the empirical data using concatenation or a coalescent-based species tree approach provide strong support for many of the accepted relationships among phrynosomatid lizards, suggesting that RAD loci contain useful phylogenetic signal across a range of divergence times despite the presence of missing data. Phylogenetic analysis of RAD loci requires careful attention to model assumptions, especially if downstream analyses depend on branch lengths. PMID:26227865

  12. Leveraging contemporary species introductions to test phylogenetic hypotheses of trait evolution.

    PubMed

    Lu-Irving, Patricia; Marx, Hannah E; Dlugosch, Katrina M

    2018-05-10

    Plant trait evolution is a topic of interest across disciplines and scales. Phylogenetic studies are powerful for generating hypotheses about the mechanisms that have shaped plant traits and their evolution. Introduced plants are a rich source of data on contemporary trait evolution. Introductions could provide especially useful tests of a variety of evolutionary hypotheses because the environments selecting on evolving traits are still present. We review phylogenetic and contemporary studies of trait evolution and identify areas of overlap and areas for further integration. Emerging tools which can promote integration include broadly focused repositories of trait data, and comparative models of trait evolution that consider both intra and interspecific variation. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. A Deliberate Practice Approach to Teaching Phylogenetic Analysis

    ERIC Educational Resources Information Center

    Hobbs, F. Collin; Johnson, Daniel J.; Kearns, Katherine D.

    2013-01-01

    One goal of postsecondary education is to assist students in developing expert-level understanding. Previous attempts to encourage expert-level understanding of phylogenetic analysis in college science classrooms have largely focused on isolated, or "one-shot," in-class activities. Using a deliberate practice instructional approach, we…

  14. Phylodynamics and movement of Phycodnaviruses among aquatic environments

    PubMed Central

    Gimenes, Manuela V; Zanotto, Paolo M de A; Suttle, Curtis A; da Cunha, Hillândia B; Mehnert, Dolores U

    2012-01-01

    Phycodnaviruses have a significant role in modulating the dynamics of phytoplankton, thereby influencing community structure and succession, nutrient cycles and potentially atmospheric composition because phytoplankton fix about half the carbon dioxide (CO2) on the planet, and some algae release dimethylsulphoniopropionate when lysed by viruses. Despite their ecological importance and widespread distribution, relatively little is known about the evolutionary history, phylogenetic relationships and phylodynamics of the Phycodnaviruses from freshwater environments. Herein we provide novel data on Phycodnaviruses from the largest river system on earth—the Amazon Basin—that were compared with samples from different aquatic systems from several places around the world. Based on phylogenetic inference using DNA polymerase (pol) sequences we show the presence of distinct populations of Phycodnaviridae. Preliminary coarse-grained phylodynamics and phylogeographic inferences revealed a complex dynamics characterized by long-term fluctuations in viral population sizes, with a remarkable worldwide reduction of the effective population around 400 thousand years before the present (KYBP), followed by a recovery near to the present time. Moreover, we present evidence for significant viral gene flow between freshwater environments, but crucially almost none between freshwater and marine environments. PMID:21796218

  15. HIV forensics: pitfalls and acceptable standards in the use of phylogenetic analysis as evidence in criminal investigations of HIV transmission.

    PubMed

    Bernard, E J; Azad, Y; Vandamme, A M; Weait, M; Geretti, A M

    2007-09-01

    Phylogenetic analysis - the study of the genetic relatedness between HIV strains - has recently been used in criminal prosecutions as evidence of responsibility for HIV transmission. In these trials, the expert opinion of virologists has been of critical importance. Phylogenetic analysis of HIV gene sequences is complex and its findings do not achieve the levels of certainty obtained with the forensic analysis of human DNA. Although two individuals may carry HIV strains that are closely related, these will not necessarily be unique to the two parties and could extend to other persons within the same transmission network. For forensic purposes, phylogenetic analysis should be conducted under strictly controlled conditions by laboratories with relevant expertise applying rigorous methods. It is vitally important to include the right controls, which should be epidemiologically and temporally relevant to the parties under investigation. Use of inappropriate controls can exaggerate any relatedness between the virus strains of the complainant and defendant as being strikingly unique. It will be often difficult to obtain the relevant controls. If convenient but less appropriate controls are used, interpretation of the findings should be tempered accordingly. Phylogenetic analysis cannot prove that HIV transmission occurred directly between two individuals. However, it can exonerate individuals by demonstrating that the defendant carries a virus strain unrelated to that of the complainant. Expert witnesses should acknowledge the limitations of the inferences that might be made and choose the correct language in both written and verbal testimony.

  16. Phylogenetic Status of an Unrecorded Species of Curvularia, C. spicifera, Based on Current Classification System of Curvularia and Bipolaris Group Using Multi Loci.

    PubMed

    Jeon, Sun Jeong; Nguyen, Thi Thuong Thuong; Lee, Hyang Burm

    2015-09-01

    A seed-borne fungus, Curvularia sp. EML-KWD01, was isolated from an indigenous wheat seed by standard blotter method. This fungus was characterized based on the morphological characteristics and molecular phylogenetic analysis. Phylogenetic status of the fungus was determined using sequences of three loci: rDNA internal transcribed spacer, large ribosomal subunit, and glyceraldehyde 3-phosphate dehydrogenase gene. Multi loci sequencing analysis revealed that this fungus was Curvularia spicifera within Curvularia group 2 of family Pleosporaceae.

  17. Phylogenetic relationship of Ornithobacterium rhinotracheale strains.

    PubMed

    DE Oca-Jimenez, Roberto Montes; Vega-Sanchez, Vicente; Morales-Erasto, Vladimir; Salgado-Miranda, Celene; Blackall, Patrick J; Soriano-Vargas, Edgardo

    2018-04-10

    The bacterium Ornithobacterium rhinotracheale is associated with respiratory disease in wild birds and poultry. In this study, the phylogenetic analysis of nine reference strains of O. rhinotracheale belonging to serovars A to I, and eight Mexican isolates belonging to serovar A, was performed. The analysis was extended to include available sequences from another 23 strains available in the public domain. The analysis showed that the 40 sequences formed six clusters, I to VI. All eight Mexican field isolates were placed in cluster I. One of the reference strains appears to present genetic diversity not previously recognized and was placed in a new genetic cluster. In conclusion, the phylogenetic analysis of O. rhinotracheale strains, based on the 16S rRNA gene, is a suitable tool for epidemiologic studies.

  18. Detection and Phylogenetic Analysis of Group 1 Coronaviruses in South American Bats

    PubMed Central

    Foster, Jerome E.; Zhu, Hua Chen; Zhang, Jin Xia; Smith, Gavin J.D.; Thompson, Nadin; Auguste, Albert J.; Ramkissoon, Vernie; Adesiyun, Abiodun A.; Guan, Yi

    2008-01-01

    Bat coronaviruses (Bt-CoVs) are thought to be the precursors of severe acute respiratory syndrome coronavirus. We detected Bt-CoVs in 2 bat species from Trinidad. Phylogenetic analysis of the RNA-dependent RNA polymerase gene and helicase confirmed them as group 1 coronaviruses. PMID:19046513

  19. Phylogenetic analysis of of Sarcocystis nesbitti (Coccidia: Sarcocystidae) suggests a snake as its probable definitive host

    USDA-ARS?s Scientific Manuscript database

    Sarcocystis nesbitti was first described by Mandour in 1969 from rhesus monkey muscle. Its definitive host remains unknown. 18SrRNA gene of Sarcocystis nesbitti was amplified, sequenced, and subjected to phylogenetic analysis. Among those congeners available for comparison, it shares closest affinit...

  20. Using Phylogenetic Analysis to Detect Market Substitution of Atlantic Salmon for Pacific Salmon: An Introductory Biology Laboratory Experiment

    ERIC Educational Resources Information Center

    Cline, Erica; Gogarten, Jennifer

    2012-01-01

    We describe a laboratory exercise developed for the cell and molecular biology quarter of a year-long majors' undergraduate introductory biology sequence. In an analysis of salmon samples collected by students in their local stores and restaurants, DNA sequencing and phylogenetic analysis were used to detect market substitution of Atlantic salmon…

  1. Phylogenetic comparative methods complement discriminant function analysis in ecomorphology.

    PubMed

    Barr, W Andrew; Scott, Robert S

    2014-04-01

    In ecomorphology, Discriminant Function Analysis (DFA) has been used as evidence for the presence of functional links between morphometric variables and ecological categories. Here we conduct simulations of characters containing phylogenetic signal to explore the performance of DFA under a variety of conditions. Characters were simulated using a phylogeny of extant antelope species from known habitats. Characters were modeled with no biomechanical relationship to the habitat category; the only sources of variation were body mass, phylogenetic signal, or random "noise." DFA on the discriminability of habitat categories was performed using subsets of the simulated characters, and Phylogenetic Generalized Least Squares (PGLS) was performed for each character. Analyses were repeated with randomized habitat assignments. When simulated characters lacked phylogenetic signal and/or habitat assignments were random, <5.6% of DFAs and <8.26% of PGLS analyses were significant. When characters contained phylogenetic signal and actual habitats were used, 33.27 to 45.07% of DFAs and <13.09% of PGLS analyses were significant. False Discovery Rate (FDR) corrections for multiple PGLS analyses reduced the rate of significance to <4.64%. In all cases using actual habitats and characters with phylogenetic signal, correct classification rates of DFAs exceeded random chance. In simulations involving phylogenetic signal in both predictor variables and predicted categories, PGLS with FDR was rarely significant, while DFA often was. In short, DFA offered no indication that differences between categories might be explained by phylogenetic signal, while PGLS did. As such, PGLS provides a valuable tool for testing the functional hypotheses at the heart of ecomorphology. Copyright © 2013 Wiley Periodicals, Inc.

  2. Patterns of forest phylogenetic community structure across the United States and their possible forest health implications

    Treesearch

    Kevin M. Potter; Frank H. Koch

    2014-01-01

    The analysis of phylogenetic relationships among co-occurring tree species offers insights into the ecological organization of forest communities from an evolutionary perspective and, when employed regionally across thousands of plots, can assist in forest health assessment. Phylogenetic clustering of species, when species are more closely related than expected by...

  3. Homogeneous Nature of Malaysian Marine Fish Epinephelus fuscoguttatus (Perciformes; Serranidae): Evidence Based on Molecular Markers, Morphology and Fourier Transform Infrared Analysis

    PubMed Central

    Nurdalila, A’wani Aziz; Bunawan, Hamidun; Kumar, Subbiah Vijay; Rodrigues, Kenneth Francis; Baharum, Syarul Nataqain

    2015-01-01

    Taxonomic confusion exists within the genus Epinephelus due to the lack of morphological specializations and the overwhelming number of species reported in several studies. The homogenous nature of the morphology has created confusion in the Malaysian Marine fish species Epinephelus fuscoguttatus and Epinephelus hexagonatus. In this study, the partial DNA sequence of the 16S gene and mitochondrial nucleotide sequences of two gene regions, Cytochrome Oxidase Subunit I and III were used to investigate the phylogenetic relationship between them. In the phylogenetic trees, E. fuscoguttatus was monophyletic with E. hexagonatus species and morphology examination shows that no significant differences were found in the morphometric features between these two taxa. This suggests that E. fuscoguttatus is not distinguishable from E. hexagonatus species, and that E. fuscoguttatus have been identified to be E. hexagonatus species is likely attributed to differences in environment and ability to camouflage themselves under certain conditions. Interestingly, this finding was also supported by Principal Component Analysis on Attenuated Total Reflectance–Fourier-transform Infrared (ATR-FTIR) data analysis. Molecular, morphological and meristic characteristics were combined with ATR-FTIR analysis used in this study offer new perspectives in fish species identification. To our knowledge, this is the first report of an extensive genetic population study of E. fuscoguttatus in Malaysia and this understanding will play an important role in informing genetic stock-specific strategies for the management and conservation of this highly valued fish. PMID:26147421

  4. Homogeneous Nature of Malaysian Marine Fish Epinephelus fuscoguttatus (Perciformes; Serranidae): Evidence Based on Molecular Markers, Morphology and Fourier Transform Infrared Analysis.

    PubMed

    Nurdalila, A'wani Aziz; Bunawan, Hamidun; Kumar, Subbiah Vijay; Rodrigues, Kenneth Francis; Baharum, Syarul Nataqain

    2015-07-02

    Taxonomic confusion exists within the genus Epinephelus due to the lack of morphological specializations and the overwhelming number of species reported in several studies. The homogenous nature of the morphology has created confusion in the Malaysian Marine fish species Epinephelus fuscoguttatus and Epinephelus hexagonatus. In this study, the partial DNA sequence of the 16S gene and mitochondrial nucleotide sequences of two gene regions, Cytochrome Oxidase Subunit I and III were used to investigate the phylogenetic relationship between them. In the phylogenetic trees, E. fuscoguttatus was monophyletic with E. hexagonatus species and morphology examination shows that no significant differences were found in the morphometric features between these two taxa. This suggests that E. fuscoguttatus is not distinguishable from E. hexagonatus species, and that E. fuscoguttatus have been identified to be E. hexagonatus species is likely attributed to differences in environment and ability to camouflage themselves under certain conditions. Interestingly, this finding was also supported by Principal Component Analysis on Attenuated Total Reflectance-Fourier-transform Infrared (ATR-FTIR) data analysis. Molecular, morphological and meristic characteristics were combined with ATR-FTIR analysis used in this study offer new perspectives in fish species identification. To our knowledge, this is the first report of an extensive genetic population study of E. fuscoguttatus in Malaysia and this understanding will play an important role in informing genetic stock-specific strategies for the management and conservation of this highly valued fish.

  5. Specimen-level phylogenetics in paleontology using the Fossilized Birth-Death model with sampled ancestors.

    PubMed

    Cau, Andrea

    2017-01-01

    Bayesian phylogenetic methods integrating simultaneously morphological and stratigraphic information have been applied increasingly among paleontologists. Most of these studies have used Bayesian methods as an alternative to the widely-used parsimony analysis, to infer macroevolutionary patterns and relationships among species-level or higher taxa. Among recently introduced Bayesian methodologies, the Fossilized Birth-Death (FBD) model allows incorporation of hypotheses on ancestor-descendant relationships in phylogenetic analyses including fossil taxa. Here, the FBD model is used to infer the relationships among an ingroup formed exclusively by fossil individuals, i.e., dipnoan tooth plates from four localities in the Ain el Guettar Formation of Tunisia. Previous analyses of this sample compared the results of phylogenetic analysis using parsimony with stratigraphic methods, inferred a high diversity (five or more genera) in the Ain el Guettar Formation, and interpreted it as an artifact inflated by depositional factors. In the analysis performed here, the uncertainty on the chronostratigraphic relationships among the specimens was included among the prior settings. The results of the analysis confirm the referral of most of the specimens to the taxa Asiatoceratodus , Equinoxiodus, Lavocatodus and Neoceratodus , but reject those to Ceratodus and Ferganoceratodus . The resulting phylogeny constrained the evolution of the Tunisian sample exclusively in the Early Cretaceous, contrasting with the previous scenario inferred by the stratigraphically-calibrated topology resulting from parsimony analysis. The phylogenetic framework also suggests that (1) the sampled localities are laterally equivalent, (2) but three localities are restricted to the youngest part of the section; both results are in agreement with previous stratigraphic analyses of these localities. The FBD model of specimen-level units provides a novel tool for phylogenetic inference among fossils but also for independent tests of stratigraphic scenarios.

  6. Soft-tissue anatomy of the extant hominoids: a review and phylogenetic analysis

    PubMed Central

    Gibbs, S; Collard, M; Wood, B

    2002-01-01

    This paper reports the results of a literature search for information about the soft-tissue anatomy of the extant non-human hominoid genera, Pan, Gorilla, Pongo and Hylobates, together with the results of a phylogenetic analysis of these data plus comparable data for Homo. Information on the four extant non-human hominoid genera was located for 240 out of the 1783 soft-tissue structures listed in the Nomina Anatomica. Numerically these data are biased so that information about some systems (e.g. muscles) and some regions (e.g. the forelimb) are over-represented, whereas other systems and regions (e.g. the veins and the lymphatics of the vascular system, the head region) are either under-represented or not represented at all. Screening to ensure that the data were suitable for use in a phylogenetic analysis reduced the number of eligible soft-tissue structures to 171. These data, together with comparable data for modern humans, were converted into discontinuous character states suitable for phylogenetic analysis and then used to construct a taxon-by-character matrix. This matrix was used in two tests of the hypothesis that soft-tissue characters can be relied upon to reconstruct hominoid phylogenetic relationships. In the first, parsimony analysis was used to identify cladograms requiring the smallest number of character state changes. In the second, the phylogenetic bootstrap was used to determine the confidence intervals of the most parsimonious clades. The parsimony analysis yielded a single most parsimonious cladogram that matched the molecular cladogram. Similarly the bootstrap analysis yielded clades that were compatible with the molecular cladogram; a (Homo, Pan) clade was supported by 95% of the replicates, and a (Gorilla, Pan, Homo) clade by 96%. These are the first hominoid morphological data to provide statistically significant support for the clades favoured by the molecular evidence. PMID:11833653

  7. A RAD-based phylogenetics for Orestias fishes from Lake Titicaca.

    PubMed

    Takahashi, Tetsumi; Moreno, Edmundo

    2015-12-01

    The fish genus Orestias is endemic to the Andes highlands, and Lake Titicaca is the centre of the species diversity of the genus. Previous phylogenetic studies based on a single locus of mitochondrial and nuclear DNA strongly support the monophyly of a group composed of many of species endemic to the Lake Titicaca basin (the Lake Titicaca radiation), but the relationships among the species in the radiation remain unclear. Recently, restriction site-associated DNA (RAD) sequencing, which can produce a vast number of short sequences from various loci of nuclear DNA, has emerged as a useful way to resolve complex phylogenetic problems. To propose a new phylogenetic hypothesis of Orestias fishes of the Lake Titicaca radiation, we conducted a cluster analysis based on morphological similarities among fish samples and a molecular phylogenetic analysis based on RAD sequencing. From a morphological cluster analysis, we recognised four species groups in the radiation, and three of the four groups were resolved as monophyletic groups in maximum-likelihood trees based on RAD sequencing data. The other morphology-based group was not resolved as a monophyletic group in molecular phylogenies, and some members of the group were diverged from its sister group close to the root of the Lake Titicaca radiation. The evolution of these fishes is discussed from the phylogenetic relationships. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Temperature responses of the Rubisco maximum carboxylase activity across domains of life: phylogenetic signals, trade-offs, and importance for carbon gain.

    PubMed

    Galmés, J; Kapralov, M V; Copolovici, L O; Hermida-Carrera, C; Niinemets, Ü

    2015-02-01

    Temperature response of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) catalytic properties directly determines the CO2 assimilation capacity of photosynthetic organisms as well as their survival in environments with different thermal conditions. Despite unquestionable importance of Rubisco, the comprehensive analysis summarizing temperature responses of Rubisco traits across lineages of carbon-fixing organisms is lacking. Here, we present a review of the temperature responses of Rubisco carboxylase specific activity (c(cat)(c)) within and across domains of life. In particular, we consider the variability of temperature responses, and their ecological, physiological, and evolutionary controls. We observed over two-fold differences in the energy of activation (ΔH(a)) among different groups of photosynthetic organisms, and found significant differences between C3 plants from cool habitats, C3 plants from warm habitats and C4 plants. According to phylogenetically independent contrast analysis, ΔH(a) was not related to the species optimum growth temperature (T growth), but was positively correlated with Rubisco specificity factor (S(c/o)) across all organisms. However, when only land plants were analyzed, ΔH(a) was positively correlated with both T(growth) and S(c/o), indicating different trends for these traits in plants versus unicellular aquatic organisms, such as algae and bacteria. The optimum temperature (T(opt)) for k(cat)(c) correlated with S(c/o) for land plants and for all organisms pooled, but the effect of T growth on T(opt) was driven by species phylogeny. The overall phylogenetic signal was significant for all analyzed parameters, stressing the importance of considering the evolutionary framework and accounting for shared ancestry when deciphering relationships between Rubisco kinetic parameters. We argue that these findings have important implications for improving global photosynthesis models.

  9. Phylogenetic characterization of a biogas plant microbial community integrating clone library 16S-rDNA sequences and metagenome sequence data obtained by 454-pyrosequencing.

    PubMed

    Kröber, Magdalena; Bekel, Thomas; Diaz, Naryttza N; Goesmann, Alexander; Jaenicke, Sebastian; Krause, Lutz; Miller, Dimitri; Runte, Kai J; Viehöver, Prisca; Pühler, Alfred; Schlüter, Andreas

    2009-06-01

    The phylogenetic structure of the microbial community residing in a fermentation sample from a production-scale biogas plant fed with maize silage, green rye and liquid manure was analysed by an integrated approach using clone library sequences and metagenome sequence data obtained by 454-pyrosequencing. Sequencing of 109 clones from a bacterial and an archaeal 16S-rDNA amplicon library revealed that the obtained nucleotide sequences are similar but not identical to 16S-rDNA database sequences derived from different anaerobic environments including digestors and bioreactors. Most of the bacterial 16S-rDNA sequences could be assigned to the phylum Firmicutes with the most abundant class Clostridia and to the class Bacteroidetes, whereas most archaeal 16S-rDNA sequences cluster close to the methanogen Methanoculleus bourgensis. Further sequences of the archaeal library most probably represent so far non-characterised species within the genus Methanoculleus. A similar result derived from phylogenetic analysis of mcrA clone sequences. The mcrA gene product encodes the alpha-subunit of methyl-coenzyme-M reductase involved in the final step of methanogenesis. BLASTn analysis applying stringent settings resulted in assignment of 16S-rDNA metagenome sequence reads to 62 16S-rDNA amplicon sequences thus enabling frequency of abundance estimations for 16S-rDNA clone library sequences. Ribosomal Database Project (RDP) Classifier processing of metagenome 16S-rDNA reads revealed abundance of the phyla Firmicutes, Bacteroidetes and Euryarchaeota and the orders Clostridiales, Bacteroidales and Methanomicrobiales. Moreover, a large fraction of 16S-rDNA metagenome reads could not be assigned to lower taxonomic ranks, demonstrating that numerous microorganisms in the analysed fermentation sample of the biogas plant are still unclassified or unknown.

  10. Comparing Mycobacterium tuberculosis genomes using genome topology networks.

    PubMed

    Jiang, Jianping; Gu, Jianlei; Zhang, Liang; Zhang, Chenyi; Deng, Xiao; Dou, Tonghai; Zhao, Guoping; Zhou, Yan

    2015-02-14

    Over the last decade, emerging research methods, such as comparative genomic analysis and phylogenetic study, have yielded new insights into genotypes and phenotypes of closely related bacterial strains. Several findings have revealed that genomic structural variations (SVs), including gene gain/loss, gene duplication and genome rearrangement, can lead to different phenotypes among strains, and an investigation of genes affected by SVs may extend our knowledge of the relationships between SVs and phenotypes in microbes, especially in pathogenic bacteria. In this work, we introduce a 'Genome Topology Network' (GTN) method based on gene homology and gene locations to analyze genomic SVs and perform phylogenetic analysis. Furthermore, the concept of 'unfixed ortholog' has been proposed, whose members are affected by SVs in genome topology among close species. To improve the precision of 'unfixed ortholog' recognition, a strategy to detect annotation differences and complete gene annotation was applied. To assess the GTN method, a set of thirteen complete M. tuberculosis genomes was analyzed as a case study. GTNs with two different gene homology-assigning methods were built, the Clusters of Orthologous Groups (COG) method and the orthoMCL clustering method, and two phylogenetic trees were constructed accordingly, which may provide additional insights into whole genome-based phylogenetic analysis. We obtained 24 unfixable COG groups, of which most members were related to immunogenicity and drug resistance, such as PPE-repeat proteins (COG5651) and transcriptional regulator TetR gene family members (COG1309). The GTN method has been implemented in PERL and released on our website. The tool can be downloaded from http://homepage.fudan.edu.cn/zhouyan/gtn/ , and allows re-annotating the 'lost' genes among closely related genomes, analyzing genes affected by SVs, and performing phylogenetic analysis. With this tool, many immunogenic-related and drug resistance-related genes were found to be affected by SVs in M. tuberculosis genomes. We believe that the GTN method will be suitable for the exploration of genomic SVs in connection with biological features of bacterial strains, and that GTN-based phylogenetic analysis will provide additional insights into whole genome-based phylogenetic analysis.

  11. Estimating phylogenetic trees from genome-scale data.

    PubMed

    Liu, Liang; Xi, Zhenxiang; Wu, Shaoyuan; Davis, Charles C; Edwards, Scott V

    2015-12-01

    The heterogeneity of signals in the genomes of diverse organisms poses challenges for traditional phylogenetic analysis. Phylogenetic methods known as "species tree" methods have been proposed to directly address one important source of gene tree heterogeneity, namely the incomplete lineage sorting that occurs when evolving lineages radiate rapidly, resulting in a diversity of gene trees from a single underlying species tree. Here we review theory and empirical examples that help clarify conflicts between species tree and concatenation methods, and misconceptions in the literature about the performance of species tree methods. Considering concatenation as a special case of the multispecies coalescent model helps explain differences in the behavior of the two methods on phylogenomic data sets. Recent work suggests that species tree methods are more robust than concatenation approaches to some of the classic challenges of phylogenetic analysis, including rapidly evolving sites in DNA sequences and long-branch attraction. We show that approaches, such as binning, designed to augment the signal in species tree analyses can distort the distribution of gene trees and are inconsistent. Computationally efficient species tree methods incorporating biological realism are a key to phylogenetic analysis of whole-genome data. © 2015 New York Academy of Sciences.

  12. Redescription of Haemogregarina garnhami (Apicomplexa: Adeleorina) from the blood of Psammophis schokari (Serpentes: Colubridae) as Hepatozoon garnhami n. comb. based on molecular, morphometric and morphologic characters.

    PubMed

    Abdel-Baki, Abdel-Azeem S; Al-Quraishy, Saleh; Zhang, J Y

    2014-06-01

    Hepatozoon garnhami n. comb. was redescribed from Schokari sand snakes (Psammophis schokari) collected from Riyadh city in Saudi Arabia. Gametocytes were found in the peripheral blood of 2 of 15 snakes examined. Based on the similar morphological and morphometric characteristics, the same host and a similar host habitat environment, it can be concluded for the first time that the present species is conspecific with Haemogregarina garnhami previously reported from Psammophis shokari aegyptius. To further characterize this parasite, the partial 18S rRNA gene was amplified and sequenced. The sequence analysis also showed that Haemogregarina garnhami should be reassigned into the genus Hepatozoon as Hepatozoon garnhami which has 99.5% (859/863 bp) sequence similarity to Hepatozoon ayorgbor, infecting the erythrocytes of Python regius in Ghana. Phylogenetic analysis showed that H. garnhami formed a mixed clade with Hepatozoon spp. from geckos, snakes and rodents and ophidian Hepatozoon spp. did not form a separated phylogenetic unit. Also, Psammophis schokari-infecting Hepatozoon contained several different genetic lineages. To our knowledge, the present work extends the geographic distribution of H. garnhami and is the first report of Hepatozoon infection in snakes from Saudi Arabia.

  13. A burrowing frog from the late Paleocene of Mongolia uncovers a deep history of spadefoot toads (Pelobatoidea) in East Asia.

    PubMed

    Chen, Jianye; Bever, Gaberiel S; Yi, Hong-Yu; Norell, Mark A

    2016-01-11

    Fossils are indispensible in understanding the evolutionary origins of the modern fauna. Crown-group spadefoot toads (Anura: Pelobatoidea) are the best-known fossorial frog clade to inhabit arid environments, with species utilizing a characteristic bony spade on their foot for burrowing. Endemic to the Northern Hemisphere, they are distributed across the Holarctic except East Asia. Here we report a rare fossil of a crown-group spadefoot toad from the late Paleocene of Mongolia. The phylogenetic analysis using both morphological and molecular information recovered this Asian fossil inside the modern North American pelobatoid clade Scaphiopodidae. The presence of a spade and the phylogenetic position of the new fossil frog strongly support its burrowing behavior. The late Paleocene age and other information suggestive of a mild climate cast doubt on the conventional assertion that burrowing evolved as an adaptation to aridity in spadefoot toads. Temporally and geographically, the new fossil provides the earliest record of Scaphiopodidae worldwide, and the only member of the group in Asia. Quantitative biogeographic analysis suggests that Scaphiopodidae, despite originating in North America, dispersed into East Asia via Beringia in the Early Cenozoic. The absence of spadefoot toads in East Asia today is a result of extinction.

  14. Identification of the chitinase genes from the diamondback moth, Plutella xylostella.

    PubMed

    Liao, Z H; Kuo, T C; Kao, C H; Chou, T M; Kao, Y H; Huang, R N

    2016-12-01

    Chitinases have an indispensable function in chitin metabolism and are well characterized in numerous insect species. Although the diamondback moth (DBM) Plutella xylostella, which has a high reproductive potential, short generation time, and characteristic adaptation to adverse environments, has become one of the most serious pests of cruciferous plants worldwide, the information on the chitinases of the moth is presently limited. In the present study, using degenerated polymerase chain reaction (PCR) and rapid amplification of cDNA ends-PCR strategies, four chitinase genes of P. xylostella were cloned, and an exhaustive search was conducted for chitinase-like sequences from the P. xylostella genome and transcriptomic database. Based on the domain analysis of the deduced amino acid sequences and the phylogenetic analysis of the catalytic domain sequences, we identified 15 chitinase genes from P. xylostella. Two of the gut-specific chitinases did not cluster with any of the known phylogenetic groups of chitinases and might be in a new group of the chitinase family. Moreover, in our study, group VIII chitinase was not identified. The structures, classifications and expression patterns of the chitinases of P. xylostella were further delineated, and with this information, further investigations on the functions of chitinase genes in DBM could be facilitated.

  15. Phylogenetic Diversity and Biological Activity of Actinobacteria Isolated from the Chukchi Shelf Marine Sediments in the Arctic Ocean

    PubMed Central

    Yuan, Meng; Yu, Yong; Li, Hui-Rong; Dong, Ning; Zhang, Xiao-Hua

    2014-01-01

    Marine environments are a rich source of Actinobacteria and have the potential to produce a wide variety of biologically active secondary metabolites. In this study, we used four selective isolation media to culture Actinobacteria from the sediments collected from the Chukchi Shelf in the Arctic Ocean. A total of 73 actinobacterial strains were isolated. Based on repetitive DNA fingerprinting analysis, we selected 30 representatives for partial characterization according to their phylogenetic diversity, antimicrobial activities and secondary-metabolite biosynthesis genes. Results from the 16S rRNA gene sequence analysis indicated that the 30 strains could be sorted into 18 phylotypes belonging to 14 different genera: Agrococcus, Arsenicicoccus, Arthrobacter, Brevibacterium, Citricoccus, Janibacter, Kocuria, Microbacterium, Microlunatus, Nocardioides, Nocardiopsis, Saccharopolyspora, Salinibacterium and Streptomyces. To our knowledge, this paper is the first report on the isolation of Microlunatus genus members from marine habitats. Of the 30 isolates, 11 strains exhibited antibacterial and/or antifungal activity, seven of which have activities against Bacillus subtilis and Candida albicans. All 30 strains have at least two biosynthetic genes, one-third of which possess more than four biosynthetic genes. This study demonstrates the significant diversity of Actinobacteria in the Chukchi Shelf sediment and their potential for producing biologically active compounds and novel material for genetic manipulation or combinatorial biosynthesis. PMID:24663116

  16. CDAO-Store: Ontology-driven Data Integration for Phylogenetic Analysis

    PubMed Central

    2011-01-01

    Background The Comparative Data Analysis Ontology (CDAO) is an ontology developed, as part of the EvoInfo and EvoIO groups supported by the National Evolutionary Synthesis Center, to provide semantic descriptions of data and transformations commonly found in the domain of phylogenetic analysis. The core concepts of the ontology enable the description of phylogenetic trees and associated character data matrices. Results Using CDAO as the semantic back-end, we developed a triple-store, named CDAO-Store. CDAO-Store is a RDF-based store of phylogenetic data, including a complete import of TreeBASE. CDAO-Store provides a programmatic interface, in the form of web services, and a web-based front-end, to perform both user-defined as well as domain-specific queries; domain-specific queries include search for nearest common ancestors, minimum spanning clades, filter multiple trees in the store by size, author, taxa, tree identifier, algorithm or method. In addition, CDAO-Store provides a visualization front-end, called CDAO-Explorer, which can be used to view both character data matrices and trees extracted from the CDAO-Store. CDAO-Store provides import capabilities, enabling the addition of new data to the triple-store; files in PHYLIP, MEGA, nexml, and NEXUS formats can be imported and their CDAO representations added to the triple-store. Conclusions CDAO-Store is made up of a versatile and integrated set of tools to support phylogenetic analysis. To the best of our knowledge, CDAO-Store is the first semantically-aware repository of phylogenetic data with domain-specific querying capabilities. The portal to CDAO-Store is available at http://www.cs.nmsu.edu/~cdaostore. PMID:21496247

  17. CDAO-store: ontology-driven data integration for phylogenetic analysis.

    PubMed

    Chisham, Brandon; Wright, Ben; Le, Trung; Son, Tran Cao; Pontelli, Enrico

    2011-04-15

    The Comparative Data Analysis Ontology (CDAO) is an ontology developed, as part of the EvoInfo and EvoIO groups supported by the National Evolutionary Synthesis Center, to provide semantic descriptions of data and transformations commonly found in the domain of phylogenetic analysis. The core concepts of the ontology enable the description of phylogenetic trees and associated character data matrices. Using CDAO as the semantic back-end, we developed a triple-store, named CDAO-Store. CDAO-Store is a RDF-based store of phylogenetic data, including a complete import of TreeBASE. CDAO-Store provides a programmatic interface, in the form of web services, and a web-based front-end, to perform both user-defined as well as domain-specific queries; domain-specific queries include search for nearest common ancestors, minimum spanning clades, filter multiple trees in the store by size, author, taxa, tree identifier, algorithm or method. In addition, CDAO-Store provides a visualization front-end, called CDAO-Explorer, which can be used to view both character data matrices and trees extracted from the CDAO-Store. CDAO-Store provides import capabilities, enabling the addition of new data to the triple-store; files in PHYLIP, MEGA, nexml, and NEXUS formats can be imported and their CDAO representations added to the triple-store. CDAO-Store is made up of a versatile and integrated set of tools to support phylogenetic analysis. To the best of our knowledge, CDAO-Store is the first semantically-aware repository of phylogenetic data with domain-specific querying capabilities. The portal to CDAO-Store is available at http://www.cs.nmsu.edu/~cdaostore.

  18. Characterization of a novel orthoreovirus isolated from fruit bat, China.

    PubMed

    Hu, Tingsong; Qiu, Wei; He, Biao; Zhang, Yan; Yu, Jing; Liang, Xiu; Zhang, Wendong; Chen, Gang; Zhang, Yingguo; Wang, Yiyin; Zheng, Ying; Feng, Ziliang; Hu, Yonghe; Zhou, Weiguo; Tu, Changchun; Fan, Quanshui; Zhang, Fuqiang

    2014-11-30

    In recent years novel human respiratory disease agents have been described for Southeast Asia and Australia. The causative pathogens were classified as pteropine orthoreoviruses with a strong phylogenetic relationship to orthoreoviruses of bat origin. In this report, we isolated a novel Melaka-like reovirus (named "Cangyuan virus") from intestinal content samples of one fruit bat residing in China's Yunnan province. Phylogenetic analysis of the whole Cangyuan virus genome sequences of segments L, M and S demonstrated the genetic diversity of the Cangyuan virus. In contrast to the L and M segments, the phylogenetic trees for the S segments of Cangyuan virus demonstrated a greater degree of heterogeneity. Phylogenetic analysis indicated that the Cangyuan virus was a novel orthoreovirus and substantially different from currently known members of Pteropine orthoreovirus (PRV) species group.

  19. Metagenomic Analysis of Upwelling-Affected Brazilian Coastal Seawater Reveals Sequence Domains of Type I PKS and Modular NRPS

    PubMed Central

    Cuadrat, Rafael R. C.; Cury, Juliano C.; Dávila, Alberto M. R.

    2015-01-01

    Marine environments harbor a wide range of microorganisms from the three domains of life. These microorganisms have great potential to enable discovery of new enzymes and bioactive compounds for industrial use. However, only ~1% of microorganisms from the environment can currently be identified through cultured isolates, limiting the discovery of new compounds. To overcome this limitation, a metagenomics approach has been widely adopted for biodiversity studies on samples from marine environments. In this study, we screened metagenomes in order to estimate the potential for new natural compound synthesis mediated by diversity in the Polyketide Synthase (PKS) and Nonribosomal Peptide Synthetase (NRPS) genes. The samples were collected from the Praia dos Anjos (Angel’s Beach) surface water—Arraial do Cabo (Rio de Janeiro state, Brazil), an environment affected by upwelling. In order to evaluate the potential for screening natural products in Arraial do Cabo samples, we used KS (keto-synthase) and C (condensation) domains (from PKS and NRPS, respectively) to build Hidden Markov Models (HMM) models. From both samples, a total of 84 KS and 46 C novel domain sequences were obtained, showing the potential of this environment for the discovery of new genes of biotechnological interest. These domains were classified by phylogenetic analysis and this was the first study conducted to screen PKS and NRPS genes in an upwelling affected sample PMID:26633360

  20. Species Distribution and In Vitro Azole Susceptibility of Aspergillus Section Nigri Isolates from Clinical and Environmental Settings

    PubMed Central

    Iatta, Roberta; Nuccio, Federica; Immediato, Davide; Mosca, Adriana; De Carlo, Carmela; Miragliotta, Giuseppe; Parisi, Antonio; Crescenzo, Giuseppe; Otranto, Domenico

    2016-01-01

    Aspergillus section Nigri includes species of interest for animal and human health, although studies on species distribution are limited to human cases. Data on the antifungal susceptibilities and the molecular mechanism of triazole resistance in strains belonging to this section are scant. Forty-two black Aspergillus strains from human patients (16 isolates), animals (14 isolates), and the environment (12 isolates) were molecularly characterized and their in vitro triazole susceptibilities investigated. Aspergillus tubingensis was isolated from humans, animals, and environmental settings, whereas Aspergillus awamori and Aspergillus niger were isolated exclusively from humans. Phylogenetic analyses of β-tubulin and calmodulin gene sequences were concordant in differentiating A. tubingensis from A. awamori and A. niger. Voriconazole and posaconazole (PSZ) were the most active triazoles. One A. tubingensis strain was resistant to itraconazole and PSZ and one A. niger strain to PSZ. Sequence analysis of the cyp51A gene revealed different sequence types within a species, and A. tubingensis strains were also phylogenetically distinct from A. awamori/A. niger strains according to the strain origin and susceptibility profile. Genetic analysis of the cyp51A sequences suggests that two nonsynonymous mutations resulting in amino acid substitutions in the CYP51A protein (changes of L to R at position 21 [L21R] and of Q to R at position 228 [Q228R]) might be involved in azole resistance. Though azole resistance in black Aspergillus isolates from animals and rural environments does not represent a threat to public health in Southern Italy, the use of triazoles in the clinical setting needs to better monitored. The cyp51A sequence is useful for the molecular identification of black Aspergillus, and point mutations in protein sequences could be responsible for azole resistance phenomena. PMID:27413191

  1. Adaptive Evolution of Eel Fluorescent Proteins from Fatty Acid Binding Proteins Produces Bright Fluorescence in the Marine Environment.

    PubMed

    Gruber, David F; Gaffney, Jean P; Mehr, Shaadi; DeSalle, Rob; Sparks, John S; Platisa, Jelena; Pieribone, Vincent A

    2015-01-01

    We report the identification and characterization of two new members of a family of bilirubin-inducible fluorescent proteins (FPs) from marine chlopsid eels and demonstrate a key region of the sequence that serves as an evolutionary switch from non-fluorescent to fluorescent fatty acid-binding proteins (FABPs). Using transcriptomic analysis of two species of brightly fluorescent Kaupichthys eels (Kaupichthys hyoproroides and Kaupichthys n. sp.), two new FPs were identified, cloned and characterized (Chlopsid FP I and Chlopsid FP II). We then performed phylogenetic analysis on 210 FABPs, spanning 16 vertebrate orders, and including 163 vertebrate taxa. We show that the fluorescent FPs diverged as a protein family and are the sister group to brain FABPs. Our results indicate that the evolution of this family involved at least three gene duplication events. We show that fluorescent FABPs possess a unique, conserved tripeptide Gly-Pro-Pro sequence motif, which is not found in non-fluorescent fatty acid binding proteins. This motif arose from a duplication event of the FABP brain isoforms and was under strong purifying selection, leading to the classification of this new FP family. Residues adjacent to the motif are under strong positive selection, suggesting a further refinement of the eel protein's fluorescent properties. We present a phylogenetic reconstruction of this emerging FP family and describe additional fluorescent FABP members from groups of distantly related eels. The elucidation of this class of fish FPs with diverse properties provides new templates for the development of protein-based fluorescent tools. The evolutionary adaptation from fatty acid-binding proteins to fluorescent fatty acid-binding proteins raises intrigue as to the functional role of bright green fluorescence in this cryptic genus of reclusive eels that inhabit a blue, nearly monochromatic, marine environment.

  2. A Format for Phylogenetic Placements

    PubMed Central

    Matsen, Frederick A.; Hoffman, Noah G.; Gallagher, Aaron; Stamatakis, Alexandros

    2012-01-01

    We have developed a unified format for phylogenetic placements, that is, mappings of environmental sequence data (e.g., short reads) into a phylogenetic tree. We are motivated to do so by the growing number of tools for computing and post-processing phylogenetic placements, and the lack of an established standard for storing them. The format is lightweight, versatile, extensible, and is based on the JSON format, which can be parsed by most modern programming languages. Our format is already implemented in several tools for computing and post-processing parsimony- and likelihood-based phylogenetic placements and has worked well in practice. We believe that establishing a standard format for analyzing read placements at this early stage will lead to a more efficient development of powerful and portable post-analysis tools for the growing applications of phylogenetic placement. PMID:22383988

  3. A format for phylogenetic placements.

    PubMed

    Matsen, Frederick A; Hoffman, Noah G; Gallagher, Aaron; Stamatakis, Alexandros

    2012-01-01

    We have developed a unified format for phylogenetic placements, that is, mappings of environmental sequence data (e.g., short reads) into a phylogenetic tree. We are motivated to do so by the growing number of tools for computing and post-processing phylogenetic placements, and the lack of an established standard for storing them. The format is lightweight, versatile, extensible, and is based on the JSON format, which can be parsed by most modern programming languages. Our format is already implemented in several tools for computing and post-processing parsimony- and likelihood-based phylogenetic placements and has worked well in practice. We believe that establishing a standard format for analyzing read placements at this early stage will lead to a more efficient development of powerful and portable post-analysis tools for the growing applications of phylogenetic placement.

  4. A method of alignment masking for refining the phylogenetic signal of multiple sequence alignments.

    PubMed

    Rajan, Vaibhav

    2013-03-01

    Inaccurate inference of positional homologies in multiple sequence alignments and systematic errors introduced by alignment heuristics obfuscate phylogenetic inference. Alignment masking, the elimination of phylogenetically uninformative or misleading sites from an alignment before phylogenetic analysis, is a common practice in phylogenetic analysis. Although masking is often done manually, automated methods are necessary to handle the much larger data sets being prepared today. In this study, we introduce the concept of subsplits and demonstrate their use in extracting phylogenetic signal from alignments. We design a clustering approach for alignment masking where each cluster contains similar columns-similarity being defined on the basis of compatible subsplits; our approach then identifies noisy clusters and eliminates them. Trees inferred from the columns in the retained clusters are found to be topologically closer to the reference trees. We test our method on numerous standard benchmarks (both synthetic and biological data sets) and compare its performance with other methods of alignment masking. We find that our method can eliminate sites more accurately than other methods, particularly on divergent data, and can improve the topologies of the inferred trees in likelihood-based analyses. Software available upon request from the author.

  5. Improving phylogenetic analyses by incorporating additional information from genetic sequence databases.

    PubMed

    Liang, Li-Jung; Weiss, Robert E; Redelings, Benjamin; Suchard, Marc A

    2009-10-01

    Statistical analyses of phylogenetic data culminate in uncertain estimates of underlying model parameters. Lack of additional data hinders the ability to reduce this uncertainty, as the original phylogenetic dataset is often complete, containing the entire gene or genome information available for the given set of taxa. Informative priors in a Bayesian analysis can reduce posterior uncertainty; however, publicly available phylogenetic software specifies vague priors for model parameters by default. We build objective and informative priors using hierarchical random effect models that combine additional datasets whose parameters are not of direct interest but are similar to the analysis of interest. We propose principled statistical methods that permit more precise parameter estimates in phylogenetic analyses by creating informative priors for parameters of interest. Using additional sequence datasets from our lab or public databases, we construct a fully Bayesian semiparametric hierarchical model to combine datasets. A dynamic iteratively reweighted Markov chain Monte Carlo algorithm conveniently recycles posterior samples from the individual analyses. We demonstrate the value of our approach by examining the insertion-deletion (indel) process in the enolase gene across the Tree of Life using the phylogenetic software BALI-PHY; we incorporate prior information about indels from 82 curated alignments downloaded from the BAliBASE database.

  6. Relationships among North American and Japanese Laetiporus isolates inferred from molecular phylogenetics and single-spore incompatibility reactions

    Treesearch

    Mark T. Banik; Daniel L. Lindner; Yuko Ota; Tsutomu Hattori

    2010-01-01

    Relationships were investigated among North American and Japanese isolates of Laetiporus using phylogenetic analysis of ITS sequences and single-spore isolate incompatibility. Single-spore isolate pairings revealed no significant compatibility between North American and Japanese isolates. ITS analysis revealed 12 clades within the core ...

  7. Spatial and phylogenetic analysis of the vesicular stomatitis virus epidemic in the southwestern United States in 2004-2006

    USDA-ARS?s Scientific Manuscript database

    The southwestern United States has been incidentally affected by vesicular stomatitis virus (VSV) epidemics during the last 100 years. By the time this manuscript was written, the last episodes were reported in 2004-2006. Results of space clustering and phylogenetic analysis techniques used here sug...

  8. Phylogenetic analysis of West Nile virus, Nuevo Leon State, Mexico.

    PubMed

    Blitvich, Bradley J; Fernández-Salas, Ildefonso; Contreras-Cordero, Juan F; Loroño-Pino, María A; Marlenee, Nicole L; Díaz, Francisco J; González-Rojas, José I; Obregón-Martínez, Nelson; Chiu-García, Jorge A; Black, William C; Beaty, Barry J

    2004-07-01

    West Nile virus RNA was detected in brain tissue from a horse that died in June 2003 in Nuevo Leon State, Mexico. Nucleotide sequencing and phylogenetic analysis of the premembrane and envelope genes showed that the virus was most closely related to West Nile virus isolates collected in Texas in 2002.

  9. Phylogenetic Analysis of West Nile Virus, Nuevo Leon State, Mexico

    PubMed Central

    Blitvich, Bradley J.; Fernández-Salas, Ildefonso; Contreras-Cordero, Juan F.; Loroño-Pino, María A.; Marlenee, Nicole L.; Díaz, Francisco J.; González-Rojas, José I.; Obregón-Martínez, Nelson; Chiu-García, Jorge A.; Black, William C.

    2004-01-01

    West Nile virus RNA was detected in brain tissue from a horse that died in June 2003 in Nuevo Leon State, Mexico. Nucleotide sequencing and phylogenetic analysis of the premembrane and envelope genes showed that the virus was most closely related to West Nile virus isolates collected in Texas in 2002. PMID:15324558

  10. PHYLOGENETIC ANALYSIS OF 16S RRNA GENE SEQUENCES REVEALS THE PREVALENCE OF MYCOBACTERIA SP., ALPHA-PROTEOBACTERIA, AND UNCULTURED BACTERIA IN DRINKING WATER MICROBIAL COMMUNITIES

    EPA Science Inventory

    Previous studies have shown that culture-based methods tend to underestimate the densities and diversity of bacterial populations inhabiting water distribution systems (WDS). In this study, the phylogenetic diversity of drinking water bacteria was assessed using sequence analysis...

  11. A revision and phylogenetic analysis of the spider genus Oxysoma Nicolet (Araneae: Anyphaenidae, Amaurobioidinae).

    PubMed

    Aisen, Santiago; Ramírez, Martín J

    2015-08-06

    We review the spider genus Oxysoma Nicolet, with most of its species endemic from the southern temperate forests in Chile and Argentina, and present a phylogenetic analysis including seven species, of which three are newly described in this study (O. macrocuspis new species, O. kuni new species, and O. losruiles new species, all from Chile), together with other 107 representatives of Anyphaenidae. New geographical records and distribution maps are provided for all species, with illustrations and reviewed diagnoses for the genus and the four previously known species (O. punctatum Nicolet, O. saccatum (Tullgren), O. longiventre (Nicolet) and O. itambezinho Ramírez). The phylogenetic analysis using cladistic methods is based on 264 previously defined characters plus one character that arises from this study. The three new species are closely related with Oxysoma longiventre, and this four species compose what we define as the Oxysoma longiventre species group. The phylogenetic analysis did not retrieve the monophyly of Oxysoma, which should be reevaluated in the future, together with the genus Tasata.

  12. Utility of COX1 phylogenetics to differentiate between locally acquired and imported Plasmodium knowlesi infections in Singapore

    PubMed Central

    Loh, Jin Phang; Gao, Qiu Han Christine; Lee, Vernon J; Tetteh, Kevin; Drakeley, Chris

    2016-01-01

    INTRODUCTION Although there have been several phylogenetic studies on Plasmodium knowlesi (P. knowlesi), only cytochrome c oxidase subunit 1 (COX1) gene analysis has shown some geographical differentiation between the isolates of different countries. METHODS Phylogenetic analysis of locally acquired P. knowlesi infections, based on circumsporozoite, small subunit ribosomal ribonucleic acid (SSU rRNA), merozoite surface protein 1 and COX1 gene targets, was performed. The results were compared with the published sequences of regional isolates from Malaysia and Thailand. RESULTS Phylogenetic analysis of the circumsporozoite, SSU rRNA and merozoite surface protein 1 gene sequences for regional P. knowlesi isolates showed no obvious differentiation that could be attributed to their geographical origin. However, COX1 gene analysis showed that it was possible to differentiate between Singapore-acquired P. knowlesi infections and P. knowlesi infections from Peninsular Malaysia and Sarawak, Borneo, Malaysia. CONCLUSION The ability to differentiate between locally acquired P. knowlesi infections and imported P. knowlesi infections has important utility for the monitoring of P. knowlesi malaria control programmes in Singapore. PMID:26805667

  13. Bridging meta-analysis and the comparative method: a test of seed size effect on germination after frugivores' gut passage.

    PubMed

    Verdú, Miguel; Traveset, Anna

    2004-02-01

    Most studies using meta-analysis try to establish relationships between traits across taxa from interspecific databases and, thus, the phylogenetic relatedness among these taxa should be taken into account to avoid pseudoreplication derived from common ancestry. This paper illustrates, with a representative example of the relationship between seed size and the effect of frugivore's gut on seed germination, that meta-analytic procedures can also be phylogenetically corrected by means of the comparative method. The conclusions obtained in the meta-analytical and phylogenetical approaches are very different. The meta-analysis revealed that the positive effects that gut passage had on seed germination increased with seed size in the case of gut passage through birds whereas decreased in the case of gut passage through non-flying mammals. However, once the phylogenetic relatedness among plant species was taken into account, the effects of gut passage on seed germination did not depend on seed size and were similar between birds and non-flying mammals. Some methodological considerations are given to improve the bridge between the meta-analysis and the comparative method.

  14. Utility of COX1 phylogenetics to differentiate between locally acquired and imported Plasmodium knowlesi infections in Singapore.

    PubMed

    Loh, Jin Phang; Gao, Qiu Han Christine; Lee, Vernon J; Tetteh, Kevin; Drakeley, Chris

    2016-12-01

    Although there have been several phylogenetic studies on Plasmodium knowlesi (P. knowlesi), only cytochrome c oxidase subunit 1 (COX1) gene analysis has shown some geographical differentiation between the isolates of different countries. Phylogenetic analysis of locally acquired P. knowlesi infections, based on circumsporozoite, small subunit ribosomal ribonucleic acid (SSU rRNA), merozoite surface protein 1 and COX1 gene targets, was performed. The results were compared with the published sequences of regional isolates from Malaysia and Thailand. Phylogenetic analysis of the circumsporozoite, SSU rRNA and merozoite surface protein 1 gene sequences for regional P. knowlesi isolates showed no obvious differentiation that could be attributed to their geographical origin. However, COX1 gene analysis showed that it was possible to differentiate between Singapore-acquired P. knowlesi infections and P. knowlesi infections from Peninsular Malaysia and Sarawak, Borneo, Malaysia. The ability to differentiate between locally acquired P. knowlesi infections and imported P. knowlesi infections has important utility for the monitoring of P. knowlesi malaria control programmes in Singapore. Copyright: © Singapore Medical Association

  15. Phylogenetic Analysis of Aedes aegypti Based on Mitochondrial ND4 Gene Sequences in Almadinah, Saudi Arabia.

    PubMed

    Ali, Khalil H Al; El-Badry, Ayman A; Ali, Mouhanad Al; El-Sayed, Wael S M; El-Beshbishy, Hesham A

    2016-06-01

    Aedes aegypti is the main vector of the yellow fever and dengue virus. This mosquito has become the major indirect cause of morbidity and mortality of the human worldwide. Dengue virus activity has been reported recently in the western areas of Saudi Arabia. There is no vaccine for dengue virus until now, and the control of the disease depends on the control of the vector. The present study has aimed to perform phylogenetic analysis of Aedes aegypti based on mitochondrial NADH dehydrogenase subunit 4 ( ND4 ) gene at Almadinah, Saudi Arabia in order to get further insight into the epidemiology and transmission of this vector. Mitochondrial ND4 gene was sequenced in the eight isolated Aedes aegypti mosquitoes from Almadinah, Saudi Arabia, sequences were aligned, and phylogenetic analysis were performed and compared with 54 sequences of Aedes reported in the previous studies from Mexico, Thailand, Brazil, and Africa. Our results suggest that increased gene flow among Aedes aegypti populations occurs between Africa and Saudi Arabia. Phylogenetic relationship analysis showed two genetically distinct Aedes aegypti in Saudi Arabia derived from dual African ancestor.

  16. Phylogenetic analyses and nitrate-reducing activity of fungal cultures isolated from the permanent, oceanic oxygen minimum zone of the Arabian Sea.

    PubMed

    Manohar, Cathrine Sumathi; Menezes, Larissa Danielle; Ramasamy, Kesava Priyan; Meena, Ram M

    2015-03-01

    Reports on the active role of fungi as denitrifiers in terrestrial ecosystems have stimulated an interest in the study of the role of fungi in oxygen-deficient marine systems. In this study, the culturable diversity of fungi was investigated from 4 stations within the permanent, oceanic, oxygen minimum zone of the Arabian Sea. The isolated cultures grouped within the 2 major fungal phyla Ascomycota and Basidiomycota; diversity estimates in the stations sampled indicated that the diversity of the oxygen-depleted environments is less than that of mangrove regions and deep-sea habitats. Phylogenetic analyses of 18S rRNA sequences revealed a few divergent isolates that clustered with environmental sequences previously obtained by others. This is significant, as these isolates represent phylotypes that so far were known only from metagenomic studies and are of phylogenetic importance. Nitrate reduction activity, the first step in the denitrification process, was recorded for isolates under simulated anoxic, deep-sea conditions showing ecological significance of fungi in the oxygen-depleted habitats. This report increases our understanding of fungal diversity in unique, poorly studied habitats and underlines the importance of fungi in the oxygen-depleted environments.

  17. The latitudinal diversity gradient in South American mammals revisited using a regional analysis approach: The importance of climate at extra-tropical latitudes and history towards the tropics

    PubMed Central

    Ruggiero, Adriana

    2017-01-01

    The latitudinal diversity gradient has been considered a consequence of a shift in the impact of abiotic and biotic factors that limit species distributions from the poles to the equator, thus influencing species richness variation. It has also been considered the outcome of evolutionary processes that vary over geographical space. We used six South American mammal groups to test the association of environmental and evolutionary factors and the ecological structuring of mammal assemblages with spatial variation in taxonomic richness (TR), at a spatial resolution of 110 km x 110 km, at tropical and extra-tropical latitudes. Based on attributes that represent what mammal species do in ecosystems, we estimated ecological diversity (ED) as a mean pairwise ecological distance between all co-occurring taxa. The mean pairwise phylogenetic distance between all co-occurring taxa (AvPD) was used as an estimation of phylogenetic diversity. Geographically Weighted Regression analyses performed separately for each mammal group identified tropical and extra-tropical high R2 areas where environmental and evolutionary factors strongly accounted for richness variation. Temperature was the most important predictor of TR in high R2 areas outside the tropics, as was AvPD within the tropics. The proportion of TR variation accounted for by environment (either independently or combined with AvPD) was higher in tropical areas of high richness and low ecological diversity than in tropical areas of high richness and high ecological diversity. In conclusion, we confirmed a shift in the impact of environmental factors, mainly temperature, that best account for mammal richness variation in extra-tropical regions, whereas phylogenetic diversity best accounts for richness variation within the tropics. Environment in combination with evolutionary history explained the coexistence of a high number of ecologically similar species within the tropics. Consideration of the influence of contemporary environmental variables and evolutionary history is crucial to understanding of the latitudinal diversity gradient. PMID:28873434

  18. Evolutionary process of deep-sea bathymodiolus mussels.

    PubMed

    Miyazaki, Jun-Ichi; de Oliveira Martins, Leonardo; Fujita, Yuko; Matsumoto, Hiroto; Fujiwara, Yoshihiro

    2010-04-27

    Since the discovery of deep-sea chemosynthesis-based communities, much work has been done to clarify their organismal and environmental aspects. However, major topics remain to be resolved, including when and how organisms invade and adapt to deep-sea environments; whether strategies for invasion and adaptation are shared by different taxa or unique to each taxon; how organisms extend their distribution and diversity; and how they become isolated to speciate in continuous waters. Deep-sea mussels are one of the dominant organisms in chemosynthesis-based communities, thus investigations of their origin and evolution contribute to resolving questions about life in those communities. We investigated worldwide phylogenetic relationships of deep-sea Bathymodiolus mussels and their mytilid relatives by analyzing nucleotide sequences of the mitochondrial cytochrome c oxidase subunit I (COI) and NADH dehydrogenase subunit 4 (ND4) genes. Phylogenetic analysis of the concatenated sequence data showed that mussels of the subfamily Bathymodiolinae from vents and seeps were divided into four groups, and that mussels of the subfamily Modiolinae from sunken wood and whale carcasses assumed the outgroup position and shallow-water modioline mussels were positioned more distantly to the bathymodioline mussels. We provisionally hypothesized the evolutionary history of Bathymodilolus mussels by estimating evolutionary time under a relaxed molecular clock model. Diversification of bathymodioline mussels was initiated in the early Miocene, and subsequently diversification of the groups occurred in the early to middle Miocene. The phylogenetic relationships support the "Evolutionary stepping stone hypothesis," in which mytilid ancestors exploited sunken wood and whale carcasses in their progressive adaptation to deep-sea environments. This hypothesis is also supported by the evolutionary transition of symbiosis in that nutritional adaptation to the deep sea proceeded from extracellular to intracellular symbiotic states in whale carcasses. The estimated evolutionary time suggests that the mytilid ancestors were able to exploit whales during adaptation to the deep sea.

  19. Pfarao: a web application for protein family analysis customized for cytoskeletal and motor proteins (CyMoBase)

    PubMed Central

    Odronitz, Florian; Kollmar, Martin

    2006-01-01

    Background Annotation of protein sequences of eukaryotic organisms is crucial for the understanding of their function in the cell. Manual annotation is still by far the most accurate way to correctly predict genes. The classification of protein sequences, their phylogenetic relation and the assignment of function involves information from various sources. This often leads to a collection of heterogeneous data, which is hard to track. Cytoskeletal and motor proteins consist of large and diverse superfamilies comprising up to several dozen members per organism. Up to date there is no integrated tool available to assist in the manual large-scale comparative genomic analysis of protein families. Description Pfarao (Protein Family Application for Retrieval, Analysis and Organisation) is a database driven online working environment for the analysis of manually annotated protein sequences and their relationship. Currently, the system can store and interrelate a wide range of information about protein sequences, species, phylogenetic relations and sequencing projects as well as links to literature and domain predictions. Sequences can be imported from multiple sequence alignments that are generated during the annotation process. A web interface allows to conveniently browse the database and to compile tabular and graphical summaries of its content. Conclusion We implemented a protein sequence-centric web application to store, organize, interrelate, and present heterogeneous data that is generated in manual genome annotation and comparative genomics. The application has been developed for the analysis of cytoskeletal and motor proteins (CyMoBase) but can easily be adapted for any protein. PMID:17134497

  20. Restricted Gene Flow among Hospital Subpopulations of Enterococcus faecium

    PubMed Central

    Willems, Rob J. L.; Top, Janetta; van Schaik, Willem; Leavis, Helen; Bonten, Marc; Sirén, Jukka; Hanage, William P.; Corander, Jukka

    2012-01-01

    ABSTRACT Enterococcus faecium has recently emerged as an important multiresistant nosocomial pathogen. Defining population structure in this species is required to provide insight into the existence, distribution, and dynamics of specific multiresistant or pathogenic lineages in particular environments, like the hospital. Here, we probe the population structure of E. faecium using Bayesian-based population genetic modeling implemented in Bayesian Analysis of Population Structure (BAPS) software. The analysis involved 1,720 isolates belonging to 519 sequence types (STs) (491 for E. faecium and 28 for Enterococcus faecalis). E. faecium isolates grouped into 13 BAPS (sub)groups, but the large majority (80%) of nosocomial isolates clustered in two subgroups (2-1 and 3-3). Phylogenetic and eBURST analysis of BAPS groups 2 and 3 confirmed the existence of three separate hospital lineages (17, 18, and 78), highlighting different evolutionary trajectories for BAPS 2-1 (lineage 78) and 3-3 (lineage 17 and lineage 18) isolates. Phylogenomic analysis of 29 E. faecium isolates showed agreement between BAPS assignment of STs and their relative positions in the phylogenetic tree. Odds ratio calculation confirmed the significant association between hospital isolates with BAPS 3-3 and lineages 17, 18, and 78. Admixture analysis showed a scarce number of recombination events between the different BAPS groups. For the E. faecium hospital population, we propose an evolutionary model in which strains with a high propensity to colonize and infect hospitalized patients arise through horizontal gene transfer. Once adapted to the distinct hospital niche, this subpopulation becomes isolated, and recombination with other populations declines. PMID:22807567

  1. Identity, ecology and ecophysiology of planktic green algae dominating in ice-covered lakes on James Ross Island (northeastern Antarctic Peninsula).

    PubMed

    Nedbalová, Linda; Mihál, Martin; Kvíderová, Jana; Procházková, Lenka; Řezanka, Tomáš; Elster, Josef

    2017-01-01

    The aim of this study was to assess the phylogenetic relationships, ecology and ecophysiological characteristics of the dominant planktic algae in ice-covered lakes on James Ross Island (northeastern Antarctic Peninsula). Phylogenetic analyses of 18S rDNA together with analysis of ITS2 rDNA secondary structure and cell morphology revealed that the two strains belong to one species of the genus Monoraphidium (Chlorophyta, Sphaeropleales, Selenastraceae) that should be described as new in future. Immotile green algae are thus apparently capable to become the dominant primary producer in the extreme environment of Antarctic lakes with extensive ice-cover. The strains grew in a wide temperature range, but the growth was inhibited at temperatures above 20 °C, indicating their adaptation to low temperature. Preferences for low irradiances reflected the light conditions in their original habitat. Together with relatively high growth rates (0.4-0.5 day -1 ) and unprecedently high content of polyunsaturated fatty acids (PUFA, more than 70% of total fatty acids), it makes these isolates interesting candidates for biotechnological applications.

  2. INFN, IT the GENIUS grid portal and the robot certificates to perform phylogenetic analysis on large scale: a success story from the International LIBI project

    NASA Astrophysics Data System (ADS)

    Barbera, Roberto; Donvit, Giacinto; Falzone, Alberto; Rocca, Giuseppe La; Maggi, Giorgio Pietro; Milanesi, Luciano; Vicarioicario, Saverio

    This paper depicts the solution proposed by INFN to allow users, not owning a personal digital certificate and therefore not belonging to any specific Virtual Organization (VO), to access Grid infrastructures via the GENIUS Grid portal enabled with robot certificates. Robot certificates, also known as portal certificates, are associated with a specific application that the user wants to share with the whole Grid community and have recently been introduced by the EUGridPMA (European Policy Management Authority for Grid Authentication) to perform automated tasks on Grids on behalf of users. They are proven to be extremely useful to automate grid service monitoring, data processing production, distributed data collection systems, etc. In this paper, robot certificates have been used to allow bioinformaticians involved in the Italian LIBI project to perform large scale phylogenetic analyses. The distributed environment set up in this work strongly simplify the grid access of occasional users and represents a valuable step forward to wide the communities of users.

  3. Molecular Epidemiology and Prevalence of Echovirus 30 in Zhejiang Province, China, from 2002 to 2015.

    PubMed

    Chen, Yin; Sun, Yi; Yan, Juying; Miao, Ziping; Xu, Changping; Zhang, Yanjun; Mao, Haiyan; Gong, Liming

    2017-12-28

    Echovirus serotype 30 (ECHO30) has been responsible for several recent worldwide outbreaks of viral meningitis. In Zhejiang Province, China, ECHO30 has been one of the main causes of viral meningitis for years. This study, using phylogenetic analysis of the VP1 gene, was performed to investigate the general molecular epidemiology and genetic patterns of ECHO30 circulating in Zhejiang Province between the years 2002 and 2015. The nucleotide sequences of ECHO30 VP1 showed that they were 64.8% identical with the prototype strain, Bastianni, while the amino acids were 84.9% identical. Phylogenetic analyses showed that ECHO30 in the Zhejiang area has diverged into two genotypes. Genotype I consists of strains isolated since 2002, whereas genotype II includes strains that were mainly isolated during the 2002 to 2004 outbreak. ECHO30 has been endemically circulating in both humans and the environment for a long period of time. Additionally, we evaluated the significance of recombination presented during the years 2005 to 2007 to demonstrate that recombination plays an important role in the prevalence of ECHO30 in the Zhejiang area.

  4. Babes in the wood – a unique window into sea scorpion ontogeny

    PubMed Central

    2013-01-01

    Background Few studies on eurypterids have taken into account morphological changes that occur throughout postembryonic development. Here two species of eurypterid are described from the Pragian Beartooth Butte Formation of Cottonwood Canyon in Wyoming and included in a phylogenetic analysis. Both species comprise individuals from a number of instars, and this allows for changes that occur throughout their ontogeny to be documented, and how ontogenetically variable characters can influence phylogenetic analysis to be tested. Results The two species of eurypterid are described as Jaekelopterus howelli (Kjellesvig-Waering and Størmer, 1952) and Strobilopterus proteus sp. nov. Phylogenetic analysis places them within the Pterygotidae and Strobilopteridae respectively, both families within the Eurypterina. Jaekelopterus howelli shows positive allometry of the cheliceral denticles throughout ontogeny, while a number of characteristics including prosomal appendage length, carapace shape, lateral eye position, and relative breadth all vary during the growth of Strobilopterus proteus. Conclusions The ontogeny of Strobilopterus proteus shares much in common with that of modern xiphosurans, however certain characteristics including apparent true direct development suggest a closer affinity to arachnids. The ontogenetic development of the genital appendage also supports the hypothesis that the structure is homologous to the endopods of the trunk limbs of other arthropods. Including earlier instars in the phylogenetic analysis is shown to destabilise the retrieved topology. Therefore, coding juveniles as individual taxa in an analysis is shown to be actively detrimental and alternative ways of coding ontogenetic data into phylogenetic analyses should be explored. PMID:23663507

  5. Phylogenetic analysis of porcine reproductive and respiratory syndrome virus isolates from Northern Ireland.

    PubMed

    Smith, Natalie; Power, Ultan F; McKillen, John

    2018-05-29

    To investigate the genetic diversity of porcine reproductive and respiratory syndrome virus (PRRSV) in Northern Ireland, the ORF5 gene from nine field isolates was sequenced and phylogenetically analysed. The results revealed relatively high diversity amongst isolates, with 87.6-92.2% identity between farms at the nucleotide level and 84.1-93.5% identity at the protein level. Phylogenetic analysis confirmed that all nine isolates belonged to the European (type 1) genotype and formed a cluster within the subtype 1 subgroup. This study provides the first report on PRRSV isolate diversity in Northern Ireland.

  6. Characterization of the complete mitochondrial genome of the hybrid Epinephelus moara♀ × Epinephelus lanceolatus♂, and phylogenetic analysis in subfamily epinephelinae

    NASA Astrophysics Data System (ADS)

    Gao, Fengtao; Wei, Min; Zhu, Ying; Guo, Hua; Chen, Songlin; Yang, Guanpin

    2017-06-01

    This study presents the complete mitochondrial genome of the hybrid Epinephelus moara♀× Epinephelus lanceolatus♂. The genome is 16886 bp in length, and contains 13 protein-coding genes, 2 rRNA genes, 22 tRNA genes, a light-strand replication origin and a control region. Additionally, phylogenetic analysis based on the nucleotide sequences of 13 conserved protein-coding genes using the maximum likelihood method indicated that the mitochondrial genome is maternally inherited. This study presents genomic data for studying phylogenetic relationships and breeding of hybrid Epinephelinae.

  7. Investigation of the protein osteocalcin of Camelops hesternus: Sequence, structure and phylogenetic implications

    NASA Astrophysics Data System (ADS)

    Humpula, James F.; Ostrom, Peggy H.; Gandhi, Hasand; Strahler, John R.; Walker, Angela K.; Stafford, Thomas W.; Smith, James J.; Voorhies, Michael R.; George Corner, R.; Andrews, Phillip C.

    2007-12-01

    Ancient DNA sequences offer an extraordinary opportunity to unravel the evolutionary history of ancient organisms. Protein sequences offer another reservoir of genetic information that has recently become tractable through the application of mass spectrometric techniques. The extent to which ancient protein sequences resolve phylogenetic relationships, however, has not been explored. We determined the osteocalcin amino acid sequence from the bone of an extinct Camelid (21 ka, Camelops hesternus) excavated from Isleta Cave, New Mexico and three bones of extant camelids: bactrian camel ( Camelus bactrianus); dromedary camel ( Camelus dromedarius) and guanaco ( Llama guanacoe) for a diagenetic and phylogenetic assessment. There was no difference in sequence among the four taxa. Structural attributes observed in both modern and ancient osteocalcin include a post-translation modification, Hyp 9, deamidation of Gln 35 and Gln 39, and oxidation of Met 36. Carbamylation of the N-terminus in ancient osteocalcin may result in blockage and explain previous difficulties in sequencing ancient proteins via Edman degradation. A phylogenetic analysis using osteocalcin sequences of 25 vertebrate taxa was conducted to explore osteocalcin protein evolution and the utility of osteocalcin sequences for delineating phylogenetic relationships. The maximum likelihood tree closely reflected generally recognized taxonomic relationships. For example, maximum likelihood analysis recovered rodents, birds and, within hominins, the Homo-Pan-Gorilla trichotomy. Within Artiodactyla, character state analysis showed that a substitution of Pro 4 for His 4 defines the Capra-Ovis clade within Artiodactyla. Homoplasy in our analysis indicated that osteocalcin evolution is not a perfect indicator of species evolution. Limited sequence availability prevented assigning functional significance to sequence changes. Our preliminary analysis of osteocalcin evolution represents an initial step towards a complete character analysis aimed at determining the evolutionary history of this functionally significant protein. We emphasize that ancient protein sequencing and phylogenetic analyses using amino acid sequences must pay close attention to post-translational modifications, amino acid substitutions due to diagenetic alteration and the impacts of isobaric amino acids on mass shifts and sequence alignments.

  8. Basic Helix-Loop-Helix Transcription Factor Gene Family Phylogenetics and Nomenclature

    PubMed Central

    Skinner, Michael K.; Rawls, Alan; Wilson-Rawls, Jeanne; Roalson, Eric H.

    2010-01-01

    A phylogenetic analysis of the basic helix-loop-helix (bHLH) gene superfamily was performed using seven different species (human, mouse, rat, worm, fly, yeast, and plant Arabidopsis) and involving over 600 bHLH genes [1]. All bHLH genes were identified in the genomes of the various species, including expressed sequence tags, and the entire coding sequence was used in the analysis. Nearly 15% of the gene family has been updated or added since the original publication. A super-tree involving six clades and all structural relationships was established and is now presented for four of the species. The wealth of functional data available for members of the bHLH gene superfamily provides us with the opportunity to use this exhaustive phylogenetic tree to predict potential functions of uncharacterized members of the family. This phylogenetic and genomic analysis of the bHLH gene family has revealed unique elements of the evolution and functional relationships of the different genes in the bHLH gene family. PMID:20219281

  9. galaxie--CGI scripts for sequence identification through automated phylogenetic analysis.

    PubMed

    Nilsson, R Henrik; Larsson, Karl-Henrik; Ursing, Björn M

    2004-06-12

    The prevalent use of similarity searches like BLAST to identify sequences and species implicitly assumes the reference database to be of extensive sequence sampling. This is often not the case, restraining the correctness of the outcome as a basis for sequence identification. Phylogenetic inference outperforms similarity searches in retrieving correct phylogenies and consequently sequence identities, and a project was initiated to design a freely available script package for sequence identification through automated Web-based phylogenetic analysis. Three CGI scripts were designed to facilitate qualified sequence identification from a Web interface. Query sequences are aligned to pre-made alignments or to alignments made by ClustalW with entries retrieved from a BLAST search. The subsequent phylogenetic analysis is based on the PHYLIP package for inferring neighbor-joining and parsimony trees. The scripts are highly configurable. A service installation and a version for local use are found at http://andromeda.botany.gu.se/galaxiewelcome.html and http://galaxie.cgb.ki.se

  10. Characterizing the phylogenetic tree community structure of a protected tropical rain forest area in Cameroon.

    PubMed

    Manel, Stéphanie; Couvreur, Thomas L P; Munoz, François; Couteron, Pierre; Hardy, Olivier J; Sonké, Bonaventure

    2014-01-01

    Tropical rain forests, the richest terrestrial ecosystems in biodiversity on Earth are highly threatened by global changes. This paper aims to infer the mechanisms governing species tree assemblages by characterizing the phylogenetic structure of a tropical rain forest in a protected area of the Congo Basin, the Dja Faunal Reserve (Cameroon). We re-analyzed a dataset of 11538 individuals belonging to 372 taxa found along nine transects spanning five habitat types. We generated a dated phylogenetic tree including all sampled taxa to partition the phylogenetic diversity of the nine transects into alpha and beta components at the level of the transects and of the habitat types. The variation in phylogenetic composition among transects did not deviate from a random pattern at the scale of the Dja Faunal Reserve, probably due to a common history and weak environmental variation across the park. This lack of phylogenetic structure combined with an isolation-by-distance pattern of taxonomic diversity suggests that neutral dispersal limitation is a major driver of community assembly in the Dja. To assess any lack of sensitivity to the variation in habitat types, we restricted the analyses of transects to the terra firme primary forest and found results consistent with those of the whole dataset at the level of the transects. Additionally to previous analyses, we detected a weak but significant phylogenetic turnover among habitat types, suggesting that species sort in varying environments, even though it is not predominating on the overall phylogenetic structure. Finer analyses of clades indicated a signal of clustering for species from the Annonaceae family, while species from the Apocynaceae family indicated overdispersion. These results can contribute to the conservation of the park by improving our understanding of the processes dictating community assembly in these hyperdiverse but threatened regions of the world.

  11. Plunging hands into the mushroom jar: a phylogenetic framework for Lyophyllaceae (Agaricales, Basidiomycota).

    PubMed

    Bellanger, J-M; Moreau, P-A; Corriol, G; Bidaud, A; Chalange, R; Dudova, Z; Richard, F

    2015-04-01

    During the last two decades, the unprecedented development of molecular phylogenetic tools has propelled an opportunity to revisit the fungal kingdom under an evolutionary perspective. Mycology has been profoundly changed but a sustained effort to elucidate large sections of the astonishing fungal diversity is still needed. Here we fill this gap in the case of Lyophyllaceae, a species-rich and ecologically diversified family of mushrooms. Assembly and genealogical concordance multigene phylogenetic analysis of a large dataset that includes original, vouchered material from expert field mycologists reveal the phylogenetic topology of the family, from higher (generic) to lower (species) levels. A comparative analysis of the most widely used phylogenetic markers in Fungi indicates that the nuc rDNA region encompassing the internal transcribed spacers 1 and 2, along with the 5.8S rDNA (ITS) and portions of the genes for RNA polymerase II second largest subunit (RPB2) is the most performing combination to resolve the broadest range of taxa within Lyophyllaceae. Eleven distinct evolutionary lineages are identified, that display partial overlap with traditional genera as well as with the phylogenetic framework previously proposed for the family. Eighty phylogenetic species are delineated, which shed light on a large number of morphological concepts, including rare and poorly documented ones. Probing these novel phylogenetic species to the barcoding method of species limit delineation, indicates that the latter method fully resolves Lyophyllaceae species, except in one clade. This case study provides the first comprehensive phylogenetic overview of Lyophyllaceae, a necessary step towards a taxonomical, ecological and nomenclatural revision of this family of mushrooms. It also proposes a set of methodological guidelines that may be of relevance for future taxonomic works in other groups of Fungi.

  12. Phylogenetic analysis of the envelope protein (domain lll) of dengue 4 viruses

    PubMed Central

    Mota, Javier; Ramos-Castañeda, José; Rico-Hesse, Rebeca; Ramos, Celso

    2011-01-01

    Objective To evaluate the genetic variability of domain III of envelope (E) protein and to estimate phylogenetic relationships of dengue 4 (Den-4) viruses isolated in Mexico and from other endemic areas of the world. Material and Methods A phylogenetic study of domain III of envelope (E) protein of Den-4 viruses was conducted in 1998 using virus strains from Mexico and other parts of the world, isolated in different years. Specific primers were used to amplify by RT-PCR the domain III and to obtain nucleotide sequence. Based on nucleotide and deduced aminoacid sequence, genetic variability was estimated and a phylogenetic tree was generated. To make an easy genetic analysis of domain III region, a Restriction Fragment Length Polymorphism (RFLP) assay was performed, using six restriction enzymes. Results Study results demonstrate that nucleotide and aminoacid sequence analysis of domain III are similar to those reported from the complete E protein gene. Based on the RFLP analysis of domain III using the restriction enzymes Nla III, Dde I and Cfo I, Den-4 viruses included in this study were clustered into genotypes 1 and 2 previously reported. Conclusions Study results suggest that domain III may be used as a genetic marker for phylogenetic and molecular epidemiology studies of dengue viruses. The English version of this paper is available too at: http://www.insp.mx/salud/index.html PMID:12132320

  13. [Effect of environmental factors on bacterial community structure in petroleum contaminated soil of Karamay oil field].

    PubMed

    Liang, Jianfang; Yang, Jiangke; Yang, Yang; Chao, Qunfang; Yin, Yalan; Zhao, Yaguan

    2016-08-04

    This study aimed to study the phylogenetic diversity and community structure of bacteria in petroleum contaminated soils from Karamay oil field, and to analyze the relationship between the community variation and the environment parameters, to provide a reference for bioremediation of petroleum contaminated soils. We collected samples from petroleum contaminated soils in 5 cm, 20 cm and 50 cm depth layers, and measured the environment parameters subsequently. We constructed three 16S rRNA gene clone libraries of these soil samples, and then determined the operation taxonomy units (OTUs) restriction fragment length polymorphism method, and finally sequenced the representative clones of every OUT. The diversity, richness and evenness index of the bacteria communities were calculated by using Biodap software. Neighbor-Joining phylogenetic tree was constructed based on 16S rRNA gene sequences of bacteria from Karamay oil field and the references from related environments. Canonial correspondence analysis (CCA) was used to analyze the relationship between environment parameters and species by using CANOCO 4.5 software. Environment parameters showed that 50 cm deep soil contained the highest amount of total nitrogen (TN) and total phosphorus (TP), whereas the 20 cm depth soil contained the lowest amount. The 5 cm depth soil contained the highest amount of total organic carbon (TOC), whereas the 50 cm depth soil contained the lowest amount. Among the 3 layers, 20 cm depth had the highest diversity and richness of bacteria, whereas the bacteria in 50 cm depth was the lowest. Phylogenic analyses suggested that the bacteria in Karamay oil field could be distributed into five groups at the level of phylum, Cluster I to V, respectively belong to Proteobacteria, Actinobacteria, Firmicute, Bacteroidetes, Planctomycetes. Cluster I accounts for 78.57% of all tested communities. CCA results showed that TN, TP, TOC significantly affected the bacteria community structure. Especially, TOC content is significantly related to the distribution of Pseudomonas. The petroleum-contaminated soil inhabited abundant of bacteria. The diversity index and spatial distribution of these communities were affected by the environment parameters in the soil.

  14. Advancing data reuse in phyloinformatics using an ontology-driven Semantic Web approach.

    PubMed

    Panahiazar, Maryam; Sheth, Amit P; Ranabahu, Ajith; Vos, Rutger A; Leebens-Mack, Jim

    2013-01-01

    Phylogenetic analyses can resolve historical relationships among genes, organisms or higher taxa. Understanding such relationships can elucidate a wide range of biological phenomena, including, for example, the importance of gene and genome duplications in the evolution of gene function, the role of adaptation as a driver of diversification, or the evolutionary consequences of biogeographic shifts. Phyloinformaticists are developing data standards, databases and communication protocols (e.g. Application Programming Interfaces, APIs) to extend the accessibility of gene trees, species trees, and the metadata necessary to interpret these trees, thus enabling researchers across the life sciences to reuse phylogenetic knowledge. Specifically, Semantic Web technologies are being developed to make phylogenetic knowledge interpretable by web agents, thereby enabling intelligently automated, high-throughput reuse of results generated by phylogenetic research. This manuscript describes an ontology-driven, semantic problem-solving environment for phylogenetic analyses and introduces artefacts that can promote phyloinformatic efforts to promote accessibility of trees and underlying metadata. PhylOnt is an extensible ontology with concepts describing tree types and tree building methodologies including estimation methods, models and programs. In addition we present the PhylAnt platform for annotating scientific articles and NeXML files with PhylOnt concepts. The novelty of this work is the annotation of NeXML files and phylogenetic related documents with PhylOnt Ontology. This approach advances data reuse in phyloinformatics.

  15. GENOME-WIDE COMPARATIVE ANALYSIS OF PHYLOGENETIC TREES: THE PROKARYOTIC FOREST OF LIFE

    PubMed Central

    Puigbò, Pere; Wolf, Yuri I.; Koonin, Eugene V.

    2013-01-01

    Genome-wide comparison of phylogenetic trees is becoming an increasingly common approach in evolutionary genomics, and a variety of approaches for such comparison have been developed. In this article we present several methods for comparative analysis of large numbers of phylogenetic trees. To compare phylogenetic trees taking into account the bootstrap support for each internal branch, the Boot-Split Distance (BSD) method is introduced as an extension of the previously developed Split Distance (SD) method for tree comparison. The BSD method implements the straightforward idea that comparison of phylogenetic trees can be made more robust by treating tree splits differentially depending on the bootstrap support. Approaches are also introduced for detecting tree-like and net-like evolutionary trends in the phylogenetic Forest of Life (FOL), i.e., the entirety of the phylogenetic trees for conserved genes of prokaryotes. The principal method employed for this purpose includes mapping quartets of species onto trees to calculate the support of each quartet topology and so to quantify the tree and net contributions to the distances between species. We describe the applications methods used to analyze the FOL and the results obtained with these methods. These results support the concept of the Tree of Life (TOL) as a central evolutionary trend in the FOL as opposed to the traditional view of the TOL as a ‘species tree’. PMID:22399455

  16. Genome-wide comparative analysis of phylogenetic trees: the prokaryotic forest of life.

    PubMed

    Puigbò, Pere; Wolf, Yuri I; Koonin, Eugene V

    2012-01-01

    Genome-wide comparison of phylogenetic trees is becoming an increasingly common approach in evolutionary genomics, and a variety of approaches for such comparison have been developed. In this article, we present several methods for comparative analysis of large numbers of phylogenetic trees. To compare phylogenetic trees taking into account the bootstrap support for each internal branch, the Boot-Split Distance (BSD) method is introduced as an extension of the previously developed Split Distance method for tree comparison. The BSD method implements the straightforward idea that comparison of phylogenetic trees can be made more robust by treating tree splits differentially depending on the bootstrap support. Approaches are also introduced for detecting tree-like and net-like evolutionary trends in the phylogenetic Forest of Life (FOL), i.e., the entirety of the phylogenetic trees for conserved genes of prokaryotes. The principal method employed for this purpose includes mapping quartets of species onto trees to calculate the support of each quartet topology and so to quantify the tree and net contributions to the distances between species. We describe the application of these methods to analyze the FOL and the results obtained with these methods. These results support the concept of the Tree of Life (TOL) as a central evolutionary trend in the FOL as opposed to the traditional view of the TOL as a "species tree."

  17. Phylogenetic position of the genus Perkinsus (Protista, Apicomplexa) based on small subunit ribosomal RNA.

    PubMed

    Goggin, C L; Barker, S C

    1993-07-01

    Parasites of the genus Perkinsus destroy marine molluscs worldwide. Their phylogenetic position within the kingdom Protista is controversial. Nucleotide sequence data (1792 bp) from the small subunit rRNA gene of Perkinsus sp. from Anadara trapezia (Mollusca: Bivalvia) from Moreton Bay, Queensland, was used to examine the phylogenetic affinities of this enigmatic genus. These data were aligned with nucleotide sequences from 6 apicomplexans, 3 ciliates, 3 flagellates, a dinoflagellate, 3 fungi, maize and human. Phylogenetic trees were constructed after analysis with maximum parsimony and distance matrix methods. Our analyses indicate that Perkinsus is phylogenetically closer to dinoflagellates and to coccidean and piroplasm apicomplexans than to fungi or flagellates.

  18. Reconstructing the Phylogenetic History of Long-Term Effective Population Size and Life-History Traits Using Patterns of Amino Acid Replacement in Mitochondrial Genomes of Mammals and Birds

    PubMed Central

    Nabholz, Benoit; Lartillot, Nicolas

    2013-01-01

    The nearly neutral theory, which proposes that most mutations are deleterious or close to neutral, predicts that the ratio of nonsynonymous over synonymous substitution rates (dN/dS), and potentially also the ratio of radical over conservative amino acid replacement rates (Kr/Kc), are negatively correlated with effective population size. Previous empirical tests, using life-history traits (LHT) such as body-size or generation-time as proxies for population size, have been consistent with these predictions. This suggests that large-scale phylogenetic reconstructions of dN/dS or Kr/Kc might reveal interesting macroevolutionary patterns in the variation in effective population size among lineages. In this work, we further develop an integrative probabilistic framework for phylogenetic covariance analysis introduced previously, so as to estimate the correlation patterns between dN/dS, Kr/Kc, and three LHT, in mitochondrial genomes of birds and mammals. Kr/Kc displays stronger and more stable correlations with LHT than does dN/dS, which we interpret as a greater robustness of Kr/Kc, compared with dN/dS, the latter being confounded by the high saturation of the synonymous substitution rate in mitochondrial genomes. The correlation of Kr/Kc with LHT was robust when controlling for the potentially confounding effects of nucleotide compositional variation between taxa. The positive correlation of the mitochondrial Kr/Kc with LHT is compatible with previous reports, and with a nearly neutral interpretation, although alternative explanations are also possible. The Kr/Kc model was finally used for reconstructing life-history evolution in birds and mammals. This analysis suggests a fairly large-bodied ancestor in both groups. In birds, life-history evolution seems to have occurred mainly through size reduction in Neoavian birds, whereas in placental mammals, body mass evolution shows disparate trends across subclades. Altogether, our work represents a further step toward a more comprehensive phylogenetic reconstruction of the evolution of life-history and of the population-genetics environment. PMID:23711670

  19. Molecular Tracing of Hepatitis C Virus Genotype 1 Isolates in Iran: A NS5B Phylogenetic Analysis with Systematic Review.

    PubMed

    Hesamizadeh, Khashayar; Alavian, Seyed Moayed; Najafi Tireh Shabankareh, Azar; Sharafi, Heidar

    2016-12-01

    Hepatitis C virus (HCV) is characterized by a high degree of genetic heterogeneity and classified into 7 genotypes and different subtypes. It heterogeneously distributed through various risk groups and geographical regions. A well-established phylogenetic relationship can simplify the tracing of HCV hierarchical strata into geographical regions. The current study aimed to find genetic phylogeny of subtypes 1a and 1b of HCV isolates based on NS5B nucleotide sequences in Iran and other members of Eastern Mediterranean regional office of world health organization, as well as other Middle Eastern countries, with a systematic review of available published and unpublished studies. The phylogenetic analyses were performed based on the nucleotide sequences of NS5B gene of HCV genotype 1 (HCV-1), which were registered in the GenBank database. The literature review was performed in two steps: 1) searching studies evaluating the NS5B sequences of HCV-1, on PubMed, Scopus, and Web of Science, and 2) Searching sequences of unpublished studies registered in the GenBank database. In this study, 442 sequences from HCV-1a and 232 from HCV-1b underwent phylogenetic analysis. Phylogenetic analysis of all sequences revealed different clusters in the phylogenetic trees. The results showed that the proportion of HCV-1a and -1b isolates from Iranian patients probably originated from domestic sources. Moreover, the HCV-1b isolates from Iranian patients may have similarities with the European ones. In this study, phylogenetic reconstruction of HCV-1 sequences clearly indicated for molecular tracing and ancestral relationships of the HCV genotypes in Iran, and showed the likelihood of domestic origin for HCV-1a and various origin for HCV-1b.

  20. Phylogenetic resolution and habitat specificity of members of the Photobacterium phosphoreum species group.

    PubMed

    Ast, Jennifer C; Dunlap, Paul V

    2005-10-01

    Substantial ambiguity exists regarding the phylogenetic status of facultatively psychrophilic luminous bacteria identified as Photobacterium phosphoreum, a species thought to be widely distributed in the world's oceans and believed to be the specific bioluminescent light-organ symbiont of several deep-sea fishes. Members of the P. phosphoreum species group include luminous and non-luminous strains identified phenotypically from a variety of different habitats as well as phylogenetically defined lineages that appear to be evolutionarily distinct. To resolve this ambiguity and to begin developing a meaningful knowledge of the geographic distributions, habitats and symbiotic relationships of bacteria in the P. phosphoreum species group, we carried out a multilocus, fine-scale phylogenetic analysis based on sequences of the 16S rRNA, gyrB and luxABFE genes of many newly isolated luminous strains from symbiotic and saprophytic habitats, together with previously isolated luminous and non-luminous strains identified as P. phosphoreum from these and other habitats. Parsimony analysis unambiguously resolved three evolutionarily distinct clades, phosphoreum, iliopiscarium and kishitanii. The tight phylogenetic clustering within these clades and the distinct separation between them indicates they are different species, P. phosphoreum, Photobacterium iliopiscarium and the newly recognized 'Photobacterium kishitanii'. Previously reported non-luminous strains, which had been identified phenotypically as P. phosphoreum, resolved unambiguously as P. iliopiscarium, and all examined deep-sea fishes (specimens of families Chlorophthalmidae, Macrouridae, Moridae, Trachichthyidae and Acropomatidae) were found to harbour 'P. kishitanii', not P. phosphoreum, in their light organs. This resolution revealed also that 'P. kishitanii' is cosmopolitan in its geographic distribution. Furthermore, the lack of phylogenetic variation within 'P. kishitanii' indicates that this facultatively symbiotic bacterium is not cospeciating with its phylogenetically divergent host fishes. The results of this fine-scale phylogenetic analysis support the emerging view that bacterial species names should designate singular historical entities, i.e. discrete lineages diagnosed by a significant divergence of shared derived nucleotide characters.

  1. Molecular diversity and distribution of marine fungi across 130 European environmental samples.

    PubMed

    Richards, Thomas A; Leonard, Guy; Mahé, Frédéric; Del Campo, Javier; Romac, Sarah; Jones, Meredith D M; Maguire, Finlay; Dunthorn, Micah; De Vargas, Colomban; Massana, Ramon; Chambouvet, Aurélie

    2015-11-22

    Environmental DNA and culture-based analyses have suggested that fungi are present in low diversity and in low abundance in many marine environments, especially in the upper water column. Here, we use a dual approach involving high-throughput diversity tag sequencing from both DNA and RNA templates and fluorescent cell counts to evaluate the diversity and relative abundance of fungi across marine samples taken from six European near-shore sites. We removed very rare fungal operational taxonomic units (OTUs) selecting only OTUs recovered from multiple samples for a detailed analysis. This approach identified a set of 71 fungal 'OTU clusters' that account for 66% of all the sequences assigned to the Fungi. Phylogenetic analyses demonstrated that this diversity includes a significant number of chytrid-like lineages that had not been previously described, indicating that the marine environment encompasses a number of zoosporic fungi that are new to taxonomic inventories. Using the sequence datasets, we identified cases where fungal OTUs were sampled across multiple geographical sites and between different sampling depths. This was especially clear in one relatively abundant and diverse phylogroup tentatively named Novel Chytrid-Like-Clade 1 (NCLC1). For comparison, a subset of the water column samples was also investigated using fluorescent microscopy to examine the abundance of eukaryotes with chitin cell walls. Comparisons of relative abundance of RNA-derived fungal tag sequences and chitin cell-wall counts demonstrate that fungi constitute a low fraction of the eukaryotic community in these water column samples. Taken together, these results demonstrate the phylogenetic position and environmental distribution of 71 lineages, improving our understanding of the diversity and abundance of fungi in marine environments. © 2015 The Authors.

  2. Molecular diversity and distribution of marine fungi across 130 European environmental samples

    PubMed Central

    Richards, Thomas A.; Leonard, Guy; Mahé, Frédéric; del Campo, Javier; Romac, Sarah; Jones, Meredith D. M.; Maguire, Finlay; Dunthorn, Micah; De Vargas, Colomban; Massana, Ramon; Chambouvet, Aurélie

    2015-01-01

    Environmental DNA and culture-based analyses have suggested that fungi are present in low diversity and in low abundance in many marine environments, especially in the upper water column. Here, we use a dual approach involving high-throughput diversity tag sequencing from both DNA and RNA templates and fluorescent cell counts to evaluate the diversity and relative abundance of fungi across marine samples taken from six European near-shore sites. We removed very rare fungal operational taxonomic units (OTUs) selecting only OTUs recovered from multiple samples for a detailed analysis. This approach identified a set of 71 fungal ‘OTU clusters' that account for 66% of all the sequences assigned to the Fungi. Phylogenetic analyses demonstrated that this diversity includes a significant number of chytrid-like lineages that had not been previously described, indicating that the marine environment encompasses a number of zoosporic fungi that are new to taxonomic inventories. Using the sequence datasets, we identified cases where fungal OTUs were sampled across multiple geographical sites and between different sampling depths. This was especially clear in one relatively abundant and diverse phylogroup tentatively named Novel Chytrid-Like-Clade 1 (NCLC1). For comparison, a subset of the water column samples was also investigated using fluorescent microscopy to examine the abundance of eukaryotes with chitin cell walls. Comparisons of relative abundance of RNA-derived fungal tag sequences and chitin cell-wall counts demonstrate that fungi constitute a low fraction of the eukaryotic community in these water column samples. Taken together, these results demonstrate the phylogenetic position and environmental distribution of 71 lineages, improving our understanding of the diversity and abundance of fungi in marine environments. PMID:26582030

  3. Ecological correlates of ex situ seed longevity: a comparative study on 195 species

    PubMed Central

    Probert, Robin J.; Daws, Matthew I.; Hay, Fiona R.

    2009-01-01

    Background and Aims Extended seed longevity in the dry state is the basis for the ex situ conservation of ‘orthodox’ seeds. However, even under identical storage conditions there is wide variation in seed life-span between species. Here, the effects of seed traits and environmental conditions at the site of collection on seed longevity is explored for195 wild species from 71 families from environments ranging from cold deserts to tropical forests. Methods Seeds were rapidly aged at elevated temperature and relative humidity (either 45°C and 60% RH or 60°C and 60% RH) and regularly sampled for germination. The time taken in storage for viability to fall to 50% (p50) was determined using Probit analysis and used as a measure of relative seed longevity between species. Key Results Across species, p50 at 45°C and 60% RH varied from 0·1 d to 771 d. Endospermic seeds were, in general, shorter lived than non-endospermic seeds and seeds from hot, dry environments were longer lived than those from cool, wet conditions. These relationships remained significant when controlling for the effects of phylogenetic relatedness using phylogenetically independent contrasts. Seed mass and oil content were not correlated with p50. Conclusions The data suggest that the endospermic seeds of early angiosperms which evolved in forest understorey habitats are short-lived. Extended longevity presumably evolved as a response to climatic change or the invasion of drier areas. The apparent short-lived nature of endospermic seeds from cool wet environments may have implications for re-collection and re-testing strategies in ex situ conservation. PMID:19359301

  4. Evidence for a close phylogenetic relationship between Melissococcus pluton, the causative agent of European foulbrood disease, and the genus Enterococcus.

    PubMed

    Cai, J; Collins, M D

    1994-04-01

    The 16S rRNA gene sequence of Melissococcus pluton, the causative agent of European foulbrood disease, was determined in order to investigate the phylogenetic relationships between this organism and other low-G + C-content gram-positive bacteria. A comparative sequence analysis revealed that M. pluton is a close phylogenetic relative of the genus Enterococcus.

  5. Comparative genome analysis of Lactobacillus plantarum GB-LP3 provides candidates of survival-related genetic factors.

    PubMed

    Jeon, Soomin; Jung, Jaehoon; Kim, Kwondo; Yoo, DongAhn; Lee, Chanho; Kang, Jungsun; Cho, Kyungjin; Kang, Dae-Kyung; Kwak, Woori; Yoon, Sook Hee; Kim, Heebal; Cho, Seoae

    2017-09-01

    Lactobacillus plantarum is found in various environmental niches such as in the gastrointestinal tract of an animal host or a fermented food. This species isolated from a certain environment is known to possess a variety of properties according to inhabited environment's adaptation. However, a causal relationship of a genetic factor and phenotype affected by a specific environment has not been systematically comprehended. L. plantarum GB-LP3 strain was isolated from Korean traditional fermented vegetable and the whole genome of GB-LP3 was sequenced. Comparative genome analysis of GB-LP3, with other 14 L. plantarum strains, was conducted. In addition, genomic island regions were investigated. The assembled whole GB-LP3 genome contained a single circular chromosome of 3,206,111bp with the GC content of 44.7%. In the phylogenetic tree analysis, GB-LP3 was in the closest distance from ZJ316. The genomes of GB-LP3 and ZJ316 have the high level of synteny. Functional genes that are related to prophage, bacteriocin, and quorum sensing were found through comparative genomic analysis with ZJ316 and investigation of genomic islands. dN/dS analysis identified that the gene coding for phosphonate ABC transporter ATP-binding protein is evolutionarily accelerated in GB-LP3. Our study found that potential candidate genes that are affected by environmental adaptation in Korea traditional fermented vegetable. Copyright © 2017. Published by Elsevier B.V.

  6. Patterns of co-speciation and host switching in primate malaria parasites.

    PubMed

    Garamszegi, László Zsolt

    2009-05-22

    The evolutionary history of many parasites is dependent on the evolution of their hosts, leading to an association between host and parasite phylogenies. However, frequent host switches across broad phylogenetic distances may weaken this close evolutionary link, especially when vectors are involved in parasites transmission, as is the case for malaria pathogens. Several studies suggested that the evolution of the primate-infective malaria lineages may be constrained by the phylogenetic relationships of their hosts, and that lateral switches between distantly related hosts may have been occurred. However, no systematic analysis has been quantified the degree of phylogenetic association between primates and their malaria parasites. Here phylogenetic approaches have been used to discriminate statistically between events due to co-divergence, duplication, extinction and host switches that can potentially cause historical association between Plasmodium parasites and their primate hosts. A Bayesian reconstruction of parasite phylogeny based on genetic information for six genes served as basis for the analyses, which could account for uncertainties about the evolutionary hypotheses of malaria parasites. Related lineages of primate-infective Plasmodium tend to infect hosts within the same taxonomic family. Different analyses testing for congruence between host and parasite phylogenies unanimously revealed a significant association between the corresponding evolutionary trees. The most important factor that resulted in this association was host switching, but depending on the parasite phylogeny considered, co-speciation and duplication may have also played some additional role. Sorting seemed to be a relatively infrequent event, and can occur only under extreme co-evolutionary scenarios. The concordance between host and parasite phylogenies is heterogeneous: while the evolution of some malaria pathogens is strongly dependent on the phylogenetic history of their primate hosts, the congruent evolution is less emphasized for other parasite lineages (e.g. for human malaria parasites). Estimation of ancestral states of host use along the phylogenetic tree of parasites revealed that lateral transfers across distantly related hosts were likely to occur in several cases. Parasites cannot infect all available hosts, and they should preferentially infect hosts that provide a similar environment for reproduction. Marginally significant evidence suggested that there might be a consistent variation within host ranges in terms of physiology. The evolution of primate malarias is constrained by the phylogenetic associations of their hosts. Some parasites can preserve a great flexibility to infect hosts across a large phylogenetic distance, thus host switching can be an important factor in mediating host ranges observed in nature. Due to this inherent flexibility and the potential exposure to various vectors, the emergence of new malaria disease in primates including humans cannot be predicted from the phylogeny of parasites.

  7. Aujeszky's disease in red fox (Vulpes vulpes): phylogenetic analysis unravels an unexpected epidemiologic link.

    PubMed

    Caruso, Claudio; Dondo, Alessandro; Cerutti, Francesco; Masoero, Loretta; Rosamilia, Alfonso; Zoppi, Simona; D'Errico, Valeria; Grattarola, Carla; Acutis, Pier Luigi; Peletto, Simone

    2014-07-01

    We describe Aujeszky's disease in a female of red fox (Vulpes vulpes). Although wild boar (Sus scrofa) would be the expected source of infection, phylogenetic analysis suggested a domestic rather than a wild source of virus, underscoring the importance of biosecurity measures in pig farms to prevent contact with wild animals.

  8. Isolation and Phylogenetic Analysis of Sindbis Viruses from Mosquitoes in Germany ▿

    PubMed Central

    Jöst, Hanna; Bialonski, Alexandra; Storch, Volker; Günther, Stephan; Becker, Norbert; Schmidt-Chanasit, Jonas

    2010-01-01

    A molecular survey of 16,057 mosquitoes captured in Southwest Germany during the summer of 2009 demonstrated the presence of Sindbis virus (SINV) in Culex spp. and Anopheles maculipennis sensu lato. Phylogenetic analysis of the German SINV strains linked them with Swedish SINV strains, the causative agent of Ockelbo disease in humans. PMID:20335414

  9. Easy-to-use phylogenetic analysis system for hepatitis B virus infection.

    PubMed

    Sugiyama, Masaya; Inui, Ayano; Shin-I, Tadasu; Komatsu, Haruki; Mukaide, Motokazu; Masaki, Naohiko; Murata, Kazumoto; Ito, Kiyoaki; Nakanishi, Makoto; Fujisawa, Tomoo; Mizokami, Masashi

    2011-10-01

      The molecular phylogenetic analysis has been broadly applied to clinical and virological study. However, the appropriate settings and application of calculation parameters are difficult for non-specialists of molecular genetics. In the present study, the phylogenetic analysis tool was developed for the easy determination of genotypes and transmission route.   A total of 23 patients of 10 families infected with hepatitis B virus (HBV) were enrolled and expected to undergo intrafamilial transmission. The extracted HBV DNA were amplified and sequenced in a region of the S gene.   The software to automatically classify query sequence was constructed and installed on the Hepatitis Virus Database (HVDB). Reference sequences were retrieved from HVDB, which contained major genotypes from A to H. Multiple-alignments using CLUSTAL W were performed before the genetic distance matrix was calculated with the six-parameter method. The phylogenetic tree was output by the neighbor-joining method. User interface using WWW-browser was also developed for intuitive control. This system was named as the easy-to-use phylogenetic analysis system (E-PAS). Twenty-three sera of 10 families were analyzed to evaluate E-PAS. The queries obtained from nine families were genotype C and were located in one cluster per family. However, one patient of a family was classified into the cluster different from her family, suggesting that E-PAS detected the sample distinct from that of her family on the transmission route.   The E-PAS to output phylogenetic tree was developed since requisite material was sequence data only. E-PAS could expand to determine HBV genotypes as well as transmission routes. © 2011 The Japan Society of Hepatology.

  10. Study of Clinical Survival and Gene Expression in a Sample of Pancreatic Ductal Adenocarcinoma by Parsimony Phylogenetic Analysis.

    PubMed

    Nalbantoglu, Sinem; Abu-Asab, Mones; Tan, Ming; Zhang, Xuemin; Cai, Ling; Amri, Hakima

    2016-07-01

    Pancreatic ductal adenocarcinoma (PDAC) is one of the rapidly growing forms of pancreatic cancer with a poor prognosis and less than 5% 5-year survival rate. In this study, we characterized the genetic signatures and signaling pathways related to survival from PDAC, using a parsimony phylogenetic algorithm. We applied the parsimony phylogenetic algorithm to analyze the publicly available whole-genome in silico array analysis of a gene expression data set in 25 early-stage human PDAC specimens. We explain here that the parsimony phylogenetics is an evolutionary analytical method that offers important promise to uncover clonal (driver) and nonclonal (passenger) aberrations in complex diseases. In our analysis, parsimony and statistical analyses did not identify significant correlations between survival times and gene expression values. Thus, the survival rankings did not appear to be significantly different between patients for any specific gene (p > 0.05). Also, we did not find correlation between gene expression data and tumor stage in the present data set. While the present analysis was unable to identify in this relatively small sample of patients a molecular signature associated with pancreatic cancer prognosis, we suggest that future research and analyses with the parsimony phylogenetic algorithm in larger patient samples are worthwhile, given the devastating nature of pancreatic cancer and its early diagnosis, and the need for novel data analytic approaches. The future research practices might want to place greater emphasis on phylogenetics as one of the analytical paradigms, as our findings presented here are on the cusp of this shift, especially in the current era of Big Data and innovation policies advocating for greater data sharing and reanalysis.

  11. Molecular characterization of viable Legionella spp. in cooling tower water samples by combined use of ethidium monoazide and PCR.

    PubMed

    Inoue, Hiroaki; Fujimura, Reiko; Agata, Kunio; Ohta, Hiroyuki

    2015-01-01

    Viable Legionella spp. in environmental water samples were characterized phylogenetically by a clone library analysis combining the use of ethidium monoazide and quantitative PCR. To examine the diversity of Legionella spp., six cooling tower water samples and three bath water samples were collected and analyzed. A total of 617 clones were analyzed for their 16S rRNA gene sequences and classified into 99 operational taxonomic units (OTUs). The majority of OTUs were not clustered with currently described Legionella spp., suggesting the wide diversity of not-yet-cultured Legionella groups harbored in cooling tower water environments.

  12. Molecular Characterization of Viable Legionella spp. in Cooling Tower Water Samples by Combined Use of Ethidium Monoazide and PCR

    PubMed Central

    Inoue, Hiroaki; Fujimura, Reiko; Agata, Kunio; Ohta, Hiroyuki

    2015-01-01

    Viable Legionella spp. in environmental water samples were characterized phylogenetically by a clone library analysis combining the use of ethidium monoazide and quantitative PCR. To examine the diversity of Legionella spp., six cooling tower water samples and three bath water samples were collected and analyzed. A total of 617 clones were analyzed for their 16S rRNA gene sequences and classified into 99 operational taxonomic units (OTUs). The majority of OTUs were not clustered with currently described Legionella spp., suggesting the wide diversity of not-yet-cultured Legionella groups harbored in cooling tower water environments. PMID:25736979

  13. Exploring Genomic Diversity Using Metagenomics of Deep-Sea Subsurface Microbes from the Louisville Seamount and the South Pacific Gyre

    NASA Astrophysics Data System (ADS)

    Tully, B. J.; Sylvan, J. B.; Heidelberg, J. F.; Huber, J. A.

    2014-12-01

    There are many limitations involved with sampling microbial diversity from deep-sea subsurface environments, ranging from physical sample collection, low microbial biomass, culturing at in situ conditions, and inefficient nucleic acid extractions. As such, we are continually modifying our methods to obtain better results and expanding what we know about microbes in these environments. Here we present analysis of metagenomes sequences from samples collected from 120 m within the Louisville Seamount and from the top 5-10cm of the sediment in the center of the south Pacific gyre (SPG). Both systems are low biomass with ~102 and ~104 cells per cm3 for Louisville Seamount samples analyzed and the SPG sediment, respectively. The Louisville Seamount represents the first in situ subseafloor basalt and the SPG sediments represent the first in situ low biomass sediment microbial metagenomes. Both of these environments, subseafloor basalt and sediments underlying oligotrophic ocean gyres, represent large provinces of the seafloor environment that remain understudied. Despite the low biomass and DNA generated from these samples, we have generated 16 near complete genomes (5 from Louisville and 11 from the SPG) from the two metagenomic datasets. These genomes are estimated to be between 51-100% complete and span a range of phylogenetic groups, including the Proteobacteria, Actinobacteria, Firmicutes, Chloroflexi, and unclassified bacterial groups. With these genomes, we have assessed potential functional capabilities of these organisms and performed a comparative analysis between the environmental genomes and previously sequenced relatives to determine possible adaptations that may elucidate survival mechanisms for these low energy environments. These methods illustrate a baseline analysis that can be applied to future metagenomic deep-sea subsurface datasets and will help to further our understanding of microbiology within these environments.

  14. A Deliberate Practice Approach to Teaching Phylogenetic Analysis

    PubMed Central

    Hobbs, F. Collin; Johnson, Daniel J.; Kearns, Katherine D.

    2013-01-01

    One goal of postsecondary education is to assist students in developing expert-level understanding. Previous attempts to encourage expert-level understanding of phylogenetic analysis in college science classrooms have largely focused on isolated, or “one-shot,” in-class activities. Using a deliberate practice instructional approach, we designed a set of five assignments for a 300-level plant systematics course that incrementally introduces the concepts and skills used in phylogenetic analysis. In our assignments, students learned the process of constructing phylogenetic trees through a series of increasingly difficult tasks; thus, skill development served as a framework for building content knowledge. We present results from 5 yr of final exam scores, pre- and postconcept assessments, and student surveys to assess the impact of our new pedagogical materials on student performance related to constructing and interpreting phylogenetic trees. Students improved in their ability to interpret relationships within trees and improved in several aspects related to between-tree comparisons and tree construction skills. Student feedback indicated that most students believed our approach prepared them to engage in tree construction and gave them confidence in their abilities. Overall, our data confirm that instructional approaches implementing deliberate practice address student misconceptions, improve student experiences, and foster deeper understanding of difficult scientific concepts. PMID:24297294

  15. DendroBLAST: approximate phylogenetic trees in the absence of multiple sequence alignments.

    PubMed

    Kelly, Steven; Maini, Philip K

    2013-01-01

    The rapidly growing availability of genome information has created considerable demand for both fast and accurate phylogenetic inference algorithms. We present a novel method called DendroBLAST for reconstructing phylogenetic dendrograms/trees from protein sequences using BLAST. This method differs from other methods by incorporating a simple model of sequence evolution to test the effect of introducing sequence changes on the reliability of the bipartitions in the inferred tree. Using realistic simulated sequence data we demonstrate that this method produces phylogenetic trees that are more accurate than other commonly-used distance based methods though not as accurate as maximum likelihood methods from good quality multiple sequence alignments. In addition to tests on simulated data, we use DendroBLAST to generate input trees for a supertree reconstruction of the phylogeny of the Archaea. This independent analysis produces an approximate phylogeny of the Archaea that has both high precision and recall when compared to previously published analysis of the same dataset using conventional methods. Taken together these results demonstrate that approximate phylogenetic trees can be produced in the absence of multiple sequence alignments, and we propose that these trees will provide a platform for improving and informing downstream bioinformatic analysis. A web implementation of the DendroBLAST method is freely available for use at http://www.dendroblast.com/.

  16. Phylogenetic Information Content of Copepoda Ribosomal DNA Repeat Units: ITS1 and ITS2 Impact

    PubMed Central

    Zagoskin, Maxim V.; Lazareva, Valentina I.; Grishanin, Andrey K.; Mukha, Dmitry V.

    2014-01-01

    The utility of various regions of the ribosomal repeat unit for phylogenetic analysis was examined in 16 species representing four families, nine genera, and two orders of the subclass Copepoda (Crustacea). Fragments approximately 2000 bp in length containing the ribosomal DNA (rDNA) 18S and 28S gene fragments, the 5.8S gene, and the internal transcribed spacer regions I and II (ITS1 and ITS2) were amplified and analyzed. The DAMBE (Data Analysis in Molecular Biology and Evolution) software was used to analyze the saturation of nucleotide substitutions; this test revealed the suitability of both the 28S gene fragment and the ITS1/ITS2 rDNA regions for the reconstruction of phylogenetic trees. Distance (minimum evolution) and probabilistic (maximum likelihood, Bayesian) analyses of the data revealed that the 28S rDNA and the ITS1 and ITS2 regions are informative markers for inferring phylogenetic relationships among families of copepods and within the Cyclopidae family and associated genera. Split-graph analysis of concatenated ITS1/ITS2 rDNA regions of cyclopoid copepods suggested that the Mesocyclops, Thermocyclops, and Macrocyclops genera share complex evolutionary relationships. This study revealed that the ITS1 and ITS2 regions potentially represent different phylogenetic signals. PMID:25215300

  17. Phylogenetic and functional diversity of metagenomic libraries of phenol degrading sludge from petroleum refinery wastewater treatment system

    PubMed Central

    2012-01-01

    In petrochemical refinery wastewater treatment plants (WWTP), different concentrations of pollutant compounds are received daily in the influent stream, including significant amounts of phenolic compounds, creating propitious conditions for the development of particular microorganisms that can rapidly adapt to such environment. In the present work, the microbial sludge from a refinery WWTP was enriched for phenol, cloned into fosmid vectors and pyrosequenced. The fosmid libraries yielded 13,200 clones and a comprehensive bioinformatic analysis of the sequence data set revealed a complex and diverse bacterial community in the phenol degrading sludge. The phylogenetic analyses using MEGAN in combination with RDP classifier showed a massive predominance of Proteobacteria, represented mostly by the genera Diaphorobacter, Pseudomonas, Thauera and Comamonas. The functional classification of phenol degrading sludge sequence data set generated by MG-RAST showed the wide metabolic diversity of the microbial sludge, with a high percentage of genes involved in the aerobic and anaerobic degradation of phenol and derivatives. In addition, genes related to the metabolism of many other organic and xenobiotic compounds, such as toluene, biphenyl, naphthalene and benzoate, were found. Results gathered herein demonstrated that the phenol degrading sludge has complex phylogenetic and functional diversities, showing the potential of such community to degrade several pollutant compounds. This microbiota is likely to represent a rich resource of versatile and unknown enzymes which may be exploited for biotechnological processes such as bioremediation. PMID:22452812

  18. Phylogenetic analysis and antifouling potentials of culturable fungi in mangrove sediments from Techeng Isle, China.

    PubMed

    Zhang, Xiao-Yong; Fu, Wen; Chen, Xiao; Yan, Mu-Ting; Huang, Xian-De; Bao, Jie

    2018-06-09

    To search for more microbial resources for screening environment-friendly antifoulants, we investigated the phylogenetic diversity and antifouling potentials of culturable fungi in mangrove sediments from Techeng Isle, China. A total of 176 isolates belonging to 57 fungal taxa were recovered and identified. The high levels of diversity and abundance of mangrove fungi from Techeng Isle were in accordance with previous studies on fungi from other mangrove ecosystems. Fifteen of the 176 isolates demonstrated high divergence (87-93%) from the known fungal taxa in GenBank. Moreover, 26 isolates recorded in mangrove ecosystems for the first time. These results suggested that mangrove sediments from Techeng Isle harbored some new fungal communities compared with other mangrove ecosystems. The antifouling activity of 57 representative isolates (belonging to 57 different fungal taxa) was tested against three marine bacteria (Loktanella hongkongensis, Micrococcus luteus and Pseudoalteromonas piscida) and two marine macrofoulers (bryozoan Bugula neritina and barnacle Balanus amphitrite). Approximately 40% of the tested isolates displayed distinct antifouling activity. Furthermore, 17 fungal isolates were found to display strong or a wide spectrum of antifouling activity in this study, suggesting that these isolates deserve further study as potential sources of novel antifouling metabolites. To our knowledge, this is the first report on the investigation of the phylogenetic diversity and antifouling potential of culturable fungi in mangrove sediments from Techeng Isle, China. These results contribute to our knowledge of mangrove fungi and further increases the pool of fungi available for natural bioactive product screening.

  19. Human, vector and parasite Hsp90 proteins: A comparative bioinformatics analysis.

    PubMed

    Faya, Ngonidzashe; Penkler, David L; Tastan Bishop, Özlem

    2015-01-01

    The treatment of protozoan parasitic diseases is challenging, and thus identification and analysis of new drug targets is important. Parasites survive within host organisms, and some need intermediate hosts to complete their life cycle. Changing host environment puts stress on parasites, and often adaptation is accompanied by the expression of large amounts of heat shock proteins (Hsps). Among Hsps, Hsp90 proteins play an important role in stress environments. Yet, there has been little computational research on Hsp90 proteins to analyze them comparatively as potential parasitic drug targets. Here, an attempt was made to gain detailed insights into the differences between host, vector and parasitic Hsp90 proteins by large-scale bioinformatics analysis. A total of 104 Hsp90 sequences were divided into three groups based on their cellular localizations; namely cytosolic, mitochondrial and endoplasmic reticulum (ER). Further, the parasitic proteins were divided according to the type of parasite (protozoa, helminth and ectoparasite). Primary sequence analysis, phylogenetic tree calculations, motif analysis and physicochemical properties of Hsp90 proteins suggested that despite the overall structural conservation of these proteins, parasitic Hsp90 proteins have unique features which differentiate them from human ones, thus encouraging the idea that protozoan Hsp90 proteins should be further analyzed as potential drug targets.

  20. YBYRÁ facilitates comparison of large phylogenetic trees.

    PubMed

    Machado, Denis Jacob

    2015-07-01

    The number and size of tree topologies that are being compared by phylogenetic systematists is increasing due to technological advancements in high-throughput DNA sequencing. However, we still lack tools to facilitate comparison among phylogenetic trees with a large number of terminals. The "YBYRÁ" project integrates software solutions for data analysis in phylogenetics. It comprises tools for (1) topological distance calculation based on the number of shared splits or clades, (2) sensitivity analysis and automatic generation of sensitivity plots and (3) clade diagnoses based on different categories of synapomorphies. YBYRÁ also provides (4) an original framework to facilitate the search for potential rogue taxa based on how much they affect average matching split distances (using MSdist). YBYRÁ facilitates comparison of large phylogenetic trees and outperforms competing software in terms of usability and time efficiency, specially for large data sets. The programs that comprises this toolkit are written in Python, hence they do not require installation and have minimum dependencies. The entire project is available under an open-source licence at http://www.ib.usp.br/grant/anfibios/researchSoftware.html .

  1. SICLE: a high-throughput tool for extracting evolutionary relationships from phylogenetic trees.

    PubMed

    DeBlasio, Dan F; Wisecaver, Jennifer H

    2016-01-01

    We present the phylogeny analysis software SICLE (Sister Clade Extractor), an easy-to-use, high-throughput tool to describe the nearest neighbors to a node of interest in a phylogenetic tree as well as the support value for the relationship. The application is a command line utility that can be embedded into a phylogenetic analysis pipeline or can be used as a subroutine within another C++ program. As a test case, we applied this new tool to the published phylome of Salinibacter ruber, a species of halophilic Bacteriodetes, identifying 13 unique sister relationships to S. ruber across the 4,589 gene phylogenies. S. ruber grouped with bacteria, most often other Bacteriodetes, in the majority of phylogenies, but 91 phylogenies showed a branch-supported sister association between S. ruber and Archaea, an evolutionarily intriguing relationship indicative of horizontal gene transfer. This test case demonstrates how SICLE makes it possible to summarize the phylogenetic information produced by automated phylogenetic pipelines to rapidly identify and quantify the possible evolutionary relationships that merit further investigation. SICLE is available for free for noncommercial use at http://eebweb.arizona.edu/sicle/.

  2. Preparation of genomic DNA from a single species of uncultured magnetotactic bacterium by multiple-displacement amplification.

    PubMed

    Arakaki, Atsushi; Shibusawa, Mie; Hosokawa, Masahito; Matsunaga, Tadashi

    2010-03-01

    Magnetotactic bacteria comprise a phylogenetically diverse group that is capable of synthesizing intracellular magnetic particles. Although various morphotypes of magnetotactic bacteria have been observed in the environment, bacterial strains available in pure culture are currently limited to a few genera due to difficulties in their enrichment and cultivation. In order to obtain genetic information from uncultured magnetotactic bacteria, a genome preparation method that involves magnetic separation of cells, flow cytometry, and multiple displacement amplification (MDA) using phi29 polymerase was used in this study. The conditions for the MDA reaction using samples containing 1 to 100 cells were evaluated using a pure-culture magnetotactic bacterium, "Magnetospirillum magneticum AMB-1," whose complete genome sequence is available. Uniform gene amplification was confirmed by quantitative PCR (Q-PCR) when 100 cells were used as a template. This method was then applied for genome preparation of uncultured magnetotactic bacteria from complex bacterial communities in an aquatic environment. A sample containing 100 cells of the uncultured magnetotactic coccus was prepared by magnetic cell separation and flow cytometry and used as an MDA template. 16S rRNA sequence analysis of the MDA product from these 100 cells revealed that the amplified genomic DNA was from a single species of magnetotactic bacterium that was phylogenetically affiliated with magnetotactic cocci in the Alphaproteobacteria. The combined use of magnetic separation, flow cytometry, and MDA provides a new strategy to access individual genetic information from magnetotactic bacteria in environmental samples.

  3. A review of criticisms of phylogenetic nomenclature: is taxonomic freedom the fundamental issue?

    PubMed

    Bryant, Harold N; Cantino, Philip D

    2002-02-01

    The proposal to implement a phylogenetic nomenclatural system governed by the PhyloCode), in which taxon names are defined by explicit reference to common descent, has met with strong criticism from some proponents of phylogenetic taxonomy (taxonomy based on the principle of common descent in which only clades and species are recognized). We examine these criticisms and find that some of the perceived problems with phylogenetic nomenclature are based on misconceptions, some are equally true of the current rank-based nomenclatural system, and some will be eliminated by implementation of the PhyloCode. Most of the criticisms are related to an overriding concern that, because the meanings of names are associated with phylogenetic pattern which is subject to change, the adoption of phylogenetic nomenclature will lead to increased instability in the content of taxa. This concern is associated with the fact that, despite the widespread adoption of the view that taxa are historical entities that are conceptualized based on ancestry, many taxonomists also conceptualize taxa based on their content. As a result, critics of phylogenetic nomenclature have argued that taxonomists should be free to emend the content of taxa without constraints imposed by nomenclatural decisions. However, in phylogenetic nomenclature the contents of taxa are determined, not by the taxonomist, but by the combination of the phylogenetic definition of the name and a phylogenetic hypothesis. Because the contents of taxa, once their names are defined, can no longer be freely modified by taxonomists, phylogenetic nomenclature is perceived as limiting taxonomic freedom. We argue that the form of taxonomic freedom inherent to phylogenetic nomenclature is appropriate to phylogenetic taxonomy in which taxa are considered historical entities that are discovered through phylogenetic analysis and are not human constructs.

  4. Phylogenomic Reconstruction of the Oomycete Phylogeny Derived from 37 Genomes

    PubMed Central

    McCarthy, Charley G. P.

    2017-01-01

    ABSTRACT The oomycetes are a class of microscopic, filamentous eukaryotes within the Stramenopiles-Alveolata-Rhizaria (SAR) supergroup which includes ecologically significant animal and plant pathogens, most infamously the causative agent of potato blight Phytophthora infestans. Single-gene and concatenated phylogenetic studies both of individual oomycete genera and of members of the larger class have resulted in conflicting conclusions concerning species phylogenies within the oomycetes, particularly for the large Phytophthora genus. Genome-scale phylogenetic studies have successfully resolved many eukaryotic relationships by using supertree methods, which combine large numbers of potentially disparate trees to determine evolutionary relationships that cannot be inferred from individual phylogenies alone. With a sufficient amount of genomic data now available, we have undertaken the first whole-genome phylogenetic analysis of the oomycetes using data from 37 oomycete species and 6 SAR species. In our analysis, we used established supertree methods to generate phylogenies from 8,355 homologous oomycete and SAR gene families and have complemented those analyses with both phylogenomic network and concatenated supermatrix analyses. Our results show that a genome-scale approach to oomycete phylogeny resolves oomycete classes and individual clades within the problematic Phytophthora genus. Support for the resolution of the inferred relationships between individual Phytophthora clades varies depending on the methodology used. Our analysis represents an important first step in large-scale phylogenomic analysis of the oomycetes. IMPORTANCE The oomycetes are a class of eukaryotes and include ecologically significant animal and plant pathogens. Single-gene and multigene phylogenetic studies of individual oomycete genera and of members of the larger classes have resulted in conflicting conclusions concerning interspecies relationships among these species, particularly for the Phytophthora genus. The onset of next-generation sequencing techniques now means that a wealth of oomycete genomic data is available. For the first time, we have used genome-scale phylogenetic methods to resolve oomycete phylogenetic relationships. We used supertree methods to generate single-gene and multigene species phylogenies. Overall, our supertree analyses utilized phylogenetic data from 8,355 oomycete gene families. We have also complemented our analyses with superalignment phylogenies derived from 131 single-copy ubiquitous gene families. Our results show that a genome-scale approach to oomycete phylogeny resolves oomycete classes and clades. Our analysis represents an important first step in large-scale phylogenomic analysis of the oomycetes. PMID:28435885

  5. Biological pattern and transcriptomic exploration and phylogenetic analysis in the odd floral architecture tree: Helwingia willd.

    PubMed

    Sun, Cheng; Yu, Guoliang; Bao, Manzhu; Zheng, Bo; Ning, Guogui

    2014-06-27

    Odd traits in few of plant species usually implicate potential biology significances in plant evolutions. The genus Helwingia Willd, a dioecious medical shrub in Aquifoliales order, has an odd floral architecture-epiphyllous inflorescence. The potential significances and possible evolutionary origin of this specie are not well understood due to poorly available data of biological and genetic studies. In addition, the advent of genomics-based technologies has widely revolutionized plant species with unknown genomic information. Morphological and biological pattern were detailed via anatomical and pollination analyses. An RNA sequencing based transcriptomic analysis were undertaken and a high-resolution phylogenetic analysis was conducted based on single-copy genes in more than 80 species of seed plants, including H. japonica. It is verified that a potential fusion of rachis to the leaf midvein facilitates insect pollination. RNA sequencing yielded a total of 111450 unigenes; half of them had significant similarity with proteins in the public database, and 20281 unigenes were mapped to 119 pathways. Deduced from the phylogenetic analysis based on single-copy genes, the group of Helwingia is closer with Euasterids II and rather than Euasterids, congruent with previous reports using plastid sequences. The odd flower architecture make H. Willd adapt to insect pollination by hosting those insects larger than the flower in size via leave, which has little common character that other insect pollination plants hold. Further the present transcriptome greatly riches genomics information of Helwingia species and nucleus genes based phylogenetic analysis also greatly improve the resolution and robustness of phylogenetic reconstruction in H. japonica.

  6. A study on the characterization of Propionibacterium acnes isolated from ocular clinical specimens.

    PubMed

    Sowmiya, Murali; Malathi, Jambulingam; Swarnali, Sen; Priya, Jeyavel Padma; Therese, Kulandai Lily; Madhavan, Hajib N

    2015-10-01

    There are only a few reports available on characterization of Propionibacterium acnes isolated from various ocular clinical specimens. We undertook this study to evaluate the role of P. acnes in ocular infections and biofilm production, and also do the phylogenetic analysis of the bacilli. One hundred isolates of P. acnes collected prospectively from ocular clinical specimens at a tertiary care eye hospital between January 2010 and December 2011, were studied for their association with various ocular disease conditions. The isolates were also subjected to genotyping and phylogenetic analysis, and were also tested for their ability to produce biofilms. Among preoperative conjunctival swabs, P. acnes was a probably significant pathogen in one case; a possibly significant pathogen in two cases. In other clinical conditions, 13 per cent isolates were probably significant pathogens and 38 per cent as possibly significant pathogens. The analysis of 16S rRNA gene revealed four different phylogenies whereas analysis of recA gene showed two phylogenies confirming that recA gene was more reliable than 16S rRNA with less sequence variation. Results of polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) had 100 per cent concordance with phylogenetic results. No association was seen between P. acnes subtypes and biofilm production. RecA gene phylogenetic studies revealed two different phylogenies. RFLP technique was found to be cost-effective with high sensitivity and specificity in phylogenetic analysis. No association between P. acnes subtypes and pathogenetic ability was observed. Biofilm producing isolates showed increased antibiotic resistance compared with non-biofilm producing isolates.

  7. Genomic analysis of the type VI secretion systems in Pseudomonas spp.: novel clusters and putative effectors uncovered.

    PubMed

    Barret, Matthieu; Egan, Frank; Fargier, Emilie; Morrissey, John P; O'Gara, Fergal

    2011-06-01

    Bacteria encode multiple protein secretion systems that are crucial for interaction with the environment and with hosts. In recent years, attention has focused on type VI secretion systems (T6SSs), which are specialized transporters widely encoded in Proteobacteria. The myriad of processes associated with these secretion systems could be explained by subclasses of T6SS, each involved in specialized functions. To assess diversity and predict function associated with different T6SSs, comparative genomic analysis of 34 Pseudomonas genomes was performed. This identified 70 T6SSs, with at least one locus in every strain, except for Pseudomonas stutzeri A1501. By comparing 11 core genes of the T6SS, it was possible to identify five main Pseudomonas phylogenetic clusters, with strains typically carrying T6SSs from more than one clade. In addition, most strains encode additional vgrG and hcp genes, which encode extracellular structural components of the secretion apparatus. Using a combination of phylogenetic and meta-analysis of transcriptome datasets it was possible to associate specific subsets of VgrG and Hcp proteins with each Pseudomonas T6SS clade. Moreover, a closer examination of the genomic context of vgrG genes in multiple strains highlights a number of additional genes associated with these regions. It is proposed that these genes may play a role in secretion or alternatively could be new T6S effectors.

  8. Phylogenetic and Functional Analysis of Metagenome Sequence from High-Temperature Archaeal Habitats Demonstrate Linkages between Metabolic Potential and Geochemistry

    PubMed Central

    Inskeep, William P.; Jay, Zackary J.; Herrgard, Markus J.; Kozubal, Mark A.; Rusch, Douglas B.; Tringe, Susannah G.; Macur, Richard E.; Jennings, Ryan deM.; Boyd, Eric S.; Spear, John R.; Roberto, Francisco F.

    2013-01-01

    Geothermal habitats in Yellowstone National Park (YNP) provide an unparalleled opportunity to understand the environmental factors that control the distribution of archaea in thermal habitats. Here we describe, analyze, and synthesize metagenomic and geochemical data collected from seven high-temperature sites that contain microbial communities dominated by archaea relative to bacteria. The specific objectives of the study were to use metagenome sequencing to determine the structure and functional capacity of thermophilic archaeal-dominated microbial communities across a pH range from 2.5 to 6.4 and to discuss specific examples where the metabolic potential correlated with measured environmental parameters and geochemical processes occurring in situ. Random shotgun metagenome sequence (∼40–45 Mb Sanger sequencing per site) was obtained from environmental DNA extracted from high-temperature sediments and/or microbial mats and subjected to numerous phylogenetic and functional analyses. Analysis of individual sequences (e.g., MEGAN and G + C content) and assemblies from each habitat type revealed the presence of dominant archaeal populations in all environments, 10 of whose genomes were largely reconstructed from the sequence data. Analysis of protein family occurrence, particularly of those involved in energy conservation, electron transport, and autotrophic metabolism, revealed significant differences in metabolic strategies across sites consistent with differences in major geochemical attributes (e.g., sulfide, oxygen, pH). These observations provide an ecological basis for understanding the distribution of indigenous archaeal lineages across high-temperature systems of YNP. PMID:23720654

  9. Different evolutionary trajectories of vaccine-controlled and non-controlled avian infectious bronchitis viruses in commercial poultry

    PubMed Central

    Lee, Dong-Hun

    2017-01-01

    To determine the genetic and epidemiological relationship of infectious bronchitis virus (IBV) isolates from commercial poultry to attenuated live IBV vaccines we conducted a phylogenetic network analysis on the full-length S1 sequence for Arkansas (Ark), Massachusetts (Mass) and Delmarva/1639 (DMV/1639) type viruses isolated in 2015 from clinical cases by 3 different diagnostic laboratories. Phylogenetic network analysis of Ark isolates showed two predominant groups linked by 2 mutations, consistent with subpopulations found in commercial vaccines for this IBV type. In addition, a number of satellite groups surrounding the two predominant populations were observed for the Ark type virus, which is likely due to mutations associated with the nature of this vaccine to persist in flocks. The phylogenetic network analysis of Mass-type viruses shows two groupings corresponding to different manufacturers vaccine sequences. No satellite groups were observed for Mass-type viruses, which is consistent with no persistence of this vaccine type in the field. At the time of collection, no vaccine was being used for the DMV/1639 type viruses and phylogenetic network analysis showed a dispersed network suggesting no clear change in genetic distribution. Selection pressure analysis showed that the DMV/1639 and Mass-type strains were evolving under negative selection, whereas the Ark type viruses had evolved under positive selection. This data supports the hypothesis that live attenuated vaccine usage does play a role in the genetic profile of similar IB viruses in the field and phylogenetic network analysis can be used to identify vaccine and vaccine origin isolates, which is important for our understanding of the role live vaccines play in the evolutionary trajectory of those viruses. PMID:28472110

  10. Microbial communities of the Lemon Creek Glacier show subtle structural variation yet stable phylogenetic composition over space and time

    PubMed Central

    Sheik, Cody S.; Stevenson, Emily I.; Den Uyl, Paul A.; Arendt, Carli A.; Aciego, Sarah M.; Dick, Gregory J.

    2015-01-01

    Glaciers are geologically important yet transient ecosystems that support diverse, biogeochemically significant microbial communities. During the melt season glaciers undergo dramatic physical, geochemical, and biological changes that exert great influence on downstream biogeochemical cycles. Thus, we sought to understand the temporal melt-season dynamics of microbial communities and associated geochemistry at the terminus of Lemon Creek Glacier (LCG) in coastal southern Alaska. Due to late season snowfall, sampling of LCG occurred in three interconnected areas: proglacial Lake Thomas, the lower glacial outflow stream, and the glacier’s terminus. LCG associated microbial communities were phylogenetically diverse and varied by sampling location. However, Betaproteobacteria, Alphaproteobacteria, and Bacteroidetes dominated communities at all sampling locations. Strict anaerobic groups such as methanogens, SR1, and OP11 were also recovered from glacier outflows, indicating anoxic conditions in at least some portions of the LCG subglacial environment. Microbial community structure was significantly correlated with sampling location and sodium concentrations. Microbial communities sampled from terminus outflow waters exhibited day-to-day fluctuation in taxonomy and phylogenetic similarity. However, these communities were not significantly different from randomly constructed communities from all three sites. These results indicate that glacial outflows share a large proportion of phylogenetic overlap with downstream environments and that the observed significant shifts in community structure are driven by changes in relative abundance of different taxa, and not complete restructuring of communities. We conclude that LCG glacial discharge hosts a diverse and relatively stable microbiome that shifts at fine taxonomic scales in response to geochemistry and likely water residence time. PMID:26042114

  11. Comparison of microbial taxonomic and functional shift pattern along contamination gradient.

    PubMed

    Ren, Youhua; Niu, Jiaojiao; Huang, Wenkun; Peng, Deliang; Xiao, Yunhua; Zhang, Xian; Liang, Yili; Liu, Xueduan; Yin, Huaqun

    2016-06-14

    The interaction mechanism between microbial communities and environment is a key issue in microbial ecology. Microbial communities usually change significantly under environmental stress, which has been studied both phylogenetically and functionally, however which method is more effective in assessing the relationship between microbial communities shift and environmental changes still remains controversial. By comparing the microbial taxonomic and functional shift pattern along heavy metal contamination gradient, we found that both sedimentary composition and function shifted significantly along contamination gradient. For example, the relative abundance of Geobacter and Fusibacter decreased along contamination gradient (from high to low), while Janthinobacterium and Arthrobacter increased their abundances. Most genes involved in heavy metal resistance (e.g., metc, aoxb and mer) showed higher intensity in sites with higher concentration of heavy metals. Comparing the two shift patterns, there were correlations between them, because functional and phylogenetic β-diversities were significantly correlated, and many heavy metal resistance genes were derived from Geobacter, explaining their high abundance in heavily contaminated sites. However, there was a stronger link between functional composition and environmental drivers, while stochasticity played an important role in formation and succession of phylogenetic composition demonstrated by null model test. Overall our research suggested that the responses of functional traits depended more on environmental changes, while stochasticity played an important role in formation and succession of phylogenetic composition for microbial communities. So profiling microbial functional composition seems more appropriate to study the relationship between microbial communities and environment, as well as explore the adaptation and remediation mechanism of microbial communities to heavy metal contamination.

  12. A case of methicillin-resistant Staphylococcus aureus wound infection: phylogenetic analysis to establish if nosocomial or community acquired.

    PubMed

    Cancilleri, Francesco; Ciccozzi, Massimo; Fogolari, Marta; Cella, Eleonora; De Florio, Lucia; Berton, Alessandra; Salvatore, Giuseppe; Dicuonzo, Giordano; Spoto, Silvia; Denaro, Vincenzo; Angeletti, Silvia

    2018-05-01

    Methicillin-resistant Staphylococcus aureus (MRSA) infection is rapidly increasing in both hospital and community settings. A 71-year-old man admitted at the Department of Orthopaedics and Trauma Surgery, University Campus Bio-Medico of Rome, with MRSA wound infection consequent to orthopedic surgery was studied and the MRSA transmission evaluated by phylogenetic analysis.

  13. Complete mitochondrial genome of Cuora trifasciata (Chinese three-striped box turtle), and a comparative analysis with other box turtles.

    PubMed

    Li, Wei; Zhang, Xin-Cheng; Zhao, Jian; Shi, Yan; Zhu, Xin-Ping

    2015-01-25

    Cuora trifasciata has become one of the most critically endangered species in the world. The complete mitochondrial genome of C. trifasciata (Chinese three-striped box turtle) was determined in this study. Its mitochondrial genome is a 16,575-bp-long circular molecule that consists of 37 genes that are typically found in other vertebrates. And the basic characteristics of the C. trifasciata mitochondrial genome were also determined. Moreover, a comparison of C. trifasciata with Cuora cyclornata, Cuora pani and Cuora aurocapitata indicated that the four mitogenomics differed in length, codons, overlaps, 13 protein-coding genes (PCGs), ND3, rRNA genes, control region, and other aspects. Phylogenetic analysis with Bayesian inference and maximum likelihood based on 12 protein-coding genes of the genus Cuora indicated the phylogenetic position of C. trifasciata within Cuora. The phylogenetic analysis also showed that C. trifasciata from Vietnam and China formed separate monophyletic clades with different Cuora species. The results of nucleotide base compositions, protein-coding genes and phylogenetic analysis showed that C. trifasciata from these two countries may represent different Cuora species. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. A Phylogenetic and Phenotypic Analysis of Salmonella enterica Serovar Weltevreden, an Emerging Agent of Diarrheal Disease in Tropical Regions

    PubMed Central

    Makendi, Carine; Page, Andrew J.; Wren, Brendan W.; Le Thi Phuong, Tu; Clare, Simon; Hale, Christine; Goulding, David; Klemm, Elizabeth J.; Pickard, Derek; Okoro, Chinyere; Hunt, Martin; Thompson, Corinne N.; Phu Huong Lan, Nguyen; Tran Do Hoang, Nhu; Thwaites, Guy E.; Le Hello, Simon; Brisabois, Anne; Weill, François-Xavier; Baker, Stephen; Dougan, Gordon

    2016-01-01

    Salmonella enterica serovar Weltevreden (S. Weltevreden) is an emerging cause of diarrheal and invasive disease in humans residing in tropical regions. Despite the regional and international emergence of this Salmonella serovar, relatively little is known about its genetic diversity, genomics or virulence potential in model systems. Here we used whole genome sequencing and bioinformatics analyses to define the phylogenetic structure of a diverse global selection of S. Weltevreden. Phylogenetic analysis of more than 100 isolates demonstrated that the population of S. Weltevreden can be segregated into two main phylogenetic clusters, one associated predominantly with continental Southeast Asia and the other more internationally dispersed. Subcluster analysis suggested the local evolution of S. Weltevreden within specific geographical regions. Four of the isolates were sequenced using long read sequencing to produce high quality reference genomes. Phenotypic analysis in Hep-2 cells and in a murine infection model indicated that S. Weltevreden were significantly attenuated in these models compared to the classical S. Typhimurium reference strain SL1344. Our work outlines novel insights into this important emerging pathogen and provides a baseline understanding for future research studies. PMID:26867150

  15. A gateway for phylogenetic analysis powered by grid computing featuring GARLI 2.0.

    PubMed

    Bazinet, Adam L; Zwickl, Derrick J; Cummings, Michael P

    2014-09-01

    We introduce molecularevolution.org, a publicly available gateway for high-throughput, maximum-likelihood phylogenetic analysis powered by grid computing. The gateway features a garli 2.0 web service that enables a user to quickly and easily submit thousands of maximum likelihood tree searches or bootstrap searches that are executed in parallel on distributed computing resources. The garli web service allows one to easily specify partitioned substitution models using a graphical interface, and it performs sophisticated post-processing of phylogenetic results. Although the garli web service has been used by the research community for over three years, here we formally announce the availability of the service, describe its capabilities, highlight new features and recent improvements, and provide details about how the grid system efficiently delivers high-quality phylogenetic results. © The Author(s) 2014. Published by Oxford University Press, on behalf of the Society of Systematic Biologists.

  16. Leaf wax composition and carbon isotopes vary among major conifer groups

    NASA Astrophysics Data System (ADS)

    Diefendorf, Aaron F.; Leslie, Andrew B.; Wing, Scott L.

    2015-12-01

    Leaf waxes (e.g. n-alkanes, n-alkanoic acids) and their carbon isotopes (δ13C) are commonly used to track past changes in the carbon cycle, water availability, and plant ecophysiology. Previous studies indicated that conifers have lower n-alkane concentrations than angiosperms and that 13C fractionation during n-alkane synthesis (εn-alkane) is smaller than in angiosperms. These prior studies, however, sampled a limited phylogenetic and geographic subset of conifers, leaving out many important subtropical and Southern Hemisphere groups that were once widespread and common components of fossil assemblages. To expand on previous work, we collected 43 conifer species (and Ginkgo biloba) from the University of California Botanical Garden at Berkeley, sampling all extant conifer families and almost two-thirds of extant genera. We find that Pinaceae, including many North American species used in previous studies, have very low or no n-alkanes. However, other conifer groups have significant concentrations of n-alkanes, especially Southern Hemisphere Araucariaceae and Podocarpaceae (monkey puzzles, Norfolk Island pines, and yellowwoods), and many species of Cupressaceae (junipers and relatives). Within the Cupressaceae, we find total n-alkane concentrations are high in subfamilies Cupressoideae and Callitroideae, but significantly lower in the early diverging taxodioid lineages (including bald cypress and redwood). Individual n-alkane chain lengths have a weak phylogenetic signal, except for n-C29 alkane, but when combined using average chain length (ACL), a strong phylogenetic signal emerges. The strong phylogenetic signal in ACL, observed in the context of a common growth environment for all plants we sampled, suggests that ACL is strongly influenced by factors other than climate. An analysis of εn-alkane indicates a strong phylogenetic signal in which the smallest biosynthetic fractionation occurs in Pinaceae and the largest in Taxaceae (yews and relatives). The relationship between phylogeny and εn-alkane may be related to differences in carbon metabolism among conifer clades. These results have important implications for interpreting n-alkane δ13C values in sedimentary archives, especially outside of North America.

  17. Diverse circovirus-like genome architectures revealed by environmental metagenomics.

    PubMed

    Rosario, Karyna; Duffy, Siobain; Breitbart, Mya

    2009-10-01

    Single-stranded DNA (ssDNA) viruses with circular genomes are the smallest viruses known to infect eukaryotes. The present study identified 10 novel genomes similar to ssDNA circoviruses through data-mining of public viral metagenomes. The metagenomic libraries included samples from reclaimed water and three different marine environments (Chesapeake Bay, British Columbia coastal waters and Sargasso Sea). All the genomes have similarities to the replication (Rep) protein of circoviruses; however, only half have genomic features consistent with known circoviruses. Some of the genomes exhibit a mixture of genomic features associated with different families of ssDNA viruses (i.e. circoviruses, geminiviruses and parvoviruses). Unique genome architectures and phylogenetic analysis of the Rep protein suggest that these viruses belong to novel genera and/or families. Investigating the complex community of ssDNA viruses in the environment can lead to the discovery of divergent species and help elucidate evolutionary links between ssDNA viruses.

  18. On the phylogenetic placement of human T cell leukemia virus type 1 sequences associated with an Andean mummy.

    PubMed

    Coulthart, Michael B; Posada, David; Crandall, Keith A; Dekaban, Gregory A

    2006-03-01

    Recently, the putative finding of ancient human T cell leukemia virus type 1 (HTLV-1) long terminal repeat (LTR) DNA sequences in association with a 1500-year-old Chilean mummy has stirred vigorous debate. The debate is based partly on the inherent uncertainties associated with phylogenetic reconstruction when only short sequences of closely related genotypes are available. However, a full analysis of what phylogenetic information is present in the mummy data has not previously been published, leaving open the question of what precisely is the range of admissible interpretation. To fulfill this need, we re-analyzed the mummy data in a new way. We first performed phylogenetic analysis of 188 published LTR DNA sequences from extant strains belonging to the HTLV-1 Cosmopolitan clade, using the method of statistical parsimony which is designed both to optimize phylogenetic resolution among sequences with little evolutionary divergence, and to permit precise mapping of individual sequence mutations onto branches of a divergence network. We then deduced possible phylogenetic positions for the two main categories of published Chilean mummy sequences, based on their published 157-nucleotide LTR sequences. The possible phylogenetic placements for one of the mummy sequence categories are consistent with a modern origin. However, one of these placements for the other mummy sequence category falls very close to the root of the Cosmopolitan clade, consistent with an ancient origin for both this mummy sequence and the Cosmopolitan clade.

  19. Reticulate evolutionary history and extensive introgression in mosquito species revealed by phylogenetic network analysis

    PubMed Central

    Wen, Dingqiao; Yu, Yun; Hahn, Matthew W.; Nakhleh, Luay

    2016-01-01

    The role of hybridization and subsequent introgression has been demonstrated in an increasing number of species. Recently, Fontaine et al. (Science, 347, 2015, 1258524) conducted a phylogenomic analysis of six members of the Anopheles gambiae species complex. Their analysis revealed a reticulate evolutionary history and pointed to extensive introgression on all four autosomal arms. The study further highlighted the complex evolutionary signals that the co-occurrence of incomplete lineage sorting (ILS) and introgression can give rise to in phylogenomic analyses. While tree-based methodologies were used in the study, phylogenetic networks provide a more natural model to capture reticulate evolutionary histories. In this work, we reanalyse the Anopheles data using a recently devised framework that combines the multispecies coalescent with phylogenetic networks. This framework allows us to capture ILS and introgression simultaneously, and forms the basis for statistical methods for inferring reticulate evolutionary histories. The new analysis reveals a phylogenetic network with multiple hybridization events, some of which differ from those reported in the original study. To elucidate the extent and patterns of introgression across the genome, we devise a new method that quantifies the use of reticulation branches in the phylogenetic network by each genomic region. Applying the method to the mosquito data set reveals the evolutionary history of all the chromosomes. This study highlights the utility of ‘network thinking’ and the new insights it can uncover, in particular in phylogenomic analyses of large data sets with extensive gene tree incongruence. PMID:26808290

  20. Ecosystem Functions across Trophic Levels Are Linked to Functional and Phylogenetic Diversity

    PubMed Central

    Thompson, Patrick L.; Davies, T. Jonathan; Gonzalez, Andrew

    2015-01-01

    In experimental systems, it has been shown that biodiversity indices based on traits or phylogeny can outperform species richness as predictors of plant ecosystem function. However, it is unclear whether this pattern extends to the function of food webs in natural ecosystems. Here we tested whether zooplankton functional and phylogenetic diversity explains the functioning of 23 natural pond communities. We used two measures of ecosystem function: (1) zooplankton community biomass and (2) phytoplankton abundance (Chl a). We tested for diversity-ecosystem function relationships within and across trophic levels. We found a strong correlation between zooplankton diversity and ecosystem function, whereas local environmental conditions were less important. Further, the positive diversity-ecosystem function relationships were more pronounced for measures of functional and phylogenetic diversity than for species richness. Zooplankton and phytoplankton biomass were best predicted by different indices, suggesting that the two functions are dependent upon different aspects of diversity. Zooplankton community biomass was best predicted by zooplankton trait-based functional richness, while phytoplankton abundance was best predicted by zooplankton phylogenetic diversity. Our results suggest that the positive relationship between diversity and ecosystem function can extend across trophic levels in natural environments, and that greater insight into variation in ecosystem function can be gained by combining functional and phylogenetic diversity measures. PMID:25693188

  1. Stochastic assembly in a subtropical forest chronosequence: evidence from contrasting changes of species, phylogenetic and functional dissimilarity over succession.

    PubMed

    Mi, Xiangcheng; Swenson, Nathan G; Jia, Qi; Rao, Mide; Feng, Gang; Ren, Haibao; Bebber, Daniel P; Ma, Keping

    2016-09-07

    Deterministic and stochastic processes jointly determine the community dynamics of forest succession. However, it has been widely held in previous studies that deterministic processes dominate forest succession. Furthermore, inference of mechanisms for community assembly may be misleading if based on a single axis of diversity alone. In this study, we evaluated the relative roles of deterministic and stochastic processes along a disturbance gradient by integrating species, functional, and phylogenetic beta diversity in a subtropical forest chronosequence in Southeastern China. We found a general pattern of increasing species turnover, but little-to-no change in phylogenetic and functional turnover over succession at two spatial scales. Meanwhile, the phylogenetic and functional beta diversity were not significantly different from random expectation. This result suggested a dominance of stochastic assembly, contrary to the general expectation that deterministic processes dominate forest succession. On the other hand, we found significant interactions of environment and disturbance and limited evidence for significant deviations of phylogenetic or functional turnover from random expectations for different size classes. This result provided weak evidence of deterministic processes over succession. Stochastic assembly of forest succession suggests that post-disturbance restoration may be largely unpredictable and difficult to control in subtropical forests.

  2. Ecosystem functions across trophic levels are linked to functional and phylogenetic diversity.

    PubMed

    Thompson, Patrick L; Davies, T Jonathan; Gonzalez, Andrew

    2015-01-01

    In experimental systems, it has been shown that biodiversity indices based on traits or phylogeny can outperform species richness as predictors of plant ecosystem function. However, it is unclear whether this pattern extends to the function of food webs in natural ecosystems. Here we tested whether zooplankton functional and phylogenetic diversity explains the functioning of 23 natural pond communities. We used two measures of ecosystem function: (1) zooplankton community biomass and (2) phytoplankton abundance (Chl a). We tested for diversity-ecosystem function relationships within and across trophic levels. We found a strong correlation between zooplankton diversity and ecosystem function, whereas local environmental conditions were less important. Further, the positive diversity-ecosystem function relationships were more pronounced for measures of functional and phylogenetic diversity than for species richness. Zooplankton and phytoplankton biomass were best predicted by different indices, suggesting that the two functions are dependent upon different aspects of diversity. Zooplankton community biomass was best predicted by zooplankton trait-based functional richness, while phytoplankton abundance was best predicted by zooplankton phylogenetic diversity. Our results suggest that the positive relationship between diversity and ecosystem function can extend across trophic levels in natural environments, and that greater insight into variation in ecosystem function can be gained by combining functional and phylogenetic diversity measures.

  3. Molecular taxonomy and phylogenetic position of lactic acid bacteria.

    PubMed

    Stackebrandt, E; Teuber, M

    1988-03-01

    Lactic acid bacteria, important in food technology, are Gram-positive organisms exhibiting a DNA G + C content of less than 50 mol%. Phylogenetically they are members of the Clostridium-Bacillus subdivision of Gram-positive eubacteria. Lactobacillus and streptococci together with related facultatively anaerobic taxa evolved as individual lines of descent about 1.5-2 billion years ago when the earth passed from an anaerobic to an aerobic environment. In contrast to the traditional, morphology-based classification, the genus Lactobacillus is intermixed with strains of Pediococcus and Leuconostoc. Similarly, the physiology-based clustering of lactobacilli into Thermo-, Strepto- and Betabacterium does not agree with their phylogenetic relationships. On the other hand, the phenotypically defined genus Streptococcus is not a phylogenetic coherent genus but its members fall into at least 3 moderately related genera, i.e. Streptococcus, Lactococcus and Enterococcus. The genus Bifidobacterium, frequently grouped with the lactobacilli, is the most ancient group of the second, the Actinomycetes subdivision of the Gram-positive eubacteria. In addition, propionibacteria, microbacteria and brevibacteria belong to this subdivision but the latter organisms appear as offshoots of non-lactic acid bacteria.

  4. Arbuscular mycorrhizal fungal communities are phylogenetically clustered at small scales

    PubMed Central

    Horn, Sebastian; Caruso, Tancredi; Verbruggen, Erik; Rillig, Matthias C; Hempel, Stefan

    2014-01-01

    Next-generation sequencing technologies with markers covering the full Glomeromycota phylum were used to uncover phylogenetic community structure of arbuscular mycorrhizal fungi (AMF) associated with Festuca brevipila. The study system was a semi-arid grassland with high plant diversity and a steep environmental gradient in pH, C, N, P and soil water content. The AMF community in roots and rhizosphere soil were analyzed separately and consisted of 74 distinct operational taxonomic units (OTUs) in total. Community-level variance partitioning showed that the role of environmental factors in determining AM species composition was marginal when controlling for spatial autocorrelation at multiple scales. Instead, phylogenetic distance and spatial distance were major correlates of AMF communities: OTUs that were more closely related (and which therefore may have similar traits) were more likely to co-occur. This pattern was insensitive to phylogenetic sampling breadth. Given the minor effects of the environment, we propose that at small scales closely related AMF positively associate through biotic factors such as plant-AMF filtering and interactions within the soil biota. PMID:24824667

  5. SigTree: A Microbial Community Analysis Tool to Identify and Visualize Significantly Responsive Branches in a Phylogenetic Tree.

    PubMed

    Stevens, John R; Jones, Todd R; Lefevre, Michael; Ganesan, Balasubramanian; Weimer, Bart C

    2017-01-01

    Microbial community analysis experiments to assess the effect of a treatment intervention (or environmental change) on the relative abundance levels of multiple related microbial species (or operational taxonomic units) simultaneously using high throughput genomics are becoming increasingly common. Within the framework of the evolutionary phylogeny of all species considered in the experiment, this translates to a statistical need to identify the phylogenetic branches that exhibit a significant consensus response (in terms of operational taxonomic unit abundance) to the intervention. We present the R software package SigTree , a collection of flexible tools that make use of meta-analysis methods and regular expressions to identify and visualize significantly responsive branches in a phylogenetic tree, while appropriately adjusting for multiple comparisons.

  6. The utility of DNA sequences of an intron from the beta-fibrinogen gene in phylogenetic analysis of woodpeckers (Aves: Picidae).

    PubMed

    Prychitko, T M; Moore, W S

    1997-10-01

    Estimating phylogenies from DNA sequence data has become the major methodology of molecular phylogenetics. To date, molecular phylogenetics of the vertebrates has been very dependent on mtDNA, but studies involving mtDNA are limited because the several genes comprising the mt-genome are inherited as a single linkage group. The only apparent solution to this problem is to sequence additional genes, each representing a distinct linkage group, so that the resultant gene trees provide independent estimates of the species tree. There exists the need to find novel gene sequences which contain enough phylogenetic information to resolve relationships between closely related species. A possible source is the nuclear-encoded introns, because they evolve more rapidly than exons. We designed primers to amplify and sequence the 7 intron from the beta-fibrinogen gene for a recently evolved group, the woodpeckers. We sequenced the entire intron for 10 specimens representing five species. Nucleotide substitutions are randomly distributed along the length of the intron, suggesting selective neutrality. A preliminary analysis indicates that the phylogenetic signal in the intron is as strong as that in the mitochondrial encoded cytochrome b (cyt b) gene. The topology of the beta-fibrinogen tree is identical to that of the cyt b tree. This analysis demonstrates the ability of the 7 intron of beta-fibrinogen to provide well resolved, independent gene trees for recently evolved groups and establishes it as a source of sequences to be used in other phylogenetic studies. Copyright 1997 Academic Press

  7. Molecular characterization and phylogenetic inferences of Dermanyssus gallinae isolates in Italy within an European framework.

    PubMed

    Marangi, M; Cantacessi, C; Sparagano, O A E; Camarda, A; Giangaspero, A

    2014-12-01

    In order to investigate the genetic relationships between Dermanyssus gallinae (Metastigmata: Dermanyssidae) (de Geer) isolates from poultry farms in Italy and other European countries, phylogenetic analysis was performed using a portion of the cytochrome c oxidase subunit 1 (cox1) gene of the mitochondrial DNA and the internal transcribed spacers (ITS1+5.8S+ITS2) of the ribosomal DNA. A total of 360 cox1 sequences and 360 ITS+ sequences were obtained from mites collected on 24 different poultry farms in 10 different regions of Northern and Southern Italy. Phylogenetic analysis of the cox1 sequences resulted in the clustering of two groups (A and B), whereas phylogenetic analysis of the ITS+ resulted in largely unresolved clusters. Knowledge of the genetic make-up of mite populations within countries, together with comparative analyses of D. gallinae isolates from different countries, will provide better understanding of the population dynamics of D. gallinae. This will also allow the identification of genetic markers of emerging acaricide resistance and the development of alternative strategies for the prevention and treatment of infestations. © 2014 The Royal Entomological Society.

  8. An evolutionary analysis of the GH57 amylopullulanases based on the DOMON_glucodextranase_like domains.

    PubMed

    Jiao, Yu-Liang; Wang, Shu-Jun; Lv, Ming-Sheng; Fang, Yao-Wei; Liu, Shu

    2013-03-01

    Thermostable amylopullulanase (TAPU) is valuable in starch saccharification industry for its capability to catalyze both α-1,4 and α-1,6 glucosidic bonds under the industrial starch liquefication condition. The majority of TAPUs belong to glycoside hydrolase family 57 (GH57). In this study, we performed a phylogenetic analysis of GH57 amylopullulanase (APU) based on the highly conserved DOMON_glucodextranase_like (DDL) domain and classified APUs according to their multidomain architectures, phylogenetic analysis and enzymatic characters. This study revealed that amylopullulanase, pullulanase, andα-amylase had passed through a long joint evolution process, in which DDL played an important role. The phylogenetic analysis of DDL domain showed that the GH57 APU is directly sharing a common ancestor with pullulanase, and the DDL domains in some species undergo evolution scenarios such as domain duplication and recombination. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. NAC transcription factor genes: genome-wide identification, phylogenetic, motif and cis-regulatory element analysis in pigeonpea (Cajanus cajan (L.) Millsp.).

    PubMed

    Satheesh, Viswanathan; Jagannadham, P Tej Kumar; Chidambaranathan, Parameswaran; Jain, P K; Srinivasan, R

    2014-12-01

    The NAC (NAM, ATAF and CUC) proteins are plant-specific transcription factors implicated in development and stress responses. In the present study 88 pigeonpea NAC genes were identified from the recently published draft genome of pigeonpea by using homology based and de novo prediction programmes. These sequences were further subjected to phylogenetic, motif and promoter analyses. In motif analysis, highly conserved motifs were identified in the NAC domain and also in the C-terminal region of the NAC proteins. A phylogenetic reconstruction using pigeonpea, Arabidopsis and soybean NAC genes revealed 33 putative stress-responsive pigeonpea NAC genes. Several stress-responsive cis-elements were identified through in silico analysis of the promoters of these putative stress-responsive genes. This analysis is the first report of NAC gene family in pigeonpea and will be useful for the identification and selection of candidate genes associated with stress tolerance.

  10. Trichoderma stromaticum and its overseas relatives

    USDA-ARS?s Scientific Manuscript database

    Trichoderma stromaticum, T. rossicum and newly discovered species form a new lineage in Trichoderma. Phylogenetic and phenotypic diversity in Trichoderma stromaticum are examined in light of reported differences in ecological parameters and AFLP patterns. Multilocus phylogenetic analysis using 4 gen...

  11. BioRuby: bioinformatics software for the Ruby programming language.

    PubMed

    Goto, Naohisa; Prins, Pjotr; Nakao, Mitsuteru; Bonnal, Raoul; Aerts, Jan; Katayama, Toshiaki

    2010-10-15

    The BioRuby software toolkit contains a comprehensive set of free development tools and libraries for bioinformatics and molecular biology, written in the Ruby programming language. BioRuby has components for sequence analysis, pathway analysis, protein modelling and phylogenetic analysis; it supports many widely used data formats and provides easy access to databases, external programs and public web services, including BLAST, KEGG, GenBank, MEDLINE and GO. BioRuby comes with a tutorial, documentation and an interactive environment, which can be used in the shell, and in the web browser. BioRuby is free and open source software, made available under the Ruby license. BioRuby runs on all platforms that support Ruby, including Linux, Mac OS X and Windows. And, with JRuby, BioRuby runs on the Java Virtual Machine. The source code is available from http://www.bioruby.org/. katayama@bioruby.org

  12. RECONSTRUCTING THE ORIGINS OF HIGH-ALPINE NICHES AND CUSHION LIFE FORM IN THE GENUS ANDROSACE S.L. (PRIMULACEAE)

    PubMed Central

    Boucher, Florian C.; Thuiller, Wilfried; Roquet, Cristina; Douzet, Rolland; Aubert, Serge; Alvarez, Nadir; Lavergne, Sébastien

    2014-01-01

    Relatively, few species have been able to colonize extremely cold alpine environments. We investigate the role played by the cushion life form in the evolution of climatic niches in the plant genus Androsace s.l., which spreads across the mountain ranges of the Northern Hemisphere. Using robust methods that account for phylogenetic uncertainty, intraspecific variability of climatic requirements and different life-history evolution scenarios, we show that climatic niches of Androsace s.l. exhibit low phylogenetic signal and that they evolved relatively recently and punctually. Models of niche evolution fitted onto phylogenies show that the cushion life form has been a key innovation providing the opportunity to occupy extremely cold environments, thus contributing to rapid climatic niche diversification in the genus Androsace s.l. We then propose a plausible scenario for the adaptation of plants to alpine habitats. PMID:22486702

  13. Comparative cytogenetic analysis of some species of the Dendropsophus microcephalus group (Anura, Hylidae) in the light of phylogenetic inferences

    PubMed Central

    2013-01-01

    Background Dendropsophus is a monophyletic anuran genus with a diploid number of 30 chromosomes as an important synapomorphy. However, the internal phylogenetic relationships of this genus are poorly understood. Interestingly, an intriguing interspecific variation in the telocentric chromosome number has been useful in species identification. To address certain uncertainties related to one of the species groups of Dendropsophus, the D. microcephalus group, we carried out a cytogenetic analysis combined with phylogenetic inferences based on mitochondrial sequences, which aimed to aid in the analysis of chromosomal characters. Populations of Dendropsophus nanus, Dendropsophus walfordi, Dendropsophus sanborni, Dendropsophus jimi and Dendropsophus elianeae, ranging from the extreme south to the north of Brazil, were cytogenetically compared. A mitochondrial region of the ribosomal 12S gene from these populations, as well as from 30 other species of Dendropsophus, was used for the phylogenetic inferences. Phylogenetic relationships were inferred using maximum parsimony and Bayesian analyses. Results The species D. nanus and D. walfordi exhibited identical karyotypes (2n = 30; FN = 52), with four pairs of telocentric chromosomes and a NOR located on metacentric chromosome pair 13. In all of the phylogenetic hypotheses, the paraphyly of D. nanus and D. walfordi was inferred. D. sanborni from Botucatu-SP and Torres-RS showed the same karyotype as D. jimi, with 5 pairs of telocentric chromosomes (2n = 30; FN = 50) and a terminal NOR in the long arm of the telocentric chromosome pair 12. Despite their karyotypic similarity, these species were not found to compose a monophyletic group. Finally, the phylogenetic and cytogenetic analyses did not cluster the specimens of D. elianeae according to their geographical occurrence or recognized morphotypes. Conclusions We suggest that a taxonomic revision of the taxa D. nanus and D. walfordi is quite necessary. We also observe that the number of telocentric chromosomes is useful to distinguish among valid species in some cases, although it is unchanged in species that are not necessarily closely related phylogenetically. Therefore, inferences based on this chromosomal character must be made with caution; a proper evolutionary analysis of the karyotypic variation in Dendropsophus depends on further characterization of the telocentric chromosomes found in this group. PMID:23822759

  14. Reconstruction of the feeding apparatus in Postgaardi mariagerensis provides evidence for character evolution within the Symbiontida (Euglenozoa).

    PubMed

    Yubuki, Naoji; Simpson, Alastair G B; Leander, Brian S

    2013-01-01

    Microbial eukaryotes living in low oxygen environments often have novel physiological and morphological features that facilitate symbiotic relationships with bacteria and other means for acquiring nutrients. Comparative studies of these features provide evidence for phylogenetic relationships and evolutionary history. Postgaardi mariagerensis, for instance, is a euglenozoan that lives in low oxygen environments and is enveloped by episymbiotic bacteria. The general ultrastructure of P. mariagerensis was described more than a decade ago and no further studies have been carried out since, mainly because these cells are difficult to obtain. Postgaardi lacks the diagnostic features found in other major euglenozoan lineages (e.g., pellicle strips and kinetoplast-like mitochondrial inclusions) and no molecular data are available, so the phylogenetic position of this genus within the Euglenozoa remains unclear. We re-examined and reconstructed the ultrastructural organization of the feeding apparatus in Postgaardi by serial sectioning an existing block of resin-embedded cells. Postgaardi possesses distinctive finger-like projections within the feeding apparatus; this system has only been found in one other highly distinctive flagellate, namely the symbiontid Calkinsia. Detailed comparisons of the cytoskeleton in Postgaardi and in two symbiontids, Calkinsia and Bihospites, provided new evidence for phylogenetic relationships and character evolution in all three genera. Copyright © 2012 Elsevier GmbH. All rights reserved.

  15. Repeated evolution of amphibious behavior in fish and its implications for the colonization of novel environments.

    PubMed

    Ord, Terry J; Cooke, Georgina M

    2016-08-01

    We know little about on how frequently transitions into new habitats occur, especially the colonization of novel environments that are the most likely to instigate adaptive evolution. One of the most extreme ecological transitions has been the shift in habitat associated with the move from water to land by amphibious fish. We provide the first phylogenetic investigation of these transitions for living fish. Thirty-three families have species reported to be amphibious and these are likely independent evolutionary origins of fish emerging onto land. Phylogenetic reconstructions of closely related taxa within one of these families, the Blenniidae, inferred as many as seven convergences on a highly amphibious lifestyle. Taken together, there appear to be few constraints on fish emerging onto land given amphibious behavior has evolved repeatedly many times across ecologically diverse families. The colonization of novel habitats by other taxa resulting in less dramatic changes in environment should be equally, if not, more frequent in nature, providing an important prerequisite for subsequent adaptive differentiation. © 2016 The Author(s). Evolution © 2016 The Society for the Study of Evolution.

  16. The ins and outs of algal metal transport

    PubMed Central

    Blaby-Haas, Crysten E.; Merchant, Sabeeha S.

    2012-01-01

    Metal transporters are a central component in the interaction of algae with their environment. They represent the first line of defense to cellular perturbations in metal concentration, and by analyzing algal metal transporter repertoires, we gain insight into a fundamental aspect of algal biology. The ability of individual algae to thrive in environments with unique geochemistry, compared to non-algal species commonly used as reference organisms for metal homeostasis, provides an opportunity to broaden our understanding of biological metal requirements, preferences and trafficking. Chlamydomonas reinhardtii is the best developed reference organism for the study of algal biology, especially with respect to metal metabolism; however, the diversity of algal niches necessitates a comparative genomic analysis of all sequenced algal genomes. A comparison between known and putative proteins in animals, plants, fungi and algae using protein similarity networks has revealed the presence of novel metal metabolism components in Chlamydomonas including new iron and copper transporters. This analysis also supports the concept that, in terms of metal metabolism, algae from similar niches are more related to one another than to algae from the same phylogenetic clade. PMID:22569643

  17. The problem and promise of scale dependency in community phylogenetics.

    PubMed

    Swenson, Nathan G; Enquist, Brian J; Pither, Jason; Thompson, Jill; Zimmerman, Jess K

    2006-10-01

    The problem of scale dependency is widespread in investigations of ecological communities. Null model investigations of community assembly exemplify the challenges involved because they typically include subjectively defined "regional species pools." The burgeoning field of community phylogenetics appears poised to face similar challenges. Our objective is to quantify the scope of the problem of scale dependency by comparing the phylogenetic structure of assemblages across contrasting geographic and taxonomic scales. We conduct phylogenetic analyses on communities within three tropical forests, and perform a sensitivity analysis with respect to two scaleable inputs: taxonomy and species pool size. We show that (1) estimates of phylogenetic overdispersion within local assemblages depend strongly on the taxonomic makeup of the local assemblage and (2) comparing the phylogenetic structure of a local assemblage to a species pool drawn from increasingly larger geographic scales results in an increased signal of phylogenetic clustering. We argue that, rather than posing a problem, "scale sensitivities" are likely to reveal general patterns of diversity that could help identify critical scales at which local or regional influences gain primacy for the structuring of communities. In this way, community phylogenetics promises to fill an important gap in community ecology and biogeography research.

  18. Three different [NiFe] hydrogenases confer metabolic flexibility in the obligate aerobe Mycobacterium smegmatis.

    PubMed

    Berney, Michael; Greening, Chris; Hards, Kiel; Collins, Desmond; Cook, Gregory M

    2014-01-01

    Mycobacterium smegmatis is an obligate aerobe that harbours three predicted [NiFe] hydrogenases, Hyd1 (MSMEG_2262–2263), Hyd2 (MSMEG_2720-2719) and Hyd3 (MSMEG_3931-3928). We show here that these three enzymes differ in their phylogeny, regulation and catalytic activity. Phylogenetic analysis revealed that Hyd1 groups with hydrogenases that oxidize H2 produced by metabolic processes, and Hyd2 is homologous to a novel group of putative high-affinity hydrogenases. Hyd1 and Hyd2 respond to carbon and oxygen limitation, and, in the case of Hyd1, hydrogen supplementation. Hydrogen consumption measurements confirmed that both enzymes can oxidize hydrogen. In contrast, the phylogenetic analysis and activity measurements of Hyd3 are consistent with the enzyme evolving hydrogen. Hyd3 is controlled by DosR, a regulator that responds to hypoxic conditions. The strict dependence of hydrogen oxidation of Hyd1 and Hyd2 on oxygen suggests that the enzymes are oxygen tolerant and linked to the respiratory chain. This unique combination of hydrogenases allows M. smegmatis to oxidize hydrogen at high (Hyd1) and potentially tropospheric (Hyd2) concentrations, as well as recycle reduced equivalents by evolving hydrogen (Hyd3). The distribution of these hydrogenases throughout numerous soil and marine species of actinomycetes suggests that oxic hydrogen metabolism provides metabolic flexibility in environments with changing nutrient fluxes.

  19. Novel Henneguya spp. (Cnidaria: Myxozoa) from cichlid fish in the Amazon basin cluster by geographic origin.

    PubMed

    Zatti, Suellen Aparecida; Atkinson, Stephen D; Maia, Antônio A M; Bartholomew, Jerri L; Adriano, Edson A

    2018-03-01

    We describe three new Henneguya spp. (Myxobolidae) found parasitizing two species of cichlid fish from the Amazon basin, Brazil: H. tucunarei n. sp. from gill filaments of Cichla monoculus and H. tapajoensis n. sp. from gill filaments of Cichla pinima, both from the Tapajós River, Pará State and H. jariensis n. sp. in the fins of Cichla monoculus from the Jari River, Amapá State. We based descriptions on myxospore morphology and small subunit ribosomal DNA sequences, and used a phylogenetic analysis to compare the new Henneguya species with known relatives. Spores of the three species had similar morphology and morphometrics, but differed molecularly 5-7.5%, and were no more than 94% similar to any other sequence in GenBank. Together with having different hosts, these data supported the diagnosis of the parasites as distinct, novel species. Maximum likelihood and Bayesian analyses showed that H. tucunarei n. sp., H. tapajoensis n. sp., and H. jariensis n. sp. plus Henneguya paraensis (which parasitizes Cichla temensis) formed a well-supported sub-clade of Henneguya parasites of cichlids from the Amazon basin, in a lineage sister to those in characiforms hosts. Our analysis was consistent with previous studies that suggest that aquatic environment and vertebrate host group are the strongest correlates with phylogenetic signals in the Myxobolidae.

  20. Patterns of Phylogenetic Diversity of Subtropical Rainforest of the Great Sandy Region, Australia Indicate Long Term Climatic Refugia.

    PubMed

    Howard, Marion G; McDonald, William J F; Forster, Paul I; Kress, W John; Erickson, David; Faith, Daniel P; Shapcott, Alison

    2016-01-01

    Australia's Great Sandy Region is of international significance containing two World Heritage areas and patches of rainforest growing on white sand. Previous broad-scale analysis found the Great Sandy biogeographic subregion contained a significantly more phylogenetically even subset of species than expected by chance contrasting with rainforest on white sand in Peru. This study aimed to test the patterns of rainforest diversity and relatedness at a finer scale and to investigate why we may find different patterns of phylogenetic evenness compared with rainforests on white sands in other parts of the world. This study focussed on rainforest sites within the Great Sandy and surrounding areas in South East Queensland (SEQ), Australia. We undertook field collections, expanded our three-marker DNA barcode library of SEQ rainforest plants and updated the phylogeny to 95% of the SEQ rainforest flora. We sampled species composition of rainforest in fixed area plots from 100 sites. We calculated phylogenetic diversity (PD) measures as well as species richness (SR) for each rainforest community. These combined with site variables such as geology, were used to evaluate patterns and relatedness. We found that many rainforest communities in the Great Sandy area were significantly phylogenetically even at the individual site level consistent with a broader subregion analysis. Sites from adjacent areas were either not significant or were significantly phylogenetically clustered. Some results in the neighbouring areas were consistent with historic range expansions. In contrast with expectations, sites located on the oldest substrates had significantly lower phylogenetic diversity (PD). Fraser Island was once connected to mainland Australia, our results are consistent with a region geologically old enough to have continuously supported rainforest in refugia. The interface of tropical and temperate floras in part also explains the significant phylogenetic evenness and higher than expected phylogenetic diversity.

  1. Patterns of Phylogenetic Diversity of Subtropical Rainforest of the Great Sandy Region, Australia Indicate Long Term Climatic Refugia

    PubMed Central

    Howard, Marion G.; McDonald, William J. F.; Forster, Paul I.; Kress, W. John; Erickson, David; Faith, Daniel P.; Shapcott, Alison

    2016-01-01

    Australia’s Great Sandy Region is of international significance containing two World Heritage areas and patches of rainforest growing on white sand. Previous broad-scale analysis found the Great Sandy biogeographic subregion contained a significantly more phylogenetically even subset of species than expected by chance contrasting with rainforest on white sand in Peru. This study aimed to test the patterns of rainforest diversity and relatedness at a finer scale and to investigate why we may find different patterns of phylogenetic evenness compared with rainforests on white sands in other parts of the world. This study focussed on rainforest sites within the Great Sandy and surrounding areas in South East Queensland (SEQ), Australia. We undertook field collections, expanded our three-marker DNA barcode library of SEQ rainforest plants and updated the phylogeny to 95% of the SEQ rainforest flora. We sampled species composition of rainforest in fixed area plots from 100 sites. We calculated phylogenetic diversity (PD) measures as well as species richness (SR) for each rainforest community. These combined with site variables such as geology, were used to evaluate patterns and relatedness. We found that many rainforest communities in the Great Sandy area were significantly phylogenetically even at the individual site level consistent with a broader subregion analysis. Sites from adjacent areas were either not significant or were significantly phylogenetically clustered. Some results in the neighbouring areas were consistent with historic range expansions. In contrast with expectations, sites located on the oldest substrates had significantly lower phylogenetic diversity (PD). Fraser Island was once connected to mainland Australia, our results are consistent with a region geologically old enough to have continuously supported rainforest in refugia. The interface of tropical and temperate floras in part also explains the significant phylogenetic evenness and higher than expected phylogenetic diversity. PMID:27119149

  2. Morphometrics of Daucus (Apiaceae): A counterpart to a phylogenomic study

    USDA-ARS?s Scientific Manuscript database

    Molecular phylogenetics of genome-scale data sets (phylogenomics) often produces phylogenetic trees with unprecedented resolution. A companion phylogenomics analysis of Daucus (carrots) using 94 conserved nuclear orthologs supported many of the traditional species but showed unexpected results that ...

  3. Floristic response to urbanization: Filtering of the bioregional flora in Indianapolis, Indiana, USA.

    PubMed

    Dolan, Rebecca W; Aronson, Myla F J; Hipp, Andrew L

    2017-08-09

    Globally, urban plant populations are becoming increasingly important, as these plants play a vital role in ameliorating effects of ecosystem disturbance and climate change. Urban environments act as filters to bioregional flora, presenting survival challenges to spontaneous plants. Yet, because of the paucity of inventory data on plants in landscapes both before and after urbanization, few studies have directly investigated this effect of urbanization. We used historical, contemporary, and regional plant species inventories for Indianapolis, Indiana USA to evaluate how urbanization filters the bioregional flora based on species diversity, functional traits, and phylogenetic community structure. Approximately 60% of the current regional flora was represented in the Indianapolis flora, both historically and presently. Native species that survived over time were significantly different in growth form, life form, and dispersal and pollination modes than those that were extirpated. Phylogenetically, the historical flora represented a random sample of the regional flora, while the current urban flora represented a nonrandom sample. Both graminoid habit and abiotic pollination are significantly more phylogenetically conserved than expected. Our results likely reflect the shift from agricultural cover to built environment, coupled with the influence of human preference, in shaping the current urban flora of Indianapolis. Based on our analyses, the urban environment of Indianapolis does filter the bioregional species pool. To the extent that these filters are shared by other cities and operate similarly, we may see increasingly homogenized urban floras across regions, with concurrent loss of evolutionary information. © 2017 Dolan et al. Published by the Botanical Society of America. This work is licensed under a Creative Commons Attribution License (CC-BY-NC).

  4. Molecular identification and phylogenetic analysis of Wuchereria bancrofti from human blood samples in Egypt.

    PubMed

    Abdel-Shafi, Iman R; Shoieb, Eman Y; Attia, Samar S; Rubio, José M; Ta-Tang, Thuy-Huong; El-Badry, Ayman A

    2017-03-01

    Lymphatic filariasis (LF) is a serious vector-borne health problem, and Wuchereria bancrofti (W.b) is the major cause of LF worldwide and is focally endemic in Egypt. Identification of filarial infection using traditional morphologic and immunological criteria can be difficult and lead to misdiagnosis. The aim of the present study was molecular detection of W.b in residents in endemic areas in Egypt, sequence variance analysis, and phylogenetic analysis of W.b DNA. Collected blood samples from residents in filariasis endemic areas in five governorates were subjected to semi-nested PCR targeting repeated DNA sequence, for detection of W.b DNA. PCR products were sequenced; subsequently, a phylogenetic analysis of the obtained sequences was performed. Out of 300 blood samples, W.b DNA was identified in 48 (16%). Sequencing analysis confirmed PCR results identifying only W.b species. Sequence alignment and phylogenetic analysis indicated genetically distinct clusters of W.b among the study population. Study results demonstrated that the semi-nested PCR proved to be an effective diagnostic tool for accurate and rapid detection of W.b infections in nano-epidemics and is applicable for samples collected in the daytime as well as the night time. PCR products sequencing and phylogenitic analysis revealed three different nucleotide sequences variants. Further genetic studies of W.b in Egypt and other endemic areas are needed to distinguish related strains and the various ecological as well as drug effects exerted on them to support W.b elimination.

  5. A molecular study on bacterial resistance to arsenic-toxicity in surface and underground waters of Latium (Italy).

    PubMed

    Davolos, Domenico; Pietrangeli, Biancamaria

    2013-10-01

    Latium, a region in central Italy, is known for its extensive volcanic areas that make a significant contribution to the arsenic (As) contamination of freshwater environments, even though some degree of As water pollution may be caused by human activities. The information available on indigenous As-resistant prokaryotes in aquatic environments of Latium is, however, still limited. In this study, we describe new bacteria that are resistant to arsenic toxicity and were isolated from the surface waters of Lake Vico and the Sacco River, two groundwater systems in Latium, as well as from bottled natural mineral water from the same region. The 16S rRNA gene sequence analysis for the As-resistant strains in lake and river waters points to a prevalence of β- and γ-Proteobacteria, while α-Proteobacteria, Firmicutes and Bacteroidetes are represented to a lesser extent. By contrast, solely γ-Proteobacteria were isolated from groundwater samples. The presence of Actinobacteria was documented exclusively in bottled mineral water. In addition, we conducted a DNA sequence-based study on the gene codifying arsB, an As(III) efflux membrane protein pump related to arsenic resistance, for all the As-resistant bacterial isolates. A phylogenetic analysis was carried out on the newly sequenced 16S rRNA genes and arsB in the present study as well as on an additional 16S rRNA/arsB dataset we obtained previously from Lake Albano, from the Tiber and from a well in Bassano Romano located in Latium (Davolos and Pietrangeli, 2011). Overall, the phylogenetic diversity of As-resistant bacteria in underground water was very limited if compared with lentic and lotic waters. Lastly, our molecular data support the hypothesis that the horizontal gene transfer of ars in As-containing freshwater environments is not limited to closely-related genomes, but also occurs between bacteria that are distant from an evolutionary viewpoint, thereby indicating that such genetic events may be considered a source of microbial resistance to arsenic-toxicity. Copyright © 2013 Elsevier Inc. All rights reserved.

  6. High diversity and suggested endemicity of culturable Actinobacteria in an extremely oligotrophic desert oasis

    PubMed Central

    Arocha-Garza, Hector Fernando; Canales-Del Castillo, Ricardo; Eguiarte, Luis E.; Souza, Valeria

    2017-01-01

    The phylum Actinobacteria constitutes one of the largest and anciently divergent phyla within the Bacteria domain. Actinobacterial diversity has been thoroughly researched in various environments due to its unique biotechnological potential. Such studies have focused mostly on soil communities, but more recently marine and extreme environments have also been explored, finding rare taxa and demonstrating dispersal limitation and biogeographic patterns for Streptomyces. To test the distribution of Actinobacteria populations on a small scale, we chose the extremely oligotrophic and biodiverse Cuatro Cienegas Basin (CCB), an endangered oasis in the Chihuahuan desert to assess the diversity and uniqueness of Actinobacteria in the Churince System with a culture-dependent approach over a period of three years, using nine selective media. The 16S rDNA of putative Actinobacteria were sequenced using both bacteria universal and phylum-specific primer pairs. Phylogenetic reconstructions were performed to analyze OTUs clustering and taxonomic identification of the isolates in an evolutionary context, using validated type species of Streptomyces from previously phylogenies as a reference. Rarefaction analysis for total Actinobacteria and for Streptomyces isolates were performed to estimate species’ richness in the intermediate lagoon (IL) in the oligotrophic Churince system. A total of 350 morphologically and nutritionally diverse isolates were successfully cultured and characterized as members of the Phylum Actinobacteria. A total of 105 from the total isolates were successfully subcultured, processed for DNA extraction and 16S-rDNA sequenced. All strains belong to the order Actinomycetales, encompassing 11 genera of Actinobacteria; the genus Streptomyces was found to be the most abundant taxa in all the media tested throughout the 3-year sampling period. Phylogenetic analysis of our isolates and another 667 reference strains of the family Streptomycetaceae shows that our isolation effort produced 38 unique OTUs in six new monophyletic clades. This high biodiversity and uniqueness of Actinobacteria in an extreme oligotrophic environment, which has previously been reported for its diversity and endemicity, is a suggestive sign of microbial biogeography of Actinobacteria and it also represents an invaluable source of biological material for future ecological and bioprospecting studies. PMID:28480140

  7. Large-Scale Genomic Analysis of Codon Usage in Dengue Virus and Evaluation of Its Phylogenetic Dependence

    PubMed Central

    Lara-Ramírez, Edgar E.; Salazar, Ma Isabel; López-López, María de Jesús; Salas-Benito, Juan Santiago; Sánchez-Varela, Alejandro

    2014-01-01

    The increasing number of dengue virus (DENV) genome sequences available allows identifying the contributing factors to DENV evolution. In the present study, the codon usage in serotypes 1–4 (DENV1–4) has been explored for 3047 sequenced genomes using different statistics methods. The correlation analysis of total GC content (GC) with GC content at the three nucleotide positions of codons (GC1, GC2, and GC3) as well as the effective number of codons (ENC, ENCp) versus GC3 plots revealed mutational bias and purifying selection pressures as the major forces influencing the codon usage, but with distinct pressure on specific nucleotide position in the codon. The correspondence analysis (CA) and clustering analysis on relative synonymous codon usage (RSCU) within each serotype showed similar clustering patterns to the phylogenetic analysis of nucleotide sequences for DENV1–4. These clustering patterns are strongly related to the virus geographic origin. The phylogenetic dependence analysis also suggests that stabilizing selection acts on the codon usage bias. Our analysis of a large scale reveals new feature on DENV genomic evolution. PMID:25136631

  8. Variation in sulfide tolerance of photosystem II in phylogenetically diverse cyanobacteria from sulfidic habitats

    NASA Technical Reports Server (NTRS)

    Miller, Scott R.; Bebout, Brad M.

    2004-01-01

    Physiological and molecular phylogenetic approaches were used to investigate variation among 12 cyanobacterial strains in their tolerance of sulfide, an inhibitor of oxygenic photosynthesis. Cyanobacteria from sulfidic habitats were found to be phylogenetically diverse and exhibited an approximately 50-fold variation in photosystem II performance in the presence of sulfide. Whereas the degree of tolerance was positively correlated with sulfide levels in the environment, a strain's phenotype could not be predicted from the tolerance of its closest relatives. These observations suggest that sulfide tolerance is a dynamic trait primarily shaped by environmental variation. Despite differences in absolute tolerance, similarities among strains in the effects of sulfide on chlorophyll fluorescence induction indicated a common mode of toxicity. Based on similarities with treatments known to disrupt the oxygen-evolving complex, it was concluded that sulfide toxicity resulted from inhibition of the donor side of photosystem II.

  9. Microbial diversity in degraded and non-degraded petroleum samples and comparison across oil reservoirs at local and global scales.

    PubMed

    Sierra-Garcia, Isabel Natalia; Dellagnezze, Bruna M; Santos, Viviane P; Chaves B, Michel R; Capilla, Ramsés; Santos Neto, Eugenio V; Gray, Neil; Oliveira, Valeria M

    2017-01-01

    Microorganisms have shown their ability to colonize extreme environments including deep subsurface petroleum reservoirs. Physicochemical parameters may vary greatly among petroleum reservoirs worldwide and so do the microbial communities inhabiting these different environments. The present work aimed at the characterization of the microbiota in biodegraded and non-degraded petroleum samples from three Brazilian reservoirs and the comparison of microbial community diversity across oil reservoirs at local and global scales using 16S rRNA clone libraries. The analysis of 620 16S rRNA bacterial and archaeal sequences obtained from Brazilian oil samples revealed 42 bacterial OTUs and 21 archaeal OTUs. The bacterial community from the degraded oil was more diverse than the non-degraded samples. Non-degraded oil samples were overwhelmingly dominated by gammaproteobacterial sequences with a predominance of the genera Marinobacter and Marinobacterium. Comparisons of microbial diversity among oil reservoirs worldwide suggested an apparent correlation of prokaryotic communities with reservoir temperature and depth and no influence of geographic distance among reservoirs. The detailed analysis of the phylogenetic diversity across reservoirs allowed us to define a core microbiome encompassing three bacterial classes (Gammaproteobacteria, Clostridia, and Bacteroidia) and one archaeal class (Methanomicrobia) ubiquitous in petroleum reservoirs and presumably owning the abilities to sustain life in these environments.

  10. Genetic variability of psychrotolerant Acidithiobacillus ferrivorans revealed by (meta)genomic analysis.

    PubMed

    González, Carolina; Yanquepe, María; Cardenas, Juan Pablo; Valdes, Jorge; Quatrini, Raquel; Holmes, David S; Dopson, Mark

    2014-11-01

    Acidophilic microorganisms inhabit low pH environments such as acid mine drainage that is generated when sulfide minerals are exposed to air. The genome sequence of the psychrotolerant Acidithiobacillus ferrivorans SS3 was compared to a metagenome from a low temperature acidic stream dominated by an A. ferrivorans-like strain. Stretches of genomic DNA characterized by few matches to the metagenome, termed 'metagenomic islands', encoded genes associated with metal efflux and pH homeostasis. The metagenomic islands were enriched in mobile elements such as phage proteins, transposases, integrases and in one case, predicted to be flanked by truncated tRNAs. Cus gene clusters predicted to be involved in copper efflux and further Cus-like RND systems were predicted to be located in metagenomic islands and therefore, constitute part of the flexible gene complement of the species. Phylogenetic analysis of Cus clusters showed both lineage specificity within the Acidithiobacillus genus as well as niche specificity associated with an acidic environment. The metagenomic islands also contained a predicted copper efflux P-type ATPase system and a polyphosphate kinase potentially involved in polyphosphate mediated copper resistance. This study identifies genetic variability of low temperature acidophiles that likely reflects metal resistance selective pressures in the copper rich environment. Copyright © 2014 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  11. Evolution of oil-producing trichomes in Sisyrinchium (Iridaceae): insights from the first comprehensive phylogenetic analysis of the genus

    PubMed Central

    Chauveau, Olivier; Eggers, Lilian; Raquin, Christian; Silvério, Adriano; Brown, Spencer; Couloux, Arnaud; Cruaud, Corine; Kaltchuk-Santos, Eliane; Yockteng, Roxana; Souza-Chies, Tatiana T.; Nadot, Sophie

    2011-01-01

    Background and Aims Sisyrinchium (Iridaceae: Iridoideae: Sisyrinchieae) is one of the largest, most widespread and most taxonomically complex genera in Iridaceae, with all species except one native to the American continent. Phylogenetic relationships within the genus were investigated and the evolution of oil-producing structures related to specialized oil-bee pollination examined. Methods Phylogenetic analyses based on eight molecular markers obtained from 101 Sisyrinchium accessions representing 85 species were conducted in the first extensive phylogenetic analysis of the genus. Total evidence analyses confirmed the monophyly of the genus and retrieved nine major clades weakly connected to the subdivisions previously recognized. The resulting phylogenetic hypothesis was used to reconstruct biogeographical patterns, and to trace the evolutionary origin of glandular trichomes present in the flowers of several species. Key Results and Conclusions Glandular trichomes evolved three times independently in the genus. In two cases, these glandular trichomes are oil-secreting, suggesting that the corresponding flowers might be pollinated by oil-bees. Biogeographical patterns indicate expansions from Central America and the northern Andes to the subandean ranges between Chile and Argentina and to the extended area of the Paraná river basin. The distribution of oil-flower species across the phylogenetic trees suggests that oil-producing trichomes may have played a key role in the diversification of the genus, a hypothesis that requires future testing. PMID:21527419

  12. Characterizing the Phylogenetic Tree Community Structure of a Protected Tropical Rain Forest Area in Cameroon

    PubMed Central

    Munoz, François; Couteron, Pierre; Hardy, Olivier J.; Sonké, Bonaventure

    2014-01-01

    Tropical rain forests, the richest terrestrial ecosystems in biodiversity on Earth are highly threatened by global changes. This paper aims to infer the mechanisms governing species tree assemblages by characterizing the phylogenetic structure of a tropical rain forest in a protected area of the Congo Basin, the Dja Faunal Reserve (Cameroon). We re-analyzed a dataset of 11538 individuals belonging to 372 taxa found along nine transects spanning five habitat types. We generated a dated phylogenetic tree including all sampled taxa to partition the phylogenetic diversity of the nine transects into alpha and beta components at the level of the transects and of the habitat types. The variation in phylogenetic composition among transects did not deviate from a random pattern at the scale of the Dja Faunal Reserve, probably due to a common history and weak environmental variation across the park. This lack of phylogenetic structure combined with an isolation-by-distance pattern of taxonomic diversity suggests that neutral dispersal limitation is a major driver of community assembly in the Dja. To assess any lack of sensitivity to the variation in habitat types, we restricted the analyses of transects to the terra firme primary forest and found results consistent with those of the whole dataset at the level of the transects. Additionally to previous analyses, we detected a weak but significant phylogenetic turnover among habitat types, suggesting that species sort in varying environments, even though it is not predominating on the overall phylogenetic structure. Finer analyses of clades indicated a signal of clustering for species from the Annonaceae family, while species from the Apocynaceae family indicated overdispersion. These results can contribute to the conservation of the park by improving our understanding of the processes dictating community assembly in these hyperdiverse but threatened regions of the world. PMID:24936786

  13. Phylogenetic Analysis of Nuclear-Encoded RNA Maturases

    PubMed Central

    Malik, Sunita; Upadhyaya, KC; Khurana, SM Paul

    2017-01-01

    Posttranscriptional processes, such as splicing, play a crucial role in gene expression and are prevalent not only in nuclear genes but also in plant mitochondria where splicing of group II introns is catalyzed by a class of proteins termed maturases. In plant mitochondria, there are 22 mitochondrial group II introns. matR, nMAT1, nMAT2, nMAT3, and nMAT4 proteins have been shown to be required for efficient splicing of several group II introns in Arabidopsis thaliana. Nuclear maturases (nMATs) are necessary for splicing of mitochondrial genes, leading to normal oxidative phosphorylation. Sequence analysis through phylogenetic tree (including bootstrapping) revealed high homology with maturase sequences of A thaliana and other plants. This study shows the phylogenetic relationship of nMAT proteins between A thaliana and other nonredundant plant species taken from BLASTP analysis. PMID:28607538

  14. Stratification of co-evolving genomic groups using ranked phylogenetic profiles

    PubMed Central

    Freilich, Shiri; Goldovsky, Leon; Gottlieb, Assaf; Blanc, Eric; Tsoka, Sophia; Ouzounis, Christos A

    2009-01-01

    Background Previous methods of detecting the taxonomic origins of arbitrary sequence collections, with a significant impact to genome analysis and in particular metagenomics, have primarily focused on compositional features of genomes. The evolutionary patterns of phylogenetic distribution of genes or proteins, represented by phylogenetic profiles, provide an alternative approach for the detection of taxonomic origins, but typically suffer from low accuracy. Herein, we present rank-BLAST, a novel approach for the assignment of protein sequences into genomic groups of the same taxonomic origin, based on the ranking order of phylogenetic profiles of target genes or proteins across the reference database. Results The rank-BLAST approach is validated by computing the phylogenetic profiles of all sequences for five distinct microbial species of varying degrees of phylogenetic proximity, against a reference database of 243 fully sequenced genomes. The approach - a combination of sequence searches, statistical estimation and clustering - analyses the degree of sequence divergence between sets of protein sequences and allows the classification of protein sequences according to the species of origin with high accuracy, allowing taxonomic classification of 64% of the proteins studied. In most cases, a main cluster is detected, representing the corresponding species. Secondary, functionally distinct and species-specific clusters exhibit different patterns of phylogenetic distribution, thus flagging gene groups of interest. Detailed analyses of such cases are provided as examples. Conclusion Our results indicate that the rank-BLAST approach can capture the taxonomic origins of sequence collections in an accurate and efficient manner. The approach can be useful both for the analysis of genome evolution and the detection of species groups in metagenomics samples. PMID:19860884

  15. Measures of phylogenetic differentiation provide robust and complementary insights into microbial communities.

    PubMed

    Parks, Donovan H; Beiko, Robert G

    2013-01-01

    High-throughput sequencing techniques have made large-scale spatial and temporal surveys of microbial communities routine. Gaining insight into microbial diversity requires methods for effectively analyzing and visualizing these extensive data sets. Phylogenetic β-diversity measures address this challenge by allowing the relationship between large numbers of environmental samples to be explored using standard multivariate analysis techniques. Despite the success and widespread use of phylogenetic β-diversity measures, an extensive comparative analysis of these measures has not been performed. Here, we compare 39 measures of phylogenetic β diversity in order to establish the relative similarity of these measures along with key properties and performance characteristics. While many measures are highly correlated, those commonly used within microbial ecology were found to be distinct from those popular within classical ecology, and from the recently recommended Gower and Canberra measures. Many of the measures are surprisingly robust to different rootings of the gene tree, the choice of similarity threshold used to define operational taxonomic units, and the presence of outlying basal lineages. Measures differ considerably in their sensitivity to rare organisms, and the effectiveness of measures can vary substantially under alternative models of differentiation. Consequently, the depth of sequencing required to reveal underlying patterns of relationships between environmental samples depends on the selected measure. Our results demonstrate that using complementary measures of phylogenetic β diversity can further our understanding of how communities are phylogenetically differentiated. Open-source software implementing the phylogenetic β-diversity measures evaluated in this manuscript is available at http://kiwi.cs.dal.ca/Software/ExpressBetaDiversity.

  16. Thioredoxin and evolution

    NASA Technical Reports Server (NTRS)

    Buchanan, B. B.

    1991-01-01

    Comparisons of primary structure have revealed significant homology between the m type thioredoxins of chloroplasts and the thioredoxins from a variety of bacteria. Chloroplast thioredoxin f, by comparison, remains an enigma: certain residues are invariant with those of the other thioredoxins, but a phylogenetic relationship to bacterial or m thioredoxins seems distant. Knowledge of the evolutionary history of thioredoxin f is, nevertheless, of interest because of its role in photosynthesis. Therefore, we have attempted to gain information on the evolutionary history of chloroplast thioredoxin f, as well as m. Our goal was first to establish the utility of thioredoxin as a phylogenetic marker, and, if found suitable, to deduce the evolutionary histories of the chloroplast thioredoxins. To this end, we have constructed phylogenetic (minimal replacement) trees using computer analysis. The results show that the thioredoxins of bacteria and animals fall into distinct phylogenetic groups - the bacterial group resembling that derived from earlier 16s RNA analysis and the animal group showing a cluster consistent with known relationships. The chloroplast thioredoxins show a novel type of phylogenetic arrangement: one m type aligns with its counterpart of eukaryotic algae, cyanobacteria and other bacteria, whereas the second type (f type) tracks with animal thioredoxin. The results give new insight into the evolution of photosynthesis.

  17. Comparative genomic and phylogenetic investigation of the xenobiotic metabolizing arylamine N-acetyltransferase enzyme family

    USDA-ARS?s Scientific Manuscript database

    Arylamine N-acetyltransferases (NATs) are xenobiotic metabolizing enzymes characterized in several bacteria and eukaryotic organisms. We report a comprehensive phylogenetic analysis employing an exhaustive dataset of NAT-homologous sequences recovered through inspection of 2445 genomes. We describe ...

  18. Whole genome sequence phylogenetic analysis of four Mexican rabies viruses isolated from cattle.

    PubMed

    Bárcenas-Reyes, I; Loza-Rubio, E; Cantó-Alarcón, G J; Luna-Cozar, J; Enríquez-Vázquez, A; Barrón-Rodríguez, R J; Milián-Suazo, F

    2017-08-01

    Phylogenetic analysis of the rabies virus in molecular epidemiology has been traditionally performed on partial sequences of the genome, such as the N, G, and P genes; however, that approach raises concerns about the discriminatory power compared to whole genome sequencing. In this study we characterized four strains of the rabies virus isolated from cattle in Querétaro, Mexico by comparing the whole genome sequence to that of strains from the American, European and Asian continents. Four cattle brain samples positive to rabies and characterized as AgV11, genotype 1, were used in the study. A cDNA sequence was generated by reverse transcription PCR (RT-PCR) using oligo dT. cDNA samples were sequenced in an Illumina NextSeq 500 platform. The phylogenetic analysis was performed with MEGA 6.0. Minimum evolution phylogenetic trees were constructed with the Neighbor-Joining method and bootstrapped with 1000 replicates. Three large and seven small clusters were formed with the 26 sequences used. The largest cluster grouped strains from different species in South America: Brazil, and the French Guyana. The second cluster grouped five strains from Mexico. A Mexican strain reported in a different study was highly related to our four strains, suggesting common source of infection. The phylogenetic analysis shows that the type of host is different for the different regions in the American Continent; rabies is more related to bats. It was concluded that the rabies virus in central Mexico is genetically stable and that it is transmitted by the vampire bat Desmodus rotundus. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Phylogenetic turnover along local environmental gradients in tropical forest communities.

    PubMed

    Baldeck, C A; Kembel, S W; Harms, K E; Yavitt, J B; John, R; Turner, B L; Madawala, S; Gunatilleke, N; Gunatilleke, S; Bunyavejchewin, S; Kiratiprayoon, S; Yaacob, A; Supardi, M N N; Valencia, R; Navarrete, H; Davies, S J; Chuyong, G B; Kenfack, D; Thomas, D W; Dalling, J W

    2016-10-01

    While the importance of local-scale habitat niches in shaping tree species turnover along environmental gradients in tropical forests is well appreciated, relatively little is known about the influence of phylogenetic signal in species' habitat niches in shaping local community structure. We used detailed maps of the soil resource and topographic variation within eight 24-50 ha tropical forest plots combined with species phylogenies created from the APG III phylogeny to examine how phylogenetic beta diversity (indicating the degree of phylogenetic similarity of two communities) was related to environmental gradients within tropical tree communities. Using distance-based redundancy analysis we found that phylogenetic beta diversity, expressed as either nearest neighbor distance or mean pairwise distance, was significantly related to both soil and topographic variation in all study sites. In general, more phylogenetic beta diversity within a forest plot was explained by environmental variables this was expressed as nearest neighbor distance versus mean pairwise distance (3.0-10.3 % and 0.4-8.8 % of variation explained among plots, respectively), and more variation was explained by soil resource variables than topographic variables using either phylogenetic beta diversity metric. We also found that patterns of phylogenetic beta diversity expressed as nearest neighbor distance were consistent with previously observed patterns of niche similarity among congeneric species pairs in these plots. These results indicate the importance of phylogenetic signal in local habitat niches in shaping the phylogenetic structure of tropical tree communities, especially at the level of close phylogenetic neighbors, where similarity in habitat niches is most strongly preserved.

  20. Molecular phylogeny of tubificid oligochaetes with special emphasis on Tubifex tubifex (Tubificidae).

    PubMed

    Beauchamp, K A; Kathman, R D; McDowell, T S; Hedrick, R P

    2001-05-01

    Tubifex tubifex is a cosmopolitan freshwater oligochaete whose presence has been studied as a health indicator of the aquatic environment and as a host for several myxozoan parasites of fish. Unfortunately, current morphological criteria used to distinguish Tubifex spp. (Tubificidae) are inadequate. We therefore developed mitochondrial 16S ribosomal DNA markers to examine phylogenetic relationships among aquatic oligochaetes and to distinguish species of Tubifex that might serve as hosts for a particular myxozoan parasite, Myxobolus cerebralis. Our phylogenetic analyses of oligochaetes based on a 378-bp segment yielded one most parsimonious tree with three major groups that corresponded to the families Lumbricidae, Sparganophilidae, and Tubificidae. T. tubifex and T. ignotus formed a monophyletic assemblage, and a sister relationship between the genera Tubifex and Limnodrilus was strongly supported. A second analysis of the relationship within the genus Tubifex identified six genetically distinct lineages of T. tubifex from North America and Europe that were separated by genetic distances comparable to those found for "well-defined" species of Limnodrilus. Therefore, the existence of several morphologically indistinguishable, thus cryptic, species of Tubifex in North America and Europe is suggested. Copyright 2001 Academic Press.

  1. Differences in community composition of bacteria in four glaciers in western China

    NASA Astrophysics Data System (ADS)

    An, L. Z.; Chen, Y.; Xiang, S.-R.; Shang, T.-C.; Tian, L.-D.

    2010-06-01

    Microbial community patterns vary in glaciers worldwide, presenting unique responses to global climatic and environmental changes. Four bacterial clone libraries were established by 16S rRNA gene amplification from four ice layers along the 42-m-long ice core MuztB drilled from the Muztag Ata Glacier. A total of 151 bacterial sequences obtained from the ice core MuztB were phylogenetically compared with the 71 previously reported sequences from three ice cores extracted from ice caps Malan, Dunde, and Puruogangri. Six phylogenetic clusters Flavisolibacter, Flexibacter (Bacteroidetes), Acinetobacter, Enterobacter (Gammaproteobacteria), Planococcus/Anoxybacillus (Firmicutes), and Propionibacter/Luteococcus (Actinobacteria) frequently occurred along the Muztag Ata Glacier profile, and their proportion varied by seasons. Sequence analysis showed that most of the sequences from the ice core clustered with those from cold environments, and the sequence clusters from the same glacier more closely grouped together than those from the geographically isolated glaciers. Moreover, bacterial communities from the same location or similarly aged ice formed a cluster, and were clearly separate from those from other geographically isolated glaciers. In summary, the findings provide preliminary evidence of zonal distribution of microbial community, and suggest biogeography of microorganisms in glacier ice.

  2. The last marine pelomedusoids (Testudines: Pleurodira): a new species of Bairdemys and the paleoecology of Stereogenyina

    PubMed Central

    Rincón, Ascanio D.; Solórzano, Andrés; Langer, Max C.

    2015-01-01

    The extinct Stereogenyina turtles form a relatively diverse Podocnemididae lineage, with twelve described and phylogenetically positioned species. They are characterized by a wide geographic and temporal range, from the Eocene of Africa to the Pleistocene of Southeast Asia, and a peculiar palate morphology, with a secondary palate that is unique among side-necked turtles. Here, we describe a new Stereogenyina species, based on an almost complete skull from the middle Miocene Capadare Formation, of Venezuela. A new phylogenetic analysis supports the assignment of the new species to the genus Bairdemys. Based on geometric morphometrics analyses, we related the development of the stereogenyin secondary palate with the acquisition of a durophagous diet. Based on a review of the sedimentary environments where their fossils are found, we also propose that stereogenyins were a marine radiation of podocnemidid turtles, as corroborated by previous studies of fossil eggs and limb morphology. These two inferences allowed us to hypothesize that stereogenyins occupied an ecological niche similar to that of the extant Carettini sea turtles, and that the rise of the latter group may be related to the Stereogenyina diversity fall in the end of the Miocene. PMID:26157628

  3. Characterization and antimicrobial potential of extremely halophilic archaea isolated from hypersaline environments of the Algerian Sahara.

    PubMed

    Quadri, Inès; Hassani, Imene Ikrame; l'Haridon, Stéphane; Chalopin, Morgane; Hacène, Hocine; Jebbar, Mohamed

    2016-01-01

    Halophilic archaea were isolated from different chotts and sebkha, dry salt lakes and salt flat respectively, of the Algerian Sahara and characterized using phenotypic and phylogenetic approaches. From 102 extremely halophilic strains isolated, forty three were selected and studied. These strains were also screened for their antagonistic potential and the production of hydrolytic enzymes. Sequencing of the 16S rRNA genes and phylogenetic analysis allowed the identification of 10 archaeal genera within the class Halobacteria: Natrinema (13 strains), Natrialba (12 strains), Haloarcula (4 strains), Halopiger (4 strains), Haloterrigena (3 strains), Halorubrum (2 strains), Halostagnicola (2 strains), Natronococcus, Halogeometricum and Haloferax (1 strain each). The most common producers of antimicrobial compounds belong to the genus Natrinema while the most hydrolytic isolates, with combined production of several enzymes, belong to the genus Natrialba. The strain affiliated to Halopiger djelfamassilliensis was found to produce some substances of interest (halocins, anti-Candida, enzymes). After partial purification and characterization of one of the strains Natrinema gari QI1, we found similarities between the antimicrobial compound and the halocin C8. Therefore, the gene encoding halocin C8 was amplified and sequenced. Copyright © 2016 Elsevier GmbH. All rights reserved.

  4. Comparative Study of Lectin Domains in Model Species: New Insights into Evolutionary Dynamics

    PubMed Central

    Van Holle, Sofie; De Schutter, Kristof; Eggermont, Lore; Tsaneva, Mariya; Dang, Liuyi; Van Damme, Els J. M.

    2017-01-01

    Lectins are present throughout the plant kingdom and are reported to be involved in diverse biological processes. In this study, we provide a comparative analysis of the lectin families from model species in a phylogenetic framework. The analysis focuses on the different plant lectin domains identified in five representative core angiosperm genomes (Arabidopsis thaliana, Glycine max, Cucumis sativus, Oryza sativa ssp. japonica and Oryza sativa ssp. indica). The genomes were screened for genes encoding lectin domains using a combination of Basic Local Alignment Search Tool (BLAST), hidden Markov models, and InterProScan analysis. Additionally, phylogenetic relationships were investigated by constructing maximum likelihood phylogenetic trees. The results demonstrate that the majority of the lectin families are present in each of the species under study. Domain organization analysis showed that most identified proteins are multi-domain proteins, owing to the modular rearrangement of protein domains during evolution. Most of these multi-domain proteins are widespread, while others display a lineage-specific distribution. Furthermore, the phylogenetic analyses reveal that some lectin families evolved to be similar to the phylogeny of the plant species, while others share a closer evolutionary history based on the corresponding protein domain architecture. Our results yield insights into the evolutionary relationships and functional divergence of plant lectins. PMID:28587095

  5. Phylogenetic Analysis of Dengue Virus in Bangkalan, Madura Island, East Java Province, Indonesia.

    PubMed

    Sucipto, Teguh Hari; Kotaki, Tomohiro; Mulyatno, Kris Cahyo; Churrotin, Siti; Labiqah, Amaliah; Soegijanto, Soegeng; Kameoka, Masanori

    2018-01-01

    Dengue virus (DENV) infection is a major health issue in tropical and subtropical areas. Indonesia is one of the biggest dengue endemic countries in the world. In the present study, the phylogenetic analysis of DENV in Bangkalan, Madura Island, Indonesia, was performed in order to obtain a clearer understanding of its dynamics in this country. A total of 359 blood samples from dengue-suspected patients were collected between 2012 and 2014. Serotyping was conducted using a multiplex Reverse Transcriptase-Polymerase Chain Reaction and a phylogenetic analysis of E gene sequences was performed using the Bayesian Markov chain Monte Carlo (MCMC) method. 17 out of 359 blood samples (4.7%) were positive for the isolation of DENV. Serotyping and the phylogenetic analysis revealed the predominance of DENV-1 genotype I (9/17, 52.9%), followed by DENV-2 Cosmopolitan type (7/17, 41.2%) and DENV-3 genotype I (1/17, 5.9%) . DENV-4 was not isolated. The Madura Island isolates showed high nucleotide similarity to other Indonesian isolates, indicating frequent virus circulation in Indonesia. The results of the present study highlight the importance of continuous viral surveillance in dengue endemic areas in order to obtain a clearer understanding of the dynamics of DENV in Indonesia.

  6. Genome wide in silico characterization of Dof gene families of pigeonpea (Cajanus cajan (L) Millsp.).

    PubMed

    Malviya, N; Gupta, S; Singh, V K; Yadav, M K; Bisht, N C; Sarangi, B K; Yadav, D

    2015-02-01

    The DNA binding with One Finger (Dof) protein is a plant specific transcription factor involved in the regulation of wide range of processes. The analysis of whole genome sequence of pigeonpea has identified 38 putative Dof genes (CcDof) distributed on 8 chromosomes. A total of 17 out of 38 CcDof genes were found to be intronless. A comprehensive in silico characterization of CcDof gene family including the gene structure, chromosome location, protein motif, phylogeny, gene duplication and functional divergence has been attempted. The phylogenetic analysis resulted in 3 major clusters with closely related members in phylogenetic tree revealed common motif distribution. The in silico cis-regulatory element analysis revealed functional diversity with predominance of light responsive and stress responsive elements indicating the possibility of these CcDof genes to be associated with photoperiodic control and biotic and abiotic stress. The duplication pattern showed that tandem duplication is predominant over segmental duplication events. The comparative phylogenetic analysis of these Dof proteins along with 78 soybean, 36 Arabidopsis and 30 rice Dof proteins revealed 7 major clusters. Several groups of orthologs and paralogs were identified based on phylogenetic tree constructed. Our study provides useful information for functional characterization of CcDof genes.

  7. Computational biomechanics changes our view on insect head evolution.

    PubMed

    Blanke, Alexander; Watson, Peter J; Holbrey, Richard; Fagan, Michael J

    2017-02-08

    Despite large-scale molecular attempts, the relationships of the basal winged insect lineages dragonflies, mayflies and neopterans, are still unresolved. Other data sources, such as morphology, suffer from unclear functional dependencies of the structures considered, which might mislead phylogenetic inference. Here, we assess this problem by combining for the first time biomechanics with phylogenetics using two advanced engineering techniques, multibody dynamics analysis and finite-element analysis, to objectively identify functional linkages in insect head structures which have been used traditionally to argue basal winged insect relationships. With a biomechanical model of unprecedented detail, we are able to investigate the mechanics of morphological characters under biologically realistic load, i.e. biting. We show that a range of head characters, mainly ridges, endoskeletal elements and joints, are indeed mechanically linked to each other. An analysis of character state correlation in a morphological data matrix focused on head characters shows highly significant correlation of these mechanically linked structures. Phylogenetic tree reconstruction under different data exclusion schemes based on the correlation analysis unambiguously supports a sistergroup relationship of dragonflies and mayflies. The combination of biomechanics and phylogenetics as it is proposed here could be a promising approach to assess functional dependencies in many organisms to increase our understanding of phenotypic evolution. © 2017 The Author(s).

  8. Phylogenetic relationships of some species of the family Echinostomatidae Odner, 1910 (Trematoda), inferred from nuclear rDNA sequences and karyological analysis.

    PubMed

    Stanevičiūtė, Gražina; Stunžėnas, Virmantas; Petkevičiūtė, Romualda

    2015-01-01

    The family Echinostomatidae Looss, 1899 exhibits a substantial taxonomic diversity, morphological criteria adopted by different authors have resulted in its subdivision into an impressive number of subfamilies. The status of the subfamily Echinochasminae Odhner, 1910 was changed in various classifications. Genetic characteristics and phylogenetic analysis of four Echinostomatidae species - Echinochasmus sp., Echinochasmuscoaxatus Dietz, 1909, Stephanoprorapseudoechinata (Olsson, 1876) and Echinoparyphiummordwilkoi Skrjabin, 1915 were obtained to understand well enough the homogeneity of the Echinochasminae and phylogenetic relationships within the Echinostomatidae. Chromosome set and nuclear rDNA (ITS2 and 28S) sequences of parthenites of Echinochasmus sp. were studied. The karyotype of this species (2n=20, one pair of large bi-armed chromosomes and others are smaller-sized, mainly one-armed, chromosomes) differed from that previously described for two other representatives of the Echinochasminae, Echinochasmusbeleocephalus (von Linstow, 1893), 2n=14, and Episthmiumbursicola (Creplin, 1937), 2n=18. In phylogenetic trees based on ITS2 and 28S datasets, a well-supported subclade with Echinochasmus sp. and Stephanoprorapseudoechinata clustered with one well-supported clade together with Echinochasmusjaponicus Tanabe, 1926 (data only for 28S) and Echinochasmuscoaxatus. These results supported close phylogenetic relationships between Echinochasmus Dietz, 1909 and Stephanoprora Odhner, 1902. Phylogenetic analysis revealed a clear separation of related species of Echinostomatoidea restricted to prosobranch snails as first intermediate hosts, from other species of Echinostomatidae and Psilostomidae, developing in Lymnaeoidea snails as first intermediate hosts. According to the data based on rDNA phylogeny, it was supposed that evolution of parasitic flukes linked with first intermediate hosts. Digeneans parasitizing prosobranch snails showed higher dynamic of karyotype evolution provided by different chromosomal rearrangements including Robertsonian translocations and pericentric inversions than more stable karyotype of digenean worms parasitizing lymnaeoid pulmonate snails.

  9. aes, the gene encoding the esterase B in Escherichia coli, is a powerful phylogenetic marker of the species.

    PubMed

    Lescat, Mathilde; Hoede, Claire; Clermont, Olivier; Garry, Louis; Darlu, Pierre; Tuffery, Pierre; Denamur, Erick; Picard, Bertrand

    2009-12-29

    Previous studies have established a correlation between electrophoretic polymorphism of esterase B, and virulence and phylogeny of Escherichia coli. Strains belonging to the phylogenetic group B2 are more frequently implicated in extraintestinal infections and include esterase B2 variants, whereas phylogenetic groups A, B1 and D contain less virulent strains and include esterase B1 variants. We investigated esterase B as a marker of phylogeny and/or virulence, in a thorough analysis of the esterase B-encoding gene. We identified the gene encoding esterase B as the acetyl-esterase gene (aes) using gene disruption. The analysis of aes nucleotide sequences in a panel of 78 reference strains, including the E. coli reference (ECOR) strains, demonstrated that the gene is under purifying selection. The phylogenetic tree reconstructed from aes sequences showed a strong correlation with the species phylogenetic history, based on multi-locus sequence typing using six housekeeping genes. The unambiguous distinction between variants B1 and B2 by electrophoresis was consistent with Aes amino-acid sequence analysis and protein modelling, which showed that substituted amino acids in the two esterase B variants occurred mostly at different sites on the protein surface. Studies in an experimental mouse model of septicaemia using mutant strains did not reveal a direct link between aes and extraintestinal virulence. Moreover, we did not find any genes in the chromosomal region of aes to be associated with virulence. Our findings suggest that aes does not play a direct role in the virulence of E. coli extraintestinal infection. However, this gene acts as a powerful marker of phylogeny, illustrating the extensive divergence of B2 phylogenetic group strains from the rest of the species.

  10. Construction of phylogenetic trees by kernel-based comparative analysis of metabolic networks.

    PubMed

    Oh, S June; Joung, Je-Gun; Chang, Jeong-Ho; Zhang, Byoung-Tak

    2006-06-06

    To infer the tree of life requires knowledge of the common characteristics of each species descended from a common ancestor as the measuring criteria and a method to calculate the distance between the resulting values of each measure. Conventional phylogenetic analysis based on genomic sequences provides information about the genetic relationships between different organisms. In contrast, comparative analysis of metabolic pathways in different organisms can yield insights into their functional relationships under different physiological conditions. However, evaluating the similarities or differences between metabolic networks is a computationally challenging problem, and systematic methods of doing this are desirable. Here we introduce a graph-kernel method for computing the similarity between metabolic networks in polynomial time, and use it to profile metabolic pathways and to construct phylogenetic trees. To compare the structures of metabolic networks in organisms, we adopted the exponential graph kernel, which is a kernel-based approach with a labeled graph that includes a label matrix and an adjacency matrix. To construct the phylogenetic trees, we used an unweighted pair-group method with arithmetic mean, i.e., a hierarchical clustering algorithm. We applied the kernel-based network profiling method in a comparative analysis of nine carbohydrate metabolic networks from 81 biological species encompassing Archaea, Eukaryota, and Eubacteria. The resulting phylogenetic hierarchies generally support the tripartite scheme of three domains rather than the two domains of prokaryotes and eukaryotes. By combining the kernel machines with metabolic information, the method infers the context of biosphere development that covers physiological events required for adaptation by genetic reconstruction. The results show that one may obtain a global view of the tree of life by comparing the metabolic pathway structures using meta-level information rather than sequence information. This method may yield further information about biological evolution, such as the history of horizontal transfer of each gene, by studying the detailed structure of the phylogenetic tree constructed by the kernel-based method.

  11. The power and pitfalls of HIV phylogenetics in public health.

    PubMed

    Brooks, James I; Sandstrom, Paul A

    2013-07-25

    Phylogenetics is the application of comparative studies of genetic sequences in order to infer evolutionary relationships among organisms. This tool can be used as a form of molecular epidemiology to enhance traditional population-level communicable disease surveillance. Phylogenetic study has resulted in new paradigms being created in the field of communicable diseases and this commentary aims to provide the reader with an explanation of how phylogenetics can be used in tracking infectious diseases. Special emphasis will be placed upon the application of phylogenetics as a tool to help elucidate HIV transmission patterns and the limitations to these methods when applied to forensic analysis. Understanding infectious disease epidemiology in order to prevent new transmissions is the sine qua non of public health. However, with increasing epidemiological resolution, there may be an associated potential loss of privacy to the individual. It is within this context that we aim to promote the discussion on how to use phylogenetics to achieve important public health goals, while at the same time protecting the rights of the individual.

  12. Grid-based International Network for Flu observation (g-INFO).

    PubMed

    Doan, Trung-Tung; Bernard, Aurélien; Da-Costa, Ana Lucia; Bloch, Vincent; Le, Thanh-Hoa; Legre, Yannick; Maigne, Lydia; Salzemann, Jean; Sarramia, David; Nguyen, Hong-Quang; Breton, Vincent

    2010-01-01

    The 2009 H1N1 outbreak has demonstrated that continuing vigilance, planning, and strong public health research capability are essential defenses against emerging health threats. Molecular epidemiology of influenza virus strains provides scientists with clues about the temporal and geographic evolution of the virus. In the present paper, researchers from France and Vietnam are proposing a global surveillance network based on grid technology: the goal is to federate influenza data servers and deploy automatically molecular epidemiology studies. A first prototype based on AMGA and the WISDOM Production Environment extracts daily from NCBI influenza H1N1 sequence data which are processed through a phylogenetic analysis pipeline deployed on EGEE and AuverGrid e-infrastructures. The analysis results are displayed on a web portal (http://g-info.healthgrid.org) for epidemiologists to monitor H1N1 pandemics.

  13. Phenotypic and genetic diversity of chlorine-resistant Methylobacterium strains isolated from various environments.

    PubMed Central

    Hiraishi, A; Furuhata, K; Matsumoto, A; Koike, K A; Fukuyama, M; Tabuchi, K

    1995-01-01

    Strains of pink-pigmented facultative methylotrophs which were isolated previously from various environments and assigned tentatively to the genus Methylobacterium were characterized in comparison with authentic strains of previously known species of this genus. Most of the isolates derived from chlorinated water supplies exhibited resistance to chlorine, whereas 29 to 40% of the isolates from air, natural aquatic environments, and clinical materials were chlorine resistant. None of the tested authentic strains of Methylobacterium species obtained from culture collections exhibited chlorine resistance. Numerical analysis of phenotypic profiles showed that the test organisms tested were separated from each other except M. organophilum and M. rhodesianum. The chlorine-resistant isolates were randomly distributed among all clusters. The 16S ribosomal DNA (rDNA) sequence-based phylogenetic analyses showed that representatives of the isolates together with known Methylobacterium species formed a line of descent distinct from that of members of related genera in the alpha-2 subclass of the Proteobacteria and were divided into three subclusters within the Methylobacterium group. These results demonstrate that there is phenotypic and genetic diversity among chlorine-resistant Methylobacterium strains within the genus. PMID:7793931

  14. Shyer and larger bird species show more reduced fear of humans when living in urban environments.

    PubMed

    delBarco-Trillo, Javier

    2018-04-01

    As the natural habitats of many species are degraded or disappear, there is scope for these species to be established in urban habitats. To ease the establishment and maintenance of urban populations of more species we need to better understand what degree of phenotypical change to expect as different species transition into urban environments. During the first stages of urban colonization, behavioural changes such as an increase in boldness are particularly important. A consistent response in urban populations is to decrease the distance at which individuals flee from an approaching human (flight initiation distance, or FID). Performing a phylogenetic generalized least-squares (PGLS) analysis on 130 avian species, I found that the largest changes in FID between rural and urban populations occur in species that are larger-bodied and naturally shy (higher rural FID), two phenotypic traits that are not normally associated with urban colonizers. More unlikely species may thus be able to colonize urban environments, especially if we design cities in ways that promote such urban colonizations. © 2018 The Author(s).

  15. Phenotypic and genetic diversity of chlorine-resistant Methylobacterium strains isolated from various environments.

    PubMed

    Hiraishi, A; Furuhata, K; Matsumoto, A; Koike, K A; Fukuyama, M; Tabuchi, K

    1995-06-01

    Strains of pink-pigmented facultative methylotrophs which were isolated previously from various environments and assigned tentatively to the genus Methylobacterium were characterized in comparison with authentic strains of previously known species of this genus. Most of the isolates derived from chlorinated water supplies exhibited resistance to chlorine, whereas 29 to 40% of the isolates from air, natural aquatic environments, and clinical materials were chlorine resistant. None of the tested authentic strains of Methylobacterium species obtained from culture collections exhibited chlorine resistance. Numerical analysis of phenotypic profiles showed that the test organisms tested were separated from each other except M. organophilum and M. rhodesianum. The chlorine-resistant isolates were randomly distributed among all clusters. The 16S ribosomal DNA (rDNA) sequence-based phylogenetic analyses showed that representatives of the isolates together with known Methylobacterium species formed a line of descent distinct from that of members of related genera in the alpha-2 subclass of the Proteobacteria and were divided into three subclusters within the Methylobacterium group. These results demonstrate that there is phenotypic and genetic diversity among chlorine-resistant Methylobacterium strains within the genus.

  16. Investigating Extreme Lifestyles through Mangrove Transcriptomics

    ERIC Educational Resources Information Center

    Dassanayake, Maheshi

    2009-01-01

    Mangroves represent phylogenetically diverse taxa in tropical coastal terrestrial habitats. They are extremophiles, evolutionarily adapted to tolerate flooding, anoxia, high temperatures, wind, and high and extremely variable salt conditions in typically resource-poor environments. The genetic basis for these adaptations is, however, virtually…

  17. Archaeal phylogeny: reexamination of the phylogenetic position of Archaeoglobus fulgidus in light of certain composition-induced artifacts

    NASA Technical Reports Server (NTRS)

    Woese, C. R.; Achenbach, L.; Rouviere, P.; Mandelco, L.

    1991-01-01

    A major and too little recognized source of artifact in phylogenetic analysis of molecular sequence data is compositional difference among sequences. The problem becomes particularly acute when alignments contain ribosomal RNAs from both mesophilic and thermophilic species. Among prokaryotes the latter are considerably higher in G + C content than the former, which often results in artificial clustering of thermophilic lineages and their being placed artificially deep in phylogenetic trees. In this communication we review archaeal phylogeny in the light of this consideration, focusing in particular on the phylogenetic position of the sulfate reducing species Archaeoglobus fulgidus, using both 16S rRNA and 23S rRNA sequences. The analysis shows clearly that the previously reported deep branching of the A. fulgidus lineage (very near the base of the euryarchaeal side of the archaeal tree) is incorrect, and that the lineage actually groups with a previously recognized unit that comprises the Methanomicrobiales and extreme halophiles.

  18. Phylogenetic Diversity in the Macromolecular Composition of Microalgae

    PubMed Central

    Finkel, Zoe V.; Follows, Mick J.; Liefer, Justin D.; Brown, Chris M.; Benner, Ina; Irwin, Andrew J.

    2016-01-01

    The elemental stoichiometry of microalgae reflects their underlying macromolecular composition and influences competitive interactions among species and their role in the food web and biogeochemistry. Here we provide a new estimate of the macromolecular composition of microalgae using a hierarchical Bayesian analysis of data compiled from the literature. The median macromolecular composition of nutrient-sufficient exponentially growing microalgae is 32.2% protein, 17.3% lipid, 15.0% carbohydrate, 17.3% ash, 5.7% RNA, 1.1% chlorophyll-a and 1.0% DNA as percent dry weight. Our analysis identifies significant phylogenetic differences in macromolecular composition undetected by previous studies due to small sample sizes and the large inherent variability in macromolecular pools. The phylogenetic differences in macromolecular composition lead to variations in carbon-to-nitrogen ratios that are consistent with independent observations. These phylogenetic differences in macromolecular and elemental composition reflect adaptations in cellular architecture and biochemistry; specifically in the cell wall, the light harvesting apparatus, and storage pools. PMID:27228080

  19. Adaptive Evolution and Environmental Durability Jointly Structure Phylodynamic Patterns in Avian Influenza Viruses

    PubMed Central

    Roche, Benjamin; Drake, John M.; Brown, Justin; Stallknecht, David E.; Bedford, Trevor; Rohani, Pejman

    2014-01-01

    Avian influenza viruses (AIVs) have been pivotal to the origination of human pandemic strains. Despite their scientific and public health significance, however, there remains much to be understood about the ecology and evolution of AIVs in wild birds, where major pools of genetic diversity are generated and maintained. Here, we present comparative phylodynamic analyses of human and AIVs in North America, demonstrating (i) significantly higher standing genetic diversity and (ii) phylogenetic trees with a weaker signature of immune escape in AIVs than in human viruses. To explain these differences, we performed statistical analyses to quantify the relative contribution of several potential explanations. We found that HA genetic diversity in avian viruses is determined by a combination of factors, predominantly subtype-specific differences in host immune selective pressure and the ecology of transmission (in particular, the durability of subtypes in aquatic environments). Extending this analysis using a computational model demonstrated that virus durability may lead to long-term, indirect chains of transmission that, when coupled with a short host lifespan, can generate and maintain the observed high levels of genetic diversity. Further evidence in support of this novel finding was found by demonstrating an association between subtype-specific environmental durability and predicted phylogenetic signatures: genetic diversity, variation in phylogenetic tree branch lengths, and tree height. The conclusion that environmental transmission plays an important role in the evolutionary biology of avian influenza viruses—a manifestation of the “storage effect”—highlights the potentially unpredictable impact of wildlife reservoirs for future human pandemics and the need for improved understanding of the natural ecology of these viruses. PMID:25116957

  20. A Microbial Community in Sediments Beneath the Western Antarctic Ice Sheet, Ice Stream C (Kamb)

    NASA Astrophysics Data System (ADS)

    Skidmore, M.; Han, S.; Foo, W.; Bui, D.; Lanoil, B.

    2004-12-01

    In 2000, an ice-drilling project focusing on the "sticky spot" of Ice Stream C recovered cores of sub-glacial sediments from beneath the Western Antarctic Ice Sheet. We have characterized several chemical and microbiological parameters of the sole intact sediment core. Pore waters extracted from these sediments were brackish and some were supersaturated with respect to calcite. Ion chromatography demonstrated the presence of several organic acids at low, but detectable, levels in the pore water. DAPI direct cell counts were approximately 107 cells g-1. Aerobic viable plate counts were much lower than direct cell counts; however, they were two orders of magnitude higher on plates incubated at low temperature (4 ° C; 3.63 x 105 CFU ml-1) than at higher temperatures (ca. 22° C; 1.5 x 103 CFU ml-1); no colonies were detected on plates incubated anaerobically at either temperature. 16S rDNA clone library analysis indicates extremely limited bacterial diversity in these samples: six phylogenetic clades were detected. The three dominant bacterial phylogenetic clades in the clone libraries (252 clones total) were most closely related to Thiobacillus thioparus (180 clones), Polaromonas vacuolata (34 clones), and Gallionella ferruginea (35 clones) and their relatives; one clone each represented the other three phylogenetic clades (most closely related to Ralstonia pickettii, Lysobacter antibioticus, and Xylella fastidiosa, respectively). These sequences match closely with sequences previously obtained from other subglacial environments in Alaska, Ellesmere Island, Canada and New Zealand. Implications of this microbial community to subglacial chemistry and microbial biogeography will be discussed.

  1. Development of a Prognostic Marker for Lung Cancer Using Analysis of Tumor Evolution

    DTIC Science & Technology

    2016-08-01

    construct evolutionary trees , the characteristics of which will be used to predict whether a tumor will metastasize or not. We established a procedure for...of populations, the evolution of tumor cells within a tumor can be diagrammed on a phylogenetic tree . The more diverse a tumor’s phylogenetic tree ...individual tumor cells from the tumors of a training set of patients (half early stage, half late stage). We will reconstruct each tumor’s phylogenetic tree

  2. Phylogeny, Traits, and Biodiversity of a Neotropical Bat Assemblage: Close Relatives Show Similar Responses to Local Deforestation.

    PubMed

    Frank, Hannah K; Frishkoff, Luke O; Mendenhall, Chase D; Daily, Gretchen C; Hadly, Elizabeth A

    2017-08-01

    If species' evolutionary pasts predetermine their responses to evolutionarily novel stressors, then phylogeny could predict species survival in an increasingly human-dominated world. To understand the role of phylogenetic relatedness in structuring responses to rapid environmental change, we focused on assemblages of Neotropical bats, an ecologically diverse and functionally important group. We examined how taxonomic and phylogenetic diversity shift between tropical forest and farmland. We then explored the importance of evolutionary history by ascertaining whether close relatives share similar responses to environmental change and which species traits might mediate these trends. We analyzed a 5-year data set (5,011 captures) from 18 sites in a countryside landscape in southern Costa Rica using statistical models that account and correct for imperfect detection of species across sites, spatial autocorrelation, and consideration of spatial scale. Taxonomic and phylogenetic diversity decreased with deforestation, and assemblages became more phylogenetically clustered. Species' responses to deforestation were strongly phylogenetically correlated. Body mass and absolute wing loading explained a substantial portion of species variation in species' habitat preferences, likely related to these traits' influence on maneuverability in cluttered forest environments. Our findings highlight the role that evolutionary history plays in determining which species will survive human impacts and the need to consider diversity metrics, evolutionary history, and traits together when making predictions about species persistence for conservation or ecosystem functioning.

  3. Diversity and Ecological Functions of Crenarchaeota in Terrestrial Hot Springs of Tengchong, China

    NASA Astrophysics Data System (ADS)

    Li, W.; Song, Z.; Chen, J.; Jiang, H.; Zhou, E.; Wang, F.; Xiao, X.; Zhang, C.

    2010-12-01

    The diversity and potential ecological functions of Crenarchaeota were investigated in eight terrestrial hot springs (pH: 2.8-7.7; temperature: 43.6-96 C) located in Tengchong, China, using 16S rRNA gene phylogenetic analysis. A total of 826 crenarchaeotal clones were analyzed and a total of 47 Operational taxonomic units (OTUs) were identified. Most (93%) of the identified OTUs were closely related (89-99%) to those retrieved from hot springs and other thermal environments. Our data showed that temperature may predominate over pH in affecting crenarchaeotal diversity in Tengchong hot springs. Crenarchaeotal diversity in moderate-temperature (59 to 77 C) hot springs was the highest, indicating that the moderate-temperature hot springs are more inclusive for Crenarchaeota. To understand what ecological functions these Crenarchaeota may play in Tengchong hot springs, we isolated the environmental RNA and constructed four cDNA clone libraries of the archaeal accA gene that encodes Acetyl CoA carboxylase. The accA gene represents one of the key enzymes responsible for the CO2 fixation in the 3-hydroxypropionate/4-hydroxybutyrate pathway. The results of phylogenetic analysis showed all the transcribed accA gene sequences can be classified into three large clusters, with the first one being affiliated with marine crenarchaeota, the second one with cultured crenarchaeota, and the third one with Chlorobi (Green sulfur bacteria), which have been proved to employ the 3-hydroxypropionate/4-hydroxybutyrate pathway. The long-branch distances of the phylogenetic tree suggest that these sequences represent novel accA-like gene. Our results also showed that sequences of the accA-like gene from the same hot spring belonged to one cluster, which suggests that a single crenarchaeotal group may fix CO2 via 3-hydroxypropionate/4-hydroxybutyrate pathway in the investigated hot springs.

  4. Wasabi: An Integrated Platform for Evolutionary Sequence Analysis and Data Visualization.

    PubMed

    Veidenberg, Andres; Medlar, Alan; Löytynoja, Ari

    2016-04-01

    Wasabi is an open source, web-based environment for evolutionary sequence analysis. Wasabi visualizes sequence data together with a phylogenetic tree within a modern, user-friendly interface: The interface hides extraneous options, supports context sensitive menus, drag-and-drop editing, and displays additional information, such as ancestral sequences, associated with specific tree nodes. The Wasabi environment supports reproducibility by automatically storing intermediate analysis steps and includes built-in functions to share data between users and publish analysis results. For computational analysis, Wasabi supports PRANK and PAGAN for phylogeny-aware alignment and alignment extension, and it can be easily extended with other tools. Along with drag-and-drop import of local files, Wasabi can access remote data through URL and import sequence data, GeneTrees and EPO alignments directly from Ensembl. To demonstrate a typical workflow using Wasabi, we reproduce key findings from recent comparative genomics studies, including a reanalysis of the EGLN1 gene from the tiger genome study: These case studies can be browsed within Wasabi at http://wasabiapp.org:8000?id=usecases. Wasabi runs inside a web browser and does not require any installation. One can start using it at http://wasabiapp.org. All source code is licensed under the AGPLv3. © The Author(s) 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  5. Phylogenetic analysis of several Thermus strains from Rehai of Tengchong, Yunnan, China.

    PubMed

    Lin, Lianbing; Zhang, Jie; Wei, Yunlin; Chen, Chaoyin; Peng, Qian

    2005-10-01

    Several Thermus strains were isolated from 10 hot springs of the Rehai geothermal area in Tengchong, Yunnan province. The diversity of Thermus strains was examined by sequencing the 16S rRNA genes and comparing their sequences. Phylogenetic analysis showed that the 16S rDNA sequences from the Rehai geothermal isolates form four branches in the phylogenetic tree and had greater than 95.9% similarity in the phylogroup. Secondary structure comparison also indicated that the 16S rRNA from the Rehai geothermal isolates have unique secondary structure characteristics in helix 6, helix 9, and helix 10 (reference to Escherichia coli). This research is the first attempt to reveal the diversity of Thermus strains that are distributed in the Rehai geothermal area.

  6. Eukaryotic Protein Kinases (ePKs) of the Helminth Parasite Schistosoma mansoni

    PubMed Central

    2011-01-01

    Background Schistosomiasis remains an important parasitic disease and a major economic problem in many countries. The Schistosoma mansoni genome and predicted proteome sequences were recently published providing the opportunity to identify new drug candidates. Eukaryotic protein kinases (ePKs) play a central role in mediating signal transduction through complex networks and are considered druggable targets from the medical and chemical viewpoints. Our work aimed at analyzing the S. mansoni predicted proteome in order to identify and classify all ePKs of this parasite through combined computational approaches. Functional annotation was performed mainly to yield insights into the parasite signaling processes relevant to its complex lifestyle and to select some ePKs as potential drug targets. Results We have identified 252 ePKs, which corresponds to 1.9% of the S. mansoni predicted proteome, through sequence similarity searches using HMMs (Hidden Markov Models). Amino acid sequences corresponding to the conserved catalytic domain of ePKs were aligned by MAFFT and further used in distance-based phylogenetic analysis as implemented in PHYLIP. Our analysis also included the ePK homologs from six other eukaryotes. The results show that S. mansoni has proteins in all ePK groups. Most of them are clearly clustered with known ePKs in other eukaryotes according to the phylogenetic analysis. None of the ePKs are exclusively found in S. mansoni or belong to an expanded family in this parasite. Only 16 S. mansoni ePKs were experimentally studied, 12 proteins are predicted to be catalytically inactive and approximately 2% of the parasite ePKs remain unclassified. Some proteins were mentioned as good target for drug development since they have a predicted essential function for the parasite. Conclusions Our approach has improved the functional annotation of 40% of S. mansoni ePKs through combined similarity and phylogenetic-based approaches. As we continue this work, we will highlight the biochemical and physiological adaptations of S. mansoni in response to diverse environments during the parasite development, vector interaction, and host infection. PMID:21548963

  7. Integrating metagenomic and amplicon databases to resolve the phylogenetic and ecological diversity of the Chlamydiae

    PubMed Central

    Lagkouvardos, Ilias; Weinmaier, Thomas; Lauro, Federico M; Cavicchioli, Ricardo; Rattei, Thomas; Horn, Matthias

    2014-01-01

    In the era of metagenomics and amplicon sequencing, comprehensive analyses of available sequence data remain a challenge. Here we describe an approach exploiting metagenomic and amplicon data sets from public databases to elucidate phylogenetic diversity of defined microbial taxa. We investigated the phylum Chlamydiae whose known members are obligate intracellular bacteria that represent important pathogens of humans and animals, as well as symbionts of protists. Despite their medical relevance, our knowledge about chlamydial diversity is still scarce. Most of the nine known families are represented by only a few isolates, while previous clone library-based surveys suggested the existence of yet uncharacterized members of this phylum. Here we identified more than 22 000 high quality, non-redundant chlamydial 16S rRNA gene sequences in diverse databases, as well as 1900 putative chlamydial protein-encoding genes. Even when applying the most conservative approach, clustering of chlamydial 16S rRNA gene sequences into operational taxonomic units revealed an unexpectedly high species, genus and family-level diversity within the Chlamydiae, including 181 putative families. These in silico findings were verified experimentally in one Antarctic sample, which contained a high diversity of novel Chlamydiae. In our analysis, the Rhabdochlamydiaceae, whose known members infect arthropods, represents the most diverse and species-rich chlamydial family, followed by the protist-associated Parachlamydiaceae, and a putative new family (PCF8) with unknown host specificity. Available information on the origin of metagenomic samples indicated that marine environments contain the majority of the newly discovered chlamydial lineages, highlighting this environment as an important chlamydial reservoir. PMID:23949660

  8. Sub-seafloor Processes and the Composition of Diffuse Hydrothermal Fluids

    NASA Astrophysics Data System (ADS)

    Butterfield, D. A.; Lilley, M. D.; Huber, J. A.; Baross, J. A.

    2002-12-01

    High-temperature water/rock reactions create the primary hydrothermal fluids that are diluted with cool, "crustal seawater" to produce low-temperature, diffuse hydrothermal vent fluids. By knowing the composition of each of the components that combine to produce diffuse fluids, one can compare the composition of calculated mixtures with the composition of sampled fluids, and thereby infer what chemical constituents have been affected by processes other than simple conservative mixing. Although there is always uncertainty in the composition of fluids from the sub-seafloor, some processes are significant enough to alter diffuse fluid compositions from the expected conservative mixtures of hot,primary fluid and "crustal seawater." When hydrothermal vents with a wide range of temperature are sampled, processes occurring in different thermal and chemical environments potentially can be discerned. At Axial Volcano (AV) on the Juan de Fuca ridge, methane clearly is produced in warm sub-seafloor environments at temperatures of ~ 100° or less. Based on culturing and phylogenetic analysis from the same water samples at AV, hyperthermophilic methanogens are present in water samples taken from vents ranging in temperature from 15 to 78° C. Ratios of hydrogen sulfide to pseudo-conservative tracers (dissolved silica or heat) at AV decrease when primary fluids are highly diluted with oxygenated seawater. Phylogenetic signatures of microbes closely related to sulfide-oxidizers are present in these same fluids. Hydrogen sulfide oxidation represents the dominant source of energy for chemosynthesis at AV, as in most hydrothermal systems, but a relatively small proportion of the total hydrogen sulfide available is actually oxidized, except at the very lowest temperatures.

  9. Fluid spatial dynamics of West Nile virus in the USA: Rapid spread in a permissive host environment

    USGS Publications Warehouse

    Di Giallonardo , Francesca; Geoghegan, Jemma L.; Docherty, Douglas E.; McLean, Robert G.; Zody, Michael C.; Qu, James; Yang, Xiao; Birren, Bruce W.; Malboeuf, Christine M.; Newman, R.; Ip, Hon S.; Holmes, Edward C.

    2016-01-01

    The introduction of West Nile virus (WNV) into North America in 1999 is a classical example of viral emergence in a new environment, with its subsequent dispersion across the continent having a major impact on local bird populations. Despite the importance of this epizootic, the pattern, dynamics and determinants of WNV spread in its natural hosts remain uncertain. In particular, it is unclear whether the virus encountered major barriers to transmission, or spread in an unconstrained manner, and if specific viral lineages were favored over others indicative of intrinsic differences in fitness. To address these key questions in WNV evolution and ecology we sequenced the complete genomes of approximately 300 avian isolates sampled across the USA between 2001-2012. Phylogenetic analysis revealed a relatively ‘star-like' tree structure, indicative of explosive viral spread in US, although with some replacement of viral genotypes through time. These data are striking in that viral sequences exhibit relatively limited clustering according to geographic region, particularly for those viruses sampled from birds, and no strong phylogenetic association with well sampled avian species. The genome sequence data analysed here also contain relatively little evidence for adaptive evolution, particularly on structural proteins, suggesting that most viral lineages are of similar fitness, and that WNV is well adapted to the ecology of mosquito vectors and diverse avian hosts in the USA. In sum, the molecular evolution of WNV in North America depicts a largely unfettered expansion within a permissive host and geographic population with little evidence of major adaptive barriers.

  10. Identification of light-harvesting chlorophyll a/b-binding protein genes of Zostera marina L. and their expression under different environmental conditions

    NASA Astrophysics Data System (ADS)

    Kong, Fanna; Zhou, Yang; Sun, Peipei; Cao, Min; Li, Hong; Mao, Yunxiang

    2016-02-01

    Photosynthesis includes the collection of light and the transfer of solar energy using light-harvesting chlorophyll a/b-binding (LHC) proteins. In high plants, the LHC gene family includes LHCA and LHCB sub-families, which encode proteins constituting the light-harvesting complex of photosystems I and II. Zostera marina L. is a monocotyledonous angiosperm and inhabits submerged marine environments rather than land environments. We characterized the Lhca and Lhcb gene families of Z. marina from the expressed sequence tags (EST) database. In total, 13 unigenes were annotated as ZmLhc, 6 in Lhca family and 7 in ZmLhcb family. ZmLHCA and ZmLHCB contained the conservative LHC motifs and amino acid residues binding chlorophyll. The average similarity among mature ZmLHCA and ZmLHCB was 48.91% and 48.66%, respectively, which indicated a high degree of divergence within ZmLHChc gene family. The reconstructed phylogenetic tree showed that the tree topology and phylogenetic relationship were similar to those reported in other high plants, suggesting that the Lhc genes were highly conservative and the classification of ZmLhc genes was consistent with the evolutionary position of Z. marina. Real-time reverse transcription (RT) PCR analysis showed that different members of ZmLhca and ZmLhcb responded to a stress in different expression patterns. Salinity, temperature, light intensity and light quality may affect the expression of most ZmLhca and ZmLhcb genes. Inorganic carbon concentration and acidity had no obvious effect on ZmLhca and ZmLhcb gene expression, except for ZmLhca6.

  11. Phylogenetic Network Analysis Revealed the Occurrence of Horizontal Gene Transfer of 16S rRNA in the Genus Enterobacter

    PubMed Central

    Sato, Mitsuharu; Miyazaki, Kentaro

    2017-01-01

    Horizontal gene transfer (HGT) is a ubiquitous genetic event in bacterial evolution, but it seldom occurs for genes involved in highly complex supramolecules (or biosystems), which consist of many gene products. The ribosome is one such supramolecule, but several bacteria harbor dissimilar and/or chimeric 16S rRNAs in their genomes, suggesting the occurrence of HGT of this gene. However, we know little about whether the genes actually experience HGT and, if so, the frequency of such a transfer. This is primarily because the methods currently employed for phylogenetic analysis (e.g., neighbor-joining, maximum likelihood, and maximum parsimony) of 16S rRNA genes assume point mutation-driven tree-shape evolution as an evolutionary model, which is intrinsically inappropriate to decipher the evolutionary history for genes driven by recombination. To address this issue, we applied a phylogenetic network analysis, which has been used previously for detection of genetic recombination in homologous alleles, to the 16S rRNA gene. We focused on the genus Enterobacter, whose phylogenetic relationships inferred by multi-locus sequence alignment analysis and 16S rRNA sequences are incompatible. All 10 complete genomic sequences were retrieved from the NCBI database, in which 71 16S rRNA genes were included. Neighbor-joining analysis demonstrated that the genes residing in the same genomes clustered, indicating the occurrence of intragenomic recombination. However, as suggested by the low bootstrap values, evolutionary relationships between the clusters were uncertain. We then applied phylogenetic network analysis to representative sequences from each cluster. We found three ancestral 16S rRNA groups; the others were likely created through recursive recombination between the ancestors and chimeric descendants. Despite the large sequence changes caused by the recombination events, the RNA secondary structures were conserved. Successive intergenomic and intragenomic recombination thus shaped the evolution of 16S rRNA genes in the genus Enterobacter. PMID:29180992

  12. Explosive radiation or uninformative genes? Origin and early diversification of tachinid flies (Diptera: Tachinidae).

    PubMed

    Winkler, Isaac S; Blaschke, Jeremy D; Davis, Daniel J; Stireman, John O; O'Hara, James E; Cerretti, Pierfilippo; Moulton, John K

    2015-07-01

    Molecular phylogenetic studies at all taxonomic levels often infer rapid radiation events based on short, poorly resolved internodes. While such rapid episodes of diversification are an important and widespread evolutionary phenomenon, much of this poor phylogenetic resolution may be attributed to the continuing widespread use of "traditional" markers (mitochondrial, ribosomal, and some nuclear protein-coding genes) that are often poorly suited to resolve difficult, higher-level phylogenetic problems. Here we reconstruct phylogenetic relationships among a representative set of taxa of the parasitoid fly family Tachinidae and related outgroups of the superfamily Oestroidea. The Tachinidae are one of the most species rich, yet evolutionarily recent families of Diptera, providing an ideal case study for examining the differential performance of loci in resolving phylogenetic relationships and the benefits of adding more loci to phylogenetic analyses. We assess the phylogenetic utility of nine genes including both traditional genes (e.g., CO1 mtDNA, 28S rDNA) and nuclear protein-coding genes newly developed for phylogenetic analysis. Our phylogenetic findings, based on a limited set of taxa, include: a close relationship between Tachinidae and the calliphorid subfamily Polleninae, monophyly of Tachinidae and the subfamilies Exoristinae and Dexiinae, subfamily groupings of Dexiinae+Phasiinae and Tachininae+Exoristinae, and robust phylogenetic placement of the somewhat enigmatic genera Strongygaster, Euthera, and Ceracia. In contrast to poor resolution and phylogenetic incongruence of "traditional genes," we find that a more selective set of highly informative genes is able to more precisely identify regions of the phylogeny that experienced rapid radiation of lineages, while more accurately depicting their phylogenetic context. Although much expanded taxon sampling is necessary to effectively assess the monophyly of and relationships among major tachinid lineages and their relatives, we show that a small number of well-chosen nuclear protein-coding genes can successfully resolve even difficult phylogenetic problems. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. [Short interspersed repetitive sequences (SINEs) and their use as a phylogenetic tool].

    PubMed

    Kramerov, D A; Vasetskiĭ, N S

    2009-01-01

    The data on one of the most common repetitive elements of eukaryotic genomes, short interspersed elements (SINEs), are reviewed. Their structure, origin, and functioning in the genome are discussed. The variation and abundance of these neutral genomic markers makes them a convenient and reliable tool for phylogenetic analysis. The main methods of such analysis are presented, and the potential and limitations of this approach are discussed using specific examples.

  14. Acremonium phylogenetic overview and revision of Gliomastix, Sarocladium, and Trichothecium.

    PubMed

    Summerbell, R C; Gueidan, C; Schroers, H-J; de Hoog, G S; Starink, M; Rosete, Y Arocha; Guarro, J; Scott, J A

    2011-01-01

    Over 200 new sequences are generated for members of the genus Acremonium and related taxa including ribosomal small subunit sequences (SSU) for phylogenetic analysis and large subunit (LSU) sequences for phylogeny and DNA-based identification. Phylogenetic analysis reveals that within the Hypocreales, there are two major clusters containing multiple Acremonium species. One clade contains Acremonium sclerotigenum, the genus Emericellopsis, and the genus Geosmithia as prominent elements. The second clade contains the genera Gliomastixsensu stricto and Bionectria. In addition, there are numerous smaller clades plus two multi-species clades, one containing Acremonium strictum and the type species of the genus Sarocladium, and, as seen in the combined SSU/LSU analysis, one associated subclade containing Acremonium breve and related species plus Acremonium curvulum and related species. This sequence information allows the revision of three genera. Gliomastix is revived for five species, G. murorum, G. polychroma, G. tumulicola, G. roseogrisea, and G. masseei. Sarocladium is extended to include all members of the phylogenetically distinct A. strictum clade including the medically important A. kiliense and the protective maize endophyte A. zeae. Also included in Sarocladium are members of the phylogenetically delimited Acremonium bacillisporum clade, closely linked to the A. strictum clade. The genus Trichothecium is revised following the principles of unitary nomenclature based on the oldest valid anamorph or teleomorph name, and new combinations are made in Trichothecium for the tightly interrelated Acremonium crotocinigenum, Spicellum roseum, and teleomorph Leucosphaerinaindica. Outside the Hypocreales, numerous Acremonium-like species fall into the Plectosphaerellaceae, and A. atrogriseum falls into the Cephalothecaceae.

  15. Listeria booriae sp. nov. and Listeria newyorkensis sp. nov., from food processing environments in the USA.

    PubMed

    Weller, Daniel; Andrus, Alexis; Wiedmann, Martin; den Bakker, Henk C

    2015-01-01

    Sampling of seafood and dairy processing facilities in the north-eastern USA produced 18 isolates of Listeria spp. that could not be identified at the species-level using traditional phenotypic and genotypic identification methods. Results of phenotypic and genotypic analyses suggested that the isolates represent two novel species with an average nucleotide blast identity of less than 92% with previously described species of the genus Listeria. Phylogenetic analyses based on whole genome sequences, 16S rRNA gene and sigB gene sequences confirmed that the isolates represented by type strain FSL M6-0635(T) and FSL A5-0209 cluster phylogenetically with Listeria cornellensis. Phylogenetic analyses also showed that the isolates represented by type strain FSL A5-0281(T) cluster phylogenetically with Listeria riparia. The name Listeria booriae sp. nov. is proposed for the species represented by type strain FSL A5-0281(T) ( =DSM 28860(T) =LMG 28311(T)), and the name Listeria newyorkensis sp. nov. is proposed for the species represented by type strain FSL M6-0635(T) ( =DSM 28861(T) =LMG 28310(T)). Phenotypic and genotypic analyses suggest that neither species is pathogenic. © 2015 IUMS.

  16. Physiological constraints and latitudinal breeding season in the Canidae.

    PubMed

    Valdespino, Carolina

    2007-01-01

    Physiological strategies that maximize reproductive success may be phylogenetically constrained or might have a plastic response to different environmental conditions. Among mammals, Canidae lend themselves to the study of these two influences on reproductive physiology because all the species studied to date have been characterized as monestrous (i.e., a single ovulatory event per breeding season), suggesting a phylogenetic effect. Greater flexibility could be associated with environments that are less seasonal, such as the tropics; however, little is known for many of the species from this region. To compensate for this lack of data, two regressions were done on the length of the reproductive season relative to the latitudinal distribution of a species: one with raw data and another with phylogenetically independent contrasts. There was a significant negative relationship, independent of phylogeny, with canids that have longer breeding seasons occurring at lower latitudes. In contrast, the pervasiveness of monestrus within Canidae appears to be phylogenetically constrained by their pairing/packing life and is most likely associated with monogamy. The persistence of the monestrous condition is supported by a captive study where a tropical canid, the fennec fox, Vulpes zerda, never exhibited polyestrous cycles despite a constant photoperiod (12L : 12D).

  17. Phylogeny of flowering plants by the chloroplast genome sequences: in search of a "lucky gene".

    PubMed

    Logacheva, M D; Penin, A A; Samigullin, T H; Vallejo-Roman, C M; Antonov, A S

    2007-12-01

    One of the most complicated remaining problems of molecular-phylogenetic analysis is choosing an appropriate genome region. In an ideal case, such a region should have two specific properties: (i) results of analysis using this region should be similar to the results of multigene analysis using the maximal number of regions; (ii) this region should be arranged compactly and be significantly shorter than the multigene set. The second condition is necessary to facilitate sequencing and extension of taxons under analysis, the number of which is also crucial for molecular phylogenetic analysis. Such regions have been revealed for some groups of animals and have been designated as "lucky genes". We have carried out a computational experiment on analysis of 41 complete chloroplast genomes of flowering plants aimed at searching for a "lucky gene" for reconstruction of their phylogeny. It is shown that the phylogenetic tree inferred from a combination of translated nucleotide sequences of genes encoding subunits of plastid RNA polymerase is closest to the tree constructed using all protein coding sites of the chloroplast genome. The only node for which a contradiction is observed is unstable according to the different type analyses. For all the other genes or their combinations, the coincidence is significantly worse. The RNA polymerase genes are compactly arranged in the genome and are fourfold shorter than the total length of protein coding genes used for phylogenetic analysis. The combination of all necessary features makes this group of genes main candidates for the role of "lucky gene" in studying phylogeny of flowering plants.

  18. [Phylogenetic analysis of CO I gene of Oncomelania snails from project of afforestation for schistosomiasis control in marshland endemic regions].

    PubMed

    Xu, Yu-Mei; Zhang, Shi-Qing; Zhu, Chuan-Gang

    2012-04-01

    To investigate the genetic difference of cytochrome oxidase I (CO I ) of Oncomelania snails from the project of afforestation for schistosomiasis control in marshland regions, so as to explore the effects of different ecological environments. The snails were collected from 3 different areas, Anqing, Tongling, Wuwei, i.e. the upstream, midstream and downstream regions along the Yangtz River in Anhui Province. Genomic DNA was extracted from the snails, and CO I gene fragments were amplified by PCR, then purified and sequenced. The sequences were edited by using Blast. The CO I genes of O. h. minima and Biomphalaria glabrata were used as the reference of exogenous gene. The genetic distances of the various regions were calculated by the Kimura method and phylogenetic trees were constructed with UPGMA and the NJ method of MEGA (3.1) software. The amplified CO I gene of the snail was a fragment about 700 bp including 2 primers in length. There were little genetic diversity among the different areas, the identities were higher than or equal to 98%. The genetic distances indicated that the distance between the projects of afforestation and woodland in Anqing was 0.003, while Tongling was 0.019, Wuwei was 0.007. The distances among the three projects of afforestation were 0.003-0.012. The two phylogenetic trees were constructed by the methods of UPGMA and NJ respectively, which took on very similar topo-structure in which isolates of Biomphalaria glabrata located in one clade and all the others in the other one. In the other one clade, O. H. minima located in one clade. There was little genetic diversity among Anqing, Tongling, Wuwei clusters. The afforestations of Anqing and Wuwei clustered into one group, while the woodlands of Anqing and Wuwei appeared as another group. There is a little genetic diversity of the snail cytochrome oxidase I (CO I ) in different ecological environments among the upstream, midstream and downstream regions along the Yangtz River in Anhui Province.

  19. Ersiphe trifolii-a newly recognized powdery mildew pathogen of pea.

    USDA-ARS?s Scientific Manuscript database

    Population diversity of powdery mildews infecting pea (Pisum sativum) in the US Pacific Northwest was investigated in order to assess inconsistent resistance performances of pea genotypes in different environments. Phylogenetic analyses based on ITS sequences, in combination with assessment of morph...

  20. Helicobacter pylori from gastric cancer and duodenal ulcer show same phylogeographic origin in the Andean region in Colombia.

    PubMed

    Shiota, Seiji; Suzuki, Rumiko; Matsuo, Yuichi; Miftahussurur, Muhammad; Tran, Trang Thu Huyen; Binh, Tran Thanh; Yamaoka, Yoshio

    2014-01-01

    A recent report has shown that the phylogenetic origin of Helicobacter pylori based on multi-locus sequence typing (MLST) was significantly associated with the severity of gastritis in Colombia. However, the potential relationship between phylogenetic origin and clinical outcomes was not examined in that study. If the phylogenetic origin rather than virulence factors were truly associated with clinical outcomes, identifying a population at high risk for gastric cancer in Colombia would be relatively straightforward. In this study, we examined the phylogenetic origins of strains from gastric cancer and duodenal ulcer patients living in Bogota, Colombia. We included 35 gastric cancer patients and 31 duodenal ulcer patients, which are considered the variant outcomes. The genotypes of cagA and vacA were determined by polymerase chain reaction. The genealogy of these Colombian strains was analyzed by MLST. Bacterial population structure was analyzed using STRUCTURE software. H. pylori strains from gastric cancer and duodenal ulcer patients were scattered in the phylogenetic tree; thus, we did not detect any difference in phylogenetic distribution between gastric cancer and duodenal ulcer strains in the hpEurope group in Colombia. Sixty-six strains, with one exception, were classified as hpEurope irrespective of the cagA and vacA genotypes, and type of disease. STRUCTURE analysis revealed that Colombian hpEurope strains have a phylogenetic connection to Spanish strains. Our study showed that a phylogeographic origin determined by MLST was insufficient for distinguishing between gastric cancer and duodenal ulcer risk among hpEurope strains in the Andean region in Colombia. Our analysis also suggests that hpEurope strains in Colombia were primarily introduced by Spanish immigrants.

  1. Separating the wheat from the chaff: mitigating the effects of noise in a plastome phylogenomic data set from Pinus L. (Pinaceae)

    PubMed Central

    2012-01-01

    Background Through next-generation sequencing, the amount of sequence data potentially available for phylogenetic analyses has increased exponentially in recent years. Simultaneously, the risk of incorporating ‘noisy’ data with misleading phylogenetic signal has also increased, and may disproportionately influence the topology of weakly supported nodes and lineages featuring rapid radiations and/or elevated rates of evolution. Results We investigated the influence of phylogenetic noise in large data sets by applying two fundamental strategies, variable site removal and long-branch exclusion, to the phylogenetic analysis of a full plastome alignment of 107 species of Pinus and six Pinaceae outgroups. While high overall phylogenetic resolution resulted from inclusion of all data, three historically recalcitrant nodes remained conflicted with previous analyses. Close investigation of these nodes revealed dramatically different responses to data removal. Whereas topological resolution and bootstrap support for two clades peaked with removal of highly variable sites, the third clade resolved most strongly when all sites were included. Similar trends were observed using long-branch exclusion, but patterns were neither as strong nor as clear. When compared to previous phylogenetic analyses of nuclear loci and morphological data, the most highly supported topologies seen in Pinus plastome analysis are congruent for the two clades gaining support from variable site removal and long-branch exclusion, but in conflict for the clade with highest support from the full data set. Conclusions These results suggest that removal of misleading signal in phylogenomic datasets can result not only in increased resolution for poorly supported nodes, but may serve as a tool for identifying erroneous yet highly supported topologies. For Pinus chloroplast genomes, removal of variable sites appears to be more effective than long-branch exclusion for clarifying phylogenetic hypotheses. PMID:22731878

  2. Phylogenetic analysis of molecular and morphological data highlights uncertainty in the relationships of fossil and living species of Elopomorpha (Actinopterygii: Teleostei).

    PubMed

    Dornburg, Alex; Friedman, Matt; Near, Thomas J

    2015-08-01

    Elopomorpha is one of the three main clades of living teleost fishes and includes a range of disparate lineages including eels, tarpons, bonefishes, and halosaurs. Elopomorphs were among the first groups of fishes investigated using Hennigian phylogenetic methods and continue to be the object of intense phylogenetic scrutiny due to their economic significance, diversity, and crucial evolutionary status as the sister group of all other teleosts. While portions of the phylogenetic backbone for Elopomorpha are consistent between studies, the relationships among Albula, Pterothrissus, Notacanthiformes, and Anguilliformes remain contentious and difficult to evaluate. This lack of phylogenetic resolution is problematic as fossil lineages are often described and placed taxonomically based on an assumed sister group relationship between Albula and Pterothrissus. In addition, phylogenetic studies using morphological data that sample elopomorph fossil lineages often do not include notacanthiform or anguilliform lineages, potentially introducing a bias toward interpreting fossils as members of the common stem of Pterothrissus and Albula. Here we provide a phylogenetic analysis of DNA sequences sampled from multiple nuclear genes that include representative taxa from Albula, Pterothrissus, Notacanthiformes and Anguilliformes. We integrate our molecular dataset with a morphological character matrix that spans both living and fossil elopomorph lineages. Our results reveal substantial uncertainty in the placement of Pterothrissus as well as all sampled fossil lineages, questioning the stability of the taxonomy of fossil Elopomorpha. However, despite topological uncertainty, our integration of fossil lineages into a Bayesian time calibrated framework provides divergence time estimates for the clade that are consistent with previously published age estimates based on the elopomorph fossil record and molecular estimates resulting from traditional node-dating methods. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Yersinia pestis strains of ancient phylogenetic branch 0.ANT are widely spread in the high-mountain plague foci of Kyrgyzstan

    PubMed Central

    Nosov, Nikita Yu; Krasnov, Yaroslav M.; Oglodin, Yevgeny G.; Kukleva, Lyubov M.; Guseva, Natalia P.; Kuznetsov, Alexander A.; Abdikarimov, Sabyrzhan T.; Dzhaparova, Aigul K.; Kutyrev, Vladimir V.

    2017-01-01

    Fifty six Yersinia pestis strains, isolated over the period of more than 50 years in three high-mountain foci of Kyrgyzstan (Tien Shan, Alai, and Talas), have been characterized by means of PCR and single nucleotide polymorphism (SNP) typing methods. Seven of these strains were also characterized by means of whole genome sequencing and genome-wide SNP phylogenetic analysis. It was found that forty two strains belong to 0.ANT2, 0.ANT3 and 0.ANT5 phylogenetic branches. From these, strains of 0.ANT2 and 0.ANT3 branches were earlier detected in China only, whereas 0.ANT5 phylogenetic branch was identified for Y. pestis phylogeny for the first time. According to the results of genome-wide SNP analysis, 0.ANT5 strains are ones of the most closely related to Y. pestis strain responsible for the Justinianic Plague. We have also found out that four of the studied strains belong to the phylogenetic branch 2.MED1, and ten strains from Talas high-mountain focus belong to the phylogenetic branch 0.PE4 (sub-branch 0.PE4t). Established diversity of Y. pestis strains and extensive dissemination of the strains pertaining to the 0.ANT branch confirm the antiquity of the mentioned above plague foci and suggest that strains of the 0.ANT branch, which serve as precursors for all highly virulent Y. pestis strains, had their origin in the Tien Shan mountains. PMID:29073248

  4. Yersinia pestis strains of ancient phylogenetic branch 0.ANT are widely spread in the high-mountain plague foci of Kyrgyzstan.

    PubMed

    Eroshenko, Galina A; Nosov, Nikita Yu; Krasnov, Yaroslav M; Oglodin, Yevgeny G; Kukleva, Lyubov M; Guseva, Natalia P; Kuznetsov, Alexander A; Abdikarimov, Sabyrzhan T; Dzhaparova, Aigul K; Kutyrev, Vladimir V

    2017-01-01

    Fifty six Yersinia pestis strains, isolated over the period of more than 50 years in three high-mountain foci of Kyrgyzstan (Tien Shan, Alai, and Talas), have been characterized by means of PCR and single nucleotide polymorphism (SNP) typing methods. Seven of these strains were also characterized by means of whole genome sequencing and genome-wide SNP phylogenetic analysis. It was found that forty two strains belong to 0.ANT2, 0.ANT3 and 0.ANT5 phylogenetic branches. From these, strains of 0.ANT2 and 0.ANT3 branches were earlier detected in China only, whereas 0.ANT5 phylogenetic branch was identified for Y. pestis phylogeny for the first time. According to the results of genome-wide SNP analysis, 0.ANT5 strains are ones of the most closely related to Y. pestis strain responsible for the Justinianic Plague. We have also found out that four of the studied strains belong to the phylogenetic branch 2.MED1, and ten strains from Talas high-mountain focus belong to the phylogenetic branch 0.PE4 (sub-branch 0.PE4t). Established diversity of Y. pestis strains and extensive dissemination of the strains pertaining to the 0.ANT branch confirm the antiquity of the mentioned above plague foci and suggest that strains of the 0.ANT branch, which serve as precursors for all highly virulent Y. pestis strains, had their origin in the Tien Shan mountains.

  5. A taxonomic framework for emerging groups of ecologically important marine gammaproteobacteria based on the reconstruction of evolutionary relationships using genome-scale data

    PubMed Central

    Spring, Stefan; Scheuner, Carmen; Göker, Markus; Klenk, Hans-Peter

    2015-01-01

    In recent years a large number of isolates were obtained from saline environments that are phylogenetically related to distinct clades of oligotrophic marine gammaproteobacteria, which were originally identified in seawater samples using cultivation independent methods and are characterized by high seasonal abundances in coastal environments. To date a sound taxonomic framework for the classification of these ecologically important isolates and related species in accordance with their evolutionary relationships is missing. In this study we demonstrate that a reliable allocation of members of the oligotrophic marine gammaproteobacteria (OMG) group and related species to higher taxonomic ranks is possible by phylogenetic analyses of whole proteomes but also of the RNA polymerase beta subunit, whereas phylogenetic reconstructions based on 16S rRNA genes alone resulted in unstable tree topologies with only insignificant bootstrap support. The identified clades could be correlated with distinct phenotypic traits illustrating an adaptation to common environmental factors in their evolutionary history. Genome wide gene-content analyses revealed the existence of two distinct ecological guilds within the analyzed lineage of marine gammaproteobacteria which can be distinguished by their trophic strategies. Based on our results a novel order within the class Gammaproteobacteria is proposed, which is designated Cellvibrionales ord. nov. and comprises the five novel families Cellvibrionaceae fam. nov., Halieaceae fam. nov., Microbulbiferaceae fam. nov., Porticoccaceae fam. nov., and Spongiibacteraceae fam. nov. PMID:25914684

  6. Complete-fosmid and fosmid-end sequences reveal frequent horizontal gene transfers in marine uncultured planktonic archaea

    PubMed Central

    Brochier-Armanet, Céline; Deschamps, Philippe; López-García, Purificación; Zivanovic, Yvan; Rodríguez-Valera, Francisco; Moreira, David

    2011-01-01

    The extent of horizontal gene transfer (HGT) among marine pelagic prokaryotes and the role that HGT may have played in their adaptation to this particular environment remain open questions. This is partly due to the paucity of cultured species and genomic information for many widespread groups of marine bacteria and archaea. Molecular studies have revealed a large diversity and relative abundance of marine planktonic archaea, in particular of Thaumarchaeota (also known as group I Crenarchaeota) and Euryarchaeota of groups II and III, but only one species (the thaumarchaeote Candidatus Nitrosopumilus maritimus) has been isolated in pure culture so far. Therefore, metagenomics remains the most powerful approach to study these environmental groups. To investigate the impact of HGT in marine archaea, we carried out detailed phylogenetic analyses of all open reading frames of 21 archaeal 16S rRNA gene-containing fosmids and, to extend our analysis to other genomic regions, also of fosmid-end sequences of 12 774 fosmids from three different deep-sea locations (South Atlantic and Adriatic Sea at 1000 m depth, and Ionian Sea at 3000 m depth). We found high HGT rates in both marine planktonic Thaumarchaeota and Euryarchaeota, with remarkable converging values estimated from complete-fosmid and fosmid-end sequence analysis (25 and 21% of the genes, respectively). Most HGTs came from bacterial donors (mainly from Proteobacteria, Firmicutes and Chloroflexi) but also from other archaea and eukaryotes. Phylogenetic analyses showed that in most cases HGTs are shared by several representatives of the studied groups, implying that they are ancient and have been conserved over relatively long evolutionary periods. This, together with the functions carried out by these acquired genes (mostly related to energy metabolism and transport of metabolites across membranes), suggests that HGT has played an important role in the adaptation of these archaea to the cold and nutrient-depleted deep marine environment. PMID:21346789

  7. Species Distribution and In Vitro Azole Susceptibility of Aspergillus Section Nigri Isolates from Clinical and Environmental Settings.

    PubMed

    Iatta, Roberta; Nuccio, Federica; Immediato, Davide; Mosca, Adriana; De Carlo, Carmela; Miragliotta, Giuseppe; Parisi, Antonio; Crescenzo, Giuseppe; Otranto, Domenico; Cafarchia, Claudia

    2016-09-01

    Aspergillus section Nigri includes species of interest for animal and human health, although studies on species distribution are limited to human cases. Data on the antifungal susceptibilities and the molecular mechanism of triazole resistance in strains belonging to this section are scant. Forty-two black Aspergillus strains from human patients (16 isolates), animals (14 isolates), and the environment (12 isolates) were molecularly characterized and their in vitro triazole susceptibilities investigated. Aspergillus tubingensis was isolated from humans, animals, and environmental settings, whereas Aspergillus awamori and Aspergillus niger were isolated exclusively from humans. Phylogenetic analyses of β-tubulin and calmodulin gene sequences were concordant in differentiating A. tubingensis from A. awamori and A. niger Voriconazole and posaconazole (PSZ) were the most active triazoles. One A. tubingensis strain was resistant to itraconazole and PSZ and one A. niger strain to PSZ. Sequence analysis of the cyp51A gene revealed different sequence types within a species, and A. tubingensis strains were also phylogenetically distinct from A. awamori/A. niger strains according to the strain origin and susceptibility profile. Genetic analysis of the cyp51A sequences suggests that two nonsynonymous mutations resulting in amino acid substitutions in the CYP51A protein (changes of L to R at position 21 [L21R] and of Q to R at position 228 [Q228R]) might be involved in azole resistance. Though azole resistance in black Aspergillus isolates from animals and rural environments does not represent a threat to public health in Southern Italy, the use of triazoles in the clinical setting needs to better monitored. The cyp51A sequence is useful for the molecular identification of black Aspergillus, and point mutations in protein sequences could be responsible for azole resistance phenomena. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  8. Relationships among genera of the Saccharomycotina (Ascomycota) from multigene phylogenetic analysis of type species

    USDA-ARS?s Scientific Manuscript database

    Phylogenetic relatedness among ascomycetous yeast genera (subphylum Saccharomycotina, phylum Ascomycota) has been uncertain. In the present study, type species of 70 currently recognized genera are compared from divergence in the nearly entire nuclear gene sequences for large subunit rRNA, small sub...

  9. Use of EST-SSR loci flanking regions for phylogenetic analysis of genus Arachis

    USDA-ARS?s Scientific Manuscript database

    All wild peanut collections in the genus Arachis were assigned to nine taxonomy sections on the bases of cross-compatibility and morphologic character clustering. These nine sections consist of 80 species from the most ancient to the most advanced, providing a diverse genetic resource for phylogenet...

  10. Geographic distribution of phylogenetically-distinct legume pod borer, Maruca vitrata (Lepidoptera: Pyraloidea: Crambidae)

    USDA-ARS?s Scientific Manuscript database

    Maruca vitrata Fabricius is a pantropical lepidopteran pest of legumes. Phylogenetic analysis of a mitochondrial cytochrome c oxidase-I gene (coxI) fragment indicates that three Maruca sp. mitochondrial lineages have unique geographic distributions [lineages 1 and 2: Australia, Taiwan, and West Afr...

  11. Phylogenetic Relationships in Actinidia as Revealed by RAPD Analysis

    Treesearch

    Hongwen Huang; Zuozhou Li; Jianqiang Li; Thomas L. Kubiisiak; Desmond R. Lavne

    2002-01-01

    Phylogenetic relationships within the Actinidia were investigated using randomly amplified polymorphic DNA (RAPD) markers. DNAs from 10 taxa, including31 species encompassing all four sections and four series of the traditional subdivisions within the genus, were amplified using 22 preselected 10-mer oligonucieotide primers. A total 204 DNA bands...

  12. Phylogenetics and evolutionary morphology of the Neotropical true bug genus Epipolops (Hemiptera: Heteroptera: Geocoridae)

    USDA-ARS?s Scientific Manuscript database

    Species of Epipolops Herrich-Schaeffer (Hemiptera: Geocoridae), comprising the largest genus of Pamphantinae, are among the most bizarre true bugs because of their striking morphology. To elucidate evolutionary morphology in Epipolops, a phylogenetic analysis was performed using 17 species and 36 ad...

  13. Host specificity and phylogenetic relationships of chicken and turkey parvoviruses

    USDA-ARS?s Scientific Manuscript database

    Previous reports indicate that the newly discovered chicken parvoviruses (ChPV) and turkey parvoviruses (TuPV) are very similar to each other, yet they represent different species within a new genus of Parvoviridae. Currently, strain classification is based on the phylogenetic analysis of a 561 bas...

  14. Prokaryotic diversity, composition structure, and phylogenetic analysis of microbial communities in leachate sediment ecosystems.

    PubMed

    Liu, Jingjing; Wu, Weixiang; Chen, Chongjun; Sun, Faqian; Chen, Yingxu

    2011-09-01

    In order to obtain insight into the prokaryotic diversity and community in leachate sediment, a culture-independent DNA-based molecular phylogenetic approach was performed with archaeal and bacterial 16S rRNA gene clone libraries derived from leachate sediment of an aged landfill. A total of 59 archaeal and 283 bacterial rDNA phylotypes were identified in 425 archaeal and 375 bacterial analyzed clones. All archaeal clones distributed within two archaeal phyla of the Euryarchaeota and Crenarchaeota, and well-defined methanogen lineages, especially Methanosaeta spp., are the most numerically dominant species of the archaeal community. Phylogenetic analysis of the bacterial library revealed a variety of pollutant-degrading and biotransforming microorganisms, including 18 distinct phyla. A substantial fraction of bacterial clones showed low levels of similarity with any previously documented sequences and thus might be taxonomically new. Chemical characteristics and phylogenetic inferences indicated that (1) ammonium-utilizing bacteria might form consortia to alleviate or avoid the negative influence of high ammonium concentration on other microorganisms, and (2) members of the Crenarchaeota found in the sediment might be involved in ammonium oxidation. This study is the first to report the composition of the microbial assemblages and phylogenetic characteristics of prokaryotic populations extant in leachate sediment. Additional work on microbial activity and contaminant biodegradation remains to be explored.

  15. Photic niche invasions: phylogenetic history of the dim-light foraging augochlorine bees (Halictidae)

    PubMed Central

    Tierney, Simon M.; Sanjur, Oris; Grajales, Grethel G.; Santos, Leandro M.; Bermingham, Eldredge; Wcislo, William T.

    2012-01-01

    Most bees rely on flowering plants and hence are diurnal foragers. From this ancestral state, dim-light foraging in bees requires significant adaptations to a new photic environment. We used DNA sequences to evaluate the phylogenetic history of the most diverse clade of Apoidea that is adapted to dim-light environments (Augochlorini: Megalopta, Megaloptidia and Megommation). The most speciose lineage, Megalopta, is distal to the remaining dim-light genera, and its closest diurnal relative (Xenochlora) is recovered as a lineage that has secondarily reverted to diurnal foraging. Tests for adaptive protein evolution indicate that long-wavelength opsin shows strong evidence of stabilizing selection, with no more than five codons (2%) under positive selection, depending on analytical procedure. In the branch leading to Megalopta, the amino acid of the single positively selected codon is conserved among ancestral Halictidae examined, and is homologous to codons known to influence molecular structure at the chromophore-binding pocket. Theoretically, such mutations can shift photopigment λmax sensitivity and enable visual transduction in alternate photic environments. Results are discussed in light of the available evidence on photopigment structure, morphological specialization and biogeographic distributions over geological time. PMID:21795273

  16. Photic niche invasions: phylogenetic history of the dim-light foraging augochlorine bees (Halictidae).

    PubMed

    Tierney, Simon M; Sanjur, Oris; Grajales, Grethel G; Santos, Leandro M; Bermingham, Eldredge; Wcislo, William T

    2012-02-22

    Most bees rely on flowering plants and hence are diurnal foragers. From this ancestral state, dim-light foraging in bees requires significant adaptations to a new photic environment. We used DNA sequences to evaluate the phylogenetic history of the most diverse clade of Apoidea that is adapted to dim-light environments (Augochlorini: Megalopta, Megaloptidia and Megommation). The most speciose lineage, Megalopta, is distal to the remaining dim-light genera, and its closest diurnal relative (Xenochlora) is recovered as a lineage that has secondarily reverted to diurnal foraging. Tests for adaptive protein evolution indicate that long-wavelength opsin shows strong evidence of stabilizing selection, with no more than five codons (2%) under positive selection, depending on analytical procedure. In the branch leading to Megalopta, the amino acid of the single positively selected codon is conserved among ancestral Halictidae examined, and is homologous to codons known to influence molecular structure at the chromophore-binding pocket. Theoretically, such mutations can shift photopigment λ(max) sensitivity and enable visual transduction in alternate photic environments. Results are discussed in light of the available evidence on photopigment structure, morphological specialization and biogeographic distributions over geological time.

  17. Water balance in desert Drosophila: lessons from non-charismatic microfauna.

    PubMed

    Gibbs, Allen G

    2002-11-01

    Water stress is a particularly important problem for insects and other small organisms in arid environments. Cactophilic fruit flies in the genus Drosophila have invaded deserts on numerous occasions, including multiple independent invasions of North American deserts. Because the evolutionary history of this genus is so well studied, we can investigate the mechanisms of adaptation in a rigorous phylogenetic context. As expected, desert fruit flies lose water less rapidly than their mesic congeners. They are also able to tolerate the loss of a greater percentage of body water, but this difference is mainly due to phylogenetic history, and does not represent an adaptation specifically to desert habitats. A laboratory analogue of desert Drosophila is provided by populations of D. melanogaster that have been subjected to selection for desiccation resistance. Selected populations resemble desert species in that they lose water slowly, relative to control populations, and are not more tolerant of dehydration stress. They differ, however, in having much higher water contents and different behavioral responses to desiccating conditions. Our comparisons of laboratory and natural populations reveal that not all possible adaptive mechanisms evolve in stressful environments. Different physiological and behavioral strategies may evolve depending upon the particular options available in the environment.

  18. Universal artifacts affect the branching of phylogenetic trees, not universal scaling laws.

    PubMed

    Altaba, Cristian R

    2009-01-01

    The superficial resemblance of phylogenetic trees to other branching structures allows searching for macroevolutionary patterns. However, such trees are just statistical inferences of particular historical events. Recent meta-analyses report finding regularities in the branching pattern of phylogenetic trees. But is this supported by evidence, or are such regularities just methodological artifacts? If so, is there any signal in a phylogeny? In order to evaluate the impact of polytomies and imbalance on tree shape, the distribution of all binary and polytomic trees of up to 7 taxa was assessed in tree-shape space. The relationship between the proportion of outgroups and the amount of imbalance introduced with them was assessed applying four different tree-building methods to 100 combinations from a set of 10 ingroup and 9 outgroup species, and performing covariance analyses. The relevance of this analysis was explored taking 61 published phylogenies, based on nucleic acid sequences and involving various taxa, taxonomic levels, and tree-building methods. All methods of phylogenetic inference are quite sensitive to the artifacts introduced by outgroups. However, published phylogenies appear to be subject to a rather effective, albeit rather intuitive control against such artifacts. The data and methods used to build phylogenetic trees are varied, so any meta-analysis is subject to pitfalls due to their uneven intrinsic merits, which translate into artifacts in tree shape. The binary branching pattern is an imposition of methods, and seldom reflects true relationships in intraspecific analyses, yielding artifactual polytomies in short trees. Above the species level, the departure of real trees from simplistic random models is caused at least by two natural factors--uneven speciation and extinction rates; and artifacts such as choice of taxa included in the analysis, and imbalance introduced by outgroups and basal paraphyletic taxa. This artifactual imbalance accounts for tree shape convergence of large trees. There is no evidence for any universal scaling in the tree of life. Instead, there is a need for improved methods of tree analysis that can be used to discriminate the noise due to outgroups from the phylogenetic signal within the taxon of interest, and to evaluate realistic models of evolution, correcting the retrospective perspective and explicitly recognizing extinction as a driving force. Artifacts are pervasive, and can only be overcome through understanding the structure and biological meaning of phylogenetic trees. Catalan Abstract in Translation S1.

  19. Variations on a theme: diversification of cuticular hydrocarbons in a clade of cactophilic Drosophila

    PubMed Central

    2011-01-01

    Background We characterized variation and chemical composition of epicuticular hydrocarbons (CHCs) in the seven species of the Drosophila buzzatii cluster with gas chromatography/mass spectrometry. Despite the critical role of CHCs in providing resistance to desiccation and involvement in communication, such as courtship behavior, mating, and aggregation, few studies have investigated how CHC profiles evolve within and between species in a phylogenetic context. We analyzed quantitative differences in CHC profiles in populations of the D. buzzatii species cluster in order to assess the concordance of CHC differentiation with species divergence. Results Thirty-six CHC components were scored in single fly extracts with carbon chain lengths ranging from C29 to C39, including methyl-branched alkanes, n-alkenes, and alkadienes. Multivariate analysis of variance revealed that CHC amounts were significantly different among all species and canonical discriminant function (CDF) analysis resolved all species into distinct, non-overlapping groups. Significant intraspecific variation was found in different populations of D. serido suggesting that this taxon is comprised of at least two species. We summarized CHC variation using CDF analysis and mapped the first five CHC canonical variates (CVs) onto an independently derived period (per) gene + chromosome inversion + mtDNA COI gene for each sex. We found that the COI sequences were not phylogenetically informative due to introgression between some species, so only per + inversion data were used. Positive phylogenetic signal was observed mainly for CV1 when parsimony methods and the test for serial independence (TFSI) were used. These results changed when no outgroup species were included in the analysis and phylogenetic signal was then observed for female CV3 and/or CV4 and male CV4 and CV5. Finally, removal of divergent populations of D. serido significantly increased the amount of phylogenetic signal as up to four out of five CVs then displayed positive phylogenetic signal. Conclusions CHCs were conserved among species while quantitative differences in CHC profiles between populations and species were statistically significant. Most CHCs were species-, population-, and sex-specific. Mapping CHCs onto an independently derived phylogeny revealed that a significant portion of CHC variation was explained by species' systematic affinities indicating phylogenetic conservatism in the evolution of these hydrocarbon arrays, presumptive waterproofing compounds and courtship signals as in many other drosophilid species. PMID:21699713

  20. Metagenome-scale analysis yields insights into the structure and function of microbial communities in a copper bioleaching heap.

    PubMed

    Zhang, Xian; Niu, Jiaojiao; Liang, Yili; Liu, Xueduan; Yin, Huaqun

    2016-01-19

    Metagenomics allows us to acquire the potential resources from both cultivatable and uncultivable microorganisms in the environment. Here, shotgun metagenome sequencing was used to investigate microbial communities from the surface layer of low grade copper tailings that were industrially bioleached at the Dexing Copper Mine, China. A bioinformatics analysis was further performed to elucidate structural and functional properties of the microbial communities in a copper bioleaching heap. Taxonomic analysis revealed unexpectedly high microbial biodiversity of this extremely acidic environment, as most sequences were phylogenetically assigned to Proteobacteria, while Euryarchaeota-related sequences occupied little proportion in this system, assuming that Archaea probably played little role in the bioleaching systems. At the genus level, the microbial community in mineral surface-layer was dominated by the sulfur- and iron-oxidizing acidophiles such as Acidithiobacillus-like populations, most of which were A. ferrivorans-like and A. ferrooxidans-like groups. In addition, Caudovirales were the dominant viral type observed in this extremely environment. Functional analysis illustrated that the principal participants related to the key metabolic pathways (carbon fixation, nitrogen metabolism, Fe(II) oxidation and sulfur metabolism) were mainly identified to be Acidithiobacillus-like, Thiobacillus-like and Leptospirillum-like microorganisms, indicating their vital roles. Also, microbial community harbored certain adaptive mechanisms (heavy metal resistance, low pH adaption, organic solvents tolerance and detoxification of hydroxyl radicals) as they performed their functions in the bioleaching system. Our study provides several valuable datasets for understanding the microbial community composition and function in the surface-layer of copper bioleaching heap.

  1. Principal component analysis and the locus of the Fréchet mean in the space of phylogenetic trees.

    PubMed

    Nye, Tom M W; Tang, Xiaoxian; Weyenberg, Grady; Yoshida, Ruriko

    2017-12-01

    Evolutionary relationships are represented by phylogenetic trees, and a phylogenetic analysis of gene sequences typically produces a collection of these trees, one for each gene in the analysis. Analysis of samples of trees is difficult due to the multi-dimensionality of the space of possible trees. In Euclidean spaces, principal component analysis is a popular method of reducing high-dimensional data to a low-dimensional representation that preserves much of the sample's structure. However, the space of all phylogenetic trees on a fixed set of species does not form a Euclidean vector space, and methods adapted to tree space are needed. Previous work introduced the notion of a principal geodesic in this space, analogous to the first principal component. Here we propose a geometric object for tree space similar to the [Formula: see text]th principal component in Euclidean space: the locus of the weighted Fréchet mean of [Formula: see text] vertex trees when the weights vary over the [Formula: see text]-simplex. We establish some basic properties of these objects, in particular showing that they have dimension [Formula: see text], and propose algorithms for projection onto these surfaces and for finding the principal locus associated with a sample of trees. Simulation studies demonstrate that these algorithms perform well, and analyses of two datasets, containing Apicomplexa and African coelacanth genomes respectively, reveal important structure from the second principal components.

  2. Phylogenetic diversity of Brazilian Metarhizium associated with sugarcane agriculture

    USDA-ARS?s Scientific Manuscript database

    Biological control of spittlebug with Metarhizium in sugarcane is an example of the successful application of sustainable pest management in Brazil. However little is known about the richness, distribution and ecology of Metarhizium species in the agroecosystems and natural environments of Brazil. W...

  3. Behavioral thermoregulation by juvenile spring and fall chinook salmon, Oncorhynchus tshawytscha, during smoltification

    USGS Publications Warehouse

    Sauter, S.T.; Crawshaw, L.I.; Maule, A.G.

    2001-01-01

    Fall chinook salmon evolved to emigrate during the summer months. The shift in the temperature preference we observed in smolting fall chinook but not spring chinook salmon may reflect a phylogenetic adaptation to summer emigration by (1) providing directional orientation as fall chinook salmon move into the marine environment, (2) maintaining optimal gill function during emigration and seawater entry, and/or (3) resetting thermoregulatory set-points to support physiological homeostasis once smolted fish enter the marine environment. Phylogenetically determined temperature adaptations and responses to thermal stress may not protect fall chinook salmon from the recent higher summer water temperatures, altered annual thermal regimes, and degraded cold water refugia that result from hydropower regulation of the Columbia and Snake rivers. The long-term survival of fall chinook salmon will likely require restoration of normal annual thermographs and rigorous changes in land use practices to protect critical thermal refugia and control maximum summer water temperatures in reservoirs.

  4. Parallel Evolution and Horizontal Gene Transfer of the pst Operon in Firmicutes from Oligotrophic Environments

    PubMed Central

    Moreno-Letelier, Alejandra; Olmedo, Gabriela; Eguiarte, Luis E.; Martinez-Castilla, Leon; Souza, Valeria

    2011-01-01

    The high affinity phosphate transport system (pst) is crucial for phosphate uptake in oligotrophic environments. Cuatro Cienegas Basin (CCB) has extremely low P levels and its endemic Bacillus are closely related to oligotrophic marine Firmicutes. Thus, we expected the pst operon of CCB to share the same evolutionary history and protein similarity to marine Firmicutes. Orthologs of the pst operon were searched in 55 genomes of Firmicutes and 13 outgroups. Phylogenetic reconstructions were performed for the pst operon and 14 concatenated housekeeping genes using maximum likelihood methods. Conserved domains and 3D structures of the phosphate-binding protein (PstS) were also analyzed. The pst operon of Firmicutes shows two highly divergent clades with no correlation to the type of habitat nor a phylogenetic congruence, suggesting horizontal gene transfer. Despite sequence divergence, the PstS protein had a similar 3D structure, which could be due to parallel evolution after horizontal gene transfer events. PMID:21461370

  5. Metabolic Potential of Microbial Genomes Reconstructed from a Deep-Sea Oligotrophic Sediment Metagenome

    NASA Astrophysics Data System (ADS)

    Tully, B. J.; Huber, J. A.; Heidelberg, J. F.

    2016-02-01

    The South Pacific Gyre (SPG) possesses the lowest rates of sedimentation, surface chlorophyll concentration and primary productivity in the global oceans, making it one of the most oligotrophic environments on earth. As a direct result of the low-standing biomass in surface waters, deep-sea sediments are thin and contain small amount of labile organic carbon. It was recently shown that the sediment column within the SPG is fully oxic through to the underlying basalt basement and may be representative of 9-37% of the global marine environment. In addition, it appears that approximately 50% of the total organic carbon is removed from the oligotrophic sediments within the first 20 centimeters beneath the sea floor (cmbsf). To understand the microbial processes that contribute to the removal of the labile organic matter, metagenomic sequencing and analysis was carried out on a sample of sediment collected from 0-5 cmbsf from SPG site 10 (U1369). Analysis of 9 partially reconstructed environmental genomes revealed that the members of the SPG surface sediment microbial community are phylogenetically distinct from surface/upper ocean organisms, with deep branches within the Alpha- and Gammaproteobacteria, Nitrospirae, Nitrospina, the phylum NC10, and several unique phylogenetic groups. Within these partially complete genomes there is evidence for microbially mediated metal (iron/manganese) oxidation and carbon fixation linked to the nitrification. Additionally, despite low sedimentation and hypothesized energy-limitation, members of the SPG microbial community had motility and chemotactic genes and possessed mechanisms for the utilization of high molecular weight organic matter, including exoproteases and peptide specific membrane transporters. Simultaneously, the SPG genomes showed a limited potential for the degradation of recalcitrant carbon compounds. Finally, the presence of putative genes with functions involved with denitrification and the consumption of C1 compounds suggest that there may be microenvironments in the surface sediments were microbes can deplete oxygen concentrations to hypoxic/anoxic levels. This study represents an important first analysis in understanding how microorganisms in oligotrophic sediments impact deep-sea carbon transformations.

  6. Low Temperature Decreases the Phylogenetic Diversity of Ammonia-Oxidizing Archaea and Bacteria in Aquarium Biofiltration Systems▿ †

    PubMed Central

    Urakawa, Hidetoshi; Tajima, Yoshiyuki; Numata, Yoshiyuki; Tsuneda, Satoshi

    2008-01-01

    The phylogenetic diversity and species richness of ammonia-oxidizing archaea (AOA) and bacteria (AOB) were examined with aquarium biofiltration systems. Species richness, deduced from rarefaction analysis, and diversity indices indicated that the phylogenetic diversity and species richness of AOA are greater than those of AOB; the diversity of AOA and of AOB is minimized in cold-water aquaria. This finding implies that temperature is a key factor influencing the population structure and diversity of AOA and AOB in aquarium biofiltration systems. PMID:18065610

  7. Phylodynamics of Merkel-cell polyomavirus and human polyomavirus 6: A long-term history with humans.

    PubMed

    Torres, Carolina; Barrios, Melina Elizabeth; Cammarata, Robertina Viviana; Victoria, Matías; Fernandez-Cassi, Xavier; Bofill-Mas, Silvia; Colina, Rodney; Blanco Fernández, María Dolores; Mbayed, Viviana Andrea

    2018-04-20

    New human polyomaviruses have been described in the last years, including the Merkel-cell polyomavirus (MCPyV; Human polyomavirus 5) and the Human polyomavirus 6 (HPyV6). Although their infection is usually asymptomatic, in immunocompromised host can cause life-threatening pathologies, such as the Merkel cell carcinoma, an aggressive skin neoplasia associated to the MCPyV. Despite being prevalent viruses in population, epidemiological data from South America are scarce, as well as the characterization of the viral types circulating and their origin. The aims of this work were to describe MCPyV and HPyV6 from environmental samples with different geographical origin and to analyze their phylogenetic and evolutionary histories, particularly for MCPyV. Partial and complete genome sequences were obtained from sewage samples from Argentina, Uruguay and Spain. A total number of 87 sequences were obtained for MCPyV and 33 for HPyV6. Phylogenetic analysis showed that MCPyV sequences distributed according to their geographic origin in Europe/North America, Africa, Asia, South America and Oceania groups, suggesting that viral diversification might have followed human migrations across the globe. In particular, viruses from Argentina associated with Europe/North America and South America genotypes, whereas those from Uruguay and Spain also grouped with Africa genotype, reflecting the origin of the current population in each country, which could arrive not only during ancient human migration but also during recent migratory events. In addition, the South American group presented a high level of clusterization, showing internal clusters that could be related to specific locations, such as French Guiana and Brazil or the Southern region into South America, such as Argentina and Uruguay, suggesting a long term evolutionary process in the region. Additionally, in this work, we carried out the first analysis about the evolutionary history of MCPyV trough the integration of phylogenetic, epidemiological and historical data. Since a strong association is observed between the phylogenetic relationships and the origin of the sampled population, this analysis was based on the hypothesis of co-divergence between the virus and human populations. This analysis resulted in a substitution rate of 5.1 × 10 -8 s/s/y (∼5.1% of divergence per million years) for the complete genome of MCPyV, which is in the range of those estimated for other double-stranded DNA viruses. Regarding HPyV6, a South American group with clusterization was observed (sequences from Uruguay). Meanwhile, sequences from Argentina grouped with European ones (France and Spain) and remained separated from those isolated in China, USA or Australia. The analysis of viruses from the environment allowed us to deep characterize prevalent infections in different geographic regions, reveling that viruses circulating in each population reflected its origin and that there are specific lineages associated with South America. Copyright © 2018 Elsevier Inc. All rights reserved.

  8. A Genome-Scale Investigation of How Sequence, Function, and Tree-Based Gene Properties Influence Phylogenetic Inference.

    PubMed

    Shen, Xing-Xing; Salichos, Leonidas; Rokas, Antonis

    2016-09-02

    Molecular phylogenetic inference is inherently dependent on choices in both methodology and data. Many insightful studies have shown how choices in methodology, such as the model of sequence evolution or optimality criterion used, can strongly influence inference. In contrast, much less is known about the impact of choices in the properties of the data, typically genes, on phylogenetic inference. We investigated the relationships between 52 gene properties (24 sequence-based, 19 function-based, and 9 tree-based) with each other and with three measures of phylogenetic signal in two assembled data sets of 2,832 yeast and 2,002 mammalian genes. We found that most gene properties, such as evolutionary rate (measured through the percent average of pairwise identity across taxa) and total tree length, were highly correlated with each other. Similarly, several gene properties, such as gene alignment length, Guanine-Cytosine content, and the proportion of tree distance on internal branches divided by relative composition variability (treeness/RCV), were strongly correlated with phylogenetic signal. Analysis of partial correlations between gene properties and phylogenetic signal in which gene evolutionary rate and alignment length were simultaneously controlled, showed similar patterns of correlations, albeit weaker in strength. Examination of the relative importance of each gene property on phylogenetic signal identified gene alignment length, alongside with number of parsimony-informative sites and variable sites, as the most important predictors. Interestingly, the subsets of gene properties that optimally predicted phylogenetic signal differed considerably across our three phylogenetic measures and two data sets; however, gene alignment length and RCV were consistently included as predictors of all three phylogenetic measures in both yeasts and mammals. These results suggest that a handful of sequence-based gene properties are reliable predictors of phylogenetic signal and could be useful in guiding the choice of phylogenetic markers. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  9. Enumerating all maximal frequent subtrees in collections of phylogenetic trees

    PubMed Central

    2014-01-01

    Background A common problem in phylogenetic analysis is to identify frequent patterns in a collection of phylogenetic trees. The goal is, roughly, to find a subset of the species (taxa) on which all or some significant subset of the trees agree. One popular method to do so is through maximum agreement subtrees (MASTs). MASTs are also used, among other things, as a metric for comparing phylogenetic trees, computing congruence indices and to identify horizontal gene transfer events. Results We give algorithms and experimental results for two approaches to identify common patterns in a collection of phylogenetic trees, one based on agreement subtrees, called maximal agreement subtrees, the other on frequent subtrees, called maximal frequent subtrees. These approaches can return subtrees on larger sets of taxa than MASTs, and can reveal new common phylogenetic relationships not present in either MASTs or the majority rule tree (a popular consensus method). Our current implementation is available on the web at https://code.google.com/p/mfst-miner/. Conclusions Our computational results confirm that maximal agreement subtrees and all maximal frequent subtrees can reveal a more complete phylogenetic picture of the common patterns in collections of phylogenetic trees than maximum agreement subtrees; they are also often more resolved than the majority rule tree. Further, our experiments show that enumerating maximal frequent subtrees is considerably more practical than enumerating ordinary (not necessarily maximal) frequent subtrees. PMID:25061474

  10. Enumerating all maximal frequent subtrees in collections of phylogenetic trees.

    PubMed

    Deepak, Akshay; Fernández-Baca, David

    2014-01-01

    A common problem in phylogenetic analysis is to identify frequent patterns in a collection of phylogenetic trees. The goal is, roughly, to find a subset of the species (taxa) on which all or some significant subset of the trees agree. One popular method to do so is through maximum agreement subtrees (MASTs). MASTs are also used, among other things, as a metric for comparing phylogenetic trees, computing congruence indices and to identify horizontal gene transfer events. We give algorithms and experimental results for two approaches to identify common patterns in a collection of phylogenetic trees, one based on agreement subtrees, called maximal agreement subtrees, the other on frequent subtrees, called maximal frequent subtrees. These approaches can return subtrees on larger sets of taxa than MASTs, and can reveal new common phylogenetic relationships not present in either MASTs or the majority rule tree (a popular consensus method). Our current implementation is available on the web at https://code.google.com/p/mfst-miner/. Our computational results confirm that maximal agreement subtrees and all maximal frequent subtrees can reveal a more complete phylogenetic picture of the common patterns in collections of phylogenetic trees than maximum agreement subtrees; they are also often more resolved than the majority rule tree. Further, our experiments show that enumerating maximal frequent subtrees is considerably more practical than enumerating ordinary (not necessarily maximal) frequent subtrees.

  11. Data set for phylogenetic tree and RAMPAGE Ramachandran plot analysis of SODs in Gossypium raimondii and G. arboreum.

    PubMed

    Wang, Wei; Xia, Minxuan; Chen, Jie; Deng, Fenni; Yuan, Rui; Zhang, Xiaopei; Shen, Fafu

    2016-12-01

    The data presented in this paper is supporting the research article "Genome-Wide Analysis of Superoxide Dismutase Gene Family in Gossypium raimondii and G. arboreum" [1]. In this data article, we present phylogenetic tree showing dichotomy with two different clusters of SODs inferred by the Bayesian method of MrBayes (version 3.2.4), "Bayesian phylogenetic inference under mixed models" [2], Ramachandran plots of G. raimondii and G. arboreum SODs, the protein sequence used to generate 3D sructure of proteins and the template accession via SWISS-MODEL server, "SWISS-MODEL: modelling protein tertiary and quaternary structure using evolutionary information." [3] and motif sequences of SODs identified by InterProScan (version 4.8) with the Pfam database, "Pfam: the protein families database" [4].

  12. Comparative genome analysis of Pseudogymnoascus spp. reveals primarily clonal evolution with small genome fragments exchanged between lineages.

    PubMed

    Leushkin, Evgeny V; Logacheva, Maria D; Penin, Aleksey A; Sutormin, Roman A; Gerasimov, Evgeny S; Kochkina, Galina A; Ivanushkina, Natalia E; Vasilenko, Oleg V; Kondrashov, Alexey S; Ozerskaya, Svetlana M

    2015-05-21

    Pseudogymnoascus spp. is a wide group of fungi lineages in the family Pseudorotiaceae including an aggressive pathogen of bats P. destructans. Although several lineages of P. spp. were shown to produce ascospores in culture, the vast majority of P. spp. demonstrates no evidence of sexual reproduction. P. spp. can tolerate a wide range of different temperatures and salinities and can survive even in permafrost layer. Adaptability of P. spp. to different environments is accompanied by extremely variable morphology and physiology. We sequenced genotypes of 14 strains of P. spp., 5 of which were extracted from permafrost, 1 from a cryopeg, a layer of unfrozen ground in permafrost, and 8 from temperate surface environments. All sequenced genotypes are haploid. Nucleotide diversity among these genomes is very high, with a typical evolutionary distance at synonymous sites dS ≈ 0.5, suggesting that the last common ancestor of these strains lived >50 Mya. The strains extracted from permafrost do not form a separate clade. Instead, each permafrost strain has close relatives from temperate environments. We observed a strictly clonal population structure with no conflicting topologies for ~99% of genome sequences. However, there is a number of short (~100-10,000 nt) genomic segments with the total length of 67.6 Kb which possess phylogenetic patterns strikingly different from the rest of the genome. The most remarkable case is a MAT-locus, which has 2 distinct alleles interspersed along the whole-genome phylogenetic tree. Predominantly clonal structure of genome sequences is consistent with the observations that sexual reproduction is rare in P. spp. Small number of regions with noncanonical phylogenies seem to arise due to some recombination events between derived lineages of P. spp., with MAT-locus being transferred on multiple occasions. All sequenced strains have heterothallic configuration of MAT-locus.

  13. [The evolution of heat shock genes and expression patterns of heat shock proteins in the species from temperature contrasting habitats].

    PubMed

    Garbuz, D G; Evgen’ev, M B

    2017-01-01

    Heat shock genes are the most evolutionarily ancient among the systems responsible for adaptation of organisms to a harsh environment. The encoded proteins (heat shock proteins, Hsps) represent the most important factors of adaptation to adverse environmental conditions. They serve as molecular chaperones, providing protein folding and preventing aggregation of damaged cellular proteins. Structural analysis of the heat shock genes in individuals from both phylogenetically close and very distant taxa made it possible to reveal the basic trends of the heat shock gene organization in the context of adaptation to extreme conditions. Using different model objects and nonmodel species from natural populations, it was demonstrated that modulation of the Hsps expression during adaptation to different environmental conditions could be achieved by changing the number and structural organization of heat shock genes in the genome, as well as the structure of their promoters. It was demonstrated that thermotolerant species were usually characterized by elevated levels of Hsps under normal temperature or by the increase in the synthesis of these proteins in response to heat shock. Analysis of the heat shock genes in phylogenetically distant organisms is of great interest because, on one hand, it contributes to the understanding of the molecular mechanisms of evolution of adaptogenes and, on the other hand, sheds the light on the role of different Hsps families in the development of thermotolerance and the resistance to other stress factors.

  14. In Silico/In Vivo Insights into the Functional and Evolutionary Pathway of Pseudomonas aeruginosa Oleate-Diol Synthase. Discovery of a New Bacterial Di-Heme Cytochrome C Peroxidase Subfamily

    PubMed Central

    Estupiñán, Mónica; Álvarez-García, Daniel; Barril, Xavier; Diaz, Pilar; Manresa, Angeles

    2015-01-01

    As previously reported, P. aeruginosa genes PA2077 and PA2078 code for 10S-DOX (10S-Dioxygenase) and 7,10-DS (7,10-Diol Synthase) enzymes involved in long-chain fatty acid oxygenation through the recently described oleate-diol synthase pathway. Analysis of the amino acid sequence of both enzymes revealed the presence of two heme-binding motifs (CXXCH) on each protein. Phylogenetic analysis showed the relation of both proteins to bacterial di-heme cytochrome c peroxidases (Ccps), similar to Xanthomonas sp. 35Y rubber oxidase RoxA. Structural homology modelling of PA2077 and PA2078 was achieved using RoxA (pdb 4b2n) as a template. From the 3D model obtained, presence of significant amino acid variations in the predicted heme-environment was found. Moreover, the presence of palindromic repeats located in enzyme-coding regions, acting as protein evolution elements, is reported here for the first time in P. aeruginosa genome. These observations and the constructed phylogenetic tree of the two proteins, allow the proposal of an evolutionary pathway for P. aeruginosa oleate-diol synthase operon. Taking together the in silico and in vivo results obtained we conclude that enzymes PA2077 and PA2078 are the first described members of a new subfamily of bacterial peroxidases, designated as Fatty acid-di-heme Cytochrome c peroxidases (FadCcp). PMID:26154497

  15. The Origin of Large-Bodied Shrimp that Dominate Modern Global Aquaculture

    PubMed Central

    Wilkins, Blake; Bracken-Grissom, Heather D.; Chan, Tin-Yam; O’Leary, Maureen A.

    2016-01-01

    Several shrimp species from the clade Penaeidae are farmed industrially for human consumption, and this farming has turned shrimp into the largest seafood commodity in the world. The species that are in demand for farming are an anomaly within their clade because they grow to much larger sizes than other members of Penaeidae. Here we trace the evolutionary history of the anomalous farmed shrimp using combined data phylogenetic analysis of living and fossil species. We show that exquisitely preserved fossils of †Antrimpos speciosus from the Late Jurassic Solnhofen limestone belong to the same clade as the species that dominate modern farming, dating the origin of this clade to at least 145 mya. This finding contradicts a much younger Late Cretaceous age (ca. 95 mya) previously estimated for this clade using molecular clocks. The species in the farmed shrimp clade defy a widespread tendency, by reaching relatively large body sizes despite their warm water lifestyles. Small body sizes have been shown to be physiologically favored in warm aquatic environments because satisfying oxygen demands is difficult for large organisms breathing in warm water. Our analysis shows that large-bodied, farmed shrimp have more gills than their smaller-bodied shallow-water relatives, suggesting that extra gills may have been key to the clade’s ability to meet oxygen demands at a large size. Our combined data phylogenetic tree also suggests that, during penaeid evolution, the adoption of mangrove forests as habitats for young shrimp occurred multiple times independently. PMID:27415002

  16. Host Genetic and Environmental Effects on Mouse Cecum Microbiota

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Campbell, James H; Foster, Carmen M; Vishnivetskaya, Tatiana A

    2012-01-01

    The mammalian gut harbors complex and variable microbial communities, across both host phylogenetic space and conspecific individuals. A synergy of host genetic and environmental factors shape these communities and account for their variability, but their individual contributions and the selective pressures involved are still not well understood. We employed barcoded pyrosequencing of V1-2 and V4 regions of bacterial small subunit ribosomal RNA genes to characterize the effects of host genetics and environment on cecum assemblages in 10 genetically distinct, inbred mouse strains. Eight of these strains are the foundation of the Collaborative Cross (CC), a panel of mice derived frommore » a genetically diverse set of inbred founder strains, designed specifically for complex trait analysis. Diversity of gut microbiota was characterized by complementing phylogenetic and distance-based, sequence-clustering approaches. Significant correlations were found between the mouse strains and their gut microbiota, reflected by distinct bacterial communities. Cohabitation and litter had a reduced, although detectable effect, and the microbiota response to these factors varied by strain. We identified bacterial phylotypes that appear to be discriminative and strain-specific to each mouse line used. Cohabitation of different strains of mice revealed an interaction of host genetic and environmental factors in shaping gut bacterial consortia, in which bacterial communities became more similar but retained strain specificity. This study provides a baseline analysis of intestinal bacterial communities in the eight CC progenitor strains and will be linked to integrated host genotype, phenotype and microbiota research on the resulting CC panel.« less

  17. False discovery rate control incorporating phylogenetic tree increases detection power in microbiome-wide multiple testing.

    PubMed

    Xiao, Jian; Cao, Hongyuan; Chen, Jun

    2017-09-15

    Next generation sequencing technologies have enabled the study of the human microbiome through direct sequencing of microbial DNA, resulting in an enormous amount of microbiome sequencing data. One unique characteristic of microbiome data is the phylogenetic tree that relates all the bacterial species. Closely related bacterial species have a tendency to exhibit a similar relationship with the environment or disease. Thus, incorporating the phylogenetic tree information can potentially improve the detection power for microbiome-wide association studies, where hundreds or thousands of tests are conducted simultaneously to identify bacterial species associated with a phenotype of interest. Despite much progress in multiple testing procedures such as false discovery rate (FDR) control, methods that take into account the phylogenetic tree are largely limited. We propose a new FDR control procedure that incorporates the prior structure information and apply it to microbiome data. The proposed procedure is based on a hierarchical model, where a structure-based prior distribution is designed to utilize the phylogenetic tree. By borrowing information from neighboring bacterial species, we are able to improve the statistical power of detecting associated bacterial species while controlling the FDR at desired levels. When the phylogenetic tree is mis-specified or non-informative, our procedure achieves a similar power as traditional procedures that do not take into account the tree structure. We demonstrate the performance of our method through extensive simulations and real microbiome datasets. We identified far more alcohol-drinking associated bacterial species than traditional methods. R package StructFDR is available from CRAN. chen.jun2@mayo.edu. Supplementary data are available at Bioinformatics online. © The Author (2017). Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  18. Molecular epidemiology and phylogenetic analysis of Hepatitis B virus in a group of migrants in Italy.

    PubMed

    Villano, Umbertina; Lo Presti, Alessandra; Equestre, Michele; Cella, Eleonora; Pisani, Giulio; Giovanetti, Marta; Bruni, Roberto; Tritarelli, Elena; Amicosante, Massimo; Grifoni, Alba; Scarcella, Carmelo; El-Hamad, Issa; Pezzoli, Maria Chiara; Angeletti, Silvia; Silvia, Angeletti; Ciccaglione, Anna Rita; Ciccozzi, Massimo

    2015-07-25

    Hepatitis B virus infection (HBV) is widespread and it is considered a major health problem worldwide. The global distribution of HBV varies significantly between countries and between regions of the world. Among the many factors contributing to the changing epidemiology of viral hepatitis, the movement of people within and between countries is a potentially important one. In Italy, the number of migrant individuals has been increasing during the past 25 years. HBV genotype D has been found throughout the world, although its highest prevalence is in the Mediterranean area, the Middle East and southern Asia. We describe the molecular epidemiology of HBV in a chronically infected population of migrants (living in Italy), by using the phylogenetic analysis. HBV-DNA was amplified and sequenced from 43 HBV chronically infected patients. Phylogenetic and evolutionary analysis were performed using both maximum Likelihood and Bayesian methods. Of the 43 HBV S gene isolates from migrants, 25 (58.1 %) were classified as D genotype. Maximum Likelihood analysis showed an intermixing between Moldavian and foreigners sequences mostly respect to Italian ones. Italian sequences clustered mostly together in a main clade separately from all others. The estimation of the time of the tree's root gave a mean value of 17 years ago, suggesting the origin of the tree back to 1992 year. The skyline plot showed that the number of infections softly increased until the early 2005s, after which reached a plateau. Comparing phylogenetic data to the migrants date of arrival in Italy, it should be possible that migrants arrived in Italy yet infected from their country of origin. In conclusion, this is the first paper where phylogenetic analysis and genetic evolution has been used to characterize HBV sub genotypes D1 circulation in a selected and homogenous group of migrants coming from a restricted area of Balkans and to approximately define the period of infection besides the migration date.

  19. Refining the phylum Chlorobi by resolving the phylogeny and metabolic potential of the representative of a deeply branching, uncultivated lineage

    DOE PAGES

    Hiras, Jennifer; Wu, Yu-Wei; Eichorst, Stephanie A.; ...

    2015-09-01

    Recent studies have expanded the phylum Chlorobi, demonstrating that the green sulfur bacteria (GSB), the original cultured representatives of the phylum, are a part of a larger lineage whose members have more diverse metabolic capabilities that overlap with members of the phylum Bacteroidetes. The 16S rRNA gene of an uncultivated clone, OPB56, distantly related to the phyla Chlorobi and Bacteroidetes, was recovered from Obsidian Pool in Yellowstone National Park; however, the detailed phylogeny and function of OPB56 and related clones have remained unknown. Culturing of thermophilic bacterial consortia from compost by adaptation to grow on ionic-liquid pretreated switchgrass provided amore » consortium in which one of the most abundant members, NICIL-2, clustered with OPB56-related clones. Phylogenetic analysis using the full-length 16S rRNA gene from NICIL-2 demonstrated that it was part of a monophyletic clade, referred to as OPB56, distinct from the Bacteroidetes and Chlorobi. A near complete draft genome ( > 95% complete) was recovered from metagenomic data from the culture adapted to grow on ionic-liquid pretreated switchgrass using an automated binning algorithm, and this genome was used for marker gene-based phylogenetic analysis and metabolic reconstruction. Six additional genomes related to NICIL-2 were reconstructed from metagenomic data sets obtained from thermal springs at Yellowstone National Park and Nevada Great Boiling Spring. In contrast to the 16S rRNA gene phylogenetic analysis, protein phylogenetic analysis was most consistent with the clustering of the Chlorobea, Ignavibacteria and OPB56 into a single phylum level clade. Metabolic reconstruction of NICIL-2 demonstrated a close linkage with the class Ignavibacteria and the family Rhodothermaceae, a deeply branching Bacteroidetes lineage. The combined phylogenetic and functional analysis of the NICIL-2 genome has refined the membership in the phylum Chlorobi and emphasized the close evolutionary and metabolic relationship between the phyla Chlorobi and the Bacteroidetes.« less

  20. Refining the phylum Chlorobi by resolving the phylogeny and metabolic potential of the representative of a deeply branching, uncultivated lineage.

    PubMed

    Hiras, Jennifer; Wu, Yu-Wei; Eichorst, Stephanie A; Simmons, Blake A; Singer, Steven W

    2016-04-01

    Recent studies have expanded the phylum Chlorobi, demonstrating that the green sulfur bacteria (GSB), the original cultured representatives of the phylum, are a part of a broader lineage whose members have more diverse metabolic capabilities that overlap with members of the phylum Bacteroidetes. The 16S rRNA gene of an uncultivated clone, OPB56, distantly related to the phyla Chlorobi and Bacteroidetes, was recovered from Obsidian Pool in Yellowstone National Park; however, the detailed phylogeny and function of OPB56 and related clones have remained unknown. Culturing of thermophilic bacterial consortia from compost by adaptation to grow on ionic-liquid pretreated switchgrass provided a consortium in which one of the most abundant members, NICIL-2, clustered with OPB56-related clones. Phylogenetic analysis using the full-length 16S rRNA gene from NICIL-2 demonstrated that it was part of a monophyletic clade, referred to as OPB56, distinct from the Bacteroidetes and Chlorobi. A near complete draft genome (>95% complete) was recovered from metagenomic data from the culture adapted to grow on ionic-liquid pretreated switchgrass using an automated binning algorithm, and this genome was used for marker gene-based phylogenetic analysis and metabolic reconstruction. Six additional genomes related to NICIL-2 were reconstructed from metagenomic data sets obtained from thermal springs at Yellowstone National Park and Nevada Great Boiling Spring. In contrast to the 16S rRNA gene phylogenetic analysis, protein phylogenetic analysis was most consistent with the clustering of the Chlorobea, Ignavibacteria and OPB56 into a single phylum level clade. Metabolic reconstruction of NICIL-2 demonstrated a close linkage with the class Ignavibacteria and the family Rhodothermaceae, a deeply branching Bacteroidetes lineage. The combined phylogenetic and functional analysis of the NICIL-2 genome has refined the membership in the phylum Chlorobi and emphasized the close evolutionary and metabolic relationship between the phyla Chlorobi and the Bacteroidetes.

  1. Evaluating the Detection of Hydrocarbon-Degrading Bacteria in 16S rRNA Gene Sequencing Surveys

    PubMed Central

    Berry, David; Gutierrez, Tony

    2017-01-01

    Hydrocarbonoclastic bacteria (HCB) play a key role in the biodegradation of oil hydrocarbons in marine and other environments. A small number of taxa have been identified as obligate HCB, notably the Gammaproteobacterial genera Alcanivorax, Cycloclasticus, Marinobacter, Neptumonas, Oleiphilus, Oleispira, and Thalassolituus, as well as the Alphaproteobacterial genus Thalassospira. Detection of HCB in amplicon-based sequencing surveys relies on high coverage by PCR primers and accurate taxonomic classification. In this study, we performed a phylogenetic analysis to identify 16S rRNA gene sequence regions that represent the breadth of sequence diversity within these taxa. Using validated sequences, we evaluated 449 universal 16S rRNA gene-targeted bacterial PCR primer pairs for their coverage of these taxa. The results of this analysis provide a practical framework for selection of suitable primer sets for optimal detection of HCB in sequencing surveys. PMID:28567035

  2. Evaluating the Detection of Hydrocarbon-Degrading Bacteria in 16S rRNA Gene Sequencing Surveys.

    PubMed

    Berry, David; Gutierrez, Tony

    2017-01-01

    Hydrocarbonoclastic bacteria (HCB) play a key role in the biodegradation of oil hydrocarbons in marine and other environments. A small number of taxa have been identified as obligate HCB, notably the Gammaproteobacterial genera Alcanivorax, Cycloclasticus, Marinobacter, Neptumonas, Oleiphilus, Oleispira , and Thalassolituus , as well as the Alphaproteobacterial genus Thalassospira . Detection of HCB in amplicon-based sequencing surveys relies on high coverage by PCR primers and accurate taxonomic classification. In this study, we performed a phylogenetic analysis to identify 16S rRNA gene sequence regions that represent the breadth of sequence diversity within these taxa. Using validated sequences, we evaluated 449 universal 16S rRNA gene-targeted bacterial PCR primer pairs for their coverage of these taxa. The results of this analysis provide a practical framework for selection of suitable primer sets for optimal detection of HCB in sequencing surveys.

  3. The Kalanchoe genome provides insights into convergent evolution and building blocks of crassulacean acid metabolism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Xiaohan; Hu, Rongbin; Yin, Hengfu

    Crassulacean acid metabolism (CAM) is a specialized photosynthetic adaptation to arid environments, found predominantly in diverse eudicotyledonous (eudicot) and monocotyledonous (monocot) lineages that diverged approximately 135 million years ago. To test whether convergent evolution underpins the independent emergences of CAM, we present de novo genome assembly and gene expression data for Kalanchoë fedtschenkoi, an obligate CAM species that was shown by multigene phylogenetic analysis to represent one of the earliest-diverging lineages of core eudicots. Our combined analysis of K. fedtschenkoi and two monocot CAM species (Ananas comosus and Phalaenopsis equestris) identified signatures of convergence in protein sequence and in themore » diel re-scheduling of genes involved in metabolism and signaling. Lastly, our results provide significant insight into CAM evolution, facilitating CAM-into-C 3 engineering for enhancing drought tolerance in crops.« less

  4. The Kalanchoe genome provides insights into convergent evolution and building blocks of crassulacean acid metabolism

    DOE PAGES

    Yang, Xiaohan; Hu, Rongbin; Yin, Hengfu; ...

    2017-12-01

    Crassulacean acid metabolism (CAM) is a specialized photosynthetic adaptation to arid environments, found predominantly in diverse eudicotyledonous (eudicot) and monocotyledonous (monocot) lineages that diverged approximately 135 million years ago. To test whether convergent evolution underpins the independent emergences of CAM, we present de novo genome assembly and gene expression data for Kalanchoë fedtschenkoi, an obligate CAM species that was shown by multigene phylogenetic analysis to represent one of the earliest-diverging lineages of core eudicots. Our combined analysis of K. fedtschenkoi and two monocot CAM species (Ananas comosus and Phalaenopsis equestris) identified signatures of convergence in protein sequence and in themore » diel re-scheduling of genes involved in metabolism and signaling. Lastly, our results provide significant insight into CAM evolution, facilitating CAM-into-C 3 engineering for enhancing drought tolerance in crops.« less

  5. A New record of four Penicillium species isolated from Agarum clathratum in Korea.

    PubMed

    Park, Myung Soo; Lee, Seobihn; Lim, Young Woon

    2017-04-01

    Agarum clathratum, brown algae, play important ecological roles in marine ecosystem, but can cause secondary environment pollution when they pile up on the beach. In order to resolve the environment problem by A. clathratum, we focus to isolate and identify Penicillium because many species are well known to produce extracellular enzymes. A total of 32 Penicillium strains were isolated from A. clathratum samples that collected from 13 sites along the mid-east coast of Korea in summer. They were identified based on morphological characters and phylogenetic analysis using β-tubulin DNA sequences as well as a combined dataset of β-tubulin and calmodulin. A total of 32 strains were isolated and they were identified to 13 Penicillium species. The commonly isolated species were Penicillium citrinum, P. roseomaculatum, and Penicillium sp. Among 13 Penicillium species, four species - P. bilaiae, P. cremeogriseum, P. madriti, and P. roseomaculatum - have not been previously recorded in Korea. For these four new species records to Korea, we provide morphological characteristics of each strain.

  6. Isolation of a hyperthermophilic archaeum predicted by in situ RNA analysis.

    PubMed

    Huber, R; Burggraf, S; Mayer, T; Barns, S M; Rossnagel, P; Stetter, K O

    1995-07-06

    A variety of hyperthermophilic bacteria and archaea have been isolated from high-temperature environments by plating and serial dilutions. However, these techniques allow only the small percentage of organisms able to form colonies, or those that are predominant within environmental samples, to be obtained in pure culture. Recently, in situ 16S ribosomal RNA analyses of samples from the Obsidian hot pool at Yellowstone National Park, Wyoming, revealed a variety of archaeal sequences, which were all different from those of previously isolated species. This suggests substantial diversity of archaea with so far unknown morphological, physiological and biochemical features, which may play an important part within high-temperature ecosystems. Here we describe a procedure to obtain pure cultures of unknown organisms harbouring specific 16S rRNA sequences identified previously within the environment. It combines visual recognition of single cells by phylogenetic staining and cloning by 'optical tweezers'. Our result validates polymerase chain reaction data on the existence of large archael communities.

  7. Exploring the potential of anaerobic sulfate reduction process in treating sulfonated diazo dye: Microbial community analysis using bar-coded pyrosequencing.

    PubMed

    Rasool, Kashif; Shahzad, Asif; Lee, Dae Sung

    2016-11-15

    Anaerobic decolorization and biotransformation of azo dye was investigated in a sulfate-reducing environment. Batch reactor studies were performed with mixed cultures of anaerobic sulfate-reducing bacteria (SRBs) enriched from anaerobic digester sludge. Complete sulfate and color removal were achieved in batch experiments with different initial dye concentrations (50-2500mg/L) and 1000mg/L of sulfate. Induction of various oxidoreductive enzyme activities such as phenol oxidase, veratryl alcohol oxidase, lignin peroxidase, and azo reductase was studied to understand their involvement in dye metabolism under anoxic environment. The degradation of Cotton Red B was confirmed using high-performance liquid chromatography and gas chromatography-mass spectroscopy. Sulfidogenic sludge demonstrated excellent dye degradation and mineralization ability, producing aniline and 1,4-diamino benzene as metabolites. A barcoded 16S rRNA gene-pyrosequencing approach was used to assess the bacterial diversity in the sludge culture and a phylogenetic tree was constructed for sulfate-reducing bacteria. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. The genome of Th17 cell-inducing segmented filamentous bacteria reveals extensive auxotrophy and adaptations to the intestinal environment

    PubMed Central

    Sczesnak, Andrew; Segata, Nicola; Qin, Xiang; Gevers, Dirk; Petrosino, Joseph F.; Huttenhower, Curtis; Littman, Dan R.; Ivanov, Ivaylo I.

    2011-01-01

    Summary Perturbations of the composition of the symbiotic intestinal microbiota can have profound consequences for host metabolism and immunity. In mice, segmented filamentous bacteria (SFB) direct the accumulation of potentially pro-inflammatory Th17 cells in the intestinal lamina propria. We present the genome sequence of SFB isolated from mono-colonized mice, which classifies SFB phylogenetically as a unique member of Clostridiales with a highly reduced genome. Annotation analysis demonstrates that SFB depends on its environment for amino acids and essential nutrients and may utilize host and dietary glycans for carbon, nitrogen, and energy. Comparative analyses reveal that SFB is functionally related to members of the genus Clostridium and several pathogenic or commensal “minimal” genera, including Finegoldia, Mycoplasma, Borrelia, and Phytoplasma. However, SFB is functionally distinct from all 1,200 examined genomes, indicating a gene complement representing biology relatively unique to its role as a gut commensal closely tied to host metabolism and immunity. PMID:21925113

  9. Evolution of Biological Image Stabilization.

    PubMed

    Hardcastle, Ben J; Krapp, Holger G

    2016-10-24

    The use of vision to coordinate behavior requires an efficient control design that stabilizes the world on the retina or directs the gaze towards salient features in the surroundings. With a level gaze, visual processing tasks are simplified and behaviorally relevant features from the visual environment can be extracted. No matter how simple or sophisticated the eye design, mechanisms have evolved across phyla to stabilize gaze. In this review, we describe functional similarities in eyes and gaze stabilization reflexes, emphasizing their fundamental role in transforming sensory information into motor commands that support postural and locomotor control. We then focus on gaze stabilization design in flying insects and detail some of the underlying principles. Systems analysis reveals that gaze stabilization often involves several sensory modalities, including vision itself, and makes use of feedback as well as feedforward signals. Independent of phylogenetic distance, the physical interaction between an animal and its natural environment - its available senses and how it moves - appears to shape the adaptation of all aspects of gaze stabilization. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Phylogenetic heritability of geographic range size in haematophagous ectoparasites: time of divergence and variation among continents.

    PubMed

    Krasnov, Boris R; Shenbrot, Georgy I; van der Mescht, Luther; Warburton, Elizabeth M; Khokhlova, Irina S

    2018-04-12

    To understand existence, patterns and mechanisms behind phylogenetic heritability in the geographic range size (GRS) of parasites, we measured phylogenetic signal (PS) in the sizes of both regional (within a region) and continental (within a continent) geographic ranges of fleas in five regions. We asked whether (a) GRS is phylogenetically heritable and (b) the manifestation of PS varies between regions. We also asked whether geographic variation in PS reflects the effects of the environment's spatiotemporal stability (e.g. glaciation disrupting geographic ranges) or is associated with time since divergence (accumulation differences among species over time). Support for the former hypothesis would be indicated by stronger PS in southern than in northern regions, whereas support for the latter hypothesis would be shown by stronger PS in regions with a large proportion of species belonging to the derived lineages than in regions with a large proportion of species belonging to the basal lineages. We detected significant PS in both regional and continental GRSs of fleas from Canada and in continental GRS of fleas from Mongolia. No PS was found in the GRS of fleas from Australia and Southern Africa. Venezuelan fleas demonstrated significant PS in regional GRS only. Local Indicators of Phylogenetic Association detected significant local positive autocorrelations of GRS in some clades even in regions in which PS has not been detected across the entire phylogeny. This was mainly characteristic of younger taxa.

  11. Environmental filtering and phylogenetic clustering correlate with the distribution patterns of cryptic protist species.

    PubMed

    Singer, David; Kosakyan, Anush; Seppey, Christophe V W; Pillonel, Amandine; Fernández, Leonardo D; Fontaneto, Diego; Mitchell, Edward A D; Lara, Enrique

    2018-04-01

    The community composition of any group of organisms should theoretically be determined by a combination of assembly processes including resource partitioning, competition, environmental filtering, and phylogenetic legacy. Environmental DNA studies have revealed a huge diversity of protists in all environments, raising questions about the ecological significance of such diversity and the degree to which they obey to the same rules as macroscopic organisms. The fast-growing cultivable protist species on which hypotheses are usually experimentally tested represent only a minority of the protist diversity. Addressing these questions for the lesser known majority can only be inferred through observational studies. We conducted an environmental DNA survey of the genus Nebela, a group of closely related testate (shelled) amoeba species, in different habitats within Sphagnum-dominated peatlands. Identification based on the mitochondrial cytochrome c oxidase 1 gene, allowed species-level resolution as well as phylogenetic reconstruction. Community composition varied strongly across habitats and associated environmental gradients. Species showed little overlap in their realized niche, suggesting resource partitioning, and a strong influence of environmental filtering driving community composition. Furthermore, phylogenetic clustering was observed in the most nitrogen-poor samples, supporting phylogenetic inheritance of adaptations in the group of N. guttata. This study showed that the studied free-living unicellular eukaryotes follow to community assembly rules similar to those known to determine plant and animal communities; the same may be true for much of the huge functional and taxonomic diversity of protists. © 2018 by the Ecological Society of America.

  12. Cloning and in-silico analysis of beta-1,3-xylanase from psychrophilic yeast, Glaciozyma antarctica PI12

    NASA Astrophysics Data System (ADS)

    Nor, Nooraisyah Mohamad; Bakar, Farah Diba Abu; Mahadi, Nor Muhammad; Murad, Abdul Munir Abdul

    2015-09-01

    A beta-1,3-xylanase (EC 3.2.1.32) gene from psychrophilic yeast, Glaciozyma antarctica has been identified via genome data mining. The enzyme was grouped into GH26 family based on Carbohydrate Active Enzyme (CaZY) database. The molecular weight of this protein was predicted to be 42 kDa and is expected to be soluble for expression. The presence of signal peptide suggested that this enzyme may be released extracellularly into the marine environment of the host's habitat. This supports the theory that such enzymatic activity is required for degradation of nutrients of polysaccharide origins into simpler carbohydrates outside the environment before it could be taken up inside the cell. The sequence for this protein showed very little conservation (< 30%) with other beta-1,3-xylanases from available databases. Based on the phylogenetic analysis, this protein also showed distant relationship to other xylanases from eukaryotic origin. The protein may have undergone major substitution in its gene sequence order to adapt to the cold climate. This is the first report of beta-1,3-xylanase gene isolated from a psychrophilic yeast.

  13. Reconciling functions and evolution of isoprene emission in higher plants.

    PubMed

    Loreto, Francesco; Fineschi, Silvia

    2015-04-01

    Compilation and analysis of existing inventories reveal that isoprene is emitted by c. 20% of the perennial vegetation of tropical and temperate regions of the world. Isoprene emitters are found across different plant families without any clear phylogenetic thread. However, by critically appraising information in inventories, several ecological patterns of isoprene emission can be highlighted, including absence of emission from C4 and annual plants, and widespread emission from perennial and deciduous plants of temperate environments. Based on this analysis, and on available information on biochemistry, ecology and functional roles of isoprene, it is suggested that isoprene may not have evolved to help plants face heavy or prolonged stresses, but rather assists C3 plants to run efficient photosynthesis and to overcome transient and mild stresses, especially during periods of active plant growth in warm seasons. When the stress status persists, or when evergreen leaves cope with multiple and repeated stresses, isoprene biosynthesis is replaced by the synthesis of less volatile secondary compounds, in part produced by the same biochemical pathway, thus indicating causal determinism in the evolution of isoprene-emitting plants in response to the environment. © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.

  14. Phylogenetic Analysis of Klebsiella pneumoniae from Hospitalized Children, Pakistan.

    PubMed

    Ejaz, Hasan; Wang, Nancy; Wilksch, Jonathan J; Page, Andrew J; Cao, Hanwei; Gujaran, Shruti; Keane, Jacqueline A; Lithgow, Trevor; Ul-Haq, Ikram; Dougan, Gordon; Strugnell, Richard A; Heinz, Eva

    2017-11-01

    Klebsiella pneumoniae shows increasing emergence of multidrug-resistant lineages, including strains resistant to all available antimicrobial drugs. We conducted whole-genome sequencing of 178 highly drug-resistant isolates from a tertiary hospital in Lahore, Pakistan. Phylogenetic analyses to place these isolates into global context demonstrate the expansion of multiple independent lineages, including K. quasipneumoniae.

  15. Phylogenetic analysis of Attalea (Arecaceae): insights on the historical biogeography of a recently diversified Neotropical plant group

    USDA-ARS?s Scientific Manuscript database

    Technical Abstract Here we present a dated phylogenetic tree of the neotropical palm genus Attalea (Arecaceae). We used six orthologs from the nuclear WRKY gene family across 98 accessions to address relationships among species and biogeographic hypotheses. Here we found that the formerly recognized...

  16. Mitochondrial DNA haplogroup phylogeny of the dog: Proposal for a cladistic nomenclature.

    PubMed

    Fregel, Rosa; Suárez, Nicolás M; Betancor, Eva; González, Ana M; Cabrera, Vicente M; Pestano, José

    2015-05-01

    Canis lupus familiaris mitochondrial DNA analysis has increased in recent years, not only for the purpose of deciphering dog domestication but also for forensic genetic studies or breed characterization. The resultant accumulation of data has increased the need for a normalized and phylogenetic-based nomenclature like those provided for human maternal lineages. Although a standardized classification has been proposed, haplotype names within clades have been assigned gradually without considering the evolutionary history of dog mtDNA. Moreover, this classification is based only on the D-loop region, proven to be insufficient for phylogenetic purposes due to its high number of recurrent mutations and the lack of relevant information present in the coding region. In this study, we design 1) a refined mtDNA cladistic nomenclature from a phylogenetic tree based on complete sequences, classifying dog maternal lineages into haplogroups defined by specific diagnostic mutations, and 2) a coding region SNP analysis that allows a more accurate classification into haplogroups when combined with D-loop sequencing, thus improving the phylogenetic information obtained in dog mitochondrial DNA studies. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Phylogenetic relationship of Paenibacillus species based on putative replication origin regions and analysis of an yheCD-like sequence found in this region.

    PubMed

    Iiyama, Kazuhiro; Otao, Masahiro; Mori, Kazuki; Mon, Hiroaki; Lee, Jae Man; Kusakabe, Takahiro; Tashiro, Kousuke; Asano, Shin-Ichiro; Yasunaga-Aoki, Chisa

    2014-01-01

    To determine the phylogenetic relationship among Paenibacillus species, putative replication origin regions were compared. In the rsmG-gyrA region, gene arrangements in Paenibacillus species were identical to those of Bacillus species, with the exception of an open reading frame (orf14) positioned between gyrB and gyrA, which was observed only in Paenibacillus species. The orf14 product was homologous to the endospore-associated proteins YheC and YheD of Bacillus subtilis. Phylogenetic analysis based on the YheCD proteins suggested that Orf14 could be categorized into the YheC group. In the Paenibacillus genome, DnaA box clusters were found in rpmH-dnaA and dnaA-dnaN intergenic regions, known as box regions C and R, respectively; this localization was similar to that observed in B. halodurans. A phylogenetic tree based on the nucleotide sequences of the whole replication origin regions suggested that P. popilliae, P. thiaminolyticus, and P. dendritiformis are closely related species.

  18. Phylogenetic analysis reveals a scattered distribution of autumn colours

    PubMed Central

    Archetti, Marco

    2009-01-01

    Background and Aims Leaf colour in autumn is rarely considered informative for taxonomy, but there is now growing interest in the evolution of autumn colours and different hypotheses are debated. Research efforts are hindered by the lack of basic information: the phylogenetic distribution of autumn colours. It is not known when and how autumn colours evolved. Methods Data are reported on the autumn colours of 2368 tree species belonging to 400 genera of the temperate regions of the world, and an analysis is made of their phylogenetic relationships in order to reconstruct the evolutionary origin of red and yellow in autumn leaves. Key Results Red autumn colours are present in at least 290 species (70 genera), and evolved independently at least 25 times. Yellow is present independently from red in at least 378 species (97 genera) and evolved at least 28 times. Conclusions The phylogenetic reconstruction suggests that autumn colours have been acquired and lost many times during evolution. This scattered distribution could be explained by hypotheses involving some kind of coevolutionary interaction or by hypotheses that rely on the need for photoprotection. PMID:19126636

  19. Diversification of land plants: insights from a family-level phylogenetic analysis.

    PubMed

    Fiz-Palacios, Omar; Schneider, Harald; Heinrichs, Jochen; Savolainen, Vincent

    2011-11-21

    Some of the evolutionary history of land plants has been documented based on the fossil record and a few broad-scale phylogenetic analyses, especially focusing on angiosperms and ferns. Here, we reconstructed phylogenetic relationships among all 706 families of land plants using molecular data. We dated the phylogeny using multiple fossils and a molecular clock technique. Applying various tests of diversification that take into account topology, branch length, numbers of extant species as well as extinction, we evaluated diversification rates through time. We also compared these diversification profiles against the distribution of the climate modes of the Phanerozoic. We found evidence for the radiations of ferns and mosses in the shadow of angiosperms coinciding with the rather warm Cretaceous global climate. In contrast, gymnosperms and liverworts show a signature of declining diversification rates during geological time periods of cool global climate. This broad-scale phylogenetic analysis helps to reveal the successive waves of diversification that made up the diversity of land plants we see today. Both warm temperatures and wet climate may have been necessary for the rise of the diversity under a successive lineage replacement scenario.

  20. Molecular and phylogenetic characterizations of an Eimeria krijgsmanni Yakimoff & Gouseff, 1938 (Apicomplexa: Eimeriidae) mouse intestinal protozoan parasite by partial 18S ribosomal RNA gene sequence analysis.

    PubMed

    Takeo, Toshinori; Tanaka, Tetsuya; Matsubayashi, Makoto; Maeda, Hiroki; Kusakisako, Kodai; Matsui, Toshihiro; Mochizuki, Masami; Matsuo, Tomohide

    2014-08-01

    Previously, we characterized an undocumented strain of Eimeria krijgsmanni by morphological and biological features. Here, we present a detailed molecular phylogenetic analysis of this organism. Namely, 18S ribosomal RNA gene (rDNA) sequences of E. krijgsmanni were analyzed to incorporate this species into a comprehensive Eimeria phylogeny. As a result, partial 18S rDNA sequence from E. krijgsmanni was successfully determined, and two different types, Type A and Type B, that differed by 1 base pair were identified. E. krijgsmanni was originally isolated from a single oocyst, and thus the result show that the two types might have allelic sequence heterogeneity in the 18S rDNA. Based on phylogenetic analyses, the two types of E. krijgsmanni 18S rDNA formed one of two clades among murine Eimeria spp.; these Eimeria clades reflected morphological similarity among the Eimeria spp. This is the third molecular phylogenetic characterization of a murine Eimeria spp. in addition to E. falciformis and E. papillata. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  1. Ultrastructure and molecular phylogenetic position of a novel phagotrophic stramenopile from low oxygen environments: Rictus lutensis gen. et sp. nov. (Bicosoecida, incertae sedis).

    PubMed

    Yubuki, Naoji; Leander, Brian S; Silberman, Jeffrey D

    2010-04-01

    A novel free free-living phagotrophic flagellate, Rictus lutensis gen. et sp. nov., with two heterodynamic flagella, a permanent cytostome and a cytopharynx was isolated from muddy, low oxygen coastal sediments in Cape Cod, MA, USA. We cultivated and characterized this flagellate with transmission electron microscopy, scanning electron microscopy and molecular phylogenetic analyses inferred from small subunit (SSU) rDNA sequences. These data demonstrated that this organism has the key ultrastructural characters of the Bicosoecida, including similar transitional zones and a similar overall flagellar apparatus consisting of an x fiber and an L-shape microtubular root 2 involved in food capture. Although the molecular phylogenetic analyses were concordant with the ultrastructural data in placing R. lutensis with the bicosoecid clade, the internal position of this relatively divergent sequence within the clade was not resolved. Therefore, we interpret R. lutensis gen. et sp. nov. as a novel bicosoecid incertae sedis. Copyright 2009 Elsevier GmbH. All rights reserved.

  2. Evidence for a persistent microbial seed bank throughout the global ocean

    PubMed Central

    Gibbons, Sean M.; Caporaso, J. Gregory; Pirrung, Meg; Field, Dawn; Knight, Rob; Gilbert, Jack A.

    2013-01-01

    Do bacterial taxa demonstrate clear endemism, like macroorganisms, or can one site’s bacterial community recapture the total phylogenetic diversity of the world’s oceans? Here we compare a deep bacterial community characterization from one site in the English Channel (L4-DeepSeq) with 356 datasets from the International Census of Marine Microbes (ICoMM) taken from around the globe (ranging from marine pelagic and sediment samples to sponge-associated environments). At the L4-DeepSeq site, increasing sequencing depth uncovers greater phylogenetic overlap with the global ICoMM data. This site contained 31.7–66.2% of operational taxonomic units identified in a given ICoMM biome. Extrapolation of this overlap suggests that 1.93 × 1011 sequences from the L4 site would capture all ICoMM bacterial phylogenetic diversity. Current technology trends suggest this limit may be attainable within 3 y. These results strongly suggest the marine biosphere maintains a previously undetected, persistent microbial seed bank. PMID:23487761

  3. Phylogenetic reconstruction and polymorphism analysis of BK virus VP2 gene isolated from renal transplant recipients in China

    PubMed Central

    WANG, ZHANG-YANG; HONG, WEI-LONG; ZHU, ZHE-HUI; CHEN, YUN-HAO; YE, WEN-LE; CHU, GUANG-YU; LI, JIA-LIN; CHEN, BI-CHENG; XIA, PENG

    2015-01-01

    BK polyomavirus (BKV) is important pathogen for kidney transplant recipients, as it is frequently re-activated, leading to nephropathy. The aim of this study was to investigate the phylogenetic reconstruction and polymorphism of the VP2 gene in BKV isolated from Chinese kidney transplant recipients. Phylogenetic analysis was carried out in the VP2 region from 135 BKV-positive samples and 28 reference strains retrieved from GenBank. The unweighted pair-group method with arithmetic mean (UPGMA) grouped all strains into subtypes, but failed to subdivide strains into subgroups. Among the plasma and urine samples, all plasma (23/23) and 82 urine samples (82/95) were identified to contain subtype I; the other 10 urine samples contained subtype IV. A 86-bp fragment was identified as a highly conserved sequence. Following alignment with 36 published BKV sequences from China, 92 sites of polymorphism were identified, including 11 single nucleotide polymorphisms (SNPs) prevalent in Chinese individuals and 30 SNPs that were specific to the two predominant subtypes I and IV. The limitations of the VP2 gene segment in subgrouping were confirmed by phylogenetic analysis. The conserved sequence and polymorphism identified in this study may be helpful in the detection and genotyping of BKV. PMID:26640547

  4. Morphology-based phylogeny of the suckermouth armored catfishes, with emphasis on the Neoplecostominae (Teleostei: Siluriformes: Loricariidae).

    PubMed

    Pereira, Edson H L; Reis, Roberto E

    2017-05-11

    A phylogenetic study of the Loricariidae with emphasis on the Neoplecostominae is presented based on a maximum parsimony analysis of 268 phenotypic characters encompassing osteology, arthrology, and external morphology. Results support previous hypotheses of the monophyly of the Neoplecostominae and each of the included genera: Hirtella, Isbrueckerichthys, Kronichthys, Neoplecostomus, Pareiorhaphis, and Pareiorhina. In addition, previously undiscovered diversity was revealed within the subfamily as an additional genus-level taxon, herein described as Euryochus. Relationships among neoplecostomine genera are: (Kronichthys (Euryochus ((Hirtella + Pareiorhaphis) (Pareiorhina (Isbrueckerichthys + Neoplecostomus))))). Additional undescribed diversity was also detected among most neoplecostomine genera and the Hypoptopomatinae. In addition, recently discovered genera Nannoplecostomus and Microplecostomus were included in the analysis, and were identified as sequential sister-taxa to Neoplecostominae + Hypoptopomatinae, which are currently not included in any subfamily and regarded as incertae sedis in Loricariidae. The three species of Lithogenes were included in an encompassing phylogenetic analysis for the first time, and were identified as a monophyletic unit and sister group to all remaining loricariids. The other loricariid subfamilies were also corroborated as monophyletic, and presented the following interrelationships (Lithogeninae (Delturinae (Loricariinae (Hypostominae (Nannoplecostomus (Microplecostomus (Hypoptopomatinae + Neoplecostominae). The Neoplecostominae and its genera are phylogenetically diagnosed, and hypothesized relationships are compared to those of previous morphological and molecular phylogenetic studies.

  5. Identification of Tunisian Leishmania spp. by PCR amplification of cysteine proteinase B (cpb) genes and phylogenetic analysis.

    PubMed

    Chaouch, Melek; Fathallah-Mili, Akila; Driss, Mehdi; Lahmadi, Ramzi; Ayari, Chiraz; Guizani, Ikram; Ben Said, Moncef; Benabderrazak, Souha

    2013-03-01

    Discrimination of the Old World Leishmania parasites is important for diagnosis and epidemiological studies of leishmaniasis. We have developed PCR assays that allow the discrimination between Leishmania major, Leishmania tropica and Leishmania infantum Tunisian species. The identification was performed by a simple PCR targeting cysteine protease B (cpb) gene copies. These PCR can be a routine molecular biology tools for discrimination of Leishmania spp. from different geographical origins and different clinical forms. Our assays can be an informative source for cpb gene studying concerning drug, diagnostics and vaccine research. The PCR products of the cpb gene and the N-acetylglucosamine-1-phosphate transferase (nagt) Leishmania gene were sequenced and aligned. Phylogenetic trees of Leishmania based cpb and nagt sequences are close in topology and present the classic distribution of Leishmania in the Old World. The phylogenetic analysis has enabled the characterization and identification of different strains, using both multicopy (cpb) and single copy (nagt) genes. Indeed, the cpb phylogenetic analysis allowed us to identify the Tunisian Leishmania killicki species, and a group which gathers the least evolved isolates of the Leishmania donovani complex, that was originated from East Africa. This clustering confirms the African origin for the visceralizing species of the L. donovani complex. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. The complete mitochondrial genome of Pallisentis celatus (Acanthocephala) with phylogenetic analysis of acanthocephalans and rotifers.

    PubMed

    Pan, Ting Shuang; Nie, Pin

    2013-07-01

    Acanthocephalans are a small group of obligate endoparasites. They and rotifers are recently placed in a group called Syndermata. However, phylogenetic relationships within classes of acanthocephalans, and between them and rotifers, have not been well resolved, possibly due to the lack of molecular data suitable for such analysis. In this study, the mitochondrial (mt) genome was sequenced from Pallisentis celatus (Van Cleave, 1928), an acanthocephalan in the class Eoacanthocephala, an intestinal parasite of rice-field eel, Monopterus albus (Zuiew, 1793), in China. The complete mt genome sequence of P. celatus is 13 855 bp long, containing 36 genes including 12 protein-coding genes, 22 transfer RNAs (tRNAs) and 2 ribosomal RNAs (rRNAs) as reported for other acanthocephalan species. All genes are encoded on the same strand and in the same direction. Phylogenetic analysis indicated that acanthocephalans are closely related with a clade containing bdelloids, which then correlates with the clade containing monogononts. The class Eoacanthocephala, containing P. celatus and Paratenuisentis ambiguus (Van Cleave, 1921) was closely related to the Palaeacanthocephala. It is thus indicated that acanthocephalans may be just clustered among groups of rotifers. However, the resolving of phylogenetic relationship among all classes of acanthocephalans and between them and rotifers may require further sampling and more molecular data.

  7. Comparative analysis of DNA polymorphisms and phylogenetic relationships among Syzygium cumini Skeels based on phenotypic characters and RAPD technique.

    PubMed

    Singh, Jitendra P; Singh, Ak; Bajpai, Anju; Ahmad, Iffat Zareen

    2014-01-01

    The Indian black berry (Syzygium cumini Skeels) has a great nutraceutical and medicinal properties. As in other fruit crops, the fruit characteristics are important attributes for differentiation were also determined for different accessions of S. cumini. The fruit weight, length, breadth, length: breadth ratio, pulp weight, pulp content, seed weight and pulp: seed ratio significantly varied in different accessions. Molecular characterization was carried out using PCR based RAPD technique. Out of 80 RAPD primers, only 18 primers produced stable polymorphisms that were used to examine the phylogenetic relationship. A sum of 207 loci were generated out of which 201 loci found polymorphic. The average genetic dissimilarity was 97 per cent among jamun accessions. The phylogenetic relationship was also determined by principal coordinates analysis (PCoA) that explained 46.95 per cent cumulative variance. The two-dimensional PCoA analysis showed grouping of the different accessions that were plotted into four sub-plots, representing clustering of accessions. The UPGMA (r = 0.967) and NJ (r = 0.987) dendrogram constructed based on the dissimilarity matrix revealed a good degree of fit with the cophenetic correlation value. The dendrogram grouped the accessions into three main clusters according to their eco-geographical regions which given useful insight into their phylogenetic relationships.

  8. Acremonium phylogenetic overview and revision of Gliomastix, Sarocladium, and Trichothecium

    PubMed Central

    Summerbell, R.C.; Gueidan, C.; Schroers, H-J.; de Hoog, G.S.; Starink, M.; Rosete, Y. Arocha; Guarro, J.; Scott, J.A.

    2011-01-01

    Over 200 new sequences are generated for members of the genus Acremonium and related taxa including ribosomal small subunit sequences (SSU) for phylogenetic analysis and large subunit (LSU) sequences for phylogeny and DNA-based identification. Phylogenetic analysis reveals that within the Hypocreales, there are two major clusters containing multiple Acremonium species. One clade contains Acremonium sclerotigenum, the genus Emericellopsis, and the genus Geosmithia as prominent elements. The second clade contains the genera Gliomastix sensu stricto and Bionectria. In addition, there are numerous smaller clades plus two multi-species clades, one containing Acremonium strictum and the type species of the genus Sarocladium, and, as seen in the combined SSU/LSU analysis, one associated subclade containing Acremonium breve and related species plus Acremonium curvulum and related species. This sequence information allows the revision of three genera. Gliomastix is revived for five species, G. murorum, G. polychroma, G. tumulicola, G. roseogrisea, and G. masseei. Sarocladium is extended to include all members of the phylogenetically distinct A. strictum clade including the medically important A. kiliense and the protective maize endophyte A. zeae. Also included in Sarocladium are members of the phylogenetically delimited Acremonium bacillisporum clade, closely linked to the A. strictum clade. The genus Trichothecium is revised following the principles of unitary nomenclature based on the oldest valid anamorph or teleomorph name, and new combinations are made in Trichothecium for the tightly interrelated Acremonium crotocinigenum, Spicellum roseum, and teleomorph Leucosphaerina indica. Outside the Hypocreales, numerous Acremonium-like species fall into the Plectosphaerellaceae, and A. atrogriseum falls into the Cephalothecaceae. PMID:21523192

  9. Marinospirillum insulare sp. nov., a novel halophilic helical bacterium isolated from kusaya gravy.

    PubMed

    Satomi, M; Kimura, B; Hayashi, M; Okuzumi, M; Fujii, T

    2004-01-01

    A novel species that belongs to the genus Marinospirillum is described on the basis of phenotypic characteristics, phylogenetic analysis of 16S rRNA and gyrB gene sequences and DNA-DNA hybridization. Four strains of helical, halophilic, Gram-negative, heterotrophic bacteria were isolated from kusaya gravy, which is fermented brine that is used for the production of traditional dried fish in the Izu Islands of Japan. All of the new isolates were motile by means of bipolar tuft flagella, of small cell size, coccoid-body-forming and aerophilic; it was concluded that they belong to the same bacterial species, based on DNA-DNA hybridization values (>70% DNA relatedness). DNA G+C contents of the new strains were 42-43 mol% and they had isoprenoid quinone Q-8 as the major component. Phylogenetic analysis of 16S rRNA gene sequences indicated that the new isolates were members of the genus Marinospirillum; sequence similarity of the new isolates to Marinospirillum minutulum, Marinospirillum megaterium and Marinospirillum alkaliphilum was 98.5, 98.2 and 95.2%, respectively. Phylogenetic analysis based on the gyrB gene indicated that the new isolates had enough phylogenetic distance from M. minutulum and M. megaterium to be regarded as different species, with 84.7 and 78.7% sequence similarity, respectively. DNA-DNA hybridization showed that the new isolates had <36% DNA relatedness to M. minutulum and M. megaterium, supporting the phylogenetic conclusion. Thus, a novel species is proposed: Marinospirillum insulare sp. nov. (type strain, KT=LMG 21802T=NBRC 100033T).

  10. Ingroup relationships of Lagerpetidae (Avemetatarsalia: Dinosauromorpha): a further phylogenetic investigation on the understanding of dinosaur relatives.

    PubMed

    MÜller, Rodrigo Temp; Langer, Max Cardoso; Dias-da-Silva, SÉrgio

    2018-03-07

    Despite representing a key-taxon in dinosauromorph phylogeny, Lagerpertidae is one of the most obscure and enigmatic branches from the stem that leads to the dinosaurs. Recent new findings have greatly increased our knowledge about lagerpetids, but no phylogenetic analysis has so far included all known members of this group. Here, we present the most inclusive phylogenetic study so far conducted for Lagerpetidae. Phylogenetic analyses were performed based on three independent data matrixes. In two of them, Lagerpeton chanarensis Romer, 1971 is the sister taxon to all other known Lagerpetidae, whereas Ixalerpeton polesinensis Cabreira et al., 2016 is in a sister group relationship with a clade that includes PVSJ 883 and Dromomeron. Conversely, the other analysis supports an alternative topology, where I. polesinensis is the sister taxon to either L. chanarensis or all other Lagerpetidae. Although coeval and geographically close, I. polesinensis and PVSJ 883 do not form a clade exclusive of other lagerpetids. As previously suggested D. gigas Martínez, Apaldetti, Correa Abelín, 2016 is the sister taxon of D. romeri Irmis et al., 2007. The phylogenetic analyses also indicate that the earliest lagerpetids are restricted to southwestern Pangea, whereas later forms spread across the entire western portion of the supercontinent. Finally, quantification of the codified characters of our analysis reveals that Lagerpetidae is one of the poorest known among the Triassic dinosauromorph groups in terms of their anatomy, so that new discoveries of more complete specimens are awaited to establish a more robust phylogeny.

  11. COPEPOD REPRODUCTIVE STRATEGIES: LIFE-HISTORY THEORY, PHYLOGENETIC PATTERN AND INVASION OF INLAND WATERS. (R824771)

    EPA Science Inventory

    Abstract

    Life-history theory predicts that different reproductive strategies should evolve in environments that differ in resource availability, mortality, seasonality, and in spatial or temporal variation. Within a population, the predicted optimal strategy is driven ...

  12. Rhodotorula portillonensis sp. nov., a basidiomycetous yeast isolated from Antarctic shallow-water marine sediment.

    PubMed

    Laich, Federico; Vaca, Inmaculada; Chávez, Renato

    2013-10-01

    During the characterization of the mycobiota associated with shallow-water marine environments from Antarctic sea, a novel pink yeast species was isolated. Sequence analysis of the D1/D2 domain of the LSU rDNA gene and 5.8S-ITS regions revealed that the isolated yeast was closely related to Rhodotorula pallida CBS 320(T) and Rhodotorula benthica CBS 9124(T). On the basis of morphological, biochemical and physiological characterization and phylogenetic analyses, a novel basidiomycetous yeast species, Rhodotorula portillonensis sp. nov., is proposed. The type strain is Pi2(T) ( = CBS 12733(T)  = CECT 13081(T)) which was isolated from shallow-water marine sediment in Fildes Bay, King George Island, Antarctica.

  13. Ongoing large measles outbreak with nosocomial transmission in Milan, northern Italy, March-August 2017.

    PubMed

    Amendola, Antonella; Bianchi, Silvia; Frati, Elena R; Ciceri, Giulia; Faccini, Marino; Senatore, Sabrina; Colzani, Daniela; Lamberti, Anna; Baggieri, Melissa; Cereda, Danilo; Gramegna, Maria; Nicoletti, Loredana; Magurano, Fabio; Tanzi, Elisabetta

    2017-08-17

    A large measles outbreak has been ongoing in Milan and surrounding areas. From 1 March to 30 June 2017, 203 measles cases were laboratory-confirmed (108 sporadic cases and 95 related to 47 clusters). Phylogenetic analysis revealed the co-circulation of two different genotypes, D8 and B3. Both genotypes caused nosocomial clusters in two hospitals. The rapid analysis of epidemiological and phylogenetic data allowed effective surveillance and tracking of transmission pathways. This article is copyright of The Authors, 2017.

  14. Ongoing large measles outbreak with nosocomial transmission in Milan, northern Italy, March–August 2017

    PubMed Central

    Amendola, Antonella; Bianchi, Silvia; Frati, Elena R; Ciceri, Giulia; Faccini, Marino; Senatore, Sabrina; Colzani, Daniela; Lamberti, Anna; Baggieri, Melissa; Cereda, Danilo; Gramegna, Maria; Nicoletti, Loredana; Magurano, Fabio; Tanzi, Elisabetta

    2017-01-01

    A large measles outbreak has been ongoing in Milan and surrounding areas. From 1 March to 30 June 2017, 203 measles cases were laboratory-confirmed (108 sporadic cases and 95 related to 47 clusters). Phylogenetic analysis revealed the co-circulation of two different genotypes, D8 and B3. Both genotypes caused nosocomial clusters in two hospitals. The rapid analysis of epidemiological and phylogenetic data allowed effective surveillance and tracking of transmission pathways. PMID:28840825

  15. Phylogenetic analysis of HSP70 and cyt b gene sequences for Chinese Leishmania isolates and ultrastructural characteristics of Chinese Leishmania sp.

    PubMed

    Yuan, Dongmei; Qin, Hanxiao; Zhang, Jianguo; Liao, Lin; Chen, Qiwei; Chen, Dali; Chen, Jianping

    2017-02-01

    Leishmaniasis is a worldwide epidemic disease caused by the genus Leishmania, which is still endemic in the west and northwest areas of China. Some viewpoints of the traditional taxonomy of Chinese Leishmania have been challenged by recent phylogenetic researches based on different molecular markers. However, the taxonomic positions and phylogenetic relationships of Chinese Leishmania isolates remain controversial, which need for more data and further analysis. In this study, the heat shock protein 70 (HSP70) gene and cytochrome b (cyt b) gene were used for phylogenetic analysis of Chinese Leishmania isolates from patients, dogs, gerbils, and sand flies in different geographic origins. Besides, for the interesting Leishmania sp. in China, the ultrastructure of three Chinese Leishmania sp. strains (MHOM/CN/90/SC10H2, SD, GL) were observed by transmission electron microscopy. Bayesian trees from HSP70 and cyt b congruently indicated that the 14 Chinese Leishmania isolates belong to three Leishmania species including L. donovani complex, L. gerbilli, and L. (Sauroleishmania) sp. Their identity further confirmed that the undescribed Leishmania species causing visceral Leishmaniasis (VL) in China is closely related to L. tarentolae. The phylogenetic results from HSP70 also suggested the classification of subspecies within L. donovani complex: KXG-918, KXG-927, KXG-Liu, KXG-Xu, 9044, SC6, and KXG-65 belong to L. donovani; Cy, WenChuan, and 801 were proposed to be L. infantum. Through transmission electron microscopy, unexpectedly, the Golgi apparatus were not observed in SC10H2, SD, and GL, which was similar to previous reports of reptilian Leishmania. The statistical analysis of microtubule counts separated SC10H2, SD, and GL as one group from any other reference strain (L. donovani MHOM/IN/80/DD8; L. tropica MHOM/SU/74/K27; L. gerbilli MRHO/CN/60/GERBILLI). The ultrastructural characteristics of Leishmania sp. partly lend support to the phylogenetic inference that Chinese Leishmania sp. is in close relationship with reptilian Leishmania.

  16. Analysis of phylogenomic datasets reveals conflict, concordance, and gene duplications with examples from animals and plants.

    PubMed

    Smith, Stephen A; Moore, Michael J; Brown, Joseph W; Yang, Ya

    2015-08-05

    The use of transcriptomic and genomic datasets for phylogenetic reconstruction has become increasingly common as researchers attempt to resolve recalcitrant nodes with increasing amounts of data. The large size and complexity of these datasets introduce significant phylogenetic noise and conflict into subsequent analyses. The sources of conflict may include hybridization, incomplete lineage sorting, or horizontal gene transfer, and may vary across the phylogeny. For phylogenetic analysis, this noise and conflict has been accommodated in one of several ways: by binning gene regions into subsets to isolate consistent phylogenetic signal; by using gene-tree methods for reconstruction, where conflict is presumed to be explained by incomplete lineage sorting (ILS); or through concatenation, where noise is presumed to be the dominant source of conflict. The results provided herein emphasize that analysis of individual homologous gene regions can greatly improve our understanding of the underlying conflict within these datasets. Here we examined two published transcriptomic datasets, the angiosperm group Caryophyllales and the aculeate Hymenoptera, for the presence of conflict, concordance, and gene duplications in individual homologs across the phylogeny. We found significant conflict throughout the phylogeny in both datasets and in particular along the backbone. While some nodes in each phylogeny showed patterns of conflict similar to what might be expected with ILS alone, the backbone nodes also exhibited low levels of phylogenetic signal. In addition, certain nodes, especially in the Caryophyllales, had highly elevated levels of strongly supported conflict that cannot be explained by ILS alone. This study demonstrates that phylogenetic signal is highly variable in phylogenomic data sampled across related species and poses challenges when conducting species tree analyses on large genomic and transcriptomic datasets. Further insight into the conflict and processes underlying these complex datasets is necessary to improve and develop adequate models for sequence analysis and downstream applications. To aid this effort, we developed the open source software phyparts ( https://bitbucket.org/blackrim/phyparts ), which calculates unique, conflicting, and concordant bipartitions, maps gene duplications, and outputs summary statistics such as internode certainy (ICA) scores and node-specific counts of gene duplications.

  17. Use of phylogenetical analysis to predict susceptibility of pathogenic Candida spp. to antifungal drugs.

    PubMed

    Maheux, Andrée F; Sellam, Adnane; Piché, Yves; Boissinot, Maurice; Pelletier, René; Boudreau, Dominique K; Picard, François J; Trépanier, Hélène; Boily, Marie-Josée; Ouellette, Marc; Roy, Paul H; Bergeron, Michel G

    2016-12-01

    Successful treatment of a Candida infection relies on 1) an accurate identification of the pathogenic fungus and 2) on its susceptibility to antifungal drugs. In the present study we investigated the level of correlation between phylogenetical evolution and susceptibility of pathogenic Candida spp. to antifungal drugs. For this, we compared a phylogenetic tree, assembled with the concatenated sequences (2475-bp) of the ATP2, TEF1, and TUF1 genes from 20 representative Candida species, with published minimal inhibitory concentrations (MIC) of the four principal antifungal drug classes commonly used in the treatment of candidiasis: polyenes, triazoles, nucleoside analogues, and echinocandins. The phylogenetic tree revealed three distinct phylogenetic clusters among Candida species. Species within a given phylogenetic cluster have generally similar susceptibility profiles to antifungal drugs and species within Clusters II and III were less sensitive to antifungal drugs than Cluster I species. These results showed that phylogenetical relationship between clusters and susceptibility to several antifungal drugs could be used to guide therapy when only species identification is available prior to information pertaining to its resistance profile. An extended study comprising a large panel of clinical samples should be conducted to confirm the efficiency of this approach in the treatment of candidiasis. Copyright © 2016. Published by Elsevier B.V.

  18. Mitochondrial genomes reveal recombination in the presumed asexual Fusarium oxysporum species complex.

    PubMed

    Brankovics, Balázs; van Dam, Peter; Rep, Martijn; de Hoog, G Sybren; J van der Lee, Theo A; Waalwijk, Cees; van Diepeningen, Anne D

    2017-09-18

    The Fusarium oxysporum species complex (FOSC) contains several phylogenetic lineages. Phylogenetic studies identified two to three major clades within the FOSC. The mitochondrial sequences are highly informative phylogenetic markers, but have been mostly neglected due to technical difficulties. A total of 61 complete mitogenomes of FOSC strains were de novo assembled and annotated. Length variations and intron patterns support the separation of three phylogenetic species. The variable region of the mitogenome that is typical for the genus Fusarium shows two new variants in the FOSC. The variant typical for Fusarium is found in members of all three clades, while variant 2 is found in clades 2 and 3 and variant 3 only in clade 2. The extended set of loci analyzed using a new implementation of the genealogical concordance species recognition method support the identification of three phylogenetic species within the FOSC. Comparative analysis of the mitogenomes in the FOSC revealed ongoing mitochondrial recombination within, but not between phylogenetic species. The recombination indicates the presence of a parasexual cycle in F. oxysporum. The obstacles hindering the usage of the mitogenomes are resolved by using next generation sequencing and selective genome assemblers, such as GRAbB. Complete mitogenome sequences offer a stable basis and reference point for phylogenetic and population genetic studies.

  19. Phylogenetic relationships and taxonomic position of Chlorella-like isolates from low pH environments (pH < 3.0)

    PubMed Central

    Huss, Volker AR; Ciniglia, Claudia; Cennamo, Paola; Cozzolino, Salvatore; Pinto, Gabriele; Pollio, Antonino

    2002-01-01

    Background Little is known about phytoplankton communities inhabiting low pH environments such as volcanic and geothermal sites or acidic waters. Only specialised organisms are able to tolerate such extreme conditions. There is, thus, low species diversity. We have characterised the previously isolated acid tolerant Chlorella-like microalgae Viridiella fridericiana and Chlorella protothecoides var. acidicola by microscopical and biomolecular methods in order to assess their phylogenetic relationships. Results Both isolates belong to the trebouxiophycean lineage of chlorophytes. 18S and ITS1 sequence data clearly confirm that Viridiella fridericiana constitutes a new genus apart from the morphologically similar and likewise acid tolerant microalga Chlorella saccharophila. Chlorella protothecoides var. acidicola on the other hand is not a variety of Chlorella protothecoides but falls within a heterogeneous cluster consisting of Nannochloris, "Chlorella" spec. Yanaqocha, and Koliella, and is most closely related to algae which were also isolated from extreme environments. Conclusions The distribution of acid tolerant strains in the 18S rRNA tree shows that acquisition of acid tolerance was unlikely a monophyletic event in green microalgae. We propose that different strains have independently adapted to extreme environments. Some of them have spread worldwide and were able to colonise other extreme habitats. Considering the problems of successfully isolating acid tolerant strains, acidic soils could represent an unsuspected source of biological diversity with high potential for biotechnological utilisations. PMID:12194702

  20. Insights into the ecology, evolution, and metabolism of the widespread Woesearchaeotal lineages.

    PubMed

    Liu, Xiaobo; Li, Meng; Castelle, Cindy J; Probst, Alexander J; Zhou, Zhichao; Pan, Jie; Liu, Yang; Banfield, Jillian F; Gu, Ji-Dong

    2018-06-08

    As a recently discovered member of the DPANN superphylum, Woesearchaeota account for a wide diversity of 16S rRNA gene sequences, but their ecology, evolution, and metabolism remain largely unknown. Here, we assembled 133 global clone libraries/studies and 19 publicly available genomes to profile these patterns for Woesearchaeota. Phylogenetic analysis shows a high diversity with 26 proposed subgroups for this recently discovered archaeal phylum, which are widely distributed in different biotopes but primarily in inland anoxic environments. Ecological patterns analysis and ancestor state reconstruction for specific subgroups reveal that oxic status of the environments is the key factor driving the distribution and evolutionary diversity of Woesearchaeota. A selective distribution to different biotopes and an adaptive colonization from anoxic to oxic environments can be proposed and supported by evidence of the presence of ferredoxin-dependent pathways in the genomes only from anoxic biotopes but not from oxic biotopes. Metabolic reconstructions support an anaerobic heterotrophic lifestyle with conspicuous metabolic deficiencies, suggesting the requirement for metabolic complementarity with other microbes. Both lineage abundance distribution and co-occurrence network analyses across diverse biotopes confirmed metabolic complementation and revealed a potential syntrophic relationship between Woesearchaeota and methanogens, which is supported by metabolic modeling. If correct, Woesearchaeota may impact methanogenesis in inland ecosystems. The findings provide an ecological and evolutionary framework for Woesearchaeota at a global scale and indicate their potential ecological roles, especially in methanogenesis.

Top