Sample records for environment systems research

  1. Virtual interface environment workstations

    NASA Technical Reports Server (NTRS)

    Fisher, S. S.; Wenzel, E. M.; Coler, C.; Mcgreevy, M. W.

    1988-01-01

    A head-mounted, wide-angle, stereoscopic display system controlled by operator position, voice and gesture has been developed at NASA's Ames Research Center for use as a multipurpose interface environment. This Virtual Interface Environment Workstation (VIEW) system provides a multisensory, interactive display environment in which a user can virtually explore a 360-degree synthesized or remotely sensed environment and can viscerally interact with its components. Primary applications of the system are in telerobotics, management of large-scale integrated information systems, and human factors research. System configuration, research scenarios, and research directions are described.

  2. Homeostasis lighting control based on relationship between lighting environment and human behavior

    NASA Astrophysics Data System (ADS)

    Ueda, Risa; Mita, Akira

    2015-03-01

    Although each person has own preferences, living spaces which can respond to various preferences and needs have not become reality. Focusing on the lighting environments which influence on the impression of living spaces, this research aims to offer comfortable lighting environments for each resident by a flexible control. This research examines the relationship between lighting environments and human behaviors considering colored lights. In accord with the relationship, this research proposes an illuminance-color control system which flexibly changes spatial environments responding to human conditions. Firstly, the psychological evaluation was conducted in order to build human models for various environments. As a result, preferred lighting environments for each examinee were determined for particular behaviors. Moreover, satisfaction levels of lighting environments were calculated by using seven types of impression of the environments as parameters. The results were summarized as human models. Secondly, this research proposed "Homeostasis Lighting Control System", which employs the human models. Homeostasis lighting control system embodies the algorithm of homeostasis, which is one of the functions of the physiological adaptation. Human discomfort feelings are obtained automatically by the sensor agent robot. The system can offer comfortable lighting environments without controlling environments by residents autonomously based on the information from the robot. This research takes into accounts both illuminance and color. The robot communicates with the server which contains human models, then the system corresponds to individuals. Combining these three systems, the proposed system can effectively control the lighting environment. At last, the feasibility of the proposed system was verified by simulation experiments.

  3. CHANS-Net: Opportunities in the Bigger Picture

    NASA Astrophysics Data System (ADS)

    Depolo, J. M.

    2012-12-01

    CHANS-Net: International Network of Research on Coupled Human and Natural Systems is an NSF-funded effort that facilitates communication and collaboration among scholars from around the world who are interested in coupled human and natural systems (CHANS) (e.g., coupled human-environment systems, social-ecological systems, ecological-economic systems, population-environment systems) and who strive to find sustainable solutions that both benefit the environment and enable people to thrive. Reaching across research boundaries to study coupled human and natural systems has been documented to put genuine sustainability in reach. But the design also is more challenging as a researcher ventures into unfamiliar disciplines. The network is striving to build a supportive community of researchers to enhance collaboration and partnerships and offer examples of best practices. CHANS-Net researchers have found that seemingly unconnected issues, divorce and the environment for example, are interrelated and affect each other in ways that we are only just beginning to understand.

  4. CHANS-Net: Opportunities for the bigger picture in hydrology

    NASA Astrophysics Data System (ADS)

    Nichols, S.

    2012-12-01

    CHANS-Net: International Network of Research on Coupled Human and Natural Systems is an NSF-funded effort that facilitates communication and collaboration among scholars from around the world who are interested in coupled human and natural systems (CHANS) (e.g., coupled human-environment systems, social-ecological systems, ecological-economic systems, population-environment systems) and who strive to find sustainable solutions that both benefit the environment and enable people to thrive. Reaching across research boundaries to study coupled human and natural systems has been documented to put genuine sustainability in reach. But the design also is more challenging as a researcher ventures into unfamiliar disciplines. The network is striving to build a supportive community of researchers to enhance collaboration and partnerships and offer examples of best practices. CHANS-Net researchers have found that seemingly unconnected issues, divorce and the environment for example, are interrelated and affect each other in ways that we are only just beginning to understand.

  5. Virtual interface environment

    NASA Technical Reports Server (NTRS)

    Fisher, Scott S.

    1986-01-01

    A head-mounted, wide-angle, stereoscopic display system controlled by operator position, voice and gesture has been developed for use as a multipurpose interface environment. The system provides a multisensory, interactive display environment in which a user can virtually explore a 360-degree synthesized or remotely sensed environment and can viscerally interact with its components. Primary applications of the system are in telerobotics, management of large-scale integrated information systems, and human factors research. System configuration, application scenarios, and research directions are described.

  6. CESAR robotics and intelligent systems research for nuclear environments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mann, R.C.

    1992-07-01

    The Center for Engineering Systems Advanced Research (CESAR) at the Oak Ridge National Laboratory (ORNL) encompasses expertise and facilities to perform basic and applied research in robotics and intelligent systems in order to address a broad spectrum of problems related to nuclear and other environments. For nuclear environments, research focus is derived from applications in advanced nuclear power stations, and in environmental restoration and waste management. Several programs at CESAR emphasize the cross-cutting technology issues, and are executed in appropriate cooperation with projects that address specific problem areas. Although the main thrust of the CESAR long-term research is on developingmore » highly automated systems that can cooperate and function reliably in complex environments, the development of advanced human-machine interfaces represents a significant part of our research. 11 refs.« less

  7. CESAR robotics and intelligent systems research for nuclear environments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mann, R.C.

    1992-01-01

    The Center for Engineering Systems Advanced Research (CESAR) at the Oak Ridge National Laboratory (ORNL) encompasses expertise and facilities to perform basic and applied research in robotics and intelligent systems in order to address a broad spectrum of problems related to nuclear and other environments. For nuclear environments, research focus is derived from applications in advanced nuclear power stations, and in environmental restoration and waste management. Several programs at CESAR emphasize the cross-cutting technology issues, and are executed in appropriate cooperation with projects that address specific problem areas. Although the main thrust of the CESAR long-term research is on developingmore » highly automated systems that can cooperate and function reliably in complex environments, the development of advanced human-machine interfaces represents a significant part of our research. 11 refs.« less

  8. Virtual workstation - A multimodal, stereoscopic display environment

    NASA Astrophysics Data System (ADS)

    Fisher, S. S.; McGreevy, M.; Humphries, J.; Robinett, W.

    1987-01-01

    A head-mounted, wide-angle, stereoscopic display system controlled by operator position, voice and gesture has been developed for use in a multipurpose interface environment. The system provides a multisensory, interactive display environment in which a user can virtually explore a 360-degree synthesized or remotely sensed environment and can viscerally interact with its components. Primary applications of the system are in telerobotics, management of large-scale integrated information systems, and human factors research. System configuration, application scenarios, and research directions are described.

  9. A Stochastic Model of Plausibility in Live Virtual Constructive Environments

    DTIC Science & Technology

    2017-09-14

    objective in virtual environment research and design is the maintenance of adequate consistency levels in the face of limited system resources such as...provides some commentary with regard to system design considerations and future research directions. II. SYSTEM MODEL DVEs are often designed as a...exceed the system’s requirements. Research into predictive models of virtual environment consistency is needed to provide designers the tools to

  10. The crop growth research chamber

    NASA Technical Reports Server (NTRS)

    Wagenbach, Kimberly

    1993-01-01

    The Crop Growth Research Chamber (CGRC) has been defined by CELSS principle investigators and science advisory panels as a necessary ground-based tool in the development of a regenerative life support system. The focus of CGRC research will be on the biomass production component of the CELSS system. The ground-based Crop Growth Research Chamber is for the study of plant growth and development under stringently controlled environments isolated from the external environment. The chamber has importance in three areas of CELSS activities: (1) crop research; (2) system control and integration, and (3) flight hardware design and experimentation. The laboratory size of the CGRC will be small enough to allow duplication of the unit, the conducting of controlled experiments, and replication of experiments, but large enough to provide information representative of larger plant communities. Experiments will focus on plant growth in a wide variety of environments and the effects of those environments on plant production of food, water, oxygen, toxins, and microbes. To study these effects in a closed system, tight control of the environment is necessary.

  11. Space and Atmospheric Environments: From Low Earth Orbits to Deep Space

    NASA Technical Reports Server (NTRS)

    Barth, Janet L.

    2003-01-01

    Natural space and atmospheric environments pose a difficult challenge for designers of technological systems in space. The deleterious effects of environment interactions with the systems include degradation of materials, thermal changes, contamination, excitation, spacecraft glow, charging, radiation damage, and induced background interference. Design accommodations must be realistic with minimum impact on performance while maintaining a balance between cost and risk. The goal of applied research in space environments and effects is to limit environmental impacts at low cost relative to spacecraft cost and to infuse enabling and commercial off-the-shelf technologies into space programs. The need to perform applied research to understand the space environment in a practical sense and to develop methods to mitigate these environment effects is frequently underestimated by space agencies and industry. Applied science research in this area is critical because the complexity of spacecraft systems is increasing, and they are exposed simultaneously to a multitude of space environments.

  12. Quality and Safety in Health Care, Part XIV: The External Environment and Research for Diagnostic Processes.

    PubMed

    Harolds, Jay A

    2016-09-01

    The work system in which diagnosis takes place is affected by the external environment, which includes requirements such as certification, accreditation, and regulations. How errors are reported, malpractice, and the system for payment are some other aspects of the external environment. Improving the external environment is expected to decrease errors in diagnosis. More research on improving the diagnostic process is needed.

  13. Challenges associated with performing environmental research on titanium dioxide nanoparticles in aquatic environments

    EPA Science Inventory

    There are challenges associated with performing research on titanium dioxide NPs in aquatic environments particularly marine systems. A critical focus for current titanium dioxide NP research in aquatic environments needs to be on optimizing methods for differentiating naturally...

  14. How Does a Principal in Detroit Public Schools Produce a Productive Learning Environment within the Current System?

    ERIC Educational Resources Information Center

    Davenport, Marcus G.

    2017-01-01

    In this dissertation, the researcher investigates the success of productive learning environments in Detroit Public Schools. Using interviews with three productive principals from the Detroit school system, the researcher explores three related issues in public schooling. The first issue is the definition of a productive learning environment. By…

  15. Louisiana: a model for advancing regional e-Research through cyberinfrastructure.

    PubMed

    Katz, Daniel S; Allen, Gabrielle; Cortez, Ricardo; Cruz-Neira, Carolina; Gottumukkala, Raju; Greenwood, Zeno D; Guice, Les; Jha, Shantenu; Kolluru, Ramesh; Kosar, Tevfik; Leger, Lonnie; Liu, Honggao; McMahon, Charlie; Nabrzyski, Jarek; Rodriguez-Milla, Bety; Seidel, Ed; Speyrer, Greg; Stubblefield, Michael; Voss, Brian; Whittenburg, Scott

    2009-06-28

    Louisiana researchers and universities are leading a concentrated, collaborative effort to advance statewide e-Research through a new cyberinfrastructure: computing systems, data storage systems, advanced instruments and data repositories, visualization environments and people, all linked together by software programs and high-performance networks. This effort has led to a set of interlinked projects that have started making a significant difference in the state, and has created an environment that encourages increased collaboration, leading to new e-Research. This paper describes the overall effort, the new projects and environment and the results to date.

  16. Heterogeneous Systems for Information-Variable Environments (HIVE)

    DTIC Science & Technology

    2017-05-01

    ARL-TR-8027 ● May 2017 US Army Research Laboratory Heterogeneous Systems for Information - Variable Environments (HIVE) by Amar...not return it to the originator. ARL-TR-8027 ● May 2017 US Army Research Laboratory Heterogeneous Systems for Information ...Computational and Information Sciences Directorate, ARL Approved for public release; distribution is unlimited. ii REPORT

  17. Applications of wireless sensor networks in marine environment monitoring: a survey.

    PubMed

    Xu, Guobao; Shen, Weiming; Wang, Xianbin

    2014-09-11

    With the rapid development of society and the economy, an increasing number of human activities have gradually destroyed the marine environment. Marine environment monitoring is a vital problem and has increasingly attracted a great deal of research and development attention. During the past decade, various marine environment monitoring systems have been developed. The traditional marine environment monitoring system using an oceanographic research vessel is expensive and time-consuming and has a low resolution both in time and space. Wireless Sensor Networks (WSNs) have recently been considered as potentially promising alternatives for monitoring marine environments since they have a number of advantages such as unmanned operation, easy deployment, real-time monitoring, and relatively low cost. This paper provides a comprehensive review of the state-of-the-art technologies in the field of marine environment monitoring using wireless sensor networks. It first describes application areas, a common architecture of WSN-based oceanographic monitoring systems, a general architecture of an oceanographic sensor node, sensing parameters and sensors, and wireless communication technologies. Then, it presents a detailed review of some related projects, systems, techniques, approaches and algorithms. It also discusses challenges and opportunities in the research, development, and deployment of wireless sensor networks for marine environment monitoring.

  18. NASA Lighting Research, Test, & Analysis

    NASA Technical Reports Server (NTRS)

    Clark, Toni

    2015-01-01

    The Habitability and Human Factors Branch, at Johnson Space Center, in Houston, TX, provides technical guidance for the development of spaceflight lighting requirements, verification of light system performance, analysis of integrated environmental lighting systems, and research of lighting-related human performance issues. The Habitability & Human Factors Lighting Team maintains two physical facilities that are integrated to provide support. The Lighting Environment Test Facility (LETF) provides a controlled darkroom environment for physical verification of lighting systems with photometric and spetrographic measurement systems. The Graphics Research & Analysis Facility (GRAF) maintains the capability for computer-based analysis of operational lighting environments. The combined capabilities of the Lighting Team at Johnson Space Center have been used for a wide range of lighting-related issues.

  19. Reliability Evaluation and Improvement Approach of Chemical Production Man - Machine - Environment System

    NASA Astrophysics Data System (ADS)

    Miao, Yongchun; Kang, Rongxue; Chen, Xuefeng

    2017-12-01

    In recent years, with the gradual extension of reliability research, the study of production system reliability has become the hot topic in various industries. Man-machine-environment system is a complex system composed of human factors, machinery equipment and environment. The reliability of individual factor must be analyzed in order to gradually transit to the research of three-factor reliability. Meanwhile, the dynamic relationship among man-machine-environment should be considered to establish an effective blurry evaluation mechanism to truly and effectively analyze the reliability of such systems. In this paper, based on the system engineering, fuzzy theory, reliability theory, human error, environmental impact and machinery equipment failure theory, the reliabilities of human factor, machinery equipment and environment of some chemical production system were studied by the method of fuzzy evaluation. At last, the reliability of man-machine-environment system was calculated to obtain the weighted result, which indicated that the reliability value of this chemical production system was 86.29. Through the given evaluation domain it can be seen that the reliability of man-machine-environment integrated system is in a good status, and the effective measures for further improvement were proposed according to the fuzzy calculation results.

  20. Louisiana: a model for advancing regional e-Research through cyberinfrastructure

    PubMed Central

    Katz, Daniel S.; Allen, Gabrielle; Cortez, Ricardo; Cruz-Neira, Carolina; Gottumukkala, Raju; Greenwood, Zeno D.; Guice, Les; Jha, Shantenu; Kolluru, Ramesh; Kosar, Tevfik; Leger, Lonnie; Liu, Honggao; McMahon, Charlie; Nabrzyski, Jarek; Rodriguez-Milla, Bety; Seidel, Ed; Speyrer, Greg; Stubblefield, Michael; Voss, Brian; Whittenburg, Scott

    2009-01-01

    Louisiana researchers and universities are leading a concentrated, collaborative effort to advance statewide e-Research through a new cyberinfrastructure: computing systems, data storage systems, advanced instruments and data repositories, visualization environments and people, all linked together by software programs and high-performance networks. This effort has led to a set of interlinked projects that have started making a significant difference in the state, and has created an environment that encourages increased collaboration, leading to new e-Research. This paper describes the overall effort, the new projects and environment and the results to date. PMID:19451102

  1. Research environments that promote integrity.

    PubMed

    Jeffers, Brenda Recchia; Whittemore, Robin

    2005-01-01

    The body of empirical knowledge about research integrity and the factors that promote research integrity in nursing research environments remains small. To propose an internal control model as an innovative framework for the design and structure of nursing research environments that promote integrity. An internal control model is adapted to illustrate its use for conceptualizing and designing research environments that promote integrity. The internal control model integrates both the organizational elements necessary to promote research integrity and the processes needed to assess research environments. The model provides five interrelated process components within which any number of research integrity variables and processes may be used and studied: internal control environment, risk assessment, internal control activities, monitoring, and information and communication. The components of the proposed research integrity internal control model proposed comprise an integrated conceptualization of the processes that provide reasonable assurance that research integrity will be promoted within the nursing research environment. Schools of nursing can use the model to design, implement, and evaluate systems that promote research integrity. The model process components need further exploration to substantiate the use of the model in nursing research environments.

  2. Spacecraft attitude control using a smart control system

    NASA Technical Reports Server (NTRS)

    Buckley, Brian; Wheatcraft, Louis

    1992-01-01

    Traditionally, spacecraft attitude control has been implemented using control loops written in native code for a space hardened processor. The Naval Research Lab has taken this approach during the development of the Attitude Control Electronics (ACE) package. After the system was developed and delivered, NRL decided to explore alternate technologies to accomplish this same task more efficiently. The approach taken by NRL was to implement the ACE control loops using systems technologies. The purpose of this effort was to: (1) research capabilities required of an expert system in processing a classic closed-loop control algorithm; (2) research the development environment required to design and test an embedded expert systems environment; (3) research the complexity of design and development of expert systems versus a conventional approach; and (4) test the resulting systems against the flight acceptance test software for both response and accuracy. Two expert systems were selected to implement the control loops. Criteria used for the selection of the expert systems included that they had to run in both embedded systems and ground based environments. Using two different expert systems allowed a comparison of the real-time capabilities, inferencing capabilities, and the ground-based development environment. The two expert systems chosen for the evaluation were Spacecraft Command Language (SCL), and NEXTPERT Object. SCL is a smart control system produced for the NRL by Interface and Control Systems (ICS). SCL was developed to be used for real-time command, control, and monitoring of a new generation of spacecraft. NEXPERT Object is a commercially available product developed by Neuron Data. Results of the effort were evaluated using the ACE test bed. The ACE test bed had been developed and used to test the original flight hardware and software using simulators and flight-like interfaces. The test bed was used for testing the expert systems in a 'near-flight' environment. The technical approach, the system architecture, the development environments, knowledge base development, and results of this effort are detailed.

  3. Applications of Wireless Sensor Networks in Marine Environment Monitoring: A Survey

    PubMed Central

    Xu, Guobao; Shen, Weiming; Wang, Xianbin

    2014-01-01

    With the rapid development of society and the economy, an increasing number of human activities have gradually destroyed the marine environment. Marine environment monitoring is a vital problem and has increasingly attracted a great deal of research and development attention. During the past decade, various marine environment monitoring systems have been developed. The traditional marine environment monitoring system using an oceanographic research vessel is expensive and time-consuming and has a low resolution both in time and space. Wireless Sensor Networks (WSNs) have recently been considered as potentially promising alternatives for monitoring marine environments since they have a number of advantages such as unmanned operation, easy deployment, real-time monitoring, and relatively low cost. This paper provides a comprehensive review of the state-of-the-art technologies in the field of marine environment monitoring using wireless sensor networks. It first describes application areas, a common architecture of WSN-based oceanographic monitoring systems, a general architecture of an oceanographic sensor node, sensing parameters and sensors, and wireless communication technologies. Then, it presents a detailed review of some related projects, systems, techniques, approaches and algorithms. It also discusses challenges and opportunities in the research, development, and deployment of wireless sensor networks for marine environment monitoring. PMID:25215942

  4. Research and Development of Rapid Design Systems for Aerospace Structure

    NASA Technical Reports Server (NTRS)

    Schaeffer, Harry G.

    1999-01-01

    This report describes the results of research activities associated with the development of rapid design systems for aerospace structures in support of the Intelligent Synthesis Environment (ISE). The specific subsystems investigated were the interface between model assembly and analysis; and, the high performance NASA GPS equation solver software system in the Windows NT environment on low cost high-performance PCs.

  5. Intelligent mobility research for robotic locomotion in complex terrain

    NASA Astrophysics Data System (ADS)

    Trentini, Michael; Beckman, Blake; Digney, Bruce; Vincent, Isabelle; Ricard, Benoit

    2006-05-01

    The objective of the Autonomous Intelligent Systems Section of Defence R&D Canada - Suffield is best described by its mission statement, which is "to augment soldiers and combat systems by developing and demonstrating practical, cost effective, autonomous intelligent systems capable of completing military missions in complex operating environments." The mobility requirement for ground-based mobile systems operating in urban settings must increase significantly if robotic technology is to augment human efforts in these roles and environments. The intelligence required for autonomous systems to operate in complex environments demands advances in many fields of robotics. This has resulted in large bodies of research in areas of perception, world representation, and navigation, but the problem of locomotion in complex terrain has largely been ignored. In order to achieve its objective, the Autonomous Intelligent Systems Section is pursuing research that explores the use of intelligent mobility algorithms designed to improve robot mobility. Intelligent mobility uses sensing, control, and learning algorithms to extract measured variables from the world, control vehicle dynamics, and learn by experience. These algorithms seek to exploit available world representations of the environment and the inherent dexterity of the robot to allow the vehicle to interact with its surroundings and produce locomotion in complex terrain. The primary focus of the paper is to present the intelligent mobility research within the framework of the research methodology, plan and direction defined at Defence R&D Canada - Suffield. It discusses the progress and future direction of intelligent mobility research and presents the research tools, topics, and plans to address this critical research gap. This research will create effective intelligence to improve the mobility of ground-based mobile systems operating in urban settings to assist the Canadian Forces in their future urban operations.

  6. Aeronautics Research Mission Directorate Integrated Systems Research Program (ISRP) and UAS Integration in the NAS Project

    NASA Technical Reports Server (NTRS)

    Wolfe, Jean

    2010-01-01

    Program Goal: Conduct research at an integrated system-level on promising concepts and technologies and explore, assess, or demonstrate the benefits in a relevant environment.Criteria for selection of projects for Integrated Systems Research: a) Technology has attained enough maturity in the foundational research program that they merit more in-depth evaluation at an integrated system level in a relevant environment. b) Technologies which systems analysis indicates have the most potential for contributing to the simultaneous attainment of goals. c) Technologies identified through stakeholder input as having potential for simultaneous attainment of goals. d) Research not being done by other government agencies and appropriate for NASA to conduct. e) Budget augmentation. Environmentally Responsible Aviation (ERA) Project Explore and assess new vehicle concepts and enabling technologies through system-level experimentation to simultaneously reduce fuel burn, noise, and emissions Unmanned Aircraft Systems (UAS) Integration in the National Airspace System (NAS) Project Contribute capabilities that reduce technical barriers related to the safety and operational challenges associated with enabling routine UAS access to the NAS Innovative Concepts for Green Aviation (ICGA) Project Spur innovation by offering research opportunities to the broader aeronautics community through peer-reviewed proposals, with a focus on making aviation more eco-friendly. Establish incentive prizes similar to the Centennial Challenges and sponsor innovation demonstrations of selected technologies that show promise of reducing aviation s impact on the environment

  7. The CSM testbed software system: A development environment for structural analysis methods on the NAS CRAY-2

    NASA Technical Reports Server (NTRS)

    Gillian, Ronnie E.; Lotts, Christine G.

    1988-01-01

    The Computational Structural Mechanics (CSM) Activity at Langley Research Center is developing methods for structural analysis on modern computers. To facilitate that research effort, an applications development environment has been constructed to insulate the researcher from the many computer operating systems of a widely distributed computer network. The CSM Testbed development system was ported to the Numerical Aerodynamic Simulator (NAS) Cray-2, at the Ames Research Center, to provide a high end computational capability. This paper describes the implementation experiences, the resulting capability, and the future directions for the Testbed on supercomputers.

  8. Analysis of methods. [information systems evolution environment

    NASA Technical Reports Server (NTRS)

    Mayer, Richard J. (Editor); Ackley, Keith A.; Wells, M. Sue; Mayer, Paula S. D.; Blinn, Thomas M.; Decker, Louis P.; Toland, Joel A.; Crump, J. Wesley; Menzel, Christopher P.; Bodenmiller, Charles A.

    1991-01-01

    Information is one of an organization's most important assets. For this reason the development and maintenance of an integrated information system environment is one of the most important functions within a large organization. The Integrated Information Systems Evolution Environment (IISEE) project has as one of its primary goals a computerized solution to the difficulties involved in the development of integrated information systems. To develop such an environment a thorough understanding of the enterprise's information needs and requirements is of paramount importance. This document is the current release of the research performed by the Integrated Development Support Environment (IDSE) Research Team in support of the IISEE project. Research indicates that an integral part of any information system environment would be multiple modeling methods to support the management of the organization's information. Automated tool support for these methods is necessary to facilitate their use in an integrated environment. An integrated environment makes it necessary to maintain an integrated database which contains the different kinds of models developed under the various methodologies. In addition, to speed the process of development of models, a procedure or technique is needed to allow automatic translation from one methodology's representation to another while maintaining the integrity of both. The purpose for the analysis of the modeling methods included in this document is to examine these methods with the goal being to include them in an integrated development support environment. To accomplish this and to develop a method for allowing intra-methodology and inter-methodology model element reuse, a thorough understanding of multiple modeling methodologies is necessary. Currently the IDSE Research Team is investigating the family of Integrated Computer Aided Manufacturing (ICAM) DEFinition (IDEF) languages IDEF(0), IDEF(1), and IDEF(1x), as well as ENALIM, Entity Relationship, Data Flow Diagrams, and Structure Charts, for inclusion in an integrated development support environment.

  9. The Ames Virtual Environment Workstation: Implementation issues and requirements

    NASA Technical Reports Server (NTRS)

    Fisher, Scott S.; Jacoby, R.; Bryson, S.; Stone, P.; Mcdowall, I.; Bolas, M.; Dasaro, D.; Wenzel, Elizabeth M.; Coler, C.; Kerr, D.

    1991-01-01

    This presentation describes recent developments in the implementation of a virtual environment workstation in the Aerospace Human Factors Research Division of NASA's Ames Research Center. Introductory discussions are presented on the primary research objectives and applications of the system and on the system's current hardware and software configuration. Principle attention is then focused on unique issues and problems encountered in the workstation's development with emphasis on its ability to meet original design specifications for computational graphics performance and for associated human factors requirements necessary to provide compelling sense of presence and efficient interaction in the virtual environment.

  10. Interaction Network Estimation: Predicting Problem-Solving Diversity in Interactive Environments

    ERIC Educational Resources Information Center

    Eagle, Michael; Hicks, Drew; Barnes, Tiffany

    2015-01-01

    Intelligent tutoring systems and computer aided learning environments aimed at developing problem solving produce large amounts of transactional data which make it a challenge for both researchers and educators to understand how students work within the environment. Researchers have modeled student-tutor interactions using complex networks in…

  11. Feasibility analysis on integration of luminous environment measuring and design based on exposure curve calibration

    NASA Astrophysics Data System (ADS)

    Zou, Yuan; Shen, Tianxing

    2013-03-01

    Besides illumination calculating during architecture and luminous environment design, to provide more varieties of photometric data, the paper presents combining relation between luminous environment design and SM light environment measuring system, which contains a set of experiment devices including light information collecting and processing modules, and can offer us various types of photometric data. During the research process, we introduced a simulation method for calibration, which mainly includes rebuilding experiment scenes in 3ds Max Design, calibrating this computer aid design software in simulated environment under conditions of various typical light sources, and fitting the exposure curves of rendered images. As analytical research went on, the operation sequence and points for attention during the simulated calibration were concluded, connections between Mental Ray renderer and SM light environment measuring system were established as well. From the paper, valuable reference conception for coordination between luminous environment design and SM light environment measuring system was pointed out.

  12. Research on the Use of Robotics in Hazardous Environments at Sandia National Laboratories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kwok, Kwan S.

    Many hazardous material handling needs exist in remote unstructured environments. Currently these operations are accomplished using personnel in direct contact with the hazards. A safe and cost effective alternative to this approach is the use of intelligent robotic systems for safe handling, packaging, transport, and even excavation of hazardous materials. The Intelligent Systems and Robotics Center of Sandia National Laboratories has developed and deployed robotic technologies for use in hazardous environments, three of which have been deployed in DOE production facilities for handling of special nuclear materials. Other systems are currently under development for packaging special nuclear materials. This papermore » presents an overview of the research activities, including five delivered systems, at %ndia National Laboratories on the use of robotics in hazardous environments.« less

  13. Application Architecture of Avian Influenza Research Collaboration Network in Korea e-Science

    NASA Astrophysics Data System (ADS)

    Choi, Hoon; Lee, Junehawk

    In the pursuit of globalization of the AI e-Science environment, KISTI is fostering to extend the AI research community to the AI research institutes of neighboring countries and to share the AI e-Science environment with them in the near future. In this paper we introduce the application architecture of AI research collaboration network (AIRCoN). AIRCoN is a global e-Science environment for AI research conducted by KISTI. It consists of AI virus sequence information sharing system for sufficing data requirement of research community, integrated analysis environment for analyzing the mutation pattern of AI viruses and their risks, epidemic modeling and simulation environment for establishing national effective readiness strategy against AI pandemics, and knowledge portal for sharing expertise of epidemic study and unpublished research results with community members.

  14. Generalized Database Management System Support for Numeric Database Environments.

    ERIC Educational Resources Information Center

    Dominick, Wayne D.; Weathers, Peggy G.

    1982-01-01

    This overview of potential for utilizing database management systems (DBMS) within numeric database environments highlights: (1) major features, functions, and characteristics of DBMS; (2) applicability to numeric database environment needs and user needs; (3) current applications of DBMS technology; and (4) research-oriented and…

  15. A Multigroup Method for the Calculation of Neutron Fluence with a Source Term

    NASA Technical Reports Server (NTRS)

    Heinbockel, J. H.; Clowdsley, M. S.

    1998-01-01

    Current research on the Grant involves the development of a multigroup method for the calculation of low energy evaporation neutron fluences associated with the Boltzmann equation. This research will enable one to predict radiation exposure under a variety of circumstances. Knowledge of radiation exposure in a free-space environment is a necessity for space travel, high altitude space planes and satellite design. This is because certain radiation environments can cause damage to biological and electronic systems involving both short term and long term effects. By having apriori knowledge of the environment one can use prediction techniques to estimate radiation damage to such systems. Appropriate shielding can be designed to protect both humans and electronic systems that are exposed to a known radiation environment. This is the goal of the current research efforts involving the multi-group method and the Green's function approach.

  16. Research into software executives for space operations support

    NASA Technical Reports Server (NTRS)

    Collier, Mark D.

    1990-01-01

    Research concepts pertaining to a software (workstation) executive which will support a distributed processing command and control system characterized by high-performance graphics workstations used as computing nodes are presented. Although a workstation-based distributed processing environment offers many advantages, it also introduces a number of new concerns. In order to solve these problems, allow the environment to function as an integrated system, and present a functional development environment to application programmers, it is necessary to develop an additional layer of software. This 'executive' software integrates the system, provides real-time capabilities, and provides the tools necessary to support the application requirements.

  17. Globalization and Mobilization of Earth Science Education with GeoBrain Geospatial Web Service Technology

    NASA Astrophysics Data System (ADS)

    Deng, M.; di, L.

    2005-12-01

    The needs for Earth science education to prepare students as globally-trained geoscience workforce increase tremendously with globalization of the economy. However, current academic programs often have difficulties in providing students world-view training or experiences with global context due to lack of resources and suitable teaching technology. This paper presents a NASA funded project with insights and solutions to this problem. The project aims to establish a geospatial data-rich learning and research environment that enable the students, faculty and researchers from institutes all over the world easily accessing, analyzing and modeling with the huge amount of NASA EOS data just like they possess those vast resources locally at their desktops. With the environment, classroom demonstration and training for students to deal with global climate and environment issues for any part of the world are possible in any classroom with Internet connection. Globalization and mobilization of Earth science education can be truly realized through the environment. This project, named as NASA EOS Higher Education Alliance: Mobilization of NASA EOS Data and Information through Web Services and Knowledge Management Technologies for Higher Education Teaching and Research, is built on profound technology and infrastructure foundations including web service technology, NASA EOS data resources, and open interoperability standards. An open, distributed, standard compliant, interoperable web-based system, called GeoBrain, is being developed by this project to provide a data-rich on-line learning and research environment. The system allows users to dynamically and collaboratively develop interoperable, web-executable geospatial process and analysis modules and models, and run them on-line against any part of the peta-byte archives for getting back the customized information products rather than raw data. The system makes a data-rich globally-capable Earth science learning and research environment, backed by NASA EOS data and computing resources that are unavailable to students and professors before, available to them at their desktops free of charge. In order to efficiently integrate this new environment into Earth science education and research, a NASA EOS Higher Education Alliance (NEHEA) is formed. The core members of NEHEA consist of the GeoBrain development team led by LAITS at George Mason University and a group of Earth science educators selected from an open RFP process. NEHEA is an open and free alliance. NEHEA welcomes Earth science educators around the world to join as associate members. NEHEA promotes international research and education collaborations in Earth science. NEHEA core members will provide technical support to NEHEA associate members for incorporating the data-rich learning environment into their teaching and research activities. The responsibilities of NEHEA education members include using the system in their research and teaching, providing feedback and requirements to the development team, exchanging information on the utilization of the system capabilities, participating in the system development, and developing new curriculums and research around the environment provided by GeoBrain.

  18. Software Development Technologies for Reactive, Real-Time, and Hybrid Systems: Summary of Research

    NASA Technical Reports Server (NTRS)

    Manna, Zohar

    1998-01-01

    This research is directed towards the implementation of a comprehensive deductive-algorithmic environment (toolkit) for the development and verification of high assurance reactive systems, especially concurrent, real-time, and hybrid systems. For this, we have designed and implemented the STCP (Stanford Temporal Prover) verification system. Reactive systems have an ongoing interaction with their environment, and their computations are infinite sequences of states. A large number of systems can be seen as reactive systems, including hardware, concurrent programs, network protocols, and embedded systems. Temporal logic provides a convenient language for expressing properties of reactive systems. A temporal verification methodology provides procedures for proving that a given system satisfies a given temporal property. The research covered necessary theoretical foundations as well as implementation and application issues.

  19. Pilot Evaluations of Runway Status Light System

    NASA Technical Reports Server (NTRS)

    Young, Steven D.; Wills, Robert W.; Smith, R. Marshall

    1996-01-01

    This study focuses on use of the Transport Systems Research Vehicle (TSRV) Simulator at the Langley Research Center to obtain pilot opinion and input on the Federal Aviation Administration's Runway Status Light System (RWSL) prior to installation in an operational airport environment. The RWSL has been designed to reduce the likelihood of runway incursions by visually alerting pilots when a runway is occupied. Demonstrations of the RWSL in the TSRV Simulator allowed pilots to evaluate the system in a realistic cockpit environment.

  20. An integrated environment for tactical guidance research and evaluation

    NASA Technical Reports Server (NTRS)

    Goodrich, Kenneth H.; Mcmanus, John W.

    1990-01-01

    NASA-Langley's Tactical Guidance Research and Evaluation System (TGRES) constitutes an integrated environment for the development of tactical guidance algorithms and evaluating the effects of novel technologies; the modularity of the system allows easy modification or replacement of system elements in order to conduct evaluations of alternative technologies. TGRES differs from existing systems in its capitalization on AI programming techniques for guidance-logic implementation. Its ability to encompass high-fidelity, six-DOF simulation models will facilitate the analysis of complete aircraft dynamics.

  1. Hazardous materials in aquatic environments of the Mississippi River Basin. Annual technical report, December 30, 1992--December 29, 1993

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1993-12-31

    Tulane and Xavier Universities have singled out the environment as a major strategic focus for research and training for now and by the year 2000. In December, 1992, the Tulane/Xavier CBR was awarded a five year grant to study pollution in the Mississippi River system. The ``Hazardous Materials in Aquatic Environments of the Mississippi River Basin`` project is a broad research and education program aimed at elucidating the nature and magnitude of toxic materials that contaminate aquatic environments of the Mississippi River Basin. Studies include defining the complex interactions that occur during the transport of contaminants, the actual and potentialmore » impact on ecological systems and health, and the mechanisms through which these impacts might be remediated. The Mississippi River Basin represents a model system for analyzing and solving contamination problems that are found in aquatic systems world-wide. These research and education projects are particularly relevant to the US Department of Energy`s programs aimed at addressing aquatic pollution problems associated with DOE National Laboratories. First year funding supported seven collaborative cluster projects and twelve initiation projects. This report summarizes research results for period December 1992--December 1993.« less

  2. A Virtual Environment for People Who Are Blind – A Usability Study

    PubMed Central

    Lahav, O.; Schloerb, D. W.; Kumar, S.; Srinivasan, M. A.

    2013-01-01

    For most people who are blind, exploring an unknown environment can be unpleasant, uncomfortable, and unsafe. Over the past years, the use of virtual reality as a learning and rehabilitation tool for people with disabilities has been on the rise. This research is based on the hypothesis that the supply of appropriate perceptual and conceptual information through compensatory sensorial channels may assist people who are blind with anticipatory exploration. In this research we developed and tested the BlindAid system, which allows the user to explore a virtual environment. The two main goals of the research were: (a) evaluation of different modalities (haptic and audio) and navigation tools, and (b) evaluation of spatial cognitive mapping employed by people who are blind. Our research included four participants who are totally blind. The preliminary findings confirm that the system enabled participants to develop comprehensive cognitive maps by exploring the virtual environment. PMID:24353744

  3. Selected remarks about anticipation in instrumental civilization subsystems

    NASA Astrophysics Data System (ADS)

    Adamkiewicz, Wiktor H.

    2001-06-01

    The paper contains a fragment of research description dealing with social systems saturated with technology products. The aim of this research is to determine the possibility to predict the influence of changes in the system on the process leading to the adaptation to the environment. The adaptation process is an activity based on anticipation of the future system states and environment states. Therefore, it is essential to determine the relationships existing between these two sets of states. Research results should determine the efficiency level of anticipating activity. Many processes take place in the system and its environment. Simultaneous research on all processes allows to specify the effect of synergy whose form determines adaptation. Researching all processes is not possible, though. Therefore, it is necessary to use appropriate models. Such models may be created by applying general rule of system approach. Nowadays, social systems must adapt to the increasing pace of globalization involving products, markets, competition and finance. The ability to adapt the system to the global situation is the condition for survival and possible development. Thus, the conformity of development and global situation is the superior aim of anticipation. Many experts deal with research on social systems. Many of them represent the humanities. We cannot expect them to undertake special mathematical studies. However, such research requires analysing various sets of figures. The ability to formulate tasks for mathematicians and the ability to use the results of figure analyses are essential. Therefore, the author makes certain suggestions referring to the application of mathematics in the research which may be accepted by the humanities' scholars. (Adamkiewicz, 1999d). The author hopes so.

  4. Development of Participative Management System in Learning Environment Management for Small Sized Primary Schools

    ERIC Educational Resources Information Center

    Hernthaisong, Prasertsak; Sirisuthi, Chaiyuth; Wisetrinthong, Kanjana

    2017-01-01

    The research aimed to: 1) study the factors of a participative management system in learning environment management, 2) study the current situation, desirable outcomes, and further needs for developing a participative management system in learning management, 3) develop a working participative management system, and 4) assess the system's…

  5. Entrepreneur environment management behavior evaluation method derived from environmental economy.

    PubMed

    Zhang, Lili; Hou, Xilin; Xi, Fengru

    2013-12-01

    Evaluation system can encourage and guide entrepreneurs, and impel them to perform well in environment management. An evaluation method based on advantage structure is established. It is used to analyze entrepreneur environment management behavior in China. Entrepreneur environment management behavior evaluation index system is constructed based on empirical research. Evaluation method of entrepreneurs is put forward, from the point of objective programming-theory to alert entrepreneurs concerned to think much of it, which means to take minimized objective function as comprehensive evaluation result and identify disadvantage structure pattern. Application research shows that overall behavior of Chinese entrepreneurs environmental management are good, specially, environment strategic behavior are best, environmental management behavior are second, cultural behavior ranks last. Application results show the efficiency and feasibility of this method. Copyright © 2013 The Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.

  6. LiveView3D: Real Time Data Visualization for the Aerospace Testing Environment

    NASA Technical Reports Server (NTRS)

    Schwartz, Richard J.; Fleming, Gary A.

    2006-01-01

    This paper addresses LiveView3D, a software package and associated data visualization system for use in the aerospace testing environment. The LiveView3D system allows researchers to graphically view data from numerous wind tunnel instruments in real time in an interactive virtual environment. The graphical nature of the LiveView3D display provides researchers with an intuitive view of the measurement data, making it easier to interpret the aerodynamic phenomenon under investigation. LiveView3D has been developed at the NASA Langley Research Center and has been applied in the Langley Unitary Plan Wind Tunnel (UPWT). This paper discusses the capabilities of the LiveView3D system, provides example results from its application in the UPWT, and outlines features planned for future implementation.

  7. CAMS as a tool for human factors research in spaceflight

    NASA Astrophysics Data System (ADS)

    Sauer, Juergen

    2004-01-01

    The paper reviews a number of research studies that were carried out with a PC-based task environment called Cabin Air Management System (CAMS) simulating the operation of a spacecraft's life support system. As CAMS was a multiple task environment, it allowed the measurement of performance at different levels. Four task components of different priority were embedded in the task environment: diagnosis and repair of system faults, maintaining atmospheric parameters in a safe state, acknowledgement of system alarms (reaction time), and keeping a record of critical system resources (prospective memory). Furthermore, the task environment permitted the examination of different task management strategies and changes in crew member state (fatigue, anxiety, mental effort). A major goal of the research programme was to examine how crew members adapted to various forms of sub-optimal working conditions, such as isolation and confinement, sleep deprivation and noise. None of the studies provided evidence for decrements in primary task performance. However, the results showed a number of adaptive responses of crew members to adjust to the different sub-optimal working conditions. There was evidence for adjustments in information sampling strategies (usually reductions in sampling frequency) as a result of unfavourable working conditions. The results also showed selected decrements in secondary task performance. Prospective memory seemed to be somewhat more vulnerable to sub-optimal working conditions than performance on the reaction time task. Finally, suggestions are made for future research with the CAMS environment.

  8. Navigational Heads-Up Display: Will a Shipboard Augmented Electronic Navigation System Sink or Swim?

    DTIC Science & Technology

    2015-03-01

    of Management and Budget, Paperwork Reduction Project (0704-0188) Washington, DC 20503. 1. AGENCY USE ONLY (Leave blank) I 2. REPORT DATE I 3. REPORT...empirical results demonstrate the viability of using such a system in an operation environment and support a need for further research and development...empirical results demonstrate the viability of using such a system in an operation environment and support a need for further research and development

  9. Novel 3D/VR interactive environment for MD simulations, visualization and analysis.

    PubMed

    Doblack, Benjamin N; Allis, Tim; Dávila, Lilian P

    2014-12-18

    The increasing development of computing (hardware and software) in the last decades has impacted scientific research in many fields including materials science, biology, chemistry and physics among many others. A new computational system for the accurate and fast simulation and 3D/VR visualization of nanostructures is presented here, using the open-source molecular dynamics (MD) computer program LAMMPS. This alternative computational method uses modern graphics processors, NVIDIA CUDA technology and specialized scientific codes to overcome processing speed barriers common to traditional computing methods. In conjunction with a virtual reality system used to model materials, this enhancement allows the addition of accelerated MD simulation capability. The motivation is to provide a novel research environment which simultaneously allows visualization, simulation, modeling and analysis. The research goal is to investigate the structure and properties of inorganic nanostructures (e.g., silica glass nanosprings) under different conditions using this innovative computational system. The work presented outlines a description of the 3D/VR Visualization System and basic components, an overview of important considerations such as the physical environment, details on the setup and use of the novel system, a general procedure for the accelerated MD enhancement, technical information, and relevant remarks. The impact of this work is the creation of a unique computational system combining nanoscale materials simulation, visualization and interactivity in a virtual environment, which is both a research and teaching instrument at UC Merced.

  10. Novel 3D/VR Interactive Environment for MD Simulations, Visualization and Analysis

    PubMed Central

    Doblack, Benjamin N.; Allis, Tim; Dávila, Lilian P.

    2014-01-01

    The increasing development of computing (hardware and software) in the last decades has impacted scientific research in many fields including materials science, biology, chemistry and physics among many others. A new computational system for the accurate and fast simulation and 3D/VR visualization of nanostructures is presented here, using the open-source molecular dynamics (MD) computer program LAMMPS. This alternative computational method uses modern graphics processors, NVIDIA CUDA technology and specialized scientific codes to overcome processing speed barriers common to traditional computing methods. In conjunction with a virtual reality system used to model materials, this enhancement allows the addition of accelerated MD simulation capability. The motivation is to provide a novel research environment which simultaneously allows visualization, simulation, modeling and analysis. The research goal is to investigate the structure and properties of inorganic nanostructures (e.g., silica glass nanosprings) under different conditions using this innovative computational system. The work presented outlines a description of the 3D/VR Visualization System and basic components, an overview of important considerations such as the physical environment, details on the setup and use of the novel system, a general procedure for the accelerated MD enhancement, technical information, and relevant remarks. The impact of this work is the creation of a unique computational system combining nanoscale materials simulation, visualization and interactivity in a virtual environment, which is both a research and teaching instrument at UC Merced. PMID:25549300

  11. Development of a Heterogenic Distributed Environment for Spatial Data Processing Using Cloud Technologies

    NASA Astrophysics Data System (ADS)

    Garov, A. S.; Karachevtseva, I. P.; Matveev, E. V.; Zubarev, A. E.; Florinsky, I. V.

    2016-06-01

    We are developing a unified distributed communication environment for processing of spatial data which integrates web-, desktop- and mobile platforms and combines volunteer computing model and public cloud possibilities. The main idea is to create a flexible working environment for research groups, which may be scaled according to required data volume and computing power, while keeping infrastructure costs at minimum. It is based upon the "single window" principle, which combines data access via geoportal functionality, processing possibilities and communication between researchers. Using an innovative software environment the recently developed planetary information system (http://cartsrv.mexlab.ru/geoportal) will be updated. The new system will provide spatial data processing, analysis and 3D-visualization and will be tested based on freely available Earth remote sensing data as well as Solar system planetary images from various missions. Based on this approach it will be possible to organize the research and representation of results on a new technology level, which provides more possibilities for immediate and direct reuse of research materials, including data, algorithms, methodology, and components. The new software environment is targeted at remote scientific teams, and will provide access to existing spatial distributed information for which we suggest implementation of a user interface as an advanced front-end, e.g., for virtual globe system.

  12. MyWelch: building an information portal system in a medical library environment.

    PubMed

    Zhang, Dongming; Zambrowicz, Caroline; Zhou, Hong; Roderer, Nancy

    2003-01-01

    MyWelch is a medical library portal system that users can use to create customized web sites that reflect their research needs and personal interests. In the MyWelch environment, faculty and students are empowered to take a greater role in identifying their needs and determining their requirements in the electronic environment. The portal system also facilitates interaction among library users and staff.

  13. Research on System Environment for Growth and Development of Young College Instructors--Taking China University of Geosciences Beijing as an Example

    ERIC Educational Resources Information Center

    Zhang, Long; Cao, Yong; Shi, Yunlong

    2017-01-01

    Young college instructors have become an important force of college teachers in teaching courses and doing research, who play an essential role in promoting the development of high education. From the perspective of system environment for the growth and development of young college instructors, five parts closest to the growth and development of…

  14. A system for intelligent teleoperation research

    NASA Technical Reports Server (NTRS)

    Orlando, N. E.

    1983-01-01

    The Automation Technology Branch of NASA Langley Research Center is developing a research capability in the field of artificial intelligence, particularly as applicable in teleoperator/robotics development for remote space operations. As a testbed for experimentation in these areas, a system concept has been developed and is being implemented. This system termed DAISIE (Distributed Artificially Intelligent System for Interacting with the Environment), interfaces the key processes of perception, reasoning, and manipulation by linking hardware sensors and manipulators to a modular artificial intelligence (AI) software system in a hierarchical control structure. Verification experiments have been performed: one experiment used a blocksworld database and planner embedded in the DAISIE system to intelligently manipulate a simple physical environment; the other experiment implemented a joint-space collision avoidance algorithm. Continued system development is planned.

  15. Neural Networks for Computer Vision: A Framework for Specifications of a General Purpose Vision System

    NASA Astrophysics Data System (ADS)

    Skrzypek, Josef; Mesrobian, Edmond; Gungner, David J.

    1989-03-01

    The development of autonomous land vehicles (ALV) capable of operating in an unconstrained environment has proven to be a formidable research effort. The unpredictability of events in such an environment calls for the design of a robust perceptual system, an impossible task requiring the programming of a system bases on the expectation of future, unconstrained events. Hence, the need for a "general purpose" machine vision system that is capable of perceiving and understanding images in an unconstrained environment in real-time. The research undertaken at the UCLA Machine Perception Laboratory addresses this need by focusing on two specific issues: 1) the long term goals for machine vision research as a joint effort between the neurosciences and computer science; and 2) a framework for evaluating progress in machine vision. In the past, vision research has been carried out independently within different fields including neurosciences, psychology, computer science, and electrical engineering. Our interdisciplinary approach to vision research is based on the rigorous combination of computational neuroscience, as derived from neurophysiology and neuropsychology, with computer science and electrical engineering. The primary motivation behind our approach is that the human visual system is the only existing example of a "general purpose" vision system and using a neurally based computing substrate, it can complete all necessary visual tasks in real-time.

  16. USGS advances in integrated, high-resolution sea-floor mapping: inner continental shelf to estuaries

    USGS Publications Warehouse

    Denny, J.F.; Schwab, W.C.; Twichell, D.C.; O'Brien, T.F.; Danforth, W.W.; Foster, D.S.; Bergeron, E.; Worley, C.W.; Irwin, B.J.; Butman, B.; Valentine, P.C.; Baldwin, W.E.; Morton, R.A.; Thieler, E.R.; Nichols, D.R.; Andrews, B.D.

    2007-01-01

    The U.S. Geological Survey (USGS) has been involved in geological mapping of the sea floor for the past thirty years. Early geophysical and acoustic mapping efforts using GLORIA (Geologic LOng Range Inclined ASDIC) a long-range sidescan-sonar system, provided broad-scale imagery of deep waters within the U.S. Exclusive Economic Zone (EEZ). In the early 1990's, research emphasis shifted from deep- to shallow-water environments to address pertinent coastal research and resource management issues. Use of shallow-water, high-resolution geophysical systems has enhanced our understanding of the processes shaping shallow marine environments. However, research within these shallow-water environments continues to present technological challenges.

  17. Intelligent instrumentation applied in environment management

    NASA Astrophysics Data System (ADS)

    Magheti, Mihnea I.; Walsh, Patrick; Delassus, Patrick

    2005-06-01

    The use of information and communications technology in environment management and research has witnessed a renaissance in recent years. From optical sensor technology, expert systems, GIS and communications technologies to computer aided harvesting and yield prediction, these systems are increasable used for applications developing in the management sector of natural resources and biodiversity. This paper presents an environmental decision support system, used to monitor biodiversity and present a risk rating for the invasion of pests into the particular systems being examined. This system will utilise expert mobile technology coupled with artificial intelligence and predictive modelling, and will emphasize the potential for expansion into many areas of intelligent remote sensing and computer aided decision-making for environment management or certification. Monitoring and prediction in natural systems, harnessing the potential of computing and communication technologies is an emerging technology within the area of environmental management. This research will lead to the initiation of a hardware and software multi tier decision support system for environment management allowing an evaluation of areas for biodiversity or areas at risk from invasive species, based upon environmental factors/systems.

  18. Virtual Control Systems Environment (VCSE)

    ScienceCinema

    Atkins, Will

    2018-02-14

    Will Atkins, a Sandia National Laboratories computer engineer discusses cybersecurity research work for process control systems. Will explains his work on the Virtual Control Systems Environment project to develop a modeling and simulation framework of the U.S. electric grid in order to study and mitigate possible cyberattacks on infrastructure.

  19. The physical inactivity matrix: lessons from the classification of physical inactivity interventions.

    PubMed

    Kypri, Kypros; Donaldson, Alex; Johnstone, Elizabeth

    2006-05-01

    Physical inactivity (PI), a leading modifiable cause of disease and injury, is endemic in industrialised nations. Although considerable research has been undertaken in this field, we lack a system to synthesise the research literature to inform policy and identify research needs. The aims of this study were to (1) develop a system to classify physical inactivity intervention studies, (2) examine the distribution of PI interventions published in the peer-reviewed health literature using the system, and (3) consider implications for future research. We developed the Physical Inactivity Matrix (PIM), with 12 intervention points, created by the intersection of two dimensions: the intervention target (individual, physical environment and social/cultural environment) and the activity focus (transport, work/school, leisure and consumer). A formal search of the health research literature identified 529 eligible studies and each was classified into one of the 12 cells of the PIM. Most studies were categorised as: individual-leisure (68%), individual-work/school (12%) or social/cultural environment-leisure (13%). Only 4% targeted the physical environment. The findings of this initial application of the PIM support the call for greater investment in policies, interventions and research that focus on the relationship between the environment and PI, and transportation in particular. There would be merit in establishing the inter-rater reliability of the PIM and applying it to a wider variety of studies, including those published in the transportation and urban planning literatures. The PIM could be a useful tool for monitoring trends in research directions and funding levels over time and across countries.

  20. An overview of computer viruses in a research environment

    NASA Technical Reports Server (NTRS)

    Bishop, Matt

    1991-01-01

    The threat of attack by computer viruses is in reality a very small part of a much more general threat, specifically threats aimed at subverting computer security. Here, computer viruses are examined as a malicious logic in a research and development environment. A relation is drawn between the viruses and various models of security and integrity. Current research techniques aimed at controlling the threats posed to computer systems by threatening viruses in particular and malicious logic in general are examined. Finally, a brief examination of the vulnerabilities of research and development systems that malicious logic and computer viruses may exploit is undertaken.

  1. Microgravity: New opportunities to facilitate biotechnology development

    NASA Astrophysics Data System (ADS)

    Johnson, Terry; Todd, Paul; Stodieck, Louis S.

    1996-03-01

    New opportunities exist to use the microgravity environment to facilitate biotechnology development. BioServe Space Technologies Center for the Commercial Development of Space offers access to microgravity environments for companies who wish to perform research or develop products in three specific life-science fields: Biomedical and Pharmaceutical Research, Biotechnology and Bioprocessing Research, and Agricultural and Environmental Research. Examples of each include physiological testing of new pharmaceutical countermeasures against symptoms that are exaggerated in space flight, crystallization and testing of novel, precompetitive biopharmaceutical substances in a convection-free environment, and closed life-support system product development.

  2. Modelling nanoscale objects in order to conduct an empirical research into their properties as part of an engineering system designed

    NASA Astrophysics Data System (ADS)

    Makarov, M.; Shchanikov, S.; Trantina, N.

    2017-01-01

    We have conducted a research into the major, in terms of their future application, properties of nanoscale objects, based on modelling these objects as free-standing physical elements beyond the structure of an engineering system designed for their integration as well as a part of a system that operates under the influence of the external environment. For the empirical research suggested within the scope of this work, we have chosen a nanoscale electronic element intended to be used while designing information processing systems with the parallel architecture - a memristor. The target function of the research was to provide the maximum fault-tolerance index of a memristor-based system when affected by all possible impacts of the internal destabilizing factors and external environment. The research results have enabled us to receive and classify all the factors predetermining the fault-tolerance index of the hardware implementation of a computing system based on the nanoscale electronic element base.

  3. Artificial Intelligence and Educational Technology: A Natural Synergy. Extended Abstract.

    ERIC Educational Resources Information Center

    McCalla, Gordon I.

    Educational technology and artificial intelligence (AI) are natural partners in the development of environments to support human learning. Designing systems with the characteristics of a rich learning environment is the long term goal of research in intelligent tutoring systems (ITS). Building these characteristics into a system is extremely…

  4. The implementation of the Human Exploration Demonstration Project (HEDP), a systems technology testbed

    NASA Technical Reports Server (NTRS)

    Rosen, Robert; Korsmeyer, David J.

    1993-01-01

    The Human Exploration Demonstration Project (HEDP) is an ongoing task at the NASA's Ames Research Center to address the advanced technology requirements necessary to implement an integrated working and living environment for a planetary surface habitat. The integrated environment consists of life support systems, physiological monitoring of project crew, a virtual environment work station, and centralized data acquisition and habitat systems health monitoring. The HEDP is an integrated technology demonstrator, as well as an initial operational testbed. There are several robotic systems operational in a simulated planetary landscape external to the habitat environment, to provide representative work loads for the crew. This paper describes the evolution of the HEDP from initial concept to operational project; the status of the HEDP after two years; the final facilities composing the HEDP; the project's role as a NASA Ames Research Center systems technology testbed; and the interim demonstration scenarios that have been run to feature the developing technologies in 1993.

  5. Negotiation Support System’s Impact on the Socio-Emotional Environment: A Research Design Framework

    DTIC Science & Technology

    1992-03-01

    conflict environment and develop some proposed effects that Negotiation Support Systems (NSS) have on the socio- emotional climate. This introduction of...assessment of current NSS structure, processes and capabilities. Section IV provides a theoretical discussion of conflict and the socio- emotional environment ...model. First, strict economic rationalization does not take into account social/normative issues present --n the negotiation environment . Thus, in an

  6. Transition of a Three-Dimensional Unsteady Viscous Flow Analysis from a Research Environment to the Design Environment

    NASA Technical Reports Server (NTRS)

    Dorney, Suzanne; Dorney, Daniel J.; Huber, Frank; Sheffler, David A.; Turner, James E. (Technical Monitor)

    2001-01-01

    The advent of advanced computer architectures and parallel computing have led to a revolutionary change in the design process for turbomachinery components. Two- and three-dimensional steady-state computational flow procedures are now routinely used in the early stages of design. Unsteady flow analyses, however, are just beginning to be incorporated into design systems. This paper outlines the transition of a three-dimensional unsteady viscous flow analysis from the research environment into the design environment. The test case used to demonstrate the analysis is the full turbine system (high-pressure turbine, inter-turbine duct and low-pressure turbine) from an advanced turboprop engine.

  7. Mediator infrastructure for information integration and semantic data integration environment for biomedical research.

    PubMed

    Grethe, Jeffrey S; Ross, Edward; Little, David; Sanders, Brian; Gupta, Amarnath; Astakhov, Vadim

    2009-01-01

    This paper presents current progress in the development of semantic data integration environment which is a part of the Biomedical Informatics Research Network (BIRN; http://www.nbirn.net) project. BIRN is sponsored by the National Center for Research Resources (NCRR), a component of the National Institutes of Health (NIH). A goal is the development of a cyberinfrastructure for biomedical research that supports advance data acquisition, data storage, data management, data integration, data mining, data visualization, and other computing and information processing services over the Internet. Each participating institution maintains storage of their experimental or computationally derived data. Mediator-based data integration system performs semantic integration over the databases to enable researchers to perform analyses based on larger and broader datasets than would be available from any single institution's data. This paper describes recent revision of the system architecture, implementation, and capabilities of the semantically based data integration environment for BIRN.

  8. Research and development at ORNL/CESAR towards cooperating robotic systems for hazardous environments

    NASA Technical Reports Server (NTRS)

    Mann, R. C.; Fujimura, K.; Unseren, M. A.

    1992-01-01

    One of the frontiers in intelligent machine research is the understanding of how constructive cooperation among multiple autonomous agents can be effected. The effort at the Center for Engineering Systems Advanced Research (CESAR) at the Oak Ridge National Laboratory (ORNL) focuses on two problem areas: (1) cooperation by multiple mobile robots in dynamic, incompletely known environments; and (2) cooperating robotic manipulators. Particular emphasis is placed on experimental evaluation of research and developments using the CESAR robot system testbeds, including three mobile robots, and a seven-axis, kinematically redundant mobile manipulator. This paper summarizes initial results of research addressing the decoupling of position and force control for two manipulators holding a common object, and the path planning for multiple robots in a common workspace.

  9. Hazardous materials in aquatic environments of the Mississippi River Basin. Annual technical report, 30 December 1992--29 December 1993

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1993-12-31

    Tulane and Xavier Universities have singled out the environment as a major strategic focus for research and training for now and beyond the year 2000. In 1989, the Tulane/Xavier Center for Bioenvironmental Research (CBR) was established as the umbrella organization which coordinates environmental research at both universities. In December, 1992, the Tulane/Xavier DBR was awarded a five year grant to study pollution in the Mississippi River system. The ``Hazardous Materials in Aquatic Environments of the Mississippi River Basin`` project is a broad research and education program aimed at elucidating the nature and magnitude of toxic materials that contaminate aquatic environmentsmore » of the Mississippi River Basin. Studies include defining the complex interactions that occur during the transport of contaminants, the actual and potential impact on ecological systems and health, and the mechanisms through which these impacts might be remediated. The Mississippi River Basin represents a model system for analyzing and solving contamination problems that are found in aquatic systems world-wide. Individual papers have been processed separately for inclusion in the appropriate data bases.« less

  10. WSN- and IOT-Based Smart Homes and Their Extension to Smart Buildings

    PubMed Central

    Ghayvat, Hemant; Mukhopadhyay, Subhas; Gui, Xiang; Suryadevara, Nagender

    2015-01-01

    Our research approach is to design and develop reliable, efficient, flexible, economical, real-time and realistic wellness sensor networks for smart home systems. The heterogeneous sensor and actuator nodes based on wireless networking technologies are deployed into the home environment. These nodes generate real-time data related to the object usage and movement inside the home, to forecast the wellness of an individual. Here, wellness stands for how efficiently someone stays fit in the home environment and performs his or her daily routine in order to live a long and healthy life. We initiate the research with the development of the smart home approach and implement it in different home conditions (different houses) to monitor the activity of an inhabitant for wellness detection. Additionally, our research extends the smart home system to smart buildings and models the design issues related to the smart building environment; these design issues are linked with system performance and reliability. This research paper also discusses and illustrates the possible mitigation to handle the ISM band interference and attenuation losses without compromising optimum system performance. PMID:25946630

  11. WSN- and IOT-Based Smart Homes and Their Extension to Smart Buildings.

    PubMed

    Ghayvat, Hemant; Mukhopadhyay, Subhas; Gui, Xiang; Suryadevara, Nagender

    2015-05-04

    Our research approach is to design and develop reliable, efficient, flexible, economical, real-time and realistic wellness sensor networks for smart home systems. The heterogeneous sensor and actuator nodes based on wireless networking technologies are deployed into the home environment. These nodes generate real-time data related to the object usage and movement inside the home, to forecast the wellness of an individual. Here, wellness stands for how efficiently someone stays fit in the home environment and performs his or her daily routine in order to live a long and healthy life. We initiate the research with the development of the smart home approach and implement it in different home conditions (different houses) to monitor the activity of an inhabitant for wellness detection. Additionally, our research extends the smart home system to smart buildings and models the design issues related to the smart building environment; these design issues are linked with system performance and reliability. This research paper also discusses and illustrates the possible mitigation to handle the ISM band interference and attenuation losses without compromising optimum system performance.

  12. Advanced Collaborative Environments Supporting Systems Integration and Design

    DTIC Science & Technology

    2003-03-01

    concurrently view a virtual system or product model while maintaining natural, human communication . These virtual systems operate within a computer-generated...These environments allow multiple individuals to concurrently view a virtual system or product model while simultaneously maintaining natural, human ... communication . As a result, TARDEC researchers and system developers are using this advanced high-end visualization technology to develop future

  13. Electronic Components and Systems for Cryogenic Space Applications

    NASA Technical Reports Server (NTRS)

    Patterson, R. L.; Hammoud, A.; Dickman, J. E.; Gerber, S.; Elbuluk, M. E.; Overton, E.

    2001-01-01

    Electronic components and systems capable of operation at cryogenic temperatures are anticipated in many future NASA space missions such as deep space probes and planetary surface exploration. For example, an unheated interplanetary probe launched to explore the rings of Saturn would reach an average temperature near Saturn of about - 183 C. In addition to surviving the deep space harsh environment, electronics capable of low temperature operation would contribute to improving circuit performance, increasing system efficiency, and reducing payload development and launch costs. Terrestrial applications where components and systems must operate in low temperature environments include cryogenic instrumentation, superconducting magnetic energy storage, magnetic levitation transportation system, and arctic exploration. An on-going research and development program at the NASA Glenn Research Center focuses on the development of reliable electronic devices and efficient power systems capable of surviving in low temperature environments. An overview of the program will be presented in this paper. A description of the low temperature test facilities along with selected data obtained from in-house component testing will also be discussed. Ongoing research activities that are being performed in collaboration with various organizations will also be presented.

  14. Interfacing remote sensing and geographic information systems for global environmental change research

    NASA Technical Reports Server (NTRS)

    Lee, Jae K.; Randolph, J. C.; Lulla, Kamlesh P.; Helfert, Michael R.

    1993-01-01

    Because changes in the Earth's environment have become major global issues, continuous, longterm scientific information is required to assess global problems such as deforestation, desertification, greenhouse effects and climate variations. Global change studies require understanding of interactions of complex processes regulating the Earth system. Space-based Earth observation is an essential element in global change research for documenting changes in Earth environment. It provides synoptic data for conceptual predictive modeling of future environmental change. This paper provides a brief overview of remote sensing technology from the perspective of global change research.

  15. Simulation tools for robotics research and assessment

    NASA Astrophysics Data System (ADS)

    Fields, MaryAnne; Brewer, Ralph; Edge, Harris L.; Pusey, Jason L.; Weller, Ed; Patel, Dilip G.; DiBerardino, Charles A.

    2016-05-01

    The Robotics Collaborative Technology Alliance (RCTA) program focuses on four overlapping technology areas: Perception, Intelligence, Human-Robot Interaction (HRI), and Dexterous Manipulation and Unique Mobility (DMUM). In addition, the RCTA program has a requirement to assess progress of this research in standalone as well as integrated form. Since the research is evolving and the robotic platforms with unique mobility and dexterous manipulation are in the early development stage and very expensive, an alternate approach is needed for efficient assessment. Simulation of robotic systems, platforms, sensors, and algorithms, is an attractive alternative to expensive field-based testing. Simulation can provide insight during development and debugging unavailable by many other means. This paper explores the maturity of robotic simulation systems for applications to real-world problems in robotic systems research. Open source (such as Gazebo and Moby), commercial (Simulink, Actin, LMS), government (ANVEL/VANE), and the RCTA-developed RIVET simulation environments are examined with respect to their application in the robotic research domains of Perception, Intelligence, HRI, and DMUM. Tradeoffs for applications to representative problems from each domain are presented, along with known deficiencies and disadvantages. In particular, no single robotic simulation environment adequately covers the needs of the robotic researcher in all of the domains. Simulation for DMUM poses unique constraints on the development of physics-based computational models of the robot, the environment and objects within the environment, and the interactions between them. Most current robot simulations focus on quasi-static systems, but dynamic robotic motion places an increased emphasis on the accuracy of the computational models. In order to understand the interaction of dynamic multi-body systems, such as limbed robots, with the environment, it may be necessary to build component-level computational models to provide the necessary simulation fidelity for accuracy. However, the Perception domain remains the most problematic for adequate simulation performance due to the often cartoon nature of computer rendering and the inability to model realistic electromagnetic radiation effects, such as multiple reflections, in real-time.

  16. Research on a Denial of Service (DoS) Detection System Based on Global Interdependent Behaviors in a Sensor Network Environment

    PubMed Central

    Song, Jae-gu; Jung, Sungmo; Kim, Jong Hyun; Seo, Dong Il; Kim, Seoksoo

    2010-01-01

    This research suggests a Denial of Service (DoS) detection method based on the collection of interdependent behavior data in a sensor network environment. In order to collect the interdependent behavior data, we use a base station to analyze traffic and behaviors among nodes and introduce methods of detecting changes in the environment with precursor symptoms. The study presents a DoS Detection System based on Global Interdependent Behaviors and shows the result of detecting a sensor carrying out DoS attacks through the test-bed. PMID:22163475

  17. The NASA Dryden Flight Research Center Unmanned Aircraft System Service Capabilities

    NASA Technical Reports Server (NTRS)

    Bauer, Jeff

    2007-01-01

    Over 60 years of Unmanned Aircraft System (UAS) expertise at the NASA Dryden Flight Research Center are being leveraged to provide capability and expertise to the international UAS community. The DFRC brings together technical experts, UAS, and an operational environment to provide government and industry a broad capability to conduct research, perform operations, and mature systems, sensors, and regulation. The cornerstone of this effort is the acquisition of both a Global Hawk (Northrop Grumman Corporation, Los Angeles, California) and Predator B (General Atomics Aeronautical Systems, Inc., San Diego, California) unmanned aircraft system (UAS). In addition, a test range for small UAS will allow developers to conduct research and development flights without the need to obtain approval from civil authorities. Finally, experts are available to government and industry to provide safety assessments in support of operations in civil airspace. These services will allow developers to utilize limited resources to their maximum capability in a highly competitive environment.

  18. Electronic Components and Circuits for Extreme Temperature Environments

    NASA Technical Reports Server (NTRS)

    Patterson, Richard L.; Hammoud, Ahmad; Dickman, John E.; Gerber, Scott

    2003-01-01

    Planetary exploration missions and deep space probes require electrical power management and control systems that are capable of efficient and reliable operation in very low temperature environments. Presently, spacecraft operating in the cold environment of deep space carry a large number of radioisotope heating units in order to maintain the surrounding temperature of the on-board electronics at approximately 20 C. Electronics capable of operation at cryogenic temperatures will not only tolerate the hostile environment of deep space but also reduce system size and weight by eliminating or reducing the radioisotope heating units and their associate structures; thereby reducing system development as well as launch costs. In addition, power electronic circuits designed for operation at low temperatures are expected to result in more efficient systems than those at room temperature. This improvement results from better behavior and tolerance in the electrical and thermal properties of semiconductor and dielectric materials at low temperatures. The Low Temperature Electronics Program at the NASA Glenn Research Center focuses on research and development of electrical components, circuits, and systems suitable for applications in the aerospace environment and deep space exploration missions. Research is being conducted on devices and systems for reliable use down to cryogenic temperatures. Some of the commercial-off-the-shelf as well as developed components that are being characterized include switching devices, resistors, magnetics, and capacitors. Semiconductor devices and integrated circuits including digital-to-analog and analog-to-digital converters, DC/DC converters, operational amplifiers, and oscillators are also being investigated for potential use in low temperature applications. An overview of the NASA Glenn Research Center Low Temperature Electronic Program will be presented in this paper. A description of the low temperature test facilities along with selected data obtained through in-house component and circuit testing will also be discussed. Ongoing research activities that are being performed in collaboration with various organizations will also be presented.

  19. Handbook of Research on Collaborative Teaching Practice in Virtual Learning Environments

    ERIC Educational Resources Information Center

    Panconesi, Gianni, Ed.; Guida, Maria, Ed.

    2017-01-01

    Modern technology has enhanced many aspects of life, including classroom education. By offering virtual learning experiences, educational systems can become more efficient and effective at teaching the student population. The "Handbook of Research on Collaborative Teaching Practice in Virtual Learning Environments" highlights program…

  20. Development and experimental validation of computational methods to simulate abnormal thermal and structural environments

    NASA Astrophysics Data System (ADS)

    Moya, J. L.; Skocypec, R. D.; Thomas, R. K.

    1993-09-01

    Over the past 40 years, Sandia National Laboratories (SNL) has been actively engaged in research to improve the ability to accurately predict the response of engineered systems to abnormal thermal and structural environments. These engineered systems contain very hazardous materials. Assessing the degree of safety/risk afforded the public and environment by these engineered systems, therefore, is of upmost importance. The ability to accurately predict the response of these systems to accidents (to abnormal environments) is required to assess the degree of safety. Before the effect of the abnormal environment on these systems can be determined, it is necessary to ascertain the nature of the environment. Ascertaining the nature of the environment, in turn, requires the ability to physically characterize and numerically simulate the abnormal environment. Historically, SNL has demonstrated the level of safety provided by these engineered systems by either of two approaches: a purely regulatory approach, or by a probabilistic risk assessment (PRA). This paper will address the latter of the two approaches.

  1. Collaborative Learning and Knowledge-Construction through a Knowledge-Based WWW Authoring Tool.

    ERIC Educational Resources Information Center

    Haugsjaa, Erik

    This paper outlines hurdles to using the World Wide Web for learning, specifically in a collaborative knowledge-construction environment. Theoretical solutions based directly on existing Web environments, as well as on research and system prototypes in the areas of Intelligent Tutoring Systems (ITS) and ITS authoring systems, are suggested. Topics…

  2. The personal receiving document management and the realization of email function in OAS

    NASA Astrophysics Data System (ADS)

    Li, Biqing; Li, Zhao

    2017-05-01

    This software is an independent software system, suitable for small and medium enterprises, contains personal office, scientific research project management and system management functions, independently run in relevant environment, and to solve practical needs. This software is an independent software system, using the current popular B/S (browser/server) structure and ASP.NET technology development, using the Windows 7 operating system, Microsoft SQL Server2005 Visual2008 and database as a development platform, suitable for small and medium enterprises, contains personal office, scientific research project management and system management functions, independently run in relevant environment, and to solve practical needs.

  3. Single-Event Effects Ground Testing and On-Orbit Rate Prediction Methods: The Past, Present and Future

    NASA Technical Reports Server (NTRS)

    Reed, Robert A.; Kinnison, Jim; Pickel, Jim; Buchner, Stephen; Marshall, Paul W.; Kniffin, Scott; LaBel, Kenneth A.

    2003-01-01

    Over the past 27 years, or so, increased concern over single event effects in spacecraft systems has resulted in research, development and engineering activities centered around a better understanding of the space radiation environment, single event effects predictive methods, ground test protocols, and test facility developments. This research has led to fairly well developed methods for assessing the impact of the space radiation environment on systems that contain SEE sensitive devices and the development of mitigation strategies either at the system or device level.

  4. Web-Based Integrated Research Environment for Aerodynamic Analyses and Design

    NASA Astrophysics Data System (ADS)

    Ahn, Jae Wan; Kim, Jin-Ho; Kim, Chongam; Cho, Jung-Hyun; Hur, Cinyoung; Kim, Yoonhee; Kang, Sang-Hyun; Kim, Byungsoo; Moon, Jong Bae; Cho, Kum Won

    e-AIRS[1,2], an abbreviation of ‘e-Science Aerospace Integrated Research System,' is a virtual organization designed to support aerodynamic flow analyses in aerospace engineering using the e-Science environment. As the first step toward a virtual aerospace engineering organization, e-AIRS intends to give a full support of aerodynamic research process. Currently, e-AIRS can handle both the computational and experimental aerodynamic research on the e-Science infrastructure. In detail, users can conduct a full CFD (Computational Fluid Dynamics) research process, request wind tunnel experiment, perform comparative analysis between computational prediction and experimental measurement, and finally, collaborate with other researchers using the web portal. The present paper describes those services and the internal architecture of the e-AIRS system.

  5. Development of a Real-Time General-Purpose Digital Signal Processing Laboratory System.

    DTIC Science & Technology

    1983-12-01

    should serve several important purposes: to familiarize students with the use of common DSP tools in an instructional environment, to serve as a research ...of Dayton Research Institute researchers for DSP software and DSP system design insight. 3. Formulation of statement of requirements for development...Neither the University of Dayton nor its Research Institute have a DSP computer system. While UD offered no software or DSP system design information

  6. Human performance interfaces in air traffic control.

    PubMed

    Chang, Yu-Hern; Yeh, Chung-Hsing

    2010-01-01

    This paper examines how human performance factors in air traffic control (ATC) affect each other through their mutual interactions. The paper extends the conceptual SHEL model of ergonomics to describe the ATC system as human performance interfaces in which the air traffic controllers interact with other human performance factors including other controllers, software, hardware, environment, and organisation. New research hypotheses about the relationships between human performance interfaces of the system are developed and tested on data collected from air traffic controllers, using structural equation modelling. The research result suggests that organisation influences play a more significant role than individual differences or peer influences on how the controllers interact with the software, hardware, and environment of the ATC system. There are mutual influences between the controller-software, controller-hardware, controller-environment, and controller-organisation interfaces of the ATC system, with the exception of the controller-controller interface. Research findings of this study provide practical insights in managing human performance interfaces of the ATC system in the face of internal or external change, particularly in understanding its possible consequences in relation to the interactions between human performance factors.

  7. Development of Electronics for Low-Temperature Space Missions

    NASA Technical Reports Server (NTRS)

    Patterson, Richard L.; Hammoud, Ahmad; Dickman, John E.; Gerber, Scott S.; Overton, Eric

    2001-01-01

    Electronic systems that are capable of operating at cryogenic temperatures will be needed for many future NASA space missions, including deep space probes and spacecraft for planetary surface exploration. In addition to being able to survive the harsh deep space environment, low-temperature electronics would help improve circuit performance, increase system efficiency, and reduce payload development and launch costs. Terrestrial applications where components and systems must operate in low-temperature environments include cryogenic instrumentation, superconducting magnetic energy storage, magnetic levitation transportation systems, and arctic exploration. An ongoing research and development project for the design, fabrication, and characterization of low-temperature electronics and supporting technologies at NASA Glenn Research Center focuses on efficient power systems capable of surviving in and exploiting the advantages of low-temperature environments. Supporting technologies include dielectric and insulating materials, semiconductor devices, passive power components, optoelectronic devices, and packaging and integration of the developed components into prototype flight hardware. An overview of the project is presented, including a description of the test facilities, a discussion of selected data from component testing, and a presentation of ongoing research activities being performed in collaboration with various organizations.

  8. Space Medicine in the Human System Integration Process

    NASA Technical Reports Server (NTRS)

    Scheuring, Richard A.

    2010-01-01

    This slide presentation reviews the importance of integration of space medicine in the human system of lunar exploration. There is a review of historical precedence in reference to lunar surface operations. The integration process is reviewed in a chart which shows the steps from research to requirements development, requirements integration, design, verification, operations and using the lessons learned, giving more information and items for research. These steps are reviewed in view of specific space medical issues. Some of the testing of the operations are undertaken in an environment that is an analog to the exploration environment. Some of these analog environments are reviewed, and there is some discussion of the benefits of use of an analog environment in testing the processes that are derived.

  9. Estimating the Local Size and Coverage of Interaction Network Regions

    ERIC Educational Resources Information Center

    Eagle, Michael; Barnes, Tiffany

    2015-01-01

    Interactive problem solving environments, such as intelligent tutoring systems and educational video games, produce large amounts of transactional data which make it a challenge for both researchers and educators to understand how students work within the environment. Researchers have modeled the student-tutor interactions using complex network…

  10. NASA Virtual Glovebox: An Immersive Virtual Desktop Environment for Training Astronauts in Life Science Experiments

    NASA Technical Reports Server (NTRS)

    Twombly, I. Alexander; Smith, Jeffrey; Bruyns, Cynthia; Montgomery, Kevin; Boyle, Richard

    2003-01-01

    The International Space Station will soon provide an unparalleled research facility for studying the near- and longer-term effects of microgravity on living systems. Using the Space Station Glovebox Facility - a compact, fully contained reach-in environment - astronauts will conduct technically challenging life sciences experiments. Virtual environment technologies are being developed at NASA Ames Research Center to help realize the scientific potential of this unique resource by facilitating the experimental hardware and protocol designs and by assisting the astronauts in training. The Virtual GloveboX (VGX) integrates high-fidelity graphics, force-feedback devices and real- time computer simulation engines to achieve an immersive training environment. Here, we describe the prototype VGX system, the distributed processing architecture used in the simulation environment, and modifications to the visualization pipeline required to accommodate the display configuration.

  11. A Hypermedia Approach to the Design of an Intelligent Tutoring System

    DTIC Science & Technology

    1991-09-01

    23 3. Artist and Exploration Method ........................................... 24 4. Research method...LIMITATIONS AND FUTURE RESEARCH ............................................................... 76 v B. A CASE FOR HYPERMEDIA LEARNING ENVIRONMENTS...119 vi I. INTRODUCTION Most of the prior research in the field of intelligent tutoring systems (ITS) has focused on

  12. Instrumentation and Controls Division Overview: Sensors Development for Harsh Environments at Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Zeller, Mary V.; Lei, Jih-Fen

    2002-01-01

    The Instrumentation and Controls Division is responsible for planning, conducting and directing basic and applied research on advanced instrumentation and controls technologies for aerospace propulsion and power applications. The Division's advanced research in harsh environment sensors, high temperature high power electronics, MEMS (microelectromechanical systems), nanotechnology, high data rate optical instrumentation, active and intelligent controls, and health monitoring and management will enable self-feeling, self-thinking, self-reconfiguring and self-healing Aerospace Propulsion Systems. These research areas address Agency challenges to deliver aerospace systems with reduced size and weight, and increased functionality and intelligence for future NASA missions in advanced aeronautics, economical space transportation, and pioneering space exploration. The Division also actively supports educational and technology transfer activities aimed at benefiting all humankind.

  13. Multiprocessor programming environment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, M.B.; Fornaro, R.

    Programming tools and techniques have been well developed for traditional uniprocessor computer systems. The focus of this research project is on the development of a programming environment for a high speed real time heterogeneous multiprocessor system, with special emphasis on languages and compilers. The new tools and techniques will allow a smooth transition for programmers with experience only on single processor systems.

  14. In-Pile Instrumentation Multi- Parameter System Utilizing Photonic Fibers and Nanovision

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burgett, Eric

    2015-10-13

    An advanced in-pile multi-parameter reactor monitoring system is being proposed in this funding opportunity. The proposed effort brings cutting edge, high fidelity optical measurement systems into the reactor environment in an unprecedented fashion, including in-core, in-cladding and in-fuel pellet itself. Unlike instrumented leads, the proposed system provides a unique solution to a multi-parameter monitoring need in core while being minimally intrusive in the reactor core. Detector designs proposed herein can monitor fuel compression and expansion in both the radial and axial dimensions as well as monitor linear power profiles and fission rates during the operation of the reactor. In additionmore » to pressure, stress, strain, compression, neutron flux, neutron spectra, and temperature can be observed inside the fuel bundle and fuel rod using the proposed system. The proposed research aims at developing radiation-hard, harsh-environment multi-parameter systems for insertion into the reactor environment. The proposed research holds the potential to drastically increase the fidelity and precision of in-core instrumentation with little or no impact in the neutron economy in the reactor environment while providing a measurement system capable of operation for entire operating cycles.« less

  15. Distributed Practicum Supervision in a Managed Learning Environment (MLE)

    ERIC Educational Resources Information Center

    Carter, David

    2005-01-01

    This evaluation-research feasibility study piloted the creation of a technology-mediated managed learning environment (MLE) involving the implementation of one of a new generation of instructionally driven management information systems (IMISs). The system, and supporting information and communications technology (ICT) was employed to support…

  16. The Dilemmas of Educational Reform

    ERIC Educational Resources Information Center

    Cohen, David K.; Spillane, James P.; Peurach, Donald J.

    2018-01-01

    The environment of U.S. schools has changed dramatically over a quarter century as standards tied to test-based accountability and market competition became commonplace. We examine the issues that school systems face in this changing environment, to identify considerations for researchers interested in reform as educational system building. We…

  17. A computer-aided design system geared toward conceptual design in a research environment. [for hypersonic vehicles

    NASA Technical Reports Server (NTRS)

    STACK S. H.

    1981-01-01

    A computer-aided design system has recently been developed specifically for the small research group environment. The system is implemented on a Prime 400 minicomputer linked with a CDC 6600 computer. The goal was to assign the minicomputer specific tasks, such as data input and graphics, thereby reserving the large mainframe computer for time-consuming analysis codes. The basic structure of the design system consists of GEMPAK, a computer code that generates detailed configuration geometry from a minimum of input; interface programs that reformat GEMPAK geometry for input to the analysis codes; and utility programs that simplify computer access and data interpretation. The working system has had a large positive impact on the quantity and quality of research performed by the originating group. This paper describes the system, the major factors that contributed to its particular form, and presents examples of its application.

  18. Tablet and Face-to-Face Hybrid Professional Development: Providing Earth Systems Science Educators Authentic Research Opportunities through The GLOBE Program at Purdue University

    NASA Astrophysics Data System (ADS)

    Wegner, K.; Branch, B. D.; Smith, S. C.

    2013-12-01

    The Global Learning and Observations to Benefit the Environment (GLOBE) program is a worldwide hands-on, primary and secondary school-based science and education program (www.globe.gov). GLOBE's vision promotes and supports students, teachers and scientists to collaborate on inquiry-based authentic science investigations of the environment and the Earth system working in close partnership with NASA, NOAA and NSF Earth System Science Projects (ESSP's) in study and research about the dynamics of Earth's environment. GLOBE Partners conduct face-to-face Professional Development in more than 110 countries, providing authentic scientific research experience in five investigation areas: atmosphere, earth as a system, hydrology, land cover, and soil. This presentation will provide a sample for a new framework of Professional Development that was implemented in July 2013 at Purdue University lead by Mr. Steven Smith who has tested GLOBE training materials for future training. The presentation will demonstrate how institutions can provide educators authentic scientific research opportunities through various components, including: - Carrying out authentic research investigations - Learning how to enter their authentic research data into the GLOBE database and visualize it on the GLOBE website - Learn how to access to NASA's Earth System Science resources via GLOBE's new online 'e-Training Program' - Exploring the connections of their soil protocol measurements and the history of the soil in their area through iPad soils app - LIDAR data exposure, Hydrology data exposure

  19. Handbook of Research on Instructional Systems and Educational Technology

    ERIC Educational Resources Information Center

    Kidd, Terry, Ed.; Morris, Lonnie R., Jr., Ed.

    2017-01-01

    Incorporating new methods and approaches in learning environments is imperative to the development of education systems. By enhancing learning processes, education becomes more attainable at all levels. "The Handbook of Research on Instructional Systems and Educational Technology" is an essential reference source for the latest scholarly…

  20. STS-107 Microgravity Environment Summary Report

    NASA Technical Reports Server (NTRS)

    Jules, Kenol; Hrovat, Kenneth; Kelly, Eric; Reckhart, Timothy

    2005-01-01

    This summary report presents the results of the processed acceleration data measured aboard the Columbia orbiter during the STS-107 microgravity mission from January 16 to February 1, 2003. Two accelerometer systems were used to measure the acceleration levels due to vehicle and science operations activities that took place during the 16-day mission. Due to lack of precise timeline information regarding some payload's operations, not all of the activities were analyzed for this report. However, a general characterization of the microgravity environment of the Columbia Space Shuttle during the 16-day mission is presented followed by a more specific characterization of the environment for some designated payloads during their operations. Some specific quasi-steady and vibratory microgravity environment characterization analyses were performed for the following payloads: Structure of Flame Balls at Low Lewis-number-2, Laminar Soot Processes-2, Mechanics of Granular Materials-3 and Water Mist Fire-Suppression Experiment. The Physical Science Division of the National Aeronautics and Space Administration sponsors the Orbital Acceleration Research Experiment and the Space Acceleration Measurement System for Free Flyer to support microgravity science experiments, which require microgravity acceleration measurements. On January 16, 2003, both the Orbital Acceleration Research Experiment and the Space Acceleration Measurement System for Free Flyer accelerometer systems were launched on the Columbia Space Transportation System-107 from the Kennedy Space Center. The Orbital Acceleration Research Experiment supported science experiments requiring quasi-steady acceleration measurements, while the Space Acceleration Measurement System for Free Flyer unit supported experiments requiring vibratory acceleration measurement. The Columbia reduced gravity environment analysis presented in this report uses acceleration data collected by these two sets of accelerometer systems: The Orbital Acceleration Research Experiment is a low frequency sensor, which measures acceleration up to 1 Hz, but the 1 Hz acceleration data is trimmean filtered to yield much lower frequency acceleration data up to 0.01 Hz. This filtered data can be mapped to other locations for characterizing the quasi-steady environment for payloads and the vehicle. The Space Acceleration Measurement System for Free Flyer measures vibratory acceleration in the range of 0.01 to 200 Hz at multiple measurement locations. The vibratory acceleration data measured by this system is used to assess the local vibratory environment for payloads as well as to measure the disturbance causes by the vehicle systems, crew exercise devices and payloads operation disturbances. This summary report presents analysis of selected quasi-steady and vibratory activities measured by these two accelerometers during the Columbia 16-day microgravity mission from January 16 to February 1, 2003.

  1. Building a Propulsion Experiment Project Management Environment

    NASA Technical Reports Server (NTRS)

    Keiser, Ken; Tanner, Steve; Hatcher, Danny; Graves, Sara

    2004-01-01

    What do you get when you cross rocket scientists with computer geeks? It is an interactive, distributed computing web of tools and services providing a more productive environment for propulsion research and development. The Rocket Engine Advancement Program 2 (REAP2) project involves researchers at several institutions collaborating on propulsion experiments and modeling. In an effort to facilitate these collaborations among researchers at different locations and with different specializations, researchers at the Information Technology and Systems Center,' University of Alabama in Huntsville, are creating a prototype web-based interactive information system in support of propulsion research. This system, to be based on experience gained in creating similar systems for NASA Earth science field experiment campaigns such as the Convection and Moisture Experiments (CAMEX), will assist in the planning and analysis of model and experiment results across REAP2 participants. The initial version of the Propulsion Experiment Project Management Environment (PExPM) consists of a controlled-access web portal facilitating the drafting and sharing of working documents and publications. Interactive tools for building and searching an annotated bibliography of publications related to REAP2 research topics have been created to help organize and maintain the results of literature searches. Also work is underway, with some initial prototypes in place, for interactive project management tools allowing project managers to schedule experiment activities, track status and report on results. This paper describes current successes, plans, and expected challenges for this project.

  2. Sociotechnical approaches to workplace safety: Research needs and opportunities.

    PubMed

    Robertson, Michelle M; Hettinger, Lawrence J; Waterson, Patrick E; Noy, Y Ian; Dainoff, Marvin J; Leveson, Nancy G; Carayon, Pascale; Courtney, Theodore K

    2015-01-01

    The sociotechnical systems perspective offers intriguing and potentially valuable insights into problems associated with workplace safety. While formal sociotechnical systems thinking originated in the 1950s, its application to the analysis and design of sustainable, safe working environments has not been fully developed. To that end, a Hopkinton Conference was organised to review and summarise the state of knowledge in the area and to identify research priorities. A group of 26 international experts produced collaborative articles for this special issue of Ergonomics, and each focused on examining a key conceptual, methodological and/or theoretical issue associated with sociotechnical systems and safety. In this concluding paper, we describe the major conference themes and recommendations. These are organised into six topic areas: (1) Concepts, definitions and frameworks, (2) defining research methodologies, (3) modelling and simulation, (4) communications and decision-making, (5) sociotechnical attributes of safe and unsafe systems and (6) potential future research directions for sociotechnical systems research. Sociotechnical complexity, a characteristic of many contemporary work environments, presents potential safety risks that traditional approaches to workplace safety may not adequately address. In this paper, we summarise the investigations of a group of international researchers into questions associated with the application of sociotechnical systems thinking to improve worker safety.

  3. The Relationship among Self-Regulated Learning, Procrastination, and Learning Behaviors in Blended Learning Environment

    ERIC Educational Resources Information Center

    Yamada, Masanori; Goda, Yoshiko; Matsuda, Takeshi; Kato, Hiroshi; Miyagawa, Hiroyuki

    2015-01-01

    This research aims to investigate the relationship among the awareness of self-regulated learning (SRL), procrastination, and learning behaviors in blended learning environment. One hundred seventy nine freshmen participated in this research, conducted in the blended learning style class using learning management system. Data collection was…

  4. Overview of Stirling Technology Research at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Wilson, Scott D.; Schifer, Nicholas A.; Williams, Zachary D.; Metscher, Jonathan F.

    2016-01-01

    Stirling Radioisotope Power Systems (RPSs) are under development to provide power on future space science missions where robotic spacecraft will orbit, fly by, land, or rove using less than a quarter of the plutonium the currently available RPS uses to produce about the same power. NASA Glenn Research Center's newly formulated Stirling Cycle Technology Development Project (SCTDP) continues development of Stirling-based systems and subsystems, which include a flight-like generator and related housing assembly, controller, and convertors. The project also develops less mature technologies under Stirling Technology Research, with a focus on demonstration in representative environments to increase the technology readiness level (TRL). Matured technologies are evaluated for selection in future generator designs. Stirling Technology Research tasks focus on a wide variety of objectives, including increasing temperature capability to enable new environments, reducing generator mass and/or size, improving reliability and system fault tolerance, and developing alternative designs. The task objectives and status are summarized.

  5. Overview of Stirling Technology Research at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Wilson, Scott D.; Schifer, Nicholas A.; Williams, Zachary D.; Metscher, Jonathan F.

    2015-01-01

    Stirling Radioisotope Power Systems (RPS) are under development to provide power on future space science missions where robotic spacecraft will orbit, flyby, land or rove using less than a quarter of the plutonium the currently available RPS uses to produce about the same power. Glenn Research Center's (GRC's) newly formulated Stirling Cycle Technology Development Project (SCTDP) continues development of Stirling-based systems and subsystems, which include a flight-like generator and related housing assembly, controller, and convertors. The project also develops less mature technologies under Stirling Technology Research, with a focus on demonstration in representative environments to increase the technology readiness level (TRL). Matured technologies are evaluated for selection in future generator designs. Stirling Technology Research tasks focus on a wide variety of objectives, including increasing temperature capability to enable new environments, reducing generator mass and/or size, improving reliability or system fault tolerance, and developing alternative designs. The task objectives and status are summarized.

  6. NASA Satellite Observations: A Unique Asset for the Study of the Environment and Implications for Public Health

    NASA Technical Reports Server (NTRS)

    Estes Sue M.

    2010-01-01

    This slide presentation highlights how satellite observation systems are assets for studying the environment in relation to public health. It includes information on current and future satellite observation systems, NASA's public health and safety research, surveillance projects, and NASA's public health partners.

  7. Research on the laser transmission characteristics simulation and comprehensive test in complex channel environment

    NASA Astrophysics Data System (ADS)

    Fu, Qiang; Liu, Jianhua; Wang, Xiaoman; Jiang, Huilin; Liu, Zhi

    2014-12-01

    The laser transmission characteristics affected in the complex channel environment, which limits the performance of laser equipment and engineering application severely. The article aim at the influence of laser transmission in atmospheric and seawater channels, summarizes the foreign researching work of the simulation and comprehensive test regarding to the laser transmission characteristics in complex environment. And researched the theory of atmospheric turbulence effect, water attenuation features, and put forward the corresponding theoretical model. And researched the simulate technology of atmospheric channel and sea water channel, put forward the analog device plan, adopt the similar theory of flowing to simulate the atmosphere turbulence .When the flowing has the same condition of geometric limits including the same Reynolds, they must be similar to each other in the motivation despite of the difference in the size, speed, and intrinsic quality. On this basis, set up a device for complex channel simulation and comprehensive testing, the overall design of the structure of the device, Hot and Cold Air Convection Simulation of Atmospheric Turbulence, mainly consists of cell body, heating systems, cooling systems, automatic control system. he simulator provides platform and method for the basic research of laser transmission characteristics in the domestic.

  8. Development of the digital design environment ProjectWise(TM) - phase 1.

    DOT National Transportation Integrated Search

    2017-04-28

    The goal of this research was to develop a project document management system capable of managing : Connecticut Department of Transportation (CTDOT) Capital Road and Bridge Program. Primary targets of : research and development included the system, c...

  9. Linking Research, Extension and Education: Why Is the Problem So Persistent and Pervasive?

    ERIC Educational Resources Information Center

    Van Crowder, L.; Anderson, J.

    1997-01-01

    Weak links among research, education, and extension often result from their informal nature, national agriculture policy environment, and funding shortages. An integrative systems approach can strengthen links to improve agriculture technology systems. (SK)

  10. Research on evaluation techniques for immersive multimedia

    NASA Astrophysics Data System (ADS)

    Hashim, Aslinda M.; Romli, Fakaruddin Fahmi; Zainal Osman, Zosipha

    2013-03-01

    Nowadays Immersive Multimedia covers most usage in tremendous ways, such as healthcare/surgery, military, architecture, art, entertainment, education, business, media, sport, rehabilitation/treatment and training areas. Moreover, the significant of Immersive Multimedia to directly meet the end-users, clients and customers needs for a diversity of feature and purpose is the assembly of multiple elements that drive effective Immersive Multimedia system design, so evaluation techniques is crucial for Immersive Multimedia environments. A brief general idea of virtual environment (VE) context and `realism' concept that formulate the Immersive Multimedia environments is then provided. This is followed by a concise summary of the elements of VE assessment technique that is applied in Immersive Multimedia system design, which outlines the classification space for Immersive Multimedia environments evaluation techniques and gives an overview of the types of results reported. A particular focus is placed on the implications of the Immersive Multimedia environments evaluation techniques in relation to the elements of VE assessment technique, which is the primary purpose of producing this research. The paper will then conclude with an extensive overview of the recommendations emanating from the research.

  11. AstroCloud, a Cyber-Infrastructure for Astronomy Research: Cloud Computing Environments

    NASA Astrophysics Data System (ADS)

    Li, C.; Wang, J.; Cui, C.; He, B.; Fan, D.; Yang, Y.; Chen, J.; Zhang, H.; Yu, C.; Xiao, J.; Wang, C.; Cao, Z.; Fan, Y.; Hong, Z.; Li, S.; Mi, L.; Wan, W.; Wang, J.; Yin, S.

    2015-09-01

    AstroCloud is a cyber-Infrastructure for Astronomy Research initiated by Chinese Virtual Observatory (China-VO) under funding support from NDRC (National Development and Reform commission) and CAS (Chinese Academy of Sciences). Based on CloudStack, an open source software, we set up the cloud computing environment for AstroCloud Project. It consists of five distributed nodes across the mainland of China. Users can use and analysis data in this cloud computing environment. Based on GlusterFS, we built a scalable cloud storage system. Each user has a private space, which can be shared among different virtual machines and desktop systems. With this environments, astronomer can access to astronomical data collected by different telescopes and data centers easily, and data producers can archive their datasets safely.

  12. An approach to integrating and creating flexible software environments

    NASA Technical Reports Server (NTRS)

    Bellman, Kirstie L.

    1992-01-01

    Engineers and scientists are attempting to represent, analyze, and reason about increasingly complex systems. Many researchers have been developing new ways of creating increasingly open environments. In this research on VEHICLES, a conceptual design environment for space systems, an approach was developed, called 'wrapping', to flexibility and integration based on the collection and then processing of explicit qualitative descriptions of all the software resources in the environment. Currently, a simulation is available, VSIM, used to study both the types of wrapping descriptions and the processes necessary to use the metaknowledge to combine, select, adapt, and explain some of the software resources used in VEHICLES. What was learned about the types of knowledge necessary for the wrapping approach is described along with the implications of wrapping for several key software engineering issues.

  13. Conference Report: Biosignature Preservation and Detection in Mars Analog Environments.

    PubMed

    Hays, Lindsay; Beaty, David

    2017-01-01

    The Conference on Biosignature Preservation and Detection in Mars Analog Environments held in May 2016 brought together scientists to discuss microbial biosignatures in Mars analog habitable environments. Five analog environments were discussed: (1) hydrothermal spring systems, (2) subaqueous environments, (3) subaerial environments, (4) subsurface environments, and (5) iron-rich systems. This paper details the major messages that resulted from the discussions and will be followed by a review paper that adds significant detail from the published literature and interpretations from the writing committee of the workshop for future research and application to astrobiological exploration missions. Key Words: Biosignature preservation-Biosignature detection-Mars analog environments-Conference report-Astrobiological exploration. Astrobiology 17, 1-2.

  14. Ask Systems: Interrogative Access to Multiple Ways of Thinking

    ERIC Educational Resources Information Center

    Jonassen, David H.

    2011-01-01

    The purpose of this paper is to familiarize instructional designers and researchers with a useful design and research paradigm known as "Ask Systems." Ask Systems are interrogative interfaces to information and learning environments that model conversations with a skilled, reflective practitioner (Schon, The reflective practitioner, "1983") or…

  15. Educational Research and Theory Perspectives on Intelligent Computer-Assisted Instruction.

    ERIC Educational Resources Information Center

    Tennyson, Robert D.; Christensen, Dean L.

    This paper defines the next generation of intelligent computer-assisted instructional systems (ICAI) by depicting the elaborations and extensions offered by educational research and theory perspectives to enhance the ICAI environment. The first section describes conventional ICAI systems, which use expert systems methods and have three modules: a…

  16. Applying systems biology methods to the study of human physiology in extreme environments

    PubMed Central

    2013-01-01

    Systems biology is defined in this review as ‘an iterative process of computational model building and experimental model revision with the aim of understanding or simulating complex biological systems’. We propose that, in practice, systems biology rests on three pillars: computation, the omics disciplines and repeated experimental perturbation of the system of interest. The number of ethical and physiologically relevant perturbations that can be used in experiments on healthy humans is extremely limited and principally comprises exercise, nutrition, infusions (e.g. Intralipid), some drugs and altered environment. Thus, we argue that systems biology and environmental physiology are natural symbionts for those interested in a system-level understanding of human biology. However, despite excellent progress in high-altitude genetics and several proteomics studies, systems biology research into human adaptation to extreme environments is in its infancy. A brief description and overview of systems biology in its current guise is given, followed by a mini review of computational methods used for modelling biological systems. Special attention is given to high-altitude research, metabolic network reconstruction and constraint-based modelling. PMID:23849719

  17. Data Acquisition System Architecture and Capabilities At NASA GRC Plum Brook Station's Space Environment Test Facilities

    NASA Technical Reports Server (NTRS)

    Evans, Richard K.; Hill, Gerald M.

    2012-01-01

    Very large space environment test facilities present unique engineering challenges in the design of facility data systems. Data systems of this scale must be versatile enough to meet the wide range of data acquisition and measurement requirements from a diverse set of customers and test programs, but also must minimize design changes to maintain reliability and serviceability. This paper presents an overview of the common architecture and capabilities of the facility data acquisition systems available at two of the world?s largest space environment test facilities located at the NASA Glenn Research Center?s Plum Brook Station in Sandusky, Ohio; namely, the Space Propulsion Research Facility (commonly known as the B-2 facility) and the Space Power Facility (SPF). The common architecture of the data systems is presented along with details on system scalability and efficient measurement systems analysis and verification. The architecture highlights a modular design, which utilizes fully-remotely managed components, enabling the data systems to be highly configurable and support multiple test locations with a wide-range of measurement types and very large system channel counts.

  18. Data Acquisition System Architecture and Capabilities at NASA GRC Plum Brook Station's Space Environment Test Facilities

    NASA Technical Reports Server (NTRS)

    Evans, Richard K.; Hill, Gerald M.

    2014-01-01

    Very large space environment test facilities present unique engineering challenges in the design of facility data systems. Data systems of this scale must be versatile enough to meet the wide range of data acquisition and measurement requirements from a diverse set of customers and test programs, but also must minimize design changes to maintain reliability and serviceability. This paper presents an overview of the common architecture and capabilities of the facility data acquisition systems available at two of the world's largest space environment test facilities located at the NASA Glenn Research Center's Plum Brook Station in Sandusky, Ohio; namely, the Space Propulsion Research Facility (commonly known as the B-2 facility) and the Space Power Facility (SPF). The common architecture of the data systems is presented along with details on system scalability and efficient measurement systems analysis and verification. The architecture highlights a modular design, which utilizes fully-remotely managed components, enabling the data systems to be highly configurable and support multiple test locations with a wide-range of measurement types and very large system channel counts.

  19. Intelligent computer-aided training authoring environment

    NASA Technical Reports Server (NTRS)

    Way, Robert D.

    1994-01-01

    Although there has been much research into intelligent tutoring systems (ITS), there are few authoring systems available that support ITS metaphors. Instructional developers are generally obliged to use tools designed for creating on-line books. We are currently developing an authoring environment derived from NASA's research on intelligent computer-aided training (ICAT). The ICAT metaphor, currently in use at NASA has proven effective in disciplines from satellite deployment to high school physics. This technique provides a personal trainer (PT) who instructs the student using a simulated work environment (SWE). The PT acts as a tutor, providing individualized instruction and assistance to each student. Teaching in an SWE allows the student to learn tasks by doing them, rather than by reading about them. This authoring environment will expedite ICAT development by providing a tool set that guides the trainer modeling process. Additionally, this environment provides a vehicle for distributing NASA's ICAT technology to the private sector.

  20. The state of the research for health environment in the ministries of health of the Economic Community of the West African States (ECOWAS)

    PubMed Central

    2013-01-01

    Background An assessment of the state of the Research for Health (R4H) environment can provide relevant information about what aspects of national health research systems needs strengthening, so that research output can be relevant to meet national priorities for decision-making. There is limited information on the state of the R4H environment in the Economic Community of West African States (ECOWAS). This article describes the state of the R4H environment within the Ministries of Health of the ECOWAS member states and outlines of some possibilities to strengthen health research activities within the ECOWAS region. Methods Information on the national-level R4H environment (governance and management; existence of a national policy; strategic and research priorities documents; ethics committees; research funds; coordination structures; monitoring and evaluation systems; networking and capacity building opportunities) was collected from the Ministries of Health research units in 14 ECOWAS countries using self-administered questionnaires. A workshop was held where country report presentations and group discussions were used to review and validate responses. Data from the discussions was transcribed using Nvivo, and strengths, weaknesses, opportunities and threats (SWOT) analysis of the functioning of the units was done using Robert Preziosi’s organisational diagnosis tool. Results The findings indicate that as of January 2011, 50% of ECOWAS countries had established directorates for health research with defined terms of reference. The existing funding mechanisms were inadequate to support the research structures within and outside the MoHs, and for building the capacity of researchers. Networking and monitoring activities were weak and only 7% of the directors of research units were trained in research management. The majority (85.7%) of countries had broader national health policies, and 57% of the countries had some form of policy or strategic document for research development. Half of the countries had developed national research priorities. Conclusions These results call for urgent action to improve the research environment in the Ministries of Health in the West African sub-region. PMID:24025451

  1. The state of the research for health environment in the ministries of health of the Economic Community of the West African States (ECOWAS).

    PubMed

    Sombié, Issiaka; Aidam, Jude; Konaté, Blahima; Somé, Télesphore D; Kambou, Stanislas Sansan

    2013-09-11

    An assessment of the state of the Research for Health (R4H) environment can provide relevant information about what aspects of national health research systems needs strengthening, so that research output can be relevant to meet national priorities for decision-making. There is limited information on the state of the R4H environment in the Economic Community of West African States (ECOWAS). This article describes the state of the R4H environment within the Ministries of Health of the ECOWAS member states and outlines of some possibilities to strengthen health research activities within the ECOWAS region. Information on the national-level R4H environment (governance and management; existence of a national policy; strategic and research priorities documents; ethics committees; research funds; coordination structures; monitoring and evaluation systems; networking and capacity building opportunities) was collected from the Ministries of Health research units in 14 ECOWAS countries using self-administered questionnaires. A workshop was held where country report presentations and group discussions were used to review and validate responses. Data from the discussions was transcribed using Nvivo, and strengths, weaknesses, opportunities and threats (SWOT) analysis of the functioning of the units was done using Robert Preziosi's organisational diagnosis tool. The findings indicate that as of January 2011, 50% of ECOWAS countries had established directorates for health research with defined terms of reference. The existing funding mechanisms were inadequate to support the research structures within and outside the MoHs, and for building the capacity of researchers. Networking and monitoring activities were weak and only 7% of the directors of research units were trained in research management. The majority (85.7%) of countries had broader national health policies, and 57% of the countries had some form of policy or strategic document for research development. Half of the countries had developed national research priorities. These results call for urgent action to improve the research environment in the Ministries of Health in the West African sub-region.

  2. The NASA Dryden Flight Research Center Unmanned Aircraft System Service Capabilities

    NASA Technical Reports Server (NTRS)

    Bauer, Jeff

    2007-01-01

    Over 60 years of Unmanned Aircraft System (UAS) expertise at the National Aeronautics and Space Administration (NASA) Dryden Flight Research Center are being leveraged to provide capability and expertise to the international UAS community. The DFRC brings together technical experts, UAS, and an operational environment to provide government and industry a broad capability to conduct research, perform operations, and mature systems, sensors, and regulation. The cornerstone of this effort is the acquisition of both a Global Hawk (Northrop Grumman Corporation, Los Angeles, California) and Predator B (General Atomics Aeronautical Systems, Inc., San Diego, California) unmanned aircraft system (UAS). In addition, a test range for small UAS will allow developers to conduct research and development flights without the need to obtain approval from civil authorities. Finally, experts are available to government and industry to provide safety assessments in support of operations in civil airspace. These services will allow developers to utilize limited resources to their maximum capability in a highly competitive environment.

  3. Computational Environments and Analysis methods available on the NCI High Performance Computing (HPC) and High Performance Data (HPD) Platform

    NASA Astrophysics Data System (ADS)

    Evans, B. J. K.; Foster, C.; Minchin, S. A.; Pugh, T.; Lewis, A.; Wyborn, L. A.; Evans, B. J.; Uhlherr, A.

    2014-12-01

    The National Computational Infrastructure (NCI) has established a powerful in-situ computational environment to enable both high performance computing and data-intensive science across a wide spectrum of national environmental data collections - in particular climate, observational data and geoscientific assets. This paper examines 1) the computational environments that supports the modelling and data processing pipelines, 2) the analysis environments and methods to support data analysis, and 3) the progress in addressing harmonisation of the underlying data collections for future transdisciplinary research that enable accurate climate projections. NCI makes available 10+ PB major data collections from both the government and research sectors based on six themes: 1) weather, climate, and earth system science model simulations, 2) marine and earth observations, 3) geosciences, 4) terrestrial ecosystems, 5) water and hydrology, and 6) astronomy, social and biosciences. Collectively they span the lithosphere, crust, biosphere, hydrosphere, troposphere, and stratosphere. The data is largely sourced from NCI's partners (which include the custodians of many of the national scientific records), major research communities, and collaborating overseas organisations. The data is accessible within an integrated HPC-HPD environment - a 1.2 PFlop supercomputer (Raijin), a HPC class 3000 core OpenStack cloud system and several highly connected large scale and high-bandwidth Lustre filesystems. This computational environment supports a catalogue of integrated reusable software and workflows from earth system and ecosystem modelling, weather research, satellite and other observed data processing and analysis. To enable transdisciplinary research on this scale, data needs to be harmonised so that researchers can readily apply techniques and software across the corpus of data available and not be constrained to work within artificial disciplinary boundaries. Future challenges will involve the further integration and analysis of this data across the social sciences to facilitate the impacts across the societal domain, including timely analysis to more accurately predict and forecast future climate and environmental state.

  4. Robot navigation research using the HERMIES mobile robot

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barnett, D.L.

    1989-01-01

    In recent years robot navigation has attracted much attention from researchers around the world. Not only are theoretical studies being simulated on sophisticated computers, but many mobile robots are now used as test vehicles for these theoretical studies. Various algorithms have been perfected for navigation in a known static environment; but navigation in an unknown and dynamic environment poses a much more challenging problem for researchers. Many different methodologies have been developed for autonomous robot navigation, but each methodology is usually restricted to a particular type of environment. One important research focus of the Center for Engineering Systems Advanced researchmore » (CESAR) at Oak Ridge National Laboratory, is autonomous navigation in unknown and dynamic environments using the series of HERMIES mobile robots. The research uses an expert system for high-level planning interfaced with C-coded routines for implementing the plans, and for quick processing of data requested by the expert system. In using this approach, the navigation is not restricted to one methodology since the expert system can activate a rule module for the methodology best suited for the current situation. Rule modules can be added the rule base as they are developed and tested. Modules are being developed or enhanced for navigating from a map, searching for a target, exploring, artificial potential-field navigation, navigation using edge-detection, etc. This paper will report on the various rule modules and methods of navigation in use, or under development at CESAR, using the HERMIES-IIB robot as a testbed. 13 refs., 5 figs., 1 tab.« less

  5. A Selective Bibliography of Building Environment and Service Systems with Particular Reference to Computer Applications. Computer Report CR20.

    ERIC Educational Resources Information Center

    Forwood, Bruce S.

    This bibliography has been produced as part of a research program attempting to develop a new approach to building environment and service systems design using computer-aided design techniques. As such it not only classifies available literature on the service systems themselves, but also contains sections on the application of computers and…

  6. GPS/Optical/Inertial Integration for 3D Navigation Using Multi-Copter Platforms

    NASA Technical Reports Server (NTRS)

    Dill, Evan T.; Young, Steven D.; Uijt De Haag, Maarten

    2017-01-01

    In concert with the continued advancement of a UAS traffic management system (UTM), the proposed uses of autonomous unmanned aerial systems (UAS) have become more prevalent in both the public and private sectors. To facilitate this anticipated growth, a reliable three-dimensional (3D) positioning, navigation, and mapping (PNM) capability will be required to enable operation of these platforms in challenging environments where global navigation satellite systems (GNSS) may not be available continuously. Especially, when the platform's mission requires maneuvering through different and difficult environments like outdoor opensky, outdoor under foliage, outdoor-urban and indoor, and may include transitions between these environments. There may not be a single method to solve the PNM problem for all environments. The research presented in this paper is a subset of a broader research effort, described in [1]. The research is focused on combining data from dissimilar sensor technologies to create an integrated navigation and mapping method that can enable reliable operation in both an outdoor and structured indoor environment. The integrated navigation and mapping design is utilizes a Global Positioning System (GPS) receiver, an Inertial Measurement Unit (IMU), a monocular digital camera, and three short to medium range laser scanners. This paper describes specifically the techniques necessary to effectively integrate the monocular camera data within the established mechanization. To evaluate the developed algorithms a hexacopter was built, equipped with the discussed sensors, and both hand-carried and flown through representative environments. This paper highlights the effect that the monocular camera has on the aforementioned sensor integration scheme's reliability, accuracy and availability.

  7. Scratchpads 2.0: a Virtual Research Environment supporting scholarly collaboration, communication and data publication in biodiversity science

    PubMed Central

    Smith, Vincent S.; Rycroft, Simon D.; Brake, Irina; Scott, Ben; Baker, Edward; Livermore, Laurence; Blagoderov, Vladimir; Roberts, David

    2011-01-01

    Abstract The Scratchpad Virtual Research Environment (http://scratchpads.eu/) is a flexible system for people to create their own research networks supporting natural history science. Here we describe Version 2 of the system characterised by the move to Drupal 7 as the Scratchpad core development framework and timed to coincide with the fifth year of the project’s operation in late January 2012. The development of Scratchpad 2 reflects a combination of technical enhancements that make the project more sustainable, combined with new features intended to make the system more functional and easier to use. A roadmap outlining strategic plans for development of the Scratchpad project over the next two years concludes this article. PMID:22207806

  8. Scratchpads 2.0: a Virtual Research Environment supporting scholarly collaboration, communication and data publication in biodiversity science.

    PubMed

    Smith, Vincent S; Rycroft, Simon D; Brake, Irina; Scott, Ben; Baker, Edward; Livermore, Laurence; Blagoderov, Vladimir; Roberts, David

    2011-01-01

    The Scratchpad Virtual Research Environment (http://scratchpads.eu/) is a flexible system for people to create their own research networks supporting natural history science. Here we describe Version 2 of the system characterised by the move to Drupal 7 as the Scratchpad core development framework and timed to coincide with the fifth year of the project's operation in late January 2012. The development of Scratchpad 2 reflects a combination of technical enhancements that make the project more sustainable, combined with new features intended to make the system more functional and easier to use. A roadmap outlining strategic plans for development of the Scratchpad project over the next two years concludes this article.

  9. Space Biotechnology and Commercial Applications University of Florida

    NASA Technical Reports Server (NTRS)

    Phillips, Winfred; Evanich, Peggy L.

    2004-01-01

    The Space Biotechnology and Commercial Applications grant was funded by NASA's Kennedy Space Center in FY 2002 to provide dedicated biotechnology and agricultural research focused on the regeneration of space flight environments with direct parallels in Earth-based applications for solving problems in the environment, advances in agricultural science, and other human support issues amenable to targeted biotechnology solutions. This grant had three project areas, each with multiple tasks. They are: 1) Space Agriculture and Biotechnology Research and Education, 2) Integrated Smart Nanosensors for Space Biotechnology Applications, and 3) Commercial Applications. The Space Agriculture and Biotechnology Research and Education (SABRE) Center emphasized the fundamental biology of organisms involved in space flight applications, including those involved in advanced life support environments because of their critical role in the long-term exploration of space. The SABRE Center supports research at the University of Florida and at the Space Life Sciences Laboratory (SLSL) at the Kennedy Space Center. The Integrated Smart Nanosensors for Space Biotechnology Applications component focused on developing and applying sensor technologies to space environments and agricultural systems. The research activities in nanosensors were coordinated with the SABRE portions of this grant and with the research sponsored by the NASA Environmental Systems Commercial Space Technology Center located in the Department of Environmental Engineering Sciences. Initial sensor efforts have focused on air and water quality monitoring essential to humans for living and working permanently in space, an important goal identified in NASA's strategic plan. The closed environment of a spacecraft or planetary base accentuates cause and effect relationships and environmental impacts. The limited available air and water resources emphasize the need for reuse, recycling, and system monitoring. It is essential to collect real-time information from these systems to ensure crew safety. This new class of nanosensors will be critical to monitoring the space flight environment in future NASA space systems. The Commercial Applications component of this program pursued industry partnerships to develop products for terrestrial use of NASA sponsored technologies, and in turn to stimulate growth in the biotechnology industry. For technologies demonstrating near term commercial potential, the objective is to include industry partners on or about the time of proof of concept that will not only co-invest in the technology but also take the resultant technology to the commercial market.

  10. A collaborative molecular modeling environment using a virtual tunneling service.

    PubMed

    Lee, Jun; Kim, Jee-In; Kang, Lin-Woo

    2012-01-01

    Collaborative researches of three-dimensional molecular modeling can be limited by different time zones and locations. A networked virtual environment can be utilized to overcome the problem caused by the temporal and spatial differences. However, traditional approaches did not sufficiently consider integration of different computing environments, which were characterized by types of applications, roles of users, and so on. We propose a collaborative molecular modeling environment to integrate different molecule modeling systems using a virtual tunneling service. We integrated Co-Coot, which is a collaborative crystallographic object-oriented toolkit, with VRMMS, which is a virtual reality molecular modeling system, through a collaborative tunneling system. The proposed system showed reliable quantitative and qualitative results through pilot experiments.

  11. Development and Control of Multi-Degree-of-Freedom Mobile Robot for Acquisition of Road Environmental Modes

    NASA Astrophysics Data System (ADS)

    Murata, Naoya; Katsura, Seiichiro

    Acquisition of information about the environment around a mobile robot is important for purposes such as controlling the robot from a remote location and in situations such as that when the robot is running autonomously. In many researches, audiovisual information is used. However, acquisition of information about force sensation, which is included in environmental information, has not been well researched. The mobile-hapto, which is a remote control system with force information, has been proposed, but the robot used for the system can acquire only the horizontal component of forces. For this reason, in this research, a three-wheeled mobile robot that consists of seven actuators was developed and its control system was constructed. It can get information on horizontal and vertical forces without using force sensors. By using this robot, detailed information on the forces in the environment can be acquired and the operability of the robot and its capability to adjust to the environment are expected to improve.

  12. QUEST/Ada (Query Utility Environment for Software Testing of Ada): The development of a prgram analysis environment for Ada, task 1, phase 2

    NASA Technical Reports Server (NTRS)

    Brown, David B.

    1990-01-01

    The results of research and development efforts are described for Task one, Phase two of a general project entitled The Development of a Program Analysis Environment for Ada. The scope of this task includes the design and development of a prototype system for testing Ada software modules at the unit level. The system is called Query Utility Environment for Software Testing of Ada (QUEST/Ada). The prototype for condition coverage provides a platform that implements expert system interaction with program testing. The expert system can modify data in the instrument source code in order to achieve coverage goals. Given this initial prototype, it is possible to evaluate the rule base in order to develop improved rules for test case generation. The goals of Phase two are the following: (1) to continue to develop and improve the current user interface to support the other goals of this research effort (i.e., those related to improved testing efficiency and increased code reliable); (2) to develop and empirically evaluate a succession of alternative rule bases for the test case generator such that the expert system achieves coverage in a more efficient manner; and (3) to extend the concepts of the current test environment to address the issues of Ada concurrency.

  13. Volume 3, Sources and migration of highway runoff pollutants--research report

    DOT National Transportation Integrated Search

    1984-05-01

    The overall objectives of this research were to identify the sources of highway pollutants, and to determine their deposition and accumulation within the highway system and subsequent removal from the highway system to the surrounding environment. Th...

  14. Space Acceleration Measurement System-II: Microgravity Instrumentation for the International Space Station Research Community

    NASA Technical Reports Server (NTRS)

    Sutliff, Thomas J.

    1999-01-01

    The International Space Station opens for business in the year 2000, and with the opening, science investigations will take advantage of the unique conditions it provides as an on-orbit laboratory for research. With initiation of scientific studies comes a need to understand the environment present during research. The Space Acceleration Measurement System-II provides researchers a consistent means to understand the vibratory conditions present during experimentation on the International Space Station. The Space Acceleration Measurement System-II, or SAMS-II, detects vibrations present while the space station is operating. SAMS-II on-orbit hardware is comprised of two basic building block elements: a centralized control unit and multiple Remote Triaxial Sensors deployed to measure the acceleration environment at the point of scientific research, generally within a research rack. Ground Operations Equipment is deployed to complete the command, control and data telemetry elements of the SAMS-II implementation. Initially, operations consist of user requirements development, measurement sensor deployment and use, and data recovery on the ground. Future system enhancements will provide additional user functionality and support more simultaneous users.

  15. Real Time On-line Space Research Laboratory Environment Monitoring with Off-line Trend and Prediction Analysis

    NASA Technical Reports Server (NTRS)

    Jules, Kenol; Lin, Paul P.

    2006-01-01

    One of the responsibilities of the NASA Glenn Principal Investigator Microgravity Services is to support NASA sponsored investigators in the area of reduced-gravity acceleration data analysis, interpretation and the monitoring of the reduced-gravity environment on-board various carriers. With the International Space Station currently operational, a significant amount of acceleration data is being down-linked and processed on ground for both the space station onboard environment characterization (and verification) and scientific experiments. Therefore, to help principal investigator teams monitor the acceleration level on-board the International Space Station to avoid undesirable impact on their experiment, when possible, the NASA Glenn Principal Investigator Microgravity Services developed an artificial intelligence monitoring system, which detects in near real time any change in the environment susceptible to affect onboard experiments. The main objective of the monitoring system is to help research teams identify the vibratory disturbances that are active at any instant of time onboard the International Space Station that might impact the environment in which their experiment is being conducted. The monitoring system allows any space research scientist, at any location and at any time, to see the current acceleration level on-board the Space Station via the World Wide Web. From the NASA Glenn s Exploration Systems Division web site, research scientists can see in near real time the active disturbances, such as pumps, fans, compressor, crew exercise, re-boost, extra-vehicular activity, etc., and decide whether or not to continue operating or stopping (or making note of such activity for later correlation with science results) their experiments based on the g-level associated with that specific event. A dynamic graphical display accessible via the World Wide Web shows the status of all the vibratory disturbance activities with their degree of confidence as well as their g-level contribution to the environment. The system can detect both known and unknown vibratory disturbance activities. It can also perform trend analysis and prediction by analyzing past data over many Increments of the space station for selected disturbance activities. This feature can be used to monitor the health of onboard mechanical systems to detect and prevent potential system failure as well as for use by research scientists during their science results analysis. Examples of both real time on-line vibratory disturbance detection and off-line trend analysis are presented in this paper. Several soft computing techniques such as Kohonen s Self-Organizing Feature Map, Learning Vector Quantization, Back-Propagation Neural Networks, and Fuzzy Logic were used to design the system.

  16. Functional and real-time requirements of a multisensor data fusion (MSDF) situation and threat assessment (STA) resource management (RM) system

    NASA Astrophysics Data System (ADS)

    Duquet, Jean Remi; Bergeron, Pierre; Blodgett, Dale E.; Couture, Jean; Macieszczak, Maciej; Mayrand, Michel; Chalmers, Bruce A.; Paradis, Stephane

    1998-03-01

    The Research and Development group at Lockheed Martin Canada, in collaboration with the Defence Research Establishment Valcartier, has undertaken a research project in order to capture and analyze the real-time and functional requirements of a next generation Command and Control System (CCS) for the Canadian Patrol Frigates, integrating Multi- Sensor Data Fusion (MSDF), Situation and Threat Assessment (STA) and Resource Management (RM). One important aspect of the project is to define how the use of Artificial Intelligence may optimize the performance of an integrated, real-time MSDF/STA/RM system. A closed-loop simulation environment is being developed to facilitate the evaluation of MSDF/STA/RM concepts, algorithms and architectures. This environment comprises (1) a scenario generator, (2) complex sensor, hardkill and softkill weapon models, (3) a real-time monitoring tool, (4) a distributed Knowledge-Base System (KBS) shell. The latter is being completely redesigned and implemented in-house since no commercial KBS shell could adequately satisfy all the project requirements. The closed- loop capability of the simulation environment, together with its `simulated real-time' capability, allows the interaction between the MSDF/STA/RM system and the environment targets during the execution of a scenario. This capability is essential to measure the performance of many STA and RM functionalities. Some benchmark scenarios have been selected to demonstrate quantitatively the capabilities of the selected MSDF/STA/RM algorithms. The paper describes the simulation environment and discusses the MSDF/STA/RM functionalities currently implemented and their performance as an automatic CCS.

  17. Mobile wireless network for the urban environment

    NASA Astrophysics Data System (ADS)

    Budulas, Peter; Luu, Brian; Gopaul, Richard

    2005-05-01

    As the Army transforms into the Future Force, particular attention must be paid to operations in Complex and Urban Terrain. Our adversaries increasingly draw us into operations in the urban environment and one can presume that this trend will continue in future battles. In order to ensure that the United States Army maintains battlefield dominance, the Army Research Laboratory (ARL) is developing technology to equip our soldiers for the urban operations of the future. Sophisticated soldier borne systems will extend sensing to the individual soldier, and correspondingly, allow the soldier to establish an accurate picture of their surrounding environment utilizing information from local and remote assets. Robotic platforms will be an integral part of the future combat team. These platforms will augment the team with remote sensing modalities, task execution capabilities, and enhanced communication systems. To effectively utilize the products provided by each of these systems, collected data must be exchanged in real time to all affected entities. Therefore, the Army Research Laboratory is also developing the technology that will be required to support high bandwidth mobile communication in urban environments. This technology incorporates robotic systems that will allow connectivity in areas unreachable by traditional systems. This paper will address some of the issues of providing wireless connectivity in complex and urban terrain. It will further discuss approaches developed by the Army Research Laboratory to integrate communications capabilities into soldier and robotic systems and provide seamless connectivity between the elements of a combat team, and higher echelons.

  18. The next step in health behavior research: the need for ecological moderation analyses - an application to diet and physical activity at childcare.

    PubMed

    Gubbels, Jessica S; Van Kann, Dave Hh; de Vries, Nanne K; Thijs, Carel; Kremers, Stef Pj

    2014-04-17

    The ecological perspective holds that human behavior depends on the interaction of different environmental factors and personal characteristics, but it lacks validation and operationalization. In the current paper, an ecological view was adopted to examine the interactive impact of several ecological systems on children's dietary intake and physical activity at childcare or similar facilities. The ecological view was operationalized into three types of interaction: 1) interaction between types of childcare environment (physical, social, political, economic); 2) interaction between micro-systems (the childcare and home environment) in meso-systems; and 3) interaction between childcare environment and child characteristics. The predictive value of each of these interactions was tested based on a systematic review of the literature. Several studies support the hypothesis that the influence of the childcare environment on children's physical activity and diet is moderated by child characteristics (age, gender), but interaction between environmental types as well as between micro-systems is hardly examined in the field of behavioral nutrition and physical activity. Qualitative studies and general child development research provide some valuable insights, but we advocate quantitative research adopting an ecological perspective on environmental influences. Empirical studies operationalizing a true ecological view on diet and physical activity are scarce. Theorizing and assessment of interaction is advocated to become common practice rather than an exception in behavioral nutrition and physical activity research, in order to move the field forward.

  19. The next step in health behavior research: the need for ecological moderation analyses - an application to diet and physical activity at childcare

    PubMed Central

    2014-01-01

    Background The ecological perspective holds that human behavior depends on the interaction of different environmental factors and personal characteristics, but it lacks validation and operationalization. In the current paper, an ecological view was adopted to examine the interactive impact of several ecological systems on children’s dietary intake and physical activity at childcare or similar facilities. The ecological view was operationalized into three types of interaction: 1) interaction between types of childcare environment (physical, social, political, economic); 2) interaction between micro-systems (the childcare and home environment) in meso-systems; and 3) interaction between childcare environment and child characteristics. The predictive value of each of these interactions was tested based on a systematic review of the literature. Discussion Several studies support the hypothesis that the influence of the childcare environment on children’s physical activity and diet is moderated by child characteristics (age, gender), but interaction between environmental types as well as between micro-systems is hardly examined in the field of behavioral nutrition and physical activity. Qualitative studies and general child development research provide some valuable insights, but we advocate quantitative research adopting an ecological perspective on environmental influences. Summary Empirical studies operationalizing a true ecological view on diet and physical activity are scarce. Theorizing and assessment of interaction is advocated to become common practice rather than an exception in behavioral nutrition and physical activity research, in order to move the field forward. PMID:24742167

  20. Context-aware brain-computer interfaces: exploring the information space of user, technical system and environment

    NASA Astrophysics Data System (ADS)

    Zander, T. O.; Jatzev, S.

    2012-02-01

    Brain-computer interface (BCI) systems are usually applied in highly controlled environments such as research laboratories or clinical setups. However, many BCI-based applications are implemented in more complex environments. For example, patients might want to use a BCI system at home, and users without disabilities could benefit from BCI systems in special working environments. In these contexts, it might be more difficult to reliably infer information about brain activity, because many intervening factors add up and disturb the BCI feature space. One solution for this problem would be adding context awareness to the system. We propose to augment the available information space with additional channels carrying information about the user state, the environment and the technical system. In particular, passive BCI systems seem to be capable of adding highly relevant context information—otherwise covert aspects of user state. In this paper, we present a theoretical framework based on general human-machine system research for adding context awareness to a BCI system. Building on that, we present results from a study on a passive BCI, which allows access to the covert aspect of user state related to the perceived loss of control. This study is a proof of concept and demonstrates that context awareness could beneficially be implemented in and combined with a BCI system or a general human-machine system. The EEG data from this experiment are available for public download at www.phypa.org. Parts of this work have already been presented in non-journal publications. This will be indicated specifically by appropriate references in the text.

  1. Research on biomass energy and environment from the past to the future: A bibliometric analysis.

    PubMed

    Mao, Guozhu; Huang, Ning; Chen, Lu; Wang, Hongmei

    2018-09-01

    The development and utilization of biomass energy can help to change the ways of energy production and consumption and establish a sustainable energy system that can effectively promote the development of the national economy and strengthen the protection of the environment. Here,we perform a bibliometric analysis of 9514 literature reports in the Web of Science Core Collection searched with the key words "Biomass energy" and "Environment*" date from 1998 to 2017; hot topics in the research and development of biomass energy utilization, as well as the status and development trends of biomass energy utilization and the environment, were analyzed based on content analysis and bibliometrics. The interaction between biomass energy and the environment began to become a major concern as the research progressively deepened. This work is of great significance for the development and utilization of biomass energy to put forward specific suggestions and strategies based on the analysis and demonstration of relationships and interactions between biomass energy utilization and environment. It is also useful to researchers for selecting the future research topics. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Nursing Faculty Experiences of Virtual Learning Environments for Teaching Clinical Reasoning

    ERIC Educational Resources Information Center

    Zacharzuk-Marciano, Tara

    2017-01-01

    Nurses need sharp, clinical reasoning skills to respond to critical situations and to be successful at work in a complex and challenging healthcare system. While past research has focused on using virtual learning environments to teach clinical reasoning, there has been limited research on the experiences of nursing faculty and there is a need for…

  3. An overview of Japanese CELSS research activities

    NASA Technical Reports Server (NTRS)

    Nitta, Keiji

    1987-01-01

    Development of Controlled Ecological Life Support System (CELSS) technology is inevitable for future long duration stays of human beings in space, for lunar base construction and for manned Mars flight programs. CELSS functions can be divided into 2 categories, Environmental Control and Material Recycling. Temperature, humidity, total atmospheric pressure and partial pressure of oxygen and carbon dioxide, necessary for all living things, are to be controlled by the environment control function. This function can be performed by technologies already developed and used as the Environment Control Life Support System (ECLSS) of Space Shuttle and Space Station. As for material recycling, matured technologies have not yet been established for fully satisfying the specific metabolic requirements of each living thing including human beings. Therefore, research activities for establishing CELSS technology should be focused on material recycling technologies using biological systems such as plants and animals and physico-chemical systems, for example, a gas recycling system, a water purifying and recycling system and a waste management system. Japanese research activities were conducted and will be continued accordingly.

  4. ESCAPE: Eco-Behavioral System for Complex Assessments of Preschool Environments. Research Draft.

    ERIC Educational Resources Information Center

    Carta, Judith J.; And Others

    The manual details an observational code designed to track a child during an entire day in a preschool setting. The Eco-Behavioral System for Complex Assessments of Preschool Environments (ESCAPE) encompasses assessment of the following three major categories of variables with their respective subcategories: (1) ecological variables (designated…

  5. Identifying Different Registers of Digital Literacy in Virtual Learning Environments

    ERIC Educational Resources Information Center

    Knutsson, Ola; Blasjo, Mona.; Hallsten, Stina; Karlstrom, Petter

    2012-01-01

    In this paper social semiotics, and systemic functional linguistics in particular, are used in order to identify registers of digital literacy in the use of virtual learning environments. The framework of social semiotics provides means to systemize and discuss digital literacy as a linguistic and semiotic issue. The following research question…

  6. Service-Oriented Architecture (SOA) Instantiation within a Hard Real-Time, Deterministic Combat System Environment

    ERIC Educational Resources Information Center

    Moreland, James D., Jr

    2013-01-01

    This research investigates the instantiation of a Service-Oriented Architecture (SOA) within a hard real-time (stringent time constraints), deterministic (maximum predictability) combat system (CS) environment. There are numerous stakeholders across the U.S. Department of the Navy who are affected by this development, and therefore the system…

  7. A Model for Field Deployment of Wireless Sensor Networks (WSNs) within the Domain of Microclimate Habitat Monitoring

    ERIC Educational Resources Information Center

    Sanborn, Mark

    2011-01-01

    Wireless sensor networks (WSNs) represent a class of miniaturized information systems designed to monitor physical environments. These smart monitoring systems form collaborative networks utilizing autonomous sensing, data-collection, and processing to provide real-time analytics of observed environments. As a fundamental research area in…

  8. Keeping Scores: Audited Self-Monitoring of High-Stakes Testing Environments

    ERIC Educational Resources Information Center

    Padilla, Raymond; Richards, Michael

    2006-01-01

    To address a public relations problem faced by a large urban public school district in Texas, we conducted action research that resulted in an audited self-monitoring system for high-stakes testing environments. The system monitors violations of testing protocols while identifying and disseminating best practices to improve the education of…

  9. A progress report on a NASA research program for embedded computer systems software

    NASA Technical Reports Server (NTRS)

    Foudriat, E. C.; Senn, E. H.; Will, R. W.; Straeter, T. A.

    1979-01-01

    The paper presents the results of the second stage of the Multipurpose User-oriented Software Technology (MUST) program. Four primary areas of activities are discussed: programming environment, HAL/S higher-order programming language support, the Integrated Verification and Testing System (IVTS), and distributed system language research. The software development environment is provided by the interactive software invocation system. The higher-order programming language (HOL) support chosen for consideration is HAL/S mainly because at the time it was one of the few HOLs with flight computer experience and it is the language used on the Shuttle program. The overall purpose of IVTS is to provide a 'user-friendly' software testing system which is highly modular, user controlled, and cooperative in nature.

  10. A hardware/software environment to support R D in intelligent machines and mobile robotic systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mann, R.C.

    1990-01-01

    The Center for Engineering Systems Advanced Research (CESAR) serves as a focal point at the Oak Ridge National Laboratory (ORNL) for basic and applied research in intelligent machines. R D at CESAR addresses issues related to autonomous systems, unstructured (i.e. incompletely known) operational environments, and multiple performing agents. Two mobile robot prototypes (HERMIES-IIB and HERMIES-III) are being used to test new developments in several robot component technologies. This paper briefly introduces the computing environment at CESAR which includes three hypercube concurrent computers (two on-board the mobile robots), a graphics workstation, VAX, and multiple VME-based systems (several on-board the mobile robots).more » The current software environment at CESAR is intended to satisfy several goals, e.g.: code portability, re-usability in different experimental scenarios, modularity, concurrent computer hardware transparent to applications programmer, future support for multiple mobile robots, support human-machine interface modules, and support for integration of software from other, geographically disparate laboratories with different hardware set-ups. 6 refs., 1 fig.« less

  11. Digital Immersive Virtual Environments and Instructional Computing

    ERIC Educational Resources Information Center

    Blascovich, Jim; Beall, Andrew C.

    2010-01-01

    This article reviews theory and research relevant to the development of digital immersive virtual environment-based instructional computing systems. The review is organized within the context of a multidimensional model of social influence and interaction within virtual environments that models the interaction of four theoretical factors: theory…

  12. Heat Map Visualization of Complex Environmental and Biomarker Measurements

    EPA Science Inventory

    Over the past decade, the assessment of human systems interactions with the environment has permeated all phases of environmental and public health research. We are invoking lessons learned from the broad discipline of Systems Biology research that focuses primarily on molecular ...

  13. Designing Online Information Systems for Portfolio-Based Assessment: Design Criteria and Heuristics

    ERIC Educational Resources Information Center

    Love, Terence; Cooper, Trudi

    2004-01-01

    This paper outlines the main findings of research about online portfolio information systems. This research focused on the educational integrity of these educational systems and the maximisation of value across all stakeholders, in particular the value gained from the automation and interaction potential of the online environment. The findings and…

  14. Transgenic Arabidopsis Gene Expression System

    NASA Technical Reports Server (NTRS)

    Ferl, Robert; Paul, Anna-Lisa

    2009-01-01

    The Transgenic Arabidopsis Gene Expression System (TAGES) investigation is one in a pair of investigations that use the Advanced Biological Research System (ABRS) facility. TAGES uses Arabidopsis thaliana, thale cress, with sensor promoter-reporter gene constructs that render the plants as biomonitors (an organism used to determine the quality of the surrounding environment) of their environment using real-time nondestructive Green Fluorescent Protein (GFP) imagery and traditional postflight analyses.

  15. U.S. Army Medical Research Institute of Infectious Diseases Annual Progress Report, Fiscal Year 1988

    DTIC Science & Technology

    1988-10-01

    identification of an etiologic agent and diagnosis of disease. The primary objective of this work is the development of a small, deployable system capable of...containment systems that prevent exposure of personnel or the environment to the research materials. and full compliance with the standards for...Research V Institute, and Technassociates Incorporated) was formed to conduct research on HTV in cell culture systems to identify drugs that inhibit growth

  16. Toward an integrated knowledge environment to support modern oncology.

    PubMed

    Blake, Patrick M; Decker, David A; Glennon, Timothy M; Liang, Yong Michael; Losko, Sascha; Navin, Nicholas; Suh, K Stephen

    2011-01-01

    Around the world, teams of researchers continue to develop a wide range of systems to capture, store, and analyze data including treatment, patient outcomes, tumor registries, next-generation sequencing, single-nucleotide polymorphism, copy number, gene expression, drug chemistry, drug safety, and toxicity. Scientists mine, curate, and manually annotate growing mountains of data to produce high-quality databases, while clinical information is aggregated in distant systems. Databases are currently scattered, and relationships between variables coded in disparate datasets are frequently invisible. The challenge is to evolve oncology informatics from a "systems" orientation of standalone platforms and silos into an "integrated knowledge environments" that will connect "knowable" research data with patient clinical information. The aim of this article is to review progress toward an integrated knowledge environment to support modern oncology with a focus on supporting scientific discovery and improving cancer care.

  17. Advanced Image Processing for NASA Applications

    NASA Technical Reports Server (NTRS)

    LeMoign, Jacqueline

    2007-01-01

    The future of space exploration will involve cooperating fleets of spacecraft or sensor webs geared towards coordinated and optimal observation of Earth Science phenomena. The main advantage of such systems is to utilize multiple viewing angles as well as multiple spatial and spectral resolutions of sensors carried on multiple spacecraft but acting collaboratively as a single system. Within this framework, our research focuses on all areas related to sensing in collaborative environments, which means systems utilizing intracommunicating spatially distributed sensor pods or crafts being deployed to monitor or explore different environments. This talk will describe the general concept of sensing in collaborative environments, will give a brief overview of several technologies developed at NASA Goddard Space Flight Center in this area, and then will concentrate on specific image processing research related to that domain, specifically image registration and image fusion.

  18. Design and implementation of space physics multi-model application integration based on web

    NASA Astrophysics Data System (ADS)

    Jiang, Wenping; Zou, Ziming

    With the development of research on space environment and space science, how to develop network online computing environment of space weather, space environment and space physics models for Chinese scientific community is becoming more and more important in recent years. Currently, There are two software modes on space physics multi-model application integrated system (SPMAIS) such as C/S and B/S. the C/S mode which is traditional and stand-alone, demands a team or workshop from many disciplines and specialties to build their own multi-model application integrated system, that requires the client must be deployed in different physical regions when user visits the integrated system. Thus, this requirement brings two shortcomings: reducing the efficiency of researchers who use the models to compute; inconvenience of accessing the data. Therefore, it is necessary to create a shared network resource access environment which could help users to visit the computing resources of space physics models through the terminal quickly for conducting space science research and forecasting spatial environment. The SPMAIS develops high-performance, first-principles in B/S mode based on computational models of the space environment and uses these models to predict "Space Weather", to understand space mission data and to further our understanding of the solar system. the main goal of space physics multi-model application integration system (SPMAIS) is to provide an easily and convenient user-driven online models operating environment. up to now, the SPMAIS have contained dozens of space environment models , including international AP8/AE8 IGRF T96 models and solar proton prediction model geomagnetic transmission model etc. which are developed by Chinese scientists. another function of SPMAIS is to integrate space observation data sets which offers input data for models online high-speed computing. In this paper, service-oriented architecture (SOA) concept that divides system into independent modules according to different business needs is applied to solve the problem of the independence of the physical space between multiple models. The classic MVC(Model View Controller) software design pattern is concerned to build the architecture of space physics multi-model application integrated system. The JSP+servlet+javabean technology is used to integrate the web application programs of space physics multi-model. It solves the problem of multi-user requesting the same job of model computing and effectively balances each server computing tasks. In addition, we also complete follow tasks: establishing standard graphical user interface based on Java Applet application program; Designing the interface between model computing and model computing results visualization; Realizing three-dimensional network visualization without plug-ins; Using Java3D technology to achieve a three-dimensional network scene interaction; Improved ability to interact with web pages and dynamic execution capabilities, including rendering three-dimensional graphics, fonts and color control. Through the design and implementation of the SPMAIS based on Web, we provide an online computing and application runtime environment of space physics multi-model. The practical application improves that researchers could be benefit from our system in space physics research and engineering applications.

  19. Moving alcohol prevention research forward-Part I: introducing a complex systems paradigm.

    PubMed

    Apostolopoulos, Yorghos; Lemke, Michael K; Barry, Adam E; Lich, Kristen Hassmiller

    2018-02-01

    The drinking environment is a complex system consisting of a number of heterogeneous, evolving and interacting components, which exhibit circular causality and emergent properties. These characteristics reduce the efficacy of commonly used research approaches, which typically do not account for the underlying dynamic complexity of alcohol consumption and the interdependent nature of diverse factors influencing misuse over time. We use alcohol misuse among college students in the United States as an example for framing our argument for a complex systems paradigm. A complex systems paradigm, grounded in socio-ecological and complex systems theories and computational modeling and simulation, is introduced. Theoretical, conceptual, methodological and analytical underpinnings of this paradigm are described in the context of college drinking prevention research. The proposed complex systems paradigm can transcend limitations of traditional approaches, thereby fostering new directions in alcohol prevention research. By conceptualizing student alcohol misuse as a complex adaptive system, computational modeling and simulation methodologies and analytical techniques can be used. Moreover, use of participatory model-building approaches to generate simulation models can further increase stakeholder buy-in, understanding and policymaking. A complex systems paradigm for research into alcohol misuse can provide a holistic understanding of the underlying drinking environment and its long-term trajectory, which can elucidate high-leverage preventive interventions. © 2017 Society for the Study of Addiction.

  20. Tulane/Xavier University hazardous materials in aquatic environments of the Mississippi River Basin. Annual technical report, January 1--December 31, 1995

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1996-05-02

    Tulane and Xavier Universities have singled out the environment as a major strategic focus for research and training for now and beyond the year 2000. In 1989, the Tulane/Xavier Center for Bioenvironmental Research (CBR) was established as the umbrella organization which coordinates environmental research at both universities. In December, 1992, the Tulane/Xavier CBR was awarded a five year grant to study pollution in the Mississippi River system. The Hazardous Materials in Aquatic Environments of the Mississippi River Basin project is a broad research and education program aimed at elucidating the nature and magnitude of toxic materials that contaminate aquatic environmentsmore » of the Mississippi River Basin. Studies include defining the complex interactions that occur during the transport of contaminants, the actual and potential impact on ecological systems and health, and the mechanisms through which these impacts might be remediated. The Mississippi River Basin represents a model system for analyzing and solving contamination problems that are found in aquatic systems world-wide. Summaries which describe objectives, goals, and accomplishments are included on ten collaborative cluster projects, two education projects, and six initiation projects. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database.« less

  1. The Scientific Committee on Antarctic Research (SCAR) in the IPY 2007-2009

    NASA Astrophysics Data System (ADS)

    Kennicutt, M. C.; Wilson, T. J.; Summerhayes, C.

    2005-05-01

    The Scientific Committee on Antarctic Research (SCAR) initiates, develops, and coordinates international scientific research in the Antarctic region. SCAR is assuming a leadership position in the IPY primarily through its five major Scientific Research Programs; ACE, SALE, EBA, AGCS, and ICESTAR; which will be briefly described.Antarctic Climate Evolution (ACE) promotes the exchange of data and ideas between research groups focusing on the evolution of Antarctica's climate system and ice sheet. The program will: (1) quantitatively assess the climate and glacial history of Antarctica; (2) identify the processes which govern Antarctic change and feed back around the globe; (3) improve our ability to model past changes in Antarctica; and (4)document past change to predict future change in Antarctica. Subglacial Antarctic Lake Environments (SALE) promotes, facilitates, and champions cooperation and collaboration in the exploration and study of subglacial environments in Antarctica. SALE intends to understand the complex interplay of biological, geological, chemical, glaciological, and physical processes within subglacial lake environments through coordinated international research teams. Evolution and Biodiversity in the Antarctic (EBA) will use a suite of modern techniques and interdisciplinary approaches, to explore the evolutionary history of selected modern Antarctic biota, examine how modern biological diversity in the Antarctic influences the way present-day ecosystems function, and thereby predict how the biota may respond to future environmental change. Antarctica and the Global Climate System (AGCS) will investigate the nature of the atmospheric and oceanic linkages between the climate of the Antarctic and the rest of the Earth system, and the mechanisms involved therein. A combination of modern instrumented records of atmospheric and oceanic conditions, and the climate signals held within ice cores will be used to understand past and future climate variability and change in the Antarctic as a result of natural and anthropogenic forcings over the last 100,000 years. Interhemispheric Conjugacy Effects in Solar-Terrestrial and Aeronomy Research (ICESTAR) will study the interactions between and collective behavior of the many component parts of the Earth system, including the interaction between the natural environment and human society. Objectives include specification and prediction of the state of the system and assimilation and integration of data from disparate sources to understand the complex geospace environment.

  2. Redundant imprinting of information in non-ideal environments: Quantum Darwinism via a noisy channel

    NASA Astrophysics Data System (ADS)

    Zwolak, Michael; Quan, Haitao; Zurek, Wojciech

    2011-03-01

    Quantum Darwinism provides an information-theoretic framework for the emergence of the classical world from the quantum substrate. It recognizes that we - the observers - acquire our information about the ``systems of interest'' indirectly from their imprints on the environment. Objectivity, a key property of the classical world, arises via the proliferation of redundant information into the environment where many observers can then intercept it and independently determine the state of the system. While causing a system to decohere, environments that remain nearly invariant under the Hamiltonian dynamics, such as very mixed states, have a diminished ability to transmit information about the system, yet can still acquire redundant information about the system [1,2]. Our results show that Quantum Darwinism is robust with respect to non-ideal initial states of the environment. This research is supported by the U.S. Department of Energy through the LANL/LDRD Program.

  3. A positioning system with no line-of-sight restrictions for cluttered environments

    NASA Astrophysics Data System (ADS)

    Prigge, Eric A.

    Accurate sensing of vehicle location and attitude is a fundamental requirement in many mobile-robot applications, but is a very challenging problem in the cluttered and unstructured environment of the real world. Many existing indoor positioning systems are limited in workspace and robustness because they require clear lines of sight or do not provide absolute, drift-free measurements. Examples include overhead vision systems, where an unobstructed view must be maintained between robot and camera, and inertial systems, where the measurements drift over time. The research presented in this dissertation provides a new location- and attitude-sensing system designed specifically to meet the challenges of operation in a realistic, cluttered indoor environment, such as that of an office building or warehouse. The system is not limited by line-of-sight restrictions and produces drift-free measurements throughout a three-dimensional operating volume that can span a large building. Accuracy of several centimeters and a few degrees is delivered at 10 Hz, and any number of the small sensor units can be in operation, all providing estimates in a common reference frame. This positioning system is based on extremely-low-frequency magnetic fields, which have excellent characteristics for penetrating line-of-sight obstructions. Beacons located throughout the workspace create the low-level fields. A sensor unit on the mobile robot samples the local magnetic field and processes the measurements to determine its location and attitude. This research overcomes limitations in existing magnetic-based systems. The design of the signal structure, based on pseudorandom codes, enables the use of multiple, distributed L-beacons and greatly expands coverage volume. The development of real-time identification and correction methods mitigates the impact of distortions caused by materials in the environment. A novel solution algorithm combats both challenges, providing increased coverage volume and reduced sensitivity to materials. This dissertation examines the concept for the system, the challenges encountered during its development, the research solutions that enable the system, the design of a prototype, and results from experimental demonstrations. The positioning system developed through this research provides an effective solution not only for mobile robots navigating cluttered environments, but has application in other areas such as object tracking, augmented reality, and construction.

  4. Bioregenerative Life Support System Research as part of the DLR EDEN Initiative

    NASA Astrophysics Data System (ADS)

    Bamsey, Matthew; Schubert, Daniel; Zabel, Paul; Poulet, Lucie; Zeidler, Conrad

    In 2011, the DLR Institute of Space Systems launched a research initiative called EDEN - Evolution and Design of Environmentally-closed Nutrition-Sources. The research initiative focuses on bioregenerative life support systems, especially greenhouse modules, and technologies for future crewed vehicles. The EDEN initiative comprises several projects with respect to space research, ground testing and spin-offs. In 2014, EDEN’s new laboratory officially opened. This new biological cleanroom laboratory comprises several plant growth chambers incorporating a number of novel controlled environment agriculture technologies. This laboratory will be the nucleus for a variety of plant cultivation experiments within closed environments. The utilized technologies are being advanced using the pull of space technology and include such items as stacked growth systems, PAR-specific LEDs, intracanopy lighting, aeroponic nutrient delivery systems and ion-selective nutrient sensors. The driver of maximizing biomass output per unit volume and energy has much application in future bioregenerative life support systems but can also provide benefit terrestrially. The EDEN laboratory also includes several specially constructed chambers for advancing models addressing the interaction between bioregenerative and physical-chemical life support systems. The EDEN team is presently developing designs for containerized greenhouse modules. One module is planned for deployment to the German Antarctic Station, Neumayer III. The shipping container based system will provide supplementation to the overwintering crew’s diet, provide psychological benefit while at the same time advancing the technology and operational readiness of harsh environment plant production systems. In addition to hardware development, the EDEN team has participated in several early phase designs such as for the ESA Greenhouse Module for Space System and for large-scale vertical farming. These studies often utilize the Institute of Space Systems Concurrent Engineering Facility.

  5. Sociotechnical approaches to workplace safety: Research needs and opportunities

    PubMed Central

    Robertson, Michelle M.; Hettinger, Lawrence J.; Waterson, Patrick E.; Ian Noy, Y.; Dainoff, Marvin J.; Leveson, Nancy G.; Carayon, Pascale; Courtney, Theodore K.

    2015-01-01

    The sociotechnical systems perspective offers intriguing and potentially valuable insights into problems associated with workplace safety. While formal sociotechnical systems thinking originated in the 1950s, its application to the analysis and design of sustainable, safe working environments has not been fully developed. To that end, a Hopkinton Conference was organised to review and summarise the state of knowledge in the area and to identify research priorities. A group of 26 international experts produced collaborative articles for this special issue of Ergonomics, and each focused on examining a key conceptual, methodological and/or theoretical issue associated with sociotechnical systems and safety. In this concluding paper, we describe the major conference themes and recommendations. These are organised into six topic areas: (1) Concepts, definitions and frameworks, (2) defining research methodologies, (3) modelling and simulation, (4) communications and decision-making, (5) sociotechnical attributes of safe and unsafe systems and (6) potential future research directions for sociotechnical systems research. Practitioner Summary: Sociotechnical complexity, a characteristic of many contemporary work environments, presents potential safety risks that traditional approaches to workplace safety may not adequately address. In this paper, we summarise the investigations of a group of international researchers into questions associated with the application of sociotechnical systems thinking to improve worker safety. PMID:25728246

  6. Identifying and Quantifying Emergent Behavior Through System of Systems Modeling and Simulation

    DTIC Science & Technology

    2015-09-01

    42 J . SUMMARY ..............................................................................................43 III. METHODOLOGY...our research. e. Ptolemy Ptolemy is a simulation and rapid prototype environment developed at the University of California Berkely in the...simulation. J . SUMMARY This chapter describes the many works used as a basis for this research. This research used the principles of Selberg’s 2008

  7. SER 2, ENVIRONMENTAL EVALUATIONS. SER, SCHOOL ENVIRONMENTS RESEARCH.

    ERIC Educational Resources Information Center

    CARSON, DANIEL H.; AND OTHERS

    AN ENVIRONMENTAL SCIENCE ALREADY EXISTS AND IS EVALUATED HERE IN THE SECOND OF A SERIES OF REPORTS INTENDED TO BE VALUABLE TO ANYONE INTERESTED IN HOW ENVIRONMENT AFFECTS LEARNING AND BEHAVIOR. MAN IS A NONSTATIONARY OPEN SYSTEM UNDERGOING CONTINUOUS INTERCHANGE WITH HIS ENVIRONMENT. THIS INTERACTION, AND THE SEVERAL ASPECTS OF HIS…

  8. Usability and Feasibility of an Internet-Based Virtual Pedestrian Environment to Teach Children to Cross Streets Safely

    PubMed Central

    Schwebel, David C.; McClure, Leslie A.; Severson, Joan

    2013-01-01

    Child pedestrian injury is a preventable global health challenge. Successful training efforts focused on child behavior, including individualized streetside training and training in large virtual pedestrian environments, are laborious and expensive. This study considers the usability and feasibility of a virtual pedestrian environment “game” application to teach children safe street-crossing behavior via the internet, a medium that could be broadly disseminated at low cost. Ten 7- and 8-year-old children participated. They engaged in an internet-based virtual pedestrian environment and completed a brief assessment survey. Researchers rated children's behavior while engaged in the game. Both self-report and researcher observations indicated the internet-based system was readily used by the children without adult support. The youth understood how to engage in the system and used it independently and attentively. The program also was feasible. It provided multiple measures of pedestrian safety that could be used for research or training purposes. Finally, the program was rated by children as engaging and educational. Researcher ratings suggested children used the program with minimal fidgeting or boredom. The pilot test suggests an internet-based virtual pedestrian environment offers a usable, feasible, engaging, and educational environment for child pedestrian safety training. If future research finds children learn the cognitive and perceptual skills needed to cross streets safely within it, internet-based training may provide a low-cost medium to broadly disseminate child pedestrian safety training. The concept may be generalized to other domains of health-related functioning such as teen driving safety, adolescent sexual risk-taking, and adolescent substance use. PMID:24678263

  9. A Collaborative Molecular Modeling Environment Using a Virtual Tunneling Service

    PubMed Central

    Lee, Jun; Kim, Jee-In; Kang, Lin-Woo

    2012-01-01

    Collaborative researches of three-dimensional molecular modeling can be limited by different time zones and locations. A networked virtual environment can be utilized to overcome the problem caused by the temporal and spatial differences. However, traditional approaches did not sufficiently consider integration of different computing environments, which were characterized by types of applications, roles of users, and so on. We propose a collaborative molecular modeling environment to integrate different molecule modeling systems using a virtual tunneling service. We integrated Co-Coot, which is a collaborative crystallographic object-oriented toolkit, with VRMMS, which is a virtual reality molecular modeling system, through a collaborative tunneling system. The proposed system showed reliable quantitative and qualitative results through pilot experiments. PMID:22927721

  10. The Chicago Consensus on Sustainable Food Systems Science.

    PubMed

    Drewnowski, Adam

    2017-01-01

    As participants at the Ecosystem Inception Meeting convened by the Global Dairy Platform and held in Chicago in June 2016, we have identified some concepts as central to the study of food systems science. Following the definition developed by the Food and Agriculture Organization for sustainable diets, the food supply needs to provide foods that are healthy and safe, affordable, culturally acceptable, and with low impact on the environment. Therefore, the four main domains of sustainable food systems science can be described as health, economics, society, and the environment. Food systems science needs to embrace and engage with all relevant allied disciplines that may include environmental health sciences, epidemiology, geography, history, sociology, anthropology, business, and political science. Research and training in food systems science, both domestic and international, would benefit from a set of competencies, from more extensive research networks, and from more public-private engagement. This document builds on major advances in the area of food system research, training, and practice, already achieved by individuals, institutions, foundations, and local and national governments.

  11. The Chicago Consensus on Sustainable Food Systems Science

    PubMed Central

    Drewnowski, Adam; Drewnowski, Adam

    2018-01-01

    As participants at the Ecosystem Inception Meeting convened by the Global Dairy Platform and held in Chicago in June 2016, we have identified some concepts as central to the study of food systems science. Following the definition developed by the Food and Agriculture Organization for sustainable diets, the food supply needs to provide foods that are healthy and safe, affordable, culturally acceptable, and with low impact on the environment. Therefore, the four main domains of sustainable food systems science can be described as health, economics, society, and the environment. Food systems science needs to embrace and engage with all relevant allied disciplines that may include environmental health sciences, epidemiology, geography, history, sociology, anthropology, business, and political science. Research and training in food systems science, both domestic and international, would benefit from a set of competencies, from more extensive research networks, and from more public–private engagement. This document builds on major advances in the area of food system research, training, and practice, already achieved by individuals, institutions, foundations, and local and national governments. PMID:29744333

  12. Implementation of Wireless Sensor Networks Based Pig Farm Integrated Management System in Ubiquitous Agricultural Environments

    NASA Astrophysics Data System (ADS)

    Hwang, Jeonghwan; Lee, Jiwoong; Lee, Hochul; Yoe, Hyun

    The wireless sensor networks (WSN) technology based on low power consumption is one of the important technologies in the realization of ubiquitous society. When the technology would be applied to the agricultural field, it can give big change in the existing agricultural environment such as livestock growth environment, cultivation and harvest of agricultural crops. This research paper proposes the 'Pig Farm Integrated Management System' based on WSN technology, which will establish the ubiquitous agricultural environment and improve the productivity of pig-raising farmers. The proposed system has WSN environmental sensors and CCTV at inside/outside of pig farm. These devices collect the growth-environment related information of pigs, such as luminosity, temperature, humidity and CO2 status. The system collects and monitors the environmental information and video information of pig farm. In addition to the remote-control and monitoring of the pig farm facilities, this system realizes the most optimum pig-raising environment based on the growth environmental data accumulated for a long time.

  13. Low-gravity Orbiting Research Laboratory Environment Potential Impact on Space Biology Research

    NASA Technical Reports Server (NTRS)

    Jules, Kenol

    2006-01-01

    One of the major objectives of any orbital space research platform is to provide a quiescent low gravity, preferably a zero gravity environment, to perform fundamental as well as applied research. However, small disturbances exist onboard any low earth orbital research platform. The impact of these disturbances must be taken into account by space research scientists during their research planning, design and data analysis in order to avoid confounding factors in their science results. The reduced gravity environment of an orbiting research platform in low earth orbit is a complex phenomenon. Many factors, among others, such as experiment operations, equipment operation, life support systems and crew activity (if it is a crewed platform), aerodynamic drag, gravity gradient, rotational effects as well as the vehicle structural resonance frequencies (structural modes) contribute to form the overall reduced gravity environment in which space research is performed. The contribution of these small disturbances or accelerations is precisely why the environment is NOT a zero gravity environment, but a reduced acceleration environment. This paper does not discuss other factors such as radiation, electromagnetic interference, thermal and pressure gradient changes, acoustic and CO2 build-up to name a few that affect the space research environment as well, but it focuses solely on the magnitude of the acceleration level found on orbiting research laboratory used by research scientists to conduct space research. For ease of analysis this paper divides the frequency spectrum relevant to most of the space research disciplines into three regimes: a) quasi-steady, b) vibratory and c) transient. The International Space Station is used as an example to illustrate the point. The paper discusses the impact of these three regimes on space biology research and results from space flown experiments are used to illustrate the potential negative impact of these disturbances (accelerations) on space biology research.

  14. Sensor Network Provides Environmental Data

    NASA Technical Reports Server (NTRS)

    2007-01-01

    The National Biocomputation Center, a joint partnership between the Stanford University School of Medicine's Department of Surgery and NASA's Ames Research Center, is the test bed for much of NASA's research in telemedicine, the remote delivery of medical care. In early 2005, researchers at the National Biocomputation Center formed a spinoff company, Intelesense Technologies, to use the telemedicine sensors to provide integrated global monitoring systems. Intelesense uses the systems to better understand how environments and people are linked, monitor and protect natural resources, predict and adapt to environmental changes, provide for sustainable development, reduce the costs and impacts of natural disasters, and provide an effective and intelligent response to such disasters. Current projects range from protecting the environment to tracking emerging infectious diseases like avian influenza (bird flu) and helping people from around the world connect and interact with each other to better understand their environment and themselves.

  15. Beyond Relational: A Database Architecture and Federated Query Optimization in a Multi-Modal Healthcare Environment

    ERIC Educational Resources Information Center

    Hylock, Ray Hales

    2013-01-01

    Over the past thirty years, clinical research has benefited substantially from the adoption of electronic medical record systems. As deployment has increased, so too has the number of researchers seeking to improve the overall analytical environment by way of tools and models. Although much work has been done, there are still many uninvestigated…

  16. Investigation of DBMS for Use in a Research Environment. Rand Paper Series 7002.

    ERIC Educational Resources Information Center

    Rosenfeld, Pilar N.

    This investigation of the use of database management systems (DBMS) in a research environment used the Rand Corporation as a case study. After a general introduction in section 1, eight sections present the major components of the study. Section 2 contains an overview of DBMS terminology and concepts, followed in section 3 by a general dsecription…

  17. Energy, Environment, Productivity. Proceedings of the First Symposium on RANN: Research Applied to National Needs, November 1973.

    ERIC Educational Resources Information Center

    Holmes, Jay, Ed.

    This volume records the presentations made at the Symposium on Research Applied to National Needs. The three major problem areas of energy, the environment, and productivity serve as a focus for the papers. The 14 papers in the first section deal with energy programs; energy under the ocean; energy conversion and transmission systems; and…

  18. An assessment of DREAM, appendix E

    NASA Technical Reports Server (NTRS)

    Riddle, W. E.

    1980-01-01

    The design realization, evaluation and modelling (DREAM) system is evaluated. A short history of the DREAM research project is given as well as the significant characteristics of DREAM as a development environment. The design notation which is the basis for the DREAM system is reviewed, and the development tools envisioned as part of DREAM are discussed. Insights into development environments and their production are presented and used to make suggestions for future work in the area of development environments.

  19. Research in space commercialization, technology transfer, and communications, volume 2

    NASA Technical Reports Server (NTRS)

    Dunn, D. A.; Agnew, C. E.

    1983-01-01

    Spectrum management, models for evaluating communication systems, the communications regulatory environment, expert prediction and consensus, remote sensing, and manned space operations research are discussed.

  20. Experience on HTCondor batch system for HEP and other research fields at KISTI-GSDC

    NASA Astrophysics Data System (ADS)

    Ahn, S. U.; Jaikar, A.; Kong, B.; Yeo, I.; Bae, S.; Kim, J.

    2017-10-01

    Global Science experimental Data hub Center (GSDC) at Korea Institute of Science and Technology Information (KISTI) located at Daejeon in South Korea is the unique datacenter in the country which helps with its computing resources fundamental research fields dealing with the large-scale of data. For historical reason, it has run Torque batch system while recently it starts running HTCondor for new systems. Having different kinds of batch systems implies inefficiency in terms of resource management and utilization. We conducted a research on resource management with HTCondor for several user scenarios corresponding to the user environments that currently GSDC supports. A recent research on the resource usage patterns at GSDC is considered in this research to build the possible user scenarios. Checkpointing and Super-Collector model of HTCondor give us more efficient and flexible way to manage resources and Grid Gate provided by HTCondor helps to interface with the Grid environment. In this paper, the overview on the essential features of HTCondor exploited in this work is described and the practical examples for HTCondor cluster configuration in our cases are presented.

  1. Study on the Progress of Ecological Fragility Assessment in China

    NASA Astrophysics Data System (ADS)

    Chen, Pei; Hou, Kang; Chang, Yue; Li, Xuxiang; Zhang, Yunwei

    2018-02-01

    The basic elements of human survival are based on the ecological environment. The development of social economic and the security of the ecological environment are closely linked and interact with each other. The fragility of the environment directly affects the stability of the regional ecosystem and the sustainable development of the ecological environment. As part of the division of the national ecological security, the assessment of ecological fragility has become a hot and difficult issue in environmental research, and researchers at home and abroad have systematically studied the causes and states of ecological fragility. The assessment of regional ecological fragility is a qualitative and quantitative analysis of the unbalanced distribution of ecological environment factors caused by human socio-economic activities or changes in ecosystems. At present, researches on ecological fragility has not formed a complete and unified index assessment system, and the unity of the assessment model has a direct impact on the accuracy of the index weights. Therefore, the discussion on selection of ecological fragility indexes and the improvement of ecological fragility assessment model is necessary, which is good for the improvement of ecological fragility assessment system in China.

  2. Saline Systems highlights for 2005

    PubMed Central

    2006-01-01

    On the 4th of July, 2005, the Saline Systems editorial group launched the new online open access journal, Saline Systems, with BioMed Central as the publisher. The scope of the journal includes both basic and applied research on halophilic organisms and saline environments, from gene systems to ecosystems. The stated goal of the journal is to meet publication needs for researchers working in coastal and inland saline environments and provide an interdisciplinary and readily accessible forum for scientists worldwide. The inaugural volume of the journal contains a significant number of high quality original research papers and reviews on a wide range of relevant topics. At the end of the launch period, from January 1, 2006 onwards, the journal will be introducing article-processing charges to cover the cost of publication. Charges will be partly or completely waived for authors from BioMed Central institutional subscribers and in cases of financial hardship. PMID:16417635

  3. Modelling Technology for Building Fire Scene with Virtual Geographic Environment

    NASA Astrophysics Data System (ADS)

    Song, Y.; Zhao, L.; Wei, M.; Zhang, H.; Liu, W.

    2017-09-01

    Building fire is a risky activity that can lead to disaster and massive destruction. The management and disposal of building fire has always attracted much interest from researchers. Integrated Virtual Geographic Environment (VGE) is a good choice for building fire safety management and emergency decisions, in which a more real and rich fire process can be computed and obtained dynamically, and the results of fire simulations and analyses can be much more accurate as well. To modelling building fire scene with VGE, the application requirements and modelling objective of building fire scene were analysed in this paper. Then, the four core elements of modelling building fire scene (the building space environment, the fire event, the indoor Fire Extinguishing System (FES) and the indoor crowd) were implemented, and the relationship between the elements was discussed also. Finally, with the theory and framework of VGE, the technology of building fire scene system with VGE was designed within the data environment, the model environment, the expression environment, and the collaborative environment as well. The functions and key techniques in each environment are also analysed, which may provide a reference for further development and other research on VGE.

  4. The Use of a UNIX-Based Workstation in the Information Systems Laboratory

    DTIC Science & Technology

    1989-03-01

    system. The conclusions of the research and the resulting recommendations are presented in Chapter III. These recommendations include how to manage...required to run the program on a new system, these should not be significant changes. 2. Processing Environment The UNIX processing environment is...interactive with multi-tasking and multi-user capabilities. Multi-tasking refers to the fact that many programs can be run concurrently. This capability

  5. Study on the Future Internet System through Analysis of SCADA Systems

    NASA Astrophysics Data System (ADS)

    Song, Jae-Gu; Jung, Sungmo; Kim, Seoksoo

    Research on the future Internet is focused on establishing standards by solving problems through various projects and accepting various requirements. In this study, the SCADA (Supervisory Control And Data Acquisition) environment, closely related with national infrastructure, is analyzed in order to explore requirements of the future Internet and then those of the SCADA network. Also, this study provides SCADA system environments for the future Internet.

  6. The Crop Growth Research Chamber - A ground-based facility for CELSS research

    NASA Technical Reports Server (NTRS)

    Bubenheim, David L.; Luna, Phil M.; Wagenbach, Kimberly M.; Haslerud, Mark; Straight, Christian L.

    1989-01-01

    Crop Growth Research Chambers (CGRCs) are being developed as CELSS research facilities for the NASA/Ames Research Center. The history of the CGRC project is reviewed, noting the applications of CGRC research for the development of the Space Station. The CGRCs are designed for CELSS research and development, system control and integration, and flight hardware design and experimentation. The atmospheric and hydroponic environments of the CGRC system are described and the science requirements for CGRC environmental control are listed.

  7. Developing Guidelines for Assessing Visual Analytics Environments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scholtz, Jean

    2011-07-01

    In this paper, we develop guidelines for evaluating visual analytic environments based on a synthesis of reviews for the entries to the 2009 Visual Analytics Science and Technology (VAST) Symposium Challenge and from a user study with professional intelligence analysts. By analyzing the 2009 VAST Challenge reviews we gained a better understanding of what is important to our reviewers, both visualization researchers and professional analysts. We also report on a small user study with professional analysts to determine the important factors that they use in evaluating visual analysis systems. We then looked at guidelines developed by researchers in various domainsmore » and synthesized these into an initial set for use by others in the community. In a second part of the user study, we looked at guidelines for a new aspect of visual analytic systems – the generation of reports. Future visual analytic systems have been challenged to help analysts generate their reports. In our study we worked with analysts to understand the criteria they used to evaluate the quality of analytic reports. We propose that this knowledge will be useful as researchers look at systems to automate some of the report generation.1 Based on these efforts, we produced some initial guidelines for evaluating visual analytic environment and for evaluation of analytic reports. It is important to understand that these guidelines are initial drafts and are limited in scope because of the type of tasks for which the visual analytic systems used in the studies in this paper were designed. More research and refinement is needed by the Visual Analytics Community to provide additional evaluation guidelines for different types of visual analytic environments.« less

  8. Impact of new computing systems on computational mechanics and flight-vehicle structures technology

    NASA Technical Reports Server (NTRS)

    Noor, A. K.; Storaasli, O. O.; Fulton, R. E.

    1984-01-01

    Advances in computer technology which may have an impact on computational mechanics and flight vehicle structures technology were reviewed. The characteristics of supersystems, highly parallel systems, and small systems are summarized. The interrelations of numerical algorithms and software with parallel architectures are discussed. A scenario for future hardware/software environment and engineering analysis systems is presented. Research areas with potential for improving the effectiveness of analysis methods in the new environment are identified.

  9. Distributed and collaborative synthetic environments

    NASA Technical Reports Server (NTRS)

    Bajaj, Chandrajit L.; Bernardini, Fausto

    1995-01-01

    Fast graphics workstations and increased computing power, together with improved interface technologies, have created new and diverse possibilities for developing and interacting with synthetic environments. A synthetic environment system is generally characterized by input/output devices that constitute the interface between the human senses and the synthetic environment generated by the computer; and a computation system running a real-time simulation of the environment. A basic need of a synthetic environment system is that of giving the user a plausible reproduction of the visual aspect of the objects with which he is interacting. The goal of our Shastra research project is to provide a substrate of geometric data structures and algorithms which allow the distributed construction and modification of the environment, efficient querying of objects attributes, collaborative interaction with the environment, fast computation of collision detection and visibility information for efficient dynamic simulation and real-time scene display. In particular, we address the following issues: (1) A geometric framework for modeling and visualizing synthetic environments and interacting with them. We highlight the functions required for the geometric engine of a synthetic environment system. (2) A distribution and collaboration substrate that supports construction, modification, and interaction with synthetic environments on networked desktop machines.

  10. Rotorcraft Research at the NASA Vertical Motion Simulator

    NASA Technical Reports Server (NTRS)

    Aponso, Bimal Lalith; Tran, Duc T.; Schroeder, Jeffrey A.

    2009-01-01

    In the 1970 s the role of the military helicopter evolved to encompass more demanding missions including low-level nap-of-the-earth flight and operation in severely degraded visual environments. The Vertical Motion Simulator (VMS) at the NASA Ames Research Center was built to provide a high-fidelity simulation capability to research new rotorcraft concepts and technologies that could satisfy these mission requirements. The VMS combines a high-fidelity large amplitude motion system with an adaptable simulation environment including interchangeable and configurable cockpits. In almost 30 years of operation, rotorcraft research on the VMS has contributed significantly to the knowledge-base on rotorcraft performance, handling qualities, flight control, and guidance and displays. These contributions have directly benefited current rotorcraft programs and flight safety. The high fidelity motion system in the VMS was also used to research simulation fidelity. This research provided a fundamental understanding of pilot cueing modalities and their effect on simulation fidelity.

  11. Neurophysiology Summary

    NASA Technical Reports Server (NTRS)

    Paloski, William H.

    2001-01-01

    The terrestrial gravitational field serves as an important orientation reference for human perception and movement, being continually monitored by sensory receptors in the skin, muscles, joints, and vestibular otolith organs. Cues from these graviceptors are used by the brain to estimate spatial orientation and to control balance and movement. Changes in these cues associated with the tonic changes in gravity (gravito-inertial force),during the launch and entry phases of space flight missions result in altered perceptions, degraded motor control performance, and in some cases, "motion" sickness during, and for a period of time after, the g-transitions. In response to these transitions, however, physiological and behavioral response mechanisms are triggered to compensate for altered graviceptor cues and/or to adapt to the new sensory environment. Basic research in the neurophysiology discipline is focused on understanding the characteristic features of and the underlying mechanisms for the normal human response to tonic changes in the gravito-inertial force environment. These studies address fundamental questions regarding the role of graviceptors in orientation and movement in the terrestrial environment, as well as the capacity, specificity, and modes for neural plasticity in the sensory-motor and perceptual systems of the brain. At the 2001 workshop basic research studies were presented addressing: neuroanatomical responses to altered gravity environments, the neural mechanisms for resolving the ambiguity between tilting and translational stimuli in otolith organ sensory input, interactions between the vestibular system and the autonomic nervous system , the roles of haptic and visual cues in spatial orientation, mechanisms for training environment-appropriate sensorimotor responses triggered by environment-specific context cues, and studies of sensori-motor control of posture and locomotion in the terrestrial environment with and without recent exposure to space flight. Building on these basic research studies are more applied studies focused on the development of countermeasures to the untoward neurophysiological responses to space flight. At the 2001 workshop, applied research studies were presented addressing issues related to the use of rotational artificial gravity (centripetal acceleration) as a multisystem (bone, muscle, cardiovascular, and, perhaps, neurovestibular) countermeasure. Also presented was a clinical study reporting on a new rating system for clinical evaluation of postflight functional neurological status.

  12. SEMS: System for Environmental Monitoring and Sustainability

    NASA Technical Reports Server (NTRS)

    Arvidson, Raymond E.

    1998-01-01

    The goal of this project was to establish a computational and data management system, SEMS, building on our existing system and MTPE-related research. We proposed that the new system would help support Washington University's efforts in environmental sustainability through use in: (a) Problem-based environmental curriculum for freshmen and sophomores funded by the Hewlett Foundation that integrates scientific, cultural, and policy perspectives to understand the dynamics of wetland degradation, deforestation, and desertification and that will develop policies for sustainable environments and economies; (b) Higher-level undergraduate and graduate courses focused on monitoring the environment and developing policies that will lead to sustainable environmental and economic conditions; and (c) Interdisciplinary research focused on the dynamics of the Missouri River system and development of policies that lead to sustainable environmental and economic floodplain conditions.

  13. Integrating Grid Services into the Cray XT4 Environment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NERSC; Cholia, Shreyas; Lin, Hwa-Chun Wendy

    2009-05-01

    The 38640 core Cray XT4"Franklin" system at the National Energy Research Scientific Computing Center (NERSC) is a massively parallel resource available to Department of Energy researchers that also provides on-demand grid computing to the Open Science Grid. The integration of grid services on Franklin presented various challenges, including fundamental differences between the interactive and compute nodes, a stripped down compute-node operating system without dynamic library support, a shared-root environment and idiosyncratic application launching. Inour work, we describe how we resolved these challenges on a running, general-purpose production system to provide on-demand compute, storage, accounting and monitoring services through generic gridmore » interfaces that mask the underlying system-specific details for the end user.« less

  14. Designing a Web-Based Science Learning Environment for Model-Based Collaborative Inquiry

    NASA Astrophysics Data System (ADS)

    Sun, Daner; Looi, Chee-Kit

    2013-02-01

    The paper traces a research process in the design and development of a science learning environment called WiMVT (web-based inquirer with modeling and visualization technology). The WiMVT system is designed to help secondary school students build a sophisticated understanding of scientific conceptions, and the science inquiry process, as well as develop critical learning skills through model-based collaborative inquiry approach. It is intended to support collaborative inquiry, real-time social interaction, progressive modeling, and to provide multiple sources of scaffolding for students. We first discuss the theoretical underpinnings for synthesizing the WiMVT design framework, introduce the components and features of the system, and describe the proposed work flow of WiMVT instruction. We also elucidate our research approach that supports the development of the system. Finally, the findings of a pilot study are briefly presented to demonstrate of the potential for learning efficacy of the WiMVT implementation in science learning. Implications are drawn on how to improve the existing system, refine teaching strategies and provide feedback to researchers, designers and teachers. This pilot study informs designers like us on how to narrow the gap between the learning environment's intended design and its actual usage in the classroom.

  15. Evaluation of teleoperated surgical robots in an enclosed undersea environment.

    PubMed

    Doarn, Charles R; Anvari, Mehran; Low, Thomas; Broderick, Timothy J

    2009-05-01

    The ability to support surgical care in an extreme environment is a significant issue for both military medicine and space medicine. Telemanipulation systems, those that can be remotely operated from a distant site, have been used extensively by the National Aeronautics and Space Administration (NASA) for a number of years. These systems, often called telerobots, have successfully been applied to surgical interventions. A further extension is to operate these robotic systems over data communication networks where robotic slave and master are separated by a great distance. NASA utilizes the National Oceanographic and Atmospheric Administration (NOAA) Aquarius underwater habitat as an analog environment for research and technology evaluation missions, known as NASA Extreme Environment Mission Operations (NEEMO). Three NEEMO missions have provided an opportunity to evaluate teleoperated surgical robotics by astronauts and surgeons. Three robotic systems were deployed to the habitat for evaluation during NEEMO 7, 9, and 12. These systems were linked via a telecommunications link to various sites for remote manipulation. Researchers in the habitat conducted a variety of tests to evaluate performance and applicability in extreme environments. Over three different NEEMO missions, components of the Automated Endoscopic System for Optimal Positioning (AESOP), the M7 Surgical System, and the RAVEN were deployed and evaluated. A number of factors were evaluated, including communication latency and semiautonomous functions. The M7 was modified to permit a remote surgeon the ability to insert a needle into simulated tissue with ultrasound guidance, resulting in the world's first semi-autonomous supervisory-controlled medical task. The deployment and operation of teleoperated surgical systems and semi-autonomous, supervisory-controlled tasks were successfully conducted.

  16. Particle Tracking Model (PTM) with Coastal Modeling System (CMS)

    DTIC Science & Technology

    2015-11-04

    Coastal Inlets Research Program Particle Tracking Model (PTM) with Coastal Modeling System ( CMS ) The Particle Tracking Model (PTM) is a Lagrangian...currents and waves. The Coastal Inlets Research Program (CIRP) supports the PTM with the Coastal Modeling System ( CMS ), which provides coupled wave...and current forcing for PTM simulations. CMS -PTM is implemented in the Surface-water Modeling System, a GUI environment for input development

  17. Acceleration Environment of the International Space Station

    NASA Technical Reports Server (NTRS)

    McPherson, Kevin; Kelly, Eric; Keller, Jennifer

    2009-01-01

    Measurement of the microgravity acceleration environment on the International Space Station has been accomplished by two accelerometer systems since 2001. The Microgravity Acceleration Measurement System records the quasi-steady microgravity environment, including the influences of aerodynamic drag, vehicle rotation, and venting effects. Measurement of the vibratory/transient regime, comprised of vehicle, crew, and equipment disturbances, has been accomplished by the Space Acceleration Measurement System-II. Until the arrival of the Columbus Orbital Facility and the Japanese Experiment Module, the location of these sensors, and therefore, the measurement of the microgravity acceleration environment, has been limited to within the United States Laboratory. Japanese Aerospace Exploration Agency has developed a vibratory acceleration measurement system called the Microgravity Measurement Apparatus which will be deployed within the Japanese Experiment Module to make distributed measurements of the Japanese Experiment Module's vibratory acceleration environment. Two Space Acceleration Measurement System sensors from the United States Laboratory will be re-deployed to support vibratory acceleration data measurement within the Columbus Orbital Facility. The additional measurement opportunities resulting from the arrival of these new laboratories allows Principal Investigators with facilities located in these International Space Station research laboratories to obtain microgravity acceleration data in support of their sensitive experiments. The Principal Investigator Microgravity Services project, at NASA Glenn Research Center, in Cleveland, Ohio, has supported acceleration measurement systems and the microgravity scientific community through the processing, characterization, distribution, and archival of the microgravity acceleration data obtained from the International Space Station acceleration measurement systems. This paper summarizes the PIMS capabilities available to the International Space Station scientific community, introduces plans for extending microgravity analysis results to the newly arrived scientific laboratories, and provides summary information for known microgravity environment disturbers.

  18. I want what you've got: Cross platform portabiity and human-robot interaction assessment.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Julie L. Marble, Ph.D.*.; Douglas A. Few; David J. Bruemmer

    2005-08-01

    Human-robot interaction is a subtle, yet critical aspect of design that must be assessed during the development of both the human-robot interface and robot behaviors if the human-robot team is to effectively meet the complexities of the task environment. Testing not only ensures that the system can successfully achieve the tasks for which it was designed, but more importantly, usability testing allows the designers to understand how humans and robots can, will, and should work together to optimize workload distribution. A lack of human-centered robot interface design, the rigidity of sensor configuration, and the platform-specific nature of research robot developmentmore » environments are a few factors preventing robotic solutions from reaching functional utility in real word environments. Often the difficult engineering challenge of implementing adroit reactive behavior, reliable communication, trustworthy autonomy that combines with system transparency and usable interfaces is overlooked in favor of other research aims. The result is that many robotic systems never reach a level of functional utility necessary even to evaluate the efficacy of the basic system, much less result in a system that can be used in a critical, real-world environment. Further, because control architectures and interfaces are often platform specific, it is difficult or even impossible to make usability comparisons between them. This paper discusses the challenges inherent to the conduct of human factors testing of variable autonomy control architectures and across platforms within a complex, real-world environment. It discusses the need to compare behaviors, architectures, and interfaces within a structured environment that contains challenging real-world tasks, and the implications for system acceptance and trust of autonomous robotic systems for how humans and robots interact in true interactive teams.« less

  19. The coherence lifetime-borrowing effect in vibronically coupled molecular aggregates under non-perturbative system-environment interactions.

    NASA Astrophysics Data System (ADS)

    Yeh, Shu-Hao; Engel, Gregory S.; Kais, Sabre

    Recently it has been suggested that the long-lived coherences in some photosynthetic pigment-protein systems, such as the Fenna-Matthews-Olson complex, could be attributed to the mixing of the pigments' electronic and vibrational degrees of freedom. In order to verify whether this is the case and to understand its underlying mechanism, a theoretical model capable of including both the electronic excitations and intramolecular vibrational modes of the pigments is necessary. Our model simultaneously considers the electronic and vibrational degrees of freedom, treating the system-environment interactions non-perturbatively by implementing the hierarchical equations of motion approach. Here we report the simulated two-dimensional electronic spectra of vibronically coupled molecular dimers to demonstrate how the electronic coherence lifetimes can be extended by borrowing the lifetime from the vibrational coherences. Funded by Qatar National Research Fund and Qatar Environment and Energy Research Institute.

  20. Large space-based systems for dealing with global environment change

    NASA Technical Reports Server (NTRS)

    Jenkins, Lyle M.

    1992-01-01

    Increased concern over the effects of global climate change and depletion of the ozone layer has resulted in support for the Global Change Research Program and the Mission to Planet Earth. Research to understand Earth system processes is critical, but it falls short of providing ways of mitigating the effects of change. Geoengineering options and alternatives to interactively manage change need to be developed. Space-based concepts for dealing with changes to the environment should be considered in addition to Earth-based actions. 'Mission for Planet Earth' describes those space-based geoengineering solutions that may combine with an international global change program to stabilize the Global environment. Large space systems that may be needed for this response challenge guidance and control engineering and technology. Definition, analysis, demonstration, and preparation of geoengineering technology will provide a basis for policy response if global change consequences are severe.

  1. Evaluation of the Next-Gen Exercise Software Interface in the NEEMO Analog

    NASA Technical Reports Server (NTRS)

    Hanson, Andrea; Kalogera, Kent; Sandor, Aniko; Hardy, Marc; Frank, Andrew; English, Kirk; Williams, Thomas; Perera, Jeevan; Amonette, William

    2017-01-01

    NSBRI (National Space Biomedical Research Institute) funded research grant to develop the 'NextGen' exercise software for the NEEMO (NASA Extreme Environment Mission Operations) analog. Develop a software architecture to integrate instructional, motivational and socialization techniques into a common portal to enhance exercise countermeasures in remote environments. Increase user efficiency and satisfaction, and institute commonality across multiple exercise systems. Utilized GUI (Graphical User Interface) design principals focused on intuitive ease of use to minimize training time and realize early user efficiency. Project requirement to test the software in an analog environment. Top Level Project Aims: 1) Improve the usability of crew interface software to exercise CMS (Crew Management System) through common app-like interfaces. 2) Introduce virtual instructional motion training. 3) Use virtual environment to provide remote socialization with family and friends, improve exercise technique, adherence, motivation and ultimately performance outcomes.

  2. Living with a Star (LWS) Space Environment Testbeds (SET), Mission Carrier Overview and Capabilities

    NASA Technical Reports Server (NTRS)

    Patschke, Robert; Barth, Janet; Label, Ken; Mariano, Carolyn; Pham, Karen; Brewer, Dana; Cuviello, Michael; Kobe, David; Wu, Carl; Jarosz, Donald

    2004-01-01

    NASA has initiated the Living With a Star (LWS) Program to develop the scientific understanding to address the aspects of the Connected Sun-Earth system that affect life and society. A goal of the program is to bridge the gap between science, engineering, and user application communities. This will enable future science, operational, and commercial objectives in space and atmospheric environments by improving engineering approaches to the accommodation and/or mitigation of the effects of solar variability on technological systems. The three program elements of the LWS Program are Science Missions; Targeted Research and Technology; and Space Environment Testbeds (SETS). SET is an ideal platform for small experiments performing research on space environment effects on technologies and on the mitigation of space weather effects. A short description of the LWS Program will be given, and the SET will be described in detail, giving the mission objectives, available carrier services, and upcoming flight opportunities.

  3. Human Research Program: 2012 Fiscal Year Annual Report

    NASA Technical Reports Server (NTRS)

    Effenhauser, Laura

    2012-01-01

    Crew health and performance are critical to successful human exploration beyond low Earth orbit. Risks to health and performance include physiologic effects from radiation, hypogravity, and planetary environments, as well as unique challenges in medical treatment, human factors, and support of behavioral health. The scientists and engineers of the Human Research Program (HRP) investigate and reduce the greatest risks to human health and performance, and provide essential countermeasures and technologies for human space exploration. In its seventh year of operation, the HRP continued to refine its management architecture of evidence, risks, gaps, tasks, and deliverables. Experiments continued on the International Space Station (ISS), on the ground in analog environments that have features similar to those of spaceflight, and in laboratory environments. Data from these experiments furthered the understanding of how the space environment affects the human system. These research results contributed to scientific knowledge and technology developments that address the human health and performance risks. As shown in this report, HRP has made significant progress toward developing medical care and countermeasure systems for space exploration missions which will ultimately reduce risks to crew health and performance.

  4. Virtual reality and physical rehabilitation: a new toy or a new research and rehabilitation tool?

    PubMed Central

    Keshner, Emily A

    2004-01-01

    Virtual reality (VR) technology is rapidly becoming a popular application for physical rehabilitation and motor control research. But questions remain about whether this technology really extends our ability to influence the nervous system or whether moving within a virtual environment just motivates the individual to perform. I served as guest editor of this month's issue of the Journal of NeuroEngineering and Rehabilitation (JNER) for a group of papers on augmented and virtual reality in rehabilitation. These papers demonstrate a variety of approaches taken for applying VR technology to physical rehabilitation. The papers by Kenyon et al. and Sparto et al. address critical questions about how this technology can be applied to physical rehabilitation and research. The papers by Sveistrup and Viau et al. explore whether action within a virtual environment is equivalent to motor performance within the physical environment. Finally, papers by Riva et al. and Weiss et al. discuss the important characteristics of a virtual environment that will be most effective for obtaining changes in the motor system. PMID:15679943

  5. Critical success factor (CSF) service delivery for tahfiz institution teaching & learning environment

    NASA Astrophysics Data System (ADS)

    Ridza, B. H.; Jalil, R. A.; Sipan, I.; Nukman, Y.

    2017-11-01

    The exceptional existence of tahfiz institutions (TI) by a government and the private sector in Malaysia indicates that tahfiz education at par to fill mainstream education. Nevertheless, the level of TI facilities management (FM) provided is unstandardized since its infrastructure and establishment is initiated by the varied background of TI organizer. Thus, the effectiveness of TI education system is immeasurable. The significance of this research is to explore the critical success factor (CSF) of service delivery for TI teaching and learning environment. This research adopts both qualitative and quantitative method through survey instrument in order to review and analyze to achieve the research goal. The findings showed several important criteria for a transformation of TI education teaching and learning environment such top management of TI needs to be more responsible in providing better FM practice to achieve efficiency of manpower in providing a conducive learning environment for students for producing excellent huffaz. Thus, TI education system needs to have clear standard guidelines in operating their activities in producing huffaz that capable implement Islamic knowledge to the development of the country.

  6. College Environment, Student Involvement, and Intellectual Development: Evidence in China

    ERIC Educational Resources Information Center

    Chi, Xianglan; Liu, Jinlan; Bai, Yin

    2017-01-01

    China's higher education system has been marked by dramatic growth since 1999. In response to calls for quality assurance, substantial efforts have been made to improve collegiate environments and enhance student learning. However, only limited empirical research has been conducted to investigate the effects of the college environment on student…

  7. [Effect of multicomponent environment on intestinal permeability of puerarin in biopharmaceutics classification system of Chinese materia medica].

    PubMed

    Liu, Yang; Wang, Gang; Dong, Ling; Tang, Ming-Min; Zhu, Mei-Ling; Dong, Hong-Huant; Hou, Cheng-Bo

    2014-12-01

    The evaluation of permeability in biopharmaceutics classification system of Chinese materia medica (CMMBCS) requires multicomponent as a whole in order to conduct research, even in the study of a specific component, should also be put in the multicomponent environment. Based on this principle, the high content components in Gegen Qinlian decoction were used as multicomponent environmental impact factors in the experiment, and the relevant parameters of intestinal permeability about puerarin were measured with using in situ single-pass intestinal perfusion model, to investigate and evaluate the intestinal permeability of puerarin with other high content components. The experimental results showed that different proportions of baicalin, glycyrrhizic acid and berberine had certain influence on intestinal permeability of puerarin, and glycyrrhizic acid could significantly inhibit the intestinal absorption of puerarin, moreover, high concentration of berberine could promote the absorption of puerarin. The research results indicated that the important research ideas of permeability evaluation in biopharmaceutics classification system of Chinese materia medica with fully considering the effects of other ingredients in multicomponent environment.

  8. Model-based engineering for laser weapons systems

    NASA Astrophysics Data System (ADS)

    Panthaki, Malcolm; Coy, Steve

    2011-10-01

    The Comet Performance Engineering Workspace is an environment that enables integrated, multidisciplinary modeling and design/simulation process automation. One of the many multi-disciplinary applications of the Comet Workspace is for the integrated Structural, Thermal, Optical Performance (STOP) analysis of complex, multi-disciplinary space systems containing Electro-Optical (EO) sensors such as those which are designed and developed by and for NASA and the Department of Defense. The CometTM software is currently able to integrate performance simulation data and processes from a wide range of 3-D CAD and analysis software programs including CODE VTM from Optical Research Associates and SigFitTM from Sigmadyne Inc. which are used to simulate the optics performance of EO sensor systems in space-borne applications. Over the past year, Comet Solutions has been working with MZA Associates of Albuquerque, NM, under a contract with the Air Force Research Laboratories. This funded effort is a "risk reduction effort", to help determine whether the combination of Comet and WaveTrainTM, a wave optics systems engineering analysis environment developed and maintained by MZA Associates and used by the Air Force Research Laboratory, will result in an effective Model-Based Engineering (MBE) environment for the analysis and design of laser weapons systems. This paper will review the results of this effort and future steps.

  9. [Research on Barrier-free Home Environment System Based on Speech Recognition].

    PubMed

    Zhu, Husheng; Yu, Hongliu; Shi, Ping; Fang, Youfang; Jian, Zhuo

    2015-10-01

    The number of people with physical disabilities is increasing year by year, and the trend of population aging is more and more serious. In order to improve the quality of the life, a control system of accessible home environment for the patients with serious disabilities was developed to control the home electrical devices with the voice of the patients. The control system includes a central control platform, a speech recognition module, a terminal operation module, etc. The system combines the speech recognition control technology and wireless information transmission technology with the embedded mobile computing technology, and interconnects the lamp, electronic locks, alarms, TV and other electrical devices in the home environment as a whole system through a wireless network node. The experimental results showed that speech recognition success rate was more than 84% in the home environment.

  10. SigmaCLIPSE = presentation management + NASA CLI PS + SQL

    NASA Technical Reports Server (NTRS)

    Weiss, Bernard P., Jr.

    1990-01-01

    SigmaCLIPSE provides an expert systems and 'intelligent' data base development program for diverse systems integration environments that require support for automated reasoning and expert systems technology, presentation management, and access to 'intelligent' SQL data bases. The SigmaCLIPSE technology and and its integrated ability to access 4th generation application development and decision support tools through a portable SQL interface, comprises a sophisticated software development environment for solving knowledge engineering and expert systems development problems in information intensive commercial environments -- financial services, health care, and distributed process control -- where the expert system must be extendable -- a major architectural advantage of NASA CLIPS. SigmaCLIPSE is a research effort intended to test the viability of merging SQL data bases with expert systems technology.

  11. A Virtual Research Environment for a Secondary Ion Mass Spectrometer (SIMS)

    NASA Astrophysics Data System (ADS)

    Wiedenbeck, M.; Schäfer, L.; Klump, J.; Galkin, A.

    2013-12-01

    Overview: This poster describes the development of a Virtual Research Environment for the Secondary Ion Mass Spectrometer (SIMS) at GFZ Potsdam. Background: Secondary Ion Mass Spectrometers (SIMS) are extremely sensitive instruments for analyzing the surfaces of solid and thin film samples. These instruments are rare, expensive and experienced operators are very highly sought after. As such, measurement time is a precious commodity, until now only accessible to small numbers of researchers. The challenge: The Virtual SIMS Project aims to set up a Virtual Research Environment for the operation of the CAMECA IMS 1280-HR instrument at the GFZ Potsdam. The objective of the VRE is to provide SIMS access not only to researchers locally present in Potsdam but also to scientists working with SIMS cooperation partners in e.g., South Africa, Brazil or India. The requirements: The system should address the complete spectrum of laboratory procedures - from online application for measurement time, to remote access for data acquisition to data archiving for the subsequent publication and for future reuse. The approach: The targeted Virtual SIMS Environment will consist of a: 1. Web Server running the Virtual SIMS website providing general information about the project, lab access proposal forms and calendar for the timing of project related tasks. 2. LIMS Server, responsible for scheduling procedures, data management and, if applicable, accounting and billing. 3. Remote SIMS Tool, devoted to the operation of the experiment within a remote control environment. 4. Publishing System, which supports the publication of results in cooperation with the GFZ Library services. 5. Training Simulator, which offers the opportunity to rehearse experiments and to prepare for possible events such as a power outages or interruptions to broadband services. First results: The SIMS Virtual Research Environment will be mainly based on open source software, the only exception being the CAMECA IMS 1280-HR SIMS operating under LabView. The Publishing System will be based on eSciDoc, which is already successfully used by the GFZ scientific library. For the LIMS Server we are currently testing various options. The challenge, however, is the successful integration of all the various components and, where necessary, the definition of useful interfaces between the modules.

  12. Adaptive Process Control with Fuzzy Logic and Genetic Algorithms

    NASA Technical Reports Server (NTRS)

    Karr, C. L.

    1993-01-01

    Researchers at the U.S. Bureau of Mines have developed adaptive process control systems in which genetic algorithms (GA's) are used to augment fuzzy logic controllers (FLC's). GA's are search algorithms that rapidly locate near-optimum solutions to a wide spectrum of problems by modeling the search procedures of natural genetics. FLC's are rule based systems that efficiently manipulate a problem environment by modeling the 'rule-of-thumb' strategy used in human decision-making. Together, GA's and FLC's possess the capabilities necessary to produce powerful, efficient, and robust adaptive control systems. To perform efficiently, such control systems require a control element to manipulate the problem environment, an analysis element to recognize changes in the problem environment, and a learning element to adjust to the changes in the problem environment. Details of an overall adaptive control system are discussed. A specific laboratory acid-base pH system is used to demonstrate the ideas presented.

  13. Genetic algorithms in adaptive fuzzy control

    NASA Technical Reports Server (NTRS)

    Karr, C. Lucas; Harper, Tony R.

    1992-01-01

    Researchers at the U.S. Bureau of Mines have developed adaptive process control systems in which genetic algorithms (GA's) are used to augment fuzzy logic controllers (FLC's). GA's are search algorithms that rapidly locate near-optimum solutions to a wide spectrum of problems by modeling the search procedures of natural genetics. FLC's are rule based systems that efficiently manipulate a problem environment by modeling the 'rule-of-thumb' strategy used in human decision making. Together, GA's and FLC's possess the capabilities necessary to produce powerful, efficient, and robust adaptive control systems. To perform efficiently, such control systems require a control element to manipulate the problem environment, an analysis element to recognize changes in the problem environment, and a learning element to adjust fuzzy membership functions in response to the changes in the problem environment. Details of an overall adaptive control system are discussed. A specific computer-simulated chemical system is used to demonstrate the ideas presented.

  14. From Research to Operations: Integrating Components of an Advanced Diagnostic System with an Aspect-Oriented Framework

    NASA Technical Reports Server (NTRS)

    Fletcher, Daryl P.; Alena, Richard L.; Akkawi, Faisal; Duncavage, Daniel P.

    2004-01-01

    This paper presents some of the challenges associated with bringing software projects from the research world into an operationa1 environment. While the core functional components of research-oriented software applications can have great utility in an operational setting, these applications often lack aspects important in an operational environment such as logging and security. Furthermore, these stand-alone applications, sometimes developed in isolation from one another, can produce data products useful to other applications in a software ecosystem.

  15. Integrating medical imaging analyses through a high-throughput bundled resource imaging system

    NASA Astrophysics Data System (ADS)

    Covington, Kelsie; Welch, E. Brian; Jeong, Ha-Kyu; Landman, Bennett A.

    2011-03-01

    Exploitation of advanced, PACS-centric image analysis and interpretation pipelines provides well-developed storage, retrieval, and archival capabilities along with state-of-the-art data providence, visualization, and clinical collaboration technologies. However, pursuit of integrated medical imaging analysis through a PACS environment can be limiting in terms of the overhead required to validate, evaluate and integrate emerging research technologies. Herein, we address this challenge through presentation of a high-throughput bundled resource imaging system (HUBRIS) as an extension to the Philips Research Imaging Development Environment (PRIDE). HUBRIS enables PACS-connected medical imaging equipment to invoke tools provided by the Java Imaging Science Toolkit (JIST) so that a medical imaging platform (e.g., a magnetic resonance imaging scanner) can pass images and parameters to a server, which communicates with a grid computing facility to invoke the selected algorithms. Generated images are passed back to the server and subsequently to the imaging platform from which the images can be sent to a PACS. JIST makes use of an open application program interface layer so that research technologies can be implemented in any language capable of communicating through a system shell environment (e.g., Matlab, Java, C/C++, Perl, LISP, etc.). As demonstrated in this proof-of-concept approach, HUBRIS enables evaluation and analysis of emerging technologies within well-developed PACS systems with minimal adaptation of research software, which simplifies evaluation of new technologies in clinical research and provides a more convenient use of PACS technology by imaging scientists.

  16. A multiarchitecture parallel-processing development environment

    NASA Technical Reports Server (NTRS)

    Townsend, Scott; Blech, Richard; Cole, Gary

    1993-01-01

    A description is given of the hardware and software of a multiprocessor test bed - the second generation Hypercluster system. The Hypercluster architecture consists of a standard hypercube distributed-memory topology, with multiprocessor shared-memory nodes. By using standard, off-the-shelf hardware, the system can be upgraded to use rapidly improving computer technology. The Hypercluster's multiarchitecture nature makes it suitable for researching parallel algorithms in computational field simulation applications (e.g., computational fluid dynamics). The dedicated test-bed environment of the Hypercluster and its custom-built software allows experiments with various parallel-processing concepts such as message passing algorithms, debugging tools, and computational 'steering'. Such research would be difficult, if not impossible, to achieve on shared, commercial systems.

  17. The Role of Intelligent Agents in Advanced Information Systems

    NASA Technical Reports Server (NTRS)

    Kerschberg, Larry

    1999-01-01

    In this presentation we review the current ongoing research within George Mason University's (GMU) Center for Information Systems Integration and Evolution (CISE). We define characteristics of advanced information systems, discuss a family of agents for such systems, and show how GMU's Domain modeling tools and techniques can be used to define a product line Architecture for configuring NASA missions. These concepts can be used to define Advanced Engineering Environments such as those envisioned for NASA's new initiative for intelligent design and synthesis environments.

  18. Design and Usability Assessment of a Dialogue-Based Cognitive Tutoring System to Model Expert Problem Solving in Research Design

    ERIC Educational Resources Information Center

    Hung, Wei-Chen; Smith, Thomas J.; Smith, M. Cecil

    2015-01-01

    Technology provides the means to create useful learning and practice environments for learners. Well-designed cognitive tutor systems, for example, can provide appropriate learning environments that feature cognitive supports (ie, scaffolding) for students to increase their procedural knowledge. The purpose of this study was to conduct a series of…

  19. Trajectories of Engagement: A Repeated Cross-Sectional Investigation of Student Perceptions of an Online Learning Environment

    ERIC Educational Resources Information Center

    Palmer, Stuart; Holt, Dale

    2012-01-01

    Evaluations of online learning environments (OLEs) often present a snapshot of system use. It has been identified in the literature that extended evaluation is required to reveal statistically significant developments in the evolution of system use over time. The research presented here draws on student OLE evaluations surveys run over the period…

  20. Building of a Disaster Recovery Framework for E-Learning Environment Using Private Cloud Collaboration

    ERIC Educational Resources Information Center

    Togawa, Satoshi; Kanenishi, Kazuhide

    2014-01-01

    In this research, we have built a framework of disaster recovery such as against earthquake, tsunami disaster and a heavy floods for e-Learning environment. Especially, our proposed framework is based on private cloud collaboration. We build a prototype system based on IaaS architecture, and this prototype system is constructed by several private…

  1. Autonomy Supported, Learner-Controlled or System-Controlled Learning in Hypermedia Environments and the Influence of Academic Self-Regulation Style

    ERIC Educational Resources Information Center

    Gorissen, Chantal J. J.; Kester, Liesbeth; Brand-Gruwel, Saskia; Martens, Rob

    2015-01-01

    This study focuses on learning in three different hypermedia environments that either support autonomous learning, learner-controlled learning or system-controlled learning and explores the mediating role of academic self-regulation style (ASRS; i.e. a macro level of motivation) on learning. This research was performed to gain more insight in the…

  2. An intelligent control and virtual display system for evolutionary space station workstation design

    NASA Technical Reports Server (NTRS)

    Feng, Xin; Niederjohn, Russell J.; Mcgreevy, Michael W.

    1992-01-01

    Research and development of the Advanced Display and Computer Augmented Control System (ADCACS) for the space station Body-Ported Cupola Virtual Workstation (BP/VCWS) were pursued. The potential applications were explored of body ported virtual display and intelligent control technology for the human-system interfacing applications is space station environment. The new system is designed to enable crew members to control and monitor a variety of space operations with greater flexibility and efficiency than existing fixed consoles. The technologies being studied include helmet mounted virtual displays, voice and special command input devices, and microprocessor based intelligent controllers. Several research topics, such as human factors, decision support expert systems, and wide field of view, color displays are being addressed. The study showed the significant advantages of this uniquely integrated display and control system, and its feasibility for human-system interfacing applications in the space station command and control environment.

  3. Color Coded Cards for Student Behavior Management in Higher Education Environments

    ERIC Educational Resources Information Center

    Alhalabi, Wadee; Alhalabi, Mobeen

    2017-01-01

    The Color Coded Cards system as a possibly effective class management tool is the focus of this research. The Color Coded Cards system involves each student being given a card with a specific color based on his or her behavior. The main objective of the research is to find out whether this system effectively improves students' behavior, thus…

  4. Development and Use of an Adaptive Learning Environment to Research Online Study Behaviour

    ERIC Educational Resources Information Center

    Jonsdottir, Anna Helga; Jakobsdottir, Audbjorg; Stefansson, Gunnar

    2015-01-01

    This paper describes a system for research on the behaviour of students taking online drills. The system is accessible and free to use for anyone with web access. Based on open source software, the teaching material is licensed under a Creative Commons License. The system has been used for computer-assisted education in statistics, mathematics and…

  5. MIMI: multimodality, multiresource, information integration environment for biomedical core facilities.

    PubMed

    Szymanski, Jacek; Wilson, David L; Zhang, Guo-Qiang

    2009-10-01

    The rapid expansion of biomedical research has brought substantial scientific and administrative data management challenges to modern core facilities. Scientifically, a core facility must be able to manage experimental workflow and the corresponding set of large and complex scientific data. It must also disseminate experimental data to relevant researchers in a secure and expedient manner that facilitates collaboration and provides support for data interpretation and analysis. Administratively, a core facility must be able to manage the scheduling of its equipment and to maintain a flexible and effective billing system to track material, resource, and personnel costs and charge for services to sustain its operation. It must also have the ability to regularly monitor the usage and performance of its equipment and to provide summary statistics on resources spent on different categories of research. To address these informatics challenges, we introduce a comprehensive system called MIMI (multimodality, multiresource, information integration environment) that integrates the administrative and scientific support of a core facility into a single web-based environment. We report the design, development, and deployment experience of a baseline MIMI system at an imaging core facility and discuss the general applicability of such a system in other types of core facilities. These initial results suggest that MIMI will be a unique, cost-effective approach to addressing the informatics infrastructure needs of core facilities and similar research laboratories.

  6. What Is Sleep Apnea?

    MedlinePlus

    ... NHLBI Division of Intramural Research and its Systems Biology Center are studying how genes and the environment ... which supports research on sleep and the circadian biology of sleep disorders, including how the body regulates ...

  7. NASA Integrated Systems Research with an Environmental Focus

    NASA Technical Reports Server (NTRS)

    Wolfe, Jean; Collier, Fay

    2010-01-01

    This slide presentation reviews the Integrated Systems Research Program (ISRP) with a focus on the work being done on reduction of environmental impact from aeronautics. The focus of the ISRP is to Conduct research at an integrated system-level on promising concepts and technologies and explore, assess, or demonstrate the benefits in a relevant environment. The presentation reviews the criteria for an ISRP project, and discusses the Environmentally Responsible Aviation (ERA) project, and the technical challenges.

  8. Student Research Projects

    NASA Technical Reports Server (NTRS)

    Yeske, Lanny A.

    1998-01-01

    Numerous FY1998 student research projects were sponsored by the Mississippi State University Center for Air Sea Technology. This technical note describes these projects which include research on: (1) Graphical User Interfaces, (2) Master Environmental Library, (3) Database Management Systems, (4) Naval Interactive Data Analysis System, (5) Relocatable Modeling Environment, (6) Tidal Models, (7) Book Inventories, (8) System Analysis, (9) World Wide Web Development, (10) Virtual Data Warehouse, (11) Enterprise Information Explorer, (12) Equipment Inventories, (13) COADS, and (14) JavaScript Technology.

  9. Ubiquitous Indoor Geolocation: a Case Study of Jewellery Management System

    NASA Astrophysics Data System (ADS)

    Nikparvar, B.; Sadeghi-Niaraki, A.; Azari, P.

    2014-10-01

    Addressing and geolocation for indoor environments are important fields of research in the recent years. The problem of finding location of objects in indoor spaces is proposed to solve in two ways. The first, is to assign coordinates to objects and second is to divide space into cells and detect the presence or absence of objects in each cell to track them. In this paper the second approach is discussed by using Radio Frequency Identification technology to identify and track high value objects in jewellery retail industry. In Ubiquitous Sensor Networks, the reactivity or proactivity of the environment are important issues. Reactive environments wait for a request to response to it. Instead, in proactive spaces, the environment acts in advance to deal with an expected action. In this research, a geo-sensor network containing RFID readers, tags, and antennas which continuously exchange radio frequency signal streams is proposed to manage and monitor jewellery galleries ubiquitously. The system is also equipped with a GIS representation which provides a more user-friendly system to manage a jewellery gallery.

  10. Mission Impact Through Neuro-Inspired Design (MIND) Laboratory: Design Principles and Performance Characteristics

    DTIC Science & Technology

    2013-09-01

    sprinkler , fire alarm, and mass-notification systems ). Piping required for the sprinkler system uses dielectric couplers at each penetration of the...environment for neuroscience research designed for studying Soldier- system interactions in support of the U.S. Army Research Laboratory’s (ARL’s...Engineers, of Towson, MD, —designed the heating, ventilation, and air conditioning and electrical systems ; Hi-Tech Services, Inc., of Ferndale, WA

  11. Research on rebuilding the data information environment for aeronautical manufacturing enterprise

    NASA Astrophysics Data System (ADS)

    Feng, Xilan; Jiang, Zhiqiang; Zong, Xuewen; Shi, Jinfa

    2005-12-01

    The data environment on integrated information system and the basic standard on information resource management are the key effectively of the remote collaborative designing and manufacturing for complex product. A study project on rebuilding the data information environment for aeronautical manufacturing enterprise (Aero-ME) is put forwarded. Firstly, the data environment on integrated information system, the basic standard on information resource management, the basic establishment on corporation's information, the development on integrated information system, and the information education are discussed profoundly based on the practical requirement of information resource and technique for contemporary Aero-ME. Then, the idea and method with the data environment rebuilding based on I-CASE in the corporation is put forward, and the effective method and implement approach for manufacturing enterprise information is brought forwards. It will also the foundation and assurance that rebuilding the corporation data-environment and promoting standardizing information resource management for the development of Aero-ME information engineering.

  12. Center for Advanced Computational Technology

    NASA Technical Reports Server (NTRS)

    Noor, Ahmed K.

    2000-01-01

    The Center for Advanced Computational Technology (ACT) was established to serve as a focal point for diverse research activities pertaining to application of advanced computational technology to future aerospace systems. These activities include the use of numerical simulations, artificial intelligence methods, multimedia and synthetic environments, and computational intelligence, in the modeling, analysis, sensitivity studies, optimization, design and operation of future aerospace systems. The Center is located at NASA Langley and is an integral part of the School of Engineering and Applied Science of the University of Virginia. The Center has four specific objectives: 1) conduct innovative research on applications of advanced computational technology to aerospace systems; 2) act as pathfinder by demonstrating to the research community what can be done (high-potential, high-risk research); 3) help in identifying future directions of research in support of the aeronautical and space missions of the twenty-first century; and 4) help in the rapid transfer of research results to industry and in broadening awareness among researchers and engineers of the state-of-the-art in applications of advanced computational technology to the analysis, design prototyping and operations of aerospace and other high-performance engineering systems. In addition to research, Center activities include helping in the planning and coordination of the activities of a multi-center team of NASA and JPL researchers who are developing an intelligent synthesis environment for future aerospace systems; organizing workshops and national symposia; as well as writing state-of-the-art monographs and NASA special publications on timely topics.

  13. Life sciences.

    PubMed

    Martin-Brennan, Cindy; Joshi, Jitendra

    2003-12-01

    Space life sciences research activities are reviewed for 2003. Many life sciences experiments were lost with the tragic loss of STS-107. Life sciences experiments continue to fly as small payloads to the International Space Station (ISS) via the Russian Progress vehicle. Health-related studies continue with the Martian Radiation Environment Experiment (MARIE) aboard the Odyssey spacecraft, collecting data on the radiation environment in Mars orbit. NASA Ames increased nanotechnology research in all areas, including fundamental biology, bioastronautics, life support systems, and homeland security. Plant research efforts continued at NASA Kennedy, testing candidate crops for ISS. Research included plant growth studies at different light intensities, varying carbon dioxide concentrations, and different growth media. Education and outreach efforts included development of a NASA/USDA program called Space Agriculture in the Classroom. Canada sponsored a project called Tomatosphere, with classrooms across North America exposing seeds to simulated Mars environment for growth studies. NASA's Office of Biological and Physical Research released an updated strategic research plan.

  14. Conducting Research as a Visiting Scientist in a Women’s Prison

    PubMed Central

    Byrne, Mary Woods

    2006-01-01

    Incarcerated populations have disparities in health risks and illness conditions meriting study, but the history of prison research is marred by unethical conduct. Ethical participation strategies are discussed in the context of studies implemented by the author in a state prison system. This study used ethnographic approaches, observed adherence to federal and institutional review board regulations and corrections department directives, and maintained continuous communication with vested interests to provide entry and long-term access for studies on female prisoners and their civilian infants. A culture clash between the punitive restrictive environment that serves the custody–control–care mission of corrections systems and the open inquiry environment needed for conduct of health research exists. Federal regulations protect prisoners as human subjects but additional vigilance and communication by researchers are required. Gaining and maintaining access to prison inmates for nursing research are leadership challenges that can be met within the caring and collaborative paradigm of nursing. PMID:16061169

  15. Leveraging Human-environment Systems in Residential Buildings for Aggregate Energy Efficiency and Sustainability

    NASA Astrophysics Data System (ADS)

    Xu, Xiaoqi

    Reducing the energy consumed in the built environment is a key objective in many sustainability initiatives. Existing energy saving methods have consisted of physical interventions to buildings and/or behavioral modifications of occupants. However, such methods may not only suffer from their own disadvantages, e.g. high cost and transient effect, but also lose aggregate energy saving potential due to the oftentimes-associated single-building-focused view and an isolated examination of occupant behaviors. This dissertation attempts to overcome the limitations of traditional energy saving research and practical approaches, and enhance residential building energy efficiency and sustainability by proposing innovative energy strategies from a holistic perspective of the aggregate human-environment systems. This holistic perspective features: (1) viewing buildings as mutual influences in the built environment, (2) leveraging both the individual and contextualized social aspects of occupant behaviors, and (3) incorporating interactions between the built environment and human behaviors. First, I integrate three interlinked components: buildings, residents, and the surrounding neighborhood, and quantify the potential energy savings to be gained from renovating buildings at the inter-building level and leveraging neighborhood-contextualized occupant social networks. Following the confirmation of both the inter-building effect among buildings and occupants' interpersonal influence on energy conservation, I extend the research further by examining the synergy that may exist at the intersection between these "engineered" building networks and "social" peer networks, focusing specifically on the additional energy saving potential that could result from interactions between the two components. Finally, I seek to reach an alignment of the human and building environment subsystems by matching the thermostat preferences of each household with the thermal conditions within their apartment, and develop the Energy Saving Alignment Strategy to be considered in public housing assignment policy. This strategy and the inter-building level energy management strategies developed in my preceding research possess large-scale cost-effectiveness and may engender long-lasting influence compared with existing energy saving approaches. Building from the holistic framework of coupled human-environment systems, the findings of this research will advance knowledge of energy efficiency in the built environment and lead to the development of novel strategies to conserve energy in residential buildings.

  16. Exploring chiropractic students' experiences of the educational environment in healthcare professional training: a qualitative study.

    PubMed

    Palmgren, Per J; Laksov, Klara Bolander

    2015-08-05

    The educational environment has a significant impact on students' behavior, sense of well-being, and academic advancement. While various research methodologies have been used to explore the educational environment, there is a paucity of studies employing qualitative research methods. This study engages in an in-depth exploration of chiropractic students' experiences of the meaning of the educational environment. A qualitative approach was employed by interviewing 26 students in four focus group interviews at two different points in time. A conventional manifest and latent content analysis was chosen to investigate and interpret the experiences of the educational environment in an undergraduate chiropractic training institution in Sweden. The analysis resulted in five overarching themes: Personal growth; Being part of a community; A place of meaningfulness; Trust in a regulated system; and Scaffolding relationships. Early in the training, the meaning of the educational environment was experienced as part of a vocational community and the scaffolding of intra-institutional relationships. In later stages, the environment was experienced in terms of personal growth - balancing academic pressures and progress within the professional community - thus laying the foundations for autonomy and motivation. During the clinical training, the environment was experienced as where learning happens, thus creating a place of meaningfulness. Throughout the training, the formal and clinical environments were experienced as isolating, with little bridging between the two. A regulated system - conveying an operative organization with clear communication regarding what to expect - was experienced as important for an apt educational environment. We found that experiences of an educational environment are dynamic and change over time. When restructuring or evaluating curriculums, educational managers can consider the emerged themes as constituting facets relating to the educational environment, and thus possible learning conditions. Likewise, researchers can consider these aspects of the educational environment when: interpreting results from quantitative and qualitative inquiries, constructing and refining instruments, or conceptualizing and framing the educational environment phenomenon.

  17. Autonomous Vehicle Systems Laboratory Research Capability Expansion Program

    DTIC Science & Technology

    2017-12-03

    currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. University of the Incarnate Word 4301 Broadway, Box #T-2 San Antonio...autonomous control , collaboration, and decision-making in unstructured, dynamic, and uncertain nonlinear environments for autonomous ground and air...vehicle systems. To fulfill the research goal, the PI has initiated fundamental research in the areas of autonomous rotorcraft control and

  18. Integrated instrumentation & computation environment for GRACE

    NASA Astrophysics Data System (ADS)

    Dhekne, P. S.

    2002-03-01

    The project GRACE (Gamma Ray Astrophysics with Coordinated Experiments) aims at setting up a state of the art Gamma Ray Observatory at Mt. Abu, Rajasthan for undertaking comprehensive scientific exploration over a wide spectral window (10's keV - 100's TeV) from a single location through 4 coordinated experiments. The cumulative data collection rate of all the telescopes is expected to be about 1 GB/hr, necessitating innovations in the data management environment. As real-time data acquisition and control as well as off-line data processing, analysis and visualization environment of these systems is based on the us cutting edge and affordable technologies in the field of computers, communications and Internet. We propose to provide a single, unified environment by seamless integration of instrumentation and computations by taking advantage of the recent advancements in Web based technologies. This new environment will allow researchers better acces to facilities, improve resource utilization and enhance collaborations by having identical environments for online as well as offline usage of this facility from any location. We present here a proposed implementation strategy for a platform independent web-based system that supplements automated functions with video-guided interactive and collaborative remote viewing, remote control through virtual instrumentation console, remote acquisition of telescope data, data analysis, data visualization and active imaging system. This end-to-end web-based solution will enhance collaboration among researchers at the national and international level for undertaking scientific studies, using the telescope systems of the GRACE project.

  19. Edge-Enabled Tactical Systems (Poster)

    DTIC Science & Technology

    2014-10-23

    Recently added capabilities allow fine grained network and data optimization in Disconnected, Intermittent, Low-Bandwidth (DIL) environments by...Research Focus Establishing Trusted Identities in Disconnected Tactical Environments We will develop trusted identity solutions that work within the...constraints of DIL environments in which there is no consistent access to third-party online trusted authorities that validate the credentials of

  20. Perceived Satisfaction, Perceived Usefulness and Interactive Learning Environments as Predictors to Self-Regulation in e-Learning Environments

    ERIC Educational Resources Information Center

    Liaw, Shu-Sheng; Huang, Hsiu-Mei

    2013-01-01

    The research purpose is to investigate learner self-regulation in e-learning environments. In order to better understand learner attitudes toward e-learning, 196 university students answer a questionnaire survey after use an e-learning system few months. The statistical results showed that perceived satisfaction, perceived usefulness, and…

  1. Ames Research Center Life Sciences Payload Project for Spacelab Mission 3

    NASA Technical Reports Server (NTRS)

    Callahan, P. X.; Tremor, J.; Lund, G.; Wagner, W. L.

    1983-01-01

    The Research Animal Holding Facility, developed to support rodent and squirrel monkey animal husbandry in the Spacelab environment, is to be tested during the Spacelab Mission 3 flight. The configuration and function of the payload hardware elements, the assembly and test program, the operational rationale, and the scientific approach of this mission are examined. Topics covered include animal life support systems, the squirrel monkey restraint, the camera-mirror system, the dynamic environment measurement system, the biotelemetry system, and the ground support equipment. Consideration is also given to animal pretests, loading the animals during their 12 hour light cycle, and animal early recovery after landing. This mission will be the first time that relatively large samples of monkeys and rats will be flown in space and also cared for and observed by man.

  2. Commentary: building human capital: discovery, learning, and professional satisfaction.

    PubMed

    Cox, Malcolm; Kupersmith, Joel; Jesse, Robert L; Petzel, Robert A

    2011-08-01

    Physician satisfaction is an important contributor to a well-functioning health system. Mohr and Burgess report that physicians in the Veterans Health Administration (VA) who spend time in research have greater overall job satisfaction, that satisfaction tracks with aggregate facility research funding, and that satisfaction is higher among physicians working in VA facilities located on the same campus or within walking distance of an affiliated medical school. An environment conducive to research therefore not only advances science but also seems to be a key element of physician satisfaction. In addition to advancing scientific discovery and promoting greater physician satisfaction, these findings suggest that an environment of discovery and learning may yield benefits beyond specific academic endeavors and contribute more broadly to supporting health system performance.

  3. Designing an Information System for the Preservation of the Insular Tropical Environment of Reunion Island

    NASA Astrophysics Data System (ADS)

    Conruyt, Noël; Sébastien, Didier; Courdier, Rémy; David, Daniel; Sébastien, Nicolas; Ralambondrainy, Tiana

    Decision-makers who wish to manage Insular Tropical Environments more efficiently need to narrow the gap between the production of scientific knowledge in universities, or other labs, and its pragmatic use by the general public and administrations. Today, one of the main challenges concerning the environment is the preservation of the biodiversity of ecosystems that suffer from urban and agricultural pressure. As we can only protect what we know, it is all the more important to share expert knowledge about habitats and species by using Internet in order to educate the public about their wealth and beauty. Based on Reunion Island, and taking into consideration an expected population growth of over 30% in the next twenty years, we are working to predict the human impact on this closed territory. To help tackle these two questions about biodiversity and land consumption, we have designed an Information System (IS) in the framework of the ETIC program. Our aim is to enhance insular tropical environment research in order to help the Reunion National Park to manage its protected territory. On the one hand, biodiversity research is handled statically, using knowledge bases and databases, to enhance Systematics and ecological university research. On the other hand, spatial planning concerns are treated dynamically, using multi-agent systems to simulate population densification movements. These software technologies have been implemented and integrated through a common architectural system in the ETIC program. They were conceived using Web Services that allow each module to communicate its functionalities and information with one another, as well as with external systems.

  4. Streaming Visual Analytics Workshop Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cook, Kristin A.; Burtner, Edwin R.; Kritzstein, Brian P.

    How can we best enable users to understand complex emerging events and make appropriate assessments from streaming data? This was the central question addressed at a three-day workshop on streaming visual analytics. This workshop was organized by Pacific Northwest National Laboratory for a government sponsor. It brought together forty researchers and subject matter experts from government, industry, and academia. This report summarizes the outcomes from that workshop. It describes elements of the vision for a streaming visual analytic environment and set of important research directions needed to achieve this vision. Streaming data analysis is in many ways the analysis andmore » understanding of change. However, current visual analytics systems usually focus on static data collections, meaning that dynamically changing conditions are not appropriately addressed. The envisioned mixed-initiative streaming visual analytics environment creates a collaboration between the analyst and the system to support the analysis process. It raises the level of discourse from low-level data records to higher-level concepts. The system supports the analyst’s rapid orientation and reorientation as situations change. It provides an environment to support the analyst’s critical thinking. It infers tasks and interests based on the analyst’s interactions. The system works as both an assistant and a devil’s advocate, finding relevant data and alerts as well as considering alternative hypotheses. Finally, the system supports sharing of findings with others. Making such an environment a reality requires research in several areas. The workshop discussions focused on four broad areas: support for critical thinking, visual representation of change, mixed-initiative analysis, and the use of narratives for analysis and communication.« less

  5. Simulation environment and graphical visualization environment: a COPD use-case.

    PubMed

    Huertas-Migueláñez, Mercedes; Mora, Daniel; Cano, Isaac; Maier, Dieter; Gomez-Cabrero, David; Lluch-Ariet, Magí; Miralles, Felip

    2014-11-28

    Today, many different tools are developed to execute and visualize physiological models that represent the human physiology. Most of these tools run models written in very specific programming languages which in turn simplify the communication among models. Nevertheless, not all of these tools are able to run models written in different programming languages. In addition, interoperability between such models remains an unresolved issue. In this paper we present a simulation environment that allows, first, the execution of models developed in different programming languages and second the communication of parameters to interconnect these models. This simulation environment, developed within the Synergy-COPD project, aims at helping and supporting bio-researchers and medical students understand the internal mechanisms of the human body through the use of physiological models. This tool is composed of a graphical visualization environment, which is a web interface through which the user can interact with the models, and a simulation workflow management system composed of a control module and a data warehouse manager. The control module monitors the correct functioning of the whole system. The data warehouse manager is responsible for managing the stored information and supporting its flow among the different modules. It has been proved that the simulation environment presented here allows the user to research and study the internal mechanisms of the human physiology by the use of models via a graphical visualization environment. A new tool for bio-researchers is ready for deployment in various use cases scenarios.

  6. Northeast Artificial Intelligence Consortium (NAIC). Volume 14. Knowledge Base Retrieval Using Plausible Inference

    DTIC Science & Technology

    1990-12-01

    Improvements to Research Environment ............... 6 14.3 Overview of Research ....... .......................... 7 14.3.1 An Experimental Study of...efficient inference methods. The critical issue we have studied is the effectiveness of retrieval. By this, we mean how well the system does at...locating objects that are judged relevant by the user . Designing effective retrieval strategies is difficult because in real environments the query

  7. Educational Policy Research in New Zealand: Issues and Challenges.

    ERIC Educational Resources Information Center

    Wagemaker, H.

    As exemplified by New Zealand, the nature of educational policy research is shaped by political and social factors that impinge upon the research environment. Following a description of the educational system and research funding methods, this paper analyzes three areas that affect policy research in New Zealand and addresses relevant social…

  8. Spacecraft VHF Radio Propagation Analysis in Ocean Environments Including Atmospheric Effects

    NASA Technical Reports Server (NTRS)

    Hwu, Shian; Moreno, Gerardo; Desilva, Kanishka; Jih, CIndy

    2010-01-01

    The Communication Systems Simulation Laboratory (CSSL) at the National Aeronautics and Space Administration (NASA)/Johnson Space Center (JSC) is tasked to perform spacecraft and ground network communication system simulations. The CSSL has developed simulation tools that model spacecraft communication systems and the space/ground environment in which they operate. This paper is to analyze a spacecraft's very high frequency (VHF) radio signal propagation and the impact to performance when landing in an ocean. Very little research work has been done for VHF radio systems in a maritime environment. Rigorous Radio Frequency (RF) modeling/simulation techniques were employed for various environmental effects. The simulation results illustrate the significance of the environmental effects on the VHF radio system performance.

  9. Some key considerations in evolving a computer system and software engineering support environment for the space station program

    NASA Technical Reports Server (NTRS)

    Mckay, C. W.; Bown, R. L.

    1985-01-01

    The space station data management system involves networks of computing resources that must work cooperatively and reliably over an indefinite life span. This program requires a long schedule of modular growth and an even longer period of maintenance and operation. The development and operation of space station computing resources will involve a spectrum of systems and software life cycle activities distributed across a variety of hosts, an integration, verification, and validation host with test bed, and distributed targets. The requirement for the early establishment and use of an apporopriate Computer Systems and Software Engineering Support Environment is identified. This environment will support the Research and Development Productivity challenges presented by the space station computing system.

  10. The Brazilian national system of forest permanent plots

    Treesearch

    Yeda Maria Malheiros de Oliveira; Maria Augusta Doetzer Rosot; Patricia Povoa de Mottos; Joberto Veloso de Freitas; Guilherme Luis Augusto Gomide; < i> et al< /i>

    2009-01-01

    The Brazilian National System of Forest Permanent Plots (SisPP) is a governmental initiative designed and being implemented in partnership by the Ministry of Environment (MMA), represented by the National Forest Programme (PNF) and the Brazilian Forest Service (SFB) and the Embrapa Forestry (a research center of the Brazilian Agricultural Research Corporation - Embrapa...

  11. Surface transportation : prospects for innovation through research, intelligent transportation systems, state infrastructure banks, and design-build contracting : testimony before the Subcommittee on Transportation and Infrastructure, Committee on Environ

    DOT National Transportation Integrated Search

    1997-03-06

    This testimony describes how innovation in federal research, financing and contracting methods has the potential for improving the performance of the nation's surface transportation system. The testimony is based on three reports on the reauthorizati...

  12. Adaptive Technologies. Research Report. ETS RR-07-05

    ERIC Educational Resources Information Center

    Shute, Valerie J.; Zapata-Rivera, Diego

    2007-01-01

    This paper describes research and development efforts related to adaptive technologies, which can be combined with other technologies and processes to form an adaptive system. The goal of an adaptive system, in the context of this paper, is to create an instructionally sound and flexible environment that supports learning for students with a range…

  13. Quality assessment of urban environment

    NASA Astrophysics Data System (ADS)

    Ovsiannikova, T. Y.; Nikolaenko, M. N.

    2015-01-01

    This paper is dedicated to the research applicability of quality management problems of construction products. It is offered to expand quality management borders in construction, transferring its principles to urban systems as economic systems of higher level, which qualitative characteristics are substantially defined by quality of construction product. Buildings and structures form spatial-material basis of cities and the most important component of life sphere - urban environment. Authors justify the need for the assessment of urban environment quality as an important factor of social welfare and life quality in urban areas. The authors suggest definition of a term "urban environment". The methodology of quality assessment of urban environment is based on integrated approach which includes the system analysis of all factors and application of both quantitative methods of assessment (calculation of particular and integrated indicators) and qualitative methods (expert estimates and surveys). The authors propose the system of indicators, characterizing quality of the urban environment. This indicators fall into four classes. The authors show the methodology of their definition. The paper presents results of quality assessment of urban environment for several Siberian regions and comparative analysis of these results.

  14. Psychometric analysis of the leadership environment scale (LENS): Outcome from the Oregon research initiative on the organisation of nursing (ORION).

    PubMed

    Ross, Amy M; Ilic, Kelley; Kiyoshi-Teo, Hiroko; Lee, Christopher S

    2017-12-26

    The purpose of this study was to establish the psychometric properties of the new 16-item leadership environment scale. The leadership environment scale was based on complexity science concepts relevant to complex adaptive health care systems. A workforce survey of direct-care nurses was conducted (n = 1,443) in Oregon. Confirmatory factor analysis, exploratory factor analysis, concordant validity test and reliability tests were conducted to establish the structure and internal consistency of the leadership environment scale. Confirmatory factor analysis indices approached acceptable thresholds of fit with a single factor solution. Exploratory factor analysis showed improved fit with a two-factor model solution; the factors were labelled 'influencing relationships' and 'interdependent system supports'. Moderate to strong convergent validity was observed between the leadership environment scale/subscales and both the nursing workforce index and the safety organising scale. Reliability of the leadership environment scale and subscales was strong, with all alphas ≥.85. The leadership environment scale is structurally sound and reliable. Nursing management can employ adaptive complexity leadership attributes, measure their influence on the leadership environment, subsequently modify system supports and relationships and improve the quality of health care systems. The leadership environment scale is an innovative fit to complex adaptive systems and how nurses act as leaders within these systems. © 2017 John Wiley & Sons Ltd.

  15. 78 FR 49257 - Proposed Information Collection; Comment Request; Management and Oversight of the National...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-13

    ... and physical environment of the reserve, research to date and research gaps. Reserves revise their... Collection; Comment Request; Management and Oversight of the National Estuarine Research Reserve System... estuarine research reserves representative of various regions and estuarine types in the United States to...

  16. 75 FR 22368 - Proposed Information Collection; Comment Request; Management and Oversight of the National...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-28

    ... describe the biological and physical environment of the reserve, research to date and research gaps. A... Collection; Comment Request; Management and Oversight of the National Estuarine Research Reserve System....) provides for the designation of estuarine research reserves representative of various regions and estuarine...

  17. Systems and Software Producibility Collaboration and Experimental Environment (SPRUCE)

    DTIC Science & Technology

    2009-04-23

    Research Manhattan Project Like Research – Transition timeframe needed • Current generation programs – DoD acquisitions over next 1-5 years • Next...Specific Computing Plant B a s i c Transformational Research Manhattan Project Like Research B a s i c 16 • Sponsored by Lockheed Martin

  18. China's science, technology, engineering, and mathematics (STEM) research environment: A snapshot.

    PubMed

    Han, Xueying; Appelbaum, Richard P

    2018-01-01

    In keeping with China's President Xi Jinping's "Chinese Dream," China has set a goal of becoming a world-class innovator by 2050. China's higher education Science, Technology, Engineering, and Math (STEM) research environment will play a pivotal role in influencing whether China is successful in transitioning from a manufacturing-based economy to an innovation-driven, knowledge-based economy. Past studies on China's research environment have been primarily qualitative in nature or based on anecdotal evidence. In this study, we surveyed STEM faculty from China's top 25 universities to get a clearer understanding of how faculty members view China's overall research environment. We received 731 completed survey responses, 17% of which were from individuals who received terminal degrees from abroad and 83% of which were from individuals who received terminal degrees from domestic institutions of higher education. We present results on why returnees decided to study abroad, returnees' decisions to return to China, and differences in perceptions between returnees and domestic degree holders on the advantages of having a foreign degree. The top five challenges to China's research environment identified by survey respondents were: a promotion of short-term thinking and instant success (37% of all respondents); research funding (33%); too much bureaucratic or governmental intervention (31%); the evaluation system (27%); and a reliance on human relations (26%). Results indicated that while China has clearly made strides in its higher education system, there are numerous challenges that must be overcome before China can hope to effectively produce the kinds of innovative thinkers that are required if it is to achieve its ambitious goals. We also raise questions about the current direction of education and inquiry in China, particularly indications that government policy is turning inward, away from openness that is central to innovative thinking.

  19. Ground Systems Development Environment (GSDE) interface requirements and prototyping plan

    NASA Technical Reports Server (NTRS)

    Church, Victor E.; Philips, John; Bassman, Mitchell; Williams, C.

    1990-01-01

    This report describes the data collection and requirements analysis effort of the Ground System Development Environment (GSDE) Interface Requirements study. It identifies potential problems in the interfaces among applications and processors in the heterogeneous systems that comprises the GSDE. It describes possible strategies for addressing those problems. It also identifies areas for further research and prototyping to demonstrate the capabilities and feasibility of those strategies and defines a plan for building the necessary software prototypes.

  20. Development of a Waste Water Regenerative System - Using Sphagnum Moss Ion-exchange

    NASA Astrophysics Data System (ADS)

    McKeon, M.; Wheeler, R.; Leahy, Jj

    The use of inexpensive, light weight and regenerative systems in an enclosed environment is of great importance to sustained existence in such habitats as the International Space Station, Moon or even Mars. Many systems exist which utilise various synthetic ion exchangers to complete the process of waste water clean-up. These systems do have a very good exchange rate for cations but a very low exchange rate for anions. They also have a maximum capacity before they need regeneration. This research proposes a natural alternative to these synthetic ion-exchangers that utilises one of natures greatest ion-exchangers, that of Sphagnum Moss. Sphagna can be predominantly found in the nutrient poor environment of Raised Bogs, a type of isolated wetland with characteristic low pH and little interaction with the surrounding water table. All nutrients come from precipitation. The sphagna have developed as the bog's sponges, soaking up all available nutrients (both cation & anion) from the precipitation and eventually distributing them to the surrounding flora and fauna, through the water. The goal of this research is to use this ability in the processing of waste water from systems similar to isolated microgravity environments, to produce clean water for reuse in these environments. The nutrients taken up by the sphagna will also be utilised as a growth medium for cultivar growth, such as those selected for hydroponics' systems.

  1. Effect of gravity on vestibular neural development

    NASA Technical Reports Server (NTRS)

    Ross, M. D.; Tomko, D. L.

    1998-01-01

    The timing, molecular basis, and morphophysiological and behavioral consequences of the interaction between external environment and the internal genetic pool that shapes the nervous system over a lifetime remain important questions in basic neuroscientific research. Space station offers the opportunity to study this interaction over several life cycles in a variety of organisms. This short review considers past work in altered gravity, particularly on the vestibular system, as the basis for proposing future research on space station, and discusses the equipment necessary to achieve goals. It is stressed that, in keeping with the international investment being made in this research endeavor, both the questions asked and the technologies to be developed should be bold. Advantage must be taken of this unique research environment to expand the frontiers of neuroscience. Copyright 1998 Published by Elsevier Science B.V.

  2. NASA Earth Observation Systems and Applications for Health: Moving from Research to Operational End Users

    NASA Astrophysics Data System (ADS)

    Haynes, J.; Estes, S. M.

    2017-12-01

    Health providers and researchers need environmental data to study and understand the geographic, environmental, and meteorological differences in disease. Satellite remote sensing of the environment offers a unique vantage point that can fill in the gaps of environmental, spatial, and temporal data for tracking disease. This presentation will demonstrate NASA's applied science programs efforts to transition from research to operations to benefit society. Satellite earth observations present a unique vantage point of the earth's environment from space, which offers a wealth of health applications for the imaginative investigator. The presentation is directly related to Earth Observing systems and Global Health Surveillance and will present research results of the remote sensing environmental observations of earth and health applications, which can contribute to the health research. As part of NASA approach and methodology they have used Earth Observation Systems and Applications for Health Models to provide a method for bridging gaps of environmental, spatial, and temporal data for tracking disease. This presentation will provide a venue where the results of both research and practice using satellite earth observations to study weather and it's role in health research and the transition to operational end users.

  3. Towards autonomous fuzzy control

    NASA Technical Reports Server (NTRS)

    Shenoi, Sujeet; Ramer, Arthur

    1993-01-01

    The efficient implementation of on-line adaptation in real time is an important research problem in fuzzy control. The goal is to develop autonomous self-organizing controllers employing system-independent control meta-knowledge which enables them to adjust their control policies depending on the systems they control and the environments in which they operate. An autonomous fuzzy controller would continuously observe system behavior while implementing its control actions and would use the outcomes of these actions to refine its control policy. It could be designed to lie dormant when its control actions give rise to adequate performance characteristics but could rapidly and autonomously initiate real-time adaptation whenever its performance degrades. Such an autonomous fuzzy controller would have immense practical value. It could accommodate individual variations in system characteristics and also compensate for degradations in system characteristics caused by wear and tear. It could also potentially deal with black-box systems and control scenarios. On-going research in autonomous fuzzy control is reported. The ultimate research objective is to develop robust and relatively inexpensive autonomous fuzzy control hardware suitable for use in real time environments.

  4. Principal Investigator Microgravity Services Role in ISS Acceleration Data Distribution

    NASA Technical Reports Server (NTRS)

    McPherson, Kevin

    1999-01-01

    Measurement of the microgravity acceleration environment on the International Space Station will be accomplished by two accelerometer systems. The Microgravity Acceleration Measurement System will record the quasi-steady microgravity environment, including the influences of aerodynamic drag, vehicle rotation, and venting effects. Measurement of the vibratory/transient regime comprised of vehicle, crew, and equipment disturbances will be accomplished by the Space Acceleration Measurement System-II. Due to the dynamic nature of the microgravity environment and its potential to influence sensitive experiments, Principal Investigators require distribution of microgravity acceleration in a timely and straightforward fashion. In addition to this timely distribution of the data, long term access to International Space Station microgravity environment acceleration data is required. The NASA Glenn Research Center's Principal Investigator Microgravity Services project will provide the means for real-time and post experiment distribution of microgravity acceleration data to microgravity science Principal Investigators. Real-time distribution of microgravity environment acceleration data will be accomplished via the World Wide Web. Data packets from the Microgravity Acceleration Measurement System and the Space Acceleration Measurement System-II will be routed from onboard the International Space Station to the NASA Glenn Research Center's Telescience Support Center. Principal Investigator Microgravity Services' ground support equipment located at the Telescience Support Center will be capable of generating a standard suite of acceleration data displays, including various time domain and frequency domain options. These data displays will be updated in real-time and will periodically update images available via the Principal Investigator Microgravity Services web page.

  5. ENERGY-NET (Energy, Environment and Society Learning Network): Enhancing opportunities for learning using an Earth systems science framework

    NASA Astrophysics Data System (ADS)

    Elliott, E. M.; Bain, D. J.; Divers, M. T.; Crowley, K. J.; Povis, K.; Scardina, A.; Steiner, M.

    2012-12-01

    We describe a newly funded collaborative NSF initiative, ENERGY-NET (Energy, Environment and Society Learning Network), that brings together the Carnegie Museum of Natural History (CMNH) with the Learning Science and Geoscience research strengths at the University of Pittsburgh. ENERGY-NET aims to create rich opportunities for participatory learning and public education in the arena of energy, the environment, and society using an Earth systems science framework. We build upon a long-established teen docent program at CMNH and to form Geoscience Squads comprised of underserved teens. Together, the ENERGY-NET team, including museum staff, experts in informal learning sciences, and geoscientists spanning career stage (undergraduates, graduate students, faculty) provides inquiry-based learning experiences guided by Earth systems science principles. Together, the team works with Geoscience Squads to design "Exploration Stations" for use with CMNH visitors that employ an Earth systems science framework to explore the intersecting lenses of energy, the environment, and society. The goals of ENERGY-NET are to: 1) Develop a rich set of experiential learning activities to enhance public knowledge about the complex dynamics between Energy, Environment, and Society for demonstration at CMNH; 2) Expand diversity in the geosciences workforce by mentoring underrepresented teens, providing authentic learning experiences in earth systems science and life skills, and providing networking opportunities with geoscientists; and 3) Institutionalize ENERGY-NET collaborations among geosciences expert, learning researchers, and museum staff to yield long-term improvements in public geoscience education and geoscience workforce recruiting.

  6. Implementation of an open adoption research data management system for clinical studies.

    PubMed

    Müller, Jan; Heiss, Kirsten Ingmar; Oberhoffer, Renate

    2017-07-06

    Research institutions need to manage multiple studies with individual data sets, processing rules and different permissions. So far, there is no standard technology that provides an easy to use environment to create databases and user interfaces for clinical trials or research studies. Therefore various software solutions are being used-from custom software, explicitly designed for a specific study, to cost intensive commercial Clinical Trial Management Systems (CTMS) up to very basic approaches with self-designed Microsoft ® databases. The technology applied to conduct those studies varies tremendously from study to study, making it difficult to evaluate data across various studies (meta-analysis) and keeping a defined level of quality in database design, data processing, displaying and exporting. Furthermore, the systems being used to collect study data are often operated redundantly to systems used in patient care. As a consequence the data collection in studies is inefficient and data quality may suffer from unsynchronized datasets, non-normalized database scenarios and manually executed data transfers. With OpenCampus Research we implemented an open adoption software (OAS) solution on an open source basis, which provides a standard environment for state-of-the-art research database management at low cost.

  7. General specifications for the development of a USL/DBMS NASA/PC R and D distributed workstation

    NASA Technical Reports Server (NTRS)

    Dominick, Wayne D. (Editor); Chum, Frank Y.

    1984-01-01

    The general specifications for the development of a PC-based distributed workstation (PCDWS) for an information storage and retrieval systems environment are defined. This research proposes the development of a PCDWS prototype as part of the University of Southwestern Louisiana Data Base Management System (USL/DBMS) NASA/PC R and D project in the PC-based workstation environment.

  8. Voltage Sensor

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Under a Lewis Research Center Small Business Innovation Research contract, SRICO, Inc. developed a fiber optic voltage sensor to measure voltage in electronic systems in spacecraft. The sensor uses glass and light to sense and transmit electricity, and is relatively safe and accurate. SRICO then commercialized the sensor for measurement of electric field and voltage in applications such as electric power systems and hazardous environments, lightning detection, and fiber optic communication systems.

  9. Xpey' Relational Environments: an analytic framework for conceptualizing Indigenous health equity.

    PubMed

    Kent, Alexandra; Loppie, Charlotte; Carriere, Jeannine; MacDonald, Marjorie; Pauly, Bernie

    2017-12-01

    Both health equity research and Indigenous health research are driven by the goal of promoting equitable health outcomes among marginalized and underserved populations. However, the two fields often operate independently, without collaboration. As a result, Indigenous populations are underrepresented in health equity research relative to the disproportionate burden of health inequities they experience. In this methodological article, we present Xpey' Relational Environments, an analytic framework that maps some of the barriers and facilitators to health equity for Indigenous peoples. Health equity research needs to include a focus on Indigenous populations and Indigenized methodologies, a shift that could fill gaps in knowledge with the potential to contribute to 'closing the gap' in Indigenous health. With this in mind, the Equity Lens in Public Health (ELPH) research program adopted the Xpey' Relational Environments framework to add a focus on Indigenous populations to our research on the prioritization and implementation of health equity. The analytic framework introduced an Indigenized health equity lens to our methodology, which facilitated the identification of social, structural and systemic determinants of Indigenous health. To test the framework, we conducted a pilot case study of one of British Columbia's regional health authorities, which included a review of core policies and plans as well as interviews and focus groups with frontline staff, managers and senior executives. ELPH's application of Xpey' Relational Environments serves as an example of the analytic framework's utility for exploring and conceptualizing Indigenous health equity in BC's public health system. Future applications of the framework should be embedded in Indigenous research methodologies.

  10. An Evolutionary Method for Financial Forecasting in Microscopic High-Speed Trading Environment.

    PubMed

    Huang, Chien-Feng; Li, Hsu-Chih

    2017-01-01

    The advancement of information technology in financial applications nowadays have led to fast market-driven events that prompt flash decision-making and actions issued by computer algorithms. As a result, today's markets experience intense activity in the highly dynamic environment where trading systems respond to others at a much faster pace than before. This new breed of technology involves the implementation of high-speed trading strategies which generate significant portion of activity in the financial markets and present researchers with a wealth of information not available in traditional low-speed trading environments. In this study, we aim at developing feasible computational intelligence methodologies, particularly genetic algorithms (GA), to shed light on high-speed trading research using price data of stocks on the microscopic level. Our empirical results show that the proposed GA-based system is able to improve the accuracy of the prediction significantly for price movement, and we expect this GA-based methodology to advance the current state of research for high-speed trading and other relevant financial applications.

  11. A Summary of the Quasi-Steady Acceleration Environment on-Board STS-94 (MSL-1)

    NASA Technical Reports Server (NTRS)

    McPherson, Kevin M.; Nati, Maurizio; Touboul, Pierre; Schuette, Andreas; Sablon, Gert

    1999-01-01

    The continuous free-fall state of a low Earth orbit experienced by NASA's Orbiters results in a unique reduced gravity environment. While microgravity science experiments are conducted in this reduced gravity environment, various accelerometer systems measure and record the microgravity acceleration environment for real-time and post-flight correlation with microgravity science data. This overall microgravity acceleration environment is comprised of quasi-steady, oscillatory, and transient contributions. The First Microgravity Science Laboratory (MSL-1) payload was dedicated to experiments studying various microgravity science disciplines, including combustion, fluid physics, and materials processing. In support of the MSL-1 payload, two systems capable of measuring the quasi-steady acceleration environment were flown: the Orbital Acceleration Research Experiment (OARE) and the Microgravity Measurement Assembly (MMA) system's Accelerometre Spatiale Triaxiale most evident in the quasi-steady acceleration regime. Utilizing such quasi-steady events, a comparison and summary of the quasi-steady acceleration environment for STS-94 will be presented

  12. Cold Stowage Flight Systems

    NASA Technical Reports Server (NTRS)

    Campana, Sharon

    2010-01-01

    The International Space Station (ISS) provides a test bed for researchers to perform science experiments in a variety of fields, including human research, life sciences, and space medicine. Many of the experiments being conducted today require science samples to be stored and transported in a temperature controlled environment. NASA provides several systems which aide researchers in preserving their science. On orbit systems provided by NASA include the Minus Eighty Laboratory freezer for ISS (MELFI), Microgravity Experiment Research Locker Incubator (MERLIN), and Glacier. These freezers use different technologies to provide rapid cooling and cold stowage at different temperature levels on board ISS. Systems available to researchers during transportation to and from ISS are MERLIN, Glacier, and Coldbag. Coldbag is a passive cold stowage system that uses phase change materials. Details of these current technologies will be provided along with operational experience gained to date. With shuttle retirement looming, NASA has protected the capability to provide a temperature controlled environment during transportation to and from the ISS with the use of Glacier and Coldbags, which are compatible with future commercial vehicles including SpaceX's Dragon Capsule, and Orbital s Cygnus vehicle. This paper will discuss the capability of the current cold stowage hardware and how it may continue to support NASA s mission on ISS and in future exploration missions.

  13. Knowledge-based approach for generating target system specifications from a domain model

    NASA Technical Reports Server (NTRS)

    Gomaa, Hassan; Kerschberg, Larry; Sugumaran, Vijayan

    1992-01-01

    Several institutions in industry and academia are pursuing research efforts in domain modeling to address unresolved issues in software reuse. To demonstrate the concepts of domain modeling and software reuse, a prototype software engineering environment is being developed at George Mason University to support the creation of domain models and the generation of target system specifications. This prototype environment, which is application domain independent, consists of an integrated set of commercial off-the-shelf software tools and custom-developed software tools. This paper describes the knowledge-based tool that was developed as part of the environment to generate target system specifications from a domain model.

  14. UNIVERSITY RESEARCH PROGRAMS IN ROBOTICS, TECHNOLOGIES FOR MICROELECTROMECHANICAL SYSTEMS IN DIRECTED STOCKPILE WORK RADIATION AND ENGINEERING CAMPAIGNS - 2005-06 FINAL ANNUAL REPORT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    James S. Tulenko; Dean Schoenfeld; David Hintenlang

    The research performed by the University of Florida (UF) is directed to the development of technologies that can be utilized at a micro-scale in varied environments. Work is focused on micro-scale energy systems, visualization, and mechanical devices. This work will impact the NNSA need related to micro-assembly operations. The URPR activities are executed in a University environment, yet many applications of the resulting technologies may be classified or highly restrictive in nature. The NNSA robotics technologists apply an NNSA needs focus to the URPR research, and actively work to transition relevant research into the deployment projects in which they aremore » involved. This provides a “Research to Development to Application” structure within which innovative research has maximum opportunity for impact without requiring URPR researchers to be involved in specific NNSA projects. URPR researchers need to be aware of the NNSA applications in order to ensure the research being conducted has relevance, the URPR shall rely upon the NNSA sites for direction.« less

  15. Tools and collaborative environments for bioinformatics research

    PubMed Central

    Giugno, Rosalba; Pulvirenti, Alfredo

    2011-01-01

    Advanced research requires intensive interaction among a multitude of actors, often possessing different expertise and usually working at a distance from each other. The field of collaborative research aims to establish suitable models and technologies to properly support these interactions. In this article, we first present the reasons for an interest of Bioinformatics in this context by also suggesting some research domains that could benefit from collaborative research. We then review the principles and some of the most relevant applications of social networking, with a special attention to networks supporting scientific collaboration, by also highlighting some critical issues, such as identification of users and standardization of formats. We then introduce some systems for collaborative document creation, including wiki systems and tools for ontology development, and review some of the most interesting biological wikis. We also review the principles of Collaborative Development Environments for software and show some examples in Bioinformatics. Finally, we present the principles and some examples of Learning Management Systems. In conclusion, we try to devise some of the goals to be achieved in the short term for the exploitation of these technologies. PMID:21984743

  16. An Overview of High Temperature Seal Development and Testing Capabilities at the NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Demange, Jeffrey J.; Taylor, Shawn C.; Dunlap, Patrick H.; Steinetz, Bruce M.; Finkbeiner, Joshua R.; Proctor, Margaret P.

    2014-01-01

    The NASA Glenn Research Center (GRC), partnering with the University of Toledo, has a long history of developing and testing seal technologies for high-temperature applications. The GRC Seals Team has conducted research and development on high-temperature seal technologies for applications including advanced propulsion systems, thermal protection systems (airframe and control surface thermal seals), high-temperature preloading technologies, and other extreme-environment seal applications. The team has supported several high-profile projects over the past 30 years and has partnered with numerous organizations, including other government entities, academic institutions, and private organizations. Some of these projects have included the National Aerospace Space Plane (NASP), Space Shuttle Space Transport System (STS), the Multi-Purpose Crew Vehicle (MPCV), and the Dream Chaser Space Transportation System, as well as several high-speed vehicle programs for other government organizations. As part of the support for these programs, NASA GRC has developed unique seal-specific test facilities that permit evaluations and screening exercises in relevant environments. The team has also embarked on developing high-temperature preloaders to help maintain seal functionality in extreme environments. This paper highlights several propulsion-related projects that the NASA GRC Seals Team has supported over the past several years and will provide an overview of existing testing capabilities

  17. Research issues in implementing remote presence in teleoperator control

    NASA Technical Reports Server (NTRS)

    Corker, K.; Mishkin, A. H.; Lyman, J.

    1981-01-01

    The concept of remote presence in telemanipulation is presented. A conceptual design of a prototype teleoperator system incorporating remote presence is described. The design is presented in functional terms, sensor, display, and control subsystem. An intermediate environment, in which the human operator is made to feel present, is explicated. The intermediate environment differs from the task environment due to the quantity and type of information presented to an operator and due to scaling factors protecting the operator from the hazards of the task environment. Potential benefits of remote presence systems, both for manipulation and for the study of human cognition and preception are discussed.

  18. Hydrogen Research for Spaceport and Space-Based Applications: Hydrogen Sensors and Systems. Part 2

    NASA Technical Reports Server (NTRS)

    Anderson, Tim; Balaban, Canan

    2008-01-01

    The activities presented are a broad based approach to advancing key hydrogen related technologies in areas such as fuel cells, hydrogen production, and distributed sensors for hydrogen-leak detection, laser instrumentation for hydrogen-leak detection, and cryogenic transport and storage. Presented are the results from research projects, education and outreach activities, system and trade studies. The work will aid in advancing the state-of-the-art for several critical technologies related to the implementation of a hydrogen infrastructure. Activities conducted are relevant to a number of propulsion and power systems for terrestrial, aeronautics and aerospace applications. Sensor systems research was focused on hydrogen leak detection and smart sensors with adaptive feedback control for fuel cells. The goal was to integrate multifunction smart sensors, low-power high-efficiency wireless circuits, energy harvesting devices, and power management circuits in one module. Activities were focused on testing and demonstrating sensors in a realistic environment while also bringing them closer to production and commercial viability for eventual use in the actual operating environment.

  19. Systems Engineering Design Via Experimental Operation Research: Complex Organizational Metric for Programmatic Risk Environments (COMPRE)

    NASA Technical Reports Server (NTRS)

    Mog, Robert A.

    1999-01-01

    Unique and innovative graph theory, neural network, organizational modeling, and genetic algorithms are applied to the design and evolution of programmatic and organizational architectures. Graph theory representations of programs and organizations increase modeling capabilities and flexibility, while illuminating preferable programmatic/organizational design features. Treating programs and organizations as neural networks results in better system synthesis, and more robust data modeling. Organizational modeling using covariance structures enhances the determination of organizational risk factors. Genetic algorithms improve programmatic evolution characteristics, while shedding light on rulebase requirements for achieving specified technological readiness levels, given budget and schedule resources. This program of research improves the robustness and verifiability of systems synthesis tools, including the Complex Organizational Metric for Programmatic Risk Environments (COMPRE).

  20. Using Language ENvironment Analysis to improve outcomes for children who are deaf or hard of hearing.

    PubMed

    Aragon, Miranda; Yoshinaga-Itano, Christine

    2012-11-01

    Very little is known about the language environments of children in the United States in non-English-speaking homes. There is currently no published research that analyzes deaf or hard of hearing children in Spanish-speaking households, although the Colorado Home Intervention Program demographics indicate that these households account for 10 to 15% of the population of children who are deaf or hard of hearing. In other geographic regions in the United States, it is likely that the population of deaf and hard of hearing children from Spanish-speaking homes is considerably larger. The Spanish-speaking population in the United States has grown considerably within the last 5 to 10 years and will continue to expand. For these children to receive adequate treatment, research must be conducted to understand their language environment. The Language ENvironment Analysis (LENA) System uses a small recording device to collect, analyze, and sort a child's language environment into multiple categories and analyzes variables such as child vocalizations, adult words, and conversational turn taking. The normative data for the LENA System are from families who are English-speaking. The article demonstrates the feasibility of using the LENA System to gain understanding of the language environment of a child who is deaf or hard of hearing in a Spanish-speaking household. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  1. A social ecological approach to investigating relationships between housing and adaptive functioning for persons with serious mental illness.

    PubMed

    Kloos, Bret; Shah, Seema

    2009-12-01

    This paper seeks to advance mental health-housing research regarding which factors of housing and neighborhood environments are critical for adaptive functioning, health, and recovery for persons with serious mental illness (SMI). Housing and neighborhood environments are particularly important for persons with SMI because of the prevalence of poor housing conditions among this population. Most mental health-housing research has been limited by a focus on problems in environments and functioning. The paper seeks to expand the mental health-housing research agenda to consider protective factors that promote community integration and adaptive functioning. We provide an account of how social ecology theory transformed a research program, from examining individual risk factors to investigating the functioning of persons in the contexts of their housing and neighborhood experiences. The resulting housing environment framework-physical aspects of housing and neighborhoods, social environment of neighborhoods, and interpersonal relationships tied to housing-allows for identification of opportunities for health promotion and facilitation of participation in community-based settings. This program of research draws upon several methods to understand the social experience of persons with SMI living in community settings-survey research, qualitative interviews, Geographic Information Systems, participatory research, and visual ethnography. In this paper, we present how social ecology theory was instrumental in the development of new housing environment measures, the selection of appropriate research methods, and framing research questions that are building a new empirical base of knowledge about promoting adaptive functioning, health, and recovery for persons with SMI living in community settings.

  2. An integrated approach to system design, reliability, and diagnosis

    NASA Technical Reports Server (NTRS)

    Patterson-Hine, F. A.; Iverson, David L.

    1990-01-01

    The requirement for ultradependability of computer systems in future avionics and space applications necessitates a top-down, integrated systems engineering approach for design, implementation, testing, and operation. The functional analyses of hardware and software systems must be combined by models that are flexible enough to represent their interactions and behavior. The information contained in these models must be accessible throughout all phases of the system life cycle in order to maintain consistency and accuracy in design and operational decisions. One approach being taken by researchers at Ames Research Center is the creation of an object-oriented environment that integrates information about system components required in the reliability evaluation with behavioral information useful for diagnostic algorithms. Procedures have been developed at Ames that perform reliability evaluations during design and failure diagnoses during system operation. These procedures utilize information from a central source, structured as object-oriented fault trees. Fault trees were selected because they are a flexible model widely used in aerospace applications and because they give a concise, structured representation of system behavior. The utility of this integrated environment for aerospace applications in light of our experiences during its development and use is described. The techniques for reliability evaluation and failure diagnosis are discussed, and current extensions of the environment and areas requiring further development are summarized.

  3. An integrated approach to system design, reliability, and diagnosis

    NASA Astrophysics Data System (ADS)

    Patterson-Hine, F. A.; Iverson, David L.

    1990-12-01

    The requirement for ultradependability of computer systems in future avionics and space applications necessitates a top-down, integrated systems engineering approach for design, implementation, testing, and operation. The functional analyses of hardware and software systems must be combined by models that are flexible enough to represent their interactions and behavior. The information contained in these models must be accessible throughout all phases of the system life cycle in order to maintain consistency and accuracy in design and operational decisions. One approach being taken by researchers at Ames Research Center is the creation of an object-oriented environment that integrates information about system components required in the reliability evaluation with behavioral information useful for diagnostic algorithms. Procedures have been developed at Ames that perform reliability evaluations during design and failure diagnoses during system operation. These procedures utilize information from a central source, structured as object-oriented fault trees. Fault trees were selected because they are a flexible model widely used in aerospace applications and because they give a concise, structured representation of system behavior. The utility of this integrated environment for aerospace applications in light of our experiences during its development and use is described. The techniques for reliability evaluation and failure diagnosis are discussed, and current extensions of the environment and areas requiring further development are summarized.

  4. 76 FR 77854 - Notice of Intent To Seek Approval To Establish an Information Collection

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-14

    ... Reporting Requirements for the Engineering Research Centers (ERCs). OMB Number: 3145-NEW. Expiration Date of.... Abstract Proposed Project The Engineering Research Centers (ERC) program supports an integrated, interdisciplinary research environment to advance fundamental engineering knowledge and engineered systems; educate...

  5. Space Biology Model Organism Research on the Deep Space Gateway to Pioneer Discovery and Advance Human Space Exploration

    NASA Astrophysics Data System (ADS)

    Sato, K. Y.; Tomko, D. L.; Levine, H. G.; Quincy, C. D.; Rayl, N. A.; Sowa, M. B.; Taylor, E. M.; Sun, S. C.; Kundrot, C. E.

    2018-02-01

    Model organisms are foundational for conducting physiological and systems biology research to define how life responds to the deep space environment. The organisms, areas of research, and Deep Space Gateway capabilities needed will be presented.

  6. Development of Management Metrics for Research and Technology

    NASA Technical Reports Server (NTRS)

    Sheskin, Theodore J.

    2003-01-01

    Professor Ted Sheskin from CSU will be tasked to research and investigate metrics that can be used to determine the technical progress for advanced development and research tasks. These metrics will be implemented in a software environment that hosts engineering design, analysis and management tools to be used to support power system and component research work at GRC. Professor Sheskin is an Industrial Engineer and has been involved in issues related to management of engineering tasks and will use his knowledge from this area to allow extrapolation into the research and technology management area. Over the course of the summer, Professor Sheskin will develop a bibliography of management papers covering current management methods that may be applicable to research management. At the completion of the summer work we expect to have him recommend a metric system to be reviewed prior to implementation in the software environment. This task has been discussed with Professor Sheskin and some review material has already been given to him.

  7. [Brief disserting on the balance of internal environment in burn disease].

    PubMed

    Han, C M; Wang, X G

    2017-08-20

    The essential internal environment in human being involves water, electrolyte, and acid-base balance, which is the basis of balance and stability of internal environment in other systems. For burn patients, the balance of internal environment, referring to metabolism, nutrition, inflammatory response, and immunoreaction, is one of the most important aspects in burn disease. This paper aims to briefly elaborate the balance of internal environment after burn, with the purpose to promote the basic and clinical research in this field.

  8. Image Security

    DTIC Science & Technology

    1999-01-01

    34. twenty-first century. These papers illustrate topics such as a development ofvirtual environment applications, different uses ofVRML in information system...interfaces, an examination of research in virtual reality environment interfaces, and five approaches to supporting changes’ in virtuaI environments...we get false negatives that contribute to the probability of false rejection Prrj). { l � Taking these error probabilities into account, we define a

  9. Parcel Delivery in AN Urban Environment Using Unmanned Aerial Systems: a Vision Paper

    NASA Astrophysics Data System (ADS)

    Anbaroğlu, B.

    2017-11-01

    This vision paper addresses the challenges and explores the avenue of solutions regarding the use of Unmanned Aerial Systems (UAS) for transporting parcels in urban areas. We have already witnessed companies' delivering parcels using UAS in rural areas, but the challenge of utilizing them for an urban environment is eminent. Nevertheless, the increasing research on the various aspects of UAS, including their battery life, resistance to harsh weather conditions and sensing its environment foresee their common usage in the logistics industry, especially in an urban environment. In addition, the increasing trend on 3D city modelling offer new directions regarding realistic as well as light 3D city models that are easy to modify and distribute. Utilizing UAS for transporting parcels in an urban environment would be a disruptive technological achievement as our roads will be less congested which would lead to less air pollution as well as wasted money and time. In addition, parcels could potentially be delivered much faster. This paper argues, with the support of the state-of-the-art research, that UASs will be used for transporting parcels in an urban environment in the coming decades.

  10. Dynamic Neuroscientific Systemology: Using Tri-Squared Meta-Analysis and Innovative Instructional Design to Develop a Novel Distance Education Model for the Systemic Creation of Engaging Online Learning Environments

    ERIC Educational Resources Information Center

    Osler, James Edward, II.; Wright, Mark Anthony

    2015-01-01

    The purpose of this research investigation was to look at the factors that lead to isolation, lack of student inspiration and motivation, lack of student engagement and lack of student retention in the asynchronous online learning environment. The study further delves into how the use of cognitive and neuroscience research can inform the design of…

  11. Haptic interfaces: Hardware, software and human performance

    NASA Technical Reports Server (NTRS)

    Srinivasan, Mandayam A.

    1995-01-01

    Virtual environments are computer-generated synthetic environments with which a human user can interact to perform a wide variety of perceptual and motor tasks. At present, most of the virtual environment systems engage only the visual and auditory senses, and not the haptic sensorimotor system that conveys the sense of touch and feel of objects in the environment. Computer keyboards, mice, and trackballs constitute relatively simple haptic interfaces. Gloves and exoskeletons that track hand postures have more interaction capabilities and are available in the market. Although desktop and wearable force-reflecting devices have been built and implemented in research laboratories, the current capabilities of such devices are quite limited. To realize the full promise of virtual environments and teleoperation of remote systems, further developments of haptic interfaces are critical. In this paper, the status and research needs in human haptics, technology development and interactions between the two are described. In particular, the excellent performance characteristics of Phantom, a haptic interface recently developed at MIT, are highlighted. Realistic sensations of single point of contact interactions with objects of variable geometry (e.g., smooth, textured, polyhedral) and material properties (e.g., friction, impedance) in the context of a variety of tasks (e.g., needle biopsy, switch panels) achieved through this device are described and the associated issues in haptic rendering are discussed.

  12. Assessing the Nexus of Built, Natural, and Social Environments and Public Health Outcomes

    NASA Astrophysics Data System (ADS)

    Archer, R.; Alexander, S.; Douglas, J.

    2017-12-01

    This study investigates community-related environmental justice concerns and chemical and non-chemical health stressors from built, natural, and social environments in Southeast Los Angeles (SELA) County and East Oakland, California. The geographical distribution of health outcomes is related to the built and natural environments, as well as impacts from the social environment. A holistic systems view is important in assessing healthy behaviors within a community, because they do not occur in isolation. Geospatial analysis will be performed to integrate a total environment framework and explore the spatial patterns of exposure to chemical and non-chemical stressors and access to health-promoting environments. Geographic Information Systems (GIS) analysis using primary and secondary existing data will be performed to determine how social environments impact exposure to chemical health stressors and access to health-promoting built and natural environments. This project will develop a comprehensive list of health-promoting built and natural environments (e.g., parks and community gardens) and polluting sites (e.g., shipping ports and sources of pollution not included in federal regulatory databases) in East Oakland and SELA. California Department of Public Health and U.S. Decennial Census data will also be included for geospatial analysis to overlay the distribution of air pollution-related morbidities (e.g. asthma, diabetes, and cancer) and access to health-promoting built and natural environments and related community assets, exposure to polluting industries, social disorganization, and public health outcomes in the target areas. This research will help identify the spatial and temporal distribution and cumulative impacts of critical pollution hotspots causing community environmental health impacts. The research team will also map how social environments impact exposure to chemical health stressors and access to health-promoting built and natural environments. The process and outcomes of this research should empower communities and aid decision-makers to integrate environmental justice considerations into public health policies.

  13. Airborne Cloud Computing Environment (ACCE)

    NASA Technical Reports Server (NTRS)

    Hardman, Sean; Freeborn, Dana; Crichton, Dan; Law, Emily; Kay-Im, Liz

    2011-01-01

    Airborne Cloud Computing Environment (ACCE) is JPL's internal investment to improve the return on airborne missions. Improve development performance of the data system. Improve return on the captured science data. The investment is to develop a common science data system capability for airborne instruments that encompasses the end-to-end lifecycle covering planning, provisioning of data system capabilities, and support for scientific analysis in order to improve the quality, cost effectiveness, and capabilities to enable new scientific discovery and research in earth observation.

  14. The real-time learning mechanism of the Scientific Research Associates Advanced Robotic System (SRAARS)

    NASA Technical Reports Server (NTRS)

    Chen, Alexander Y.

    1990-01-01

    Scientific research associates advanced robotic system (SRAARS) is an intelligent robotic system which has autonomous learning capability in geometric reasoning. The system is equipped with one global intelligence center (GIC) and eight local intelligence centers (LICs). It controls mainly sixteen links with fourteen active joints, which constitute two articulated arms, an extensible lower body, a vision system with two CCD cameras and a mobile base. The on-board knowledge-based system supports the learning controller with model representations of both the robot and the working environment. By consecutive verifying and planning procedures, hypothesis-and-test routines and learning-by-analogy paradigm, the system would autonomously build up its own understanding of the relationship between itself (i.e., the robot) and the focused environment for the purposes of collision avoidance, motion analysis and object manipulation. The intelligence of SRAARS presents a valuable technical advantage to implement robotic systems for space exploration and space station operations.

  15. Research and applications: Artificial intelligence

    NASA Technical Reports Server (NTRS)

    Raphael, B.; Fikes, R. E.; Chaitin, L. J.; Hart, P. E.; Duda, R. O.; Nilsson, N. J.

    1971-01-01

    A program of research in the field of artificial intelligence is presented. The research areas discussed include automatic theorem proving, representations of real-world environments, problem-solving methods, the design of a programming system for problem-solving research, techniques for general scene analysis based upon television data, and the problems of assembling an integrated robot system. Major accomplishments include the development of a new problem-solving system that uses both formal logical inference and informal heuristic methods, the development of a method of automatic learning by generalization, and the design of the overall structure of a new complete robot system. Eight appendices to the report contain extensive technical details of the work described.

  16. A Multiagent Modeling Environment for Simulating Work Practice in Organizations

    NASA Technical Reports Server (NTRS)

    Sierhuis, Maarten; Clancey, William J.; vanHoof, Ron

    2004-01-01

    In this paper we position Brahms as a tool for simulating organizational processes. Brahms is a modeling and simulation environment for analyzing human work practice, and for using such models to develop intelligent software agents to support the work practice in organizations. Brahms is the result of more than ten years of research at the Institute for Research on Learning (IRL), NYNEX Science & Technology (the former R&D institute of the Baby Bell telephone company in New York, now Verizon), and for the last six years at NASA Ames Research Center, in the Work Systems Design and Evaluation group, part of the Computational Sciences Division (Code IC). Brahms has been used on more than ten modeling and simulation research projects, and recently has been used as a distributed multiagent development environment for developing work practice support tools for human in-situ science exploration on planetary surfaces, in particular a human mission to Mars. Brahms was originally conceived of as a business process modeling and simulation tool that incorporates the social systems of work, by illuminating how formal process flow descriptions relate to people s actual located activities in the workplace. Our research started in the early nineties as a reaction to experiences with work process modeling and simulation . Although an effective tool for convincing management of the potential cost-savings of the newly designed work processes, the modeling and simulation environment was only able to describe work as a normative workflow. However, the social systems, uncovered in work practices studied by the design team played a significant role in how work actually got done-actual lived work. Multi- tasking, informal assistance and circumstantial work interactions could not easily be represented in a tool with a strict workflow modeling paradigm. In response, we began to develop a tool that would have the benefits of work process modeling and simulation, but be distinctively able to represent the relations of people, locations, systems, artifacts, communication and information content.

  17. Whillans Ice Stream Subglacial Access Research Drilling (WISSARD): Integrative Study of Marine Ice Sheet Stability and Subglacial Life Habitats (Invited)

    NASA Astrophysics Data System (ADS)

    Tulaczyk, S. M.; Anandakrishnan, S.; Behar, A. E.; Christner, B. C.; Fisher, A. T.; Fricker, H. A.; Holland, D. M.; Jacobel, R. W.; Mikucki, J.; Mitchell, A. C.; Powell, R. D.; Priscu, J. C.; Scherer, R. P.; Severinghaus, J. P.

    2009-12-01

    The WISSARD project is a large, NSF-funded, interdisciplinary initiative focused on scientific drilling, exploration, and investigation of Antarctic subglacial aquatic environments. The project consists of three interrelated components: (1) LISSARD - Lake and Ice Stream Subglacial Access Research Drilling, (2) RAGES - Robotic Access to Grounding-zones for Exploration and Science, and (3) GBASE - GeomicroBiology of Antarctic Subglacial Environments). A number of previous studies in West Antarctica highlighted the importance of understanding ice sheet interactions with water, either at the basal boundary where ice streams come in contact with active subglacial hydrologic and geological systems or at the marine margin where the ice sheet is exposed to forcing from the global ocean and sedimentation. Recent biological investigations of Antarctic subglacial environments show that they provide a significant habitat for life and source of bacterial carbon in a setting that was previously thought to be inhospitable. Subglacial microbial ecosystems also enhance biogeochemical weathering, mobilizing elements from long term geological storage. The overarching scientific objective of WISSARD is to examine the subglacial hydrological system of West Antarctica in glaciological, geological, microbiological, geochemical, and oceanographic contexts. Direct sampling will yield seminal information on these systems and test the overarching hypothesis that active hydrological systems connect various subglacial environments and exert major control on ice sheet dynamics, subglacial sediment transfer, geochemistry, metabolic and phylogenetic diversity, and biogeochemical transformations and geological records of ice sheet history. Technological advances during WISSARD will provide the US-science community with a capability to access and study sub-ice sheet environments. Developing this technological infrastructure will benefit the broader science community and it will be available for future use. Furthermore, these projects will pioneer an approach implementing recommendations from the National Research Council committee on Principles of Environmental Stewardship for the Exploration and Study of Subglacial Environments.

  18. NASA Remote Sensing Data for Epidemiological Studies

    NASA Technical Reports Server (NTRS)

    Maynard, Nancy G.; Vicente, G. A.

    2002-01-01

    In response to the need for improved observations of environmental factors to better understand the links between human health and the environment, NASA has established a new program to significantly improve the utilization of NASA's diverse array of data, information, and observations of the Earth for health applications. This initiative, lead by Goddard Space Flight Center (GSFC) has the following goals: (1) To encourage interdisciplinary research on the relationships between environmental parameters (e.g., rainfall, vegetation) and health, (2) Develop practical early warning systems, (3) Create a unique system for the exchange of Earth science and health data, (4) Provide an investigator field support system for customers and partners, (5) Facilitate a system for observation, identification, and surveillance of parameters relevant to environment and health issues. The NASA Environment and Health Program is conducting several interdisciplinary projects to examine applications of remote sensing data and information to a variety of health issues, including studies on malaria, Rift Valley Fever, St. Louis Encephalitis, Dengue Fever, Ebola, African Dust and health, meningitis, asthma, and filariasis. In addition, the NASA program is creating a user-friendly data system to help provide the public health community with easy and timely access to space-based environmental data for epidemiological studies. This NASA data system is being designed to bring land, atmosphere, water and ocean satellite data/products to users not familiar with satellite data/products, but who are knowledgeable in the Geographic Information Systems (GIS) environment. This paper discusses the most recent results of the interdisciplinary environment-health research projects and provides an analysis of the usefulness of the satellite data to epidemiological studies. In addition, there will be a summary of presently-available NASA Earth science data and a description of how it may be obtained.

  19. eXascale PRogramming Environment and System Software (XPRESS)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chapman, Barbara; Gabriel, Edgar

    Exascale systems, with a thousand times the compute capacity of today’s leading edge petascale computers, are expected to emerge during the next decade. Their software systems will need to facilitate the exploitation of exceptional amounts of concurrency in applications, and ensure that jobs continue to run despite the occurrence of system failures and other kinds of hard and soft errors. Adapting computations at runtime to cope with changes in the execution environment, as well as to improve power and performance characteristics, is likely to become the norm. As a result, considerable innovation is required to develop system support to meetmore » the needs of future computing platforms. The XPRESS project aims to develop and prototype a revolutionary software system for extreme-­scale computing for both exascale and strong­scaled problems. The XPRESS collaborative research project will advance the state-­of-­the-­art in high performance computing and enable exascale computing for current and future DOE mission-­critical applications and supporting systems. The goals of the XPRESS research project are to: A. enable exascale performance capability for DOE applications, both current and future, B. develop and deliver a practical computing system software X-­stack, OpenX, for future practical DOE exascale computing systems, and C. provide programming methods and environments for effective means of expressing application and system software for portable exascale system execution.« less

  20. NCI's High Performance Computing (HPC) and High Performance Data (HPD) Computing Platform for Environmental and Earth System Data Science

    NASA Astrophysics Data System (ADS)

    Evans, Ben; Allen, Chris; Antony, Joseph; Bastrakova, Irina; Gohar, Kashif; Porter, David; Pugh, Tim; Santana, Fabiana; Smillie, Jon; Trenham, Claire; Wang, Jingbo; Wyborn, Lesley

    2015-04-01

    The National Computational Infrastructure (NCI) has established a powerful and flexible in-situ petascale computational environment to enable both high performance computing and Data-intensive Science across a wide spectrum of national environmental and earth science data collections - in particular climate, observational data and geoscientific assets. This paper examines 1) the computational environments that supports the modelling and data processing pipelines, 2) the analysis environments and methods to support data analysis, and 3) the progress so far to harmonise the underlying data collections for future interdisciplinary research across these large volume data collections. NCI has established 10+ PBytes of major national and international data collections from both the government and research sectors based on six themes: 1) weather, climate, and earth system science model simulations, 2) marine and earth observations, 3) geosciences, 4) terrestrial ecosystems, 5) water and hydrology, and 6) astronomy, social and biosciences. Collectively they span the lithosphere, crust, biosphere, hydrosphere, troposphere, and stratosphere. The data is largely sourced from NCI's partners (which include the custodians of many of the major Australian national-scale scientific collections), leading research communities, and collaborating overseas organisations. New infrastructures created at NCI mean the data collections are now accessible within an integrated High Performance Computing and Data (HPC-HPD) environment - a 1.2 PFlop supercomputer (Raijin), a HPC class 3000 core OpenStack cloud system and several highly connected large-scale high-bandwidth Lustre filesystems. The hardware was designed at inception to ensure that it would allow the layered software environment to flexibly accommodate the advancement of future data science. New approaches to software technology and data models have also had to be developed to enable access to these large and exponentially increasing data volumes at NCI. Traditional HPC and data environments are still made available in a way that flexibly provides the tools, services and supporting software systems on these new petascale infrastructures. But to enable the research to take place at this scale, the data, metadata and software now need to evolve together - creating a new integrated high performance infrastructure. The new infrastructure at NCI currently supports a catalogue of integrated, reusable software and workflows from earth system and ecosystem modelling, weather research, satellite and other observed data processing and analysis. One of the challenges for NCI has been to support existing techniques and methods, while carefully preparing the underlying infrastructure for the transition needed for the next class of Data-intensive Science. In doing so, a flexible range of techniques and software can be made available for application across the corpus of data collections available, and to provide a new infrastructure for future interdisciplinary research.

  1. Revisiting human-environment interactions in Chaco Canyon and the American Southwest

    USGS Publications Warehouse

    Betancourt, Julio L.; Guiterman, Christopher H.

    2016-01-01

    Chaco Canyon was the center of a regionally integrated system. Despite a century of research, questions remain about its rise and fall, and the role of human-environment interactions. The answers may lie in current events and new tools and perspectives.

  2. Wellness in School and Mental Health Systems: Organizational Influences

    ERIC Educational Resources Information Center

    Young, Mark E.; Lambie, Glenn W.

    2007-01-01

    Previously, improving counselor wellness focused on helping counselors cope with stressful environments. More recently, research has begun to emphasize healthy work environments. This article makes suggestions for organizations to enhance wellness in mental health practice and schools by changing policies, increasing professional identification,…

  3. The Impact of Game-Like Features on Learning from an Intelligent Tutoring System

    ERIC Educational Resources Information Center

    Millis, Keith; Forsyth, Carol; Wallace, Patricia; Graesser, Arthur C.; Timmins, Gary

    2017-01-01

    Prior research has shown that students learn from Intelligent Tutoring Systems (ITS). However, students' attention may drift or become disengaged with the task over extended amounts of instruction. To remedy this problem, researchers have examined the impact of game-like features (e.g., a narrative) in digital learning environments on motivation…

  4. The Effects of a Virtual Tutee System on Academic Reading Engagement in a College Classroom

    ERIC Educational Resources Information Center

    Park, Seung Won; Kim, ChanMin

    2016-01-01

    Poor student engagement with academic readings has been frequently reported in college classrooms. As an effort to improve college students' reading engagement, researchers have developed a virtual environment in which students take on the role of tutor and teach a virtual tutee, the virtual tutee system (VTS). This research examined the…

  5. Application description and policy model in collaborative environment for sharing of information on epidemiological and clinical research data sets.

    PubMed

    de Carvalho, Elias César Araujo; Batilana, Adelia Portero; Simkins, Julie; Martins, Henrique; Shah, Jatin; Rajgor, Dimple; Shah, Anand; Rockart, Scott; Pietrobon, Ricardo

    2010-02-19

    Sharing of epidemiological and clinical data sets among researchers is poor at best, in detriment of science and community at large. The purpose of this paper is therefore to (1) describe a novel Web application designed to share information on study data sets focusing on epidemiological clinical research in a collaborative environment and (2) create a policy model placing this collaborative environment into the current scientific social context. The Database of Databases application was developed based on feedback from epidemiologists and clinical researchers requiring a Web-based platform that would allow for sharing of information about epidemiological and clinical study data sets in a collaborative environment. This platform should ensure that researchers can modify the information. A Model-based predictions of number of publications and funding resulting from combinations of different policy implementation strategies (for metadata and data sharing) were generated using System Dynamics modeling. The application allows researchers to easily upload information about clinical study data sets, which is searchable and modifiable by other users in a wiki environment. All modifications are filtered by the database principal investigator in order to maintain quality control. The application has been extensively tested and currently contains 130 clinical study data sets from the United States, Australia, China and Singapore. Model results indicated that any policy implementation would be better than the current strategy, that metadata sharing is better than data-sharing, and that combined policies achieve the best results in terms of publications. Based on our empirical observations and resulting model, the social network environment surrounding the application can assist epidemiologists and clinical researchers contribute and search for metadata in a collaborative environment, thus potentially facilitating collaboration efforts among research communities distributed around the globe.

  6. Robust Behavior Recognition in Intelligent Surveillance Environments.

    PubMed

    Batchuluun, Ganbayar; Kim, Yeong Gon; Kim, Jong Hyun; Hong, Hyung Gil; Park, Kang Ryoung

    2016-06-30

    Intelligent surveillance systems have been studied by many researchers. These systems should be operated in both daytime and nighttime, but objects are invisible in images captured by visible light camera during the night. Therefore, near infrared (NIR) cameras, thermal cameras (based on medium-wavelength infrared (MWIR), and long-wavelength infrared (LWIR) light) have been considered for usage during the nighttime as an alternative. Due to the usage during both daytime and nighttime, and the limitation of requiring an additional NIR illuminator (which should illuminate a wide area over a great distance) for NIR cameras during the nighttime, a dual system of visible light and thermal cameras is used in our research, and we propose a new behavior recognition in intelligent surveillance environments. Twelve datasets were compiled by collecting data in various environments, and they were used to obtain experimental results. The recognition accuracy of our method was found to be 97.6%, thereby confirming the ability of our method to outperform previous methods.

  7. Pedagogical Considerations for Effectively Teaching Qualitative Research to Students in an Online Environment

    ERIC Educational Resources Information Center

    Bender, Sara; Hill, Karlie

    2016-01-01

    Qualitative research aims to understand both individual meaning as well as complex systemic interactions as they apply to social problems or individual experiences. This method of research is both inductive and flexible, allowing for a holistic approach that facilitates a rich understanding of the content examined. Past research identifies a…

  8. Observing the Human Exposome as Reflected in Breath Biomarkers: Heat Map Data Interpretation for Environmental and Intelligence Research

    EPA Science Inventory

    Over the past decade, the research of human systems biology and the interactions with the external environment has permeated all phases of environmental, medical, and public health research. Similarly to the fields of genomics and proteomics research, the advent of new instrumen...

  9. Summary Report of Mission Acceleration Measurements for STS-78. Launched June 20, 1996

    NASA Technical Reports Server (NTRS)

    Hakimzadeh, Roshanak; Hrovat, Kenneth; McPherson, Kevin M.; Moskowitz, Milton E.; Rogers, Melissa J. B.

    1997-01-01

    The microgravity environment of the Space Shuttle Columbia was measured during the STS-78 mission using accelerometers from three different instruments: the Orbital Acceleration Research Experiment, the Space Acceleration Measurement System and the Microgravity Measurement Assembly. The quasi-steady environment was also calculated in near real-time during the mission by the Microgravity Analysis Workstation. The Orbital Acceleration Research Experiment provided investigators with real-time quasi-steady acceleration measurements. The Space Acceleration Measurement System recorded higher frequency data on-board for post-mission analysis. The Microgravity Measurement Assembly provided investigators with real-time quasi-steady and higher frequency acceleration measurements. The Microgravity Analysis Workstation provided calculation of the quasi-steady environment. This calculation was presented to the science teams in real-time during the mission. The microgravity environment related to several different Orbiter, crew and experiment operations is presented and interpreted in this report. A radiator deploy, the Flight Control System checkout, and a vernier reaction control system reboost demonstration had minimal effects on the acceleration environment, with excitation of frequencies in the 0.01 to 10 Hz range. Flash Evaporator System venting had no noticeable effect on the environment while supply and waste water dumps caused excursions of 2 x lO(exp -6) to 4 x 10(exp -6) g in the Y(sub b) and Z(sub b) directions. Crew sleep and ergometer exercise periods can be clearly seen in the acceleration data, as expected. Accelerations related to the two Life Science Laboratory Equipment Refrigerator/Freezers were apparent in the data as are accelerations caused by the Johnson Space Center Projects Centrifuge. As on previous microgravity missions, several signals are present in the acceleration data for which a source has not been identified. The causes of these accelerations are under investigation.

  10. The impact of the built environment on health across the life course: design of a cross-sectional data linkage study

    PubMed Central

    Villanueva, Karen; Pereira, Gavin; Knuiman, Matthew; Bull, Fiona; Wood, Lisa; Christian, Hayley; Foster, Sarah; Boruff, Bryan J; Beesley, Bridget; Hickey, Sharyn; Joyce, Sarah; Nathan, Andrea; Saarloos, Dick; Giles-Corti, Billie

    2013-01-01

    Introduction The built environment is increasingly recognised as being associated with health outcomes. Relationships between the built environment and health differ among age groups, especially between children and adults, but also between younger, mid-age and older adults. Yet few address differences across life stage groups within a single population study. Moreover, existing research mostly focuses on physical activity behaviours, with few studying objective clinical and mental health outcomes. The Life Course Built Environment and Health (LCBEH) project explores the impact of the built environment on self-reported and objectively measured health outcomes in a random sample of people across the life course. Methods and analysis This cross-sectional data linkage study involves 15 954 children (0–15 years), young adults (16–24 years), adults (25–64 years) and older adults (65+years) from the Perth metropolitan region who completed the Health and Wellbeing Surveillance System survey administered by the Department of Health of Western Australia from 2003 to 2009. Survey data were linked to Western Australia's (WA) Hospital Morbidity Database System (hospital admission) and Mental Health Information System (mental health system outpatient) data. Participants’ residential address was geocoded and features of their ‘neighbourhood’ were measured using Geographic Information Systems software. Associations between the built environment and self-reported and clinical health outcomes will be explored across varying geographic scales and life stages. Ethics and dissemination The University of Western Australia's Human Research Ethics Committee and the Department of Health of Western Australia approved the study protocol (#2010/1). Findings will be published in peer-reviewed journals and presented at local, national and international conferences, thus contributing to the evidence base informing the design of healthy neighbourhoods for all residents. PMID:23325897

  11. A GIS based model for active transportation in the built environment

    NASA Astrophysics Data System (ADS)

    Addison, Veronica Marie Medina

    Obesity and physical inactivity have been major risk factors associated with morbidity and mortality in the United States. Recently, obesity and physical inactivity have been on the rise. Determining connections between this trend and the environment could lead to a built environment that is conducive to healthy, active people. In my previous research, I have studied the built environment and its connection to health. For my dissertation, I build on this fundamental work by incorporating energy, specifically by studying the built environment and its connection to energy expenditures. This research models the built environment and combines this with human energy expenditure information in order to provide a planning tool that allows an individual to actively address health issues, particularly obesity. This research focuses on the design and development of an internet based model that enables individuals to understand their own energy expenditures in relation to their environment. The model will work to find the energy consumed by an individual in their navigation through campus. This is accomplished by using Geographic Information Systems (GIS) to model the campus and using it as the basis for calculating energy expended through active transportation. Using GIS to create the model allows for the incorporation of built environment factors such as elevation and energy expenditures in relation to physical exertion rate. This research will contribute to the long-term solution to the obesity epidemic by creating healthy communities through smart growth and sustainable design. This research provides users with a tool to use in their current environment for their personal and community well being.

  12. Space Weather Research at the National Science Foundation

    NASA Astrophysics Data System (ADS)

    Moretto, T.

    2015-12-01

    There is growing recognition that the space environment can have substantial, deleterious, impacts on society. Consequently, research enabling specification and forecasting of hazardous space effects has become of great importance and urgency. This research requires studying the entire Sun-Earth system to understand the coupling of regions all the way from the source of disturbances in the solar atmosphere to the Earth's upper atmosphere. The traditional, region-based structure of research programs in Solar and Space physics is ill suited to fully support the change in research directions that the problem of space weather dictates. On the observational side, dense, distributed networks of observations are required to capture the full large-scale dynamics of the space environment. However, the cost of implementing these is typically prohibitive, especially for measurements in space. Thus, by necessity, the implementation of such new capabilities needs to build on creative and unconventional solutions. A particularly powerful idea is the utilization of new developments in data engineering and informatics research (big data). These new technologies make it possible to build systems that can collect and process huge amounts of noisy and inaccurate data and extract from them useful information. The shift in emphasis towards system level science for geospace also necessitates the development of large-scale and multi-scale models. The development of large-scale models capable of capturing the global dynamics of the Earth's space environment requires investment in research team efforts that go beyond what can typically be funded under the traditional grants programs. This calls for effective interdisciplinary collaboration and efficient leveraging of resources both nationally and internationally. This presentation will provide an overview of current and planned initiatives, programs, and activities at the National Science Foundation pertaining to space weathe research.

  13. Advanced Photonic Sensors Enabled by Semiconductor Bonding

    DTIC Science & Technology

    2010-05-31

    a dry scroll backing pump to maintain the high differential pressure between the UV gun and the sample/analysis chamber. We also replaced the...semiconductor materials in an ultra-high vacuum (UHV) environment where the properties of the interface can be controlled with atomic-level precision. Such...year research program, we designed and constructed a unique system capable of fusion bonding two wafers in an ultra-high vacuum environment. This system

  14. Long-Range Atmosphere-Ocean Forecasting in Support of Undersea Warfare Operations in the Western North Pacific

    DTIC Science & Technology

    2009-09-01

    Forecasts ECS East China Sea ESRL Earth Systems Research Laboratory FA False alarm FARate False alarm rate xviii GDEM Generalized Digital...uses a LTM based, global ocean climatology database called Generalized Digital Environment Model ( GDEM ), in tactical decision aid (TDA) software, such...environment for USW planning. GDEM climatology is derived using temperature and salinity profiles from the Modular Ocean Data Assimilation System

  15. Compact Full-Field Ion Detector System for SmallSats Beyond LEO

    NASA Technical Reports Server (NTRS)

    Wrbanek, John D.; Wrbanek, Susan Y.; Fralick, Gustave C.; Clark, Pamela E.; McNeil, Roger R.

    2014-01-01

    NASA Glenn Research Center (GRC) is applying its expertise and facilities in harsh environment instrumentation to develop a Compact Full-Field Ion Detector System (CFIDS). The CFIDS is designed to be an extremely compact, low cost instrument, capable of being flown on a wide variety of deep space platforms, to provide multi-directional, comprehensive (composition, velocity, and direction) in-situ measurements of heavy ions in space plasma environments.

  16. Formal Assurance for Cognitive Architecture Based Autonomous Agent

    NASA Technical Reports Server (NTRS)

    Bhattacharyya, Siddhartha; Eskridge, Thomas; Neogi, Natasha; Carvalho, Marco

    2017-01-01

    Autonomous systems are designed and deployed in different modeling paradigms. These environments focus on specific concepts in designing the system. We focus our effort in the use of cognitive architectures to design autonomous agents to collaborate with humans to accomplish tasks in a mission. Our research focuses on introducing formal assurance methods to verify the behavior of agents designed in Soar, by translating the agent to the formal verification environment Uppaal.

  17. Integrated modelling of ecosystem services and energy systems research

    NASA Astrophysics Data System (ADS)

    Agarwala, Matthew; Lovett, Andrew; Bateman, Ian; Day, Brett; Agnolucci, Paolo; Ziv, Guy

    2016-04-01

    The UK Government is formally committed to reducing carbon emissions and protecting and improving natural capital and the environment. However, actually delivering on these objectives requires an integrated approach to addressing two parallel challenges: de-carbonising future energy system pathways; and safeguarding natural capital to ensure the continued flow of ecosystem services. Although both emphasise benefiting from natural resources, efforts to connect natural capital and energy systems research have been limited, meaning opportunities to improve management of natural resources and meet society's energy needs could be missed. The ecosystem services paradigm provides a consistent conceptual framework that applies in multiple disciplines across the natural and economic sciences, and facilitates collaboration between them. At the forefront of the field, integrated ecosystem service - economy models have guided public- and private-sector decision making at all levels. Models vary in sophistication from simple spreadsheet tools to complex software packages integrating biophysical, GIS and economic models and draw upon many fields, including ecology, hydrology, geography, systems theory, economics and the social sciences. They also differ in their ability to value changes in natural capital and ecosystem services at various spatial and temporal scales. Despite these differences, current models share a common feature: their treatment of energy systems is superficial at best. In contrast, energy systems research has no widely adopted, unifying conceptual framework that organises thinking about key system components and interactions. Instead, the literature is organised around modelling approaches, including life cycle analyses, econometric investigations, linear programming and computable general equilibrium models. However, some consistencies do emerge. First, often contain a linear set of steps, from exploration to resource supply, fuel processing, conversion/generation, transmission, distribution, and finally, end energy use. Although each step clearly impacts upon natural capital, links to the natural environment are rarely identified or quantified within energy research. In short, the respective conceptual frameworks guiding ecosystem service and energy research are not well integrated. Major knowledge and research gaps appear at the system boundaries: while energy models may mention flows of residuals, exploring where exactly these flows enter the environment, and how they impact ecosystems and natural capital is often considered to be 'outside the system boundary'. While integrated modelling represents the frontier of ecosystem service research, current efforts largely ignore the future energy pathways set out by energy systems models and government carbon targets. This disconnect means that policy-oriented research on how best to (i) maintain natural capital and (ii) meet specific climate targets may be poorly aligned, or worse, offer conflicting advice. We present a re-imagined version of the ecosystem services conceptual framework, in which emphasis is placed on interactions between energy systems and the natural environment. Using the UK as a case study, we employ a recent integrated environmental-economic ecosystem service model, TIM, developed by Bateman et al (2014) and energy pathways developed by the UK Energy Research Centre and the UK Government Committee on Climate Change to illustrate how the new conceptual framework might apply in real world applications.

  18. A Brief Overview of NASA Glenn Research Center Sensor and Electronics Activities

    NASA Technical Reports Server (NTRS)

    Hunter, Gary W.

    2012-01-01

    Aerospace applications require a range of sensing technologies. There is a range of sensor and sensor system technologies being developed using microfabrication and micromachining technology to form smart sensor systems and intelligent microsystems. Drive system intelligence to the local (sensor) level -- distributed smart sensor systems. Sensor and sensor system development examples: (1) Thin-film physical sensors (2) High temperature electronics and wireless (3) "lick and stick" technology. NASA GRC is a world leader in aerospace sensor technology with a broad range of development and application experience. Core microsystems technology applicable to a range of application environmentS.

  19. Research priorities for the environment, agriculture and infectious diseases of poverty.

    PubMed

    2013-01-01

    This report reviews the connections between environmental change, modern agricultural practices and the occurrence of infectious diseases - especially those of poverty; proposes a multi-criteria decision analysis approach to determining the key research priorities; and explores the benefits and limitations of a more systems-based approach to conceptualizing and investigating the problem. The report is the output of the Thematic Reference Group on Environment, Agriculture and Infectious Diseases of Poverty (TRG 4), part of an independent think tank of international experts, established and funded by the Special Programme for Research and Training in Tropical Diseases (TDR) to identify key research priorities through review of research evidence and input from stakeholder consultations. The report concludes that mitigating the outcomes on human health will require far-reaching strategies - spanning the environment, climate, agriculture, social-ecological, microbial and public-health sectors; as well as inter-disciplinary research and intersectoral action. People will also need to modify their way of thinking and engage beyond their own specialities, since the challenges are systemic and are amplified by the increasing inter-connectedness of human populations. This is one of a series of disease and thematic reference group reports that have come out of the TDR Think Tank, all of which have contributed to the development of the Global Report for Research on Infectious Diseases of Poverty, available at www.who.int/tdr/capacity/global_report.

  20. TH-D-BRB-04: Pinnacle Scripting: Improving Efficiency While Maintaining Safety

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moore, J.

    2016-06-15

    Scripting capabilities and application programming interfaces (APIs) are becoming commonly available in modern treatment planning systems. These links to the treatment planning system (TPS) allow users to read data from the TPS, and in some cases use TPS functionality and write data back to the TPS. Such tools are powerful extensions, allowing automation of routine clinical tasks and supporting research, particularly research involving repetitive tasks on large patient populations. The data and functionality exposed by scripting/API capabilities is vendor dependent, as are the languages used by script/API engines, such as the Microsoft .NET framework or Python. Scripts deployed in amore » clinical environment must be commissioned and validated like any other software tool. This session will provide an overview of scripting applications and a discussion of best practices, followed by a practical introduction to the scripting capabilities of three commercial treatment planning systems. Learning Objectives: Understand the scripting capabilities available in several treatment planning systems Learn how to get started using scripting capabilities Understand the best practices for safe script deployment in a clinical environment R. Popple, Varian Medical Systems has provided research support unrelated to the topic of this session.R. Cardan, Varian Medical Systems for grant research, product evaluation, and teaching honorarium.« less

  1. High-Intensity Radiated Field Fault-Injection Experiment for a Fault-Tolerant Distributed Communication System

    NASA Technical Reports Server (NTRS)

    Yates, Amy M.; Torres-Pomales, Wilfredo; Malekpour, Mahyar R.; Gonzalez, Oscar R.; Gray, W. Steven

    2010-01-01

    Safety-critical distributed flight control systems require robustness in the presence of faults. In general, these systems consist of a number of input/output (I/O) and computation nodes interacting through a fault-tolerant data communication system. The communication system transfers sensor data and control commands and can handle most faults under typical operating conditions. However, the performance of the closed-loop system can be adversely affected as a result of operating in harsh environments. In particular, High-Intensity Radiated Field (HIRF) environments have the potential to cause random fault manifestations in individual avionic components and to generate simultaneous system-wide communication faults that overwhelm existing fault management mechanisms. This paper presents the design of an experiment conducted at the NASA Langley Research Center's HIRF Laboratory to statistically characterize the faults that a HIRF environment can trigger on a single node of a distributed flight control system.

  2. Perspectives and research challenges in veterinary infectious diseases

    USDA-ARS?s Scientific Manuscript database

    The Veterinary Infectious Disease specialty section seeks to become an outlet for veterinary research into infectious diseases through the study of the pathogen or its host or the host's environment or by addressing combinations of these aspects of the disease system. We vision research in this are...

  3. Center for the Built Environment: Research on Controls and Information

    Science.gov Websites

    and Control Sustainability and Whole Building Energy Publications Research Area : Research on Human Interactions Contributing to the next generation of high-performance building control systems. New information for sensing and control of buildings using wireless communications technology, micro-electromechancial

  4. A Research Program on the Potential for Effects of Engineered Nanomaterials on Biological Systems

    EPA Science Inventory

    The US Environmental Protection Agency (EPA), Office of Research and Development, has developed a research program to evaluate the potential implications of engineered nanomaterials for human health and the environment. Among the major themes of the program are evaluating the in...

  5. A vector-product information retrieval system adapted to heterogeneous, distributed computing environments

    NASA Technical Reports Server (NTRS)

    Rorvig, Mark E.

    1991-01-01

    Vector-product information retrieval (IR) systems produce retrieval results superior to all other searching methods but presently have no commercial implementations beyond the personal computer environment. The NASA Electronic Library Systems (NELS) provides a ranked list of the most likely relevant objects in collections in response to a natural language query. Additionally, the system is constructed using standards and tools (Unix, X-Windows, Notif, and TCP/IP) that permit its operation in organizations that possess many different hosts, workstations, and platforms. There are no known commercial equivalents to this product at this time. The product has applications in all corporate management environments, particularly those that are information intensive, such as finance, manufacturing, biotechnology, and research and development.

  6. 3D environment modeling and location tracking using off-the-shelf components

    NASA Astrophysics Data System (ADS)

    Luke, Robert H.

    2016-05-01

    The remarkable popularity of smartphones over the past decade has led to a technological race for dominance in market share. This has resulted in a flood of new processors and sensors that are inexpensive, low power and high performance. These sensors include accelerometers, gyroscope, barometers and most importantly cameras. This sensor suite, coupled with multicore processors, allows a new community of researchers to build small, high performance platforms for low cost. This paper describes a system using off-the-shelf components to perform position tracking as well as environment modeling. The system relies on tracking using stereo vision and inertial navigation to determine movement of the system as well as create a model of the environment sensed by the system.

  7. Improving User Notification on Frequently Changing HPC Environments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fuson, Christopher B; Renaud, William A

    2016-01-01

    Today s HPC centers user environments can be very complex. Centers often contain multiple large complicated computational systems each with their own user environment. Changes to a system s environment can be very impactful; however, a center s user environment is, in one-way or another, frequently changing. Because of this, it is vital for centers to notify users of change. For users, untracked changes can be costly, resulting in unnecessary debug time as well as wasting valuable compute allocations and research time. Communicating frequent change to diverse user communities is a common and ongoing task for HPC centers. This papermore » will cover the OLCF s current processes and methods used to communicate change to users of the center s large Cray systems and supporting resources. The paper will share lessons learned and goals as well as practices, tools, and methods used to continually improve and reach members of the OLCF user community.« less

  8. Intelligent signal analysis and recognition

    NASA Technical Reports Server (NTRS)

    Levinson, Robert; Helman, Daniel; Oswalt, Edward

    1987-01-01

    Progress in the research and development of self-organizing database system that can support the identification and characterization of signals in an RF environment is described. As the radio frequency spectrum becomes more crowded, there are a number of situations that require a characterization of the RF environment. This database system is designed to be practical in applications where communications and other instruments encounter a time varying and complex RF environment. The primary application of this system is the guidance and control of NASA's SETI Microwave Observing Project. Other possible applications include selection of telemety bands for communication with spacecraft, and the scheduling of antenna for radio astronomy are two examples where characterization of the RF environment is required. In these applications, the RF environment is constantly changing, and even experienced operators cannot quickly identify the multitude of signals that can be encountered. Some of these signals are repetitive, others appear to occur sporadically.

  9. CRC Clinical Trials Management System (CTMS): An Integrated Information Management Solution for Collaborative Clinical Research

    PubMed Central

    Payne, Philip R.O.; Greaves, Andrew W.; Kipps, Thomas J.

    2003-01-01

    The Chronic Lymphocytic Leukemia (CLL) Research Consortium (CRC) consists of 9 geographically distributed sites conducting a program of research including both basic science and clinical components. To enable the CRC’s clinical research efforts, a system providing for real-time collaboration was required. CTMS provides such functionality, and demonstrates that the use of novel data modeling, web-application platforms, and management strategies provides for the deployment of an extensible, cost effective solution in such an environment. PMID:14728471

  10. A Human Factors Perspective on Alarm System Research and Development 2000 to 2010

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Curt Braun; John Grimes; Eric Shaver

    By definition, alarms serve to notify human operators of out-of-parameter conditions that could threaten equipment, the environment, product quality and, of course, human life. Given the complexities of industrial systems, human machine interfaces, and the human operator, the understanding of how alarms and humans can best work together to prevent disaster is continually developing. This review examines advances in alarm research and development from 2000 to 2010 and includes the writings of trade professionals, engineering and human factors researchers, and standards organizations with the goal of documenting advances in alarms system design, research, and implementation.

  11. CESAR research in intelligent machines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weisbin, C.R.

    1986-01-01

    The Center for Engineering Systems Advanced Research (CESAR) was established in 1983 as a national center for multidisciplinary, long-range research and development in machine intelligence and advanced control theory for energy-related applications. Intelligent machines of interest here are artificially created operational systems that are capable of autonomous decision making and action. The initial emphasis for research is remote operations, with specific application to dexterous manipulation in unstructured dangerous environments where explosives, toxic chemicals, or radioactivity may be present, or in other environments with significant risk such as coal mining or oceanographic missions. Potential benefits include reduced risk to man inmore » hazardous situations, machine replication of scarce expertise, minimization of human error due to fear or fatigue, and enhanced capability using high resolution sensors and powerful computers. A CESAR goal is to explore the interface between the advanced teleoperation capability of today, and the autonomous machines of the future.« less

  12. Assessment Environment for Complex Systems Software Guide

    NASA Technical Reports Server (NTRS)

    2013-01-01

    This Software Guide (SG) describes the software developed to test the Assessment Environment for Complex Systems (AECS) by the West Virginia High Technology Consortium (WVHTC) Foundation's Mission Systems Group (MSG) for the National Aeronautics and Space Administration (NASA) Aeronautics Research Mission Directorate (ARMD). This software is referred to as the AECS Test Project throughout the remainder of this document. AECS provides a framework for developing, simulating, testing, and analyzing modern avionics systems within an Integrated Modular Avionics (IMA) architecture. The purpose of the AECS Test Project is twofold. First, it provides a means to test the AECS hardware and system developed by MSG. Second, it provides an example project upon which future AECS research may be based. This Software Guide fully describes building, installing, and executing the AECS Test Project as well as its architecture and design. The design of the AECS hardware is described in the AECS Hardware Guide. Instructions on how to configure, build and use the AECS are described in the User's Guide. Sample AECS software, developed by the WVHTC Foundation, is presented in the AECS Software Guide. The AECS Hardware Guide, AECS User's Guide, and AECS Software Guide are authored by MSG. The requirements set forth for AECS are presented in the Statement of Work for the Assessment Environment for Complex Systems authored by NASA Dryden Flight Research Center (DFRC). The intended audience for this document includes software engineers, hardware engineers, project managers, and quality assurance personnel from WVHTC Foundation (the suppliers of the software), NASA (the customer), and future researchers (users of the software). Readers are assumed to have general knowledge in the field of real-time, embedded computer software development.

  13. Using the iPlant collaborative discovery environment.

    PubMed

    Oliver, Shannon L; Lenards, Andrew J; Barthelson, Roger A; Merchant, Nirav; McKay, Sheldon J

    2013-06-01

    The iPlant Collaborative is an academic consortium whose mission is to develop an informatics and social infrastructure to address the "grand challenges" in plant biology. Its cyberinfrastructure supports the computational needs of the research community and facilitates solving major challenges in plant science. The Discovery Environment provides a powerful and rich graphical interface to the iPlant Collaborative cyberinfrastructure by creating an accessible virtual workbench that enables all levels of expertise, ranging from students to traditional biology researchers and computational experts, to explore, analyze, and share their data. By providing access to iPlant's robust data-management system and high-performance computing resources, the Discovery Environment also creates a unified space in which researchers can access scalable tools. Researchers can use available Applications (Apps) to execute analyses on their data, as well as customize or integrate their own tools to better meet the specific needs of their research. These Apps can also be used in workflows that automate more complicated analyses. This module describes how to use the main features of the Discovery Environment, using bioinformatics workflows for high-throughput sequence data as examples. © 2013 by John Wiley & Sons, Inc.

  14. Biological Visualization, Imaging and Simulation(Bio-VIS) at NASA Ames Research Center: Developing New Software and Technology for Astronaut Training and Biology Research in Space

    NASA Technical Reports Server (NTRS)

    Smith, Jeffrey

    2003-01-01

    The Bio- Visualization, Imaging and Simulation (BioVIS) Technology Center at NASA's Ames Research Center is dedicated to developing and applying advanced visualization, computation and simulation technologies to support NASA Space Life Sciences research and the objectives of the Fundamental Biology Program. Research ranges from high resolution 3D cell imaging and structure analysis, virtual environment simulation of fine sensory-motor tasks, computational neuroscience and biophysics to biomedical/clinical applications. Computer simulation research focuses on the development of advanced computational tools for astronaut training and education. Virtual Reality (VR) and Virtual Environment (VE) simulation systems have become important training tools in many fields from flight simulation to, more recently, surgical simulation. The type and quality of training provided by these computer-based tools ranges widely, but the value of real-time VE computer simulation as a method of preparing individuals for real-world tasks is well established. Astronauts routinely use VE systems for various training tasks, including Space Shuttle landings, robot arm manipulations and extravehicular activities (space walks). Currently, there are no VE systems to train astronauts for basic and applied research experiments which are an important part of many missions. The Virtual Glovebox (VGX) is a prototype VE system for real-time physically-based simulation of the Life Sciences Glovebox where astronauts will perform many complex tasks supporting research experiments aboard the International Space Station. The VGX consists of a physical display system utilizing duel LCD projectors and circular polarization to produce a desktop-sized 3D virtual workspace. Physically-based modeling tools (Arachi Inc.) provide real-time collision detection, rigid body dynamics, physical properties and force-based controls for objects. The human-computer interface consists of two magnetic tracking devices (Ascention Inc.) attached to instrumented gloves (Immersion Inc.) which co-locate the user's hands with hand/forearm representations in the virtual workspace. Force-feedback is possible in a work volume defined by a Phantom Desktop device (SensAble inc.). Graphics are written in OpenGL. The system runs on a 2.2 GHz Pentium 4 PC. The prototype VGX provides astronauts and support personnel with a real-time physically-based VE system to simulate basic research tasks both on Earth and in the microgravity of Space. The immersive virtual environment of the VGX also makes it a useful tool for virtual engineering applications including CAD development, procedure design and simulation of human-system systems in a desktop-sized work volume.

  15. NASA/FAA North Texas Research Station Overview

    NASA Technical Reports Server (NTRS)

    Borchers, Paul F.

    2012-01-01

    NTX Research Staion: NASA research assets embedded in an interesting operational air transport environment. Seven personnel (2 civil servants, 5 contractors). ARTCC, TRACON, Towers, 3 air carrier AOCs(American, Eagle and Southwest), and 2 major airports all within 12 miles. Supports NASA Airspace Systems Program with research products at all levels (fundamental to system level). NTX Laboratory: 5000 sq ft purpose-built, dedicated, air traffic management research facility. Established data links to ARTCC, TRACON, Towers, air carriers, airport and NASA facilities. Re-configurable computer labs, dedicated radio tower, state-of-the-art equipment.

  16. Physical Processes and Real-Time Chemical Measurement of the Insect Olfactory Environment

    PubMed Central

    Abrell, Leif; Hildebrand, John G.

    2009-01-01

    Odor-mediated insect navigation in airborne chemical plumes is vital to many ecological interactions, including mate finding, flower nectaring, and host locating (where disease transmission or herbivory may begin). After emission, volatile chemicals become rapidly mixed and diluted through physical processes that create a dynamic olfactory environment. This review examines those physical processes and some of the analytical technologies available to characterize those behavior-inducing chemical signals at temporal scales equivalent to the olfactory processing in insects. In particular, we focus on two areas of research that together may further our understanding of olfactory signal dynamics and its processing and perception by insects. First, measurement of physical atmospheric processes in the field can provide insight into the spatiotemporal dynamics of the odor signal available to insects. Field measurements in turn permit aspects of the physical environment to be simulated in the laboratory, thereby allowing careful investigation into the links between odor signal dynamics and insect behavior. Second, emerging analytical technologies with high recording frequencies and field-friendly inlet systems may offer new opportunities to characterize natural odors at spatiotemporal scales relevant to insect perception and behavior. Characterization of the chemical signal environment allows the determination of when and where olfactory-mediated behaviors may control ecological interactions. Finally, we argue that coupling of these two research areas will foster increased understanding of the physicochemical environment and enable researchers to determine how olfactory environments shape insect behaviors and sensory systems. PMID:18548311

  17. Cohort: critical science

    NASA Astrophysics Data System (ADS)

    Digney, Bruce L.

    2007-04-01

    Unmanned vehicle systems is an attractive technology for the military, but whose promises have remained largely undelivered. There currently exist fielded remote controlled UGVs and high altitude UAV whose benefits are based on standoff in low complexity environments with sufficiently low control reaction time requirements to allow for teleoperation. While effective within there limited operational niche such systems do not meet with the vision of future military UxV scenarios. Such scenarios envision unmanned vehicles operating effectively in complex environments and situations with high levels of independence and effective coordination with other machines and humans pursing high level, changing and sometimes conflicting goals. While these aims are clearly ambitious they do provide necessary targets and inspiration with hopes of fielding near term useful semi-autonomous unmanned systems. Autonomy involves many fields of research including machine vision, artificial intelligence, control theory, machine learning and distributed systems all of which are intertwined and have goals of creating more versatile broadly applicable algorithms. Cohort is a major Applied Research Program (ARP) led by Defence R&D Canada (DRDC) Suffield and its aim is to develop coordinated teams of unmanned vehicles (UxVs) for urban environments. This paper will discuss the critical science being addressed by DRDC developing semi-autonomous systems.

  18. Integrating human and natural systems in community psychology: an ecological model of stewardship behavior.

    PubMed

    Moskell, Christine; Allred, Shorna Broussard

    2013-03-01

    Community psychology (CP) research on the natural environment lacks a theoretical framework for analyzing the complex relationship between human systems and the natural world. We introduce other academic fields concerned with the interactions between humans and the natural environment, including environmental sociology and coupled human and natural systems. To demonstrate how the natural environment can be included within CP's ecological framework, we propose an ecological model of urban forest stewardship action. Although ecological models of behavior in CP have previously modeled health behaviors, we argue that these frameworks are also applicable to actions that positively influence the natural environment. We chose the environmental action of urban forest stewardship because cities across the United States are planting millions of trees and increased citizen participation in urban tree planting and stewardship will be needed to sustain the benefits provided by urban trees. We used the framework of an ecological model of behavior to illustrate multiple levels of factors that may promote or hinder involvement in urban forest stewardship actions. The implications of our model for the development of multi-level ecological interventions to foster stewardship actions are discussed, as well as directions for future research to further test and refine the model.

  19. The Software Element of the NASA Portable Electronic Device Radiated Emissions Investigation

    NASA Technical Reports Server (NTRS)

    Koppen, Sandra V.; Williams, Reuben A. (Technical Monitor)

    2002-01-01

    NASA Langley Research Center's (LaRC) High Intensity Radiated Fields Laboratory (HIRF Lab) recently conducted a series of electromagnetic radiated emissions tests under a cooperative agreement with Delta Airlines and an interagency agreement with the FAA. The frequency spectrum environment at a commercial airport was measured on location. The environment survey provides a comprehensive picture of the complex nature of the electromagnetic environment present in those areas outside the aircraft. In addition, radiated emissions tests were conducted on portable electronic devices (PEDs) that may be brought onboard aircraft. These tests were performed in both semi-anechoic and reverberation chambers located in the HIRF Lab. The PEDs included cell phones, laptop computers, electronic toys, and family radio systems. The data generated during the tests are intended to support the research on the effect of radiated emissions from wireless devices on aircraft systems. Both tests systems relied on customized control and data reduction software to provide test and instrument control, data acquisition, a user interface, real time data reduction, and data analysis. The software executed on PC's running MS Windows 98 and 2000, and used Agilent Pro Visual Engineering Environment (VEE) development software, Common Object Model (COM) technology, and MS Excel.

  20. Path loss analysis in millimeter wave cellular systems for urban mobile communications

    NASA Astrophysics Data System (ADS)

    Rajagopalan, Ramesh; Hoffman, Mitchell

    2016-09-01

    The proliferation in the number of mobile devices and developments in cellular technology has led to an ever increasing demand for mobile data. The global bandwidth shortage facing wireless carriers today has motivated research for fifth generation (5G) cellular systems. In recent years, millimeter wave (mmW) frequencies between 30 and 300 GHz are being considered as a promising technology for 5G systems. Such systems can offer superior user experience by providing data rates that exceed one Gigabit per second and latencies lower than a millisecond. However, there is little research about cellular mmW propagation in densely populated urban environments. Understanding the radio channel is a primary requirement for optimal design of mmW systems. Radio propagation in mmW systems faces significant challenges due to rapidly varying channel conditions and intermittent connectivity. In this paper, we study the propagation of mmW spectrum in an urban environment. We use a statistical model to simulate an urban environment with diverse building distributions. We perform extensive simulations to analyze the path loss behavior for both line of sight (LOS) and non line of sight (NLOS) conditions for 28 GHZ and 73 GHZ mmW frequencies. We observe that the path loss approximates a logarithmic fit for both LOS and NLOS environments. Our simulations show that the omnidirectional free space path loss is approximately 30 dB higher for mmW systems compared to current 3G PP cellular systems. To address this challenge, we propose using highly directional horn antennas with beam forming for reducing the path loss.

  1. Simulation environment and graphical visualization environment: a COPD use-case

    PubMed Central

    2014-01-01

    Background Today, many different tools are developed to execute and visualize physiological models that represent the human physiology. Most of these tools run models written in very specific programming languages which in turn simplify the communication among models. Nevertheless, not all of these tools are able to run models written in different programming languages. In addition, interoperability between such models remains an unresolved issue. Results In this paper we present a simulation environment that allows, first, the execution of models developed in different programming languages and second the communication of parameters to interconnect these models. This simulation environment, developed within the Synergy-COPD project, aims at helping and supporting bio-researchers and medical students understand the internal mechanisms of the human body through the use of physiological models. This tool is composed of a graphical visualization environment, which is a web interface through which the user can interact with the models, and a simulation workflow management system composed of a control module and a data warehouse manager. The control module monitors the correct functioning of the whole system. The data warehouse manager is responsible for managing the stored information and supporting its flow among the different modules. This simulation environment has been validated with the integration of three models: two deterministic, i.e. based on linear and differential equations, and one probabilistic, i.e., based on probability theory. These models have been selected based on the disease under study in this project, i.e., chronic obstructive pulmonary disease. Conclusion It has been proved that the simulation environment presented here allows the user to research and study the internal mechanisms of the human physiology by the use of models via a graphical visualization environment. A new tool for bio-researchers is ready for deployment in various use cases scenarios. PMID:25471327

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burgett, Eric; Al-Sheikhly, Mohamad; Summers, Christopher

    An advanced in-pile multi-parameter reactor monitoring system is being proposed in this funding opportunity. The proposed effort brings cutting edge, high-fidelity optical measurement systems into the reactor environment in an unprecedented fashion, including in-core, in-cladding and in-fuel pellet itself. Unlike instrumented leads, the proposed system provides a unique solution to a multi-parameter monitoring need in core while being minimally intrusive in the reactor core. Detector designs proposed herein can monitor fuel compression and expansion in both the radial and axial dimensions as well as monitor linear power profiles and fission rates during the operation of the reactor. In addition tomore » pressure, stress, strain, compression, neutron flux, neutron spectra, and temperature can be observed inside the fuel bundle and fuel rod using the proposed system. The proposed research aims at developing radiation-hard, harsh-environment multi-parameter systems for insertion into the reactor environment. The proposed research holds the potential to drastically increase the fidelity and precision of in-core instrumentation with little or no impact in the neutron economy in the reactor environment while providing a measurement system capable of operation for entire operating cycles. Significant work has been done over the last few years on the use of nanoparticle-based scintillators. Through the use of metamaterials, the PIs aim to develop planar neutron detectors and large-volume neutron detectors. These detectors will have high efficiencies for neutron detection and will have a high gamma discrimination capability.« less

  3. Methods for design and evaluation of integrated hardware-software systems for concurrent computation

    NASA Technical Reports Server (NTRS)

    Pratt, T. W.

    1985-01-01

    Research activities and publications are briefly summarized. The major tasks reviewed are: (1) VAX implementation of the PISCES parallel programming environment; (2) Apollo workstation network implementation of the PISCES environment; (3) FLEX implementation of the PISCES environment; (4) sparse matrix iterative solver in PSICES Fortran; (5) image processing application of PISCES; and (6) a formal model of concurrent computation being developed.

  4. 15 CFR 921.30 - Designation of National Estuarine Research Reserves.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... AND COASTAL RESOURCE MANAGEMENT NATIONAL ESTUARINE RESEARCH RESERVE SYSTEM REGULATIONS Reserve... protection for reserve resources to ensure a stable environment for research; (3) Designation of the area as... agencies and/or private organizations) have been signed; and (7) The coastal state in which the area is...

  5. 15 CFR 921.30 - Designation of National Estuarine Research Reserves.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... AND COASTAL RESOURCE MANAGEMENT NATIONAL ESTUARINE RESEARCH RESERVE SYSTEM REGULATIONS Reserve... protection for reserve resources to ensure a stable environment for research; (3) Designation of the area as... agencies and/or private organizations) have been signed; and (7) The coastal state in which the area is...

  6. 15 CFR 921.30 - Designation of National Estuarine Research Reserves.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... AND COASTAL RESOURCE MANAGEMENT NATIONAL ESTUARINE RESEARCH RESERVE SYSTEM REGULATIONS Reserve... protection for reserve resources to ensure a stable environment for research; (3) Designation of the area as... agencies and/or private organizations) have been signed; and (7) The coastal state in which the area is...

  7. 15 CFR 921.30 - Designation of National Estuarine Research Reserves.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... AND COASTAL RESOURCE MANAGEMENT NATIONAL ESTUARINE RESEARCH RESERVE SYSTEM REGULATIONS Reserve... protection for reserve resources to ensure a stable environment for research; (3) Designation of the area as... agencies and/or private organizations) have been signed; and (7) The coastal state in which the area is...

  8. 15 CFR 921.30 - Designation of National Estuarine Research Reserves.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... AND COASTAL RESOURCE MANAGEMENT NATIONAL ESTUARINE RESEARCH RESERVE SYSTEM REGULATIONS Reserve... protection for reserve resources to ensure a stable environment for research; (3) Designation of the area as... agencies and/or private organizations) have been signed; and (7) The coastal state in which the area is...

  9. BioSMACK: a linux live CD for genome-wide association analyses.

    PubMed

    Hong, Chang Bum; Kim, Young Jin; Moon, Sanghoon; Shin, Young-Ah; Go, Min Jin; Kim, Dong-Joon; Lee, Jong-Young; Cho, Yoon Shin

    2012-01-01

    Recent advances in high-throughput genotyping technologies have enabled us to conduct a genome-wide association study (GWAS) on a large cohort. However, analyzing millions of single nucleotide polymorphisms (SNPs) is still a difficult task for researchers conducting a GWAS. Several difficulties such as compatibilities and dependencies are often encountered by researchers using analytical tools, during the installation of software. This is a huge obstacle to any research institute without computing facilities and specialists. Therefore, a proper research environment is an urgent need for researchers working on GWAS. We developed BioSMACK to provide a research environment for GWAS that requires no configuration and is easy to use. BioSMACK is based on the Ubuntu Live CD that offers a complete Linux-based operating system environment without installation. Moreover, we provide users with a GWAS manual consisting of a series of guidelines for GWAS and useful examples. BioSMACK is freely available at http://ksnp.cdc. go.kr/biosmack.

  10. Using smartphone technology to deliver a virtual pedestrian environment: usability and validation.

    PubMed

    Schwebel, David C; Severson, Joan; He, Yefei

    2017-09-01

    Various programs effectively teach children to cross streets more safely, but all are labor- and cost-intensive. Recent developments in mobile phone technology offer opportunity to deliver virtual reality pedestrian environments to mobile smartphone platforms. Such an environment may offer a cost- and labor-effective strategy to teach children to cross streets safely. This study evaluated usability, feasibility, and validity of a smartphone-based virtual pedestrian environment. A total of 68 adults completed 12 virtual crossings within each of two virtual pedestrian environments, one delivered by smartphone and the other a semi-immersive kiosk virtual environment. Participants completed self-report measures of perceived realism and simulator sickness experienced in each virtual environment, plus self-reported demographic and personality characteristics. All participants followed system instructions and used the smartphone-based virtual environment without difficulty. No significant simulator sickness was reported or observed. Users rated the smartphone virtual environment as highly realistic. Convergent validity was detected, with many aspects of pedestrian behavior in the smartphone-based virtual environment matching behavior in the kiosk virtual environment. Anticipated correlations between personality and kiosk virtual reality pedestrian behavior emerged for the smartphone-based system. A smartphone-based virtual environment can be usable and valid. Future research should develop and evaluate such a training system.

  11. Continuous Space Estimation: Increasing WiFi-Based Indoor Localization Resolution without Increasing the Site-Survey Effort.

    PubMed

    Hernández, Noelia; Ocaña, Manuel; Alonso, Jose M; Kim, Euntai

    2017-01-13

    Although much research has taken place in WiFi indoor localization systems, their accuracy can still be improved. When designing this kind of system, fingerprint-based methods are a common choice. The problem with fingerprint-based methods comes with the need of site surveying the environment, which is effort consuming. In this work, we propose an approach, based on support vector regression, to estimate the received signal strength at non-site-surveyed positions of the environment. Experiments, performed in a real environment, show that the proposed method could be used to improve the resolution of fingerprint-based indoor WiFi localization systems without increasing the site survey effort.

  12. Continuous Space Estimation: Increasing WiFi-Based Indoor Localization Resolution without Increasing the Site-Survey Effort †

    PubMed Central

    Hernández, Noelia; Ocaña, Manuel; Alonso, Jose M.; Kim, Euntai

    2017-01-01

    Although much research has taken place in WiFi indoor localization systems, their accuracy can still be improved. When designing this kind of system, fingerprint-based methods are a common choice. The problem with fingerprint-based methods comes with the need of site surveying the environment, which is effort consuming. In this work, we propose an approach, based on support vector regression, to estimate the received signal strength at non-site-surveyed positions of the environment. Experiments, performed in a real environment, show that the proposed method could be used to improve the resolution of fingerprint-based indoor WiFi localization systems without increasing the site survey effort. PMID:28098773

  13. Plant growth chamber based on space proven controlled environment technology

    NASA Astrophysics Data System (ADS)

    Ignatius, Ronald W.; Ignatius, Matt H.; Imberti, Henry J.

    1997-01-01

    Quantum Devices, Inc., in conjunction with Percival Scientific, Inc., and the Wisconsin Center for Space Automation and Robotics (WCSAR) have developed a controlled environment plant growth chamber for terrestrial agricultural and scientific applications. This chamber incorporates controlled environment technology used in the WCSAR ASTROCULTURE™ flight unit for conducting plant research on the Space Shuttle. The new chamber, termed CERES 2010, features air humidity, temperature, and carbon dioxide control, an atmospheric contaminant removal unit, an LED lighting system, and a water and nutrient delivery system. The advanced environment control technology used in this chamber will increase the reliability and repeatability of environmental physiology data derived from plant experiments conducted in this chamber.

  14. Security risks associated with radio frequency identification in medical environments.

    PubMed

    Hawrylak, Peter J; Schimke, Nakeisha; Hale, John; Papa, Mauricio

    2012-12-01

    Radio frequency identification (RFID) is a form of wireless communication that is used to identify assets and people. RFID has significant benefits to the medical environment. However, serious security threats are present in RFID systems that must be addressed in a medical environment. Of particular interest are threats to patient privacy and safety based on interception of messages, interruption of communication, modification of data, and fabrication of messages and devices. This paper presents an overview of these security threats present in RFID systems in a medical environment and provides guidance on potential solutions to these threats. This paper provides a roadmap for researchers and implementers to address the security issues facing RFID in the medical space.

  15. Development of guidelines for accommodating safe and desirable pedestrian activity within the highway environment.

    DOT National Transportation Integrated Search

    1975-01-01

    This study develops general guidelines for planning and evaluating suburban pedestrian systems. Pedestrian characteristics and capabilities which affect walking demand are summarized using the results of previous research. Reported research results a...

  16. System For Research On Multiple-Arm Robots

    NASA Technical Reports Server (NTRS)

    Backes, Paul G.; Hayati, Samad; Tso, Kam S.; Hayward, Vincent

    1991-01-01

    Kali system of computer programs and equipment provides environment for research on distributed programming and distributed control of coordinated-multiple-arm robots. Suitable for telerobotics research involving sensing and execution of low level tasks. Software and configuration of hardware designed flexible so system modified easily to test various concepts in control and programming of robots, including multiple-arm control, redundant-arm control, shared control, traded control, force control, force/position hybrid control, design and integration of sensors, teleoperation, task-space description and control, methods of adaptive control, control of flexible arms, and human factors.

  17. Craniux: A LabVIEW-Based Modular Software Framework for Brain-Machine Interface Research

    PubMed Central

    Degenhart, Alan D.; Kelly, John W.; Ashmore, Robin C.; Collinger, Jennifer L.; Tyler-Kabara, Elizabeth C.; Weber, Douglas J.; Wang, Wei

    2011-01-01

    This paper presents “Craniux,” an open-access, open-source software framework for brain-machine interface (BMI) research. Developed in LabVIEW, a high-level graphical programming environment, Craniux offers both out-of-the-box functionality and a modular BMI software framework that is easily extendable. Specifically, it allows researchers to take advantage of multiple features inherent to the LabVIEW environment for on-the-fly data visualization, parallel processing, multithreading, and data saving. This paper introduces the basic features and system architecture of Craniux and describes the validation of the system under real-time BMI operation using simulated and real electrocorticographic (ECoG) signals. Our results indicate that Craniux is able to operate consistently in real time, enabling a seamless work flow to achieve brain control of cursor movement. The Craniux software framework is made available to the scientific research community to provide a LabVIEW-based BMI software platform for future BMI research and development. PMID:21687575

  18. Craniux: a LabVIEW-based modular software framework for brain-machine interface research.

    PubMed

    Degenhart, Alan D; Kelly, John W; Ashmore, Robin C; Collinger, Jennifer L; Tyler-Kabara, Elizabeth C; Weber, Douglas J; Wang, Wei

    2011-01-01

    This paper presents "Craniux," an open-access, open-source software framework for brain-machine interface (BMI) research. Developed in LabVIEW, a high-level graphical programming environment, Craniux offers both out-of-the-box functionality and a modular BMI software framework that is easily extendable. Specifically, it allows researchers to take advantage of multiple features inherent to the LabVIEW environment for on-the-fly data visualization, parallel processing, multithreading, and data saving. This paper introduces the basic features and system architecture of Craniux and describes the validation of the system under real-time BMI operation using simulated and real electrocorticographic (ECoG) signals. Our results indicate that Craniux is able to operate consistently in real time, enabling a seamless work flow to achieve brain control of cursor movement. The Craniux software framework is made available to the scientific research community to provide a LabVIEW-based BMI software platform for future BMI research and development.

  19. FAIRDOMHub: a repository and collaboration environment for sharing systems biology research.

    PubMed

    Wolstencroft, Katherine; Krebs, Olga; Snoep, Jacky L; Stanford, Natalie J; Bacall, Finn; Golebiewski, Martin; Kuzyakiv, Rostyk; Nguyen, Quyen; Owen, Stuart; Soiland-Reyes, Stian; Straszewski, Jakub; van Niekerk, David D; Williams, Alan R; Malmström, Lars; Rinn, Bernd; Müller, Wolfgang; Goble, Carole

    2017-01-04

    The FAIRDOMHub is a repository for publishing FAIR (Findable, Accessible, Interoperable and Reusable) Data, Operating procedures and Models (https://fairdomhub.org/) for the Systems Biology community. It is a web-accessible repository for storing and sharing systems biology research assets. It enables researchers to organize, share and publish data, models and protocols, interlink them in the context of the systems biology investigations that produced them, and to interrogate them via API interfaces. By using the FAIRDOMHub, researchers can achieve more effective exchange with geographically distributed collaborators during projects, ensure results are sustained and preserved and generate reproducible publications that adhere to the FAIR guiding principles of data stewardship. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  20. Survey of Maine Citizens Who Have Not Attained a College Degree. Report Prepared for the Maine Community College System (MCCS)

    ERIC Educational Resources Information Center

    Maine Community College System, 2006

    2006-01-01

    In March 2006, the Maine Community College System (MCCS) commissioned the marketing research and consulting firm Strategic Marketing Services (SMS) to conduct a quantitative research study to investigate the reasons why some Maine citizens have not pursued a college degree and identify the characteristics of an educational environment that would…

  1. Chemical Inventory Management at NASA Lewis Research Center

    NASA Technical Reports Server (NTRS)

    Kraft, Shirley S.; Homan, Joseph R.; Bajorek, Michael J.; Dominguez, Manuel B.; Smith, Vanessa L.

    1997-01-01

    The Chemical Management System (CMS) is a client/server application developed with Power Builder and Sybase for the Lewis Research Center (LeRC). Power Builder is a client-server application development tool, Sybase is a Relational Database Management System. The entire LeRC community can access the CMS from any desktop environment. The multiple functions and benefits of the CMS are addressed.

  2. A Fault-Oblivious Extreme-Scale Execution Environment (FOX)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van Hensbergen, Eric; Speight, William; Xenidis, Jimi

    IBM Research’s contribution to the Fault Oblivious Extreme-scale Execution Environment (FOX) revolved around three core research deliverables: • collaboration with Boston University around the Kittyhawk cloud infrastructure which both enabled a development and deployment platform for the project team and provided a fault-injection testbed to evaluate prototypes • operating systems research focused on exploring role-based operating system technologies through collaboration with Sandia National Labs on the NIX research operating system and collaboration with the broader IBM Research community around a hybrid operating system model which became known as FusedOS • IBM Research also participated in an advisory capacity with themore » Boston University SESA project, the core of which was derived from the K42 operating system research project funded in part by DARPA’s HPCS program. Both of these contributions were built on a foundation of previous operating systems research funding by the Department of Energy’s FastOS Program. Through the course of the X-stack funding we were able to develop prototypes, deploy them on production clusters at scale, and make them available to other researchers. As newer hardware, in the form of BlueGene/Q, came online, we were able to port the prototypes to the new hardware and release the source code for the resulting prototypes as open source to the community. In addition to the open source coded for the Kittyhawk and NIX prototypes, we were able to bring the BlueGene/Q Linux patches up to a more recent kernel and contribute them for inclusion by the broader Linux community. The lasting impact of the IBM Research work on FOX can be seen in its effect on the shift of IBM’s approach to HPC operating systems from Linux and Compute Node Kernels to role-based approaches as prototyped by the NIX and FusedOS work. This impact can be seen beyond IBM in follow-on ideas being incorporated into the proposals for the Exasacale Operating Systems/Runtime program.« less

  3. LiveInventor: An Interactive Development Environment for Robot Autonomy

    NASA Technical Reports Server (NTRS)

    Neveu, Charles; Shirley, Mark

    2003-01-01

    LiveInventor is an interactive development environment for robot autonomy developed at NASA Ames Research Center. It extends the industry-standard OpenInventor graphics library and scenegraph file format to include kinetic and kinematic information, a physics-simulation library, an embedded Scheme interpreter, and a distributed communication system.

  4. Center for the Built Environment: Research on Indoor Environmental Quality

    Science.gov Websites

    Comfort System Speech Privacy Task Ambient Conditioning Team Space Design Study Thermal Comfort Automotive resulting from HVAC, building, and facade design decisions. Acoustical Analysis in Office Environments Using building energy. The Impact of Team Space Design on Collaboration Assessing individual and group worker

  5. Exploring Distributed Leadership for the Quality Management of Online Learning Environments

    ERIC Educational Resources Information Center

    Palmer, Stuart; Holt, Dale; Gosper, Maree; Sankey, Michael; Allan, Garry

    2013-01-01

    Online learning environments (OLEs) are complex information technology (IT) systems that intersect with many areas of university organisation. Distributed models of leadership have been proposed as appropriate for the good governance of OLEs. Based on theoretical and empirical research, a group of Australian universities proposed a framework for…

  6. Educational Environment Risks: Problems of Identification and Classification

    ERIC Educational Resources Information Center

    Kayumova, Leysan R.; Zakirova, Venera G.

    2016-01-01

    The relevance of the research problem is determined by the multidimensionality of educational environment, that is the system of business and interpersonal relationships of educational process subjects. The maintenance of these relations defines quality and nature of risks for teachers and their pupils. The article aims to identify and justify the…

  7. Teaching and Learning with Flexible Hypermedia Learning Environments.

    ERIC Educational Resources Information Center

    Wedekind, Joachim; Lechner, Martin; Tergan, Sigmar-Olaf

    This paper presents an approach for developing flexible Hypermedia Learning Environments (HMLE) and applies this theoretical framework to the creation of a layered model of a hypermedia system, called HyperDisc, developed at the German Institute for Research on Distance Education. The first section introduces HMLE and suggests that existing…

  8. An Inexpensive, Stable, and Accurate Relative Humidity Measurement Method for Challenging Environments

    PubMed Central

    Zhang, Wei; Ma, Hong; Yang, Simon X.

    2016-01-01

    In this research, an improved psychrometer is developed to solve practical issues arising in the relative humidity measurement of challenging drying environments for meat manufacturing in agricultural and agri-food industries. The design in this research focused on the structure of the improved psychrometer, signal conversion, and calculation methods. The experimental results showed the effect of varying psychrometer structure on relative humidity measurement accuracy. An industrial application to dry-cured meat products demonstrated the effective performance of the improved psychrometer being used as a relative humidity measurement sensor in meat-drying rooms. In a drying environment for meat manufacturing, the achieved measurement accuracy for relative humidity using the improved psychrometer was ±0.6%. The system test results showed that the improved psychrometer can provide reliable and long-term stable relative humidity measurements with high accuracy in the drying system of meat products. PMID:26999161

  9. An Inexpensive, Stable, and Accurate Relative Humidity Measurement Method for Challenging Environments.

    PubMed

    Zhang, Wei; Ma, Hong; Yang, Simon X

    2016-03-18

    In this research, an improved psychrometer is developed to solve practical issues arising in the relative humidity measurement of challenging drying environments for meat manufacturing in agricultural and agri-food industries. The design in this research focused on the structure of the improved psychrometer, signal conversion, and calculation methods. The experimental results showed the effect of varying psychrometer structure on relative humidity measurement accuracy. An industrial application to dry-cured meat products demonstrated the effective performance of the improved psychrometer being used as a relative humidity measurement sensor in meat-drying rooms. In a drying environment for meat manufacturing, the achieved measurement accuracy for relative humidity using the improved psychrometer was ±0.6%. The system test results showed that the improved psychrometer can provide reliable and long-term stable relative humidity measurements with high accuracy in the drying system of meat products.

  10. A distributed programming environment for Ada

    NASA Technical Reports Server (NTRS)

    Brennan, Peter; Mcdonnell, Tom; Mcfarland, Gregory; Timmins, Lawrence J.; Litke, John D.

    1986-01-01

    Despite considerable commercial exploitation of fault tolerance systems, significant and difficult research problems remain in such areas as fault detection and correction. A research project is described which constructs a distributed computing test bed for loosely coupled computers. The project is constructing a tool kit to support research into distributed control algorithms, including a distributed Ada compiler, distributed debugger, test harnesses, and environment monitors. The Ada compiler is being written in Ada and will implement distributed computing at the subsystem level. The design goal is to provide a variety of control mechanics for distributed programming while retaining total transparency at the code level.

  11. The monitoring system for vibratory disturbance detection in microgravity environment aboard the international space station

    NASA Technical Reports Server (NTRS)

    Laster, Rachel M.

    2004-01-01

    Scientists in the Office of Life and Microgravity Sciences and Applications within the Microgravity Research Division oversee studies in important physical, chemical, and biological processes in microgravity environment. Research is conducted in microgravity environment because of the beneficial results that come about for experiments. When research is done in normal gravity, scientists are limited to results that are affected by the gravity of Earth. Microgravity provides an environment where solid, liquid, and gas can be observed in a natural state of free fall and where many different variables are eliminated. One challenge that NASA faces is that space flight opportunities need to be used effectively and efficiently in order to ensure that some of the most scientifically promising research is conducted. Different vibratory sources are continually active aboard the International Space Station (ISS). Some of the vibratory sources include crew exercise, experiment setup, machinery startup (life support fans, pumps, freezer/compressor, centrifuge), thruster firings, and some unknown events. The Space Acceleration Measurement System (SAMs), which acts as the hardware and carefully positioned aboard the ISS, along with the Microgravity Environment Monitoring System MEMS), which acts as the software and is located here at NASA Glenn, are used to detect these vibratory sources aboard the ISS and recognize them as disturbances. The various vibratory disturbances can sometimes be harmful to the scientists different research projects. Some vibratory disturbances are recognized by the MEMS's database and some are not. Mainly, the unknown events that occur aboard the International Space Station are the ones of major concern. To better aid in the research experiments, the unknown events are identified and verified as unknown events. Features, such as frequency, acceleration level, time and date of recognition of the new patterns are stored in an Excel database. My task is to carefully synthesize frequency and acceleration patterns of unknown events within the Excel database into a new file to determine whether or not certain information that is received i s considered a real vibratory source. Once considered as a vibratory source, further analysis is carried out. The resulting information is used to retrain the MEMS to recognize them as known patterns. These different vibratory disturbances are being constantly monitored to observe if, in any way, the disturbances have an effect on the microgravity environment that research experiments are exposed to. If the disturbance has little or no effect on the experiments, then research is continued. However, if the disturbance is harmful to the experiment, scientists act accordingly by either minimizing the source or terminating the research and neither NASA's time nor money is wasted.

  12. ISS Material Science Research Rack HWIL Interface Simulation

    NASA Technical Reports Server (NTRS)

    Williams, Philip J.; Ballard, Gary H.; Crumbley, Robert T. (Technical Monitor)

    2002-01-01

    In this paper, the first Material Science Research Rack (MSRR-1) hardware-in-the-loop (HWIL) interface simulation is described. Dynamic Concepts developed this HWIL simulation system with funding and management provided by the Flight Software group (ED14) of NASA-MSFC's Avionics Department. The HWIL system has been used both as a flight software development environment and as a software qualification tool. To fulfill these roles, the HWIL simulator accurately models the system dynamics of many MSRR-1 subsystems and emulates most of the internal interface signals. The modeled subsystems include the Experiment Modules, the Thermal Environment Control System, the Vacuum Access System, the Solid State Power Controller Module, and the Active Rack Isolation Systems. The emulated signals reside on three separate MIL-STD-1553B digital communication buses, the ISS Medium Rate Data Link, and several analog controller and sensor signals. To enhance the range of testing, it was necessary to simulate several off-nominal conditions that may occur in the interfacing subsystems.

  13. Partnering with Youth to Map Their Neighborhood Environments: A Multi-Layered GIS Approach

    PubMed Central

    Topmiller, Michael; Jacquez, Farrah; Vissman, Aaron T.; Raleigh, Kevin; Miller-Francis, Jenni

    2014-01-01

    Mapping approaches offer great potential for community-based participatory researchers interested in displaying youth perceptions and advocating for change. We describe a multi-layered approach for gaining local knowledge of neighborhood environments that engages youth as co-researchers and active knowledge producers. By integrating geographic information systems (GIS) with environmental audits, an interactive focus group, and sketch mapping, the approach provides a place-based understanding of physical activity resources from the situated experience of youth. Youth report safety and a lack of recreational resources as inhibiting physical activity. Maps reflecting youth perceptions aid policy-makers in making place-based improvements for youth neighborhood environments. PMID:25423245

  14. Software support environment design knowledge capture

    NASA Technical Reports Server (NTRS)

    Dollman, Tom

    1990-01-01

    The objective of this task is to assess the potential for using the software support environment (SSE) workstations and associated software for design knowledge capture (DKC) tasks. This assessment will include the identification of required capabilities for DKC and hardware/software modifications needed to support DKC. Several approaches to achieving this objective are discussed and interim results are provided: (1) research into the problem of knowledge engineering in a traditional computer-aided software engineering (CASE) environment, like the SSE; (2) research into the problem of applying SSE CASE tools to develop knowledge based systems; and (3) direct utilization of SSE workstations to support a DKC activity.

  15. Executive control systems in the engineering design environment

    NASA Technical Reports Server (NTRS)

    Hurst, P. W.; Pratt, T. W.

    1985-01-01

    Executive Control Systems (ECSs) are software structures for the unification of various engineering design application programs into comprehensive systems with a central user interface (uniform access) method and a data management facility. Attention is presently given to the most significant determinations of a research program conducted for 24 ECSs, used in government and industry engineering design environments to integrate CAD/CAE applications programs. Characterizations are given for the systems' major architectural components and the alternative design approaches considered in their development. Attention is given to ECS development prospects in the areas of interdisciplinary usage, standardization, knowledge utilization, and computer science technology transfer.

  16. Localized heating/bonding techniques in MEMS packaging

    NASA Astrophysics Data System (ADS)

    Mabesa, J. R., Jr.; Scott, A. J.; Wu, X.; Auner, G. W.

    2005-05-01

    Packaging is used to protect and enable intelligent sensor systems utilized in manned/unmanned ground vehicle systems/subsystems. Because Micro electro mechanical systems (MEMS) are used often in these sensor or actuation products, it must interact with the surrounding environment, which may be in direct conflict with the desire to isolate the electronics for improved reliability/durability performance. For some very simple devices, performance requirements may allow a high degree of isolation from the environment (e.g., stints and accelerometers). Other more complex devices (i.e. chemical and biological analysis systems, particularly in vivo systems) present extremely complex packaging requirements. Power and communications to MEMS device arrays are also extremely problematic. The following describes the research being performed at the U.S. Army Research, Development, and Engineering Command (RDECOM) Tank and Automotive Research, Development, and Engineering Center (TARDEC), in collaboration with Wayne State University, in Detroit, MI. The focus of the packaging research is limited to six main categories: a) provision for feed-through for electrical, optical, thermal, and fluidic interfaces; b) environmental management including atmosphere, hermiticity, and temperature; c) control of stress and mechanical durability; d) management of thermal properties to minimize absorption and/or emission; e) durability and structural integrity; and f) management of RF/magnetic/electrical and optical interference and/or radiation properties and exposure.

  17. Innovative NMR strategies for complex macromolecules

    USDA-ARS?s Scientific Manuscript database

    In recent years there has been an increasing research emphasis on complex macromolecular systems. These include polymers with precise control of structures, multicomponent systems with higher degrees of organization, polymers involved in micelles, interfaces, and confined environments, nanochemistr...

  18. Army Medical Robotics Research

    DTIC Science & Technology

    2007-01-01

    environment. These advances in microsurgery would make possible procedures such as small vessel anastomosis, nerve reconstruction , and microdissection and...System, Intuitive Surgical, Inc. 3 b. Telepresence “ Microsurgery ” System for Uniformed Services University of the Health Sciences (USUHS) - Stanford

  19. Considerations in representing human individuals in social ecological models

    USGS Publications Warehouse

    Manfredo, Michael J.; Teel, Tara L.; Gavin, Michael C.; Fulton, David C.

    2017-01-01

    In this chapter we focus on how to integrate the human individual into social-ecological systems analysis, and how to improve research on individual thought and action regarding the environment by locating it within the broader social-ecological context. We discuss three key questions as considerations for future research: (1) is human thought conceptualized as a dynamic and adaptive process, (2) is the individual placed in a multi-level context (including within-person levels, person-group interactions, and institutional and structural factors), and (3) is human thought seen as mutually constructed with the social and natural environment. Increased emphasis on the individual will be essential if we are to understand agency, innovation, and adaptation in social-ecological systems.

  20. Demonstration of NICT Space Weather Cloud --Integration of Supercomputer into Analysis and Visualization Environment--

    NASA Astrophysics Data System (ADS)

    Watari, S.; Morikawa, Y.; Yamamoto, K.; Inoue, S.; Tsubouchi, K.; Fukazawa, K.; Kimura, E.; Tatebe, O.; Kato, H.; Shimojo, S.; Murata, K. T.

    2010-12-01

    In the Solar-Terrestrial Physics (STP) field, spatio-temporal resolution of computer simulations is getting higher and higher because of tremendous advancement of supercomputers. A more advanced technology is Grid Computing that integrates distributed computational resources to provide scalable computing resources. In the simulation research, it is effective that a researcher oneself designs his physical model, performs calculations with a supercomputer, and analyzes and visualizes for consideration by a familiar method. A supercomputer is far from an analysis and visualization environment. In general, a researcher analyzes and visualizes in the workstation (WS) managed at hand because the installation and the operation of software in the WS are easy. Therefore, it is necessary to copy the data from the supercomputer to WS manually. Time necessary for the data transfer through long delay network disturbs high-accuracy simulations actually. In terms of usefulness, integrating a supercomputer and an analysis and visualization environment seamlessly with a researcher's familiar method is important. NICT has been developing a cloud computing environment (NICT Space Weather Cloud). In the NICT Space Weather Cloud, disk servers are located near its supercomputer and WSs for data analysis and visualization. They are connected to JGN2plus that is high-speed network for research and development. Distributed virtual high-capacity storage is also constructed by Grid Datafarm (Gfarm v2). Huge-size data output from the supercomputer is transferred to the virtual storage through JGN2plus. A researcher can concentrate on the research by a familiar method without regard to distance between a supercomputer and an analysis and visualization environment. Now, total 16 disk servers are setup in NICT headquarters (at Koganei, Tokyo), JGN2plus NOC (at Otemachi, Tokyo), Okinawa Subtropical Environment Remote-Sensing Center, and Cybermedia Center, Osaka University. They are connected on JGN2plus, and they constitute 1PB (physical size) virtual storage by Gfarm v2. These disk servers are connected with supercomputers of NICT and Osaka University. A system that data output from the supercomputers are automatically transferred to the virtual storage had been built up. Transfer rate is about 50 GB/hrs by actual measurement. It is estimated that the performance is reasonable for a certain simulation and analysis for reconstruction of coronal magnetic field. This research is assumed an experiment of the system, and the verification of practicality is advanced at the same time. Herein we introduce an overview of the space weather cloud system so far we have developed. We also demonstrate several scientific results using the space weather cloud system. We also introduce several web applications of the cloud as a service of the space weather cloud, which is named as "e-SpaceWeather" (e-SW). The e-SW provides with a variety of space weather online services from many aspects.

  1. Risk assessment and adaptive runoff utilization in water resource system considering the complex relationship among water supply, electricity generation and environment

    NASA Astrophysics Data System (ADS)

    Zhou, J.; Zeng, X.; Mo, L.; Chen, L.; Jiang, Z.; Feng, Z.; Yuan, L.; He, Z.

    2017-12-01

    Generally, the adaptive utilization and regulation of runoff in the source region of China's southwest rivers is classified as a typical multi-objective collaborative optimization problem. There are grim competitions and incidence relation in the subsystems of water supply, electricity generation and environment, which leads to a series of complex problems represented by hydrological process variation, blocked electricity output and water environment risk. Mathematically, the difficulties of multi-objective collaborative optimization focus on the description of reciprocal relationships and the establishment of evolving model of adaptive systems. Thus, based on the theory of complex systems science, this project tries to carry out the research from the following aspects: the changing trend of coupled water resource, the covariant factor and driving mechanism, the dynamic evolution law of mutual feedback dynamic process in the supply-generation-environment coupled system, the environmental response and influence mechanism of coupled mutual feedback water resource system, the relationship between leading risk factor and multiple risk based on evolutionary stability and dynamic balance, the transfer mechanism of multiple risk response with the variation of the leading risk factor, the multidimensional coupled feedback system of multiple risk assessment index system and optimized decision theory. Based on the above-mentioned research results, the dynamic method balancing the efficiency of multiple objectives in the coupled feedback system and optimized regulation model of water resources is proposed, and the adaptive scheduling mode considering the internal characteristics and external response of coupled mutual feedback system of water resource is established. In this way, the project can make a contribution to the optimal scheduling theory and methodology of water resource management under uncertainty in the source region of Southwest River.

  2. An Overview of Hardware for Protein Crystallization in a Magnetic Field.

    PubMed

    Yan, Er-Kai; Zhang, Chen-Yan; He, Jin; Yin, Da-Chuan

    2016-11-16

    Protein crystallization under a magnetic field is an interesting research topic because a magnetic field may provide a special environment to acquire improved quality protein crystals. Because high-quality protein crystals are very useful in high-resolution structure determination using diffraction techniques (X-ray, neutron, and electron diffraction), research using magnetic fields in protein crystallization has attracted substantial interest; some studies have been performed in the past two decades. In this research field, the hardware is especially essential for successful studies because the environment is special and the design and utilization of the research apparatus in such an environment requires special considerations related to the magnetic field. This paper reviews the hardware for protein crystallization (including the magnet systems and the apparatus designed for use in a magnetic field) and progress in this area. Future prospects in this field will also be discussed.

  3. An Overview of Hardware for Protein Crystallization in a Magnetic Field

    PubMed Central

    Yan, Er-Kai; Zhang, Chen-Yan; He, Jin; Yin, Da-Chuan

    2016-01-01

    Protein crystallization under a magnetic field is an interesting research topic because a magnetic field may provide a special environment to acquire improved quality protein crystals. Because high-quality protein crystals are very useful in high-resolution structure determination using diffraction techniques (X-ray, neutron, and electron diffraction), research using magnetic fields in protein crystallization has attracted substantial interest; some studies have been performed in the past two decades. In this research field, the hardware is especially essential for successful studies because the environment is special and the design and utilization of the research apparatus in such an environment requires special considerations related to the magnetic field. This paper reviews the hardware for protein crystallization (including the magnet systems and the apparatus designed for use in a magnetic field) and progress in this area. Future prospects in this field will also be discussed. PMID:27854318

  4. Towards a mature measurement environment: Creating a software engineering research environment

    NASA Technical Reports Server (NTRS)

    Basili, Victor R.

    1990-01-01

    Software engineering researchers are building tools, defining methods, and models; however, there are problems with the nature and style of the research. The research is typically bottom-up, done in isolation so the pieces cannot be easily logically or physically integrated. A great deal of the research is essentially the packaging of a particular piece of technology with little indication of how the work would be integrated with other prices of research. The research is not aimed at solving the real problems of software engineering, i.e., the development and maintenance of quality systems in a productive manner. The research results are not evaluated or analyzed via experimentation or refined and tailored to the application environment. Thus, it cannot be easily transferred into practice. Because of these limitations we have not been able to understand the components of the discipline as a coherent whole and the relationships between various models of the process and product. What is needed is a top down experimental, evolutionary framework in which research can be focused, logically and physically integrated to produce quality software productively, and evaluated and tailored to the application environment. This implies the need for experimentation, which in turn implies the need for a laboratory that is associated with the artifact we are studying. This laboratory can only exist in an environment where software is being built, i.e., as part of a real software development and maintenance organization. Thus, we propose that Software Engineering Laboratory (SEL) type activities exist in all organizations to support software engineering research. We describe the SEL from a researcher's point of view, and discuss the corporate and government benefits of the SEL. The discussion focuses on the benefits to the research community.

  5. Adaptive process control using fuzzy logic and genetic algorithms

    NASA Technical Reports Server (NTRS)

    Karr, C. L.

    1993-01-01

    Researchers at the U.S. Bureau of Mines have developed adaptive process control systems in which genetic algorithms (GA's) are used to augment fuzzy logic controllers (FLC's). GA's are search algorithms that rapidly locate near-optimum solutions to a wide spectrum of problems by modeling the search procedures of natural genetics. FLC's are rule based systems that efficiently manipulate a problem environment by modeling the 'rule-of-thumb' strategy used in human decision making. Together, GA's and FLC's possess the capabilities necessary to produce powerful, efficient, and robust adaptive control systems. To perform efficiently, such control systems require a control element to manipulate the problem environment, and a learning element to adjust to the changes in the problem environment. Details of an overall adaptive control system are discussed. A specific laboratory acid-base pH system is used to demonstrate the ideas presented.

  6. Research-Based Monitoring, Prediction, and Analysis Tools of the Spacecraft Charging Environment for Spacecraft Users

    NASA Technical Reports Server (NTRS)

    Zheng, Yihua; Kuznetsova, Maria M.; Pulkkinen, Antti A.; Maddox, Marlo M.; Mays, Mona Leila

    2015-01-01

    The Space Weather Research Center (http://swrc. gsfc.nasa.gov) at NASA Goddard, part of the Community Coordinated Modeling Center (http://ccmc.gsfc.nasa.gov), is committed to providing research-based forecasts and notifications to address NASA's space weather needs, in addition to its critical role in space weather education. It provides a host of services including spacecraft anomaly resolution, historical impact analysis, real-time monitoring and forecasting, tailored space weather alerts and products, and weekly summaries and reports. In this paper, we focus on how (near) real-time data (both in space and on ground), in combination with modeling capabilities and an innovative dissemination system called the integrated Space Weather Analysis system (http://iswa.gsfc.nasa.gov), enable monitoring, analyzing, and predicting the spacecraft charging environment for spacecraft users. Relevant tools and resources are discussed.

  7. Translational Cognition for Decision Support in Critical Care Environments: A Review

    PubMed Central

    Patel, Vimla L.; Zhang, Jiajie; Yoskowitz, Nicole A.; Green, Robert; Sayan, Osman R.

    2008-01-01

    The dynamic and distributed work environment in critical care requires a high level of collaboration among clinical team members and a sophisticated task coordination system to deliver safe, timely and effective care. A complex cognitive system underlies the decision-making process in such cooperative workplaces. This methodological review paper addresses the issues of translating cognitive research to clinical practice with a specific focus on decision-making in critical care, and the role of information and communication technology to aid in such decisions. Examples are drawn from studies of critical care in our own research laboratories. Critical care, in this paper, includes both intensive (inpatient) and emergency (outpatient) care. We define translational cognition as the research on basic and applied cognitive issues that contribute to our understanding of how information is stored, retrieved and used for problem-solving and decision-making. The methods and findings are discussed in the context of constraints on decision-making in real world complex environments and implications for supporting the design and evaluation of decision support tools for critical care health providers. PMID:18343731

  8. Translational cognition for decision support in critical care environments: a review.

    PubMed

    Patel, Vimla L; Zhang, Jiajie; Yoskowitz, Nicole A; Green, Robert; Sayan, Osman R

    2008-06-01

    The dynamic and distributed work environment in critical care requires a high level of collaboration among clinical team members and a sophisticated task coordination system to deliver safe, timely and effective care. A complex cognitive system underlies the decision-making process in such cooperative workplaces. This methodological review paper addresses the issues of translating cognitive research to clinical practice with a specific focus on decision-making in critical care, and the role of information and communication technology to aid in such decisions. Examples are drawn from studies of critical care in our own research laboratories. Critical care, in this paper, includes both intensive (inpatient) and emergency (outpatient) care. We define translational cognition as the research on basic and applied cognitive issues that contribute to our understanding of how information is stored, retrieved and used for problem-solving and decision-making. The methods and findings are discussed in the context of constraints on decision-making in real-world complex environments and implications for supporting the design and evaluation of decision support tools for critical care health providers.

  9. Legionella and risk management in hospitals-A bibliographic research methodology for people responsible for built environment and facility management.

    PubMed

    Leiblein, Thomas W; Tucker, Matthew; Ashall, Mal; Lee, Susanne B; Gollnisch, Carsten; Hofer, Susanne

    2016-11-01

    An ongoing research project investigates the roles and duties of persons responsible for the built environment with respect to risk management of water systems and Legionella prevention from a facility management's perspective. Our literature review provides an approach for selecting and analysing abstracts of initially 177 journal articles, subjected to certain topic-specific inclusion and exclusion criteria. Different decision strategies of either logic 'yes/no', Boolean operators 'OR' or 'AND' and decisions for single counts or cumulative counts of the identified three principal keywords 'Legionella', 'hospital' and 'water', were completed. A final list of ten principal reference articles from 29 journals was compiled. It suggests that the interconnected perspective of water systems, Legionella and hospitals seems to be underrepresented in the field of the built environment and facility management. The term 'stakeholder', which would refer to decision-makers, was not found more than once. Our result is a useful summary of established sources of information on environmental Legionella research. The results can be helpful for those new to the topic. Copyright © 2016 Elsevier GmbH. All rights reserved.

  10. An Evolutionary Method for Financial Forecasting in Microscopic High-Speed Trading Environment

    PubMed Central

    Li, Hsu-Chih

    2017-01-01

    The advancement of information technology in financial applications nowadays have led to fast market-driven events that prompt flash decision-making and actions issued by computer algorithms. As a result, today's markets experience intense activity in the highly dynamic environment where trading systems respond to others at a much faster pace than before. This new breed of technology involves the implementation of high-speed trading strategies which generate significant portion of activity in the financial markets and present researchers with a wealth of information not available in traditional low-speed trading environments. In this study, we aim at developing feasible computational intelligence methodologies, particularly genetic algorithms (GA), to shed light on high-speed trading research using price data of stocks on the microscopic level. Our empirical results show that the proposed GA-based system is able to improve the accuracy of the prediction significantly for price movement, and we expect this GA-based methodology to advance the current state of research for high-speed trading and other relevant financial applications. PMID:28316618

  11. A dedicated database system for handling multi-level data in systems biology.

    PubMed

    Pornputtapong, Natapol; Wanichthanarak, Kwanjeera; Nilsson, Avlant; Nookaew, Intawat; Nielsen, Jens

    2014-01-01

    Advances in high-throughput technologies have enabled extensive generation of multi-level omics data. These data are crucial for systems biology research, though they are complex, heterogeneous, highly dynamic, incomplete and distributed among public databases. This leads to difficulties in data accessibility and often results in errors when data are merged and integrated from varied resources. Therefore, integration and management of systems biological data remain very challenging. To overcome this, we designed and developed a dedicated database system that can serve and solve the vital issues in data management and hereby facilitate data integration, modeling and analysis in systems biology within a sole database. In addition, a yeast data repository was implemented as an integrated database environment which is operated by the database system. Two applications were implemented to demonstrate extensibility and utilization of the system. Both illustrate how the user can access the database via the web query function and implemented scripts. These scripts are specific for two sample cases: 1) Detecting the pheromone pathway in protein interaction networks; and 2) Finding metabolic reactions regulated by Snf1 kinase. In this study we present the design of database system which offers an extensible environment to efficiently capture the majority of biological entities and relations encountered in systems biology. Critical functions and control processes were designed and implemented to ensure consistent, efficient, secure and reliable transactions. The two sample cases on the yeast integrated data clearly demonstrate the value of a sole database environment for systems biology research.

  12. Development of a Web Based Simulating System for Earthquake Modeling on the Grid

    NASA Astrophysics Data System (ADS)

    Seber, D.; Youn, C.; Kaiser, T.

    2007-12-01

    Existing cyberinfrastructure-based information, data and computational networks now allow development of state- of-the-art, user-friendly simulation environments that democratize access to high-end computational environments and provide new research opportunities for many research and educational communities. Within the Geosciences cyberinfrastructure network, GEON, we have developed the SYNSEIS (SYNthetic SEISmogram) toolkit to enable efficient computations of 2D and 3D seismic waveforms for a variety of research purposes especially for helping to analyze the EarthScope's USArray seismic data in a speedy and efficient environment. The underlying simulation software in SYNSEIS is a finite difference code, E3D, developed by LLNL (S. Larsen). The code is embedded within the SYNSEIS portlet environment and it is used by our toolkit to simulate seismic waveforms of earthquakes at regional distances (<1000km). Architecturally, SYNSEIS uses both Web Service and Grid computing resources in a portal-based work environment and has a built in access mechanism to connect to national supercomputer centers as well as to a dedicated, small-scale compute cluster for its runs. Even though Grid computing is well-established in many computing communities, its use among domain scientists still is not trivial because of multiple levels of complexities encountered. We grid-enabled E3D using our own dialect XML inputs that include geological models that are accessible through standard Web services within the GEON network. The XML inputs for this application contain structural geometries, source parameters, seismic velocity, density, attenuation values, number of time steps to compute, and number of stations. By enabling a portal based access to a such computational environment coupled with its dynamic user interface we enable a large user community to take advantage of such high end calculations in their research and educational activities. Our system can be used to promote an efficient and effective modeling environment to help scientists as well as educators in their daily activities and speed up the scientific discovery process.

  13. [The acclimatization to extreme environments and its physiological mechanisms].

    PubMed

    Wang, Hai; Liu, Wei; Yang, Dan-Feng; Zhao, Xiao-Ling; Long, Chao-Liang; Yin, Zhao-Yun; Liu, Jia-Ying

    2012-11-01

    Acclimatization is a process of biological adaptation when exposed to environmental factors such as hypoxia, cold and heat for prolonged periods of time, where non-genetical variations play a role in allowing subjects to tolerate hypoxic, cold or hot environments. This review focuses on the characteristics and mechanisms of acclimatization found through major research advances by our institute. First, the mechanisms underlying the acclimatization to extreme environments are complex. In our investigations, the physiological changes of multiple systems including the nervous, circulatory, respiratory, and hemopoietic system were demonstrated when the acclimatization to hypoxia was developed, and the underlying significance of hypoxia-inducible factor-1 (HIF-1) was investigated. Second, it is suggested that the development of acclimatization to extreme environments is complicated. Hypoxia and cold coexist at high altitude. Our investigations revealed the characteristics of negative cross-relationship in the acclimatization to hypoxia and cold. And third, it is interesting for us to understand that acclimatization to extreme environments is transferable among individuals, and the characteristics of heat acclimatization-inducing factor (HAlF) were presented. The above findings will provide a theoretical guidance for protective operations and help to establish a solid foundation for future research related to acclimatization.

  14. Hospital integrated parallel cluster for fast and cost-efficient image analysis: clinical experience and research evaluation

    NASA Astrophysics Data System (ADS)

    Erberich, Stephan G.; Hoppe, Martin; Jansen, Christian; Schmidt, Thomas; Thron, Armin; Oberschelp, Walter

    2001-08-01

    In the last few years more and more University Hospitals as well as private hospitals changed to digital information systems for patient record, diagnostic files and digital images. Not only that patient management becomes easier, it is also very remarkable how clinical research can profit from Picture Archiving and Communication Systems (PACS) and diagnostic databases, especially from image databases. Since images are available on the finger tip, difficulties arise when image data needs to be processed, e.g. segmented, classified or co-registered, which usually demands a lot computational power. Today's clinical environment does support PACS very well, but real image processing is still under-developed. The purpose of this paper is to introduce a parallel cluster of standard distributed systems and its software components and how such a system can be integrated into a hospital environment. To demonstrate the cluster technique we present our clinical experience with the crucial but cost-intensive motion correction of clinical routine and research functional MRI (fMRI) data, as it is processed in our Lab on a daily basis.

  15. A parallel-processing approach to computing for the geographic sciences; applications and systems enhancements

    USGS Publications Warehouse

    Crane, Michael; Steinwand, Dan; Beckmann, Tim; Krpan, Greg; Liu, Shu-Guang; Nichols, Erin; Haga, Jim; Maddox, Brian; Bilderback, Chris; Feller, Mark; Homer, George

    2001-01-01

    The overarching goal of this project is to build a spatially distributed infrastructure for information science research by forming a team of information science researchers and providing them with similar hardware and software tools to perform collaborative research. Four geographically distributed Centers of the U.S. Geological Survey (USGS) are developing their own clusters of low-cost, personal computers into parallel computing environments that provide a costeffective way for the USGS to increase participation in the high-performance computing community. Referred to as Beowulf clusters, these hybrid systems provide the robust computing power required for conducting information science research into parallel computing systems and applications.

  16. How the built environment affects physical activity: views from urban planning.

    PubMed

    Handy, Susan L; Boarnet, Marlon G; Ewing, Reid; Killingsworth, Richard E

    2002-08-01

    The link between the built environment and human behavior has long been of interest to the field of urban planning, but direct assessments of the links between the built environment and physical activity as it influences personal health are still rare in the field. Yet the concepts, theories, and methods used by urban planners provide a foundation for an emerging body of research on the relationship between the built environment and physical activity. Recent research efforts in urban planning have focused on the idea that land use and design policies can be used to increase transit use as well as walking and bicycling. The development of appropriate measures for the built environment and for travel behavior is an essential element of this research. The link between the built environment and travel behavior is then made using theoretical frameworks borrowed from economics, and in particular, the concept of travel as a derived demand. The available evidence lends itself to the argument that a combination of urban design, land use patterns, and transportation systems that promotes walking and bicycling will help create active, healthier, and more livable communities. To provide more conclusive evidence, however, researchers must address the following issues: An alternative to the derived-demand framework must be developed for walking, measures of the built environment must be refined, and more-complete data on walking must be developed. In addition, detailed data on the built environment must be spatially matched to detailed data on travel behavior.

  17. Subgroup Discovery with User Interaction Data: An Empirically Guided Approach to Improving Intelligent Tutoring Systems

    ERIC Educational Resources Information Center

    Poitras, Eric G.; Lajoie, Susanne P.; Doleck, Tenzin; Jarrell, Amanda

    2016-01-01

    Learner modeling, a challenging and complex endeavor, is an important and oft-studied research theme in computer-supported education. From this perspective, Educational Data Mining (EDM) research has focused on modeling and comprehending various dimensions of learning in computer-based learning environments (CBLE). Researchers and designers are…

  18. From Design to Implementation to Practice a Learning by Teaching System: Betty's Brain

    ERIC Educational Resources Information Center

    Biswas, Gautam; Segedy, James R.; Bunchongchit, Kritya

    2016-01-01

    This paper presents an overview of 10 years of research with the "Betty's Brain" computer-based learning environment. We discuss the theoretical basis for "Betty's Brain" and the learning-by-teaching paradigm. We also highlight our key research findings, and discuss how these findings have shaped subsequent research. Throughout…

  19. Center for the Built Environment: Research on Building Envelope Systems

    Science.gov Websites

    Studies Facade and Perimeter Zone Field Study Facades and Thermal Comfort Facade Symposium Mixed-Mode Research Adaptive Comfort Model Mixed-Mode Case Studies Operable Windows and Thermal Comfort Occupant thermal preferences in naturally ventilated as sealed buildings? Case Study Research of Mixed-Mode Office

  20. Remote Maneuver of Space Debris Using Photon Pressure for Active Collision Avoidance

    NASA Astrophysics Data System (ADS)

    Smith, C.

    2014-09-01

    The Space Environment Research Corporation (SERC) is a consortium of companies and research institutions that have joined together to pursue research and development of technologies and capabilities that will help to preserve the orbital space environment. The consortium includes, Electro Optics Systems (Australia), Lockheed Martin Australia, Optus Satellite Systems (Australia), The Australian national University, RMIT University, National Institute of Information and Communications Technology (NICT, Japan) as well as affiliates from NASA Ames and ESA. SERC is also the recipient of and Australian Government Cooperative Research Centre grant. SERC will pursue a wide ranging research program including technologies to improve tracking capability and capacity, orbit determination and propagation algorithms, conjunction analysis and collision avoidance. All of these technologies will contribute to the flagship program to demonstrate active collision avoidance using photon pressure to provide remote maneuver of space debris. This project joins of the proposed NASA Lightforce concept with infrastructure and capabilities provided by SERC. This paper will describe the proposed research and development program to provide an on-orbit demonstration within the next five years for remote maneuver of space debris.

  1. Public Management Information Systems: Theory and Prescription.

    ERIC Educational Resources Information Center

    Bozeman, Barry; Bretschneider, Stuart

    1986-01-01

    The existing theoretical framework for research in management information systems (MIS) is criticized for its lack of attention to the external environment of organizations, and a new framework is developed which better accommodates MIS in public organizations: public management information systems. Four models of publicness that reflect external…

  2. China’s science, technology, engineering, and mathematics (STEM) research environment: A snapshot

    PubMed Central

    2018-01-01

    In keeping with China’s President Xi Jinping’s “Chinese Dream,” China has set a goal of becoming a world-class innovator by 2050. China’s higher education Science, Technology, Engineering, and Math (STEM) research environment will play a pivotal role in influencing whether China is successful in transitioning from a manufacturing-based economy to an innovation-driven, knowledge-based economy. Past studies on China’s research environment have been primarily qualitative in nature or based on anecdotal evidence. In this study, we surveyed STEM faculty from China’s top 25 universities to get a clearer understanding of how faculty members view China’s overall research environment. We received 731 completed survey responses, 17% of which were from individuals who received terminal degrees from abroad and 83% of which were from individuals who received terminal degrees from domestic institutions of higher education. We present results on why returnees decided to study abroad, returnees’ decisions to return to China, and differences in perceptions between returnees and domestic degree holders on the advantages of having a foreign degree. The top five challenges to China’s research environment identified by survey respondents were: a promotion of short-term thinking and instant success (37% of all respondents); research funding (33%); too much bureaucratic or governmental intervention (31%); the evaluation system (27%); and a reliance on human relations (26%). Results indicated that while China has clearly made strides in its higher education system, there are numerous challenges that must be overcome before China can hope to effectively produce the kinds of innovative thinkers that are required if it is to achieve its ambitious goals. We also raise questions about the current direction of education and inquiry in China, particularly indications that government policy is turning inward, away from openness that is central to innovative thinking. PMID:29614123

  3. Visual Computing Environment

    NASA Technical Reports Server (NTRS)

    Lawrence, Charles; Putt, Charles W.

    1997-01-01

    The Visual Computing Environment (VCE) is a NASA Lewis Research Center project to develop a framework for intercomponent and multidisciplinary computational simulations. Many current engineering analysis codes simulate various aspects of aircraft engine operation. For example, existing computational fluid dynamics (CFD) codes can model the airflow through individual engine components such as the inlet, compressor, combustor, turbine, or nozzle. Currently, these codes are run in isolation, making intercomponent and complete system simulations very difficult to perform. In addition, management and utilization of these engineering codes for coupled component simulations is a complex, laborious task, requiring substantial experience and effort. To facilitate multicomponent aircraft engine analysis, the CFD Research Corporation (CFDRC) is developing the VCE system. This system, which is part of NASA's Numerical Propulsion Simulation System (NPSS) program, can couple various engineering disciplines, such as CFD, structural analysis, and thermal analysis. The objectives of VCE are to (1) develop a visual computing environment for controlling the execution of individual simulation codes that are running in parallel and are distributed on heterogeneous host machines in a networked environment, (2) develop numerical coupling algorithms for interchanging boundary conditions between codes with arbitrary grid matching and different levels of dimensionality, (3) provide a graphical interface for simulation setup and control, and (4) provide tools for online visualization and plotting. VCE was designed to provide a distributed, object-oriented environment. Mechanisms are provided for creating and manipulating objects, such as grids, boundary conditions, and solution data. This environment includes parallel virtual machine (PVM) for distributed processing. Users can interactively select and couple any set of codes that have been modified to run in a parallel distributed fashion on a cluster of heterogeneous workstations. A scripting facility allows users to dictate the sequence of events that make up the particular simulation.

  4. Collaborative environments for capability-based planning

    NASA Astrophysics Data System (ADS)

    McQuay, William K.

    2005-05-01

    Distributed collaboration is an emerging technology for the 21st century that will significantly change how business is conducted in the defense and commercial sectors. Collaboration involves two or more geographically dispersed entities working together to create a "product" by sharing and exchanging data, information, and knowledge. A product is defined broadly to include, for example, writing a report, creating software, designing hardware, or implementing robust systems engineering and capability planning processes in an organization. Collaborative environments provide the framework and integrate models, simulations, domain specific tools, and virtual test beds to facilitate collaboration between the multiple disciplines needed in the enterprise. The Air Force Research Laboratory (AFRL) is conducting a leading edge program in developing distributed collaborative technologies targeted to the Air Force's implementation of systems engineering for a simulation-aided acquisition and capability-based planning. The research is focusing on the open systems agent-based framework, product and process modeling, structural architecture, and the integration technologies - the glue to integrate the software components. In past four years, two live assessment events have been conducted to demonstrate the technology in support of research for the Air Force Agile Acquisition initiatives. The AFRL Collaborative Environment concept will foster a major cultural change in how the acquisition, training, and operational communities conduct business.

  5. Enabling Wireless Avionics Intra-Communications

    NASA Technical Reports Server (NTRS)

    Torres, Omar; Nguyen, Truong; Mackenzie, Anne

    2016-01-01

    The Electromagnetics and Sensors Branch of NASA Langley Research Center (LaRC) is investigating the potential of an all-wireless aircraft as part of the ECON (Efficient Reconfigurable Cockpit Design and Fleet Operations using Software Intensive, Networked and Wireless Enabled Architecture) seedling proposal, which is funded by the Convergent Aeronautics Solutions (CAS) project, Transformative Aeronautics Concepts (TAC) program, and NASA Aeronautics Research Institute (NARI). The project consists of a brief effort carried out by a small team in the Electromagnetic Environment Effects (E3) laboratory with the intention of exposing some of the challenges faced by a wireless communication system inside the reflective cavity of an aircraft and to explore potential solutions that take advantage of that environment for constructive gain. The research effort was named EWAIC for "Enabling Wireless Aircraft Intra-communications." The E3 laboratory is a research facility that includes three electromagnetic reverberation chambers and equipment that allow testing and generation of test data for the investigation of wireless systems in reflective environments. Using these chambers, the EWAIC team developed a set of tests and setups that allow the intentional variation of intensity of a multipath field to reproduce the environment of the various bays and cabins of large transport aircraft. This setup, in essence, simulates an aircraft environment that allows the investigation and testing of wireless communication protocols that can effectively be used as a tool to mitigate some of the risks inherent to an aircraft wireless system for critical functions. In addition, the EWAIC team initiated the development of a computational modeling tool to illustrate the propagation of EM waves inside the reflective cabins and bays of aircraft and to obtain quantifiable information regarding the degradation of signals in aircraft subassemblies. The nose landing gear of a UAV CAD model was used to model the propagation of a system in a "deployed" configuration versus a "stowed" configuration. The differences in relative field strength provide valuable information about the distribution of the field that can be used to engineer RF links with optimal radiated power and antenna configuration that accomplish the intended system reliability. Such modeling will be necessary in subsequent studies for managing multipath propagation characteristics inside a main cabin and to understand more complex environments, such as the inside wings, landing gear bays, cargo bays, avionics bays, etc. The results of the short research effort are described in the present document. The team puts forth a set of recommendations with the intention of informing the project and program leadership of the future work that, in the opinion of the EWAIC team, would assist the ECON team reach the intended goal of developing an all-wireless aircraft.

  6. Compact Full-Field Ion Detector System for CubeSat Science Beyond LEO

    NASA Technical Reports Server (NTRS)

    Wrbanek, John D.; Wrbanek, Susan Y.; Fralick, Gustave C.; Clark, Pamela E.

    2013-01-01

    NASA Glenn Research Center (GRC) is applying its expertise and facilities in harsh environment instrumentation to develop a Compact Full-Field Ion Detector System (CFIDS). The CFIDS is designed to be an extremely compact, low cost instrument, capable of being flown on a wide variety of deep space platforms, to provide comprehensive (composition, velocity, and direction) in situ measurements of heavy ions in space plasma environments with higher fidelity, than previously available.

  7. Space Environments and Spacecraft Effects Concept: Transitioning Research to Operations and Applications

    NASA Technical Reports Server (NTRS)

    Edwards, D. L.; Burns, H. D.; Clinton, R. G.; Schumacher, D.; Spann, J. F.

    2012-01-01

    The National Aeronautics and Space Administration (NASA) is embarking on a course to expand human presence beyond Low Earth Orbit (LEO) while expanding its mission to explore the solar system. Destinations such as Near Earth Asteroids (NEA), Mars and its moons, and the outer planets are but a few of the mission targets. NASA has established numerous organizations specializing in specific space environments disciplines that will serve to enable these missions. To complement these existing discipline organizations, a concept is presented focusing on the development of a space environment and spacecraft effects organization. This includes space climate, space weather, natural and induced space environments, and effects on spacecraft materials and systems. This space environment and spacecraft effects organization would be comprised of Technical Working Groups (TWG) focusing on, for example: a) Charged Particles (CP), b) Space Environmental Effects (SEE), and c) Interplanetary and Extraterrestrial Environments (IEE). These technical working groups will generate products and provide knowledge supporting four functional areas: design environments, environment effects, operational support, and programmatic support. The four functional areas align with phases in the program mission lifecycle and are briefly described below. Design environments are used primarily in the mission concept and design phases of a program. Environment effects focuses on the material, component, sub-system and system-level selection and the testing to verify design and operational performance. Operational support provides products based on real time or near real time space weather observations to mission operators to aid in real time and near-term decision-making. The programmatic support function maintains an interface with the numerous programs within NASA and other federal agencies to ensure that communications are well established and the needs of the programs are being met. The programmatic support function also includes working in coordination with the program in anomaly resolution and generation of lesson learned documentation. The goal of this space environment and spacecraft effects organization is to develop decision-making tools and engineering products to support the mission phases of mission concept through operations by focusing on transitioning research to application. Products generated by this space environments and spacecraft effects organization are suitable for use in anomaly investigations. This paper will describe the organizational structure for this space environments and spacecraft effects organization, and outline the scope of conceptual TWG's and their relationship to the functional areas.

  8. Exobiology, the study of the origin, evolution and distribution of life within the context of cosmic evolution: a review.

    PubMed

    Horneck, G

    1995-01-01

    The primary goal of exobiological research is to reach a better understanding of the processes leading to the origin, evolution and distribution of life on Earth or elsewhere in the universe. In this endeavour, scientists from a wide variety of disciplines are involved, such as astronomy, planetary research, organic chemistry, palaeontology and the various subdisciplines of biology including microbial ecology and molecular biology. Space technology plays an important part by offering the opportunity for exploring our solar system, for collecting extraterrestrial samples, and for utilizing the peculiar environment of space as a tool. Exobiological activities include comparison of the overall pattern of chemical evolution of potential precursors of life, in the interstellar medium, and on the planets and small bodies of our solar system; tracing the history of life on Earth back to its roots; deciphering the environments of the planets in our solar system and of their satellites, throughout their history, with regard to their habitability; searching for other planetary systems in our Galaxy and for signals of extraterrestrial civilizations; testing the impact of space environment on survivability of resistant life forms. This evolutionary approach towards understanding the phenomenon of life in the context of cosmic evolution may eventually contribute to a better understanding of the processes regulating the interactions of life with its environment on Earth.

  9. Modeling and Analysis Compute Environments, Utilizing Virtualization Technology in the Climate and Earth Systems Science domain

    NASA Astrophysics Data System (ADS)

    Michaelis, A.; Nemani, R. R.; Wang, W.; Votava, P.; Hashimoto, H.

    2010-12-01

    Given the increasing complexity of climate modeling and analysis tools, it is often difficult and expensive to build or recreate an exact replica of the software compute environment used in past experiments. With the recent development of new technologies for hardware virtualization, an opportunity exists to create full modeling, analysis and compute environments that are “archiveable”, transferable and may be easily shared amongst a scientific community or presented to a bureaucratic body if the need arises. By encapsulating and entire modeling and analysis environment in a virtual machine image, others may quickly gain access to the fully built system used in past experiments, potentially easing the task and reducing the costs of reproducing and verify past results produced by other researchers. Moreover, these virtual machine images may be used as a pedagogical tool for others that are interested in performing an academic exercise but don't yet possess the broad expertise required. We built two virtual machine images, one with the Community Earth System Model (CESM) and one with Weather Research Forecast Model (WRF), then ran several small experiments to assess the feasibility, performance overheads costs, reusability, and transferability. We present a list of the pros and cons as well as lessoned learned from utilizing virtualization technology in the climate and earth systems modeling domain.

  10. Application of tunable diode laser absorption spectroscopy in the detection of oxygen

    NASA Astrophysics Data System (ADS)

    Zhou, Xin; Jin, Xing

    2015-10-01

    Most aircrafts is driven by chemic energy which is released in the combustion process. For improving the capability of engine and controlling the running on-time, the processes of fuel physics and chemistry need to be analysis by kinds of high quality sensor. In the research of designing and improving the processes of fuel physics and chemistry, the concentration, temperature and velocity of kinds of gas in the combustor need to be detected and measured. In addition, these engines and research equipments are always in the harsh environment of high temperature, high pressure and high speed. The harsh environment needs the sensor to be high reliability, well repetition, no cross- sensitivity between gases, and the traditional measurement system can't satisfy the metrical requirement well. Tunable diode laser absorption spectroscopy (TDLAS) analytic measurement technology can well satisfy the measurement in the harsh environment, which can support the whole measurement plan and high quality measurement system. Because the TDLAS sensor has the excellence of small bulk, light weight, high reliability and well specifically measurement, the TDLAS measurement technology has wide prospects. Different from most measurements, only a beam of laser can be pass through the measured environment by TDLAS, and the measurement equipment needn't be set in the harsh environment. So, the TDLAS equipment can't be interrupted by the measured equipment. The ability of subsistence in the harsh environment is very valuable, especially in the measurement on the subject of aerospace with environment of high speed, combustion and plasma. This paper focuses on the collecting the articles on the subject of oxygen detection of TDLAS. By analyzing the research and results of the articles, we conclude the central issues, difficulties and results. And we can get some instructive conclusions.

  11. Volume 1, Sources and migration of highway runoff pollutants--executive summary

    DOT National Transportation Integrated Search

    1984-05-01

    This report summarizes the research undertaken to identify the sources of highway pollutants, and to determine their deposition and accumulation within the highway system and subsequent removal from the highway system to the surrounding environment. ...

  12. Volume 2, Sources and migration of highway runoff pollutants--methods

    DOT National Transportation Integrated Search

    1984-02-01

    The overall objectives of this research were to identify the sources of highway pollutants, and to determine their deposition and accumulation within the highway system and subsequent removal from the highway system to the surrounding environment. In...

  13. Spatial information and modeling system for transportation (SIMST) : final report.

    DOT National Transportation Integrated Search

    1992-06-01

    This project was directed toward research in the development of spatial information systems for transportation. The project and all software development was done in the Intergraph MGE environment. One objective was to investigate software tools for l...

  14. Volume 4, Sources and migration of highway runoff pollutants--appendix

    DOT National Transportation Integrated Search

    1984-04-01

    The overall objectives of this research were to identify the sources of highway pollutants and to determine their deposition and accumulation with the highway system and subsequent removal from the highway system to the surrounding environment. This ...

  15. The Design, Development and Evaluation of a Virtual Reality Based Learning Environment

    ERIC Educational Resources Information Center

    Chen, Chwen Jen

    2006-01-01

    Many researchers and instructional designers increasingly recognise the benefits of utilising three dimensional virtual reality (VR) technology in instruction. In general, there are two types of VR system, the immersive system and the non-immersive system. This article focuses on the latter system that merely uses the conventional personal…

  16. Development and Application of a Portable Health Algorithms Test System

    NASA Technical Reports Server (NTRS)

    Melcher, Kevin J.; Fulton, Christopher E.; Maul, William A.; Sowers, T. Shane

    2007-01-01

    This paper describes the development and initial demonstration of a Portable Health Algorithms Test (PHALT) System that is being developed by researchers at the NASA Glenn Research Center (GRC). The PHALT System was conceived as a means of evolving the maturity and credibility of algorithms developed to assess the health of aerospace systems. Comprising an integrated hardware-software environment, the PHALT System allows systems health management algorithms to be developed in a graphical programming environment; to be tested and refined using system simulation or test data playback; and finally, to be evaluated in a real-time hardware-in-the-loop mode with a live test article. In this paper, PHALT System development is described through the presentation of a functional architecture, followed by the selection and integration of hardware and software. Also described is an initial real-time hardware-in-the-loop demonstration that used sensor data qualification algorithms to diagnose and isolate simulated sensor failures in a prototype Power Distribution Unit test-bed. Success of the initial demonstration is highlighted by the correct detection of all sensor failures and the absence of any real-time constraint violations.

  17. A Review and Critique of Rural Development Research in the Land-Grant System Since 1970--with Focus upon the South. SRDC Series 65.

    ERIC Educational Resources Information Center

    Beaulieu, Lionel J.; Voth, Donald E.

    An overview of rural development research in the United States Department of Agriculture's land grant environment focuses on southern 1862 and 1890 institutions. Although important to agricultural experiment stations, rural development research has received limited funding. A heterogeneous research program including human resources development,…

  18. T and D-Bench--Innovative Combined Support for Education and Research in Computer Architecture and Embedded Systems

    ERIC Educational Resources Information Center

    Soares, S. N.; Wagner, F. R.

    2011-01-01

    Teaching and Design Workbench (T&D-Bench) is a framework aimed at education and research in the areas of computer architecture and embedded systems. It includes a set of features not found in other educational environments. This set of features is the result of an original combination of design requirements for T&D-Bench: that the…

  19. An Overview of the Space Environments and Spacecraft Effects Organization Concept

    NASA Technical Reports Server (NTRS)

    Edwards, David L.; Burns, Howard D.; Garrett, Henry B.; Miller, Sharon K.; Peddie, Darilyn; Porter Ron; Spann, James F.; Xapsos, Michael A.

    2012-01-01

    The National Aeronautics and Space Administration (NASA) is embarking on a course to expand human presence beyond Low Earth Orbit (LEO) while also expanding its mission to explore our Earth, and the solar system. Destinations such as Near Earth Asteroids (NEA), Mars and its moons, and the outer planets are but a few of the mission targets. Each new destination presents an opportunity to increase our knowledge on the solar system and the unique environments for each mission target. NASA has multiple technical and science discipline areas specializing in specific space environments fields that will serve to enable these missions. To complement these existing discipline areas, a concept is presented focusing on the development of a space environment and spacecraft effects (SESE) organization. This SESE organization includes disciplines such as space climate, space weather, natural and induced space environments, effects on spacecraft materials and systems, and the transition of research information into application. This space environment and spacecraft effects organization will be composed of Technical Working Groups (TWG). These technical working groups will survey customers and users, generate products, and provide knowledge supporting four functional areas: design environments, engineering effects, operational support, and programmatic support. The four functional areas align with phases in the program mission lifecycle and are briefly described below. Design environments are used primarily in the mission concept and design phases of a program. Environment effects focuses on the material, component, sub-system, and system-level response to the space environment and include the selection and testing to verify design and operational performance. Operational support provides products based on real time or near real time space weather to mission operators to aid in real time and near-term decision-making. The programmatic support function maintains an interface with the numerous programs within NASA, other federal government agencies, and the commercial sector to ensure that communications are well established and the needs of the programs are being met. The programmatic support function also includes working in coordination with the program in anomaly resolution and generation of lessons learned documentation. The goal of this space environment and spacecraft effects organization is to develop decision-making tools and engineering products to support all mission phases from mission concept through operations by focusing on transitioning research to application. Products generated by this space environments and effects application are suitable for use in anomaly investigations. This paper will describe the scope and purpose of the space environments and spacecraft effects organization and describe the TWG's and their relationship to the functional areas.

  20. Research on Geographical Environment Unit Division Based on the Method of Natural Breaks (Jenks)

    NASA Astrophysics Data System (ADS)

    Chen, J.; Yang, S. T.; Li, H. W.; Zhang, B.; Lv, J. R.

    2013-11-01

    Zoning which is to divide the study area into different zones according to their geographical differences at the global, national or regional level, includes natural division, economic division, geographical zoning of departments, comprehensive zoning and so on. Zoning is of important practical significance, for example, knowing regional differences and characteristics, regional research and regional development planning, understanding the favorable and unfavorable conditions of the regional development etc. Geographical environment is arising from the geographical position linkages. Geographical environment unit division is also a type of zoning. The geographical environment indicators are deeply studied and summed up in the article, including the background, the associated and the potential. The background indicators are divided into four categories, such as the socio-economic, the political and military, the strategic resources and the ecological environment, which can be divided into more sub-indexes. While the sub-indexes can be integrated to comprehensive index system by weighted stacking method. The Jenks natural breaks classification method, also called the Jenks optimization method, is a data classification method designed to determine the best arrangement of values into different classes. This is done by seeking to minimize each class's average deviation from the class mean, while maximizing each class's deviation from the means of the other groups. In this paper, the experiment of Chinese surrounding geographical environment unit division has been done based on the natural breaks (jenks) method, the geographical environment index system and the weighted stacking method, taking South Asia as an example. The result indicates that natural breaks (jenks) method is of good adaptability and high accuracy on the geographical environment unit division. The geographical environment research was originated in the geopolitics and flourished in the geo-economics. The main representatives of the geopolitics are German geographer Friedrich Ratzel, British geographer Mackinder and American geographical politician Nicholas John Spykman etc. The main representative of the geo-economics is American geographical economist Edward Luttwak. China has the most neighboring countries in the world, and its geographical environment is extremely complex. With the continuous development of globalization, China's relations with neighboring countries have become more complex and more closely. So it is very meaningful to have depth research on geographical environment unit division of China.

  1. Incorporating Brokers within Collaboration Environments

    NASA Astrophysics Data System (ADS)

    Rajasekar, A.; Moore, R.; de Torcy, A.

    2013-12-01

    A collaboration environment, such as the integrated Rule Oriented Data System (iRODS - http://irods.diceresearch.org), provides interoperability mechanisms for accessing storage systems, authentication systems, messaging systems, information catalogs, networks, and policy engines from a wide variety of clients. The interoperability mechanisms function as brokers, translating actions requested by clients to the protocol required by a specific technology. The iRODS data grid is used to enable collaborative research within hydrology, seismology, earth science, climate, oceanography, plant biology, astronomy, physics, and genomics disciplines. Although each domain has unique resources, data formats, semantics, and protocols, the iRODS system provides a generic framework that is capable of managing collaborative research initiatives that span multiple disciplines. Each interoperability mechanism (broker) is linked to a name space that enables unified access across the heterogeneous systems. The collaboration environment provides not only support for brokers, but also support for virtualization of name spaces for users, files, collections, storage systems, metadata, and policies. The broker enables access to data or information in a remote system using the appropriate protocol, while the collaboration environment provides a uniform naming convention for accessing and manipulating each object. Within the NSF DataNet Federation Consortium project (http://www.datafed.org), three basic types of interoperability mechanisms have been identified and applied: 1) drivers for managing manipulation at the remote resource (such as data subsetting), 2) micro-services that execute the protocol required by the remote resource, and 3) policies for controlling the execution. For example, drivers have been written for manipulating NetCDF and HDF formatted files within THREDDS servers. Micro-services have been written that manage interactions with the CUAHSI data repository, the DataONE information catalog, and the GeoBrain broker. Policies have been written that manage transfer of messages between an iRODS message queue and the Advanced Message Queuing Protocol. Examples of these brokering mechanisms will be presented. The DFC collaboration environment serves as the intermediary between community resources and compute grids, enabling reproducible data-driven research. It is possible to create an analysis workflow that retrieves data subsets from a remote server, assemble the required input files, automate the execution of the workflow, automatically track the provenance of the workflow, and share the input files, workflow, and output files. A collaborator can re-execute a shared workflow, compare results, change input files, and re-execute an analysis.

  2. Use of the computational-informational web-GIS system for the development of climatology students' skills in modeling and understanding climate change

    NASA Astrophysics Data System (ADS)

    Gordova, Yulia; Martynova, Yulia; Shulgina, Tamara

    2015-04-01

    The current situation with the training of specialists in environmental sciences is complicated by the fact that the very scientific field is experiencing a period of rapid development. Global change has caused the development of measurement techniques and modeling of environmental characteristics, accompanied by the expansion of the conceptual and mathematical apparatus. Understanding and forecasting processes in the Earth system requires extensive use of mathematical modeling and advanced computing technologies. As a rule, available training programs in the environmental sciences disciplines do not have time to adapt to such rapid changes in the domain content. As a result, graduates of faculties do not understand processes and mechanisms of the global change, have only superficial knowledge of mathematical modeling of processes in the environment. They do not have the required skills in numerical modeling, data processing and analysis of observations and computation outputs and are not prepared to work with the meteorological data. For adequate training of future specialists in environmental sciences we propose the following approach, which reflects the new "research" paradigm in education. We believe that the training of such specialists should be done not in an artificial learning environment, but based on actual operating information-computational systems used in environment studies, in the so-called virtual research environment via development of virtual research and learning laboratories. In the report the results of the use of computational-informational web-GIS system "Climate" (http://climate.scert.ru/) as a prototype of such laboratory are discussed. The approach is realized at Tomsk State University to prepare bachelors in meteorology. Student survey shows that their knowledge has become deeper and more systemic after undergoing training in virtual learning laboratory. The scientific team plans to assist any educators to utilize the system in earth science education. This work is partially supported by SB RAS project VIII.80.2.1, RFBR grants 13-05-12034 and 14-05-00502.

  3. Getting Focused without Cropping the Big Picture: The System Office in California

    ERIC Educational Resources Information Center

    Hom, Willard C.

    2010-01-01

    This chapter describes the system office for community college institutional research in California. As the system IR office for the largest community college system in the nation, it is often looked to as a leader for other states and community college IR systems. The author notes the office's administrative environment, its staffing and…

  4. Transforming Research Management Systems at Mayo Clinic

    ERIC Educational Resources Information Center

    Smith, Steven C.; Gronseth, Darren L.

    2011-01-01

    In order for research programs at academic medical centers and universities to survive and thrive in the increasingly challenging economic, political and regulatory environment, successful transformation is extremely important. Transformation and quality management techniques are increasingly well established in medical practice organizations. In…

  5. SAGA: A project to automate the management of software production systems

    NASA Technical Reports Server (NTRS)

    Campbell, Roy H.; Beckman-Davies, C. S.; Benzinger, L.; Beshers, G.; Laliberte, D.; Render, H.; Sum, R.; Smith, W.; Terwilliger, R.

    1986-01-01

    Research into software development is required to reduce its production cost and to improve its quality. Modern software systems, such as the embedded software required for NASA's space station initiative, stretch current software engineering techniques. The requirements to build large, reliable, and maintainable software systems increases with time. Much theoretical and practical research is in progress to improve software engineering techniques. One such technique is to build a software system or environment which directly supports the software engineering process, i.e., the SAGA project, comprising the research necessary to design and build a software development which automates the software engineering process. Progress under SAGA is described.

  6. Characterizing the Preturbulence Environment for Sensor Development, New Hazard Algorithms and NASA Experimental Flight Planning

    NASA Technical Reports Server (NTRS)

    Kaplan, Michael L.; Lin, Yuh-Lang

    2004-01-01

    During the grant period, several tasks were performed in support of the NASA Turbulence Prediction and Warning Systems (TPAWS) program. The primary focus of the research was on characterizing the preturbulence environment by developing predictive tools and simulating atmospheric conditions that preceded severe turbulence. The goal of the research being to provide both dynamical understanding of conditions that preceded turbulence as well as providing predictive tools in support of operational NASA B-757 turbulence research flights. The advancements in characterizing the preturbulence environment will be applied by NASA to sensor development for predicting turbulence onboard commercial aircraft. Numerical simulations with atmospheric models as well as multi-scale observational analyses provided insights into the environment organizing turbulence in a total of forty-eight specific case studies of severe accident producing turbulence on commercial aircraft. These accidents exclusively affected commercial aircraft. A paradigm was developed which diagnosed specific atmospheric circulation systems from the synoptic scale down to the meso-y scale that preceded turbulence in both clear air and in proximity to convection. The emphasis was primarily on convective turbulence as that is what the TPAWS program is most focused on in terms of developing improved sensors for turbulence warning and avoidance. However, the dynamical paradigm also has applicability to clear air and mountain turbulence. This dynamical sequence of events was then employed to formulate and test new hazard prediction indices that were first tested in research simulation studies and then ultimately were further tested in support of the NASA B-757 turbulence research flights. The new hazard characterization algorithms were utilized in a Real Time Turbulence Model (RTTM) that was operationally employed to support the NASA B-757 turbulence research flights. Improvements in the RTTM were implemented in an effort to increase the accuracy of the operational characterization of the preturbulence environment. Additionally, the initial research necessary to create a statistical evaluation scheme for the characterization indices utilized in the RTTM was undertaken. Results of all components of this research were then published in NASA contractor reports and scientific journal papers.

  7. Research-to-operations (R2O) for the Space Environmental Effects Fusion System (SEEFS) system-impact products

    NASA Astrophysics Data System (ADS)

    Quigley, Stephen

    The Space Vehicles Directorate of the Air Force Research Laboratory (AFRL/RVBX) and the Space Environment Branch of the Space and Missile Systems Center (SMC SLG/WMLE) have combined efforts to design, develop, test, implement, and validate numerical and graphical products for Air Force Space Command's (AFSPC) Space Environmental Effects Fusion System (SEEFS). These products are generated to analyze, specify, and forecast the effects of the near-earth space environment on Department of Defense weapons, navigation, communications, and surveillance systems. Jointly developed projects that have been completed as prototypes and are undergoing development for real-time operations include a SEEFS architecture and database, five system-impact products, and a high-level decision aid product. This first round of SEEFS products includes the Solar Radio Burst Effects (SoRBE) on radar and satellite communications, Radar Auroral Clutter (RAC), Scintillation Effects on radar and satellite communications (RadScint and SatScint), and Satellite Surface and Deep Charge/Discharge (Char/D) products. This presentation will provide overviews of the current system impact products, along with plans and potentials for future products expected for the SEEFS program. The overviews will include information on applicable research-to-operations (R2O) issues, to include input data coverage and quality control, output confidence levels, modeling standards, and validation efforts.

  8. A Novel UAV Electric Propulsion Testbed for Diagnostics and Prognostics

    NASA Technical Reports Server (NTRS)

    Gorospe, George E., Jr.; Kulkarni, Chetan S.

    2017-01-01

    This paper presents a novel hardware-in-the-loop (HIL) testbed for systems level diagnostics and prognostics of an electric propulsion system used in UAVs (unmanned aerial vehicle). Referencing the all electric, Edge 540T aircraft used in science and research by NASA Langley Flight Research Center, the HIL testbed includes an identical propulsion system, consisting of motors, speed controllers and batteries. Isolated under a controlled laboratory environment, the propulsion system has been instrumented for advanced diagnostics and prognostics. To produce flight like loading on the system a slave motor is coupled to the motor under test (MUT) and provides variable mechanical resistance, and the capability of introducing nondestructive mechanical wear-like frictional loads on the system. This testbed enables the verification of mathematical models of each component of the propulsion system, the repeatable generation of flight-like loads on the system for fault analysis, test-to-failure scenarios, and the development of advanced system level diagnostics and prognostics methods. The capabilities of the testbed are extended through the integration of a LabVIEW-based client for the Live Virtual Constructive Distributed Environment (LVCDC) Gateway which enables both the publishing of generated data for remotely located observers and prognosers and the synchronization the testbed propulsion system with vehicles in the air. The developed HIL testbed gives researchers easy access to a scientifically relevant portion of the aircraft without the overhead and dangers encountered during actual flight.

  9. Virtual environment display for a 3D audio room simulation

    NASA Technical Reports Server (NTRS)

    Chapin, William L.; Foster, Scott H.

    1992-01-01

    The development of a virtual environment simulation system integrating a 3D acoustic audio model with an immersive 3D visual scene is discussed. The system complements the acoustic model and is specified to: allow the listener to freely move about the space, a room of manipulable size, shape, and audio character, while interactively relocating the sound sources; reinforce the listener's feeling of telepresence in the acoustical environment with visual and proprioceptive sensations; enhance the audio with the graphic and interactive components, rather than overwhelm or reduce it; and serve as a research testbed and technology transfer demonstration. The hardware/software design of two demonstration systems, one installed and one portable, are discussed through the development of four iterative configurations.

  10. Informatic support for processing the data regarding the environment factors possibly involved in the etiopathogenesis of insulin-dependent diabetes mellitus ETIODIAB.

    PubMed

    Alecu, S; Dadarlat, V; Stanciu, E; Ionescu-Tirgoviste, C; Konerth, A M

    1997-01-01

    Diabetes represents a heterogeneous group of disturbances, which can have a different aetiology, but have in common glucidic, lipidic and proteinic metabolic disturbances. Insulin-dependent diabetes appears in genetically susceptible persons, as an autoimmune disease activated by environment factors. Epidemiological studies performed in different countries, notice the increasing of diabetes cases in the last decades. Therefore the informatic system EtioDiab (from Etiopathological diabetes) has been developed. The purpose of this system is to assist the medical research regarding the environment factors involved in the etiopathogenesis of insulin-dependent diabetes. The system offers the possibility of calculation of many statistic indicators, of graphic representation of the recorded data, of verification of the statistical hypotheses.

  11. Research on anti - interference based on GNSS

    NASA Astrophysics Data System (ADS)

    Yu, Huanran; Liu, Yijun

    2017-05-01

    Satellite Navigation System has been widely used in military and civil fields. It has all-functional, all-weather, continuity and real-time characteristics, can provide the precise position, velocity and timing information's for the users. The environments where the receiver of satellite navigation system works become more and more complex, and the satellite signals are susceptible to intentional or unintentional interferences, anti-jamming capability has become a key problem of satellite navigation receiver's ability to work normal. In this paper, we study a DOA estimation algorithm based on linear symmetric matrix to improve the anti-jamming capability of the satellite navigation receiver, has great significance to improve the performance of satellite navigation system in complex electromagnetic environment and enhance its applicability in various environments.

  12. The VERITAS Facility: A Virtual Environment Platform for Human Performance Research

    DTIC Science & Technology

    2016-01-01

    IAE The IAE supports the audio environment that users experience during the course of an experiment. This includes environmental sounds, user-to...future, we are looking towards a database-based system that would use MySQL or an equivalent product to store the large data sets and provide standard

  13. Intelligent Fuzzy Spelling Evaluator for e-Learning Systems

    ERIC Educational Resources Information Center

    Chakraborty, Udit Kr.; Konar, Debanjan; Roy, Samir; Choudhury, Sankhayan

    2016-01-01

    Evaluating Learners' Response in an e-Learning environment has been the topic of current research in areas of Human Computer Interaction, e-Learning, Education Technology and even Natural Language Processing. The current paper presents a twofold strategy to evaluate single word response of a learner in an e-Learning environment. The response of…

  14. Parenting in Direct Provision: Parents' Perspectives Regarding Stresses and Supports

    ERIC Educational Resources Information Center

    Ogbu, Helen Uchechukwu; Brady, Bernadine; Kinlen, Louise

    2014-01-01

    The Irish direct provision system for asylum seekers is acknowledged as providing a very challenging and exclusionary living environment for adults and children. To date, there has been little research focused specifically on the ways in which the direct provision environment impacts on the parenting role. This qualitative study explores the…

  15. Learning Objects and Virtual Learning Environments Technical Evaluation Criteria

    ERIC Educational Resources Information Center

    Kurilovas, Eugenijus; Dagiene, Valentina

    2009-01-01

    The main scientific problems investigated in this article deal with technical evaluation of quality attributes of the main components of e-Learning systems (referred here as DLEs--Digital Libraries of Educational Resources and Services), i.e., Learning Objects (LOs) and Virtual Learning Environments (VLEs). The main research object of the work is…

  16. Tracking Holland Interest Codes: The Case of South African Field Guides

    ERIC Educational Resources Information Center

    Watson, Mark B.; Foxcroft, Cheryl D.; Allen, Lynda J.

    2007-01-01

    Holland believes that specific personality types seek out matching occupational environments and his theory codes personality and environment according to a six letter interest typology. Since 1985 there have been numerous American studies that have queried the validity of Holland's coding system. Research in South Africa is scarcer, despite…

  17. Fifth International Symposium on Liquid Space Propulsion

    NASA Technical Reports Server (NTRS)

    Garcia, R. (Compiler)

    2005-01-01

    Contents include the fiollowing: Theme: Life-life Combustion Devices Technology. Technical Sessions: International Perspectives. System Level Effects. Component Level Processes. Material Considerations. Design Environments -- Predictions. Injector Design Technology. Design Environments -- Measurements. Panel Discussion: Views on future research and development needs and Symposium observations. Aquarium Welcome and Southern Belle Riverboat Recognition Banquet evening events.

  18. Tulane/Xavier Center for Bioenvironmental Research; project: hazardous materials in aquatic environments; subproject: biomarkers and risk assessment in Bayou Trepagnier, LA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ide, C.

    1996-12-31

    Tulane and Xavier Universities have singled out the environment as a major strategic focus for research and training for now and beyond the year 2000. the Tulane/Xavier Center for Bioenvironmental Research (CBR) was established in 1989 as the umbrella organization to coordinate environmental research at both universities. CBR projects funded by the DOE under the Hazardous Materials in Aquatic Environments grant are defining the following: (1) the complex interactions that occur during the transport of contaminants through wetlands environments, (2) the actual and potential impact of contaminants on ecological systems and health, (3) the mechanisms and new technologies through whichmore » these impacts might be remediated, and (4) new programs aimed at educating and training environmental workers of the future. The subproject described in this report, `Biomarkers and Risk Assessment in Bayou Trepagnier, LN`, is particularly relevant to the US Department of Energy`s Environmental Restoration and Waste Management program aimed at solving problems related to hazard monitoring and clean-up prioritization at sites with aquatic pollution problems in the DOE complex.« less

  19. Using Virtual Reality to Improve Walking Post-Stroke: Translation to Individuals with Diabetes

    PubMed Central

    Deutsch, Judith E

    2011-01-01

    Use of virtual reality (VR) technology to improve walking for people post-stroke has been studied for its clinical application since 2004. The hardware and software used to create these systems has varied but has predominantly been constituted by projected environments with users walking on treadmills. Transfer of training from the virtual environment to real-world walking has modest but positive research support. Translation of the research findings to clinical practice has been hampered by commercial availability and costs of the VR systems. Suggestions for how the work for individuals post-stroke might be applied and adapted for individuals with diabetes and other impaired ambulatory conditions include involvement of the target user groups (both practitioners and clients) early in the design and integration of activity and education into the systems. PMID:21527098

  20. Using virtual reality to improve walking post-stroke: translation to individuals with diabetes.

    PubMed

    Deutsch, Judith E

    2011-03-01

    Use of virtual reality (VR) technology to improve walking for people post-stroke has been studied for its clinical application since 2004. The hardware and software used to create these systems has varied but has predominantly been constituted by projected environments with users walking on treadmills. Transfer of training from the virtual environment to real-world walking has modest but positive research support. Translation of the research findings to clinical practice has been hampered by commercial availability and costs of the VR systems. Suggestions for how the work for individuals post-stroke might be applied and adapted for individuals with diabetes and other impaired ambulatory conditions include involvement of the target user groups (both practitioners and clients) early in the design and integration of activity and education into the systems. © 2011 Diabetes Technology Society.

  1. LONI visualization environment.

    PubMed

    Dinov, Ivo D; Valentino, Daniel; Shin, Bae Cheol; Konstantinidis, Fotios; Hu, Guogang; MacKenzie-Graham, Allan; Lee, Erh-Fang; Shattuck, David; Ma, Jeff; Schwartz, Craig; Toga, Arthur W

    2006-06-01

    Over the past decade, the use of informatics to solve complex neuroscientific problems has increased dramatically. Many of these research endeavors involve examining large amounts of imaging, behavioral, genetic, neurobiological, and neuropsychiatric data. Superimposing, processing, visualizing, or interpreting such a complex cohort of datasets frequently becomes a challenge. We developed a new software environment that allows investigators to integrate multimodal imaging data, hierarchical brain ontology systems, on-line genetic and phylogenic databases, and 3D virtual data reconstruction models. The Laboratory of Neuro Imaging visualization environment (LONI Viz) consists of the following components: a sectional viewer for imaging data, an interactive 3D display for surface and volume rendering of imaging data, a brain ontology viewer, and an external database query system. The synchronization of all components according to stereotaxic coordinates, region name, hierarchical ontology, and genetic labels is achieved via a comprehensive BrainMapper functionality, which directly maps between position, structure name, database, and functional connectivity information. This environment is freely available, portable, and extensible, and may prove very useful for neurobiologists, neurogenetisists, brain mappers, and for other clinical, pedagogical, and research endeavors.

  2. The Kidney Research Predicament

    PubMed Central

    Bryan, Lisa; Ibrahim, Tod; Fischer, Michael J.

    2014-01-01

    Research funding from public and private sources has reached an all-time low. Economic conditions, sequestration, and a trend of low award success rates have created an imbalance between the supply of highly qualified research investigators and the availability of critically necessary research dollars. This grim environment continues to hinder the success of established investigators and deter potential investigators from joining the research workforce. Without action and support of innovative science, the future of the US health care system is in jeopardy, and its leadership role in medical research will decrease. This work discusses the effects of the decline in research funding, the plight of kidney research, and the impact of the American Society of Nephrology Grants Program on scientists. The ASN also calls on the entire nephrology community to rejuvenate the research environment, improve the lives of millions of people with kidney disease, and ultimately, find a cure. PMID:24652790

  3. Optimal Configuration of Human Motion Tracking Systems: A Systems Engineering Approach

    NASA Technical Reports Server (NTRS)

    Henderson, Steve

    2005-01-01

    Human motion tracking systems represent a crucial technology in the area of modeling and simulation. These systems, which allow engineers to capture human motion for study or replication in virtual environments, have broad applications in several research disciplines including human engineering, robotics, and psychology. These systems are based on several sensing paradigms, including electro-magnetic, infrared, and visual recognition. Each of these paradigms requires specialized environments and hardware configurations to optimize performance of the human motion tracking system. Ideally, these systems are used in a laboratory or other facility that was designed to accommodate the particular sensing technology. For example, electromagnetic systems are highly vulnerable to interference from metallic objects, and should be used in a specialized lab free of metal components.

  4. Physics-based Space Weather Forecasting in the Project for Solar-Terrestrial Environment Prediction (PSTEP) in Japan

    NASA Astrophysics Data System (ADS)

    Kusano, K.

    2016-12-01

    Project for Solar-Terrestrial Environment Prediction (PSTEP) is a Japanese nation-wide research collaboration, which was recently launched. PSTEP aims to develop a synergistic interaction between predictive and scientific studies of the solar-terrestrial environment and to establish the basis for next-generation space weather forecasting using the state-of-the-art observation systems and the physics-based models. For this project, we coordinate the four research groups, which develop (1) the integration of space weather forecast system, (2) the physics-based solar storm prediction, (3) the predictive models of magnetosphere and ionosphere dynamics, and (4) the model of solar cycle activity and its impact on climate, respectively. In this project, we will build the coordinated physics-based model to answer the fundamental questions concerning the onset of solar eruptions and the mechanism for radiation belt dynamics in the Earth's magnetosphere. In this paper, we will show the strategy of PSTEP, and discuss about the role and prospect of the physics-based space weather forecasting system being developed by PSTEP.

  5. Biosignature Preservation and Detection in Mars Analog Environments.

    PubMed

    Hays, Lindsay E; Graham, Heather V; Des Marais, David J; Hausrath, Elisabeth M; Horgan, Briony; McCollom, Thomas M; Parenteau, M Niki; Potter-McIntyre, Sally L; Williams, Amy J; Lynch, Kennda L

    2017-04-01

    This review of material relevant to the Conference on Biosignature Preservation and Detection in Mars Analog Environments summarizes the meeting materials and discussions and is further expanded upon by detailed references to the published literature. From this diverse source material, there is a detailed discussion on the habitability and biosignature preservation potential of five primary analog environments: hydrothermal spring systems, subaqueous environments, subaerial environments, subsurface environments, and iron-rich systems. Within the context of exploring past habitable environments on Mars, challenges common to all of these key environments are laid out, followed by a focused discussion for each environment regarding challenges to orbital and ground-based observations and sample selection. This leads into a short section on how these challenges could influence our strategies and priorities for the astrobiological exploration of Mars. Finally, a listing of urgent needs and future research highlights key elements such as development of instrumentation as well as continued exploration into how Mars may have evolved differently from Earth and what that might mean for biosignature preservation and detection. Key Words: Biosignature preservation-Biosignature detection-Mars analog environments-Conference report-Astrobiological exploration. Astrobiology 17, 363-400.

  6. Monovision techniques for telerobots

    NASA Technical Reports Server (NTRS)

    Goode, P. W.; Carnils, K.

    1987-01-01

    The primary task of the vision sensor in a telerobotic system is to provide information about the position of the system's effector relative to objects of interest in its environment. The subtasks required to perform the primary task include image segmentation, object recognition, and object location and orientation in some coordinate system. The accomplishment of the vision task requires the appropriate processing tools and the system methodology to effectively apply the tools to the subtasks. The functional structure of the telerobotic vision system used in the Langley Research Center's Intelligent Systems Research Laboratory is discussed as well as two monovision techniques for accomplishing the vision subtasks.

  7. The Influence of the Conduct System and Campus Environments on Student Learning

    ERIC Educational Resources Information Center

    Janosik, Steven M.; Stimpson, Matthew T.

    2017-01-01

    Researchers have demonstrated the influence of the perceived efficacy of a conduct system on student learning (King, 2012; Stimpson & Janosik, 2015). Multivariate Analysis of Variance (MANOVA) was used to test the relationship between perceived level of conduct system efficacy, institutional culture, and self-reported student learning. More…

  8. Case Study: eCoaching in a Corporate Environment

    ERIC Educational Resources Information Center

    Warner, Teri L. C.

    2012-01-01

    This qualitative particularistic case study was an exploration and evaluation of an online, asynchronous, non-human coaching system called an "eCoaching system." Developed by the researcher, the eCoaching system combined performance coaching with the latest technologies in eLearning. The coaching was based on the appreciative inquiry approach, and…

  9. Science at the ends of the Earth: astrobiology field expeditions as outreach tools

    NASA Astrophysics Data System (ADS)

    Billings, Linda

    INTRODUCTION This paper will report on and evaluate communication, education, and outreach initiatives conducted in conjunction with NASA Astrobiology Science and Technology for Exploring Planets (ASTEP) field campaigns, addressing the costs and benefits of linking students, teachers, and other interested citizens with researchers in the field. This paper will highlight success stories, lessons learned, and promising practices regarding educational programs in scientific research environments. The Astrobiology Program in the U.S. National Aeronautics and Space Administration's (NASA's) Science Mission Directorate studies the origin, evolution, distribution, and future of life in the universe. Public interest in astrobiology is great, and advances in the field are rapid. Hence, the Astrobiology Program supports the widest possible dissemination of timely and useful information about scientific discoveries, technology development, new knowledge, and greater understanding produced by its investigators, employing an approach described as strategic communication planning. That is, the Astrobiology Program aims to integrate communication, education, and outreach into all aspects of program planning and execution. The Program encourages all of its investigators to contribute to the ongoing endeavor of informing public audiences about Astrobiology. The ASTEP element of the Astrobiology Program sponsors terrestrial field campaigns to further scientific research and technology development relevant to future solar system exploration missions. ASTEP science investigations are designed to further biological research in terrestrial environments analogous to those found on other planets, past or present. ASTEP sponsors the development of technologies to enable remote searches for, and identification of, life in extreme environments. ASTEP supports systems-level field campaigns designed to demonstrate and validate the science and technology in extreme environments on Earth. This paper will report on and evaluate communication, education, and outreach initiatives conducted in conjunction with ASTEP field campaigns, addressing the costs and benefits of linking students, teachers, and other interested citizens with researchers in the field. This paper will highlight success stories, lessons learned, and promising practices regarding educational programs in scientific research environments. SUMMARY The Astrobiology Program in NASA's Science Mission Directorate studies the origin, evolution, distribution, and future of life in the universe. Astrobiology research addresses three fundamental questions: How does life begin and evolve? Is there life beyond Earth and how can we detect it? What is the future of life on Earth and in the universe? Goals of the Astrobiology Program range from determining the nature and distribution of habitable environments in the Solar System and beyond to understanding the emergence of life from cosmic and planetary precursors, the interaction of past life on Earth with its changing environment, the formation and evolution of planets, links between planetary and biological evolution, the effects of climate and geology on habitability, and life's precursors and habitats in the outer solar system. Research dedicated to fulfilling these goals is conducted on Earth and in space, with a growing number of astrobiology investigations flying on planetary exploration missions. The field of astrobiology is an endeavor that brings together researchers in a broad range of disciplines including Earth and planetary science, astrophysics, heliophysics, microbiology and evolutionary biology, and cosmochemistry. Since 1995, the field of astrobiology has grown rapidly, and the pace of discovery has been brisk. The possibility of extraterrestrial life is now a serious scientific question. Research findings over the past decade that are relevant to this question include the controversial 1996 claim of fossil evidence for microbial life in a martian meteorite, evidence of past and perhaps even present liquid water on Mars, the likelihood of a liquid water ocean on Europa, the possibility of liquid water beneath the surface of Titan, observations of a growing number of extrasolar planets, and identification of new forms of microbial life in an ever-widening range of extreme Earth environments. Consequently, in the 21st century the pace of robotic planetary exploration is speeding up and scientific and public attention is increasingly focusing on astrobiology research, especially the search for signs of life on Mars and in other environments in our solar system. NASA's ASTEP program is sponsoring field campaigns to test science strategies and robotic technologies that could be useful in conducting astrobiological investigations in planetary environments, focusing on Mars and Europa. Public interest in astrobiology research is substantial, and advances in the field are rapid. Thus the NASA Astrobiology Program encourages Principal Investigators to incorporate communication, education, and public outreach initiatives in their research plans. NASA ASTEP projects provide especially good opportunities for communication, education, and outreach. The work of ASTEP projects takes place in remote terrestrial environments, places typically inaccessible to "civilians": the Norwegian protectorate of Svalbard, above the Arctic Circle; the far-northern reaches of the Arctic Ocean; the dry valleys of Antarctica; deep-sea hydrothermal vent systems and other unmapped underwater environments. ASTEP projects involve human researchers working with robotic adjuncts. ASTEP teams often combine include senior and student researchers. Some have even included "embedded" journalists and public affairs officers. ASTEP expeditions typically unfold in visually interesting, sometimes stunning, physical environments. ASTEP expeditions are virtually always intensive learning experiences for their researchers, and thus they provide good opportunities to demonstrate how science is actually done. Science means different things to different people in different situations, and thus public understanding of science, and science communication, are not simple things. Science can be a set of practices, a body of knowledge, a process of investigation, or a world view. In attempting to improve public understanding of science, it is useful to provide non-scientists with a window into the working world of science. ASTEP expeditions provide such windows. With the proliferation of miniaturized and increasingly affordable digital communication technology - still and video cameras, recorders, laptop computers - connections between the remote locations of ASTEP expeditions and students, teachers, and other interested citizens around the world are easier to make. Thanks to these technologies, interactive communications are also becoming easier. This paper will report on communication, education, and outreach activities for recent ASTEP field expeditions in the Arctic and Pacific oceans, Svalbard, and Mexico, highlighting success stories, lessons learned, and promising practices.

  10. Effect analysis of oil paint on the space optical contamination

    NASA Astrophysics Data System (ADS)

    Lu, Chun-lian; Lv, He; Han, Chun-xu; Wei, Hai-Bin

    2013-08-01

    The space contamination of spacecraft surface is a hot topic in the spacecraft environment project and environment safeguard for spacecraft. Since the 20th century, many American satellites have had malfunction for space contamination. The space optical systems are usually exposed to the external space environment. The particulate contamination of optical systems will degrade the detection ability. We call the optical damage. It also has a bad influence on the spectral imaging quality of the whole system. In this paper, effects of contamination on spectral imaging were discussed. The experiment was designed to observe the effect value. We used numeral curve fitting to analyze the relationship between the optical damage factor (Transmittance decay factor) and the contamination degree of the optical system. We gave the results of six specific wavelengths from 450 to 700nm and obtained the function of between the optical damage factor and contamination degree. We chose three colors of oil paint to be compared. Through the numeral curve fitting and processing data, we could get the mass thickness for different colors of oil paint when transmittance decreased to 50% and 30%. Some comparisons and research conclusions were given. From the comparisons and researches, we could draw the conclusions about contamination effects of oil paint on the spectral imaging system.

  11. Direct Burial Broadband Seismic Instrumentation that are Rugged and Tilt Tolerant for Polar Environments

    NASA Astrophysics Data System (ADS)

    Parker, Tim; Winberry, Paul; Huerta, Audrey; Bainbridge, Geoff; Devanney, Peter

    2016-04-01

    The integrated broadband Meridian Posthole and Compact seismic systems have been engineered and tested for extreme polar environments. Ten percent of the Earth's surface is covered in glacial ice and the dynamics of these environments is a strategic concern for all. The development for these systems was driven by researchers needing to densify observations in ice covered regions with difficult and limited logistics. Funding from an NSF MRI award, GEOICE and investment from the vendor enabled researchers to write the specifications for a hybrid family of instruments that can operate at -55C autonomously with very little power, 1 watt for the Meridian Compact system and 1.5 watts for the Meridian 120PH. Tilt tolerance in unstable ice conditions was a concern and these instruments have a range of up to +/-5 degrees. The form factor, extreme temperature tolerance and power load of the instruments has reduced the bulk of a complete station by 1/2 and simplified installation greatly allowing more instruments to be deployed with limited support and a lighter logistical load. These systems are being tested in the Antarctic at SouthPole Station and McMurdo for the second year and the investment has encouraged other instrument and power system vendors to offer polar rated equipment including telemetry for ancillary support.

  12. RICIS Symposium 1988

    NASA Technical Reports Server (NTRS)

    1988-01-01

    Integrated Environments for Large, Complex Systems is the theme for the RICIS symposium of 1988. Distinguished professionals from industry, government, and academia have been invited to participate and present their views and experiences regarding research, education, and future directions related to this topic. Within RICIS, more than half of the research being conducted is in the area of Computer Systems and Software Engineering. The focus of this research is on the software development life-cycle for large, complex, distributed systems. Within the education and training component of RICIS, the primary emphasis has been to provide education and training for software professionals.

  13. Interventions for information systems introduction in the NHS.

    PubMed

    Maguire, Stuart; Ojiako, Udechukwu

    2007-12-01

    This article provides a historical review of five long-term interventions which were undertaken within the NHS. The objective of the exercise was to examine how information systems (IS) were introduced into operational environments. The length of the interventions ranged from 9 months to almost 3 years. The five sites were all at different stages of system development and the research was carried out using a combination of participant observation and action research. The research question asks, 'How can organizations think about and hence go about their information provision in such a way that successful IS are introduced?'

  14. Homeostasis control of building environment using sensor agent robot

    NASA Astrophysics Data System (ADS)

    Nagahama, Eri; Mita, Akira

    2012-04-01

    A human centered system for building is demanded to meet variety of needs due to the diversification and maturation of society. Smart buildings and smart houses have been studied to satisfy this demand. However, it is difficult for such systems to respond flexibly to unexpected events and needs that are caused by aging and complicate emotion changes. With this regards, we suggest "Biofied Buildings". The goal for this research is to realize buildings that are safer, more comfortable and more energy-efficient by embedding adaptive functions of life into buildings. In this paper, we propose a new control system for building environments, focused on physiological adaptation, particularly homeostasis, endocrine system and immune system. Residents are used as living sensors and controllers in the control loop. A sensor agent robot is used to acquire resident's discomfort feeling, and to output hormone-like signals to activate devices to control the environments. The proposed system could control many devices without establishing complicated scenarios. Results obtained from some simulations and the demonstration experiments using an LED lighting system showed that the proposed system were able to achieve robust and stable control of environments without complicated scenarios.

  15. Dynamically analyzing cell interactions in biological environments using multiagent social learning framework.

    PubMed

    Zhang, Chengwei; Li, Xiaohong; Li, Shuxin; Feng, Zhiyong

    2017-09-20

    Biological environment is uncertain and its dynamic is similar to the multiagent environment, thus the research results of the multiagent system area can provide valuable insights to the understanding of biology and are of great significance for the study of biology. Learning in a multiagent environment is highly dynamic since the environment is not stationary anymore and each agent's behavior changes adaptively in response to other coexisting learners, and vice versa. The dynamics becomes more unpredictable when we move from fixed-agent interaction environments to multiagent social learning framework. Analytical understanding of the underlying dynamics is important and challenging. In this work, we present a social learning framework with homogeneous learners (e.g., Policy Hill Climbing (PHC) learners), and model the behavior of players in the social learning framework as a hybrid dynamical system. By analyzing the dynamical system, we obtain some conditions about convergence or non-convergence. We experimentally verify the predictive power of our model using a number of representative games. Experimental results confirm the theoretical analysis. Under multiagent social learning framework, we modeled the behavior of agent in biologic environment, and theoretically analyzed the dynamics of the model. We present some sufficient conditions about convergence or non-convergence and prove them theoretically. It can be used to predict the convergence of the system.

  16. Cardea: Providing Support for Dynamic Resource Access in a Distributed Computing Environment

    NASA Technical Reports Server (NTRS)

    Lepro, Rebekah

    2003-01-01

    The environment framing the modem authorization process span domains of administration, relies on many different authentication sources, and manages complex attributes as part of the authorization process. Cardea facilitates dynamic access control within this environment as a central function of an inter-operable authorization framework. The system departs from the traditional authorization model by separating the authentication and authorization processes, distributing the responsibility for authorization data and allowing collaborating domains to retain control over their implementation mechanisms. Critical features of the system architecture and its handling of the authorization process differentiate the system from existing authorization components by addressing common needs not adequately addressed by existing systems. Continuing system research seeks to enhance the implementation of the current authorization model employed in Cardea, increase the robustness of current features, further the framework for establishing trust and promote interoperability with existing security mechanisms.

  17. Concentrated solar power in the built environment

    NASA Astrophysics Data System (ADS)

    Montenon, Alaric C.; Fylaktos, Nestor; Montagnino, Fabio; Paredes, Filippo; Papanicolas, Costas N.

    2017-06-01

    Solar concentration systems are usually deployed in large open spaces for electricity generation; they are rarely used to address the pressing energy needs of the built environment sector. Fresnel technology offers interesting and challenging CSP energy pathways suitable for the built environment, due to its relatively light weight (<30 kg.m-2) and low windage. The Cyprus Institute (CyI) and Consorzio ARCA are cooperating in such a research program; we report here the construction and integration of a 71kW Fresnel CSP system into the HVAC (Heating, Ventilation, and Air Conditioning) system of a recently constructed office & laboratory building, the Novel Technologies Laboratory (NTL). The multi-generative system will support cooling, heating and hot water production feeding the system of the NTL building, as a demonstration project, part of the STS-MED program (Small Scale Thermal Solar District Units for Mediterranean Communities) financed by the European Commission under the European Neighbourhood and Partnership Instrument (ENPI), CBCMED program.

  18. Utilizing Advanced Vibration Isolation Technology to Enable Microgravity Science Operations

    NASA Technical Reports Server (NTRS)

    Alhorn, Dean Carl

    1999-01-01

    Microgravity scientific research is performed in space to determine the effects of gravity upon experiments. Until recently, experiments had to accept the environment aboard various carriers: reduced-gravity aircraft, sub-orbital payloads, Space Shuttle, and Mir. If the environment is unacceptable, then most scientists would rather not expend the resources without the assurance of true microgravity conditions. This is currently the case on the International Space Station, because the ambient acceleration environment will exceed desirable levels. For this reason, the g-LIMIT (Glovebox Integrated Microgravity Isolation Technology) system is currently being developed to provide a quiescent acceleration environment for scientific operations. This sub-rack isolation system will provide a generic interface for a variety of experiments for the Microgravity Science Glovebox. This paper describes the motivation for developing of the g-LIMIT system, presents the design concept and details some of the advanced technologies utilized in the g-LIMIT flight design.

  19. [Effect of solution environments on ceramic membrane microfiltration of model system of Chinese medicines].

    PubMed

    Zhang, Lianjun; Lu, Jin; Le, Kang; Fu, Tingming; Guo, Liwei

    2010-07-01

    To investigate the effect of differents solution environments on the ceramic membrane microfiltration of model system of Chinese medicines. Taking binary system of soybean protein-berberine as the research object, flux, transmittance of berberine and traping rate of protein as indexes, different solution environment on membrane process were investigated. When the concentration of soybean protein was under 1 g x L(-1), the membrane flux was minimum with the traping of berberine decreased slightly as the concentration increased. When pH was 4, the flux was maximum with the traping rate of protein was 99%, and the transmittance of berberine reached above 60%. The efficiency of membrane separation can be improved by optimizing the solution environment of water-extraction of chinese medicines. The efficiency of membrane separation is the best when adjust the pH to the isoelectric point of proteins for the proteins as the main pollutant in aqueous solution.

  20. Annual Report to Congress - Fiscal Year 2000, from the Strategic Environmental Research and Development Program

    DTIC Science & Technology

    2001-03-01

    perchlorate bioremediation systems. The objective of this project is to identify the key environmental factors in subsurface environments that inhibit... environment . For the Health and Safety for Innovative Environmental Technologies subthrust, DoD is working to improve the health and safety of workers and...dilution of pollutants. Similarly, other relevant environments range from humid , forested landscapes to high, arid mountainous domains. In addition, DoD

  1. The virtual environment display system

    NASA Technical Reports Server (NTRS)

    Mcgreevy, Michael W.

    1991-01-01

    Virtual environment technology is a display and control technology that can surround a person in an interactive computer generated or computer mediated virtual environment. It has evolved at NASA-Ames since 1984 to serve NASA's missions and goals. The exciting potential of this technology, sometimes called Virtual Reality, Artificial Reality, or Cyberspace, has been recognized recently by the popular media, industry, academia, and government organizations. Much research and development will be necessary to bring it to fruition.

  2. Computing through Scientific Abstractions in SysBioPS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chin, George; Stephan, Eric G.; Gracio, Deborah K.

    2004-10-13

    Today, biologists and bioinformaticists have a tremendous amount of computational power at their disposal. With the availability of supercomputers, burgeoning scientific databases and digital libraries such as GenBank and PubMed, and pervasive computational environments such as the Grid, biologists have access to a wealth of computational capabilities and scientific data at hand. Yet, the rapid development of computational technologies has far exceeded the typical biologist’s ability to effectively apply the technology in their research. Computational sciences research and development efforts such as the Biology Workbench, BioSPICE (Biological Simulation Program for Intra-Cellular Evaluation), and BioCoRE (Biological Collaborative Research Environment) are importantmore » in connecting biologists and their scientific problems to computational infrastructures. On the Computational Cell Environment and Heuristic Entity-Relationship Building Environment projects at the Pacific Northwest National Laboratory, we are jointly developing a new breed of scientific problem solving environment called SysBioPSE that will allow biologists to access and apply computational resources in the scientific research context. In contrast to other computational science environments, SysBioPSE operates as an abstraction layer above a computational infrastructure. The goal of SysBioPSE is to allow biologists to apply computational resources in the context of the scientific problems they are addressing and the scientific perspectives from which they conduct their research. More specifically, SysBioPSE allows biologists to capture and represent scientific concepts and theories and experimental processes, and to link these views to scientific applications, data repositories, and computer systems.« less

  3. INFORMAS (International Network for Food and Obesity/non-communicable diseases Research, Monitoring and Action Support): overview and key principles.

    PubMed

    Swinburn, B; Sacks, G; Vandevijvere, S; Kumanyika, S; Lobstein, T; Neal, B; Barquera, S; Friel, S; Hawkes, C; Kelly, B; L'abbé, M; Lee, A; Ma, J; Macmullan, J; Mohan, S; Monteiro, C; Rayner, M; Sanders, D; Snowdon, W; Walker, C

    2013-10-01

    Non-communicable diseases (NCDs) dominate disease burdens globally and poor nutrition increasingly contributes to this global burden. Comprehensive monitoring of food environments, and evaluation of the impact of public and private sector policies on food environments is needed to strengthen accountability systems to reduce NCDs. The International Network for Food and Obesity/NCDs Research, Monitoring and Action Support (INFORMAS) is a global network of public-interest organizations and researchers that aims to monitor, benchmark and support public and private sector actions to create healthy food environments and reduce obesity, NCDs and their related inequalities. The INFORMAS framework includes two 'process' modules, that monitor the policies and actions of the public and private sectors, seven 'impact' modules that monitor the key characteristics of food environments and three 'outcome' modules that monitor dietary quality, risk factors and NCD morbidity and mortality. Monitoring frameworks and indicators have been developed for 10 modules to provide consistency, but allowing for stepwise approaches ('minimal', 'expanded', 'optimal') to data collection and analysis. INFORMAS data will enable benchmarking of food environments between countries, and monitoring of progress over time within countries. Through monitoring and benchmarking, INFORMAS will strengthen the accountability systems needed to help reduce the burden of obesity, NCDs and their related inequalities. © 2013 The Authors. Obesity Reviews published by John Wiley & Sons Ltd on behalf of the International Association for the Study of Obesity.

  4. Installation and evaluation of weigh-in-motion utilizing quartz-piezo sensor technology.

    DOT National Transportation Integrated Search

    2016-06-28

    The objective of the research study was: to install a quartz-piezo based WIM system, and to : determine sensor survivability, accuracy and reliability under actual traffic conditions in : Connecticuts environment. If the systems prove dependable a...

  5. UAH/NASA Workshop on Fluids Experiment System

    NASA Technical Reports Server (NTRS)

    Hendricks, J. (Editor); Askins, B. (Editor)

    1979-01-01

    The Fluids Experiment System is being developed to fit into a Spacelab rack. Papers presented at this workshop describe a variety of fluid and chemical experiments that would be of great benefit to researchers of processes in a low gravity environment.

  6. A Dual Track Treadmill in a Virtual Reality Environment as a Countermeasure for Neurovestibular Adaptations in Microgravity

    NASA Technical Reports Server (NTRS)

    DAndrea, Susan E.; Kahelin, Michael W.; Horowitz, Jay G.; OConnor, Philip A.

    2004-01-01

    While the neurovestibular system is capable of adapting to altered environments such as microgravity, the adaptive state achieved in space in inadequate for 1G. This leads to giant and postural instabilities when returning to a gravity environment and may create serious problems in future mission to Mars. New methods are needed to improve the understanding of the adaptive capabilities of the human neurovestibular system and to develop more effective countermeasures. The concept behind the current study is that by challenging the neurovestibular system while walking or running a treadmill can help to read just the relationship between the visual, vestibular and proprioceptive signals that are altered in a microgravity environment. As a countermeasure, this device could also benefit the musculoskeletal and cardiovascular systems and at the same time decrease the overall time spent exercising. The overall goal of this research is to design, develop, build and test a dual track treadmill, which utilizes virtual reality, VR, displays.

  7. A Dual Track Treadmill in a Virtual Reality Environment as a Countermeasure for Neurovestibular Adaptations in Microgravity

    NASA Technical Reports Server (NTRS)

    DAndrea, Susan E.; Kahelin, Michael W.; Horowitz, Jay G.; OConnor, Philip A.

    2004-01-01

    While the neurovestibular system is capable of adapting to altered environments such as microgravity, the adaptive state achieved in space in inadequate for 1G. This leads to gait and postural instabilities when returning to a gravity environment and may create serious problems in future missions to Mars. New methods are needed to improve the understanding of the adaptive capabilities of the human neurovestibular system and to develop more effective countermeasures. The concept behind the current study is that by challenging the neurovestibular system while walking or running, a treadmill can help to readjust the relationship between the visual, vestibular and proprioceptive signals that are altered in a microgravity environment. As a countermeasure, this device could also benefit the musculoskeletal and cardiovascular systems and at the same time decrease the overall time spent exercising. The overall goal of this research is to design, develop, build and test a dual track treadmill, which utilizes virtual reality,

  8. Experimental study of a DMD based compressive line sensing imaging system in the turbulence environment

    NASA Astrophysics Data System (ADS)

    Ouyang, Bing; Hou, Weilin; Gong, Cuiling; Caimi, Frank M.; Dalgleish, Fraser R.; Vuorenkoski, Anni K.

    2016-05-01

    The Compressive Line Sensing (CLS) active imaging system has been demonstrated to be effective in scattering mediums, such as turbid coastal water through simulations and test tank experiments. Since turbulence is encountered in many atmospheric and underwater surveillance applications, a new CLS imaging prototype was developed to investigate the effectiveness of the CLS concept in a turbulence environment. Compared with earlier optical bench top prototype, the new system is significantly more robust and compact. A series of experiments were conducted at the Naval Research Lab's optical turbulence test facility with the imaging path subjected to various turbulence intensities. In addition to validating the system design, we obtained some unexpected exciting results - in the strong turbulence environment, the time-averaged measurements using the new CLS imaging prototype improved both SNR and resolution of the reconstructed images. We will discuss the implications of the new findings, the challenges of acquiring data through strong turbulence environment, and future enhancements.

  9. A case study of the Secure Anonymous Information Linkage (SAIL) Gateway: a privacy-protecting remote access system for health-related research and evaluation.

    PubMed

    Jones, Kerina H; Ford, David V; Jones, Chris; Dsilva, Rohan; Thompson, Simon; Brooks, Caroline J; Heaven, Martin L; Thayer, Daniel S; McNerney, Cynthia L; Lyons, Ronan A

    2014-08-01

    With the current expansion of data linkage research, the challenge is to find the balance between preserving the privacy of person-level data whilst making these data accessible for use to their full potential. We describe a privacy-protecting safe haven and secure remote access system, referred to as the Secure Anonymised Information Linkage (SAIL) Gateway. The Gateway provides data users with a familiar Windows interface and their usual toolsets to access approved anonymously-linked datasets for research and evaluation. We outline the principles and operating model of the Gateway, the features provided to users within the secure environment, and how we are approaching the challenges of making data safely accessible to increasing numbers of research users. The Gateway represents a powerful analytical environment and has been designed to be scalable and adaptable to meet the needs of the rapidly growing data linkage community. Copyright © 2014 The Aurthors. Published by Elsevier Inc. All rights reserved.

  10. A case study of the Secure Anonymous Information Linkage (SAIL) Gateway: A privacy-protecting remote access system for health-related research and evaluation☆

    PubMed Central

    Jones, Kerina H.; Ford, David V.; Jones, Chris; Dsilva, Rohan; Thompson, Simon; Brooks, Caroline J.; Heaven, Martin L.; Thayer, Daniel S.; McNerney, Cynthia L.; Lyons, Ronan A.

    2014-01-01

    With the current expansion of data linkage research, the challenge is to find the balance between preserving the privacy of person-level data whilst making these data accessible for use to their full potential. We describe a privacy-protecting safe haven and secure remote access system, referred to as the Secure Anonymised Information Linkage (SAIL) Gateway. The Gateway provides data users with a familiar Windows interface and their usual toolsets to access approved anonymously-linked datasets for research and evaluation. We outline the principles and operating model of the Gateway, the features provided to users within the secure environment, and how we are approaching the challenges of making data safely accessible to increasing numbers of research users. The Gateway represents a powerful analytical environment and has been designed to be scalable and adaptable to meet the needs of the rapidly growing data linkage community. PMID:24440148

  11. Materials challenges for nuclear systems

    DOE PAGES

    Allen, Todd; Busby, Jeremy; Meyer, Mitch; ...

    2010-11-26

    The safe and economical operation of any nuclear power system relies to a great extent, on the success of the fuel and the materials of construction. During the lifetime of a nuclear power system which currently can be as long as 60 years, the materials are subject to high temperature, a corrosive environment, and damage from high-energy particles released during fission. The fuel which provides the power for the reactor has a much shorter life but is subject to the same types of harsh environments. This article reviews the environments in which fuels and materials from current and proposed nuclearmore » systems operate and then describes how the creation of the Advanced Test Reactor National Scientific User Facility is allowing researchers from across the U.S. to test their ideas for improved fuels and materials.« less

  12. Robot design for a vacuum environment

    NASA Technical Reports Server (NTRS)

    Belinski, S.; Trento, W.; Imani-Shikhabadi, R.; Hackwood, S.

    1987-01-01

    The cleanliness requirements for many processing and manufacturing tasks are becoming ever stricter, resulting in a greater interest in the vacuum environment. Researchers discuss the importance of this special environment, and the development of robots which are physically and functionally suited to vacuum processing tasks. Work is in progress at the Center for robotic Systems in Microelectronics (CRSM) to provide a robot for the manufacture of a revolutionary new gyroscope in high vacuum. The need for vacuum in this and other processes is discussed as well as the requirements for a vacuum-compatible robot. Finally, researchers present details on work done at the CRSM to modify an existing clean-room compatible robot for use at high vacuum.

  13. Toward an Integrated Online Learning Environment

    NASA Astrophysics Data System (ADS)

    Teodorescu, Raluca E.; Pawl, Andrew; Rayyan, Saif; Barrantes, Analia; Pritchard, David E.

    2010-10-01

    We are building in LON-CAPA an integrated learning environment that will enable the development, dissemination and evaluation of PER-based material. This environment features a collection of multi-level research-based homework sets organized by topic and cognitive complexity. These sets are associated with learning modules that contain very short exposition of the content supplemented by integrated open-access videos, worked examples, simulations, and tutorials (some from ANDES). To assess students' performance accurately with respect to a system-wide standard, we plan to implement Item Response Theory. Together with other PER assessments and purposeful solicitation of student feedback, this will allow us to measure and improve the efficacy of various research-based materials, while getting insights into teaching and learning.

  14. Development of a Temperature Sensor for Jet Engine and Space Missions Environments

    NASA Technical Reports Server (NTRS)

    Patterson, Richard L.; Hammoud, Ahmad; Culley, Dennis E.; Elbuluk, Malik

    2008-01-01

    Electronic systems in aerospace and in space exploration missions are expected to encounter extreme temperatures and wide thermal swings. To address the needs for extreme temperature electronics, research efforts exist at the NASA Glenn Research Center (GRC) to develop and evaluate electronics for extreme temperature operations, and to establish their reliability under extreme temperature operation and thermal cycling; conditions that are typical of both the aerospace and space environments. These efforts are supported by the NASA Fundamental Aeronautics/Subsonic Fixed Wing Program and by the NASA Electronic Parts and Packaging (NEPP) Program. This work reports on the results obtained on the development of a temperature sensor geared for use in harsh environments.

  15. Research progress on combat trauma treatment in cold regions.

    PubMed

    Wang, Hui-Shan; Han, Jin-Song

    2014-01-01

    Cold regions are a special combat environment in which low temperatures have a great impact on human metabolism and other vital functions, including the nervous, motion, cardiovascular, circulatory, respiratory, and urinary systems; consequently, low temperatures often aggravate existing trauma, leading to high mortality rates if rapid and appropriate treatment is not provided. Hypothermia is an independent risk factor of fatality following combat trauma; therefore, proactive preventative measures are needed to reduce the rate of mortality. After summarizing the basic research on battlefield environments and progress in the prevention and treatment of trauma, this article concludes that current treatment and prevention measures for combat trauma in cold regions are inadequate. Future molecular biology studies are needed to elucidate the mechanisms and relevant cell factors underlying bodily injury caused by cold environment, a research goal will also allow further exploration of corresponding treatments.

  16. Aerospace Test Facilities at NASA LeRC Plumbrook

    NASA Technical Reports Server (NTRS)

    1992-01-01

    An overview of the facilities and research being conducted at LeRC's Plumbrook field station is given. The video highlights four main structures and explains their uses. The Space Power Facility is the world's largest space environment simulation chamber, where spacebound hardware is tested in simulations of the vacuum and extreme heat and cold of the space plasma environment. This facility was used to prepare Atlas 1 rockets to ferry CRRES into orbit; it will also be used to test space nuclear electric power generation systems. The Spacecraft Propulsion Research Facility allows rocket vehicles to be hot fired in a simulated space environment. In the Cryogenic Propellant Tank Facility, researchers are developing technology for storing and transferring liquid hydrogen in space. There is also a Hypersonic Wind Tunnel which can perform flow tests with winds up to Mach 7.

  17. Aerospace test facilities at NASA LERC Plumbrook

    NASA Astrophysics Data System (ADS)

    1992-10-01

    An overview of the facilities and research being conducted at LeRC's Plumbrook field station is given. The video highlights four main structures and explains their uses. The Space Power Facility is the worlds largest space environment simulation chamber, where spacebound hardware is tested in simulations of the vacuum and extreme heat and cold of the space plasma environment. This facility was used to prepare Atlas 1 rockets to ferry CRRES into orbit; it will also be used to test space nuclear electric power generation systems. The Spacecraft Propulsion Research Facility allows rocket vehicles to be hot fired in a simulated space environment. In the Cryogenic Propellant Tank Facility, researchers are developing technology for storing and transferring liquid hydrogen in space. There is also a Hypersonic Wind Tunnel which can perform flow tests with winds up to Mach 7.

  18. RICIS research

    NASA Technical Reports Server (NTRS)

    Mckay, Charles W.; Feagin, Terry; Bishop, Peter C.; Hallum, Cecil R.; Freedman, Glenn B.

    1987-01-01

    The principle focus of one of the RICIS (Research Institute for Computing and Information Systems) components is computer systems and software engineering in-the-large of the lifecycle of large, complex, distributed systems which: (1) evolve incrementally over a long time; (2) contain non-stop components; and (3) must simultaneously satisfy a prioritized balance of mission and safety critical requirements at run time. This focus is extremely important because of the contribution of the scaling direction problem to the current software crisis. The Computer Systems and Software Engineering (CSSE) component addresses the lifestyle issues of three environments: host, integration, and target.

  19. A Modular Environment for Geophysical Inversion and Run-time Autotuning using Heterogeneous Computing Systems

    NASA Astrophysics Data System (ADS)

    Myre, Joseph M.

    Heterogeneous computing systems have recently come to the forefront of the High-Performance Computing (HPC) community's interest. HPC computer systems that incorporate special purpose accelerators, such as Graphics Processing Units (GPUs), are said to be heterogeneous. Large scale heterogeneous computing systems have consistently ranked highly on the Top500 list since the beginning of the heterogeneous computing trend. By using heterogeneous computing systems that consist of both general purpose processors and special- purpose accelerators, the speed and problem size of many simulations could be dramatically increased. Ultimately this results in enhanced simulation capabilities that allows, in some cases for the first time, the execution of parameter space and uncertainty analyses, model optimizations, and other inverse modeling techniques that are critical for scientific discovery and engineering analysis. However, simplifying the usage and optimization of codes for heterogeneous computing systems remains a challenge. This is particularly true for scientists and engineers for whom understanding HPC architectures and undertaking performance analysis may not be primary research objectives. To enable scientists and engineers to remain focused on their primary research objectives, a modular environment for geophysical inversion and run-time autotuning on heterogeneous computing systems is presented. This environment is composed of three major components: 1) CUSH---a framework for reducing the complexity of programming heterogeneous computer systems, 2) geophysical inversion routines which can be used to characterize physical systems, and 3) run-time autotuning routines designed to determine configurations of heterogeneous computing systems in an attempt to maximize the performance of scientific and engineering codes. Using three case studies, a lattice-Boltzmann method, a non-negative least squares inversion, and a finite-difference fluid flow method, it is shown that this environment provides scientists and engineers with means to reduce the programmatic complexity of their applications, to perform geophysical inversions for characterizing physical systems, and to determine high-performing run-time configurations of heterogeneous computing systems using a run-time autotuner.

  20. Fourth Annual Workshop on Space Operations Applications and Research (SOAR 90)

    NASA Technical Reports Server (NTRS)

    Savely, Robert T. (Editor)

    1991-01-01

    The papers from the symposium are presented. Emphasis is placed on human factors engineering and space environment interactions. The technical areas covered in the human factors section include: satellite monitoring and control, man-computer interfaces, expert systems, AI/robotics interfaces, crew system dynamics, and display devices. The space environment interactions section presents the following topics: space plasma interaction, spacecraft contamination, space debris, and atomic oxygen interaction with materials. Some of the above topics are discussed in relation to the space station and space shuttle.

  1. Integration of a sensor based multiple robot environment for space applications: The Johnson Space Center Teleoperator Branch Robotics Laboratory

    NASA Technical Reports Server (NTRS)

    Hwang, James; Campbell, Perry; Ross, Mike; Price, Charles R.; Barron, Don

    1989-01-01

    An integrated operating environment was designed to incorporate three general purpose robots, sensors, and end effectors, including Force/Torque Sensors, Tactile Array sensors, Tactile force sensors, and Force-sensing grippers. The design and implementation of: (1) the teleoperation of a general purpose PUMA robot; (2) an integrated sensor hardware/software system; (3) the force-sensing gripper control; (4) the host computer system for dual Robotic Research arms; and (5) the Ethernet integration are described.

  2. Studies of volatiles and organic materials in early terrestrial and present-day outer solar system environments

    NASA Technical Reports Server (NTRS)

    Sagan, Carl; Thompson, W. Reid; Chyba, Christopher F.; Khare, B. N.

    1991-01-01

    A review and partial summary of projects within several areas of research generally involving the origin, distribution, chemistry, and spectral/dielectric properties of volatiles and organic materials in the outer solar system and early terrestrial environments are presented. The major topics covered include: (1) impact delivery of volatiles and organic compounds to the early terrestrial planets; (2) optical constants measurements; (3) spectral classification, chemical processes, and distribution of materials; and (4) radar properties of ice, hydrocarbons, and organic heteropolymers.

  3. Scientific Software

    NASA Technical Reports Server (NTRS)

    1995-01-01

    The Interactive Data Language (IDL), developed by Research Systems, Inc., is a tool for scientists to investigate their data without having to write a custom program for each study. IDL is based on the Mariners Mars spectral Editor (MMED) developed for studies from NASA's Mars spacecraft flights. The company has also developed Environment for Visualizing Images (ENVI), an image processing system for easily analyzing remotely sensed data written in IDL. The Visible Human CD, another Research Systems product, is the first complete digital reference of photographic images for exploring human anatomy.

  4. Accomplishing Transformative Research in a Challenging Fiscal Environment

    NASA Astrophysics Data System (ADS)

    Mitchell, E. J.; Paxton, L. J.; Bust, G.

    2014-12-01

    The shift in funding is forcing scientists to promise transformative research for a pittance. To accomplish this, researchers need to transform their methodology to include societal buy-in, use of commercial off-the-shelf (COTS) technology, and cross-discipline platform usage. As the cutting edge of research expands to view the system on the global scale with extremely fine resolution, fiscally reasonable budgets present a challenge to be met. Consider how do we measure a specific variable over 45-degrees of latitude in an isolated and hostile region of Earth - the total electron count over the South Pole? This work examines this transformative research using hosted payloads on buoys, balloons, and unmanned aerial vehicles (UAVs). We will show cutting edge research occurring simultaneous with education and public outreach, offering societal buy-in through interactive websites and student-built hosted payloads. These interactions provide a vision to the public and a new database to the scientists. The use of COTS technology and cross-discipline (oceanography and space) platforms keep the cost low. We will discuss a general methodology for accomplishing transformative research in a challenging fiscal environment through integration of COTS technology, assimilative and first principle models, and observing systems simulation experiments (OSSEs).

  5. Aerial Remote Radio Frequency Identification System for Small Vessel Monitoring

    DTIC Science & Technology

    2009-12-01

    Assessment Methods , Ocean Studies Board, Commission on Geosciences, Environment, and Resources, National Research Council. (1998). Improving fish stock... Research Council (NRC). (2006). Review of recreational fisheries survey methods . Washington, DC: The National Academies Press. NOAA Fisheries. (1996...MONITORING AGENCY NAME(S) AND ADDRESS(ES) Acquisition Research Program 10. SPONSORING/MONITORING AGENCY REPORT NUMBER 11. SUPPLEMENTARY NOTES The

  6. Visual and acoustic communication in non-human animals: a comparison.

    PubMed

    Rosenthal, G G; Ryan, M J

    2000-09-01

    The visual and auditory systems are two major sensory modalities employed in communication. Although communication in these two sensory modalities can serve analogous functions and evolve in response to similar selection forces, the two systems also operate under different constraints imposed by the environment and the degree to which these sensory modalities are recruited for non-communication functions. Also, the research traditions in each tend to differ, with studies of mechanisms of acoustic communication tending to take a more reductionist tack often concentrating on single signal parameters, and studies of visual communication tending to be more concerned with multivariate signal arrays in natural environments and higher level processing of such signals. Each research tradition would benefit by being more expansive in its approach.

  7. ARTEMIS: a collaborative framework for health care.

    PubMed

    Reddy, R; Jagannathan, V; Srinivas, K; Karinthi, R; Reddy, S M; Gollapudy, C; Friedman, S

    1993-01-01

    Patient centered healthcare delivery is an inherently collaborative process. This involves a wide range of individuals and organizations with diverse perspectives: primary care physicians, hospital administrators, labs, clinics, and insurance. The key to cost reduction and quality improvement in health care is effective management of this collaborative process. The use of multi-media collaboration technology can facilitate timely delivery of patient care and reduce cost at the same time. During the last five years, the Concurrent Engineering Research Center (CERC), under the sponsorship of DARPA (Defense Advanced Research Projects Agency, recently renamed ARPA) developed a number of generic key subsystems of a comprehensive collaboration environment. These subsystems are intended to overcome the barriers that inhibit the collaborative process. Three subsystems developed under this program include: MONET (Meeting On the Net)--to provide consultation over a computer network, ISS (Information Sharing Server)--to provide access to multi-media information, and PCB (Project Coordination Board)--to better coordinate focussed activities. These systems have been integrated into an open environment to enable collaborative processes. This environment is being used to create a wide-area (geographically distributed) research testbed under DARPA sponsorship, ARTEMIS (Advance Research Testbed for Medical Informatics) to explore the collaborative health care processes. We believe this technology will play a key role in the current national thrust to reengineer the present health-care delivery system.

  8. Scientific Visualization & Modeling for Earth Systems Science Education

    NASA Technical Reports Server (NTRS)

    Chaudhury, S. Raj; Rodriguez, Waldo J.

    2003-01-01

    Providing research experiences for undergraduate students in Earth Systems Science (ESS) poses several challenges at smaller academic institutions that might lack dedicated resources for this area of study. This paper describes the development of an innovative model that involves students with majors in diverse scientific disciplines in authentic ESS research. In studying global climate change, experts typically use scientific visualization techniques applied to remote sensing data collected by satellites. In particular, many problems related to environmental phenomena can be quantitatively addressed by investigations based on datasets related to the scientific endeavours such as the Earth Radiation Budget Experiment (ERBE). Working with data products stored at NASA's Distributed Active Archive Centers, visualization software specifically designed for students and an advanced, immersive Virtual Reality (VR) environment, students engage in guided research projects during a structured 6-week summer program. Over the 5-year span, this program has afforded the opportunity for students majoring in biology, chemistry, mathematics, computer science, physics, engineering and science education to work collaboratively in teams on research projects that emphasize the use of scientific visualization in studying the environment. Recently, a hands-on component has been added through science student partnerships with school-teachers in data collection and reporting for the GLOBE Program (GLobal Observations to Benefit the Environment).

  9. Conservation of resources theory and research use in health systems.

    PubMed

    Alvaro, Celeste; Lyons, Renée F; Warner, Grace; Hobfoll, Stevan E; Martens, Patricia J; Labonté, Ronald; Brown, Richard E

    2010-10-20

    Health systems face challenges in using research evidence to improve policy and practice. These challenges are particularly evident in small and poorly resourced health systems, which are often in locations (in Canada and globally) with poorer health status. Although organizational resources have been acknowledged as important in understanding research use resource theories have not been a focus of knowledge translation (KT) research. What resources, broadly defined, are required for KT and how does their presence or absence influence research use?In this paper, we consider conservation of resources (COR) theory as a theoretical basis for understanding the capacity to use research evidence in health systems. Three components of COR theory are examined in the context of KT. First, resources are required for research uptake. Second, threat of resource loss fosters resistance to research use. Third, resources can be optimized, even in resource-challenged environments, to build capacity for KT. A scan of the KT literature examined organizational resources needed for research use. A multiple case study approach examined the three components of COR theory outlined above. The multiple case study consisted of a document review and key informant interviews with research team members, including government decision-makers and health practitioners through a retrospective analysis of four previously conducted applied health research studies in a resource-challenged region. The literature scan identified organizational resources that influence research use. The multiple case study supported these findings, contributed to the development of a taxonomy of organizational resources, and revealed how fears concerning resource loss can affect research use. Some resources were found to compensate for other resource deficits. Resource needs differed at various stages in the research use process. COR theory contributes to understanding the role of resources in research use, resistance to research use, and potential strategies to enhance research use. Resources (and a lack of them) may account for the observed disparities in research uptake across health systems. This paper offers a theoretical foundation to guide further examination of the COR-KT ideas and necessary supports for research use in resource-challenged environments.

  10. Conservation of resources theory and research use in health systems

    PubMed Central

    2010-01-01

    Background Health systems face challenges in using research evidence to improve policy and practice. These challenges are particularly evident in small and poorly resourced health systems, which are often in locations (in Canada and globally) with poorer health status. Although organizational resources have been acknowledged as important in understanding research use resource theories have not been a focus of knowledge translation (KT) research. What resources, broadly defined, are required for KT and how does their presence or absence influence research use? In this paper, we consider conservation of resources (COR) theory as a theoretical basis for understanding the capacity to use research evidence in health systems. Three components of COR theory are examined in the context of KT. First, resources are required for research uptake. Second, threat of resource loss fosters resistance to research use. Third, resources can be optimized, even in resource-challenged environments, to build capacity for KT. Methods A scan of the KT literature examined organizational resources needed for research use. A multiple case study approach examined the three components of COR theory outlined above. The multiple case study consisted of a document review and key informant interviews with research team members, including government decision-makers and health practitioners through a retrospective analysis of four previously conducted applied health research studies in a resource-challenged region. Results The literature scan identified organizational resources that influence research use. The multiple case study supported these findings, contributed to the development of a taxonomy of organizational resources, and revealed how fears concerning resource loss can affect research use. Some resources were found to compensate for other resource deficits. Resource needs differed at various stages in the research use process. Conclusions COR theory contributes to understanding the role of resources in research use, resistance to research use, and potential strategies to enhance research use. Resources (and a lack of them) may account for the observed disparities in research uptake across health systems. This paper offers a theoretical foundation to guide further examination of the COR-KT ideas and necessary supports for research use in resource-challenged environments. PMID:20961445

  11. UAS-NAS Flight Test Series 3: Test Environment Report

    NASA Technical Reports Server (NTRS)

    Hoang, Ty; Murphy, Jim; Otto, Neil

    2016-01-01

    The desire and ability to fly Unmanned Aircraft Systems (UAS) in the National Airspace System (NAS) is of increasing urgency. The application of unmanned aircraft to perform national security, defense, scientific, and emergency management are driving the critical need for less restrictive access by UAS to the NAS. UAS represent a new capability that will provide a variety of services in the government (public) and commercial (civil) aviation sectors. The growth of this potential industry has not yet been realized due to the lack of a common understanding of what is required to safely operate UAS in the NAS. NASA's UAS Integration in the NAS Project is conducting research in the areas of Separation Assurance/Sense and Avoid Interoperability (SSI), Human Systems Integration (HSI), and Communications (Comm), and Certification to support reducing the barriers of UAS access to the NAS. This research is broken into two research themes namely, UAS Integration and Test Infrastructure. UAS Integration focuses on airspace integration procedures and performance standards to enable UAS integration in the air transportation system, covering Detect and Avoid (DAA) performance standards, command and control performance standards, and human systems integration. The focus of Test Infrastructure is to enable development and validation of airspace integration procedures and performance standards, including integrated test and evaluation. In support of the integrated test and evaluation efforts, the Project will develop an adaptable, scalable, and schedulable relevant test environment capable of evaluating concepts and technologies for unmanned aircraft systems to safely operate in the NAS. To accomplish this task, the Project is conducting a series of human-in-the-loop (HITL) and flight test activities that integrate key concepts, technologies and/or procedures in a relevant air traffic environment. Each of the integrated events will build on the technical achievements, fidelity, and complexity of the previous tests and technical simulations, resulting in research findings that support the development of regulations governing the access of UAS into the NAS. The integrated events started with two initial flight test used to develop and test early integrations and components of the test environment. Test subjects and a relevant test environment were brought in for the integrated HITL (or IHITL) conducted in 2014. The IHITL collected data to evaluate the effectiveness of DAA Well Clear (DWC) algorithms and the acceptability of UAS concepts integrated into the NAS. The first integrated flight test (and the subject of this report) followed the IHITL by replacing the simulation components with live aircraft. The project finishes the integrated events with a final flight test to be conducted in 2016 that provides the researchers with an opportunity to collect DWC and Collision Avoidance (CA) interoperability data during flight encounters.

  12. COCARDE: new view on old mounds - an international network of carbonate mound research

    NASA Astrophysics Data System (ADS)

    Rüggeberg, A.; Foubert, A.; Vertino, A.; van Rooij, D.; Spezzaferri, S.; Henriet, J.-P.; Dullo, W.-C.; Cocarde Science Community

    2012-04-01

    Carbonate mounds are important contributors of life in different settings, from warm-water to cold-water environments, and throughout geological history. Research on modern cold-water coral carbonate mounds over the last decades made a major contribution to our overall understanding of these particular sedimentary systems. By looking to the modern carbonate mound community with cold-water corals as main framework builders, some fundamental questions could be addressed, until now not yet explored in fossil mound settings. The international network COCARDE (http://www.cocarde.eu) is a platform for exploring new insights in carbonate mound research of recent and ancient mound systems. The aim of the COCARDE network is to bring together scientific communities, studying Recent carbonate mounds in midslope environments in the present ocean and investigating fossil mounds spanning the whole Phanerozoic time, respectively. Scientific challenges in modern and ancient carbonate mound research got well defined during the ESF Magellan Workshop COCARDE in Fribourg, Switzerland (21.-24.01.2009). The Special Volume Cold-water Carbonate Reservoir systems in Deep Environments - COCARDE (Marine Geology, Vol. 282) was the major outcome of this meeting and highlights the diversity of Recent carbonate mound studies. The following first joint Workshop and Field Seminar held in Oviedo, Spain (16.-20.09.2009) highlighted ongoing research from both Recent and fossil academic groups integrating the message from the industry. The field seminar focused on mounds from the Carboniferous platform of Asturias and Cantabria, already intensively visited by industrial and academic researchers. However, by comparing ancient, mixed carbonate-siliciclastic mound systems of Cantabria with the Recent ones in the Porcupine Seabight, striking similarities in their genesis and processes in mound development asked for an integrated drilling campaign to understand better the 3D internal mound build-up. The Oviedo Workshop and Field Seminar led to the submission of a White Paper on Carbonate Mound Drilling and the initiation of the ESF European Research Network Programme Cold-Water Carbonate Mounds in Shallow and Deep Time - The European Research Network (COCARDE-ERN) launched in June 2011. The second COCARDE Workshop and Field Seminar was held in Rabat, Morocco (24.-30.10.2011) and thematically focussed on carbonate mounds of(f) Morocco. The compact workshop invited students from Moroccan Universities to experience ongoing carbonate mound research in Recent and Ancient environments of Morocco. Two Round Tables discussed innovative approaches in carbonate mound research in Morocco (Recent vs. Ancient - offshore vs. onshore) and reviewed together with oil industry opportunities of international collaboration. The outcome of this workshop will lead into joint research projects, drilling campaigns on- and offshore, and expansion of COCARDE onto the African continent.

  13. Establishing User Needs--A Large-Scale Study into the Requirements of Those Involved in the Research Process

    ERIC Educational Resources Information Center

    Grimshaw, Shirley; Wilson, Ian

    2009-01-01

    The aim of the project was to develop a set of online tools, systems and processes that would facilitate research at the University of Nottingham. The tools would be delivered via a portal, a one-stop place providing a Virtual Research Environment for all those involved in the research process. A predominantly bottom-up approach was used with…

  14. Overview of NASA's Integrated Design and Engineering Analysis (IDEA)Environment

    NASA Technical Reports Server (NTRS)

    Robinson, Jeffrey S.; Martin John G.

    2008-01-01

    Historically, the design of subsonic and supersonic aircraft has been divided into separate technical disciplines (such as propulsion, aerodynamics and structures) each of which performs their design and analysis in relative isolation from others. This is possible in most cases either because the amount of interdisciplinary coupling is minimal or because the interactions can be treated as linear. The design of hypersonic airbreathing vehicles, like NASA s X-43, is quite the opposite. Such systems are dominated by strong non-linear interactions between disciplines. The design of these systems demands that a multi-disciplinary approach be taken. Furthermore, increased analytical fidelity at the conceptual design phase is highly desirable as many of the non-linearities are not captured by lower fidelity tools. Only when these systems are designed from a true multi-disciplinary perspective can the real performance benefits be achieved and complete vehicle systems be fielded. Toward this end, the Vehicle Analysis Branch at NASA Langley Research Center has been developing the Integrated Design & Engineering Analysis (IDEA) Environment. IDEA is a collaborative environment for parametrically modeling conceptual and preliminary launch vehicle configurations using the Adaptive Modeling Language (AML) as the underlying framework. The environment integrates geometry, configuration, propulsion, aerodynamics, aerothermodynamics, trajectory, closure and structural analysis into a generative, parametric, unified computational model where data is shared seamlessly between the different disciplines. Plans are also in place to incorporate life cycle analysis tools into the environment which will estimate vehicle operability, reliability and cost. IDEA is currently being funded by NASA s Hypersonics Project, a part of the Fundamental Aeronautics Program within the Aeronautics Research Mission Directorate. The environment is currently focused around a two-stage-to-orbit configuration with a turbine based combined cycle (TBCC) first stage and reusable rocket second stage. This paper provides an overview of the development of the IDEA environment, a description of the current status and detail of future plans.

  15. Extended Neural Metastability in an Embodied Model of Sensorimotor Coupling

    PubMed Central

    Aguilera, Miguel; Bedia, Manuel G.; Barandiaran, Xabier E.

    2016-01-01

    The hypothesis that brain organization is based on mechanisms of metastable synchronization in neural assemblies has been popularized during the last decades of neuroscientific research. Nevertheless, the role of body and environment for understanding the functioning of metastable assemblies is frequently dismissed. The main goal of this paper is to investigate the contribution of sensorimotor coupling to neural and behavioral metastability using a minimal computational model of plastic neural ensembles embedded in a robotic agent in a behavioral preference task. Our hypothesis is that, under some conditions, the metastability of the system is not restricted to the brain but extends to the system composed by the interaction of brain, body and environment. We test this idea, comparing an agent in continuous interaction with its environment in a task demanding behavioral flexibility with an equivalent model from the point of view of “internalist neuroscience.” A statistical characterization of our model and tools from information theory allow us to show how (1) the bidirectional coupling between agent and environment brings the system closer to a regime of criticality and triggers the emergence of additional metastable states which are not found in the brain in isolation but extended to the whole system of sensorimotor interaction, (2) the synaptic plasticity of the agent is fundamental to sustain open structures in the neural controller of the agent flexibly engaging and disengaging different behavioral patterns that sustain sensorimotor metastable states, and (3) these extended metastable states emerge when the agent generates an asymmetrical circular loop of causal interaction with its environment, in which the agent responds to variability of the environment at fast timescales while acting over the environment at slow timescales, suggesting the constitution of the agent as an autonomous entity actively modulating its sensorimotor coupling with the world. We conclude with a reflection about how our results contribute in a more general way to current progress in neuroscientific research. PMID:27721746

  16. Extended Neural Metastability in an Embodied Model of Sensorimotor Coupling.

    PubMed

    Aguilera, Miguel; Bedia, Manuel G; Barandiaran, Xabier E

    2016-01-01

    The hypothesis that brain organization is based on mechanisms of metastable synchronization in neural assemblies has been popularized during the last decades of neuroscientific research. Nevertheless, the role of body and environment for understanding the functioning of metastable assemblies is frequently dismissed. The main goal of this paper is to investigate the contribution of sensorimotor coupling to neural and behavioral metastability using a minimal computational model of plastic neural ensembles embedded in a robotic agent in a behavioral preference task. Our hypothesis is that, under some conditions, the metastability of the system is not restricted to the brain but extends to the system composed by the interaction of brain, body and environment. We test this idea, comparing an agent in continuous interaction with its environment in a task demanding behavioral flexibility with an equivalent model from the point of view of "internalist neuroscience." A statistical characterization of our model and tools from information theory allow us to show how (1) the bidirectional coupling between agent and environment brings the system closer to a regime of criticality and triggers the emergence of additional metastable states which are not found in the brain in isolation but extended to the whole system of sensorimotor interaction, (2) the synaptic plasticity of the agent is fundamental to sustain open structures in the neural controller of the agent flexibly engaging and disengaging different behavioral patterns that sustain sensorimotor metastable states, and (3) these extended metastable states emerge when the agent generates an asymmetrical circular loop of causal interaction with its environment, in which the agent responds to variability of the environment at fast timescales while acting over the environment at slow timescales, suggesting the constitution of the agent as an autonomous entity actively modulating its sensorimotor coupling with the world. We conclude with a reflection about how our results contribute in a more general way to current progress in neuroscientific research.

  17. Using Virtualization to Integrate Weather, Climate, and Coastal Science Education

    NASA Astrophysics Data System (ADS)

    Davis, J. R.; Paramygin, V. A.; Figueiredo, R.; Sheng, Y.

    2012-12-01

    To better understand and communicate the important roles of weather and climate on the coastal environment, a unique publically available tool is being developed to support research, education, and outreach activities. This tool uses virtualization technologies to facilitate an interactive, hands-on environment in which students, researchers, and general public can perform their own numerical modeling experiments. While prior efforts have focused solely on the study of the coastal and estuary environments, this effort incorporates the community supported weather and climate model (WRF-ARW) into the Coastal Science Educational Virtual Appliance (CSEVA), an education tool used to assist in the learning of coastal transport processes; storm surge and inundation; and evacuation modeling. The Weather Research and Forecasting (WRF) Model is a next-generation, community developed and supported, mesoscale numerical weather prediction system designed to be used internationally for research, operations, and teaching. It includes two dynamical solvers (ARW - Advanced Research WRF and NMM - Nonhydrostatic Mesoscale Model) as well as a data assimilation system. WRF-ARW is the ARW dynamics solver combined with other components of the WRF system which was developed primarily at NCAR, community support provided by the Mesoscale and Microscale Meteorology (MMM) division of National Center for Atmospheric Research (NCAR). Included with WRF is the WRF Pre-processing System (WPS) which is a set of programs to prepare input for real-data simulations. The CSEVA is based on the Grid Appliance (GA) framework and is built using virtual machine (VM) and virtual networking technologies. Virtualization supports integration of an operating system, libraries (e.g. Fortran, C, Perl, NetCDF, etc. necessary to build WRF), web server, numerical models/grids/inputs, pre-/post-processing tools (e.g. WPS / RIP4 or UPS), graphical user interfaces, "Cloud"-computing infrastructure and other tools into a single ready-to-use package. Thus, the previous ornery task of setting up and compiling these tools becomes obsolete and the research, educator or student can focus on using the tools to study the interactions between weather, climate and the coastal environment. The incorporation of WRF into the CSEVA has been designed to be synergistic with the extensive online tutorials and biannual tutorials hosted by NCAR. Included are working examples of the idealized test simulations provided with WRF (2D sea breeze and squalls, a large eddy simulation, a Held and Suarez simulation, etc.) To demonstrate the integration of weather, coastal and coastal science education, example applications are being developed to demonstrate how the system can be used to couple a coastal and estuarine circulation, transport and storm surge model with downscale reanalysis weather and future climate predictions. Documentation, tutorials and the enhanced CSEVA itself will be found on the web at: http://cseva.coastal.ufl.edu.

  18. Cost-effective implementation of intelligent systems

    NASA Technical Reports Server (NTRS)

    Lum, Henry, Jr.; Heer, Ewald

    1990-01-01

    Significant advances have occurred during the last decade in knowledge-based engineering research and knowledge-based system (KBS) demonstrations and evaluations using integrated intelligent system technologies. Performance and simulation data obtained to date in real-time operational environments suggest that cost-effective utilization of intelligent system technologies can be realized. In this paper the rationale and potential benefits for typical examples of application projects that demonstrate an increase in productivity through the use of intelligent system technologies are discussed. These demonstration projects have provided an insight into additional technology needs and cultural barriers which are currently impeding the transition of the technology into operational environments. Proposed methods which addresses technology evolution and implementation are also discussed.

  19. Software Development Technologies for Reactive, Real-Time, and Hybrid Systems

    NASA Technical Reports Server (NTRS)

    Manna, Zohar

    1996-01-01

    The research is directed towards the design and implementation of a comprehensive deductive environment for the development of high-assurance systems, especially reactive (concurrent, real-time, and hybrid) systems. Reactive systems maintain an ongoing interaction with their environment, and are among the most difficult to design and verify. The project aims to provide engineers with a wide variety of tools within a single, general, formal framework in which the tools will be most effective. The entire development process is considered, including the construction, transformation, validation, verification, debugging, and maintenance of computer systems. The goal is to automate the process as much as possible and reduce the errors that pervade hardware and software development.

  20. Nature and origins of virtual environments - A bibliographical essay

    NASA Technical Reports Server (NTRS)

    Ellis, S. R.

    1991-01-01

    Virtual environments presented via head-mounted, computer-driven displays provide a new media for communication. They may be analyzed by considering: (1) what may be meant by an environment; (2) what is meant by the process of virtualization; and (3) some aspects of human performance that constrain environmental design. Their origins are traced from previous work in vehicle simulation and multimedia research. Pointers are provided to key technical references, in the dispersed, archival literature, that are relevant to the development and evaluation of virtual-environment interface systems.

Top