Sample records for environment test battery

  1. Energy Systems Test Area (ESTA). Power Systems Test Facilities

    NASA Technical Reports Server (NTRS)

    Situ, Cindy H.

    2010-01-01

    This viewgraph presentation provides a detailed description of the Johnson Space Center's Power Systems Facility located in the Energy Systems Test Area (ESTA). Facilities and the resources used to support power and battery systems testing are also shown. The contents include: 1) Power Testing; 2) Power Test Equipment Capabilities Summary; 3) Source/Load; 4) Battery Facilities; 5) Battery Test Equipment Capabilities Summary; 6) Battery Testing; 7) Performance Test Equipment; 8) Battery Test Environments; 9) Battery Abuse Chambers; 10) Battery Abuse Capabilities; and 11) Battery Test Area Resources.

  2. Upgraded demonstration vehicle task report

    NASA Technical Reports Server (NTRS)

    Bryant, J.; Hardy, K.; Livingston, R.; Sandberg, J.

    1981-01-01

    Vehicle/battery performance capabilities and interface problems that occurred when upgraded developmental batteries were integrated with upgraded versions of comercially available electric vehicles were investigated. Developmental batteries used included nickel zinc batteries, a nickel iron battery, and an improved lead acid battery. Testing of the electric vehicles and upgraded batteries was performed in the complete vehicle system environment to characterize performance and identify problems unique to the vehicle/battery system. Constant speed tests and driving schedule range tests were performed on a chassis dynamometer. The results from these tests of the upgraded batteries and vehicles were compared to performance capabilities for the same vehicles equipped with standard batteries.

  3. Testing of the Eagle-Picher nickel-iron, the Globe ISOA lead-acid, and the Westinghouse nickel-iron battery subsystems in an electric-vehicle environment

    NASA Technical Reports Server (NTRS)

    Hewitt, R.; Bryant, J.

    1982-01-01

    Three full size developmental batteries were tested with electric vehicles; two nickel-iron batteries and a lead-acid battery. Constant speed and driving schedule tests were done on a chassis dynamometer. Several aspects of battery performance were evaluated for capacity, recharge efficiency, voltage response, and self discharge. Each of these three batteries exhibited some strengths and some weaknesses.

  4. An Experimental Evaluation of a Field Sobriety Test Battery in the Marine Environment

    DOT National Transportation Integrated Search

    1990-06-01

    This Report describes an investigation of the accuracy of a FST (Field Sobriety Test) : battery used in the marine environment. FSTs rely on the observation and measurement of : the effect of alcohol intoxication on coordination, visual tracking and ...

  5. Low-Earth-Orbit and Geosynchronous-Earth-Orbit Testing of 80 Ah Batteries under Real-time Profiles

    NASA Technical Reports Server (NTRS)

    Staniewicz, Robert J.; Willson, John; Briscoe, J. Douglas; Rao, Gopalakrishna M.

    2004-01-01

    This viewgraph presentation gives an update on test results from two 16 cell batteries, one in a simulated Low Earth Orbit (LEO) environment and the other in simulated Geosynchronous Earth Orbit (GEO) environment. The tests measured how voltage and capacity are affected over time by thermal cycling.

  6. Use of COTS Batteries on ISS and Shuttle

    NASA Technical Reports Server (NTRS)

    Jeevarajan, Judith A.

    2004-01-01

    This presentation focuses on COTS Battery testing for energy content, toxicity, hazards, failures modes and controls for different battery chemistries. It also discusses the current program requirements, challenges with COTS Batteries in manned vehicle COTS methodology, JSC test details, and gives a list of incidents from consumer protection safety commissions. The Battery test process involved testing new batteries for engineering certification, qualification of batteries, flight acceptance, cell and battery, environment, performance and abuse. Their conclusions and recommendations were that: high risk is undertaken with the use of COTS batteries, hazard control verification is required to allow the use of these batteries on manned space flights, failures during use cannot be understood if different scenarios of failure are not tested on the ground, and that testing is performed on small sample numbers due to restrictions on cost and time. They recommend testing of large sample size to gain more confidence in the operation of the hazard controls.

  7. Ampule tests to simulate glass corrosion in ambient temperature lithium batteries. Volume 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Douglas, S.C.; Bunker, B.C.; Crafts, C.C.

    1984-06-01

    Glass corrosion in battery headers has been found to limit the shelf life of ambient temperature lithium batteries. Glass corrosion can lead to loss of battery electrolytes or to shorts across the conductive corrosion product. Tests have been conducted which simulate the corrosive environment in a battery by sealing headers attached to lithium metal into Pyrex ampules containing battery electrolyte. Using the ampule test, glass corrosion kinetics have been determined at 70/sup 0/C for the Li/SO/sub 2/, Li/SOCl/sub 2/, and Li/SOCl/sub 2/ + BrCl battery systems. Test results indicate that corrosion of commercial glass compositions is extensive in all electrolytesmore » tested, resulting in predicted battery failures after several months. Sandia's TA-23 glass corrodes at a much slower rate, indicating a projected battery lifetime of over five years in the Li/SO/sub 2/ system. Test results reveal that corrosion kinetics are sensitive to header polarization, stress, and configuration as well as glass composition.« less

  8. Unified Tri-service Cognitive Performance Assessment Battery (UTC-PAB). Part 1: Design and specification of the battery

    NASA Astrophysics Data System (ADS)

    Englund, C. E.; Reeves, D. L.; Shingledecker, C. A.; Thorne, D. R.; Wilson, K. P.

    1987-02-01

    The Unified Tri-Service Cognitive Performance Assessment Battery (UTC-PAB) represents the primary metric for a Level 2 evaluation of cognitive performance in the JWGD3 MILPERF chemical defense biomedical drug screening program. Emphasis for UTC-PAB development has been on the standardization of test batteries across participating laboratories with respect to content, computer-based administration, test scoring, and data formatting. This effort has produced a 25-test UTC-PAB that represents the consolidation and unification of independent developments by the Tri-service membership. Test selection was based on established test validity and relevance of military performance. Sensitivity to effects of hostile environments and sustained operations were also considerations involved in test selection. Information processing, decision making, perception, and mental workload capacity are among the processes and abilities addressed in the battery. The UTC-PAB represents a dynamic approach to battery development. The nature of the biomedical drugs screened and information from performance centered task analyses will direct the form of future versions of the battery.

  9. Development of automotive battery systems capable of surviving modern underhood environments

    NASA Astrophysics Data System (ADS)

    Pierson, John R.; Johnson, Richard T.

    The starting, lighting, and ignition (SLI) battery in today's automobile typically finds itself in an engine compartment that is jammed with mechanical, electrical, and electronic devices. The spacing of these devices precludes air movement and, thus, heat transfer out of the compartment. Furthermore, many of the devices, in addition to the internal combustion engine, actually generate heat. The resulting underhood environment is extremely hostile to thermally-sensitive components, especially the battery. All indications point to a continuation of this trend towards higher engine-compartment temperatures as future vehicles evolve. The impact of ambient temperature on battery life is clearly demonstrated in the failure-mode analysis conducted by the Battery Council International in 1990. This study, when combined with additional failure-mode analyses, vehicle systems simulation, and elevated temperature life testing, provides insight into the potential for extension of life of batteries. Controlled fleet and field tests are used to document and quantify improvements in product design. Three approaches to battery life extension under adverse thermal conditions are assessed, namely: (i) battery design; (ii) thermal management, and (iii) alternative battery locations. The advantages and disadvantages of these approaches (both individually and in combination) for original equipment and aftermarket applications are explored.

  10. Nickel-hydrogen battery state of charge during low rate trickle charging

    NASA Technical Reports Server (NTRS)

    Lurie, C.; Foroozan, S.; Brewer, J.; Jackson, L.

    1995-01-01

    Battery temperature increase, due to low rate trickle charging, has been determined experimentally, using a six cell battery module in a test setup simulating the anticipated AXAF-1 prelaunch environment. Test results indicate trickle charge rates less than or equal to the self discharge rate do not increase dissipation beyond that due to the self discharge. Significant trickle charge rates (approximately C/500) result in battery temperatures only a few degrees (F) higher than those observed during periods of open circuit stand.

  11. Hubble Space Telescope NiH2 six battery test

    NASA Technical Reports Server (NTRS)

    Whitt, Thomas H.; Lanier, J. Roy

    1991-01-01

    The primary objectives of the test are: (1) to get a better understanding of the operating characteristics of the NiH2 batteries in the Hubble Space Telescope (HST) Electric Power Subsystem (EPS) by simulating every aspect of the expected operating environment; (2) to determine the optimum charge level and charge scheme for the NiH2 batteries in the HST EPS; (3) to predict the performance of the actual HST EPS; (4) to observe the aging characteristics of the batteries; and (5) to test different EPS anomalies before experiencing the anomalies on the actual HST.

  12. Adiabatic charging of nickel-hydrogen batteries

    NASA Technical Reports Server (NTRS)

    Lurie, Chuck; Foroozan, S.; Brewer, Jeff; Jackson, Lorna

    1995-01-01

    Battery management during prelaunch activities has always required special attention and careful planning. The transition from nickel-cadium to nickel-hydrogen batteries, with their high self discharge rate and lower charge efficiency, as well as longer prelaunch scenarios, has made this aspect of spacecraft battery management even more challenging. The AXAF-I Program requires high battery state of charge at launch. The use of active cooling, to ensure efficient charging, was considered and proved to be difficult and expensive. Alternative approaches were evaluated. Optimized charging, in the absence of cooling, appeared promising and was investigated. Initial testing was conducted to demonstrate the feasibility of the 'Adiabatic Charging' approach. Feasibility was demonstrated and additional testing performed to provide a quantitative, parametric data base. The assumption that the battery is in an adiabatic environment during prelaunch charging is a conservative approximation because the battery will transfer some heat to its surroundings by convective air cooling. The amount is small compared to the heat dissipated during battery overcharge. Because the battery has a large thermal mass, substantial overcharge can occur before the cells get too hot to charge efficiently. The testing presented here simulates a true adiabatic environment. Accordingly the data base may be slightly conservative. The adiabatic charge methodology used in this investigation begins with stabilizing the cell at a given starting temperature. The cell is then fully insulated on all sides. Battery temperature is carefully monitored and the charge terminated when the cell temperature reaches 85 F. Charging has been evaluated with starting temperatures from 55 to 75 F.

  13. Sealed Silver-oxide Cadmium Batteries for Space Flight, 1960 - 1977

    NASA Technical Reports Server (NTRS)

    Hennigan, Thomas J.

    1978-01-01

    A technical summary of design, development, and test activities with Silver-Oxide Cadmium Batteries at the Goddard Space Flight Center since 1960 is given. The flight experience of over 15 missions has demonstrated the sealed Silver-Oxide Cadmium Battery to be a viable energy storage device for missions requiring ultra-clean magnetic environment.

  14. Current status of environmental, health, and safety issues of nickel metal-hydride batteries for electric vehicles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Corbus, D; Hammel, C J; Mark, J

    1993-08-01

    This report identifies important environment, health, and safety issues associated with nickel metal-hydride (Ni-MH) batteries and assesses the need for further testing and analysis. Among the issues discussed are cell and battery safety, workplace health and safety, shipping requirements, and in-vehicle safety. The manufacture and recycling of Ni-MH batteries are also examined. This report also overviews the ``FH&S`` issues associated with other nickel-based electric vehicle batteries; it examines venting characteristics, toxicity of battery materials, and the status of spent batteries as a hazardous waste.

  15. Executive Functioning in Three Groups of Pupils in D-KEFSs: Selected Issues in Adapting the Test Battery for Slovakia

    ERIC Educational Resources Information Center

    Ferjencík, Ján; Slavkovská, Miriam; Kresila, Juraj

    2015-01-01

    The paper reports on the adaptation of a D-KEFS test battery for Slovakia. Drawing on concrete examples, it describes and illustrates the key issues relating to the transfer of test items from one socio-cultural environment to another. The standardisation sample of the population of Slovak pupils in the fourth year of primary school included 250…

  16. Manufacturing methods of a composite cell case for a Ni-Cd battery

    NASA Technical Reports Server (NTRS)

    Bauer, J. L.; Bogner, R. S.; Lowe, E. P.; Orlowski, E.

    1979-01-01

    Graphite epoxy material for a nickel cadmium battery cell case has been evaluated and determined to perform in the simulated environment of the battery. The basic manufacturing method requires refinement to demonstrate production feasibility. The various facets of production scale-up, i.e., process and tooling development together with material and process control, have been integrated into a comprehensive manufacturing process that assures production reproducibility and product uniformity. Test results substantiate that a battery cell case produced from graphite epoxy pre-impregnated material utilizing internal pressure bag fabrication method is feasible.

  17. Performances of 250 Amp-hr lithium/thionyl chloride cells

    NASA Technical Reports Server (NTRS)

    Goualard, Jacques

    1991-01-01

    A 250 Ah lithium thionyl chloride battery is being developed for a booster rocket engine. Extensive cell testing is running to evaluate functional and safety performances. Some results are presented. The lithium/thionyl chloride batteries were selected for their high energy density (low weight) as compared to other sources. The temperature of a lower weight item will be more sensitive to variations of internal and external heat fluxes than a heavier one. The use of high energy density L/TC batteries is subjected to stringent thermal environments to have benefit of energy density and to stay safe in any conditions. The battery thermal environment and discharge rate have to be adjusted to obtain the right temperature range at cell level, to have the maximum performances. Voltage and capacity are very sensitive to temperature. This temperature is the cell internal actual temperature during discharge. This temperature is directed by external thermal environment and by cell internal heat dissipation, i.e., cell actual voltage.

  18. 40 CFR 63.7321 - When must I conduct subsequent performance tests?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 13 2010-07-01 2010-07-01 false When must I conduct subsequent performance tests? 63.7321 Section 63.7321 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY..., Quenching, and Battery Stacks Initial Compliance Requirements § 63.7321 When must I conduct subsequent...

  19. Evaluation of Cycle Life and Characterization of YTP 45 Ah Li-Ion Battery for EMU

    NASA Technical Reports Server (NTRS)

    Deng, Yi; Jeevarajan, Judith; Rehm, Raymond; Bragg, Bobby; Strangways, Brad

    2002-01-01

    Li-ion batteries, with longer cycle life and higher energy density features, are now more and more attractive and applied in multiple fields. The YTP 45 Ah Li-ion battery has been evaluated here and may be employed in EMU in the future. Evaluations were on: (1) Cycle life tests - 500 cycles total (completed 40 cycles in simulated shuttle use mode and 460 cycles in an accelerated use mode, and recorded differential voltage of individual cell in battery); (2) Characterization test - discharge capacity measurement in environment temperature of -10, 25, 50 C before and after 500 cycles; and (3) Thermal testing - charge and discharge at 50 C and -10 C before and after 500 cycles. The battery showed less than a 9% drop of initial discharge capacity and energy within 500 cycles with 475 cycles 59% DOD plus 25 cycles 100% DOD. The EOD voltage ranged from 16.0 to 18.0 V, which fits the requirement for operating the EMU.

  20. Crewed Space Vehicle Battery Safety Requirements

    NASA Technical Reports Server (NTRS)

    Jeevarajan, Judith A.; Darcy, Eric C.

    2014-01-01

    This requirements document is applicable to all batteries on crewed spacecraft, including vehicle, payload, and crew equipment batteries. It defines the specific provisions required to design a battery that is safe for ground personnel and crew members to handle and/or operate during all applicable phases of crewed missions, safe for use in the enclosed environment of a crewed space vehicle, and safe for use in launch vehicles, as well as in unpressurized spaces adjacent to the habitable portion of a space vehicle. The required provisions encompass hazard controls, design evaluation, and verification. The extent of the hazard controls and verification required depends on the applicability and credibility of the hazard to the specific battery design and applicable missions under review. Evaluation of the design and verification program results shall be completed prior to certification for flight and ground operations. This requirements document is geared toward the designers of battery systems to be used in crewed vehicles, crew equipment, crew suits, or batteries to be used in crewed vehicle systems and payloads (or experiments). This requirements document also applies to ground handling and testing of flight batteries. Specific design and verification requirements for a battery are dependent upon the battery chemistry, capacity, complexity, charging, environment, and application. The variety of battery chemistries available, combined with the variety of battery-powered applications, results in each battery application having specific, unique requirements pertinent to the specific battery application. However, there are basic requirements for all battery designs and applications, which are listed in section 4. Section 5 includes a description of hazards and controls and also includes requirements.

  1. Testicular membrane lipid damage by complex mixture of leachate from municipal battery recycling site as indication of idiopathic male infertility in rat

    PubMed Central

    Oboh, Ganiyu; Akindahunsi, Akintunde A.

    2013-01-01

    Leachate from a municipal battery recycling site is a potent source of mixed-metal released into the environment. The present study investigated the degree at which mixed-metal exposure to the municipal auto-battery leachate (MABL) and to the Elewi Odo municipal auto-battery recycling site leachate (EOMABRL) affected the lipid membrane of the testes in in vitro experiment. The results showed elevated level of mixed-metals over the permissible levels in drinking water, as recommended by regulatory authorities. In the leachate samples, the levels of malondialdehyde (MDA), a biomarker of lipid damage, was significantly (p<0.05) increased in rat testes in a dose-dependent manner. MDA induced by the municipal auto-battery leachate (MABL) was significantly (p<0.05) higher than the leachate from Elewi Odo municipal auto-battery recycling site (EOMABRL). The testicular lipid membrane capacity was compromised following treatment with leachate from the municipal battery recycling site, implicating mixed-metal exposure as the causative agent of testicular damage and male infertility. PMID:24678257

  2. Testicular membrane lipid damage by complex mixture of leachate from municipal battery recycling site as indication of idiopathic male infertility in rat.

    PubMed

    Akintunde, Jacob K; Oboh, Ganiyu; Akindahunsi, Akintunde A

    2013-12-01

    Leachate from a municipal battery recycling site is a potent source of mixed-metal released into the environment. The present study investigated the degree at which mixed-metal exposure to the municipal auto-battery leachate (MABL) and to the Elewi Odo municipal auto-battery recycling site leachate (EOMABRL) affected the lipid membrane of the testes in in vitro experiment. The results showed elevated level of mixed-metals over the permissible levels in drinking water, as recommended by regulatory authorities. In the leachate samples, the levels of malondialdehyde (MDA), a biomarker of lipid damage, was significantly (p<0.05) increased in rat testes in a dose-dependent manner. MDA induced by the municipal auto-battery leachate (MABL) was significantly (p<0.05) higher than the leachate from Elewi Odo municipal auto-battery recycling site (EOMABRL). The testicular lipid membrane capacity was compromised following treatment with leachate from the municipal battery recycling site, implicating mixed-metal exposure as the causative agent of testicular damage and male infertility.

  3. Life Prediction Model for Grid-Connected Li-ion Battery Energy Storage System: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Kandler A; Saxon, Aron R; Keyser, Matthew A

    Life Prediction Model for Grid-Connected Li-ion Battery Energy Storage System: Preprint Lithium-ion (Li-ion) batteries are being deployed on the electrical grid for a variety of purposes, such as to smooth fluctuations in solar renewable power generation. The lifetime of these batteries will vary depending on their thermal environment and how they are charged and discharged. To optimal utilization of a battery over its lifetime requires characterization of its performance degradation under different storage and cycling conditions. Aging tests were conducted on commercial graphite/nickel-manganese-cobalt (NMC) Li-ion cells. A general lifetime prognostic model framework is applied to model changes in capacity andmore » resistance as the battery degrades. Across 9 aging test conditions from 0oC to 55oC, the model predicts capacity fade with 1.4 percent RMS error and resistance growth with 15 percent RMS error. The model, recast in state variable form with 8 states representing separate fade mechanisms, is used to extrapolate lifetime for example applications of the energy storage system integrated with renewable photovoltaic (PV) power generation.« less

  4. Results from the testing and analysis of LDEF batteries

    NASA Technical Reports Server (NTRS)

    Spear, Steve; Dursch, Harry; Johnson, Chris

    1992-01-01

    Batteries were used on the Long Duration Exposure Facility (LDEF) to provide power to both the active experiments and the experiment support equipment such as the Experiment Initiative System, Experiment Power and Data System (data acquisition system), and the Environment Exposure Control Canisters. Three different types of batteries were used: lithium sulfur dioxide (LiSO2), lithium carbon monofluoride (LiCF), and nickel cadmium (NiCd). A total of 92 LiSO2, 10 LiCF, and 1 NiCd batteries were flown on the LDEF. In addition, approximately 20 LiSO2 batteries were kept in cold storage at NASA LaRC. The various investigations and post-flight analyses of the flight and control batteries are reviewed. The primary objectives of these studies was to identify degradation modes (if any) of the batteries and to provide information useful to future spacecraft missions. Systems SIG involvement in the post-flight evaluation of LDEF batteries was two-fold: (1) to fund SAFT (original manufacturer of the LiSO2 batteries) to perform characterization of 13 LiSO2 batteries (10 flight and 3 control batteries); and (2) to integrate investigator results.

  5. Life Prediction Model for Grid-Connected Li-ion Battery Energy Storage System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Kandler A; Saxon, Aron R; Keyser, Matthew A

    Lithium-ion (Li-ion) batteries are being deployed on the electrical grid for a variety of purposes, such as to smooth fluctuations in solar renewable power generation. The lifetime of these batteries will vary depending on their thermal environment and how they are charged and discharged. To optimal utilization of a battery over its lifetime requires characterization of its performance degradation under different storage and cycling conditions. Aging tests were conducted on commercial graphite/nickel-manganese-cobalt (NMC) Li-ion cells. A general lifetime prognostic model framework is applied to model changes in capacity and resistance as the battery degrades. Across 9 aging test conditions frommore » 0oC to 55oC, the model predicts capacity fade with 1.4% RMS error and resistance growth with 15% RMS error. The model, recast in state variable form with 8 states representing separate fade mechanisms, is used to extrapolate lifetime for example applications of the energy storage system integrated with renewable photovoltaic (PV) power generation.« less

  6. Fault tree safety analysis of a large Li/SOCl(sub)2 spacecraft battery

    NASA Technical Reports Server (NTRS)

    Uy, O. Manuel; Maurer, R. H.

    1987-01-01

    The results of the safety fault tree analysis on the eight module, 576 F cell Li/SOCl2 battery on the spacecraft and in the integration and test environment prior to launch on the ground are presented. The analysis showed that with the right combination of blocking diodes, electrical fuses, thermal fuses, thermal switches, cell balance, cell vents, and battery module vents the probability of a single cell or a 72 cell module exploding can be reduced to .000001, essentially the probability due to explosion for unexplained reasons.

  7. Lithium Battery Power Delivers Electric Vehicles to Market

    NASA Technical Reports Server (NTRS)

    2008-01-01

    Hybrid Technologies Inc., a manufacturer and marketer of lithium-ion battery electric vehicles, based in Las Vegas, Nevada, and with research and manufacturing facilities in Mooresville, North Carolina, entered into a Space Act Agreement with Kennedy Space Center to determine the utility of lithium-powered fleet vehicles. NASA contributed engineering expertise for the car's advanced battery management system and tested a fleet of zero-emission vehicles on the Kennedy campus. Hybrid Technologies now offers a series of purpose-built lithium electric vehicles dubbed the LiV series, aimed at the urban and commuter environments.

  8. Data Ferrying to the Tactical Edge: A Field Experiment in Exchanging Mission Plans and Intelligence in Austere Environments

    DTIC Science & Technology

    2014-10-01

    activity meant to test many different technologies. As such, it occurred over the course of one day with extremely limited Fig. 5. Raspberry Pi , battery...ferry ran on a Raspberry Pi (Rev B) single-board computer with a 15000mAh external battery and connected to Persistent System’s Wave Relay MPU4...tactical radio. The external battery is capable of powering the Raspberry Pi for approximately 21 hours and the MPU4 is capable of running for 14 hours

  9. Analysis of Ageing Effect on Li-Polymer Batteries

    PubMed Central

    Barcellona, Simone; Brenna, Morris; Foiadelli, Federica; Longo, Michela; Piegari, Luigi

    2015-01-01

    Lithium-ion batteries are a key technology for current and future energy storage in mobile and stationary application. In particular, they play an important role in the electrification of mobility and therefore the battery lifetime prediction is a fundamental aspect for successful market introduction. Numerous studies developed ageing models capable of predicting battery life span. Most of the previous works compared the effect of the ageing factors to a battery's cycle life. These cycles are identical, which is not the case for electric vehicles applications. Indeed, most of the available information is based on results from laboratory testing, under very controlled environments, and using ageing protocols, which may not correctly reflect the actual utilization. For this reason, it is important to link the effect of duty cycles with the ageing of the batteries. This paper proposes a simple method to investigate the effect of the duty cycle on the batteries lifetime through tests performed on different cells for different kinds of cycle. In this way, a generic complex cycle can be seen as a composition of elemental cycles by means of Rainflow procedures. Consequently, the ageing due to any cycle can be estimated starting from the knowledge of simpler cycles. PMID:26236775

  10. Microcomputer-based tests for repeated-measures: Metric properties and predictive validities

    NASA Technical Reports Server (NTRS)

    Kennedy, Robert S.; Baltzley, Dennis R.; Dunlap, William P.; Wilkes, Robert L.; Kuntz, Lois-Ann

    1989-01-01

    A menu of psychomotor and mental acuity tests were refined. Field applications of such a battery are, for example, a study of the effects of toxic agents or exotic environments on performance readiness, or the determination of fitness for duty. The key requirement of these tasks is that they be suitable for repeated-measures applications, and so questions of stability and reliability are a continuing, central focus of this work. After the initial (practice) session, seven replications of 14 microcomputer-based performance tests (32 measures) were completed by 37 subjects. Each test in the battery had previously been shown to stabilize in less than five 90-second administrations and to possess retest reliabilities greater than r = 0.707 for three minutes of testing. However, all the tests had never been administered together as a battery and they had never been self-administered. In order to provide predictive validity for intelligence measurement, the Wechsler Adult Intelligence Scale-Revised and the Wonderlic Personnel Test were obtained on the same subjects.

  11. Research: Testing of a Novel Portable Body Temperature Conditioner Using a Thermal Manikin.

    PubMed

    Heller, Daniel; Heller, Alex; Moujaes, Samir; Williams, Shelley J; Hoffmann, Ryan; Sarkisian, Paul; Khalili, Kaveh; Rockenfeller, Uwe; Browder, Timothy D; Kuhls, Deborah A; Fildes, John J

    2016-01-01

    A battery-operated active cooling/heating device was developed to maintain thermoregulation of trauma victims in austere environments while awaiting evacuation to a hospital for further treatment. The use of a thermal manikin was adopted for this study in order to simulate load testing and evaluate the performance of this novel portable active cooling/heating device for both continuous (external power source) and battery power. The performance of the portable body temperature conditioner (PBTC) was evaluated through cooling/heating fraction tests to analyze the heat transfer between a thermal manikin and circulating water blanket to show consistent performance while operating under battery power. For the cooling/heating fraction tests, the ambient temperature was set to 15°C ± 1°C (heating) and 30°C ± 1°C (cooling). The PBTC water temperature was set to 37°C for the heating mode tests and 15°C for the cooling mode tests. The results showed consistent performance of the PBTC in terms of cooling/heating capacity while operating under both continuous and battery power. The PBTC functioned as intended and shows promise as a portable warming/cooling device for operation in the field.

  12. GASCan 2 payload integration

    NASA Technical Reports Server (NTRS)

    Cody, Dennis J.; Concepcion, Allan G.; Watras, Edward C., III

    1995-01-01

    This project, conducted in cooperation with the NASA Advanced Space Design Program, is part of an ongoing effort to place an experiment package into space. The goal of this project is to build and test flight-ready hardware that can be launched from the Space Shuttle. Get Away Special Canister 2 (GASCan 2) consists of three separate experiments. The Ionospheric Properties and Propagation Experiment (IPPE) determines effects of the ionosphere on radio wave propagation. The Microgravity Ignition experiment (MGI) tests the effects of combustion in a microgravity environment. The Rotational Fluid Flow experiment (RFF) examines fluid behavior under varying levels of gravity. This year the following tasks were completed: design of the IPPE antenna, X- and J-cell battery boxes, J-cell battery box enclosure, and structural bumpers; construction of the MGI canisters, MGI mounting brackets, IPPE antenna, and battery boxes; and the selection of the RFF's operating fluid and the analysis of the fluid behavior under microgravity test conditions.

  13. Visual-motor response of crewmen during a simulated 90-day space mission as measured by the critical task battery

    NASA Technical Reports Server (NTRS)

    Allen, R. W.; Jex, H. R.

    1973-01-01

    In order to test various components of a regenerative life support system and to obtain data on the physiological and psychological effects of long duration exposure to confinement in a space station atmosphere, four carefully screened young men were sealed in a space station simulator for 90 days and administered a tracking test battery. The battery included a clinical test (Critical Instability Task) designed to measure a subject's dynamic time delay, and a more conventional steady tracking task, during which dynamic response (describing functions) and performance measures were obtained. Good correlation was noted between the clinical critical instability scores and more detailed tracking parameters such as dynamic time delay and gain-crossover frequency. The levels of each parameter span the range observed with professional pilots and astronaut candidates tested previously. The chamber environment caused no significant decrement on the average crewman's dynamic response behavior, and the subjects continued to improve slightly in their tracking skills during the 90-day confinement period.

  14. Highly stable pyridinium-functionalized cross-linked anion exchange membranes for all vanadium redox flow batteries

    NASA Astrophysics Data System (ADS)

    Zeng, L.; Zhao, T. S.; Wei, L.; Zeng, Y. K.; Zhang, Z. H.

    2016-11-01

    It has recently been demonstrated that the use of anion exchange membranes (AEMs) in vanadium redox flow batteries (VRFBs) can reduce the migration of vanadium ions through the membrane due to the Donnan exclusion effect among the positively charged functional groups and vanadium ions. However, AEMs are plagued by low chemical stability in harsh chemical environments. Here we propose and fabricate a pyridinium-functionalized cross-linked AEM for VRFBs. The pyridinium-functionalized bromomethylated poly (2,6-dimethyl-1,4-phenylene oxide) exhibits a superior chemical stability as a result of the strengthened internal cross-linking networks and the chemical inertness of the polymer backbone. Therefore, the membrane exhibits littler decay in a harsh environment for 20 days during the course of an ex situ immersion test. A cycling test also demonstrates that the VRFB assembled with the membrane enable to retain 80% of the initial discharge capacity over 537 cycles with a capacity decay rate of 0.037% cycle-1. Meanwhile, the membrane also shows a low vanadium permeability and a reasonably high conductivity in supporting electrolytes. Hence, all the measurements and performance tests reported in this work suggest that the membrane is a promising AEM for redox flow batteries to achieve excellent cycling stability and superior cell performance.

  15. Development of single cell lithium ion battery model using Scilab/Xcos

    NASA Astrophysics Data System (ADS)

    Arianto, Sigit; Yunaningsih, Rietje Y.; Astuti, Edi Tri; Hafiz, Samsul

    2016-02-01

    In this research, a lithium battery model, as a component in a simulation environment, was developed and implemented using Scicos/Xcos graphical language programming. Scicos used in this research was actually Xcos that is a variant of Scicos which is embedded in Scilab. The equivalent circuit model used in modeling the battery was Double Polarization (DP) model. DP model consists of one open circuit voltage (VOC), one internal resistance (Ri), and two parallel RC circuits. The parameters of the battery were extracted using Hybrid Power Pulse Characterization (HPPC) testing. In this experiment, the Double Polarization (DP) electrical circuit model was used to describe the lithium battery dynamic behavior. The results of simulation of the model were validated with the experimental results. Using simple error analysis, it was found out that the biggest error was 0.275 Volt. It was occurred mostly at the low end of the state of charge (SOC).

  16. Design and test of a 100 ampere-hour nickel cadmium battery module

    NASA Technical Reports Server (NTRS)

    Gaston, S.; Wertheim, M.; Burgess, F. S.; Lehrfeld, D.; Winegard, A.

    1973-01-01

    A feasibility study was conducted on the design and construction of a flight-worthy replaceable battery module consisting of four 100 A.H. nickel-cadmium rechargeable cells for large manned space vehicles. The module is planned to weigh less than 43 pounds and be fully maintainable in a zero-g environment by one man without use of special tools. An active environmental control system was designed for the temperature control of the module.

  17. METHODS OF DETERMINING PUPIL READINESS FOR SPECIFIC UNITS OF INSTRUCTION PRESENTED THROUGH SIMULATED ENVIRONMENT MEDIA.

    ERIC Educational Resources Information Center

    PLUMPTON, RUSSEL A.

    THE METHODS FOR DETERMINING PUPIL READINESS WERE STUDIED TO DEVELOP CRITERIA FOR PUPIL PARTICIPATION IN SIMULATED ENVIRONMENT LEARNING UNITS. THE LEARNING UNITS WERE SUBPROJECTS OF COOPERATIVE RESEARCH PROJECT NUMBER 1948 (ED 003 024). EACH OF THREE UNITS IN THE PROJECT WAS EXAMINED FOR PUPIL READINESS. TEST BATTERIES WERE ASSEMBLED AND…

  18. Rapid restoration of electric vehicle battery performance while driving at cold temperatures

    NASA Astrophysics Data System (ADS)

    Zhang, Guangsheng; Ge, Shanhai; Yang, Xiao-Guang; Leng, Yongjun; Marple, Dan; Wang, Chao-Yang

    2017-12-01

    Electric vehicles (EVs) driven in cold weather experience two major drawbacks of Li-ion batteries: drastic power loss (up to 10-fold at -30 °C) and restriction of regenerative braking at temperatures below 5-10 °C. Both factors greatly reduce cruise range, exacerbating drivers' range anxiety in winter. While preheating the battery before driving is a practice widely adopted to maintain battery power and EV drivability, it is time-consuming (on the order of 40 min) and prohibits instantaneous mobility. Here we reveal a control strategy that can rapidly restore EV battery power and permit full regeneration while driving at temperatures as low as -40 °C. The strategy involves heating the battery internally during regenerative braking and rest periods of driving. We show that this technique fully restores room-temperature battery power and regeneration in 13, 33, 46, 56 and 112 s into uninterrupted driving in 0, -10, -20, -30 and -40 °C environments, respectively. Correspondingly, the strategy significantly increases cruise range of a vehicle operated at cold temperatures, e.g. 49% at -40 °C in simulated US06 driving cycle tests. The present work suggests that smart batteries with embedded sensing/actuation can leapfrog in performance.

  19. Evaluation of the Albuquerque Indian School Motivational Environment Program.

    ERIC Educational Resources Information Center

    Hiat, Albert B.; And Others

    In order to evaluate the impact of a token economy behavior modification program implemented from 1970-71 in the Albuquerque Indian School (AIS), a secondary institution, a five-member evaluation team assessed standardized test results, behavioral data, and student and staff attitudes. A battery of tests (Tennessee Self-Concept Scale, SRA…

  20. Primary lithium organic electrolyte battery BA-5588

    NASA Astrophysics Data System (ADS)

    Rosansky, M. G.

    1982-07-01

    This program concerns the development, fabrication and evaluation of a Lithium organic electrolyte battery designated BA-5588 ()/U which incorporates five series connected, hermetically sealed cells housed in a plastic case. Significant effort was directed towards cell optimization through controlled experimentation and evaluation of various design parameters. Demonstration of the effectiveness of the finalized design was accomplished by the performance of various electrical and abuse tests which included environmental exposure, prolonged thermal storage, electrical discharge under various thermal profiles, short circuit and discharge to zero volts as well as forced discharge. The resulting evaluation demonstrated the batteries ability to operate safely under all of the specified abusive environments and provide 100% of the specified service life requirements.

  1. KSC-2009-4064

    NASA Image and Video Library

    2009-07-15

    CAPE CANAVERAL, Fla. – Engineers at Astrotech Space Operations in Titusville, Fla., lower the high-gain antenna on the Solar Dynamics Observatory to gain access to the battery compartment for installation of the flight battery. SDO is the first space weather research network mission in NASA's Living With a Star Program. The spacecraft's long-term measurements will give solar scientists in-depth information about changes in the sun's magnetic field and insight into how they affect Earth. In preparation for its anticipated November launch, engineers will perform a battery of comprehensive tests to ensure SDO can withstand the stresses and vibrations of the launch itself, as well as what it will encounter in the space environment after launch. Photo credit: NASA/Jack Pfaller

  2. KSC-2009-4063

    NASA Image and Video Library

    2009-07-15

    CAPE CANAVERAL, Fla. – Engineers at Astrotech Space Operations in Titusville, Fla., begin lowering the high-gain antenna on the Solar Dynamics Observatory to gain access to the battery compartment for installation of the flight battery. SDO is the first space weather research network mission in NASA's Living With a Star Program. The spacecraft's long-term measurements will give solar scientists in-depth information about changes in the sun's magnetic field and insight into how they affect Earth. In preparation for its anticipated November launch, engineers will perform a battery of comprehensive tests to ensure SDO can withstand the stresses and vibrations of the launch itself, as well as what it will encounter in the space environment after launch. Photo credit: NASA/Jack Pfaller

  3. KSC-2009-4067

    NASA Image and Video Library

    2009-07-15

    CAPE CANAVERAL, Fla. – At Astrotech Space Operations in Titusville, Fla., the lowered high-gain antenna on the Solar Dynamics Observatory will allow engineers access to the battery compartment in order to install the flight battery. SDO is the first space weather research network mission in NASA's Living With a Star Program. The spacecraft's long-term measurements will give solar scientists in-depth information about changes in the sun's magnetic field and insight into how they affect Earth. In preparation for its anticipated November launch, engineers will perform a battery of comprehensive tests to ensure SDO can withstand the stresses and vibrations of the launch itself, as well as what it will encounter in the space environment after launch. Photo credit: NASA/Jack Pfaller

  4. KSC-2009-4066

    NASA Image and Video Library

    2009-07-15

    CAPE CANAVERAL, Fla. – Engineers at Astrotech Space Operations in Titusville, Fla., support the high-gain antenna lowered to allow access to the battery compartment for installation of the flight battery. SDO is the first space weather research network mission in NASA's Living With a Star Program. The spacecraft's long-term measurements will give solar scientists in-depth information about changes in the sun's magnetic field and insight into how they affect Earth. In preparation for its anticipated November launch, engineers will perform a battery of comprehensive tests to ensure SDO can withstand the stresses and vibrations of the launch itself, as well as what it will encounter in the space environment after launch. Photo credit: NASA/Jack Pfaller

  5. KSC-2009-4065

    NASA Image and Video Library

    2009-07-15

    CAPE CANAVERAL, Fla. – Engineers at Astrotech Space Operations in Titusville, Fla., lower the high-gain antenna on the Solar Dynamics Observatory to gain access to the battery compartment for installation of the flight battery. SDO is the first space weather research network mission in NASA's Living With a Star Program. The spacecraft's long-term measurements will give solar scientists in-depth information about changes in the sun's magnetic field and insight into how they affect Earth. In preparation for its anticipated November launch, engineers will perform a battery of comprehensive tests to ensure SDO can withstand the stresses and vibrations of the launch itself, as well as what it will encounter in the space environment after launch. Photo credit: NASA/Jack Pfaller

  6. Full cell study of Diels Alder poly(phenylene) anion and cation exchange membranes in vanadium redox flow batteries

    DOE PAGES

    Pezeshki, Alan M.; Fujimoto, Cy; Sun, Che -Nan; ...

    2015-11-14

    In this paper, we report on the performance of Diels Alder poly(phenylene) membranes in vanadium redox flow batteries. The membranes were functionalized with quaternary ammonium groups to form an anion exchange membrane (QDAPP) and with sulfonic acid groups to form a cation exchange membrane (SDAPP). Both membrane classes showed similar conductivities in the battery environment, suggesting that the ion conduction mechanism in the material is not strongly affected by the moieties along the polymer backbone. The resistance to vanadium permeation in QDAPP was not improved relative to SDAPP, further suggesting that the polarity of the functional groups do not playmore » a significant role in the membrane materials tested. Both QDAPP and SDAPP outperformed Nafion membranes in cycling tests, with both achieving voltage efficiencies above 85% while maintaining 95% coulombic efficiency while at a current density of 200 mA/cm 2.« less

  7. Management and Performance of APPLE Battery in High Temperature Environment

    NASA Technical Reports Server (NTRS)

    Suresh, M. S.; Subrahmanyam, A.; Agrawal, B. L.

    1984-01-01

    India's first experimental communication satellite, APPLE, carried a 12 AH Ni-Cd battery for supplying power during eclipse. Failure to deploy one of the two solar panels resulted in the battery operating in a high temperature environment, around 40 C. This also resulted in the battery being used in diurnal cycles rather than just half yearly eclipse seasons. The management and performance of the battery during its life of two years are described. An attempt to identify the probable degradation mechanisms is also made.

  8. Tuning the Solar Dynamics Observatory Onboard Kalman Filter

    NASA Technical Reports Server (NTRS)

    Halverson, Julie Kay; Harman, Rick; Carpenter, Russell; Poland, Devin

    2017-01-01

    The Solar Dynamics Observatory (SDO) was launched in 2010. SDO is a sun pointing semi-autonomous spacecraft in a geosynchronous orbit that allows nearly continuous observations of the sun. SDO is equipped with coarse sun sensors, two star trackers, a digital sun sensor, and three two-axis inertial reference units (IRU). The IRUs are temperature sensitive and were designed to operate in a stable thermal environment. Due to battery degradation concerns the IRU heaters were not used on SDO and the onboard filter was tuned to accommodate the noisier IRU data. Since launch currents have increased on two IRUs, one had to eventually be powered off. Recent ground tests on a battery similar to SDO indicated the heaters would have negligible impact on battery degradation, so in 2016 a decision was made to turn the heaters on. This paper presents the analysis and results of updating the filter tuning parameters onboard SDO with the IRUs now operating in their intended thermal environment.

  9. The 50 AMP-hour nickel cadmium battery manual

    NASA Technical Reports Server (NTRS)

    Webb, D. A.

    1981-01-01

    The battery is designed with a minimum battery to cell weight ratio consistent with adequate containment for operating conditions and dynamic environments and minimized weight. The battery is fully qualified and the environments to which it was successfully subjected were selected by NASA Goddard to cover a wide range of probable uses. The battery is suitable for either near-Earth geosynchronous missions, is compatible with passive or active thermal control systems and may be electrically controlled by a variety of changing routines. The initial application of the 50 A.H. Battery is a near-Earth mission aboard the LANDSAT D Satellite.

  10. Electromagnetic Environmental Effects System Testing

    DTIC Science & Technology

    2013-11-20

    battery packs or air turbine power generators. The sensitivity of the entire instrumentation system should be taken into consideration from the sensor ...Electromagnetic Radiation to Ordnance (HERO) sensors , pneumatic switching, and those equipments associated with fiber optic technology. c. Test...Field probes to determine environment -Thermal heating sensors (e.g., FISO or Metricor systems) used to detect bridgewire heating induced by

  11. Hubble Space Telescope nickel-hydrogen battery testing: An update

    NASA Technical Reports Server (NTRS)

    Whitt, Thomas H.; Brewer, Jeffrey C.

    1995-01-01

    The Marshall Space Flight Center (MSFC) began testing the HST Ni-H2 Six Battery Test and the 'Flight Spare Battery' Tests approximately one year before the launch of the HST. These tests are operated and reported on by the MSFC, but are managed and funded by Goddard Space Flight Center in direct support of the HST program. The HST Ni-H2 batteries are built from Eagle Picher RNH-90-3 cells. The HST EPS (electrical power system) is a direct energy transfer power system. The HST Ni-H2 Six Battery Test is a breadboard of the HST EPS. The batteries in the test are composed of test module cells and packaged into three battery modules identical to the flight modules. This test is the HST EPS testbed. The 'Flight Spare Battery' Test is a simulation of one of the six battery channels on the HST. The cells in the test are from the flight spare lot of cells, which are the same lot of cells that three of the six HST flight batteries are made from. This test is the battery life test for the HST program.

  12. Nickel hydrogen battery expert system

    NASA Technical Reports Server (NTRS)

    Shiva, Sajjan G.

    1991-01-01

    The Hubble Telescope Battery Testbed at MSFC uses the Nickel Cadmium (NiCd) Battery Expert System (NICBES-2) which supports the evaluation of performance of Hubble Telescope spacecraft batteries and provides alarm diagnosis and action advice. NICBES-2 provides a reasoning system along with a battery domain knowledge base to achieve this battery health management function. An effort is summarized which was used to modify NICBES-2 to accommodate Nickel Hydrogen (NiH2) battery environment now in MSFC testbed. The NICBES-2 is implemented on a Sun Microsystem and is written in SunOS C and Quintus Prolog. The system now operates in a multitasking environment. NICBES-2 spawns three processes: serial port process (SPP); data handler process (DHP); and the expert system process (ESP) in order to process the telemetry data and provide the status and action advice. NICBES-2 performs orbit data gathering, data evaluation, alarm diagnosis and action advice and status and history display functions. The adaptation of NICBES-2 to work with NiH2 battery environment required modification to all of the three component processes.

  13. Psychomotor Battery Approaches to Performance Prediction and Evaluation in Hyperbaric, Thermal and Vibratory Environments: Annotated Bibliographies and Integrative Review

    DTIC Science & Technology

    1980-10-01

    Psychomotor Battery in the early 1940’s. This effort was a natural extension of the development of the Complex Coordinator in 1929. During World War...to note that manual dexterity has been reported to decrease signif - icantly at 4 ATA when the divers were exercisint aj opposed k.o a significant...each pressure level by means of .a t-test. Results on the manual dexterity task showed that, with the subjects at rest, performance deteriorated signif

  14. KSC-2009-4060

    NASA Image and Video Library

    2009-07-15

    CAPE CANAVERAL, Fla. – Engineers at Astrotech Space Operations in Titusville, Fla., begin work to lower the high-gain antenna on the Solar Dynamics Observatory. Lowering the antenna will provide access to the battery compartment for installation of the flight battery. SDO is the first space weather research network mission in NASA's Living With a Star Program. The spacecraft's long-term measurements will give solar scientists in-depth information about changes in the sun's magnetic field and insight into how they affect Earth. In preparation for its anticipated November launch, engineers will perform a battery of comprehensive tests to ensure SDO can withstand the stresses and vibrations of the launch itself, as well as what it will encounter in the space environment after launch. Photo credit: NASA/Jack Pfaller

  15. KSC-2009-4059

    NASA Image and Video Library

    2009-07-15

    CAPE CANAVERAL, Fla. – The Solar Dynamics Observatory sits on a stand at Astrotech Space Operations in Titusville, Fla. Engineers will lower the high-gain antenna to access the battery compartment for installation of the flight battery. SDO is the first space weather research network mission in NASA's Living With a Star Program. The spacecraft's long-term measurements will give solar scientists in-depth information about changes in the sun's magnetic field and insight into how they affect Earth. In preparation for its anticipated November launch, engineers will perform a battery of comprehensive tests to ensure SDO can withstand the stresses and vibrations of the launch itself, as well as what it will encounter in the space environment after launch. Photo credit: NASA/Jack Pfaller

  16. KSC-2009-4062

    NASA Image and Video Library

    2009-07-15

    CAPE CANAVERAL, Fla. – Engineers at Astrotech Space Operations in Titusville, Fla., work to lower the high-gain antenna on the Solar Dynamics Observatory. Lowering the antenna will provide access to the battery compartment for installation of the flight battery. SDO is the first space weather research network mission in NASA's Living With a Star Program. The spacecraft's long-term measurements will give solar scientists in-depth information about changes in the sun's magnetic field and insight into how they affect Earth. In preparation for its anticipated November launch, engineers will perform a battery of comprehensive tests to ensure SDO can withstand the stresses and vibrations of the launch itself, as well as what it will encounter in the space environment after launch. Photo credit: NASA/Jack Pfaller

  17. KSC-2009-4061

    NASA Image and Video Library

    2009-07-15

    CAPE CANAVERAL, Fla. – Engineers at Astrotech Space Operations in Titusville, Fla., begin work to lower the high-gain antenna on the Solar Dynamics Observatory. Lowering the antenna will provide access to the battery compartment for installation of the flight battery. SDO is the first space weather research network mission in NASA's Living With a Star Program. The spacecraft's long-term measurements will give solar scientists in-depth information about changes in the sun's magnetic field and insight into how they affect Earth. In preparation for its anticipated November launch, engineers will perform a battery of comprehensive tests to ensure SDO can withstand the stresses and vibrations of the launch itself, as well as what it will encounter in the space environment after launch. Photo credit: NASA/Jack Pfaller

  18. Test results for the evaluation of a glucometer for use under hyperbaric conditions: Technical report.

    PubMed

    Tsouras, Theo

    2017-01-01

    This study aimed to evaluate a recently developed equipment test method by assessing the safe and accurate functioning of the Abbott Optium FreeStyle H portable blood glucose monitor for use in the Alfred Hospital's hyperbaric chamber. The results of this study indicate that the test method can be used successfully to evaluate instruments and/or devices for use in the hyperbaric environment. The evaluation initially found that this particular glucose monitor contained a lithium battery which can be hazardous when used in the hyperbaric environment. However, upon further inspection it was determined the battery posed minimal risk for fire and explosion due to its small capacity and design application. The results indicate that the Abbott Optium FreeStyle H blood glucose monitor operated normally when used in the hyperbaric chamber. This glucometer was found to perform within the calibration specification requirements for accuracy at all stages of a typical hyperbaric treatment and as such the Abbott Optium FreeStyle H blood glucose monitor was deemed safe for use in the hyperbaric chamber at the Alfred Hospital. Copyright© Undersea and Hyperbaric Medical Society.

  19. An Experimental Evaluation of a Field Sobriety Test Battery in the Marine Environment

    DTIC Science & Technology

    1990-06-01

    Turn, Horizontal Gaze Nystagmus , Finger to Nose, Finger Count, and Tracing. Of these six tests, Walk and Turn, One-Leg Stand, and Horizontal Gaze ...served as the lead officer, administering the tests while the other two officers observed. All officers administered the Horizontal Gaze Nystagmus ...administered the Horizontal Gaze Nystagmus (HGN) individually. After giving a tes’ or pair of tests (as designated) each officer on the team gave a

  20. HIL Development and Validation of Lithium-ion Battery Packs (SAE 2014-01-1863)

    EPA Science Inventory

    A Battery Test Facility (BTF) has been constructed at United States Environmental Protection Agency (EPA) to test various automotive battery packs for HEV, PHEV, and EV vehicles. Battery pack tests were performed in the BTF using a battery cycler, testing controllers, battery pa...

  1. Investigations of metal leaching from mobile phone parts using TCLP and WET methods.

    PubMed

    Yadav, Satyamanyu; Yadav, Sudesh

    2014-11-01

    Metal leaching from landfills containing end-of-life or otherwise discarded mobile phones poses a threat to the environment as well as public health. In the present study, the metal toxicity of printed wire boards (PWBs), plastics, liquid crystal displays (LCDs) and batteries of mobile phones was assessed using the Toxicity Characteristics Leaching Procedures (TCLP) and the Waste Extraction Test (WET). The PWBs failed TCLP for Pb and Se, and WET for Pb and Zn. In WET, the two PWB samples for Pb and Zn and the battery samples for Co and Cu failed the test. Furthermore, the PWBS for Ni and the battery samples for Ni and Co failed the WET in their TCLP leachates. Both, Ni and Co are the regulatory metals in only WET and not covered under TCLP. These observations indicate that the TCLP seems to be a more aggressive test than the WET for the metal leaching from the mobile phone parts. The compositional variations, nature of leaching solution (acetate in TCLP and citrate in WET) and the redox conditions in the leaching solution of the PWBs resulted in different order of metals with respect to their amounts of leaching from PWBs in TCLP (Fe > Pb > Zn > Ni > Co > Cu) and WET (Zn > Fe > Ni > Pb > Cu). The metal leaching also varied with the make, manufacturing year and part of the mobile phone tested. PWBs, plastics and batteries should be treated as hazardous waste. Metal leaching, particularly of Se and Pb, from mobile phones can be harmful to the environment and human health. Therefore, a scientifically sound and environmentally safe handling and disposal management system needs to be evolved for the mobile phone disposal. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Operationally Responsive Space Standard Bus Battery Thermal Balance Testing and Heat Dissipation Analysis

    NASA Technical Reports Server (NTRS)

    Marley, Mike

    2008-01-01

    The focus of this paper will be on the thermal balance testing for the Operationally Responsive Space Standard Bus Battery. The Standard Bus thermal design required that the battery be isolated from the bus itself. This required the battery to have its own thermal control, including heaters and a radiator surface. Since the battery was not ready for testing during the overall bus thermal balance testing, a separate test was conducted to verify the thermal design for the battery. This paper will discuss in detail, the test set up, test procedure, and results from this test. Additionally this paper will consider the methods taken to determine the heat dissipation of the battery during charge and discharge. It seems that the heat dissipation for Lithium Ion batteries is relatively unknown and hard to quantify. The methods used during test and the post test analysis to estimate the heat dissipation of the battery will be discussed.

  3. Thermal characteristics of Lithium-ion batteries

    NASA Technical Reports Server (NTRS)

    Hauser, Dan

    2004-01-01

    Lithium-ion batteries have a very promising future for space applications. Currently they are being used on a few GEO satellites, and were used on the two recent Mars rovers Spirit and Opportunity. There are still problem that exist that need to be addressed before these batteries can fully take flight. One of the problems is that the cycle life of these batteries needs to be increased. battery. Research is being focused on the chemistry of the materials inside the battery. This includes the anode, cathode, and the cell electrolyte solution. These components can undergo unwanted chemical reactions inside the cell that deteriorate the materials of the battery. During discharge/ charge cycles there is heat dissipated in the cell, and the battery heats up and its temperature increases. An increase in temperature can speed up any unwanted reactions in the cell. Exothermic reactions cause the temperature to increase; therefore increasing the reaction rate will cause the increase of the temperature inside the cell to occur at a faster rate. If the temperature gets too high thermal runaway will occur, and the cell can explode. The material that separates the electrode from the electrolyte is a non-conducting polymer. At high temperatures the separator will melt and the battery will be destroyed. The separator also contains small pores that allow lithium ions to diffuse through during charge and discharge. High temperatures can cause these pores to close up, permanently damaging the cell. My job at NASA Glenn research center this summer will be to perform thermal characterization tests on an 18650 type lithium-ion battery. High temperatures cause the chemicals inside lithium ion batteries to spontaneously react with each other. My task is to conduct experiments to determine the temperature that the reaction takes place at, what components in the cell are reacting and the mechanism of the reaction. The experiments will be conducted using an accelerating rate calorimeter (ARC), which uses a heat-wait-search mode until an exothermic reaction is detected. After an exotherm is found the calorimeter maintains an adiabatic environment around a bomb which holds the test sample. The ARC will help identify important reactions and what temperature these exothermic reactions take place at. In order fully understand the battery, we are first going to take apart the battery and test the individual components of the battery using the ARC. I will first conduct a test on the electrolyte solution by itself. We will then test the electrolyte solution with the anode. We would like to see how the electrolyte solution reacts with the anode and its binder material. The next would be the same test using the cathode instead of the anode. By comparing the results of the electrolyte, electrolyte with anode, and the electrolyte with the cathode we can determine the reactions that are taking place due to each component. Using the heat capacity of the each individual sample and the temperature by which the sample increases, kinetic and thermo-dynamical information can then be found. A Gas chromatograph could be used to help with the task of identifying the by-products at the end of each test. One way of increasing the cycle life is to increase the stability of the materials inside the

  4. Thermo-electrochemical evaluation of lithium-ion batteries for space applications

    NASA Astrophysics Data System (ADS)

    Walker, W.; Yayathi, S.; Shaw, J.; Ardebili, H.

    2015-12-01

    Advanced energy storage and power management systems designed through rigorous materials selection, testing and analysis processes are essential to ensuring mission longevity and success for space exploration applications. Comprehensive testing of Boston Power Swing 5300 lithium-ion (Li-ion) cells utilized by the National Aeronautics and Space Administration (NASA) to power humanoid robot Robonaut 2 (R2) is conducted to support the development of a test-correlated Thermal Desktop (TD) Systems Improved Numerical Differencing Analyzer (SINDA) (TD-S) model for evaluation of power system thermal performance. Temperature, current, working voltage and open circuit voltage measurements are taken during nominal charge-discharge operations to provide necessary characterization of the Swing 5300 cells for TD-S model correlation. Building from test data, embedded FORTRAN statements directly simulate Ohmic heat generation of the cells during charge-discharge as a function of surrounding temperature, local cell temperature and state of charge. The unique capability gained by using TD-S is demonstrated by simulating R2 battery thermal performance in example orbital environments for hypothetical extra-vehicular activities (EVA) exterior to a small satellite. Results provide necessary demonstration of this TD-S technique for thermo-electrochemical analysis of Li-ion cells operating in space environments.

  5. Mental rotation - A key to mitigation of motion sickness in the virtual environments?

    NASA Technical Reports Server (NTRS)

    Parker, Donald E.; Harm, Deborah L.

    1992-01-01

    If mental rotation is important for the reduction of motion sickness and complement performance in virtual environments (VEs), the use of the Howard (1982) mental rotation test battery may identify individuals with lower susceptibility to VE-induced motion sickness and therefore a greater probability of success as VE operators. An apparatus and its associated procedures are currently under development for astronaut microgravity training aimed at reducing motion sickness; it is hypothesized that this system may be of significance to VE testing and training.

  6. Marshall Space Flight Center battery activity

    NASA Technical Reports Server (NTRS)

    Lowery, Eric

    1993-01-01

    The topics covered are presented in viewgraph form and include a flight program history and in-house activities. Some of the in-house activities addressed include secondary battery/cell testing and Hubble Space Telescope Test data updates involving the NiCd type 40 test - battery 1 and 2, the NiCd type 41 test battery, the general electric battery, the NiCd six-battery system, the six four-cell packs, fourteen-cell pack, three four-cell packs, the NiH2 six-battery system, and the flight spare battery. A general test data update is also presented for the twelve-cell pack, the four four-cell packs, the reconditioning test, and planned Ni-MH testing.

  7. 40 CFR 273.2 - Applicability-batteries.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 26 2010-07-01 2010-07-01 false Applicability-batteries. 273.2 Section...) STANDARDS FOR UNIVERSAL WASTE MANAGEMENT General § 273.2 Applicability—batteries. (a) Batteries covered under 40 CFR part 273. (1) The requirements of this part apply to persons managing batteries, as...

  8. 40 CFR 63.303 - Standards for nonrecovery coke oven batteries.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... batteries. 63.303 Section 63.303 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... National Emission Standards for Coke Oven Batteries § 63.303 Standards for nonrecovery coke oven batteries... existing nonrecovery coke oven battery that exceed any of the following emission limitations or...

  9. 40 CFR 63.303 - Standards for nonrecovery coke oven batteries.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... batteries. 63.303 Section 63.303 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... National Emission Standards for Coke Oven Batteries § 63.303 Standards for nonrecovery coke oven batteries... existing nonrecovery coke oven battery that exceed any of the following emission limitations or...

  10. 40 CFR 273.2 - Applicability-batteries.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 27 2011-07-01 2011-07-01 false Applicability-batteries. 273.2 Section...) STANDARDS FOR UNIVERSAL WASTE MANAGEMENT General § 273.2 Applicability—batteries. (a) Batteries covered under 40 CFR part 273. (1) The requirements of this part apply to persons managing batteries, as...

  11. 40 CFR 63.303 - Standards for nonrecovery coke oven batteries.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... batteries. 63.303 Section 63.303 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... National Emission Standards for Coke Oven Batteries § 63.303 Standards for nonrecovery coke oven batteries... existing nonrecovery coke oven battery that exceed any of the following emission limitations or...

  12. 40 CFR 273.2 - Applicability-batteries.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 28 2012-07-01 2012-07-01 false Applicability-batteries. 273.2 Section...) STANDARDS FOR UNIVERSAL WASTE MANAGEMENT General § 273.2 Applicability—batteries. (a) Batteries covered under 40 CFR part 273. (1) The requirements of this part apply to persons managing batteries, as...

  13. 40 CFR 63.303 - Standards for nonrecovery coke oven batteries.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... batteries. 63.303 Section 63.303 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... National Emission Standards for Coke Oven Batteries § 63.303 Standards for nonrecovery coke oven batteries... existing nonrecovery coke oven battery that exceed any of the following emission limitations or...

  14. 40 CFR 273.2 - Applicability-batteries.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 27 2014-07-01 2014-07-01 false Applicability-batteries. 273.2 Section...) STANDARDS FOR UNIVERSAL WASTE MANAGEMENT General § 273.2 Applicability—batteries. (a) Batteries covered under 40 CFR part 273. (1) The requirements of this part apply to persons managing batteries, as...

  15. 40 CFR 273.2 - Applicability-batteries.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 28 2013-07-01 2013-07-01 false Applicability-batteries. 273.2 Section...) STANDARDS FOR UNIVERSAL WASTE MANAGEMENT General § 273.2 Applicability—batteries. (a) Batteries covered under 40 CFR part 273. (1) The requirements of this part apply to persons managing batteries, as...

  16. 40 CFR 63.303 - Standards for nonrecovery coke oven batteries.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... batteries. 63.303 Section 63.303 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... National Emission Standards for Coke Oven Batteries § 63.303 Standards for nonrecovery coke oven batteries... existing nonrecovery coke oven battery that exceed any of the following emission limitations or...

  17. 40 CFR 63.302 - Standards for by-product coke oven batteries.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... batteries. 63.302 Section 63.302 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... National Emission Standards for Coke Oven Batteries § 63.302 Standards for by-product coke oven batteries... oven emissions from each affected existing by-product coke oven battery that exceed any of the...

  18. 40 CFR 63.302 - Standards for by-product coke oven batteries.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... batteries. 63.302 Section 63.302 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... National Emission Standards for Coke Oven Batteries § 63.302 Standards for by-product coke oven batteries... oven emissions from each affected existing by-product coke oven battery that exceed any of the...

  19. 40 CFR 63.302 - Standards for by-product coke oven batteries.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... batteries. 63.302 Section 63.302 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... National Emission Standards for Coke Oven Batteries § 63.302 Standards for by-product coke oven batteries... oven emissions from each affected existing by-product coke oven battery that exceed any of the...

  20. 40 CFR 63.302 - Standards for by-product coke oven batteries.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... batteries. 63.302 Section 63.302 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... National Emission Standards for Coke Oven Batteries § 63.302 Standards for by-product coke oven batteries... oven emissions from each affected existing by-product coke oven battery that exceed any of the...

  1. 40 CFR 63.302 - Standards for by-product coke oven batteries.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... batteries. 63.302 Section 63.302 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... National Emission Standards for Coke Oven Batteries § 63.302 Standards for by-product coke oven batteries... oven emissions from each affected existing by-product coke oven battery that exceed any of the...

  2. Ground Handling of Batteries at Test and Launch-site Facilities

    NASA Technical Reports Server (NTRS)

    Jeevarajan, Judith A.; Hohl, Alan R.

    2008-01-01

    Ground handling of flight as well as engineering batteries at test facilities and launch-site facilities is a safety critical process. Test equipment interfacing with the batteries should have the required controls to prevent a hazardous failure of the batteries. Test equipment failures should not induce catastrophic failures on the batteries. Transportation requirements for batteries should also be taken into consideration for safe transportation. This viewgraph presentation includes information on the safe handling of batteries for ground processing at test facilities as well as launch-site facilities.

  3. Autonomous Microsystems for Downhole Applications: Design Challenges, Current State, and Initial Test Results

    PubMed Central

    Choi, Myungjoon; Sui, Yu; Lee, In Hee; Meredith, Ryan; Ma, Yushu; Kim, Gyouho; Blaauw, David; Gianchandani, Yogesh B.; Li, Tao

    2017-01-01

    This paper describes two platforms for autonomous sensing microsystems that are intended for deployment in chemically corrosive environments at elevated temperatures and pressures. Following the deployment period, the microsystems are retrieved, recharged, and interrogated wirelessly at close proximity. The first platform is the Michigan Micro Mote for High Temperature (M3HT), a chip stack 2.9 × 1.1 × 1.5 mm3 in size. It uses RF communications to support pre-deployment and post-retrieval functions, and it uses customized electronics to achieve ultralow power consumption, permitting the use of a chip-scale battery. The second platform is the Environmental Logging Microsystem (ELM). This system, which is 6.5 × 6.3 × 4.5 mm3 in size, uses the smallest suitable off-the-shelf electronic and battery components that are compatible with assembly on a flexible printed circuit board. Data are stored in non-volatile memory, permitting retrieval even after total power loss. Pre-deployment and post-retrieval functions are supported by optical communication. Two types of encapsulation methods are used to withstand high pressure and corrosive environments: an epoxy filled volume is used for the M3HT, and a hollow stainless-steel shell with a sapphire lid is used for both the M3HT and ELM. The encapsulated systems were successfully tested at temperature and pressure reaching 150 °C and 10,000 psi, in environments of concentrated brine, oil, and cement slurry. At elevated temperatures, the limited lifetimes of available batteries constrain the active deployment period to several hours. PMID:28946614

  4. Design Evaluation of High Reliability Lithium Batteries

    NASA Technical Reports Server (NTRS)

    Buchman, R. C.; Helgeson, W. D.; Istephanous, N. S.

    1985-01-01

    Within one year, a lithium battery design can be qualified for device use through the application of accelerated discharge testing, calorimetry measurements, real time tests and other supplemental testing. Materials and corrosion testing verify that the battery components remain functional during expected battery life. By combining these various methods, a high reliability lithium battery can be manufactured for applications which require zero defect battery performance.

  5. Development of nickel hydrogen battery expert system

    NASA Technical Reports Server (NTRS)

    Shiva, Sajjan G.

    1990-01-01

    The Hubble Telescope Battery Testbed employs the nickel-cadmium battery expert system (NICBES-2) which supports the evaluation of performances of Hubble Telescope spacecraft batteries and provides alarm diagnosis and action advice. NICBES-2 also provides a reasoning system along with a battery domain knowledge base to achieve this battery health management function. An effort to modify NICBES-2 to accommodate nickel-hydrogen battery environment in testbed is described.

  6. NASA/Marshall's lithium battery applications

    NASA Technical Reports Server (NTRS)

    Paschal, L. E.

    1980-01-01

    A general lithium battery is described and a summary of lithium battery applications is presented. Four aspects of a particular lithium battery, the inducement environmental contamination monitoring battery, are discussed-design and construction details, thermal vacuum tests, projection tests, and acceptance tests.

  7. International Ultraviolet Explorer (IUE) Battery History and Performance

    NASA Technical Reports Server (NTRS)

    Rao, Gopalskrishna M.; Tiller, Smith E.

    1999-01-01

    The "International Ultraviolet Explorer (IUE) Battery History and Performance" report provides the information on the cell/battery design, battery performance during the thirty eight (38) solar eclipse seasons and the end-of-life test data. It is noteworthy that IUE spacecraft was an in-house project and that the batteries were designed, fabricated and tested (Qualification and Acceptance) at the Goddard Space Flight Center. A detailed information is given on the cell and battery design criteria and the designs, on the Qualification and the Acceptance tests, and on the cell life cycling tests. The environmental, thermal, and vibration tests were performed on the batteries at the battery level as well as with the interface on the spacecraft. The telemetry data were acquired, analyzed, and trended for various parameters over the mission life. Rigorous and diligent battery management programs were developed and implemented from time to time to extend the mission life over eighteen plus years. Prior to the termination of spacecraft operation, special tests were conducted to check the battery switching operation, battery residual capacity, third electrode performance and battery impedance.

  8. 40 CFR 60.372 - Standards for lead.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 7 2013-07-01 2013-07-01 false Standards for lead. 60.372 Section 60...) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Standards of Performance for Lead-Acid Battery Manufacturing Plants § 60.372 Standards for lead. (a) On and after the date on which the performance test...

  9. 40 CFR 60.372 - Standards for lead.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 7 2012-07-01 2012-07-01 false Standards for lead. 60.372 Section 60...) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Standards of Performance for Lead-Acid Battery Manufacturing Plants § 60.372 Standards for lead. (a) On and after the date on which the performance test...

  10. 40 CFR 60.372 - Standards for lead.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 7 2014-07-01 2014-07-01 false Standards for lead. 60.372 Section 60...) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Standards of Performance for Lead-Acid Battery Manufacturing Plants § 60.372 Standards for lead. (a) On and after the date on which the performance test...

  11. 40 CFR 60.372 - Standards for lead.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 6 2011-07-01 2011-07-01 false Standards for lead. 60.372 Section 60...) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Standards of Performance for Lead-Acid Battery Manufacturing Plants § 60.372 Standards for lead. (a) On and after the date on which the performance test...

  12. The 2004 NASA Aerospace Battery Workshop

    NASA Technical Reports Server (NTRS)

    2006-01-01

    Topics covered include: Super NiCd(TradeMark) Energy Storage for Gravity Probe-B Relativity Mission; Hubble Space Telescope 2004 Battery Update; The Development of Hermetically Sealed Aerospace Nickel-Metal Hydride Cell; Serial Charging Test on High Capacity Li-Ion Cells for the Orbiter Advanced Hydraulic Power System; Cell Equalization of Lithium-Ion Cells; The Long-Term Performance of Small-Cell Batteries Without Cell-Balancing Electronics; Identification and Treatment of Lithium Battery Cell Imbalance under Flight Conditions; Battery Control Boards for Li-Ion Batteries on Mars Exploration Rovers; Cell Over Voltage Protection and Balancing Circuit of the Lithium-Ion Battery; Lithium-Ion Battery Electronics for Aerospace Applications; Lithium-Ion Cell Charge Control Unit; Lithium Ion Battery Cell Bypass Circuit Test Results at the U.S. Naval Research Laboratory; High Capacity Battery Cell By-Pass Switches: High Current Pulse Testing of Lithium-Ion; Battery By-Pass Switches to Verify Their Ability to Withstand Short-Circuits; Incorporation of Physics-Based, Spatially-Resolved Battery Models into System Simulations; A Monte Carlo Model for Li-Ion Battery Life Projections; Thermal Behavior of Large Lithium-Ion Cells; Thermal Imaging of Aerospace Battery Cells; High Rate Designed 50 Ah Li-Ion Cell for LEO Applications; Evaluation of Corrosion Behavior in Aerospace Lithium-Ion Cells; Performance of AEA 80 Ah Battery Under GEO Profile; LEO Li-Ion Battery Testing; A Review of the Feasibility Investigation of Commercial Laminated Lithium-Ion Polymer Cells for Space Applications; Lithium-Ion Verification Test Program; Panasonic Small Cell Testing for AHPS; Lithium-Ion Small Cell Battery Shorting Study; Low-Earth-Orbit and Geosynchronous-Earth-Orbit Testing of 80 Ah Batteries under Real-Time Profiles; Update on Development of Lithium-Ion Cells for Space Applications at JAXA; Foreign Comparative Technology: Launch Vehicle Battery Cell Testing; 20V, 40 Ah Lithium Ion Polymer Battery for the Spacesuit; Low Temperature Life-Cycle Testing of a Lithium-Ion Battery for Low-Earth-Orbiting Spacecraft; and Evaluation of the Effects of DoD and Charge Rate on a LEO Optimized 50 Ah Li-Ion Aerospace Cell.

  13. 2007 Nissan Altima-2351 Hybrid Electric Vehicle Battery Test Results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tyler Gray; Chester Motloch; James Francfort

    2010-01-01

    The U.S. Department of Energy's (DOE) Advanced Vehicle Testing Activity (AVTA) conducts several different types of tests on hybrid electric vehicles (HEVs), including testing the HEV batteries when both the vehicles and batteries are new, and at the conclusion of 160,000 miles of on-road accelerated testing. This report documents the battery testing performed and the battery testing results for the 2007 Nissan Altima HEV, number 2351 (VIN 1N4CL21E87C172351). The battery testing was performed by the Electric Transportation Engineering Corporation (eTec). The Idaho National Laboratory and eTec conduct the AVTA for DOE’s Vehicle Technologies Program.

  14. Testing activities at the National Battery Test Laboratory

    NASA Astrophysics Data System (ADS)

    Hornstra, F.; Deluca, W. H.; Mulcahey, T. P.

    The National Battery Test Laboratory (NBTL) is an Argonne National Laboratory facility for testing, evaluating, and studying advanced electric storage batteries. The facility tests batteries developed under Department of Energy programs and from private industry. These include batteries intended for future electric vehicle (EV) propulsion, electric utility load leveling (LL), and solar energy storage. Since becoming operational, the NBTL has evaluated well over 1400 cells (generally in the form of three- to six-cell modules, but up to 140-cell batteries) of various technologies. Performance characterization assessments are conducted under a series of charge/discharge cycles with constant current, constant power, peak power, and computer simulated dynamic load profile conditions. Flexible charging algorithms are provided to accommodate the specific needs of each battery under test. Special studies are conducted to explore and optimize charge procedures, to investigate the impact of unique load demands on battery performance, and to analyze the thermal management requirements of battery systems.

  15. Potential use of battery packs from NCAP tested vehicles.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lamb, Joshua; Orendorff, Christopher J.

    2013-10-01

    Several large electric vehicle batteries available to the National Highway Traffic Safety Administration are candidates for use in future safety testing programs. The batteries, from vehicles subjected to NCAP crashworthiness testing, are considered potentially damaged due to the nature of testing their associated vehicles have been subjected to. Criteria for safe shipping to Sandia is discussed, as well as condition the batteries must be in to perform testing work. Also discussed are potential tests that could be performed under a variety of conditions. The ultimate value of potential testing performed on these cells will rest on the level of accessmore » available to the battery pack, i.e. external access only, access to the on board monitoring system/CAN port or internal electrical access to the battery. Greater access to the battery than external visual and temperature monitoring would likely require input from the battery manufacturer.« less

  16. Hot Swapping Protocol Implementations in the OPNET Modeler Development Environment

    DTIC Science & Technology

    2008-03-01

    components. Unfortunately, this style is not efficient or particularly human–readable. Even purely pedagogical scenarios consisting of a client and a...definition provided by the mock object. sion of this kernel procedure steers all packets sent with op pk deliver() to the unit testing’s specialized...forms of development. Moreover, batteries of unit tests could ship with the accompanying process models and serve as robust regression tests

  17. Micro-battery Development for Juvenile Salmon Acoustic Telemetry System Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Honghao; Cartmell, Samuel S.; Wang, Qiang

    2014-01-21

    The Juvenile Salmon Acoustic Telemetry System (JSATS) project supported by the U.S. Army Corps of Engineers, Portland District, has yielded the smallest acoustic fish tag transmitter commercially available to date. In order to study even smaller fish populations and make the transmitter injectable by needles, the JSATS acoustic micro transmitter needs to be further downsized. This study focuses on the optimization of microbattery design based on Li/CFx chemistry. Through appropriate modifications, a steady high-rate pulse current with desirable life time has been achieved while the weight and volume of the battery is largely reduced. The impedance variation in as-designed microbatteriesmore » is systematically compared with that of currently used watch batteries in JSATS with an attempt to understand the intrinsic factors that control the performances of microbatteries under the real testing environments.« less

  18. Performance of the Lester battery charger in electric vehicles

    NASA Technical Reports Server (NTRS)

    Vivian, H. C.; Bryant, J. A.

    1984-01-01

    Tests are performed on an improved battery charger. The primary purpose of the testing is to develop test methodologies for battery charger evaluation. Tests are developed to characterize the charger in terms of its charge algorithm and to assess the effects of battery initial state of charge and temperature on charger and battery efficiency. Tests show this charger to be a considerable improvement in the state of the art for electric vehicle chargers.

  19. Microfluidic Devices for Chemical and Biochemical Analysis in Microgravity

    NASA Technical Reports Server (NTRS)

    Roman, Gregory T.; Culbertson, Christopher T.; Meyer, Amanda; Ramsey, J. Michael; Gonda, Steven R.

    2004-01-01

    One often touted benefit of "Lab-on-a-Chip" devices is their potential for use in remote environments. The ultimate remote environment is outer space, and NASA has multiple needs in the area of analytical sensing capability in such an environment. In particular, we are interested in integrating microfluidic devices with NASA bioreactor systems. In such an integrated system, the microfluidic device will serve as a biosensor and be used for both feedback control and for detecting various bioproducts produced by cells cultured in the NASA bioreactors. As a first step in demonstrating the ability of microfluidic devices to operate under the extreme environmental conditions found in outer space, we constructed a portable, battery operated platform for testing under reduced gravity conditions on a NASA KC-135 reduced gravity research aircraft, (AKA "the vomit comet"). The test platform consisted of a microchip, two 0-8kV high voltage power supplies, a high voltage switch, a solid-state diode-pumped green laser, a channel photomultiplier, and an inertial mass measurement unit, all under the control of a laptop computer and powered by 10 D-cell alkaline batteries. Over the course of 4 KC-135 flights, 1817 fast electrophoretic separations of 4 amino acids and/or proteins were performed in a variety of gravitational environments including zero-G, Martian-G, lunar-G, and 2-G. Results from these experiments will be presented and discussed.

  20. Air Force Phillips Laboratory Battery Program overview

    NASA Technical Reports Server (NTRS)

    House, Shaun

    1992-01-01

    Battery development and testing efforts at Phillips Laboratory fall into three main categories: nickel hydrogen, sodium sulfur, and solid state batteries. Nickel hydrogen work is broken down into a Low Earth Orbit (LEO) Life Test Program, a LEO Pulse Test Program, and a Hydrogen Embrittlement Investigation. Sodium sulfur work is broken down into a Geosynchronous Earth Orbit (GEO) Battery Flight Test and a Hot Launch Evaluation. Solid state polymer battery work consists of a GEO Battery Development Program, a Pulse Power Battery Small Business Innovation Research (SBIR), and an in-house evaluation of current generation laboratory cells. An overview of the program is presented.

  1. 2010 Toyota Prius VIN 0462 Hybrid Electric Vehicle Battery Test Results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tyler Gray; Matthew Shirk

    2013-01-01

    The U.S. Department of Energy Advanced Vehicle Testing Activity Program consists of vehicle, battery, and infrastructure testing on advanced technology related to transportation. The activity includes tests on hybrid electric vehicles (HEVs), including testing the HEV batteries when both the vehicles and batteries are new and at the conclusion of 160,000 miles of on road fleet testing. This report documents battery testing performed for the 2010 Toyota Prius HEV (VIN: JTDKN3DU2A5010462). Battery testing was performed by the Electric Transportation Engineering Corporation dba ECOtality North America. The Idaho National Laboratory and ECOtality North America collaborate on the Advanced Vehicle Testing Activitymore » for the Vehicle Technologies Program of the U.S. Department of Energy.« less

  2. 2010 Honda Insight VIN 0141 Hybrid Electric Vehicle Battery Test Results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tyler Gray

    2013-01-01

    The U.S. Department of Energy Advanced Vehicle Testing Activity Program consists of vehicle, battery, and infrastructure testing on advanced technology related to transportation. The activity includes tests on hybrid electric vehicles (HEVs), including testing the HEV batteries when both the vehicles and batteries are new and at the conclusion of 160,000 miles of on road fleet testing. This report documents battery testing performed for the 2010 Honda Insight HEV (VIN: JHMZE2H78AS010141). Battery testing was performed by the Electric Transportation Engineering Corporation dba ECOtality North America. The Idaho National Laboratory and ECOtality North America collaborate on the Advanced Vehicle Testing Activitymore » for the Vehicle Technologies Program of the U.S. Department of Energy.« less

  3. 2010 Toyota Prius VIN 6063 Hybrid Electric Vehicle Battery Test Results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tyler Gray; Matthew Shirk

    2013-01-01

    The U.S. Department of Energy Advanced Vehicle Testing Activity Program consists of vehicle, battery, and infrastructure testing on advanced technology related to transportation. The activity includes tests on hybrid electric vehicles (HEVs), including testing the HEV batteries when both the vehicles and batteries are new and at the conclusion of 160,000 miles of on road fleet testing. This report documents battery testing performed for the 2010 Toyota Prius HEV (VIN JTDKN3DU5A0006063). Battery testing was performed by the Electric Transportation Engineering Corporation dba ECOtality North America. The Idaho National Laboratory and ECOtality North America collaborate on the Advanced Vehicle Testing Activitymore » for the Vehicle Technologies Program of the U.S. Department of Energy.« less

  4. 2010 Honda Insight VIN 1748 Hybrid Electric Vehicle Battery Test Results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tyler Gray; Matthew Shirk

    2013-01-01

    The U.S. Department of Energy Advanced Vehicle Testing Activity Program consists of vehicle, battery, and infrastructure testing on advanced technology related to transportation. The activity includes tests on hybrid electric vehicles (HEVs), including testing the HEV batteries when both the vehicles and batteries are new and at the conclusion of 160,000 miles of on road fleet testing. This report documents battery testing performed for the 2010 Honda Insight HEV (VIN: JHMZE2H59AS011748). Battery testing was performed by the Electric Transportation Engineering Corporation dba ECOtality North America. The Idaho National Laboratory and ECOtality North America collaborate on the Advanced Vehicle Testing Activitymore » for the Vehicle Technologies Program of the U.S. Department of Energy.« less

  5. 2010 Ford Fusion VIN 4757 Hybrid Electric Vehicle Battery Test Results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tyler Gray; Matthew Shirk

    2013-01-01

    The U.S. Department of Energy Advanced Vehicle Testing Activity Program consists of vehicle, battery, and infrastructure testing on advanced technology related to transportation. The activity includes tests on hybrid electric vehicles (HEVs), including testing HEV batteries when both the vehicles and batteries are new and at the conclusion of 160,000 miles of on-road fleet testing. This report documents battery testing performed for the 2010 Ford Fusion HEV (VIN: 3FADP0L34AR144757). Battery testing was performed by the Electric Transportation Engineering Corporation dba ECOtality North America. The Idaho National Laboratory and ECOtality North America collaborate on the Advanced Vehicle Testing Activity for themore » Vehicle Technologies Program of the U.S. Department of Energy.« less

  6. Cell overcharge testing inside sodium metal halide battery

    NASA Astrophysics Data System (ADS)

    Frutschy, Kris; Chatwin, Troy; Bull, Roger

    2015-09-01

    Testing was conducted to measure electrical performance and safety of the General Electric Durathon™ E620 battery module (600 V class 20 kWh) during cell overcharge. Data gathered from this test was consistent with SAE Electric Vehicle Battery Abuse Testing specification J2464 [1]. After cell overcharge failure and 24 A current flow for additional 60 minutes, battery was then discharged at 7.5 KW average power to 12% state of charge (SOC) and recharged back to 100% SOC. This overcharging test was performed on two cells. No hydrogen chloride (HCl) gas was detected during front cell (B1) test, and small amount (6.2 ppm peak) was measured outside the battery after center cell (F13) overcharge. An additional overcharge test was performed per UL Standard 1973 - Batteries for Use in Light Electric Rail (LER) Applications and Stationary Applications[2]. With the battery at 11% SOC and 280 °C float temperature, an individual cell near the front (D1) was deliberately imbalanced by charging it to 62% SOC. The battery was then recharged to 100% SOC. In all three tests, the battery cell pack was stable and individual cell failure did not propagate to other cells. Battery discharge performance, charge performance, and electrical isolation were normal after all three tests.

  7. Batteries for Electric Vehicles

    NASA Technical Reports Server (NTRS)

    Conover, R. A.

    1985-01-01

    Report summarizes results of test on "near-term" electrochemical batteries - (batteries approaching commercial production). Nickel/iron, nickel/zinc, and advanced lead/acid batteries included in tests and compared with conventional lead/acid batteries. Batteries operated in electric vehicles at constant speed and repetitive schedule of accerlerating, coasting, and braking.

  8. Student Intern: Non-Traditional Water Resources | Argonne National

    Science.gov Websites

    ----Lithium-ion batteries ----Lithium-air batteries --Electricity transmission --Smart Grid Environment Transportation Alternative battery systems for transportation uses Webinar: Fuzzy Mud and the Future of

  9. Laboratory testing of the (Japan Storage Battery) traction batteries GS E75A and GS E150H

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    This report describes the testing of the GS E75A and GS E150H flooded lead-acid 12-volt traction batteries and compares the selected batteries to U.S.-made electric vehicle batteries. The results and conclusions of the testing are presented.

  10. Evaluation of biological methods for a future methodological implementation of the Hazard criterion H14 'ecotoxic' in the European waste list (2000/532/EC).

    PubMed

    Moser, Heidrun; Roembke, Joerg; Donnevert, Gerhild; Becker, Roland

    2011-02-01

    The ecotoxicological characterization of waste is part of its assessment as hazardous or non-hazardous according to the European Waste List. For this classification 15 hazard criteria are derived from the Council Directive 91/689/EEC on hazardous waste. Some of the hazard criteria are based on the content of dangerous substances. The criterion H14 'ecotoxic' lacks of an assessment and testing strategy and no specific threshold values have been defined so far. Based on the recommendations of CEN guideline 14735 (2005), an international round robin test (ring test) was organized by the German Federal Environment Agency in order to define suitable test methods for the biological assessment of waste and waste eluates. A basic test battery, consisting of three aquatic and three terrestrial tests, was compiled. In addition, data were submitted for ten additional tests (five aquatic (including a genotoxicity test) and five terrestrial ones). The tests were performed with three representative waste types: an ash from an incineration plant, a soil containing high concentrations of organic contaminants (polycyclic aromatic hydrocarbons) and a preserved wood waste. The results of this ring test confirm that a combination of a battery of biological tests and chemical residual analysis is needed for an ecotoxicological characterization of wastes. With small modifications the basic test battery is considered to be well suitable for the hazard and risk assessment of wastes and waste eluates. All results and documents are accessible via a web-based data bank application.

  11. Characterization testing of a 40 Ahr bipolar nickel hydrogen battery

    NASA Astrophysics Data System (ADS)

    Brewer, Jeffrey C.; Manzo, Michelle A.; Gahn, Randall F.

    1989-12-01

    In a continuing effort to develop NiH2 bipolar technology to a point where it can be used efficiently in space flight, testing of a second 40 Ahr, 10-cell bipolar battery has begun. This battery has undergone extensive characterization testing to determine the effects of such operating parameters as charge and discharge rates, temperature, and pressure. The fundamental design of this actively cooled bipolar battery is the same as the first battery. Most of the individual components, however, are from different manufacturers. Different testing procedures as well as certain unique battery characteristics make it difficult to directly compare the two sets of results. In general, the performance of this battery throughout characterization produced expected results. The main differences seen between the first and second batteries occurred during the high-rate discharge portion of the test matrix. The first battery also had poor high-rate discharge results, although better than those of the second battery. Minor changes were made to the battery frame design used for the first battery in an attempt to allow better gas access to the reaction sites for the second build and hopefully improve performance. The changes, however, did not improve the performance of the second battery and could have possibly contributed to the poorer performance that was observed. There are other component differences that could have contributed to the poorer performance of the second battery. The H2 electrode in the second battery was constructed with a Goretex backing which could have limited the high-rate current flow. The gas screen in the second battery had a larger mesh which again could have limited the high-rate current flow. Small scale 2 x 2 batteries are being tested to evaluate the effects of the component variations.

  12. Characterization testing of a 40 Ahr bipolar nickel hydrogen battery

    NASA Technical Reports Server (NTRS)

    Brewer, Jeffrey C.; Manzo, Michelle A.; Gahn, Randall F.

    1989-01-01

    In a continuing effort to develop NiH2 bipolar technology to a point where it can be used efficiently in space flight, testing of a second 40 Ahr, 10-cell bipolar battery has begun. This battery has undergone extensive characterization testing to determine the effects of such operating parameters as charge and discharge rates, temperature, and pressure. The fundamental design of this actively cooled bipolar battery is the same as the first battery. Most of the individual components, however, are from different manufacturers. Different testing procedures as well as certain unique battery characteristics make it difficult to directly compare the two sets of results. In general, the performance of this battery throughout characterization produced expected results. The main differences seen between the first and second batteries occurred during the high-rate discharge portion of the test matrix. The first battery also had poor high-rate discharge results, although better than those of the second battery. Minor changes were made to the battery frame design used for the first battery in an attempt to allow better gas access to the reaction sites for the second build and hopefully improve performance. The changes, however, did not improve the performance of the second battery and could have possibly contributed to the poorer performance that was observed. There are other component differences that could have contributed to the poorer performance of the second battery. The H2 electrode in the second battery was constructed with a Goretex backing which could have limited the high-rate current flow. The gas screen in the second battery had a larger mesh which again could have limited the high-rate current flow. Small scale 2 x 2 batteries are being tested to evaluate the effects of the component variations.

  13. Surrogate measures: A proposed alternative in human factors assessment of operational measures of performance

    NASA Technical Reports Server (NTRS)

    Kennedy, Robert S.; Lane, Norman E.; Kuntz, Lois A.

    1987-01-01

    Surrogate measures are proposed as an alternative to direct assessment of operational performance for purposes of screening agents who may have to work under unusual stresses or in exotic environments. Such measures are particularly proposed when the surrogate can be empirically validated against the operational criterion. The focus is on cognitive (or throughput) performances in humans as opposed to sensory (input) or motor (output) measures, but the methods should be applicable for development of batteries which will tap input/output functions. A menu of performance tasks is under development for implementation on a battery-operated portable microcomputer, with 21 tests currently available. The tasks are reliable and become stable in minimum amounts of time; appear sensitive to some agents; comprise constructs related to actual job tasks; and are easily administered in most environments. Implications for human factors engineering studies in environmental stress are discussed.

  14. Thermal modeling of NiH2 batteries

    NASA Technical Reports Server (NTRS)

    Ponthus, Agnes-Marie; Alexandre, Alain

    1994-01-01

    The following are discussed: NiH2 battery mission and environment; NiH2 cell heat dissipation; Nodal software; model development general philosophy; NiH2 battery model development; and NiH2 experimental developments.

  15. SMS/GOES cell and battery data analysis report

    NASA Technical Reports Server (NTRS)

    Armantrout, J. D.

    1977-01-01

    The nickel-cadmium battery design developed for the Synchronous Meteorological Satellite (SMS) and Geostationary Operational Environmental Satellite (GOES) provided background and guidelines for future development, manufacture, and application of spacecraft batteries. SMS/GOES battery design, development, qualification testing, acceptance testing, and life testing/mission performance characteristics were evaluated for correlation with battery cell manufacturing process variables.

  16. Life test of a nickel cadmium battery with a protection/reconditioning circuit

    NASA Technical Reports Server (NTRS)

    Lanier, J. R., Jr.; Bush, J. R., Jr.

    1981-01-01

    Results are discussed for a Ni-Cd battery test over a period of 8 years, 2 months and 44,213 simulated low Earth orbits. The battery cells were protected against overdischarge and reversal at discharge rates up to 25 amperes (1.25C) by a battery protection and reconditioning circuit. The circuit performed flawlessly during the test, and proved its value, both as a battery reconditioner and a cell protection device. Battery cell failures are also discussed. The test demonstrated the viability of using Ni-Cd batteries at depth-of-discharge up to 25 percent for over 5 years in a low Earth orbit.

  17. Testing of sealed lead-acid batteries

    NASA Astrophysics Data System (ADS)

    Bush, D. M.; Sealey, J. D.; Miller, D. W.

    1984-02-01

    Sealed lead acid batteries under development were tested. The goal was to develop a totally maintenance free sealed lead acid battery capable of deep discharge operation in a photovoltaic power system. Sealed lead acid batteries and a group of conventional, flooded lead acid batteries were exposed to a matrix test plan, with some approaching 1000 cycles. This performance was achieved with the standard National Electrical Manufacturers' Association cycle test, and the partial state of charge cycle test. Modes of failure are investigated.

  18. Advanced Modular "All in One" Battery System with Intelligent Autonomous Cell Balancing Management

    NASA Astrophysics Data System (ADS)

    Petitdidier, X.; Pasquier, E.; Defer, M.; Koch, M.; Knorr, W.

    2008-09-01

    A new generation of energy storage systems based on Li-ion technology emerged at the end of the last century.To perform the first tests in safe conditions, Saft designed a simple electronic.Today, all Li-ion batteries for autonomous applications such as drones, launchers, missiles, torpedoes and "human" applications such as cellular, laptop, hybrid vehicle and nearly sub-marines need a Battery Management System.The minimum in terms of functions is the overcharge and over-discharge protections.For a battery made of 2 cells connected in series or more, a balancing system is added to maintain the available energy during all the life of the battery. For stringent/demanding applications, the state of charge and state of health are calculated by one or more computers.It is now time to take benefit of the past 10 years of Saft's experience in the domain to re-evaluate the constraints of Li-ion batteries and provide customers with improved products by optimizing the battery management.Benefits of electronic for satellite applications:• Full control over battery.• Confidence whatever the possible change of conditions in environment.• The battery system can resist long exposure to gradient conditions with mitigated and stabilized impact on performances.• The balancing function allow to use all the energy of all the cells: optimize of installed energy (compact design, mass saving). It started out with the basic fact that electrochemists are not intended to be space rated electronic experts and vice versa, even if Saft has a good heritage in the electronic battery management system. Consequently, considering heritage and expertise in their respective core businesses, Saft and ASP teamed up.It became necessary to provide an "all in one" modular energy storage system with intelligent autonomous cell balancing management.

  19. Field evaluation of a behavioral test battery for DWI

    DOT National Transportation Integrated Search

    1983-09-01

    This paper presents initial findings from a recently conducted field evaluation of a sobriety test battery. Police officers from four jurisdictions were trained in the use of the sobriety test battery. They then administered the battery to drivers st...

  20. 40 CFR Appendix A to Subpart L of... - Operating Coke Oven Batteries as of April 1, 1992

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 9 2010-07-01 2010-07-01 false Operating Coke Oven Batteries as of... SOURCE CATEGORIES National Emission Standards for Coke Oven Batteries Pt. 63, Subpt. L, App. A Appendix A to Subpart L of Part 63—Operating Coke Oven Batteries as of April 1, 1992 No. Plant Battery 1 ABC...

  1. 40 CFR Appendix A to Subpart L of... - Operating Coke Oven Batteries as of April 1, 1992

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 10 2013-07-01 2013-07-01 false Operating Coke Oven Batteries as of... SOURCE CATEGORIES National Emission Standards for Coke Oven Batteries Pt. 63, Subpt. L, App. A Appendix A to Subpart L of Part 63—Operating Coke Oven Batteries as of April 1, 1992 No. Plant Battery 1 ABC...

  2. 40 CFR Appendix A to Subpart L of... - Operating Coke Oven Batteries as of April 1, 1992

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 10 2014-07-01 2014-07-01 false Operating Coke Oven Batteries as of... SOURCE CATEGORIES National Emission Standards for Coke Oven Batteries Pt. 63, Subpt. L, App. A Appendix A to Subpart L of Part 63—Operating Coke Oven Batteries as of April 1, 1992 No. Plant Battery 1 ABC...

  3. 40 CFR Appendix A to Subpart L of... - Operating Coke Oven Batteries as of April 1, 1992

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 9 2011-07-01 2011-07-01 false Operating Coke Oven Batteries as of... SOURCE CATEGORIES National Emission Standards for Coke Oven Batteries Pt. 63, Subpt. L, App. A Appendix A to Subpart L of Part 63—Operating Coke Oven Batteries as of April 1, 1992 No. Plant Battery 1 ABC...

  4. 40 CFR Appendix A to Subpart L of... - Operating Coke Oven Batteries as of April 1, 1992

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 10 2012-07-01 2012-07-01 false Operating Coke Oven Batteries as of... SOURCE CATEGORIES National Emission Standards for Coke Oven Batteries Pt. 63, Subpt. L, App. A Appendix A to Subpart L of Part 63—Operating Coke Oven Batteries as of April 1, 1992 No. Plant Battery 1 ABC...

  5. International Space Station Lithium-Ion Main Battery Thermal Runaway Propagation Test

    NASA Technical Reports Server (NTRS)

    Dalton, Penni J.; North, Tim

    2017-01-01

    In 2010, the ISS Program began the development of Lithium-Ion (Li-Ion) batteries to replace the aging Ni-H2 batteries on the primary Electric Power System (EPS). After the Boeing 787 Li-Ion battery fires, the NASA Engineering and Safety Center (NESC) Power Technical Discipline Team was tasked by ISS to investigate the possibility of Thermal Runaway Propagation (TRP) in all Li-Ion batteries used on the ISS. As part of that investigation, NESC funded a TRP test of an ISS EPS non-flight Li-Ion battery. The test was performed at NASA White Sands Test Facility in October 2016. This paper will discuss the work leading up to the test, the design of the test article, and the test results.

  6. Reliability Assessment of the Defense Automated Neurobehavioral Assessment (DANA) in Extreme Environments

    DTIC Science & Technology

    2015-05-01

    multiple automated cognitive tests, data management and reporting capabilities, and executive menu. The DANA battery was given on a Trimble NOMAD ...handheld computing device using a stylus for consistency. The NOMAD runs a custom version of the Android Operating System and has a color 3.5 inch... digit pairs are shown below a key, & the participant indicates it matches the one in the key. PRO This test targets decision-making capabilities

  7. 2011 Chevrolet Volt VIN 0815 Plug-In Hybrid Electric Vehicle Battery Test Results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tyler Gray; Matthew Shirk; Jeffrey Wishart

    2013-07-01

    The U.S. Department of Energy (DOE) Advanced Vehicle Testing Activity (AVTA) program consists of vehicle, battery, and infrastructure testing on advanced technology related to transportation. The activity includes tests on plug-in hybrid electric vehicles (PHEVs), including testing the PHEV batteries when both the vehicles and batteries are new and at the conclusion of 12,000 miles of on-road fleet testing. This report documents battery testing performed for the 2011 Chevrolet Volt PHEV (VIN 1G1RD6E48BU100815). The battery testing was performed by the Electric Transportation Engineering Corporation (eTec) dba ECOtality North America. The Idaho National Laboratory and ECOtality North America collaborate on themore » AVTA for the Vehicle Technologies Program of the DOE.« less

  8. 40 CFR 63.7296 - What emission limitations must I meet for battery stacks?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... for battery stacks? 63.7296 Section 63.7296 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY..., Quenching, and Battery Stacks Emission Limitations and Work Practice Standards § 63.7296 What emission limitations must I meet for battery stacks? You must not discharge to the atmosphere any emissions from any...

  9. 40 CFR 63.7296 - What emission limitations must I meet for battery stacks?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... for battery stacks? 63.7296 Section 63.7296 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY..., Quenching, and Battery Stacks Emission Limitations and Work Practice Standards § 63.7296 What emission limitations must I meet for battery stacks? You must not discharge to the atmosphere any emissions from any...

  10. 40 CFR 63.7296 - What emission limitations must I meet for battery stacks?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... for battery stacks? 63.7296 Section 63.7296 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY..., Quenching, and Battery Stacks Emission Limitations and Work Practice Standards § 63.7296 What emission limitations must I meet for battery stacks? You must not discharge to the atmosphere any emissions from any...

  11. 40 CFR 63.7296 - What emission limitations must I meet for battery stacks?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... for battery stacks? 63.7296 Section 63.7296 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY..., Quenching, and Battery Stacks Emission Limitations and Work Practice Standards § 63.7296 What emission limitations must I meet for battery stacks? You must not discharge to the atmosphere any emissions from any...

  12. 40 CFR 63.7296 - What emission limitations must I meet for battery stacks?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... for battery stacks? 63.7296 Section 63.7296 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY..., Quenching, and Battery Stacks Emission Limitations and Work Practice Standards § 63.7296 What emission limitations must I meet for battery stacks? You must not discharge to the atmosphere any emissions from any...

  13. Sodium-sulfur battery flight experiment definition study

    NASA Technical Reports Server (NTRS)

    Chang, Rebecca; Minck, Robert

    1990-01-01

    Sodium-sulfur batteries are considered to be one of the most likely battery systems for space applications. Compared with the Ni-H2 or Ni-Co battery systems, Na-S batteries offer a mass reduction by a factor of 2 to 4, representing significant launch cost savings or increased payload mass capabilities. The Na-S battery operates at between 300 and 400 C, using liquid sodium and sulfur/polysulfide electrodes and solid ceramic electrolyte; the transport of the electrode materials to the surface of the electrolyte is through wicking/capillary forces. This paper describes five tests identified for the Na-S battery flight experiment definition study, which include the cell characterization test, the reactant distribution test, the current/temperature distribution test, the freeze/thaw test, and the multicell LEO test. A schematic diagram of Na-S cell is included.

  14. Testing Conducted for Lithium-Ion Cell and Battery Verification

    NASA Technical Reports Server (NTRS)

    Reid, Concha M.; Miller, Thomas B.; Manzo, Michelle A.

    2004-01-01

    The NASA Glenn Research Center has been conducting in-house testing in support of NASA's Lithium-Ion Cell Verification Test Program, which is evaluating the performance of lithium-ion cells and batteries for NASA mission operations. The test program is supported by NASA's Office of Aerospace Technology under the NASA Aerospace Flight Battery Systems Program, which serves to bridge the gap between the development of technology advances and the realization of these advances into mission applications. During fiscal year 2003, much of the in-house testing effort focused on the evaluation of a flight battery originally intended for use on the Mars Surveyor Program 2001 Lander. Results of this testing will be compared with the results for similar batteries being tested at the Jet Propulsion Laboratory, the Air Force Research Laboratory, and the Naval Research Laboratory. Ultimately, this work will be used to validate lithium-ion battery technology for future space missions. The Mars Surveyor Program 2001 Lander battery was characterized at several different voltages and temperatures before life-cycle testing was begun. During characterization, the battery displayed excellent capacity and efficiency characteristics across a range of temperatures and charge/discharge conditions. Currently, the battery is undergoing lifecycle testing at 0 C and 40-percent depth of discharge under low-Earth-orbit (LEO) conditions.

  15. A Battery Certification Testbed for Small Satellite Missions

    NASA Technical Reports Server (NTRS)

    Cameron, Zachary; Kulkarni, Chetan S.; Luna, Ali Guarneros; Goebel, Kai; Poll, Scott

    2015-01-01

    A battery pack consisting of standard cylindrical 18650 lithium-ion cells has been chosen for small satellite missions based on previous flight heritage and compliance with NASA battery safety requirements. However, for batteries that transit through the International Space Station (ISS), additional certification tests are required for individual cells as well as the battery packs. In this manuscript, we discuss the development of generalized testbeds for testing and certifying different types of batteries critical to small satellite missions. Test procedures developed and executed for this certification effort include: a detailed physical inspection before and after experiments; electrical cycling characterization at the cell and pack levels; battery-pack overcharge, over-discharge, external short testing; battery-pack vacuum leak and vibration testing. The overall goals of these certification procedures are to conform to requirements set forth by the agency and identify unique safety hazards. The testbeds, procedures, and experimental results are discussed for batteries chosen for small satellite missions to be launched from the ISS.

  16. Optimization of batteries for plug-in hybrid electric vehicles

    NASA Astrophysics Data System (ADS)

    English, Jeffrey Robb

    This thesis presents a method to quickly determine the optimal battery for an electric vehicle given a set of vehicle characteristics and desired performance metrics. The model is based on four independent design variables: cell count, cell capacity, state-of-charge window, and battery chemistry. Performance is measured in seven categories: cost, all-electric range, maximum speed, acceleration, battery lifetime, lifetime greenhouse gas emissions, and charging time. The performance of each battery is weighted according to a user-defined objective function to determine its overall fitness. The model is informed by a series of battery tests performed on scaled-down battery samples. Seven battery chemistries were tested for capacity at different discharge rates, maximum output power at different charge levels, and performance in a real-world automotive duty cycle. The results of these tests enable a prediction of the performance of the battery in an automobile. Testing was performed at both room temperature and low temperature to investigate the effects of battery temperature on operation. The testing highlighted differences in behavior between lithium, nickel, and lead based batteries. Battery performance decreased with temperature across all samples with the largest effect on nickel-based chemistries. Output power also decreased with lead acid batteries being the least affected by temperature. Lithium-ion batteries were found to be highly efficient (>95%) under a vehicular duty cycle; nickel and lead batteries have greater losses. Low temperatures hindered battery performance and resulted in accelerated failure in several samples. Lead acid, lead tin, and lithium nickel alloy batteries were unable to complete the low temperature testing regime without losing significant capacity and power capability. This is a concern for their applicability in electric vehicles intended for cold climates which have to maintain battery temperature during long periods of inactivity. Three sample optimizations were performed: a compact car, a, truck, and a sports car. The compact car benefits from increased battery capacity despite the associated higher cost. The truck returned the smallest possible battery of each chemistry, indicating that electrification is not advisable. The sports car optimization resulted in the largest possible battery, indicating large performance from increased electrification. These results mirror the current state of the electric vehicle market.

  17. Satellite battery testing status

    NASA Astrophysics Data System (ADS)

    Haag, R.; Hall, S.

    1986-09-01

    Because of the large numbers of satellite cells currently being tested and anticipated at the Naval Weapons Support Center (NAVWPNSUPPCEN) Crane, Indiana, satellite cell testing is being integrated into the Battery Test Automation Project (BTAP). The BTAP, designed to meet the growing needs for battery testing at the NAVWPNSUPPCEN Crane, will consist of several Automated Test Stations (ATSs) which monitor batteries under test. Each ATS will interface with an Automation Network Controller (ANC) which will collect test data for reduction.

  18. Satellite battery testing status

    NASA Technical Reports Server (NTRS)

    Haag, R.; Hall, S.

    1986-01-01

    Because of the large numbers of satellite cells currently being tested and anticipated at the Naval Weapons Support Center (NAVWPNSUPPCEN) Crane, Indiana, satellite cell testing is being integrated into the Battery Test Automation Project (BTAP). The BTAP, designed to meet the growing needs for battery testing at the NAVWPNSUPPCEN Crane, will consist of several Automated Test Stations (ATSs) which monitor batteries under test. Each ATS will interface with an Automation Network Controller (ANC) which will collect test data for reduction.

  19. Effects of Electric Vehicle Fast Charging on Battery Life and Vehicle Performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matthew Shirk; Jeffrey Wishart

    2015-04-01

    As part of the U.S. Department of Energy’s Advanced Vehicle Testing Activity, four new 2012 Nissan Leaf battery electric vehicles were instrumented with data loggers and operated over a fixed on-road test cycle. Each vehicle was operated over the test route, and charged twice daily. Two vehicles were charged exclusively by AC level 2 EVSE, while two were exclusively DC fast charged with a 50 kW charger. The vehicles were performance tested on a closed test track when new, and after accumulation of 50,000 miles. The traction battery packs were removed and laboratory tested when the vehicles were new, andmore » at 10,000-mile intervals. Battery tests include constant-current discharge capacity, electric vehicle pulse power characterization test, and low peak power tests. The on-road testing was carried out through 70,000 miles, at which point the final battery tests were performed. The data collected over 70,000 miles of driving, charging, and rest are analyzed, including the resulting thermal conditions and power and cycle demands placed upon the battery. Battery performance metrics including capacity, internal resistance, and power capability obtained from laboratory testing throughout the test program are analyzed. Results are compared within and between the two groups of vehicles. Specifically, the impacts on battery performance, as measured by laboratory testing, are explored as they relate to battery usage and variations in conditions encountered, with a primary focus on effects due to the differences between AC level 2 and DC fast charging. The contrast between battery performance degradation and the effect on vehicle performance is also explored.« less

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pezeshki, Alan M.; Fujimoto, Cy; Sun, Che -Nan

    In this paper, we report on the performance of Diels Alder poly(phenylene) membranes in vanadium redox flow batteries. The membranes were functionalized with quaternary ammonium groups to form an anion exchange membrane (QDAPP) and with sulfonic acid groups to form a cation exchange membrane (SDAPP). Both membrane classes showed similar conductivities in the battery environment, suggesting that the ion conduction mechanism in the material is not strongly affected by the moieties along the polymer backbone. The resistance to vanadium permeation in QDAPP was not improved relative to SDAPP, further suggesting that the polarity of the functional groups do not playmore » a significant role in the membrane materials tested. Both QDAPP and SDAPP outperformed Nafion membranes in cycling tests, with both achieving voltage efficiencies above 85% while maintaining 95% coulombic efficiency while at a current density of 200 mA/cm 2.« less

  1. Mariner Mars 1971 battery design, test, and flight performance

    NASA Technical Reports Server (NTRS)

    Bogner, R. S.

    1973-01-01

    The design, integration, fabrication, test results, and flight performance of the battery system for the Mariner Mars spacecraft launched in May 1971 are presented. The battery consists of 26 20-Ah hermetically sealed nickel-cadmium cells housed in a machined magnesium chassis. The battery package weighs 29.5 kg and is unique in that the chassis also serves as part of the spacecraft structure. Active thermal control is accomplished by louvers mounted to the battery baseplate. Battery charge is accomplished by C/10 and C/30 constant current chargers. The switch from the high-rate to low-rate charge is automatic, based on terminal voltage. Additional control is possible by ground command or onboard computer. The performance data from the flight battery is compared to the data from various battery tests in the laboratory. Flight battery data was predictable based on ground test data.

  2. Testing and development of electric vehicle batteries for EPRI Electric Transportation Program

    NASA Astrophysics Data System (ADS)

    1985-11-01

    Argonne National Laboratory conducted an electric-vehicle battery testing and development program for the Electric Power Research Institute. As part of this program, eighteen battery modules previously developed by Johnson Controls, Inc. were tested. This type of battery (EV-2300 - an improved state-of-the-art lead-acid battery) was designed specifically for improved performance, range, and life in electric vehicles. In order to obtain necessary performance data, the batteries were tested under various duty cycles typical of normal service. This program, supported by the Electric Power Research Institute, consisted of three tasks: determination of the effect of cycle life vs peak power and rest period, determination of the impact of charge method on cycle life, and evaluation of the EV-2300 battery system. Two supporting studies were also carried out: one on thermal management of electric-vehicle batteries and one on enhanced utilization of active material in lead-acid batteries.

  3. Family Literacy Environment and Early Literacy Development

    ERIC Educational Resources Information Center

    Kirby, John R.; Hogan, Brenda

    2008-01-01

    A battery of reading-related and reading measures was used to select samples of good (N = 30) and poor readers (N = 19) in Grade 1. Parents of these children completed a questionnaire about current and preschool home literacy practices and socio-economic status (SES). The 2 groups were compared with t tests and in a discriminant analysis. The t…

  4. A portable battery for objective, non-obstrusive measures of human performances

    NASA Technical Reports Server (NTRS)

    Kennedy, R. S.

    1984-01-01

    The need for a standardized battery of human performance tests to measure the effects of various treatments is pointed out. Progress in such a program is reported. Three batteries are available which differ in length and the number of tests in the battery. All tests are implemented on a portable, lap held, briefcase size microprocessor. Performances measured include: information processing, memory, visual perception, reasoning, and motor skills, programs to determine norms, reliabilities, stabilities, factor structure of tests, comparisons with marker tests, apparatus suitability. Rationale for the battery is provided.

  5. NASA Tech Briefs, May 2013

    NASA Technical Reports Server (NTRS)

    2013-01-01

    Topics include: Test Waveform Applications for JPL STRS Operating Environment; Pneumatic Proboscis Heat-Flow Probe; Method to Measure Total Noise Temperature of a Wireless Receiver During Operation; Cursor Control Device Test Battery; Functional Near-Infrared Spectroscopy Signals Measure Neuronal Activity in the Cortex; ESD Test Apparatus for Soldering Irons; FPGA-Based X-Ray Detection and Measurement for an X-Ray Polarimeter; Sequential Probability Ratio Test for Spacecraft Collision Avoidance Maneuver Decisions; Silicon/Carbon Nanotube Photocathode for Splitting Water; Advanced Materials and Fabrication Techniques for the Orion Attitude Control Motor; Flight Hardware Packaging Design for Stringent EMC Radiated Emission Requirements; RF Reference Switch for Spaceflight Radiometer Calibration; An Offload NIC for NASA, NLR, and Grid Computing; Multi-Scale CNT-Based Reinforcing Polymer Matrix Composites for Lightweight Structures; Ceramic Adhesive and Methods for On-Orbit Repair of Re-Entry Vehicles; Self-Healing Nanocomposites for Reusable Composite Cryotanks; Pt-Ni and Pt-Co Catalyst Synthesis Route for Fuel Cell Applications; Aerogel-Based Multilayer Insulation with Micrometeoroid Protection; Manufacturing of Nanocomposite Carbon Fibers and Composite Cylinders; Optimized Radiator Geometries for Hot Lunar Thermal Environments; A Mission Concept: Re-Entry Hopper-Aero-Space-Craft System on-Mars (REARM-Mars); New Class of Flow Batteries for Terrestrial and Aerospace Energy Storage Applications; Reliability of CCGA 1152 and CCGA 1272 Interconnect Packages for Extreme Thermal Environments; Using a Blender to Assess the Microbial Density of Encapsulated Organisms; Mixed Integer Programming and Heuristic Scheduling for Space Communication; Video Altimeter and Obstruction Detector for an Aircraft; Control Software for Piezo Stepping Actuators; Galactic Cosmic Ray Event-Based Risk Model (GERM) Code; Sasquatch Footprint Tool; and Multi-User Space Link Extension (SLE) System.

  6. Evaluation of new plastic compression (Ziegler) type of seals for long life planetary batteries

    NASA Technical Reports Server (NTRS)

    Frank, H. A.

    1973-01-01

    A program was initiated to develop improved types of terminal seals for aerospace Ni-Cd batteries. The approach used has not involved attempts, such as employed elsewhere, to improve the ceramic-to-metal seal that is now extensively employed for this application. Rather the approach has been directed toward the development and evaluation of new types of seals. Of prime interest in this initial investigation has been the Ziegler type of compression seal and in particular the injection molded version developed by the Bell Telephone Laboratories (BTL). A number of these units were designed, fabricated, and evaluated on an accelerated life test under a simulated battery environment. Results have shown that there are no major problems involved in scaling up the BTL small-size (5-amp) seal to a larger size (up to 50-amp) seal suitable for most JPL flight batteries. Five out of five such seals successfully completed over 10 months of continuous thermal cycling without developing any leaks greater than 1.8 x to 10 to the minus 9th power atm-cc-He/s.

  7. Aerospace applications of batteries

    NASA Technical Reports Server (NTRS)

    Habib, Shahid

    1993-01-01

    NASA has developed battery technology to meet the demanding requirements for aerospace applications; specifically, the space vacuum, launch loads, and high duty cycles. Because of unique requirements and operating environments associated with space applications, NASA has written its own standards and specifications for batteries.

  8. New Battery Testing Facility Could Boost Future of Electric Vehicles

    Science.gov Websites

    industry. The Battery Thermal Test Facility at the U.S. Department of Energy's (DOE) National Renewable , ambient heat sources that could effect thermal readings from the battery. The cycler can both charge and draw current from a battery, allowing for thermal testing of any voltage. It can also be used to test

  9. Hubble Space Telescope Battery Capacity Update

    NASA Technical Reports Server (NTRS)

    Hollandsworth, Roger; Armantrout, Jon; Rao, Gopalakrishna M.

    2007-01-01

    Orbital battery performance for the Hubble Space Telescope is discussed and battery life is predicted which supports decision to replace orbital batteries by 2009-2010 timeframe. Ground characterization testing of cells from the replacement battery build is discussed, with comparison of data from battery capacity characterization with cell studies of Cycle Life and 60% Stress Test at the Naval Weapons Surface Center (NWSC)-Crane, and cell Cycle Life testing at the Marshal Space Flight Center (MSFC). The contents of this presentation includes an update to the performance of the on-orbit batteries, as well as a discussion of the HST Service Mission 4 (SM4) batteries manufactured in 1996 and activated in 2000, and a second set of SM4 backup replacement batteries which began manufacture Jan 11, 2007, with delivery scheduled for July 2008.

  10. Zinc-chloride battery technology - Status 1983

    NASA Astrophysics Data System (ADS)

    Rowan, J. W.; Carr, P.; Warde, C. J.; Henriksen, G. L.

    Zinc-chloride batteries are presently under development at Energy Development Associates (EDA) for load-leveling, electric-vehicle, and specialty applications. A 500-kWh battery system has been built at Detroit Edison's Charlotte substation near downtown Detroit. Following shakedown testing, this system will be installed at the Battery Energy Storage Test (BEST) Facility in Hillsborough, New Jersey, in July 1983. Data is presented also for a prototype 50-kWh battery which has successfully operated through 150 cycles. EDA has built and tested three 4-passenger automobiles. The maximum range achieved on a single charge was 200 miles at 40 mph. Recently, the electric-vehicle battery program at EDA has focused on commercial vehicles. Two vans, each powered with a 45-kWh zinc-chloride battery, have been built and track tested. These vehicles, which carry a payload of 1,000 pounds, have a top speed of 55 mph and an operational range in excess of 80 miles. In the specialty battery area, two 6-kWh 12-V reserve batteries have been built and tested. This type of battery offers the prospect of long shelf life and an energy density in excess of 100 Wh/lb.

  11. Kalman-variant estimators for state of charge in lithium-sulfur batteries

    NASA Astrophysics Data System (ADS)

    Propp, Karsten; Auger, Daniel J.; Fotouhi, Abbas; Longo, Stefano; Knap, Vaclav

    2017-03-01

    Lithium-sulfur batteries are now commercially available, offering high specific energy density, low production costs and high safety. However, there is no commercially-available battery management system for them, and there are no published methods for determining state of charge in situ. This paper describes a study to address this gap. The properties and behaviours of lithium-sulfur are briefly introduced, and the applicability of 'standard' lithium-ion state-of-charge estimation methods is explored. Open-circuit voltage methods and 'Coulomb counting' are found to have a poor fit for lithium-sulfur, and model-based methods, particularly recursive Bayesian filters, are identified as showing strong promise. Three recursive Bayesian filters are implemented: an extended Kalman filter (EKF), an unscented Kalman filter (UKF) and a particle filter (PF). These estimators are tested through practical experimentation, considering both a pulse-discharge test and a test based on the New European Driving Cycle (NEDC). Experimentation is carried out at a constant temperature, mirroring the environment expected in the authors' target automotive application. It is shown that the estimators, which are based on a relatively simple equivalent-circuit-network model, can deliver useful results. If the three estimators implemented, the unscented Kalman filter gives the most robust and accurate performance, with an acceptable computational effort.

  12. [Normalisation and validation of the Brief Neuropsychological Battery as the reference neuropsychological test in multiple sclerosis].

    PubMed

    Duque, P; Ibanez, J; Del Barco, A; Sepulcre, J; de Ramon, E; Fernandez-Fernandez, O

    2012-03-01

    INTRODUCTION. The current batteries such as the Brief Repeatable Battery of Neuropsychological Tests (BRB-N) for evaluating cognitive decline in patients with multiple sclerosis are complex and time-consuming. AIM. To obtain normative values and validate a new battery. SUBJECTS AND METHODS. Four neuropsychological tests were finally included (episodic memory, the Symbol-Digit Modalities Test, a category fluency test, and the Paced Auditory Serial Addition Test). Normative values (overall and by age group) were derived by administering the battery to healthy subjects (5th percentile was the limit of normal). External validity was explored by comparison with the BRB-N. The new battery was also administered to a subsample after 4 weeks to assess reproducibility. RESULTS. To provide normative data, 1036 healthy subjects were recruited. The mean completion time was 18.5 ± 5.2 minutes. For the 229 subjects who were administered the new battery and the BRB-N, no statistically significant differences were found except for mean completion time (19 ± 4 vs 25 ± 5 minutes). In the reproducibility study, there were no significant differences except in the memory tests. CONCLUSION. The scores on the new battery and the BRB-N were strongly correlated although the shorter completion time and ease of administration could make the new battery preferable in clinical practice.

  13. Users manual for the Automated Performance Test System (APTS)

    NASA Technical Reports Server (NTRS)

    Lane, N. E.; Kennedy, R. S.

    1990-01-01

    The characteristics of and the user information for the Essex Automated Performance Test System (APTS) computer-based portable performance assessment battery are given. The battery was developed to provide a menu of performance test tapping the widest possible variety of human cognitive and motor functions, implemented on a portable computer system suitable for use in both laboratory and field settings for studying the effects of toxic agents and other stressors. The manual gives guidance in selecting, administering and scoring tests from the battery, and reviews the data and studies underlying the development of the battery. Its main emphasis is on the users of the battery - the scientists, researchers and technicians who wish to examine changes in human performance across time or as a function of changes in the conditions under which test data are obtained. First the how to information needed to make decisions about where and how to use the battery is given, followed by the research background supporting the battery development. Further, the development history of the battery focuses largely on the logical framework within which tests were evaluated.

  14. 2007 Nissan Altima-7982 Hybrid Electric Vehicle Battery Test Results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tyler Grey; Chester Motloch; James Francfort

    2010-01-01

    The U.S. Department of Energy's Advanced Vehicle Testing Activity conducts several different types of tests on hybrid electric vehicles, including testing hybrid electric vehicles batteries when both the vehicles and batteries are new, and at the conclusion of 160,000 miles of accelerated testing. This report documents the battery testing performed and battery testing results for the 2007 Nissan Altima hybrid electric vehicle (Vin Number 1N4CL21E27C177982). Testing was performed by the Electric Transportation Engineering Corporation. The Advanced Vehicle Testing Activity is part of the U.S. Department of Energy's Vehicle Technologies Program. The Idaho National Laboratory and the Electric Transportation Engineering Corporationmore » conduct Advanced Vehicle Testing Activity for the U.S. Department of Energy.« less

  15. Storage battery comprising negative plates of a wedge shaped configuration. [for preventing shape change induced malfunctions

    NASA Technical Reports Server (NTRS)

    Bogner, R. S.; Farris, C. D. (Inventor)

    1974-01-01

    An improved silver-zinc battery particularly suited for use in an environment where battery operation is subjected to multiple charge/discharge cycling over extended periods is described. The battery seperator system, containing a highly absorbent material continguous with the surfaces of the plates and multiple semi-permeable membranes interposed between the plates, is also characterized.

  16. Fault detection of the connection of lithium-ion power batteries based on entropy for electric vehicles

    NASA Astrophysics Data System (ADS)

    Yao, Lei; Wang, Zhenpo; Ma, Jun

    2015-10-01

    This paper proposes a method of fault detection of the connection of Lithium-Ion batteries based on entropy for electric vehicle. In electric vehicle operation process, some factors, such as road conditions, driving habits, vehicle performance, always affect batteries by vibration, which easily cause loosing or virtual connection between batteries. Through the simulation of the battery charging and discharging experiment under vibration environment, the data of voltage fluctuation can be obtained. Meanwhile, an optimal filtering method is adopted using discrete cosine filter method to analyze the characteristics of system noise, based on the voltage set when batteries are working under different vibration frequency. Experimental data processed by filtering is analyzed based on local Shannon entropy, ensemble Shannon entropy and sample entropy. And the best way to find a method of fault detection of the connection of lithium-ion batteries based on entropy is presented for electric vehicle. The experimental data shows that ensemble Shannon entropy can predict the accurate time and the location of battery connection failure in real time. Besides electric-vehicle industry, this method can also be used in other areas in complex vibration environment.

  17. Life prediction and reliability assessment of lithium secondary batteries

    NASA Astrophysics Data System (ADS)

    Eom, Seung-Wook; Kim, Min-Kyu; Kim, Ick-Jun; Moon, Seong-In; Sun, Yang-Kook; Kim, Hyun-Soo

    Reliability assessment of lithium secondary batteries was mainly considered. Shape parameter (β) and scale parameter (η) were calculated from experimental data based on cycle life test. We also examined safety characteristics of lithium secondary batteries. As proposed by IEC 62133 (2002), we had performed all of the safety/abuse tests such as 'mechanical abuse tests', 'environmental abuse tests', 'electrical abuse tests'. This paper describes the cycle life of lithium secondary batteries, FMEA (failure modes and effects analysis) and the safety/abuse tests we had performed.

  18. Beta-blockers in the environment: part II. Ecotoxicity study.

    PubMed

    Maszkowska, Joanna; Stolte, Stefan; Kumirska, Jolanta; Łukaszewicz, Paulina; Mioduszewska, Katarzyna; Puckowski, Alan; Caban, Magda; Wagil, Marta; Stepnowski, Piotr; Białk-Bielińska, Anna

    2014-09-15

    The increasing consumption of beta-blockers (BB) has caused their presence in the environment to become more noticeable. Even though BB are safe for human and veterinary usage, ecosystems may be exposed to these substances. In this study, three selected BB: propranolol, metoprolol and nadolol were subjected to ecotoxicity study. Ecotoxicity evaluation was based on a flexible ecotoxicological test battery including organisms, representing different trophic levels and complexity: marine bacteria (Vibrio fischeri), soil/sediment bacteria (Arthrobacter globiformis), green algae (Scenedesmus vacuolatus) and duckweed (Lemna minor). All the ecotoxicological studies were supported by instrumental analysis to measure deviation between nominal and real test concentrations. Based on toxicological data from the green algae test (S. vacuolatus) propranolol and metoprolol can be considered to be harmful to aquatic organisms. However, sorption explicitly inhibits the hazardous effects of BB, therefore the risks posed by these compounds for the environment are of minor importance. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Program maintenance manual for nickel cadmium battery expert system, version 1

    NASA Technical Reports Server (NTRS)

    1986-01-01

    The Nickel-Cadmium Battery Expert System (NICBES) is an expert system for fault diagnosis and advice of the nickel-cadmium batteries found in the Hubble Space Telescope (HST). The system application and security, equipment environment, and the program maintenance procedures are examined.

  20. Failure Mechanisms of Ni-H2 and Li-Ion Batteries Under Hypervelocity Impacts

    NASA Technical Reports Server (NTRS)

    Miller, J. E.; Lyons, F.; Christiansen, E. L.; Lear, D. M.

    2017-01-01

    Lithium-Ion (Li-Ion) batteries have yielded significant performance advantages for many industries, including the aerospace industry, and have been selected to replace nickel hydrogen (Ni-H2) batteries for the International Space Station (ISS) program to meet the energy storage demands. As the ISS uses its vast solar arrays to generate its power, the solar arrays meet their sunlit power demands and supply excess power to battery packs for power delivery on the sun obscured phase of the approximate 90 minute low Earth orbit. These large battery packs are located on the exterior of the ISS, and as such, the battery packs are exposed to external environment threats like naturally occurring meteoroids and artificial orbital debris (MMOD). While the risks from these solid particle environments has been known and addressed to an acceptable risk of failure through shield design, it is not possible to completely eliminate the risk of loss of these assets on orbit due to MMOD, and as such, failure consequences to the ISS have been considered.

  1. Monitoring of Crew Activity with FAMOS

    NASA Astrophysics Data System (ADS)

    Wolf, L.; Cajochen, C.; Bromundt, V.

    2007-10-01

    The success of long duration space missions, such as manned missions to Mars, depends on high and sustained levels of vigilance and performance of astronauts and operators working in the technology rich environment of a spacecraft. Experiment 'Monitoring of Crew Activity with FAMOS' was set up to obtain operational experience with complimentary methods / technologies to assess the alertness / sleepiness status of selected AustroMars crewmembers on a daily basis. We applied a neurobehavioral test battery consisting of 1) Karolinska Sleepiness Scale KSS, 2) Karolinska Drowsiness Test KDT, 3) Psychomotor Vigilance Task PVT, combined with 4) left eye video recordings with an early prototype of the FAMOS Fatigue Monitoring System headset currently being developed by Sowoon Technologies (CH), and 5) Actiwatches that were worn continuously. A test battery required approximately 15 minutes and was repeated up to 4 times daily by 2 to 4 subjects. Here we present the data analysis of methods 1, 2, 3, and 5, while data analysis of method 4 is still in progress.

  2. Charge Efficiency Tests of Lead/Acid Batteries

    NASA Technical Reports Server (NTRS)

    Rowlette, J. J.

    1984-01-01

    Current, voltage, and gas evolution measured during charge/discharge cycles. Series of standarized tests for evaluating charging efficiency of lead/acid storage batteries described in report. Purpose of tests to provide information for design of battery charger that allows maximum recharge efficiency for electric-vehicle batteries consistent with other operating parameters, such as range, water loss, and cycle life.

  3. The Danish test battery for auditory processing disorder evaluated with patient and control data.

    PubMed

    Raben Pedersen, Ellen

    2018-06-10

    This study evaluates the Danish test battery for auditory processing disorder (APD). The battery consists of four behavioural tests, two speech and two non-speech stimuli tests. The evaluation includes determination of: (1) new cut-off values (pass-fail criteria), (2) the sensitivity and the specificity of the entire test battery and (3) the failure rate of different test combinations. For each test in the battery, cut-off values were determined using the weighted Youden index. Applying the newly derived cut-off values, the distribution of failing specific test combinations was determined. A group of 112 children diagnosed with APD (57 boys, 55 girls, aged 6-16 years) and a control group containing 158 children without auditory problems (75 boys, 83 girls, aged 6-16 years). Cut-off values for different weights of the sensitivity and the specificity have been determined. Using the criterion that at least two tests have to be failed for APD to be suspected, the sensitivity and the specificity of the entire test battery were 95.3% and 91.6%, respectively. Some test combinations were found to have higher failure rates than others. Due to the high sensitivity and specificity the test battery has good predictive value in APD assessment.

  4. Reserve Li/SOC12 Battery Safety Testing

    NASA Technical Reports Server (NTRS)

    Dils, C. T.; Garoutte, K. F.

    1984-01-01

    A reserve Lithium/Thionyl Chloride Battery concept is developed and undergoing feasibility testing in terms of performance, safety and abusive conditions. The feasibility of employing a battery of this type to replace thermal batteries in certain applications is demonstrated. Excellent performance of a Li/SOCl2 reserve battery is obtained across the temperature range from 0 C to +44 C. Performance improvement over the thermal battery usage is greater by a factor of 3 when discharge time and energy density are compared. Performance over an expanded temperature range is also possible. Safety and abusive testing is accomplished successfully on a series of five units. Further performance improvements can be achieved with regard to battery weight and volume reductions.

  5. Crane Cell Testing Support of Nasa/goddard Space Flight Center: an Update

    NASA Technical Reports Server (NTRS)

    Strawn, Mike; David, Jerry; Rao, Gopalakrishna M.

    2001-01-01

    The objective of this paper is to verify the quality and reliability of aerospace battery cells and batteries for NASA flight programs, disseminate the data - to develop a plan for in-orbit battery management - to design a cell/battery for future NASA spacecraft and establish a cell test data base for rechargeable cell/batteries.

  6. Reliability of a new test battery for fitness assessment of the European Astronaut corps.

    PubMed

    Petersen, Nora; Thieschäfer, Lutz; Ploutz-Snyder, Lori; Damann, Volker; Mester, Joachim

    2015-01-01

    To optimise health for space missions, European astronauts follow specific conditioning programs before, during and after their flights. To evaluate the effectiveness of these programs, the European Space Agency conducts an Astronaut Fitness Assessment (AFA), but the test-retest reliability of elements within it remains unexamined. The reliability study described here presents a scientific basis for implementing the AFA, but also highlights challenges faced by operational teams supporting humans in such unique environments, especially with respect to health and fitness monitoring of crew members travelling not only into space, but also across the world. The AFA tests assessed parameters known to be affected by prolonged exposure to microgravity: aerobic capacity (VO2max), muscular strength (one repetition max, 1 RM) and power (vertical jumps), core stability, flexibility and balance. Intraclass correlation coefficients (ICC3.1), standard error of measurement and coefficient of variation were used to assess relative and absolute test-retest reliability. Squat and bench 1 RM (ICC3.1 = 0.94-0.99), hip flexion (ICC3.1 = 0.99) and left and right handgrip strength (ICC3.1 = 0.95 and 0.97), showed the highest test-retest reliability, followed by VO2max (ICC3.1 = 0.91), core strength (ICC3.1 = 0.78-0.89), hip extension (ICC3.1 = 0.63), the countermeasure (ICC3.1 = 0.76) and squat (ICC3.1 = 0.63) jumps, and single right- and left-leg jump height (ICC3.1 = 0.51 and 0.14). For balance, relative reliability ranged from ICC3.1 = 0.78 for path length (two legs, head tilted back, eyes open) to ICC3.1 = 0.04 for average rotation velocity (one leg, eyes closed). In a small sample (n = 8) of young, healthy individuals, the AFA battery of tests demonstrated acceptable test-retest reliability for most parameters except some balance and single-leg jump tasks. These findings suggest that, for the application with astronauts, most AFA tests appear appropriate to be maintained in the test battery, but that some elements may be unreliable, and require either modification (duration, selection of task) or removal (single-leg jump, balance test on sphere) from the battery. The test battery is mobile and universally applicable for occupational and general fitness assessment by its comprehensive composition of tests covering many systems involved in whole body movement.

  7. Low-cost carbon-silicon nanocomposite anodes for lithium ion batteries.

    PubMed

    Badi, Nacer; Erra, Abhinay Reddy; Hernandez, Francisco C Robles; Okonkwo, Anderson O; Hobosyan, Mkhitar; Martirosyan, Karen S

    2014-01-01

    The specific energy of the existing lithium ion battery cells is limited because intercalation electrodes made of activated carbon (AC) materials have limited lithium ion storage capacities. Carbon nanotubes, graphene, and carbon nanofibers are the most sought alternatives to replace AC materials but their synthesis cost makes them highly prohibitive. Silicon has recently emerged as a strong candidate to replace existing graphite anodes due to its inherently large specific capacity and low working potential. However, pure silicon electrodes have shown poor mechanical integrity due to the dramatic expansion of the material during battery operation. This results in high irreversible capacity and short cycle life. We report on the synthesis and use of carbon and hybrid carbon-silicon nanostructures made by a simplified thermo-mechanical milling process to produce low-cost high-energy lithium ion battery anodes. Our work is based on an abundant, cost-effective, and easy-to-launch source of carbon soot having amorphous nature in combination with scrap silicon with crystalline nature. The carbon soot is transformed in situ into graphene and graphitic carbon during mechanical milling leading to superior elastic properties. Micro-Raman mapping shows a well-dispersed microstructure for both carbon and silicon. The fabricated composites are used for battery anodes, and the results are compared with commercial anodes from MTI Corporation. The anodes are integrated in batteries and tested; the results are compared to those seen in commercial batteries. For quick laboratory assessment, all electrochemical cells were fabricated under available environment conditions and they were tested at room temperature. Initial electrochemical analysis results on specific capacity, efficiency, and cyclability in comparison to currently available AC counterpart are promising to advance cost-effective commercial lithium ion battery technology. The electrochemical performance observed for carbon soot material is very interesting given the fact that its production cost is away cheaper than activated carbon. The cost of activated carbon is about $15/kg whereas the cost to manufacture carbon soot as a by-product from large-scale milling of abundant graphite is about $1/kg. Additionally, here, we propose a method that is environmentally friendly with strong potential for industrialization.

  8. Low-cost carbon-silicon nanocomposite anodes for lithium ion batteries

    PubMed Central

    2014-01-01

    The specific energy of the existing lithium ion battery cells is limited because intercalation electrodes made of activated carbon (AC) materials have limited lithium ion storage capacities. Carbon nanotubes, graphene, and carbon nanofibers are the most sought alternatives to replace AC materials but their synthesis cost makes them highly prohibitive. Silicon has recently emerged as a strong candidate to replace existing graphite anodes due to its inherently large specific capacity and low working potential. However, pure silicon electrodes have shown poor mechanical integrity due to the dramatic expansion of the material during battery operation. This results in high irreversible capacity and short cycle life. We report on the synthesis and use of carbon and hybrid carbon-silicon nanostructures made by a simplified thermo-mechanical milling process to produce low-cost high-energy lithium ion battery anodes. Our work is based on an abundant, cost-effective, and easy-to-launch source of carbon soot having amorphous nature in combination with scrap silicon with crystalline nature. The carbon soot is transformed in situ into graphene and graphitic carbon during mechanical milling leading to superior elastic properties. Micro-Raman mapping shows a well-dispersed microstructure for both carbon and silicon. The fabricated composites are used for battery anodes, and the results are compared with commercial anodes from MTI Corporation. The anodes are integrated in batteries and tested; the results are compared to those seen in commercial batteries. For quick laboratory assessment, all electrochemical cells were fabricated under available environment conditions and they were tested at room temperature. Initial electrochemical analysis results on specific capacity, efficiency, and cyclability in comparison to currently available AC counterpart are promising to advance cost-effective commercial lithium ion battery technology. The electrochemical performance observed for carbon soot material is very interesting given the fact that its production cost is away cheaper than activated carbon. The cost of activated carbon is about $15/kg whereas the cost to manufacture carbon soot as a by-product from large-scale milling of abundant graphite is about $1/kg. Additionally, here, we propose a method that is environmentally friendly with strong potential for industrialization. PMID:25114651

  9. [ALPHA-fitness test battery: health-related field-based fitness tests assessment in children and adolescents].

    PubMed

    Ruiz, J R; España Romero, V; Castro Piñero, J; Artero, E G; Ortega, F B; Cuenca García, M; Jiménez Pavón, D; Chillón, P; Girela Rejón, Ma J; Mora, J; Gutiérrez, A; Suni, J; Sjöstrom, M; Castillo, M J

    2011-01-01

    Hereby we summarize the work developed by the ALPHA (Assessing Levels of Physical Activity) Study and describe the tests included in the ALPHA health-related fitness test battery for children and adolescents. The evidence-based ALPHA-Fitness test battery include the following tests: 1) the 20 m shuttle run test to assess cardiorespiratory fitness; 2) the handgrip strength and 3) standing broad jump to assess musculoskeletal fitness, and 4) body mass index, 5) waist circumference; and 6) skinfold thickness (triceps and subscapular) to assess body composition. Furthermore, we include two versions: 1) the high priority ALPHA health-related fitness test battery, which comprises all the evidence-based fitness tests except the measurement of the skinfold thickness; and 2) the extended ALPHA health-related fitness tests battery for children and adolescents, which includes all the evidence-based fitness tests plus the 4 x 10 m shuttle run test to assess motor fitness.

  10. Decentralized Hypothesis Testing in Energy Harvesting Wireless Sensor Networks

    NASA Astrophysics Data System (ADS)

    Tarighati, Alla; Gross, James; Jalden, Joakim

    2017-09-01

    We consider the problem of decentralized hypothesis testing in a network of energy harvesting sensors, where sensors make noisy observations of a phenomenon and send quantized information about the phenomenon towards a fusion center. The fusion center makes a decision about the present hypothesis using the aggregate received data during a time interval. We explicitly consider a scenario under which the messages are sent through parallel access channels towards the fusion center. To avoid limited lifetime issues, we assume each sensor is capable of harvesting all the energy it needs for the communication from the environment. Each sensor has an energy buffer (battery) to save its harvested energy for use in other time intervals. Our key contribution is to formulate the problem of decentralized detection in a sensor network with energy harvesting devices. Our analysis is based on a queuing-theoretic model for the battery and we propose a sensor decision design method by considering long term energy management at the sensors. We show how the performance of the system changes for different battery capacities. We then numerically show how our findings can be used in the design of sensor networks with energy harvesting sensors.

  11. Crewed Space Vehicle Battery Safety Requirements Revision D

    NASA Technical Reports Server (NTRS)

    Russell, Samuel

    2017-01-01

    The Crewed Space Vehicle Battery Safety Requirements document has been prepared for use by designers of battery-powered vehicles, portable equipment, and experiments intended for crewed spaceflight. The purpose of the requirements document is to provide battery designers with information on design provisions to be incorporated in and around the battery and on the verification to be undertaken to demonstrate a safe battery is provided. The term "safe battery" means that the battery is safe for ground personnel and crew members to handle and use; safe to be used in the enclosed environment of a crewed space vehicle; and safe to be mounted or used in unpressurized spaces adjacent to habitable areas. Battery design review, approval, and certification is required before the batteries can be used for ground operations and be certified for flight.

  12. Dynamic analysis of a photovoltaic power system with battery storage capability

    NASA Technical Reports Server (NTRS)

    Merrill, W. C.; Blaha, R. J.; Pickrell, R. L.

    1979-01-01

    A photovolataic power system with a battery storage capability is analyzed. A dual battery current control concept is proposed, which enables the battery to either supply or accept power depending upon system environment and load conditions. A simulation of the power system, including the battery current control, is developed and evaluated. The evaulation demonstrate the visbility of the battery control concept of switch the battery from a charge to discharge mode and back as required by load and environmental conditions. An acceptable system operation is demonstrated over the entire insolation range. Additionally, system sensitivity, bandwidth, and damping characteristics of the battery control are shown to be acceptable for a projected hardware implementation.

  13. A menu of self-administered microcomputer-based neurotoxicology tests

    NASA Technical Reports Server (NTRS)

    Kennedy, Robert S.; Wilkes, Robert L.; Kuntz, Lois-Ann; Baltzley, Dennis R.

    1988-01-01

    This study examined the feasibility of repeated self-administration of a newly developed battery of mental acuity tests. Researchers developed this battery to be used to screen the fitness for duty of persons in at-risk occupations (astronauts, race car drivers), or those who may be exposed to environmental stress, toxic agents, or disease. The menu under study contained cognitive and motor tests implemented on a portable microcomputer including: a five-test core battery, lasting six minutes, which had demonstrable reliabilities and stability from several previous repeated-measures studies, and also 13 new tests, lasting 42 minutes, which had appeared in other batteries but had not yet been evaluated for repeated-measures implementation in this medium. Sixteen subjects self-administered the battery over 10 repeated sessions. The hardware performed well throughout the study and the tests appeared to be easily self-administered. Stabilities and reliabilities of the test from the core battery were comparable to those obtained previously under more controlled experimental conditions. Analyses of metric properties of the remaining 13 tests produced eight additional tests with satisfactory properties. Although the average retest reliability was high, cross-correlations between tests were low, indicating factorial richness. The menu can be used to form batteries of flexible total testing time which are likely to tap different mental processes and functions.

  14. Human performance capabilities in a simulated space station-like environment. 1: Fixed beam luminance and location

    NASA Technical Reports Server (NTRS)

    Haines, R. F.; Bartz, A. E.; Zahn, J. R.

    1972-01-01

    The effects of a fixed, intense, one-foot diameter beam of simulated sunlight imaged within the field of view, upon responses to a battery of visual, body balance and stability, eye-hand coordination, and mental tests were studied. Each subject's electrocardiogram and electro-oculograms (vertical and horizontal) were recorded throughout each two-hour testing period within the space-station-like environment. It is possible to say that both subjects adapted to the brightly illuminated white panels in approximately 30 seconds after their first exposure each day and thereafter did not experience ocular fatigue, eye strain, or other kinds of disturbances as a result of these viewing conditions.

  15. Glossary of testing terminology for rechargeable batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Butler, P.C.

    1988-10-01

    The Battery Test Working Task Force was formed in 1983 for the purpose of coordinating the evaluation of development rechargeable batteries by DOE-funded labs. The Task Force developed this glossary of testing terminology to improve the accuracy of communication and to permit meaningful comparisons of test results. It consists of a section of technical terms and a separate section of programmatic phrases and acronyms. The glossary emphasizes terms related to electric vehicle batteries due to the significant development and testing activities in this area. 8 refs.

  16. The 1988 Goddard Space Flight Center Battery Workshop

    NASA Technical Reports Server (NTRS)

    Yi, Thomas Y. (Editor)

    1993-01-01

    This document contains the proceedings of the 21st annual Battery Workshop held at Goddard Space Flight Center, Greenbelt, Maryland on November 1-3, 1988. The Workshop attendees included manufacturers, users, and government representatives interested in the latest developments in battery technology as they relate to high reliability operations and aerospace use. The subjects covered included battery testing methodologies and criteria, life testing of nickel-cadmium cells, testing and operation of nickel-hydrogen batteries in low earth orbit, and nickel-hydrogen technology issues and concerns.

  17. Nonleaking battery terminals

    NASA Technical Reports Server (NTRS)

    Snider, W. E.; Nagle, W. J.

    1972-01-01

    Three different terminals were designed for usage in a 40 ampere/hour silver zinc battery which has a 45 percent KOH by weight electrolyte in a plastic battery case. Life tests, including thermal cycling, electrical charge and discharge for up to three years duration, were conducted on these three different terminal designs. Tests for creep rate and tensile strength were conducted on the polyphenylene oxide (PPO) plastic battery cases. Some cases were unused and others containing KOH electrolyte were placed on life tests. The design and testing of nonleaking battery terminals for use with a potassium hydroxide (KOH) electrolyte in a plastic case are discussed.

  18. Nonleaking battery terminals.

    NASA Technical Reports Server (NTRS)

    Snider, W. E.; Nagle, W. J.

    1972-01-01

    Three different terminals were designed for usage in a 40 ampere/hour silver zinc battery which has a 45% KOH by weight electrolyte in a plastic battery case. Life tests, including thermal cycling, electrical charge and discharge for up to three years duration, were conducted on these three different terminal designs. Tests for creep rate and tensile strength were conducted on the polyphenylene oxide plastic battery cases. Some cases were unused and others containing KOH electrolyte were placed on life tests. The design and testing of nonleaking battery terminals for use with a KOH electrolyte in a plastic case are considered.

  19. Equipment for testing automotive lead/acid batteries under SAE J240a conditions

    NASA Astrophysics Data System (ADS)

    Hamilton, J. A.; Rand, D. A. J.

    Battery cycling equipment has been designed and constructed to test lead/acid batteries according to the American Society of Automotive Engineers' (SAE) J240a Standard. This life test simulates automotive service where the battery operates in a voltage-regulated charging system. The CSIRO design uses a master/slave concept to reduce both construction time and cost.

  20. Open stack thermal battery tests

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Long, Kevin N.; Roberts, Christine C.; Grillet, Anne M.

    We present selected results from a series of Open Stack thermal battery tests performed in FY14 and FY15 and discuss our findings. These tests were meant to provide validation data for the comprehensive thermal battery simulation tools currently under development in Sierra/Aria under known conditions compared with as-manufactured batteries. We are able to satisfy this original objective in the present study for some test conditions. Measurements from each test include: nominal stack pressure (axial stress) vs. time in the cold state and during battery ignition, battery voltage vs. time against a prescribed current draw with periodic pulses, and images transversemore » to the battery axis from which cell displacements are computed. Six battery configurations were evaluated: 3, 5, and 10 cell stacks sandwiched between 4 layers of the materials used for axial thermal insulation, either Fiberfrax Board or MinK. In addition to the results from 3, 5, and 10 cell stacks with either in-line Fiberfrax Board or MinK insulation, a series of cell-free “control” tests were performed that show the inherent settling and stress relaxation based on the interaction between the insulation and heat pellets alone.« less

  1. The UltraBattery-A new battery design for a new beginning in hybrid electric vehicle energy storage

    NASA Astrophysics Data System (ADS)

    Cooper, A.; Furakawa, J.; Lam, L.; Kellaway, M.

    The UltraBattery, developed by CSIRO Energy Technology in Australia, is a hybrid energy storage device which combines an asymmetric super-capacitor and a lead-acid battery in single unit cells. This takes the best from both technologies without the need for extra, expensive electronic controls. The capacitor enhances the power and lifespan of the lead-acid battery as it acts as a buffer during high-rate discharging and charging, thus enabling it to provide and absorb charge rapidly during vehicle acceleration and braking. The initial performance of the prototype UltraBatteries was evaluated according to the US FreedomCAR targets and was shown to meet or exceed these in terms of power, available energy, cold cranking and self-discharge set for both minimum and maximum power-assist hybrid electric vehicles (HEVs). Other laboratory cycling tests showed a fourfold improvement over previous state-of-the-art lead-acid batteries under the RHOLAB test profile and better life than commercial nickel/metal hydride (NiMH) cells used in a Honda Insight when tested under the EUCAR HEV profile. As a result of this work, a set of twelve 12 V modules was built by The Furukawa Battery Co., Ltd. in Japan and were fitted into a Honda Insight instead of the NiMH battery by Provector Ltd. The battery pack was fitted with full monitoring and control capabilities and the car was tested at Millbrook Proving Ground under a General Motors road test simulation cycle for an initial target of 50 000 miles which was extended to 100 000 miles. This was completed on 15th January 2008 without any battery problems. Furthermore, the whole test was completed without the need for any conditioning or equalisation of the battery pack.

  2. Data pieces-based parameter identification for lithium-ion battery

    NASA Astrophysics Data System (ADS)

    Gao, Wei; Zou, Yuan; Sun, Fengchun; Hu, Xiaosong; Yu, Yang; Feng, Sen

    2016-10-01

    Battery characteristics vary with temperature and aging, it is necessary to identify battery parameters periodically for electric vehicles to ensure reliable State-of-Charge (SoC) estimation, battery equalization and safe operation. Aiming for on-board applications, this paper proposes a data pieces-based parameter identification (DPPI) method to identify comprehensive battery parameters including capacity, OCV (open circuit voltage)-Ah relationship and impedance-Ah relationship simultaneously only based on battery operation data. First a vehicle field test was conducted and battery operation data was recorded, then the DPPI method is elaborated based on vehicle test data, parameters of all 97 cells of the battery package are identified and compared. To evaluate the adaptability of the proposed DPPI method, it is used to identify battery parameters of different aging levels and different temperatures based on battery aging experiment data. Then a concept of ;OCV-Ah aging database; is proposed, based on which battery capacity can be identified even though the battery was never fully charged or discharged. Finally, to further examine the effectiveness of the identified battery parameters, they are used to perform SoC estimation for the test vehicle with adaptive extended Kalman filter (AEKF). The result shows good accuracy and reliability.

  3. Can Cell to Cell Thermal Runaway Propagation be Prevented in a Li-ion Battery Module?

    NASA Technical Reports Server (NTRS)

    Jeevarajan, Judith; Lopez, Carlos; Orieukwu, Josephat

    2014-01-01

    Increasing cell spacing decreased adjacent cell damage center dotElectrically connected adjacent cells drained more than physically adjacent cells center dotRadiant barrier prevents propagation when fully installed between BP cells center dotBP cells vent rapidly and expel contents at 100% SOC -Slower vent with flame/smoke at 50% -Thermal runaway event typically occurs at 160 degC center dotLG cells vent but do not expel contents -Thermal runaway event typically occurs at 200 degC center dotSKC LFP modules did not propagate; fuses on negative terminal of cell may provide a benefit in reducing cell to cell damage propagation. New requirement in NASA-Battery Safety Requirements document: JSC 20793 Rev C 5.1.5.1 Requirements - Thermal Runaway Propagation a. For battery designs greater than a 80-Wh energy employing high specific energy cells (greater than 80 watt-hours/kg, for example, lithium-ion chemistries) with catastrophic failure modes, the battery shall be evaluated to ascertain the severity of a worst-case single-cell thermal runaway event and the propensity of the design to demonstrate cell-to-cell propagation in the intended application and environment. NASA has traditionally addressed the threat of thermal runaway incidents in its battery deployments through comprehensive prevention protocols. This prevention-centered approach has included extensive screening for manufacturing defects, as well as robust battery management controls that prevent abuse-induced runaway even in the face of multiple system failures. This focused strategy has made the likelihood of occurrence of such an event highly improbable. b. The evaluation shall include all necessary analysis and test to quantify the severity (consequence) of the event in the intended application and environment as well as to identify design modifications to the battery or the system that could appreciably reduce that severity. In addition to prevention protocols, programs developing battery designs with catastrophic failure modes should take the steps necessary to assess the severity of a possible thermal runaway event. Programs should assess whether there are reasonable design changes that could appreciably affect the severity of the outcome. Evaluation should include environmental effects to surrounding hardware (i.e., temperature, pressure, shock), contamination effects due to any expelled contaminates, and venting propulsive effects when venting overboard.

  4. Nickel-cadium batteries for Apollo telescope mount

    NASA Technical Reports Server (NTRS)

    Kirsch, W. W.; Shikoh, A. E.

    1974-01-01

    The operational testing and evaluation program is presented which was conducted on 20-ampere-hour nickel-cadmium (Ni-Cd) batteries for use on the Apollo telescope mount (ATM). The test program was initiated in 1967 to determine if the batteries could meet ATM mission requirements and to determine operating characteristics and methods. The ATM system power and charging power for the Ni-Cd secondary batteries is provided by a solar array during the 58-minute daylight portion of the orbit; during the 36-minute night portion of the orbit, the Ni-Cd secondary batteries will supply ATM system power. The test results reflect battery operating characteristics and parameters relative to simulated ATM orbital test conditions. Maximum voltage, charge requirements, capacity, temperature, and cyclic characteristics are presented.

  5. A Path to an Instructional Science: Data-Generated vs. Postulated Models

    ERIC Educational Resources Information Center

    Gropper, George L.

    2016-01-01

    Psychological testing can serve as a prototype on which to base a data-generated approach to instructional design. In "testing batteries" tests are used to predict achievement. In the proposed approach batteries of prescriptions would be used to produce achievement. In creating "test batteries" tests are selected for their…

  6. Development of satellite borne nickel hydrogen battery experiment equipment for ETS-6

    NASA Astrophysics Data System (ADS)

    Kuwashima, Saburou; Kamimori, Norimitsu; Kusawake, Hiroaki; Takahashi, Kazumichi

    1992-08-01

    An overview of the support rendered for the Engineering Test Satellite-6 (ETS-6) system integration test and protoflight test by the ETS-6 borne experimental nickel hydrogen battery development part is presented. Articles in the ETS-6 specifications and procedures related to the experimental battery were prepared or supported in preparation because of the battery's special characteristics such as its automatic control dependency on the bus voltage, thermal sensitivity equivalent to that of other batteries and so forth. System tests were witnessed and the acquired data were evaluated. Charging characteristics from 0 V were verified at trickle charging rate, using a flight scale model of Nickel Hydrogen (Ni-H2) Battery (NHB) after long term storage and an engineering model of the Ni-H2 Battery Controller (NHC). Requests for approval were submitted to the related self governing bodies in accordance with the Explosives Control Law when NHB's were charged and discharged. Installation and calibration data acquisition of the inner pressure sensors for the Ni-H2 battery cells for the flight model NHB were conducted and the battery assembly was started.

  7. Evaluation program for secondary spacecraft cells: Cycle life test

    NASA Technical Reports Server (NTRS)

    Harkness, J. D.

    1979-01-01

    The service life and storage stability for several storage batteries were determined. The batteries included silver-zinc batteries, nickel-cadmium batteries, and silver-cadmium batteries. The cell performance characteristics and limitations are to be used by spacecraft power systems planners and designers. A statistical analysis of the life cycle prediction and cause of failure versus test conditions is presented.

  8. Space Technology-5 Lithium-Ion Battery Design, Qualification and Integration and Testing

    NASA Technical Reports Server (NTRS)

    Rao, Gopalakishna M.; Stewart, Karen; Ameen, Syed; Banfield, Peter K.

    2005-01-01

    This document is a viewgraph presentation that reviews the Lithium Ion Battery for the Space Technology-5 (ST-5) mission. Included in the document is a review of the ST-5 Mission, a review of the battery requirements, a description of the battery and the battery materials. The testing and the integration and qualification data is reviewed.

  9. Battery testing at Argonne National Laboratory

    NASA Astrophysics Data System (ADS)

    Deluca, W. H.; Gillie, K. R.; Kulaga, J. E.; Smaga, J. A.; Tummillo, A. F.; Webster, C. E.

    Advanced battery technology evaluations are performed under simulated electric-vehicle operating conditions at the Analysis & Diagnostic Laboratory (ADL) of Argonne National Laboratory. The ADL results provide insight into those factors that limit battery performance and life. The ADL facilities include a test laboratory to conduct battery experimental evaluations under simulated application conditions and a post-test analysis laboratory to determine, in a protected atmosphere if needed, component compositional changes and failure mechanisms. This paper summarizes the performance characterizations and life evaluations conducted during FY-92 on both single cells and multi-cell modules that encompass six battery technologies (Na/S, Li/FeS, Ni/Metal-Hydride, Ni/Zn, Ni/Cd, Ni/Fe). These evaluations were performed for the Department of Energy, Office of Transportation Technologies, Electric and Hybrid Propulsion Division, and the Electric Power Research Institute. The ADL provides a common basis for battery performance characterization and life evaluations with unbiased application of tests and analyses. The results help identify the most promising R&D approaches for overcoming battery limitations, and provide battery users, developers, and program managers with a measure of the progress being made in battery R&D programs, a comparison of battery technologies, and basic data for modeling.

  10. Development of a Valid Volleyball Skills Test Battery.

    ERIC Educational Resources Information Center

    Bartlett, Jackie; And Others

    1991-01-01

    Describes the development of the North Carolina State University Volleyball Skills Test Battery which offers accurate measurement of three volleyball skills (serve, forearm pass, and set). When physical educators tested 313 students, the battery objectively measured their abilities, providing a gamelike means of teaching, testing, grouping, and…

  11. Sulfonated polysulfone battery membrane for use in corrosive environments

    DOEpatents

    Arnold, Jr., Charles; Assink, Roger

    1987-01-01

    For batteries containing strong oxidizing electrolyte and a membrane separating two electrolyte solutions, e.g., a zinc ferricyanide battery, an improved membrane is provided comprising an oxidative resistant, conductive, ion-selective membrane fabricated from a catenated aromatic polymer having an absence of tertiary hydrogens, e.g., a sulfonated polysulfone.

  12. Li-Ion Battery Studies at NASA/Goddard Space Flight Center

    NASA Technical Reports Server (NTRS)

    Lee, Leonine; Rao, Gopalakrishna M.

    2006-01-01

    This viewgraph presentation reviews NASA and GSFC's interest in Lithium Ion Batteries as power suupplies for space usage, the tests, and results on several commercially available batteries. Severl batteries were tested for Geosynchronous orbit, Low Earth Orbit, and Low Lunar Orbit conditions.

  13. Accelerated battery-life testing - A concept

    NASA Technical Reports Server (NTRS)

    Mccallum, J.; Thomas, R. E.

    1971-01-01

    Test program, employing empirical, statistical and physical methods, determines service life and failure probabilities of electrochemical cells and batteries, and is applicable to testing mechanical, electrical, and chemical devices. Data obtained aids long-term performance prediction of battery or cell.

  14. Lithium-ion batteries for hearing aid applications. II. Pulse discharge and safety tests

    NASA Astrophysics Data System (ADS)

    Passerini, S.; Coustier, F.; Owens, B. B.

    Rechargeable lithium-ion batteries were designed to meet the power requirements of hearing aid devices (HADs). The batteries were designed in a 312-button cell size, compatible with existing hearing aids. The batteries were tested to evaluate the design and the electrochemical performance, as they relate to a typical hearing aid application. The present report covers the pulse capabilities, cycle life and preliminary safety tests. The results are compared with other battery chemistries: secondary lithium-alloy and nickel-metal hydride batteries and primary Zn-air batteries. The cell AC impedance was stable over the frequency range between 1 and 50 kHz, ranging between 5 Ω at the higher frequency and 12 Ω at the lower extreme. Pulse tests were consistent with these values, as the cells were capable of providing a series of 100 mA pulses of 10-s duration. The safety tests suggest that the design is intrinsically safe with respect to the most common types of abuse conditions.

  15. Special Test Methods for Batteries

    NASA Technical Reports Server (NTRS)

    Gross, S.

    1984-01-01

    Various methods are described for measuring heat generation in primary and secondary batteries as well as the specific heat of batteries and cell thermal conductance. Problems associated with determining heat generation in large batteries are examined. Special attention is given to monitoring temperature gradients in nickel cadmium cells, the use of auxiliary electrodes for conducting tests on battery charge control, evaluating the linear sweep of current from charge to discharge, and determining zero current voltage. The fast transient behavior of batteries in the microsecond range, and the electrical conductance of nickel sinters in the thickness direction are also considered. Mechanical problems experienced in the vibration of Ni-Cd batteries and tests to simulate cyclic fatigue of the steel table connecting the plates to the comb are considered. Methods of defining the distribution of forces when cells are compressed during battery packaging are also explored.

  16. Special test methods for batteries

    NASA Astrophysics Data System (ADS)

    Gross, S.

    1984-09-01

    Various methods are described for measuring heat generation in primary and secondary batteries as well as the specific heat of batteries and cell thermal conductance. Problems associated with determining heat generation in large batteries are examined. Special attention is given to monitoring temperature gradients in nickel cadmium cells, the use of auxiliary electrodes for conducting tests on battery charge control, evaluating the linear sweep of current from charge to discharge, and determining zero current voltage. The fast transient behavior of batteries in the microsecond range, and the electrical conductance of nickel sinters in the thickness direction are also considered. Mechanical problems experienced in the vibration of Ni-Cd batteries and tests to simulate cyclic fatigue of the steel table connecting the plates to the comb are considered. Methods of defining the distribution of forces when cells are compressed during battery packaging are also explored.

  17. The electrical performance of Ag Zn batteries for the Venus multi-probe mission

    NASA Technical Reports Server (NTRS)

    Palandati, C.

    1975-01-01

    An evaluation of 5 Ah and 21 Ah Silver-Zinc batteries was made to determine their suitability to meet the energy storage requirements of the bus vehicle, 3 small probes and large probe for the Venus multi-probe mission. The evaluation included a 4 Ah battery for the small probe, a 21 Ah battery for the large probe, one battery of each size for the bus vehicle power, a periodic cycling test on each size battery and a wet stand test of charged and discharged cells of both cell designs. The study on the probe batteries and bus vehicle batteries included both electrical and thermal simulation for the entire mission. The effects on silver migration and zinc penetration of the cellophane separators caused by the various test parameters were determined by visual and X-ray fluorescence analysis. The 5 Ah batteries supported the power requirements for the bus vehicle and small probe. The 21 Ah large probe battery supplied the required mission power. Both probe batteries delivered in excess of 132 percent of rated capacity at the completion of the mission simulation.

  18. 30 CFR 7.48 - Acid resistance test.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... MINING PRODUCTS TESTING BY APPLICANT OR THIRD PARTY Battery Assemblies § 7.48 Acid resistance test. (a) Test procedures. (1) Prepare one sample each of the insulated surfaces of the battery box and of the... insulation plus the battery cover or box material. The insulation thickness shall be representative of that...

  19. 30 CFR 7.48 - Acid resistance test.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... MINING PRODUCTS TESTING BY APPLICANT OR THIRD PARTY Battery Assemblies § 7.48 Acid resistance test. (a) Test procedures. (1) Prepare one sample each of the insulated surfaces of the battery box and of the... insulation plus the battery cover or box material. The insulation thickness shall be representative of that...

  20. Determining sensitivity/specificity of virtual reality-based neuropsychological tool for detecting residual abnormalities following sport-related concussion.

    PubMed

    Teel, Elizabeth; Gay, Michael; Johnson, Brian; Slobounov, Semyon

    2016-05-01

    Computer-based neuropsychological (NP) evaluation is an effective clinical tool used to assess cognitive function which complements the clinical diagnosis of a concussion. However, some researchers and clinicians argue its lack of ecological validity places limitations on externalizing results to a sensory rich athletic environment. Virtual reality-based NP assessment offers clinical advantages using an immersive environment and evaluating domains not typically assessed by traditional NP assessments. The sensitivity and specificity of detecting lingering cognitive abnormalities was examined on components of a virtual reality-based NP assessment battery to cohort affiliation (concussed vs. controls). Data were retrospectively gathered on 128 controls (no concussion) and 24 concussed college-age athletes on measures of spatial navigation, whole body reaction, attention, and balance in a virtual environment. Concussed athletes were tested within 10 days (M = 8.33, SD = 1.06) of concussion and were clinically asymptomatic at the time of testing. A priori alpha level was set at 0.05 for all tests. Spatial navigation (sensitivity 95.8%/specificity 91.4%, d = 1.89), whole body reaction time (sensitivity 95.2%/specificity 89.1%, d = 1.50) and combined virtual reality modules (sensitivity 95.8%,/specificity 96.1%, d = 3.59) produced high sensitivity/specificity values when determining performance-based variability between groups. Use of a virtual reality-based NP platform can detect lingering cognitive abnormalities resulting from concussion in clinically asymptomatic participants. Virtual reality NP platforms may compliment the traditional concussion assessment battery by providing novel information. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  1. UHM/HNEI EV test and evaluation program

    NASA Astrophysics Data System (ADS)

    1992-03-01

    The electric vehicle (EV) program of the Hawaii Natural Energy Institute (HNEI) focuses primarily on the field testing of promising EV/traction batteries. The intent is to utilize typical driving cycles to develop information that verifies or refutes what is obtained in the laboratory. Three different types of batteries were assigned by the U.S. DOE for testing in this program: Sonnenschein Dryfit 6V-160, Exide GC-5, Trojan T-145. We added the following battery to the test program: ALCO2200. The following EVs were chosen in our program: Converted Ford Escort station wagon, Converted Ford Escort two-door sedan, Converted Ford Escort two-door sedan, Converted Dodge van. Based on capacity tests, corrective action such as battery replacement, additional charging, adjusting terminal connections, etc., may be taken to maintain good performance. About 15,500 miles and 600 cycles have been accumulated on the Sonnenschein Dryfit 6V-160 battery pack. Five of its 18 modules have been changed. Based on DOE's standard, the battery has reached the end of its useful life. Nevertheless, the battery pack is still operational and its operating range is still greater than 40 miles per charge. It is too early to evaluate the life expectancy of the other three batteries. No module has been replaced in these three packs. HNEI will keep the Trojan and Exide battery packs in operation. The Alco 2200 batteries will be transferred to another vehicle.

  2. Hubble Space Telescope On-orbit NiH2 Battery Performance

    NASA Technical Reports Server (NTRS)

    Rao, Gopalakrishna M.; Krol, Stanley J., Jr.

    2002-01-01

    This paper summarizes the Hubble Space Telescope (HST) nickel-hydrogen (NiH2) battery performance from launch to the present time. Over the life of HST vehicle configuration, charge system degradation and failures together with thermal design limitations have had a significant effect on the capacity of the HST batteries. Changes made to the charge system configuration in order to protect against power system failures and to maintain battery thermal stability resulted in undercharging of the batteries. This undercharging resulted in decreased usable battery capacity as well as battery cell voltage/capacity divergence. This cell divergence was made evident during on-orbit battery capacity measurements by a relatively shallow slope of the discharge curve following the discharge knee. Early efforts to improve the battery performance have been successful. On-orbit capacity measurement data indicates increases in the usable battery capacity of all six batteries as well as improvements in the battery cell voltage/capacity divergence. Additional measures have been implemented to improve battery performance, however, failures within the HST Power Control Unit (PCU) have prevented verification of battery status. As this PCU fault prevents the execution of on-orbit capacity testing, the HST Project has based the battery capacity on trends, which utilizes previous on-orbit battery capacity test data, for science mission and servicing mission planning. The Servicing Mission 38 (SM-3B) in March 2002 replaced the faulty PCU. Following the servicing mission, on-orbit capacity test resumed. A summary of battery performance is reviewed since launch in this paper.

  3. Alkaline quinone flow battery.

    PubMed

    Lin, Kaixiang; Chen, Qing; Gerhardt, Michael R; Tong, Liuchuan; Kim, Sang Bok; Eisenach, Louise; Valle, Alvaro W; Hardee, David; Gordon, Roy G; Aziz, Michael J; Marshak, Michael P

    2015-09-25

    Storage of photovoltaic and wind electricity in batteries could solve the mismatch problem between the intermittent supply of these renewable resources and variable demand. Flow batteries permit more economical long-duration discharge than solid-electrode batteries by using liquid electrolytes stored outside of the battery. We report an alkaline flow battery based on redox-active organic molecules that are composed entirely of Earth-abundant elements and are nontoxic, nonflammable, and safe for use in residential and commercial environments. The battery operates efficiently with high power density near room temperature. These results demonstrate the stability and performance of redox-active organic molecules in alkaline flow batteries, potentially enabling cost-effective stationary storage of renewable energy. Copyright © 2015, American Association for the Advancement of Science.

  4. Initial testing of two DEMI (Driesbach Electromotive Inc. ) Model 4E zinc-air rechargeable cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hardin, J.E.; Martin, M.E.

    1989-10-23

    The purpose of this document is to report the results of INEL laboratory testing of two DEMI 4E Aerobic Power Battery Cells (collectively designated Pack 46 in INEL records). The 4E Aerobic Power Battery is a secondary battery developed privately by Driesbach Electromotive Inc. (DEMI). The battery employs zinc as the anode and a bifunctional air cathode. This testing was performed as the first phase of a cooperative agreement between INEL and DEMI leading to the construction and testing of electric vehicle-size cells, to be followed eventually by a battery pack. 3 refs., 3 figs., 5 tabs.

  5. Final treatment of spent batteries by thermal plasma.

    PubMed

    Cubas, Anelise Leal Vieira; Machado, Marina de Medeiros; Machado, Marília de Medeiros; Dutra, Ana Regina de Aguiar; Moecke, Elisa Helena Siegel; Fiedler, Haidi D; Bueno, Priscila

    2015-08-15

    The growth in the use of wireless devices, notebooks and other electronic products has led to an ever increasing demand for batteries, leading to these products being commonly found in inappropriate locations, with adverse effects on the environment and human health. Due to political pressure and according to the environmental legislation which regulates the destination of spent batteries, in several countries the application of reverse logistics to hazardous waste is required. Thus, some processes have been developed with the aim of providing an appropriate destination for these products. In this context, a method for the treatment of spent batteries using thermal plasma technology is proposed herein. The efficiency of the method was tested through the determination of parameters, such as total organic carbon, moisture content and density, as well as analysis by atomic absorption spectrometry, scanning electron microscopy and X-ray fluorescence using samples before and after inertization. The value obtained for the density was 19.15%. The TOC results indicated 8.05% of C in the batteries prior to pyrolisis and according to the XRF analysis Fe, S, Mn and Zn were the most stable elements in the samples (highest peaks). The efficiency of the paste inertization was 97% for zinc and 99.74% for manganese. The results also showed that the most efficient reactor was that with the DC transferred arc plasma torch and quartzite sand positively influenced by the vitrification during the pyrolysis of the electrolyte paste obtain from batteries. Copyright © 2015. Published by Elsevier Ltd.

  6. Immersion Classes in an English Setting: One Way for les Anglais to Learn French. Working Papers on Bilingualism, No. 2.

    ERIC Educational Resources Information Center

    Barik, Henri; And Others

    The results of the evaluation of the French immersion program at a school in a unilingual English environment are described. A battery of tests was administered to a random sample of children from the kindergarten and grade one experimental French immersion classes and to a comparison group composed of children following the regular English…

  7. Performance characteristics of an electric vehicle lead-acid battery pack at elevated temperatures

    NASA Technical Reports Server (NTRS)

    Chapman, P.

    1982-01-01

    Discharge testing data electric car battery pack over initial electrolyte temperature variations between 27 and 55 C are presented. The tests were conducted under laboratory conditions and then compared to detailed electric vehicle simulation models. Battery discharge capacity increased with temperature for constant current discharges, and battery energy capacity increased with temperature for constant power discharges. Dynamometer tests of the electric test vehicle showed an increase in range of 25% for the higher electrolyte temperature.

  8. Baseline Field Testing of BB-2590 Lithium-Ion Batteries using an iRobot FasTac 510 Robot

    DTIC Science & Technology

    2010-09-17

    No. 21320 Baseline Field Testing of BB-2590 Lithium - Ion Batteries using an iRobot FasTac 510 Robot U.S. Army Tank...SEP 2010 2. REPORT TYPE N/A 3. DATES COVERED - 4. TITLE AND SUBTITLE Baseline Field Testing of BB-2590 Lithium - Ion Batteries using an iRobot...COVERED (From - To) Baseline Field Testing of BB-2590 Lithium - Ion Batteries using an 4. TITLE AND SUBTITLE iRobot FasTac 510 Robot 5a. CONTRACT

  9. Accelerated and real-time geosynchronous life cycling test performance of nickel-hydrogen batteries

    NASA Technical Reports Server (NTRS)

    Green, R. S.

    1985-01-01

    RCA Astro-Electronics currently has four nickel-hydrogen storage battery modules (11 cells each) on test in simulated geosynchronous life cycle regimes. These battery modules are of identical design to those used on the GSTAR (GTE Satellite Corp.) and Spacenet (GTE Spacenet Corp.) communications satellites. The batteries are being tested using an automated test station equipped with computer-controlled environmental chambers and recording equipment. The two battery types, 30 ampere-hours and 40 ampere-hours (GSTAR and Spacenet, respectively), are being electrically cycled using identical 44-day eclipse sequences at 5 C and vary with respect to depth of discharge, recharge ratio, duration of accumulated suntime, and the use of a reconditioning sequence. The test parameters are outlined and the preliminary test data and results are presented.

  10. Failure Mechanisms of Ni-H2 and Li-Ion Batteries Under Hypervelocity Impacts

    NASA Technical Reports Server (NTRS)

    Miller, J. E.; Lyons, F.; Christiansen, E. L.; Lear, D. M.

    2017-01-01

    Lithium-Ion (Li-Ion) batteries have yielded significant performance advantages for many industries, including the aerospace industry, and have been selected to replace nickel hydrogen (Ni-H2) batteries for the International Space Station (ISS) program to meet the energy storage demands. As the ISS uses its vast solar arrays to generate its power, the solar ar-rays meet their sunlit power demands and supply excess power to battery packs for power de-livery on the sun obscured phase of the approximate 90 minute low Earth orbit. These large battery packs are located on the exterior of the ISS, and as such, the battery packs are ex-posed to external environment threats like naturally occurring meteoroids and artificial orbital debris (MMOD). While the risks from these solid particle environments has been known and addressed to an acceptable risk of failure through shield design, it is not possible to completely eliminate the risk of loss of these assets on orbit due to MMOD, and as such, failure consequences to the ISS have been considered.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Kandler; Shi, Ying; Santhanagopalan, Shriram

    Predictive models of Li-ion battery lifetime must consider a multiplicity of electrochemical, thermal, and mechanical degradation modes experienced by batteries in application environments. To complicate matters, Li-ion batteries can experience different degradation trajectories that depend on storage and cycling history of the application environment. Rates of degradation are controlled by factors such as temperature history, electrochemical operating window, and charge/discharge rate. We present a generalized battery life prognostic model framework for battery systems design and control. The model framework consists of trial functions that are statistically regressed to Li-ion cell life datasets wherein the cells have been aged under differentmore » levels of stress. Degradation mechanisms and rate laws dependent on temperature, storage, and cycling condition are regressed to the data, with multiple model hypotheses evaluated and the best model down-selected based on statistics. The resulting life prognostic model, implemented in state variable form, is extensible to arbitrary real-world scenarios. The model is applicable in real-time control algorithms to maximize battery life and performance. We discuss efforts to reduce lifetime prediction error and accommodate its inevitable impact in controller design.« less

  12. The Psychology Experiment Building Language (PEBL) and PEBL Test Battery.

    PubMed

    Mueller, Shane T; Piper, Brian J

    2014-01-30

    We briefly describe the Psychology Experiment Building Language (PEBL), an open source software system for designing and running psychological experiments. We describe the PEBL Test Battery, a set of approximately 70 behavioral tests which can be freely used, shared, and modified. Included is a comprehensive set of past research upon which tests in the battery are based. We report the results of benchmark tests that establish the timing precision of PEBL. We consider alternatives to the PEBL system and battery tests. We conclude with a discussion of the ethical factors involved in the open source testing movement. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. The Psychology Experiment Building Language (PEBL) and PEBL Test Battery

    PubMed Central

    Mueller, Shane T.; Piper, Brian J.

    2014-01-01

    Background We briefly describe the Psychology Experiment Building Language (PEBL), an open source software system for designing and running psychological experiments. New Method We describe the PEBL test battery, a set of approximately 70 behavioral tests which can be freely used, shared, and modified. Included is a comprehensive set of past research upon which tests in the battery are based. Results We report the results of benchmark tests that establish the timing precision of PEBL. Comparison with Existing Method We consider alternatives to the PEBL system and battery tests. Conclusions We conclude with a discussion of the ethical factors involved in the open source testing movement. PMID:24269254

  14. Low Temperature Life-cycle Testing of a Lithium-ion Battery for Low-earth-orbiting Spacecraft

    NASA Technical Reports Server (NTRS)

    Reid, Concha

    2004-01-01

    A flight-qualified, lithium-ion (Li-ion) battery developed for the Mars Surveyor Program 2001 lander is undergoing life-testing at low temperature under a low-Earth-orbit (LEO) profile to assess its capability to provide long term energy storage for aerospace missions. NASA has embarked upon an ambitious course to return humans to the moon by 2015-2020 in preparation for robotic and human exploration of Mars and robotic exploration of the moons of outer planets. Li-ion batteries are excellent candidates to provide power and energy storage for multiple aspects of these missions due to their low specific energy, low energy density, and excellent low temperature performance. Laboratory testing of Li-ion technology is necessary in order to assess lifetime, characterize multi-cell battery-level performance under aerospace conditions, and to gauge safety aspects of the technology. Life-cycle testing provides an opportunity to examine battery-level performance and the dynamics of individual cells in the stack over the entire life of the battery. Data generated through this testing will be critical to establish confidence in the technology for its widespread use in manned and unmanned mission. This paper discusses the performance of the 28 volt, 25 ampere-hour battery through 6000 LEO cycles, which corresponds to one year on LEO orbit. Testing is being performed at 0 C and 40% depth-of-discharge. Individual cell behaviors and their effect on the performance of the battery are described. Capacity, impedance, energy efficiency and end-of-discharge voltage at 1000 cycle intervals are reported. Results from this life-testing will help contribute to the database on battery-level performance of aerospace Li-ion batteries and low temperature cycling under LEO conditions.

  15. Safety modelling and testing of lithium-ion batteries in electrified vehicles

    NASA Astrophysics Data System (ADS)

    Deng, Jie; Bae, Chulheung; Marcicki, James; Masias, Alvaro; Miller, Theodore

    2018-04-01

    To optimize the safety of batteries, it is important to understand their behaviours when subjected to abuse conditions. Most early efforts in battery safety modelling focused on either one battery cell or a single field of interest such as mechanical or thermal failure. These efforts may not completely reflect the failure of batteries in automotive applications, where various physical processes can take place in a large number of cells simultaneously. In this Perspective, we review modelling and testing approaches for battery safety under abuse conditions. We then propose a general framework for large-scale multi-physics modelling and experimental work to address safety issues of automotive batteries in real-world applications. In particular, we consider modelling coupled mechanical, electrical, electrochemical and thermal behaviours of batteries, and explore strategies to extend simulations to the battery module and pack level. Moreover, we evaluate safety test approaches for an entire range of automotive hardware sets from cell to pack. We also discuss challenges in building this framework and directions for its future development.

  16. Pulsed infrared thermography for assessment of ultrasonic welds

    NASA Astrophysics Data System (ADS)

    McGovern, Megan E.; Rinker, Teresa J.; Sekol, Ryan C.

    2018-03-01

    Battery packs are a critical component in electric vehicles. During pack assembly, the battery cell tab and busbar are ultrasonically welded. The properties of the welds ultimately affect battery pack durability. Quality inspection of these welds is important to ensure durable battery packs. Pack failure is detrimental economically and could also pose a safety hazard, such as thermal runaway. Ultrasonic welds are commonly checked by measuring electrical resistance or auditing using destructive mechanical testing. Resistance measurements are quick, but sensitive to set-up changes. Destructive testing cannot represent the entire weld set. It is possible for a weak weld to satisfy the electrical requirement check, because only sufficient contact between the tabs and busbar is required to yield a low resistance measurement. Laboratory techniques are often not suitable for inline inspection, as they may be time-consuming, use couplant, or are only suitable for coupons. The complex surface geometry also poses difficulties for conventional nondestructive techniques. A method for inspection of ultrasonic welds is proposed using pulsed infrared thermography to identify discrepant welds in a manufacturing environment. Thermal measurements of welds were compared to electrical and mechanical measurements. The heat source distribution was calculated to obtain thermal images with high temporal and spatial resolution. All discrepant welds were readily identifiable using two thermographic techniques: pixel counting and the gradient image. A positive relationship between pixel count and mechanical strength was observed. The results demonstrate the potential of pulsed thermography for inline inspection, which can complement, or even replace, conventional electrical resistance measurements.

  17. Development of new sealed bipolar lead-acid battery

    NASA Technical Reports Server (NTRS)

    Attia, Alan I.; Rowlette, J. J.

    1987-01-01

    New light weight composite bipolar plates which can withstand the corrosive environment of the lead acid battery have made possible the construction of a sealed bipolar lead acid battery that promises to achieve very high specific power levels and substantially higher energy densities than conventional lead acid batteries. Performance projections based on preliminary experimental results show that the peak specific power of the battery can be as high as 90 kW/kg, and that a specific power of 5 kW/kg can be sustained over several thousand pulses.

  18. Impact of shuttle environment on prelaunch handling of nickel-hydrogen batteries

    NASA Technical Reports Server (NTRS)

    Green, R. S.

    1986-01-01

    Deployment of the American Satellite Company 1 spacecraft for the Space Shuttle Discovery in August 1985 set a new milestone in nickel-hydrogen battery technology. This communications satellite is equipped with two 35 Ah nickel-hydrogen batteries and it is the first such satellite launched into orbit via the Space Shuttle. The prelaunch activities, combined with the environmental constraints onboard the Shuttle, led to the development of a new battery handling procedure. An outline of the prelaunch activities, with particular attention to battery charging, is presented.

  19. The development of a new sealed bipolar lead-acid battery

    NASA Technical Reports Server (NTRS)

    Attia, A. I.; Rowlette, J. J.

    1988-01-01

    New light weight composite bipolar plates which can withstand the corrosive environment of the lead acid battery have made possible the construction of a sealed bipolar lead acid battery that promises to achieve very high specific power levels and substantially higher energy densities than conventional lead acid batteries. Performance projections based on preliminary experimental results show that the peak specific power of the battery can be as high as 90 kW/kg, and that a specific power of 5 kW/kg can be sustained over several thousand pulses.

  20. Advanced lead acid battery development project. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1997-02-01

    This project involved laboratory and road testing of the Horizon (registered) advanced lead acid batteries produced by Electrosource, Inc. A variety of electric vehicles in the fleet operated by the Sacramento Municipal Utility District and McClellan Air Force Base were used for road tests. The project was sponsored by the Defense Advanced Research Projects Agency under RA 93-23 entitled Electric Vehicle Technology and Infrastructure. The Horizon battery is a valve regulated, or sealed, lead acid battery produced in a variety of sizes and performance levels. During the project, several design and process improvements on the Horizon battery resulted in amore » production battery with a specific energy approaching 45 watt-hours per kilogram (Whr/kg) capable of delivering a peak current of 450 amps. The 12 volt, 95 amp-hour (Ahr) Horizon battery, model number 12N95, was placed into service in seven (7) test vehicles, including sedans, prototype lightweight electric vehicles, and passenger vans. Over 20,000 miles have been driven to date on vehicles powered by the Horizon battery. Road test results indicate that when the battery pack is used with a compatible charger and charge management system, noticeably improved acceleration characteristics are evident, and the vehicles provide a useful range almost 20% greater than with conventional lead-acid batteries.« less

  1. [Redesign of the Spacesuit Long Life Battery and the Personal Life Support System Battery

    NASA Technical Reports Server (NTRS)

    Scharf, Stephanie

    2015-01-01

    This fall I was working on two different projects that culminated into a redesign of the spacesuit LLB (long life battery). I also did some work on the PLSS (personal life support system) battery with EC. My first project was redlining the work instruction for completing DPAs (destructive physical analysis) on battery cells in the department. The purpose of this document is to create a standard process and ensure that the data in the same way no matter who carries out the analysis. I observed three DPAs, conducted one with help, and conducted two on my own all while taking notes on the procedure. These notes were used to write the final work instruction that will become is the department standard. My second project continued the work of the summer co-op before me. I was testing aluminum heat sinks for their ability to provide good thermal conduction and structural support during a thermal runaway event. The heat sinks were designed by the summer intern but there was not much time for testing before he left. We ran tests with a heater on the bottom of a trigger cell to try to drive thermal runaway and ensure that it will not propagate to adjacent cells. We also ran heat-to-vent tests in an oven to see if the assembly provided structural support and prevented sidewall rupture during thermal runaway. These tests were carried out at ESTA (energy systems test area) and are providing very promising results that safe, high performing (greater than 180 Wh/kg) designs are possible. My main project was a redesign of the LLB battery. Another summer intern did some testing and concluded that there was no simple fix to mitigate thermal runaway propagation hazards in the current design. The only option was a clean sheet redesign of the battery. I was given a volume and ideal energy density and the rest of the design was up to me. First, I created new heat sink banks in Creo using the information gathered in the metal heat sink tests from the summer intern. After this, I made capture plates to hold the cells in place and I worked on nickel bussings for the electrical connections between the cells. Finally, I designed the test box enclosure that included sections for flame arresting materials. The battery brick design, which is the heart of the battery, promises to become the first for a manned spacecraft application to achieve greater than 180 Wh/kg. My work in redlining the DPA work instructions will also be used in selecting the cells for the battery. We had a few options of cells that would provide the necessary power output and needed to make a choice. We repeatedly charged and discharged cells for around a month until they went through 100 lifecycles. The plan is to compare the DPA results on fresh and cycled cells from each manufacturer to see if cycling introduces any differences. After the complete LLB design was approved, the parts were ordered and testing should begin the first week of December. Some of my side projects included working on the CAD data for the PLSS with EC and attending the NASA Aerospace Battery Workshop in Huntsville. I was also a member of the Tours and Lectures Committee for the USRA and Pathways interns. I coordinated Apollo Evening and was on the committee for touring KSC and seeing an Atlas 5 launch. I really enjoyed my time at JSC and I would like to continue working for NASA or another aerospace company in the future. I have worked other internships prior to this, but I think the heavy research and development focus is the best fit for me. I originally thought I would need to go to grad school to work in an environment like this, but I now see it is possible with a bachelor’s degree and hard work. I would like to go into the workforce and maybe continue my education with night classes.

  2. Battery Test Manual For Plug-In Hybrid Electric Vehicles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jeffrey R. Belt

    2010-09-01

    This battery test procedure manual was prepared for the United States Department of Energy (DOE), Office of Energy Efficiency and Renewable Energy (EERE), Vehicle Technologies Program. It is based on technical targets established for energy storage development projects aimed at meeting system level DOE goals for Plug-in Hybrid Electric Vehicles (PHEV). The specific procedures defined in this manual support the performance and life characterization of advanced battery devices under development for PHEV’s. However, it does share some methods described in the previously published battery test manual for power-assist hybrid electric vehicles. Due to the complexity of some of the proceduresmore » and supporting analysis, a revision including some modifications and clarifications of these procedures is expected. As in previous battery and capacitor test manuals, this version of the manual defines testing methods for full-size battery systems, along with provisions for scaling these tests for modules, cells or other subscale level devices.« less

  3. Battery Test Manual For Plug-In Hybrid Electric Vehicles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jeffrey R. Belt

    2010-12-01

    This battery test procedure manual was prepared for the United States Department of Energy (DOE), Office of Energy Efficiency and Renewable Energy (EERE), Vehicle Technologies Program. It is based on technical targets established for energy storage development projects aimed at meeting system level DOE goals for Plug-in Hybrid Electric Vehicles (PHEV). The specific procedures defined in this manual support the performance and life characterization of advanced battery devices under development for PHEV’s. However, it does share some methods described in the previously published battery test manual for power-assist hybrid electric vehicles. Due to the complexity of some of the proceduresmore » and supporting analysis, a revision including some modifications and clarifications of these procedures is expected. As in previous battery and capacitor test manuals, this version of the manual defines testing methods for full-size battery systems, along with provisions for scaling these tests for modules, cells or other subscale level devices.« less

  4. Causal Analysis For Occurrence Report OR NA-SS-SNL-2000-2015-0005 Unexpected Type of Failure of Thermal Battery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Forbes, Elizabeth H.

    2015-08-01

    On 6/26/2015 at approximately 1445 in 894/136, a pulse thermal battery (approximately the size of a commercial size C cell) experienced an unexpected failure following an electrical performance test that is routinely conducted on thermal batteries. A dedicated tester for this operation was used and it ran the test until the nominal 28-volt output of the battery had dropped to 5 volts, usually indicative of the battery being spent and safe enough to move. The failure occurred while a test operator was transferring the battery from the testing primary containment box to another primary containment box within the same room;more » initial indications are that the battery experienced an over-pressurization failure which led to the battery's base plate being expelled and the operator receiving a non-recordable injury (bruising to the palm of the hand) from the pressure of the expulsion. The operator was wearing the prescribed PPE (safety glasses and high temperature glove) and was handling the battery appropriately with an open, flat hand. Pictures of the scene are below.« less

  5. Psychometric evaluation of a motor control test battery of the craniofacial region.

    PubMed

    von Piekartz, H; Stotz, E; Both, A; Bahn, G; Armijo-Olivo, S; Ballenberger, N

    2017-12-01

    The primary objective of this study was to determine the structural and known-group validity as well as the inter-rater reliability of a test battery to evaluate the motor control of the craniofacial region. Seventy volunteers without TMD and 25 subjects with TMD (Axes I) per the DC/TMD were asked to execute a test battery consisting of eight tests. The tests were video-taped in the same sequence in a standardised manner. Two experienced physical therapists participated in this study as blinded assessors. We used exploratory factor analysis to identify the underlying component structure of the eight tests. Internal consistency (Cronbach's α), inter-rater reliability (intra-class correlation coefficient) and construct validity (ie, hypothesis testing-known-group validity) (receiver operating curves) were also explored for the test battery. The structural validity showed the presence of one factor underlying the construct of the test battery. The internal consistency was excellent (0.90) as well as the inter-rater reliability. All values of reliability were close to 0.9 or above indicating very high inter-rater reliability. The area under the curve (AUC) was 0.93 for rater 1 and 0.94 for rater two, respectively, indicating excellent discrimination between subjects with TMD and healthy controls. The results of the present study support the psychometric properties of test battery to measure motor control of the craniofacial region when evaluated through videotaping. This test battery could be used to differentiate between healthy subjects and subjects with musculoskeletal impairments in the cervical and oro-facial regions. In addition, this test battery could be used to assess the effectiveness of management strategies in the craniofacial region. © 2017 John Wiley & Sons Ltd.

  6. A field operational test on valve-regulated lead-acid absorbent-glass-mat batteries in micro-hybrid electric vehicles. Part I. Results based on kernel density estimation

    NASA Astrophysics Data System (ADS)

    Schaeck, S.; Karspeck, T.; Ott, C.; Weckler, M.; Stoermer, A. O.

    2011-03-01

    In March 2007 the BMW Group has launched the micro-hybrid functions brake energy regeneration (BER) and automatic start and stop function (ASSF). Valve-regulated lead-acid (VRLA) batteries in absorbent glass mat (AGM) technology are applied in vehicles with micro-hybrid power system (MHPS). In both part I and part II of this publication vehicles with MHPS and AGM batteries are subject to a field operational test (FOT). Test vehicles with conventional power system (CPS) and flooded batteries were used as a reference. In the FOT sample batteries were mounted several times and electrically tested in the laboratory intermediately. Vehicle- and battery-related diagnosis data were read out for each test run and were matched with laboratory data in a data base. The FOT data were analyzed by the use of two-dimensional, nonparametric kernel estimation for clear data presentation. The data show that capacity loss in the MHPS is comparable to the CPS. However, the influence of mileage performance, which cannot be separated, suggests that battery stress is enhanced in the MHPS although a battery refresh function is applied. Anyway, the FOT demonstrates the unsuitability of flooded batteries for the MHPS because of high early capacity loss due to acid stratification and because of vanishing cranking performance due to increasing internal resistance. Furthermore, the lack of dynamic charge acceptance for high energy regeneration efficiency is illustrated. Under the presented FOT conditions charge acceptance of lead-acid (LA) batteries decreases to less than one third for about half of the sample batteries compared to new battery condition. In part II of this publication FOT data are presented by multiple regression analysis (Schaeck et al., submitted for publication [1]).

  7. Laboratory discharge studies of a 6 V alkaline lantern-type battery Eveready Energizer no. 528, under various ambient temperatures (-15 deg C and + 22 deg C) and loads (30 omega and 60 omega)

    NASA Technical Reports Server (NTRS)

    Ahrens, S. T.

    1984-01-01

    The voltages of two Eveready No. 528 batteries, one the test battery, the other the control battery, were simultaneously recorded as they were discharged across 30 omega loads using a dual chart recorder. The test battery was initially put in a freezer at -15 + or - 3 C. After its voltage had fallen to .6 V, it was brought back out into the room at 22 + or - 3 C. A second run was made with 60 omega loads. Assuming a 3.0 V cut-off, the total energy output of the test battery at -15 C was 26 WHr 30 omega and 35 WHr 60 omega, and the corresponding numbers for the control battery at 22 C were 91 WHr and 100 WHr. When the test battery was subsequently allowed to warm up, the voltage rose above 4 V and the total energy output rose to 80 WHr 30 omega and 82 WHR 60 omega.

  8. Optimization analysis of thermal management system for electric vehicle battery pack

    NASA Astrophysics Data System (ADS)

    Gong, Huiqi; Zheng, Minxin; Jin, Peng; Feng, Dong

    2018-04-01

    Electric vehicle battery pack can increase the temperature to affect the power battery system cycle life, charge-ability, power, energy, security and reliability. The Computational Fluid Dynamics simulation and experiment of the charging and discharging process of the battery pack were carried out for the thermal management system of the battery pack under the continuous charging of the battery. The simulation result and the experimental data were used to verify the rationality of the Computational Fluid Dynamics calculation model. In view of the large temperature difference of the battery module in high temperature environment, three optimization methods of the existing thermal management system of the battery pack were put forward: adjusting the installation position of the fan, optimizing the arrangement of the battery pack and reducing the fan opening temperature threshold. The feasibility of the optimization method is proved by simulation and experiment of the thermal management system of the optimized battery pack.

  9. Results of electric-vehicle propulsion system performance on three lead-acid battery systems

    NASA Technical Reports Server (NTRS)

    Ewashinka, J. G.

    1984-01-01

    Three types of state of the art 6 V lead acid batteries were tested. The cycle life of lead acid batteries as a function of the electric vehicle propulsion system design was determined. Cycle life, degradation rate and failure modes with different battery types (baseline versus state of the art tubular and thin plate batteries were compared. The effects of testing strings of three versus six series connected batteries on overall performance were investigated. All three types do not seem to have an economically feasible battery system for the propulsion systems. The tubular plate batteries on the load leveled profile attained 235 cycles with no signs of degradation and minimal capacity loss.

  10. Results of electric-vehicle propulsion system performance on three lead-acid battery systems

    NASA Technical Reports Server (NTRS)

    Ewashinka, J. G.

    1984-01-01

    Three types of state of the art 6 V lead acid batteries were tested. The cycle life of lead acid batteries as a function of the electric vehicle propulsion system design was determined. Cycle life, degradation rate and failure modes with different battery types (baseline versus state of the art tubular and thin plate batteries) were compared. The effects of testing strings of three versus six series connected batteries on overall performance were investigated. All three types do not seem to have an economically feasible battery system for the propulsion systems. The tubular plate batteries on the load leveled profile attained 235 cycles with no signs of degradation and minimal capacity loss.

  11. Electric vehicle energy management system

    NASA Astrophysics Data System (ADS)

    Alaoui, Chakib

    This thesis investigates and analyzes novel strategies for the optimum energy management of electric vehicles (EVs). These are aimed to maximize the useful life of the EV batteries and make the EV more practical in order to increase its acceptability to market. The first strategy concerns the right choice of the batteries for the EV according to the user's driving habits, which may vary. Tests conducted at the University of Massachusetts Lowell battery lab show that the batteries perform differently from one manufacturer to the other. The second strategy was to investigate the fast chargeability of different batteries, which leads to reduce the time needed to recharge the EV battery pack. Tests were conducted again to prove that only few battery types could be fast charged. Test data were used to design a fast battery charger that could be installed in an EV charging station. The third strategy was the design, fabrication and application of an Electric Vehicle Diagnostic and Rejuvenation System (EVDRS). This system is based on Mosfet Controlled Thyristors (MCTs). It is capable of quickly identifying any failing battery(s) within the EV pack and rejuvenating the whole battery pack without dismantling them and unloading them. A novel algorithm to rejuvenate Electric Vehicle Sealed Lead Acid Batteries is described. This rejuvenation extends the useful life of the batteries and makes the EV more competitive. The fourth strategy was to design a thermal management system for EV, which is crucial to the safe operation, and the achievement of normal/optimal performance of, electric vehicle (EV) batteries. A novel approach for EV thermal management, based on Pettier-Effect heat pumps, was designed, fabricated and tested in EV. It shows the application of this type of technology for thermal management of EVs.

  12. 30 CFR 7.46 - Impact test.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... MINING PRODUCTS TESTING BY APPLICANT OR THIRD PARTY Battery Assemblies § 7.46 Impact test. (a) Test... at 122 °F (50 °C) for a period of 48 hours. (2) Mount the covers on a battery box of the same design with which the covers are to be approved, including any support blocks, with the battery cells...

  13. Battery Calendar Life Estimator Manual Modeling and Simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jon P. Christophersen; Ira Bloom; Ed Thomas

    2012-10-01

    The Battery Life Estimator (BLE) Manual has been prepared to assist developers in their efforts to estimate the calendar life of advanced batteries for automotive applications. Testing requirements and procedures are defined by the various manuals previously published under the United States Advanced Battery Consortium (USABC). The purpose of this manual is to describe and standardize a method for estimating calendar life based on statistical models and degradation data acquired from typical USABC battery testing.

  14. Battery Life Estimator Manual Linear Modeling and Simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jon P. Christophersen; Ira Bloom; Ed Thomas

    2009-08-01

    The Battery Life Estimator (BLE) Manual has been prepared to assist developers in their efforts to estimate the calendar life of advanced batteries for automotive applications. Testing requirements and procedures are defined by the various manuals previously published under the United States Advanced Battery Consortium (USABC). The purpose of this manual is to describe and standardize a method for estimating calendar life based on statistical models and degradation data acquired from typical USABC battery testing.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fischer, W.; Shiota, T.

    Two categories of NaS traction batteries will be discussed: the present battery of Asea Brown Boveri and Powerplex and potential future NaS traction batteries. A large number of our present 24 kWh - 35 kw battery has been subjected to bench and on-vehicle performance tests. Test results will be presented. Future battery types to be volume produced in the early 1990`s are discussed with regard to energy, power and shape for special applications such a passenger car and van propulsion. Examples for those batteries will be given and projected performance characteristiques will be discussed.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fischer, W.; Shiota, T.

    Two categories of NaS traction batteries will be discussed: the present battery of Asea Brown Boveri and Powerplex and potential future NaS traction batteries. A large number of our present 24 kWh - 35 kw battery has been subjected to bench and on-vehicle performance tests. Test results will be presented. Future battery types to be volume produced in the early 1990's are discussed with regard to energy, power and shape for special applications such a passenger car and van propulsion. Examples for those batteries will be given and projected performance characteristiques will be discussed.

  17. Accuracy statistics in predicting Independent Activities of Daily Living (IADL) capacity with comprehensive and brief neuropsychological test batteries.

    PubMed

    Karzmark, Peter; Deutsch, Gayle K

    2018-01-01

    This investigation was designed to determine the predictive accuracy of a comprehensive neuropsychological and brief neuropsychological test battery with regard to the capacity to perform instrumental activities of daily living (IADLs). Accuracy statistics that included measures of sensitivity, specificity, positive and negative predicted power and positive likelihood ratio were calculated for both types of batteries. The sample was drawn from a general neurological group of adults (n = 117) that included a number of older participants (age >55; n = 38). Standardized neuropsychological assessments were administered to all participants and were comprised of the Halstead Reitan Battery and portions of the Wechsler Adult Intelligence Scale-III. A comprehensive test battery yielded a moderate increase over base-rate in predictive accuracy that generalized to older individuals. There was only limited support for using a brief battery, for although sensitivity was high, specificity was low. We found that a comprehensive neuropsychological test battery provided good classification accuracy for predicting IADL capacity.

  18. The Construction and Analysis of a Test Battery Related to Volleyball Playing Capacity in Females.

    ERIC Educational Resources Information Center

    Disch, James G.; And Others

    The purpose of this report was to analyze a test battery constructed to describe and predict volleyball playing capacity in college and high school women. The following criteria were used for selecting a test for initial inclusion into the battery: (1) The test is related to a basic motor ability important to playing volleyball; (2) The test can…

  19. What Do Battery Testers Test?

    ERIC Educational Resources Information Center

    Chagnon, Paul

    1996-01-01

    Presents activities to determine whether it is better to test dry cells with an ammeter than with a voltmeter and how best to test alkaline batteries. Discusses classification of disposable testers as instruments. Concludes that a laboratory voltmeter gives a good indication of the condition of an alkaline cell while carbon batteries are best…

  20. Performance and safety testing of lithium batteries for the Expendable, Mobile, ASW Training Target (EMATT)

    NASA Astrophysics Data System (ADS)

    Hallal, P. B.; Bis, R. F.

    1986-08-01

    The developmental EMATT (expendable, mobile, ASW training target) may use a high-energy (lithium/sulfuryl chloride) battery system. Safety problems with the original battery cell design were experienced during early performance and safety testing. After redesign of the battery cell, performance and safety tests were made under specified abuse conditions, as well as under simulated launch conditions. The test results showed that the power system now meets all safety requirements, and that the EMATT vehicle is safe to deploy for its engineering development phase.

  1. Human-rated Safety Certification of a High Voltage Robonaut Lithium-ion Battery

    NASA Technical Reports Server (NTRS)

    Jeevarajan, Judith; Yayathi, S.; Johnson, M.; Waligora, T.; Verdeyen, W.

    2013-01-01

    NASA's rigorous certification process is being followed for the R2 high voltage battery program for use of R2 on International Space Station (ISS). Rigorous development testing at appropriate levels to credible off-nominal conditions and review of test data led to design improvements for safety at the virtual cell, cartridge and battery levels. Tests were carried out at all levels to confirm that both hardware and software controls work. Stringent flight acceptance testing of the flight battery will be completed before launch for mission use on ISS.

  2. A differential approach to microcomputer test battery development and implementation

    NASA Technical Reports Server (NTRS)

    Kennedy, R. S.; Baltzley, D. R.; Osteen, M. K.; Turnage, J. J.

    1988-01-01

    The present microcomputer-based performance test battery emphasizes psychometric theory and utility for repeated-measures applications during extended exposure to various environmental stressors. In the menu that has been defined at the current state of this system's development, there are more than 30 'qualified' mental tests which stabilize in less than 10 min and possess test-retest reliabilities greater than 0.7 for a three-minute test/work period. The battery encompasses tests of cognition, information processing, psychomotor skill, memory, mood, etc. Several of the tests have demonstrated sensitivity to chemoradiotherapy, sleep loss, hypoxia, amphetamines, thermal stress, sensory deprivation, altitude, fatigue, and alcohol use. Recommendations are presented for 6-, 12-, and 22-min batteries.

  3. NREL Scientists and Engineers Recognized for Top Innovations | NREL | News

    Science.gov Websites

    commercially available, large-format isothermal battery calorimeter for lithium-ion battery safety testing to test the performance and safety of large-format lithium-ion batteries used extensively in electric develop NREL intellectual property representing an isothermal battery calorimeter. The technical

  4. Development and Testing of an UltraBattery-Equipped Honda Civic Hybrid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sally; Tyler Gray; Pattie Hovorka

    2012-08-01

    The UltraBattery Retrofit Project DP1.8 and Carbon Enriched Project C3, performed by ECOtality North America (ECOtality) and funded by the U.S. Department of Energy and the Advanced Lead Acid Battery Consortium (ALABC), are established to demonstrate the suitability of advanced lead battery technology in hybrid electrical vehicles (HEVs). A profile, termed the “Simulated Honda Civic HEV Profile” (SHCHEVP) has been developed in Project DP1.8 in order to provide reproducible laboratory evaluations of different battery types under real-world HEV conditions. The cycle is based on the Urban Dynamometer Driving Schedule and Highway Fuel Economy Test cycles and simulates operation of amore » battery pack in a Honda Civic HEV. One pass through the SHCHEVP takes 2,140 seconds and simulates 17.7 miles of driving. A complete nickel metal hydride (NiMH) battery pack was removed from a Honda Civic HEV and operated under SHCHEVP to validate the profile. The voltage behavior and energy balance of the battery during this operation was virtually the same as that displayed by the battery when in the Honda Civic operating on the dynamometer under the Urban Dynamometer Driving Schedule and Highway Fuel Economy Test cycles, thus confirming the efficacy of the simulated profile. An important objective of the project has been to benchmark the performance of the UltraBatteries manufactured by both Furukawa Battery Co., Ltd., Japan (Furakawa) and East Penn Manufacturing Co., Inc. (East Penn). Accordingly, UltraBattery packs from both Furakawa and East Penn have been characterized under a range of conditions. Resistance measurements and capacity tests at various rates show that both battery types are very similar in performance. Both technologies, as well as a standard lead-acid module (included for baseline data), were evaluated under a simple HEV screening test. Both Furakawa and East Penn UltraBattery packs operated for over 32,000 HEV cycles, with minimal loss in performance; whereas the standard lead-acid unit experienced significant degradation after only 6,273 cycles. The high-carbon, ALABC battery manufactured in Project C3 also was tested under the advanced HEV schedule. Its performance was significantly better than the standard lead-acid unit, but was still inferior compared with the UltraBattery. The batteries supplied by Exide as part of the C3 Project performed well under the HEV screening test, especially at high temperatures. The results suggest that higher operating temperatures may improve the performance of lead-acid-based technologies operated under HEV conditions—it is recommended that life studies be conducted on these technologies under such conditions.« less

  5. Community Environmental Response Facilitation Act (CERFA) Report, Nike Battery Kansas City 30, Pleasant Hill, Missouri

    DTIC Science & Technology

    1994-04-01

    environment . * A number of environmentally significant operation identified through Enhanced PA investigations have the potential to affect human health...and environment and represent areas requiring environmental evaluation. Additional investigation, such as sampling of a variety of media including...Best Available. Copy AD-A281 929 IIIIIIIIII•. Community Environmental Response Facilitation Act (CERFA) Report Nike Battery Kansas City 30 Pleasant

  6. Furnished Cage System and Hen Well-Being: Comparative Effects of Furnished and Battery Cages on Egg Production and Physiological Parameters of White Leghorn Hens

    USDA-ARS?s Scientific Manuscript database

    Laboratory animal well-being can be improved by housing the animals in a species-special “natural” or “near to natural” environment. This study was to examine if housing environment, furnished cages vs. battery cages, causes a similar impact on well-being in laying hens. One hundred seventy-two, on...

  7. A lithium–oxygen battery with a long cycle life in an air-like atmosphere

    NASA Astrophysics Data System (ADS)

    Asadi, Mohammad; Sayahpour, Baharak; Abbasi, Pedram; Ngo, Anh T.; Karis, Klas; Jokisaari, Jacob R.; Liu, Cong; Narayanan, Badri; Gerard, Marc; Yasaei, Poya; Hu, Xuan; Mukherjee, Arijita; Lau, Kah Chun; Assary, Rajeev S.; Khalili-Araghi, Fatemeh; Klie, Robert F.; Curtiss, Larry A.; Salehi-Khojin, Amin

    2018-03-01

    Lithium–air batteries are considered to be a potential alternative to lithium-ion batteries for transportation applications, owing to their high theoretical specific energy. So far, however, such systems have been largely restricted to pure oxygen environments (lithium–oxygen batteries) and have a limited cycle life owing to side reactions involving the cathode, anode and electrolyte. In the presence of nitrogen, carbon dioxide and water vapour, these side reactions can become even more complex. Moreover, because of the need to store oxygen, the volumetric energy densities of lithium–oxygen systems may be too small for practical applications. Here we report a system comprising a lithium carbonate-based protected anode, a molybdenum disulfide cathode and an ionic liquid/dimethyl sulfoxide electrolyte that operates as a lithium–air battery in a simulated air atmosphere with a long cycle life of up to 700 cycles. We perform computational studies to provide insight into the operation of the system in this environment. This demonstration of a lithium–oxygen battery with a long cycle life in an air-like atmosphere is an important step towards the development of this field beyond lithium-ion technology, with a possibility to obtain much higher specific energy densities than for conventional lithium-ion batteries.

  8. A lithium-oxygen battery with a long cycle life in an air-like atmosphere.

    PubMed

    Asadi, Mohammad; Sayahpour, Baharak; Abbasi, Pedram; Ngo, Anh T; Karis, Klas; Jokisaari, Jacob R; Liu, Cong; Narayanan, Badri; Gerard, Marc; Yasaei, Poya; Hu, Xuan; Mukherjee, Arijita; Lau, Kah Chun; Assary, Rajeev S; Khalili-Araghi, Fatemeh; Klie, Robert F; Curtiss, Larry A; Salehi-Khojin, Amin

    2018-03-21

    Lithium-air batteries are considered to be a potential alternative to lithium-ion batteries for transportation applications, owing to their high theoretical specific energy. So far, however, such systems have been largely restricted to pure oxygen environments (lithium-oxygen batteries) and have a limited cycle life owing to side reactions involving the cathode, anode and electrolyte. In the presence of nitrogen, carbon dioxide and water vapour, these side reactions can become even more complex. Moreover, because of the need to store oxygen, the volumetric energy densities of lithium-oxygen systems may be too small for practical applications. Here we report a system comprising a lithium carbonate-based protected anode, a molybdenum disulfide cathode and an ionic liquid/dimethyl sulfoxide electrolyte that operates as a lithium-air battery in a simulated air atmosphere with a long cycle life of up to 700 cycles. We perform computational studies to provide insight into the operation of the system in this environment. This demonstration of a lithium-oxygen battery with a long cycle life in an air-like atmosphere is an important step towards the development of this field beyond lithium-ion technology, with a possibility to obtain much higher specific energy densities than for conventional lithium-ion batteries.

  9. Nickel-Hydrogen and Lithium Ion Space Batteries

    NASA Technical Reports Server (NTRS)

    Reid, Robert O., II

    2004-01-01

    The tasks of the Electrochemistry Branch of NASA Glenn Research Center are to improve and develop high energy density and rechargeable, life-long batteries. It is with these batteries that people across the globe are able to power their cell phones, laptop computers, and cameras. Here, at NASA Glenn Research Center, the engineers and scientists of the Electrochemistry branch are leading the way in the development of more powerful, long life batteries that can be used to power space shuttles and satellites. As of now, the cutting edge research and development is being done on nickel-hydrogen batteries and lithium ion batteries. Presently, nickel-hydrogen batteries are common types of batteries that are used to power satellites, space stations, and space shuttles, while lithium batteries are mainly used to power smaller appliances such as portable computers and phones. However, the Electrochemistry Branch at NASA Glenn Research Center is focusing more on the development of lithium ion batteries for deep space use. Because of the limitless possibilities, lithium ion batteries can revolutionize the space industry for the better. When compared to nickel-hydrogen batteries, lithium ion batteries possess more advantages than its counterpart. Lithium ion batteries are much smaller than nickel-hydrogen batteries and also put out more power. They are more energy efficient and operate with much more power at a reduced weight than its counterpart. Lithium ion cells are also cheaper to make, possess flexibility that allow for different design modifications. With those statistics in hand, the Electrochemistry Branch of NASA Glenn has decided to shut down its Nickel-Hydrogen testing for lithium ion battery development. Also, the blackout in the summer of 2003 eliminated vital test data, which played a part in shutting down the program. from the nickel-hydrogen batteries and compare it to past data. My other responsibilities include superheating the electrolyte that is used in the nickel-hydrogen cell in a calorimeter to test its performance under various conditions. 1 used a program called Arbin to study my data. The Arbin allows me to look at different parameters such as pressure and time and how they affect the changing temperature of the electrolyte that is being tested. In addition, I had the responsibility of taking apart and modifying battery coolers that would be used. My mentors told me that the batteries kept shutting down, so it was my responsibility to remove excess fan grilles, rotate the fans, and then switch the aluminum standoffs with nylon ones so that the coolers could operate without problems. My last task is to collect all the battery test data and organize them into charts using Microsoft Excel, before the Branch is able to conduct its research on lithium ion batteries. Therefore, during my tenure, it is my responsibility to take down final test data

  10. Hypervelocity Impact Testing of Nickel Hydrogen Battery Cells

    NASA Technical Reports Server (NTRS)

    Frate, David T.; Nahra, Henry K.

    1996-01-01

    Nickel-Hydrogen (Ni/H2) battery cells have been used on several satellites and are planned for use on the International Space Station. In January 1992, the NASA Lewis Research Center (LeRC) conducted hypervelocity impact testing on Ni/H2 cells to characterize their failure modes. The cell's outer construction was a 24 mil-thick Inconel 718 pressure vessel. A sheet of 1.27 cm thick honeycomb was placed in front of the battery cells during testing to simulate the on-orbit box enclosure. Testing was conducted at the NASA White Sands Test Facility (WSTF). The hypervelocity gun used was a 7.6 mm (0.30 caliber) two-stage light gas gun. Test were performed at speeds of 3, 6, and 7 km/sec using aluminum 2017 spherical particles of either 4.8 or 6.4 mm diameter as the projectile. The battery cells were electrically charged to about 75 percent of capacity, then back-filled with hydrogen gas to 900 psi simulating the full charge condition. High speed film at 10,000 frames/sec was taken of the impacts. Impacts in the dome area (top) and the electrode area (middle) of the battery cells were investigated. Five tests on battery cells were performed. The results revealed that in all of the test conditions investigated, the battery cells simply vented their hydrogen gas and some electrolyte, but did not burst or generate any large debris fragments.

  11. Primary zinc-air batteries for space power

    NASA Technical Reports Server (NTRS)

    Bragg, Bobby J.; Bourland, Deborah S.; Merry, Glenn; Putt, Ron

    1992-01-01

    Prismatic HR and LC cells and batteries were built and tested, and they performed well with respect to the program goals of high capacity and high rate capability at specific energies. The HR batteries suffered reduced utilizations owing to dryout at the 2 and 3 A rates for the 50 C tests owing to the requirement for forced convection. The LC batteries suffered reduced utilizations under all conditions owing to the chimney effect at 1 G, although this effect would not occur at 0 G. An empirical model was developed which accurately predicted utilizations and average voltages for single cells, although thermal effects encountered during battery testing caused significant deviations, both positive and negative, from the model. Based on the encouraging results of the test program, we believe that the zinc-air primary battery of a flat, stackable configuration can serve as a high performance and safe power source for a range of space applications.

  12. Development of a lead-acid battery for a hybrid electric vehicle

    NASA Astrophysics Data System (ADS)

    Cooper, A.

    In September 2000, a project reliable, highly optimized lead-acid battery (RHOLAB) started under the UK Foresight Vehicle Programme with the objective of developing an optimized lead-acid battery solution for hybrid electric vehicles. The work is based on a novel, individual, spirally-wound valve-regulated lead-acid 2 V cell optimized for HEV use and low variability. This cell is being used as a building block for the development of a complete battery pack that is managed at the cell level. Following bench testing, this battery pack is to be thoroughly evaluated by substituting it for the Ni-MH pack in a Honda Insight. The RHOLAB cell is based on the 8 Ah Hawker Cyclon cell which has been modified to have current take-off at both ends—the dual-tab design. In addition, a variant has been produced with modified cell chemistry to help deal with problems that can occur when these valve-regulated lead-acid battery (VRLA) cells operate in a partial-state-of-charge condition. The cells have been cycled to a specially formulated test cycle based on real vehicle data derived from testing the Honda Insight on the various test tracks at the Millbrook Proving Grounds in the UK. These cycling tests have shown that the lead-acid pack can be successfully cycled when subjected to the high current demands from the vehicle, which have been measured at up to 15 C on discharge and 8 C during regenerative recharging, and cycle life is looking very promising under this arduous test regime. Concurrent with this work, battery development has been taking place. It was decided early on to develop the 144 V battery as four 36 V modules. Data collection and control has been built-in and special steps taken to minimize the problems of interconnect in this complex system. Development of the battery modules is now at an advanced stage. The project plan then allows for extensive testing of the vehicle with its lead-acid battery at Millbrook so it can be compared with the benchmark tests which have already been carried out on the vehicle with its Ni-MH batteries.

  13. Development and Implementation of a Hardware In-the-Loop Test Bed for Unmanned Aerial Vehicle Control Algorithms

    NASA Technical Reports Server (NTRS)

    Nyangweso, Emmanuel; Bole, Brian

    2014-01-01

    Successful prediction and management of battery life using prognostic algorithms through ground and flight tests is important for performance evaluation of electrical systems. This paper details the design of test beds suitable for replicating loading profiles that would be encountered in deployed electrical systems. The test bed data will be used to develop and validate prognostic algorithms for predicting battery discharge time and battery failure time. Online battery prognostic algorithms will enable health management strategies. The platform used for algorithm demonstration is the EDGE 540T electric unmanned aerial vehicle (UAV). The fully designed test beds developed and detailed in this paper can be used to conduct battery life tests by controlling current and recording voltage and temperature to develop a model that makes a prediction of end-of-charge and end-of-life of the system based on rapid state of health (SOH) assessment.

  14. Performance Testing of Yardney Li-Ion Cells and Batteries in Support of Future NASA Missions

    NASA Technical Reports Server (NTRS)

    Smart, M. C.; Ratnakumar, B. V.; Whitcanack, L. D.; Puglia, F. J.; Santee, S.; Gitzendanner, R.

    2009-01-01

    NASA requires lightweight rechargeable batteries for future missions to Mars and the outer planets that are capable of operating over a wide range of temperatures, with high specific energy and energy densities. Due to the attractive performance characteristics, Li-ion batteries have been identified as the battery chemistry of choice for a number of future applications. For example, JPL is planning to launch another unmanned rover mission to the planet Mars. This mission, referred to as the Mars Science Laboratory (MSL), will involve the use of a rover that is much larger than the previously developed Spirit and Opportunity Rovers for the 2003 Mars Exploration Rover (MER) mission, that are currently still in operation on the surface of the planet after more than five years. Part of the reason that the MER rovers have operated so successfully, far exceeding the required mission duration of 90 sols, is that they possess robust Li-ion batteries, manufactured by Yardney Technical Products, which have demonstrated excellent life characteristics. Given the excellent performance characteristics displayed, similar Li-ion batteries have been projected to successfully meet the mission requirements of the up-coming MSL mission. In addition to future missions to Mars, Li-ion technology is attractive for a number of other future NASA applications which require high specific energy, rechargeable batteries. To ascertain the viability of using Li-ion batteries for these applications, a number of performance validation tests have been performed on both Yardney cells and batteries of various sizes. These tests include mission simulation tests, charge and discharge rate characterization testing, cycle life testing under various conditions, and storage testing.

  15. Laboratory testing of GNB switch 12 volt SLI (starting, lighting and ignition) battery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hardin, J.E.

    1990-03-01

    The purpose of this report is to describe the testing performed on the GNB Switch flooded lead SLI battery in the INEL Electric Vehicle Battery Laboratory, to present the results and conclusions of this testing, and to make appropriate recommendations. GNB Inc. is a Pacific Dunlop Company. The term SWITCH'' comes from the fact that this product consists of two batteries in one package which can be connected in parallel by a switch for higher cranking energy or reserve capacity. The smaller second battery is float charged through a diode. GNB advertising describes the SWITCH'' as The Battery With Amore » Spare''. The Switch, a BCI Group 24 SLI (Starting, Lighting and Ignition) battery, is manufactured in Georgia for sale throughout the US. The initial design work on the Switch was done in Australia under the Pulsar name by Dunlop. 11 figs., 3 tabs.« less

  16. Ecotoxicological evaluation of the additive butylated hydroxyanisole using a battery with six model systems and eighteen endpoints.

    PubMed

    Jos, Angeles; Repetto, Guillermo; Ríos, Juan Carlos; del Peso, Ana; Salguero, Manuel; Hazen, María José; Molero, María Luisa; Fernández-Freire, Paloma; Pérez-Martín, Jose Manuel; Labrador, Verónica; Cameán, Ana

    2005-01-26

    The occurrence and fate of additives in the aquatic environment is an emerging issue in environmental chemistry. This paper describes the ecotoxicological effects of the commonly used additive butylated hydroxyanisole (BHA) using a test battery, comprising of several different organisms and in vitro test systems, representing a proportion of the different trophic levels. The most sensitive system to BHA was the inhibition of bioluminescence in Vibrio fischeri bacteria, which resulted in an acute low observed adverse effect concentration (LOAEC) of 0.28 microM. The next most sensitive system was the immobilization of the cladoceran Daphnia magna followed by: the inhibition of the growth of the unicellular alga Chlorella vulgaris; the endpoints evaluated in Vero (mammalian) cells (total protein content, LDH activity, neutral red uptake and MTT metabolization), mitotic index and root growth inhibition in the terrestrial plant Allium cepa, and finally, the endpoints used on the RTG-2 salmonid fish cell line (neutral red uptake, total protein content, MTS metabolization, lactate dehydrogenase leakage and activity, and glucose-6-phosphate dehydrogenase activity). Morphological alterations in RTG-2 cells were also assessed and these included loss of cells, induction of cellular pleomorphism, hydropic degeneration and induction of apoptosis at high concentrations. The results from this study also indicated that micronuclei were not induced in A.cepa exposed to BHA. The differences in sensitivity for the diverse systems that were used (EC50 ranged from 1.2 to >500 microM) suggest the importance for a test battery approach in the evaluation of the ecological consequences of chemicals. According to the results, the levels of BHA reported in industrial wastewater would elicit adverse effects in the environment. This, coupled with its potential to bioaccumulate, makes BHA a pollutant of concern not only for acute exposures, but also for the long-term.

  17. 30 CFR 7.48 - Acid resistance test.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) Test procedures. (1) Prepare one sample each of the insulated surfaces of the battery box and of the... for the battery box and cover, only one sample need be prepared and tested. (2) Prepare a 30 percent... insulation plus the battery cover or box material. The insulation thickness shall be representative of that...

  18. 30 CFR 7.48 - Acid resistance test.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...) Test procedures. (1) Prepare one sample each of the insulated surfaces of the battery box and of the... for the battery box and cover, only one sample need be prepared and tested. (2) Prepare a 30 percent... insulation plus the battery cover or box material. The insulation thickness shall be representative of that...

  19. 30 CFR 7.48 - Acid resistance test.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...) Test procedures. (1) Prepare one sample each of the insulated surfaces of the battery box and of the... for the battery box and cover, only one sample need be prepared and tested. (2) Prepare a 30 percent... insulation plus the battery cover or box material. The insulation thickness shall be representative of that...

  20. Evaluation of a new charge algorithm for a lead-acid battery with gelled electrolyte using a 96V gel cell IV as a test battery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nowak, D.K.

    1989-10-01

    This document has reported a summary of test results obtained utilizing the new UAH charge algorithm for Lead-Acid batteries with gelled electrolyte. The battery performance data for a 96V Phase IV Gel/Cell battery pack was tested in a Jet Industries Electrica vehicle. It was shown that the new charge concept is sound although there can be problems with batteries that are highly imbalanced and where excessive electronic noise is experienced on the electronic signal feed-back line that carries the voltage sensor signals from the battery. Additional work is needed to add intelligence to the charge algorithm in terms of amore » better ability to extract the beginning of gas development from the voltage spread function. This can probably be accomplished by scanning the voltages more often and including that data into the function analysis by adding software filters. The Phase IV Gel/Cell battery performance was found to be about 20% lower than that of the Phase III Gel/Cell battery. Problems with cell valve leakage were encountered in the Phase IV Gel/Cell that pose a threat to battery life although so far no battery module has been lost. 2 refs., 13 figs., 4 tabs.« less

  1. Commercial aerospace and terrestrial applications of nickel-hydrogen batteries

    NASA Astrophysics Data System (ADS)

    Caldwell, Dwight B.; Coates, Dwaine K.; Fox, Chris L.; Miller, Lee E.

    1996-03-01

    The nickel-hydrogen battery system, used extensively in the aerospace industry to supply electrical power to earth-orbital satellites for communications, observation, and military applications, is being developed for commercial, terrestrial applications. Low-cost components, electrodes, cell designs, and battery designs are currently being tested. Catalytic hydrogen electrodes have been developed which are compatible with commercial nickel battery cost. Prismatic and spiral-wound cell designs have been built and tested. Common pressure vessel and dependent pressure vessel battery designs are also being evaluated. The nickel-hydrogen battery offers potential cycle life unequaled by any other battery system. This makes the battery ideal for many commercial and terrestrial energy storage applications such as telecommunication, remote stand-alone power systems, utility load-leveling, and other applications which require long life and a truly maintenance-free and abuse-tolerant battery system.

  2. Battery cycling and calendar aging: year one testing results.

    DOT National Transportation Integrated Search

    2016-07-01

    This report is meant to provide an update on the ongoing battery testing performed by the Hawaii Natural Energy Institute to evaluate Electric Vehicle (EV) battery durability and reliability under electric utility grid operations. Commercial EV batte...

  3. A new lead-acid battery for high pulse power applications

    NASA Technical Reports Server (NTRS)

    Rowlette, J. J.; Attia, A. I.

    1987-01-01

    The development of new electronically conductive materials which can withstand the environment of the positive plates has made possible the construction of a high pulse power sealed bipolar lead-acid battery. The new battery is described and its advantages over other electrochemical systems are outlined. Performance projections show that the peak specific power of the battery can be as high as 90 kW/kg, and that a specific power of 5 kW/kg can be sustained over several thousand pulses.

  4. Lead-acid batteries in micro-hybrid applications. Part II. Test proposal

    NASA Astrophysics Data System (ADS)

    Schaeck, S.; Stoermer, A. O.; Albers, J.; Weirather-Koestner, D.; Kabza, H.

    In the first part of this work [1] selected key parameters for applying lead-acid (LA) batteries in micro-hybrid power systems (MHPS) were investigated. Main results are integrated in an accelerated, comprehensive test proposal presented here. The test proposal aims at a realistic representation of the pSoC operation regime, which is described in Refs. [1,6]. The test is designed to be sensitive with respect to dynamic charge acceptance (DCA) at partially discharged state (critical for regenerative braking) and the internal resistance at high-rate discharge (critical for idling stop applications). First results are presented for up-to-date valve-regulated LA batteries with absorbent glass mat (AGM) separators. The batteries are close to the limits of the first proposal of pass/fail-criteria. Also flooded batteries were tested; the first out of ten units failed already.

  5. The 1975 GSFC Battery Workshop

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The proceedings of the 1975 Goddard Space Flight Center Battery Workshop are presented. The major topics of discussion were nickel cadmium batteries and, to a lesser extent, nickel hydrogen batteries. Battery design, manufacturing techniques, testing programs, and electrochemical characteristics were considered. The utilization of these batteries for spacecraft power supplies was given particular attention.

  6. Recovery of metals from a mixture of various spent batteries by a hydrometallurgical process.

    PubMed

    Tanong, Kulchaya; Coudert, Lucie; Mercier, Guy; Blais, Jean-Francois

    2016-10-01

    Spent batteries contain hazardous materials, including numerous metals (cadmium, lead, nickel, zinc, etc.) that are present at high concentrations. Therefore, proper treatment of these wastes is necessary to prevent their harmful effects on human health and the environment. Current recycling processes are mainly applied to treat each type of spent battery separately. In this laboratory study, a hydrometallurgical process has been developed to simultaneously and efficiently solubilize metals from spent batteries. Among the various chemical leaching agents tested, sulfuric acid was found to be the most efficient and cheapest reagent. A Box-Behnken design was used to identify the influence of several parameters (acid concentration, solid/liquid ratio, retention time and number of leaching steps) on the removal of metals from spent batteries. According to the results, the solid/liquid ratio and acid concentration seemed to be the main parameters influencing the solubilization of zinc, manganese, nickel, cadmium and cobalt from spent batteries. According to the results, the highest metal leaching removals were obtained under the optimal leaching conditions (pulp density = 180 g/L (w/v), [H2SO4] = 1 M, number of leaching step = 3 and leaching time = 30 min). Under such optimum conditions, the removal yields obtained were estimated to be 65% for Mn, 99.9% for Cd, 100% for Zn, 74% for Co and 68% for Ni. Further studies will be performed to improve the solubilization of Mn and to selectively recover the metals. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Nickelzinc Batteries for RPV Applications.

    DTIC Science & Technology

    1981-06-01

    batteries used in the BQM-34A target drones are: 1) The secondary nickel-zinc system is able to provide superior Amp-Hr capacity with respect to volume as...7) MAR-5013 Flight Test batteries, have been constructed and shipped to Tyndall AFB for testing in the BQM- 34A remotely piloted target drone . The...ditioning.The seventh battery was lost on a flight mission when the target drone was shot down. Refer to Table 16 for a summary of battery history prior

  8. One-step separation by thermal treatment and cobalt acid-leaching from spent lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Mu, Deying

    2017-10-01

    Lithium-ion batteries are extensively used in portable storage devices and automobiles, therefore the environment and resource problems caused by spent lithium ion batteries have become increasingly severe. This paper focuses on the recovery process of spent lithium cobalt oxide active material and comes up with reasonable processes and the best conditions for cobalt leaching ultimately.

  9. Hearing Aids: How to Choose the Right One

    MedlinePlus

    ... and all are powered with a hearing aid battery. Small microphones collect sounds from the environment. A ... to pick up wind noise Uses very small batteries, which have shorter life and can be difficult ...

  10. Field testing the Wildlink Capture Collar on wolves

    USGS Publications Warehouse

    Mech, L. David; Gesit, Eric L.

    1992-01-01

    Seventeen Wildlink capture collars were tested 61 times on 18 gray wolves (Canis lupus) during 1989-1991 in the Superior National Forest of northeastern Minnesota. Overall success rate was 89%, and most failures were attributable to premature battery expiration. When batteries were changed ≤ every 2 months, 17 of 17 tests succeeded. With an upgraded version of the collar in which batteries lasted longer, 17 of 18 tests succeeded. Over the 2-year study, 6 of the 17 collars were lost. For serially recapturing individuals, the Wildlink collar proved useful and reliable if care was taken to replace batteries at proper intervals.

  11. Acceptance Equipment System Data Acquisition and Processing Utility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fakhro, Rowan

    2015-02-01

    My internship at Sandia National Laboratories took place in the Department of Sensors and Embedded Systems, which is tasked with, among many things, the non-destructive testing of thermal batteries. The Acceptance Equipment System (AES) is a flexible rack system designed to electrically test thermal batteries individually for internal defects before they are stored in the battery stock pile. Aside from individual testing, data acquired by the AES is used for many things including trending and catching outliers within the tolerance levels of a particular battery type, allowing for the development of more refined acceptance requirements and testing procedures.

  12. Parametric tests of a 40-Ah bipolar nickel-hydrogen battery

    NASA Technical Reports Server (NTRS)

    Cataldo, R. L.

    1986-01-01

    A series of tests were performed to characterize battery performance relating to certain operating parameters which include charge current, discharge current, temperature, and pressure. The parameters were varied to confirm battery design concepts and to determine optimal operating conditions.

  13. Semi-Automated Full Battery.

    ERIC Educational Resources Information Center

    Vincent, Ken R.

    1980-01-01

    Presents the format for the development of interpretive statements covering an entire test battery content on both objective tests and projective instruments. This procedure, the semiautomated full battery, can lessen significantly the time and much of the repetition entailed in psychological report writing. (Author)

  14. Battery algorithm verification and development using hardware-in-the-loop testing

    NASA Astrophysics Data System (ADS)

    He, Yongsheng; Liu, Wei; Koch, Brain J.

    Battery algorithms play a vital role in hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), extended-range electric vehicles (EREVs), and electric vehicles (EVs). The energy management of hybrid and electric propulsion systems needs to rely on accurate information on the state of the battery in order to determine the optimal electric drive without abusing the battery. In this study, a cell-level hardware-in-the-loop (HIL) system is used to verify and develop state of charge (SOC) and power capability predictions of embedded battery algorithms for various vehicle applications. Two different batteries were selected as representative examples to illustrate the battery algorithm verification and development procedure. One is a lithium-ion battery with a conventional metal oxide cathode, which is a power battery for HEV applications. The other is a lithium-ion battery with an iron phosphate (LiFePO 4) cathode, which is an energy battery for applications in PHEVs, EREVs, and EVs. The battery cell HIL testing provided valuable data and critical guidance to evaluate the accuracy of the developed battery algorithms, to accelerate battery algorithm future development and improvement, and to reduce hybrid/electric vehicle system development time and costs.

  15. The 1984 Goddard Space Flight Center Battery Workshop

    NASA Technical Reports Server (NTRS)

    Morrow, G. W. (Editor)

    1985-01-01

    Various topics related to spacecraft power supply systems are discussed. Regenerative fuel cells, lithium molybdenum batteries, nickel hydrogen batteries, nickel cadmium batteries, failure analysis, and performance testing are covered.

  16. Energy Storage Requirements & Challenges for Ground Vehicles

    DTIC Science & Technology

    2010-03-18

    Titinate Evaluation Cell Evaluation Battery Aging Phenomenon Battery SOC/SOH Determination Modeling ARM 100 LiIon APU Lion Cell Evaluation Cell...Advanced Batteries Fuels Th er m al Ma na ge m en t Radiators Heat Recovery Thermal Interface Materials Phase Change Cooling Advanced Electronics...in all energy storage Energy Storage Team Mission Battery Technology Evaluation Lab Module Test & Eval Cell Test & Eval 6UNCLASSIFIED Pacing Vehicle

  17. Validation of a Paper and Pencil Test Battery for the Diagnosis of Minimal Hepatic Encephalopathy in Korea.

    PubMed

    Jeong, Jae Yoon; Jun, Dae Won; Bai, Daiseg; Kim, Ji Yean; Sohn, Joo Hyun; Ahn, Sang Bong; Kim, Sang Gyune; Kim, Tae Yeob; Kim, Hyoung Su; Jeong, Soung Won; Cho, Yong Kyun; Song, Do Seon; Kim, Hee Yeon; Jung, Young Kul; Yoon, Eileen L

    2017-09-01

    The aim of this study was to validate a new paper and pencil test battery to diagnose minimal hepatic encephalopathy (MHE) in Korea. A new paper and pencil test battery was composed of number connection test-A (NCT-A), number connection test-B (NCT-B), digit span test (DST), and symbol digit modality test (SDMT). The norm of the new test was based on 315 healthy individuals between the ages of 20 and 70 years old. Another 63 healthy subjects (n = 31) and cirrhosis patients (n = 32) were included as a validation cohort. All participants completed the new paper and pencil test, a critical flicker frequency (CFF) test and computerized cognitive function test (visual continuous performance test [CPT]). The scores on the NCT-A and NCT-B increased but those of DST and SDMT decreased according to age. Twelve of the cirrhotic patients (37.5%) were diagnosed with MHE based on the new paper and pencil test battery. The total score of the paper and pencil test battery showed good positive correlation with the CFF (r = 0.551, P < 0.001) and computerized cognitive function test. Also, this score was lower in patients with MHE compared to those without MHE (P < 0.001). Scores on the CFF (32.0 vs. 28.7 Hz, P = 0.028) and the computer base cognitive test decreased significantly in patients with MHE compared to those without MHE. Test-retest reliability was comparable. In conclusion, the new paper and pencil test battery including NCT-A, NCT-B, DST, and SDMT showed good correlation with neuropsychological tests. This new paper and pencil test battery could help to discriminate patients with impaired cognitive function in cirrhosis (registered at Clinical Research Information Service [CRIS], https://cris.nih.go.kr/cris, KCT0000955). © 2017 The Korean Academy of Medical Sciences.

  18. TARDEC Brief to OnPoint Technologies

    DTIC Science & Technology

    2007-02-28

    in Aberdeen, MD with Lithium - ion battery packs. - The vehicle will undergo many tests using a 15kW-hr battery pack. 30 Other Battery Related...battery, operation requires that the battery be maintained in a heated condition. NiMH - NiMH is the first fall back position after the Lithium Ion battery chemistry

  19. International Space Station Lithium-Ion Battery

    NASA Technical Reports Server (NTRS)

    Dalton, Penni J.; Schwanbeck, Eugene; North, Tim; Balcer, Sonia

    2016-01-01

    The International Space Station (ISS) primary Electric Power System (EPS) currently uses Nickel-Hydrogen (Ni-H2) batteries to store electrical energy. The electricity for the space station is generated by its solar arrays, which charge batteries during insolation for subsequent discharge during eclipse. The Ni-H2 batteries are designed to operate at a 35 depth of discharge (DOD) maximum during normal operation in a Low Earth Orbit. Since the oldest of the 48 Ni-H2 battery Orbital Replacement Units (ORUs) has been cycling since September 2006, these batteries are now approaching their end of useful life. In 2010, the ISS Program began the development of Lithium-Ion (Li-Ion) batteries to replace the Ni-H2 batteries and concurrently funded a Li-Ion ORU and cell life testing project. When deployed, they will be the largest Li-Ion batteries ever utilized for a human-rated spacecraft. This paper will include an overview of the ISS Li-Ion battery system architecture, the Li-Ion battery design and development, controls to limit potential hazards from the batteries, and the status of the Li-Ion cell and ORU life cycle testing.

  20. End User Acceptance - Requirements or Specifications, Certification, Testing

    NASA Technical Reports Server (NTRS)

    Jeevarajan, Judith

    2013-01-01

    NASA follows top level safety requirement of two-failure tolerance (t hree levels of controls or design for minimum risk) to all catastroph ic hazards in the design of safe li-ion batteries for space use. ? R igorous development testing at appropriate levels to credible offnominal conditions and review of test data. ? Implement robust design con trols based on test results and test again to confirm safety at the a ppropriate levels. ? Stringent testing of all (100%) flight batteries (from button cells to large batteries).

  1. The effect of cell design and test criteria on the series/parallel performance of nickel cadmium cells and batteries

    NASA Technical Reports Server (NTRS)

    Halpert, G.; Webb, D. A.

    1983-01-01

    Three batteries were operated in parallel from a common bus during charge and discharge. SMM utilized NASA Standard 20AH cells and batteries, and LANDSAT-D NASA 50AH cells and batteries of a similar design. Each battery consisted of 22 series connected cells providing the nominal 28V bus. The three batteries were charged in parallel using the voltage limit/current taper mode wherein the voltage limit was temperature compensated. Discharge occurred on the demand of the spacecraft instruments and electronics. Both flights were planned for three to five year missions. The series/parallel configuration of cells and batteries for the 3-5 yr mission required a well controlled product with built-in reliability and uniformity. Examples of how component, cell and battery selection methods affect the uniformity of the series/parallel operation of the batteries both in testing and in flight are given.

  2. Parameters of Emotional Processing in Neuropsychiatric Disorders: Conceptual Issues and a Battery of Tests.

    ERIC Educational Resources Information Center

    Borod, Joan C.; And Others

    1990-01-01

    Components of emotional processing (communication channel, processing mode, and emotional valence) were examined in psychiatric and neurological populations, using an experimental affect battery. The test battery exhibited good psychometric properties and discriminated among diagnostic groups. (Author/JDD)

  3. Performances on the CogState and standard neuropsychological batteries among HIV patients without dementia.

    PubMed

    Overton, Edgar Turner; Kauwe, John S K; Paul, Robert; Tashima, Karen; Tate, David F; Patel, Pragna; Carpenter, Charles C J; Patty, David; Brooks, John T; Clifford, David B

    2011-11-01

    HIV-associated neurocognitive disorders remain prevalent but challenging to diagnose particularly among non-demented individuals. To determine whether a brief computerized battery correlates with formal neurocognitive testing, we identified 46 HIV-infected persons who had undergone both formal neurocognitive testing and a brief computerized battery. Simple detection tests correlated best with formal neuropsychological testing. By multivariable regression model, 53% of the variance in the composite Global Deficit Score was accounted for by elements from the brief computerized tool (P < 0.01). These data confirm previous correlation data with the computerized battery. Using the five significant parameters from the regression model in a Receiver Operating Characteristic curve, 90% of persons were accurately classified as being cognitively impaired or not. The test battery requires additional evaluation, specifically for identifying persons with mild impairment, a state upon which interventions may be effective.

  4. Battery testing at Argonne National Laboratory

    NASA Astrophysics Data System (ADS)

    Deluca, W. H.; Gillie, K. R.; Kulaga, J. E.; Smaga, J. A.; Tummillo, A. F.; Webster, C. E.

    1993-03-01

    Argonne National Laboratory's Analysis & Diagnostic Laboratory (ADL) tests advanced batteries under simulated electric and hybrid vehicle operating conditions. The ADL facilities also include a post-test analysis laboratory to determine, in a protected atmosphere if needed, component compositional changes and failure mechanisms. The ADL provides a common basis for battery performance characterization and life evaluations with unbiased application of tests and analyses. The battery evaluations and post-test examinations help identify factors that limit system performance and life and the most-promising R&D approaches for overcoming these limitations. Since 1991, performance characterizations and/or life evaluations have been conducted on eight battery technologies: Na/S, Li/S, Zn/Br, Ni/MH, Ni/Zn, Ni/Cd, Ni/Fe, and lead-acid. These evaluations were performed for the Department of Energy's. Office of Transportation Technologies, Electric and Hybrid Propulsion Division (DOE/OTT/EHP), and Electric Power Research Institute (EPRI) Transportation Program. The results obtained are discussed.

  5. Evaluating Maintenance Performance: The Development and Tryout of Criterion Referenced Job Task Performance Tests for Electronic Maintenance. Final Report for Period January 1969-May 1974.

    ERIC Educational Resources Information Center

    Shriver, Edgar L.; Foley, John P., Jr.

    A battery of criterion referenced job task performance tests (JIPT) for typical electronic maintenance activities were developed. The construction of a battery of such tests together with an appropriate scoring for reporting the results is detailed. The development of a Test Administrators Handbook also is described. This battery is considered to…

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Richter, Daena Kei

    On 6/26/2015 at 1445 in 894/136, a thermal battery (approximately the size of a commercial size C cell) experienced an unexpected failure following a routine test where the battery is activated. The failure occurred while a test operator was transferring the battery from the testing primary containment box to another containment box within the same room; initial indications are that the battery package ruptured after it went into thermal runaway which led to the operator receiving bruising to the palm of the hand from the pressure of the expulsion. The operator was wearing the prescribed PPE, which was safety glassesmore » and a high temperature glove on the hand that was holding the battery.« less

  7. Prismatic sealed nickel-cadmium batteries utilizing fiber structured electrodes. II - Applications as a maintenance free aircraft battery

    NASA Astrophysics Data System (ADS)

    Anderman, Menahem; Benczur-Urmossy, Gabor; Haschka, Friedrich

    Test data on prismatic sealed Ni-Cd batteries utilizing fiber structured electrodes (sealed FNC) is discussed. It is shown that, under a voltage limited charging scheme, the charge acceptance of the sealed FNC battery is far superior to that of the standard vented aircraft Ni-Cd batteries. This results in the sealed FNC battery maintaining its capacity over several thousand cycles without any need for electrical conditioning or water topping. APU start data demonstrate superior power capabilities over existing technologies. Performance at low temperature is presented. Abuse test results reveal a safe fail mechanism even under severe electrical abuse.

  8. Results of advanced battery technology evaluations for electric vehicle applications

    NASA Astrophysics Data System (ADS)

    Deluca, W. H.; Gillie, K. R.; Kulaga, J. E.; Smaga, J. A.; Tummillo, A. F.; Webster, C. E.

    1992-10-01

    Advanced battery technology evaluations are performed under simulated electric-vehicle operating conditions at the Analysis and Diagnostic Laboratory (ADL) of Argonne National Laboratory. The ADL results provide insight into those factors that limit battery performance and life. The ADL facilities include a test laboratory to conduct battery experimental evaluations under simulated application conditions and a post-test analysis laboratory to determine, in a protected atmosphere if needed, component compositional changes and failure mechanisms. This paper summarizes the performance characterizations and life evaluations conducted during 1991-1992 on both single cells and multi-cell modules that encompass eight battery technologies (Na/S, Li/MS (M=metal), Ni/MH, Ni/Cd, Ni/Zn, Ni/Fe, Zn/Br, and Pb-acid). These evaluations were performed for the Department of Energy, Office of Transportation Technologies, Electric and Hybrid Propulsion Division, and the Electric Power Research Institute. The ADL provides a common basis for battery performance characterization and life evaluations with unbiased application of tests and analyses. The results help identify the most-promising R&D approaches for overcoming battery limitations, and provide battery users, developers, and program managers with a measure of the progress being made in battery R&D programs, a comparison of battery technologies, and basic data for modeling.

  9. Crane Cell Testing Support of NASA/Goddard Space Flight Center: An Update

    NASA Technical Reports Server (NTRS)

    Strawn, Mike; David, Jerry; Rao, Gopalakrishna M.

    2001-01-01

    The objectives presented in this viewgraph presentation include: 1) Verify the quality and reliability of aerospace battery cells and batteries for NASA flight programs; 2) Disseminate the data to develop a plan for in-orbit battery management and to design a cell/battery for future NASA spacecraft; and 3) Establish a cell test data base for rechargeable cell/batteries. In summary: quality EPT Ni-H2, EPT Super NiCd and SAFT NiCd cells have been demonstrated for aerospace applications; the data has been provided to NASA Centers and other agencies for their use and application; developed plan and used in NASA in-orbit battery management. Database on rechargeable cell/batteries is now available for customer use.

  10. Deep reconditioning of batteries during DSCS 3 flight operations

    NASA Technical Reports Server (NTRS)

    Thierfelder, H. E.; Stearns, R. J.; Jones, P. W.

    1985-01-01

    Deep reconditioning of batteries is defined as discharge below the 1.0 volt/cell level to a value of about 1.0 volt/battery. This type of reconditioning was investigated for use on the Defense Satellite Communications System (DSCS) spacecraft, and has been used during the first year of orbital operation. Prior to launch of the spacecraft, the deep reconditioning was used during the battery life test, which has now complete fourteen eclipse periods. Reconditioning was performed prior to each eclipse period of the life test, and is scheduled to be used prior to each eclipse period in orbit. The battery data for discharge and recharge is presented for one of the life test reconditioning cycles, and for each of the three batteries during the reconditioning cycles between eclipse period no.1 and eclipse period no.2 in Earth orbit.

  11. Sensitivity of the Halstead and Wechsler Test Batteries to brain damage: Evidence from Reitan's original validation sample.

    PubMed

    Loring, David W; Larrabee, Glenn J

    2006-06-01

    The Halstead-Reitan Battery has been instrumental in the development of neuropsychological practice in the United States. Although Reitan administered both the Wechsler-Bellevue Intelligence Scale and Halstead's test battery when evaluating Halstead's theory of biologic intelligence, the relative sensitivity of each test battery to brain damage continues to be an area of controversy. Because Reitan did not perform direct parametric analysis to contrast group performances, we reanalyze Reitan's original validation data from both Halstead (Reitan, 1955) and Wechsler batteries (Reitan, 1959a) and calculate effect sizes and probability levels using traditional parametric approaches. Eight of the 10 tests comprising Halstead's original Impairment Index, as well as the Impairment Index itself, statistically differentiated patients with unequivocal brain damage from controls. In addition, 13 of 14 Wechsler measures including Full-Scale IQ also differed statistically between groups (Brain Damage Full-Scale IQ = 96.2; Control Group Full Scale IQ = 112.6). We suggest that differences in the statistical properties of each battery (e.g., raw scores vs. standardized scores) likely contribute to classification characteristics including test sensitivity and specificity.

  12. Comparison of Battery Life Across Real-World Automotive Drive-Cycles (Presentation)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, K.; Earleywine, M.; Wood, E.

    2011-11-01

    Laboratories run around-the-clock aging tests to try to understand as quickly as possible how long new Li-ion battery designs will last under certain duty cycles. These tests may include factors such as duty cycles, climate, battery power profiles, and battery stress statistics. Such tests are generally accelerated and do not consider possible dwell time at high temperatures and states-of-charge. Battery life-predictive models provide guidance as to how long Li-ion batteries may last under real-world electric-drive vehicle applications. Worst-case aging scenarios are extracted from hundreds of real-world duty cycles developed from vehicle travel surveys. Vehicles examined included PHEV10 and PHEV40 EDVsmore » under fixed (28 degrees C), limited cooling (forced ambient temperature), and aggressive cooling (20 degrees C chilled liquid) scenarios using either nightly charging or opportunity charging. The results show that battery life expectancy is 7.8 - 13.2 years for the PHEV10 using a nightly charge in Phoenix, AZ (hot climate), and that the 'aggressive' cooling scenario can extend battery life by 1-3 years, while the 'limited' cooling scenario shortens battery life by 1-2 years. Frequent (opportunity) charging can reduce battery life by 1 year for the PHEV10, while frequent charging can extend battery life by one-half year.« less

  13. Reliability and validity of the Arabic version of the computerized Battery for Neuropsychological Evaluation of Children (BENCI).

    PubMed

    Fasfous, Ahmed F; Peralta-Ramirez, Maria Isabel; Pérez-Marfil, María Nieves; Cruz-Quintana, Francisco; Catena-Martinez, Andrés; Pérez-García, Miguel

    2015-01-01

    Batería de Evaluación Neuropsicológica Infantil (BENCI) is a computerized battery for the neuropsychological evaluation of children. This battery has been used in different studies to evaluate neuropsychological functions and neurodevelopment in children. The objective of this study is to test the validity and reliability of the first Arabic version of the BENCI on an Arabic population where neuropsychological tests are very scarce. We administrate the BENCI to 198 school-age children (98 boys and 100 girls) from Morocco. To examine the test retest reliability of the BENCI battery, we administered the battery 2 times to 43 children (23 boys and 20 girls) with 15 days in between the pre- and posttest. The results revealed good validity and reliability of the battery in Arabic children. Also, the BENCI battery has demonstrated the capacity to differentiate between children by their age group. This battery can be of great use to both the research and clinical areas of Arabic countries and/or in assistance to Arabic immigrants that live outside of their native country.

  14. Solar photovoltaic charging of lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Gibson, Thomas L.; Kelly, Nelson A.

    Solar photovoltaic (PV) charging of batteries was tested by using high efficiency crystalline and amorphous silicon PV modules to recharge lithium-ion battery modules. This testing was performed as a proof of concept for solar PV charging of batteries for electrically powered vehicles. The iron phosphate type lithium-ion batteries were safely charged to their maximum capacity and the thermal hazards associated with overcharging were avoided by the self-regulating design of the solar charging system. The solar energy to battery charge conversion efficiency reached 14.5%, including a PV system efficiency of nearly 15%, and a battery charging efficiency of approximately 100%. This high system efficiency was achieved by directly charging the battery from the PV system with no intervening electronics, and matching the PV maximum power point voltage to the battery charging voltage at the desired maximum state of charge for the battery. It is envisioned that individual homeowners could charge electric and extended-range electric vehicles from residential, roof-mounted solar arrays, and thus power their daily commuting with clean, renewable solar energy.

  15. Improved control strategy for wind-powered refrigerated storage of apples

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baldwin, J.D.C.; Vaughan, D.H.

    1981-01-01

    A refrigerated apple storage facility was constructed at the VPI and SU Horticultural Research Farm in Blacksburg, Virginia and began operation in March 1978. The system included a 10-kW electric wind generator, electrical battery storage, thermal (ice) storage, and auxiliary power. The need for an improved control system for the VPI and SU system was determined from tests on the individual components and in situ performance tests. The results of these tests formed the basis for an improved control strategy to improve the utilization of available wind energy and reduce the need for auxiliary power while maintaining an adequate applemore » storage environment.« less

  16. Effects of language proficiency and language of the environment on aphasia therapy in a multilingual

    PubMed Central

    Goral, Mira; Rosas, Jason; Conner, Peggy S.; Maul, Kristen K.; Obler, Loraine K.

    2011-01-01

    We examined the relative proficiency of four languages (Spanish, German, French, English) of a multilingual speaker with aphasia, JM. JM’s self-rated proficiency was consistent with his naming accuracy for nouns and verbs (The Object and Action Naming Battery, Druks & Masterson, 2000) and with his performance on selected subtests of the Bilingual Aphasia Test (Paradis & Libben, 1987). Within and between-language changes were measured following two periods of language treatment, one in a highly-proficient language (Spanish) and one in a less-proficient language (English). The various outcome measures differed in their sensitivity to treatment-associated changes. Cross-language treatment effects were linked to the language of the environment at the time of testing and to relative language proficiency. PMID:23185107

  17. Accelerated cycle life performance for ovonic nickel-metal hydride cells

    NASA Technical Reports Server (NTRS)

    Otzinger, Burton M.

    1991-01-01

    Nickel-Metal Hydride (Ni-MH) rechargeable batteries have emerged as the leading candidate for commercial replacement of nickel-cadmium (Ni-Cd) batteries. An important incentive is that the Ni-MH cell provides approximately twice the capacity of a Ni-Cd cell for a given size. A six-cell battery was committed to an accelerated cycle life test to determine the effect of separation type on performance. Results of the test may also show the Ni-MH battery to be a replacement candidate for the aerospace Ni-Cd battery.

  18. Performance features of 22-cell, 19Ah single pressure vessel nickel hydrogen battery

    NASA Technical Reports Server (NTRS)

    Rao, Gopalakrishna M.; Vaidyanathan, Hari

    1996-01-01

    Two 22-cells 19Ah Nickel-Hydrogen (Ni-H2) Single Pressure Vessel (SPV) Qual batteries, one each from EPI/Joplin and EPI/Butler, were designed and procured. The two batteries differ in the cell encapsulation technology, stack preload, and activation procedure. Both the Butler and Joplin batteries met the specified requirements when subjected to qualification testing and completed 2100 and 1300 LEO cycles respectively, with nominal performance. This paper discusses advantages, design features, testing procedures, and results of the two single pressure vessel Ni-H2 batteries.

  19. Accelerated test program for sealed nickel-cadmium spacecraft batteries/cells

    NASA Technical Reports Server (NTRS)

    Goodman, L. A.

    1976-01-01

    The feasibility was examined of inducing an accelerated test on sealed Nickel-Cadmium batteries or cells as a tool for spacecraft projects and battery users to determine: (1) the prediction of life capability; (2) a method of evaluating the effect of design and component changes in cells; and (3) a means of reducing time and cost of cell testing.

  20. The development of the ATC selection battery : a new procedure to make maximum use of available information when correcting correlations for restriction in range due to selection.

    DOT National Transportation Integrated Search

    1978-09-01

    A five-test selection battery was given to select Air Traffic Controllers. Data were collected on two new tests being considered for incorporation into the battery. To determine the utility of the old and new tests, it is necessary to correlate the t...

  1. Performances on the CogState and Standard Neuropsychological Batteries Among HIV Patients Without Dementia

    PubMed Central

    Overton, Edgar Turner; Kauwe, John S.K.; Paul, Rob; Tashima, Karen; Tate, David F.; Patel, Pragna; Carpenter, Chuck; Patty, David; Brooks, John T.; Clifford, David B

    2013-01-01

    HIV-associated neurocognitive disorders (HAND) remain prevalent but challenging to diagnose particularly among non-demented individuals. To determine whether a brief computerized battery correlates with formal neurocognitive testing, we identified 46 HIV-infected persons who had undergone both formal neurocognitive testing and a brief computerized battery. Simple detection tests correlated best with formal neuropsychological testing. By multivariable regression model, 53% of the variance in the composite Global Deficit Score was accounted for by elements from the brief computerized tool (p<0.01). These data confirm previous correlation data with the computerized battery, yet illustrate remaining challenges for neurocognitive screening. PMID:21877204

  2. Long Term Performance Retention Test Using High Power COTS NiCd and NiMH Cells

    NASA Technical Reports Server (NTRS)

    Hall, Dan; Darcy, Eric; Strangways, Brad; Nelson, Tim

    2003-01-01

    This slide presentation reviews the tests and results for performance retention of high powered commercial off the shelf (COTS) NiCd, and NiMH cells. Electromechanical actuators for space flight requires short duration high power batteries. The concern is that NiCd battery designs demonstrate an unfavorable power degradation after long periods of inactivity. Cycling can recover some of the decay, but this reduces the readiness that these batteries must have. Two 5-cell SubC stick test batteries ere chosen using NiCd and NiMH were tested and then the differences for charge maintenance were compared.

  3. Laboratory facility for testing electric-vehicle batteries Test rig for simulating duty cycles with different discharge modes

    NASA Astrophysics Data System (ADS)

    Hamilton, J. A.; Rand, D. A. J.

    1983-03-01

    A test rig has been designed and constructed to examine the performance of batteries under laboratory conditions that simulate the power characteristics of electric vehicles. Each station in the rig subjects a battery to continuous charge/discharge cycles, with an equalising charge every eighth cycle. The battery discharge follows the current-verse-time profile of a given vehicle operating under a driving schedule normal to road service. The test rig allows both smooth- and pulsed-current discharge to be investigated. Data collection is accomplished either with multi-pen recorders or with a computer-based information logger.

  4. Knowledge management system for risk mitigation in supply chain uncertainty: case from automotive battery supply chain

    NASA Astrophysics Data System (ADS)

    Marie, I. A.; Sugiarto, D.; Surjasa, D.; Witonohadi, A.

    2018-01-01

    Automotive battery supply chain include battery manufacturer, sulphuric acid suppliers, polypropylene suppliers, lead suppliers, transportation service providers, warehouses, retailers and even customers. Due to the increasingly dynamic condition of the environment, supply chain actors were required to improve their ability to overcome various uncertainty issues in the environment. This paper aims to describe the process of designing a knowledge management system for risk mitigation in supply chain uncertainty. The design methodology began with the identification of the knowledge needed to solve the problems associated with uncertainty and analysis of system requirements. The design of the knowledge management system was described in the form of a data flow diagram. The results of the study indicated that key knowledge area that needs to be managed were the knowledge to maintain the stability of process in sulphuric acid process and knowledge to overcome the wastes in battery manufacturing process. The system was expected to be a media acquisition, dissemination and storage of knowledge associated with the uncertainty in the battery supply chain and increase the supply chain performance.

  5. Stabilized Lithium-Metal Surface in a Polysulfide-Rich Environment of Lithium-Sulfur Batteries.

    PubMed

    Zu, Chenxi; Manthiram, Arumugam

    2014-08-07

    Lithium-metal anode degradation is one of the major challenges of lithium-sulfur (Li-S) batteries, hindering their practical utility as next-generation rechargeable battery chemistry. The polysulfide migration and shuttling associated with Li-S batteries can induce heterogeneities of the lithium-metal surface because it causes passivation by bulk insulating Li2S particles/electrolyte decomposition products on a lithium-metal surface. This promotes lithium dendrite formation and leads to poor lithium cycling efficiency with complicated lithium surface chemistry. Here, we show copper acetate as a surface stabilizer for lithium metal in a polysulfide-rich environment of Li-S batteries. The lithium surface is protected from parasitic reactions with the organic electrolyte and the migrating polysulfides by an in situ chemical formation of a passivation film consisting of mainly Li2S/Li2S2/CuS/Cu2S and electrolyte decomposition products. This passivation film also suppresses lithium dendrite formation by controlling the lithium deposition sites, leading to a stabilized lithium surface characterized by a dendrite-free morphology and improved surface chemistry.

  6. The clinical utility of a 30-minute neuropsychological assessment battery in inpatient stroke rehabilitation.

    PubMed

    Jaywant, Abhishek; Toglia, Joan; Gunning, Faith M; O'Dell, Michael W

    2018-07-15

    Cognitive assessment is an important component of inpatient stroke rehabilitation. Few studies have empirically evaluated the clinical utility of specific neuropsychological measures in this setting. We investigated the psychometric properties and clinical utility of a 30-minute neuropsychological battery developed by the National Institute of Neurologic Disorders and Stroke (NINDS) and the Canadian Stroke Network (CSN). Clinical data were analyzed from 100 individuals with mild-moderate stroke severity on an acute inpatient rehabilitation unit who completed the NINDS-CSN battery at admission. The battery comprised the Symbol-Digit Modalities Test (SDMT), Trail Making Test, Controlled Oral Word Association Test, Animal Naming, and the Hopkins Verbal Learning Test-Revised. We evaluated the battery's distribution of scores, frequency of impaired performance, internal consistency, and ability to predict rehabilitation gain and independence in cognitively-based instrumental activities of daily living (IADL) at discharge. Results indicated that the NINDS-CSN battery was sensitive to cognitive impairment, demonstrated moderately strong internal consistency, and predicted discharge IADL. The SDMT demonstrated the strongest sensitivity to impairment and predictive validity. The NINDS-CSN battery is a clinically useful assessment battery in acute inpatient stroke rehabilitation. Complex attention and processing speed performance may be most informative in predicting amount of rehabilitation gain and IADL functioning at discharge. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Common pressure vessel battery performance

    NASA Technical Reports Server (NTRS)

    Otzinger, B.

    1978-01-01

    Performance tests run on two common pressure vessel type nickel hydrogen batteries are described and the results presented. The study included: (1) charge retention tests, (2) synchronous eclipse season cycling tests, and (3) temperature differential tests.

  8. AUTOMOTIVE DIESEL MAINTENANCE 2. UNIT XIII, BATTERY SERVICE AND TESTING PROCEDURES--PART II.

    ERIC Educational Resources Information Center

    Human Engineering Inst., Cleveland, OH.

    THIS MODULE OF A 25-MODULE COURSE IS DESIGNED TO FAMILIARIZE THE TRAINEE WITH PROCEDURES FOR SERVICING LEAD-ACID STORAGE BATTERIES USED ON DIESEL POWERED EQUIPMENT. TOPICS ARE (1) ELECTROLYTE AND SPECIFIC GRAVITY, (2) BATTERY CHARGING, (3) STORAGE BATTERY TYPES AND DESIGN, (4) BATTERY CAPACITY RATINGS, (5) BATTERY INSTALLATION, SERVICING, AND…

  9. Locating PHEV exchange stations in V2G

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pan, Feng; Bent, Russell; Berscheid, Alan

    2010-01-01

    Plug-in hybrid electric vehicle (PREV) is an environment friendly modem transportation method and has been rapidly penetrate the transportation system. Renewable energy is another contributor to clean power but the associated intermittence increases the uncertainty in power generation. As a foreseen benefit of a vchicle-to-grid (V2G) system, PREV supporting infrastructures like battery exchange stations can provide battery service to PREV customers as well as being plugged into a power grid as energy sources and stabilizer. The locations of exchange stations are important for these two objectives under constraints from both ,transportation system and power grid. To model this location problemmore » and to understand and analyze the benefit of a V2G system, we develop a two-stage stochastic program to optimally locate the stations prior to the realizations of battery demands, loads, and generation capacity of renewable power sources. Based on this model, we use two data sets to construct the V2G systems and test the benefit and the performance of these systems.« less

  10. Impaired performance on a rhesus monkey neuropsychological testing battery following simian immunodeficiency virus infection.

    PubMed

    Weed, Michael R; Gold, Lisa H; Polis, Ilham; Koob, George F; Fox, Howard S; Taffe, Michael A

    2004-01-01

    Infection with simian immunodeficiency virus (SIV) in macaques provides an excellent model of AIDS including HIV-induced central nervous system (CNS) pathology and cognitive/behavioral impairment. Recently a behavioral test battery has been developed for macaques based on the CANTAB human neuropsychological testing battery. As with human neuropsychological batteries, different tasks are thought to involve different neural substrates, and therefore performance profiles may assess function in particular brain regions. Ten rhesus monkeys were infected with SIV after being trained on two or more of the battery tasks addressing memory (delayed nonmatching to sample, DNMS), spatial working memory (using a self-ordered spatial search task, SOSS), motivation (progressive-ratio, PR), reaction time (RT), and/or fine motor skills (bimanual motor skill, BMS). Performance was compared to that of 9 uninfected monkeys. Overall, some aspect of performance was impaired in all 10 monkeys following infection. Consistent with results in human AIDS patients, individual performance was impaired most often on battery tasks thought to be sensitive to frontostriatal dopaminergic functioning such as SOSS, RT, and BMS. These results further demonstrate the similarity of behavioral impairment produced by SIV and HIV on homologous behavioral tests, and establish the utility of the testing battery for further investigations into the CNS mechanisms of the reported behavioral changes.

  11. Analyse Factorielle d'une Batterie de Tests de Comprehension Orale et Ecrite (Factor Analysis of a Battery of Tests of Listening and Reading Comprehension). Melanges Pedagogiques, 1971.

    ERIC Educational Resources Information Center

    Lonchamp, F.

    This is a presentation of the results of a factor analysis of a battery of tests intended to measure listening and reading comprehension in English as a second language. The analysis sought to answer the following questions: (1) whether the factor analysis method yields results when applied to tests which are not specifically designed for this…

  12. International Space Station Lithium-Ion Battery Start-Up

    NASA Technical Reports Server (NTRS)

    Dalton, Penni J.; North, Tim; Bowens, Ebony; Balcer, Sonia

    2017-01-01

    International Space Station Lithium-Ion Battery Start-Up.The International Space Station (ISS) primary Electric Power System (EPS) was originally designed to use Nickel-Hydrogen (Ni-H2) batteries to store electrical energy. The electricity for the space station is generated by its solar arrays, which charge batteries during insolation for subsequent discharge during eclipse. The Ni-H2 batteries are designed to operate at a 35 depth of discharge (DOD) maximum during normal operation in a Low Earth Orbit. As the oldest of the 48 Ni-H2 battery Orbital Replacement Units (ORUs) has been cycling since September 2006, these batteries are now approaching their end of useful life. In 2010, the ISS Program began the development of Lithium-Ion (Li-ion) batteries to replace the Ni-H2 batteries and concurrently funded a Li-Ion ORU and cell life testing project. The first set of 6 Li-ion battery replacements were launched in December 2016 and deployed in January 2017. This paper will discuss the Li-ion battery on-orbit start-up and the status of the Li-Ion cell and ORU life cycle testing.

  13. The challenge of testing chemicals for potential carcinogenicity using multiple short-term assays: an analysis of a proposed test battery for hair dyes.

    PubMed

    Rosenkranz, Herbert S; Cunningham, Suzanne L; Mermelstein, Robert; Cunningham, Albert R

    2007-09-01

    Recent reports of the association of hair dyes usage with increased bladder cancer risk in women with the slow NAT-2 acetylator phenotype have resulted both in attempts to identify the putative carcinogen as well as in devising batteries of tests that could be used to screen for such putative carcinogens in hair dye formulations, their intermediates and final products. Analytical studies have reported the presence of traces ( approximately 0.5 ppm) of the carcinogen 4-aminobiphenyl in some hair dye preparations. In parallel, SCCNFP (Scientific Committee on Cosmetic and Non-Food Products Intended for Consumers) has suggested the deployment of a battery of six in vitro assays followed by an in vivo assay. The practicality of deploying and interpreting such a battery is analyzed herein as it is expected to result in 64 and 128 possible test results and SCCNFP does not provide detailed guidance of how the test results are to be interpreted. In this study we have applied a previously described Bayesian approach which takes advantage of the known predictive performances of individual assays, to analyze the possible outcomes of the 6-7 test batteries. While the SCCNFP battery is clearly risk-averse, it is shown that performing all of the assays is not always necessary and moreover it does not necessarily improve predictive performance. Finally, based upon the reported mutagenicity of 4-aminobiphenyl, it is doubtful that this "impurity" would be detected by the test battery.

  14. The Long-Term Performance of SONY Small Batteries without Cell-Balancing

    NASA Technical Reports Server (NTRS)

    Pearson, Chris; Thwaite, Carl; Curzon, David; Rao, Gopalakrishna

    2004-01-01

    This viewgraph presentation describes the investigation of individual cell voltage dispersion under LEO and GEO cycling profiles. The contents cover: 1) Background; 2) Test Outline; 3) Single String Test Battery; 4) Goddard Space Flight Center (GSFC) 5Ah Battery; 5) Impedance; 6) Conclusions.

  15. A Flexible Three-in-One Microsensor for Real-Time Monitoring of Internal Temperature, Voltage and Current of Lithium Batteries.

    PubMed

    Lee, Chi-Yuan; Peng, Huan-Chih; Lee, Shuo-Jen; Hung, I-Ming; Hsieh, Chien-Te; Chiou, Chuan-Sheng; Chang, Yu-Ming; Huang, Yen-Pu

    2015-05-19

    Lithium batteries are widely used in notebook computers, mobile phones, 3C electronic products, and electric vehicles. However, under a high charge/discharge rate, the internal temperature of lithium battery may rise sharply, thus causing safety problems. On the other hand, when the lithium battery is overcharged, the voltage and current may be affected, resulting in battery instability. This study applies the micro-electro-mechanical systems (MEMS) technology on a flexible substrate, and develops a flexible three-in-one microsensor that can withstand the internal harsh environment of a lithium battery and instantly measure the internal temperature, voltage and current of the battery. Then, the internal information can be fed back to the outside in advance for the purpose of safety management without damaging the lithium battery structure. The proposed flexible three-in-one microsensor should prove helpful for the improvement of lithium battery design or material development in the future.

  16. Comparison Between a Self-Administered and Supervised Version of a Web-Based Cognitive Test Battery: Results From the NutriNet-Santé Cohort Study.

    PubMed

    Assmann, Karen E; Bailet, Marion; Lecoffre, Amandine C; Galan, Pilar; Hercberg, Serge; Amieva, Hélène; Kesse-Guyot, Emmanuelle

    2016-04-05

    Dementia is a major public health problem, and repeated cognitive data from large epidemiological studies could help to develop efficient measures of early prevention. Data collection by self-administered online tools could drastically reduce the logistical and financial burden of such large-scale investigations. In this context, it is important to obtain data concerning the comparability of such new online tools with traditional, supervised modes of cognitive assessment. Our objective was to compare self-administration of the Web-based NutriNet-Santé cognitive test battery (NutriCog) with administration by a neuropsychologist. The test battery included four tests, measuring, among others aspects, psychomotor speed, attention, executive function, episodic memory, working memory, and associative memory. Both versions of the cognitive battery were completed by 189 volunteers (either self-administered version first, n=99, or supervised version first, n=90). Subjects also completed a satisfaction questionnaire. Concordance was assessed by Spearman correlation. Agreement between both versions varied according to the investigated cognitive task and outcome variable. Spearman correlations ranged between .42 and .73. Moreover, a majority of participants responded that they "absolutely" or "rather" agreed that the duration of the self-administered battery was acceptable (184/185, 99.5%), that the tasks were amusing (162/185, 87.6%), that the instructions were sufficiently detailed (168/185; 90.8%) and understandable (164/185, 88.7%), and that they had overall enjoyed the test battery (182/185, 98.4%). The self-administered version of the Web-based NutriCog cognitive test battery provided similar information as the supervised version. Thus, integrating repeated cognitive evaluations into large cohorts via the implementation of self-administered online versions of traditional test batteries appears to be feasible.

  17. Status of SPV/CPV Testing

    NASA Technical Reports Server (NTRS)

    Brown, Harry; Hall, Steve

    1999-01-01

    This presentation reviews the status test of Single Pressure Vessel (SPV)/Common Pressure Vessel (CPV) being conducted by the Navy. Slides review the design and tests by NASA, and the Airforce of CPV's. There are 5 different CPV models of CPV's which have been tested or are currently being tested for NASA and the Air Force. The batteries, tests, and results are presented. Graphs show the life cycle voltage, the pressure trend, the discharge/charge profile and the pressure profile for the batteries tested. Descriptions of those CPV batteries are given for those batteries which have been received but have not been tested. The development of the SPV is briefly described, followed by design specification for two packs from NASA and the Air Force. The acceptance test criteria are reviewed, followed by a review of the life cycle test conditions. The trend plots of voltage vs. cycle is given for the two packs. The end of charge, and the end of discharge voltages plots are shown. Plots showing the pressure and recharge vs. cycle are shown. Plots also show the voltage profiles. These plots are shown for both batteries using the SPV design submitted by NASA and the Air Force.

  18. Design, Build and Qualification of 28 Volt Lithium-Ion battery

    NASA Technical Reports Server (NTRS)

    Curzon, D.; Spurrett, R.; Rao, G.

    2003-01-01

    Contents include the following: 1. GSFC performance specifications requirements. 2. AEA philosophy: battery configuration. 3. AEA battery design: SONY cell, cell screening, 20Ah and 60Ah. 4. Testing: 20Ah battery qualification (environmental); 60Ah battery LEO life cycle. 5. Conclusion.: summary and lessons learned.

  19. The design of electric vehicle intelligent charger

    NASA Astrophysics Data System (ADS)

    Xu, Yangyang; Wang, Ying

    2018-05-01

    As the situation of the lack of energy and environment pollution deteriorates rapidly, electric vehicle, a new type of traffic tool, is being researched worldwide. As the core components of electric vehicle, the battery and charger's performance play an important roles in the quality of electric vehicle. So the design of the Electric Vehicle Intelligent Charger based on language-C is designed in this paper. The hardware system is used to produce the input signals of Electric Vehicle Intelligent Charger. The software system adopts the language-C software as development environment. The design can accomplish the test of the parametric such as voltage-current and temperature.

  20. Screening Li-Ion Batteries for Internal Shorts

    NASA Technical Reports Server (NTRS)

    Darcy, Eric

    2006-01-01

    The extremely high cost of aerospace battery failures due to internal shorts makes it essential that their occurrence be very rare, if not eliminated altogether. With Li-ion cells/batteries, the potentially catastrophic safety hazard that some internal shorts present adds additional incentive for prevention. Prevention can be achieved by design, manufacturing measures, and testing. Specifically for NASA s spacesuit application, a Li-ion polymer pouch cell battery design is in its final stages of production. One of the 20 flight batteries fabricated and tested developed a cell internal short, which did not present a safety hazard, but has required revisiting the entire manufacturing and testing process. Herein are the details of the failure investigation that followed to get to root cause of the internal short and the corrective actions that will be taken. The resulting lessons learned are applicable to most Li-ion battery applications.

  1. The In-Orbit Battery Reconditioning Experience On Board the Orion 1 Spacecraft

    NASA Technical Reports Server (NTRS)

    Hoover, S. A.; Daughtridge, S.; Johnson, P. J.; King, S. T.

    1997-01-01

    The Orion 1 spacecraft is a three-axis stabilized geostationary earth orbiting commercial communications satellite which was launched on November 29, 1994 aboard an Atlas II launch vehicle. The power subsystem is a dual bus, dual battery semi-regulated system with one 78 Ampere-hour nickel-hydrogen battery per bus. The batteries were built and tested by Eagle Picher Industries, Inc., of Joplin, MO and were integrated into the spacecraft by its manufacturer, Matra Marconi Space UK Ltd. This paper presents the results obtained during the first four in-orbit reconditioning cycles and compares the battery performance to ground test data. In addition, the on-station battery management strategy and implementation constraints are described. Battery performance has been nominal throughout each reconditioning cycle and subsequent eclipse season.

  2. The minimum test battery to screen for binocular vision anomalies: report 3 of the BAND study.

    PubMed

    Hussaindeen, Jameel Rizwana; Rakshit, Archayeeta; Singh, Neeraj Kumar; Swaminathan, Meenakshi; George, Ronnie; Kapur, Suman; Scheiman, Mitchell; Ramani, Krishna Kumar

    2018-03-01

    This study aims to report the minimum test battery needed to screen non-strabismic binocular vision anomalies (NSBVAs) in a community set-up. When large numbers are to be screened we aim to identify the most useful test battery when there is no opportunity for a more comprehensive and time-consuming clinical examination. The prevalence estimates and normative data for binocular vision parameters were estimated from the Binocular Vision Anomalies and Normative Data (BAND) study, following which cut-off estimates and receiver operating characteristic curves to identify the minimum test battery have been plotted. In the receiver operating characteristic phase of the study, children between nine and 17 years of age were screened in two schools in the rural arm using the minimum test battery, and the prevalence estimates with the minimum test battery were found. Receiver operating characteristic analyses revealed that near point of convergence with penlight and red filter (> 7.5 cm), monocular accommodative facility (< 10 cycles per minute), and the difference between near and distance phoria (> 1.25 prism dioptres) were significant factors with cut-off values for best sensitivity and specificity. This minimum test battery was applied to a cohort of 305 children. The mean (standard deviation) age of the subjects was 12.7 (two) years with 121 males and 184 females. Using the minimum battery of tests obtained through the receiver operating characteristic analyses, the prevalence of NSBVAs was found to be 26 per cent. Near point of convergence with penlight and red filter > 10 cm was found to have the highest sensitivity (80 per cent) and specificity (73 per cent) for the diagnosis of convergence insufficiency. For the diagnosis of accommodative infacility, monocular accommodative facility with a cut-off of less than seven cycles per minute was the best predictor for screening (92 per cent sensitivity and 90 per cent specificity). The minimum test battery of near point of convergence with penlight and red filter, difference between distance and near phoria, and monocular accommodative facility yield good sensitivity and specificity for diagnosis of NSBVAs in a community set-up. © 2017 Optometry Australia.

  3. AUTOMOTIVE DIESEL MAINTENANCE 2. UNIT XII, LEARNING ABOUT BATTERY SERVICING AND TESTING (PART I).

    ERIC Educational Resources Information Center

    Human Engineering Inst., Cleveland, OH.

    THID MODULE OF A 25-MODULE COURSE IS DESIGNED TO DEVELOP AN UNDERSTANDING OF THE CONSTRUCTION AND MAINTENANCE OF LEAD-ACID STORAGE BATTERIES USED ON DIESEL POWERED EQUIPMENT. TOPICS ARE (1) BATTERY COMPONENTS AND CONSTRUCTION, (2) CHEMICAL ACTION IN BATTERIES, (3) THE BATTERY AND THE CHARGING CIRCUIT, (4) BATTERY CHARGING VOLTAGE, (5) EFFECTS OF…

  4. An Updated Version of the U.S. Air Force Multi-Attribute Task Battery (AF-MATB)

    DTIC Science & Technology

    2014-08-01

    assessing human performance in a controlled multitask environment. The most recent release of AF-MATB contains numerous improvements and additions...Strategic Behavior, MATB, Multitasking , Task Battery, Simulator, Multi-Attribute Task Battery, Automation 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF...performance and multitasking strategy. As a result, a specific Information Throughput (IT) Mode was designed to customize the task to fit the Human

  5. Understanding materials challenges for rechargeable ion batteries with in situ transmission electron microscopy

    NASA Astrophysics Data System (ADS)

    Yuan, Yifei; Amine, Khalil; Lu, Jun; Shahbazian-Yassar, Reza

    2017-08-01

    An in-depth understanding of material behaviours under complex electrochemical environment is critical for the development of advanced materials for the next-generation rechargeable ion batteries. The dynamic conditions inside a working battery had not been intensively explored until the advent of various in situ characterization techniques. Real-time transmission electron microscopy of electrochemical reactions is one of the most significant breakthroughs poised to enable radical shift in our knowledge on how materials behave in the electrochemical environment. This review, therefore, summarizes the scientific discoveries enabled by in situ transmission electron microscopy, and specifically emphasizes the applicability of this technique to address the critical challenges in the rechargeable ion battery electrodes, electrolyte and their interfaces. New electrochemical systems such as lithium-oxygen, lithium-sulfur and sodium ion batteries are included, considering the rapidly increasing application of in situ transmission electron microscopy in these areas. A systematic comparison between lithium ion-based electrochemistry and sodium ion-based electrochemistry is also given in terms of their thermodynamic and kinetic differences. The effect of the electron beam on the validity of in situ observation is also covered. This review concludes by providing a renewed perspective for the future directions of in situ transmission electron microscopy in rechargeable ion batteries.

  6. Understanding materials challenges for rechargeable ion batteries with in situ transmission electron microscopy

    PubMed Central

    Yuan, Yifei; Amine, Khalil; Lu, Jun; Shahbazian-Yassar, Reza

    2017-01-01

    An in-depth understanding of material behaviours under complex electrochemical environment is critical for the development of advanced materials for the next-generation rechargeable ion batteries. The dynamic conditions inside a working battery had not been intensively explored until the advent of various in situ characterization techniques. Real-time transmission electron microscopy of electrochemical reactions is one of the most significant breakthroughs poised to enable radical shift in our knowledge on how materials behave in the electrochemical environment. This review, therefore, summarizes the scientific discoveries enabled by in situ transmission electron microscopy, and specifically emphasizes the applicability of this technique to address the critical challenges in the rechargeable ion battery electrodes, electrolyte and their interfaces. New electrochemical systems such as lithium–oxygen, lithium–sulfur and sodium ion batteries are included, considering the rapidly increasing application of in situ transmission electron microscopy in these areas. A systematic comparison between lithium ion-based electrochemistry and sodium ion-based electrochemistry is also given in terms of their thermodynamic and kinetic differences. The effect of the electron beam on the validity of in situ observation is also covered. This review concludes by providing a renewed perspective for the future directions of in situ transmission electron microscopy in rechargeable ion batteries.

  7. Development and field test of psychophysical tests for DWI arrest

    DOT National Transportation Integrated Search

    1981-03-01

    Administration and scoring procedures were standardized for a sobriety test battery consisting of the walk-and-turn test, the one leg stand test, and horizontal gaze nystagmus. The effectiveness of the standardized battery was then evaluated in the l...

  8. Evaluation of lower leg function in patients with Achilles tendinopathy.

    PubMed

    Silbernagel, Karin Grävare; Gustavsson, Alexander; Thomeé, Roland; Karlsson, Jon

    2006-11-01

    Achilles tendinopathy is considered to be one of the most common overuse injuries in elite and recreational athletes. However, the effect that the Achilles tendinopathy has on patients' physical performance is still unclear. The purpose of this study was to evaluate if Achilles tendinopathy caused functional deficits on the injured side compared with the non-injured side in patients. A test battery comprised of tests for different aspects of muscle-tendon function of the gastrocnemius, soleus and Achilles tendon complex was developed to evaluate lower leg function. The test battery's test-retest reliability and sensitivity (the percent probability that the tests would demonstrate abnormal lower limb symmetry index in patients) were also evaluated. The test battery consisted of three jump tests, a counter movements jump (CMJ), a drop counter movement jump (drop CMJ) and hopping, and two strength tests, concentric toe-raises, eccentric-concentric toe-raises and toe-raises for endurance. The reliability was evaluated through a test-retest design on 15 healthy subjects. The test battery's sensitivity and possible functional deficits in patients with Achilles tendinopathy were evaluated on 42 patients (19 women and 23 men). An excellent reliability was found between test days 1-2 and 2-3 for all tests (ICC = 0.76-0.94) except for concentric toe-raise, test 2-3, which had fair reliability (ICC = 0.73). The methodological error ranged from 8 to 17%. There were significant differences (P = 0.001-0.049) between the non-injured (or least symptomatic) side and injured (most symptomatic) side for hopping, drop CMJ, concentric and eccentric-concentric toe-raises, and significant differences (P = 0.000-0.012) in the level of pain during CMJ, hopping, and drop CMJ. The sensitivity of the test battery at a 90% capacity was 88. Achilles tendinopathy causes not only pain and symptoms in patients but also apparent impairments in various aspects of lower leg muscle-tendon function as measured with the test battery. This test battery is reliable and able to detect differences in lower leg function between the injured or "most symptomatic" and non-injured or "least symptomatic" side in patients with Achilles tendinopathy. The test battery has higher demand on patients' function compared with each individual test.

  9. Environmental, health, and safety issues of sodium-sulfur batteries for electric and hybrid vehicles. Volume 1, Cell and battery safety

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ohi, J M

    1992-09-01

    This report is the first of four volumes that identify and assess the environmental, health, and safety issues involved in using sodium-sulfur (Na/S) battery technology as the energy source in electric and hybrid vehicles that may affect the commercialization of Na/S batteries. This and the other reports on recycling, shipping, and vehicle safety are intended to help the Electric and Hybrid Propulsion Division of the Office of Transportation Technologies in the US Department of Energy (DOE/EHP) determine the direction of its research, development, and demonstration (RD&D) program for Na/S battery technology. The reports review the status of Na/S battery RD&Dmore » and identify potential hazards and risks that may require additional research or that may affect the design and use of Na/S batteries. This volume covers cell design and engineering as the basis of safety for Na/S batteries and describes and assesses the potential chemical, electrical, and thermal hazards and risks of Na/S cells and batteries as well as the RD&D performed, under way, or to address these hazards and risks. The report is based on a review of the literature and on discussions with experts at DOE, national laboratories and agencies, universities, and private industry. Subsequent volumes will address environmental, health, and safety issues involved in shipping cells and batteries, using batteries to propel electric vehicles, and recycling and disposing of spent batteries. The remainder of this volume is divided into two major sections on safety at the cell and battery levels. The section on Na/S cells describes major component and potential failure modes, design, life testing and failure testing, thermal cycling, and the safety status of Na/S cells. The section on batteries describes battery design, testing, and safety status. Additional EH&S information on Na/S batteries is provided in the appendices.« less

  10. Reliability of a functional test battery evaluating functionality, proprioception, and strength in recreational athletes with functional ankle instability.

    PubMed

    Sekir, U; Yildiz, Y; Hazneci, B; Ors, F; Saka, T; Aydin, T

    2008-12-01

    In contrast to the single evaluation methods used in the past, the combination of multiple tests allows one to obtain a global assessment of the ankle joint. The aim of this study was to determine the reliability of the different tests in a functional test battery. Twenty-four male recreational athletes with unilateral functional ankle instability (FAI) were recruited for this study. One component of the test battery included five different functional ability tests. These tests included a single limb hopping course, single-legged and triple-legged hop for distance, and six and cross six meter hop for time. The ankle joint position sense and one leg standing test were used for evaluation of proprioception and sensorimotor control. The isokinetic strengths of the ankle invertor and evertor muscles were evaluated at a velocity of 120 degrees /s. The reliability of the test battery was assessed by calculating the intraclass correlation coefficient (ICC). Each subject was tested two times, with an interval of 3-5 days between the test sessions. The ICCs for ankle functional and proprioceptive ability showed high reliability (ICCs ranging from 0.94 to 0.98). Additionally, isokinetic ankle joint inversion and eversion strength measurements represented good to high reliability (ICCs between 0.82 and 0.98). The functional test battery investigated in this study proved to be a reliable tool for the assessment of athletes with functional ankle instability. Therefore, clinicians may obtain reliable information from the functional test battery during the assessment of ankle joint performance in patients with functional ankle instability.

  11. Automated Comprehensive Evaluation of mTBI Visual Dysfunction

    DTIC Science & Technology

    2016-10-01

    of this study is to validate the Neuro-Ophthalmic Device (NODe) test battery that provides the highest sensitivity and specificity for the detection...that the tests within the NODe test battery can serve as objective biomarkers for acute mTBI. Two hundred acute mTBI (≤72 hrs post injury) and 200 age...post-mTBI-related vision problems. The purpose of this study is to validate the Neuro-Ophthalmic Device (NODe) test battery that provides the

  12. Advanced underground Vehicle Power and Control: The locomotive Research Platform

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vehicle Projects LLC

    2003-01-28

    Develop a fuelcell mine locomotive with metal-hydride hydrogen storage. Test the locomotive for fundamental limitations preventing successful commercialization of hydride fuelcells in underground mining. During Phase 1 of the DOE-EERE sponsored project, FPI and its partner SNL, completed work on the development of a 14.4 kW fuelcell power plant and metal-hydride energy storage. An existing battery-electric locomotive with similar power requirements, minus the battery module, was used as the base vehicle. In March 2001, Atlas Copco Wagner of Portland, OR, installed the fuelcell power plant into the base vehicle and initiated integration of the system into the vehicle. The entiremore » vehicle returned to Sandia in May 2001 for further development and integration. Initial system power-up took place in December 2001. A revision to the original contract, Phase 2, at the request of DOE Golden Field Office, established Vehicle Projects LLC as the new prime contractor,. Phase 2 allowed industry partners to conduct surface tests, incorporate enhancements to the original design by SNL, perform an extensive risk and safety analysis, and test the fuelcell locomotive underground under representative production mine conditions. During the surface tests one of the fuelcell stacks exhibited reduced power output resulting in having to replace both fuelcell stacks. The new stacks were manufactured with new and improved technology resulting in an increase of the gross power output from 14.4 kW to 17 kW. Further work by CANMET and Hatch Associates, an engineering consulting firm specializing in safety analysis for the mining industry, both under subcontract to Vehicle Projects LLC, established minimum requirements for underground testing. CANMET upgraded the Programmable Logic Control (PLC) software used to monitor and control the fuelcell power plant, taking into account locomotive operator's needs. Battery Electric, a South Africa manufacturer, designed and manufactured (at no cost to the project) a new motor controller capable of operating the higher rpm motor and different power characteristics of the fuelcells. In early August 2002, CANMET, with the technical assistance of Nuvera Fuel Cells and Battery Electric, installed the new PLC software, installed the new motor controller, and installed the new fuelcell stacks. After minor adjustments, the fuelcell locomotive pulled its first fully loaded ore cars on a surface track. The fuelcell-powered locomotive easily matched the battery powered equivalent in its ability to pull tonnage and equaled the battery-powered locomotive in acceleration. The final task of Phase 2, testing the locomotive underground in a production environment, occurred in early October 2002 in a gold mine. All regulatory requirements to allow the locomotive underground were completed and signed off by Hatch Associates prior to going underground. During the production tests, the locomotive performed flawlessly with no failures or downtime. The actual tests occurred during a 2-week period and involved moving both gold ore and waste rock over a 1,000 meter track. Refueling, or recharging, of the metal-hydride storage took place on the surface. After each shift, the metal-hydride storage module was removed from the locomotive, transported to surface, and filled with hydrogen from high-pressure tanks. The beginning of each shift started with taking the fully recharged metal-hydride storage module down into the mine and re-installing it onto the locomotive. Each 8 hour shift consumed approximately one half to two thirds of the onboard hydrogen. This indicates that the fuelcell-powered locomotive can work longer than a similar battery-powered locomotive, which operates about 6 hours, before needing a recharge.« less

  13. Validation of a short cognitive battery to screen for fitness-to-drive of people with multiple sclerosis.

    PubMed

    Akinwuntan, A E; Backus, D; Grayson, J; Devos, H

    2018-05-26

    Some symptoms of multiple sclerosis (MS) affect driving. In a recent study, performance on five cognitive tests predicted the on-road test performance of individuals with relapsing-remitting MS with 91% accuracy, 70% sensitivity and 97% specificity. However, the accuracy with which the battery will predict the driving performance of a different cohort that includes all types of MS is unknown. Participants (n = 118; 48 ± 9 years of age; 97 females) performed a comprehensive off-road evaluation that lasted about 3 h and a standardized on-road test that lasted approximately 45 min over a 2-day period within the same week. Performance on the five cognitive tests was used to predict participants' performance on the standardized on-road test. Performance on the five tests together predicted outcome of the on-road test with 82% accuracy, 42% sensitivity and 90% specificity. The accuracy of predicting the on-road performance of a new MS cohort using performance on the battery of five cognitive tests remained very high (82%). The battery, which was administrable in <45 min and cost ~$150, was better at identifying those who actually passed the on-road test (90% specificity). The sensitivity (42%) of the battery indicated that it should not be used as the sole determinant of poor driving-related cognitive skills. A fail performance on the battery should only imply that more comprehensive testing is warranted. © 2018 EAN.

  14. The use of a tracking test battery in the quantitative evaluation of neurological function

    NASA Technical Reports Server (NTRS)

    Repa, B. S.

    1973-01-01

    A number of tracking tasks that have proven useful to control engineers and psychologists measuring skilled performance have been evaluated for clinical use. Normal subjects as well as patients with previous diagnoses of Parkinson's disease, multiple sclerosis, and cerebral palsy were used in the evaluation. The tests that were studied included step tracking, random tracking, and critical tracking. The results of the present experiments encourage the continued use of tracking tasks as assessment precedures in a clinical environment. They have proven to be reliable, valid, and sensitive measures of neurological function.

  15. ETX-I: First-generation single-shaft electric propulsion system program. Volume 2: Battery

    NASA Astrophysics Data System (ADS)

    1988-06-01

    The overall objective of this research and development program was to advance ac powertrain technology for electric vehicles (EV). The program focused on the design, build, test, and refinement of an experimental advanced electric vehicle powertrain suitable for packaging in a Ford Escort or equivalent-size vehicle. A Mercury LN7 was subsequently selected for the test bed vehicle. Although not part of the initial contract, the scope of the ETX-I Program was expanded in 1983 to encompass the development of advanced electric vehicle batteries compatible with the ETX-I powertrain and vehicle test bed. The intent of the battery portion of the ETX-I Program was to apply the best available battery technology based on existing battery developments. The battery effort was expected to result in a practical scale-up of base battery technologies to the vehicle battery subsystem level. With the addition of the battery activity, the ETX-I Program became a complete proof-of-concept ac propulsion system technology development program. In this context, the term propulsion system is defined as all components and subsystems (from the driver input to the vehicle wheels) that are required to store energy on board the vehicle and, using that energy, to provide controlled motive power to the vehicle. This report, Volume 2, describes the battery portion of the ETX-I Program. The powertrain effort is reported in Volume 1.

  16. Exploring the Model Design Space for Battery Health Management

    NASA Technical Reports Server (NTRS)

    Saha, Bhaskar; Quach, Cuong Chi; Goebel, Kai Frank

    2011-01-01

    Battery Health Management (BHM) is a core enabling technology for the success and widespread adoption of the emerging electric vehicles of today. Although battery chemistries have been studied in detail in literature, an accurate run-time battery life prediction algorithm has eluded us. Current reliability-based techniques are insufficient to manage the use of such batteries when they are an active power source with frequently varying loads in uncertain environments. The amount of usable charge of a battery for a given discharge profile is not only dependent on the starting state-of-charge (SOC), but also other factors like battery health and the discharge or load profile imposed. This paper presents a Particle Filter (PF) based BHM framework with plug-and-play modules for battery models and uncertainty management. The batteries are modeled at three different levels of granularity with associated uncertainty distributions, encoding the basic electrochemical processes of a Lithium-polymer battery. The effects of different choices in the model design space are explored in the context of prediction performance in an electric unmanned aerial vehicle (UAV) application with emulated flight profiles.

  17. The Relationship between Types of Attention and Auditory Processing Skills: Reconsidering Auditory Processing Disorder Diagnosis

    PubMed Central

    Stavrinos, Georgios; Iliadou, Vassiliki-Maria; Edwards, Lindsey; Sirimanna, Tony; Bamiou, Doris-Eva

    2018-01-01

    Measures of attention have been found to correlate with specific auditory processing tests in samples of children suspected of Auditory Processing Disorder (APD), but these relationships have not been adequately investigated. Despite evidence linking auditory attention and deficits/symptoms of APD, measures of attention are not routinely used in APD diagnostic protocols. The aim of the study was to examine the relationship between auditory and visual attention tests and auditory processing tests in children with APD and to assess whether a proposed diagnostic protocol for APD, including measures of attention, could provide useful information for APD management. A pilot study including 27 children, aged 7–11 years, referred for APD assessment was conducted. The validated test of everyday attention for children, with visual and auditory attention tasks, the listening in spatialized noise sentences test, the children's communication checklist questionnaire and tests from a standard APD diagnostic test battery were administered. Pearson's partial correlation analysis examining the relationship between these tests and Cochrane's Q test analysis comparing proportions of diagnosis under each proposed battery were conducted. Divided auditory and divided auditory-visual attention strongly correlated with the dichotic digits test, r = 0.68, p < 0.05, and r = 0.76, p = 0.01, respectively, in a sample of 20 children with APD diagnosis. The standard APD battery identified a larger proportion of participants as having APD, than an attention battery identified as having Attention Deficits (ADs). The proposed APD battery excluding AD cases did not have a significantly different diagnosis proportion than the standard APD battery. Finally, the newly proposed diagnostic battery, identifying an inattentive subtype of APD, identified five children who would have otherwise been considered not having ADs. The findings show that a subgroup of children with APD demonstrates underlying sustained and divided attention deficits. Attention deficits in children with APD appear to be centred around the auditory modality but further examination of types of attention in both modalities is required. Revising diagnostic criteria to incorporate attention tests and the inattentive type of APD in the test battery, provides additional useful data to clinicians to ensure careful interpretation of APD assessments. PMID:29441033

  18. The test-retest reliability of the latent construct of executive function depends on whether tasks are represented as formative or reflective indicators.

    PubMed

    Willoughby, Michael T; Kuhn, Laura J; Blair, Clancy B; Samek, Anya; List, John A

    2017-10-01

    This study investigates the test-retest reliability of a battery of executive function (EF) tasks with a specific interest in testing whether the method that is used to create a battery-wide score would result in differences in the apparent test-retest reliability of children's performance. A total of 188 4-year-olds completed a battery of computerized EF tasks twice across a period of approximately two weeks. Two different approaches were used to create a score that indexed children's overall performance on the battery-i.e., (1) the mean score of all completed tasks and (2) a factor score estimate which used confirmatory factor analysis (CFA). Pearson and intra-class correlations were used to investigate the test-retest reliability of individual EF tasks, as well as an overall battery score. Consistent with previous studies, the test-retest reliability of individual tasks was modest (rs ≈ .60). The test-retest reliability of the overall battery scores differed depending on the scoring approach (r mean  = .72; r factor_ score  = .99). It is concluded that the children's performance on individual EF tasks exhibit modest levels of test-retest reliability. This underscores the importance of administering multiple tasks and aggregating performance across these tasks in order to improve precision of measurement. However, the specific strategy that is used has a large impact on the apparent test-retest reliability of the overall score. These results replicate our earlier findings and provide additional cautionary evidence against the routine use of factor analytic approaches for representing individual performance across a battery of EF tasks.

  19. Data-driven battery product development: Turn battery performance into a competitive advantage.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sholklapper, Tal

    Poor battery performance is a primary source of user dissatisfaction across a broad range of applications, and is a key bottleneck hindering the growth of mobile technology, wearables, electric vehicles, and grid energy storage. Engineering battery systems is difficult, requiring extensive testing for vendor selection, BMS programming, and application-specific lifetime testing. This work also generates huge quantities of data. This presentation will explain how to leverage this data to help ship quality products faster using fewer resources while ensuring safety and reliability in the field, ultimately turning battery performance into a competitive advantage.

  20. Battery-powered thin film deposition process for coating telescope mirrors in space

    NASA Astrophysics Data System (ADS)

    Sheikh, David A.

    2016-07-01

    Aluminum films manufactured in the vacuum of space may increase the broadband reflectance response of a space telescope operating in the EUV (50-nm to 115-nm) by eliminating absorbing metal-fluorides and metal-oxides, which significantly reduce aluminum's reflectance below 115-nm. Recent developments in battery technology allow small lithium batteries to rapidly discharge large amounts of energy. It is therefore conceivable to power an array of resistive evaporation filaments in a space environment, using a reasonable mass of batteries and other hardware. This paper presents modeling results for coating thickness as a function of position, for aluminum films made with a hexagonal array of battery powered evaporation sources. The model is based on measured data from a single battery-powered evaporation source.

  1. Validity and Reliability of Baseline Testing in a Standardized Environment.

    PubMed

    Higgins, Kathryn L; Caze, Todd; Maerlender, Arthur

    2017-08-11

    The Immediate Postconcussion Assessment and Cognitive Testing (ImPACT) is a computerized neuropsychological test battery commonly used to determine cognitive recovery from concussion based on comparing post-injury scores to baseline scores. This model is based on the premise that ImPACT baseline test scores are a valid and reliable measure of optimal cognitive function at baseline. Growing evidence suggests that this premise may not be accurate and a large contributor to invalid and unreliable baseline test scores may be the protocol and environment in which baseline tests are administered. This study examined the effects of a standardized environment and administration protocol on the reliability and performance validity of athletes' baseline test scores on ImPACT by comparing scores obtained in two different group-testing settings. Three hundred-sixty one Division 1 cohort-matched collegiate athletes' baseline data were assessed using a variety of indicators of potential performance invalidity; internal reliability was also examined. Thirty-one to thirty-nine percent of the baseline cases had at least one indicator of low performance validity, but there were no significant differences in validity indicators based on environment in which the testing was conducted. Internal consistency reliability scores were in the acceptable to good range, with no significant differences between administration conditions. These results suggest that athletes may be reliably performing at levels lower than their best effort would produce. © The Author 2017. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  2. Pilot selection and training

    NASA Technical Reports Server (NTRS)

    Helmreich, Robert L.

    1982-01-01

    Personality and situational factors relevant to individual and group performance in highly demanding environments, such as those faced by astronauts or by jet transport crew, are discussed. It is emphasized that although technical competence and proficiency in pilot selection are prerequisites for safety, operating a modern jet transport is a group endeavor that requires the effective coordination of the entire crew. A self-report test battery for measuring positive and negative personality traits of pilot candidates, termed the Personal Characteristics Inventory, is described.

  3. Battery/Ultracapacitor Evaluation for X-38 Crew Return Vehicle (CRV)

    NASA Technical Reports Server (NTRS)

    Darcy, Eric; Strangways, Bradley

    1999-01-01

    This presentation reported on the evaluation of the battery/ultracapacitor for the crew return vehicle (CRV). The CRV, as part of the international space station (ISS) planning, will be available to return to earth an ill or injured crew person, or if the ISS becomes unsafe, and the shuttle is not available. The requirements of the X-38 CRV are reviewed, and in light of the power requirements, the battery's required performance is reviewed. The ultracapacitor bank, and its test method is described. The test results are reviewed. A picture of the test set up is displayed showing the ultracapacitor bank and the NiMH battery. The presentation continues by reviewing tests of 5 available trade high power cell designs: (1) Hawker lead acid, (2) Bolder lead acid, (3) Energizer NiMH, (4) Sanyo NiCd, and (5) Energizer NiCd. The test methods and results are reviewed. There is also a review of the issues concerning lead acid batteries and conclusions.

  4. Regulatory trends in the battery industry

    NASA Astrophysics Data System (ADS)

    McColl, K. G.

    1994-02-01

    The scope of regulations in the battery industry is extensive and also complex. In the future, regulations will become more demanding and will encompass issues not currently considered. Increased focus on environmental issues by government bodies, environmental groups, local communities will result in more strict compliance standards. The USA is currently leading the world's battery industries in the scope and compliance level of regulations. By studying trends in the USA, the rest of the battery industry can prepare itself for the future operating environment. This paper reviews the most critical areas of air pollution, blood-lead levels and recycling. The paper concludes that the battery industry must adopt a culture of exceeding current compliance standards.

  5. Low Temperature Life-Cycle Testing of a Lithium-Ion Battery for Low-Earth-Orbiting Spacecraft

    NASA Technical Reports Server (NTRS)

    Reid, Concha

    2006-01-01

    A flight-qualified, lithium-ion (Li-ion) battery developed for the Mars Surveyor Program 2001 Landeris undergoing life-testing at low temperature under a low-Earth-orbit (LEO) profile to assess its capability to provide long term energy storage for aerospace missions. NASA has embarked upon an ambitious course to return humans to the moon by 2015-2020 in preparation for robotic and human exploration of Mars and robotic exploration of the moons of outer planets. Li-ion batteries are excellent candidates to provide power and energy storage for multiple aspects of these missions due to their high specific energy, high energy density, and excellent low temperature performance. Laboratory testing of Li-ion technology is necessary in order to assess lifetime, characterize multi-cell battery-level performance under aerospace conditions, and to gauge safety aspects of the technology. Life-cycle testing provides an opportunity to examine battery-level performance and the dynamics of individual cells in the stack over the entire life of the battery. Data generated through this testing will be critical to establish confidence in the technology for its widespread use in manned and unmanned missions.

  6. Charge retention test experiences on Hubble Space Telescope nickel-hydrogen battery cells

    NASA Technical Reports Server (NTRS)

    Nawrocki, Dave E.; Driscoll, J. R.; Armantrout, J. D.; Baker, R. C.; Wajsgras, H.

    1993-01-01

    The Hubble Space Telescope (HST) nickel-hydrogen battery module was designed by Lockheed Missile & Space Co (LMSC) and manufactured by Eagle-Picher Ind. (EPI) for the Marshall Space Flight Center (MSFC) as an Orbital Replacement Unit (ORU) for the nickel-cadmium batteries originally selected for this low earth orbit mission. The design features of the HST nickel hydrogen battery are described and the results of an extended charge retention test are summarized.

  7. Electrochemical characterization of Fe-air rechargeable oxide battery in planar solid oxide cell stacks

    NASA Astrophysics Data System (ADS)

    Fang, Qingping; Berger, Cornelius M.; Menzler, Norbert H.; Bram, Martin; Blum, Ludger

    2016-12-01

    Iron-air rechargeable oxide batteries (ROB) comprising solid oxide cells (SOC) as energy converters and Fe/metal-oxide redox couples were characterized using planar SOC stacks. The charge and discharge of the battery correspond to the operations in the electrolysis and fuel cell modes, respectively, but with a stagnant atmosphere consisting of hydrogen and steam. A novel method was employed to establish the stagnant atmosphere for battery testing during normal SOC operation without complicated modification to the test bench and stack/battery concept. Manipulation of the gas compositions during battery operation was not necessary, but the influence of the leakage current from the testing system had to be considered. Batteries incorporating Fe2O3/8YSZ, Fe2O3/CaO and Fe2O3/ZrO2 storage materials were characterized at 800 °C. A maximum charge capacity of 30.4 Ah per layer (with an 80 cm2 active cell area) with ∼0.5 mol Fe was reached with a current of 12 A. The charge capacity lost 11% after ∼130 ROB cycles due to the increased agglomeration of active materials and formation of a dense oxide layer on the surface. The round trip efficiencies of the tested batteries were ≤84% due to the large internal resistance. With state-of-the-art cells, the round trip efficiency can be further improved.

  8. Evaluation program for secondary spacecraft cells

    NASA Technical Reports Server (NTRS)

    Christy, D. E.; Harkness, J. D.

    1973-01-01

    A life cycle test of secondary electric batteries for spacecraft applications was conducted. A sample number of nickel cadmium batteries were subjected to general performance tests to determine the limit of their actual capabilities. Weaknesses discovered in cell design are reported and aid in research and development efforts toward improving the reliability of spacecraft batteries. A statistical analysis of the life cycle prediction and cause of failure versus test conditions is provided.

  9. Optimum selection of an implantable secondary battery for an artificial heart by examination of the cycle life test.

    PubMed

    Okamoto, Eiji; Watanabe, Kazuya; Hashiba, Kunihiro; Inoue, Taku; Iwazawa, Eichi; Momoi, Masato; Hashimoto, Takuya; Mitamura, Yoshinori

    2002-01-01

    An implantable secondary battery is one of the key components in a total artificial heart system. Because a 2 year cycle life is required, the cycle life of the secondary battery as well as its charge and discharge properties are important parameters for selection of an appropriate battery. We carried out cycle life tests on four kinds of rechargeable batteries (a Ni-MH secondary battery, a Ni-Cd secondary battery, a Li-ion battery with a graphite anode, and a Li-ion battery with a nongraphitizable carbon electrode) to determine their suitability as implanted back-up batteries. Each of the batteries was charge/discharge cycled at 37 degrees C to 39 degrees C using a charge current of 1 C ampere, and they were each fully discharged under either pulsatile discharge loads, which mimicked pulsatile operation, or a nonpulsatile load equivalent to the average of the pulsatile loads. The two Li-ion batteries made by different manufacturers both met the minimum requirement of cycle life of more than 1,500 cycles, considering safety coefficient regardless of the discharge pattern. In addition, the temperature increase of these Li-ion batteries (3 degrees C) was lower than that of Ni-Cd and Ni-MH batteries (15-25 degrees C). Out of these four batteries, the two Li-ion batteries are the most suitable for use in a totally implantable artificial heart system.

  10. Genetic Influences on Cognitive Function Using the Cambridge Neuropsychological Test Automated Battery

    ERIC Educational Resources Information Center

    Singer, Jamie J.; MacGregor, Alex J.; Cherkas, Lynn F.; Spector, Tim D.

    2006-01-01

    The genetic relationship between intelligence and components of cognition remains controversial. Conflicting results may be a function of the limited number of methods used in experimental evaluation. The current study is the first to use CANTAB (The Cambridge Neuropsychological Test Automated Battery). This is a battery of validated computerised…

  11. Simple battery armor to protect against gastrointestinal injury from accidental ingestion

    PubMed Central

    Laulicht, Bryan; Deshpande, Vikram; Langer, Robert; Karp, Jeffrey M.

    2014-01-01

    Inadvertent battery ingestion in children and the associated morbidity and mortality results in thousands of emergency room visits every year. Given the risk for serious electrochemical burns within hours of ingestion, the current standard of care for the treatment of batteries in the esophagus is emergent endoscopic removal. Safety standards now regulate locked battery compartments in toys, which have resulted in a modest reduction in inadvertent battery ingestion; specifically, 3,461 ingestions were reported in 2009, and 3,366 in 2013. Aside from legislation, minimal technological development has taken place at the level of the battery to limit injury. We have constructed a waterproof, pressure-sensitive coating, harnessing a commercially available quantum tunneling composite. Quantum tunneling composite coated (QTCC) batteries are nonconductive in the low-pressure gastrointestinal environment yet conduct within the higher pressure of standard battery housings. Importantly, this coating technology enables most battery-operated equipment to be powered without modification. If these new batteries are swallowed, they limit the external electrolytic currents responsible for tissue injury. We demonstrate in a large-animal model a significant decrease in tissue injury with QTCC batteries compared with uncoated control batteries. In summary, here we describe a facile approach to increasing the safety of batteries by minimizing the risk for electrochemical burn if the batteries are inadvertently ingested, without the need for modification of most battery-powered devices. PMID:25368176

  12. Simple battery armor to protect against gastrointestinal injury from accidental ingestion.

    PubMed

    Laulicht, Bryan; Traverso, Giovanni; Deshpande, Vikram; Langer, Robert; Karp, Jeffrey M

    2014-11-18

    Inadvertent battery ingestion in children and the associated morbidity and mortality results in thousands of emergency room visits every year. Given the risk for serious electrochemical burns within hours of ingestion, the current standard of care for the treatment of batteries in the esophagus is emergent endoscopic removal. Safety standards now regulate locked battery compartments in toys, which have resulted in a modest reduction in inadvertent battery ingestion; specifically, 3,461 ingestions were reported in 2009, and 3,366 in 2013. Aside from legislation, minimal technological development has taken place at the level of the battery to limit injury. We have constructed a waterproof, pressure-sensitive coating, harnessing a commercially available quantum tunneling composite. Quantum tunneling composite coated (QTCC) batteries are nonconductive in the low-pressure gastrointestinal environment yet conduct within the higher pressure of standard battery housings. Importantly, this coating technology enables most battery-operated equipment to be powered without modification. If these new batteries are swallowed, they limit the external electrolytic currents responsible for tissue injury. We demonstrate in a large-animal model a significant decrease in tissue injury with QTCC batteries compared with uncoated control batteries. In summary, here we describe a facile approach to increasing the safety of batteries by minimizing the risk for electrochemical burn if the batteries are inadvertently ingested, without the need for modification of most battery-powered devices.

  13. The characteristics and limitations of the MPS/MMS battery charging system

    NASA Technical Reports Server (NTRS)

    Ford, F. E.; Palandati, C. F.; Davis, J. F.; Tasevoli, C. M.

    1980-01-01

    A series of tests was conducted on two 12 ampere hour nickel cadmium batteries under a simulated cycle regime using the multiple voltage versus temperature levels designed into the modular power system (MPS). These tests included: battery recharge as a function of voltage control level; temperature imbalance between two parallel batteries; a shorted or partially shorted cell in one of the two parallel batteries; impedance imbalance of one of the parallel battery circuits; and disabling and enabling one of the batteries from the bus at various charge and discharge states. The results demonstrate that the eight commandable voltage versus temperature levels designed into the MPS provide a very flexible system that not only can accommodate a wide range of normal power system operation, but also provides a high degree of flexibility in responding to abnormal operating conditions.

  14. Characterization testing of a 40 AHR bipolar nickel-hydrogen battery

    NASA Astrophysics Data System (ADS)

    Brewer, Jeffrey C.; Manzo, Michelle A.; Gemeiner, Russel P.

    1989-12-01

    Extensive characterization testing has been done on a second 40 amp-hour (Ahr), 10-cell bipolar nickel-hydrogen (Ni-H2) battery to study the effects of such operating parameters as charge and discharge rates, temperature, and pressure, on capacity, Ahr and watt-hour (Whr) efficiencies, end-of-charge (EOC) and mid-point discharge voltages. Testing to date has produced many interesting results, with the battery performing well throughout all of the test matrix except during the high-rate (5C and 10C) discharges, where poorer than expected results were observed. The exact cause of this poor performance is, as yet, unknown. Small scale 2 x 2 inch battery tests are to be used in studying this problem. Low earth orbit (LEO) cycle life testing at a 40 percent depth of discharge (DOD) and 10 C is scheduled to follow the characterization testing.

  15. Does the Cambridge Automated Neuropsychological Test Battery (CANTAB) Distinguish Between Cognitive Domains in Healthy Older Adults?

    PubMed

    Lenehan, Megan E; Summers, Mathew J; Saunders, Nichole L; Summers, Jeffery J; Vickers, James C

    2016-04-01

    The Cambridge Neuropsychological Test Automated Battery (CANTAB) is a semiautomated computer interface for assessing cognitive function. We examined whether CANTAB tests measured specific cognitive functions, using established neuropsychological tests as a reference point. A sample of 500 healthy older (M = 60.28 years, SD = 6.75) participants in the Tasmanian Healthy Brain Project completed battery of CANTAB subtests and standard paper-based neuropsychological tests. Confirmatory factor analysis identified four factors: processing speed, verbal ability, episodic memory, and working memory. However, CANTAB tests did not consistently load onto the cognitive domain factors derived from traditional measures of the same function. These results indicate that five of the six CANTAB subtests examined did not load onto single cognitive functions. These CANTAB tests may lack the sensitivity to measure discrete cognitive functions in healthy populations or may measure other cognitive domains not included in the traditional neuropsychological battery. © The Author(s) 2015.

  16. Characterization testing of a 40 AHR bipolar nickel-hydrogen battery

    NASA Technical Reports Server (NTRS)

    Brewer, Jeffrey C.; Manzo, Michelle A.; Gemeiner, Russel P.

    1989-01-01

    Extensive characterization testing has been done on a second 40 amp-hour (Ahr), 10-cell bipolar nickel-hydrogen (Ni-H2) battery to study the effects of such operating parameters as charge and discharge rates, temperature, and pressure, on capacity, Ahr and watt-hour (Whr) efficiencies, end-of-charge (EOC) and mid-point discharge voltages. Testing to date has produced many interesting results, with the battery performing well throughout all of the test matrix except during the high-rate (5C and 10C) discharges, where poorer than expected results were observed. The exact cause of this poor performance is, as yet, unknown. Small scale 2 x 2 inch battery tests are to be used in studying this problem. Low earth orbit (LEO) cycle life testing at a 40 percent depth of discharge (DOD) and 10 C is scheduled to follow the characterization testing.

  17. Characterization testing of a 40 ampere hour bipolar nickel-hydrogen battery

    NASA Technical Reports Server (NTRS)

    Brewer, Jeffrey C.; Manzo, Michelle A.; Gemeiner, Russel P.

    1990-01-01

    Extensive characterization testing has been done on a second 40-ampere hour (A h), 10-cell, bipolar nickel-hydrogen (Ni-H2) battery, to study the effects of operating parameters such as charge and discharge rates, temperature, and pressure on capacity, A h and watt hour (W h) efficiencies, and end-of-charge and midpoint discharge voltages. Testing to date has produced many interesting results, with the battery performing well throughout the test matrix except during the high-rate (5 C and 10 C) discharges, where poorer than expected results were observed. The exact cause of this poor performance is, as yet, unknown. Small scale 2 in. x 2 in. battery tests are to be used in studying this problem. Low earth orbit cycle life testing at a 40-percent depth of discharge and 10 C is scheduled to follow the characterization testing.

  18. A degradation-based sorting method for lithium-ion battery reuse.

    PubMed

    Chen, Hao; Shen, Julia

    2017-01-01

    In a world where millions of people are dependent on batteries to provide them with convenient and portable energy, battery recycling is of the utmost importance. In this paper, we developed a new method to sort 18650 Lithium-ion batteries in large quantities and in real time for harvesting used cells with enough capacity for battery reuse. Internal resistance and capacity tests were conducted as a basis for comparison with a novel degradation-based method based on X-ray radiographic scanning and digital image contrast computation. The test results indicate that the sorting accuracy of the test cells is about 79% and the execution time of our algorithm is at a level of 200 milliseconds, making our method a potential real-time solution for reusing the remaining capacity in good used cells.

  19. Development of a menu of performance tests self-administered on a portable microcomputer

    NASA Technical Reports Server (NTRS)

    Wilkes, Robert L.; Kuntz, Lois-Ann; Kennedy, Robert S.

    1987-01-01

    Eighteen cognitive, motor, and information processing performance subtests were screened for self-administration over 10 trials by 16 subjects. When altered presentation forms of the same test were collectively considered, the battery composition was reduced to 10 distinctly different measures. A fully automated microbased testing system was employed in presenting the battery of subtests. Successful self-administration of the battery provided for the field testing of the automated system and facilitated convenient data collection. Total test administration time was 47.2 minutes for each session. Results indicated that nine of the tests stabilized, but for a short battery of tests only five are recommended for use in repeated-measures research. The five recommended tests include: the Tapping series, Number Comparison, Short-term Memory, Grammatical Reasoning, and 4-Choice Reaction Time. These tests can be expected to reveal three factors: (1) cognition, (2) processing quickness, and (3) motor. All the tests stabilized in 24 minutes, or approximately two 12-minute sessions.

  20. Revealing Nanoscale Passivation and Corrosion Mechanisms of Reactive Battery Materials in Gas Environments.

    PubMed

    Li, Yuzhang; Li, Yanbin; Sun, Yongming; Butz, Benjamin; Yan, Kai; Koh, Ai Leen; Zhao, Jie; Pei, Allen; Cui, Yi

    2017-08-09

    Lithium (Li) metal is a high-capacity anode material (3860 mAh g -1 ) that can enable high-energy batteries for electric vehicles and grid-storage applications. However, Li metal is highly reactive and repeatedly consumed when exposed to liquid electrolyte (during battery operation) or the ambient environment (throughout battery manufacturing). Studying these corrosion reactions on the nanoscale is especially difficult due to the high chemical reactivity of both Li metal and its surface corrosion films. Here, we directly generate pure Li metal inside an environmental transmission electron microscope (TEM), revealing the nanoscale passivation and corrosion process of Li metal in oxygen (O 2 ), nitrogen (N 2 ), and water vapor (H 2 O). We find that while dry O 2 and N 2 (99.9999 vol %) form uniform passivation layers on Li, trace water vapor (∼1 mol %) disrupts this passivation and forms a porous film on Li metal that allows gas to penetrate and continuously react with Li. To exploit the self-passivating behavior of Li in dry conditions, we introduce a simple dry-N 2 pretreatment of Li metal to form a protective layer of Li nitride prior to battery assembly. The fast ionic conductivity and stable interface of Li nitride results in improved battery performance with dendrite-free cycling and low voltage hysteresis. Our work reveals the detailed process of Li metal passivation/corrosion and demonstrates how this mechanistic insight can guide engineering solutions for Li metal batteries.

  1. Nickel-hydrogen battery state of charge during low rate trickle charging

    NASA Technical Reports Server (NTRS)

    Lurie, C.; Foroozan, S.; Brewer, J.; Jackson, L.

    1996-01-01

    The NASA AXAF-I program requires high battery state of charge at launch. Traditional approaches to providing high state of charge, during prelaunch operations, require significant battery cooling. The use of active cooling, in the AXAF-I prelaunch environment, was considered and proved to be difficult to implement and very expensive. Accordingly alternate approaches were considered. An approach utilizing adiabatic charging and low rate trickle charge, was investigated and proved successful.

  2. Research, development, and demonstration of lead-acid batteries for electric-vehicle propulsion. Annual report, 1980

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1981-03-01

    The first development effort in improving lead-acid batteries fore electric vehicles was the improvement of electric vehicle batteries using flat pasted positive plates and the second was for a tubular long life positive plate. The investigation of 32 component variables based on a flat pasted positive plate configuration is described. The experiment tested 96 - six volt batteries for characterization at 0, 25, and 40/sup 0/C and for cycle life capability at the 3 hour discharge rate with a one cycle, to 80% DOD, per day regime. Four positive paste formulations were selected. Two commercially available microporous separators were usedmore » in conjunction with a layer of 0.076 mm thick glass mat. Two concentrations of battery grade sulfuric acid were included in the test to determine if an increase in concentration would improve the battery capacity sufficient to offset the added weight of the more concentrated solution. Two construction variations, 23 plate elements with outside negative plates and 23 plate elements with outside positive plates, were included. The second development effort was an experiment designed to study the relationship of 32 component variables based on a tubular positive plate configuration. 96-six volt batteries were tested at various discharge rates at 0, 25, and 40/sup 0/C along with cycle life testing at 80% DOD of the 3 hour rate. 75 batteries remain on cycle life testing with 17 batteries having in excess of 365 life cycles. Preliminary conclusions indicate: the tubular positive plate is far more capable of withstanding deep cycles than is the flat pasted plate; as presently designed 40 Whr/kg can not be achieved, since 37.7 Whr/kg was the best tubular data obtained; electrolyte circulation is impaired due to the tight element fit in the container; and a redesign is required to reduce the battery weight which will improve the Whr/kg value. This redesign is complete and new molds have been ordered.« less

  3. Recycling and management of waste lead-acid batteries: A mini-review.

    PubMed

    Li, Malan; Liu, Junsheng; Han, Wei

    2016-04-01

    As a result of the wide application of lead-acid batteries to be the power supplies for vehicles, their demand has rapidly increased owing to their low cost and high availability. Accordingly, the amount of waste lead-acid batteries has increased to new levels; therefore, the pollution caused by the waste lead-acid batteries has also significantly increased. Because lead is toxic to the environment and to humans, recycling and management of waste lead-acid batteries has become a significant challenge and is capturing much public attention. Various innovations have been recently proposed to recycle lead and lead-containing compounds from waste lead-acid batteries. In this mini-review article, different recycling techniques for waste lead-acid batteries are highlighted. The present state of such recycling and its future perspectives are also discussed. We hope that this mini-review can provide useful information on recovery and recycling of lead from waste lead-acid batteries in the field of solid waste treatment. © The Author(s) 2016.

  4. Investigation of local environments in Nafion-SiO(2) composite membranes used in vanadium redox flow batteries.

    PubMed

    Vijayakumar, M; Schwenzer, Birgit; Kim, Soowhan; Yang, Zhenguo; Thevuthasan, S; Liu, Jun; Graff, Gordon L; Hu, Jianzhi

    2012-04-01

    Proton conducting polymer composite membranes are of technological interest in many energy devices such as fuel cells and redox flow batteries. In particular, polymer composite membranes, such as SiO(2) incorporated Nafion membranes, are recently reported as highly promising for the use in redox flow batteries. However, there is conflicting reports regarding the performance of this type of Nafion-SiO(2) composite membrane in the redox flow cell. This paper presents results of the analysis of the Nafion-SiO(2) composite membrane used in a vanadium redox flow battery by nuclear magnetic resonance (NMR) spectroscopy, X-ray photoelectron spectroscopy (XPS), Fourier Transform Infra Red (FTIR) spectroscopy, and ultraviolet-visible spectroscopy. The XPS study reveals the chemical identity and environment of vanadium cations accumulated at the surface. On the other hand, the (19)F and (29)Si NMR measurement explores the nature of the interaction between the silica particles, Nafion side chains and diffused vanadium cations. The (29)Si NMR shows that the silica particles interact via hydrogen bonds with the sulfonic groups of Nafion and the diffused vanadium cations. Based on these spectroscopic studies, the chemical environment of the silica particles inside the Nafion membrane and their interaction with diffusing vanadium cations during flow cell operations are discussed. This study discusses the origin of performance degradation of the Nafion-SiO(2) composite membrane materials in vanadium redox flow batteries. Copyright © 2011 Elsevier Inc. All rights reserved.

  5. Investigation of Local Environments in Nafion-SiO2 Composite Membranes used in Vanadium Redox Flow Batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vijayakumar, M.; Schwenzer, Birgit; Kim, Soowhan

    2012-04-01

    The proton conducting polymer composite membranes are of technological interest in many energy devices such as fuel cells and redox flow batteries. In particular, the polymer composite membranes such as SiO2 incorporated Nafion membranes are recently reported as highly promising for the redox flow batteries. However, there is conflicting reports regarding the performance of this Nafion-SiO2 composite membrane in the redox flow cell. This paper presents results of the analysis of the Nafion-SiO2 composite membrane used in a vanadium redox flow battery by nuclear magnetic resonance (NMR) spectroscopy, X-ray photoelectron spectroscopy (XPS), Fourier Transformed Infra Red (FTIR) spectroscopy, and ultravioletmore » visible spectroscopy. The XPS study reveals the chemical identity and environment of vanadium cations accumulated at the surface. On the other hand, the 19F and 29Si NMR measurement explores the nature of the interaction between the silica particles, Nafion side chains and diffused vanadium cations. The 29Si NMR shows that the silica particles interaction via hydrogen bonds to the sulfonic groups of Nafion and diffused vanadium cations. Based on these spectroscopic studies, the chemical environment of the silica particles inside the Nafion membrane and their interaction with diffusing vanadium cations during flow cell operations are discussed. This study discusses the origin of performance degradation of the Nafion-SiO2 composite membrane materials in vanadium redox flow batteries.« less

  6. Synthetic battery cycling

    NASA Technical Reports Server (NTRS)

    Thaller, L. H.

    1981-01-01

    The use of interactive computer graphics is suggested as an aid in battery system development. Mathematical representations of simplistic but fully representative functions of many electrochemical concepts of current practical interest will permit battery level charge and discharge phenomena to be analyzed in a qualitative manner prior to the assembly and testing of actual hardware. This technique is a useful addition to the variety of tools available to the battery system designer as he bridges the gap between interesting single cell life test data and reliable energy storage subsystems.

  7. Determinants of School Performance Among Quechua Children in the Peruvian Andes

    NASA Astrophysics Data System (ADS)

    Jacoby, Enrique; Cueto, Santiago; Pollitt, Ernesto

    1999-01-01

    In the rural Andes of Peru, primary school inefficiency ranks higher than in the rest of the country, with a nearly 50 per cent rate of first grade repetition. In 1993 the investigators administered a battery of four psycho-educational tests to 360 schoolchildren in the fourth and fifth grades at ten primary schools in the Andean region of Huaraz. They also recorded the children's individual characteristics, i.e. family background, nutritional status, and educational attainment, and rated the schools according to educational features such as classroom size, time devoted to learning, and student-teacher ratio. A year later, in 1994, children were re-examined in the schools using the same test battery. All subjects were small for their age, had poor diets, spoke mostly Quechua at home (Spanish in school), lived in a rural environment, and walked considerable distances to school. Regression analyses of the 1993 data indicated that the performance of Quechua children on verbal tests was heavily influenced by family background, while their mathematical competence was related to school experience. On the other hand, improvement in test scores from one year to the next appeared to be strongly related to test performance in 1993 and less clearly to the other recorded variables. Finally, the schools' promotion rates were clearly associated with test scores from the previous year but less clearly with grade repetition rates.

  8. Battery model for electrical power system energy balance

    NASA Technical Reports Server (NTRS)

    Hafen, D. P.

    1983-01-01

    A model to simulate nickel-cadmium battery performance and response in a spacecraft electrical power system energy balance calculation was developed. The voltage of the battery is given as a function of temperature, operating depth-of-charge (DOD), and battery state-of-charge. Also accounted for is charge inefficiency. A battery is modeled by analysis of the results of a multiparameter battery cycling test at various temperatures and DOD's.

  9. Development of a Long-Range Underwater Vehicle

    DTIC Science & Technology

    2014-09-30

    lithium- seawater batteries . Specific objectives are (1) to test in the laboratory and ocean new lithium- seawater batteries developed and manufactured...by the PolyPlus Battery Company, (2) to discover how to mount and operate these cells to maximize their mass transfer with the ambient seawater and to...respectively. The achievable energy density for batteries is much less. PolyPlus Battery Company has developed a lithium- seawater battery (http

  10. Cross-validation of a Shortened Battery for the Assessment of Dysexecutive Disorders in Alzheimer Disease.

    PubMed

    Godefroy, Olivier; Martinaud, Olivier; Verny, Marc; Mosca, Chrystèle; Lenoir, Hermine; Bretault, Eric; Devendeville, Agnès; Diouf, Momar; Pere, Jean-Jacques; Bakchine, Serge; Delabrousse-Mayoux, Jean-Philippe; Roussel, Martine

    2016-01-01

    The frequency of executive disorders in mild-to-moderate Alzheimer disease (AD) has been demonstrated by the application of a comprehensive battery. The present study analyzed data from 2 recent multicenter studies based on the same executive battery. The objective was to derive a shortened battery by using the GREFEX population as a training dataset and by cross-validating the results in the REFLEX population. A total of 102 AD patients of the GREFEX study (MMSE=23.2±2.9) and 72 patients of the REFLEX study (MMSE=20.8±3.5) were included. Tests were selected and receiver operating characteristic curves were generated relative to the performance of 780 controls from the GREFEX study. Stepwise logistic regression identified 3 cognitive tests (Six Elements Task, categorical fluency and Trail Making Test B error) and behavioral disorders globally referred as global hypoactivity (P=0.0001, all). This shortened battery was as accurate as the entire GREFEX battery in diagnosing dysexecutive disorders in both training group and the validation group. Bootstrap procedure confirmed the stability of AUC. A shortened battery based on 3 cognitive tests and 3 behavioral domains provides a high diagnosis accuracy of executive disorders in mild-to-moderate AD.

  11. The 1973 GSFC battery workshop, second day. [technology transfer

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Technological progress in the development, testing, and manufacturing of nickel-cadmium battery cells as well as hydrogen cells is presented. The following major topics were discussed: (1) carbonate analysis; (2) nickel-cadmium memory effect; (3) use of batteries in an automatic acquisition and control system; (4) accelerated testing; (5) formulation of a mathematical odel for a nickel-cadmium cell; (6) development of a light weight nickel-cadmium battery capable of delivering 20 watt hours per pound; (7) magnetic testing of nickel-cadmium cells; (8) design and performance characteristics of nickel-hydrogen and silver-hydrogen cells; and (9) development of a semiprismatic cell design. For Vol. 1, see N75-15152.

  12. Airport electric vehicle powered by fuel cell

    NASA Astrophysics Data System (ADS)

    Fontela, Pablo; Soria, Antonio; Mielgo, Javier; Sierra, José Francisco; de Blas, Juan; Gauchia, Lucia; Martínez, Juan M.

    Nowadays, new technologies and breakthroughs in the field of energy efficiency, alternative fuels and added-value electronics are leading to bigger, more sustainable and green thinking applications. Within the Automotive Industry, there is a clear declaration of commitment with the environment and natural resources. The presence of passenger vehicles of hybrid architecture, public transport powered by cleaner fuels, non-aggressive utility vehicles and an encouraging social awareness, are bringing to light a new scenario where conventional and advanced solutions will be in force. This paper presents the evolution of an airport cargo vehicle from battery-based propulsion to a hybrid power unit based on fuel cell, cutting edge batteries and hydrogen as a fuel. Some years back, IBERIA (Major Airline operating in Spain) decided to initiate the replacement of its diesel fleet for battery ones, aiming at a reduction in terms of contamination and noise in the surrounding environment. Unfortunately, due to extreme operating conditions in airports (ambient temperature, intensive use, dirtiness, …), batteries suffered a very severe degradation, which took its toll in terms of autonomy. This reduction in terms of autonomy together with the long battery recharge time made the intensive use of this fleet impractical in everyday demanding conditions.

  13. Differential Predictive Validity of a Preschool Battery Across Race and Sex.

    ERIC Educational Resources Information Center

    Reynolds, Cecil R.

    Determination of the fairness of preschool tests for use with children of varying cultural backgrounds is the major objective of this study. The predictive validity of a battery of preschool tests, chosen to represent the core areas of preschool assessment, across race and sex, was evaluated. Validity of the battery was examined over a 12-month…

  14. 49 CFR 175.10 - Exceptions for passengers, crewmembers, and air operators.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... mobility aid equipped with a lithium ion battery, when carried as checked baggage, provided— (i) The lithium ion battery must be of a type that successfully passed each test in the UN Manual of Tests and... the movement of baggage, mail, service items, or other cargo; (v) Where a lithium ion battery-powered...

  15. 49 CFR 175.10 - Exceptions for passengers, crewmembers, and air operators.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... mobility aid equipped with a lithium ion battery, when carried as checked baggage, provided— (i) The lithium ion battery must be of a type that successfully passed each test in the UN Manual of Tests and... the movement of baggage, mail, service items, or other cargo; (v) Where a lithium ion battery-powered...

  16. Testing the tests--an empirical evaluation of screening tests for the detection of cognitive impairment in aviators.

    PubMed

    Stokes, A F; Banich, M T; Elledge, V C

    1991-08-01

    The FAA has expressed concern that flight safety could be compromised by undetected cognitive impairment in pilots due to conditions such as substance abuse, mental illness, and neuropsychological problems. Interest has been shown in the possibility of adding a brief "mini-mental exam," or a simple automated test-battery to the standard flight medical to screen for such conditions. The research reported here involved the empirical evaluation of two "mini-mental exams," two paper-and-pencil test batteries, and a prototype version of an automated screening battery. Sensitivity, specificity, and positive predictive value were calculated for each sub-task in a discriminant study of 54 pilots and 62 individuals from a heterogeneous clinical population. Results suggest that the "mini-mental exams" are poor candidates for a screening test. The automated battery showed the best discrimination performance, in part because of the incorporation of dual-task tests of divided attention performance. These tests appear to be particularly sensitive to otherwise difficult-to-detect cognitive impairments of a mild or subtle nature. The use of an automated battery of tests as a screening instrument does appear to be feasible in principle, but the practical success of a screening program is heavily dependent upon the actual prevalence of cognitive impairment in the medical applicant population.

  17. Initial validation of a web-based self-administered neuropsychological test battery for older adults and seniors.

    PubMed

    Hansen, Tor Ivar; Haferstrom, Elise Christina D; Brunner, Jan F; Lehn, Hanne; Håberg, Asta Kristine

    2015-01-01

    Computerized neuropsychological tests are effective in assessing different cognitive domains, but are often limited by the need of proprietary hardware and technical staff. Web-based tests can be more accessible and flexible. We aimed to investigate validity, effects of computer familiarity, education, and age, and the feasibility of a new web-based self-administered neuropsychological test battery (Memoro) in older adults and seniors. A total of 62 (37 female) participants (mean age 60.7 years) completed the Memoro web-based neuropsychological test battery and a traditional battery composed of similar tests intended to measure the same cognitive constructs. Participants were assessed on computer familiarity and how they experienced the two batteries. To properly test the factor structure of Memoro, an additional factor analysis in 218 individuals from the HUNT population was performed. Comparing Memoro to traditional tests, we observed good concurrent validity (r = .49-.63). The performance on the traditional and Memoro test battery was consistent, but differences in raw scores were observed with higher scores on verbal memory and lower in spatial memory in Memoro. Factor analysis indicated two factors: verbal and spatial memory. There were no correlations between test performance and computer familiarity after adjustment for age or age and education. Subjects reported that they preferred web-based testing as it allowed them to set their own pace, and they did not feel scrutinized by an administrator. Memoro showed good concurrent validity compared to neuropsychological tests measuring similar cognitive constructs. Based on the current results, Memoro appears to be a tool that can be used to assess cognitive function in older and senior adults. Further work is necessary to ascertain its validity and reliability.

  18. Initial validation of a web-based self-administered neuropsychological test battery for older adults and seniors

    PubMed Central

    Hansen, Tor Ivar; Haferstrom, Elise Christina D.; Brunner, Jan F.; Lehn, Hanne; Håberg, Asta Kristine

    2015-01-01

    Introduction: Computerized neuropsychological tests are effective in assessing different cognitive domains, but are often limited by the need of proprietary hardware and technical staff. Web-based tests can be more accessible and flexible. We aimed to investigate validity, effects of computer familiarity, education, and age, and the feasibility of a new web-based self-administered neuropsychological test battery (Memoro) in older adults and seniors. Method: A total of 62 (37 female) participants (mean age 60.7 years) completed the Memoro web-based neuropsychological test battery and a traditional battery composed of similar tests intended to measure the same cognitive constructs. Participants were assessed on computer familiarity and how they experienced the two batteries. To properly test the factor structure of Memoro, an additional factor analysis in 218 individuals from the HUNT population was performed. Results: Comparing Memoro to traditional tests, we observed good concurrent validity (r = .49–.63). The performance on the traditional and Memoro test battery was consistent, but differences in raw scores were observed with higher scores on verbal memory and lower in spatial memory in Memoro. Factor analysis indicated two factors: verbal and spatial memory. There were no correlations between test performance and computer familiarity after adjustment for age or age and education. Subjects reported that they preferred web-based testing as it allowed them to set their own pace, and they did not feel scrutinized by an administrator. Conclusions: Memoro showed good concurrent validity compared to neuropsychological tests measuring similar cognitive constructs. Based on the current results, Memoro appears to be a tool that can be used to assess cognitive function in older and senior adults. Further work is necessary to ascertain its validity and reliability. PMID:26009791

  19. Hubble Space Telescope 2004 Battery Update

    NASA Technical Reports Server (NTRS)

    Hollandsworth, Roger; Armantrout, Jon; Rao, Gopalakrishna M.

    2004-01-01

    Battery cell wear out mechanisms and signatures are examined and compared to orbital data from the six on-orbit Hubble Space Telescope (HST) batteries, and the Flight Spare Battery (FSB) Test Bed at Marshall Space Fiight Center (MSFC), which is instrumented with individual cell voltage monitoring.

  20. Reliability Through Life of Internal Protection Devices in Small-Cell ABSL Batteries

    NASA Technical Reports Server (NTRS)

    Neubauer, Jeremy; Ng, Ka Lok; Bennetti, Andrea; Pearson, Chris; Rao, gopal

    2007-01-01

    This viewgraph presentation reviews a reliability analysis of small cell protection batteries. The contents include: 1) The s-p Topology; 2) Cell Level Protection Devices; 3) Battery Level Fault Protection; 4) Large Cell Comparison; and 5) Battery Level Testing and Results.

  1. Separator Materials Used in Secondary Alkaline Batteries Characterized and Evaluated

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Nickel-cadmium (Ni/Cd) and nickel-hydrogen (Ni/H2) secondary alkaline batteries are vital to aerospace applications. Battery performance and cycle life are significantly affected by the type of separators used in those batteries. A team from NASA Lewis Research Center's Electrochemical Technology Branch developed standardized testing procedures to characterize and evaluate new and existing separator materials to improve performance and cycle life of secondary alkaline batteries. Battery separators must function as good electronic insulators and as efficient electrolyte reservoirs. At present, new types of organic and inorganic separator materials are being developed for Ni/Cd and Ni/H2 batteries. The separator material previously used in the NASA standard Ni/Cd was Pellon 2505, a 100-percent nylon-6 polymer that must be treated with zinc chloride (ZnCl2) to bond the fibers. Because of stricter Environmental Protection Agency regulation of ZnCl2 emissions, the battery community has been searching for new separators to replace Pellon 2505. As of today, two candidate separator materials have been identified; however, neither of the two materials have performed as well as Pellon 2505. The separator test procedures that were devised at Lewis are being implemented to expedite the search for new battery separators. The new test procedures, which are being carried out in the Separator Laboratory at Lewis, have been designed to guarantee accurate evaluations of the properties that are critical for sustaining proper battery operation. These properties include physical and chemical stability, chemical purity, gas permeability, electrolyte retention and distribution, uniformity, porosity, and area resistivity. A manual containing a detailed description of 12 separator test procedures has been drafted and will be used by the battery community to evaluate candidate separator materials for specific applications. These standardized procedures will allow for consistent, uniform, and reliable results that will ensure that separator materials have the desired properties for long life and good performance in secondary alkaline cells.

  2. A comparative study of commercial lithium ion battery cycle life in electric vehicle: Capacity loss estimation

    NASA Astrophysics Data System (ADS)

    Han, Xuebing; Ouyang, Minggao; Lu, Languang; Li, Jianqiu

    2014-12-01

    Now the lithium ion batteries are widely used in electric vehicles (EV). The cycle life is among the most important characteristics of the power battery in EV. In this report, the battery cycle life experiment is designed according to the actual working condition in EV. Five different commercial lithium ion cells are cycled alternatively under 45 °C and 5 °C and the test results are compared. Based on the cycle life experiment results and the identified battery aging mechanism, the battery cycle life models are built and fitted by the genetic algorithm. The capacity loss follows a power law relation with the cycle times and an Arrhenius law relation with the temperature. For automotive application, to save the cost and the testing time, a battery SOH (state of health) estimation method combined the on-line model based capacity estimation and regular calibration is proposed.

  3. Study of imbalanced internal resistance on drop voltage of LiFePO4 battery system connected in parallel

    NASA Astrophysics Data System (ADS)

    Adie Perdana, Fengky; Supriyanto, Agus; Purwanto, Agus; Jamaluddin, Anif

    2017-01-01

    The purpose of this research focuses on the effect of imbalanced internal resistance for the drop voltage of LiFePO4 18650 battery system connected in parallel. The battery pack has been assembled consist of two cell battery LiFePO4 18650 that has difference combination of internal resistance. Battery pack was tested with 1/C constant current charging, 3,65V per group sel, 3,65V constant voltage charging, 5 minutes of rest time between charge and discharge process, 1/2C Constant current discharge until 2,2V, 26 cycle of measurement test, and 4320 minutes rest time after the last charge cycle. We can conclude that the difference combination of internal resistance on the battery pack seriously influence the drop voltage of a battery. Theoretical and experimental result show that the imbalance of internal resistance during cycling are mainly responsible for the drop voltage of LiFePO4 parallel batteries. It is thus a good way to avoid drop voltage fade of parallel battery system by suppressing variations of internal resistance.

  4. Comparison Between a Self-Administered and Supervised Version of a Web-Based Cognitive Test Battery: Results From the NutriNet-Santé Cohort Study

    PubMed Central

    Bailet, Marion; Lecoffre, Amandine C; Galan, Pilar; Hercberg, Serge; Amieva, Hélène; Kesse-Guyot, Emmanuelle

    2016-01-01

    Background Dementia is a major public health problem, and repeated cognitive data from large epidemiological studies could help to develop efficient measures of early prevention. Data collection by self-administered online tools could drastically reduce the logistical and financial burden of such large-scale investigations. In this context, it is important to obtain data concerning the comparability of such new online tools with traditional, supervised modes of cognitive assessment. Objective Our objective was to compare self-administration of the Web-based NutriNet-Santé cognitive test battery (NutriCog) with administration by a neuropsychologist. Methods The test battery included four tests, measuring, among others aspects, psychomotor speed, attention, executive function, episodic memory, working memory, and associative memory. Both versions of the cognitive battery were completed by 189 volunteers (either self-administered version first, n=99, or supervised version first, n=90). Subjects also completed a satisfaction questionnaire. Concordance was assessed by Spearman correlation. Results Agreement between both versions varied according to the investigated cognitive task and outcome variable. Spearman correlations ranged between .42 and .73. Moreover, a majority of participants responded that they “absolutely” or “rather” agreed that the duration of the self-administered battery was acceptable (184/185, 99.5%), that the tasks were amusing (162/185, 87.6%), that the instructions were sufficiently detailed (168/185; 90.8%) and understandable (164/185, 88.7%), and that they had overall enjoyed the test battery (182/185, 98.4%). Conclusions The self-administered version of the Web-based NutriCog cognitive test battery provided similar information as the supervised version. Thus, integrating repeated cognitive evaluations into large cohorts via the implementation of self-administered online versions of traditional test batteries appears to be feasible. PMID:27049114

  5. A degradation-based sorting method for lithium-ion battery reuse

    PubMed Central

    Chen, Hao

    2017-01-01

    In a world where millions of people are dependent on batteries to provide them with convenient and portable energy, battery recycling is of the utmost importance. In this paper, we developed a new method to sort 18650 Lithium-ion batteries in large quantities and in real time for harvesting used cells with enough capacity for battery reuse. Internal resistance and capacity tests were conducted as a basis for comparison with a novel degradation-based method based on X-ray radiographic scanning and digital image contrast computation. The test results indicate that the sorting accuracy of the test cells is about 79% and the execution time of our algorithm is at a level of 200 milliseconds, making our method a potential real-time solution for reusing the remaining capacity in good used cells. PMID:29023485

  6. Diagnosing mild cognitive impairment in Parkinson's disease: which tests perform best in the Italian population?

    PubMed

    Federico, Angela; Trentin, Michela; Zanette, Giampietro; Mapelli, Daniela; Picelli, Alessandro; Smania, Nicola; Tinazzi, Michele; Tamburin, Stefano

    2017-08-01

    Mild cognitive impairment (MCI) is common in patients with Parkinson's disease (PD) and should be recognized early because it represents a predictor of PD-related dementia and worse disease course. Diagnostic criteria for PD-related MCI (PD-MCI) have recently been defined by a Movement Disorders Society (MDS) task force. The present study explored which neuropsychological tests perform best for a level II (i.e., comprehensive neuropsychological assessment) diagnosis of PD-MCI according to the MDS task force criteria in Italian-speaking PD patients. To this aim, we assessed a comprehensive 23-item neuropsychological battery, derived the best-performing 10-test battery (i.e., two tests per domain for each of the five cognitive domains), and explored its accuracy for diagnosing PD-MCI in comparison to the full battery in a group of PD patients. A secondary aim was to explore the role of this battery for subtyping PD-MCI according to single-domain vs. multiple-domain involvement. The 10-test battery showed 73% sensitivity and 100% specificity for diagnosing PD-MCI, and 69% sensitivity and 100% specificity for PD-MCI subtyping. In patients older than 70 years, we derived a slightly different 10-test battery with 84% sensitivity and 100% specificity for PD-MCI diagnosis, and 86% sensitivity and 100% specificity for PD-MCI subtyping. These 10-item neuropsychological batteries might represent a good trade-off between diagnostic accuracy and time of application, and their role in PD-MCI diagnosis and subtyping should be further explored in future prospective studies.

  7. Battery Test Manual For Electric Vehicles, Revision 3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Christophersen, Jon P.

    2015-06-01

    This battery test procedure manual was prepared for the United States Department of Energy (DOE), Office of Energy Efficiency and Renewable Energy (EERE), Vehicle Technologies Office. It is based on technical targets for commercial viability established for energy storage development projects aimed at meeting system level DOE goals for Electric Vehicles (EV). The specific procedures defined in this manual support the performance and life characterization of advanced battery devices under development for EVs. However, it does share some methods described in the previously published battery test manual for plug-in hybrid electric vehicles. Due to the complexity of some of themore » procedures and supporting analysis, future revisions including some modifications and clarifications of these procedures are expected. As in previous battery and capacitor test manuals, this version of the manual defines testing methods for full-size battery systems, along with provisions for scaling these tests for modules, cells or other subscale level devices. The DOE-United States Advanced Battery Consortium (USABC), Technical Advisory Committee (TAC) supported the development of the manual. Technical Team points of contact responsible for its development and revision are Chul Bae of Ford Motor Company and Jon P. Christophersen of the Idaho National Laboratory. The development of this manual was funded by the Unites States Department of Energy, Office of Energy Efficiency and Renewable Energy, Vehicle Technologies Office. Technical direction from DOE was provided by David Howell, Energy Storage R&D Manager and Hybrid Electric Systems Team Leader. Comments and questions regarding the manual should be directed to Jon P. Christophersen at the Idaho National Laboratory (jon.christophersen@inl.gov).« less

  8. Validation of Battery Safety for Space Missions

    NASA Technical Reports Server (NTRS)

    Jeevarajan, Judith

    2012-01-01

    Presentation covers: (1) Safety Certification Process at NASA (2) Safety Testing for Lithium-ion Batteries (3) Limitations Observed with Li-ion Batteries in High Voltage and High Capacity Configurations.

  9. Hubble Space Telescope: Battery Capacity Trend Studies

    NASA Technical Reports Server (NTRS)

    Rao, M. Gopalakrishna; Hollandsworth, Roger; Armantrout, Jon

    2004-01-01

    Battery cell wear out mechanisms and signatures are examined and compared to orbital data from the six on-orbit Hubble Space Telescope (HST) batteries, and the Flight Spare Battery (FSB) Test Bed at Marshall Space Flight Center (MSFC), which is instrumented with individual cell voltage monitoring. Capacity trend data is presented which suggests HST battery replacement is required in 2005-2007 or sooner.

  10. Performance and Safety Characteristics of Sanyo NiCd Cells

    NASA Technical Reports Server (NTRS)

    Deng, Yi; Jeevarajan, Judith; Bragg, Bobby; Zhang, Wenlin

    2002-01-01

    NiCd batteries are widely used for high drain applications like power tools and also in other portable equipment like cameras, PCs, etc. NASA and Dreamtime Holdings, Inc. worked together to have the capability of a High Definition TV (HDTV) on the ISS and Space Shuttle. The Sanyo HD camcorder was used on the STS 105 fight in July, 2001 . The camcorder used two versions of a NiCd battery. One was a cOlnmercial off-the-shelf Sony BP90 battery pack that had Sanyo NiCd D cells. The other was a modified battery (FBP-90) made by Frezzi Energy, which also had the same Sanyo NiCd D cells. The battery has 10 NiCd D cells in series to form a 12 V pack with 5.0 Ah capacity. Our current study involved the perforn1ance and abuse tests on the Sanyo NiCd 5.0 Ah D cells. The best combination of charge/discharge current rate is 0.3C for charge and 1/2e for discharge within 200 cycles. No significant changes in capacity were observed in 200 cycles. The cell also showed capability of 5C (25.0A) high rate discharge. In overcharge and overdischarge tests, all tested cells passed the tests without venting. In imbalance tests, the battery pack could be charged and discharged only at relatively low current. At charge current of 1.0A or less, the imbalanced cells in the battery pack displayed relatively high temperatures during charge or discharge. The cells functioned normally during internal short and no mishap occurred during external short. Cells passed exposure tests at 80 C and no leakage till 150 C during heat-tovent tests.

  11. Factor structure of the Halstead-Reitan Neuropsychological Battery for children: a brief report supplement.

    PubMed

    Ross, Sylvia An; Allen, Daniel N; Goldstein, Gerald

    2014-01-01

    The Halstead-Reitan Neuropsychological Battery (HRNB) is the first factor-analyzed neuropsychological battery and consists of three batteries for young children, older children, and adults. Halstead's original factor analysis extracted four factors from the adult version of the battery, which were the basis for his theory of biological intelligence. These factors were called Central Integrative Field, Abstraction, Power, and Directional. Since this original analysis, Reitan's additions to the battery, and the development of the child versions of the test, this factor-analytic research continued. An introduction and the adult literature are reviewed in Ross, Allen, and Goldstein ( in press ). In this supplemental article, factor-analytic studies of the HRNB with children are reviewed. It is concluded that factor analysis of the HRNB or Reitan-Indiana Neuropsychological Battery with children does not replicate the extensiveness of the adult literature, although there is some evidence that when the traditional battery for older children is used, the factor structure is similar to what is found in adult studies. Reitan's changes to the battery appear to have added factors including language and sensory-perceptual factors. When other tests and scoring methods are used in addition to the core battery, differing solutions are produced.

  12. NASA Handbook for Nickel-Hydrogen Batteries

    NASA Technical Reports Server (NTRS)

    Dunlop, James D.; Gopalakrishna, M. Rao; Yi, Thomas Y.

    1993-01-01

    Nickel-hydrogen (NiH2) batteries are finding more applications in the aerospace energy storage. Since 1983, NiH2 batteries have become the primary energy storage system used for Geosynchronous-Orbit (GEO) Satellites. The first NASA application for NiH2 batteries was the Low Earth Orbit (LEO) Hubble Space Telescope Satellite launched in 1990. The handbook was prepared as a reference book to aid in the application of this technology. That is, to aid in the cell and battery design, procurement, testing, and handling of NiH2 batteries. The design of individual pressure vessel NiH2 cells is covered in Chapter l. LEO and GEO applications and their requirements are discussed in Chapter 2. The design of NiH2 batteries for both GEO and LEO applications is discussed in Chapter 3. Advanced design concepts such as the common pressure vessel and bipolar NiH2 batteries are described in Chapter 4. Performance data are presented in Chapter 5. Storage and handling of the NiH2 cells and batteries are discussed in Chapter 6. Standard test procedures are presented in Chapter 7. Cell and battery procurements are discussed in Chapter 8. Finally, safety procedures are discussed in Chapter 9.

  13. Key results of battery performance and life tests at Argonne National Laboratory

    NASA Astrophysics Data System (ADS)

    Deluca, W. H.; Gillie, K. R.; Kulaga, J. E.; Smaga, J. A.; Tummillo, A. F.; Webster, C. E.

    1991-12-01

    Advanced battery technology evaluations are performed under simulated electric vehicle operating conditions at Argonne National Laboratory's & Diagnostic Laboratory (ADL). The ADL provide a common basis for both performance characterization and life evaluation with unbiased application of tests and analyses. This paper summarizes the performance characterizations and life evaluations conducted in 1991 on twelve single cells and eight 3- to 360-cell modules that encompass six battery technologies (Na/S, Li/MS, Ni/MH, Zn/Br, Ni/Fe, and Pb-Acid). These evaluations were performed for the Department of Energy, Office of Transportation Technologies, Electric and Hybrid Propulsion Division. The results measure progress in battery R & D programs, compare battery technologies, and provide basic data for modeling and continuing R & D to battery users, developers, and program managers.

  14. Space Environment Stability and Physical Properties of New Materials for Space Power and Commercial Applications

    NASA Technical Reports Server (NTRS)

    Hambourger, Paul D.

    1997-01-01

    To test and evaluate suitability of materials for use in space power systems and related space and commercial applications, and to achieve sufficient understanding of the mechanisms by which, the materials perform in their intended applications. Materials and proposed applications included but were not limited to: Improved anodes for lithium ion batteries, highly-transparent arc-proof solar array coatings, and improved surface materials for solar dynamic concentrators and receivers. Cooperation and interchange of data with industrial companies as appropriate.

  15. Ecotoxicity testing and environmental risk assessment of iron nanomaterials for sub-surface remediation - Recommendations from the FP7 project NanoRem.

    PubMed

    Hjorth, Rune; Coutris, Claire; Nguyen, Nhung H A; Sevcu, Alena; Gallego-Urrea, Juliàn Alberto; Baun, Anders; Joner, Erik J

    2017-09-01

    Nanoremediation with iron (Fe) nanomaterials opens new doors for treating contaminated soil and groundwater, but is also accompanied by new potential risks as large quantities of engineered nanomaterials are introduced into the environment. In this study, we have assessed the ecotoxicity of four engineered Fe nanomaterials, specifically, Nano-Goethite, Trap-Ox Fe-zeolites, Carbo-Iron ® and FerMEG12, developed within the European FP7 project NanoRem for sub-surface remediation towards a test battery consisting of eight ecotoxicity tests on bacteria (V. fisheri, E. coli), algae (P. subcapitata, Chlamydomonas sp.), crustaceans (D. magna), worms (E. fetida, L. variegatus) and plants (R. sativus, L. multiflorum). The tested materials are commercially available and include Fe oxide and nanoscale zero valent iron (nZVI), but also hybrid products with Fe loaded into a matrix. All but one material, a ball milled nZVI (FerMEG12), showed no toxicity in the test battery when tested in concentrations up to 100 mg/L, which is the cutoff for hazard labeling in chemicals regulation in Europe. However it should be noted that Fe nanomaterials proved challenging to test adequately due to their turbidity, aggregation and sedimentation behavior in aqueous media. This paper provides a number of recommendations concerning future testing of Fe nanomaterials and discusses environmental risk assessment considerations related to these. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Between-Day Reliability and Usefulness of a Fitness Testing Battery in Youth Sport Athletes: Reference Data for Practitioners

    ERIC Educational Resources Information Center

    Sawczuk, Thomas; Jones, Ben; Scantlebury, Sean; Weakley, Jonathan; Read, Dale; Costello, Nessan; Darrall-Jones, Joshua David; Stokes, Keith; Till, Kevin

    2018-01-01

    This study aimed to evaluate the between-day reliability and usefulness of a fitness testing battery in a group of youth sport athletes. Fifty-nine youth sport athletes (age = 17.3 ± 0.7 years) undertook a fitness testing battery including the isometric mid-thigh pull, counter-movement jump, 5-40 m sprint splits, and the 5-0-5 change of direction…

  17. Overview of results from the WaterTox intercalibration and environmental testing phase II program: part 2, ecotoxicological evaluation of drinking water supplies.

    PubMed

    Diaz-Baez, M C; Sánchez, W A; Dutka, B J; Ronco, A; Castillo, G; Pica-Granados, Y; Castillo, L E; Ridal, J; Arkhipchuk, V; Srivastava, R C

    2002-01-01

    Because of rapid population growth, industrial development, and intensified agricultural production increasing amounts of chemicals are being released into the environment, polluting receiving water bodies around the world. Given the potential health risk associated with the presence of toxicants in water sources used for drinking yet the scarcity of available data, there is a need to evaluate these waters and develop strategies to reduce and prevent their contamination. The present study examined the applicability of a battery of simple, inexpensive bioassays in environmental management and the relevance of the test results in establishing the toxicological quality of water sources and drinking water within the framework of the eight-country WaterTox Network, sponsored by the International Development Research Centre, Ottawa, Canada. Seventy-six samples were collected from surface and groundwater sources and seven samples from drinking water treatment plants. Each sample was tested with a core battery of bioassays (Daphnia magna, Hydra attenuata, and Lactuca sativa root inhibition tests) and a limited set of physical and chemical parameters. In addition, three labs included the Selenastrum capricornutum test. When no toxic effects were found with the battery, samples were concentrated 10x using a solid-phase extraction (SPE) procedure. Nonconcentrated natural water samples produced a toxic response in 24% of cases with all three core bioassays. When all bioassays are considered, the percentage of raw samples showing toxicity with at least one bioassay increased to 60%. Of seven treated drinkingwater samples, four showed toxicity with at least one bioassay, raising the possibility that treatment processes in these instances were unable to remove toxic contaminants. The Daphnia magna and Hydra attenuata tests indicated a high level of sensitivity overall. Although only three of the eight countries used S. capricornutum, it proved to be an efficient and reliable bioassay for toxicity assessment. Copyright 2002 Wiley Periodicals, Inc.

  18. 30 CFR 7.42 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... MINING PRODUCTS TESTING BY APPLICANT OR THIRD PARTY Battery Assemblies § 7.42 Definitions. The following definitions apply in this subpart: Battery assembly. A unit or units consisting of cells and their electrical connections, assembled in a battery box or boxes with covers. Battery box. The exterior sides, bottom, and...

  19. 30 CFR 7.42 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... MINING PRODUCTS TESTING BY APPLICANT OR THIRD PARTY Battery Assemblies § 7.42 Definitions. The following definitions apply in this subpart: Battery assembly. A unit or units consisting of cells and their electrical connections, assembled in a battery box or boxes with covers. Battery box. The exterior sides, bottom, and...

  20. 30 CFR 7.42 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... MINING PRODUCTS TESTING BY APPLICANT OR THIRD PARTY Battery Assemblies § 7.42 Definitions. The following definitions apply in this subpart: Battery assembly. A unit or units consisting of cells and their electrical connections, assembled in a battery box or boxes with covers. Battery box. The exterior sides, bottom, and...

  1. Battery life test using reconditioning

    NASA Technical Reports Server (NTRS)

    Sparks, R. H.

    1977-01-01

    A discussion is presented on nickel cadmium battery life tests using reconditioning and some comparative tests not using reconditioning. The discussion is aimed at the program application part of the testing. The goals of the program were to get an increased utilization out of the battery system in geosynchronous orbit. An attempt was made to push the depth of discharge operation up around 80 to 85 percent and the intent with the reconditioning program was to extend this type of utilization out towards a 10-year life and attune the voltage regulation.

  2. Strain measurement based battery testing

    DOEpatents

    Xu, Jeff Qiang; Steiber, Joe; Wall, Craig M.; Smith, Robert; Ng, Cheuk

    2017-05-23

    A method and system for strain-based estimation of the state of health of a battery, from an initial state to an aged state, is provided. A strain gauge is applied to the battery. A first strain measurement is performed on the battery, using the strain gauge, at a selected charge capacity of the battery and at the initial state of the battery. A second strain measurement is performed on the battery, using the strain gauge, at the selected charge capacity of the battery and at the aged state of the battery. The capacity degradation of the battery is estimated as the difference between the first and second strain measurements divided by the first strain measurement.

  3. Passive control of temperature excursion and uniformity in high-energy Li-ion battery packs at high current and ambient temperature

    NASA Astrophysics Data System (ADS)

    Kizilel, R.; Lateef, A.; Sabbah, R.; Farid, M. M.; Selman, J. R.; Al-Hallaj, S.

    A strategy for portable high-power applications with a controlled thermal environment has been developed and has demonstrated the advantage of using the novel phase change material (PCM) thermal management systems over conventional active cooling systems. A passive thermal management system using PCM for Li-ion batteries is tested for extreme conditions, such as ambient temperature of 45 °C and discharge rate of 2.08 C-rate (10 A). Contrary to Li-ion packs without thermal management system, high-energy packs with PCM are discharged safely at high currents and degrading rate of capacity of the Li-ion packs lowered by half. Moreover, the compactness of the packs not only decreases the volume occupied by the packs and its associated complex cooling system, but also decreases the total weight for large power application.

  4. The New Jersey Institute of Technology Robot-Assisted Virtual Rehabilitation (NJIT-RAVR) system for children with cerebral palsy: a feasibility study.

    PubMed

    Qiu, Qinyin; Ramirez, Diego A; Saleh, Soha; Fluet, Gerard G; Parikh, Heta D; Kelly, Donna; Adamovich, Sergei V

    2009-11-16

    We hypothesize that the integration of virtual reality (VR) with robot assisted rehabilitation could be successful if applied to children with hemiparetic CP. The combined benefits of increased attention provided by VR and the larger training stimulus afforded by adaptive robotics may increase the beneficial effects of these two approaches synergistically. This paper will describe the NJIT-RAVR system, which combines adaptive robotics with complex VR simulations for the rehabilitation of upper extremity impairments and function in children with CP and examine the feasibility of this system in the context of a two subject training study. The NJIT-RAVR system consists of the Haptic Master, a 6 degrees of freedom, admittance controlled robot and a suite of rehabilitation simulations that provide adaptive algorithms for the Haptic Master, allowing the user to interact with rich virtual environments. Two children, a ten year old boy and a seven year old girl, both with spastic hemiplegia secondary to Cerebral Palsy were recruited from the outpatient center of a comprehensive pediatric rehabilitation facility. Subjects performed a battery of clinical testing and kinematic measurements of reaching collected by the NJIT-RAVR system. Subjects trained with the NJIT-RAVR System for one hour, 3 days a week for three weeks. The subjects played a combination of four or five simulations depending on their therapeutic goals, tolerances and preferences. Games were modified to increase difficulty in order to challenge the subjects as their performance improved. The testing battery was repeated following the training period. Both participants completed 9 hours of training in 3 weeks. No untoward events occurred and no adverse responses to treatment or complaints of cyber sickness were reported. One participant showed improvements in overall performance on the functional aspects of the testing battery. The second subject made improvements in upper extremity active range of motion and in kinematic measures of reaching movements. We feel that this study establishes the feasibility of integrating robotics and rich virtual environments to address functional limitations and decreased motor performance in children with mild to moderate cerebral palsy.

  5. A pilot evaluation of a computer-based psychometric test battery designed to detect impairment in patients with cirrhosis.

    PubMed

    Cook, Nicola A; Kim, Jin Un; Pasha, Yasmin; Crossey, Mary Me; Schembri, Adrian J; Harel, Brian T; Kimhofer, Torben; Taylor-Robinson, Simon D

    2017-01-01

    Psychometric testing is used to identify patients with cirrhosis who have developed hepatic encephalopathy (HE). Most batteries consist of a series of paper-and-pencil tests, which are cumbersome for most clinicians. A modern, easy-to-use, computer-based battery would be a helpful clinical tool, given that in its minimal form, HE has an impact on both patients' quality of life and the ability to drive and operate machinery (with societal consequences). We compared the Cogstate™ computer battery testing with the Psychometric Hepatic Encephalopathy Score (PHES) tests, with a view to simplify the diagnosis. This was a prospective study of 27 patients with histologically proven cirrhosis. An analysis of psychometric testing was performed using accuracy of task performance and speed of completion as primary variables to create a correlation matrix. A stepwise linear regression analysis was performed with backward elimination, using analysis of variance. Strong correlations were found between the international shopping list, international shopping list delayed recall of Cogstate and the PHES digit symbol test. The Shopping List Tasks were the only tasks that consistently had P values of <0.05 in the linear regression analysis. Subtests of the Cogstate battery correlated very strongly with the digit symbol component of PHES in discriminating severity of HE. These findings would indicate that components of the current PHES battery with the international shopping list tasks of Cogstate would be discriminant and have the potential to be used easily in clinical practice.

  6. The Testing Phase for the Small Unit Decision Making (SUDM) Assessment Battery

    DTIC Science & Technology

    2014-07-28

    on findings from the testing phase, several changes are recommended for the battery. First, it is recommended that self -report measures be separated...of a decision-making assessment battery. The five cognitive competencies are sensemaking, problem solving, adaptability, metacognition , and...flexibility, ambiguity tolerance, resilience, self -regulation, and self - awareness. We added the overarching construct of decision making and developed

  7. High discharge rate characteristics of nickel-cadmium batteries for pulse load filtering

    NASA Technical Reports Server (NTRS)

    Gearing, G. M.; Cimino, M. B.; Fritts, D. H.; Leonard, J. F.; Terzuoli, A. J., Jr.

    1985-01-01

    Several tests of specially fabricated nickel-cadmium batteries having circular disk type electrodes were considered. These batteries were evaluated as filter elements between a constant current power supply and a five hertz pulsed load demanding approximately twice the power supply current during the load on portion of the cycle. Short tests lasting 10,000 cycles were conducted at up to a 21 C rate and an equivalent energy density of over 40 Joules per pound. In addition, two batteries were subjected to 10 to the 7 charge/discharge cycles, one at a 6.5 C rate and the other at a 13 C rate. Assuming an electrode to battery weight ratio of 0.5, these tests represent an energy density of about 7 and 14 Joules per pound respectively. Energy density, efficiency, capacitance, average voltage, and available capacity were tracked during these tests. After 10 to the 7 cycles, capacity degradation was negligible for one battery and about 20% for the other. Cadmium electrode failure may be the factor limiting lifetime at extremely low depth of discharge cycling. The output was examined and a simple equivalent circuit was proposed.

  8. Lead oxide as used in lead acid storage batteries, part two

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Orsino, J.A.

    1986-06-01

    Without oxide controls, the battery manufacturing business can become one of the most confusing and frustrating experiences known. Inexplicable things happen during mixing, pasting and assembly, and testing, in the laboratory or in the field becomes an unhappy event. Almost any oxide of sufficient purity can be processed to make a good battery, but the characteristics must be known to be able to process it right, and once the process has been established, the oxide must be uniformly made to make the resulting batteries uniformly good. Fortunately, the tests required to assure uniformity are few, and simple to perform. Assumingmore » pure pig lead from primary sources or from carefully refined secondary sources, three tests can tell the whole story. These tests are described.« less

  9. 10 CFR 429.39 - Battery chargers.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 3 2012-01-01 2012-01-01 false Battery chargers. 429.39 Section 429.39 Energy DEPARTMENT... COMMERCIAL AND INDUSTRIAL EQUIPMENT Certification § 429.39 Battery chargers. (a) Sampling plan for selection of units for testing. (1) The requirements of § 429.11 are applicable to battery chargers; and (2...

  10. 10 CFR 429.39 - Battery chargers.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 3 2014-01-01 2014-01-01 false Battery chargers. 429.39 Section 429.39 Energy DEPARTMENT... COMMERCIAL AND INDUSTRIAL EQUIPMENT Certification § 429.39 Battery chargers. (a) Sampling plan for selection of units for testing. (1) The requirements of § 429.11 are applicable to battery chargers; and (2...

  11. 10 CFR 429.39 - Battery chargers.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 3 2013-01-01 2013-01-01 false Battery chargers. 429.39 Section 429.39 Energy DEPARTMENT... COMMERCIAL AND INDUSTRIAL EQUIPMENT Certification § 429.39 Battery chargers. (a) Sampling plan for selection of units for testing. (1) The requirements of § 429.11 are applicable to battery chargers; and (2...

  12. Hubble Space Telescope electrical power system

    NASA Technical Reports Server (NTRS)

    Whitt, Thomas H.; Bush, John R., Jr.

    1990-01-01

    The Hubble Space Telescope (HST) electrical power system (EPS) is supplying between 2000 and 2400 W of continuous power to the electrical loads. The major components of the EPS are the 5000-W back surface field reflector solar array, the six nickel-hydrogen (NiH2) 22-cell 88-Ah batteries, and the charge current controllers, which, in conjunction with the flight computer, control battery charging. The operation of the HST EPS and the results of the HST NiH2 six-battery test are discussed, and preliminary flight data are reviewed. The HST NiH2 six-battery test is a breadboard of the HST EPS on test at Marshall Space Flight Center.

  13. Performance of alkaline battery cells used in emergency locator transmitters

    NASA Technical Reports Server (NTRS)

    Haynes, G. A.; Sokol, S.; Motley, W. R., III; Mcclelland, E. L.

    1984-01-01

    The characteristics of battery power supplies for emergency locator transmitters (ELT's) were investigated by testing alkaline zinc/manganese dioxide cells of the type typically used in ELT's. Cells from four manufacturers were tested. The cells were subjected to simulated environmental and load conditions representative of those required for survival and operation. Battery cell characteristics that may contribute to ELT malfunctions and limitations were evaluated. Experimental results from the battery cell study are discussed, and an evaluation of ELT performance while operating under a representative worst-case environmental condition is presented.

  14. [European Portuguese EARS test battery adaptation].

    PubMed

    Alves, Marisa; Ramos, Daniela; Oliveira, Graça; Alves, Helena; Anderson, Ilona; Magalhães, Isabel; Martins, Jorge H; Simões, Margarida; Ferreira, Raquel; Fonseca, Rita; Andrade, Susana; Silva, Luís; Ribeiro, Carlos; Ferreira, Pedro Lopes

    2014-01-01

    The use of adequate assessment tools in health care is crucial for the management of care. The lack of specific tools in Portugal for assessing the performance of children who use cochlear implants motivated the translation and adaptation of the EARS (Evaluation of Auditory Responses to Speech) test battery into European Portuguese. This test battery is today one of the most commonly used by (re)habilitation teams of deaf children who use cochlear implants worldwide. The goal to be achieved with the validation of EARS was to provide (re)habilitation teams an instrument that enables: (i) monitoring the progress of individual (re)habilitation, (ii) managing a (re)habilitation program according to objective results, comparable between different (re)habilitation teams, (iii) obtaining data that can be compared with the results of international teams, and (iv) improving engagement and motivation of the family and other professionals from local teams. For the test battery translation and adaptation process, the adopted procedures were the following: (i) translation of the English version into European Portuguese by a professional translator, (ii) revision of the translation performed by an expert panel, including doctors, speech-language pathologists and audiologists, (iii) adaptation of the test stimuli by the team's speechlanguage pathologist, and (iv) further review by the expert panel. For each of the tests that belong to the EARS battery, the introduced adaptations and adjustments are presented, combining the characteristics and objectives of the original tests with the linguistic and cultural specificities of the Portuguese population. The difficulties that have been encountered during the translation and adaptation process and the adopted solutions are discussed. Comparisons are made with other versions of the EARS battery. We defend that the translation and the adaptation process followed for the EARS test battery into European Portuguese was correctly conducted, respecting the characteristics of the original instruments and adapting the test stimuli to the linguistic and cultural reality of the Portuguese population, thus meeting the goals that have been set.

  15. Long life communication satellites: Electric power supply during the eclipse period

    NASA Technical Reports Server (NTRS)

    Font, S.

    1983-01-01

    The electric batteries, essentially nickel-cadmium for French satellites such as D1 A, D1 C, D1 D, D2 B, D5 A, D5 B, etc. and the batteries for such satellites as Symphonie, ANS, INTASAT, ESRO 4, and COS-B are discussed. The experience obtained led to the development of long lifetime batteries for communication satellites. Real simulation tests showed a lifetime of four years and accelerated lifetime tests of twelve years. These batteries will be applied in OTS, METEOSAT, and Marots. At the same time, new batteries are being developed, based on nickel-hydrogen or on silver-hydrogen, which should provide longer lifetime and better reliability.

  16. Battery charge control with temperature compensated voltage limit

    NASA Technical Reports Server (NTRS)

    Thierfelder, H. E.

    1983-01-01

    Battery charge control for orbiting spacecraft with mission durations from three to ten years, is a critical design feature that is discussed. Starting in 1974, the General Electric Space Systems Division designed, manufactured and tested battery systems for six different space programs. Three of these are geosynchronous missions, two are medium altitude missions and one is a near-earth mission. All six power subsystems contain nickel cadmium batteries which are charged using a temperature compensated voltage limit. This charging method was found to be successful in extending the life of nickel cadmium batteries in all three types of earth orbits. Test data and flight data are presented for each type of orbit.

  17. Results of chopper-controlled discharge life cycling studies on lead acid batteries

    NASA Technical Reports Server (NTRS)

    Ewashinka, J. G.; Sidik, S. M.

    1982-01-01

    A group of 108 state of the art nominally 6 volt lead acid batteries were tested in a program of one charge/discharge cycle per day for over two years or to ultimate battery failure. The primary objective was to determine battery cycle life as a function of depth of discharge (25 to 75 percent), chopper frequency (100 to 1000 Hz), duty cycle (25 to 87.5 percent), and average discharge current (20 to 260 A). The secondary objective was to determine the types of battery failure modes, if any, were due to the above parameters. The four parameters above were incorporated in a statistically designed test program.

  18. The USAF Phillips Laboratory sodium-sulfur battery technology program: Results and status

    NASA Technical Reports Server (NTRS)

    Rainbow, Marc E.; Somerville, Andrew

    1996-01-01

    Tests performed on NaS batteries are reported. The results of safety and abuse testing, shock and vibration tests, cell failure on warm-up, freeze thaw, overtemperature conditions, electrolyte fracture, overdischarge, and short circuit tests are presented along with GEO and LEO cycle tests and the status of the NaS cell flight tests.

  19. A Battery Test to Evaluate Life-Time Physical Fitness With Same Test Items.

    ERIC Educational Resources Information Center

    Meshizuka, Tetsuo

    A combination of physical fitness tests designed to be administered to a wide spectrum of the population, male and female, children and adults, is described. Three tests are included in this battery--motor fitness, physical fitness, and sports fitness. The philosophy behind this test structure is that motor fitness tests only measure and indicate…

  20. The effect of human immunodeficiency virus type 1 antibody status on military applicant aptitude test scores.

    PubMed

    Arday, D R; Brundage, J F; Gardner, L I; Goldenbaum, M; Wann, F; Wright, S

    1991-06-15

    The authors conducted a population-based study to attempt to estimate the effect of human immunodeficiency virus type 1 (HIV-1) seropositivity on Armed Services Vocational Aptitude Battery test scores in otherwise healthy individuals with early HIV-1 infection. The Armed Services Vocational Aptitude Battery is a 10-test written multiple aptitude battery administered to all civilian applicants for military enlistment prior to serologic screening for HIV-1 antibodies. A total of 975,489 induction testing records containing both Armed Services Vocational Aptitude Battery and HIV-1 results from October 1985 through March 1987 were examined. An analysis data set (n = 7,698) was constructed by choosing five controls for each of the 1,283 HIV-1-positive cases, matched on five-digit ZIP code, and a multiple linear regression analysis was performed to control for demographic and other factors that might influence test scores. Years of education was the strongest predictor of test scores, raising an applicant's score on a composite test nearly 0.16 standard deviation per year. The HIV-1-positive effect on the composite score was -0.09 standard deviation (99% confidence interval -0.17 to -0.02). Separate regressions on each component test within the battery showed HIV-1 effects between -0.39 and +0.06 standard deviation. The two Armed Services Vocational Aptitude Battery component tests felt a priori to be the most sensitive to HIV-1-positive status showed the least decrease with seropositivity. Much of the variability in test scores was not predicted by either HIV-1 serostatus or the demographic and other factors included in the model. There appeared to be little evidence of a strong HIV-1 effect.

  1. 30 CFR 7.45 - Critical characteristics

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... APPROVAL OF MINING PRODUCTS TESTING BY APPLICANT OR THIRD PARTY Battery Assemblies § 7.45 Critical characteristics The following critical characteristics shall be inspected or tested on each battery assembly to...

  2. 30 CFR 7.45 - Critical characteristics

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... APPROVAL OF MINING PRODUCTS TESTING BY APPLICANT OR THIRD PARTY Battery Assemblies § 7.45 Critical characteristics The following critical characteristics shall be inspected or tested on each battery assembly to...

  3. 30 CFR 18.68 - Tests for intrinsic safety.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... normal use. (iii) Semiconductors shall be amply sized. Rectifiers and transistors shall be operated at... battery, or installed as close to the battery terminal as practicable. (3) Transistors of battery-operated...

  4. Baseline tests of the EPC Hummingbird electric passenger vehicle

    NASA Technical Reports Server (NTRS)

    Slavik, R. J.; Maslowski, E. A.; Sargent, N. B.; Birchenough, A. G.

    1977-01-01

    The rear-mounted internal combustion engine in a four-passenger Volkswagen Thing was replaced with an electric motor made by modifying an aircraft generator and powered by 12 heavy-duty, lead-acid battery modules. Vehicle performance tests were conducted to measure vehicle maximum speed, range at constant speed, range over stop-and-go driving schedules, maximum acceleration, gradeability limit, road energy consumption, road power, indicated energy consumption, braking capability, battery charger efficiency, and battery characteristics. Test results are presented in tables and charts.

  5. Development and Field Test of the Trial Battery for Project A. Improving the Selection, Classification and Utilization of Army Enlisted Personnel. Project A: Improving the Selection, Classification and Utilization of Army Enlisted Personnel. ARI Technical Report 739.

    ERIC Educational Resources Information Center

    Peterson, Norman G., Ed.

    As part of the United States Army's Project A, research has been conducted to develop and field test a battery of experimental tests to complement the Armed Services Vocational Aptitude Battery in predicting soldiers' job performance. Project A is the United States Army's large-scale manpower effort to improve selection, classification, and…

  6. Preliminary flight test results from the advanced photovoltaic experiment

    NASA Technical Reports Server (NTRS)

    Brinker, David J.; Hickey, John R.

    1990-01-01

    The Advanced Photovoltaic Experiment is a space flight test designed to provide reference cell standards for photovoltaic measurement as well as to investigate the solar spectrum and the effect of the space environment on solar cells. After a flight of 69 months in low earth orbit as part of the Long Duration Exposure Facility set of experiments, it was retrieved in January, 1990. The electronic data acquisition system functioned as designed, measuring and recording cell performance data over the first 358 days of flight, limited by battery lifetime. Significant physical changes are also readily apparent, including erosion of front surface paint, micrometeoroid and debris catering and contamination.

  7. Preliminary results from the advanced photovoltaic experiment flight test

    NASA Technical Reports Server (NTRS)

    Brinker, David J.; Hart, Russell E., Jr.; Hickey, John R.

    1990-01-01

    The Advanced Photovoltaic Experiment is a space flight test designed to provide reference cell standards for photovoltaic measurement as well as to investigate the solar spectrum and the effect of the space environment on solar cells. After a flight of 69 months in low earth orbit as part of the Long Duration Exposure Facility set of experiments, it was retrieved in January, 1990. The electronic data acquisition system functioned as designed, measuring and recording cell performance data over the first 358 days of flight; limited by battery lifetime. Significant physical changes are also readily apparent, including erosion of front surface paint, micrometeoroid and debris catering and contamination.

  8. Characteristics of the Test Components of the IELTS Battery: Australian Trial Data.

    ERIC Educational Resources Information Center

    Griffin, Patrick

    Results of the International English Language Testing System (IELTS) battery trials in Australia are reported. The IELTS tests of productive language skills use direct assessment strategies and subjective scoring according to detailed guidelines. The receptive skills tests use indirect assessment strategies and clerical scoring procedures.…

  9. Development and testing of a high cycle life 30 A-h sealed AgO-Zn battery

    NASA Technical Reports Server (NTRS)

    Bogner, R. S.

    1972-01-01

    A two-phase program was initiated to investigate design parameters and technology to develop an improved AgO-Zn battery. The basic performance goal was 100 charge/discharge cycles (22 h/2 h) at 50 percent depth of discharge following a six-month period of charged stand at room temperature. Phase 1, cell evaluation, involved testing 70 cells in five-cell groups. The major design variables were active material ratios, electrolyte concentrations, separator systems, and negative plate shape. Phase 1 testing showed that cycle life could be improved 10 percent to 20 percent by using greater ratios of zinc to silver oxide and higher electrolyte concentrations. Wedge-shaped negatives increased cycle life by nearly 100 percent. Phase 2 battery evaluation, which was initiated before the Phase 1 results were known completely, involved evaluation of six designs as 19-cell batteries. Only one battery exceeded 100 cycles following nine months charged stand.

  10. Sodium sulfur electric vehicle battery engineering program final report, September 2, 1986--June 15, 1993

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1993-06-01

    In September 1986 a contract was signed between Chloride Silent Power Limited (CSPL) and Sandia National Laboratories (SNL) entitled ``Sodium Sulfur Electric Vehicle Battery Engineering Program``. The aim of the cost shared program was to advance the state of the art of sodium sulfur batteries for electric vehicle propulsion. Initially, the work statement was non-specific in regard to the vehicle to be used as the design and test platform. Under a separate contract with the DOE, Ford Motor Company was designing an advanced electric vehicle drive system. This program, called the ETX II, used a modified Aerostar van for itsmore » platform. In 1987, the ETX II vehicle was adopted for the purposes of this contract. This report details the development and testing of a series of battery designs and concepts which led to the testing, in the US, of three substantial battery deliverables.« less

  11. Engineering and Abuse Testing of Panasonic Lithium-Ion Battery and Cells

    NASA Technical Reports Server (NTRS)

    Jeevarajan, Judith A.; Bragg, Bobby J.

    2000-01-01

    This viewgraph presentation reviews the performance testing of Lithium Ion batteries and cells under different conditions of charge and discharge. The tests show that the 0.5 C rate of charge and discharge might be the ideal condition for long term cycling. It reviews the issues of overcharge and overdischarge of the cells. The cells and the battery have adequate protection under both conditions to prevent any catastrophic occurrences. Temperatures above 150 C are required to vent the cells or cause a thermal runaway, Since this situation is non-credible in the cabin of the Space Shuffle or ISS this should not pose a problem. The presentation includes graphs and charts showing the charge and discharge capacities of the battery and also the current and voltage profiles. A view of a circuit board which contains the controlling mechanism for the battery is also shown.

  12. Lifetime estimates for sterilizable silver-zinc battery separators

    NASA Technical Reports Server (NTRS)

    Cuddihy, E. F.; Walmsley, D. E.; Moacanin, J.

    1972-01-01

    The lifetime of separator membranes currently employed in the electrolyte environment of silver-zinc batteries was estimated at 3 to 5 years. The separator membranes are crosslinked polyethylene film containing grafted poly (potassium acrylate)(PKA), the latter being the hydrophilic agent which promotes electrolyte ion transport. The lifetime was estimated by monitoring the rate of loss of PKA from the separators, caused by chemical attack of the electrolyte, and relating this loss rate to a known relationship between battery performance and PKA concentration in the separators.

  13. High-energy x-ray scattering studies of battery materials

    DOE PAGES

    Glazer, Matthew P. B.; Okasinski, John S.; Almer, Jonathan D.; ...

    2016-06-08

    High-energy x-ray (HEX) scattering is a sensitive and powerful tool to nondestructively probe the atomic and mesoscale structures of battery materials under synthesis and operational conditions. The penetration power of HEXs enables the use of large, practical samples and realistic environments, allowing researchers to explore the inner workings of batteries in both laboratory and commercial formats. This article highlights the capability and versatility of HEX techniques, particularly from synchrotron sources, to elucidate materials synthesis processes and thermal instability mechanisms in situ, to understand (dis)charging mechanisms in operando under a variety of cycling conditions, and to spatially resolve electrode/electrolyte responses tomore » highlight connections between inhomogeneity and performance. Such studies have increased our understanding of the fundamental mechanisms underlying battery performance. Here, by deepening our understanding of the linkages between microstructure and overall performance, HEXs represent a powerful tool for validating existing batteries and shortening battery-development timelines.« less

  14. High-energy x-ray scattering studies of battery materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Glazer, Matthew P. B.; Okasinski, John S.; Almer, Jonathan D.

    High-energy x-ray (HEX) scattering is a sensitive and powerful tool to nondestructively probe the atomic and mesoscale structures of battery materials under synthesis and operational conditions. The penetration power of HEXs enables the use of large, practical samples and realistic environments, allowing researchers to explore the inner workings of batteries in both laboratory and commercial formats. This article highlights the capability and versatility of HEX techniques, particularly from synchrotron sources, to elucidate materials synthesis processes and thermal instability mechanisms in situ, to understand (dis)charging mechanisms in operando under a variety of cycling conditions, and to spatially resolve electrode/electrolyte responses tomore » highlight connections between inhomogeneity and performance. Such studies have increased our understanding of the fundamental mechanisms underlying battery performance. Here, by deepening our understanding of the linkages between microstructure and overall performance, HEXs represent a powerful tool for validating existing batteries and shortening battery-development timelines.« less

  15. Effects of neutron and gamma radiation on lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Qiu, Jie; He, Dandan; Sun, Mingzhai; Li, Shimeng; Wen, Cun; Hattrick-Simpers, Jason; Zheng, Yuan F.; Cao, Lei

    2015-02-01

    Radiation induced deterioration in the performance of lithium-ion (Li-ion) batteries can result in functional failures of electronic devices in modern electronic systems. The stability of the Li-ion battery under a radiation environment is of crucial importance. In this work, the surface morphology of the cathode material of a commercial Li-ion battery before and after neutron and gamma ray irradiation was characterized by atomic force microscopy (AFM). We found growth in the particle size of the cathode material in the range of 36-45% as a result of the irradiation. In addition, X-ray diffraction (XRD) patterns revealed a disordering of the crystal structure occurring in the post-irradiation sample. All of these led to a 8.4% capacity loss of the battery for the maximum received irradiation dose (2.744 Mrad) at post-irradiation. The effects of the radiation on the Li-ion battery are discussed in this paper.

  16. The re-emergence of sodium ion batteries: testing, processing, and manufacturability

    PubMed Central

    Roberts, Samuel; Kendrick, Emma

    2018-01-01

    With the re-emergence of sodium ion batteries (NIBs), we discuss the reasons for the recent interests in this technology and discuss the synergies between lithium ion battery (LIB) and NIB technologies and the potential for NIB as a “drop-in” technology for LIB manufacturing. The electrochemical testing of sodium materials in sodium metal anode arrangements is reviewed. The performance, stability, and polarization of the sodium in these test cells lead to alternative testing in three-electrode and alternative anode cell configurations. NIB manufacturability is also discussed, together with the impact that the material stability has upon the electrodes and coating. Finally, full-cell NIB technologies are reviewed, and literature proof-of-concept cells give an idea of some of the key differences in the testing protocols of these batteries. For more commercially relevant formats, safety, passive voltage control through cell balancing and cell formation aspects are discussed. PMID:29910609

  17. Auditory Processing Testing: In the Booth versus Outside the Booth.

    PubMed

    Lucker, Jay R

    2017-09-01

    Many audiologists believe that auditory processing testing must be carried out in a soundproof booth. This expectation is especially a problem in places such as elementary schools. Research comparing pure-tone thresholds obtained in sound booths compared to quiet test environments outside of these booths does not support that belief. Auditory processing testing is generally carried out at above threshold levels, and therefore may be even less likely to require a soundproof booth. The present study was carried out to compare test results in soundproof booths versus quiet rooms. The purpose of this study was to determine whether auditory processing tests can be administered in a quiet test room rather than in the soundproof test suite. The outcomes would identify that audiologists can provide auditory processing testing for children under various test conditions including quiet rooms at their school. A battery of auditory processing tests was administered at a test level equivalent to 50 dB HL through headphones. The same equipment was used for testing in both locations. Twenty participants identified with normal hearing were included in this study, ten having no auditory processing concerns and ten exhibiting auditory processing problems. All participants underwent a battery of tests, both inside the test booth and outside the booth in a quiet room. Order of testing (inside versus outside) was counterbalanced. Participants were first determined to have normal hearing thresholds for tones and speech. Auditory processing tests were recorded and presented from an HP EliteBook laptop computer with noise-canceling headphones attached to a y-cord that not only presented the test stimuli to the participants but also allowed monitor headphones to be worn by the evaluator. The same equipment was used inside as well as outside the booth. No differences were found for each auditory processing measure as a function of the test setting or the order in which testing was done, that is, in the booth or in the room. Results from the present study indicate that one can obtain the same results on auditory processing tests, regardless of whether testing is completed in a soundproof booth or in a quiet test environment. Therefore, audiologists should not be required to test for auditory processing in a soundproof booth. This study shows that audiologists can conduct testing in a quiet room so long as the background noise is sufficiently controlled. American Academy of Audiology

  18. Microbatteries for Combinatorial Studies of Conventional Lithium-Ion Batteries

    NASA Technical Reports Server (NTRS)

    West, William; Whitacre, Jay; Bugga, Ratnakumar

    2003-01-01

    Integrated arrays of microscopic solid-state batteries have been demonstrated in a continuing effort to develop microscopic sources of power and of voltage reference circuits to be incorporated into low-power integrated circuits. Perhaps even more importantly, arrays of microscopic batteries can be fabricated and tested in combinatorial experiments directed toward optimization and discovery of battery materials. The value of the combinatorial approach to optimization and discovery has been proven in the optoelectronic, pharmaceutical, and bioengineering industries. Depending on the specific application, the combinatorial approach can involve the investigation of hundreds or even thousands of different combinations; hence, it is time-consuming and expensive to attempt to implement the combinatorial approach by building and testing full-size, discrete cells and batteries. The conception of microbattery arrays makes it practical to bring the advantages of the combinatorial approach to the development of batteries.

  19. Critical review of on-board capacity estimation techniques for lithium-ion batteries in electric and hybrid electric vehicles

    NASA Astrophysics Data System (ADS)

    Farmann, Alexander; Waag, Wladislaw; Marongiu, Andrea; Sauer, Dirk Uwe

    2015-05-01

    This work provides an overview of available methods and algorithms for on-board capacity estimation of lithium-ion batteries. An accurate state estimation for battery management systems in electric vehicles and hybrid electric vehicles is becoming more essential due to the increasing attention paid to safety and lifetime issues. Different approaches for the estimation of State-of-Charge, State-of-Health and State-of-Function are discussed and analyzed by many authors and researchers in the past. On-board estimation of capacity in large lithium-ion battery packs is definitely one of the most crucial challenges of battery monitoring in the aforementioned vehicles. This is mostly due to high dynamic operation and conditions far from those used in laboratory environments as well as the large variation in aging behavior of each cell in the battery pack. Accurate capacity estimation allows an accurate driving range prediction and accurate calculation of a battery's maximum energy storage capability in a vehicle. At the same time it acts as an indicator for battery State-of-Health and Remaining Useful Lifetime estimation.

  20. Porous Carbon Paper as Interlayer to Stabilize the Lithium Anode for Lithium-Sulfur Battery.

    PubMed

    Kong, Ling-Long; Zhang, Ze; Zhang, Ye-Zheng; Liu, Sheng; Li, Guo-Ran; Gao, Xue-Ping

    2016-11-23

    The lithium-sulfur (Li-S) battery is expected to be the high-energy battery system for the next generation. Nevertheless, the degradation of lithium anode in Li-S battery is the crucial obstacle for practical application. In this work, a porous carbon paper obtained from corn stalks via simple treating procedures is used as interlayer to stabilize the surface morphology of Li anode in the environment of Li-S battery. A smooth surface morphology of Li is obtained during cycling by introducing the porous carbon paper into Li-S battery. Meanwhile, the electrochemical performance of sulfur cathode is partially enhanced by alleviating the loss of soluble intermediates (polysulfides) into the electrolyte, as well as the side reaction of polysulfides with metallic lithium. The Li-S battery assembled with the interlayer exhibits a large capacity and excellent capacity retention. Therefore, the porous carbon paper as interlayer plays a bifunctional role in stabilizing the Li anode and enhancing the electrochemical performance of the sulfur cathode for constructing a stable Li-S battery.

  1. EMU Battery/module Service Tool Characterization Study

    NASA Technical Reports Server (NTRS)

    Palandati, C. F.

    1984-01-01

    The power tool which will be used to replace the attitude control system in the SMM spacecraft is being modified to operate from a self contained battery. The extravehicular mobility unit (EMU) battery, a silver zinc battery, was tested for the power tool application. The results obtained during show the EMU battery is capable of operating the power tool within the pulse current range of 2.0 to 15.0 amperes and battery temperature range of -10 to 40 degrees Celsius.

  2. Energy Storage: Batteries and Fuel Cells for Exploration

    NASA Technical Reports Server (NTRS)

    Manzo, Michelle A.; Miller, Thomas B.; Hoberecht, Mark A.; Baumann, Eric D.

    2007-01-01

    NASA's Vision for Exploration requires safe, human-rated, energy storage technologies with high energy density, high specific energy and the ability to perform in a variety of unique environments. The Exploration Technology Development Program is currently supporting the development of battery and fuel cell systems that address these critical technology areas. Specific technology efforts that advance these systems and optimize their operation in various space environments are addressed in this overview of the Energy Storage Technology Development Project. These technologies will support a new generation of more affordable, more reliable, and more effective space systems.

  3. U.S. Department of Energy Vehicle Technologies Program: Battery Test Manual For Plug-In Hybrid Electric Vehicles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Christophersen, Jon P.

    2014-09-01

    This battery test procedure manual was prepared for the United States Department of Energy (DOE), Office of Energy Efficiency and Renewable Energy (EERE), Vehicle Technologies Office. It is based on technical targets for commercial viability established for energy storage development projects aimed at meeting system level DOE goals for Plug-in Hybrid Electric Vehicles (PHEV). The specific procedures defined in this manual support the performance and life characterization of advanced battery devices under development for PHEV’s. However, it does share some methods described in the previously published battery test manual for power-assist hybrid electric vehicles. Due to the complexity of somemore » of the procedures and supporting analysis, future revisions including some modifications and clarifications of these procedures are expected. As in previous battery and capacitor test manuals, this version of the manual defines testing methods for full-size battery systems, along with provisions for scaling these tests for modules, cells or other subscale level devices. The DOE-United States Advanced Battery Consortium (USABC), Technical Advisory Committee (TAC) supported the development of the manual. Technical Team points of contact responsible for its development and revision are Renata M. Arsenault of Ford Motor Company and Jon P. Christophersen of the Idaho National Laboratory. The development of this manual was funded by the Unites States Department of Energy, Office of Energy Efficiency and Renewable Energy, Vehicle Technologies Office. Technical direction from DOE was provided by David Howell, Energy Storage R&D Manager and Hybrid Electric Systems Team Leader. Comments and questions regarding the manual should be directed to Jon P. Christophersen at the Idaho National Laboratory (jon.christophersen@inl.gov).« less

  4. Woodcock-Johnson-III, Kaufman Adolescent and Adult Intelligence Test (KAIT), Kaufman Assessment Battery for Children (KABC), and Differential Ability Scales (DAS) support Carroll but not Cattell-Horn.

    PubMed

    Cucina, Jeffrey M; Howardson, Garett N

    2017-08-01

    Recently emerging evidence suggests that the dominant structural model of mental abilities-the Cattell-Horn-Carroll (CHC) model-may not adequately account for observed scores for mental abilities batteries, leading scholars to call into question the model's validity. Establishing the robustness of these findings is important since CHC is the foundation for several contemporary mental abilities test batteries, such as the Woodcock-Johnson III (WJ-III). Using confirmatory factor analysis, we investigated CHC's robustness across 4 archival samples of mental abilities test battery data, including the WJ-III, the Kaufman Adolescent & Adult Intelligence Test (KAIT), the Kaufman Assessment Battery for Children (KABC), and the Differential Ability Scales (DAS). We computed omega hierarchical (ωH) and omega subscale (ωS) coefficients for g and the broad factors, which estimated the relationship of composite scores to g and the broad factors, respectively. Across all 4 samples, we found strong evidence for a general ability, g. We additionally found evidence for 3 to 9 residualized, orthogonal broad abilities existing independently of g, many of which also explained reliable variance in test battery scores that cannot be accounted for by g alone. The reliabilities of these broad factors, however, were less than desirable (i.e., <.80) and achieving desirable reliabilities would be practically infeasible (e.g., requiring excessively large numbers of subtests). Our results, and those of CHC critics, are wholly consistent with Carroll's model. Essentially, both g and orthogonal broad abilities are required to explain variance in mental abilities test battery scores, which is consistent with Carroll but not Cattell-Horn. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  5. A review on cellulose and lignin based binders and electrodes: Small steps towards a sustainable lithium ion battery.

    PubMed

    Nirmale, Trupti C; Kale, Bharat B; Varma, Anjani J

    2017-10-01

    Lithium ion batteries (LIB) are the most promising energy storage systems for portable electronics and future electric or hybrid-electric vehicles. However making them safer, cost effective and environment friendly is the key challenge. In this regard, replacing petro-derived materials by introducing renewable biomass derived cellulose derivatives and lignin based materials into the battery system is a promising approach for the development of green materials for LIB. These biomaterials introduce sustainability as well as improved safety in the final disposal of LIB batteries. In this review we introduce LIB materials technology in brief and recent developments in electrodes and binders based on cellulose and their derivatives and lignin for lithium ion batteries. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Leak rates in sealed cells.

    NASA Technical Reports Server (NTRS)

    Frank, H. A.; Uchiyama, A. A.

    1973-01-01

    Water vapor loss rates were determined from simulated and imperfectly sealed alkaline cells in the vacuum environment. The observed rates were found to be in agreement with a semi-empirical equation employed in vacuum technology. Results thereby give support for using this equation for the prediction of loss rates of battery gases and vapors to the aerospace environment. On this basis it was shown how the equation can be applied to the solution of many heretofore unresolved questions regarding leaks in batteries. Among these are the maximum permissible leak size consistent with a given cell life or conversely the maximum life consistent with a given leak size. It was also shown that loss rates of these cells in the terrestrial environment are several orders of magnitude less than the corresponding loss rates in the aerospace environment.

  7. Wireless remote monitoring of critical facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsai, Hanchung; Anderson, John T.; Liu, Yung Y.

    A method, apparatus, and system are provided for monitoring environment parameters of critical facilities. A Remote Area Modular Monitoring (RAMM) apparatus is provided for monitoring environment parameters of critical facilities. The RAMM apparatus includes a battery power supply and a central processor. The RAMM apparatus includes a plurality of sensors monitoring the associated environment parameters and at least one communication module for transmitting one or more monitored environment parameters. The RAMM apparatus is powered by the battery power supply, controlled by the central processor operating a wireless sensor network (WSN) platform when the facility condition is disrupted. The RAMM apparatusmore » includes a housing prepositioned at a strategic location, for example, where a dangerous build-up of contamination and radiation may preclude subsequent manned entrance and surveillance.« less

  8. Use of COTS Batteries on ISS and Shuttle: Payload Safety and Mission Success

    NASA Technical Reports Server (NTRS)

    Jeevarajan, Judith A.

    2004-01-01

    Contents: Current program requirements; Challenges with COTS batteries; manned vehicle COTS methodology in use; List of typical flight COTS batteries; Energy content and toxicity; Hazards, failure modes and controls for different battery chemistries; JSC test details; List of incidents from Consumer Protection Safety Commission; Conclusions ans recommendations.

  9. Lithium-Ion Battery Demonstrated for NASA Desert Research and Technology Studies

    NASA Technical Reports Server (NTRS)

    Bennett, William R.; Baldwin, Richard S.

    2008-01-01

    Lithium-ion batteries have attractive performance characteristics that are well suited to a number of NASA applications. These rechargeable batteries produce compact, lightweight energy-storage systems with excellent cycle life, high charge/discharge efficiency, and low self-discharge rate. NASA Glenn Research Center's Electrochemistry Branch designed and produced five lithium-ion battery packs configured to power the liquid-air backpack (LAB) on spacesuit simulators. The demonstration batteries incorporated advanced, NASA-developed electrolytes with enhanced low-temperature performance characteristics. The objectives of this effort were to (1) demonstrate practical battery performance under field-test conditions and (2) supply laboratory performance data under controlled laboratory conditions. Advanced electrolyte development is being conducted under the Exploration Technology Development Program by the NASA Jet Propulsion Laboratory. Three field trials were successfully completed at Cinder Lake from September 10 to 12, 2007. Extravehicular activities of up to 1 hr and 50 min were supported, with residual battery capacity sufficient for 30 min of additional run time. Additional laboratory testing of batteries and cells is underway at Glenn s Electrochemical Branch.

  10. A statistically compiled test battery for feasible evaluation of knee function after rupture of the Anterior Cruciate Ligament - derived from long-term follow-up data.

    PubMed

    Schelin, Lina; Tengman, Eva; Ryden, Patrik; Häger, Charlotte

    2017-01-01

    Clinical test batteries for evaluation of knee function after injury to the Anterior Cruciate Ligament (ACL) should be valid and feasible, while reliably capturing the outcome of rehabilitation. There is currently a lack of consensus as to which of the many available assessment tools for knee function that should be included. The present aim was to use a statistical approach to investigate the contribution of frequently used tests to avoid redundancy, and filter them down to a proposed comprehensive and yet feasible test battery for long-term evaluation after ACL injury. In total 48 outcome variables related to knee function, all potentially relevant for a long-term follow-up, were included from a cross-sectional study where 70 ACL-injured (17-28 years post injury) individuals were compared to 33 controls. Cluster analysis and logistic regression were used to group variables and identify an optimal test battery, from which a summarized estimator of knee function representing various functional aspects was derived. As expected, several variables were strongly correlated, and the variables also fell into logical clusters with higher within-correlation (max ρ = 0.61) than between clusters (max ρ = 0.19). An extracted test battery with just four variables assessing one-leg balance, isokinetic knee extension strength and hop performance (one-leg hop, side hop) were mathematically combined to an estimator of knee function, which acceptably classified ACL-injured individuals and controls. This estimator, derived from objective measures, correlated significantly with self-reported function, e.g. Lysholm score (ρ = 0.66; p<0.001). The proposed test battery, based on a solid statistical approach, includes assessments which are all clinically feasible, while also covering complementary aspects of knee function. Similar test batteries could be determined for earlier phases of ACL rehabilitation or to enable longitudinal monitoring. Such developments, established on a well-grounded consensus of measurements, would facilitate comparisons of studies and enable evidence-based rehabilitation.

  11. The role of cytogenetic tests in detection and prevention of cancer.

    PubMed

    Bishun, N P

    1981-01-01

    Although simplified and improved techniques have increased at a fast rate in recent years, a great number of compounds released into our environment still remain untested. It has been estimated that between 80-90% of human cancer is a result of exposure to such compounds, and if by the application of short-term mutagenic tests, the use of many of these compounds can be severely restricted, an enormous impact can be made on the solution of human health problems. Batteries of mutagenic tests have established an empirical relationship between mutagenisis and carcinogenisis, and, in view of the cost in terms of time and money, short-term tests are playing an important role in first detecting, and second, eliminating potential hazards in our environment. The use of bacteria and other unicellular organisms in these assay systems has met with much criticism; due to the fact that the DNA materials affected do not directly relate to that of man. However, in conjunction with other tests, utilizing human and other mammalian cells, firm conclusions can be drawn regarding the potential hazards of certain chemicals. Recent advances in cytogenetic tests (e.g., banding chromosomes and sister chromatid exchange) have improved the sensitivity of chromosomal tests and, in so doing, have rendered them more usual in the selecting out process that can reduce substantially the mutagenic and carcinogenic hazards caused by chemicals and other deleterious agents in the environment.

  12. A Comparison of Two Panasonic Lithium-Ion Batteries and Cells for the IBM Thinkpad

    NASA Technical Reports Server (NTRS)

    Jeevarajan, Judith A.; Cook, Joseph S.; Davies, Francis J.; Collins, Jacob; Bragg, Bobby J.

    2003-01-01

    The IBM Thinkpad 760XD has been used in the Orbiter and International Space Station since 2000. The Thinkpad is powered by a Panasonic Li-ion battery that has a voltage of 10.8 V and 3.0 Ah capacity. This Thinkpad is now being replaced by the IBM Thinkpad A31P which has a Panasonic Li-ion battery that has a voltage of 10.8 V and 4.0 Ah capacity. Both batteries have protective circuit boards. The Panasonic battery for the Thinkpad 760XD had 12 Panasonic 17500 cells of 0.75 Ah capacity in a 4P3S cOnfiguration. The new Panasonic battery has 6 Panasonic 18650 cells of 2.0 Ah capacity in a 2P3S configuration. The batteries and cells for both models have been evaluated for performance and safety. A comparison of the cells under similar test conditions will be presented. The performance of the cells has been evaluated under different rates of charge and discharge and different temperatures. The cells have been tested under abuse conditions and the safety features in the cells evaluated. The protective circuit board in the battery was also tested under conditions of overcharge, overdischarge, short circuit and unbalanced cell configurations. The results of the studies will be presented in this paper.

  13. Performance of Li-Ion Cells Under Battery Voltage Charge Control

    NASA Technical Reports Server (NTRS)

    Rao, Gopalakrishna M.; Vaidyanathan, Hari; Day, John H. (Technical Monitor)

    2001-01-01

    A study consisting of electrochemical characterization and Low-Earth-Orbit (LEO) cycling of Li-Ion cells from three vendors was initiated in 1999 to determine the cycling performance and to infuse the new technology in the future NASA missions. The 8-cell batteries included in this evaluation are prismatic cells manufactured by Mine Safety Appliances Company (MSA), cylindrical cells manufactured by SAFT and prismatic cells manufactured by Yardney Technical Products, Inc. (YTP). The three batteries were cycle tested in the LEO regime at 40% depth of discharge, and under a charge control technique that consists of battery voltage clamp with a current taper. The initial testing was conducted at 20 C; however, the batteries were cycled also intermittently at low temperatures. YTP 20 Ah cells consisted of mixed-oxide (Co and Ni) positive, graphitic carbon negative, LIPF6 salt mixed with organic carbonate solvents. The battery voltage clamp was 32 V. The low temperature cycling tests started after 4575 cycles at 20 C. The cells were not capable of cycling. at low temperature since the charge acceptance at battery level was poor. There was a cell in the battery that showed too high an end-of-charge (EOC) voltage thereby limiting the ability to charge the rest of the cells in the battery. The battery has completed 6714 cycles. SAFT 12 Ah cells consisted of mixed-oxide (Co and NO positive, graphitic carbon negative, LiPF6 salt mixed with organic carbonate solvents. The battery voltage clamp was for 30.8 V. The low temperature cycling tests started after 4594 cycles at 20 C. A cell that showed low end of discharge (EOD) and EOC voltages and three other cells that showed higher EOC voltages limited the charge acceptance at the selected voltage limit during charge. The cells were capable of cycling at 10 C and 0 C but the charge voltage limit had to be increased to 34.3 V (4.3 V per cell). The low temperature cycling may have induced poor chargeability since the voltage had to be increased to achieve the required charge input. The battery has completed 6226 cycles. MSA 10 Ah cells consisted of Co oxide positive, graphitic carbon negative, LiPF6 salt mixed with organic carbonate solvents. The battery voltage clamp was 30.8 V. The low temperature cycling tests were started after 2182 cycles at 20 C. The cells were capable of cycling at 10 C and 0 C. Like SAFT, the voltage limit on charge had to be increased to 36 V (4.5 V per cell). There was a cell (cell S/N 13) in the battery that showed poor performance features such as low EOD voltage and high EOC voltage. The battery has completed 3441 cycles. A reconditioning procedure that consisted of C15 charge to a taper current of C/100 and C/20 discharge improved the voltage behavior of SAFT and MSA cells with no significant effect on YTP cells. We have demonstrated that the charge operation with VT clamp at battery rather than at cell level is feasible for onboard Li-Ion battery operation.

  14. Early Education Screening Test Battery of Basic Skills Development: Criteria for Personalizing Programs.

    ERIC Educational Resources Information Center

    University City School District, MO.

    The development and content of the Early Education Screening Test Battery are described elsewhere (TM 000 184). This report provides norms for the Gross Motor Test (GMO), Visual-Motor Integration (VMI), four scales of the Illinois Test of Psycholinguistic Abilities (ITPA), Peabody Picture Vocabulary Test (PPVT), and the Behavior Rating Scale…

  15. Assessment of lnternational Space Station (ISS) Lithium-ion Battery Thermal Runaway (TR)

    NASA Technical Reports Server (NTRS)

    Graika, Jason

    2017-01-01

    This task was developed in the wake of the Boeing 787 Dreamliner lithium-ion battery TR incidents of January 2013 and January 2014. The Electrical Power Technical Discipline Team supported the Dreamliner investigations and has followed up by applying lessons learned to conduct an introspective evaluation of NASA's risk of similar incidents in its own lithium-ion battery deployments. This activity has demonstrated that historically NASA, like Boeing and others in the aerospace industry, has emphasized the prevention of TR in a single cell within the battery (e.g., cell screening) but has not considered TR severity-reducing measures in the event of a single-cell TR event. center dotIn the recent update of the battery safety standard (JSC 20793) to address this paradigm shift, the NASA community included requirements for assessing TR severity and identifying simple, low-cost severity reduction measures. This task will serve as a pathfinder for meeting those requirements and will specifically look at a number of different lithium-ion batteries currently in the design pipeline within the ISS Program batteries that, should they fail in a Dreamliner-like incident, could result in catastrophic consequences. This test is an abuse test to understand the heat transfer properties of the cell and ORU in thermal runaway, with radiant barriers in place in a flight like test in on orbit conditions. This includes studying the heat flow and distribution in the ORU. This data will be used to validate the thermal runaway analysis. This test does not cover the ambient pressure case. center dotThere is no pass/ fail criteria for this test.

  16. Lithium-Thionyl Chloride Batteries for the Mars Pathfinder Microrover

    NASA Technical Reports Server (NTRS)

    Deligiannis, Frank; Frank, Harvey; Staniewicz, R. J.; Willson, John

    1996-01-01

    A discussion of the power requirements for the Mars Pathfinder Mission is given. Topics include: battery requirements; cell design; battery design; test descriptions and results. A summary of the results is also included.

  17. Ecological and biomedical effects of effluents from near-term electric vehicle storage battery cycles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1980-05-01

    An assessment of the ecological and biomedical effects due to commercialization of storage batteries for electric and hybrid vehicles is given. It deals only with the near-term batteries, namely Pb/acid, Ni/Zn, and Ni/Fe, but the complete battery cycle is considered, i.e., mining and milling of raw materials, manufacture of the batteries, cases and covers; use of the batteries in electric vehicles, including the charge-discharge cycles; recycling of spent batteries; and disposal of nonrecyclable components. The gaseous, liquid, and solid emissions from various phases of the battery cycle are identified. The effluent dispersal in the environment is modeled and ecological effectsmore » are assessed in terms of biogeochemical cycles. The metabolic and toxic responses by humans and laboratory animals to constituents of the effluents are discussed. Pertinent environmental and health regulations related to the battery industry are summarized and regulatory implications for large-scale storage battery commercialization are discussed. Each of the seven sections were abstracted and indexed individually for EDB/ERA. Additional information is presented in the seven appendixes entitled; growth rate scenario for lead/acid battery development; changes in battery composition during discharge; dispersion of stack and fugitive emissions from battery-related operations; methodology for estimating population exposure to total suspended particulates and SO/sub 2/ resulting from central power station emissions for the daily battery charging demand of 10,000 electric vehicles; determination of As air emissions from Zn smelting; health effects: research related to EV battery technologies. (JGB)« less

  18. Content Validity Index and Intra- and Inter-Rater Reliability of a New Muscle Strength/Endurance Test Battery for Swedish Soldiers

    PubMed Central

    Larsson, Helena; Tegern, Matthias; Monnier, Andreas; Skoglund, Jörgen; Helander, Charlotte; Persson, Emelie; Malm, Christer; Broman, Lisbet; Aasa, Ulrika

    2015-01-01

    The objective of this study was to examine the content validity of commonly used muscle performance tests in military personnel and to investigate the reliability of a proposed test battery. For the content validity investigation, thirty selected tests were those described in the literature and/or commonly used in the Nordic and North Atlantic Treaty Organization (NATO) countries. Nine selected experts rated, on a four-point Likert scale, the relevance of these tests in relation to five different work tasks: lifting, carrying equipment on the body or in the hands, climbing, and digging. Thereafter, a content validity index (CVI) was calculated for each work task. The result showed excellent CVI (≥0.78) for sixteen tests, which comprised of one or more of the military work tasks. Three of the tests; the functional lower-limb loading test (the Ranger test), dead-lift with kettlebells, and back extension, showed excellent content validity for four of the work tasks. For the development of a new muscle strength/endurance test battery, these three tests were further supplemented with two other tests, namely, the chins and side-bridge test. The inter-rater reliability was high (intraclass correlation coefficient, ICC2,1 0.99) for all five tests. The intra-rater reliability was good to high (ICC3,1 0.82–0.96) with an acceptable standard error of mean (SEM), except for the side-bridge test (SEM%>15). Thus, the final suggested test battery for a valid and reliable evaluation of soldiers’ muscle performance comprised the following four tests; the Ranger test, dead-lift with kettlebells, chins, and back extension test. The criterion-related validity of the test battery should be further evaluated for soldiers exposed to varying physical workload. PMID:26177030

  19. Modeling a constant power load for nickel-hydrogen battery testing using SPICE

    NASA Technical Reports Server (NTRS)

    Bearden, Douglas B.; Lollar, Louis F.; Nelms, R. M.

    1990-01-01

    The effort to design and model a constant power load for the HST (Hubble Space Telescope) nickel-hydrogen battery tests is described. The constant power load was designed for three different simulations on the batteries: life cycling, reconditioning, and capacity testing. A dc-dc boost converter was designed to act as this constant power load. A boost converter design was chosen because of the low test battery voltage (4 to 6 VDC) generated and the relatively high power requirement of 60 to 70 W. The SPICE model was shown to consistently predict variations in the actual circuit as various designs were attempted. It is concluded that the confidence established in the SPICE model of the constant power load ensures its extensive utilization in future efforts to improve performance in the actual load circuit.

  20. Improvement of bench life-tests for automotive batteries

    NASA Astrophysics Data System (ADS)

    Richter, G.

    A common method for rating the endurance of automotive batteries is the bench life-test according to DIN, IEC, SAE or JIS. With an increasing number of maintenance-free batteries on the market, the application of these tests becomes more problematic. This is due to a step-by-step capacity decline during cycling if the content of autimony in the grid-alloy is decreased. The degradation in performance is caused by the phenomenon of acid stratification. Because this debilitating effect occurs only rarely in service (vehicle movement) if charging and discharging is well balanced, there is a need for a new bench life-test with conditions that are more representative of practical conditions. Research has shown that the main changes should be: (i) an accelerated (moved) battery during cycling; (ii) slightly lower charging or discharging capacity amplitude, also with a lower mean value.

  1. Battery-free radio frequency identification (RFID) sensors for food quality and safety

    PubMed Central

    Potyrailo, Radislav A.; Nagraj, Nandini; Tang, Zhexiong; Mondello, Frank J.; Surman, Cheryl; Morris, William

    2012-01-01

    The market demands for new sensors for food quality and safety stimulate the development of new sensing technologies that can provide an unobtrusive sensor form factor, battery-free operation, and minimal sensor cost. Intelligent labeling of food products to indicate and report their freshness and other conditions is one of important possible applications of such new sensors. We have applied passive (battery-free) radio frequency identification (RFID) sensors for highly sensitive and selective detection of food freshness and bacterial growth. In these sensors, the electric field generated in the RFID sensor antenna extends out from the plane of the RFID sensor and is affected by the ambient environment providing the opportunity for sensing. This environment may be in the form of a food sample within the electric field of the sensing region or a sensing film deposited onto the sensor antenna. Examples of applications include monitoring of freshness of milk, freshness of fish, and bacterial growth in a solution. Unlike other food freshness monitoring approaches that require a thin film battery for operation of an RFID sensor and fabrication of custom-made sensors, our developed passive RFID sensing approach combines advantages of both battery-free and cost-effective sensor design and offers response selectivity that is impossible to achieve with other individual sensors. PMID:22881825

  2. Battery-free radio frequency identification (RFID) sensors for food quality and safety.

    PubMed

    Potyrailo, Radislav A; Nagraj, Nandini; Tang, Zhexiong; Mondello, Frank J; Surman, Cheryl; Morris, William

    2012-09-05

    Market demands for new sensors for food quality and safety stimulate the development of new sensing technologies that can provide an unobtrusive sensor form, battery-free operation, and minimal sensor cost. Intelligent labeling of food products to indicate and report their freshness and other conditions is one important possible application of such new sensors. This study applied passive (battery-free) radio frequency identification (RFID) sensors for the highly sensitive and selective detection of food freshness and bacterial growth. In these sensors, the electric field generated in the RFID sensor antenna extends from the plane of the RFID sensor and is affected by the ambient environment, providing the opportunity for sensing. This environment may be in the form of a food sample within the electric field of the sensing region or a sensing film deposited onto the sensor antenna. Examples of applications include monitoring of milk freshness, fish freshness, and bacterial growth in a solution. Unlike other food freshness monitoring approaches that require a thin film battery for operation of an RFID sensor and fabrication of custom-made sensors, the passive RFID sensing approach developed here combines the advantages of both battery-free and cost-effective sensor design and offers response selectivity that is impossible to achieve with other individual sensors.

  3. Initial Results of Accelerated Stress Testing on Single-Channel and Multichannel Drivers: Solid-State Lighting Technology Area

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    This report is the first in a series of studies on accelerated stress testing (AST) of drivers used for SSL luminaires, such as downlights, troffers, and streetlights. A representative group of two-stage commercial driver products was exposed to an AST environment consisting of 75°C and 75% relative humidity (7575). These drivers were a mix of single-channel drivers (i.e., a single output current for one LED primary) and multichannel drivers (i.e., separate output currents for multiple LED primaries). This AST environment was chosen because previous testing on downlights with integrated drivers demonstrated that 38% of the sample population failed in lessmore » than 2,500 hours of testing using this method. In addition to AST test results, the performance of an SSL downlight product incorporating an integrated, multichannel driver during extended room temperature operational life (RTOL) testing is also reported. A battery of measurements was used to evaluate these products during accelerated testing, including full electrical characterization (i.e., power consumption, PF, total harmonic distortion [THD], and inrush current) and photometric characterization of external LED loads attached to the drivers (i.e., flicker performance and lumen maintenance).« less

  4. Update on Development of 360V, 28kWh Lithium-Ion Battery

    NASA Technical Reports Server (NTRS)

    Davies, Francis; Darcy, Eric; Cowles, Phil; Irlbeck, Brad; Weintritt, John

    2005-01-01

    Engineering unit submodule batteries (EUSB) the 360V, 28kWh EAPU battery were designed and assembled by COM DEV. These submodules consist of Sony Li-Ion 18650HC cells in a 5P-41S array yielding 180V, 1.4 kWh. Tests of these and of substrings and single cells at COM DEV and at JSC under various performance and abuse conditions demonstrated that performance requirements can be met. The thermal vacuum tests demonstrated that the worst case hot condition is the design driver. Deficiencies in the initial diode protection scheme of the battery were identified as a result of test failures. Potential solutions to the scheme are under development and will be presented.

  5. The Electric Cars Challenge

    ERIC Educational Resources Information Center

    Roman, Harry T.

    2011-01-01

    Over 100 years ago, the great inventor Thomas Edison warned that gasoline cars would pollute the environment and lead to gasoline shortages. He preferred the use of clean electric vehicles. He also put his money where his mouth was and developed an entirely new alkaline storage battery system for his beloved cars, the nickel-iron storage battery.…

  6. A Longitudinal Study of the Predictive Validity of a Kindergarten Screening Battery.

    ERIC Educational Resources Information Center

    Kilgallon, Mary K.; Mueller, Richard J.

    Test validity was studied in nine subtests of a kindergarten screening battery used to predict reading comprehension for children up to five years after entering kindergarten. The independent variables were kindergarteners' scores on the: (1) Otis-Lennon Mental Ability Test; (2) Bender Visual Motor Gestalt Test; (3) Detroit Tests of Learning…

  7. Stripper (print. & pub.) 971.381--Development of USTES Aptitude Test Battery.

    ERIC Educational Resources Information Center

    Manpower Administration (DOL), Washington, DC. U.S. Training and Employment Service.

    The United States Training and Employment Service General Aptitude Test Battery (GATB), first published in 1947, has been included in a continuing program of research to validate the tests against success in many different occupations. The GATB consists of 12 tests which measure nine aptitudes: General Learning Ability; Verbal Aptitude; Numerical…

  8. A pilot evaluation of a computer-based psychometric test battery designed to detect impairment in patients with cirrhosis

    PubMed Central

    Cook, Nicola A; Kim, Jin Un; Pasha, Yasmin; Crossey, Mary ME; Schembri, Adrian J; Harel, Brian T; Kimhofer, Torben; Taylor-Robinson, Simon D

    2017-01-01

    Background Psychometric testing is used to identify patients with cirrhosis who have developed hepatic encephalopathy (HE). Most batteries consist of a series of paper-and-pencil tests, which are cumbersome for most clinicians. A modern, easy-to-use, computer-based battery would be a helpful clinical tool, given that in its minimal form, HE has an impact on both patients’ quality of life and the ability to drive and operate machinery (with societal consequences). Aim We compared the Cogstate™ computer battery testing with the Psychometric Hepatic Encephalopathy Score (PHES) tests, with a view to simplify the diagnosis. Methods This was a prospective study of 27 patients with histologically proven cirrhosis. An analysis of psychometric testing was performed using accuracy of task performance and speed of completion as primary variables to create a correlation matrix. A stepwise linear regression analysis was performed with backward elimination, using analysis of variance. Results Strong correlations were found between the international shopping list, international shopping list delayed recall of Cogstate and the PHES digit symbol test. The Shopping List Tasks were the only tasks that consistently had P values of <0.05 in the linear regression analysis. Conclusion Subtests of the Cogstate battery correlated very strongly with the digit symbol component of PHES in discriminating severity of HE. These findings would indicate that components of the current PHES battery with the international shopping list tasks of Cogstate would be discriminant and have the potential to be used easily in clinical practice. PMID:28919805

  9. Sodium sulfur battery flight experiment definition study

    NASA Technical Reports Server (NTRS)

    Chang, Rebecca R.; Minck, Robert

    1989-01-01

    Sodium-sulfur batteries were identified as the most likely successor to nickel-hydrogen batteries for space applications. One advantage of the Na/S battery system is that the usable specific energy is two to three times that of nickel-hydrogen batteries. This represents a significant launch cost savings or increased payload mass capabilities. Sodium-sulfur batteries support NASA OAST's proposed Civil Space Technology Initiative goal of a factor of two improvement in spacecraft power system performance, as well as the proposed Spacecraft 2000 initiative. The sodium-sulfur battery operates at between 300 and 400 C, using liquid sodium and sulfur/polysulfide electrodes and solid ceramic electrolyte. The transport of the electrode materials to the surface of the electrolyte is through wicking/capillary forces. These critical transport functions must be demonstrated under actual microgravity conditions before sodium-sulfur batteries can be confidently utilized in space. Ford Aerospace Corporation, under contract to NASA Lewis Research Center, is currently working on the sodium-sulfur battery space flight experiment definition study. The objective is to design the experiment that will demonstrate operation of the sodium-sulfur battery/cell in the space environment with particular emphasis on evaluation of microgravity effects. Experimental payload definitions were completed and preliminary designs of the experiment were defined.

  10. An averaging battery model for a lead-acid battery operating in an electric car

    NASA Technical Reports Server (NTRS)

    Bozek, J. M.

    1979-01-01

    A battery model is developed based on time averaging the current or power, and is shown to be an effective means of predicting the performance of a lead acid battery. The effectiveness of this battery model was tested on battery discharge profiles expected during the operation of an electric vehicle following the various SAE J227a driving schedules. The averaging model predicts the performance of a battery that is periodically charged (regenerated) if the regeneration energy is assumed to be converted to retrievable electrochemical energy on a one-to-one basis.

  11. Behavior data of battery and battery pack SOC estimation under different working conditions.

    PubMed

    Zhang, Xu; Wang, Yujie; Yang, Duo; Chen, Zonghai

    2016-12-01

    This article provides the dataset of operating conditions of battery behavior. The constant current condition and the dynamic stress test (DST) condition were carried out to analyze the battery discharging and charging features. The datasets were achieved at room temperature, in April, 2016. The shared data contributes to clarify the battery pack state-of-charge (SOC) and the battery inconsistency, which is also shown in the article of "An on-line estimation of battery pack parameters and state-of-charge using dual filters based on pack model" (X. Zhang, Y. Wang, D. Yang, et al., 2016) [1].

  12. Secure and Usable User-in-a-Context Continuous Authentication in Smartphones Leveraging Non-Assisted Sensors.

    PubMed

    de Fuentes, Jose Maria; Gonzalez-Manzano, Lorena; Ribagorda, Arturo

    2018-04-16

    Smartphones are equipped with a set of sensors that describe the environment (e.g., GPS, noise, etc.) and their current status and usage (e.g., battery consumption, accelerometer readings, etc.). Several works have already addressed how to leverage such data for user-in-a-context continuous authentication, i.e., determining if the porting user is the authorized one and resides in his regular physical environment. This can be useful for an early reaction against robbery or impersonation. However, most previous works depend on assisted sensors, i.e., they rely upon immutable elements (e.g., cell towers, satellites, magnetism), thus being ineffective in their absence. Moreover, they focus on accuracy aspects, neglecting usability ones. For this purpose, in this paper, we explore the use of four non-assisted sensors, namely battery, transmitted data, ambient light and noise. Our approach leverages data stream mining techniques and offers a tunable security-usability trade-off. We assess the accuracy, immediacy, usability and readiness of the proposal. Results on 50 users over 24 months show that battery readings alone achieve 97.05% of accuracy and 81.35% for audio, light and battery all together. Moreover, when usability is at stake, robbery is detected in 100 s for the case of battery and in 250 s when audio, light and battery are applied. Remarkably, these figures are obtained with moderate training and storage needs, thus making the approach suitable for current devices.

  13. Secure and Usable User-in-a-Context Continuous Authentication in Smartphones Leveraging Non-Assisted Sensors

    PubMed Central

    Gonzalez-Manzano, Lorena; Ribagorda, Arturo

    2018-01-01

    Smartphones are equipped with a set of sensors that describe the environment (e.g., GPS, noise, etc.) and their current status and usage (e.g., battery consumption, accelerometer readings, etc.). Several works have already addressed how to leverage such data for user-in-a-context continuous authentication, i.e., determining if the porting user is the authorized one and resides in his regular physical environment. This can be useful for an early reaction against robbery or impersonation. However, most previous works depend on assisted sensors, i.e., they rely upon immutable elements (e.g., cell towers, satellites, magnetism), thus being ineffective in their absence. Moreover, they focus on accuracy aspects, neglecting usability ones. For this purpose, in this paper, we explore the use of four non-assisted sensors, namely battery, transmitted data, ambient light and noise. Our approach leverages data stream mining techniques and offers a tunable security-usability trade-off. We assess the accuracy, immediacy, usability and readiness of the proposal. Results on 50 users over 24 months show that battery readings alone achieve 97.05% of accuracy and 81.35% for audio, light and battery all together. Moreover, when usability is at stake, robbery is detected in 100 s for the case of battery and in 250 s when audio, light and battery are applied. Remarkably, these figures are obtained with moderate training and storage needs, thus making the approach suitable for current devices. PMID:29659542

  14. Development of a standardized battery of performance tests for the assessment of noise stress effects

    NASA Technical Reports Server (NTRS)

    Theologus, G. C.; Wheaton, G. R.; Mirabella, A.; Brahlek, R. E.

    1973-01-01

    A set of 36 relatively independent categories of human performance were identified. These categories encompass human performance in the cognitive, perceptual, and psychomotor areas, and include diagnostic measures and sensitive performance metrics. Then a prototype standardized test battery was constructed, and research was conducted to obtain information on the sensitivity of the tests to stress, the sensitivity of selected categories of performance degradation, the time course of stress effects on each of the selected tests, and the learning curves associated with each test. A research project utilizing a three factor partially repeated analysis of covariance design was conducted in which 60 male subjects were exposed to variations in noise level and quality during performance testing. Effects of randomly intermittent noise on performance of the reaction time tests were observed, but most of the other performance tests showed consistent stability. The results of 14 analyses of covariance of the data taken from the performance of the 60 subjects on the prototype standardized test battery provided information which will enable the final development and test of a standardized test battery and the associated development of differential sensitivity metrics and diagnostic classificatory system.

  15. FY2016 Advanced Batteries R&D Annual Progress Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    The Advanced Batteries research and development (R&D) subprogram within the DOE Vehicle Technologies Office (VTO) provides support and guidance for projects focusing on batteries for plug-in electric vehicles. Program targets focus on overcoming technical barriers to enable market success including: (1) significantly reducing battery cost, (2) increasing battery performance (power, energy, durability), (3) reducing battery weight & volume, and (4) increasing battery tolerance to abusive conditions such as short circuit, overcharge, and crush. This report describes the progress made on the research and development projects funded by the Battery subprogram in 2016. This section covers the Vehicle Technologies Office overview;more » the Battery subprogram R&D overview; Advanced Battery Development project summaries; and Battery Testing, Analysis, and Design project summaries. It also includes the cover and table of contents.« less

  16. Age effect on components of episodic memory and feature binding: A virtual reality study.

    PubMed

    Plancher, Gaën; Gyselinck, Valerie; Nicolas, Serge; Piolino, Pascale

    2010-05-01

    The aims were (1) to explore the effects of normal aging on the main aspects of episodic memory--what, where, and when,--and on feature binding in a virtual environment; (2) to explore the influence of the mode of learning, intentional versus incidental; and (3) to benchmark virtual environment findings collected with older adults against data recorded in classical neuropsychological tests. We tested a population of 82 young adults and 78 older adults without dementia (they participated in a short battery of neuropsychological tests). All the participants drove a car in an urban virtual environment composing of 9 turns and specific areas. Half of the participants were told to drive through the virtual town; the other half were asked to drive and to memorize the environment (itinerary, elements, etc.). All aspects of episodic memory were then assessed (what, where, when, and binding). The older participants had less recollection of the spatiotemporal context of events than the younger with intentional encoding (p < .001), but similar recollection with incidental encoding (except for verbal spatial aspect). The younger participants showed better binding than older ones regardless of the type of encoding (p < .001). For the older participants the virtual test was sensitive to mnesic complaints as well as general cognitive changes (p < .05 to p < .01). We view these results as an indication that virtual environments could provide helpful standard tools for assessing age effects on the main aspects of episodic memory.

  17. Using the Cognitive Abilities Test (CogAT) 7 Nonverbal Battery to Identify the Gifted/Talented: An Investigation of Demographic Effects and Norming Plans

    ERIC Educational Resources Information Center

    Carman, Carol A.; Walther, Christine A. P.; Bartsch, Robert A.

    2018-01-01

    The nonverbal battery of the Cognitive Abilities Test (CogAT) is one of the two most common nonverbal measures used in gifted identification, yet the relationships between demographic variables and CogAT7 performance has not yet been fully examined. Additionally, the effect of using the CogAT7 nonverbal battery on the identification of diverse…

  18. Panasonic Small Cell Testing for AHPS

    NASA Technical Reports Server (NTRS)

    Pearson, C.; Blackmore, P.; Lain, M.; Walpole, A.; Darcy, Eric

    2006-01-01

    AEA selection and successful Interim Design Review for AHPS proves maturity of small cell approach for very large batteries. Cells show excellent opportunity for battery mass reduction for AHPS and other low cycle applications. Lack of cycle and extended calendar life make EOL battery performance difficult (AHPS 8 year mission). Preliminary design, AEA retained SONY 18650HC cell as baseline: a) Well characterized performance; b) Wealth of safety test data.

  19. Development of a test battery for evaluating speech perception in complex listening environments.

    PubMed

    Brungart, Douglas S; Sheffield, Benjamin M; Kubli, Lina R

    2014-08-01

    In the real world, spoken communication occurs in complex environments that involve audiovisual speech cues, spatially separated sound sources, reverberant listening spaces, and other complicating factors that influence speech understanding. However, most clinical tools for assessing speech perception are based on simplified listening environments that do not reflect the complexities of real-world listening. In this study, speech materials from the QuickSIN speech-in-noise test by Killion, Niquette, Gudmundsen, Revit, and Banerjee [J. Acoust. Soc. Am. 116, 2395-2405 (2004)] were modified to simulate eight listening conditions spanning the range of auditory environments listeners encounter in everyday life. The standard QuickSIN test method was used to estimate 50% speech reception thresholds (SRT50) in each condition. A method of adjustment procedure was also used to obtain subjective estimates of the lowest signal-to-noise ratio (SNR) where the listeners were able to understand 100% of the speech (SRT100) and the highest SNR where they could detect the speech but could not understand any of the words (SRT0). The results show that the modified materials maintained most of the efficiency of the QuickSIN test procedure while capturing performance differences across listening conditions comparable to those reported in previous studies that have examined the effects of audiovisual cues, binaural cues, room reverberation, and time compression on the intelligibility of speech.

  20. Feasibility of a nickel-metal hydride battery for totally implantable artificial hearts.

    PubMed

    Okamoto, E; Yoshida, T; Fujiyoshi, M; Shimanaka, M; Takeuchi, A; Mitamura, Y; Mikami, T

    1996-01-01

    An implantable rechargeable battery is one of the key technologies for totally implantable artificial hearts. The nickel-metal hydride (Ni-MH) battery is promising for its high energy density of 1.5-2.0 times that of a nickel-cadmium battery. In this study, the effects of pulsatile discharge loads on the operating time and cycle life of Ni-MH batteries at 39 degrees C were studied. Two battery cells (TH-3M, 1,200 mAh, phi 14.5 x 49 mm; Toshiba, Tokyo, Japan) in series were charge/discharge cycled at 39 degrees C using a charge current of 1CA (1,200 mA) and then were fully discharged to 1.0 V/cell under either pulsatile discharge loads, which mimicked a systole (1 A for 0.3 sec) and a diastole (0.4 A for 0.3 sec), or a non pulsatile discharge load equivalent to the average of the pulsatile loads (0.7 A). Each cycle life test was interrupted on the 482nd cycle under pulsatile load, and on the 423rd cycle under non pulsatile load, because of malfunction of each battery charger. The tests showed that the pulsatile discharge cells had significantly (p < 0.001) less operating time (74.0 +/- 7.15 min) throughout the test period (up to 482 days) compared to the cells under equivalent non pulsatile discharge loads (93.7 +/- 7.74 min). The pulsatile-discharged Ni-MH cells provide significantly less operating time than the constantly discharged cells; the Ni-MH battery has an operating time of over 78 min and a cycle life of almost 500 cycles at 39 degrees C. In conclusion, the Ni-MH battery is feasible as an implantable back-up battery for a totally implantable artificial heart system.

  1. Identification and quantification of gases emitted during abuse tests by overcharge of a commercial Li-ion battery

    NASA Astrophysics Data System (ADS)

    Fernandes, Y.; Bry, A.; de Persis, S.

    2018-06-01

    As hazardous situations can occur during the life of a Li-ion battery, it is of great importance to understand its behavior under abusive conditions (mechanical, thermal or electrical). In particular, the study of overcharge, which consists of forcing a current through the cell, can be very helpful in improving battery safety. Very few studies in the literature have focused on the chemical reaction mechanism responsible for failure during overcharge. This is, however, of great interest because a Li-ion battery can produce reactions in a sealed container and is thus a highly reactive system. Here, experimental approaches are employed to understand the reaction mechanisms that occur during overcharge testing. Experiments consist of studying the overcharge kinetics of a commercial battery at an initial state of charge of 100%. The battery is maintained in a known volume and gaseous samples are withdrawn both at the end of the test and continuously during the test. The main gaseous species are then identified and quantified by gas phase chromatography coupled with mass spectrometry and FTIR spectroscopy. This experimental study is completed by a numerical investigation to determine the combustion parameters of the exhaust gases using a detailed reaction mechanism associated with a numerical code.

  2. Negligible Sex Differences in General Intelligence.

    ERIC Educational Resources Information Center

    Colom, Roberto; Juan-Espinosa, Manuel; Abad, Francisco; Garcia, Luis F.

    2000-01-01

    Studied sex differences in general intelligence in 10,475 adults taking cognitive test batteries. Results suggest a negligible difference in general intelligence, a finding consistent with findings from quite different test batteries and subject samples. (SLD)

  3. BCI`s RBSM test methods: Eight years in the making

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1993-03-01

    RBSM stands for recombinant battery separator mat. This is the acronym chosen after a lot of debate during eight years of committee work to develop test methods to characterize separators which are used in valve regulated lead acid batteries. This paper discusses the test methods.

  4. EMU battery/SMM power tool characterization study

    NASA Technical Reports Server (NTRS)

    Palandati, C.

    1982-01-01

    The power tool which will be used to replace the attitude control system in the SMM spacecraft was modified to operate from a self contained battery. The extravehicular mobility unit (EMU) battery was tested for the power tool application. The results are that the EMU battery is capable of operating the power tool within the pulse current range of 2.0 to 15.0 amperes and battery temperature range of -10 to 40 degrees Celsius.

  5. Experiences with lead/acid battery management in remote-area power-supply (RAPS) systems

    NASA Astrophysics Data System (ADS)

    Phillips, S. J.; Pryor, T. L.; Dymond, M. S.; Remmer, D. P.

    Battery management and general storage performance and cost remain major problems in remote-area power-supply (RAPS) systems utilizing renewable energy sources. A brief review of field experiences with lead/acid batteries is presented, together with results from battery tests carried out in the laboratory. It is recommended that further collaboration between battery manufacturers and system designers is established to develop improved storage systems for RAPS applications.

  6. General Electric 20-ampere hour nickel-cadmium battery

    NASA Technical Reports Server (NTRS)

    Kirsch, W. W.

    1974-01-01

    The interaction, effect, and controllability of the performance parameters of the General Electric 20-ampere-hour, 24-cell nickel cadmium battery are investigated. The battery was cycled under simulated orbit conditions. The acquired data was analyzed and evaluated in terms of battery parameters and performance characteristics. Conclusions and tests results are presented along with recommendations for further study.

  7. Standards in C.S.E. and G.C.E.: English and Mathematics. Working Paper No. 9.

    ERIC Educational Resources Information Center

    Schools Council, London (England).

    Attainment tests in English and mathematics were administered to a total sample of 2,011/15-year old students. The English test consisted of a composition and a test battery of objective items. Marking of the composition was made by the test designer on a rapid first-impression reading. The objective test battery consisted of a comprehension test,…

  8. Battery and cell testing at NASA. Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Whitt, Tom; Jackson, Lorna

    1992-01-01

    An overview covering the ten cell/battery tests ongoing at MSFC are presented. The presentation is not intended to give specific test results on any test. The purpose and related program that applies to each test is acknowledged. Except for the Combined Release and Radiation Effects Satellite (CRRES), all are energy-stored and retrieval devices at low earth orbit (LEO) cycles.

  9. Characteristics and thermal behavior analysis of lithium-ion batteries for application in hybrid locomotives

    NASA Astrophysics Data System (ADS)

    Chatterjee, Krishnashis

    The locomotive industry accounts for 2.5 % of the total fuel consumption in the US. Thus the necessity for reducing fuel consumption and emissions led to the development of the concept of hybrid locomotive which is dual powered by the diesel engine and electric motors. But the energy dissipated in braking such a locomotive in a year is enough to power over 9100 average US households over the same period of time. Recovering this energy using regenerative braking system and storing it in a electric battery is of great interest among researchers for improving overall efficiency and reducing consumption of fuels. In the present study, LiFePO4 batteries, a type of the state-of-art lithium-ion batteries, have been tested under different environmental and load conditions. Environmental temperatures were varied to analyze their effects on the charging and discharging patterns of the battery by using the CADEX battery analyzer in order to find the temperature range for optimum battery performance. The fluctuations of temperature of the battery surface were monitored along the length of the tests, using Infra-Red imaging and thermocouple probes at different points on the battery surface. Both battery performance characteristics and the variation of the battery surface temperature were also recorded for different load cycles in order to get a comprehensive picture of the heat generation and its effect on the behavior of the battery under different load conditions. Lastly a practical Load Cycle analysis of the battery has been performed which gave a picture of the heat generated by the battery and also the performance characteristics as it is subjected to a practical Load Cycle.

  10. The testing of batteries linked to supercapacitors with electrochemical impedance spectroscopy: A comparison between Li-ion and valve regulated lead acid batteries

    NASA Astrophysics Data System (ADS)

    Ferg, Ernst; Rossouw, Claire; Loyson, Peter

    2013-03-01

    For electric vehicles, a supercapacitor can be coupled to the electrical system in order to increase and optimize the energy and power densities of the drive system during acceleration and regenerative breaking. This study looked at the charge acceptance and maximum discharge ability of a valve regulated lead acid (VRLA) and a Li-ion battery connected in parallel to supercapacitors. The test procedure evaluated the advantage of using a supercapacitor at a 2 F:1 Ah ratio with the battery types at various states of charge (SoC). The results showed that about 7% of extra charge was achieved over a 5-s test time for a Li-ion hybrid system at 20% SoC, whereas at the 80% SoC the additional capacity was approximately 16%. While for the VRLA battery hybrid system, an additional charge of up to 20% was achieved when the battery was at 80% SoC, with little or no benefit at the 20% SoC. The advantage of the supercapacitor in parallel with a VRLA battery was noticeable on its discharge ability, where significant extra capacity was achieved for short periods of time for a battery at the 60% and 40% SoC when compared to the Li-ion hybrid system. The study also made use of Electrochemical Impedance Spectroscopy (EIS) with a suitable equivalent circuit model to explain, in particular, the internal resistance and capacitance differences observed between the different battery chemistries with and without a supercapacitor.

  11. "Invisible" Killer

    MedlinePlus

    ... allow CO to come indoors. In addition, install battery-operated CO alarms or plug-in CO alarms with battery back-up in your home. Every home should ... Test your CO alarms frequently and replace dead batteries. A CO alarm can provide added protection, but ...

  12. A mobile application for cognitive screening of dementia.

    PubMed

    Zorluoglu, Gokhan; Kamasak, Mustafa E; Tavacioglu, Leyla; Ozanar, Pinar O

    2015-02-01

    Neuropsychological assessment tests have an important role in early detection of dementia. Therefore, we designed and implemented a test battery for mobile devices that can be used for mobile cognitive screening (MCS). This battery consists of 33 questions from 14 type of tests for the assessment of 8 different cognitive functions: Arithmetic, orientation, abstraction, attention, memory, language, visual, and executive functions. This test battery is implemented as an application for mobile devices that operates on Android OS. In order to validate the effectiveness of the neuropsychological test battery, it was applied on a group of 23 elderly persons. Within this group, 9 (of age 81.78±4.77) were healthy and 14 (of age 72.55±9.95) were already diagnosed with dementia. The education level of the control group (healthy) and dementia group were comparable as they spent 13.66±5.07 and 13.71±4.14 years at school respectively. For comparison, a validated paper-and-pencil test (Montreal Cognitive Test - MoCA) was applied along with the proposed MCS battery. The proposed test was able to differentiate the individuals in the control and dementia groups for executive, visual, memory, attention, orientation functions with statistical significance (p<0.05). Results of the remaining functions; language, abstraction, and arithmetic were statistically insignificant (p>0.05). The results of MCS and MoCA were compared, and the scores of individuals from these tests were correlated (r(2)=0.57). Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  13. Radiation Testing at Sandia National Laboratories: Sandia – JPL Collaboration for Europa Lander

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hattar, Khalid Mikhiel; Olszewska-Wasiolek, Maryla Aleksandra

    Sandia National Laboratories (SNL) is assisting Jet Propulsion Laboratory in undertaking feasibility studies and performance assessments for the Planetary Protection aspect of the Europa Lander mission. The specific areas of interest for this project are described by task number. This white paper presents the evaluation results for Task 2, Radiation Testing, which was stated as follows: Survey SNL facilities and capabilities for simulating the Europan radiation environment and assess suitability for: A. Testing batteries, electronics, and other component and subsystems B. Exposing biological organisms to assess their survivability metrics. The radiation environment the Europa Lander will encounter on route andmore » in orbit upon arrival at its destination consists primarily of charged particles, energetic protons and electrons with the energies up to 1 GeV. The charged particle environments can be simulated using the accelerators at the Ion Beam Laboratory. The Gamma Irradiation Facility and its annex, the Low Dose Rate Irradiation Facility, offer irradiations using Co-60 gamma sources (1.17 and 1.33 MeV), as well as Cs-137 gamma (0.661 MeV) AmBe neutron (0-10 MeV) sources.« less

  14. Health-Related Fitness, Motor Coordination, and Physical and Sedentary Activities of Urban and Rural Children in Suriname.

    PubMed

    Walhain, Fenna; van Gorp, Marloes; Lamur, Kenneth S; Veeger, Dirkjan H E J; Ledebt, Annick

    2016-10-01

    Health-related fitness (HRF) and motor coordination (MC) can be influenced by children's environment and lifestyle behavior. This study evaluates the association between living environment and HRF, MC, and physical and sedentary activities of children in Suriname. Tests were performed for HRF (morphological, muscular, and cardiorespiratory component), gross MC (Körperkoordinations Test für Kinder), fine MC (Movement Assessment Battery for Children), and self-reported activities in 79 urban and 77 rural 7-year-old Maroon children. Urban-rural differences were calculated by an independent sample t test (Mann-Whitney U test if not normally distributed) and χ 2 test. No difference was found in body mass index, muscle strength, and the overall score of gross and fine MC. However, urban children scored lower in HRF on the cardiorespiratory component (P ≤ .001), in gross MC on walking backward (P = .014), and jumping sideways (P = 0.011). They scored higher in the gross MC component moving sideways (P ≤ .001) and lower in fine MC on the trail test (P = .036) and reported significantly more sedentary and fewer physical activities than rural children. Living environment was associated with certain components of HRF, MC, and physical and sedentary activities of 7-year-old children in Suriname. Further research is needed to evaluate the development of urban children to provide information for possible intervention and prevention strategies.

  15. ETR ELECTRICAL BUILDING, TRA648. BATTERY ROOM. INL NEGATIVE NO. 563785. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    ETR ELECTRICAL BUILDING, TRA-648. BATTERY ROOM. INL NEGATIVE NO. 56-3785. Jack L. Anderson, Photographer, 11/26/1956 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  16. Accelerated testing of space batteries

    NASA Technical Reports Server (NTRS)

    Mccallum, J.; Thomas, R. E.; Waite, J. H.

    1973-01-01

    An accelerated life test program for space batteries is presented that fully satisfies empirical, statistical, and physical criteria for validity. The program includes thermal and other nonmechanical stress analyses as well as mechanical stress, strain, and rate of strain measurements.

  17. Battery development and testing at ESA

    NASA Technical Reports Server (NTRS)

    Verniolle, Jean

    1987-01-01

    The principal activities of the Energy Storage Section of the Space Research and Technology Center (ESTEC) of the European Space Agency are presented. Nickel-hydrogen and fuel cell systems development are reported. The European Space Battery Test Center (ESBTC) facilities are briefly described along with the current test programs and results obtained.

  18. 75 FR 1302 - Hazardous Materials: Transportation of Lithium Batteries

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-11

    ... Names D. Watt Hours Versus Equivalent Lithium Content E. Design Type Testing F. Elimination of... in a passenger's checked baggage). 3. Non-compliance--includes faulty design of the battery (cells or... of Tests and Criteria. The group concluded that while the design type tests outlined in the UN Manual...

  19. The Armed Services Vocational Aptitude Battery.

    ERIC Educational Resources Information Center

    Bayroff, Abram G.; Fuchs, Edmund F.

    This study identified Army, Navy, and Air Force classification tests which were interchangeable in terms of abilities and aptitudes measured; and sought to develop shortened forms as an alternative interservice test battery which would not require over 2 1/2 hours. Comparability was determined from test intercorrelations in a consolidated sample…

  20. IADC Vulnerability Report, IT32-13

    NASA Technical Reports Server (NTRS)

    Christiansen, E. L.; Miller, J. E.; Hyde, Jimx

    2016-01-01

    This section provides hypervelocity impact test data for two types of batteries: Lithium-Ion (Li-Ion) and Nickel Hydrogen (Ni-H2) batteries. The impact tests were directed by the NASA Johnson Space Center Hypervelocity Impact Technology (HVIT) group in Houston Texas, and were performed at the NASA White Sands Test Facility (WSTF).

Top