EPA’s Environmental Sampling and Analytical Methods (ESAM) is a website tool that supports the entire environmental characterization process from collection of samples all the way to their analyses.
Contains basic information on the role and origins of the Selected Analytical Methods including the formation of the Homeland Security Laboratory Capacity Work Group and the Environmental Evaluation Analytical Process Roadmap for Homeland Security Events
INTEGRATED ENVIRONMENTAL ASSESSMENT OF THE MID-ATLANTIC REGION WITH ANALYTICAL NETWORK PROCESS
A decision analysis method for integrating environmental indicators was developed. This was a combination of Principal Component Analysis (PCA) and the Analytic Network Process (ANP). Being able to take into account interdependency among variables, the method was capable of ran...
Li, Yan; Thomas, Manoj; Osei-Bryson, Kweku-Muata; Levy, Jason
2016-01-01
With the growing popularity of data analytics and data science in the field of environmental risk management, a formalized Knowledge Discovery via Data Analytics (KDDA) process that incorporates all applicable analytical techniques for a specific environmental risk management problem is essential. In this emerging field, there is limited research dealing with the use of decision support to elicit environmental risk management (ERM) objectives and identify analytical goals from ERM decision makers. In this paper, we address problem formulation in the ERM understanding phase of the KDDA process. We build a DM3 ontology to capture ERM objectives and to inference analytical goals and associated analytical techniques. A framework to assist decision making in the problem formulation process is developed. It is shown how the ontology-based knowledge system can provide structured guidance to retrieve relevant knowledge during problem formulation. The importance of not only operationalizing the KDDA approach in a real-world environment but also evaluating the effectiveness of the proposed procedure is emphasized. We demonstrate how ontology inferencing may be used to discover analytical goals and techniques by conceptualizing Hazardous Air Pollutants (HAPs) exposure shifts based on a multilevel analysis of the level of urbanization (and related economic activity) and the degree of Socio-Economic Deprivation (SED) at the local neighborhood level. The HAPs case highlights not only the role of complexity in problem formulation but also the need for integrating data from multiple sources and the importance of employing appropriate KDDA modeling techniques. Challenges and opportunities for KDDA are summarized with an emphasis on environmental risk management and HAPs. PMID:27983713
Li, Yan; Thomas, Manoj; Osei-Bryson, Kweku-Muata; Levy, Jason
2016-12-15
With the growing popularity of data analytics and data science in the field of environmental risk management, a formalized Knowledge Discovery via Data Analytics (KDDA) process that incorporates all applicable analytical techniques for a specific environmental risk management problem is essential. In this emerging field, there is limited research dealing with the use of decision support to elicit environmental risk management (ERM) objectives and identify analytical goals from ERM decision makers. In this paper, we address problem formulation in the ERM understanding phase of the KDDA process. We build a DM³ ontology to capture ERM objectives and to inference analytical goals and associated analytical techniques. A framework to assist decision making in the problem formulation process is developed. It is shown how the ontology-based knowledge system can provide structured guidance to retrieve relevant knowledge during problem formulation. The importance of not only operationalizing the KDDA approach in a real-world environment but also evaluating the effectiveness of the proposed procedure is emphasized. We demonstrate how ontology inferencing may be used to discover analytical goals and techniques by conceptualizing Hazardous Air Pollutants (HAPs) exposure shifts based on a multilevel analysis of the level of urbanization (and related economic activity) and the degree of Socio-Economic Deprivation (SED) at the local neighborhood level. The HAPs case highlights not only the role of complexity in problem formulation but also the need for integrating data from multiple sources and the importance of employing appropriate KDDA modeling techniques. Challenges and opportunities for KDDA are summarized with an emphasis on environmental risk management and HAPs.
Quantifying the measurement uncertainty of results from environmental analytical methods.
Moser, J; Wegscheider, W; Sperka-Gottlieb, C
2001-07-01
The Eurachem-CITAC Guide Quantifying Uncertainty in Analytical Measurement was put into practice in a public laboratory devoted to environmental analytical measurements. In doing so due regard was given to the provisions of ISO 17025 and an attempt was made to base the entire estimation of measurement uncertainty on available data from the literature or from previously performed validation studies. Most environmental analytical procedures laid down in national or international standards are the result of cooperative efforts and put into effect as part of a compromise between all parties involved, public and private, that also encompasses environmental standards and statutory limits. Central to many procedures is the focus on the measurement of environmental effects rather than on individual chemical species. In this situation it is particularly important to understand the measurement process well enough to produce a realistic uncertainty statement. Environmental analytical methods will be examined as far as necessary, but reference will also be made to analytical methods in general and to physical measurement methods where appropriate. This paper describes ways and means of quantifying uncertainty for frequently practised methods of environmental analysis. It will be shown that operationally defined measurands are no obstacle to the estimation process as described in the Eurachem/CITAC Guide if it is accepted that the dominating component of uncertainty comes from the actual practice of the method as a reproducibility standard deviation.
Environmental Data Flow Six Sigma Process Improvement Savings Overview
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paige, Karen S
An overview of the Environmental Data Flow Six Sigma improvement project covers LANL’s environmental data processing following receipt from the analytical laboratories. The Six Sigma project identified thirty-three process improvements, many of which focused on cutting costs or reducing the time it took to deliver data to clients.
Ultramicroelectrode Array Based Sensors: A Promising Analytical Tool for Environmental Monitoring
Orozco, Jahir; Fernández-Sánchez, César; Jiménez-Jorquera, Cecilia
2010-01-01
The particular analytical performance of ultramicroelectrode arrays (UMEAs) has attracted a high interest by the research community and has led to the development of a variety of electroanalytical applications. UMEA-based approaches have demonstrated to be powerful, simple, rapid and cost-effective analytical tools for environmental analysis compared to available conventional electrodes and standardised analytical techniques. An overview of the fabrication processes of UMEAs, their characterization and applications carried out by the Spanish scientific community is presented. A brief explanation of theoretical aspects that highlight their electrochemical behavior is also given. Finally, the applications of this transducer platform in the environmental field are discussed. PMID:22315551
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sahoo, Satiprasad; Dhar, Anirban, E-mail: anirban.dhar@gmail.com; Kar, Amlanjyoti
Environmental management of an area describes a policy for its systematic and sustainable environmental protection. In the present study, regional environmental vulnerability assessment in Hirakud command area of Odisha, India is envisaged based on Grey Analytic Hierarchy Process method (Grey–AHP) using integrated remote sensing (RS) and geographic information system (GIS) techniques. Grey–AHP combines the advantages of classical analytic hierarchy process (AHP) and grey clustering method for accurate estimation of weight coefficients. It is a new method for environmental vulnerability assessment. Environmental vulnerability index (EVI) uses natural, environmental and human impact related factors, e.g., soil, geology, elevation, slope, rainfall, temperature, windmore » speed, normalized difference vegetation index, drainage density, crop intensity, agricultural DRASTIC value, population density and road density. EVI map has been classified into four environmental vulnerability zones (EVZs) namely: ‘low’, ‘moderate’ ‘high’, and ‘extreme’ encompassing 17.87%, 44.44%, 27.81% and 9.88% of the study area, respectively. EVI map indicates that the northern part of the study area is more vulnerable from an environmental point of view. EVI map shows close correlation with elevation. Effectiveness of the zone classification is evaluated by using grey clustering method. General effectiveness is in between “better” and “common classes”. This analysis demonstrates the potential applicability of the methodology. - Highlights: • Environmental vulnerability zone identification based on Grey Analytic Hierarchy Process (AHP) • The effectiveness evaluation by means of a grey clustering method with support from AHP • Use of grey approach eliminates the excessive dependency on the experience of experts.« less
NASA Astrophysics Data System (ADS)
Drieniková, Katarína; Hrdinová, Gabriela; Naňo, Tomáš; Sakál, Peter
2010-01-01
The paper deals with the analysis of the theory of corporate social responsibility, risk management and the exact method of analytic hierarchic process that is used in the decision-making processes. The Chapters 2 and 3 focus on presentation of the experience with the application of the method in formulating the stakeholders' strategic goals within the Corporate Social Responsibility (CSR) and simultaneously its utilization in minimizing the environmental risks. The major benefit of this paper is the application of Analytical Hierarchy Process (AHP).
Literature Review on Processing and Analytical Methods for ...
Report The purpose of this report was to survey the open literature to determine the current state of the science regarding the processing and analytical methods currently available for recovery of F. tularensis from water and soil matrices, and to determine what gaps remain in the collective knowledge concerning F. tularensis identification from environmental samples.
Relative humidity from psychrometric data
NASA Technical Reports Server (NTRS)
Putnam, T. W.
1976-01-01
Analytical equation for computing relative humidity as function of wet bulb temperature, dry bulb temperature, and atmospheric pressure is suitable for use with calculator or computer. Analytical expressions may be useful for chemical process control systems and building environmental control systems.
A Framework for Integrating Environmental Justice in Regulatory Analysis
Nweke, Onyemaechi C.
2011-01-01
With increased interest in integrating environmental justice into the process for developing environmental regulations in the United States, analysts and decision makers are confronted with the question of what methods and data can be used to assess disproportionate environmental health impacts. However, as a first step to identifying data and methods, it is important that analysts understand what information on equity impacts is needed for decision making. Such knowledge originates from clearly stated equity objectives and the reflection of those objectives throughout the analytical activities that characterize Regulatory Impact Analysis (RIA), a process that is traditionally used to inform decision making. The framework proposed in this paper advocates structuring analyses to explicitly provide pre-defined output on equity impacts. Specifically, the proposed framework emphasizes: (a) defining equity objectives for the proposed regulatory action at the onset of the regulatory process, (b) identifying specific and related sub-objectives for key analytical steps in the RIA process, and (c) developing explicit analytical/research questions to assure that stated sub-objectives and objectives are met. In proposing this framework, it is envisioned that information on equity impacts informs decision-making in regulatory development, and that this is achieved through a systematic and consistent approach that assures linkages between stated equity objectives, regulatory analyses, selection of policy options, and the design of compliance and enforcement activities. PMID:21776235
DOT National Transportation Integrated Search
2001-01-01
In the wake of new Federal guidelines on environmental justice that amplify Title VI of the Civil Rights Act, growing attention has been placed on the need to incorporate environmental justice principles into the processes and products of transportat...
Chang, Chia-Ling; Chao, Yu-Chi
2012-05-01
Every year, Taiwan endures typhoons and earthquakes; these natural hazards often induce landslides and debris flows. Therefore, watershed management strategies must consider the environmental vulnerabilities of local basins. Because many factors affect basin ecosystems, this study applied multiple criteria analysis and the analytical hierarchy process (AHP) to evaluate seven criteria in three phases (geographic phase, hydrologic phase, and societal phase). This study focused on five major basins in Taiwan: the Tan-Shui River Basin, the Ta-Chia River Basin, the Cho-Shui River Basin, the Tseng-Wen River Basin, and the Kao-Ping River Basin. The objectives were a comprehensive examination of the environmental characteristics of these basins and a comprehensive assessment of their environmental vulnerabilities. The results of a survey and AHP analysis showed that landslide area is the most important factor for basin environmental vulnerability. Of all these basins, the Cho-Shui River Basin in central Taiwan has the greatest environmental vulnerability.
Environmental management strategy: four forces analysis.
Doyle, Martin W; Von Windheim, Jesko
2015-01-01
We develop an analytical approach for more systematically analyzing environmental management problems in order to develop strategic plans. This approach can be deployed by agencies, non-profit organizations, corporations, or other organizations and institutions tasked with improving environmental quality. The analysis relies on assessing the underlying natural processes followed by articulation of the relevant societal forces causing environmental change: (1) science and technology, (2) governance, (3) markets and the economy, and (4) public behavior. The four forces analysis is then used to strategize which types of actions might be most effective at influencing environmental quality. Such strategy has been under-used and under-valued in environmental management outside of the corporate sector, and we suggest that this four forces analysis is a useful analytic to begin developing such strategy.
Environmental Management Strategy: Four Forces Analysis
NASA Astrophysics Data System (ADS)
Doyle, Martin W.; Von Windheim, Jesko
2015-01-01
We develop an analytical approach for more systematically analyzing environmental management problems in order to develop strategic plans. This approach can be deployed by agencies, non-profit organizations, corporations, or other organizations and institutions tasked with improving environmental quality. The analysis relies on assessing the underlying natural processes followed by articulation of the relevant societal forces causing environmental change: (1) science and technology, (2) governance, (3) markets and the economy, and (4) public behavior. The four forces analysis is then used to strategize which types of actions might be most effective at influencing environmental quality. Such strategy has been under-used and under-valued in environmental management outside of the corporate sector, and we suggest that this four forces analysis is a useful analytic to begin developing such strategy.
Environmental Risk Assessment System for Phosphogypsum Tailing Dams
Sun, Xin; Tang, Xiaolong; Yi, Honghong; Li, Kai; Zhou, Lianbi; Xu, Xianmang
2013-01-01
This paper may be of particular interest to the readers as it provides a new environmental risk assessment system for phosphogypsum tailing dams. In this paper, we studied the phosphogypsum tailing dams which include characteristics of the pollution source, environmental risk characteristics and evaluation requirements to identify the applicable environmental risk assessment methods. Two analytical methods, that is, the analytic hierarchy process (AHP) and fuzzy logic, were used to handle the complexity of the environmental and nonquantitative data. Using our assessment method, different risk factors can be ranked according to their contributions to the environmental risk, thereby allowing the calculation of their relative priorities during decision making. Thus, environmental decision-makers can use this approach to develop alternative management strategies for proposed, ongoing, and completed PG tailing dams. PMID:24382947
Environmental risk assessment system for phosphogypsum tailing dams.
Sun, Xin; Ning, Ping; Tang, Xiaolong; Yi, Honghong; Li, Kai; Zhou, Lianbi; Xu, Xianmang
2013-01-01
This paper may be of particular interest to the readers as it provides a new environmental risk assessment system for phosphogypsum tailing dams. In this paper, we studied the phosphogypsum tailing dams which include characteristics of the pollution source, environmental risk characteristics and evaluation requirements to identify the applicable environmental risk assessment methods. Two analytical methods, that is, the analytic hierarchy process (AHP) and fuzzy logic, were used to handle the complexity of the environmental and nonquantitative data. Using our assessment method, different risk factors can be ranked according to their contributions to the environmental risk, thereby allowing the calculation of their relative priorities during decision making. Thus, environmental decision-makers can use this approach to develop alternative management strategies for proposed, ongoing, and completed PG tailing dams.
BIOMOLECULAR SENSING FOR BIOLOGICAL PROCESSES AND ENVIRONMENTAL MONITORING APPLICATIONS
Biomolecular recognition is being increasingly employed as the basis for a variety of analytical methods such as biosensors. he sensitivity, selectivity, and format versatility inherent in these methods may allow them to be adapted to solving a number of analytical problems. ltho...
Green Chemistry Metrics with Special Reference to Green Analytical Chemistry.
Tobiszewski, Marek; Marć, Mariusz; Gałuszka, Agnieszka; Namieśnik, Jacek
2015-06-12
The concept of green chemistry is widely recognized in chemical laboratories. To properly measure an environmental impact of chemical processes, dedicated assessment tools are required. This paper summarizes the current state of knowledge in the field of development of green chemistry and green analytical chemistry metrics. The diverse methods used for evaluation of the greenness of organic synthesis, such as eco-footprint, E-Factor, EATOS, and Eco-Scale are described. Both the well-established and recently developed green analytical chemistry metrics, including NEMI labeling and analytical Eco-scale, are presented. Additionally, this paper focuses on the possibility of the use of multivariate statistics in evaluation of environmental impact of analytical procedures. All the above metrics are compared and discussed in terms of their advantages and disadvantages. The current needs and future perspectives in green chemistry metrics are also discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bereketli Zafeirakopoulos, Ilke, E-mail: ibereketli@gsu.edu.tr; Erol Genevois, Mujde, E-mail: merol@gsu.edu.tr
Life Cycle Assessment is a tool to assess, in a systematic way, the environmental aspects and its potential environmental impacts and resources used throughout a product's life cycle. It is widely accepted and considered as one of the most powerful tools to support decision-making processes used in ecodesign and sustainable production in order to learn about the most problematic parts and life cycle phases of a product and to have a projection for future improvements. However, since Life Cycle Assessment is a cost and time intensive method, companies do not intend to carry out a full version of it, exceptmore » for large corporate ones. Especially for small and medium sized enterprises, which do not have enough budget for and knowledge on sustainable production and ecodesign approaches, focusing only on the most important possible environmental aspect is unavoidable. In this direction, finding the right environmental aspect to work on is crucial for the companies. In this study, a multi-criteria decision-making methodology, Analytic Network Process is proposed to select the most relevant environmental aspect. The proposed methodology aims at providing a simplified environmental assessment to producers. It is applied for a hand blender, which is a member of the Electrical and Electronic Equipment family. The decision criteria for the environmental aspects and relations of dependence are defined. The evaluation is made by the Analytic Network Process in order to create a realistic approach to inter-dependencies among the criteria. The results are computed via the Super Decisions software. Finally, it is observed that the procedure is completed in less time, with less data, with less cost and in a less subjective way than conventional approaches. - Highlights: • We present a simplified environmental assessment methodology to support LCA. • ANP is proposed to select the most relevant environmental aspect. • ANP deals well with the interdependencies between aspects and impacts. • The methodology is less subjective, less complicated, and less time–money consuming. • The proposed methodology is suitable for use by SMEs.« less
A foundation for Environmental Science - Mass Spectrometry: Historically fundamental to amassing our understanding of environmental processes and chemical pollution is the realm of mass spectrometry - the mainstay of analytical chemistry - the workhorse that supplies much of the...
Historically fundamental to amassing our understanding of environmental processes and chemical pollution is the realm of mass spectrometry (MS) - the mainstay of analytical
chemistry - the workhorse that supplies definitive data that environmental scientists and engineers...
Teaching Complex Concepts in the Geosciences by Integrating Analytical Reasoning with GIS
ERIC Educational Resources Information Center
Houser, Chris; Bishop, Michael P.; Lemmons, Kelly
2017-01-01
Conceptual models have long served as a means for physical geographers to organize their understanding of feedback mechanisms and complex systems. Analytical reasoning provides undergraduate students with an opportunity to develop conceptual models based upon their understanding of surface processes and environmental conditions. This study…
Multi-criteria decision analysis for waste management in Saharawi refugee camps
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garfi, M.; Tondelli, S.; Bonoli, A.
2009-10-15
The aim of this paper is to compare different waste management solutions in Saharawi refugee camps (Algeria) and to test the feasibility of a decision-making method developed to be applied in particular conditions in which environmental and social aspects must be considered. It is based on multi criteria analysis, and in particular on the analytic hierarchy process (AHP), a mathematical technique for multi-criteria decision making (Saaty, T.L., 1980. The Analytic Hierarchy Process. McGraw-Hill, New York, USA; Saaty, T.L., 1990. How to Make a Decision: The Analytic Hierarchy Process. European Journal of Operational Research; Saaty, T.L., 1994. Decision Making for Leaders:more » The Analytic Hierarchy Process in a Complex World. RWS Publications, Pittsburgh, PA), and on participatory approach, focusing on local community's concerns. The research compares four different waste collection and management alternatives: waste collection by using three tipper trucks, disposal and burning in an open area; waste collection by using seven dumpers and disposal in a landfill; waste collection by using seven dumpers and three tipper trucks and disposal in a landfill; waste collection by using three tipper trucks and disposal in a landfill. The results show that the second and the third solutions provide better scenarios for waste management. Furthermore, the discussion of the results points out the multidisciplinarity of the approach, and the equilibrium between social, environmental and technical impacts. This is a very important aspect in a humanitarian and environmental project, confirming the appropriateness of the chosen method.« less
The purpose of this workshop was to gather a small group of economists, regulatory experts, and EJ community leaders to discuss methods for incorporating EJ analyses into EPA’s regulatory process. Sessions addressed multiple EPA programs and EJ methods.
Stationary Size Distributions of Growing Cells with Binary and Multiple Cell Division
NASA Astrophysics Data System (ADS)
Rading, M. M.; Engel, T. A.; Lipowsky, R.; Valleriani, A.
2011-10-01
Populations of unicellular organisms that grow under constant environmental conditions are considered theoretically. The size distribution of these cells is calculated analytically, both for the usual process of binary division, in which one mother cell produces always two daughter cells, and for the more complex process of multiple division, in which one mother cell can produce 2 n daughter cells with n=1,2,3,… . The latter mode of division is inspired by the unicellular algae Chlamydomonas reinhardtii. The uniform response of the whole population to different environmental conditions is encoded in the individual rates of growth and division of the cells. The analytical treatment of the problem is based on size-dependent rules for cell growth and stochastic transition processes for cell division. The comparison between binary and multiple division shows that these different division processes lead to qualitatively different results for the size distribution and the population growth rates.
Duester, Lars; Fabricius, Anne-Lena; Jakobtorweihen, Sven; Philippe, Allan; Weigl, Florian; Wimmer, Andreas; Schuster, Michael; Nazar, Muhammad Faizan
2016-11-01
Coacervate-based techniques are intensively used in environmental analytical chemistry to enrich and extract different kinds of analytes. Most methods focus on the total content or the speciation of inorganic and organic substances. Size fractionation is less commonly addressed. Within coacervate-based techniques, cloud point extraction (CPE) is characterized by a phase separation of non-ionic surfactants dispersed in an aqueous solution when the respective cloud point temperature is exceeded. In this context, the feature article raises the following question: May CPE in future studies serve as a key tool (i) to enrich and extract nanoparticles (NPs) from complex environmental matrices prior to analyses and (ii) to preserve the colloidal status of unstable environmental samples? With respect to engineered NPs, a significant gap between environmental concentrations and size- and element-specific analytical capabilities is still visible. CPE may support efforts to overcome this "concentration gap" via the analyte enrichment. In addition, most environmental colloidal systems are known to be unstable, dynamic, and sensitive to changes of the environmental conditions during sampling and sample preparation. This delivers a so far unsolved "sample preparation dilemma" in the analytical process. The authors are of the opinion that CPE-based methods have the potential to preserve the colloidal status of these instable samples. Focusing on NPs, this feature article aims to support the discussion on the creation of a convention called the "CPE extractable fraction" by connecting current knowledge on CPE mechanisms and on available applications, via the uncertainties visible and modeling approaches available, with potential future benefits from CPE protocols.
NASA Astrophysics Data System (ADS)
Johnson, S. P.; Rohrer, M. E.
2017-12-01
The application of scientific research pertaining to satellite imaging and data processing has facilitated the development of dynamic methodologies and tools that utilize nanosatellites and analytical platforms to address the increasing scope, scale, and intensity of emerging environmental threats to national security. While the use of remotely sensed data to monitor the environment at local and global scales is not a novel proposition, the application of advances in nanosatellites and analytical platforms are capable of overcoming the data availability and accessibility barriers that have historically impeded the timely detection, identification, and monitoring of these stressors. Commercial and university-based applications of these technologies were used to identify and evaluate their capacity as security-motivated environmental monitoring tools. Presently, nanosatellites can provide consumers with 1-meter resolution imaging, frequent revisits, and customizable tasking, allowing users to define an appropriate temporal scale for high resolution data collection that meets their operational needs. Analytical platforms are capable of ingesting increasingly large and diverse volumes of data, delivering complex analyses in the form of interpretation-ready data products and solutions. The synchronous advancement of these technologies creates the capability of analytical platforms to deliver interpretable products from persistently collected high-resolution data that meet varying temporal and geographic scale requirements. In terms of emerging environmental threats, these advances translate into customizable and flexible tools that can respond to and accommodate the evolving nature of environmental stressors. This presentation will demonstrate the capability of nanosatellites and analytical platforms to provide timely, relevant, and actionable information that enables environmental analysts and stakeholders to make informed decisions regarding the prevention, intervention, and prediction of emerging environmental threats.
We present a new approach for characterizing the potential of scientific studies to reduce conflict among stakeholders in an analytic-deliberative environmental decision-making process. The approach computes a normalized metric, the Expected Consensus Index of New Research (ECINR...
A fuzzy decision analysis method for integrating ecological indicators is developed. This is a combination of a fuzzy ranking method and the Analytic Hierarchy Process (AHP). The method is capable ranking ecosystems in terms of environmental conditions and suggesting cumula...
The geospatial modeling interface (GMI) framework for deploying and assessing environmental models
USDA-ARS?s Scientific Manuscript database
Geographical information systems (GIS) software packages have been used for close to three decades as analytical tools in environmental management for geospatial data assembly, processing, storage, and visualization of input data and model output. However, with increasing availability and use of ful...
Validating Performance Level Descriptors (PLDs) for the AP® Environmental Science Exam
ERIC Educational Resources Information Center
Reshetar, Rosemary; Kaliski, Pamela; Chajewski, Michael; Lionberger, Karen
2012-01-01
This presentation summarizes a pilot study conducted after the May 2011 administration of the AP Environmental Science Exam. The study used analytical methods based on scaled anchoring as input to a Performance Level Descriptor validation process that solicited systematic input from subject matter experts.
Non-hazardous solid materials from industrial processes, once regarded as waste and disposed in landfills, offer numerous environmental and economic advantages when put to beneficial uses (BUs). Proper management of these industrial non-hazardous secondary materials (INSM) requir...
Analytic Hierarchy Process for Personalising Environmental Information
ERIC Educational Resources Information Center
Kabassi, Katerina
2014-01-01
This paper presents how a Geographical Information System (GIS) can be incorporated in an intelligent learning software system for environmental matters. The system is called ALGIS and incorporates the GIS in order to present effectively information about the physical and anthropogenic environment of Greece in a more interactive way. The system…
Analytical framework and tool kit for SEA follow-up
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nilsson, Mans; Wiklund, Hans; Finnveden, Goeran
2009-04-15
Most Strategic Environmental Assessment (SEA) research and applications have so far neglected the ex post stages of the process, also called SEA follow-up. Tool kits and methodological frameworks for engaging effectively with SEA follow-up have been conspicuously missing. In particular, little has so far been learned from the much more mature evaluation literature although many aspects are similar. This paper provides an analytical framework and tool kit for SEA follow-up. It is based on insights and tools developed within programme evaluation and environmental systems analysis. It is also grounded in empirical studies into real planning and programming practices at themore » regional level, but should have relevance for SEA processes at all levels. The purpose of the framework is to promote a learning-oriented and integrated use of SEA follow-up in strategic decision making. It helps to identify appropriate tools and their use in the process, and to systematise the use of available data and knowledge across the planning organization and process. It distinguishes three stages in follow-up: scoping, analysis and learning, identifies the key functions and demonstrates the informational linkages to the strategic decision-making process. The associated tool kit includes specific analytical and deliberative tools. Many of these are applicable also ex ante, but are then used in a predictive mode rather than on the basis of real data. The analytical element of the framework is organized on the basis of programme theory and 'DPSIR' tools. The paper discusses three issues in the application of the framework: understanding the integration of organizations and knowledge; understanding planners' questions and analytical requirements; and understanding interests, incentives and reluctance to evaluate.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gałuszka, Agnieszka, E-mail: Agnieszka.Galuszka@ujk.edu.pl; Migaszewski, Zdzisław M.; Namieśnik, Jacek
The recent rapid progress in technology of field portable instruments has increased their applications in environmental sample analysis. These instruments offer a possibility of cost-effective, non-destructive, real-time, direct, on-site measurements of a wide range of both inorganic and organic analytes in gaseous, liquid and solid samples. Some of them do not require the use of reagents and do not produce any analytical waste. All these features contribute to the greenness of field portable techniques. Several stationary analytical instruments have their portable versions. The most popular ones include: gas chromatographs with different detectors (mass spectrometer (MS), flame ionization detector, photoionization detector),more » ultraviolet–visible and near-infrared spectrophotometers, X-ray fluorescence spectrometers, ion mobility spectrometers, electronic noses and electronic tongues. The use of portable instruments in environmental sample analysis gives a possibility of on-site screening and a subsequent selection of samples for routine laboratory analyses. They are also very useful in situations that require an emergency response and for process monitoring applications. However, quantification of results is still problematic in many cases. The other disadvantages include: higher detection limits and lower sensitivity than these obtained in laboratory conditions, a strong influence of environmental factors on the instrument performance and a high possibility of sample contamination in the field. This paper reviews recent applications of field portable instruments in environmental sample analysis and discusses their analytical capabilities. - Highlights: • Field portable instruments are widely used in environmental sample analysis. • Field portable instruments are indispensable for analysis in emergency response. • Miniaturization of field portable instruments reduces resource consumption. • In situ analysis is in agreement with green analytical chemistry principles. • Performance requirements in field analysis stimulate technological progress.« less
"EMERGING" POLLUTANTS, AND COMMUNICATING THE ...
This paper weaves a rnulti-dimensioned perspective of mass spectrometry as a career against the backdrop of mass spectrometry's key role in the past and future of environmental chemistry. Along the way, some insights are offered for better focusing the spotlight on the discipline of mass spectrometry. A Foundation for Environmental Science-Mass Spectrometry Historically fundamental to our understanding of environmental processes and chemical pollution is mass spectrometry. This branch of analytical chemistry is the workhorse which supplies much of the definitive data to environmental scientists and engineers for identifying the molecular compositions, and ultimately the structures, of chemicals. This is not to ignore the complementary and critical roles played by the adjunct practices of sample enrichment (e.g., to lower method detection limits via any of various means of selective extraction) and analyte separation (e.g., to lessen contaminant interferences via the myriad forms of chromatography and electrophoresis). While the power of mass spectrometry has long been highly visible to the practicing environmental chemist, it borders on continued obscurity to the lay public and most non-chemists. Even though mass spectrometry has played a long, historic and Largely invisible role in establishing or undergirding our existing knowledge about environmental processes and pollution, what recognition it does enjoy is usually relegated to that of a tool. It is usually
The rise of environmental analytical chemistry as an interdisciplinary activity.
Brown, Richard
2009-07-01
Modern scientific endeavour is increasingly delivered within an interdisciplinary framework. Analytical environmental chemistry is a long-standing example of an interdisciplinary approach to scientific research where value is added by the close cooperation of different disciplines. This editorial piece discusses the rise of environmental analytical chemistry as an interdisciplinary activity and outlines the scope of the Analytical Chemistry and the Environmental Chemistry domains of TheScientificWorldJOURNAL (TSWJ), and the appropriateness of TSWJ's domain format in covering interdisciplinary research. All contributions of new data, methods, case studies, and instrumentation, or new interpretations and developments of existing data, case studies, methods, and instrumentation, relating to analytical and/or environmental chemistry, to the Analytical and Environmental Chemistry domains, are welcome and will be considered equally.
An analytical method for 14C in environmental water based on a wet-oxidation process.
Huang, Yan-Jun; Guo, Gui-Yin; Wu, Lian-Sheng; Zhang, Bing; Chen, Chao-Feng; Zhang, Hai-Ying; Qin, Hong-Juan; Shang-Guan, Zhi-Hong
2015-04-01
An analytical method for (14)C in environmental water based on a wet-oxidation process was developed. The method can be used to determine the activity concentrations of organic and inorganic (14)C in environmental water, or total (14)C, including in drinking water, surface water, rainwater and seawater. The wet-oxidation of the organic component allows the conversion of organic carbon to an inorganic form, and the extraction of the inorganic (14)C can be achieved by acidification and nitrogen purging. Environmental water with a volume of 20 L can be used for the wet-oxidation and extraction, and a detection limit of about 0.02 Bq/g(C) can be achieved for water with carbon content above 15 mg(C)/L, obviously lower than the natural level of (14)C in the environment. The collected carbon is sufficient for measurement with a low level liquid scintillation counter (LSC) for typical samples. Extraction or recovery experiments for inorganic carbon and organic carbon from typical materials, including analytical reagents of organic benzoquinone, sucrose, glutamic acid, nicotinic acid, humic acid, ethane diol, et cetera., were conducted with excellent results based on measurement on a total organic carbon analyzer and LSC. The recovery rate for inorganic carbon ranged tween 98.7%-99.0% with a mean of 98.9(± 0.1)%, for organic carbon recovery ranged between 93.8% and 100.0% with a mean of 97.1(± 2.6)%. Verification and an uncertainty budget of the method are also presented for a representative environmental water. The method is appropriate for (14)C analysis in environmental water, and can be applied also to the analysis of liquid effluent from nuclear facilities. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Gradziński, Piotr
2017-10-01
Whereas World’s climate is changing (inter alia, under the influence of architecture activity), the author attempts to reorientations design practice primarily in a direction the use and adapt to the climatic conditions. Architectural Design using in early stages of the architectural Design Process of the building, among other Life Cycle Analysis (LCA) and digital analytical tools BIM (Building Information Modelling) defines the overriding requirements which the designer/architect should meet. The first part, the text characterized the architecture activity influences (by consumption, pollution, waste, etc.) and the use of building materials (embodied energy, embodied carbon, Global Warming Potential, etc.) within the meaning of the direct negative environmental impact. The second part, the paper presents the revision of the methods and analytical techniques prevent negative influences. Firstly, showing the study of the building by using the Life Cycle Analysis of the structure (e.g. materials) and functioning (e.g. energy consumptions) of the architectural object (stages: before use, use, after use). Secondly, the use of digital analytical tools for determining the benefits of running multi-faceted simulations in terms of environmental factors (exposure to light, shade, wind) directly affecting shaping the form of the building. The conclusion, author’s research results highlight the fact that indicates the possibility of building design using the above-mentioned elements (LCA, BIM) causes correction, early designs decisions in the design process of architectural form, minimizing the impact on nature, environment. The work refers directly to the architectural-environmental dimensions, orienting the design process of buildings in respect of widely comprehended climatic changes.
Book review of "Biophysical Chemistry of Fractal Structures and Processes in Environmental Systems"
USDA-ARS?s Scientific Manuscript database
The editors are N. Senesi and K.J. Wilkinson, and the book is published in 2008 by John Wiley and Sons, with 323 pages. This book is part of the IUPAC series on “Analytical and physical chemistry of environmental systems.” Nineteen generally well-known fractal scientists have contributed to this vol...
Liem T. Tran; C. Gregory Knight; Robert V. O' Neill; Elizabeth R. Smith; Kurt H. Riitters; James D. Wickham
2002-01-01
A fuzzy decision analysis method for integrating ecological indicators was developed. This was a combination of a fuzzy ranking method and the analytic hierarchy process (AHP). The method was capable of ranking ecosystems in terms of environmental conditions and suggesting cumulative impacts across a large region. Using data on land cover, population, roads, streams,...
Gałuszka, Agnieszka; Migaszewski, Zdzisław M; Namieśnik, Jacek
2015-07-01
The recent rapid progress in technology of field portable instruments has increased their applications in environmental sample analysis. These instruments offer a possibility of cost-effective, non-destructive, real-time, direct, on-site measurements of a wide range of both inorganic and organic analytes in gaseous, liquid and solid samples. Some of them do not require the use of reagents and do not produce any analytical waste. All these features contribute to the greenness of field portable techniques. Several stationary analytical instruments have their portable versions. The most popular ones include: gas chromatographs with different detectors (mass spectrometer (MS), flame ionization detector, photoionization detector), ultraviolet-visible and near-infrared spectrophotometers, X-ray fluorescence spectrometers, ion mobility spectrometers, electronic noses and electronic tongues. The use of portable instruments in environmental sample analysis gives a possibility of on-site screening and a subsequent selection of samples for routine laboratory analyses. They are also very useful in situations that require an emergency response and for process monitoring applications. However, quantification of results is still problematic in many cases. The other disadvantages include: higher detection limits and lower sensitivity than these obtained in laboratory conditions, a strong influence of environmental factors on the instrument performance and a high possibility of sample contamination in the field. This paper reviews recent applications of field portable instruments in environmental sample analysis and discusses their analytical capabilities. Copyright © 2015 Elsevier Inc. All rights reserved.
Environmental Sampling & Analytical Methods (ESAM) Program - Home
ESAM is a comprehensive program to facilitate a coordinated response to a chemical, radiochemical, biotoxin or pathogen contamination incident focusing on sample collection, processing, and analysis to provide quality results to the field.
Planning for Success: Integrating Analysis with Decision Making.
ERIC Educational Resources Information Center
Goho, James; Webb, Ken
2003-01-01
Describes a successful strategic planning process at a large community college, which linked the analytic inputs of research with the authority and intuition of leaders. Reports key factors attributed to the process' success, including a collegial and organized structure, detailed project management plans, and confidence in the environmental scan.…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moran, James; Alexander, Thomas; Aalseth, Craig
2017-08-01
Previous measurements have demonstrated the wealth of information that tritium (T) can provide on environmentally relevant processes. We present modifications to sample preparation approaches that enable T measurement by proportional counting on small sample sizes equivalent to 120 mg of water and demonstrate the accuracy of these methods on a suite of standardized water samples. This enhanced method should provide the analytical flexibility needed to address persistent knowledge gaps in our understanding of T behavior in the environment.
NASA Astrophysics Data System (ADS)
Yang, Yu-Xiang; Chen, Fei-Yang; Tong, Tong
According to the characteristic of e-waste reverse logistics, environmental performance evaluation system of electronic waste reverse logistics enterprise is proposed. We use fuzzy analytic hierarchy process method to evaluate the system. In addition, this paper analyzes the enterprise X, as an example, to discuss the evaluation method. It's important to point out attributes and indexes which should be strengthen during the process of ewaste reverse logistics and provide guidance suggestions to domestic e-waste reverse logistics enterprises.
Analysis of Environmental Contamination resulting from ...
Catastrophic incidents can generate a large number of samples with analytically diverse types including forensic, clinical, environmental, food, and others. Environmental samples include water, wastewater, soil, air, urban building and infrastructure materials, and surface residue. Such samples may arise not only from contamination from the incident but also from the multitude of activities surrounding the response to the incident, including decontamination. This document summarizes a range of activities to help build laboratory capability in preparation for analysis following a catastrophic incident, including selection and development of fit-for-purpose analytical methods for chemical, biological, and radiological contaminants. Fit-for-purpose methods are those which have been selected to meet project specific data quality objectives. For example, methods could be fit for screening contamination in the early phases of investigation of contamination incidents because they are rapid and easily implemented, but those same methods may not be fit for the purpose of remediating the environment to safe levels when a more sensitive method is required. While the exact data quality objectives defining fitness-for-purpose can vary with each incident, a governing principle of the method selection and development process for environmental remediation and recovery is based on achieving high throughput while maintaining high quality analytical results. This paper illu
DOE Office of Scientific and Technical Information (OSTI.GOV)
King, A.G.
The Pacific Northwest Laboratory (PNL)/Analytical Chemistry Laboratory (ACL) and the Westinghouse Hanford Company (WHC)/Process Analytical Laboratory (PAL) provide analytical support services to various environmental restoration and waste management projects/programs at Hanford. In response to a US Department of Energy -- Richland Field Office (DOE-RL) audit, which questioned the comparability of analytical methods employed at each laboratory, the Sample Exchange/Exchange (SEE) program was initiated. The SEE Program is a selfassessment program designed to compare analytical methods of the PAL and ACL laboratories using sitespecific waste material. The SEE program is managed by a collaborative, the Quality Assurance Triad (Triad). Triad membershipmore » is made up of representatives from the WHC/PAL, PNL/ACL, and WHC Hanford Analytical Services Management (HASM) organizations. The Triad works together to design/evaluate/implement each phase of the SEE Program.« less
Study on environment detection and appraisement of mining area with RS
NASA Astrophysics Data System (ADS)
Yang, Fengjie; Hou, Peng; Zhou, Guangzhu; Li, Qingting; Wang, Jie; Cheng, Jianguang
2006-12-01
In this paper, the big coal mining area Yanzhou is selected as the typical research area. According to the special dynamic change characteristic of the environment in the mining area, the environmental dynamic changes are timely monitored with the remote sensing detection technology. Environmental special factors, such as vegetation, water, air, land-over, are extracted by the professional remote sensing image processing software, then the spatial information is managed and analyzed in the geographical information system (GIS) software. As the result, the dynamic monitor and query for change information is achieved, and the special environmental factor dynamic change maps are protracted. On the base of the data coming from the remote sensing image, GIS and the traditional environment monitoring, the environmental quality is appraised with the method of indistinct matrix analysis, the multi-index and the analytical hierarchy process. At last, those provide the credible science foundation for the local environment appraised and the sustained development. In addition, this paper apply the hyper spectrum graphs by the FieldSpec Pro spectroradiometer, together with the analytical data from environmental chemical, to study the growth of vegetation which were seed in the land-over consisting of gangue, which is a new method to study the impact to vegetation that are growing in the soil.
"EMERGING" POLLUTANTS, MASS SPECTROMETRY, AND ...
A foundation for Environmental Science - Mass Spectrometry: Historically fundamental to amassing our understanding of environmental processes and chemical pollution is the realm of mass spectrometry - the mainstay of analytical chemistry - the workhorse that supplies much of the definitive data that environmental scientists rely upon for identifying the molecular compositions (and ultimately the structures) of chemicals. This is not to ignore the complementary, critical roles played by the adjunct practices of sample enrichment (via any of various means of selective extraction) and analyte separation (via the myriad forms of chromatography and electrophoresis).While the power of mass spectrometry has long been highly visible to the practicing environmental chemist, it borders on continued obscurity to the lay public and most non-chemists. Even though mass spectrometry has played a long, historic (and largely invisible) role in establishing or undergirdidng our existing knowledge about environmental processes and pollution, what recognition it does enjoy is usually relegated to that of a tool. It is ususally the relevance of ssignificance of the knowledge acquired from the application of the tool that has ultimate meaning to the public and science at large - not how the knowledge was acquired. The research focused on in the subtasks is the development and application of state-of the-art technologies to meet the needs of the public, Office of Water, and ORD in
SAM Radiochemical Methods Query
Laboratories measuring target radiochemical analytes in environmental samples can use this online query tool to identify analytical methods in EPA's Selected Analytical Methods for Environmental Remediation and Recovery for select radiochemical analytes.
Furukawa, Koji; Hashimoto, Makoto; Kaneco, Satoshi
2017-01-01
A rapid determination of aniline in environmental water was examined based on liquid chromatography/tandem mass spectrometry (LC/MS/MS). Environmental water samples were diluted 20-fold with Mill-Q water and measured by LC/MS/MS after adding a surrogate substance (aniline-d 5 ). In the results of the present study, the calibration curve of aniline showed good linearity in the range of 0.05 - 2.0 μg/L. Since the RSD (repeatability) by measuring repeatedly an aniline standard solution (0.05 μg/L, n = 7) was 3.2%, the repeatability of this work was very excellent. In addition, the recovery rate of aniline in environmental water was in the range of 99.0 - 102% with RSD 3.4 - 7.7%, and very good recovery test results were obtained. From these results, this analytical method was confirmed to be effective for aniline measurements of environmental water samples. Also, it is possible to conduct rapid analyses of aniline in environmental water without any solid-phase extraction process, compared to the solid-phase extraction-GC/MS method.
Vizzari, Marco; Modica, Giuseppe
2013-10-01
Environmental issues related to swine production are still a major concern for the general public and represent a key challenge for the swine industry. The environmental impact of higher livestock concentration is particularly significant where it coincides with weaker policy standards and poor manure management. Effective tools for environmental monitoring of the swine sewage management process become essential for verifying the environmental compatibility of farming facilities and for defining suitable policies aimed at increasing swine production sustainability. This research aims at the development and application of a model for a quick assessment of the environmental effectiveness of the pig farming sewage management process. In order to define the model, multicriteria techniques, and in particular, Saaty's analytic hierarchy process, were used to develop an iterative process in which the various key factors influencing the process under investigation were analyzed. The model, named EASE (Environmental Assessment of Sewages management Effectiveness), was optimized and applied to the Lake Trasimeno basin (Umbria, Italy), an area of high natural, environmental and aesthetic value. In this context, inadequate disposal of pig sewage represents a potential source of very considerable pollution. The results have demonstrated how the multicriteria model can represent a very effective and adaptable tool also in those decision-making processes aimed at the sustainable management of livestock production.
NASA Astrophysics Data System (ADS)
Vizzari, Marco; Modica, Giuseppe
2013-10-01
Environmental issues related to swine production are still a major concern for the general public and represent a key challenge for the swine industry. The environmental impact of higher livestock concentration is particularly significant where it coincides with weaker policy standards and poor manure management. Effective tools for environmental monitoring of the swine sewage management process become essential for verifying the environmental compatibility of farming facilities and for defining suitable policies aimed at increasing swine production sustainability. This research aims at the development and application of a model for a quick assessment of the environmental effectiveness of the pig farming sewage management process. In order to define the model, multicriteria techniques, and in particular, Saaty's analytic hierarchy process, were used to develop an iterative process in which the various key factors influencing the process under investigation were analyzed. The model, named EASE (Environmental Assessment of Sewages management Effectiveness), was optimized and applied to the Lake Trasimeno basin (Umbria, Italy), an area of high natural, environmental and aesthetic value. In this context, inadequate disposal of pig sewage represents a potential source of very considerable pollution. The results have demonstrated how the multicriteria model can represent a very effective and adaptable tool also in those decision-making processes aimed at the sustainable management of livestock production.
The Gradient Paradigm: A conceptual and analytical framework for landscape ecology [Chapter 5
Samuel A. Cushman; Kevin Gutzweiler; Jeffrey S. Evans; Kevin McGarigal
2010-01-01
Landscape ecology deals fundamentally with how, when, and why patterns of environmental factors influence the distribution of organisms and ecological processes, and reciprocally, how the actions of organisms and ecological processes influence ecological patterns (Urban et al. 1991; Turner 1989). The landscape ecologist's goal is to determine where and when...
Park, In-Sun; Park, Jae-Woo
2011-01-30
Total petroleum hydrocarbon (TPH) is an important environmental contaminant that is toxic to human and environmental receptors. However, human health risk assessment for petroleum, oil, and lubricant (POL)-contaminated sites is especially challenging because TPH is not a single compound, but rather a mixture of numerous substances. To address this concern, this study recommends a new human health risk assessment strategy for POL-contaminated sites. The strategy is based on a newly modified TPH fractionation method and includes an improved analytical protocol. The proposed TPH fractionation method is composed of ten fractions (e.g., aliphatic and aromatic EC8-10, EC10-12, EC12-16, EC16-22 and EC22-40). Physicochemical properties and toxicity values of each fraction were newly defined in this study. The stepwise ultrasonication-based analytical process was established to measure TPH fractions. Analytical results were compared with those from the TPH Criteria Working Group (TPHCWG) Direct Method. Better analytical efficiencies in TPH, aliphatic, and aromatic fractions were achieved when contaminated soil samples were analyzed with the new analytical protocol. Finally, a human health risk assessment was performed based on the developed tiered risk assessment framework. Results showed that a detailed quantitative risk assessment should be conducted to determine scientifically and economically appropriate cleanup target levels, although the phase II process is useful for determining the potency of human health risks posed by POL-contamination. Copyright © 2010 Elsevier B.V. All rights reserved.
EXAMPLES OF THE ROLE OF ANALYTICAL CHEMISTRY IN ENVIRONMENTAL RISK MANAGEMENT RESEARCH
Analytical chemistry is an important tier of environmental protection and has been traditionally linked to compliance and/or exposure monitoring activities for environmental contaminants. The adoption of the risk management paradigm has led to special challenges for analytical ch...
NASA Astrophysics Data System (ADS)
Tuzkaya, Umut R.; Eser, Arzum; Argon, Goner
2004-02-01
Today, growing amounts of waste due to fast consumption rate of products started an irreversible environmental pollution and damage. A considerable part of this waste is caused by packaging material. With the realization of this fact, various waste policies have taken important steps. Here we considered a firm, where waste Aluminum constitutes majority of raw materials for this fir0m. In order to achieve a profitable recycling process, plant layout should be well designed. In this study, we propose a two-step approach involving Analytic Hierarchy Process (AHP) and Data Envelopment Analysis (DEA) to solve facility layout design problems. A case example is considered to demonstrate the results achieved.
Canis, Laure; Linkov, Igor; Seager, Thomas P
2010-11-15
The unprecedented uncertainty associated with engineered nanomaterials greatly expands the need for research regarding their potential environmental consequences. However, decision-makers such as regulatory agencies, product developers, or other nanotechnology stakeholders may not find the results of such research directly informative of decisions intended to mitigate environmental risks. To help interpret research findings and prioritize new research needs, there is an acute need for structured decision-analytic aids that are operable in a context of extraordinary uncertainty. Whereas existing stochastic decision-analytic techniques explore uncertainty only in decision-maker preference information, this paper extends model uncertainty to technology performance. As an illustrative example, the framework is applied to the case of single-wall carbon nanotubes. Four different synthesis processes (arc, high pressure carbon monoxide, chemical vapor deposition, and laser) are compared based on five salient performance criteria. A probabilistic rank ordering of preferred processes is determined using outranking normalization and a linear-weighted sum for different weighting scenarios including completely unknown weights and four fixed-weight sets representing hypothetical stakeholder views. No single process pathway dominates under all weight scenarios, but it is likely that some inferior process technologies could be identified as low priorities for further research.
Togola, Anne; Coureau, Charlotte; Guezennec, Anne-Gwenaëlle; Touzé, Solène
2015-05-01
The presence of acrylamide in natural systems is of concern from both environmental and health points of view. We developed an accurate and robust analytical procedure (offline solid phase extraction combined with UPLC/MS/MS) with a limit of quantification (20 ng L(-1)) compatible with toxicity threshold values. The optimized (considering the nature of extraction phases, sampling volumes, and solvent of elution) solid phase extraction (SPE) was validated according to ISO Standard ISO/IEC 17025 on groundwater, surface water, and industrial process water samples. Acrylamide is highly polar, which induces a high variability during the SPE step, therefore requiring the use of C(13)-labeled acrylamide as an internal standard to guarantee the accuracy and robustness of the method (uncertainty about 25 % (k = 2) at limit of quantification level). The specificity of the method and the stability of acrylamide were studied for these environmental media, and it was shown that the method is suitable for measuring acrylamide in environmental studies.
Laboratories measuring target chemical, radiochemical, pathogens, and biotoxin analytes in environmental samples can use this online query tool to identify analytical methods included in EPA's Selected Analytical Methods for Environmental Remediation
Little, Keith W; Koralegedara, Nadeesha H; Northeim, Coleen M; Al-Abed, Souhail R
2017-07-01
Non-hazardous solid materials from industrial processes, once regarded as waste and disposed in landfills, offer numerous environmental and economic advantages when put to beneficial uses (BUs). Proper management of these industrial non-hazardous secondary materials (INSM) requires estimates of their probable environmental impacts among disposal as well as BU options. The U.S. Environmental Protection Agency (EPA) has recently approved new analytical methods (EPA Methods 1313-1316) to assess leachability of constituents of potential concern in these materials. These new methods are more realistic for many disposal and BU options than historical methods, such as the toxicity characteristic leaching protocol. Experimental data from these new methods are used to parameterize a chemical fate and transport (F&T) model to simulate long-term environmental releases from flue gas desulfurization gypsum (FGDG) when disposed of in an industrial landfill or beneficially used as an agricultural soil amendment. The F&T model is also coupled with optimization algorithms, the Beneficial Use Decision Support System (BUDSS), under development by EPA to enhance INSM management. Published by Elsevier Ltd.
Research on evaluation of third-party governance operation services for environmental pollution
NASA Astrophysics Data System (ADS)
Xu, Bingsheng; Ling, Lin; Jin, Huang
2017-11-01
This paper focuses on the evaluation of third-party governance operation services for environmental pollution, and determines the evaluation indicator system composed of 5 primary indicators as the basic competence of enterprise, operation of equipment, technique economics, environmental benefit and management level, and 26 secondary indicators via policies and regulations, standards, literature research and expert consultation in combination with the composition elements, service value judgment factors and full-life cycle of the work, providing theoretical support for the effect evaluation of third-governance over the environmental pollution in China. Then, the hierarchical analytic matrix is formed by analyzing the environmental pollution governance evaluation indicator system via analytic hierarchy process and scoring the importance of various indicators by experts by applying the Delphi method. The feature vector of the matrix is then calculated to obtain the weight of each indicator and verify the effectiveness of the Delphi method and obtain the comprehensive weight by judging the consistency of the matrix, so as to finally determine the overall ordering level of the importance of secondary indicators.
Laboratories measuring target pathogen analytes in environmental samples can use this online query tool to identify analytical methods in EPA's Selected Analytical Methods for Environmental Remediation and Recovery for select pathogens.
Boutkhoum, Omar; Hanine, Mohamed; Boukhriss, Hicham; Agouti, Tarik; Tikniouine, Abdessadek
2016-01-01
At present, environmental issues become real critical barriers for many supply chain corporations concerning the sustainability of their businesses. In this context, several studies have been proposed from both academia and industry trying to develop new measurements related to green supply chain management (GSCM) practices to overcome these barriers, which will help create new environmental strategies, implementing those practices in their manufacturing processes. The objective of this study is to present the technical and analytical contribution that multi-criteria decision making analysis (MCDA) can bring to environmental decision making problems, and especially to GSCM field. For this reason, a multi-criteria decision-making methodology, combining fuzzy analytical hierarchy process and fuzzy technique for order preference by similarity to ideal solution (fuzzy TOPSIS), is proposed to contribute to a better understanding of new sustainable strategies through the identification and evaluation of the most appropriate GSCM practices to be adopted by industrial organizations. The fuzzy AHP process is used to construct hierarchies of the influential criteria, and then identify the importance weights of the selected criteria, while the fuzzy TOPSIS process employs these weighted criteria as inputs to evaluate and measure the performance of each alternative. To illustrate the effectiveness and performance of our MCDA approach, we have applied it to a chemical industry corporation located in Safi, Morocco.
Look@NanoSIMS--a tool for the analysis of nanoSIMS data in environmental microbiology.
Polerecky, Lubos; Adam, Birgit; Milucka, Jana; Musat, Niculina; Vagner, Tomas; Kuypers, Marcel M M
2012-04-01
We describe an open-source freeware programme for high throughput analysis of nanoSIMS (nanometre-scale secondary ion mass spectrometry) data. The programme implements basic data processing and analytical functions, including display and drift-corrected accumulation of scanned planes, interactive and semi-automated definition of regions of interest (ROIs), and export of the ROIs' elemental and isotopic composition in graphical and text-based formats. Additionally, the programme offers new functions that were custom-designed to address the needs of environmental microbiologists. Specifically, it allows manual and automated classification of ROIs based on the information that is derived either from the nanoSIMS dataset itself (e.g. from labelling achieved by halogen in situ hybridization) or is provided externally (e.g. as a fluorescence in situ hybridization image). Moreover, by implementing post-processing routines coupled to built-in statistical tools, the programme allows rapid synthesis and comparative analysis of results from many different datasets. After validation of the programme, we illustrate how these new processing and analytical functions increase flexibility, efficiency and depth of the nanoSIMS data analysis. Through its custom-made and open-source design, the programme provides an efficient, reliable and easily expandable tool that can help a growing community of environmental microbiologists and researchers from other disciplines process and analyse their nanoSIMS data. © 2012 Society for Applied Microbiology and Blackwell Publishing Ltd.
Summary Report for the Evaluation of Current QA Processes Within the FRMAC FAL and EPA MERL.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shanks, Sonoya T.; Redding, Ted; Jaussi, Lynn
The Federal Radiological Monitoring and Assessment Center (FRMAC) relies on accurate and defensible analytical laboratory data to support its mission. Therefore, FRMAC must ensure that the environmental analytical laboratories providing analytical services maintain an ongoing capability to provide accurate analytical results to DOE. It is undeniable that the more Quality Assurance (QA) and Quality Control (QC) measures required of the laboratory, the less resources that are available for analysis of response samples. Being that QA and QC measures in general are understood to comprise a major effort related to a laboratory’s operations, requirements should only be considered if they aremore » deemed “value-added” for the FRMAC mission. This report provides observations of areas for improvement and potential interoperability opportunities in the areas of Batch Quality Control Requirements, Written Communications, Data Review Processes, Data Reporting Processes, along with the lessons learned as they apply to items in the early phase of a response that will be critical for developing a more efficient, integrated response for future interactions between the FRMAC and EPA assets.« less
40 CFR 86.160-00 - Exhaust emission test procedure for SC03 emissions.
Code of Federal Regulations, 2010 CFR
2010-07-01
... simulates testing in an environmental test cell (see § 86.162-00 (a) for a discussion of simulation... exhaust and dilution air bag samples to the analytical system and process the samples according to § 86...
Laboratories measuring target biotoxin analytes in environmental samples can use this online query tool to identify analytical methods included in EPA's Selected Analytical Methods for Environmental Remediation and Recovery for select biotoxins.
Laboratories measuring target chemical, radiochemical, pathogens, and biotoxin analytes in environmental samples can use this online query tool to identify analytical methods in EPA's Selected Analytical Methods for Environmental Remediation and Recovery
Protocol for Detection of Yersinia pestis in Environmental ...
Methods Report This is the first ever open-access and detailed protocol available to all government departments and agencies, and their contractors to detect Yersinia pestis, the pathogen that causes plague, from multiple environmental sample types including water. Each analytical method includes sample processing procedure for each sample type in a step-by-step manner. It includes real-time PCR, traditional microbiological culture, and the Rapid Viability PCR (RV-PCR) analytical methods. For large volume water samples it also includes an ultra-filtration-based sample concentration procedure. Because of such a non-restrictive availability of this protocol to all government departments and agencies, and their contractors, the nation will now have increased laboratory capacity to analyze large number of samples during a wide-area plague incident.
Spahr, N.E.; Boulger, R.W.
1997-01-01
Quality-control samples provide part of the information needed to estimate the bias and variability that result from sample collection, processing, and analysis. Quality-control samples of surface water collected for the Upper Colorado River National Water-Quality Assessment study unit for water years 1995?96 are presented and analyzed in this report. The types of quality-control samples collected include pre-processing split replicates, concurrent replicates, sequential replicates, post-processing split replicates, and field blanks. Analysis of the pre-processing split replicates, concurrent replicates, sequential replicates, and post-processing split replicates is based on differences between analytical results of the environmental samples and analytical results of the quality-control samples. Results of these comparisons indicate that variability introduced by sample collection, processing, and handling is low and will not affect interpretation of the environmental data. The differences for most water-quality constituents is on the order of plus or minus 1 or 2 lowest rounding units. A lowest rounding unit is equivalent to the magnitude of the least significant figure reported for analytical results. The use of lowest rounding units avoids some of the difficulty in comparing differences between pairs of samples when concentrations span orders of magnitude and provides a measure of the practical significance of the effect of variability. Analysis of field-blank quality-control samples indicates that with the exception of chloride and silica, no systematic contamination of samples is apparent. Chloride contamination probably was the result of incomplete rinsing of the dilute cleaning solution from the outlet ports of the decaport sample splitter. Silica contamination seems to have been introduced by the blank water. Sampling and processing procedures for water year 1997 have been modified as a result of these analyses.
Applying the Analytic Hierarchy Process to Oil Sands Environmental Compliance Risk Management
NASA Astrophysics Data System (ADS)
Roux, Izak Johannes, III
Oil companies in Alberta, Canada, invested $32 billion on new oil sands projects in 2013. Despite the size of this investment, there is a demonstrable deficiency in the uniformity and understanding of environmental legislation requirements that manifest into increased project compliance risks. This descriptive study developed 2 prioritized lists of environmental regulatory compliance risks and mitigation strategies and used multi-criteria decision theory for its theoretical framework. Information from compiled lists of environmental compliance risks and mitigation strategies was used to generate a specialized pairwise survey, which was piloted by 5 subject matter experts (SMEs). The survey was validated by a sample of 16 SMEs, after which the Analytic Hierarchy Process (AHP) was used to rank a total of 33 compliance risks and 12 mitigation strategy criteria. A key finding was that the AHP is a suitable tool for ranking of compliance risks and mitigation strategies. Several working hypotheses were also tested regarding how SMEs prioritized 1 compliance risk or mitigation strategy compared to another. The AHP showed that regulatory compliance, company reputation, environmental compliance, and economics ranked the highest and that a multi criteria mitigation strategy for environmental compliance ranked the highest. The study results will inform Alberta oil sands industry leaders about the ranking and utility of specific compliance risks and mitigations strategies, enabling them to focus on actions that will generate legislative and public trust. Oil sands leaders implementing a risk management program using the risks and mitigation strategies identified in this study will contribute to environmental conservation, economic growth, and positive social change.
Analytic hierarchy process helps select site for limestone quarry expansion in Barbados.
Dey, Prasanta Kumar; Ramcharan, Eugene K
2008-09-01
Site selection is a key activity for quarry expansion to support cement production, and is governed by factors such as resource availability, logistics, costs, and socio-economic-environmental factors. Adequate consideration of all the factors facilitates both industrial productivity and sustainable economic growth. This study illustrates the site selection process that was undertaken for the expansion of limestone quarry operations to support cement production in Barbados. First, alternate sites with adequate resources to support a 25-year development horizon were identified. Second, technical and socio-economic-environmental factors were then identified. Third, a database was developed for each site with respect to each factor. Fourth, a hierarchical model in analytic hierarchy process (AHP) framework was then developed. Fifth, the relative ranking of the alternate sites was then derived through pair wise comparison in all the levels and through subsequent synthesizing of the results across the hierarchy through computer software (Expert Choice). The study reveals that an integrated framework using the AHP can help select a site for the quarry expansion project in Barbados.
Transcriptional dynamics with time-dependent reaction rates
NASA Astrophysics Data System (ADS)
Nandi, Shubhendu; Ghosh, Anandamohan
2015-02-01
Transcription is the first step in the process of gene regulation that controls cell response to varying environmental conditions. Transcription is a stochastic process, involving synthesis and degradation of mRNAs, that can be modeled as a birth-death process. We consider a generic stochastic model, where the fluctuating environment is encoded in the time-dependent reaction rates. We obtain an exact analytical expression for the mRNA probability distribution and are able to analyze the response for arbitrary time-dependent protocols. Our analytical results and stochastic simulations confirm that the transcriptional machinery primarily act as a low-pass filter. We also show that depending on the system parameters, the mRNA levels in a cell population can show synchronous/asynchronous fluctuations and can deviate from Poisson statistics.
Capel, P.D.; Larson, S.J.
1995-01-01
Minimizing the loss of target organic chemicals from environmental water samples between the time of sample collection and isolation is important to the integrity of an investigation. During this sample holding time, there is a potential for analyte loss through volatilization from the water to the headspace, sorption to the walls and cap of the sample bottle; and transformation through biotic and/or abiotic reactions. This paper presents a chemodynamic-based, generalized approach to estimate the most probable loss processes for individual target organic chemicals. The basic premise is that the investigator must know which loss process(es) are important for a particular analyte, based on its chemodynamic properties, when choosing the appropriate method(s) to prevent loss.
Drewes, J E; Anderson, P; Denslow, N; Olivieri, A; Schlenk, D; Snyder, S A; Maruya, K A
2013-01-01
This study discussed a proposed process to prioritize chemicals for reclaimed water monitoring programs, selection of analytical methods required for their quantification, toxicological relevance of chemicals of emerging concern regarding human health, and related issues. Given that thousands of chemicals are potentially present in reclaimed water and that information about those chemicals is rapidly evolving, a transparent, science-based framework was developed to guide prioritization of which compounds of emerging concern (CECs) should be included in reclaimed water monitoring programs. The recommended framework includes four steps: (1) compile environmental concentrations (e.g., measured environmental concentration or MEC) of CECs in the source water for reuse projects; (2) develop a monitoring trigger level (MTL) for each of these compounds (or groups thereof) based on toxicological relevance; (3) compare the environmental concentration (e.g., MEC) to the MTL; CECs with a MEC/MTL ratio greater than 1 should be prioritized for monitoring, compounds with a ratio less than '1' should only be considered if they represent viable treatment process performance indicators; and (4) screen the priority list to ensure that a commercially available robust analytical method is available for that compound.
Evaluation of trade-offs in costs and environmental impacts for returnable packaging implementation
NASA Astrophysics Data System (ADS)
Jarupan, Lerpong; Kamarthi, Sagar V.; Gupta, Surendra M.
2004-02-01
The main thrust of returnable packaging these days is to provide logistical services through transportation and distribution of products and be environmentally friendly. Returnable packaging and reverse logistics concepts have converged to mitigate the adverse effect of packaging materials entering the solid waste stream. Returnable packaging must be designed by considering the trade-offs between costs and environmental impact to satisfy manufacturers and environmentalists alike. The cost of returnable packaging entails such items as materials, manufacturing, collection, storage and disposal. Environmental impacts are explicitly linked with solid waste, air pollution, and water pollution. This paper presents a multi-criteria evaluation technique to assist decision-makers for evaluating the trade-offs in costs and environmental impact during the returnable packaging design process. The proposed evaluation technique involves a combination of multiple objective integer linear programming and analytic hierarchy process. A numerical example is used to illustrate the methodology.
NASA Astrophysics Data System (ADS)
Anh, N. K.; Phonekeo, V.; My, V. C.; Duong, N. D.; Dat, P. T.
2014-02-01
In recent years, Vietnamese economy has been growing up rapidly and caused serious environmental quality plunging, especially in industrial and mining areas. It brings an enormous threat to a socially sustainable development and the health of human beings. Environmental quality assessment and protection are complex and dynamic processes, since it involves spatial information from multi-sector, multi-region and multi-field sources and needs complicated data processing. Therefore, an effective environmental protection information system is needed, in which considerable factors hidden in the complex relationships will become clear and visible. In this paper, the authors present the methodology which was used to generate environmental hazard maps which are applied to the integration of Analytic Hierarchy Process (AHP) and Geographical Information system (GIS). We demonstrate the results that were obtained from the study area in Dong Trieu district. This research study has contributed an overall perspective of environmental quality and identified the devastated areas where the administration urgently needs to establish an appropriate policy to improve and protect the environment.
Multisensory Emplaced Learning: Resituating Situated Learning in a Moving World
ERIC Educational Resources Information Center
Fors, Vaike; Backstrom, Asa; Pink, Sarah
2013-01-01
This article outlines the implications of a theory of "sensory-emplaced learning" for understanding the interrelationships between the embodied and environmental in learning processes. Understanding learning as multisensory and contingent within everyday place-events, this framework analytically describes how people establish themselves as…
Multisensory Emplaced Learning: Resituating Situated Learning in a Moving World
ERIC Educational Resources Information Center
Fors, Vaike; Backstrom, Asa; Pink, Sarah
2013-01-01
This article outlines the implications of a theory of "sensory-emplaced learning" for understanding the interrelationships between the embodied and environmental in learning processes. Understanding learning as multisensory and contingent within everyday place-events, this framework analytically describes how people establish themselves…
Comprehensive benefit analysis of regional water resources based on multi-objective evaluation
NASA Astrophysics Data System (ADS)
Chi, Yixia; Xue, Lianqing; Zhang, Hui
2018-01-01
The purpose of the water resources comprehensive benefits analysis is to maximize the comprehensive benefits on the aspects of social, economic and ecological environment. Aiming at the defects of the traditional analytic hierarchy process in the evaluation of water resources, it proposed a comprehensive benefit evaluation of social, economic and environmental benefits index from the perspective of water resources comprehensive benefit in the social system, economic system and environmental system; determined the index weight by the improved fuzzy analytic hierarchy process (AHP), calculated the relative index of water resources comprehensive benefit and analyzed the comprehensive benefit of water resources in Xiangshui County by the multi-objective evaluation model. Based on the water resources data in Xiangshui County, 20 main comprehensive benefit assessment factors of 5 districts belonged to Xiangshui County were evaluated. The results showed that the comprehensive benefit of Xiangshui County was 0.7317, meanwhile the social economy has a further development space in the current situation of water resources.
Application of analytic hierarchy process in a waste treatment technology assessment in Mexico.
Taboada-González, Paul; Aguilar-Virgen, Quetzalli; Ojeda-Benítez, Sara; Cruz-Sotelo, Samantha
2014-09-01
The high per capita generation of solid waste and the environmental problems in major rural communities of Ensenada, Baja California, have prompted authorities to seek alternatives for waste treatment. In the absence of a selection methodology, three technologies of waste treatment with energy recovery (an anaerobic digester, a downdraft gasifier, and a plasma gasifier) were evaluated, taking the broader social, political, economic, and environmental issues into considerations. Using the scientific literature as a baseline, interviews with experts, decision makers and the community, and waste stream studies were used to construct a hierarchy that was evaluated by the analytic hierarchy process. In terms of the criteria, judgments, and assumptions made in the model, the anaerobic digester was found to have the highest rating and should consequently be selected as the waste treatment technology for this area. The study results showed low sensitivity, so alternative scenarios were not considered. The methodology developed in this study may be useful for other governments who wish to assess technologies to select waste treatment.
IMMUNOCHEMICAL APPLICATIONS IN ENVIRONMENTAL SCIENCE
Immunochemical methods are based on selective antibodies combining with a particular target analyte or analyte group. The specific binding between antibody and analyte can be used to detect environmental contaminants in a variety of sample matrixes. Immunoassay methods provide ...
How can knowledge discovery methods uncover spatio-temporal patterns in environmental data?
NASA Astrophysics Data System (ADS)
Wachowicz, Monica
2000-04-01
This paper proposes the integration of KDD, GVis and STDB as a long-term strategy, which will allow users to apply knowledge discovery methods for uncovering spatio-temporal patterns in environmental data. The main goal is to combine innovative techniques and associated tools for exploring very large environmental data sets in order to arrive at valid, novel, potentially useful, and ultimately understandable spatio-temporal patterns. The GeoInsight approach is described using the principles and key developments in the research domains of KDD, GVis, and STDB. The GeoInsight approach aims at the integration of these research domains in order to provide tools for performing information retrieval, exploration, analysis, and visualization. The result is a knowledge-based design, which involves visual thinking (perceptual-cognitive process) and automated information processing (computer-analytical process).
[Environmental quality assessment of regional agro-ecosystem in Loess Plateau].
Wang, Limei; Meng, Fanping; Zheng, Jiyong; Wang, Zhonglin
2004-03-01
Based on the detection and analysis of the contamination status of agro-ecosystem with apple-crops intercropping as the dominant cropping model in Loess Plateau, the individual factor and comprehensive environmental quality were assessed by multilevel fuzzy synthetic evaluation model, analytical hierarchy process(AHP), and improved standard weight deciding method. The results showed that the quality of soil, water and agricultural products was grade I, the social economical environmental quality was grade II, the ecological environmental quality was grade III, and the comprehensive environmental quality was grade I. The regional agro-ecosystem dominated by apple-crops intercropping was not the best model for the ecological benefits, but had the better social economical benefits.
EMERGING POLLUTANTS, MASS SPECTROMETRY, AND ...
Historically fundamental to amassing our understanding of environmental processes and chemical pollution is the realm of mass spectrometry (MS) - the mainstay of analytical chemistry - the workhorse that supplies definitive data that environmental scientists and engineers reply upon for identifying molecular compositions (and ultimately structures) of chemicals. While the power of MS has long been visible to the practicing environmental chemist, it borders on obscurity to the lay public and many scientists. While MS has played a long, historic (and largely invisible) role in establishing our knowledge of environmental processes and pollution, what recognition it does enjoy is usually relegated to that of a tool. It is usually the relevance or significance of the knowledge acquired from the application of the tool that has ultimate meaning to the public and science at large - not how the data were acquired. Methods (736/800): Mass Spectrometry and the
Selected Analytical Methods for Environmental Remediation and Recovery (SAM) - Home
The SAM Home page provides access to all information provided in EPA's Selected Analytical Methods for Environmental Remediation and Recovery (SAM), and includes a query function allowing users to search methods by analyte, sample type and instrumentation.
Environmental impact assessment in Sri Lanka: A progress report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Butler, J.W.
1995-12-01
The paper reports on progress by the Government of Sri Lanka in the implementation of a formal environmental impact assessment (EIA) requirement. The authors have recently conducted several activities in Sri Lanka intended to improve the analytical quality of EIA documents and the utility of the EIA process in government decisionmaking, with particular attention to the use of programmatic or sectoral EIAs. The U.S. Agency for International Development established a 5-year project, the Natural Resources and Environmental Policy Project (NAREPP), to provide training and technical assistance in EIA and related disiplines for the Central Environmental Authority (CEA), several other Srimore » Lanka government agencies, and the private sector. This activity has involved efforts to expand the technical expertise within Sri Lanka for conducting EIA, which include developing EIA courses and materials in cooperation with several universities and conducting intensive training programs for both government and private-sector environmental professionals. This EIA will focus on the selection of government-approved industrial estates throughout the country, on which most new industrial development projects are to be located. Further training programs in the use of current analytical methodologies for EIA were also developed and conducted. The effectiveness of these activities can be assessed by evaluating changes in the content and quality of subsequent EIA documents and in the extent to which such documents affect environmental decisionmaking in Sri Lanka. The authors discuss the role of the programmatic EIA in the industrial development program of Sri Lanka, remaining constraints on the EIA process, and recommendations for further improvement.« less
40 CFR 86.537-90 - Dynamometer test runs.
Code of Federal Regulations, 2014 CFR
2014-07-01
... “transient” formaldehyde exhaust sample, the “transient” dilution air sample bag, the “transient” methanol... start “transient” exhaust and dilution air bag samples to the analytical system and process the samples... Section 86.537-90 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS...
40 CFR 86.537-90 - Dynamometer test runs.
Code of Federal Regulations, 2012 CFR
2012-07-01
... “transient” formaldehyde exhaust sample, the “transient” dilution air sample bag, the “transient” methanol... start “transient” exhaust and dilution air bag samples to the analytical system and process the samples... Section 86.537-90 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS...
40 CFR 86.537-90 - Dynamometer test runs.
Code of Federal Regulations, 2013 CFR
2013-07-01
... “transient” formaldehyde exhaust sample, the “transient” dilution air sample bag, the “transient” methanol... start “transient” exhaust and dilution air bag samples to the analytical system and process the samples... Section 86.537-90 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS...
[The concept of the development of the state of chemical-analytical environmental monitoring].
Rakhmanin, Iu A; Malysheva, A G
2013-01-01
Chemical and analytical monitoring of the quality of environment is based on the accounting of the trace amount of substances. Considering the multicomponent composition of the environment and running processes of transformation of substances in it, in determination of the danger of the exposure to the chemical pollution of environment on population health there is necessary evaluation based on the simultaneous account of complex of substances really contained in the environment and supplying from different sources. Therefore, in the analytical monitoring of the quality and safety of the environment there is a necessary conversion from the orientation, based on the investigation of specific target substances, to estimation of real complex of compounds.
ENVIRONMENTAL IMMUNOCHEMISTRY RESPONDING TO A SPECTRUM OF ANALYTICAL NEEDS
A review, with 13 references, is given on the field of environmental immunochemistry which brings together several specalties, including analytical chemistry, biochemistry, moluclar biology, and environmental engineering. This multidisciplinary nature is both benefit and a confus...
The US Environmental Protection Agency (EPA) has conducted an HIA at the German Gerena Community School in Springfield, MA. HIA is a six-step systematic process that uses an array of data sources, analytic methods and stakeholder input to determine the potential health effects of...
Understanding Personality Development: An Integrative State Process Model
ERIC Educational Resources Information Center
Geukes, Katharina; van Zalk, Maarten; Back, Mitja D.
2018-01-01
While personality is relatively stable over time, it is also subject to change across the entire lifespan. On a macro-analytical level, empirical research has identified patterns of normative and differential development that are affected by biological and environmental factors, specific life events, and social role investments. On a…
The role of analytical science in natural resource decision making
NASA Astrophysics Data System (ADS)
Miller, Alan
1993-09-01
There is a continuing debate about the proper role of analytical (positivist) science in natural resource decision making. Two diametrically opposed views are evident, arguing for and against a more extended role for scientific information. The debate takes on a different complexion if one recognizes that certain kinds of problem, referred to here as “wicked” or “trans-science” problems, may not be amenable to the analytical process. Indeed, the mistaken application of analytical methods to trans-science problems may not only be a waste of time and money but also serve to hinder policy development. Since many environmental issues are trans-science in nature, then it follows that alternatives to analytical science need to be developed. In this article, the issues involved in the debate are clarified by examining the impact of the use of analytical methods in a particular case, the spruce budworm controversy in New Brunswick. The article ends with some suggestions about a “holistic” approach to the problem.
Magnuson, Matthew; Campisano, Romy; Griggs, John; Fitz-James, Schatzi; Hall, Kathy; Mapp, Latisha; Mullins, Marissa; Nichols, Tonya; Shah, Sanjiv; Silvestri, Erin; Smith, Terry; Willison, Stuart; Ernst, Hiba
2014-11-01
Catastrophic incidents can generate a large number of samples of analytically diverse types, including forensic, clinical, environmental, food, and others. Environmental samples include water, wastewater, soil, air, urban building and infrastructure materials, and surface residue. Such samples may arise not only from contamination from the incident but also from the multitude of activities surrounding the response to the incident, including decontamination. This document summarizes a range of activities to help build laboratory capability in preparation for sample analysis following a catastrophic incident, including selection and development of fit-for-purpose analytical methods for chemical, biological, and radiological contaminants. Fit-for-purpose methods are those which have been selected to meet project specific data quality objectives. For example, methods could be fit for screening contamination in the early phases of investigation of contamination incidents because they are rapid and easily implemented, but those same methods may not be fit for the purpose of remediating the environment to acceptable levels when a more sensitive method is required. While the exact data quality objectives defining fitness-for-purpose can vary with each incident, a governing principle of the method selection and development process for environmental remediation and recovery is based on achieving high throughput while maintaining high quality analytical results. This paper illustrates the result of applying this principle, in the form of a compendium of analytical methods for contaminants of interest. The compendium is based on experience with actual incidents, where appropriate and available. This paper also discusses efforts aimed at adaptation of existing methods to increase fitness-for-purpose and development of innovative methods when necessary. The contaminants of interest are primarily those potentially released through catastrophes resulting from malicious activity. However, the same techniques discussed could also have application to catastrophes resulting from other incidents, such as natural disasters or industrial accidents. Further, the high sample throughput enabled by the techniques discussed could be employed for conventional environmental studies and compliance monitoring, potentially decreasing costs and/or increasing the quantity of data available to decision-makers. Published by Elsevier Ltd.
ENVIRONMENTAL ANALYTICAL CHEMISTRY OF ...
Within the scope of a number of emerging contaminant issues in environmental analysis, one area that has received a great deal of public interest has been the assessment of the role of pharmaceuticals and personal care products (PPCPs) as stressors and agents of change in ecosystems as well as their role in unplanned human exposure. The relationship between personal actions and the occurrence of PPCPs in the environment is clear-cut and comprehensible to the public. In this overview, we attempt to examine the separations aspect of the analytical approach to the vast array of potential analytes among this class of compounds. We also highlight the relationship between these compounds and endocrine disrupting compounds (EDCs) and between PPCPs and EDCs and the more traditional environmental analytes such as the persistent organic pollutants (POPs). Although the spectrum of chemical behavior extends from hydrophobic to hydrophilic, the current focus has shifted to moderately and highly polar analytes. Thus, emphasis on HPLC and LC/MS has grown and MS/MS has become a detection technique of choice with either electrospray ionization or atmospheric pressure chemical ionization. This contrasts markedly with the bench mark approach of capillary GC, GC/MS and electron ionization in traditional environmental analysis. The expansion of the analyte list has fostered new vigor in the development of environmental analytical chemistry, modernized the range of tools appli
Kevin T. Smith; Jean Christophe Balouet; Gil Oudijk
2008-01-01
Environmental forensics seeks to determine the responsible parties for contamination from leaks or spills of petroleum or other toxic products. Dendrochemistry contributes to environmental forensics at the intersection of analytical chemistry, tree biology, and environmental responsibility. To be useful, dendrochemistry requires the rigorous application of analytical...
Feng, Juanjuan; Sun, Min; Bu, Yanan; Luo, Chuannan
2016-03-01
Stir bar sorptive extraction is an environmentally friendly microextraction technique based on a stir bar with various sorbents. A commercial stirrer is a good support, but it has not been used in stir bar sorptive extraction due to difficult modification. A stirrer was modified with carbon nanoparticles by a simple carbon deposition process in flame and characterized by scanning electron microscopy and energy-dispersive X-ray spectrometry. A three-dimensional porous coating was formed with carbon nanoparticles. In combination with high-performance liquid chromatography, the stir bar was evaluated using five polycyclic aromatic hydrocarbons as model analytes. Conditions including extraction time and temperature, ionic strength, and desorption solvent were investigated by a factor-by-factor optimization method. The established method exhibited good linearity (0.01-10 μg/L) and low limits of quantification (0.01 μg/L). It was applied to detect model analytes in environmental water samples. No analyte was detected in river water, and five analytes were quantified in rain water. The recoveries of five analytes in two samples with spiked at 2 μg/L were in the range of 92.2-106% and 93.4-108%, respectively. The results indicated that the carbon nanoparticle-coated stirrer was an efficient stir bar for extraction analysis of some polycyclic aromatic hydrocarbons. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Source-term development for a contaminant plume for use by multimedia risk assessment models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Whelan, Gene; McDonald, John P.; Taira, Randal Y.
1999-12-01
Multimedia modelers from the U.S. Environmental Protection Agency (EPA) and the U.S. Department of Energy (DOE) are collaborating to conduct a comprehensive and quantitative benchmarking analysis of four intermedia models: DOE's Multimedia Environmental Pollutant Assessment System (MEPAS), EPA's MMSOILS, EPA's PRESTO, and DOE's RESidual RADioactivity (RESRAD). These models represent typical analytically, semi-analytically, and empirically based tools that are utilized in human risk and endangerment assessments for use at installations containing radioactive and/or hazardous contaminants. Although the benchmarking exercise traditionally emphasizes the application and comparison of these models, the establishment of a Conceptual Site Model (CSM) should be viewed with equalmore » importance. This paper reviews an approach for developing a CSM of an existing, real-world, Sr-90 plume at DOE's Hanford installation in Richland, Washington, for use in a multimedia-based benchmarking exercise bet ween MEPAS, MMSOILS, PRESTO, and RESRAD. In an unconventional move for analytically based modeling, the benchmarking exercise will begin with the plume as the source of contamination. The source and release mechanism are developed and described within the context of performing a preliminary risk assessment utilizing these analytical models. By beginning with the plume as the source term, this paper reviews a typical process and procedure an analyst would follow in developing a CSM for use in a preliminary assessment using this class of analytical tool.« less
Lermen, Dominik; Schmitt, Daniel; Bartel-Steinbach, Martina; Schröter-Kermani, Christa; Kolossa-Gehring, Marike; von Briesen, Hagen; Zimmermann, Heiko
2014-01-01
Technical progress has simplified tasks in lab diagnosis and improved quality of test results. Errors occurring during the pre-analytical phase have more negative impact on the quality of test results than errors encountered during the total analytical process. Different infrastructures of sampling sites can highly influence the quality of samples and therewith of analytical results. Annually the German Environmental Specimen Bank (ESB) collects, characterizes, and stores blood, plasma, and urine samples of 120–150 volunteers each on four different sampling sites in Germany. Overarching goal is to investigate the exposure to environmental pollutants of non-occupational exposed young adults combining human biomonitoring with questionnaire data. We investigated the requirements of the study and the possibility to realize a highly standardized sampling procedure on a mobile platform in order to increase the required quality of the pre-analytical phase. The results lead to the development of a mobile epidemiologic laboratory (epiLab) in the project “Labor der Zukunft” (future’s lab technology). This laboratory includes a 14.7 m2 reception area to record medical history and exposure-relevant behavior, a 21.1 m2 examination room to record dental fillings and for blood withdrawal, a 15.5 m2 biological safety level 2 laboratory to process and analyze samples on site including a 2.8 m2 personnel lock and a 3.6 m2 cryofacility to immediately freeze samples. Frozen samples can be transferred to their final destination within the vehicle without breaking the cold chain. To our knowledge, we herewith describe for the first time the implementation of a biological safety laboratory (BSL) 2 lab and an epidemiologic unit on a single mobile platform. Since 2013 we have been collecting up to 15.000 individual human samples annually under highly standardized conditions using the mobile laboratory. Characterized and free of alterations they are kept ready for retrospective analyses in their final archive, the German ESB. PMID:25141120
Lermen, Dominik; Schmitt, Daniel; Bartel-Steinbach, Martina; Schröter-Kermani, Christa; Kolossa-Gehring, Marike; von Briesen, Hagen; Zimmermann, Heiko
2014-01-01
Technical progress has simplified tasks in lab diagnosis and improved quality of test results. Errors occurring during the pre-analytical phase have more negative impact on the quality of test results than errors encountered during the total analytical process. Different infrastructures of sampling sites can highly influence the quality of samples and therewith of analytical results. Annually the German Environmental Specimen Bank (ESB) collects, characterizes, and stores blood, plasma, and urine samples of 120-150 volunteers each on four different sampling sites in Germany. Overarching goal is to investigate the exposure to environmental pollutants of non-occupational exposed young adults combining human biomonitoring with questionnaire data. We investigated the requirements of the study and the possibility to realize a highly standardized sampling procedure on a mobile platform in order to increase the required quality of the pre-analytical phase. The results lead to the development of a mobile epidemiologic laboratory (epiLab) in the project "Labor der Zukunft" (future's lab technology). This laboratory includes a 14.7 m(2) reception area to record medical history and exposure-relevant behavior, a 21.1 m(2) examination room to record dental fillings and for blood withdrawal, a 15.5 m(2) biological safety level 2 laboratory to process and analyze samples on site including a 2.8 m(2) personnel lock and a 3.6 m2 cryofacility to immediately freeze samples. Frozen samples can be transferred to their final destination within the vehicle without breaking the cold chain. To our knowledge, we herewith describe for the first time the implementation of a biological safety laboratory (BSL) 2 lab and an epidemiologic unit on a single mobile platform. Since 2013 we have been collecting up to 15.000 individual human samples annually under highly standardized conditions using the mobile laboratory. Characterized and free of alterations they are kept ready for retrospective analyses in their final archive, the German ESB.
Validation of Rapid Radiochemical Method for Californium ...
Technical Brief In the event of a radiological/nuclear contamination event, the response community would need tools and methodologies to rapidly assess the nature and the extent of contamination. To characterize a radiologically contaminated outdoor area and to inform risk assessment, large numbers of environmental samples would be collected and analyzed over a short period of time. To address the challenge of quickly providing analytical results to the field, the U.S. EPA developed a robust analytical method. This method allows response officials to characterize contaminated areas and to assess the effectiveness of remediation efforts, both rapidly and accurately, in the intermediate and late phases of environmental cleanup. Improvement in sample processing and analysis leads to increased laboratory capacity to handle the analysis of a large number of samples following the intentional or unintentional release of a radiological/nuclear contaminant.
The Spatial Distributions and Variations of Water Environmental Risk in Yinma River Basin, China.
Di, Hui; Liu, Xingpeng; Zhang, Jiquan; Tong, Zhijun; Ji, Meichen
2018-03-15
Water environmental risk is the probability of the occurrence of events caused by human activities or the interaction of human activities and natural processes that will damage a water environment. This study proposed a water environmental risk index (WERI) model to assess the water environmental risk in the Yinma River Basin based on hazards, exposure, vulnerability, and regional management ability indicators in a water environment. The data for each indicator were gathered from 2000, 2005, 2010, and 2015 to assess the spatial and temporal variations in water environmental risk using particle swarm optimization and the analytic hierarchy process (PSO-AHP) method. The results showed that the water environmental risk in the Yinma River Basin decreased from 2000 to 2015. The risk level of the water environment was high in Changchun, while the risk levels in Yitong and Yongji were low. The research methods provide information to support future decision making by the risk managers in the Yinma River Basin, which is in a high-risk water environment. Moreover, water environment managers could reduce the risks by adjusting the indicators that affect water environmental risks.
Document is intended to provide general guidelines for use byEPA and EPA-contracted laboratories when disposing of samples and associated analytical waste following use of the analytical methods listed in SAM.
A New Project-Based Lab for Undergraduate Environmental and Analytical Chemistry
ERIC Educational Resources Information Center
Adami, Gianpiero
2006-01-01
A new project-based lab was developed for third year undergraduate chemistry students based on real world applications. The experience suggests that the total analytical procedure (TAP) project offers a stimulating alternative for delivering science skills and developing a greater interest for analytical chemistry and environmental sciences and…
NASA Astrophysics Data System (ADS)
Chakroun, Mahmoud; Gogu, Grigore; Pacaud, Thomas; Thirion, François
2014-09-01
This study proposes an eco-innovative design process taking into consideration quality and environmental aspects in prioritizing and solving technical engineering problems. This approach provides a synergy between the Life Cycle Assessment (LCA), the nonquality matrix, the Theory of Inventive Problem Solving (TRIZ), morphological analysis and the Analytical Hierarchy Process (AHP). In the sequence of these tools, LCA assesses the environmental impacts generated by the system. Then, for a better consideration of environmental aspects, a new tool is developed, the non-quality matrix, which defines the problem to be solved first from an environmental point of view. The TRIZ method allows the generation of new concepts and contradiction resolution. Then, the morphological analysis offers the possibility of extending the search space of solutions in a design problem in a systematic way. Finally, the AHP identifies the promising solution(s) by providing a clear logic for the choice made. Their usefulness has been demonstrated through their application to a case study involving a centrifugal spreader with spinning discs.
The evaluation and enhancement of quality, environmental protection and seaport safety by using FAHP
NASA Astrophysics Data System (ADS)
Tadic, Danijela; Aleksic, Aleksandar; Popovic, Pavle; Arsovski, Slavko; Castelli, Ana; Joksimovic, Danijela; Stefanovic, Miladin
2017-02-01
The evaluation and enhancement of business processes in any organization in an uncertain environment presents one of the main requirements of ISO 9000:2008 and has a key effect on competitive advantage and long-term sustainability. The aim of this paper can be defined as the identification and discussion of some of the most important business processes of seaports and the performances of business processes and their key performance indicators (KPIs). The complexity and importance of the treated problem call for analytic methods rather than intuitive decisions. The existing decision variables of the considered problem are described by linguistic expressions which are modelled by triangular fuzzy numbers (TFNs). In this paper, the modified fuzzy extended analytic hierarchy process (FAHP) is proposed. The assessment of the relative importance of each pair of performances and their key performance indicators are stated as a fuzzy group decision-making problem. By using the modified fuzzy extended analytic hierarchy process, the fuzzy rank of business processes of a seaport is obtained. The model is tested through an illustrative example with real-life data, where the obtained data suggest measures which should enhance business strategy and improve key performance indicators. The future improvement is based on benchmark and knowledge sharing.
Aptamer based electrochemical sensors for emerging environmental pollutants
Hayat, Akhtar; Marty, Jean L.
2014-01-01
Environmental contaminants monitoring is one of the key issues in understanding and managing hazards to human health and ecosystems. In this context, aptamer based electrochemical sensors have achieved intense significance because of their capability to resolve a potentially large number of problems and challenges in environmental contamination. An aptasensor is a compact analytical device incorporating an aptamer (oligonulceotide) as the sensing element either integrated within or intimately associated with a physiochemical transducer surface. Nucleic acid is well known for the function of carrying and passing genetic information, however, it has found a key role in analytical monitoring during recent years. Aptamer based sensors represent a novelty in environmental analytical science and there are great expectations for their promising performance as alternative to conventional analytical tools. This review paper focuses on the recent advances in the development of aptamer based electrochemical sensors for environmental applications with special emphasis on emerging pollutants. PMID:25019067
Aptamer based electrochemical sensors for emerging environmental pollutants
NASA Astrophysics Data System (ADS)
Hayat, Akhtar; Marty, Jean Louis
2014-06-01
Environmental contaminants monitoring is one of the key issues in understanding and managing hazards to human health and ecosystems. In this context, aptamer based electrochemical sensors have achieved intense significance because of their capability to resolve a potentially large number of problems and challenges in environmental contamination. An aptasensor is a compact analytical device incorporating an aptamer (oligonulceotide) as the sensing element either integrated within or intimately associated with a physiochemical transducer surface. Nucleic acid is well known for the function of carrying and passing genetic information, however, it has found a key role in analytical monitoring during recent years. Aptamer based sensors represent a novelty in environmental analytical science and there are great expectations for their promising performance as alternative to conventional analytical tools. This review paper focuses on the recent advances in the development of aptamer based electrochemical sensors for environmental applications with special emphasis on emerging pollutants.
Novel immunoassay formats for integrated microfluidic circuits: diffusion immunoassays (DIA)
NASA Astrophysics Data System (ADS)
Weigl, Bernhard H.; Hatch, Anson; Kamholz, Andrew E.; Yager, Paul
2000-03-01
Novel designs of integrated fluidic microchips allow separations, chemical reactions, and calibration-free analytical measurements to be performed directly in very small quantities of complex samples such as whole blood and contaminated environmental samples. This technology lends itself to applications such as clinical diagnostics, including tumor marker screening, and environmental sensing in remote locations. Lab-on-a-Chip based systems offer many *advantages over traditional analytical devices: They consume extremely low volumes of both samples and reagents. Each chip is inexpensive and small. The sampling-to-result time is extremely short. They perform all analytical functions, including sampling, sample pretreatment, separation, dilution, and mixing steps, chemical reactions, and detection in an integrated microfluidic circuit. Lab-on-a-Chip systems enable the design of small, portable, rugged, low-cost, easy to use, yet extremely versatile and capable diagnostic instruments. In addition, fluids flowing in microchannels exhibit unique characteristics ('microfluidics'), which allow the design of analytical devices and assay formats that would not function on a macroscale. Existing Lab-on-a-chip technologies work very well for highly predictable and homogeneous samples common in genetic testing and drug discovery processes. One of the biggest challenges for current Labs-on-a-chip, however, is to perform analysis in the presence of the complexity and heterogeneity of actual samples such as whole blood or contaminated environmental samples. Micronics has developed a variety of Lab-on-a-Chip assays that can overcome those shortcomings. We will now present various types of novel Lab- on-a-Chip-based immunoassays, including the so-called Diffusion Immunoassays (DIA) that are based on the competitive laminar diffusion of analyte molecules and tracer molecules into a region of the chip containing antibodies that target the analyte molecules. Advantages of this technique are a reduction in reagents, higher sensitivity, minimal preparation of complex samples such as blood, real-time calibration, and extremely rapid analysis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
none, none; Tuchman, Nancy
The U.S. Department of Energy awarded Loyola University Chicago and the Institute of Environmental Sustainability (IES) $486,000.00 for the proposal entitled “Chicago clean air, clean water project: Environmental monitoring for a healthy, sustainable urban future.” The project supported the purchase of analytical instruments for the development of an environmental analytical laboratory. The analytical laboratory is designed to support the testing of field water and soil samples for nutrients, industrial pollutants, heavy metals, and agricultural toxins, with special emphasis on testing Chicago regional soils and water affected by coal-based industry. Since the award was made in 2010, the IES has beenmore » launched (fall 2013), and the IES acquired a new state-of-the-art research and education facility on Loyola University Chicago’s Lakeshore campus. Two labs were included in the research and education facility. The second floor lab is the Ecology Laboratory where lab experiments and analyses are conducted on soil, plant, and water samples. The third floor lab is the Environmental Toxicology Lab where lab experiments on environmental toxins are conducted, as well as analytical tests conducted on water, soil, and plants. On the south end of the Environmental Toxicology Lab is the analytical instrumentation collection purchased from the present DOE grant, which is overseen by a full time Analytical Chemist (hired January 2016), who maintains the instruments, conducts analyses on samples, and helps to train faculty and undergraduate and graduate student researchers.« less
Geng, Zongyu; Yang, Feng; Chen, Xi; Wu, Nianqiang
2016-01-01
It remains a challenge to accurately calibrate a sensor subject to environmental drift. The calibration task for such a sensor is to quantify the relationship between the sensor’s response and its exposure condition, which is specified by not only the analyte concentration but also the environmental factors such as temperature and humidity. This work developed a Gaussian Process (GP)-based procedure for the efficient calibration of sensors in drifting environments. Adopted as the calibration model, GP is not only able to capture the possibly nonlinear relationship between the sensor responses and the various exposure-condition factors, but also able to provide valid statistical inference for uncertainty quantification of the target estimates (e.g., the estimated analyte concentration of an unknown environment). Built on GP’s inference ability, an experimental design method was developed to achieve efficient sampling of calibration data in a batch sequential manner. The resulting calibration procedure, which integrates the GP-based modeling and experimental design, was applied on a simulated chemiresistor sensor to demonstrate its effectiveness and its efficiency over the traditional method. PMID:26924894
INVESTIGATING ENVIRONMENTAL SINKS OF MACROLIDE ANTIBIOTICS WITH ANALYTICAL CHEMISTRY
Possible environmental sinks (wastewater effluents, biosolids, sediments) of macrolide antibiotics (i.e., azithromycin, roxithromycin and clarithromycin)are investigated using state-of-the-art analytical chemistry techniques.
Environmental Response Laboratory Network (ERLN) Data Submission Requirements
These Environmental Response Laboratory Network specifications are essential to the mission of providing consistent analytical data of know and documented quality for each Analytical Service Request (ASR).
Biomolecular logic systems: applications to biosensors and bioactuators
NASA Astrophysics Data System (ADS)
Katz, Evgeny
2014-05-01
The paper presents an overview of recent advances in biosensors and bioactuators based on the biocomputing concept. Novel biosensors digitally process multiple biochemical signals through Boolean logic networks of coupled biomolecular reactions and produce output in the form of YES/NO response. Compared to traditional single-analyte sensing devices, biocomputing approach enables a high-fidelity multi-analyte biosensing, particularly beneficial for biomedical applications. Multi-signal digital biosensors thus promise advances in rapid diagnosis and treatment of diseases by processing complex patterns of physiological biomarkers. Specifically, they can provide timely detection and alert to medical emergencies, along with an immediate therapeutic intervention. Application of the biocomputing concept has been successfully demonstrated for systems performing logic analysis of biomarkers corresponding to different injuries, particularly exemplified for liver injury. Wide-ranging applications of multi-analyte digital biosensors in medicine, environmental monitoring and homeland security are anticipated. "Smart" bioactuators, for example for signal-triggered drug release, were designed by interfacing switchable electrodes and biocomputing systems. Integration of novel biosensing and bioactuating systems with the biomolecular information processing systems keeps promise for further scientific advances and numerous practical applications.
Trojanowicz, Marek; Bobrowski, Krzysztof; Szostek, Bogdan; Bojanowska-Czajka, Anna; Szreder, Tomasz; Bartoszewicz, Iwona; Kulisa, Krzysztof
2018-01-15
The monitoring of Advanced Oxidation/Reduction Processes (AO/RPs) for the evaluation of the yield and mechanisms of decomposition of perfluorinated compounds (PFCs) is often a more difficult task than their determination in the environmental, biological or food samples with complex matrices. This is mostly due to the formation of hundreds, or even thousands, of both intermediate and final products. The considered AO/RPs, involving free radical reactions, include photolytic and photocatalytic processes, Fenton reactions, sonolysis, ozonation, application of ionizing radiation and several wet oxidation processes. The main attention is paid to the most commonly occurring PFCs in the environment, namely PFOA and PFOS. The most powerful and widely exploited method for this purpose is without a doubt LC/MS/MS, which allows the identification and trace quantitation of all species with detectability and resolution power depending on the particular instrumental configurations. The GC/MS is often employed for the monitoring of volatile fluorocarbons, confirming the formation of radicals in the processes of C‒C and C‒S bonds cleavage. For the direct monitoring of radicals participating in the reactions of PFCs decomposition, the molecular spectrophotometry is employed, especially electron paramagnetic resonance (EPR). The UV/Vis spectrophotometry as a detection method is of special importance in the evaluation of kinetics of radical reactions with the use of pulse radiolysis methods. The most commonly employed for the determination of the yield of mineralization of PFCs is ion-chromatography, but there is also potentiometry with ion-selective electrode and the measurements of general parameters such as Total Organic Carbon and Total Organic Fluoride. The presented review is based on about 100 original papers published in both analytical and environmental journals. Copyright © 2017 Elsevier B.V. All rights reserved.
Catastrophic incidents can generate a large number of samples with analytically diverse types including forensic, clinical, environmental, food, and others. Environmental samples include water, wastewater, soil, air, urban building and infrastructure materials, and surface resid...
The talk will highlight key aspects and results of analytical methods the EPA National Health and Environmental Effects Research Laboratory (NHEERL) Analytical Chemistry Research Core (ACRC) develops and uses to provide data on disposition, metabolism, and effects of environmenta...
Data Quality Objectives for Regulatory Requirements for Dangerous Waste Sampling and Analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
MULKEY, C.H.
1999-07-02
This document describes sampling and analytical requirements needed to meet state and federal regulations for dangerous waste (DW). The River Protection Project (RPP) is assigned to the task of storage and interim treatment of hazardous waste. Any final treatment or disposal operations, as well as requirements under the land disposal restrictions (LDRs), fall in the jurisdiction of another Hanford organization and are not part of this scope. The requirements for this Data Quality Objective (DQO) Process were developed using the RPP Data Quality Objective Procedure (Banning 1996), which is based on the U.S. Environmental Protection Agency's (EPA) Guidance for themore » Data Quality Objectives Process (EPA 1994). Hereafter, this document is referred to as the DW DQO. Federal and state laws and regulations pertaining to waste contain requirements that are dependent upon the composition of the waste stream. These regulatory drivers require that pertinent information be obtained. For many requirements, documented process knowledge of a waste composition can be used instead of analytical data to characterize or designate a waste. When process knowledge alone is used to characterize a waste, it is a best management practice to validate the information with analytical measurements.« less
Updates to Selected Analytical Methods for Environmental Remediation and Recovery (SAM)
View information on the latest updates to methods included in EPA's Selected Analytical Methods for Environmental Remediation and Recovery (SAM), including the newest recommended methods and publications.
An atmosphere protection subsystem in the thermal power station automated process control system
NASA Astrophysics Data System (ADS)
Parchevskii, V. M.; Kislov, E. A.
2014-03-01
Matters concerned with development of methodical and mathematical support for an atmosphere protection subsystem in the thermal power station automated process control system are considered taking as an example the problem of controlling nitrogen oxide emissions at a gas-and-oil-fired thermal power station. The combined environmental-and-economic characteristics of boilers, which correlate the costs for suppressing emissions with the boiler steam load and mass discharge of nitrogen oxides in analytic form, are used as the main tool for optimal control. A procedure for constructing and applying environmental-and-economic characteristics on the basis of technical facilities available in modern instrumentation and control systems is presented.
Stocka, Jolanta; Tankiewicz, Maciej; Biziuk, Marek; Namieśnik, Jacek
2011-01-01
Pesticides are among the most dangerous environmental pollutants because of their stability, mobility and long-term effects on living organisms. Their presence in the environment is a particular danger. It is therefore crucial to monitor pesticide residues using all available analytical methods. The analysis of environmental samples for the presence of pesticides is very difficult: the processes involved in sample preparation are labor-intensive and time-consuming. To date, it has been standard practice to use large quantities of organic solvents in the sample preparation process; but as these solvents are themselves hazardous, solvent-less and solvent-minimized techniques are becoming popular. The application of Green Chemistry principles to sample preparation is primarily leading to the miniaturization of procedures and the use of solvent-less techniques, and these are discussed in the paper. PMID:22174632
Evaluation of HCFC AK 225 Alternatives for Precision Cleaning and Verification
NASA Technical Reports Server (NTRS)
Melton, D. M.
1998-01-01
Maintaining qualified cleaning and verification processes are essential in an production environment. Environmental regulations have and are continuing to impact cleaning and verification processing in component and large structures, both at the Michoud Assembly Facility and component suppliers. The goal of the effort was to assure that the cleaning and verification proceeds unimpeded and that qualified, environmentally compliant material and process replacements are implemented and perform to specifications. The approach consisted of (1) selection of a Supersonic Gas-Liquid Cleaning System; (2) selection and evaluation of three cleaning and verification solvents as candidate alternatives to HCFC 225 (Vertrel 423 (HCFC), Vertrel MCA (HFC/1,2-Dichloroethylene), and HFE 7100DE (HFE/1,2 Dichloroethylene)); and evaluation of an analytical instrumental post cleaning verification technique. This document is presented in viewgraph format.
Mottier, Nicolas; Tharin, Manuel; Cluse, Camille; Crudo, Jean-René; Lueso, María Gómez; Goujon-Ginglinger, Catherine G; Jaquier, Anne; Mitova, Maya I; Rouget, Emmanuel G R; Schaller, Mathieu; Solioz, Jennifer
2016-09-01
Studies in environmentally controlled rooms have been used over the years to assess the impact of environmental tobacco smoke on indoor air quality. As new tobacco products are developed, it is important to determine their impact on air quality when used indoors. Before such an assessment can take place it is essential that the analytical methods used to assess indoor air quality are validated and shown to be fit for their intended purpose. Consequently, for this assessment, an environmentally controlled room was built and seven analytical methods, representing eighteen analytes, were validated. The validations were carried out with smoking machines using a matrix-based approach applying the accuracy profile procedure. The performances of the methods were compared for all three matrices under investigation: background air samples, the environmental aerosol of Tobacco Heating System THS 2.2, a heat-not-burn tobacco product developed by Philip Morris International, and the environmental tobacco smoke of a cigarette. The environmental aerosol generated by the THS 2.2 device did not have any appreciable impact on the performances of the methods. The comparison between the background and THS 2.2 environmental aerosol samples generated by smoking machines showed that only five compounds were higher when THS 2.2 was used in the environmentally controlled room. Regarding environmental tobacco smoke from cigarettes, the yields of all analytes were clearly above those obtained with the other two air sample types. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.
Use of performance indicators to assess the solid waste management of health services.
Assis, Mayara C; Gomes, Vanielle A P; Balista, Wagner C; Freitas, Rodrigo R DE
2017-01-01
Modern society faces serious challenges, among them, the complexity of environmental problems. Thus, there are several possible sources of environmental degradation, however, the waste produced by health services have an important peculiarity due to its toxic or pathogenic characteristics, since when managed improperly provide also health risk public. The involvement of solid waste from healthcare services environmental impact integrates matters a little more complex, because in addition to environmental health, they also interfere with the healthiness of environments that generate, with the consequences of nosocomial infections, occupational health and public. Thus, the management has become an urgent need, especially when we see no use of performance indicators management in healthcare environments in the city of São Mateus, ES. For this, we used the Analytic Hierarchy Process Method to prioritize such indicators as the potential improvement in health services waste management process - WHS and thus environmental analysis was performed with the use of a template for SWOT analysis. The results showed that the performance indicator training strategies developed with employees has the greatest potential to assist in improvements in WHS (Health Services Waste) management process followed indicator knowledge of the regulations associated with procedures performed by employees and importance of biosafety regulations.
Sae-Lim, Panya; Komen, Hans; Kause, Antti; Mulder, Han A
2014-02-26
Identifying the relevant environmental variables that cause GxE interaction is often difficult when they cannot be experimentally manipulated. Two statistical approaches can be applied to address this question. When data on candidate environmental variables are available, GxE interaction can be quantified as a function of specific environmental variables using a reaction norm model. Alternatively, a factor analytic model can be used to identify the latent common factor that explains GxE interaction. This factor can be correlated with known environmental variables to identify those that are relevant. Previously, we reported a significant GxE interaction for body weight at harvest in rainbow trout reared on three continents. Here we explore their possible causes. Reaction norm and factor analytic models were used to identify which environmental variables (age at harvest, water temperature, oxygen, and photoperiod) may have caused the observed GxE interaction. Data on body weight at harvest was recorded on 8976 offspring reared in various locations: (1) a breeding environment in the USA (nucleus), (2) a recirculating aquaculture system in the Freshwater Institute in West Virginia, USA, (3) a high-altitude farm in Peru, and (4) a low-water temperature farm in Germany. Akaike and Bayesian information criteria were used to compare models. The combination of days to harvest multiplied with daily temperature (Day*Degree) and photoperiod were identified by the reaction norm model as the environmental variables responsible for the GxE interaction. The latent common factor that was identified by the factor analytic model showed the highest correlation with Day*Degree. Day*Degree and photoperiod were the environmental variables that differed most between Peru and other environments. Akaike and Bayesian information criteria indicated that the factor analytical model was more parsimonious than the reaction norm model. Day*Degree and photoperiod were identified as environmental variables responsible for the strong GxE interaction for body weight at harvest in rainbow trout across four environments. Both the reaction norm and the factor analytic models can help identify the environmental variables responsible for GxE interaction. A factor analytic model is preferred over a reaction norm model when limited information on differences in environmental variables between farms is available.
2014-01-01
Background Identifying the relevant environmental variables that cause GxE interaction is often difficult when they cannot be experimentally manipulated. Two statistical approaches can be applied to address this question. When data on candidate environmental variables are available, GxE interaction can be quantified as a function of specific environmental variables using a reaction norm model. Alternatively, a factor analytic model can be used to identify the latent common factor that explains GxE interaction. This factor can be correlated with known environmental variables to identify those that are relevant. Previously, we reported a significant GxE interaction for body weight at harvest in rainbow trout reared on three continents. Here we explore their possible causes. Methods Reaction norm and factor analytic models were used to identify which environmental variables (age at harvest, water temperature, oxygen, and photoperiod) may have caused the observed GxE interaction. Data on body weight at harvest was recorded on 8976 offspring reared in various locations: (1) a breeding environment in the USA (nucleus), (2) a recirculating aquaculture system in the Freshwater Institute in West Virginia, USA, (3) a high-altitude farm in Peru, and (4) a low-water temperature farm in Germany. Akaike and Bayesian information criteria were used to compare models. Results The combination of days to harvest multiplied with daily temperature (Day*Degree) and photoperiod were identified by the reaction norm model as the environmental variables responsible for the GxE interaction. The latent common factor that was identified by the factor analytic model showed the highest correlation with Day*Degree. Day*Degree and photoperiod were the environmental variables that differed most between Peru and other environments. Akaike and Bayesian information criteria indicated that the factor analytical model was more parsimonious than the reaction norm model. Conclusions Day*Degree and photoperiod were identified as environmental variables responsible for the strong GxE interaction for body weight at harvest in rainbow trout across four environments. Both the reaction norm and the factor analytic models can help identify the environmental variables responsible for GxE interaction. A factor analytic model is preferred over a reaction norm model when limited information on differences in environmental variables between farms is available. PMID:24571451
NASA Astrophysics Data System (ADS)
Adelina, W.; Kusumastuti, R. D.
2017-01-01
This study is about business strategy selection for green supply chain management (GSCM) for PT XYZ by using Analytic Network Process (ANP). GSCM is initiated as a response to reduce environmental impacts from industrial activities. The purposes of this study are identifying criteria and sub criteria in selecting GSCM Strategy, and analysing a suitable GSCM strategy for PT XYZ. This study proposes ANP network with 6 criteria and 29 sub criteria, which are obtained from the literature and experts’ judgements. One of the six criteria contains GSCM strategy options, namely risk-based strategy, efficiency-based strategy, innovation-based strategy, and closed loop strategy. ANP solves complex GSCM strategy-selection by using a more structured process and considering green perspectives from experts. The result indicates that innovation-based strategy is the most suitable green supply chain management strategy for PT XYZ.
Value of the distant future: Model-independent results
NASA Astrophysics Data System (ADS)
Katz, Yuri A.
2017-01-01
This paper shows that the model-independent account of correlations in an interest rate process or a log-consumption growth process leads to declining long-term tails of discount curves. Under the assumption of an exponentially decaying memory in fluctuations of risk-free real interest rates, I derive the analytical expression for an apt value of the long run discount factor and provide a detailed comparison of the obtained result with the outcome of the benchmark risk-free interest rate models. Utilizing the standard consumption-based model with an isoelastic power utility of the representative economic agent, I derive the non-Markovian generalization of the Ramsey discounting formula. Obtained analytical results allowing simple calibration, may augment the rigorous cost-benefit and regulatory impact analysis of long-term environmental and infrastructure projects.
Sample processing approach for detection of ricin in surface samples.
Kane, Staci; Shah, Sanjiv; Erler, Anne Marie; Alfaro, Teneile
2017-12-01
With several ricin contamination incidents reported over the past decade, rapid and accurate methods are needed for environmental sample analysis, especially after decontamination. A sample processing method was developed for common surface sampling devices to improve the limit of detection and avoid false negative/positive results for ricin analysis. Potential assay interferents from the sample matrix (bleach residue, sample material, wetting buffer), including reference dust, were tested using a Time-Resolved Fluorescence (TRF) immunoassay. Test results suggested that the sample matrix did not cause the elevated background fluorescence sometimes observed when analyzing post-bleach decontamination samples from ricin incidents. Furthermore, sample particulates (80mg/mL Arizona Test Dust) did not enhance background fluorescence or interfere with ricin detection by TRF. These results suggested that high background fluorescence in this immunoassay could be due to labeled antibody quality and/or quantity issues. Centrifugal ultrafiltration devices were evaluated for ricin concentration as a part of sample processing. Up to 30-fold concentration of ricin was observed by the devices, which serve to remove soluble interferents and could function as the front-end sample processing step to other ricin analytical methods. The procedure has the potential to be used with a broader range of environmental sample types and with other potential interferences and to be followed by other ricin analytical methods, although additional verification studies would be required. Published by Elsevier B.V.
Cobelo-García, A; Filella, M; Croot, P; Frazzoli, C; Du Laing, G; Ospina-Alvarez, N; Rauch, S; Salaun, P; Schäfer, J; Zimmermann, S
2015-10-01
The current socio-economic, environmental and public health challenges that countries are facing clearly need common-defined strategies to inform and support our transition to a sustainable economy. Here, the technology-critical elements (which includes Ga, Ge, In, Te, Nb, Ta, Tl, the Platinum Group Elements and most of the rare-earth elements) are of great relevance in the development of emerging key technologies-including renewable energy, energy efficiency, electronics or the aerospace industry. In this context, the increasing use of technology-critical elements (TCEs) and associated environmental impacts (from mining to end-of-life waste products) is not restricted to a national level but covers most likely a global scale. Accordingly, the European COST Action TD1407: Network on Technology-Critical Elements (NOTICE)-from environmental processes to human health threats, has an overall objective for creating a network of scientists and practitioners interested in TCEs, from the evaluation of their environmental processes to understanding potential human health threats, with the aim of defining the current state of knowledge and gaps, proposing priority research lines/activities and acting as a platform for new collaborations and joint research projects. The Action is focused on three major scientific areas: (i) analytical chemistry, (ii) environmental biogeochemistry and (iii) human exposure and (eco)-toxicology.
An Environmental Management Maturity Model of Construction Programs Using the AHP-Entropy Approach.
Bai, Libiao; Wang, Hailing; Huang, Ning; Du, Qiang; Huang, Youdan
2018-06-23
The accelerating process of urbanization in China has led to considerable opportunities for the development of construction projects, however, environmental issues have become an important constraint on the implementation of these projects. To quantitatively describe the environmental management capabilities of such projects, this paper proposes a 2-dimensional Environmental Management Maturity Model of Construction Program (EMMMCP) based on an analysis of existing projects, group management theory and a management maturity model. In this model, a synergetic process was included to compensate for the lack of consideration of synergies in previous studies, and it was involved in the construction of the first dimension, i.e., the environmental management index system. The second dimension, i.e., the maturity level of environment management, was then constructed by redefining the hierarchical characteristics of construction program (CP) environmental management maturity. Additionally, a mathematical solution to this proposed model was derived via the Analytic Hierarchy Process (AHP)-entropy approach. To verify the effectiveness and feasibility of this proposed model, a computational experiment was conducted, and the results show that this approach could not only measure the individual levels of different processes, but also achieve the most important objective of providing a reference for stakeholders when making decisions on the environmental management of construction program, which reflects this model is reasonable for evaluating the level of environmental management maturity in CP. To our knowledge, this paper is the first study to evaluate the environmental management maturity levels of CP, which would fill the gap between project program management and environmental management and provide a reference for relevant management personnel to enhance their environmental management capabilities.
The Spatial Distributions and Variations of Water Environmental Risk in Yinma River Basin, China
Di, Hui; Liu, Xingpeng; Tong, Zhijun; Ji, Meichen
2018-01-01
Water environmental risk is the probability of the occurrence of events caused by human activities or the interaction of human activities and natural processes that will damage a water environment. This study proposed a water environmental risk index (WERI) model to assess the water environmental risk in the Yinma River Basin based on hazards, exposure, vulnerability, and regional management ability indicators in a water environment. The data for each indicator were gathered from 2000, 2005, 2010, and 2015 to assess the spatial and temporal variations in water environmental risk using particle swarm optimization and the analytic hierarchy process (PSO-AHP) method. The results showed that the water environmental risk in the Yinma River Basin decreased from 2000 to 2015. The risk level of the water environment was high in Changchun, while the risk levels in Yitong and Yongji were low. The research methods provide information to support future decision making by the risk managers in the Yinma River Basin, which is in a high-risk water environment. Moreover, water environment managers could reduce the risks by adjusting the indicators that affect water environmental risks. PMID:29543706
Evaluation of generic types of drilling fluid using a risk-based analytic hierarchy process.
Sadiq, Rehan; Husain, Tahir; Veitch, Brian; Bose, Neil
2003-12-01
The composition of drilling muds is based on a mixture of clays and additives in a base fluid. There are three generic categories of base fluid--water, oil, and synthetic. Water-based fluids (WBFs) are relatively environmentally benign, but drilling performance is better with oil-based fluids (OBFs). The oil and gas industry developed synthetic-based fluids (SBFs), such as vegetable esters, olefins, ethers, and others, which provide drilling performance comparable to OBFs, but with lower environmental and occupational health effects. The primary objective of this paper is to present a methodology to guide decision-making in the selection and evaluation of three generic types of drilling fluids using a risk-based analytic hierarchy process (AHP). In this paper a comparison of drilling fluids is made considering various activities involved in the life cycle of drilling fluids. This paper evaluates OBFs, WBFs, and SBFs based on four major impacts--operations, resources, economics, and liabilities. Four major activities--drilling, discharging offshore, loading and transporting, and disposing onshore--cause the operational impacts. Each activity involves risks related to occupational injuries (safety), general public health, environmental impact, and energy use. A multicriteria analysis strategy was used for the selection and evaluation of drilling fluids using a risk-based AHP. A four-level hierarchical structure is developed to determine the final relative scores, and the SBFs are found to be the best option.
Analytical method of waste allocation in waste management systems: Concept, method and case study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bergeron, Francis C., E-mail: francis.b.c@videotron.ca
Waste is not a rejected item to dispose anymore but increasingly a secondary resource to exploit, influencing waste allocation among treatment operations in a waste management (WM) system. The aim of this methodological paper is to present a new method for the assessment of the WM system, the “analytical method of the waste allocation process” (AMWAP), based on the concept of the “waste allocation process” defined as the aggregation of all processes of apportioning waste among alternative waste treatment operations inside or outside the spatial borders of a WM system. AMWAP contains a conceptual framework and an analytical approach. Themore » conceptual framework includes, firstly, a descriptive model that focuses on the description and classification of the WM system. It includes, secondly, an explanatory model that serves to explain and to predict the operation of the WM system. The analytical approach consists of a step-by-step analysis for the empirical implementation of the conceptual framework. With its multiple purposes, AMWAP provides an innovative and objective modular method to analyse a WM system which may be integrated in the framework of impact assessment methods and environmental systems analysis tools. Its originality comes from the interdisciplinary analysis of the WAP and to develop the conceptual framework. AMWAP is applied in the framework of an illustrative case study on the household WM system of Geneva (Switzerland). It demonstrates that this method provides an in-depth and contextual knowledge of WM. - Highlights: • The study presents a new analytical method based on the waste allocation process. • The method provides an in-depth and contextual knowledge of the waste management system. • The paper provides a reproducible procedure for professionals, experts and academics. • It may be integrated into impact assessment or environmental system analysis tools. • An illustrative case study is provided based on household waste management in Geneva.« less
Instrumental Analysis in Environmental Chemistry - Liquid and Solid Phase Detection Systems
ERIC Educational Resources Information Center
Stedman, Donald H.; Meyers, Philip A.
1974-01-01
This is the second of two reviews dealing with analytical methods applicable to environmental chemistry. Methods are discussed under gas, liquid, or solid depending upon the state of the analyte during detection. (RH)
NASA Astrophysics Data System (ADS)
Iqbal, M.; Islam, A.; Hossain, A.; Mustaque, S.
2016-12-01
Multi-Criteria Decision Making(MCDM) is advanced analytical method to evaluate appropriate result or decision from multiple criterion environment. Present time in advanced research, MCDM technique is progressive analytical process to evaluate a logical decision from various conflict. In addition, Present day Geospatial approach (e.g. Remote sensing and GIS) also another advanced technical approach in a research to collect, process and analyze various spatial data at a time. GIS and Remote sensing together with the MCDM technique could be the best platform to solve a complex decision making process. These two latest process combined very effectively used in site selection for solid waste management in urban policy. The most popular MCDM technique is Weighted Linear Method (WLC) where Analytical Hierarchy Process (AHP) is another popular and consistent techniques used in worldwide as dependable decision making. Consequently, the main objective of this study is improving a AHP model as MCDM technique with Geographic Information System (GIS) to select a suitable landfill site for urban solid waste management. Here AHP technique used as a MCDM tool to select the best suitable landfill location for urban solid waste management. To protect the urban environment in a sustainable way municipal waste needs an appropriate landfill site considering environmental, geological, social and technical aspect of the region. A MCDM model generate from five class related which related to environmental, geological, social and technical using AHP method and input the result set in GIS for final model location for urban solid waste management. The final suitable location comes out that 12.2% of the area corresponds to 22.89 km2 considering the total study area. In this study, Keraniganj sub-district of Dhaka district in Bangladesh is consider as study area which is densely populated city currently undergoes an unmanaged waste management system especially the suitable landfill sites for waste dumping site.
Validating Analytical Protocols to Determine Selected Pesticides and PCBs Using Routine Samples.
Pindado Jiménez, Oscar; García Alonso, Susana; Pérez Pastor, Rosa María
2017-01-01
This study aims at providing recommendations concerning the validation of analytical protocols by using routine samples. It is intended to provide a case-study on how to validate the analytical methods in different environmental matrices. In order to analyze the selected compounds (pesticides and polychlorinated biphenyls) in two different environmental matrices, the current work has performed and validated two analytical procedures by GC-MS. A description is given of the validation of the two protocols by the analysis of more than 30 samples of water and sediments collected along nine months. The present work also scopes the uncertainty associated with both analytical protocols. In detail, uncertainty of water sample was performed through a conventional approach. However, for the sediments matrices, the estimation of proportional/constant bias is also included due to its inhomogeneity. Results for the sediment matrix are reliable, showing a range 25-35% of analytical variability associated with intermediate conditions. The analytical methodology for the water matrix determines the selected compounds with acceptable recoveries and the combined uncertainty ranges between 20 and 30%. Analyzing routine samples is rarely applied to assess trueness of novel analytical methods and up to now this methodology was not focused on organochlorine compounds in environmental matrices.
Schwertfeger, D M; Velicogna, Jessica R; Jesmer, Alexander H; Scroggins, Richard P; Princz, Juliska I
2016-10-18
There is an increasing interest to use single particle-inductively coupled plasma mass spectroscopy (SP-ICPMS) to help quantify exposure to engineered nanoparticles, and their transformation products, released into the environment. Hindering the use of this analytical technique for environmental samples is the presence of high levels of dissolved analyte which impedes resolution of the particle signal from the dissolved. While sample dilution is often necessary to achieve the low analyte concentrations necessary for SP-ICPMS analysis, and to reduce the occurrence of matrix effects on the analyte signal, it is used here to also reduce the dissolved signal relative to the particulate, while maintaining a matrix chemistry that promotes particle stability. We propose a simple, systematic dilution series approach where by the first dilution is used to quantify the dissolved analyte, the second is used to optimize the particle signal, and the third is used as an analytical quality control. Using simple suspensions of well characterized Au and Ag nanoparticles spiked with the dissolved analyte form, as well as suspensions of complex environmental media (i.e., extracts from soils previously contaminated with engineered silver nanoparticles), we show how this dilution series technique improves resolution of the particle signal which in turn improves the accuracy of particle counts, quantification of particulate mass and determination of particle size. The technique proposed here is meant to offer a systematic and reproducible approach to the SP-ICPMS analysis of environmental samples and improve the quality and consistency of data generated from this relatively new analytical tool.
Progress in the Analysis of Complex Atmospheric Particles.
Laskin, Alexander; Gilles, Mary K; Knopf, Daniel A; Wang, Bingbing; China, Swarup
2016-06-12
This article presents an overview of recent advances in field and laboratory studies of atmospheric particles formed in processes of environmental air-surface interactions. The overarching goal of these studies is to advance predictive understanding of atmospheric particle composition, particle chemistry during aging, and their environmental impacts. The diversity between chemical constituents and lateral heterogeneity within individual particles adds to the chemical complexity of particles and their surfaces. Once emitted, particles undergo transformation via atmospheric aging processes that further modify their complex composition. We highlight a range of modern analytical approaches that enable multimodal chemical characterization of particles with both molecular and lateral specificity. When combined, these approaches provide a comprehensive arsenal of tools for understanding the nature of particles at air-surface interactions and their reactivity and transformations with atmospheric aging. We discuss applications of these novel approaches in recent studies and highlight additional research areas to explore the environmental effects of air-surface interactions.
Chemical structure and dynamics: Annual report 1996
DOE Office of Scientific and Technical Information (OSTI.GOV)
Colson, S.D.; McDowell, R.S.
1997-03-01
The Chemical Structure and Dynamics (CS&D) program is a major component of the William R. Wiley Environmental Molecular Sciences Laboratory (EMSL) developed by Pacific Northwest National Laboratory (PNNL) to provide a state-of-the-art collaborative facility for studies of chemical structure and dynamics. We respond to the need for a fundamental, molecular-level understanding of chemistry at a wide variety of environmentally important interfaces by (1) extending the experimental characterization and theoretical description of chemical reactions to encompass the effects of condensed media and interfaces; (2) developing a multidisciplinary capability for describing interfacial chemical processes within which the new knowledge generated can bemore » brought to bear on complex phenomena in environmental chemistry and in nuclear waste processing and storage; and (3) developing state-of-the-art analytical methods for characterizing waste tanks and pollutant distributions, and for detecting and monitoring trace atmospheric species.« less
Celik, Metin
2009-03-01
The International Safety Management (ISM) Code defines a broad framework for the safe management and operation of merchant ships, maintaining high standards of safety and environmental protection. On the other hand, ISO 14001:2004 provides a generic, worldwide environmental management standard that has been utilized by several industries. Both the ISM Code and ISO 14001:2004 have the practical goal of establishing a sustainable Integrated Environmental Management System (IEMS) for shipping businesses. This paper presents a hybrid design methodology that shows how requirements from both standards can be combined into a single execution scheme. Specifically, the Analytic Hierarchy Process (AHP) and Fuzzy Axiomatic Design (FAD) are used to structure an IEMS for ship management companies. This research provides decision aid to maritime executives in order to enhance the environmental performance in the shipping industry.
Health, Safety, and Environment Division
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wade, C
1992-01-01
The primary responsibility of the Health, Safety, and Environmental (HSE) Division at the Los Alamos National Laboratory is to provide comprehensive occupational health and safety programs, waste processing, and environmental protection. These activities are designed to protect the worker, the public, and the environment. Meeting these responsibilities requires expertise in many disciplines, including radiation protection, industrial hygiene, safety, occupational medicine, environmental science and engineering, analytical chemistry, epidemiology, and waste management. New and challenging health, safety, and environmental problems occasionally arise from the diverse research and development work of the Laboratory, and research programs in HSE Division often stem from thesemore » applied needs. These programs continue but are also extended, as needed, to study specific problems for the Department of Energy. The results of these programs help develop better practices in occupational health and safety, radiation protection, and environmental science.« less
Non-traditional isotopes in analytical ecogeochemistry assessed by MC-ICP-MS
NASA Astrophysics Data System (ADS)
Prohaska, Thomas; Irrgeher, Johanna; Horsky, Monika; Hanousek, Ondřej; Zitek, Andreas
2014-05-01
Analytical ecogeochemistry deals with the development and application of tools of analytical chemistry to study dynamic biological and ecological processes within ecosystems and across ecosystem boundaries in time. It can be best described as a linkage between modern analytical chemistry and a holistic understanding of ecosystems ('The total human ecosystem') within the frame of transdisciplinary research. One focus of analytical ecogeochemistry is the advanced analysis of elements and isotopes in abiotic and biotic matrices and the application of the results to basic questions in different research fields like ecology, environmental science, climatology, anthropology, forensics, archaeometry and provenancing. With continuous instrumental developments, new isotopic systems have been recognized for their potential to study natural processes and well established systems could be analyzed with improved techniques, especially using multi collector inductively coupled plasma mass spectrometry (MC-ICP-MS). For example, in case of S, isotope ratio measurements at high mass resolution could be achieved at much lower S concentrations with ICP-MS as compared to IRMS, still keeping suitable uncertainty. Almost 50 different isotope systems have been investigated by ICP-MS, so far, with - besides Sr, Pb and U - Ca, Mg, Cd, Li, Hg, Si, Ge and B being the most prominent and considerably pushing the limits of plasma based mass spectrometry also by applying high mass resolution. The use of laser ablation in combination with MC-ICP-MS offers the possibility to achieve isotopic information on high spatial (µm-range) and temporal scale (in case of incrementally growing structures). The information gained with these analytical techniques can be linked between different hierarchical scales in ecosystems, offering means to better understand ecosystem processes. The presentation will highlight the use of different isotopic systems in ecosystem studies accomplished by ICP-MS. Selected examples on combining isotopic systems for the study of ecosystem processes on different spatial scales will underpin the great opportunities substantiated by the field of analytical ecogeochemistry. Moreover, recent developments in plasma mass spectrometry and the application of new isotopic systems require sound metrological approaches in order to prevent scientific conclusions drawn from analytical artifacts.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hess, W.P.; Bushaw, B.A.; McCarthy, M.I.
1996-10-01
The Department of Energy is undertaking the enormous task of remediating defense wastes and environmental insults which have occurred over 50 years of nuclear weapons production. It is abundantly clear that significant technology advances are needed to characterize, process, and store highly radioactive waste and to remediate contaminated zones. In addition to the processing and waste form issues, analytical technologies needed for the characterization of solids, and for monitoring storage tanks and contaminated sites do not exist or are currently expensive labor-intensive tasks. This report describes progress in developing sensitive, rapid, and widely applicable laser-based mass spectrometry techniques for analysismore » of mixed chemical wastes and contaminated soils.« less
Moran, James; Alexander, Thomas; Aalseth, Craig; Back, Henning; Mace, Emily; Overman, Cory; Seifert, Allen; Freeburg, Wilcox
2017-08-01
Previous measurements have demonstrated the wealth of information that tritium (T) can provide on environmentally relevant processes. We present modifications to sample preparation approaches that enable T measurement by proportional counting on small sample sizes equivalent to 120mg of water and demonstrate the accuracy of these methods on a suite of standardized water samples. We identify a current quantification limit of 92.2 TU which, combined with our small sample sizes, correlates to as little as 0.00133Bq of total T activity. This enhanced method should provide the analytical flexibility needed to address persistent knowledge gaps in our understanding of both natural and artificial T behavior in the environment. Copyright © 2017. Published by Elsevier Ltd.
Moran, James; Alexander, Thomas; Aalseth, Craig; ...
2017-01-26
Previous measurements have demonstrated the wealth of information that tritium (T) can provide on environmentally relevant processes. Here, we present modifications to sample preparation approaches that enable T measurement by proportional counting on small sample sizes equivalent to 120 mg of water and demonstrate the accuracy of these methods on a suite of standardized water samples. We also identify a current quantification limit of 92.2 TU which, combined with our small sample sizes, correlates to as little as 0.00133 Bq of total T activity. Furthermore, this enhanced method should provide the analytical flexibility needed to address persistent knowledge gaps inmore » our understanding of both natural and artificial T behavior in the environment.« less
Review of Processing and Analytical Methods for Francisella ...
Journal Article The etiological agent of tularemia, Francisella tularensis, is a resilient organism within the environment and can be acquired many ways (infectious aerosols and dust, contaminated food and water, infected carcasses, and arthropod bites). However, isolating F. tularensis from environmental samples can be challenging due to its nutritionally fastidious and slow-growing nature. In order to determine the current state of the science regarding available processing and analytical methods for detection and recovery of F. tularensis from water and soil matrices, a review of the literature was conducted. During the review, analysis via culture, immunoassays, and genomic identification were the most commonly found methods for F. tularensis detection within environmental samples. Other methods included combined culture and genomic analysis for rapid quantification of viable microorganisms and use of one assay to identify multiple pathogens from a single sample. Gaps in the literature that were identified during this review suggest that further work to integrate culture and genomic identification would advance our ability to detect and to assess the viability of Francisella spp. The optimization of DNA extraction, whole genome amplification with inhibition-resistant polymerases, and multiagent microarray detection would also advance biothreat detection.
Maloney, T.J.; Ludtke, A.S.; Krizman, T.L.
1994-01-01
The US. Geological Survey operates a quality- assurance program based on the analyses of reference samples for the National Water Quality Laboratory in Arvada, Colorado, and the Quality of Water Service Unit in Ocala, Florida. Reference samples containing selected inorganic, nutrient, and low ionic-strength constituents are prepared and disguised as routine samples. The program goal is to determine precision and bias for as many analytical methods offered by the participating laboratories as possible. The samples typically are submitted at a rate of approximately 5 percent of the annual environmental sample load for each constituent. The samples are distributed to the laboratories throughout the year. Analytical data for these reference samples reflect the quality of environmental sample data produced by the laboratories because the samples are processed in the same manner for all steps from sample login through data release. The results are stored permanently in the National Water Data Storage and Retrieval System. During water year 1991, 86 analytical procedures were evaluated at the National Water Quality Laboratory and 37 analytical procedures were evaluated at the Quality of Water Service Unit. An overall evaluation of the inorganic (major ion and trace metal) constituent data for water year 1991 indicated analytical imprecision in the National Water Quality Laboratory for 5 of 67 analytical procedures: aluminum (whole-water recoverable, atomic emission spectrometric, direct-current plasma); calcium (atomic emission spectrometric, direct); fluoride (ion-exchange chromatographic); iron (whole-water recoverable, atomic absorption spectrometric, direct); and sulfate (ion-exchange chromatographic). The results for 11 of 67 analytical procedures had positive or negative bias during water year 1991. Analytical imprecision was indicated in the determination of two of the five National Water Quality Laboratory nutrient constituents: orthophosphate as phosphorus and phosphorus. A negative or positive bias condition was indicated in three of five nutrient constituents. There was acceptable precision and no indication of bias for the 14 low ionic-strength analytical procedures tested in the National Water Quality Laboratory program and for the 32 inorganic and 5 nutrient analytical procedures tested in the Quality of Water Service Unit during water year 1991.
Technical Guidance for Assessing Environmental Justice in ...
The Technical Guidance for Assessing Environmental Justice in Regulatory Analysis (also referred to as the Environmental Justice Technical Guidance or EJTG) is intended for use by Agency analysts, including risk assessors, economists, and other analytic staff that conduct analyses to evaluate EJ concerns in the context of regulatory actions. Senior EPA managers and decision makers also may find this document useful to understand analytic expectations and to ensure that EJ concerns are appropriately considered in the development of analyses to support regulatory actions under EPA’s action development process. Specifically, the document outlines approaches and methods to help Agency analysts evaluate EJ concerns. The document provides overarching direction to analysts by outlining a series of questions that will ensure the decision maker has appropriate information about baseline risks across population groups, and how those risks are distributed under the options being considered. In addition, the document provides a set of recommendations and requirements as well as best practices for use in analyzing and reporting results from consideration of EJ concerns. These principles will help ensure consistency, quality, and transparency across regulatory actions, while allowing for flexibility needed across different regulatory actions. The purpose of the EJTG is ensure consistency, quality, and transparency in considering environmental justice, while allowing f
ENVIRONMENTAL TECHNOLOGICAL VERIFICATION REPORT - L2000 PCB/CHLORIDE ANALYZER - DEXSIL CORPORATION
In July 1997, the U.S. Environmental Protection Agency (EPA) conducted a demonstration of Polychlorinated biphenyl (PCB) field analytical techniques. The purpose of this demonstration was to evaluate field analytical technologies capable of detecting and quantifying PCBs in soil...
ENVIRONMENTAL TECHNOLOGY VERIFICATION REPORT - ENVIROGARD PCB TEST KIT - STRATEGIC DIAGNOSTICS INC
In July 1997, the U.S. Environmental Protection Agency (EPA) conducted a demonstration of Polychlorinated biphenyl (PCB) field analytical techniques. The purpose of this demonstration was to evaluate field analytical technologies capable of detecting and quantifying PCBs in soil...
Lab-on-chip systems for integrated bioanalyses
Madaboosi, Narayanan; Soares, Ruben R.G.; Fernandes, João Tiago S.; Novo, Pedro; Moulas, Geraud; Chu, Virginia
2016-01-01
Biomolecular detection systems based on microfluidics are often called lab-on-chip systems. To fully benefit from the miniaturization resulting from microfluidics, one aims to develop ‘from sample-to-answer’ analytical systems, in which the input is a raw or minimally processed biological, food/feed or environmental sample and the output is a quantitative or qualitative assessment of one or more analytes of interest. In general, such systems will require the integration of several steps or operations to perform their function. This review will discuss these stages of operation, including fluidic handling, which assures that the desired fluid arrives at a specific location at the right time and under the appropriate flow conditions; molecular recognition, which allows the capture of specific analytes at precise locations on the chip; transduction of the molecular recognition event into a measurable signal; sample preparation upstream from analyte capture; and signal amplification procedures to increase sensitivity. Seamless integration of the different stages is required to achieve a point-of-care/point-of-use lab-on-chip device that allows analyte detection at the relevant sensitivity ranges, with a competitive analysis time and cost. PMID:27365042
Titaley, Ivan A; Ogba, O Maduka; Chibwe, Leah; Hoh, Eunha; Cheong, Paul H-Y; Simonich, Staci L Massey
2018-03-16
Non-targeted analysis of environmental samples, using comprehensive two-dimensional gas chromatography coupled with time-of-flight mass spectrometry (GC × GC/ToF-MS), poses significant data analysis challenges due to the large number of possible analytes. Non-targeted data analysis of complex mixtures is prone to human bias and is laborious, particularly for comparative environmental samples such as contaminated soil pre- and post-bioremediation. To address this research bottleneck, we developed OCTpy, a Python™ script that acts as a data reduction filter to automate GC × GC/ToF-MS data analysis from LECO ® ChromaTOF ® software and facilitates selection of analytes of interest based on peak area comparison between comparative samples. We used data from polycyclic aromatic hydrocarbon (PAH) contaminated soil, pre- and post-bioremediation, to assess the effectiveness of OCTpy in facilitating the selection of analytes that have formed or degraded following treatment. Using datasets from the soil extracts pre- and post-bioremediation, OCTpy selected, on average, 18% of the initial suggested analytes generated by the LECO ® ChromaTOF ® software Statistical Compare feature. Based on this list, 63-100% of the candidate analytes identified by a highly trained individual were also selected by OCTpy. This process was accomplished in several minutes per sample, whereas manual data analysis took several hours per sample. OCTpy automates the analysis of complex mixtures of comparative samples, reduces the potential for human error during heavy data handling and decreases data analysis time by at least tenfold. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Kouziokas, Georgios N.
2016-01-01
The adoption of Information and Communication Technologies (ICT) in environmental management has become a significant demand nowadays with the rapid growth of environmental information. This paper presents a prototype Environmental Management Information System (EMIS) that was developed to provide a systematic way of managing environmental data and human resources of an environmental organization. The system was designed using programming languages, a Database Management System (DBMS) and other technologies and programming tools and combines information from the relational database in order to achieve the principal goals of the environmental organization. The developed application can be used to store and elaborate information regarding: human resources data, environmental projects, observations, reports, data about the protected species, environmental measurements of pollutant factors or other kinds of analytical measurements and also the financial data of the organization. Furthermore, the system supports the visualization of spatial data structures by using geographic information systems (GIS) and web mapping technologies. This paper describes this prototype software application, its structure, its functions and how this system can be utilized to facilitate technology-based environmental management and decision-making process.
NASA Technical Reports Server (NTRS)
Phatak, A. V.
1980-01-01
A systematic analytical approach to the determination of helicopter IFR precision approach requirements is formulated. The approach is based upon the hypothesis that pilot acceptance level or opinion rating of a given system is inversely related to the degree of pilot involvement in the control task. A nonlinear simulation of the helicopter approach to landing task incorporating appropriate models for UH-1H aircraft, the environmental disturbances and the human pilot was developed as a tool for evaluating the pilot acceptance hypothesis. The simulated pilot model is generic in nature and includes analytical representation of the human information acquisition, processing, and control strategies. Simulation analyses in the flight director mode indicate that the pilot model used is reasonable. Results of the simulation are used to identify candidate pilot workload metrics and to test the well known performance-work-load relationship. A pilot acceptance analytical methodology is formulated as a basis for further investigation, development and validation.
In July 1997, the U.S. Environmental Protection Agency (EPA) conducted a demonstration of polychlorinated biphenyl (PCB) field analytical techniques. The purpose of this demonstration was to evaluate field analytical technologies capable of detecting and quantifying PCB's in soi...
A new tool for the evaluation of the analytical procedure: Green Analytical Procedure Index.
Płotka-Wasylka, J
2018-05-01
A new means for assessing analytical protocols relating to green analytical chemistry attributes has been developed. The new tool, called GAPI (Green Analytical Procedure Index), evaluates the green character of an entire analytical methodology, from sample collection to final determination, and was created using such tools as the National Environmental Methods Index (NEMI) or Analytical Eco-Scale to provide not only general but also qualitative information. In GAPI, a specific symbol with five pentagrams can be used to evaluate and quantify the environmental impact involved in each step of an analytical methodology, mainly from green through yellow to red depicting low, medium to high impact, respectively. The proposed tool was used to evaluate analytical procedures applied in the determination of biogenic amines in wine samples, and polycyclic aromatic hydrocarbon determination by EPA methods. GAPI tool not only provides an immediately perceptible perspective to the user/reader but also offers exhaustive information on evaluated procedures. Copyright © 2018 Elsevier B.V. All rights reserved.
Enantiomer fractions of polychlorinated biphenyls in three selected Standard Reference Materials.
Morrissey, Joshua A; Bleackley, Derek S; Warner, Nicholas A; Wong, Charles S
2007-01-01
The enantiomer composition of six chiral polychlorinated biphenyls (PCBs) were measured in three different certified Standard Reference Materials (SRMs) from the US National Institute of Standards and Technology (NIST): SRM 1946 (Lake Superior fish tissue), SRM 1939a (PCB Congeners in Hudson River Sediment), and SRM 2978 (organic contaminants in mussel tissue--Raritan Bay, New Jersey) to aid in quality assurance/quality control methodologies in the study of chiral pollutants in sediments and biota. Enantiomer fractions (EFs) of PCBs 91, 95, 136, 149, 174, and 183 were measured using a suite of chiral columns by gas chromatography/mass spectrometry. Concentrations of target analytes were in agreement with certified values. Target analyte EFs in reference materials were measured precisely (<2% relative standard deviation), indicating the utility of SRM in quality assurance/control methodologies for analyses of chiral compounds in environmental samples. Measured EFs were also in agreement with previously published analyses of similar samples, indicating that similar enantioselective processes were taking place in these environmental matrices.
SCIENCE MISCONDUCT ACTIVITIES IN ENVIRONMENTAL ANALYSIS - FRAUD DETECTION IN GC/MS/ICP ACTIVITIES
Contracted laboratories perform a vast number of routine and special analytical services that are the foundation of decisions upon which rests the fate of the environment. Guiding these laboratories in the generation of environmental data has been the analytical protocols and th...
Tran, Liem T; Knight, C Gregory; O'Neill, Robert V; Smith, Elizabeth R; Riitters, Kurt H; Wickham, James
2002-06-01
A fuzzy decision analysis method for integrating ecological indicators was developed. This was a combination of a fuzzy ranking method and the analytic hierarchy process (AHP). The method was capable of ranking ecosystems in terms of environmental conditions and suggesting cumulative impacts across a large region. Using data on land cover, population, roads, streams, air pollution, and topography of the Mid-Atlantic region, we were able to point out areas that were in relatively poor condition and/or vulnerable to future deterioration. The method offered an easy and comprehensive way to combine the strengths of fuzzy set theory and the AHP for ecological assessment. Furthermore, the suggested method can serve as a building block for the evaluation of environmental policies.
Paper-based analytical devices for environmental analysis.
Meredith, Nathan A; Quinn, Casey; Cate, David M; Reilly, Thomas H; Volckens, John; Henry, Charles S
2016-03-21
The field of paper-based microfluidics has experienced rapid growth over the past decade. Microfluidic paper-based analytical devices (μPADs), originally developed for point-of-care medical diagnostics in resource-limited settings, are now being applied in new areas, such as environmental analyses. Low-cost paper sensors show great promise for on-site environmental analysis; the theme of ongoing research complements existing instrumental techniques by providing high spatial and temporal resolution for environmental monitoring. This review highlights recent applications of μPADs for environmental analysis along with technical advances that may enable μPADs to be more widely implemented in field testing.
Fair fund distribution for a municipal incinerator using GIS-based fuzzy analytic hierarchy process.
Chang, Ni-Bin; Chang, Ying-Hsi; Chen, Ho-Wen
2009-01-01
Burning municipal solid waste (MSW) can generate energy and reduce the waste volume, which delivers benefits to society through resources conservation. But current practices by society are not sustainable because the associated environmental impacts of waste incineration on urbanized regions have been a long-standing concern in local communities. Public reluctance with regard to accepting the incinerators as typical utilities often results in an intensive debate concerning how much welfare is lost for those residents living in the vicinity of those incinerators. As the measure of welfare change with respect to environmental quality constraints nearby these incinerators remains critical, new arguments related to how to allocate the fair fund among affected communities became a focal point in environmental management. Given the fact that most County fair fund rules allow a great deal of flexibility for redistribution, little is known about what type of methodology may be a good fit to determine the distribution of such a fair fund under uncertainty. This paper purports to demonstrate a system-based approach that helps any fair fund distribution, which is made with respect to residents' possible claim for fair damages due to the installation of a new incinerator. Holding a case study using integrated geographic information system (GIS) and fuzzy analytic hierarchy process (FAHP) for finding out the most appropriate distribution strategy between two neighboring towns in Taipei County, Taiwan demonstrates the application potential. Participants in determining the use of a fair fund also follow a highly democratic procedure where all stakeholders involved eventually express a high level of satisfaction with the results facilitating the final decision making process. It ensures that plans for the distribution of such a fair fund were carefully thought out and justified with a multi-faceted nature that covers political, socio-economic, technical, environmental, public health, and industrial aspects.
2017-06-16
Acoustic Impacts on Marine Mammals and Sea Turtles: Methods and Analytical Approach for Phase III Training and Testing Sarah A. Blackstock Joseph O...December 2017 4. TITLE AND SUBTITLE Quantifying Acoustic Impacts on Marine Mammals and Sea Turtles: Methods and Analytical Approach for Phase III...Navy’s Phase III Study Areas as described in each Environmental Impact Statement/ Overseas Environmental Impact Statement and describes the methods
NASA Astrophysics Data System (ADS)
Shimomura-Shimizu, Mifumi; Karube, Isao
Since the first microbial cell sensor was studied by Karube et al. in 1977, many types of yeast based sensors have been developed as analytical tools. Yeasts are known as facultative anaerobes. Facultative anaerobes can survive in both aerobic and anaerobic conditions. The yeast based sensor consisted of a DO electrode and an immobilized omnivorous yeast. In yeast based sensor development, many kinds of yeast have been employed by applying their characteristics to adapt to the analyte. For example, Trichosporon cutaneum was used to estimate organic pollution in industrial wastewater. Yeast based sensors are suitable for online control of biochemical processes and for environmental monitoring. In this review, principles and applications of yeast based sensors are summarized.
Fiber optic sensors for corrosion detection
NASA Technical Reports Server (NTRS)
Smith, Alphonso C.
1993-01-01
The development of fiber optic sensors for the detection of a variety of material parameters has grown tremendously over the past several years. Additionally, the potential for analytical applications of fiber optic sensors have become more widely used. New pH sensors have also been developed using fiber optic techniques to detect fluorescence characteristics from immobilized fluorogenic reagent chemicals. The primary purpose of this research was to investigate the feasibility of using fiber optic sensors to detect the presence of Al(sup 3+) ions made in the process of environmental corrosion of aluminum materials. The Al(sup 3+) ions plus a variety of other type of metal ions can be detected using analytical techniques along with fiber optic sensors.
Impact of environmental colored noise in single-species population dynamics
NASA Astrophysics Data System (ADS)
Spanio, Tommaso; Hidalgo, Jorge; Muñoz, Miguel A.
2017-10-01
Variability on external conditions has important consequences for the dynamics and the organization of biological systems. In many cases, the characteristic timescale of environmental changes as well as their correlations play a fundamental role in the way living systems adapt and respond to it. A proper mathematical approach to understand population dynamics, thus, requires approaches more refined than, e.g., simple white-noise approximations. To shed further light onto this problem, in this paper we propose a unifying framework based on different analytical and numerical tools available to deal with "colored" environmental noise. In particular, we employ a "unified colored noise approximation" to map the original problem into an effective one with white noise, and then we apply a standard path integral approach to gain analytical understanding. For the sake of specificity, we present our approach using as a guideline a variation of the contact process—which can also be seen as a birth-death process of the Malthus-Verhulst class—where the propagation or birth rate varies stochastically in time. Our approach allows us to tackle in a systematic manner some of the relevant questions concerning population dynamics under environmental variability, such as determining the stationary population density, establishing the conditions under which a population may become extinct, and estimating extinction times. We focus on the emerging phase diagram and its possible phase transitions, underlying how these are affected by the presence of environmental noise time-correlations.
Boyer, Chantal; Gaudin, Karen; Kauss, Tina; Gaubert, Alexandra; Boudis, Abdelhakim; Verschelden, Justine; Franc, Mickaël; Roussille, Julie; Boucher, Jacques; Olliaro, Piero; White, Nicholas J.; Millet, Pascal; Dubost, Jean-Pierre
2012-01-01
Near infrared spectroscopy (NIRS) methods were developed for the determination of analytical content of an antimalarial-antibiotic (artesunate and azithromycin) co-formulation in hard gelatin capsule (HGC). The NIRS consists of pre-processing treatment of spectra (raw spectra and first-derivation of two spectral zones), a unique principal component analysis model to ensure the specificity and then two partial least-squares regression models for the determination content of each active pharmaceutical ingredient. The NIRS methods were developed and validated with no reference method, since the manufacturing process of HGC is basically mixed excipients with active pharmaceutical ingredients. The accuracy profiles showed β-expectation tolerance limits within the acceptance limits (±5%). The analytical control approach performed by reversed phase (HPLC) required two different methods involving two different preparation and chromatographic methods. NIRS offers advantages in terms of lower costs of equipment and procedures, time saving, environmentally friendly. PMID:22579599
Hydrogel nanoparticle based immunoassay
Liotta, Lance A; Luchini, Alessandra; Petricoin, Emanuel F; Espina, Virginia
2015-04-21
An immunoassay device incorporating porous polymeric capture nanoparticles within either the sample collection vessel or pre-impregnated into a porous substratum within fluid flow path of the analytical device is presented. This incorporation of capture particles within the immunoassay device improves sensitivity while removing the requirement for pre-processing of samples prior to loading the immunoassay device. A preferred embodiment is coreshell bait containing capture nanoparticles which perform three functions in one step, in solution: a) molecular size sieving, b) target analyte sequestration and concentration, and c) protection from degradation. The polymeric matrix of the capture particles may be made of co-polymeric materials having a structural monomer and an affinity monomer, the affinity monomer having properties that attract the analyte to the capture particle. This device is useful for point of care diagnostic assays for biomedical applications and as field deployable assays for environmental, pathogen and chemical or biological threat identification.
Analysis of environmental dispersion in a wetland flow under the effect of wind: Extended solution
NASA Astrophysics Data System (ADS)
Wang, Huilin; Huai, Wenxin
2018-02-01
The accurate analysis of the contaminant transport process in wetland flows is essential for environmental assessment. However, dispersivity assessment becomes complicated when the wind strength and direction are taken into consideration. Prior studies illustrating the wind effect on environmental dispersion in wetland flows simply focused on the mean longitudinal concentration distribution. Moreover, the results obtained by these analyses are not accurate when done on a smaller scale, namely, the initial stage of the contaminant transport process. By combining the concentration moments method (the Aris' method) and Gill's expansion theory, the previous researches on environmental dispersion in wetland flows with effect of wind have been extended. By adopting up to 4th-order moments, the wind effect-as illustrated by dimensionless parameters Er (wind force) and ω (wind direction)-on kurtosis and skewness is discussed, the up to 4th-order vertical concentration distribution is obtained, and the two-dimensional concentration distribution is illustrated. This work demonstrates that wind intensity and direction can significantly affect the contaminant dispersion. Moreover, the study presents a more accurate analytical solution of environmental dispersion in wetland flows under various wind conditions.
Lin, S H; Sahai, R; Eyring, H
1971-04-01
A theoretical model for the accumulation of pesticides in soil has been proposed and discussed from the viewpoint of heterogeneous reaction kinetics with a basic aim to understand the complex nature of soil processes relating to the environmental pollution. In the bulk of soil, the pesticide disappears by diffusion and a chemical reaction; the rate processes considered on the surface of soil are diffusion, chemical reaction, vaporization, and regular pesticide application. The differential equations involved have been solved analytically by the Laplace-transform method.
Lin, S. H.; Sahai, R.; Eyring, H.
1971-01-01
A theoretical model for the accumulation of pesticides in soil has been proposed and discussed from the viewpoint of heterogeneous reaction kinetics with a basic aim to understand the complex nature of soil processes relating to the environmental pollution. In the bulk of soil, the pesticide disappears by diffusion and a chemical reaction; the rate processes considered on the surface of soil are diffusion, chemical reaction, vaporization, and regular pesticide application. The differential equations involved have been solved analytically by the Laplace-transform method. PMID:5279519
4-Nonylphenol (NP) in food-contact materials: analytical methodology and occurrence.
Fernandes, A R; Rose, M; Charlton, C
2008-03-01
Nonylphenol is a recognized environmental contaminant, but it is unclear whether its occurrence in food arises only through environmental pathways or also during the processing or packaging of food, as there are reports that indicate that materials in contact with food such as rubber products and polyvinylchloride wraps can contain nonylphenol. A review of the literature has highlighted the scarcity of robust analytical methodology or data on the occurrence of nonylphenol in packaging materials. This paper describes a methodology for the determination of nonylphenol in a variety of packaging materials, which includes plastics, paper and rubber. The method uses either Soxhlet extraction or dissolution followed by solvent extraction (depending on the material type), followed by purification using adsorption chromatography. Procedures were internally standardized using 13C-labelled nonylphenol and the analytes were measured by gas chromatography-mass spectrometry. The method is validated and data relating to quality parameters such as limits of detection, recovery, precision and linearity of measurement are provided. Analysis of a range of 25 food-contact materials found nonylphenol at concentrations of 64-287 microg g(-1) in some polystyrene and polyvinylchloride samples. Far lower concentrations (<0.03-1.4 microg g(-1)) were detected in the other materials. It is possible that occurrence at the higher levels has the potential for migration to food.
Eco-Efficiency Analysis of biotechnological processes.
Saling, Peter
2005-07-01
Eco-Efficiency has been variously defined and analytically implemented by several workers. In most cases, Eco-Efficiency is taken to mean the ecological optimization of overall systems while not disregarding economic factors. Eco-Efficiency should increase the positive ecological performance of a commercial company in relation to economic value creation--or to reduce negative effects. Several companies use Eco-Efficiency Analysis for decision-making processes; and industrial examples of best practices in developing and implementing Eco-Efficiency have been reviewed. They clearly demonstrate the environmental and business benefits of Eco-Efficiency. An instrument for the early recognition and systematic detection of economic and environmental opportunities and risks for production processes in the chemical industry began use in 1997, since when different new features have been developed, leading to many examples. This powerful Eco-Efficiency Analysis allows a feasibility evaluation of existing and future business activities and is applied by BASF. In many cases, decision-makers are able to choose among alternative processes for making a product.
Eco-analytical Methodology in Environmental Problems Monitoring
NASA Astrophysics Data System (ADS)
Agienko, M. I.; Bondareva, E. P.; Chistyakova, G. V.; Zhironkina, O. V.; Kalinina, O. I.
2017-01-01
Among the problems common to all mankind, which solutions influence the prospects of civilization, the problem of ecological situation monitoring takes very important place. Solution of this problem requires specific methodology based on eco-analytical comprehension of global issues. Eco-analytical methodology should help searching for the optimum balance between environmental problems and accelerating scientific and technical progress. The fact that Governments, corporations, scientists and nations focus on the production and consumption of material goods cause great damage to environment. As a result, the activity of environmentalists is developing quite spontaneously, as a complement to productive activities. Therefore, the challenge posed by the environmental problems for the science is the formation of geo-analytical reasoning and the monitoring of global problems common for the whole humanity. So it is expected to find the optimal trajectory of industrial development to prevent irreversible problems in the biosphere that could stop progress of civilization.
Latysh, Natalie E.; Wetherbee, Gregory A.
2007-01-01
The U.S. Geological Survey (USGS) Branch of Quality Systems operates external quality assurance programs for the National Atmospheric Deposition Program/Mercury Deposition Network (NADP/MDN). Beginning in 2004, three programs have been implemented: the system blank program, the interlaboratory comparison program, and the blind audit program. Each program was designed to measure error contributed by specific components in the data-collection process. The system blank program assesses contamination that may result from sampling equipment, field exposure, and routine handling and processing of the wet-deposition samples. The interlaboratory comparison program evaluates bias and precision of analytical results produced by the Mercury Analytical Laboratory (HAL) for the NADP/MDN, operated by Frontier GeoSciences, Inc. The HAL's performance is compared with the performance of five other laboratories. The blind audit program assesses bias and variability of MDN data produced by the HAL using solutions disguised as environmental samples to ascertain true laboratory performance. This report documents the implementation of quality assurance procedures for the NADP/MDN and the operating procedures for each of the external quality assurance programs conducted by the USGS. The USGS quality assurance information provides a measure of confidence to NADP/MDN data users that measurement variability is distinguished from environmental signals.
Progress in the Analysis of Complex Atmospheric Particles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Laskin, Alexander; Gilles, Mary K.; Knopf, Daniel A.
2016-06-16
This manuscript presents an overview on recent advances in field and laboratory studies of atmospheric particles formed in processes of environmental air-surfaces interactions. The overarching goal of these studies is to advance predictive understanding of atmospheric particle composition, particle chemistry during aging, and their environmental impacts. The diversity between chemical constituents and lateral heterogeneity within individual particles adds to the chemical complexity of particles and their surfaces. Once emitted, particles undergo transformation via atmospheric aging processes that further modify their complex composition. We highlight a range of modern analytical approaches that enable multi-modal chemical characterization of particles with both molecularmore » and lateral specificity. When combined, they provide a comprehensive arsenal of tools for understanding the nature of particles at air-surface interactions and their reactivity and transformations with atmospheric aging. We discuss applications of these novel approaches in recent studies and highlight additional research areas to explore environmental effects of air-surface interactions.« less
Progress in the analysis of complex atmospheric particles
Laskin, Alexander; Gilles, Mary K.; Knopf, Daniel A.; ...
2016-06-01
This study presents an overview of recent advances in field and laboratory studies of atmospheric particles formed in processes of environmental air-surface interactions. The overarching goal of these studies is to advance predictive understanding of atmospheric particle composition, particle chemistry during aging, and their environmental impacts. The diversity between chemical constituents and lateral heterogeneity within individual particles adds to the chemical complexity of particles and their surfaces. Once emitted, particles undergo transformation via atmospheric aging processes that further modify their complex composition. We highlight a range of modern analytical approaches that enable multimodal chemical characterization of particles with both molecularmore » and lateral specificity. When combined, these approaches provide a comprehensive arsenal of tools for understanding the nature of particles at air-surface interactions and their reactivity and transformations with atmospheric aging. We discuss applications of these novel approaches in recent studies and highlight additional research areas to explore the environmental effects of air-surface interactions.« less
ERIC Educational Resources Information Center
Tomasik, Janice Hall; LeCaptain, Dale; Murphy, Sarah; Martin, Mary; Knight, Rachel M.; Harke, Maureen A.; Burke, Ryan; Beck, Kara; Acevedo-Polakovich, I. David
2014-01-01
Motivating students in analytical chemistry can be challenging, in part because of the complexity and breadth of topics involved. Some methods that help encourage students and convey real-world relevancy of the material include incorporating environmental issues, research-based lab experiments, and service learning projects. In this paper, we…
Within the scope of a number of emerging contaminant issues in environmental analysis, one area that has received a great deal of public interest has been the assessment of the role of pharmaceuticals and personal care products (PPCPs) as stressors and agents of change in ecosyst...
Among the challenges of characterizing emerging contaminants in complex environmental matrices (e.g., biosolids, sewage, or wastewater) are the co-eluting interferences. For example, surfactants, fats, and humic acids, can be preferentially ionized instead of the analyte(s) of in...
Covaci, Adrian; Voorspoels, Stefan; Abdallah, Mohamed Abou-Elwafa; Geens, Tinne; Harrad, Stuart; Law, Robin J
2009-01-16
The present article reviews the available literature on the analytical and environmental aspects of tetrabromobisphenol-A (TBBP-A), a currently intensively used brominated flame retardant (BFR). Analytical methods, including sample preparation, chromatographic separation, detection techniques, and quality control are discussed. An important recent development in the analysis of TBBP-A is the growing tendency for liquid chromatographic techniques. At the detection stage, mass-spectrometry is a well-established and reliable technology in the identification and quantification of TBBP-A. Although interlaboratory exercises for BFRs have grown in popularity in the last 10 years, only a few participating laboratories report concentrations for TBBP-A. Environmental levels of TBBP-A in abiotic and biotic matrices are low, probably due to the major use of TBBP-A as reactive FR. As a consequence, the expected human exposure is low. This is in agreement with the EU risk assessment that concluded that there is no risk for humans concerning TBBP-A exposure. Much less analytical and environmental information exists for the various groups of TBBP-A derivatives which are largely used as additive flame retardants.
ASTRYD: A new numerical tool for aircraft cabin and environmental noise prediction
NASA Astrophysics Data System (ADS)
Berhault, J.-P.; Venet, G.; Clerc, C.
ASTRYD is an analytical tool, developed originally for underwater applications, that computes acoustic pressure distribution around three-dimensional bodies in closed spaces like aircraft cabins. The program accepts data from measurements or other simulations, processes them in the time domain, and delivers temporal evolutions of the acoustic pressures and accelerations, as well as the radiated/diffracted pressure at arbitrary points located in the external/internal space. A typical aerospace application is prediction of acoustic load on satellites during the launching phase. An aeronautic application is engine noise distribution on a business jet body for prediction of environmental and cabin noise.
Interactive 3D geodesign tool for multidisciplinary wind turbine planning.
Rafiee, Azarakhsh; Van der Male, Pim; Dias, Eduardo; Scholten, Henk
2018-01-01
Wind turbine site planning is a multidisciplinary task comprising of several stakeholder groups from different domains and with different priorities. An information system capable of integrating the knowledge on the multiple aspects of a wind turbine plays a crucial role on providing a common picture to the involved groups. In this study, we have developed an interactive and intuitive 3D system (Falcon) for planning wind turbine locations. This system supports iterative design loops (wind turbine configurations), based on the emerging field of geodesign. The integration of GIS, game engine and the analytical models has resulted in an interactive platform with real-time feedback on the multiple wind turbine aspects which performs efficiently for different use cases and different environmental settings. The implementation of tiling techniques and open standard web services support flexible and on-the-fly loading and querying of different (massive) geospatial elements from different resources. This boosts data accessibility and interoperability that are of high importance in a multidisciplinary process. The incorporation of the analytical models in Falcon makes this system independent from external tools for different environmental impacts estimations and results in a unified platform for performing different environmental analysis in every stage of the scenario design. Game engine techniques, such as collision detection, are applied in Falcon for the real-time implementation of different environmental models (e.g. noise and visibility). The interactivity and real-time performance of Falcon in any location in the whole country assist the stakeholders in the seamless exploration of various scenarios and their resulting environmental effects and provides a scope for an interwoven discussion process. The flexible architecture of the system enables the effortless application of Falcon in other countries, conditional to input data availability. The embedded open web standards in Falcon results in a smooth integration of different input data which are increasingly available online and through standardized access mechanisms. Copyright © 2017 Elsevier Ltd. All rights reserved.
Ślączka-Wilk, Magdalena M; Włodarczyk, Elżbieta; Kaleniecka, Aleksandra; Zarzycki, Paweł K
2017-07-01
There is increasing interest in the development of simple analytical systems enabling the fast screening of target components in complex samples. A number of newly invented protocols are based on quasi separation techniques involving microfluidic paper-based analytical devices and/or micro total analysis systems. Under such conditions, the quantification of target components can be performed mainly due to selective detection. The main goal of this paper is to demonstrate that miniaturized planar chromatography has the capability to work as an efficient separation and quantification tool for the analysis of multiple targets within complex environmental samples isolated and concentrated using an optimized SPE method. In particular, we analyzed various samples collected from surface water ecosystems (lakes, rivers, and the Baltic Sea of Middle Pomerania in the northern part of Poland) in different seasons, as well as samples collected during key wastewater technological processes (originating from the "Jamno" wastewater treatment plant in Koszalin, Poland). We documented that the multiple detection of chromatographic spots on RP-18W microplates-under visible light, fluorescence, and fluorescence quenching conditions, and using the visualization reagent phosphomolybdic acid-enables fast and robust sample classification. The presented data reveal that the proposed micro-TLC system is useful, inexpensive, and can be considered as a complementary method for the fast control of treated sewage water discharged by a municipal wastewater treatment plant, particularly for the detection of low-molecular mass micropollutants with polarity ranging from estetrol to progesterone, as well as chlorophyll-related dyes. Due to the low consumption of mobile phases composed of water-alcohol binary mixtures (less than 1 mL/run for the simultaneous separation of up to nine samples), this method can be considered an environmentally friendly and green chemistry analytical tool. The described analytical protocol can be complementary to those involving classical column chromatography (HPLC) or various planar microfluidic devices.
González-García, Sara; García Lozano, Raúl; Moreira, M Teresa; Gabarrell, Xavier; Rieradevall i Pons, Joan; Feijoo, Gumersindo; Murphy, Richard J
2012-06-01
The environmental profile of a set of wood furniture was carried out to define the best design criteria for its eco-design. A baby cot convertible into a bed, a study desk and a bedside table were the objects of study. Two quantitative and qualitative environmental approaches were combined in order to propose improvement alternatives: Life Cycle Assessment (LCA) and Design for Environment (DfE). In the first case Life Cycle Assessment (LCA) was applied to identify the hot spots in the product system. As a next step, LCA information was used in eco-briefing to determine several improvement alternatives. A wood products company located in Catalonia (NE Spain) was assessed in detail, dividing the process into three stages: assembly, finishing and packaging. Ten impact categories were considered in the LCA study: abiotic depletion, acidification, eutrophication, global warming, ozone layer depletion, human toxicity, fresh water aquatic ecotoxicity, marine aquatic ecotoxicity, terrestrial ecotoxicity and photochemical oxidant formation. Two processes can be considered the key environmental factors: the production of the wooden boards and electricity, with contributions of 45-68% and 14-33% respectively depending on the impact categories. Subsequently, several improvement alternatives were proposed in the eco-design process (DfE) to achieve reductions in a short-medium period of time in the environmental impact. These eco-design strategies could reduce the environmental profile of the setup by 14%. The correct methodological adaptation of the concept of eco-briefing, as a tool for communication among environmental technicians and designers, the simplification of the analytical tool used and the LCA, could facilitate the environmental analysis of a product. The results obtained provide information that can help the furniture sector to improve their environmental performance. Copyright © 2012 Elsevier B.V. All rights reserved.
Korte, F; Coulston, F
1995-10-01
In the past decades, limit concentration values for environmentally dangerous synthetic and natural chemical substances have been established in industrialized countries. Depending on the range of application, state of aggregation, propagation velocity, specific action on living organisms, long- or short-time effect, etc., different terms are used to specify these limit concentrations (acceptable daily intakes, TLV, LD50, emission values, water quality standards, etc.). Several parameters (e.g., range of application, ethic and social valuation, environmental factors, scientific knowledge) have led to nationally and internationally varying values depending on the region and time. The accuracy of this system of evaluation cannot necessarily be improved by listing further analytical data, but rather by furnishing sufficiently secured scientific data for a serious discussion, with the public concepts influenced more and more by the mass media. The best-established scientific knowledge has been acquired by the chemical industry. National and international groups demand that ecological-chemical problems in other fields of industry be dealt with as well; this research should, without doubt, be intensified. The example of the mining industry, which must employ chemical methods to isolate small concentrations (ppm), demonstrates the environmental conflict caused by the increasing world population, requiring the adaptation of the process by industry to the modern environmental concept. This is illustrated by the evolution of the gold recovery process.
Environmental Stewardship: A Conceptual Review and Analytical Framework.
Bennett, Nathan J; Whitty, Tara S; Finkbeiner, Elena; Pittman, Jeremy; Bassett, Hannah; Gelcich, Stefan; Allison, Edward H
2018-04-01
There has been increasing attention to and investment in local environmental stewardship in conservation and environmental management policies and programs globally. Yet environmental stewardship has not received adequate conceptual attention. Establishing a clear definition and comprehensive analytical framework could strengthen our ability to understand the factors that lead to the success or failure of environmental stewardship in different contexts and how to most effectively support and enable local efforts. Here we propose such a definition and framework. First, we define local environmental stewardship as the actions taken by individuals, groups or networks of actors, with various motivations and levels of capacity, to protect, care for or responsibly use the environment in pursuit of environmental and/or social outcomes in diverse social-ecological contexts. Next, drawing from a review of the environmental stewardship, management and governance literatures, we unpack the elements of this definition to develop an analytical framework that can facilitate research on local environmental stewardship. Finally, we discuss potential interventions and leverage points for promoting or supporting local stewardship and future applications of the framework to guide descriptive, evaluative, prescriptive or systematic analysis of environmental stewardship. Further application of this framework in diverse environmental and social contexts is recommended to refine the elements and develop insights that will guide and improve the outcomes of environmental stewardship initiatives and investments. Ultimately, our aim is to raise the profile of environmental stewardship as a valuable and holistic concept for guiding productive and sustained relationships with the environment.
Environmental Stewardship: A Conceptual Review and Analytical Framework
NASA Astrophysics Data System (ADS)
Bennett, Nathan J.; Whitty, Tara S.; Finkbeiner, Elena; Pittman, Jeremy; Bassett, Hannah; Gelcich, Stefan; Allison, Edward H.
2018-04-01
There has been increasing attention to and investment in local environmental stewardship in conservation and environmental management policies and programs globally. Yet environmental stewardship has not received adequate conceptual attention. Establishing a clear definition and comprehensive analytical framework could strengthen our ability to understand the factors that lead to the success or failure of environmental stewardship in different contexts and how to most effectively support and enable local efforts. Here we propose such a definition and framework. First, we define local environmental stewardship as the actions taken by individuals, groups or networks of actors, with various motivations and levels of capacity, to protect, care for or responsibly use the environment in pursuit of environmental and/or social outcomes in diverse social-ecological contexts. Next, drawing from a review of the environmental stewardship, management and governance literatures, we unpack the elements of this definition to develop an analytical framework that can facilitate research on local environmental stewardship. Finally, we discuss potential interventions and leverage points for promoting or supporting local stewardship and future applications of the framework to guide descriptive, evaluative, prescriptive or systematic analysis of environmental stewardship. Further application of this framework in diverse environmental and social contexts is recommended to refine the elements and develop insights that will guide and improve the outcomes of environmental stewardship initiatives and investments. Ultimately, our aim is to raise the profile of environmental stewardship as a valuable and holistic concept for guiding productive and sustained relationships with the environment.
NASA Astrophysics Data System (ADS)
Rim, Jung H.
Accurate and fast determination of the activity of radionuclides in a sample is critical for nuclear forensics and emergency response. Radioanalytical techniques are well established for radionuclides measurement, however, they are slow and labor intensive, requiring extensive radiochemical separations and purification prior to analysis. With these limitations of current methods, there is great interest for a new technique to rapidly process samples. This dissertation describes a new analyte extraction medium called Polymer Ligand Film (PLF) developed to rapidly extract radionuclides. Polymer Ligand Film is a polymer medium with ligands incorporated in its matrix that selectively and rapidly extract analytes from a solution. The main focus of the new technique is to shorten and simplify the procedure necessary to chemically isolate radionuclides for determination by alpha spectrometry or beta counting. Five different ligands were tested for plutonium extraction: bis(2-ethylhexyl) methanediphosphonic acid (H2DEH[MDP]), di(2-ethyl hexyl) phosphoric acid (HDEHP), trialkyl methylammonium chloride (Aliquat-336), 4,4'(5')-di-t-butylcyclohexano 18-crown-6 (DtBuCH18C6), and 2-ethylhexyl 2-ethylhexylphosphonic acid (HEH[EHP]). The ligands that were effective for plutonium extraction further studied for uranium extraction. The plutonium recovery by PLFs has shown dependency on nitric acid concentration and ligand to total mass ratio. H2DEH[MDP] PLFs performed best with 1:10 and 1:20 ratio PLFs. 50.44% and 47.61% of plutonium were extracted on the surface of PLFs with 1M nitric acid for 1:10 and 1:20 PLF, respectively. HDEHP PLF provided the best combination of alpha spectroscopy resolution and plutonium recovery with 1:5 PLF when used with 0.1M nitric acid. The overall analyte recovery was lower than electrodeposited samples, which typically has recovery above 80%. However, PLF is designed to be a rapid field deployable screening technique and consistency is more important than recovery. PLFs were also tested using blind quality control samples and the activities were accurately measured. It is important to point out that PLFs were consistently susceptible to analytes penetrating and depositing below the surface. The internal radiation within the body of PLF is mostly contained and did not cause excessive self-attenuation and peak broadening in alpha spectroscopy. The analyte penetration issue was beneficial in the destructive analysis. H2DEH[MDP] PLF was tested with environmental samples to fully understand the capabilities and limitations of the PLF in relevant environments. The extraction system was very effective in extracting plutonium from environmental water collected from Mortandad Canyon at Los Alamos National Laboratory with minimal sample processing. Soil samples were tougher to process than the water samples. Analytes were first leached from the soil matrixes using nitric acid before processing with PLF. This approach had a limitation in extracting plutonium using PLF. The soil samples from Mortandad Canyon, which are about 1% iron by weight, were effectively processed with the PLF system. Even with certain limitations of the PLF extraction system, this technique was able to considerably decrease the sample analysis time. The entire environmental sample was analyzed within one to two days. The decrease in time can be attributed to the fact that PLF is replacing column chromatography and electrodeposition with a single step for preparing alpha spectrometry samples. The two-step process of column chromatography and electrodeposition takes a couple days to a week to complete depending on the sample. The decrease in time and the simplified procedure make this technique a unique solution for application to nuclear forensics and emergency response. A large number of samples can be quickly analyzed and selective samples can be further analyzed with more sensitive techniques based on the initial data. The deployment of a PLF system as a screening method will greatly reduce a total analysis time required to gain meaningful isotopic data for the nuclear forensics application. (Abstract shortened by UMI.)
Jędrkiewicz, Renata; Orłowski, Aleksander; Namieśnik, Jacek; Tobiszewski, Marek
2016-01-15
In this study we perform ranking of analytical procedures for 3-monochloropropane-1,2-diol determination in soy sauces by PROMETHEE method. Multicriteria decision analysis was performed for three different scenarios - metrological, economic and environmental, by application of different weights to decision making criteria. All three scenarios indicate capillary electrophoresis-based procedure as the most preferable. Apart from that the details of ranking results differ for these three scenarios. The second run of rankings was done for scenarios that include metrological, economic and environmental criteria only, neglecting others. These results show that green analytical chemistry-based selection correlates with economic, while there is no correlation with metrological ones. This is an implication that green analytical chemistry can be brought into laboratories without analytical performance costs and it is even supported by economic reasons. Copyright © 2015 Elsevier B.V. All rights reserved.
Two new advanced forms of spectrometry for space and commercial applications
NASA Technical Reports Server (NTRS)
Schlager, Kenneth J.
1991-01-01
Reagentless ultraviolet absorption spectrometry (UVAS) and Liquid Atomic Emission Spectrometry (LAES) represent new forms of spectrometry with extensive potential in both space and commercial applications. Originally developed under KSC sponsorship for monitoring nutrient solutions for the Controlled Ecological Life Support System (CELSS), both UVAS and LAES have extensive analytical capabilities for both organic and inorganic chemical compounds. Both forms of instrumentation involve the use of remote fiber optic probes and real-time measurements for on-line process monitoring. Commercial applications exist primarily in environmental analysis and for process control in the chemical, pulp and paper, food processing, metal plating, and water/wastewater treatment industries.
NASA Technical Reports Server (NTRS)
Patterson, Maria T.; Anderson, Nicholas; Bennett, Collin; Bruggemann, Jacob; Grossman, Robert L.; Handy, Matthew; Ly, Vuong; Mandl, Daniel J.; Pederson, Shane; Pivarski, James;
2016-01-01
Project Matsu is a collaboration between the Open Commons Consortium and NASA focused on developing open source technology for cloud-based processing of Earth satellite imagery with practical applications to aid in natural disaster detection and relief. Project Matsu has developed an open source cloud-based infrastructure to process, analyze, and reanalyze large collections of hyperspectral satellite image data using OpenStack, Hadoop, MapReduce and related technologies. We describe a framework for efficient analysis of large amounts of data called the Matsu "Wheel." The Matsu Wheel is currently used to process incoming hyperspectral satellite data produced daily by NASA's Earth Observing-1 (EO-1) satellite. The framework allows batches of analytics, scanning for new data, to be applied to data as it flows in. In the Matsu Wheel, the data only need to be accessed and preprocessed once, regardless of the number or types of analytics, which can easily be slotted into the existing framework. The Matsu Wheel system provides a significantly more efficient use of computational resources over alternative methods when the data are large, have high-volume throughput, may require heavy preprocessing, and are typically used for many types of analysis. We also describe our preliminary Wheel analytics, including an anomaly detector for rare spectral signatures or thermal anomalies in hyperspectral data and a land cover classifier that can be used for water and flood detection. Each of these analytics can generate visual reports accessible via the web for the public and interested decision makers. The result products of the analytics are also made accessible through an Open Geospatial Compliant (OGC)-compliant Web Map Service (WMS) for further distribution. The Matsu Wheel allows many shared data services to be performed together to efficiently use resources for processing hyperspectral satellite image data and other, e.g., large environmental datasets that may be analyzed for many purposes.
Sun, Yong-Guang; Zhao, Dong-Zhi; Zhang, Feng-Shou; Wei, Bao-Quan; Chu, Jia-Lan; Su, Xiu
2012-11-01
Based on the aerial image data of Dayang estuary in 2008, and by virtue of Analytic Hierarchy Process (AHP) , remote sensing technology, and GIS spatial analysis, a spatiotemporal evaluation was made on the comprehensive level of wetland environmental pollution risk in Dayang estuary, with the impacts of typical human activities on the dynamic variation of this comprehensive level discussed. From 1958 to 2008, the comprehensive level of the environmental pollution risk in study area presented an increasing trend. Spatially, this comprehensive level declined from land to ocean, and showed a zonal distribution. Tourism development activities unlikely led to the increase of the comprehensive level, while human inhabitation, transportation, and aquaculture would exacerbate the risk of environmental pollution. This study could provide reference for the sea area use planning, ecological function planning, and pollutants control of estuary region.
Health, Safety, and Environment Division annual report 1989
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wade, C.
1992-01-01
The primary responsibility of the Health, Safety, and Environment (HSE) Division at the Los Alamos National Laboratory is to provide comprehensive occupational health and safety programs, waste processing, and environmental protection. These activities are designed to protect the worker, the public, and the environment. Meeting the responsibilities involves many disciplines, including radiation protection, industrial hygiene, safety, occupational medicine, environmental science and engineering, analytical chemistry, epidemiology, and waste management. New and challenging health, safety, and environmental problems occasionally arise from the diverse research and development work of the Laboratory, and research programs in the HSE Division often stem from these appliedmore » needs. These programs continue but are also extended, as needed, to study specific problems for the Department of Energy. The result of these programs is to help develop better practices in occupational health and safety, radiation protection, and environmental sciences.« less
Watts, R R; Langone, J J; Knight, G J; Lewtas, J
1990-01-01
A two-day technical workshop was convened November 10-11, 1986, to discuss analytical approaches for determining trace amounts of cotinine in human body fluids resulting from passive exposure to environmental tobacco smoke (ETS). The workshop, jointly sponsored by the U.S. Environmental Protection Agency and Centers for Disease Control, was attended by scientists with expertise in cotinine analytical methodology and/or conduct of human monitoring studies related to ETS. The workshop format included technical presentations, separate panel discussions on chromatography and immunoassay analytical approaches, and group discussions related to the quality assurance/quality control aspects of future monitoring programs. This report presents a consensus of opinion on general issues before the workshop panel participants and also a detailed comparison of several analytical approaches being used by the various represented laboratories. The salient features of the chromatography and immunoassay analytical methods are discussed separately. PMID:2190812
BIOSENSORS FOR ENVIRONMENTAL MONITORING: A REGULATORY PERSPECTIVE
Biosensors show the potential to complement laboratory-based analytical methods for environmental applications. Although biosensors for potential environmental-monitoring applications have been reported for a wide range of environmental pollutants, from a regulatory perspective, ...
Miró, Manuel; Hansen, Elo Harald
2007-09-26
The analytical capabilities of the microminiaturized lab-on-a-valve (LOV) module integrated into a microsequential injection (muSI) fluidic system in terms of analytical chemical performance, microfluidic handling and on-line sample processing are compared to those of the micro total analysis systems (muTAS), also termed lab-on-a-chip (LOC). This paper illustrates, via selected representative examples, the potentials of the LOV scheme vis-à-vis LOC microdevices for environmental assays. By means of user-friendly programmable flow and the exploitation of the interplay between the thermodynamics and the kinetics of the chemical reactions at will, LOV allows accommodation of reactions which, at least at the present stage, are not feasible by application of microfluidic LOC systems. Thus, in LOV one may take full advantage of kinetic discriminations schemes, where even subtle differences in reactions are utilized for analytical purposes. Furthermore, it is also feasible to handle multi-step sequential reactions of divergent kinetics; to conduct multi-parametric determinations without manifold reconfiguration by utilization of the inherent open-architecture of the micromachined unit for implementation of peripheral modules and automated handling of a variety of reagents; and most importantly, it offers itself as a versatile front end to a plethora of detection schemes. Not the least, LOV is regarded as an emerging downscaled tool to overcome the dilemma of LOC microsystems to admit real-life samples. This is nurtured via its intrinsic flexibility for accommodation of sample pre-treatment schemes aimed at the on-line manipulation of complex samples. Thus, LOV is playing a prominent role in the environmental field, whenever the monitoring of trace level concentration of pollutants is pursued, because both matrix isolation and preconcentration of target analytes is most often imperative, or in fact necessary, prior to sample presentation to the detector.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koester, C J; Moulik, A
This article discusses developments in environmental analytical chemistry that occurred in the years of 2003 and 2004. References were found by searching the ''Science Citation Index and Current Contents''. As in our review of two years ago (A1), techniques are highlighted that represent current trends and state-of-the-art technologies in the sampling, extraction, separation, and detection of trace concentrations, low-part-per-billion and less, of organic, inorganic, and organometallic contaminants in environmental samples. New analytes of interest are also reviewed, the detections of which are made possible by recently developed analytical instruments and methods.
Dagliati, Arianna; Marinoni, Andrea; Cerra, Carlo; Decata, Pasquale; Chiovato, Luca; Gamba, Paolo; Bellazzi, Riccardo
2015-12-01
A very interesting perspective of "big data" in diabetes management stands in the integration of environmental information with data gathered for clinical and administrative purposes, to increase the capability of understanding spatial and temporal patterns of diseases. Within the MOSAIC project, funded by the European Union with the goal to design new diabetes analytics, we have jointly analyzed a clinical-administrative dataset of nearly 1.000 type 2 diabetes patients with environmental information derived from air quality maps acquired from remote sensing (satellite) data. Within this context we have adopted a general analysis framework able to deal with a large variety of temporal, geo-localized data. Thanks to the exploitation of time series analysis and satellite images processing, we studied whether glycemic control showed seasonal variations and if they have a spatiotemporal correlation with air pollution maps. We observed a link between the seasonal trends of glycated hemoglobin and air pollution in some of the considered geographic areas. Such findings will need future investigations for further confirmation. This work shows that it is possible to successfully deal with big data by implementing new analytics and how their exploration may provide new scenarios to better understand clinical phenomena. © 2015 Diabetes Technology Society.
SAM Companion Documents and Sample Collection Procedures provide information intended to complement the analytical methods listed in Selected Analytical Methods for Environmental Remediation and Recovery (SAM).
Ginder-Vogel, Matthew; Landrot, Gautier; Fischel, Jason S.; Sparks, Donald L.
2009-01-01
Quantification of the initial rates of environmental reactions at the mineral/water interface is a fundamental prerequisite to determining reaction mechanisms and contaminant transport modeling and predicting environmental risk. Until recently, experimental techniques with adequate time resolution and elemental sensitivity to measure initial rates of the wide variety of environmental reactions were quite limited. Techniques such as electron paramagnetic resonance and Fourier transform infrared spectroscopies suffer from limited elemental specificity and poor sensitivity to inorganic elements, respectively. Ex situ analysis of batch and stirred-flow systems provides high elemental sensitivity; however, their time resolution is inadequate to characterize rapid environmental reactions. Here we apply quick-scanning x-ray absorption spectroscopy (Q-XAS), at sub-second time-scales, to measure the initial oxidation rate of As(III) to As(V) by hydrous manganese(IV) oxide. Using Q-XAS, As(III) and As(V) concentrations were determined every 0.98 s in batch reactions. The initial apparent As(III) depletion rate constants (t < 30 s) measured with Q-XAS are nearly twice as large as rate constants measured with traditional analytical techniques. Our results demonstrate the importance of developing analytical techniques capable of analyzing environmental reactions on the same time scale as they occur. Given the high sensitivity, elemental specificity, and time resolution of Q-XAS, it has many potential applications. They could include measuring not only redox reactions but also dissolution/precipitation reactions, such as the formation and/or reductive dissolution of Fe(III) (hydr)oxides, solid-phase transformations (i.e., formation of layered-double hydroxide minerals), or almost any other reaction occurring in aqueous media that can be measured using x-ray absorption spectroscopy. PMID:19805269
Green analytical chemistry--theory and practice.
Tobiszewski, Marek; Mechlińska, Agata; Namieśnik, Jacek
2010-08-01
This tutorial review summarises the current state of green analytical chemistry with special emphasis on environmentally friendly sample preparation techniques. Green analytical chemistry is a part of the sustainable development concept; its history and origins are described. Miniaturisation of analytical devices and shortening the time elapsing between performing analysis and obtaining reliable analytical results are important aspects of green analytical chemistry. Solventless extraction techniques, the application of alternative solvents and assisted extractions are considered to be the main approaches complying with green analytical chemistry principles.
40 CFR 158.355 - Enforcement analytical method.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Enforcement analytical method. 158.355 Section 158.355 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) PESTICIDE PROGRAMS DATA REQUIREMENTS FOR PESTICIDES Product Chemistry § 158.355 Enforcement analytical method. An...
40 CFR 158.355 - Enforcement analytical method.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 25 2012-07-01 2012-07-01 false Enforcement analytical method. 158.355 Section 158.355 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) PESTICIDE PROGRAMS DATA REQUIREMENTS FOR PESTICIDES Product Chemistry § 158.355 Enforcement analytical method. An...
40 CFR 158.355 - Enforcement analytical method.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 25 2013-07-01 2013-07-01 false Enforcement analytical method. 158.355 Section 158.355 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) PESTICIDE PROGRAMS DATA REQUIREMENTS FOR PESTICIDES Product Chemistry § 158.355 Enforcement analytical method. An...
40 CFR 158.355 - Enforcement analytical method.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 24 2011-07-01 2011-07-01 false Enforcement analytical method. 158.355 Section 158.355 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) PESTICIDE PROGRAMS DATA REQUIREMENTS FOR PESTICIDES Product Chemistry § 158.355 Enforcement analytical method. An...
Kirschner, Nicolas; Dias, Adriana Neves; Budziak, Dilma; da Silveira, Cristian Berto; Merib, Josias; Carasek, Eduardo
2017-12-15
A sustainable approach to TF-SPME is presented using recycled diatomaceous earth, obtained from a beer purification process, as a green sorbent phase for the determination of bisphenol A (BPA), benzophenone (BzP), triclocarban (TCC), 4-methylbenzylidene camphor (4-MBC) and 2-ethylhexyl-p-methoxycinnamate (EHMC) in environmental water samples. TF-SPME was combined with a 96-well plate system allowing for high-throughput analysis due to the simultaneous extraction/desorption up to 96 samples. The proposed sorbent phase exhibited good stability in organic solvents, as well as satisfactory analytical performance. The optimized method consisted of 240 min of extraction at pH 6 with the addition of NaCl (15% w/v). A mixture of MeOH:ACN (50:50 v/v) was used for the desorption the analytes, using a time of 30 min. Limits of detection varied from 1 μg L -1 for BzP and TCC to 8 μg L -1 for the other analytes, and R 2 ranged from 0.9926 for 4-MBC to 0.9988 for BPA. This novel and straightforward approach offers an environmentally-friendly and very promising alternative for routine analysis. . The total sample preparation time per sample was approximately 2.8 min, which is a significant advantage when a large number of analytical run is required. Copyright © 2017 Elsevier B.V. All rights reserved.
Białk-Bielińska, Anna; Kumirska, Jolanta; Borecka, Marta; Caban, Magda; Paszkiewicz, Monika; Pazdro, Ksenia; Stepnowski, Piotr
2016-03-20
Recent developments and improvements in advanced instruments and analytical methodologies have made the detection of pharmaceuticals at low concentration levels in different environmental matrices possible. As a result of these advances, over the last 15 years residues of these compounds and their metabolites have been detected in different environmental compartments and pharmaceuticals have now become recognized as so-called 'emerging' contaminants. To date, a lot of papers have been published presenting the development of analytical methodologies for the determination of pharmaceuticals in aqueous and solid environmental samples. Many papers have also been published on the application of the new methodologies, mainly to the assessment of the environmental fate of pharmaceuticals. Although impressive improvements have undoubtedly been made, in order to fully understand the behavior of these chemicals in the environment, there are still numerous methodological challenges to be overcome. The aim of this paper therefore, is to present a review of selected recent improvements and challenges in the determination of pharmaceuticals in environmental samples. Special attention has been paid to the strategies used and the current challenges (also in terms of Green Analytical Chemistry) that exist in the analysis of these chemicals in soils, marine environments and drinking waters. There is a particular focus on the applicability of modern sorbents such as carbon nanotubes (CNTs) in sample preparation techniques, to overcome some of the problems that exist in the analysis of pharmaceuticals in different environmental samples. Copyright © 2016 Elsevier B.V. All rights reserved.
EPA announced the availability of the final contractor report entitled, Development of an Analytic Approach to Determine How Environmental Protection Agency’s Integrated Risk Information System (IRIS) Is Used By Non EPA Decision Makers. This contractor report analyzed how ...
Hill, Ryan C; Oman, Trent J; Wang, Xiujuan; Shan, Guomin; Schafer, Barry; Herman, Rod A; Tobias, Rowel; Shippar, Jeff; Malayappan, Bhaskar; Sheng, Li; Xu, Austin; Bradshaw, Jason
2017-07-12
As part of the regulatory approval process in Europe, comparison of endogenous soybean allergen levels between genetically engineered (GE) and non-GE plants has been requested. A quantitative multiplex analytical method using tandem mass spectrometry was developed and validated to measure 10 potential soybean allergens from soybean seed. The analytical method was implemented at six laboratories to demonstrate the robustness of the method and further applied to three soybean field studies across multiple growing seasons (including 21 non-GE soybean varieties) to assess the natural variation of allergen levels. The results show environmental factors contribute more than genetic factors to the large variation in allergen abundance (2- to 50-fold between environmental replicates) as well as a large contribution of Gly m 5 and Gly m 6 to the total allergen profile, calling into question the scientific rational for measurement of endogenous allergen levels between GE and non-GE varieties in the safety assessment.
NASA Astrophysics Data System (ADS)
Ritchey, N. A.; Brewer, M.; Houston, T.; Hollingshead, A.; Jones, N.; Dissen, J.
2017-12-01
NOAA's National Centers for Environmental Information (NCEI) is the world's largest repository of climate data. Customer analytics and uses of NCEI information are critical to understanding and evolving NCEI's suite of use-inspired data and information to make them applicable to decision making. Over the past three years, NCEI's Center for Weather and Climate has made a concerted effort to: 1) Establish a system for collection of user requirements, 2) Ensure that collected information informs product area management and prioritization activities, and 3) Include user insights into future products and product versions. These process changes require a long-term commitment to climate services and success is not possible with a "build it and they will come" mentality nor with a "drop-in, drop-out" customer engagement strategy. This presentation will focus on the path necessary to get from effective user engagement, centered on collection and adjudication of user requirements, all the way through the outcomes of the changed products and services and how those have benefitted users, including economic examples.
Analytical study of Saint Gregory Nazianzen Icon, Old Cairo, Egypt
NASA Astrophysics Data System (ADS)
Issa, Yousry M.; Abdel-Maksoud, Gomaa; Magdy, Mina
2015-11-01
The study aims to evaluate the state of icon through characterization of the icon layers (ground, paint and varnish layers) and to provide tools for assessment the impact of aging and environmental conditions in order to produce some solutions for conservation of the icon. Analytical techniques used in this study were attenuated total reflection-Fourier transform infrared spectroscopy (ATR-FTIR), field emission scanning electron microscope-energy dispersive X ray spectroscopy (FESEM-EDX) and amino acid analyzer (AAA). The results obtained revealed that gypsum and lead white were used for ground layer. The identified pigments were lamp carbon black, brown ochre, Prussian blue, yellow ochre and gold leaf. Egg yolk was the binder used with most of pigments and animal glue was used with gold color. The varnish used was shellac resin. It was concluded that stable pigments gave permanent colors and environmental conditions had an influence on promotion of oxidation process. Auto-oxidation of binder and varnish materials occurred by the action of pigment components and light result in cracking of the paint film and fading of the varnish glaze.
Lin, Hsueh-Chun; Hong, Yao-Ming; Kan, Yao-Chiang
2012-01-01
The groundwater level represents a critical factor to evaluate hillside landslides. A monitoring system upon the real-time prediction platform with online analytical functions is important to forecast the groundwater level due to instantaneously monitored data when the heavy precipitation raises the groundwater level under the hillslope and causes instability. This study is to design the backend of an environmental monitoring system with efficient algorithms for machine learning and knowledge bank for the groundwater level fluctuation prediction. A Web-based platform upon the model-view controller-based architecture is established with technology of Web services and engineering data warehouse to support online analytical process and feedback risk assessment parameters for real-time prediction. The proposed system incorporates models of hydrological computation, machine learning, Web services, and online prediction to satisfy varieties of risk assessment requirements and approaches of hazard prevention. The rainfall data monitored from the potential landslide area at Lu-Shan, Nantou and Li-Shan, Taichung, in Taiwan, are applied to examine the system design.
NASA Technical Reports Server (NTRS)
Wenrich, Melissa L.; Hamilton, Victoria E.; Christensen, Philip R.
1995-01-01
Thermal Infrared Multispectral Scanner (TIMS) data were acquired over the McDowell Mountains northeast of Scottsdale, Arizona during August 1994. The raw data were processed to emphasize lithologic differences using a decorrelation stretch and assigning bands 5, 3, and 1 to red, green, and blue, respectively. Processed data of alluvium flanking the mountains exhibit moderate color variation. The objective of this study was to determine, using a quantitative approach, what environmental variable(s), in the absence of bedrock, is/are responsible for influencing the spectral properties of the desert alluvial surface.
40 CFR 1502.16 - Environmental consequences.
Code of Federal Regulations, 2014 CFR
2014-07-01
... § 1502.16 Environmental consequences. This section forms the scientific and analytic basis for the... environmental impacts of the alternatives including the proposed action, any adverse environmental effects which... concerned. (See § 1506.2(d).) (d) The environmental effects of alternatives including the proposed action...
40 CFR 1502.16 - Environmental consequences.
Code of Federal Regulations, 2012 CFR
2012-07-01
... § 1502.16 Environmental consequences. This section forms the scientific and analytic basis for the... environmental impacts of the alternatives including the proposed action, any adverse environmental effects which... concerned. (See § 1506.2(d).) (d) The environmental effects of alternatives including the proposed action...
40 CFR 1502.16 - Environmental consequences.
Code of Federal Regulations, 2013 CFR
2013-07-01
... § 1502.16 Environmental consequences. This section forms the scientific and analytic basis for the... environmental impacts of the alternatives including the proposed action, any adverse environmental effects which... concerned. (See § 1506.2(d).) (d) The environmental effects of alternatives including the proposed action...
Analysis of environmental regulatory proposals: Its your chance to influence policy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Veil, J.A.
1994-03-02
As part of the regulatory development process, the US Envirorunental Protection Agency (EPA) collects data, makes various assumptions about the data, and analyzes the data. Although EPA acts in good faith, the agency cannot always be aware of all relevant data, make only appropriate assumptions, and use applicable analytical methods. Regulated industries must carefully must carefully review every component of the regulatory decision-making process to identify misunderstandings and errors and to supply additional data that is relevant to the regulatory action. This paper examines three examples of how EPA`s data, assumptions, and analytical methods have been critiqued. The first twomore » examples involve EPA`s cost-effectiveness (CE) analyses prepared for the offshore oil and gas effluent limitations guidelines and as part of EPA Region 6`s general permit for coastal waters of Texas and Louisiana. A CE analysis regulations to the incremental amount of pollutants that would be removed by the recommended treatment processes. The third example, although not involving a CE analysis, demonstrates how the use of non-representative data can influence the outcome of an analysis.« less
Sampling and monitoring for the mine life cycle
McLemore, Virginia T.; Smith, Kathleen S.; Russell, Carol C.
2014-01-01
Sampling and Monitoring for the Mine Life Cycle provides an overview of sampling for environmental purposes and monitoring of environmentally relevant variables at mining sites. It focuses on environmental sampling and monitoring of surface water, and also considers groundwater, process water streams, rock, soil, and other media including air and biological organisms. The handbook includes an appendix of technical summaries written by subject-matter experts that describe field measurements, collection methods, and analytical techniques and procedures relevant to environmental sampling and monitoring.The sixth of a series of handbooks on technologies for management of metal mine and metallurgical process drainage, this handbook supplements and enhances current literature and provides an awareness of the critical components and complexities involved in environmental sampling and monitoring at the mine site. It differs from most information sources by providing an approach to address all types of mining influenced water and other sampling media throughout the mine life cycle.Sampling and Monitoring for the Mine Life Cycle is organized into a main text and six appendices that are an integral part of the handbook. Sidebars and illustrations are included to provide additional detail about important concepts, to present examples and brief case studies, and to suggest resources for further information. Extensive references are included.
Phenotypic switching of populations of cells in a stochastic environment
NASA Astrophysics Data System (ADS)
Hufton, Peter G.; Lin, Yen Ting; Galla, Tobias
2018-02-01
In biology phenotypic switching is a common bet-hedging strategy in the face of uncertain environmental conditions. Existing mathematical models often focus on periodically changing environments to determine the optimal phenotypic response. We focus on the case in which the environment switches randomly between discrete states. Starting from an individual-based model we derive stochastic differential equations to describe the dynamics, and obtain analytical expressions for the mean instantaneous growth rates based on the theory of piecewise-deterministic Markov processes. We show that optimal phenotypic responses are non-trivial for slow and intermediate environmental processes, and systematically compare the cases of periodic and random environments. The best response to random switching is more likely to be heterogeneity than in the case of deterministic periodic environments, net growth rates tend to be higher under stochastic environmental dynamics. The combined system of environment and population of cells can be interpreted as host-pathogen interaction, in which the host tries to choose environmental switching so as to minimise growth of the pathogen, and in which the pathogen employs a phenotypic switching optimised to increase its growth rate. We discuss the existence of Nash-like mutual best-response scenarios for such host-pathogen games.
MCDM analysis of wind energy in Turkey: decision making based on environmental impact.
Değirmenci, Sinem; Bingöl, Ferhat; Sofuoglu, Sait C
2018-05-08
Development of new wind energy projects require complex planning process involving many social, technical, economic, environmental, political concerns, and different agents such as investors, utilities, governmental agencies, or social groups. The aim of this study is to develop a tool combining Geographic Information System (GIS) and Multi-Criteria Decision-Making (MCDM) methodologies, and its application for Turkey as a case study. A variety of constraints and criteria were identified based on a literature review and regulations gathered from variety of agencies, use of which resulted in determination of infeasible sites. Then, pairwise comparisons were carried out using analytic hierarchy process as the MCDM method to estimate relative importance of the criteria, and to visualize a suitability map with three classes. As the final stage, decision making was carried out based on environmental impact where 45.5% of the Turkish territory was found as infeasible area. Sixty percent of the remaining area are covered by the moderate suitability class, followed by the highly suitable area (20.3%) and low suitable area (19.8%). The output of this study can be used by energy planners to estimate the extent that wind energy can be developed based on public perception, administrative, and environmental aspects.
Moretti, Laura; Di Mascio, Paola; Bellagamba, Simona
2017-06-16
The attention to sustainability-related issues has grown fast in recent decades. The experience gained with these themes reveals the importance of considering this topic in the construction industry, which represents an important sector throughout the world. This work consists on conducting a multicriteria analysis of four cement powders, with the objective of calculating and analysing the environmental, human health and socio-economic effects of their production processes. The economic, technical, environmental and safety performances of the examined powders result from official, both internal and public, documents prepared by the producers. The Analytic Hierarchy Process permitted to consider several indicators (i.e., environmental, human health related and socio-economic parameters) and to conduct comprehensive and unbiased analyses which gave the best, most sustainable cement powder. As assumed in this study, the contribution of each considered parameter to the overall sustainability has a different incidence, therefore the procedure could be used to support on-going sustainability efforts under different conditions. The results also prove that it is not appropriate to regard only one parameter to identify the 'best' cement powder, but several impact categories should be considered and analysed if there is an interest for pursuing different, often conflicting interests.
Kim, Sang-Bog; Roche, Jennifer
2013-08-01
Organically bound tritium (OBT) is an important tritium species that can be measured in most environmental samples, but has only recently been recognized as a species of tritium in these samples. Currently, OBT is not routinely measured by environmental monitoring laboratories around the world. There are no certified reference materials (CRMs) for environmental samples. Thus, quality assurance (QA), or verification of the accuracy of the OBT measurement, is not possible. Alternatively, quality control (QC), or verification of the precision of the OBT measurement, can be achieved. In the past, there have been differences in OBT analysis results between environmental laboratories. A possible reason for the discrepancies may be differences in analytical methods. Therefore, inter-laboratory OBT comparisons among the environmental laboratories are important and would provide a good opportunity for adopting a reference OBT analytical procedure. Due to the analytical issues, only limited information is available on OBT measurement. Previously conducted OBT inter-laboratory practices are reviewed and the findings are described. Based on our experiences, a few considerations were suggested for the international OBT inter-laboratory comparison exercise to be completed in the near future. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.
Developing weighted criteria to evaluate lean reverse logistics through analytical network process
NASA Astrophysics Data System (ADS)
Zagloel, Teuku Yuri M.; Hakim, Inaki Maulida; Krisnawardhani, Rike Adyartie
2017-11-01
Reverse logistics is a part of supply chain that bring materials from consumers back to manufacturer in order to gain added value or do a proper disposal. Nowadays, most companies are still facing several problems on reverse logistics implementation which leads to high waste along reverse logistics processes. In order to overcome this problem, Madsen [Framework for Reverse Lean Logistics to Enable Green Manufacturing, Eco Design 2009: 6th International Symposium on Environmentally Conscious Design and Inverse Manufacturing, Sapporo, 2009] has developed a lean reverse logistics framework as a step to eliminate waste by implementing lean on reverse logistics. However, the resulted framework sets aside criteria used to evaluate its performance. This research aims to determine weighted criteria that can be used as a base on reverse logistics evaluation by considering lean principles. The resulted criteria will ensure reverse logistics are kept off from waste, thus implemented efficiently. Analytical Network Process (ANP) is used in this research to determine the weighted criteria. The result shows that criteria used for evaluation lean reverse logistics are Innovation and Learning (35%), Economic (30%), Process Flow Management (14%), Customer Relationship Management (13%), Environment (6%), and Social (2%).
NASA Astrophysics Data System (ADS)
Bascetin, A.
2007-04-01
The selection of an optimal reclamation method is one of the most important factors in open-pit design and production planning. It also affects economic considerations in open-pit design as a function of plan location and depth. Furthermore, the selection is a complex multi-person, multi-criteria decision problem. The group decision-making process can be improved by applying a systematic and logical approach to assess the priorities based on the inputs of several specialists from different functional areas within the mine company. The analytical hierarchy process (AHP) can be very useful in involving several decision makers with different conflicting objectives to arrive at a consensus decision. In this paper, the selection of an optimal reclamation method using an AHP-based model was evaluated for coal production in an open-pit coal mine located at Seyitomer region in Turkey. The use of the proposed model indicates that it can be applied to improve the group decision making in selecting a reclamation method that satisfies optimal specifications. Also, it is found that the decision process is systematic and using the proposed model can reduce the time taken to select a optimal method.
The Use and Abuse of Limits of Detection in Environmental Analytical Chemistry
Brown, Richard J. C.
2008-01-01
The limit of detection (LoD) serves as an important method performance measure that is useful for the comparison of measurement techniques and the assessment of likely signal to noise performance, especially in environmental analytical chemistry. However, the LoD is only truly related to the precision characteristics of the analytical instrument employed for the analysis and the content of analyte in the blank sample. This article discusses how other criteria, such as sampling volume, can serve to distort the quoted LoD artificially and make comparison between various analytical methods inequitable. In order to compare LoDs between methods properly, it is necessary to state clearly all of the input parameters relating to the measurements that have been used in the calculation of the LoD. Additionally, the article discusses that the use of LoDs in contexts other than the comparison of the attributes of analytical methods, in particular when reporting analytical results, may be confusing, less informative than quoting the actual result with an accompanying statement of uncertainty, and may act to bias descriptive statistics. PMID:18690384
Environmental monitoring handbook for coal conversion facilities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Salk, M.S.; DeCicco, S.G.
1978-05-01
The primary objectives of the Department of Energy's (DOE) coal conversion program are to demonstrate the environmental acceptability, technical feasibility, and economic viability of various technologies for gaseous, liquid, and solid fuels from coal. The Environmental Monitoring Handbook for Coal Conversion Facilities will help accomplish the objective of environmental acceptability by guiding the planning and execution of socioeconomic and environmental monitoring programs for demonstration facilities. These programs will provide information adequate to (1) predict, insofar as is possible, the potential impacts of construction and operation of a coal conversion plant, (2) verify the occurrence of these or any other impactsmore » during construction and operation, (3) determine the adequacy of mitigating measures to protect the environment, (4) develop effluent source terms for process discharges, and (5) determine the effectiveness of pollution control equipment. Although useful in a variety of areas, the handbook is intended primarily for contractors who, as industrial partners with DOE, are building coal conversion plants. For the contractor it is a practical guide on (1) the methodology for developing site- and process-specific environmental monitoring programs, (2) state-of-the-art sampling and analytical techniques, and (3) impact analyses.To correspond to the phases of project activity, the subject matter is divided into four stages of monitoring: (1) a reconnaissance or synoptic survey, (2) preconstruction or baseline, (3) construction, and (4) operation, including process monitoring (prepared by Radian Corp., McLean, Va.). For each stage of monitoring, guidelines are given on socioeconomics, aquatic and terrestrial ecology, air quality and meteorology, surface and groundwater quality, geohydrology and soil survey, and surface water hydrology.« less
Enzymes in Fish and Seafood Processing
Fernandes, Pedro
2016-01-01
Enzymes have been used for the production and processing of fish and seafood for several centuries in an empirical manner. In recent decades, a growing trend toward a rational and controlled application of enzymes for such goals has emerged. Underlying such pattern are, among others, the increasingly wider array of enzyme activities and enzyme sources, improved enzyme formulations, and enhanced requirements for cost-effective and environmentally friendly processes. The better use of enzyme action in fish- and seafood-related application has had a significant impact on fish-related industry. Thus, new products have surfaced, product quality has improved, more sustainable processes have been developed, and innovative and reliable analytical techniques have been implemented. Recent development in these fields are presented and discussed, and prospective developments are suggested. PMID:27458583
Collaborative Web-Enabled GeoAnalytics Applied to OECD Regional Data
NASA Astrophysics Data System (ADS)
Jern, Mikael
Recent advances in web-enabled graphics technologies have the potential to make a dramatic impact on developing collaborative geovisual analytics (GeoAnalytics). In this paper, tools are introduced that help establish progress initiatives at international and sub-national levels aimed at measuring and collaborating, through statistical indicators, economic, social and environmental developments and to engage both statisticians and the public in such activities. Given this global dimension of such a task, the “dream” of building a repository of progress indicators, where experts and public users can use GeoAnalytics collaborative tools to compare situations for two or more countries, regions or local communities, could be accomplished. While the benefits of GeoAnalytics tools are many, it remains a challenge to adapt these dynamic visual tools to the Internet. For example, dynamic web-enabled animation that enables statisticians to explore temporal, spatial and multivariate demographics data from multiple perspectives, discover interesting relationships, share their incremental discoveries with colleagues and finally communicate selected relevant knowledge to the public. These discoveries often emerge through the diverse backgrounds and experiences of expert domains and are precious in a creative analytics reasoning process. In this context, we introduce a demonstrator “OECD eXplorer”, a customized tool for interactively analyzing, and collaborating gained insights and discoveries based on a novel story mechanism that capture, re-use and share task-related explorative events.
NASA Astrophysics Data System (ADS)
RazaviToosi, S. L.; Samani, J. M. V.
2016-03-01
Watersheds are considered as hydrological units. Their other important aspects such as economic, social and environmental functions play crucial roles in sustainable development. The objective of this work is to develop methodologies to prioritize watersheds by considering different development strategies in environmental, social and economic sectors. This ranking could play a significant role in management to assign the most critical watersheds where by employing water management strategies, best condition changes are expected to be accomplished. Due to complex relations among different criteria, two new hybrid fuzzy ANP (Analytical Network Process) algorithms, fuzzy TOPSIS (Technique for Order Preference by Similarity to Ideal Solution) and fuzzy max-min set methods are used to provide more flexible and accurate decision model. Five watersheds in Iran named Oroomeyeh, Atrak, Sefidrood, Namak and Zayandehrood are considered as alternatives. Based on long term development goals, 38 water management strategies are defined as subcriteria in 10 clusters. The main advantage of the proposed methods is its ability to overcome uncertainty. This task is accomplished by using fuzzy numbers in all steps of the algorithms. To validate the proposed method, the final results were compared with those obtained from the ANP algorithm and the Spearman rank correlation coefficient is applied to find the similarity in the different ranking methods. Finally, the sensitivity analysis was conducted to investigate the influence of cluster weights on the final ranking.
Status of pharmaceuticals in African water bodies: Occurrence, removal and analytical methods.
Madikizela, Lawrence Mzukisi; Tavengwa, Nikita Tawanda; Chimuka, Luke
2017-05-15
In this review paper, the milestones and challenges that have been achieved and experienced by African Environmental Scientists regarding the assessment of water pollution caused by the presence of pharmaceutical compounds in water bodies are highlighted. The identification and quantification of pharmaceuticals in the African water bodies is important to the general public at large due to the lack of information. The consumption of pharmaceuticals to promote human health is usually followed by excretion of these drugs via urine or fecal matter due to their slight transformation in the human metabolism. Therefore, large amounts of pharmaceuticals are being discharged continuously from wastewater treatment plants into African rivers due to inefficiency of employed sewage treatment processes. Large portions of African communities do not even have proper sanitation systems which results in direct contamination of water resources with human waste that contains pharmaceutical constituents among other pollutants. Therefore, this article provides the overview of the recent studies published, mostly from 2012 to 2016, that have focused on the occurrence of different classes of pharmaceuticals in African aqueous systems. Also, the current analytical methods that are being used in Africa for pharmaceutical quantification in environmental waters are highlighted. African Scientists have started to investigate the materials and remediation processes for the elimination of pharmaceuticals from water. Copyright © 2017 Elsevier Ltd. All rights reserved.
USGS Blind Sample Project: monitoring and evaluating laboratory analytical quality
Ludtke, Amy S.; Woodworth, Mark T.
1997-01-01
The U.S. Geological Survey (USGS) collects and disseminates information about the Nation's water resources. Surface- and ground-water samples are collected and sent to USGS laboratories for chemical analyses. The laboratories identify and quantify the constituents in the water samples. Random and systematic errors occur during sample handling, chemical analysis, and data processing. Although all errors cannot be eliminated from measurements, the magnitude of their uncertainty can be estimated and tracked over time. Since 1981, the USGS has operated an independent, external, quality-assurance project called the Blind Sample Project (BSP). The purpose of the BSP is to monitor and evaluate the quality of laboratory analytical results through the use of double-blind quality-control (QC) samples. The information provided by the BSP assists the laboratories in detecting and correcting problems in the analytical procedures. The information also can aid laboratory users in estimating the extent that laboratory errors contribute to the overall errors in their environmental data.
Wang, Zonghua; Han, Qiang; Xia, Jianfei; Xia, Linhua; Ding, Mingyu; Tang, Jie
2013-06-01
Graphene has great potentials for the use in sample preparation due to its ultra high specific surface area, superior chemical stability, and excellent thermal stability. In our work, a novel graphene-based SPE disk was developed for separation and preconcentration of trace polycyclic aromatic hydrocarbons from environmental water samples. Based on the strong π-π stacking interaction between the analytes and graphene, the analytes extracted by graphene were eluted by cyclohexane and then determined by GC-MS. Under the optimized conditions, high flow rate (30 mL/min) and sensitivity (0.84-13 ng/L) were achieved. The proposed method was successfully applied to the analysis of real environmental water samples with recoveries ranging from 72.8 to 106.2%. Furthermore, the property of anticlogging and reusability was also improved. This work reveals great potentials of graphene-based SPE disk in environmental analytical. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Environmental chemistry is applied to estimating the exposure of ecosystems and humans to various chemical environmental stressors. Among the stressors of concern are mercury, pesticides, and arsenic. Advanced analytical chemistry techniques are used to measure these stressors ...
Horowitz, Arthur J.
2013-01-01
Successful environmental/water quality-monitoring programs usually require a balance between analytical capabilities, the collection and preservation of representative samples, and available financial/personnel resources. Due to current economic conditions, monitoring programs are under increasing pressure to do more with less. Hence, a review of current sampling and analytical methodologies, and some of the underlying assumptions that form the bases for these programs seems appropriate, to see if they are achieving their intended objectives within acceptable error limits and/or measurement uncertainty, in a cost-effective manner. That evaluation appears to indicate that several common sampling/processing/analytical procedures (e.g., dip (point) samples/measurements, nitrogen determinations, total recoverable analytical procedures) are generating biased or nonrepresentative data, and that some of the underlying assumptions relative to current programs, such as calendar-based sampling and stationarity are no longer defensible. The extensive use of statistical models as well as surrogates (e.g., turbidity) also needs to be re-examined because the hydrologic interrelationships that support their use tend to be dynamic rather than static. As a result, a number of monitoring programs may need redesigning, some sampling and analytical procedures may need to be updated, and model/surrogate interrelationships may require recalibration.
Risk management of drinking water relies on quality analytical data. Analytical methodology can often be adapted from environmental monitoring sources. However, risk management sometimes presents special analytical challenges because data may be needed from a source for which n...
Shaaban, Heba; Górecki, Tadeusz
2015-01-01
Green analytical chemistry is an aspect of green chemistry which introduced in the late nineties. The main objectives of green analytical chemistry are to obtain new analytical technologies or to modify an old method to incorporate procedures that use less hazardous chemicals. There are several approaches to achieve this goal such as using environmentally benign solvents and reagents, reducing the chromatographic separation times and miniaturization of analytical devices. Traditional methods used for the analysis of pharmaceutically active compounds require large volumes of organic solvents and generate large amounts of waste. Most of them are volatile and harmful to the environment. With the awareness about the environment, the development of green technologies has been receiving increasing attention aiming at eliminating or reducing the amount of organic solvents consumed everyday worldwide without loss in chromatographic performance. This review provides the state of the art of green analytical methodologies for environmental analysis of pharmaceutically active compounds in the aquatic environment with special emphasis on strategies for greening liquid chromatography (LC). The current trends of fast LC applied to environmental analysis, including elevated mobile phase temperature, as well as different column technologies such as monolithic columns, fully porous sub-2 μm and superficially porous particles are presented. In addition, green aspects of gas chromatography (GC) and supercritical fluid chromatography (SFC) will be discussed. We pay special attention to new green approaches such as automation, miniaturization, direct analysis and the possibility of locating the chromatograph on-line or at-line as a step forward in reducing the environmental impact of chromatographic analyses. Copyright © 2014 Elsevier B.V. All rights reserved.
Denitrification in Agricultural Soils: Integrated control and Modelling at various scales (DASIM)
NASA Astrophysics Data System (ADS)
Müller, Christoph; Well, Reinhard; Böttcher, Jürgen; Butterbach-Bahl, Klaus; Dannenmann, Michael; Deppe, Marianna; Dittert, Klaus; Dörsch, Peter; Horn, Marcus; Ippisch, Olaf; Mikutta, Robert; Senbayram, Mehmet; Vogel, Hans-Jörg; Wrage-Mönnig, Nicole; Müller, Carsten
2016-04-01
The new research unit DASIM brings together the expertise of 11 working groups to study the process of denitrification at unprecedented spatial and temporal resolution. Based on state-of-the art analytical techniques our aim is to develop improved denitrification models ranging from the microscale to the field/plot scale. Denitrification, the process of nitrate reduction allowing microbes to sustain respiration under anaerobic conditions, is the key process returning reactive nitrogen as N2to the atmosphere. Actively denitrifying communities in soil show distinct regulatory phenotypes (DRP) with characteristic controls on the single reaction steps and end-products. It is unresolved whether DRPs are anchored in the taxonomic composition of denitrifier communities and how environmental conditions shape them. Despite being intensively studied for more than 100 years, denitrification rates and emissions of its gaseous products can still not be satisfactorily predicted. While the impact of single environmental parameters is well understood, the complexity of the process itself with its intricate cellular regulation in response to highly variable factors in the soil matrix prevents robust prediction of gaseous emissions. Key parameters in soil are pO2, organic matter content and quality, pH and the microbial community structure, which in turn are affected by the soil structure, chemistry and soil-plant interactions. In the DASIM research unit, we aim at the quantitative prediction of denitrification rates as a function of microscale soil structure, organic matter quality, DRPs and atmospheric boundary conditions via a combination of state-of-the-art experimental and analytical tools (X-ray μCT, 15N tracing, NanoSIMS, microsensors, advanced flux detection, NMR spectroscopy, and molecular methods including next generation sequencing of functional gene transcripts). We actively seek collaboration with researchers working in the field of denitrification.
NASA Astrophysics Data System (ADS)
Balogun, Abdul-Lateef; Matori, Abdul-Nasir; Wong Toh Kiak, Kelvin
2018-04-01
Environmental resources face severe risks during offshore oil spill disasters and Geographic Information System (GIS) Environmental Sensitivity Index (ESI) maps are increasingly being used as response tools to minimize the huge impacts of these spills. However, ESI maps are generally unable to independently harmonize the diverse preferences of the multiple stakeholders' involved in the response process, causing rancour and delay in response time. This paper's Spatial Decision Support System (SDSS) utilizes the Analytic Hierarchy Process (AHP) model to perform tradeoffs in determining the most significant resources to be secured considering the limited resources and time available to perform the response operation. The AHP approach is used to aggregate the diverse preferences of the stakeholders and reach a consensus. These preferences, represented as priority weights, are incorporated in a GIS platform to generate Environmental sensitivity risk (ESR) maps. The ESR maps provide a common operational platform and consistent situational awareness for the multiple parties involved in the emergency response operation thereby minimizing discord among the response teams and saving the most valuable resources.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garcia-Montero, Luis G., E-mail: luisgonzaga.garcia@upm.e; Lopez, Elena, E-mail: elopez@caminos.upm.e; Monzon, Andres, E-mail: amonzon@caminos.upm.e
Most Strategic Environmental Assessment (SEA) research has been concerned with SEA as a procedure, and there have been relatively few developments and tests of analytical methodologies. The first stage of the SEA is the 'screening', which is the process whereby a decision is taken on whether or not SEA is required for a particular programme or plan. The effectiveness of screening and SEA procedures will depend on how well the assessment fits into the planning from the early stages of the decision-making process. However, it is difficult to prepare the environmental screening for an infrastructure plan involving a whole country.more » To be useful, such methodologies must be fast and simple. We have developed two screening tools which would make it possible to estimate promptly the overall impact an infrastructure plan might have on biodiversity and global warming for a whole country, in order to generate planning alternatives, and to determine whether or not SEA is required for a particular infrastructure plan.« less
Integrating Multiple Criteria Evaluation and GIS in Ecotourism: a Review
NASA Astrophysics Data System (ADS)
Mohd, Z. H.; Ujang, U.
2016-09-01
The concept of 'Eco-tourism' is increasingly heard in recent decades. Ecotourism is one adventure that environmentally responsible intended to appreciate the nature experiences and cultures. Ecotourism should have low impact on environment and must contribute to the prosperity of local residents. This article reviews the use of Multiple Criteria Evaluation (MCE) and Geographic Information System (GIS) in ecotourism. Multiple criteria evaluation mostly used to land suitability analysis or fulfill specific objectives based on various attributes that exist in the selected area. To support the process of environmental decision making, the application of GIS is used to display and analysis the data through Analytic Hierarchy Process (AHP). Integration between MCE and GIS tool is important to determine the relative weight for the criteria used objectively. With the MCE method, it can resolve the conflict between recreation and conservation which is to minimize the environmental and human impact. Most studies evidences that the GIS-based AHP as a multi criteria evaluation is a strong and effective in tourism planning which can aid in the development of ecotourism industry effectively.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chao, S.S.; Attari, A.
1995-01-01
The discovery of arsenic compounds, as alkylarsines, in natural gas prompted this research program to develop reliable measurement techniques needed to assess the efficiency of removal processes for these environmentally sensitive substances. These techniques include sampling, speciation, quantitation and on-line instrumental methods for monitoring the total arsenic concentration. The current program has yielded many products, including calibration standards, arsenic-specific sorbents, sensitive analytical methods and instrumentation. Four laboratory analytical methods have been developed and successfully employed for arsenic determination in natural gas. These methods use GC-AED and GC-MS instruments to speciate alkylarsines, and peroxydisulfate extraction with FIAS, special carbon sorbent withmore » XRF and an IGT developed sorbent with GFAA for total arsenic measurement.« less
Bioassays as one of the Green Chemistry tools for assessing environmental quality: A review.
Wieczerzak, M; Namieśnik, J; Kudłak, B
2016-09-01
For centuries, mankind has contributed to irreversible environmental changes, but due to the modern science of recent decades, scientists are able to assess the scale of this impact. The introduction of laws and standards to ensure environmental cleanliness requires comprehensive environmental monitoring, which should also meet the requirements of Green Chemistry. The broad spectrum of Green Chemistry principle applications should also include all of the techniques and methods of pollutant analysis and environmental monitoring. The classical methods of chemical analyses do not always match the twelve principles of Green Chemistry, and they are often expensive and employ toxic and environmentally unfriendly solvents in large quantities. These solvents can generate hazardous and toxic waste while consuming large volumes of resources. Therefore, there is a need to develop reliable techniques that would not only meet the requirements of Green Analytical Chemistry, but they could also complement and sometimes provide an alternative to conventional classical analytical methods. These alternatives may be found in bioassays. Commercially available certified bioassays often come in the form of ready-to-use toxkits, and they are easy to use and relatively inexpensive in comparison with certain conventional analytical methods. The aim of this study is to provide evidence that bioassays can be a complementary alternative to classical methods of analysis and can fulfil Green Analytical Chemistry criteria. The test organisms discussed in this work include single-celled organisms, such as cell lines, fungi (yeast), and bacteria, and multicellular organisms, such as invertebrate and vertebrate animals and plants. Copyright © 2016 Elsevier Ltd. All rights reserved.
Some thoughts on problems associated with various sampling media used for environmental monitoring
Horowitz, A.J.
1997-01-01
Modern analytical instrumentation is capable of measuring a variety of trace elements at concentrations down into the single or double digit parts-per-trillion (ng l-1) range. This holds for the three most common sample media currently used in environmental monitoring programs: filtered water, whole-water and separated suspended sediment. Unfortunately, current analytical capabilities have exceeded the current capacity to collect both uncontaminated and representative environmental samples. The success of any trace element monitoring program requires that this issue be both understood and addressed. The environmental monitoring of trace elements requires the collection of calendar- and event-based dissolved and suspended sediment samples. There are unique problems associated with the collection and chemical analyses of both types of sample media. Over the past 10 years, reported ambient dissolved trace element concentrations have declined. Generally, these decreases do not reflect better water quality, but rather improvements in the procedures used to collect, process, preserve and analyze these samples without contaminating them during these steps. Further, recent studies have shown that the currently accepted operational definition of dissolved constituents (material passing a 0.45 ??m membrane filter) is inadequat owing to sampling and processing artifacts. The existence of these artifacts raises questions about the generation of accurate, precise and comparable 'dissolved' trace element data. Suspended sediment and associated trace elements can display marked short- and long-term spatial and temporal variability. This implies that spatially representative samples only can be obtained by generating composites using depth- and width-integrated sampling techniques. Additionally, temporal variations have led to the view that the determination of annual trace element fluxes may require nearly constant (e.g., high-frequency) sampling and subsequent chemical analyses. Ultimately, sampling frequency for flux estimates becomes dependent on the time period of concern (daily, weekly, monthly, yearly) and the amount of acceptable error associated with these estimates.
Multi-criteria decision analysis in environmental sciences: ten years of applications and trends.
Huang, Ivy B; Keisler, Jeffrey; Linkov, Igor
2011-09-01
Decision-making in environmental projects requires consideration of trade-offs between socio-political, environmental, and economic impacts and is often complicated by various stakeholder views. Multi-criteria decision analysis (MCDA) emerged as a formal methodology to face available technical information and stakeholder values to support decisions in many fields and can be especially valuable in environmental decision making. This study reviews environmental applications of MCDA. Over 300 papers published between 2000 and 2009 reporting MCDA applications in the environmental field were identified through a series of queries in the Web of Science database. The papers were classified by their environmental application area, decision or intervention type. In addition, the papers were also classified by the MCDA methods used in the analysis (analytic hierarchy process, multi-attribute utility theory, and outranking). The results suggest that there is a significant growth in environmental applications of MCDA over the last decade across all environmental application areas. Multiple MCDA tools have been successfully used for environmental applications. Even though the use of the specific methods and tools varies in different application areas and geographic regions, our review of a few papers where several methods were used in parallel with the same problem indicates that recommended course of action does not vary significantly with the method applied. Published by Elsevier B.V.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-08-16
... Currently Approved Total Coliform Analytical Methods AGENCY: Environmental Protection Agency (EPA). ACTION... of currently approved Total Coliform Rule (TCR) analytical methods. At these meetings, stakeholders will be given an opportunity to discuss potential elements of a method re-evaluation study, such as...
Analytical Chemistry in Russia.
Zolotov, Yuri
2016-09-06
Research in Russian analytical chemistry (AC) is carried out on a significant scale, and the analytical service solves practical tasks of geological survey, environmental protection, medicine, industry, agriculture, etc. The education system trains highly skilled professionals in AC. The development and especially manufacturing of analytical instruments should be improved; in spite of this, there are several good domestic instruments and other satisfy some requirements. Russian AC has rather good historical roots.
ANALYTICAL CHALLENGES OF ENVIRONMENTAL ENDOCRINE DISRUPTOR MONITORING
Reported increases in the incidence of endocrine-related conditions have led to speculation about environmental causes. Environmental scientists are focusing increased research effort into understanding the mechanisms by which endocrine disruptors affect human and ecological h...
Liu, Yue; Hu, Jia; Li, Yan; Li, Xiao-Shuang; Wang, Zhong-Liang
2016-10-01
A novel method with high sensitivity for the rapid determination of chrysin, apigenin and luteolin in environment water samples was developed by double-pumps controlled on-line solid-phase extraction (SPE) coupled with high-performance liquid chromatography (HPLC). In the developed technique, metal organic framework MIL-101 was synthesized and applied as a sorbent for SPE. The as-synthesized MIL-101 was characterized by scanning electron microscope, X-ray diffraction spectrometry, thermal gravimetric analysis and micropore physisorption analysis. The MIL-101 behaved as a fast kinetics in the adsorption of chrysin, apigenin and luteolin. On-line SPE of chrysin, apigenin and luteolin was processed by loading a sample solution at a flow rate of 1.0 mL/min for 10 min. The extracted analytes were subsequently eluted into a ZORBAX Bonus-RP analytical column (25 cm long × 4.6 mm i.d.) for HPLC separation under isocratic condition with a mobile phase (MeOH: ACN: 0.02 M H 3 PO 4 = 35:35:30) at a flow rate of 1.0 mL/min. Experimental conditions, including ionic strength, sample pH, sample loading rates, sample loading time and desorption analytes time, were further optimized to obtain efficient preconcentration and high-precision determination of the analytes mentioned above. The method achieved the merits of simplicity, rapidity, sensitivity, wide linear range and high sample throughput. The possible mechanism for the adsorption of flavonoids on MIL-101 was proposed. The developed method has been applied to determine trace chrysin, apigenin and luteolin in a variety of environmental water samples. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Superhydrophobic Analyte Concentration Utilizing Colloid-Pillar Array SERS Substrates
Wallace, Ryan A.; Charlton, Jennifer J.; Kirchner, Teresa B.; ...
2014-11-04
In order to detect a few molecules present in a large sample it is important to know the trace components in the medicinal and environmental sample. Surface enhanced Raman spectroscopy (SERS) is a technique that can be utilized to detect molecules at very low absolute numbers. However, detection at trace concentration levels in real samples requires properly designed delivery and detection systems. Moreover, the following work involves superhydrophobic surfaces that includes silicon pillar arrays formed by lithographic and dewetting protocols. In order to generate the necessary plasmonic substrate for SERS detection, simple and flow stable Ag colloid was added tomore » the functionalized pillar array system via soaking. The pillars are used native and with hydrophobic modification. The pillars provide a means to concentrate analyte via superhydrophobic droplet evaporation effects. A 100-fold concentration of analyte was estimated, with a limit of detection of 2.9 10-12 M for mitoxantrone dihydrochloride. Additionally, analytes were delivered to the surface via a multiplex approach in order to demonstrate an ability to control droplet size and placement for scaled-up applications in real world applications. Finally, a concentration process involving transport and sequestration based on surface treatment selective wicking is demonstrated.« less
Superhydrophobic Analyte Concentration Utilizing Colloid-Pillar Array SERS Substrates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wallace, Ryan A.; Charlton, Jennifer J.; Kirchner, Teresa B.
In order to detect a few molecules present in a large sample it is important to know the trace components in the medicinal and environmental sample. Surface enhanced Raman spectroscopy (SERS) is a technique that can be utilized to detect molecules at very low absolute numbers. However, detection at trace concentration levels in real samples requires properly designed delivery and detection systems. Moreover, the following work involves superhydrophobic surfaces that includes silicon pillar arrays formed by lithographic and dewetting protocols. In order to generate the necessary plasmonic substrate for SERS detection, simple and flow stable Ag colloid was added tomore » the functionalized pillar array system via soaking. The pillars are used native and with hydrophobic modification. The pillars provide a means to concentrate analyte via superhydrophobic droplet evaporation effects. A 100-fold concentration of analyte was estimated, with a limit of detection of 2.9 10-12 M for mitoxantrone dihydrochloride. Additionally, analytes were delivered to the surface via a multiplex approach in order to demonstrate an ability to control droplet size and placement for scaled-up applications in real world applications. Finally, a concentration process involving transport and sequestration based on surface treatment selective wicking is demonstrated.« less
Future directions of ecosystem science
Baron, Jill S.; Galvin, Kathleen A.
1990-01-01
Scientific knowledge about ecosystem structure and function has expanded greatly during the past few decades. Terrestrial and aquatic nutrient cycling, ecosystem energetics, population dynamics, belowground processes, and food webs have been studied at the plot, stand, watershed, and landscape levels at many locations around the globe. Ideas about terrestrial-atmospheric interactions and human interference in these processes have changed dramatically. There is new appreciation of the need to incorporate into ecosystem studies the interactions between human populations and the ecosystem, not only because humans affect ecosystem processes, but because these systems support human populations (Glantz 1988, Holden 1988, Parry et al. 1988, WCED 1987). Recent advances in ecosystem science are due, in part, to technological improvements in computing power, new laboratory and field physical and chemical analytical techniques, and satellite imagery for remote sensing of Earth's structure and dynamics. Modeling and geographic information systems have provided the capability for integrating multiple data sets with process simulations to generate hypotheses about regional ecosystem function. Concurrent with these scientific developments has been a growing concern about the links between the health of the environment and world-wide industrial, land, and resource-management practices. Environmental damage at the local level was widely recognized in the 1960s, prompting the environmental movement of that decade. Regional environmental problems with multiple effects and politically difficult solutions have been perceived more recently; the issue of acidic deposition provides an example of such a second-generation concern (Clark and Holling 1985). Today there is a growing awareness of global-scale environmental degradation brought about by the combined actions of all peoples on Earth (Clark 1989, Woodmansee et al. 1988). The three levels of environmental concern--local, regional, and global--have not replaced one another (Clark and Holling 1985). Instead, the effects are superimposed, creating what some perceive as impending global environmental crisis (Clark 1989, MacNeill 1989, WCED 1987). Public demands are developing for economic, political, social, and environmental efforts directed toward creating a state of global sustainability.
Ng, Nyuk-Ting; Kamaruddin, Amirah Farhan; Wan Ibrahim, Wan Aini; Sanagi, Mohd Marsin; Abdul Keyon, Aemi S
2018-01-01
The efficiency of the extraction and removal of pollutants from food and the environment has been an important issue in analytical science. By incorporating inorganic species into an organic matrix, a new material known as an organic-inorganic hybrid material is formed. As it possesses high selectivity, permeability, and mechanical and chemical stabilities, organic-inorganic hybrid materials constitute an emerging research field and have become popular to serve as sorbents in various separaton science methods. Here, we review recent significant advances in analytical solid-phase extraction employing organic-inorganic composite/nanocomposite sorbents for the extraction of organic and inorganic pollutants from various types of food and environmental matrices. The physicochemical characteristics, extraction properties, and analytical performances of sorbents are discussed; including morphology and surface characteristics, types of functional groups, interaction mechanism, selectivity and sensitivity, accuracy, and regeneration abilities. Organic-inorganic hybrid sorbents combined with extraction techniques are highly promising for sample preparation of various food and environmental matrixes with analytes at trace levels. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Behavioral patterns of environmental performance evaluation programs.
Li, Wanxin; Mauerhofer, Volker
2016-11-01
During the past decades numerous environmental performance evaluation programs have been developed and implemented on different geographic scales. This paper develops a taxonomy of environmental management behavioral patterns in order to provide a practical comparison tool for environmental performance evaluation programs. Ten such programs purposively selected are mapped against the identified four behavioral patterns in the form of diagnosis, negotiation, learning, and socialization and learning. Overall, we found that schemes which serve to diagnose environmental abnormalities are mainly externally imposed and have been developed as a result of technical debates concerning data sources, methodology and ranking criteria. Learning oriented scheme is featured by processes through which free exchange of ideas, mutual and adaptive learning can occur. Scheme developed by higher authority for influencing behaviors of lower levels of government has been adopted by the evaluated to signal their excellent environmental performance. The socializing and learning classified evaluation schemes have incorporated dialogue, participation, and capacity building in program design. In conclusion we consider the 'fitness for purpose' of the various schemes, the merits of our analytical model and the future possibilities of fostering capacity building in the realm of wicked environmental challenges. Copyright © 2016 Elsevier Ltd. All rights reserved.
Advances in analytical technologies for environmental protection and public safety.
Sadik, O A; Wanekaya, A K; Andreescu, S
2004-06-01
Due to the increased threats of chemical and biological agents of injury by terrorist organizations, a significant effort is underway to develop tools that can be used to detect and effectively combat chemical and biochemical toxins. In addition to the right mix of policies and training of medical personnel on how to recognize symptoms of biochemical warfare agents, the major success in combating terrorism still lies in the prevention, early detection and the efficient and timely response using reliable analytical technologies and powerful therapies for minimizing the effects in the event of an attack. The public and regulatory agencies expect reliable methodologies and devices for public security. Today's systems are too bulky or slow to meet the "detect-to-warn" needs for first responders such as soldiers and medical personnel. This paper presents the challenges in monitoring technologies for warfare agents and other toxins. It provides an overview of how advances in environmental analytical methodologies could be adapted to design reliable sensors for public safety and environmental surveillance. The paths to designing sensors that meet the needs of today's measurement challenges are analyzed using examples of novel sensors, autonomous cell-based toxicity monitoring, 'Lab-on-a-Chip' devices and conventional environmental analytical techniques. Finally, in order to ensure that the public and legal authorities are provided with quality data to make informed decisions, guidelines are provided for assessing data quality and quality assurance using the United States Environmental Protection Agency (US-EPA) methodologies.
A composite CBRN surveillance and testing service
NASA Astrophysics Data System (ADS)
Niemeyer, Debra M.
2004-08-01
The terrorist threat coupled with a global military mission necessitates quick and accurate identification of environmental hazards, and CBRN early warning. The Air Force Institute for Operational Health (AFIOH) provides fundamental support to protect personnel from and mitigate the effects of untoward hazards exposures. Sustaining healthy communities since 1955, the organizational charter is to enhance warfighter mission effectiveness, protect health, improve readiness and reduce costs, assess and manage risks to human heath and safety, operational performance and the environment. The AFIOH Surveillance Directorate provides forward deployed and reach-back surveillance, agent identification, and environ-mental regulatory compliance testing. Three unique laboratories process and analyze over two million environmental samples and clinical specimens per year, providing analytical chemistry, radiological assessment, and infectious disease testing, in addition to supporting Air Force and Department of Defense (DoD) clinical reference laboratory and force health protection testing. Each laboratory has an applied or investigational testing section where new technologies and techniques are evaluated, and expert consultative support to assist in technology assessments and test analyses. The Epidemiology Surveillance Laboratory and Analytical Chemistry Laboratory are critical assets of the Centers for Disease Control and Prevention (CDC) National Laboratory Response Network. Deployable assets provide direct support to the Combatant Commander and include the Air Force Radiological Assessment Team, and the Biological Augmentation Team. A diverse directorate, the synergistic CBRN response capabilities are a commander"s force protection tool, critical to maintaining combat power.
Filella, Montserrat
2010-01-01
Like all elements of the periodic table, bismuth is ubiquitously distributed throughout the environment as a result of natural processes and human activities. It is present as Bi(III) in environmental, biological and geochemical samples. Although bismuth and its compounds are considered to be non-toxic to humans, its increasing use as a replacement for lead has highlighted how little is known about its environmental and ecotoxicological behaviour. In this first critical review paper on the existing information on bismuth occurrence in natural waters, 125 papers on fresh and marine waters have been collated. Although the initial objective of this study was to establish the range of the typical concentrations of total dissolved bismuth in natural waters, this proved impossible to achieve due to the wide, and hitherto unexplained, dispersion of published data. Since analytical limitations might be one of the reasons underlying value dispersion, new analytical methods published since 2000--intended to be applied to natural waters--have also been reviewed. Disappointingly, the detection limits of the bulk of them are well above those required; they are thus of limited usefulness. Analysis of the existing information on bismuth in secondary references (i.e., books, review chapters) and on its chemical speciation in seawater revealed that the uncritical reproduction of old data is a widespread practice.
On the preparation of environmental impact statements in the United States of America
NASA Astrophysics Data System (ADS)
Carson, James E.
The National Environmental Policy Act of 1969 (NEPA) requires that an Environmental Impact Statement (FIS) be prepared whenever a federal action is considered that could result in a significant impact on the environment. Such actions include the issuance of construction or operating licenses for nuclear facilities and power plants, hydroelectric dams, or the diversion of water from rivers and lakes. An EIS is usually required if federal funds are involved. The U.S. Environmental Protection Agency and U.S. Council for Environmental Quality have developed guidelines and regulations for the preparation of an EIS. An EIS is not a scientific report. It is a legal document whose primary function is its use by decision-making agencies in approving or not approving the proposed federal action. The EIS is also used to inform the public and other government agencies of the environmental impacts of the proposed facility. The NEPA process allows public input into the decision-making process. An EIS should be short and concise, analytical, conclusory, be written for a non-technical audience, discuss the pros and cons of the proposed facility, and examine the impacts of all alternatives to the proposed action. The EIS should identify all adverse environmental impacts that cannot be avoided. The conclusions reached in the EIS should be clearly stated and supported by discussions and data in the text and by references to show that the agency has made the necessary analyses. The paper discusses the purpose and contents of these documents and the environmental procedures used in the U.S.A., especially as they relate to nuclear power plants.
Aristizábal M, Valentina; Gómez P, Álvaro; Cardona A, Carlos A
2015-11-01
This work presents a techno-economic and environmental assessment for a biorefinery based on sugarcane bagasse (SCB), and coffee cut-stems (CCS). Five scenarios were evaluated at different levels, conversion pathways, feedstock distribution, and technologies to produce ethanol, octane, nonane, furfural, and hydroxymethylfurfural (HMF). These scenarios were compared between each other according to raw material, economic, and environmental characteristics. A single objective function combining the Net Present Value and the Potential Environmental Impact was used through the Analytic Hierarchy Process approach to understand and select the best configurations for SCB and CCS cases. The results showed that the configuration with the best economic and environmental performance for SCB and CCS is the one that considers ethanol, furfural, and octane production (scenario 1). The global economic margin was 62.3% and 61.6% for SCB and CCS respectively. The results have shown the potential of these types of biomass to produce fuels and platform products. Copyright © 2015 Elsevier Ltd. All rights reserved.
Thermal Protection Materials Development
NASA Technical Reports Server (NTRS)
Selvaduray, Guna; Cox, Michael
1998-01-01
The main portion of this contract year was spent on the development of materials for high temperature applications. In particular, thermal protection materials were constantly tested and evaluated for thermal shock resistance, high-temperature dimensional stability, and tolerance to hostile environmental effects. The analytical laboratory at the Thermal Protection Materials Branch (TPMB), NASA-Ames played an integral part in the process of materials development of high temperature aerospace applications. The materials development focused mainly on the determination of physical and chemical characteristics of specimens from the various research programs.
Sensor Analytics: Radioactive gas Concentration Estimation and Error Propagation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anderson, Dale N.; Fagan, Deborah K.; Suarez, Reynold
2007-04-15
This paper develops the mathematical statistics of a radioactive gas quantity measurement and associated error propagation. The probabilistic development is a different approach to deriving attenuation equations and offers easy extensions to more complex gas analysis components through simulation. The mathematical development assumes a sequential process of three components; I) the collection of an environmental sample, II) component gas extraction from the sample through the application of gas separation chemistry, and III) the estimation of radioactivity of component gases.
HSRP and HSRP Partner Analytical Methods and Protocols
HSRP has worked with various partners to develop and test analytical methods and protocols for use by laboratories charged with analyzing environmental and/or buildling material samples following contamination incident.
Environmental and social risks: defensive National Environmental Policy Act in the US Forest Service
Michael J. Mortimer; Marc J. Stern; Robert W. Malmsheimer; Dale J. Blahna; Lee K. Cerveny; David N. Seesholtz
2011-01-01
The National Environmental Policy Act (NEPA) and its accompanying regulations provide a spectrum of alternative analytical pathways for federal agencies proposing major actions that might significantly impact the human environment. Although guidance from the President's council on Environmental Quality suggests the decision to develop an environmental impact...
Clean Water Act Analytical Methods
EPA publishes laboratory analytical methods (test procedures) that are used by industries and municipalities to analyze the chemical, physical and biological components of wastewater and other environmental samples required by the Clean Water Act.
Safety and Waste Management for SAM Chemistry Methods
The General Safety and Waste Management page offers section-specific safety and waste management details for the chemical analytes included in EPA's Selected Analytical Methods for Environmental Remediation and Recovery (SAM).
Safety and Waste Management for SAM Radiochemical Methods
The General Safety and Waste Management page offers section-specific safety and waste management details for the radiochemical analytes included in EPA's Selected Analytical Methods for Environmental Remediation and Recovery (SAM).
Bourget, Philippe; Amin, Alexandre; Vidal, Fabrice; Merlette, Christophe; Troude, Pénélope; Baillet-Guffroy, Arlette
2014-08-15
The purpose of the study was to perform a comparative analysis of the technical performance, respective costs and environmental effect of two invasive analytical methods (HPLC and UV/visible-FTIR) as compared to a new non-invasive analytical technique (Raman spectroscopy). Three pharmacotherapeutic models were used to compare the analytical performances of the three analytical techniques. Statistical inter-method correlation analysis was performed using non-parametric correlation rank tests. The study's economic component combined calculations relative to the depreciation of the equipment and the estimated cost of an AQC unit of work. In any case, analytical validation parameters of the three techniques were satisfactory, and strong correlations between the two spectroscopic techniques vs. HPLC were found. In addition, Raman spectroscopy was found to be superior as compared to the other techniques for numerous key criteria including a complete safety for operators and their occupational environment, a non-invasive procedure, no need for consumables, and a low operating cost. Finally, Raman spectroscopy appears superior for technical, economic and environmental objectives, as compared with the other invasive analytical methods. Copyright © 2014 Elsevier B.V. All rights reserved.
Nuclear and atomic analytical techniques in environmental studies in South America.
Paschoa, A S
1990-01-01
The use of nuclear analytical techniques for environmental studies in South America is selectively reviewed since the time of earlier works of Lattes with cosmic rays until the recent applications of the PIXE (particle-induced X-ray emission) technique to study air pollution problems in large cities, such as São Paulo and Rio de Janeiro. The studies on natural radioactivity and fallout from nuclear weapons in South America are briefly examined.
The European Water Framework Directive: Challenges For A New Type of Social and Policy Analysis
NASA Astrophysics Data System (ADS)
Pahl-Wostl, C.
Water resources managment is facing increasing uncertainties in all areas. Socio- economic boundary conditions change quickly and require more flexible management strategies. Climate change, for example results in an increase in uncertainties, in par- ticular extreme events. Given the fact that current management practices deal with extreme events by designing the technical systems to manage the most extreme of all cases (e.g. higher dams for the protection against extreme floods, larger water reser- voirs for droughts and to meet daily peak demand) a serious problem is posed for long-term planning and risk management. Engineering planning has perceived the hu- man dimension as exogenous boundary conditions. Legislation focused largely on the environmental and technological dimensions that set limits and prescribe new tech- nologies without taking the importance of institutional change into account. However, technology is only the "hardware" and it is becoming increasingly obvious that the "software", the social dimension, has to become part of planning and management processes. Hence, the inclusion of the human dimension into integrated models and processes will be valuable in supporting the introduction of new elements into plan- ning processes in water resources management. With the European Water Framework Directive environmental policy enters a new era. The traditional approach to solving isolated environmental problems with technological fixes and end-of-pipe solutions has started to shift towards a more thoughtful attitude which involves the development of integrated approaches to problem solving. The WFD introduces the river basin as the management unit, thus following the experience of some European countries (e.g. France) and the example of the management of some international rivers (e.g. the Rhine). Overall the WFD represents a general shift towards a polycentric understand- ing of policy making that requires the involvement of stakeholders as active partic- ipants into the policy process at different levels of societal organization. The WFD requires the inclusion of stakeholders in the process of developing and adopting a river basin management plan. In order to improve stakeholder-based policy design and modeling processes innovation and research is required in linking analytical methods and participatory approaches. Factual knowledge and analytical techniques have to be combined with local knowledge and subjective perceptions of the various stakeholder groups. The talk will summarize current approaches and point out research needs.
Ha, Min-Jae
2018-01-01
This study presents a regional oil spill risk assessment and capacities for marine oil spill response in Korea. The risk assessment of oil spill is carried out using both causal factors and environmental/economic factors. The weight of each parameter is calculated using the Analytic Hierarchy Process (AHP). Final regional risk degrees of oil spill are estimated by combining the degree and weight of each existing parameter. From these estimated risk levels, oil recovery capacities were determined with reference to the recovery target of 7500kl specified in existing standards. The estimates were deemed feasible, and provided a more balanced distribution of resources than existing capacities set according to current standards. Copyright © 2017 Elsevier Ltd. All rights reserved.
Frost formation on an airfoil: A mathematical model 1
NASA Technical Reports Server (NTRS)
Dietenberger, M.; Kumar, P.; Luers, J.
1979-01-01
A computer model to predict the frost formation process on a flat plate was developed for application to most environmental conditions under which frost occurs. The model was analytically based on a generalized frost thermal conductivity expression, on frost density and thickness rate equations, and on modified heat and mass transfer coefficients designed to fit the available experimental data. The broad experimental ranges reflected by the extremes in ambient humidities, wall temperatures, and convective flow properties in the various publications which were examined served to severely test the flexibility of the model. An efficient numerical integration scheme was developed to solve for the frost surface temperature, density, and thickness under the changing environmental conditions. The comparison of results with experimental data was very encouraging.
Trends in hard X-ray fluorescence mapping: environmental applications in the age of fast detectors.
Lombi, E; de Jonge, M D; Donner, E; Ryan, C G; Paterson, D
2011-06-01
Environmental samples are extremely diverse but share a tendency for heterogeneity and complexity. This heterogeneity poses methodological challenges when investigating biogeochemical processes. In recent years, the development of analytical tools capable of probing element distribution and speciation at the microscale have allowed this challenge to be addressed. Of these available tools, laterally resolved synchrotron techniques such as X-ray fluorescence mapping are key methods for the in situ investigation of micronutrients and inorganic contaminants in environmental samples. This article demonstrates how recent advances in X-ray fluorescence detector technology are bringing new possibilities to environmental research. Fast detectors are helping to circumvent major issues such as X-ray beam damage of hydrated samples, as dwell times during scanning are reduced. They are also helping to reduce temporal beamtime requirements, making particularly time-consuming techniques such as micro X-ray fluorescence (μXRF) tomography increasingly feasible. This article focuses on μXRF mapping of nutrients and metalloids in environmental samples, and suggests that the current divide between mapping and speciation techniques will be increasingly blurred by the development of combined approaches.
Ludtke, Amy S.; Woodworth, Mark T.; Marsh, Philip S.
2000-01-01
The U.S. Geological Survey operates a quality-assurance program based on the analyses of reference samples for two laboratories: the National Water Quality Laboratory and the Quality of Water Service Unit. Reference samples that contain selected inorganic, nutrient, and low-level constituents are prepared and submitted to the laboratory as disguised routine samples. The program goal is to estimate precision and bias for as many analytical methods offered by the participating laboratories as possible. Blind reference samples typically are submitted at a rate of 2 to 5 percent of the annual environmental-sample load for each constituent. The samples are distributed to the laboratories throughout the year. The reference samples are subject to the identical laboratory handling, processing, and analytical procedures as those applied to environmental samples and, therefore, have been used as an independent source to verify bias and precision of laboratory analytical methods and ambient water-quality measurements. The results are stored permanently in the National Water Information System and the Blind Sample Project's data base. During water year 1998, 95 analytical procedures were evaluated at the National Water Quality Laboratory and 63 analytical procedures were evaluated at the Quality of Water Service Unit. An overall evaluation of the inorganic and low-level constituent data for water year 1998 indicated 77 of 78 analytical procedures at the National Water Quality Laboratory met the criteria for precision. Silver (dissolved, inductively coupled plasma-mass spectrometry) was determined to be imprecise. Five of 78 analytical procedures showed bias throughout the range of reference samples: chromium (dissolved, inductively coupled plasma-atomic emission spectrometry), dissolved solids (dissolved, gravimetric), lithium (dissolved, inductively coupled plasma-atomic emission spectrometry), silver (dissolved, inductively coupled plasma-mass spectrometry), and zinc (dissolved, inductively coupled plasma-mass spectrometry). At the National Water Quality Laboratory during water year 1998, lack of precision was indicated for 2 of 17 nutrient procedures: ammonia as nitrogen (dissolved, colorimetric) and orthophosphate as phosphorus (dissolved, colorimetric). Bias was indicated throughout the reference sample range for ammonia as nitrogen (dissolved, colorimetric, low level) and nitrate plus nitrite as nitrogen (dissolved, colorimetric, low level). All analytical procedures tested at the Quality of Water Service Unit during water year 1998 met the criteria for precision. One of the 63 analytical procedures indicated a bias throughout the range of reference samples: aluminum (whole-water recoverable, inductively coupled plasma-atomic emission spectrometry, trace).
Advances in analytical instrumentation have not only increased the number and types of chemicals measured, but reduced the quantitation limits, allowing these chemicals to be detected at progressively lower concentrations in various environmental matrices. Such analytical advanc...
Michael, Costas; Bayona, Josep Maria; Lambropoulou, Dimitra; Agüera, Ana; Fatta-Kassinos, Despo
2017-06-01
Occurrence and effects of contaminants of emerging concern pose a special challenge to environmental scientists. The investigation of these effects requires reliable, valid, and comparable analytical data. To this effect, two critical aspects are raised herein, concerning the limitations of the produced analytical data. The first relates to the inherent difficulty that exists in the analysis of environmental samples, which is related to the lack of knowledge (information), in many cases, of the form(s) of the contaminant in which is present in the sample. Thus, the produced analytical data can only refer to the amount of the free contaminant ignoring the amount in which it may be present in other forms; e.g., as in chelated and conjugated form. The other important aspect refers to the way with which the spiking procedure is generally performed to determine the recovery of the analytical method. Spiking environmental samples, in particular solid samples, with standard solution followed by immediate extraction, as is the common practice, can lead to an overestimation of the recovery. This is so, because no time is given to the system to establish possible equilibria between the solid matter-inorganic and/or organic-and the contaminant. Therefore, the spiking procedure need to be reconsidered by including a study of the extractable amount of the contaminant versus the time elapsed between spiking and the extraction of the sample. This study can become an element of the validation package of the method.
Novel sorbents for environmental remediation
NASA Astrophysics Data System (ADS)
Manariotis, Ioannis D.; Karapanagioti, Hrissi K.; Werner, David
2014-05-01
Nowadays, one of the major environmental problems is the pollution of aquatic systems and soil by persistent pollutants. Persistent pollutants have been found widespread in sediments, surface waters, and drinking water supplies. The removal of pollutants can be accomplished prior to their discharge to receiving bodies or by immobilizing them onto soil. Sorption is the most commonly applied process, and activated carbons have been widely used. Rapid progress in nanotechnology and a new focus on biomass-based instead of non-renewable starting materials have produced a wide range of novel engineered sorbents including biosorbents, biochars, carbon-based nanoparticles, bio-nano hybrid materials, and iron-impregnated activated carbons. Sorbent materials have been used in environmental remediation processes and especially in agricultural soil, sediments and contaminated soil, water treatment, and industrial wastewater treatment. Furthermore, sorbents may enhance the synergistic action of other processes, such as volatilization and biodegradation. Novel sorbents have been employed for the removal or immobilization of persistent pollutants such as and include heavy metals (As, Cr, Cu, Pb, Cd, and Hg), halogenated organic compounds, endocrine disrupting chemicals, metalloids and non-metallic elements, and other organic pollutants. The development and evaluation of novel sorbents requires a multidisciplinary approach encompassing environmental, nanotechnology, physical, analytical, and surface chemistry. The necessary evaluations encompass not only the efficiency of these materials to remove pollutants from surface waters and groundwater, industrial wastewater, polluted soils and sediments, etc., but also the potential side-effects of their environmental applications. The aim of this work is to present the results of the use of biochar and impregnated carbon sorbents for the removal of organic pollutants and metals. Furthermore, the new findings from the forthcoming session on Novel sorbents for environmental remediation, will also be evaluated and presented.
Multi-criteria GIS-based siting of an incineration plant for municipal solid waste.
Tavares, Gilberto; Zsigraiová, Zdena; Semiao, Viriato
2011-01-01
Siting a municipal solid waste (MSW) incineration plant requires a comprehensive evaluation to identify the best available location(s) that can simultaneously meet the requirements of regulations and minimise economic, environmental, health, and social costs. A spatial multi-criteria evaluation methodology is presented to assess land suitability for a plant siting and applied to Santiago Island of Cape Verde. It combines the analytical hierarchy process (AHP) to estimate the selected evaluation criteria weights with Geographic Information Systems (GIS) for spatial data analysis that avoids the subjectivity of the judgements of decision makers in establishing the influences between some criteria or clusters of criteria. An innovative feature of the method lies in incorporating the environmental impact assessment of the plant operation as a criterion in the decision-making process itself rather than as an a posteriori assessment. Moreover, a two-scale approach is considered. At a global scale an initial screening identifies inter-municipal zones satisfying the decisive requirements (socio-economic, technical and environmental issues, with weights respectively, of 48%, 41% and 11%). A detailed suitability ranking inside the previously identified zones is then performed at a local scale in two phases and includes environmental assessment of the plant operation. Those zones are ranked by combining the non-environmental feasibility of Phase 1 (with a weight of 75%) with the environmental assessment of the plant operation impact of Phase 2 (with a weight of 25%). The reliability and robustness of the presented methodology as a decision supporting tool is assessed through a sensitivity analysis. The results proved the system effectiveness in the ranking process. Copyright © 2011 Elsevier Ltd. All rights reserved.
Environmental exposure assessment framework for nanoparticles in solid waste.
Boldrin, Alessio; Hansen, Steffen Foss; Baun, Anders; Hartmann, Nanna Isabella Bloch; Astrup, Thomas Fruergaard
2014-01-01
Information related to the potential environmental exposure of engineered nanomaterials (ENMs) in the solid waste management phase is extremely scarce. In this paper, we define nanowaste as separately collected or collectable waste materials which are or contain ENMs, and we present a five-step framework for the systematic assessment of ENM exposure during nanowaste management. The framework includes deriving EOL nanoproducts and evaluating the physicochemical properties of the nanostructure, matrix properties and nanowaste treatment processes as well as transformation processes and environment releases, eventually leading to a final assessment of potential ENM exposure. The proposed framework was applied to three selected nanoproducts: nanosilver polyester textile, nanoTiO 2 sunscreen lotion and carbon nanotube tennis racquets. We found that the potential global environmental exposure of ENMs associated with these three products was an estimated 0.5-143 Mg/year, which can also be characterised qualitatively as medium, medium, low, respectively. Specific challenges remain and should be subject to further research: (1) analytical techniques for the characterisation of nanowaste and its transformation during waste treatment processes, (2) mechanisms for the release of ENMs, (3) the quantification of nanowaste amounts at the regional scale, (4) a definition of acceptable limit values for exposure to ENMs from nanowaste and (5) the reporting of nanowaste generation data.
Grošelj, Petra; Zadnik Stirn, Lidija
2015-09-15
Environmental management problems can be dealt with by combining participatory methods, which make it possible to include various stakeholders in a decision-making process, and multi-criteria methods, which offer a formal model for structuring and solving a problem. This paper proposes a three-phase decision making approach based on the analytic network process and SWOT (strengths, weaknesses, opportunities and threats) analysis. The approach enables inclusion of various stakeholders or groups of stakeholders in particular stages of decision making. The structure of the proposed approach is composed of a network consisting of an objective cluster, a cluster of strategic goals, a cluster of SWOT factors and a cluster of alternatives. The application of the suggested approach is applied to a management problem of Pohorje, a mountainous area in Slovenia. Stakeholders from sectors that are important for Pohorje (forestry, agriculture, tourism and nature protection agencies) who can offer a wide range of expert knowledge were included in the decision-making process. The results identify the alternative of "sustainable development" as the most appropriate for development of Pohorje. The application in the paper offers an example of employing the new approach to an environmental management problem. This can also be applied to decision-making problems in various other fields. Copyright © 2015 Elsevier Ltd. All rights reserved.
Environmental exposure assessment framework for nanoparticles in solid waste
NASA Astrophysics Data System (ADS)
Boldrin, Alessio; Hansen, Steffen Foss; Baun, Anders; Hartmann, Nanna Isabella Bloch; Astrup, Thomas Fruergaard
2014-06-01
Information related to the potential environmental exposure of engineered nanomaterials (ENMs) in the solid waste management phase is extremely scarce. In this paper, we define nanowaste as separately collected or collectable waste materials which are or contain ENMs, and we present a five-step framework for the systematic assessment of ENM exposure during nanowaste management. The framework includes deriving EOL nanoproducts and evaluating the physicochemical properties of the nanostructure, matrix properties and nanowaste treatment processes as well as transformation processes and environment releases, eventually leading to a final assessment of potential ENM exposure. The proposed framework was applied to three selected nanoproducts: nanosilver polyester textile, nanoTiO2 sunscreen lotion and carbon nanotube tennis racquets. We found that the potential global environmental exposure of ENMs associated with these three products was an estimated 0.5-143 Mg/year, which can also be characterised qualitatively as medium, medium, low, respectively. Specific challenges remain and should be subject to further research: (1) analytical techniques for the characterisation of nanowaste and its transformation during waste treatment processes, (2) mechanisms for the release of ENMs, (3) the quantification of nanowaste amounts at the regional scale, (4) a definition of acceptable limit values for exposure to ENMs from nanowaste and (5) the reporting of nanowaste generation data.
Behrens, Sebastian; Kappler, Andreas; Obst, Martin
2012-11-01
Environmental microbiology research increasingly focuses on the single microbial cell as the defining entity that drives environmental processes. The interactions of individual microbial cells with each other, the environment and with higher organisms shape microbial communities and control the functioning of whole ecosystems. A single-cell view of microorganisms in their natural environment requires analytical tools that measure both cell function and chemical speciation at the submicrometre scale. Here we review the technical capabilities and limitations of high-resolution secondary ion mass spectrometry (NanoSIMS) and scanning transmission (soft) X-ray microscopy (STXM) and give examples of their applications. Whereas NanoSIMS can be combined with isotope-labelling, thereby localizing the distribution of cellular activities (e.g. carbon/nitrogen fixation/turnover), STXM provides information on the location and chemical speciation of metabolites and products of redox reactions. We propose the combined use of both techniques and discuss the technical challenges of their joint application. Both techniques have the potential to enhance our understanding of cellular mechanisms and activities that contribute to microbially mediated processes, such as the biogeochemical cycling of elements, the transformation of contaminants and the precipitation of mineral phases. © 2012 Society for Applied Microbiology and Blackwell Publishing Ltd.
Biosensors for the determination of environmental inhibitors of enzymes
NASA Astrophysics Data System (ADS)
Evtugyn, Gennadii A.; Budnikov, Herman C.; Nikolskaya, Elena B.
1999-12-01
Characteristic features of functioning and practical application of enzyme-based biosensors for the determination of environmental pollutants as enzyme inhibitors are considered with special emphasis on the influence of the methods used for the measurement of the rates of enzymic reactions, of enzyme immobilisation procedure and of the composition of the reaction medium on the analytical characteristics of inhibitor assays. The published data on the development of biosensors for detecting pesticides and heavy metals are surveyed. Special attention is given to the use of cholinesterase-based biosensors in environmental and analytical monitoring. The approaches to the estimation of kinetic parameters of inhibition are reviewed and the factors determining the selectivity and sensitivity of inhibitor assays in environmental objects are analysed. The bibliography includes 195 references.
Sverko, Ed
2006-01-01
Analytical methods for the analysis of polychlorinated biphenyls (PCBs) and organochlorine pesticides (OCPs) are widely available and are the result of a vast amount of environmental analytical method development and research on persistent organic pollutants (POPs) over the past 30–40 years. This review summarizes procedures and examines new approaches for extraction, isolation, identification and quantification of individual congeners/isomers of the PCBs and OCPs. Critical to the successful application of this methodology is the collection, preparation, and storage of samples, as well as specific quality control and reporting criteria, and therefore these are also discussed. With the signing of the Stockholm convention on POPs and the development of global monitoring programs, there is an increased need for laboratories in developing countries to determine PCBs and OCPs. Thus, while this review attempts to summarize the current best practices for analysis of PCBs and OCPs, a major focus is the need for low-cost methods that can be easily implemented in developing countries. A “performance based” process is described whereby individual laboratories can adapt methods best suited to their situations. Access to modern capillary gas chromatography (GC) equipment with either electron capture or low-resolution mass spectrometry (MS) detection to separate and quantify OCP/PCBs is essential. However, screening of samples, especially in areas of known use of OCPs or PCBs, could be accomplished with bioanalytical methods such as specific commercially available enzyme-linked immunoabsorbent assays and thus this topic is also reviewed. New analytical techniques such two-dimensional GC (2D-GC) and “fast GC” using GC–ECD may be well-suited for broader use in routine PCB/OCP analysis in the near future given their relatively low costs and ability to provide high-resolution separations of PCB/OCPs. Procedures with low environmental impact (SPME, microscale, low solvent use, etc.) are increasingly being used and may be particularly suited to developing countries. Electronic supplementary material Supplementary material is available in the online version of this article at http://dx.doi.org/10.1007/s00216-006-0765-y and is accessible for authorized users. PMID:17047943
Moretti, Laura; Di Mascio, Paola; Bellagamba, Simona
2017-01-01
The attention to sustainability-related issues has grown fast in recent decades. The experience gained with these themes reveals the importance of considering this topic in the construction industry, which represents an important sector throughout the world. This work consists on conducting a multicriteria analysis of four cement powders, with the objective of calculating and analysing the environmental, human health and socio-economic effects of their production processes. The economic, technical, environmental and safety performances of the examined powders result from official, both internal and public, documents prepared by the producers. The Analytic Hierarchy Process permitted to consider several indicators (i.e., environmental, human health related and socio-economic parameters) and to conduct comprehensive and unbiased analyses which gave the best, most sustainable cement powder. As assumed in this study, the contribution of each considered parameter to the overall sustainability has a different incidence, therefore the procedure could be used to support on-going sustainability efforts under different conditions. The results also prove that it is not appropriate to regard only one parameter to identify the ‘best’ cement powder, but several impact categories should be considered and analysed if there is an interest for pursuing different, often conflicting interests. PMID:28621754
A Decision Analytic Approach to Exposure-Based Chemical Prioritization
Mitchell, Jade; Pabon, Nicolas; Collier, Zachary A.; Egeghy, Peter P.; Cohen-Hubal, Elaine; Linkov, Igor; Vallero, Daniel A.
2013-01-01
The manufacture of novel synthetic chemicals has increased in volume and variety, but often the environmental and health risks are not fully understood in terms of toxicity and, in particular, exposure. While efforts to assess risks have generally been effective when sufficient data are available, the hazard and exposure data necessary to assess risks adequately are unavailable for the vast majority of chemicals in commerce. The US Environmental Protection Agency has initiated the ExpoCast Program to develop tools for rapid chemical evaluation based on potential for exposure. In this context, a model is presented in which chemicals are evaluated based on inherent chemical properties and behaviorally-based usage characteristics over the chemical’s life cycle. These criteria are assessed and integrated within a decision analytic framework, facilitating rapid assessment and prioritization for future targeted testing and systems modeling. A case study outlines the prioritization process using 51 chemicals. The results show a preliminary relative ranking of chemicals based on exposure potential. The strength of this approach is the ability to integrate relevant statistical and mechanistic data with expert judgment, allowing for an initial tier assessment that can further inform targeted testing and risk management strategies. PMID:23940664
The purpose of this presentation is to teach a course on analytical techniques, quality assurance, environmental research protocols, and basic soil environmental chemistry at the Environmental Health Center and Babes Bolyai University in Cluj, Romania. FOR FURTHER INFORMATI...
Level of Environmental Awareness of Students in Republic of Serbia
ERIC Educational Resources Information Center
Maravic, Milutin; Cvjeticanin, Stanko; Ivkovic, Sonja
2014-01-01
The aim of this research was developed in order to determine and analyze the level of environmental awareness of students from primary and secondary schools. Environmental awareness is an essential product of environmental education. Conducted research included analytical and descriptive method. The research instrument was the survey designed for…
NASA Astrophysics Data System (ADS)
Zhou, Xiaoying
The purpose of this study is to integrate the quantitative environmental performance assessment tools and the theory of multi-objective optimization within the boundary of electronic product systems to support the selection among design alternatives in terms of environmental impact, technical criteria, and economic feasibility. To meet with the requirements that result from emerging environmental legislation targeting electronics products, the research addresses an important analytical methodological approach to facilitate environmentally conscious design and end-of-life management with a life cycle viewpoint. A synthesis of diverse assessment tools is applied on a set of case studies: lead-free solder materials selection, cellular phone design, and desktop display technology assessment. In the first part of this work, an in-depth industrial survey of the status and concerns of the U.S. electronics industry on the elimination of lead (Pb) in solders is described. The results show that the trade-offs among environmental consequences, technology challenges, business risks, legislative compliance and stakeholders' preferences must be explicitly, simultaneously, and systematically addressed in the decision-making process used to guide multi-faceted planning of environmental solutions. In the second part of this work, the convergent optimization of the technical cycle, economic cycle and environmental cycle is addressed in a coherent and systematic way using the application of environmentally conscious design of cellular phones. The technical understanding of product structure, components analysis, and materials flow facilitates the development of "Design for Disassembly" guidelines. A bottom-up disassembly analysis on a "bill of materials" based structure at a micro-operational level is utilized to select optimal end-of-life strategies on the basis of economic feasibility. A macro-operational level life cycle model is used to investigate the environmental consequences linking environmental impact with the cellular phone production activities focusing on the upstream manufacturing and end-of-life life cycle stages. The last part of this work, the quantitative elicitation of weighting factors facilitates the comparison of trade-offs in the context of a multi-attribute problem. An integrated analytical approach, Integrated Industrial Ecology Function Deployment (I2-EFD), is proposed to assess alternatives at the design phase of a product system and is validated with the assessment of desktop display technologies and lead-free solder alternatives.
Material, process, and product design of thermoplastic composite materials
NASA Astrophysics Data System (ADS)
Dai, Heming
Thermoplastic composites made of polypropylene (PP) and E-glass fibers were investigated experimentally as well as theoretically for two new classes of product designs. The first application was for reinforcement of wood. Commingled PP/glass yarn was consolidated and bonded on wood panel using a tie layer. The processing parameters, including temperature, pressure, heating time, cooling time, bonding strength, and bending strength were tested experimentally and evaluated analytically. The thermoplastic adhesive interface was investigated with environmental scanning electron microscopy. The wood/composite structural design was optimized and evaluated using a Graphic Method. In the second application, we evaluated use of thermoplastic composites for explosion containment in an arrester. PP/glass yarn was fabricated in a sleeve form and wrapped around the arrester. After consolidation, the flexible composite sleeve forms a solid composite shell. The composite shell acts as a protection layer in a surge test to contain the fragments of the arrester. The manufacturing process for forming the composite shell was designed. Woven, knitted, and braided textile composite shells made of commingled PP/glass yarn were tested and evaluated. Mechanical performance of the woven, knitted, and braided composite shells was examined analytically. The theoretical predictions were used to verify the experimental results.
Streaming data analytics via message passing with application to graph algorithms
Plimpton, Steven J.; Shead, Tim
2014-05-06
The need to process streaming data, which arrives continuously at high-volume in real-time, arises in a variety of contexts including data produced by experiments, collections of environmental or network sensors, and running simulations. Streaming data can also be formulated as queries or transactions which operate on a large dynamic data store, e.g. a distributed database. We describe a lightweight, portable framework named PHISH which enables a set of independent processes to compute on a stream of data in a distributed-memory parallel manner. Datums are routed between processes in patterns defined by the application. PHISH can run on top of eithermore » message-passing via MPI or sockets via ZMQ. The former means streaming computations can be run on any parallel machine which supports MPI; the latter allows them to run on a heterogeneous, geographically dispersed network of machines. We illustrate how PHISH can support streaming MapReduce operations, and describe streaming versions of three algorithms for large, sparse graph analytics: triangle enumeration, subgraph isomorphism matching, and connected component finding. Lastly, we also provide benchmark timings for MPI versus socket performance of several kernel operations useful in streaming algorithms.« less
NASA Astrophysics Data System (ADS)
Quinta-Nova, Luis; Fernandez, Paulo; Pedro, Nuno
2017-12-01
This work focuses on developed a decision support system based on multicriteria spatial analysis to assess the potential for generation of biomass residues from forestry sources in a region of Portugal (Beira Baixa). A set of environmental, economic and social criteria was defined, evaluated and weighted in the context of Saaty’s analytic hierarchies. The best alternatives were obtained after applying Analytic Hierarchy Process (AHP). The model was applied to the central region of Portugal where forest and agriculture are the most representative land uses. Finally, sensitivity analysis of the set of factors and their associated weights was performed to test the robustness of the model. The proposed evaluation model provides a valuable reference for decision makers in establishing a standardized means of selecting the optimal location for new biomass plants.
25 years of HBM in the Czech Republic.
Černá, Milena; Puklová, Vladimíra; Hanzlíková, Lenka; Sochorová, Lenka; Kubínová, Růžena
2017-03-01
Since 1991 a human biomonitoring network has been established in the Czech Republic as part of the Environmental Health Monitoring System, which was set out by the Government Resolution. During the last quarter-century, important data was obtained to characterize exposure to both children and adult populations to significant toxic substances from the environment, to development trends over time, to establish reference values and compare them with existing health-related values. Moreover, the saturation of population with several essential substances as selenium, zinc, copper or iodine has also been monitored. Development of analytical and statistical methods led to increase the capacity building, improvement of QA/QC in analytical laboratories and interpretation of results. The obtained results are translated to policy actions and are used in health risk assessment processes at local and national levels. Copyright © 2016 Elsevier GmbH. All rights reserved.
Analytical separations of mammalian decomposition products for forensic science: a review.
Swann, L M; Forbes, S L; Lewis, S W
2010-12-03
The study of mammalian soft tissue decomposition is an emerging area in forensic science, with a major focus of the research being the use of various chemical and biological methods to study the fate of human remains in the environment. Decomposition of mammalian soft tissue is a postmortem process that, depending on environmental conditions and physiological factors, will proceed until complete disintegration of the tissue. The major stages of decomposition involve complex reactions which result in the chemical breakdown of the body's main constituents; lipids, proteins, and carbohydrates. The first step to understanding this chemistry is identifying the compounds present in decomposition fluids and determining when they are produced. This paper provides an overview of decomposition chemistry and reviews recent advances in this area utilising analytical separation science. Copyright © 2010 Elsevier B.V. All rights reserved.
ELEGANT ENVIRONMENTAL IMMUNOASSAYS
Immunochemical methods are based on selective antibodies directed to a particular target analyte. The specific binding between antibody and analyte can be used for detection and quantitation. Methods such as the enzyme-linked immunosorbent assay (ELISA) can provide a sensitiv...
Rahman, Md Rejaur; Shi, Z H; Chongfa, Cai
2014-11-01
This study was an attempt to analyse the regional environmental quality with the application of remote sensing, geographical information system, and spatial multiple criteria decision analysis and, to project a quantitative method applicable to identify the status of the regional environment of the study area. Using spatial multi-criteria evaluation (SMCE) approach with expert knowledge in this study, an integrated regional environmental quality index (REQI) was computed and classified into five levels of regional environment quality viz. worse, poor, moderate, good, and very good. During the process, a set of spatial criteria were selected (here, 15 criterions) together with the degree of importance of criteria in sustainability of the regional environment. Integrated remote sensing and GIS technique and models were applied to generate the necessary factors (criterions) maps for the SMCE approach. The ranking, along with expected value method, was used to standardize the factors and on the other hand, an analytical hierarchy process (AHP) was applied for calculating factor weights. The entire process was executed in the integrated land and water information system (ILWIS) software tool that supports SMCE. The analysis showed that the overall regional environmental quality of the area was at moderate level and was partly determined by elevation. Areas under worse and poor quality of environment indicated that the regional environmental status showed decline in these parts of the county. The study also revealed that the human activities, vegetation condition, soil erosion, topography, climate, and soil conditions have serious influence on the regional environment condition of the area. Considering the regional characteristics of environmental quality, priority, and practical needs for environmental restoration, the study area was further regionalized into four priority areas which may serve as base areas of decision making for the recovery, rebuilding, and protection of the environment.
Decision Support for Environmental Management of Industrial ...
Non-hazardous solid materials from industrial processes, once regarded as waste and disposed in landfills, offer numerous environmental and economic advantages when put to beneficial uses (BUs). Proper management of these industrial non-hazardous secondary materials (INSM) requires estimates of their probable environmental impacts among disposal as well as BU options. The U.S. Environmental Protection Agency (EPA) has recently approved new analytical methods (EPA Methods 1313–1316) to assess leachability of constituents of potential concern in these materials. These new methods are more realistic for many disposal and BU options than historical methods, such as the toxicity characteristic leaching protocol. Experimental data from these new methods are used to parameterize a chemical fate and transport (F&T) model to simulate long-term environmental releases from flue gas desulfurization gypsum (FGDG) when disposed of in an industrial landfill or beneficially used as an agricultural soil amendment. The F&T model is also coupled with optimization algorithms, the Beneficial Use Decision Support System (BUDSS), under development by EPA to enhance INSM management. The objective of this paper is to demonstrate the methodologies and encourage similar applications to improve environmental management and BUs of INSM through F&T simulation coupled with optimization, using realistic model parameterization.
Selecting appropriate wastewater treatment technologies using a choosing-by-advantages approach.
Arroyo, Paz; Molinos-Senante, María
2018-06-01
Selecting the most sustainable wastewater treatment (WWT) technology among possible alternatives is a very complex task because the choice must integrate economic, environmental, and social criteria. Traditionally, several multi-criteria decision-making approaches have been applied, with the most often used being the analytical hierarchical process (AHP). However, AHP allows users to offset poor environmental and/or social performance with low cost. To overcome this limitation, our study examines a choosing-by-advantages (CBA) approach to rank seven WWT technologies for secondary WWT. CBA results were compared with results obtained by using the AHP approach. The rankings of WWT alternatives differed, depending on whether the CBA or AHP approach was used, which highlights the importance of the method used to support decision-making processes, particularly ones that rely on subjective interpretations by experts. This paper uses a holistic perspective to demonstrate the benefits of using the CBA approach to support a decision-making process when a group of experts must come to a consensus in selecting the most suitable WWT technology among several available. Copyright © 2017 Elsevier B.V. All rights reserved.
Technical Guidance for Assessing Environmental Justice in Regulatory Analysis
The Technical Guidance for Assessing Environmental Justice in Regulatory Analysis (also referred to as the Environmental Justice Technical Guidance or EJTG) is intended for use by Agency analysts, including risk assessors, economists, and other analytic staff that conduct analyse...
Environmental Mass Spectrometry: Emerging Contaminants and Current Issues (2010 Review)
This biennial review covers developments in environmental mass spectrometry for emerging environmental contaminants over the period of 2008-2009. A few significant references that appeared between January and February 2010 are also included. Analytical Chemistry’s current polic...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stegen, James C.; Lin, Xueju; Fredrickson, Jim K.
Across a set of ecological communities connected to each other through organismal dispersal (a ‘meta-community’), turnover in composition is governed by (ecological) Drift, Selection, and Dispersal Limitation. Quantitative estimates of these processes remain elusive, but would represent a common currency needed to unify community ecology. Using a novel analytical framework we quantitatively estimate the relative influences of Drift, Selection, and Dispersal Limitation on subsurface, sediment-associated microbial meta-communities. The communities we study are distributed across two geologic formations encompassing ~12,500m3 of uranium-contaminated sediments within the Hanford Site in eastern Washington State. We find that Drift consistently governs ~25% of spatial turnovermore » in community composition; Selection dominates (governing ~60% of turnover) across spatially-structured habitats associated with fine-grained, low permeability sediments; and Dispersal Limitation is most influential (governing ~40% of turnover) across spatially-unstructured habitats associated with coarse-grained, highly-permeable sediments. Quantitative influences of Selection and Dispersal Limitation may therefore be predictable from knowledge of environmental structure. To develop a system-level conceptual model we extend our analytical framework to compare process estimates across formations, characterize measured and unmeasured environmental variables that impose Selection, and identify abiotic features that limit dispersal. Insights gained here suggest that community ecology can benefit from a shift in perspective; the quantitative approach developed here goes beyond the ‘niche vs. neutral’ dichotomy by moving towards a style of natural history in which estimates of Selection, Dispersal Limitation and Drift can be described, mapped and compared across ecological systems.« less
NASA Astrophysics Data System (ADS)
Petriglieri, Jasmine Rita; Laporte-Magoni, Christine; Salvioli-Mariani, Emma; Gunkel-Grillon, Peggy; Tribaudino, Mario; Mantovani, Luciana; Bersani, Danilo; Lottici, Pier Paolo; Tomatis, Maura
2017-04-01
The New Caledonia is covered by ultrabasic units for more than a third of its surface, and it is one of the largest world producers of nickel ore. Mining activity, focused on extraction from lateritic ore deposits formed by the alteration of ultramafic rocks, must deal with the natural occurrence of asbestos and fibrous minerals. Almost all outcrops of geological units in open mines contain serpentine and amphibole, also as asbestos varieties (Lahondère, 2007). Owing to humid tropical to sub-tropical conditions, weathering processes and supergene mineralization are one of the main responsible for fibrogenesis of asbestos minerals. The presence of fibrous minerals in mining and storage sites requires attention due to public health problems and for the safety of the operators. In this context, the evaluation of risk and health hazard to prevent the effects due to exposition is closely linked to the formation, alteration and release of fibers into the environment. It has been demonstrated that different fibrous minerals have different toxicity (Fubini & Otero-Arean, 1999; Fubini & Fenoglio, 2007). An analytical strategy to discriminate and characterize, with certainty, the different varieties of the asbestiform phases is required to the establishment of an environmental monitoring system. We have therefore analyzed by different methods a set of about fifty asbestos sampled for mapping environmental risk in fibrous minerals in New Caledonia. The samples contain serpentines (chrysotile, antigorite) and amphibole (tremolite), all fibrous and have been sorted by their different degree of alteration. Data obtained with the more traditional mineralogical and petrological analytical techniques - such as optical microscopy, X-ray diffraction, secondary electron microscopy (SEM-EDS), and transmission electron microscopy - have been completed by the employment of more specialized tools as phase contrast microscopy (PCM), Raman spectroscopy, and thermal analysis (DTA). Moreover analytical performances of a Raman portable equipment, to be used in field observation, were assessed against other laboratory methods. Portable Raman was tested first in laboratory to check its reliability, and then on fieldtrip, directly on the mining front under normal environmental conditions (sun, strong wind, high temperature, etc.). Thus, for each analytical method, ability for fibers identification was tested. This project is part of the French-Italian program "Amiantes et Bonnes Pratiques", financed by the CNRT "Nickel and its environment" of New Caledonia. Fubini, B., & Otero-Arean, C. (1999): Chemical aspects of the toxicity of inhaled mineral dusts. Chemical Society Reviews, 28(6), 373-381. Fubini, B., & Fenoglio, I. (2007): Toxic potential of mineral dusts. Elements, 3(6), 407-414. Lahondère, D. (2007): L'amiante environnemental en Nouvelle Calédonie: Expertise géologique des zones amiantifères. Evaluation des actions engagées. BRGM/RP-55894-FR, 55 p.
Irving, Paul; Moncrieff, Ian
2004-12-01
Ecological systems have limits or thresholds that vary by pollutant type, emissions sources and the sensitivity of a given location. Human health can also indicate sensitivity. Good environmental management requires any problem to be defined to obtain efficient and effective solutions. Cities are where transport activities, effects and resource management decisions are often most focussed. The New Zealand Ministry of Transport has developed two environmental management tools. The Vehicle Fleet Model (VFM) is a predictive database of the environmental performance of the New Zealand traffic fleet (and rail fleet). It calculates indices of local air quality, stormwater, and greenhouse gases emissions. The second is an analytical process based on Environmental Capacity Analysis (ECA). Information on local traffic is combined with environmental performance data from the Vehicle Fleet Model. This can be integrated within a live, geo-spatially defined analysis of the overall environmental effects within a defined local area. Variations in urban form and activity (traffic and other) that contribute to environmental effects can be tracked. This enables analysis of a range of mitigation strategies that may contribute, now or in the future, to maintaining environmental thresholds or meeting targets. A case study of the application of this approach was conducted within Waitakere City. The focus was on improving the understanding of the relative significance of stormwater contaminants derived from land transport.
Seabird tissue archival and monitoring project: Protocol for collecting and banking seabird eggs
Weston-York, Geoff; Porter, Barbara J.; Pugh, Rebecca S.; Roseneau, David G.; Simac, Kristin S.; Becker, Paul R.; Thorsteinson, Lyman K.; Wise, Stephen A.
2001-01-01
Archiving biological and environmental samples for retrospective analysis is a major component of systematic environmental monitoring. The long-term storage of carefully selected, representative samples in an environmental specimen bank is an important complement to the real-time monitoring of the environment. These archived samples permit:The use of subsequently developed innovative analytical technology that was not available at the time the samples were archived, for clear state-of-art identification an~ quantification of analytes of interest,The identification and quantification of analytes that are of subsequent interest but that were not of interest at the time the samples were archived, andThe comparison of present and past analytical techniques and values, providing continued credibility of past analytical values, and allowing flexibility in environmental monitoring programs.Seabirds, including albatrosses, pelicans, cormorants, terns, kittiwakes, murres, guillemots, and puffins spend most of their lives at sea and have special adaptations for feeding in the marine environment, including the ability to excrete the excess salt obtained from ingesting seawater. Many species nest in dense groups (colonies) on steep, precipitous sea-cliffs and headlands.Seabirds are long-lived and slow to mature. They occupy high positions in the marine food web and are considered sensitive indicators for the marine environment (prey includes krill, small fish, and squid). Breeding success, timing of nesting, diets, and survival rates may provide early indications of changing environmental conditions (e.g., see Hatch et aI., 1993). Chemical analysis of seabird tissues, including egg contents, can be particularly useful in determining whether contaminants (and potential biological effects) associated with human industrial activities, such as offshore petroleum and mineral exploration and development, are accumulating in marine environments. The collection and archival of seabird tissues over a period of several years will be a resource for future analyses, providing samples that can be used to determine historical baseline contaminant levels.
FIELD ANALYTICAL SCREENING PROGRAM: PCB METHOD - INNOVATIVE TECHNOLOGY REPORT
This innovative technology evaluation report (ITER) presents information on the demonstration of the U.S. Environmental Protection Agency (EPA) Region 7 Superfund Field Analytical Screening Program (FASP) method for determining polychlorinated biphenyl (PCB) contamination in soil...
Sosa-Ferrera, Zoraida; Mahugo-Santana, Cristina; Santana-Rodríguez, José Juan
2013-01-01
Endocrine-disruptor compounds (EDCs) can mimic natural hormones and produce adverse effects in the endocrine functions by interacting with estrogen receptors. EDCs include both natural and synthetic chemicals, such as hormones, personal care products, surfactants, and flame retardants, among others. EDCs are characterised by their ubiquitous presence at trace-level concentrations and their wide diversity. Since the discovery of the adverse effects of these pollutants on wildlife and human health, analytical methods have been developed for their qualitative and quantitative determination. In particular, mass-based analytical methods show excellent sensitivity and precision for their quantification. This paper reviews recently published analytical methodologies for the sample preparation and for the determination of these compounds in different environmental and biological matrices by liquid chromatography coupled with mass spectrometry. The various sample preparation techniques are compared and discussed. In addition, recent developments and advances in this field are presented. PMID:23738329
[Meanings and methods of territorialization in primary health care].
Pessoa, Vanira Matos; Rigotto, Raquel Maria; Carneiro, Fernando Ferreira; Teixeira, Ana Cláudia de Araújo
2013-08-01
Territorially-based participative analytical methodologies taking the environmental question and work into consideration are essential for effective primary health care. The study analyzed work and environment-related processes in the primary health care area and their repercussions on the health of workers and the community in a rural city in Ceará, whose economy is based on agriculture for export,. It sought to redeem the area and the proposal of actions focused on health needs by the social subjects through the making of social, environmental and work-related maps in workshops within the framework of action research. Examining the situation from a critical perspective, based on social participation and social determination of the health-disease process with regard to the relations between production, environment and health, was the most important step in the participative map-making process, with the qualitative material interpreted in light of discourse analysis. The process helped identify the health needs, the redemption of the area, strengthened the cooperation between sectors and the tie between the health of the worker and that of the environment, and represented an advance towards the eradication of the causes of poor primary health care services.
Selected Analytical Methods for Environmental Remediation and Recovery (SAM) Presentation for APHL
The US Environmental Protection Agency’s Office of Research and Development (ORD) conducts cutting-edge research that provides the underpinning of science and technology for public health and environmental policies and decisions made by federal, state and other governmental...
Dyes assay for measuring physicochemical parameters.
Moczko, Ewa; Meglinski, Igor V; Bessant, Conrad; Piletsky, Sergey A
2009-03-15
A combination of selective fluorescent dyes has been developed for simultaneous quantitative measurements of several physicochemical parameters. The operating principle of the assay is similar to electronic nose and tongue systems, which combine nonspecific or semispecific elements for the determination of diverse analytes and chemometric techniques for multivariate data analysis. The analytical capability of the proposed mixture is engendered by changes in fluorescence signal in response to changes in environment such as pH, temperature, ionic strength, and presence of oxygen. The signal is detected by a three-dimensional spectrofluorimeter, and the acquired data are processed using an artificial neural network (ANN) for multivariate calibration. The fluorescence spectrum of a solution of selected dyes allows discreet reading of emission maxima of all dyes composing the mixture. The variations in peaks intensities caused by environmental changes provide distinctive fluorescence patterns which can be handled in the same way as the signals collected from nose/tongue electrochemical or piezoelectric devices. This optical system opens possibilities for rapid, inexpensive, real-time detection of a multitude of physicochemical parameters and analytes of complex samples.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bond, Alan; Research Unit for Environmental Sciences and Management, North-West University; Pope, Jenny
Game theory provides a useful theoretical framework to examine the decision process operating in the context of environmental assessment, and to examine the rationality and legitimacy of decision-making subject to Environmental Assessment (EA). The research uses a case study of the Environmental Impact Assessment and Sustainability Appraisal processes undertaken in England. To these are applied an analytical framework, based on the concept of decision windows to identify the decisions to be assessed. The conditions for legitimacy are defined, based on game theory, in relation to the timing of decision information, the behaviour type (competitive, reciprocal, equity) exhibited by the decisionmore » maker, and the level of public engagement; as, together, these control the type of rationality which can be brought to bear on the decision. Instrumental rationality is based on self-interest of individuals, whereas deliberative rationality seeks broader consensus and is more likely to underpin legitimate decisions. The results indicate that the Sustainability Appraisal process, conducted at plan level, is better than EIA, conducted at project level, but still fails to provide conditions that facilitate legitimacy. Game theory also suggests that Sustainability Appraisal is likely to deliver ‘least worst’ outcomes rather than best outcomes when the goals of the assessment process are considered; this may explain the propensity of such ‘least worst’ decisions in practise. On the basis of what can be learned from applying this game theory perspective, it is suggested that environmental assessment processes need to be redesigned and better integrated into decision making in order to guarantee the legitimacy of the decisions made. - Highlights: • Decision legitimacy is defined in terms of game theory. • Game theory is applied to EIA and SA decision windows. • Game theory suggests least worst outcomes prevail. • SA is more likely to be perceived legitimate than EIA.« less
Engine environmental effects on composite behavior
NASA Technical Reports Server (NTRS)
Chamis, C. C.; Smith, G. T.
1980-01-01
A series of programs were conducted to investigate and develop the application of composite materials to turbojet engines. A significant part of that effort was directed to establishing the impact resistance and defect growth chracteristics of composite materials over the wide range of environmental conditions found in commercial turbojet engine operations. Both analytical and empirical efforts were involved. The experimental programs and the analytical methodology development as well as an evaluation program for the use of composite materials as fan exit guide vanes are summarized.
Quality assurance for health and environmental chemistry: 1990
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gautier, M.A.; Gladney, E.S.; Koski, N.L.
1991-10-01
This report documents the continuing quality assurance efforts of the Health and Environmental Chemistry Group (HSE-9) at the Los Alamos National Laboratory. The philosophy, methodology, computing resources, and laboratory information management system used by the quality assurance program to encompass the diversity of analytical chemistry practiced in the group are described. Included in the report are all quality assurance reference materials used, along with their certified or consensus concentrations, and all analytical chemistry quality assurance measurements made by HSE-9 during 1990.
Shapira, Aviad; Shoshany, Maxim; Nir-Goldenberg, Sigal
2013-07-01
Environmental management and planning are instrumental in resolving conflicts arising between societal needs for economic development on the one hand and for open green landscapes on the other hand. Allocating green corridors between fragmented core green areas may provide a partial solution to these conflicts. Decisions regarding green corridor development require the assessment of alternative allocations based on multiple criteria evaluations. Analytical Hierarchy Process provides a methodology for both a structured and consistent extraction of such evaluations and for the search for consensus among experts regarding weights assigned to the different criteria. Implementing this methodology using 15 Israeli experts-landscape architects, regional planners, and geographers-revealed inherent differences in expert opinions in this field beyond professional divisions. The use of Agglomerative Hierarchical Clustering allowed to identify clusters representing common decisions regarding criterion weights. Aggregating the evaluations of these clusters revealed an important dichotomy between a pragmatist approach that emphasizes the weight of statutory criteria and an ecological approach that emphasizes the role of the natural conditions in allocating green landscape corridors.
NASA Astrophysics Data System (ADS)
Shapira, Aviad; Shoshany, Maxim; Nir-Goldenberg, Sigal
2013-07-01
Environmental management and planning are instrumental in resolving conflicts arising between societal needs for economic development on the one hand and for open green landscapes on the other hand. Allocating green corridors between fragmented core green areas may provide a partial solution to these conflicts. Decisions regarding green corridor development require the assessment of alternative allocations based on multiple criteria evaluations. Analytical Hierarchy Process provides a methodology for both a structured and consistent extraction of such evaluations and for the search for consensus among experts regarding weights assigned to the different criteria. Implementing this methodology using 15 Israeli experts—landscape architects, regional planners, and geographers—revealed inherent differences in expert opinions in this field beyond professional divisions. The use of Agglomerative Hierarchical Clustering allowed to identify clusters representing common decisions regarding criterion weights. Aggregating the evaluations of these clusters revealed an important dichotomy between a pragmatist approach that emphasizes the weight of statutory criteria and an ecological approach that emphasizes the role of the natural conditions in allocating green landscape corridors.
Materials and Methods for Streamlined Laboratory Analysis of Environmental Samples, FY 2016 Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Addleman, Raymond S.; Naes, Benjamin E.; McNamara, Bruce K.
The International Atomic Energy Agency (IAEA) relies upon laboratory analysis of environmental samples (typically referred to as “swipes”) collected during on-site inspections of safeguarded facilities to support the detection and deterrence of undeclared activities. Unfortunately, chemical processing and assay of the samples is slow and expensive. A rapid, effective, and simple extraction process and analysis method is needed to provide certified results with improved timeliness at reduced costs (principally in the form of reduced labor), while maintaining or improving sensitivity and efficacy. To address these safeguard needs the Pacific Northwest National Laboratory (PNNL) explored and demonstrated improved methods for environmentalmore » sample (ES) analysis. Improvements for both bulk and particle analysis were explored. To facilitate continuity and adoption, the new sampling materials and processing methods will be compatible with existing IAEA protocols for ES analysis. PNNL collaborated with Oak Ridge National Laboratory (ORNL), which performed independent validation of the new bulk analysis methods and compared performance to traditional IAEA’s Network of Analytical Laboratories (NWAL) protocol. ORNL efforts are reported separately. This report describes PNNL’s FY 2016 progress, which was focused on analytical application supporting environmental monitoring of uranium enrichment plants and nuclear fuel processing. In the future the technology could be applied to other safeguard applications and analytes related to fuel manufacturing, reprocessing, etc. PNNL’s FY 2016 efforts were broken into two tasks and a summary of progress, accomplishments and highlights are provided below. Principal progress and accomplishments on Task 1, Optimize Materials and Methods for ICP-MS Environmental Sample Analysis, are listed below. • Completed initial procedure for rapid uranium extraction from ES swipes based upon carbonate-peroxide chemistry (delivered to ORNL for evaluation). • Explored improvements to carbonate-peroxide rapid uranium extraction chemistry. • Evaluated new sampling materials and methods (in collaboration with ORNL). • Demonstrated successful ES extractions from standard and novel swipes for a wide range uranium compounds of interest including UO 2F 2 and UO 2(NO 3) 2, U 3O 8 and uranium ore concentrate. • Completed initial discussions with commercial suppliers of PTFE swipe materials. • Submitted one manuscript for publication. Two additional drafts are being prepared. Principal progress and accomplishments on Task 2, Optimize Materials and Methods for Direct SIMS Environmental Sample Analysis, are listed below. • Designed a SIMS swipe sample holder that retrofits into existing equipment and provides simple, effective, and rapid mounting of ES samples for direct assay while enabling automation and laboratory integration. • Identified preferred conductive sampling materials with better performance characteristics. • Ran samples on the new PNNL NWAL equivalent Cameca 1280 SIMS system. • Obtained excellent agreement between isotopic ratios for certified materials and direct SIMS assay of very low levels of LEU and HEU UO 2F 2 particles on carbon fiber sampling material. Sample activities range from 1 to 500 CPM (uranium mass on sample is dependent upon specific isotope ratio but is frequently in the subnanogram range). • Found that the presence of the UF molecular ions, as measured by SIMS, provides chemical information about the particle that is separate from the uranium isotopics and strongly suggests that those particles originated from an UF6 enrichment activity. • Submitted one manuscript for publication. Another manuscript is in preparation.« less
Development of an Ultra-Low Background Liquid Scintillation Counter for Trace Level Analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Erchinger, Jennifer L.; Orrell, John L.; Aalseth, Craig E.
2015-09-01
Low-level liquid scintillation counting (LSC) has been established as one of the radiation detection techniques useful in elucidating environmental processes and environmental monitoring around nuclear facilities. The Ultra-Low Background Liquid Scintillation Counter (ULB-LSC) under construction in the Shallow Underground Laboratory at Pacific Northwest National Laboratory aims to further reduce the MDAs and/or required sample processing. Through layers of passive shielding in conjunction with an active veto and 30 meters water equivalent overburden, the background reduction is expected to be 10 to 100 times below typical analytic low-background liquid scintillation systems. Simulations have shown an expected background of around 14 countsmore » per day. A novel approach to the light collection will use a coated hollow light guide cut into the inner copper shielding. Demonstration LSC measurements will show low-energy detection, spectral deconvolution, and alpha/beta discrimination capabilities, from trials with standards of tritium, strontium-90, and actinium-227, respectively. An overview of the system design and expected demonstration measurements will emphasize the potential applications of the ULB-LSC in environmental monitoring for treaty verification, reach-back sample analysis, and facility inspections.« less
NASA Astrophysics Data System (ADS)
TÜdeş, Şule; Kumlu, Kadriye Burcu Yavuz
2017-10-01
Each stage of the planning process should be based on the natural resource protection, in the sense of environmental sensitive and sustainable urban planning. Values, which are vital for the continuity of the life in the Earth, as soil, water, forest etc. should be protected from the undesired effects of the pollution and the other effects caused by the high urbanization levels. In this context, GIS-MCDM based solid waste landfill site selection is applied for Izmir, Turkey, where is a significant attraction place for tourism. As Multi criteria Decision Making (MCDM) technique, Analytical Hierarchy Process (AHP) is used. In this study, geological, tectonically and hydrological data, as well as agricultural land use, slope, distance to the settlement areas and the highways are used as inputs for AHP analysis. In the analysis stage, those inputs are rated and weighted. The weighted criteria are evaluated via GIS, by using weighted overlay tool. Therefore, an upper-scale analysis is conducted and a map, which shows the alternative places for the solid waste landfill sites, considering the environmental protection and evaluated in the context of environmental and urban criteria, are obtained.
NASA Astrophysics Data System (ADS)
Duzgoren-Aydin, N. S.; Freile, D.
2013-12-01
STEM education at New Jersey City University increasingly focuses on experiential, student-centered learning. The Department of Geoscience/Geography plays a significant role in developing and implementing a new Urban Environmental Science Program. The program aims at graduating highly skilled, demographically diverse students (14 % African-American and 18% Hispanic) to be employed in high-growth Earth and Environmental Science career paths, both at a technical (e.g. B.S.) as well as an educational (K-12 grade) (e.g. B.A) level. The core program, including the Earth and Environmental Science curricula is guided by partners (e.g. USDA-NRCS). The program is highly interdisciplinary and 'hands-on', focusing upon the high-tech practical skills and knowledge demanded of science professionals in the 21st century. The focus of the curriculum is on improving environmental quality in northern NJ, centering upon our urban community in Jersey City and Hudson County. Our Department is moving towards a more earth system science approach to learning. Most of our courses (e.g., Earth Surface Processes, Sedimentology/Stratigraphy, Earth Materials, Essential Methods, Historical Geology) have hands-on laboratory and/or field components. Although some of our other courses do not have formal laboratory components, research modules of many such courses (Geochemistry, Urban Environmental Issues and Policy and Environmental Geology) involve strong field or laboratory studies. The department has a wide range of analytical and laboratory capacities including a portable XRF, bench-top XRD and ICP-MS. In spring 2013, Dr. Duzgoren-Aydin was awarded $277K in Higher Education Equipment Leasing Fund monies from the University in order to establish an Environmental Teaching and Research Laboratory. The addition of these funds will make it possible for the department to increase its instrumentation capacity by adding a mercury analyzer, Ion Chromatography and C-N-S analyzer, as well as updating several laboratory facilities. Furthermore, authors have applied to the NSF-TUES grant program to purchase a particle size analyzer. Currently, the grant is pending. We have defined 4 curricular goals to enhance student learning by providing hands-on, inquiry-based learning and research experiences. 1- Develop technical/analytical knowledge and skills by using advanced analytical instrumentation; 2- Improve quantitative reasoning skills to assess the quality of data; 3- Have comprehensive educational training to improve problem solving skills; and 4- use their quantitative reasoning (Goal # 2) and problem solving skills (Goal #3) to evaluate real-world geological and environmental problems. We also give special emphasis to expected measurable outcomes for individual courses. An external evaluator will assess the effectiveness of integrating advance instrumentation into the Earth and Environmental Science curricula. We will work closely with the evaluator to ensure successful implementation of the learning objectives. Examples from the impacted courses will be presented.
Dynamically analyte-responsive macrocyclic host-fluorophore systems.
Ghale, Garima; Nau, Werner M
2014-07-15
CONSPECTUS: Host-guest chemistry commenced to a large degree with the work of Pedersen, who in 1967 first reported the synthesis of crown ethers. The past 45 years have witnessed a substantial progress in the field, from the design of highly selective host molecules as receptors to their application in drug delivery and, particularly, analyte sensing. Much effort has been expended on designing receptors and signaling mechanism for detecting compounds of biological and environmental relevance. Traditionally, the design of a chemosensor comprises one component for molecular recognition, frequently macrocycles of the cyclodextrin, cucurbituril, cyclophane, or calixarene type. The second component, used for signaling, is typically an indicator dye which changes its photophysical properties, preferably its fluorescence, upon analyte binding. A variety of signal transduction mechanisms are available, of which displacement of the dye from the macrocyclic binding site is one of the simplest and most popular ones. This constitutes the working principle of indicator displacement assays. However, indicator displacement assays have been predominantly exploited in a static fashion, namely, to determine absolute analyte concentrations, or, by using combinations of several reporter pairs, to achieve a differential sensing and, thus, identification of specific food products or brands. In contrast, their use in biological systems, for example, with membranes, cells, or with enzymes has been comparably less explored, which led us to the design of the so-called tandem assays, that is, dynamically analyte-responsive host-dye systems, in which the change in analyte concentrations is induced by a biological reaction or process. This methodological variation has practical application potential, because the ability to monitor these biochemical pathways or to follow specific molecules in real time is of paramount interest for both biochemical laboratories and the pharmaceutical industry. We will begin by describing the underlying principles that govern the use of macrocycle-fluorescent dye complexes to monitor time-dependent changes in analyte concentrations. Suitable chemosensing ensembles are introduced, along with their fluorescence responses (switch-on or switch-off). This includes supramolecular tandem assays in their product- and substrate-selective variants, and in their domino and enzyme-coupled modifications, with assays for amino acid decarboxylases, diamine, and choline oxidase, proteases, methyl transferases, acetylcholineesterase (including an unpublished direct tandem assay), choline oxidase, and potato apyrase as examples. It also includes the very recently introduced tandem membrane assays in their published influx and unpublished efflux variants, with the outer membrane protein F as channel protein and protamine as bidirectionally translocated analyte. As proof-of-principle for environmental monitoring applications, we describe sensing ensembles for volatile hydrocarbons.
Methods for Estimating Uncertainty in Factor Analytic Solutions
The EPA PMF (Environmental Protection Agency positive matrix factorization) version 5.0 and the underlying multilinear engine-executable ME-2 contain three methods for estimating uncertainty in factor analytic models: classical bootstrap (BS), displacement of factor elements (DI...
40 CFR 161.180 - Enforcement analytical method.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 25 2013-07-01 2013-07-01 false Enforcement analytical method. 161.180 Section 161.180 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) PESTICIDE PROGRAMS DATA REQUIREMENTS FOR REGISTRATION OF ANTIMICROBIAL PESTICIDES Product Chemistry Data Requirements...
40 CFR 161.180 - Enforcement analytical method.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 24 2011-07-01 2011-07-01 false Enforcement analytical method. 161.180 Section 161.180 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) PESTICIDE PROGRAMS DATA REQUIREMENTS FOR REGISTRATION OF ANTIMICROBIAL PESTICIDES Product Chemistry Data Requirements...
40 CFR 161.180 - Enforcement analytical method.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Enforcement analytical method. 161.180 Section 161.180 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) PESTICIDE PROGRAMS DATA REQUIREMENTS FOR REGISTRATION OF ANTIMICROBIAL PESTICIDES Product Chemistry Data Requirements...
Improved apparatus for continuous culture of hydrogen-fixing bacteria
NASA Technical Reports Server (NTRS)
Foster, J. F.; Litchfield, J. H.
1970-01-01
Improved apparatus permits the continuous culture of Hydrogenomonas eutropha. System incorporates three essential subsystems - /1/ environmentally isolated culture vessel, /2/ analytical system with appropriate sensors and readout devices, /3/ control system with feedback responses to each analytical measurement.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hettiarachchi, Ganga M.; Donner, Erica; Doelsch, Emmanuel
To understand the biogeochemistry of nutrients and contaminants in environmental media, their speciation and behavior under different conditions and at multiple scales must be determined. Synchrotron radiation-based X-ray techniques allow scientists to elucidate the underlying mechanisms responsible for nutrient and contaminant mobility, bioavailability, and behavior. The continuous improvement of synchrotron light sources and X-ray beamlines around the world has led to a profound transformation in the field of environmental biogeochemistry and, subsequently, to significant scientific breakthroughs. Following this introductory paper, this special collection includes 10 papers that either present targeted reviews of recent advancements in spectroscopic methods that are applicablemore » to environmental biogeochemistry or describe original research studies conducted on complex environmental samples that have been significantly enhanced by incorporating synchrotron radiation-based X-ray technique(s). We believe that the current focus on improving the speciation of ultra-dilute elements in environmental media through the ongoing optimization of synchrotron technologies (e.g., brighter light sources, improved monochromators, more efficient detectors) will help to significantly push back the frontiers of environmental biogeochemistry research. As many of the relevant techniques produce extremely large datasets, we also identify ongoing improvements in data processing and analysis (e.g., software improvements and harmonization of analytical methods) as a significant requirement for environmental biogeochemists to maximize the information that can be gained using these powerful tools.« less
Sample and data processing considerations for the NIST quantitative infrared database
NASA Astrophysics Data System (ADS)
Chu, Pamela M.; Guenther, Franklin R.; Rhoderick, George C.; Lafferty, Walter J.; Phillips, William
1999-02-01
Fourier-transform infrared (FT-IR) spectrometry has become a useful real-time in situ analytical technique for quantitative gas phase measurements. In fact, the U.S. Environmental Protection Agency (EPA) has recently approved open-path FT-IR monitoring for the determination of hazardous air pollutants (HAP) identified in EPA's Clean Air Act of 1990. To support infrared based sensing technologies, the National Institute of Standards and Technology (NIST) is currently developing a standard quantitative spectral database of the HAPs based on gravimetrically prepared standard samples. The procedures developed to ensure the quantitative accuracy of the reference data are discussed, including sample preparation, residual sample contaminants, data processing considerations, and estimates of error.
Selected Geochemical Data for Modeling Near-Surface Processes in Mineral Systems
Giles, Stuart A.; Granitto, Matthew; Eppinger, Robert G.
2009-01-01
The database herein was initiated, designed, and populated to collect and integrate geochemical, geologic, and mineral deposit data in an organized manner to facilitate geoenvironmental mineral deposit modeling. The Microsoft Access database contains data on a variety of mineral deposit types that have variable environmental effects when exposed at the ground surface by mining or natural processes. The data tables describe quantitative and qualitative geochemical analyses determined by 134 analytical laboratory and field methods for over 11,000 heavy-mineral concentrate, rock, sediment, soil, vegetation, and water samples. The database also provides geographic information on geology, climate, ecoregion, and site contamination levels for over 3,000 field sites in North America.
Environmental Chemistry in the Undergraduate Laboratory.
ERIC Educational Resources Information Center
Wenzel, Thomas J.; Austin, Rachel N.
2001-01-01
Discusses the importance of environmental chemistry and the use of laboratory exercises in analytical and general chemistry courses. Notes the importance of lab work in heightening student interest in coursework including problem-based learning in undergraduate curricula, ready adaptability of environmental coursework to existing curricula, and…
Statistically Qualified Neuro-Analytic system and Method for Process Monitoring
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vilim, Richard B.; Garcia, Humberto E.; Chen, Frederick W.
1998-11-04
An apparatus and method for monitoring a process involves development and application of a statistically qualified neuro-analytic (SQNA) model to accurately and reliably identify process change. The development of the SQNA model is accomplished in two steps: deterministic model adaption and stochastic model adaptation. Deterministic model adaption involves formulating an analytic model of the process representing known process characteristics,augmenting the analytic model with a neural network that captures unknown process characteristics, and training the resulting neuro-analytic model by adjusting the neural network weights according to a unique scaled equation emor minimization technique. Stochastic model adaptation involves qualifying any remaining uncertaintymore » in the trained neuro-analytic model by formulating a likelihood function, given an error propagation equation, for computing the probability that the neuro-analytic model generates measured process output. Preferably, the developed SQNA model is validated using known sequential probability ratio tests and applied to the process as an on-line monitoring system.« less
Kim, Dongyoung; Yang, Jun-Ho; Choi, Soojin; Yoh, Jack J
2018-01-01
Environments affect mineral surfaces, and the surface contamination or alteration can provide potential information to understanding their regional environments. However, when investigating mineral surfaces, mineral and environmental elements appear mixed in data. This makes it difficult to determine their atomic compositions independently. In this research, we developed four analytical methods to distinguish mineral and environmental elements into positive and negative spectra based on depth profiling data using laser-induced breakdown spectroscopy (LIBS). The principle of the methods is to utilize how intensity varied with depth for creating a new spectrum. The methods were applied to five mineral samples exposed to four environmental conditions including seawater, crude oil, sulfuric acid, and air as control. The proposed methods are then validated by applying the resultant spectra to principal component analysis and data were classified by the environmental conditions and atomic compositions of mineral. By applying the methods, the atomic information of minerals and environmental conditions were successfully inferred in the resultant spectrum.
NASA Astrophysics Data System (ADS)
Holman, Hoi-Ying N.; Goth-Goldstein, Regine; Blakely, Elanor A.; Bjornstad, Kathy; Martin, Michael C.; McKinney, Wayne R.
2000-05-01
Vibrational spectroscopy, when combined with synchrotron radiation-based (SR) microscopy, is a powerful new analytical tool with high spatial resolution for detecting biochemical changes in the individual living cells. In contrast to other microscopy methods that require fixing, drying, staining or labeling, SR-FTIR microscopy probes intact living cells providing a composite view of all of the molecular response and the ability to monitor the response over time in the same cell. Observed spectral changes include all types of lesions induced in that cell as well as cellular responses to external and internal stresses. These spectral changes combined with other analytical tools may provide a fundamental understanding of the key molecular mechanisms induced in response to stresses created by low- doses of chemicals. In this study we used the high spatial - resolution SR-FTIR vibrational spectromicroscopy as a sensitive analytical tool to detect chemical- and radiation- induced changes in individual human cells. Our preliminary spectral measurements indicate that this technique is sensitive enough to detect changes in nucleic acids and proteins of cells treated with environmentally relevant concentrations of dioxin. This technique has the potential to distinguish changes from exogenous or endogenous oxidative processes. Future development of this technique will allow rapid monitoring of cellular processes such as drug metabolism, early detection of disease, bio- compatibility of implant materials, cellular repair mechanisms, self assembly of cellular apparatus, cell differentiation and fetal development.
Superhydrophobic analyte concentration utilizing colloid-pillar array SERS substrates.
Wallace, Ryan A; Charlton, Jennifer J; Kirchner, Teresa B; Lavrik, Nickolay V; Datskos, Panos G; Sepaniak, Michael J
2014-12-02
The ability to detect a few molecules present in a large sample is of great interest for the detection of trace components in both medicinal and environmental samples. Surface enhanced Raman spectroscopy (SERS) is a technique that can be utilized to detect molecules at very low absolute numbers. However, detection at trace concentration levels in real samples requires properly designed delivery and detection systems. The following work involves superhydrophobic surfaces that have as a framework deterministic or stochastic silicon pillar arrays formed by lithographic or metal dewetting protocols, respectively. In order to generate the necessary plasmonic substrate for SERS detection, simple and flow stable Ag colloid was added to the functionalized pillar array system via soaking. Native pillars and pillars with hydrophobic modification are used. The pillars provide a means to concentrate analyte via superhydrophobic droplet evaporation effects. A ≥ 100-fold concentration of analyte was estimated, with a limit of detection of 2.9 × 10(-12) M for mitoxantrone dihydrochloride. Additionally, analytes were delivered to the surface via a multiplex approach in order to demonstrate an ability to control droplet size and placement for scaled-up uses in real world applications. Finally, a concentration process involving transport and sequestration based on surface treatment selective wicking is demonstrated.
NASA Astrophysics Data System (ADS)
Green, H. D.; Contractor, N. S.; Yao, Y.
2006-12-01
A knowledge network is a multi-dimensional network created from the interactions and interconnections among the scientists, documents, data, analytic tools, and interactive collaboration spaces (like forums and wikis) associated with a collaborative environment. CI-KNOW is a suite of software tools that leverages automated data collection, social network theories, analysis techniques and algorithms to infer an individual's interests and expertise based on their interactions and activities within a knowledge network. The CI-KNOW recommender system mines the knowledge network associated with a scientific community's use of cyberinfrastructure tools and uses relational metadata to record connections among entities in the knowledge network. Recent developments in social network theories and methods provide the backbone for a modular system that creates recommendations from relational metadata. A network navigation portlet allows users to locate colleagues, documents, data or analytic tools in the knowledge network and to explore their networks through a visual, step-wise process. An internal auditing portlet offers administrators diagnostics to assess the growth and health of the entire knowledge network. The first instantiation of the prototype CI-KNOW system is part of the Environmental Cyberinfrastructure Demonstration project at the National Center for Supercomputing Applications, which supports the activities of hydrologic and environmental science communities (CLEANER and CUAHSI) under the umbrella of the WATERS network environmental observatory planning activities (http://cleaner.ncsa.uiuc.edu). This poster summarizes the key aspects of the CI-KNOW system, highlighting the key inputs, calculation mechanisms, and output modalities.
Environmental Response Laboratory Network (ERLN) Laboratory Requirements
The Environmental Response Laboratory Network requires its member labs follow specified quality systems, sample management, data reporting, and general, in order to ensure consistent analytical data of known and documented quality.
Stege, Patricia W; Sombra, Lorena L; Messina, Germán A; Martinez, Luis D; Silva, María F
2009-05-01
Many aromatic compounds can be found in the environment as a result of anthropogenic activities and some of them are highly toxic. The need to determine low concentrations of pollutants requires analytical methods with high sensitivity, selectivity, and resolution for application to soil, sediment, water, and other environmental samples. Complex sample preparation involving analyte isolation and enrichment is generally necessary before the final analysis. The present paper outlines a novel, simple, low-cost, and environmentally friendly method for the simultaneous determination of p-nitrophenol (PNP), p-aminophenol (PAP), and hydroquinone (HQ) by micellar electrokinetic capillary chromatography after preconcentration by cloud point extraction. Enrichment factors of 180 to 200 were achieved. The limits of detection of the analytes for the preconcentration of 50-ml sample volume were 0.10 microg L(-1) for PNP, 0.20 microg L(-1) for PAP, and 0.16 microg L(-1) for HQ. The optimized procedure was applied to the determination of phenolic pollutants in natural waters from San Luis, Argentina.
Goldstein, S J; Hensley, C A; Armenta, C E; Peters, R J
1997-03-01
Recent developments in extraction chromatography have simplified the separation of americium from complex matrices in preparation for alpha-spectroscopy relative to traditional methods. Here we present results of procedures developed/adapted for water, air, and bioassay samples with less than 1 g of inorganic residue. Prior analytical methods required the use of a complex, multistage procedure for separation of americium from these matrices. The newer, simplified procedure requires only a single 2 mL extraction chromatographic separation for isolation of Am and lanthanides from other components of the sample. This method has been implemented on an extensive variety of "real" environmental and bioassay samples from the Los Alamos area, and consistently reliable and accurate results with appropriate detection limits have been obtained. The new method increases analytical throughput by a factor of approximately 2 and decreases environmental hazards from acid and mixed-waste generation relative to the prior technique. Analytical accuracy, reproducibility, and reliability are also significantly improved over the more complex and laborious method used previously.
Gene-network inference by message passing
NASA Astrophysics Data System (ADS)
Braunstein, A.; Pagnani, A.; Weigt, M.; Zecchina, R.
2008-01-01
The inference of gene-regulatory processes from gene-expression data belongs to the major challenges of computational systems biology. Here we address the problem from a statistical-physics perspective and develop a message-passing algorithm which is able to infer sparse, directed and combinatorial regulatory mechanisms. Using the replica technique, the algorithmic performance can be characterized analytically for artificially generated data. The algorithm is applied to genome-wide expression data of baker's yeast under various environmental conditions. We find clear cases of combinatorial control, and enrichment in common functional annotations of regulated genes and their regulators.
Application of nuclear analytical techniques using long-life sealed-tube neutron generators.
Bach, P; Cluzeau, S; Lambermont, C
1994-01-01
The new range of sealed-tube neutron generators developed by SODERN appears to be appropriate for the industrial environment. The main characteristics are the high emission stability during the very long lifetime of the tube, flexible pulsed mode capability, safety in operation with no radiation in "off" state, and the easy transportation of equipment. Some applications of the neutron generators, called GENIE, are considered: high-sensitivity measurement of transuranic elements in nuclear waste drums, bulk material analysis for process control, and determination of the airborne pollutants for environmental monitoring.
High temperature ion channels and pores
NASA Technical Reports Server (NTRS)
Cheley, Stephen (Inventor); Gu, Li Qun (Inventor); Bayley, Hagan (Inventor); Kang, Xiaofeng (Inventor)
2011-01-01
The present invention includes an apparatus, system and method for stochastic sensing of an analyte to a protein pore. The protein pore may be an engineer protein pore, such as an ion channel at temperatures above 55.degree. C. and even as high as near 100.degree. C. The analyte may be any reactive analyte, including chemical weapons, environmental toxins and pharmaceuticals. The analyte covalently bonds to the sensor element to produce a detectable electrical current signal. Possible signals include change in electrical current. Detection of the signal allows identification of the analyte and determination of its concentration in a sample solution. Multiple analytes present in the same solution may also be detected.
Development of an environmental impact model for the steel industry in Libya
NASA Astrophysics Data System (ADS)
Zaghinin, Mansur Salem
The global demand for steel is rising due to the infrastructural development of emergent economies in countries such as India, China, Thailand and Libya. Consequently, global steel production has increased dramatically and is expected to grow further in the future. Processing iron and steel is associated with a number of sustainable development challenges, including various economic, environmental and social issues. The increasing prominence of environmental issues in international and national political discourse, including the developing countries, means that stakeholders demand that manufacturers minimise the negative impacts of their operations.The steel industry must be able to measure and assess its environmental impacts and demonstrate continuous improvements. This requires an environmental management strategy to manage and minimise impacts on the environment. This study focuses on developing an environmental impacts model in steel industry to investigate the most important environmental parameters and their importance in order to mitigate environmental impacts.Based on the literature review and the elements that are considered as waste (derived from the waste survey in Libyan iron and steel industry), the potential environmental impacts of the steel industry are identified as criteria and sub-criteria. Then, a model is built using the Analytical Hierarchy Process (AHP) software based on the identified criteria and sub-criteria.The model also illustrates the overall goal which is creating environmental impacts model for steel industry, in addition, criteria and sub-criteria are listed to clarify the situation and make the analysis clearer and understandable. Pair wise comparisons are used to derive accurate ratio scale priorities.The results are analysed and presented as prioritised list of environmental impacts. Moreover, a series of sensitivity analyses are conducted to investigate the impact of changing the priority of the criteria on the alternatives' ranking. The validation of the proposed model is carried out to assess its validity and to see this model from the perspectives of the professionals from steel industry.
The procedures manual of the Environmental Measurements Laboratory. Volume 2, 28. edition
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chieco, N.A.
1997-02-01
This report contains environmental sampling and analytical chemistry procedures that are performed by the Environmental Measurements Laboratory. The purpose of environmental sampling and analysis is to obtain data that describe a particular site at a specific point in time from which an evaluation can be made as a basis for possible action.
Zhang, Lei; Yue, Hong-Shui; Ju, Ai-Chun; Ye, Zheng-Liang
2016-10-01
Currently, near infrared spectroscopy (NIRS) has been considered as an efficient tool for achieving process analytical technology(PAT) in the manufacture of traditional Chinese medicine (TCM) products. In this article, the NIRS based process analytical system for the production of salvianolic acid for injection was introduced. The design of the process analytical system was described in detail, including the selection of monitored processes and testing mode, and potential risks that should be avoided. Moreover, the development of relative technologies was also presented, which contained the establishment of the monitoring methods for the elution of polyamide resin and macroporous resin chromatography processes, as well as the rapid analysis method for finished products. Based on author's experience of research and work, several issues in the application of NIRS to the process monitoring and control in TCM production were then raised, and some potential solutions were also discussed. The issues include building the technical team for process analytical system, the design of the process analytical system in the manufacture of TCM products, standardization of the NIRS-based analytical methods, and improving the management of process analytical system. Finally, the prospect for the application of NIRS in the TCM industry was put forward. Copyright© by the Chinese Pharmaceutical Association.
McGrath, Thomas J; Morrison, Paul D; Ball, Andrew S; Clarke, Bradley O
2016-08-05
Polybrominated diphenyl ethers (PBDEs) are a class of flame retardant registered as UN POPs due to their persistence in the environment, bioaccumulation potential and toxicity. Replacement novel brominated flame retardants (NBFRs) have exhibited similar health hazards and environmental distribution, becoming recognized as significant contaminants. This work describes the development and validation of a sensitive and reliable method for the simultaneous quantitation of PBDEs and NBFRs in environmental soil samples using selective pressurized liquid extraction (S-PLE) and gas chromatography coupled to triple quadrupole mass spectrometry (GC-(EI)-MS/MS). Under optimal conditions, extraction of eight PBDEs (-28, -47, -99, -100, -153, -154, -183 and -209) and five NBFRs; pentabromotoluene (PBT), pentabromoethylbenzene (PBEB), hexabromobenzene (HBB), 2-ethylhexyl-2,3,4,5-tetrabromobenzoate (EH-TBB) and bis(2,4,6-tribromophenoxy)ethane (BTBPE) was performed at 100°C and 1500psi using a 1:1 mixture of hexane and dichloromethane. The method utilized 33mL capacity PLE cells containing, from bottom to top, a single cellulose filter, 3g activated Florisil, 6g acid silica (10% w/w), 3g Na2SO4, another cellulose filter, 2g activated copper powder and 3g soil sample dispersed in 2g Na2SO4 and 1g of Hydromatrix. The method was evaluated by repeated extraction and analysis of all analytes from 3g soil at three spike concentrations. Good recoveries were observed for most analytes at each of the spiking levels with RSD values generally below 20%. MDLs ranged from 0.01 to 4.8ng/g dw for PBDEs and 0.01-0.55ng/g dw for NBFRs. The described one-step combined extraction and cleanup method reduces sample processing times compared with traditional procedures, while delivering comparable analytical performance. The method was successfully applied to environmental soil samples (n=5), detecting PBDEs in each sample and providing the first account of NBFR contamination in Australian soils. Copyright © 2016 Elsevier B.V. All rights reserved.
Environmental Monitoring and the Gas Industry: Program Manager Handbook
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gregory D. Gillispie
1997-12-01
This document has been developed for the nontechnical gas industry manager who has the responsibility for the development of waste or potentially contaminated soil and groundwater data or must make decisions based on such data for the management or remediation of these materials. It explores the pse of common analytical chemistry instrumentation and associated techniques for identification of environmentally hazardous materials. Sufficient detail is given to familiarize the nontechnical reader with the principles behind the operation of each technique. The scope and realm of the techniques and their constituent variations are portrayed through a discussion of crucial details and, wheremore » appropriate, the depiction of real-life data. It is the author's intention to provide an easily understood handbook for gas industry management. Techniques which determine the presence, composition, and quantification of gas industry wastes are discussed. Greater focus is given to traditional techniques which have been the mainstay of modem analytical benchwork. However, with the continual advancement of instrumental principles and design, several techniques have been included which are likely to receive greater attention in fiture considerations for waste-related detection. Definitions and concepts inherent to a thorough understanding of the principles common to analytical chemistry are discussed. It is also crucial that gas industry managers understand the effects of the various actions which take place before, during, and after the actual sampling step. When a series of sample collection, storage, and transport activities occur, new or inexperienced project managers may overlook or misunderstand the importance of the sequence. Each step has an impact on the final results of the measurement process; errors in judgment or decision making can be costly. Specific techniques and methodologies for the collection, storage, and transport of environmental media samples are not described or discussed in detail in thk handbook. However, the underlying philosophy regarding the importance of proper collection, storage, and transport practices, as well as pertinent references, are presented.« less
Integrated Data & Analysis in Support of Informed and Transparent Decision Making
NASA Astrophysics Data System (ADS)
Guivetchi, K.
2012-12-01
The California Water Plan includes a framework for improving water reliability, environmental stewardship, and economic stability through two initiatives - integrated regional water management to make better use of local water sources by integrating multiple aspects of managing water and related resources; and maintaining and improving statewide water management systems. The Water Plan promotes ways to develop a common approach for data standards and for understanding, evaluating, and improving regional and statewide water management systems, and for common ways to evaluate and select from alternative management strategies and projects. The California Water Plan acknowledges that planning for the future is uncertain and that change will continue to occur. It is not possible to know for certain how population growth, land use decisions, water demand patterns, environmental conditions, the climate, and many other factors that affect water use and supply may change by 2050. To anticipate change, our approach to water management and planning for the future needs to consider and quantify uncertainty, risk, and sustainability. There is a critical need for information sharing and information management to support over-arching and long-term water policy decisions that cross-cut multiple programs across many organizations and provide a common and transparent understanding of water problems and solutions. Achieving integrated water management with multiple benefits requires a transparent description of dynamic linkages between water supply, flood management, water quality, land use, environmental water, and many other factors. Water Plan Update 2013 will include an analytical roadmap for improving data, analytical tools, and decision-support to advance integrated water management at statewide and regional scales. It will include recommendations for linking collaborative processes with technical enhancements, providing effective analytical tools, and improving and sharing data and information. Specifically, this includes achieving better integration and consistency with other planning activities; obtaining consensus on quantitative deliverables; building a common conceptual understanding of the water management system; developing common schematics of the water management system; establishing modeling protocols and standards; and improving transparency and exchange of Water Plan information.
NASA Astrophysics Data System (ADS)
Pharr, Daniel Y.
2017-07-01
This chapter gives an introduction to the many practical uses of surfactants in analytical chemistry in replacing organic solvents to achieve greener chemistry. Taking a holistic approach, it covers some background of surfactants as chemical solvents, their properties and as green chemicals, including their environmental effects. The achievements of green analytical chemistry with micellar systems are reviewed in all the major areas of analytical chemistry where these reagents have been found to be useful.
Inorganic chemical analysis of environmental materials—A lecture series
Crock, J.G.; Lamothe, P.J.
2011-01-01
At the request of the faculty of the Colorado School of Mines, Golden, Colorado, the authors prepared and presented a lecture series to the students of a graduate level advanced instrumental analysis class. The slides and text presented in this report are a compilation and condensation of this series of lectures. The purpose of this report is to present the slides and notes and to emphasize the thought processes that should be used by a scientist submitting samples for analyses in order to procure analytical data to answer a research question. First and foremost, the analytical data generated can be no better than the samples submitted. The questions to be answered must first be well defined and the appropriate samples collected from the population that will answer the question. The proper methods of analysis, including proper sample preparation and digestion techniques, must then be applied. Care must be taken to achieve the required limits of detection of the critical analytes to yield detectable analyte concentration (above "action" levels) for the majority of the study's samples and to address what portion of those analytes answer the research question-total or partial concentrations. To guarantee a robust analytical result that answers the research question(s), a well-defined quality assurance and quality control (QA/QC) plan must be employed. This QA/QC plan must include the collection and analysis of field and laboratory blanks, sample duplicates, and matrix-matched standard reference materials (SRMs). The proper SRMs may include in-house materials and/or a selection of widely available commercial materials. A discussion of the preparation and applicability of in-house reference materials is also presented. Only when all these analytical issues are sufficiently addressed can the research questions be answered with known certainty.
NHEXAS PHASE I REGION 5 STUDY--METALS IN BLOOD ANALYTICAL RESULTS
This data set includes analytical results for measurements of metals in 165 blood samples. These samples were collected to examine the relationships between personal exposure measurements, environmental measurements, and body burden. Venous blood samples were collected by venipun...
A Modern Approach to College Analytical Chemistry.
ERIC Educational Resources Information Center
Neman, R. L.
1983-01-01
Describes a course which emphasizes all facets of analytical chemistry, including sampling, preparation, interference removal, selection of methodology, measurement of a property, and calculation/interpretation of results. Includes special course features (such as cooperative agreement with an environmental protection center) and course…
LABORATORY MISCONDUCT - WHAT CAN HAPPEN TO YOU?
Contracted laboratories perform a vast number of routine and special analytical services that are the foundation of decisions upon which rests the fate of the environment. Guiding these laboratories in the generation of environmental data has been the analytical protocols and ...
NHEXAS PHASE I REGION 5 STUDY--VOCS IN BLOOD ANALYTICAL RESULTS
This data set includes analytical results for measurements of VOCs (volatile organic compounds) in 145 blood samples. These samples were collected to examine the relationships between personal exposure measurements, environmental measurements, and body burden. Venous blood sample...
40 CFR 140.5 - Analytical procedures.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 140.5 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) MARINE SANITATION DEVICE STANDARD § 140.5 Analytical procedures. In determining the composition and quality of effluent discharge from marine sanitation devices, the procedures contained in 40 CFR part 136...
Sample Collection Information Document is intended to provide sampling information to be used during site assessment, remediation and clearance activities following a chemical or radiological contamination incident.
INTEGRATING BIOANALYTICAL CAPABILITY IN AN ENVIRONMENTAL ANALYTICAL LABORATORY
The product is a book chapter which is an introductory and summary chapter for the reference work "Immunoassays and Other Bianalytical Techniques" to be published by CRC Press, Taylor and Francis Books. The chapter provides analytical chemists information on new techni...
Environmental immunochemical methods are responding to the changing needs of regulatory and monitoring programs and are meeting new analytical challenges as they arise. Immunoassays are being developed for screening multiple organophosphorous (OP) pesticides (0,0-diethyl thionate...
Environmental Response Laboratory Network (ERLN) Overview
The Environmental Response Laboratory Network provides Federal, State, and local decision-makers with reliable, high quality analytical data used to identify chemical, biological, and radiological contaminants collected in support of response and cleanup.
Barazzetti Barbieri, Cristina; de Souza Sarkis, Jorge Eduardo
2018-07-01
The forensic interpretation of environmental analytical data is usually challenging due to the high geospatial variability of these data. The measurements' uncertainty includes contributions from the sampling and from the sample handling and preparation processes. These contributions are often disregarded in analytical techniques results' quality assurance. A pollution crime investigation case was used to carry out a methodology able to address these uncertainties in two different environmental compartments, freshwater sediments and landfill leachate. The methodology used to estimate the uncertainty was the duplicate method (that replicates predefined steps of the measurement procedure in order to assess its precision) and the parameters used to investigate the pollution were metals (Cr, Cu, Ni, and Zn) in the leachate, the suspect source, and in the sediment, the possible sink. The metal analysis results were compared to statutory limits and it was demonstrated that Cr and Ni concentrations in sediment samples exceeded the threshold levels at all sites downstream the pollution sources, considering the expanded uncertainty U of the measurements and a probability of contamination >0.975, at most sites. Cu and Zn concentrations were above the statutory limits at two sites, but the classification was inconclusive considering the uncertainties of the measurements. Metal analyses in leachate revealed that Cr concentrations were above the statutory limits with a probability of contamination >0.975 in all leachate ponds while the Cu, Ni and Zn probability of contamination was below 0.025. The results demonstrated that the estimation of the sampling uncertainty, which was the dominant component of the combined uncertainty, is required for a comprehensive interpretation of the environmental analyses results, particularly in forensic cases. Copyright © 2018 Elsevier B.V. All rights reserved.
Go, Young-Mi; Walker, Douglas I; Liang, Yongliang; Uppal, Karan; Soltow, Quinlyn A; Tran, ViLinh; Strobel, Frederick; Quyyumi, Arshed A; Ziegler, Thomas R; Pennell, Kurt D; Miller, Gary W; Jones, Dean P
2015-12-01
The exposome is the cumulative measure of environmental influences and associated biological responses throughout the lifespan, including exposures from the environment, diet, behavior, and endogenous processes. A major challenge for exposome research lies in the development of robust and affordable analytic procedures to measure the broad range of exposures and associated biologic impacts occurring over a lifetime. Biomonitoring is an established approach to evaluate internal body burden of environmental exposures, but use of biomonitoring for exposome research is often limited by the high costs associated with quantification of individual chemicals. High-resolution metabolomics (HRM) uses ultra-high resolution mass spectrometry with minimal sample preparation to support high-throughput relative quantification of thousands of environmental, dietary, and microbial chemicals. HRM also measures metabolites in most endogenous metabolic pathways, thereby providing simultaneous measurement of biologic responses to environmental exposures. The present research examined quantification strategies to enhance the usefulness of HRM data for cumulative exposome research. The results provide a simple reference standardization protocol in which individual chemical concentrations in unknown samples are estimated by comparison to a concurrently analyzed, pooled reference sample with known chemical concentrations. The approach was tested using blinded analyses of amino acids in human samples and was found to be comparable to independent laboratory results based on surrogate standardization or internal standardization. Quantification was reproducible over a 13-month period and extrapolated to thousands of chemicals. The results show that reference standardization protocol provides an effective strategy that will enhance data collection for cumulative exposome research. In principle, the approach can be extended to other types of mass spectrometry and other analytical methods. © The Author 2015. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Go, Young-Mi; Walker, Douglas I.; Liang, Yongliang; Uppal, Karan; Soltow, Quinlyn A.; Tran, ViLinh; Strobel, Frederick; Quyyumi, Arshed A.; Ziegler, Thomas R.; Pennell, Kurt D.; Miller, Gary W.; Jones, Dean P.
2015-01-01
The exposome is the cumulative measure of environmental influences and associated biological responses throughout the lifespan, including exposures from the environment, diet, behavior, and endogenous processes. A major challenge for exposome research lies in the development of robust and affordable analytic procedures to measure the broad range of exposures and associated biologic impacts occurring over a lifetime. Biomonitoring is an established approach to evaluate internal body burden of environmental exposures, but use of biomonitoring for exposome research is often limited by the high costs associated with quantification of individual chemicals. High-resolution metabolomics (HRM) uses ultra-high resolution mass spectrometry with minimal sample preparation to support high-throughput relative quantification of thousands of environmental, dietary, and microbial chemicals. HRM also measures metabolites in most endogenous metabolic pathways, thereby providing simultaneous measurement of biologic responses to environmental exposures. The present research examined quantification strategies to enhance the usefulness of HRM data for cumulative exposome research. The results provide a simple reference standardization protocol in which individual chemical concentrations in unknown samples are estimated by comparison to a concurrently analyzed, pooled reference sample with known chemical concentrations. The approach was tested using blinded analyses of amino acids in human samples and was found to be comparable to independent laboratory results based on surrogate standardization or internal standardization. Quantification was reproducible over a 13-month period and extrapolated to thousands of chemicals. The results show that reference standardization protocol provides an effective strategy that will enhance data collection for cumulative exposome research. In principle, the approach can be extended to other types of mass spectrometry and other analytical methods. PMID:26358001
Is Analytic Information Processing a Feature of Expertise in Medicine?
ERIC Educational Resources Information Center
McLaughlin, Kevin; Rikers, Remy M.; Schmidt, Henk G.
2008-01-01
Diagnosing begins by generating an initial diagnostic hypothesis by automatic information processing. Information processing may stop here if the hypothesis is accepted, or analytical processing may be used to refine the hypothesis. This description portrays analytic processing as an optional extra in information processing, leading us to…
Caballero-Díaz, Encarnación; Simonet, Bartolomé; Valcárcel, Miguel
2013-10-21
A novel method for the determination of atrazine, using liquid-liquid extraction assisted by a nanoparticles film formed in situ and composed of organic solvent stabilized-carbon nanoparticles, is described. The presence of nanoparticles located at the liquid-liquid interface reinforced the extraction of analyte from matrix prior to capillary electrophoresis (CE) analysis. Some influential experimental variables were optimized in order to enhance the extraction efficiency. The developed procedure confirmed that carbon nanoparticles, especially multi-walled carbon nanotubes, are suitable to be used in sample treatment processes introducing new mechanisms of interaction with the analyte. The application of the proposed preconcentration method followed by CE detection enabled the determination of atrazine in spiked river water providing acceptable RSD values (11.6%) and good recoveries (about 87.0-92.0%). Additionally, a similar extraction scheme was tested in soil matrices with a view to further applications in real soil samples.
Distributed wireless sensing for methane leak detection technology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Klein, Levente; van Kesse, Theodor
Large scale environmental monitoring requires dynamic optimization of data transmission, power management, and distribution of the computational load. In this work, we demonstrate the use of a wireless sensor network for detection of chemical leaks on gas oil well pads. The sensor network consist of chemi-resistive and wind sensors and aggregates all the data and transmits it to the cloud for further analytics processing. The sensor network data is integrated with an inversion model to identify leak location and quantify leak rates. We characterize the sensitivity and accuracy of such system under multiple well controlled methane release experiments. It ismore » demonstrated that even 1 hour measurement with 10 sensors localizes leaks within 1 m and determines leak rate with an accuracy of 40%. This integrated sensing and analytics solution is currently refined to be a robust system for long term remote monitoring of methane leaks, generation of alarms, and tracking regulatory compliance.« less
Distributed wireless sensing for fugitive methane leak detection
DOE Office of Scientific and Technical Information (OSTI.GOV)
Klein, Levente J.; van Kessel, Theodore; Nair, Dhruv
Large scale environmental monitoring requires dynamic optimization of data transmission, power management, and distribution of the computational load. In this work, we demonstrate the use of a wireless sensor network for detection of chemical leaks on gas oil well pads. The sensor network consist of chemi-resistive and wind sensors and aggregates all the data and transmits it to the cloud for further analytics processing. The sensor network data is integrated with an inversion model to identify leak location and quantify leak rates. We characterize the sensitivity and accuracy of such system under multiple well controlled methane release experiments. It ismore » demonstrated that even 1 hour measurement with 10 sensors localizes leaks within 1 m and determines leak rate with an accuracy of 40%. This integrated sensing and analytics solution is currently refined to be a robust system for long term remote monitoring of methane leaks, generation of alarms, and tracking regulatory compliance.« less
Distributed wireless sensing for fugitive methane leak detection
Klein, Levente J.; van Kessel, Theodore; Nair, Dhruv; ...
2017-12-11
Large scale environmental monitoring requires dynamic optimization of data transmission, power management, and distribution of the computational load. In this work, we demonstrate the use of a wireless sensor network for detection of chemical leaks on gas oil well pads. The sensor network consist of chemi-resistive and wind sensors and aggregates all the data and transmits it to the cloud for further analytics processing. The sensor network data is integrated with an inversion model to identify leak location and quantify leak rates. We characterize the sensitivity and accuracy of such system under multiple well controlled methane release experiments. It ismore » demonstrated that even 1 hour measurement with 10 sensors localizes leaks within 1 m and determines leak rate with an accuracy of 40%. This integrated sensing and analytics solution is currently refined to be a robust system for long term remote monitoring of methane leaks, generation of alarms, and tracking regulatory compliance.« less
Integrating Deoxyribozymes into Colorimetric Sensing Platforms
Chang, Dingran; Zakaria, Sandy; Deng, Mimi; Allen, Nicholas; Tram, Kha; Li, Yingfu
2016-01-01
Biosensors are analytical devices that have found a variety of applications in medical diagnostics, food quality control, environmental monitoring and biodefense. In recent years, functional nucleic acids, such as aptamers and nucleic acid enzymes, have shown great potential in biosensor development due to their excellent ability in target recognition and catalysis. Deoxyribozymes (or DNAzymes) are single-stranded DNA molecules with catalytic activity and can be isolated to recognize a wide range of analytes through the process of in vitro selection. By using various signal transduction mechanisms, DNAzymes can be engineered into fluorescent, colorimetric, electrochemical and chemiluminescent biosensors. Among them, colorimetric sensors represent an attractive option as the signal can be easily detected by the naked eye. This reduces reliance on complex and expensive equipment. In this review, we will discuss the recent progress in the development of colorimetric biosensors that make use of DNAzymes and the prospect of employing these sensors in a range of chemical and biological applications. PMID:27918487
Source-term development for a contaminant plume for use by multimedia risk assessment models
NASA Astrophysics Data System (ADS)
Whelan, Gene; McDonald, John P.; Taira, Randal Y.; Gnanapragasam, Emmanuel K.; Yu, Charley; Lew, Christine S.; Mills, William B.
2000-02-01
Multimedia modelers from the US Environmental Protection Agency (EPA) and US Department of Energy (DOE) are collaborating to conduct a comprehensive and quantitative benchmarking analysis of four intermedia models: MEPAS, MMSOILS, PRESTO, and RESRAD. These models represent typical analytically based tools that are used in human-risk and endangerment assessments at installations containing radioactive and hazardous contaminants. The objective is to demonstrate an approach for developing an adequate source term by simplifying an existing, real-world, 90Sr plume at DOE's Hanford installation in Richland, WA, for use in a multimedia benchmarking exercise between MEPAS, MMSOILS, PRESTO, and RESRAD. Source characteristics and a release mechanism are developed and described; also described is a typical process and procedure that an analyst would follow in developing a source term for using this class of analytical tool in a preliminary assessment.
NASA Astrophysics Data System (ADS)
Gu, Qing; Li, Jun; Deng, Jinsong; Lin, Yi; Ma, Ligang; Wu, Chaofan; Wang, Ke; Hong, Yang
2015-09-01
The Qiandao Lake Area (QLA) is of great significance in terms of drinking water supply in East Coast China as well as a nationally renowned tourist attraction. A series of laws and regulations regarding the QLA environment have been enacted and implemented throughout the past decade with the aim of negating the harmful effects associated with expanding urbanization and industrialization. In this research, an assessment framework was developed to analyze the eco-environmental vulnerability of the QLA from 1990-2010 by integrating fuzzy analytic hierarchy process (FAHP) and geographical information systems (GIS) in an attempt to gain insights into the status quo of the QLA so as to review and evaluate the effectiveness of the related policies. After processing and analyzing the temporal and spatial variation of eco-environmental vulnerability and major environmental issues in the QLA, we found that the state of eco-environmental vulnerability of the QLA was acceptable, though a moderate deterioration was detected during the study period. Furthermore, analysis of the combination of vulnerability and water quality indicated that the water quality showed signs of declination, though the overall status remained satisfactory. It was hence concluded that the collective protection and treatment actions were effective over the study period, whereas immediately stricter measures would be required for protecting the drinking water quality from domestic sewage and industrial wastewater. Finally, the spatial variation of the eco-environmental vulnerability assessment also implied that specifically more targeted measures should be adopted in respective regions for long-term sustainable development of the QLA.
Geng, Haiqing; Chen, Fan; Wang, Zhiyuan; Liu, Jie; Xu, Weihua
2017-05-01
The purpose of this research is to establish an environmental management zoning for coal mining industry which is served as a basis for making environmental management policies. Based on the specific impacts of coal mining and regional characteristics of environment and resources, the ecological impact, water resources impact, and arable land impact are chose as the zoning indexes to construct the index system. The ecological sensitivity is graded into three levels of low, medium, and high according to analytical hierarchy processes and gray fixed weight clustering analysis, and the water resources sensitivity is divided into five levels of lower, low, medium, high, and higher according to the weighted sum of sub-indexes, while only the arable land sensitive zone was extracted on the basis of the ratio of arable land to the county or city. By combining the ecological sensitivity zoning and the water resources sensitive zoning and then overlapping the arable-sensitive areas, the mainland China is classified into six types of environmental management zones for coal mining except to the forbidden exploitation areas.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NSTec Environmental Restoration
2011-08-31
This Streamlined Approach for Environmental Restoration (SAFER) Plan identifies the activities required for closure of Corrective Action Unit (CAU) 574, Neptune. CAU 574 is included in the Federal Facility Agreement and Consent Order (FFACO) (1996 [as amended March 2010]) and consists of the following two Corrective Action Sites (CASs) located in Area 12 of the Nevada National Security Site: (1) CAS 12-23-10, U12c.03 Crater (Neptune); (2) CAS 12-45-01, U12e.05 Crater (Blanca). This plan provides the methodology for the field activities that will be performed to gather the necessary information for closure of the two CASs. There is sufficient information andmore » process knowledge regarding the expected nature and extent of potential contaminants to recommend closure of CAU 574 using the SAFER process. Based on historical documentation, personnel interviews, site process knowledge, site visits, photographs, field screening, analytical results, the results of the data quality objective (DQO) process (Section 3.0), and an evaluation of corrective action alternatives (Appendix B), closure in place with administrative controls is the expected closure strategy for CAU 574. Additional information will be obtained by conducting a field investigation to verify and support the expected closure strategy and provide a defensible recommendation that no further corrective action is necessary. This will be presented in a Closure Report that will be prepared and submitted to the Nevada Division of Environmental Protection (NDEP) for review and approval.« less
Xie, Qiuju; Ni, Ji-Qin; Su, Zhongbin
2017-10-15
In confined swine buildings, temperature, humidity, and air quality are all important for animal health and productivity. However, the current swine building environmental control is only based on temperature; and evaluation and control methods based on multiple environmental factors are needed. In this paper, fuzzy comprehensive evaluation (FCE) theory was adopted for multi-factor assessment of environmental quality in two commercial swine buildings using real measurement data. An assessment index system and membership functions were established; and predetermined weights were given using analytic hierarchy process (AHP) combined with knowledge of experts. The results show that multi-factors such as temperature, humidity, and concentrations of ammonia (NH 3 ), carbon dioxide (CO 2 ), and hydrogen sulfide (H 2 S) can be successfully integrated in FCE for swine building environment assessment. The FCE method has a high correlation coefficient of 0.737 compared with the method of single-factor evaluation (SFE). The FCE method can significantly increase the sensitivity and perform an effective and integrative assessment. It can be used as part of environmental controlling and warning systems for swine building environment management to improve swine production and welfare. Copyright © 2017 Elsevier B.V. All rights reserved.
Sadhukhan, Jhuma; Joshi, Nimisha; Shemfe, Mobolaji; Lloyd, Jonathan R
2017-09-01
Magnetite nanoparticles (MNPs) have several applications, including use in medical diagnostics, renewable energy production and waste remediation. However, the processes for MNP production from analytical-grade materials are resource intensive and can be environmentally damaging. This work for the first time examines the life cycle assessment (LCA) of four MNP production cases: (i) industrial MNP production system; (ii) a state-of-the-art MNP biosynthesis system; (iii) an optimal MNP biosynthesis system and (iv) an MNP biosynthesis system using raw materials sourced from wastewaters, in order to recommend a sustainable raw material acquisition pathway for MNP synthesis. The industrial production system was used as a benchmark to compare the LCA performances of the bio-based systems (cases ii-iv). A combination of appropriate life cycle impact assessment methods was employed to analyse environmental costs and benefits of the systems comprehensively. The LCA results revealed that the state-of-the-art MNP biosynthesis system, which utilises analytical grade ferric chloride and sodium hydroxide as raw materials, generated environmental costs rather than benefits compared to the industrial MNP production system. Nevertheless, decreases in environmental impacts by six-fold were achieved by reducing sodium hydroxide input from 11.28 to 1.55 in a mass ratio to MNPs and replacing ferric chloride with ferric sulphate (3.02 and 2.59, respectively, in a mass ratio to MNPs) in the optimal biosynthesis system. Thus, the potential adverse environmental impacts of MNP production via the biosynthesis system can be reduced by minimising sodium hydroxide and substituting ferric sulphate for ferric chloride. Moreover, considerable environmental benefits were exhibited in case (iv), where Fe(III) ions were sourced from metal-containing wastewaters and reduced to MNPs by electrons harvested from organic substrates. It was revealed that 14.4 kJ and 3.9 kJ of primary fossil resource savings could be achieved per g MNP and associated electricity recoveries from wastewaters, respectively. The significant environmental benefits exhibited by the wastewater-fed MNP biosynthesis system shows promise for the sustainable production of MNPs. Copyright © 2017 Elsevier Ltd. All rights reserved.
The performance evaluation of innovative and alternative environmental technologies is an integral part of the U.S. Environmental Protection Agency's (EPA) mission. In the spirit of the technology policy, the Agency began to direct a portion of its resources toward the promotion...
Ajakaye, Oluwaremilekun G; Adedeji, Oluwatola I; Ajayi, Paul O
2017-07-01
Schistosomiasis is a parasitic disease and its distribution, in space and time, can be influenced by environmental factors such as rivers, elevation, slope, land surface temperature, land use/cover and rainfall. The aim of this study is to identify the areas with suitable conditions for schistosomiasis transmission on the basis of physical and environmental factors derived from satellite imagery and spatial analysis for Akure North Local Government Area (LGA) of Ondo State. Nigeria. This was done through methodology multicriteria evaluation (MCE) using Saaty's analytical hierarchy process (AHP). AHP is a multi-criteria decision method that uses hierarchical structures to represent a problem and makes decisions based on priority scales. In this research AHP was used to obtain the mapping weight or importance of each individual schistosomiasis risk factor. For the purpose of identifying areas of schistosomiasis risk, this study focused on temperature, drainage, elevation, rainfall, slope and land use/land cover as the factors controlling schistosomiasis incidence in the study area. It is by reclassifying and overlaying these factors that areas vulnerable to schistosomiasis were identified. The weighted overlay analysis was done after each factor was given the appropriate weight derived through the analytical hierarchical process. The prevalence of urinary schistosomiasis in the study area was also determined by parasitological analysis of urine samples collected through random sampling. The results showed varying risk of schistosomiasis with a larger portion of the area (82%) falling under the high and very high risk category. The study also showed that one community (Oba Ile) had the lowest risk of schistosomiasis while the risk increased in the four remaining communities (Iju, Igoba, Ita Ogbolu and Ogbese). The predictions made by the model correlated strongly with observations from field study. The high risk zones corresponded to known endemic communities. This study revealed that environmental factors can be used in identifying and predicting the transmission of schistosomiasis as well as effective monitoring of disease risk in newly established rural and agricultural communities.
Code of Federal Regulations, 2010 CFR
2010-07-01
... methods as presented in current environmental and analytical chemistry literature. Examples of analytical....001 microgram (µg) of compound per milligram of organic extract) of these compounds in the extractable organic matter. The concentration of each individual PAH or NPAH compound identified shall be reported in...
The field analytical screening program (FASP) polychlorinated biphenyl (PCB) method uses a temperature-programmable gas chromatograph (GC) equipped with an electron capture detector (ECD) to identify and quantify PCBs. Gas chromatography is an EPA-approved method for determi...
USGS Laboratory Review Program Ensures Analytical Quality
Erdmann, David E.
1995-01-01
The USGS operates a review program for laboratories that analyze samples for USGS environmental investigations. This program has been effective in providing QA feedback to laboratories while ensuring that analytical data are consistent, of satisfactory quality, and meet the data objectives of the investigation.
40 CFR 141.74 - Analytical and monitoring requirements.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 22 2010-07-01 2010-07-01 false Analytical and monitoring requirements. 141.74 Section 141.74 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER... listed below. Information regarding obtaining these documents can be obtained from the Safe Drinking...
Life Cycle Inventory (LCI) Data-Treatment Chemicals ...
This report estimates environmental emission factors (EmF) for key chemicals, construction and treatment materials, transportation/on-site equipment, and other processes used at remediation sites. The basis for chemical, construction, and treatment material EmFs is life cycle inventory (LCI) data extracted from secondary data sources and compiled using the openLCA software package. The US EPA MOVES 2014 model was used to derive EmFs from combustion profiles for a number of transportation and on-site equipment processes. The EmFs were calculated for use in US EPA’s Spreadsheets for Environmental Footprint Analysis (SEFA). EmFs are reported for cumulative energy demand (CED), global warming potential (GWP), criteria pollutants (e.g. NOX, SOX, and PM10), hazardous air pollutants (HAPs), and water use. Since the USEPA launched its green remediation program, metrics such as impacts, outcomes, and environmental burdens of remediation actions have been difficult to assess. This research includes metrics to quantify RCRA and CERCLA remediation actions. Metrics include: greenhouse gases, energy demand, water use, SOX, NOX, PM10, and hazardous air pollutants. The primary user of this project is EPA's Region 9 Superfund and Technology Office for input into the SEFA tool. SEFA is a set of analytical workbooks used to quantify the environmental footprint of a site cleanup in order to achieve a greener cleanup. SEFA permits users to enter actual or anticipated data on site
Fremier, Alexander K.; Girvetz, Evan H.; Greco, Steven E.; Larsen, Eric W.
2014-01-01
Environmental legislation in the US (i.e. NEPA) requires defining baseline conditions on current rather than historical ecosystem conditions. For ecosystems with long histories of multiple environmental impacts, this baseline method can subsequently lead to a significantly altered environment; this has been termed a ‘sliding baseline’. In river systems, cumulative effects caused by flow regulation, channel revetment and riparian vegetation removal significantly impact floodplain ecosystems by altering channel dynamics and precluding subsequent ecosystem processes, such as primary succession. To quantify these impacts on floodplain development processes, we used a model of river channel meander migration to illustrate the degree to which flow regulation and riprap impact migration rates, independently and synergistically, on the Sacramento River in California, USA. From pre-dam conditions, the cumulative effect of flow regulation alone on channel migration is a reduction by 38%, and 42–44% with four proposed water diversion project scenarios. In terms of depositional area, the proposed water project would reduce channel migration 51–71 ha in 130 years without current riprap in place, and 17–25 ha with riprap. Our results illustrate the utility of a modeling approach for quantifying cumulative impacts. Model-based quantification of environmental impacts allow scientists to separate cumulative and synergistic effects to analytically define mitigation measures. Additionally, by selecting an ecosystem process that is affected by multiple impacts, it is possible to consider process-based mitigation scenarios, such as the removal of riprap, to allow meander migration and create new floodplains and allow for riparian vegetation recruitment. PMID:24964145
Chen, Yanyan
2017-08-22
A continuous and increasing crisis that present-day China is facing is environmental degradation. The cultivation of citizens who have environmentally friendly behaviours has been deemed as a fundamental way to solve environmental crises. However, the main focus of environmentalism studies has been urban residents, whereas rare research attention was put on rural Chinese. This paper focuses on environmentally significant behaviours in rural China and aims to clarify the practice of five environmentally significant behaviours and two motivations underlying these behaviours. In total, 508 rural residents in 51 villages of Ningyang county were interviewed. Analytical results derived from survey data showed that environmentally significant behaviours are widely conducted in rural areas. However, these behaviours are mainly motivated by economic gains rather than environmental considerations. In addition, based on the norm-activation theory and considering the influences of demographic factors, the formation of environmentally motivated behaviours were quantitatively analysed. Analytical results indicated that the more people worried about environmental deterioration, the more likely they were to form environmentally motivated behaviours, and people who ascribe the most important environmental responsibility to the government are less likely to form environmentally motivated behaviours. Increasing people's anxiety towards the environment, decreasing people's dependency on the government in protecting the environment, and using females, the elderly, and people with low income and education levels as the main targets of environmental education are suggested to promote environmentally motivated behaviours in rural China.
Chen, Yanyan
2017-01-01
A continuous and increasing crisis that present-day China is facing is environmental degradation. The cultivation of citizens who have environmentally friendly behaviours has been deemed as a fundamental way to solve environmental crises. However, the main focus of environmentalism studies has been urban residents, whereas rare research attention was put on rural Chinese. This paper focuses on environmentally significant behaviours in rural China and aims to clarify the practice of five environmentally significant behaviours and two motivations underlying these behaviours. In total, 508 rural residents in 51 villages of Ningyang county were interviewed. Analytical results derived from survey data showed that environmentally significant behaviours are widely conducted in rural areas. However, these behaviours are mainly motivated by economic gains rather than environmental considerations. In addition, based on the norm-activation theory and considering the influences of demographic factors, the formation of environmentally motivated behaviours were quantitatively analysed. Analytical results indicated that the more people worried about environmental deterioration, the more likely they were to form environmentally motivated behaviours, and people who ascribe the most important environmental responsibility to the government are less likely to form environmentally motivated behaviours. Increasing people’s anxiety towards the environment, decreasing people’s dependency on the government in protecting the environment, and using females, the elderly, and people with low income and education levels as the main targets of environmental education are suggested to promote environmentally motivated behaviours in rural China. PMID:28829395
Agüera, Ana; Martínez Bueno, María Jesús; Fernández-Alba, Amadeo R
2013-06-01
Since the so-called emerging contaminants were established as a new group of pollutants of environmental concern, a great effort has been devoted to the knowledge of their distribution, fate and effects in the environment. After more than 20 years of work, a significant improvement in knowledge about these contaminants has been achieved, but there is still a large gap of information on the growing number of new potential contaminants that are appearing and especially of their unpredictable transformation products. Although the environmental problem arising from emerging contaminants must be addressed from an interdisciplinary point of view, it is obvious that analytical chemistry plays an important role as the first step of the study, as it allows establishing the presence of chemicals in the environment, estimate their concentration levels, identify sources and determine their degradation pathways. These tasks involve serious difficulties requiring different analytical solutions adjusted to purpose. Thus, the complexity of the matrices requires highly selective analytical methods; the large number and variety of compounds potentially present in the samples demands the application of wide scope methods; the low concentrations at which these contaminants are present in the samples require a high detection sensitivity, and high demands on the confirmation and high structural information are needed for the characterisation of unknowns. New developments on analytical instrumentation have been applied to solve these difficulties. Furthermore and not less important has been the development of new specific software packages intended for data acquisition and, in particular, for post-run analysis. Thus, the use of sophisticated software tools has allowed successful screening analysis, determining several hundreds of analytes, and assisted in the structural elucidation of unknown compounds in a timely manner.
A Stochastic Super-Exponential Growth Model for Population Dynamics
NASA Astrophysics Data System (ADS)
Avila, P.; Rekker, A.
2010-11-01
A super-exponential growth model with environmental noise has been studied analytically. Super-exponential growth rate is a property of dynamical systems exhibiting endogenous nonlinear positive feedback, i.e., of self-reinforcing systems. Environmental noise acts on the growth rate multiplicatively and is assumed to be Gaussian white noise in the Stratonovich interpretation. An analysis of the stochastic super-exponential growth model with derivations of exact analytical formulae for the conditional probability density and the mean value of the population abundance are presented. Interpretations and various applications of the results are discussed.
Nonlinear estimation for arrays of chemical sensors
NASA Astrophysics Data System (ADS)
Yosinski, Jason; Paffenroth, Randy
2010-04-01
Reliable detection of hazardous materials is a fundamental requirement of any national security program. Such materials can take a wide range of forms including metals, radioisotopes, volatile organic compounds, and biological contaminants. In particular, detection of hazardous materials in highly challenging conditions - such as in cluttered ambient environments, where complex collections of analytes are present, and with sensors lacking specificity for the analytes of interest - is an important part of a robust security infrastructure. Sophisticated single sensor systems provide good specificity for a limited set of analytes but often have cumbersome hardware and environmental requirements. On the other hand, simple, broadly responsive sensors are easily fabricated and efficiently deployed, but such sensors individually have neither the specificity nor the selectivity to address analyte differentiation in challenging environments. However, arrays of broadly responsive sensors can provide much of the sensitivity and selectivity of sophisticated sensors but without the substantial hardware overhead. Unfortunately, arrays of simple sensors are not without their challenges - the selectivity of such arrays can only be realized if the data is first distilled using highly advanced signal processing algorithms. In this paper we will demonstrate how the use of powerful estimation algorithms, based on those commonly used within the target tracking community, can be extended to the chemical detection arena. Herein our focus is on algorithms that not only provide accurate estimates of the mixture of analytes in a sample, but also provide robust measures of ambiguity, such as covariances.
Optimizing liquid effluent monitoring at a large nuclear complex.
Chou, Charissa J; Barnett, D Brent; Johnson, Vernon G; Olson, Phil M
2003-12-01
Effluent monitoring typically requires a large number of analytes and samples during the initial or startup phase of a facility. Once a baseline is established, the analyte list and sampling frequency may be reduced. Although there is a large body of literature relevant to the initial design, few, if any, published papers exist on updating established effluent monitoring programs. This paper statistically evaluates four years of baseline data to optimize the liquid effluent monitoring efficiency of a centralized waste treatment and disposal facility at a large defense nuclear complex. Specific objectives were to: (1) assess temporal variability in analyte concentrations, (2) determine operational factors contributing to waste stream variability, (3) assess the probability of exceeding permit limits, and (4) streamline the sampling and analysis regime. Results indicated that the probability of exceeding permit limits was one in a million under normal facility operating conditions, sampling frequency could be reduced, and several analytes could be eliminated. Furthermore, indicators such as gross alpha and gross beta measurements could be used in lieu of more expensive specific isotopic analyses (radium, cesium-137, and strontium-90) for routine monitoring. Study results were used by the state regulatory agency to modify monitoring requirements for a new discharge permit, resulting in an annual cost savings of US dollars 223,000. This case study demonstrates that statistical evaluation of effluent contaminant variability coupled with process knowledge can help plant managers and regulators streamline analyte lists and sampling frequencies based on detection history and environmental risk.
Optimal siting of solid waste-to-value-added facilities through a GIS-based assessment.
Khan, Md Mohib-Ul-Haque; Vaezi, Mahdi; Kumar, Amit
2018-01-01
Siting a solid waste conversion facility requires an assessment of solid waste availability as well as ensuring compliance with environmental, social, and economic factors. The main idea behind this study was to develop a methodology to locate suitable locations for waste conversion facilities considering waste availability as well as environmental and social constraints. A geographic information system (GIS) spatial analysis was used to identify the most suitable areas and to screen out unsuitable lands. The analytic hierarchy process (AHP) was used for a multi-criteria evaluation of relative preferences of different environmental and social factors. A case study was conducted for Alberta, a western province in Canada, by performing a province-wide waste availability assessment. The total available waste considered in this study was 4,077,514tonnes/year for 19 census divisions collected from 79 landfills. Finally, a location-allocation analysis was performed to determine suitable locations for 10 waste conversion facilities across the province. Copyright © 2017 Elsevier B.V. All rights reserved.
Developing strategic planning of green supply chain in refinery CPO company
NASA Astrophysics Data System (ADS)
Hidayati, J.; Mumtaz, G.; Hasibuan, S.
2018-02-01
We are conducted a research at the company of the manufacturing CPO into cooking oil, margarine and materials of oleochemical industries. Today palm oil based industries are facing global challenges related to environmental issues. To against these challenges, it is necessary to have an environmentally friendly supply chain. However, the limited resource owned by the company requires the integrated environmental strategy with the company’s business strategy. The model is developed based on management orientation towards external pressure, internal key resources and competitive advantage that can be obtained as the decision factor. The decision-making method used is Analytical Network Process (ANP). The results obtained institutional pressure becomes the criterion with the greatest influence on green supply chain initiatives and sub criteria of customer desires and stakeholder integration having the most significant influence on green supply chain initiatives. There are five green alternative initiatives that can be done: green product design, greening upstream, greening production, greening downstream and greening post use. For green supply chain initiative, greening upstream is the best priority.
Perchlorate as an environmental contaminant.
Urbansky, Edward Todd
2002-01-01
Perchlorate anion (ClO4-) has been found in drinking water supplies throughout the southwestern United States. It is primarily associated with releases of ammonium perchlorate by defense contractors, military operations, and aerospace programs. Ammonium perchlorate is used as a solid oxidant in missile and rocket propulsion systems. Traces of perchlorate are found in Chile saltpeter, but the use of such fertilizer has not been associated with large scale contamination. Although it is a strong oxidant, perchlorate anion is very persistent in the environment due to the high activation energy associated with its reduction. At high enough concentrations, perchlorate can affect thyroid gland functions, where it is mistakenly taken up in place of iodide. A safe daily exposure has not yet been set, but is expected to be released in 2002. Perchlorate is measured in environmental samples primarily by ion chromatography. It can be removed by anion exchange or membrane filtration. It is destroyed by some biological and chemical processes. The environmental occurrence, toxicity, analytical chemistry, and remediative approaches are discussed.
NASA Astrophysics Data System (ADS)
Clark, Susan G.; Rutherford, Murray B.; Auer, Matthew R.; Cherney, David N.; Wallace, Richard L.; Mattson, David J.; Clark, Douglas A.; Foote, Lee; Krogman, Naomi; Wilshusen, Peter; Steelman, Toddi
2011-05-01
Environmental studies and environmental sciences programs in American and Canadian colleges and universities seek to ameliorate environmental problems through empirical enquiry and analytic judgment. In a companion article (Part 1) we describe the environmental program movement (EPM) and discuss factors that have hindered its performance. Here, we complete our analysis by proposing strategies for improvement. We recommend that environmental programs re-organize around three principles. First, adopt as an overriding goal the concept of human dignity—defined as freedom and social justice in healthy, sustainable environments. This clear higher-order goal captures the human and environmental aspirations of the EPM and would provide a more coherent direction for the efforts of diverse participants. Second, employ an explicit, genuinely interdisciplinary analytical framework that facilitates the use of multiple methods to investigate and address environmental and social problems in context. Third, develop educational programs and applied experiences that provide students with the technical knowledge, powers of observation, critical thinking skills and management acumen required for them to become effective professionals and leaders. Organizing around these three principles would build unity in the EPM while at the same time capitalizing on the strengths of the many disciplines and diverse local conditions involved.
About Region 3's Laboratory and Field Services at EPA's Environmental Science Center
Mission & contact information for EPA Region 3's Laboratory and Field Services located at EPA's Environmental Science Center: the Office of Analytical Services and Quality Assurance & Field Inspection Program
[Toxicological and analytical lists: chromium and its compounds].
Minoia, C; Apostoli, P; Battaglia, A; Catenacci, G; Cottica, D; Franco, G; Pozzoli, L; Vanola, C; Candura, F; Capodaglio, E
1987-03-01
The main aspects of occupational exposure to chromium and chromium compounds are surveyed. Special attention is paid to the toxic action of this metal at the different target organs. The nutritional aspect of CrIII is examined preliminarily, and data detailing the metal contents in water and food are provided. As far the different working processes that entail occupational exposure to chromium are concerned, hygienic and environmental problems are discussed while identifying the average environment exposure to the different chemical forms of chromium (CrIII, CrIV, soluble and not soluble), as a function of the worker's tasks, and the relevant human response (total human Cr). Different hygienic and environmental standards in force in various countries and applicable to chromium compounds are compared. Additional information is given on the main aspects of chromium metabolism (absorption, distribution, excretion), and on the prevailing toxic actions, with specific reference to cancerogenesis. As far as biologic monitoring of the exposed people is concerned, the significance of Cr-U as dose-exposure indicator is discussed, also in the light of a critical review of the reference values. The report describes a series of analytical methods for the identification of chromium in aqueous and biologic matrices. The problems connected with health monitoring and fitness for work are eventually covered.
Smichowski, Patricia
2008-03-15
This review summarizes and discusses the research carried out on the determination of antimony and its predominant chemical species in atmospheric aerosols. Environmental matrices such as airborne particulate matter, fly ash and volcanic ash present a number of complex analytical challenges as very sensitive analytical techniques and highly selective separation methodologies for speciation studies. Given the diversity of instrumental approaches and methodologies employed for the determination of antimony and its species in environmental matrices, the objective of this review is to briefly discuss the most relevant findings reported in the last years for this remarkable element and to identify the future needs and trends. The survey includes 92 references and covers principally the literature published over the last decade.
Topuz, Emel; van Gestel, Cornelis A M
2016-01-01
The usage of Engineered Nanoparticles (ENPs) in consumer products is relatively new and there is a need to conduct environmental risk assessment (ERA) to evaluate their impacts on the environment. However, alternative approaches are required for ERA of ENPs because of the huge gap in data and knowledge compared to conventional pollutants and their unique properties that make it difficult to apply existing approaches. This study aims to propose an ERA approach for ENPs by integrating Analytical Hierarchy Process (AHP) and fuzzy inference models which provide a systematic evaluation of risk factors and reducing uncertainty about the data and information, respectively. Risk is assumed to be the combination of occurrence likelihood, exposure potential and toxic effects in the environment. A hierarchy was established to evaluate the sub factors of these components. Evaluation was made with fuzzy numbers to reduce uncertainty and incorporate the expert judgements. Overall score of each component was combined with fuzzy inference rules by using expert judgements. Proposed approach reports the risk class and its membership degree such as Minor (0.7). Therefore, results are precise and helpful to determine the risk management strategies. Moreover, priority weights calculated by comparing the risk factors based on their importance for the risk enable users to understand which factor is effective on the risk. Proposed approach was applied for Ag (two nanoparticles with different coating) and TiO2 nanoparticles for different case studies. Results verified the proposed benefits of the approach. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Zelenović Vasiljević, Tamara; Srdjević, Zorica; Bajčetić, Ratko; Vojinović Miloradov, Mirjana
2012-02-01
The Serbian National Waste Management Strategy for the Period 2010-2019, harmonized with the European Union Directives, mandates new and very strict requirements for landfill sites. To enable analysis of a number of required qualitative and quantitative factors for landfill site selection, the traditional method of site selection must be replaced with a new approach. The combination of GIS and the Analytic Hierarchy Process (AHP) was selected to solve this complex problem. The Srem region in northern Serbia, being one of the most environmentally sensitive areas, was chosen as a case study. Seventeen factors selected as criteria/sub-criteria were recognized as most important, divided into geo-natural, environmental, social and techno-economic factors, and were evaluated by experts from different fields using an AHP extension in Arc GIS. Weighted spatial layers were combined into a landfill suitability map which was then overlapped with four restriction maps, resulting in a final suitability map. According to the results, 82.65% of the territory of Srem is unsuitable for regional landfill siting. The most suitable areas cover 9.14%, suitable areas 5.24%, while areas with low and very low suitability cover 2.21 and 0.76% of the territory, respectively. Based on these findings, five sites close to two large urban agglomerations were suggested as possible locations for a regional landfill site in Srem. However, the final decision will require further field investigation, a public acceptance survey, and consideration of ownership status and price of the land.
Miller, Tyler M; Geraci, Lisa
2016-05-01
People may change their memory predictions after retrieval practice using naïve theories of memory and/or by using subjective experience - analytic and non-analytic processes respectively. The current studies disentangled contributions of each process. In one condition, learners studied paired-associates, made a memory prediction, completed a short-run of retrieval practice and made a second prediction. In another condition, judges read about a yoked learners' retrieval practice performance but did not participate in retrieval practice and therefore, could not use non-analytic processes for the second prediction. In Study 1, learners reduced their predictions following moderately difficult retrieval practice whereas judges increased their predictions. In Study 2, learners made lower adjusted predictions than judges following both easy and difficult retrieval practice. In Study 3, judge-like participants used analytic processes to report adjusted predictions. Overall, the results suggested non-analytic processes play a key role for participants to reduce their predictions after retrieval practice. Copyright © 2016 Elsevier Inc. All rights reserved.
40 CFR 141.22 - Turbidity sampling and analytical requirements.
Code of Federal Regulations, 2010 CFR
2010-07-01
... requirements. 141.22 Section 141.22 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS Monitoring and Analytical Requirements... suppliers of water for both community and non-community water systems at a representative entry point(s) to...
40 CFR 141.22 - Turbidity sampling and analytical requirements.
Code of Federal Regulations, 2014 CFR
2014-07-01
... requirements. 141.22 Section 141.22 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS Monitoring and Analytical Requirements... suppliers of water for both community and non-community water systems at a representative entry point(s) to...
40 CFR 141.22 - Turbidity sampling and analytical requirements.
Code of Federal Regulations, 2011 CFR
2011-07-01
... requirements. 141.22 Section 141.22 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS Monitoring and Analytical Requirements... suppliers of water for both community and non-community water systems at a representative entry point(s) to...
40 CFR 141.22 - Turbidity sampling and analytical requirements.
Code of Federal Regulations, 2013 CFR
2013-07-01
... requirements. 141.22 Section 141.22 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS Monitoring and Analytical Requirements... suppliers of water for both community and non-community water systems at a representative entry point(s) to...
40 CFR 141.22 - Turbidity sampling and analytical requirements.
Code of Federal Regulations, 2012 CFR
2012-07-01
... requirements. 141.22 Section 141.22 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS Monitoring and Analytical Requirements... suppliers of water for both community and non-community water systems at a representative entry point(s) to...
40 CFR 600.108-08 - Analytical gases.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 30 2014-07-01 2014-07-01 false Analytical gases. 600.108-08 Section 600.108-08 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) ENERGY POLICY FUEL ECONOMY AND GREENHOUSE GAS EXHAUST EMISSIONS OF MOTOR VEHICLES Fuel Economy and Carbon-Related Exhaust...
An Experimental Introduction to Interlaboratory Exercises in Analytical Chemistry
ERIC Educational Resources Information Center
Puignou, L.; Llaurado, M.
2005-01-01
An experimental exercise on analytical proficiency studies in collaborative trials is proposed. This practical provides students in advanced undergraduate courses in chemistry, pharmacy, and biochemistry, with the opportunity to improve their quality assurance skills. It involves an environmental analysis, determining the concentration of a…
Jabłońska-Czapla, Magdalena
2015-01-01
Chemical speciation is a very important subject in the environmental protection, toxicology, and chemical analytics due to the fact that toxicity, availability, and reactivity of trace elements depend on the chemical forms in which these elements occur. Research on low analyte levels, particularly in complex matrix samples, requires more and more advanced and sophisticated analytical methods and techniques. The latest trends in this field concern the so-called hyphenated techniques. Arsenic, antimony, chromium, and (underestimated) thallium attract the closest attention of toxicologists and analysts. The properties of those elements depend on the oxidation state in which they occur. The aim of the following paper is to answer the question why the speciation analytics is so important. The paper also provides numerous examples of the hyphenated technique usage (e.g., the LC-ICP-MS application in the speciation analysis of chromium, antimony, arsenic, or thallium in water and bottom sediment samples). An important issue addressed is the preparation of environmental samples for speciation analysis. PMID:25873962
A behavior-analytic critique of Bandura's self-efficacy theory
Biglan, Anthony
1987-01-01
A behavior-analytic critique of self-efficacy theory is presented. Self-efficacy theory asserts that efficacy expectations determine approach behavior and physiological arousal of phobics as well as numerous other clinically important behaviors. Evidence which is purported to support this assertion is reviewed. The evidence consists of correlations between self-efficacy ratings and other behaviors. Such response-response relationships do not unequivocally establish that one response causes another. A behavior-analytic alternative to self-efficacy theory explains these relationships in terms of environmental events. Correlations between self-efficacy rating behavior and other behavior may be due to the contingencies of reinforcement that establish a correspondence between such verbal predictions and the behavior to which they refer. Such a behavior-analytic account does not deny any of the empirical relationships presented in support of self-efficacy theory, but it points to environmental variables that could account for those relationships and that could be manipulated in the interest of developing more effective treatment procedures. PMID:22477956
NASA Astrophysics Data System (ADS)
Fotilas, P.; Batzias, A. F.
2007-12-01
The equivalence indices synthesized for the comparative evaluation of technoeconomic efficiency of industrial processes are of critical importance since they serve as both, (i) positive/analytic descriptors of the physicochemical nature of the process and (ii) measures of effectiveness, especially helpful for investigated competitiveness in the industrial/energy/environmental sector of the economy. In the present work, a new algorithmic procedure has been developed, which initially standardizes a real industrial process, then analyzes it as a compromise of two ideal processes, and finally synthesizes the index that can represent/reconstruct the real process as a result of the trade-off between the two ideal processes taking as parental prototypes. The same procedure makes fuzzy multicriteria ranking within a set of pre-selected industrial processes for two reasons: (a) to analyze the process most representative of the production/treatment under consideration, (b) to use the `second best' alternative as a dialectic pole in absence of the two ideal processes mentioned above. An implantation of this procedure is presented, concerning a facility of biological wastewater treatment with six alternatives: activated sludge through (i) continuous-flow incompletely-stirred tank reactors in series, (ii) a plug flow reactor with dispersion, (iii) an oxidation ditch, and biological processing through (iv) a trickling filter, (v) rotating contactors, (vi) shallow ponds. The criteria used for fuzzy (to count for uncertainty) ranking are capital cost, operating cost, environmental friendliness, reliability, flexibility, extendibility. Two complementary indices were synthesized for the (ii)-alternative ranked first and their quantitative expressions were derived, covering a variety of kinetic models as well as recycle/bypass conditions. Finally, analysis of estimating the optimal values of these indices at maximum technoeconomic efficiency is presented and the implications (expected to be) caused by exogenous and endogenous factors (e.g., environmental standards change and innovative energy savings/substitution, respectively) are discussed by means of marginal efficiency graphs.
Solà-Vázquez, Auristela; Lara-Gonzalo, Azucena; Costa-Fernández, José M; Pereiro, Rosario; Sanz-Medel, Alfredo
2010-05-01
A tuneable microsecond pulsed direct current glow discharge (GD)-time-of-flight mass spectrometer MS(TOF) developed in our laboratory was coupled to a gas chromatograph (GC) to obtain sequential collection of the mass spectra, at different temporal regimes occurring in the GD pulses, during elution of the analytes. The capabilities of this set-up were explored using a mixture of volatile organic compounds of environmental concern: BrClCH, Cl(3)CH, Cl(4)C, BrCl(2)CH, Br(2)ClCH, Br(3)CH. The experimental parameters of the GC-pulsed GD-MS(TOF) prototype were optimized in order to separate appropriately and analyze the six selected organic compounds, and two GC carrier gases, helium and nitrogen, were evaluated. Mass spectra for all analytes were obtained in the prepeak, plateau and afterpeak temporal regimes of the pulsed GD. Results showed that helium offered the best elemental sensitivity, while nitrogen provided higher signal intensities for fragments and molecular peaks. The analytical performance characteristics were also worked out for each analyte. Absolute detection limits obtained were in the order of ng. In a second step, headspace solid phase microextraction (HS SPME), as sample preparation and preconcentration technique, was evaluated for the quantification of the compounds under study, in order to achieve the required analytical sensitivity for trihalomethanes European Union (EU) environmental legislation. The analytical figures of merit obtained using the proposed methodology showed rather good detection limits (between 2 and 13 microg L(-1) depending on the analyte). In fact, the developed methodology met the EU legislation requirements (the maximum level permitted in tap water for the "total trihalomethanes" is set at 100 microg L(-1)). Real analysis of drinking water and river water were successfully carried out. To our knowledge this is the first application of GC-pulsed GD-MS(TOF) for the analysis of real samples. Its ability to provide elemental, fragments and molecular information of the organic compounds is demonstrated.
Statistically qualified neuro-analytic failure detection method and system
Vilim, Richard B.; Garcia, Humberto E.; Chen, Frederick W.
2002-03-02
An apparatus and method for monitoring a process involve development and application of a statistically qualified neuro-analytic (SQNA) model to accurately and reliably identify process change. The development of the SQNA model is accomplished in two stages: deterministic model adaption and stochastic model modification of the deterministic model adaptation. Deterministic model adaption involves formulating an analytic model of the process representing known process characteristics, augmenting the analytic model with a neural network that captures unknown process characteristics, and training the resulting neuro-analytic model by adjusting the neural network weights according to a unique scaled equation error minimization technique. Stochastic model modification involves qualifying any remaining uncertainty in the trained neuro-analytic model by formulating a likelihood function, given an error propagation equation, for computing the probability that the neuro-analytic model generates measured process output. Preferably, the developed SQNA model is validated using known sequential probability ratio tests and applied to the process as an on-line monitoring system. Illustrative of the method and apparatus, the method is applied to a peristaltic pump system.
da Fonseca, E.M.; Neto, J.A. Baptista; McAlister, J.J.; Smith, B.J.; Crapez, M.A.C.
2014-01-01
Processes involving heavy metals and other contaminants continue to present unsolved environmental questions. To advance the understanding of geochemical processes that involve the bioavailability of contaminants, cores where collected in the Rodrigo de Freitas lagoon, and analyzed for bacterial activity and metal concentrations. Results would suggest an extremely reducing environment where organic substances seem to be the predominant agents responsible for this geochemical process. Analytical data showed sulphate reduction to be the main agent driving this process, since this kind of bacteria was found to be active in all of the samples analyzed. Esterase enzyme production did not signal the influence of heavy metals and hydrocarbon concentrations and heavy metals were found to be unavailable for biota. However, correlation between results for bacterial biomass and the potentially mobile percentage of the total Ni concentrations would suggest a negative impact. PMID:25477931
Upcycling: converting waste plastics into paramagnetic, conducting, solid, pure carbon microspheres.
Pol, Vilas Ganpat
2010-06-15
The recent tremendous increase in the volume of waste plastics (WP) will have a harmful environmental impact on the health of living beings. Hundreds of years are required to degrade WP in atmospheric conditions. Hence, in coming years, in addition to traditional recycling services, innovative "upcycling" processes are necessary. This article presents an environmentally benign, solvent-free autogenic process that converts various WP [low density polyethylene (LDPE), high density polyethylene (HDPE), polyethylene terephthalate (PET), polystyrene (PS), or their mixtures] into carbon microspheres (CMSs), an industrially significant, value-added product. The thermal dissociation of these individual or mixed WP in a closed reactor under autogenic pressure ( approximately 1000 psi) produced dry, pure powder of CMSs. In this paper, the optimization of process parameters such as the effect of mixing of WP with other materials, and the role of reaction temperature and time are reported. Employing advanced analytical techniques, the atomic structure, composition, and morphology of as-obtained CMSs were analyzed. The room-temperature paramagnetism in CMSs prepared from waste LDPE, HDPE, and PS was further studied by electron paramagnetic resonance (EPR). The conducting and paramagnetic nature of CMSs holds promise for their potential applications in toners, printers, paints, batteries, lubricants, and tires.
Indicator of reliability of power grids and networks for environmental monitoring
NASA Astrophysics Data System (ADS)
Shaptsev, V. A.
2017-10-01
The energy supply of the mining enterprises includes power networks in particular. Environmental monitoring relies on the data network between the observers and the facilitators. Weather and conditions of their work change over time randomly. Temperature, humidity, wind strength and other stochastic processes are interconnecting in different segments of the power grid. The article presents analytical expressions for the probability of failure of the power grid as a whole or its particular segment. These expressions can contain one or more parameters of the operating conditions, simulated by Monte Carlo. In some cases, one can get the ultimate mathematical formula for calculation on the computer. In conclusion, the expression, including the probability characteristic function of one random parameter, for example, wind, temperature or humidity, is given. The parameters of this characteristic function can be given by retrospective or special observations (measurements).
Green design assessment of electromechanical products based on group weighted-AHP
NASA Astrophysics Data System (ADS)
Guo, Jinwei; Zhou, MengChu; Li, Zhiwu; Xie, Huiguang
2015-11-01
Manufacturing industry is the backbone of a country's economy while environmental pollution is a serious problem that human beings must face today. The green design of electromechanical products based on enterprise information systems is an important method to solve the environmental problem. The question on how to design green products must be answered by excellent designers via both advanced design methods and effective assessment methods of electromechanical products. Making an objective and precise assessment of green design is one of the problems that must be solved when green design is conducted. An assessment method of green design on electromechanical products based on Group Weighted-AHP (Analytic Hierarchy Process) is proposed in this paper, together with the characteristics of green products. The assessment steps of green design are also established. The results are illustrated via the assessment of a refrigerator design.
Instrumental Analysis in Environmental Chemistry - Gas Phase Detection Systems
ERIC Educational Resources Information Center
Stedman, Donald H.; Meyers, Philip A.
1974-01-01
Discusses advances made in chemical analysis instrumentation used in environmental monitoring. This first of two articles is concerned with analytical instrumentation in which detection and dispersion depend ultimately on the properties of gaseous molecules. (JR)
MANAGING UNCERTAINTY IN ENVIRONMENTAL DECISIONS
Many environmental decision makers and practitioners worldwide assume that the quality of data pertaining to a contaminated site is primarily determined by the nature of thhe analytical chemistry methods used to collect information. This assumption, which diminishes the importan...
Wise, Stephen A; Poster, Dianne L; Kucklick, John R; Keller, Jennifer M; Vanderpol, Stacy S; Sander, Lane C; Schantz, Michele M
2006-10-01
For the past 25 years the National Institute of Standards and Technology (NIST) has developed certified reference materials (CRMs), known as standard reference materials (SRMs), for determination of organic contaminants in environmental matrices. Assignment of certified concentrations has usually been based on combining results from two or more independent analytical methods. The first-generation environmental-matrix SRMs were issued with certified concentrations for a limited number (5 to 10) of polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs). Improvements in the analytical certification approach significantly expanded the number and classes of contaminants determined. Environmental-matrix SRMs currently available include air and diesel particulate matter, coal tar, marine and river sediment, mussel tissue, fish oil and tissue, and human serum, with concentrations typically assigned for 50 to 90 organic contaminants, for example PAHs, nitro-substituted PAHs, PCBs, chlorinated pesticides, and polybrominated diphenyl ethers (PBDEs).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
This purpose of this report is to summarize the activities of the Analytical Chemistry Laboratory (ACL) at Argonne National Laboratory (ANL) for Fiscal Year 1990. The ACL has four technical groups -- Chemical Analysis, Instrumental Analysis, Organic Analysis, and Environmental Analysis. The Chemical Analysis Group uses wet-chemical and instrumental methods for elemental, compositional, and isotopic analyses of solid, liquid, and gaseous samples and provides specialized analytical services. The Instrumental Analysis Group uses nuclear counting techniques in radiochemical analyses over a wide range of sample types from low-level environmental samples to samples of high radioactivity. The Organic Analysis Group uses amore » number of complementary techniques to separate and to quantitatively and qualitatively analyze complex organic mixtures and compounds at the trace level, including synthetic fuels, toxic substances, fossil-fuel residues and emissions, pollutants, biologically active compounds, pesticides, and drugs. The Environmental Analysis Group performs analyses of inorganic environmental and hazardous waste and coal samples.« less
A new hypervolume approach for assessing environmental risks
Denys Yemshanov; Frank H. Koch; Bo Lu; Ronald Fournier; Gericke Cook; Jean J. Turgeon
2017-01-01
Assessing risks of uncertain but potentially damaging events, such as environmental disturbances, disease outbreaks and pest invasions, is a key analytical step that informs subsequent decisions about how to respond to these events. We present a continuous risk measure that can be used to assess and prioritize environmental risks from uncertain data in a geographical...
ERIC Educational Resources Information Center
Freedman, Eric
2004-01-01
Uzbekistan faces severe ecological problems including the rapidly shrinking Aral Sea, desertification, residues of biochemical weapons, and environmentally related respiratory disease. Even so, the country's print and broadcast media do little in-depth or analytical reporting on environmental issues, nor are journalists trained to cover such…
Berton, Paula; Lana, Nerina B; Ríos, Juan M; García-Reyes, Juan F; Altamirano, Jorgelina C
2016-01-28
Green chemistry principles for developing methodologies have gained attention in analytical chemistry in recent decades. A growing number of analytical techniques have been proposed for determination of organic persistent pollutants in environmental and biological samples. In this light, the current review aims to present state-of-the-art sample preparation approaches based on green analytical principles proposed for the determination of polybrominated diphenyl ethers (PBDEs) and metabolites (OH-PBDEs and MeO-PBDEs) in environmental and biological samples. Approaches to lower the solvent consumption and accelerate the extraction, such as pressurized liquid extraction, microwave-assisted extraction, and ultrasound-assisted extraction, are discussed in this review. Special attention is paid to miniaturized sample preparation methodologies and strategies proposed to reduce organic solvent consumption. Additionally, extraction techniques based on alternative solvents (surfactants, supercritical fluids, or ionic liquids) are also commented in this work, even though these are scarcely used for determination of PBDEs. In addition to liquid-based extraction techniques, solid-based analytical techniques are also addressed. The development of greener, faster and simpler sample preparation approaches has increased in recent years (2003-2013). Among green extraction techniques, those based on the liquid phase predominate over those based on the solid phase (71% vs. 29%, respectively). For solid samples, solvent assisted extraction techniques are preferred for leaching of PBDEs, and liquid phase microextraction techniques are mostly used for liquid samples. Likewise, green characteristics of the instrumental analysis used after the extraction and clean-up steps are briefly discussed. Copyright © 2015 Elsevier B.V. All rights reserved.
ANALYTICAL METHODS AND QUALITY ASSURANCE CRITERIA FOR LC/ES/MS DETERMINATION OF PFOS IN FISH
PFOS, perfluorooctanesulfonate, has recently received much attention from environmental researchers. Previous analytical methods were based upon complexing with a strong ion-pairing reagent and extraction into MTBE. Detection was done on a concentrate using negative ion LC/ES/MS/...
40 CFR 600.108-78 - Analytical gases.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 29 2010-07-01 2010-07-01 false Analytical gases. 600.108-78 Section 600.108-78 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) ENERGY POLICY FUEL ECONOMY AND CARBON-RELATED EXHAUST EMISSIONS OF MOTOR VEHICLES Fuel Economy Regulations for 1978 and Later...
The broad topic of biomarker research has an often-overlooked component: the documentation and interpretation of the surrounding chemical environment and other meta-data, especially from visualization, analytical, and statistical perspectives (Pleil et al. 2014; Sobus et al. 2011...
There have been a number of revolutionary developments during the past decade that have led to a much more comprehensive understanding of per- and polyfluoroalkyl substances (PFASs) in the environment. Improvements in analytical instrumentation have made liquid chromatography tri...
ANALYTICAL METHODS NECESSARY TO IMPLEMENT RISK-BASED CRITERIA FOR CHEMICALS IN MUNICIPAL SLUDGE
The Ambient Water Quality Criteria that were promulgated by the U.S. Environmental Protection Agency in 1980 included water concentration levels which, for many pollutants, were so low as to be unmeasurable by standard analytical methods. Criteria for controlling toxics in munici...
Heterogeneous photo-oxidation of pesticides and its implication to their environmental fate
NASA Astrophysics Data System (ADS)
Dubowski, Y.
2014-12-01
The environmental fate and impact of pesticides strongly depend on their post application degradation processes. While most existing knowledge on pesticides degradation refers to processes within bulk soil and water, applied pesticides may remain on treated surfaces (and on airborn particles) for long duration, exposed to atmospheric oxidants and solar radiation. The resulting photo-oxidation processes may have significant effect on their fate, especially in semiarid regions where pesticide applications take place during the long dry season and targeted irrigation is common. Here we present our studies on heterogeneous photo-oxidation of few commonly used pesticides (e.g., cypermethrin, methyl parathion, and chlorpyrifos), using novel laboratory setups enabling simultaneous monitoring of both phases. Experiments focused on kinetics, quantum yields, and identification of gaseous and condensed products. In addition, the reactivity of the selected pesticides was investigated as a function of their matrix (analytical vs. commercial formula), their phase (thin film vs. airborne aerosols), and the substrate they are sorbed on (leaf, soil, and glass). Complimentarily to these laboratory studies, field measurements of selected pesticides concentrations in few streams in northern Israel during the first rain events were also conducted and showed the important role of surface processes on these pesticides fate and transport in semi-arid climate.
Hanford Site Environmental Report for Calendar Year 2005
DOE Office of Scientific and Technical Information (OSTI.GOV)
Poston, Ted M.; Hanf, Robert W.; Dirkes, Roger L.
This report, published annually since 1958, includes information and summary analytical data that (1) provide an overview of activities at the Hanford Site during calendar year 2005; (2) demonstrate the site's compliance with applicable federal, state, and local environmental laws and regulations, executive orders, and U.S. Department of Energy (DOE) policies and directives; (3) characterize Hanford Site environmental management performance; and (4) highlight significant environmental programs.
Hanford Site Environmental Report for Calendar Year 2004
DOE Office of Scientific and Technical Information (OSTI.GOV)
Poston, Ted M.; Hanf, Robert W.; Dirkes, Roger L.
This report, published annually since 1958, includes information and summary analytical data that (1) provide an overview of activities at the Hanford Site during calendar year 2003; (2) demonstrate the site's compliance with applicable federal, state, and local environmental laws and regulations, executive orders, and U.S. Department of Energy (DOE) policies and directives; (3) characterize Hanford Site environmental management performance; and (4) highlight significant environmental programs.
Karlowatz, M; Kraft, M; Mizaikoff, B
2004-05-01
Attenuated total reflection mid-infrared spectroscopy is applied for simultaneous detection and quantification of the environmentally relevant analytes benzene, toluene, and the three xylene isomers. The analytes are enriched into a thin polymer membrane coated onto the surface of an internal reflection waveguide, which is exposed to the aqueous sample. Direct detection of analytes permeating into the polymer coating is performed by utilizing evanescent field spectroscopy in the fingerprint range (>10 microm) of the mid-infrared (MIR) spectrum (3-20 microm) without additional sample preparation. All investigated compounds are characterized by well-separated absorption features in the evaluated wavelength regime. Hence, data evaluation was performed by integration of the respective absorption peaks. Limits of detection lower than 20 ppb (v/v) for all xylene isomers, 45 ppb (v/v) for benzene, and 80 ppb (v/v) for toluene have been achieved. The straightforward experimental setup and the achieved detection limits for these environmentally relevant volatile organic compounds in the low-ppb concentration range reveal a substantial potential of MIR evanescent field sensing devices for on-line in situ environmental analysis.
Lakade, Sameer S; Borrull, Francesc; Furton, Kenneth G; Kabir, Abuzar; Marcé, Rosa Maria; Fontanals, Núria
2016-07-22
This paper describes for the first time the use of a new extraction technique, based on fabric phase sorptive extraction (FPSE). This new mode proposes the extraction of the analytes in dynamic mode in order to reduce the extraction time. Dynamic fabric phase sorptive extraction (DFPSE) followed by liquid chromatography-tandem mass spectrometry was evaluated for the extraction of a group of pharmaceuticals and personal care products (PPCPs) from environmental water samples. Different parameters affecting the extraction were optimized and best conditions were achieved when 50mL of sample at pH 3 was passed through 3 disks and analytes retained were eluted with 10mL of ethyl acetate. The recoveries were higher than 60% for most of compounds with the exception of the most polar ones (between 8% and 38%). The analytical method was validated with environmental samples such as river water and effluent and influent wastewater, and good performance was obtained. The analysis of samples revealed the presence of some PPCPs at low ngL(-1) concentrations. Copyright © 2016 Elsevier B.V. All rights reserved.
Bratkowska, D; Fontanals, N; Cormack, P A G; Borrull, F; Marcé, R M
2012-02-17
A monolithic, hydrophilic stir bar coating based upon a copolymer of methacrylic acid and divinylbenzene [poly(MAA-co-DVB)] was synthesised and evaluated as a new polymeric phase for the stir bar sorptive extraction (SBSE) of polar compounds from complex environmental water samples. The experimental conditions for the extraction and liquid desorption in SBSE were optimised. Liquid chromatography-triple quadrupole mass spectrometry (LC-MS/MS) was used for the determination of a group of polar pharmaceuticals in environmental water matrices. The extraction performance of the poly(MAA-co-DVB) stir bar was compared to the extraction performance of a commercially available polydimethylsiloxane stir bar; it was found that the former gave rise to significantly higher extraction efficiency of polar analytes (% recovery values near to 100% for most of the studied analytes) than the commercial product. The developed method was applied to determine the studied analytes at low ng L⁻¹ in different complex environmental water samples. Copyright © 2011 Elsevier B.V. All rights reserved.
Huerta, B; Rodríguez-Mozaz, S; Barceló, D
2012-11-01
The presence of pharmaceuticals in the aquatic environment is an ever-increasing issue of concern as they are specifically designed to target specific metabolic and molecular pathways in organisms, and they may have the potential for unintended effects on nontarget species. Information on the presence of pharmaceuticals in biota is still scarce, but the scientific literature on the subject has established the possibility of bioaccumulation in exposed aquatic organisms through other environmental compartments. However, few studies have correlated both bioaccumulation of pharmaceutical compounds and the consequent effects. Analytical methodology to detect pharmaceuticals at trace quantities in biota has advanced significantly in the last few years. Nonetheless, there are still unresolved analytical challenges associated with the complexity of biological matrices, which require exhaustive extraction and purification steps, and highly sensitive and selective detection techniques. This review presents the trends in the analysis of pharmaceuticals in aquatic organisms in the last decade, recent data about the occurrence of these compounds in natural biota, and the environmental implications that chronic exposure could have on aquatic wildlife.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goldstein, S.J.; Hensley, C.A.; Armenta, C.E.
1997-03-01
Recent developments in extraction chromatography have simplified the separation of americium from complex matrices in preparation for {alpha}-spectroscopy relative to traditional methods. Here we present results of procedures developed/adapted for water, air, and bioassay samples with less than 1 g of inorganic residue. Prior analytical methods required the use of a complex, multistage procedure for separation of americium from these matrices. The newer, simplified procedure requires only a single 2 mL extraction chromatographic separation for isolation of Am and lanthanides from other components of the sample. This method has been implemented on an extensive variety of `real` environmental and bioassaymore » samples from the Los Alamos area, and consistently reliable and accurate results with appropriate detection limits have been obtained. The new method increases analytical throughput by a factor of {approx}2 and decreases environmental hazards from acid and mixed-waste generation relative to the prior technique. Analytical accuracy, reproducibility, and reliability are also significantly improved over the more complex and laborious method used previously. 24 refs., 2 figs., 2 tabs.« less
Application of the epidemiological model in studying human error in aviation
NASA Technical Reports Server (NTRS)
Cheaney, E. S.; Billings, C. E.
1981-01-01
An epidemiological model is described in conjunction with the analytical process through which aviation occurrence reports are composed into the events and factors pertinent to it. The model represents a process in which disease, emanating from environmental conditions, manifests itself in symptoms that may lead to fatal illness, recoverable illness, or no illness depending on individual circumstances of patient vulnerability, preventive actions, and intervention. In the aviation system the analogy of the disease process is the predilection for error of human participants. This arises from factors in the operating or physical environment and results in errors of commission or omission that, again depending on the individual circumstances, may lead to accidents, system perturbations, or harmless corrections. A discussion of the previous investigations, each of which manifests the application of the epidemiological method, exemplifies its use and effectiveness.
Signal processing methods for in-situ creep specimen monitoring
NASA Astrophysics Data System (ADS)
Guers, Manton J.; Tittmann, Bernhard R.
2018-04-01
Previous work investigated using guided waves for monitoring creep deformation during accelerated life testing. The basic objective was to relate observed changes in the time-of-flight to changes in the environmental temperature and specimen gage length. The work presented in this paper investigated several signal processing strategies for possible application in the in-situ monitoring system. Signal processing methods for both group velocity (wave-packet envelope) and phase velocity (peak tracking) time-of-flight were considered. Although the Analytic Envelope found via the Hilbert transform is commonly applied for group velocity measurements, erratic behavior in the indicated time-of-flight was observed when this technique was applied to the in-situ data. The peak tracking strategies tested had generally linear trends, and tracking local minima in the raw waveform ultimately showed the most consistent results.
The critical domain size of stochastic population models.
Reimer, Jody R; Bonsall, Michael B; Maini, Philip K
2017-02-01
Identifying the critical domain size necessary for a population to persist is an important question in ecology. Both demographic and environmental stochasticity impact a population's ability to persist. Here we explore ways of including this variability. We study populations with distinct dispersal and sedentary stages, which have traditionally been modelled using a deterministic integrodifference equation (IDE) framework. Individual-based models (IBMs) are the most intuitive stochastic analogues to IDEs but yield few analytic insights. We explore two alternate approaches; one is a scaling up to the population level using the Central Limit Theorem, and the other a variation on both Galton-Watson branching processes and branching processes in random environments. These branching process models closely approximate the IBM and yield insight into the factors determining the critical domain size for a given population subject to stochasticity.
Selected ground-water-quality data in Pennsylvania - 1979-2006
Low, Dennis J.; Chichester, Douglas C.; Zarr, Linda F.
2009-01-01
This study, by the U.S. Geological Survey (USGS) in cooperation with the Pennsylvania Department of Environmental Protection (PADEP), provides a compilation of ground-water-quality data for a 28-year period (January 1, 1979, through December 31, 2006) based on water samples from wells and springs. The data are from 14 source agencies or programs—Borough of Carroll Valley, Chester County Health Department, Montgomery County Health Department, Pennsylvania Department of Agriculture, Pennsylvania Department of Environmental Protection 2002 Pennsylvania Water-Quality Assessment, Pennsylvania Department of Environmental Protection Agency Act 537 Sewage Facilities Program, Pennsylvania Department of Environmental Protection-Ambient and Fixed Station Network, Pennsylvania Department of Environmental Protection–North-Central Region, Pennsylvania Department of Environmental Protection–South-Central Region, Pennsylvania Drinking Water Information System, Pennsylvania Topographic and Geologic Survey, Susquehanna River Basin Commission, U.S. Environmental Protection Agency, and the U.S. Geological Survey. The ground-water-quality data from the different source agencies or programs varied in type and number of analyses; however, the analyses are represented by 11 major analyte groups: antibiotics, major ions, microorganisms (bacteria, viruses, and other microorganisms), minor ions (including trace elements), nutrients (predominantly nitrate and nitrite as nitrogen), pesticides, pharmaceuticals, radiochemicals (predominantly radon or radium), volatiles (volatile organic compounds), wastewater compounds, and water characteristics (field measurements, predominantly field pH, field specific conductance, and hardness). For the USGS and the PADEP–North-Central Region, the pesticide analyte group was broken down into fungicides, herbicides, and insecticides. Summary maps show the areal distribution of wells and springs with ground-water-quality data statewide by source agency or program. Summary data tables by source agency or program provide information on the number of wells and springs and samples collected for each of the 35 watersheds and analyte groups.The number of wells and springs sampled for ground-water-quality data varies considerably across Pennsylvania. Of the 24,772 wells and springs sampled, the greatest concentration of wells and springs is in the southeast (Berks, Bucks, Chester, Delaware, Lancaster, Montgomery, and Philadelphia Counties) and in the northwest (Erie County). The number of wells and springs sampled is relatively sparse in north-central (Cameron, Elk, Forest, McKean, Potter, and Warren Counties) Pennsylvania. Little to no data are available for approximately one-fourth of the state. Nutrients and water characteristics were the most frequently sampled major analyte groups—43,025 and 30,583 samples, respectively. Minor ions and major ions were the next most frequently sampled major analyte groups–26,972 and 13,115 samples, respectively. For the remaining 10 major analyte groups, the number of samples collected ranged from a low of 24 samples (antibiotic compounds) to a high of approximately 4,674 samples (microorganisms).The number of samples that exceeded a maximum contaminant level (MCL) or secondary maximum contaminant level (SMCL) by major analyte group also varied. Of the 4,674 samples in the microorganism analyte group, 50.2 percent had water that exceeded an MCL. Of the 4,528 samples collected and analyzed for volatile organic compounds, 23.5 percent exceeded an MCL. Other major analyte groups that frequently exceeded MCLs or SMCLs included major ions (18,343 samples and a 27.7 percent exceedence), minor ions (26,972 samples, 44.7 percent exceedence), pesticides (4,868 samples, 0.7 percent exceedence), water characteristics (30,583 samples, 19.3 percent exceedence), and radiochemicals (1,866 samples, 9.6 percent exceedence). Samples collected and analyzed for antibiotics (24 samples), fungicides (1,273 samples), herbicides (1,470 samples), insecticides (1,424 samples), nutrients (43,025 samples), pharmaceuticals (28 samples), and wastewater compounds (328 samples) had the lowest exceedences of 0.0, 2.4, 1.2, <1.0, 8.3, 0.0, and <1.0 percent, respectively.
Ko, Yi-An; Mukherjee, Bhramar; Smith, Jennifer A; Kardia, Sharon L R; Allison, Matthew; Diez Roux, Ana V
2016-11-01
There has been an increased interest in identifying gene-environment interaction (G × E) in the context of multiple environmental exposures. Most G × E studies analyze one exposure at a time, but we are exposed to multiple exposures in reality. Efficient analysis strategies for complex G × E with multiple environmental factors in a single model are still lacking. Using the data from the Multiethnic Study of Atherosclerosis, we illustrate a two-step approach for modeling G × E with multiple environmental factors. First, we utilize common clustering and classification strategies (e.g., k-means, latent class analysis, classification and regression trees, Bayesian clustering using Dirichlet Process) to define subgroups corresponding to distinct environmental exposure profiles. Second, we illustrate the use of an additive main effects and multiplicative interaction model, instead of the conventional saturated interaction model using product terms of factors, to study G × E with the data-driven exposure subgroups defined in the first step. We demonstrate useful analytical approaches to translate multiple environmental exposures into one summary class. These tools not only allow researchers to consider several environmental exposures in G × E analysis but also provide some insight into how genes modify the effect of a comprehensive exposure profile instead of examining effect modification for each exposure in isolation.
Eddhif, Balkis; Allavena, Audrey; Liu, Sylvie; Ribette, Thomas; Abou Mrad, Ninette; Chiavassa, Thierry; d'Hendecourt, Louis Le Sergeant; Sternberg, Robert; Danger, Gregoire; Geffroy-Rodier, Claude; Poinot, Pauline
2018-03-01
The present work aims at developing two LC-HRMS setups for the screening of organic matter in astrophysical samples. Their analytical development has been demonstrated on a 100-µg residue coming from the photo-thermo chemical processing of a cometary ice analog produced in laboratory. The first 1D-LC-HRMS setup combines a serially coupled columns configuration with HRMS detection. It has allowed to discriminate among different chemical families (amino acids, sugars, nucleobases and oligopeptides) in only one chromatographic run without neither a priori acid hydrolysis nor chemical derivatisation. The second setup is a dual-LC configuration which connects a series of trapping columns with analytical reverse-phase columns. By coupling on-line these two distinct LC units with a HRMS detection, high mass compounds (350
Luka, George; Ahmadi, Ali; Najjaran, Homayoun; Alocilja, Evangelyn; DeRosa, Maria; Wolthers, Kirsten; Malki, Ahmed; Aziz, Hassan; Althani, Asmaa; Hoorfar, Mina
2015-01-01
A biosensor can be defined as a compact analytical device or unit incorporating a biological or biologically derived sensitive recognition element immobilized on a physicochemical transducer to measure one or more analytes. Microfluidic systems, on the other hand, provide throughput processing, enhance transport for controlling the flow conditions, increase the mixing rate of different reagents, reduce sample and reagents volume (down to nanoliter), increase sensitivity of detection, and utilize the same platform for both sample preparation and detection. In view of these advantages, the integration of microfluidic and biosensor technologies provides the ability to merge chemical and biological components into a single platform and offers new opportunities for future biosensing applications including portability, disposability, real-time detection, unprecedented accuracies, and simultaneous analysis of different analytes in a single device. This review aims at representing advances and achievements in the field of microfluidic-based biosensing. The review also presents examples extracted from the literature to demonstrate the advantages of merging microfluidic and biosensing technologies and illustrate the versatility that such integration promises in the future biosensing for emerging areas of biological engineering, biomedical studies, point-of-care diagnostics, environmental monitoring, and precision agriculture. PMID:26633409
Fiber optic evanescent wave biosensor
NASA Astrophysics Data System (ADS)
Duveneck, Gert L.; Ehrat, Markus; Widmer, H. M.
1991-09-01
The role of modern analytical chemistry is not restricted to quality control and environmental surveillance, but has been extended to process control using on-line analytical techniques. Besides industrial applications, highly specific, ultra-sensitive biochemical analysis becomes increasingly important as a diagnostic tool, both in central clinical laboratories and in the doctor's office. Fiber optic sensor technology can fulfill many of the requirements for both types of applications. As an example, the experimental arrangement of a fiber optic sensor for biochemical affinity assays is presented. The evanescent electromagnetic field, associated with a light ray guided in an optical fiber, is used for the excitation of luminescence labels attached to the biomolecules in solution to be analyzed. Due to the small penetration depth of the evanescent field into the medium, the generation of luminescence is restricted to the close proximity of the fiber, where, e.g., the luminescent analyte molecules combine with their affinity partners, which are immobilized on the fiber. Both cw- and pulsed light excitation can be used in evanescent wave sensor technology, enabling the on-line observation of an affinity assay on a macroscopic time scale (seconds and minutes), as well as on a microscopic, molecular time scale (nanoseconds or microseconds).
Biosensor technology: technology push versus market pull.
Luong, John H T; Male, Keith B; Glennon, Jeremy D
2008-01-01
Biosensor technology is based on a specific biological recognition element in combination with a transducer for signal processing. Since its inception, biosensors have been expected to play a significant analytical role in medicine, agriculture, food safety, homeland security, environmental and industrial monitoring. However, the commercialization of biosensor technology has significantly lagged behind the research output as reflected by a plethora of publications and patenting activities. The rationale behind the slow and limited technology transfer could be attributed to cost considerations and some key technical barriers. Analytical chemistry has changed considerably, driven by automation, miniaturization, and system integration with high throughput for multiple tasks. Such requirements pose a great challenge in biosensor technology which is often designed to detect one single or a few target analytes. Successful biosensors must be versatile to support interchangeable biorecognition elements, and in addition miniaturization must be feasible to allow automation for parallel sensing with ease of operation at a competitive cost. A significant upfront investment in research and development is a prerequisite in the commercialization of biosensors. The progress in such endeavors is incremental with limited success, thus, the market entry for a new venture is very difficult unless a niche product can be developed with a considerable market volume.
Hurtado-Sánchez, María Del Carmen; Lozano, Valeria A; Rodríguez-Cáceres, María Isabel; Durán-Merás, Isabel; Escandar, Graciela M
2015-03-01
An eco-friendly strategy for the simultaneous quantification of three emerging pharmaceutical contaminants is presented. The proposed analytical method, which involves photochemically induced fluorescence matrix data combined with second-order chemometric analysis, was used for the determination of carbamazepine, ofloxacin and piroxicam in water samples of different complexity without the need of chromatographic separation. Excitation-emission photoinduced fluorescence matrices were obtained after UV irradiation, and processed with second-order algorithms. Only one of the tested algorithms was able to overcome the strong spectral overlapping among the studied pollutants and allowed their successful quantitation in very interferent media. The method sensitivity in superficial and underground water samples was enhanced by a simple solid-phase extraction with C18 membranes, which was successful for the extraction/preconcentration of the pollutants at trace levels. Detection limits in preconcentrated (1:125) real water samples ranged from 0.04 to 0.3 ng mL(-1). Relative prediction errors around 10% were achieved. The proposed strategy is significantly simpler and greener than liquid chromatography-mass spectrometry methods, without compromising the analytical quality of the results. Copyright © 2014 Elsevier B.V. All rights reserved.
Evaluation of Resuspension from Propeller Wash in DoD Harbors
2016-09-01
Environmental Research and Development Center FANS FOV ICP-MS Finite Analytical Navier-Stoker Solver Field of View Inductively Coupled Plasma with...Model (1984) and the Finite Analytical Navier- Stoker Solver (FANS) model (Chen et al., 2003) were set up to simulate and evaluate flow velocities and...model for evaluating the resuspension potential of propeller wash by a tugboat and the FANS model for a DDG. The Finite -Analytic Navier-Stokes (FANS
The National Shipbuilding Research Program. Environmental Studies and Testing (Phase V)
2000-11-20
development of an analytical procedure for toxic organic compounds, including TBT ( tributyltin ), whose turnaround time would be in the order of minutes...Cost of the Subtask was $20,000. Subtask #33 - Turnaround Analytical Method for TBT This Subtask performed a preliminary investigation leading to the...34Quick TBT Analytical Method" that will yield reliable results in 15 minutes, a veritable breakthrough in sampling technology. The Subtask was managed by
The remarkable environmental rebound effect of electric cars: a microeconomic approach.
Font Vivanco, David; Freire-González, Jaume; Kemp, René; van der Voet, Ester
2014-10-21
This article presents a stepwise, refined, and practical analytical framework to model the microeconomic environmental rebound effect (ERE) stemming from cost differences of electric cars in terms of changes in multiple life cycle environmental indicators. The analytical framework is based on marginal consumption analysis and hybrid life cycle assessment (LCA). The article makes a novel contribution through a reinterpretation of the traditional rebound effect and methodological refinements. It also provides novel empirical results about the ERE for plug-in hybrid electric (PHE), full-battery electric (FBE), and hydrogen fuel cell (HFC) cars for Europe. The ERE is found to have a remarkable impact on product-level environmental scores. For the PHE car, the ERE causes a marginal increase in demand and environmental pressures due to a small decrease in the cost of using this technology. For FBE and HFC cars, the high capital costs cause a noteworthy decrease in environmental pressures for some indicators (negative rebound effect). The results corroborate the concern over the high influence of cost differences for environmental assessment, and they prompt sustainable consumption policies to consider markets and prices as tools rather than as an immutable background.
RUPTURES IN THE ANALYTIC SETTING AND DISTURBANCES IN THE TRANSFORMATIONAL FIELD OF DREAMS.
Brown, Lawrence J
2015-10-01
This paper explores some implications of Bleger's (1967, 2013) concept of the analytic situation, which he views as comprising the analytic setting and the analytic process. The author discusses Bleger's idea of the analytic setting as the depositary for projected painful aspects in either the analyst or patient or both-affects that are then rendered as nonprocess. In contrast, the contents of the analytic process are subject to an incessant process of transformation (Green 2005). The author goes on to enumerate various components of the analytic setting: the nonhuman, object relational, and the analyst's "person" (including mental functioning). An extended clinical vignette is offered as an illustration. © 2015 The Psychoanalytic Quarterly, Inc.
NASA Astrophysics Data System (ADS)
Yilbas, Bekir Sami; Shaukat, Mian Mobeen; Ashraf, Farhan
2017-08-01
Laser cutting of various materials including Ti-6Al-4V alloy, steel 304, Inconel 625, and alumina is carried out to assess the kerf width size variation along the cut section. The life cycle assessment is carried out to determine the environmental impact of the laser cutting in terms of the material waste during the cutting process. The kerf width size is formulated and predicted using the lump parameter analysis and it is measured from the experiments. The influence of laser output power and laser cutting speed on the kerf width size variation is analyzed using the analytical tools including scanning electron and optical microscopes. In the experiments, high pressure nitrogen assisting gas is used to prevent oxidation reactions in the cutting section. It is found that the kerf width size predicted from the lump parameter analysis agrees well with the experimental data. The kerf width size variation increases with increasing laser output power. However, this behavior reverses with increasing laser cutting speed. The life cycle assessment reveals that material selection for laser cutting is critical for the environmental protection point of view. Inconel 625 contributes the most to the environmental damages; however, recycling of the waste of the laser cutting reduces this contribution.
Environmental Geochemistry of Cerium: Applications and Toxicology of Cerium Oxide Nanoparticles
Dahle, Jessica T.; Arai, Yuji
2015-01-01
Cerium is the most abundant of rare-earth metals found in the Earth’s crust. Several Ce-carbonate, -phosphate, -silicate, and -(hydr)oxide minerals have been historically mined and processed for pharmaceutical uses and industrial applications. Of all Ce minerals, cerium dioxide has received much attention in the global nanotechnology market due to their useful applications for catalysts, fuel cells, and fuel additives. A recent mass flow modeling study predicted that a major source of CeO2 nanoparticles from industrial processing plants (e.g., electronics and optics manufactures) is likely to reach the terrestrial environment such as landfills and soils. The environmental fate of CeO2 nanoparticles is highly dependent on its physcochemical properties in low temperature geochemical environment. Though there are needs in improving the analytical method in detecting/quantifying CeO2 nanoparticles in different environmental media, it is clear that aquatic and terrestrial organisms have been exposed to CeO2 NPs, potentially yielding in negative impact on human and ecosystem health. Interestingly, there has been contradicting reports about the toxicological effects of CeO2 nanoparticles, acting as either an antioxidant or reactive oxygen species production-inducing agent). This poses a challenge in future regulations for the CeO2 nanoparticle application and the risk assessment in the environment. PMID:25625406
Environmental geochemistry of cerium: applications and toxicology of cerium oxide nanoparticles.
Dahle, Jessica T; Arai, Yuji
2015-01-23
Cerium is the most abundant of rare-earth metals found in the Earth's crust. Several Ce-carbonate, -phosphate, -silicate, and -(hydr)oxide minerals have been historically mined and processed for pharmaceutical uses and industrial applications. Of all Ce minerals, cerium dioxide has received much attention in the global nanotechnology market due to their useful applications for catalysts, fuel cells, and fuel additives. A recent mass flow modeling study predicted that a major source of CeO2 nanoparticles from industrial processing plants (e.g., electronics and optics manufactures) is likely to reach the terrestrial environment such as landfills and soils. The environmental fate of CeO2 nanoparticles is highly dependent on its physcochemical properties in low temperature geochemical environment. Though there are needs in improving the analytical method in detecting/quantifying CeO2 nanoparticles in different environmental media, it is clear that aquatic and terrestrial organisms have been exposed to CeO2 NPs, potentially yielding in negative impact on human and ecosystem health. Interestingly, there has been contradicting reports about the toxicological effects of CeO2 nanoparticles, acting as either an antioxidant or reactive oxygen species production-inducing agent). This poses a challenge in future regulations for the CeO2 nanoparticle application and the risk assessment in the environment.
ENVIRONMENTAL TECHNOLOGY VERIFICATION REPORT - 4100 VAPOR DETECTOR - ELECTRONIC SENSOR TECHNOLOGY
In July 1997, the U.S. Environmental Protection Agency conducted a demonstration of polychlorinated biphenyl (PCB) FIELD ANALYTICAL TECHNIQUES. The demonstration design was subjected to extensive review and comment by EPA's National Exposure Research Laboratory (NERL) Environmen...
ENVIRONMENTAL ISOTOPES FOR RESOLUTION OF HYDROLOGY PROBLEMS
The use of environmental isotopes as tracers in the hydrosphere is increasing as analytical instrumentation improves and more applications are discovered. There exists still misconceptions on the role of isotopes in resolving hydrology problems. Naturally occurring isotopes in th...
Adhikari, Puspa L; Wong, Roberto L; Overton, Edward B
2017-10-01
Accurate characterization of petroleum hydrocarbons in complex and weathered oil residues is analytically challenging. This is primarily due to chemical compositional complexity of both the oil residues and environmental matrices, and the lack of instrumental selectivity due to co-elution of interferences with the target analytes. To overcome these analytical selectivity issues, we used an enhanced resolution gas chromatography coupled with triple quadrupole mass spectrometry in Multiple Reaction Monitoring (MRM) mode (GC/MS/MS-MRM) to eliminate interferences within the ion chromatograms of target analytes found in environmental samples. This new GC/MS/MS-MRM method was developed and used for forensic fingerprinting of deep-water and marsh sediment samples containing oily residues from the Deepwater Horizon oil spill. The results showed that the GC/MS/MS-MRM method increases selectivity, eliminates interferences, and provides more accurate quantitation and characterization of trace levels of alkyl-PAHs and biomarker compounds, from weathered oil residues in complex sample matrices. The higher selectivity of the new method, even at low detection limits, provides greater insights on isomer and homolog compositional patterns and the extent of oil weathering under various environmental conditions. The method also provides flat chromatographic baselines for accurate and unambiguous calculation of petroleum forensic biomarker compound ratios. Thus, this GC/MS/MS-MRM method can be a reliable analytical strategy for more accurate and selective trace level analyses in petroleum forensic studies, and for tacking continuous weathering of oil residues. Copyright © 2017 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hohimer, J.P.
The use of laser-based analytical methods in nuclear-fuel processing plants is considered. The species and locations for accountability, process control, and effluent control measurements in the Coprocessing, Thorex, and reference Purex fuel processing operations are identified and the conventional analytical methods used for these measurements are summarized. The laser analytical methods based upon Raman, absorption, fluorescence, and nonlinear spectroscopy are reviewed and evaluated for their use in fuel processing plants. After a comparison of the capabilities of the laser-based and conventional analytical methods, the promising areas of application of the laser-based methods in fuel processing plants are identified.
Wroble, Julie; Frederick, Timothy; Frame, Alicia; Vallero, Daniel
2017-01-01
Established soil sampling methods for asbestos are inadequate to support risk assessment and risk-based decision making at Superfund sites due to difficulties in detecting asbestos at low concentrations and difficulty in extrapolating soil concentrations to air concentrations. Environmental Protection Agency (EPA)'s Office of Land and Emergency Management (OLEM) currently recommends the rigorous process of Activity Based Sampling (ABS) to characterize site exposures. The purpose of this study was to compare three soil analytical methods and two soil sampling methods to determine whether one method, or combination of methods, would yield more reliable soil asbestos data than other methods. Samples were collected using both traditional discrete ("grab") samples and incremental sampling methodology (ISM). Analyses were conducted using polarized light microscopy (PLM), transmission electron microscopy (TEM) methods or a combination of these two methods. Data show that the fluidized bed asbestos segregator (FBAS) followed by TEM analysis could detect asbestos at locations that were not detected using other analytical methods; however, this method exhibited high relative standard deviations, indicating the results may be more variable than other soil asbestos methods. The comparison of samples collected using ISM versus discrete techniques for asbestos resulted in no clear conclusions regarding preferred sampling method. However, analytical results for metals clearly showed that measured concentrations in ISM samples were less variable than discrete samples.
2017-01-01
Established soil sampling methods for asbestos are inadequate to support risk assessment and risk-based decision making at Superfund sites due to difficulties in detecting asbestos at low concentrations and difficulty in extrapolating soil concentrations to air concentrations. Environmental Protection Agency (EPA)’s Office of Land and Emergency Management (OLEM) currently recommends the rigorous process of Activity Based Sampling (ABS) to characterize site exposures. The purpose of this study was to compare three soil analytical methods and two soil sampling methods to determine whether one method, or combination of methods, would yield more reliable soil asbestos data than other methods. Samples were collected using both traditional discrete (“grab”) samples and incremental sampling methodology (ISM). Analyses were conducted using polarized light microscopy (PLM), transmission electron microscopy (TEM) methods or a combination of these two methods. Data show that the fluidized bed asbestos segregator (FBAS) followed by TEM analysis could detect asbestos at locations that were not detected using other analytical methods; however, this method exhibited high relative standard deviations, indicating the results may be more variable than other soil asbestos methods. The comparison of samples collected using ISM versus discrete techniques for asbestos resulted in no clear conclusions regarding preferred sampling method. However, analytical results for metals clearly showed that measured concentrations in ISM samples were less variable than discrete samples. PMID:28759607
40 CFR 87.82 - Sampling and analytical procedures for measuring smoke exhaust emissions.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 20 2011-07-01 2011-07-01 false Sampling and analytical procedures for measuring smoke exhaust emissions. 87.82 Section 87.82 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF AIR POLLUTION FROM AIRCRAFT AND AIRCRAFT ENGINES...
40 CFR 87.64 - Sampling and analytical procedures for measuring gaseous exhaust emissions.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 20 2011-07-01 2011-07-01 false Sampling and analytical procedures for measuring gaseous exhaust emissions. 87.64 Section 87.64 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF AIR POLLUTION FROM AIRCRAFT AND AIRCRAFT ENGINES...
Protein Quantification by Elemental Mass Spectrometry: An Experiment for Graduate Students
ERIC Educational Resources Information Center
Schwarz, Gunnar; Ickert, Stefanie; Wegner, Nina; Nehring, Andreas; Beck, Sebastian; Tiemann, Ruediger; Linscheid, Michael W.
2014-01-01
A multiday laboratory experiment was designed to integrate inductively coupled plasma-mass spectrometry (ICP-MS) in the context of protein quantification into an advanced practical course in analytical and environmental chemistry. Graduate students were familiar with the analytical methods employed, whereas the combination of bioanalytical assays…
The advent of new higher throughput analytical instrumentation has put a strain on interpreting and explaining the results from complex studies. Contemporary human, environmental, and biomonitoring data sets are comprised of tens or hundreds of analytes, multiple repeat measures...
The study of nanomaterials in environmental systems requires robust and specific analytical methods. Analytical methods which discriminate based on particle size and molecular composition are not widely available. Asymmetric Flow Field-Flow Fractionation (AF4) is a separation...
40 CFR 87.82 - Sampling and analytical procedures for measuring smoke exhaust emissions.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Sampling and analytical procedures for measuring smoke exhaust emissions. 87.82 Section 87.82 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF AIR POLLUTION FROM AIRCRAFT AND AIRCRAFT ENGINES...
40 CFR 87.64 - Sampling and analytical procedures for measuring gaseous exhaust emissions.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Sampling and analytical procedures for measuring gaseous exhaust emissions. 87.64 Section 87.64 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF AIR POLLUTION FROM AIRCRAFT AND AIRCRAFT ENGINES...
Several advances in the analytic element method have been made to enhance its performance and facilitate three-dimensional ground-water flow modeling in a regional aquifer setting. First, a new public domain modular code (ModAEM) has been developed for modeling ground-water flow ...
Stochastic sensing through covalent interactions
Bayley, Hagan; Shin, Seong-Ho; Luchian, Tudor; Cheley, Stephen
2013-03-26
A system and method for stochastic sensing in which the analyte covalently bonds to the sensor element or an adaptor element. If such bonding is irreversible, the bond may be broken by a chemical reagent. The sensor element may be a protein, such as the engineered P.sub.SH type or .alpha.HL protein pore. The analyte may be any reactive analyte, including chemical weapons, environmental toxins and pharmaceuticals. The analyte covalently bonds to the sensor element to produce a detectable signal. Possible signals include change in electrical current, change in force, and change in fluorescence. Detection of the signal allows identification of the analyte and determination of its concentration in a sample solution. Multiple analytes present in the same solution may be detected.
Galvão, Elson Silva; Santos, Jane Meri; Lima, Ana Teresa; Reis, Neyval Costa; Orlando, Marcos Tadeu D'Azeredo; Stuetz, Richard Michael
2018-05-01
Epidemiological studies have shown the association of airborne particulate matter (PM) size and chemical composition with health problems affecting the cardiorespiratory and central nervous systems. PM also act as cloud condensation nuclei (CNN) or ice nuclei (IN), taking part in the clouds formation process, and therefore can impact the climate. There are several works using different analytical techniques in PM chemical and physical characterization to supply information to source apportionment models that help environmental agencies to assess damages accountability. Despite the numerous analytical techniques described in the literature available for PM characterization, laboratories are normally limited to the in-house available techniques, which raises the question if a given technique is suitable for the purpose of a specific experimental work. The aim of this work consists of summarizing the main available technologies for PM characterization, serving as a guide for readers to find the most appropriate technique(s) for their investigation. Elemental analysis techniques like atomic spectrometry based and X-ray based techniques, organic and carbonaceous techniques and surface analysis techniques are discussed, illustrating their main features as well as their advantages and drawbacks. We also discuss the trends in analytical techniques used over the last two decades. The choice among all techniques is a function of a number of parameters such as: the relevant particles physical properties, sampling and measuring time, access to available facilities and the costs associated to equipment acquisition, among other considerations. An analytical guide map is presented as a guideline for choosing the most appropriated technique for a given analytical information required. Copyright © 2018 Elsevier Ltd. All rights reserved.
Monitoring Healthy Metabolic Trajectories with Nutritional Metabonomics
Collino, Sebastiano; Martin, François-Pierre J.; Kochhar, Sunil; Rezzi, Serge
2009-01-01
Metabonomics is a well established analytical approach for the analysis of physiological regulatory processes via the metabolic profiling of biofluids and tissues in living organisms. Its potential is fully exploited in the field of “nutrimetabonomics” that aims at assessing the metabolic effects of active ingredients and foods in individuals. Yet, one of the greatest challenges in nutrition research is to decipher the critical interactions between mammalian organisms and environmental factors, including the gut microbiota. “Nutrimetabonomics” is today foreseen as a powerful approach for future nutritional programs tailored at health maintenance and disease prevention. PMID:22253970
Development of advanced, continuous mild gasification process for the production of co-products
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ness, R.O. Jr.; Aulich, T.R.
1991-05-01
The current objective of the University of North Dakota Energy and Environmental Research Center (EERC) mild gasification project is to optimize reaction char and marketable liquids production on a 100-lb/hr scale using Wyodak subbituminous and Indiana No. 3 bituminous coals. Tests performed using the EERC 100-lb/hr process development unit (PDU) include a refractory-cure (Test P001), a test using petroleum coke (Test P002), and tests using Wyodak and Indiana coals. The reactor system used for the 11 PDU tests conducted to date consists of a spouted, fluid-bed carbonizer equipped with an on-line condensation train that yields three boiling point fractions ofmore » coal liquids ranging in volatility from about (77{degrees}--750{degrees}F) (25{degrees}--400{degrees}C). The September--December 1990 quarterly report described reaction conditions and the bulk of the analytical results for Tests P010 and P011. This report describes further P010 and P011 analytical work, including the generation of simulated distillation curves for liquid samples on the basis of sulfur content, using gas chromatography coupled with atomic emission detection (GC/AED) analysis. 13 figs., 3 tabs.« less
Anslan, Sten; Bahram, Mohammad; Hiiesalu, Indrek; Tedersoo, Leho
2017-11-01
High-throughput sequencing methods have become a routine analysis tool in environmental sciences as well as in public and private sector. These methods provide vast amount of data, which need to be analysed in several steps. Although the bioinformatics may be applied using several public tools, many analytical pipelines allow too few options for the optimal analysis for more complicated or customized designs. Here, we introduce PipeCraft, a flexible and handy bioinformatics pipeline with a user-friendly graphical interface that links several public tools for analysing amplicon sequencing data. Users are able to customize the pipeline by selecting the most suitable tools and options to process raw sequences from Illumina, Pacific Biosciences, Ion Torrent and Roche 454 sequencing platforms. We described the design and options of PipeCraft and evaluated its performance by analysing the data sets from three different sequencing platforms. We demonstrated that PipeCraft is able to process large data sets within 24 hr. The graphical user interface and the automated links between various bioinformatics tools enable easy customization of the workflow. All analytical steps and options are recorded in log files and are easily traceable. © 2017 John Wiley & Sons Ltd.
Analytic thinking promotes religious disbelief.
Gervais, Will M; Norenzayan, Ara
2012-04-27
Scientific interest in the cognitive underpinnings of religious belief has grown in recent years. However, to date, little experimental research has focused on the cognitive processes that may promote religious disbelief. The present studies apply a dual-process model of cognitive processing to this problem, testing the hypothesis that analytic processing promotes religious disbelief. Individual differences in the tendency to analytically override initially flawed intuitions in reasoning were associated with increased religious disbelief. Four additional experiments provided evidence of causation, as subtle manipulations known to trigger analytic processing also encouraged religious disbelief. Combined, these studies indicate that analytic processing is one factor (presumably among several) that promotes religious disbelief. Although these findings do not speak directly to conversations about the inherent rationality, value, or truth of religious beliefs, they illuminate one cognitive factor that may influence such discussions.
Medalie, Laura; Martin, Jeffrey D.
2017-08-14
Potential contamination bias was estimated for 8 nutrient analytes and 40 pesticides in stream water collected by the U.S. Geological Survey at 147 stream sites from across the United States, and representing a variety of hydrologic conditions and site types, for water years 2002–12. This study updates previous U.S. Geological Survey evaluations of potential contamination bias for nutrients and pesticides. Contamination is potentially introduced to water samples by exposure to airborne gases and particulates, from inadequate cleaning of sampling or analytic equipment, and from inadvertent sources during sample collection, field processing, shipment, and laboratory analysis. Potential contamination bias, based on frequency and magnitude of detections in field blanks, is used to determine whether or under what conditions environmental data might need to be qualified for the interpretation of results in the context of comparisons with background levels, drinking-water standards, aquatic-life criteria or benchmarks, or human-health benchmarks. Environmental samples for which contamination bias as determined in this report applies are those from historical U.S. Geological Survey water-quality networks or programs that were collected during the same time frame and according to the same protocols and that were analyzed in the same laboratory as field blanks described in this report.Results from field blanks for ammonia, nitrite, nitrite plus nitrate, orthophosphate, and total phosphorus were partitioned by analytical method; results from the most commonly used analytical method for total phosphorus were further partitioned by date. Depending on the analytical method, 3.8, 9.2, or 26.9 percent of environmental samples, the last of these percentages pertaining to all results from 2007 through 2012, were potentially affected by ammonia contamination. Nitrite contamination potentially affected up to 2.6 percent of environmental samples collected between 2002 and 2006 and affected about 3.3 percent of samples collected between 2007 and 2012. The percentages of environmental samples collected between 2002 and 2011 that were potentially affected by nitrite plus nitrate contamination were 7.3 for samples analyzed with the low-level method and 0.4 for samples analyzed with the standard-level method. These percentages increased to 14.8 and 2.2 for samples collected in 2012 and analyzed using replacement low- and standard-level methods, respectively. The maximum potentially affected concentrations for nitrite and for nitrite plus nitrate were much less than their respective maximum contamination levels for drinking-water standards. Although contamination from particulate nitrogen can potentially affect up to 21.2 percent and that from total Kjeldahl nitrogen can affect up to 16.5 percent of environmental samples, there are no critical or background levels for these substances.For total nitrogen, orthophosphate, and total phosphorus, contamination in a small percentage of environmental samples might be consequential for comparisons relative to impairment risks or background levels. At the low ends of the respective ranges of impairment risk for these nutrients, contamination in up to 5 percent of stream samples could account for at least 23 percent of measured concentrations of total nitrogen, for at least 40 or 90 percent of concentrations of orthophosphate, depending on the analytical method, and for 31 to 76 percent of concentrations of total phosphorus, depending on the time period.Twenty-six pesticides had no detections in field blanks. Atrazine with 12 and metolachlor with 11 had the highest number of detections, mostly occurring in spring or early summer. At a 99-percent level of confidence, contamination was estimated to be no greater than the detection limit in at least 98 percent of all samples for 38 of 40 pesticides. For metolachlor and atrazine, potential contamination was no greater than 0.0053 and 0.0093 micrograms per liter in 98 percent of samples. For 11 of 14 pesticides with at least one detection, the maximum potentially affected concentration of the environmental sample was less than their respective human-health or aquatic-life benchmarks. Small percentages of environmental samples had concentrations high enough that atrazine contamination potentially could account for the entire aquatic-life benchmark for acute effects on nonvascular plants, that dieldrin contamination could account for up to 100 percent of the cancer health-based screening level, or that chlorpyrifos contamination could account for 13 or 12 percent of the concentrations in the aquatic-life benchmarks for chronic effects on invertebrates or the criterion continuous concentration for chronic effects on aquatic life.
Kim, Dalho; Han, Jungho; Choi, Yongwook
2013-01-01
A method using on-line solid-phase microextraction (SPME) on a carbowax-templated fiber followed by liquid chromatography (LC) with ultraviolet (UV) detection was developed for the determination of triclosan in environmental water samples. Along with triclosan, other selected phenolic compounds, bisphenol A, and acidic pharmaceuticals were studied. Previous SPME/LC or stir-bar sorptive extraction/LC-UV for polar analytes showed lack of sensitivity. In this study, the calculated octanol-water distribution coefficient (log D) values of the target analytes at different pH values were used to estimate polarity of the analytes. The lack of sensitivity observed in earlier studies is identified as a lack of desorption by strong polar-polar interactions between analyte and solid-phase. Calculated log D values were useful to understand or predict the interaction between analyte and solid phase. Under the optimized conditions, the method detection limit of selected analytes by using on-line SPME-LC-UV method ranged from 5 to 33 ng L(-1), except for very polar 3-chlorophenol and 2,4-dichlorophenol which was obscured in wastewater samples by an interfering substance. This level of detection represented a remarkable improvement over the conventional existing methods. The on-line SPME-LC-UV method, which did not require derivatization of analytes, was applied to the determination of TCS including phenolic compounds and acidic pharmaceuticals in tap water and river water and municipal wastewater samples.
Adjustment of pesticide concentrations for temporal changes in analytical recovery, 1992–2010
Martin, Jeffrey D.; Eberle, Michael
2011-01-01
Recovery is the proportion of a target analyte that is quantified by an analytical method and is a primary indicator of the analytical bias of a measurement. Recovery is measured by analysis of quality-control (QC) water samples that have known amounts of target analytes added ("spiked" QC samples). For pesticides, recovery is the measured amount of pesticide in the spiked QC sample expressed as a percentage of the amount spiked, ideally 100 percent. Temporal changes in recovery have the potential to adversely affect time-trend analysis of pesticide concentrations by introducing trends in apparent environmental concentrations that are caused by trends in performance of the analytical method rather than by trends in pesticide use or other environmental conditions. This report presents data and models related to the recovery of 44 pesticides and 8 pesticide degradates (hereafter referred to as "pesticides") that were selected for a national analysis of time trends in pesticide concentrations in streams. Water samples were analyzed for these pesticides from 1992 through 2010 by gas chromatography/mass spectrometry. Recovery was measured by analysis of pesticide-spiked QC water samples. Models of recovery, based on robust, locally weighted scatterplot smooths (lowess smooths) of matrix spikes, were developed separately for groundwater and stream-water samples. The models of recovery can be used to adjust concentrations of pesticides measured in groundwater or stream-water samples to 100 percent recovery to compensate for temporal changes in the performance (bias) of the analytical method.
DOE Office of Scientific and Technical Information (OSTI.GOV)
P. Somasundaran
The aim of the project is to develop a knowledge base to help the design of enhanced processes for mobilizing and extracting untrapped oil. We emphasize evaluation of novel surfactant mixtures and obtaining optimum combinations of the surfactants for efficient chemical flooding EOR processes. In this regard, an understanding of the aggregate shape, size and structure is crucial since these properties govern the crude oil removal efficiency. During the three-year period, the adsorption and aggregation behavior of sugar-based surfactants and their mixtures with other types of surfactants have been studied. Sugar-based surfactants are made from renewable resources, nontoxic and biodegradable.more » They are miscible with water and oil. These environmentally benign surfactants feature high surface activity, good salinity, calcium and temperature tolerance, and unique adsorption behavior. They possess the characteristics required for oil flooding surfactants and have the potential for replacing currently used surfactants in oil recovery. A novel analytical ultracentrifugation technique has been successfully employed for the first time, to characterize the aggregate species present in mixed micellar solution due to its powerful ability to separate particles based on their size and shape and monitor them simultaneously. Analytical ultracentrifugation offers an unprecedented opportunity to obtain important information on mixed micelles, structure-performance relationship for different surfactant aggregates in solution and their role in interfacial processes. Initial sedimentation velocity investigations were conducted using nonyl phenol ethoxylated decyl ether (NP-10) to choose the best analytical protocol, calculate the partial specific volume and obtain information on sedimentation coefficient, aggregation mass of micelles. Four softwares: OptimaTM XL-A/XL-I data analysis software, DCDT+, Svedberg and SEDFIT, were compared for the analysis of sedimentation velocity experimental data. The results have been compared to that from Light Scattering. Based on the tests, Svedberg and SEDFIT analysis were chosen for further studies.« less
Increasing the value of geospatial informatics with open approaches for Big Data
NASA Astrophysics Data System (ADS)
Percivall, G.; Bermudez, L. E.
2017-12-01
Open approaches to big data provide geoscientists with new capabilities to address problems of unmatched size and complexity. Consensus approaches for Big Geo Data have been addressed in multiple international workshops and testbeds organized by the Open Geospatial Consortium (OGC) in the past year. Participants came from government (NASA, ESA, USGS, NOAA, DOE); research (ORNL, NCSA, IU, JPL, CRIM, RENCI); industry (ESRI, Digital Globe, IBM, rasdaman); standards (JTC 1/NIST); and open source software communities. Results from the workshops and testbeds are documented in Testbed reports and a White Paper published by the OGC. The White Paper identifies the following set of use cases: Collection and Ingest: Remote sensed data processing; Data stream processing Prepare and Structure: SQL and NoSQL databases; Data linking; Feature identification Analytics and Visualization: Spatial-temporal analytics; Machine Learning; Data Exploration Modeling and Prediction: Integrated environmental models; Urban 4D models. Open implementations were developed in the Arctic Spatial Data Pilot using Discrete Global Grid Systems (DGGS) and in Testbeds using WPS and ESGF to publish climate predictions. Further development activities to advance open implementations of Big Geo Data include the following: Open Cloud Computing: Avoid vendor lock-in through API interoperability and Application portability. Open Source Extensions: Implement geospatial data representations in projects from Apache, Location Tech, and OSGeo. Investigate parallelization strategies for N-Dimensional spatial data. Geospatial Data Representations: Schemas to improve processing and analysis using geospatial concepts: Features, Coverages, DGGS. Use geospatial encodings like NetCDF and GeoPackge. Big Linked Geodata: Use linked data methods scaled to big geodata. Analysis Ready Data: Support "Download as last resort" and "Analytics as a service". Promote elements common to "datacubes."
NASA Astrophysics Data System (ADS)
Dufoe, A.
2013-12-01
In 2011, I started a WordPress blog to engage more with my undergraduate education field of study - communications. Starting out with blog posts about social media, this blog's initial goal was to showcase my interest in the media as well as to blog about my first conference attendance and presentations. However, blogging turned into more than that for me. As I was pursuing a minor in Environmental Inquiry and therefore taking more Earth and environmental science classes, I learned that I love to write about environmental issues, particularly about how issues can be addressed and resolved. Because of this shift in my personal and professional interests, I began to blog about global topics such as global water consumption, environmental conservation and arctic sea ice. This change in direction was unprecedented, but helped define my online presence. Over the two years I have been writing my blog, the science posts have been the most successful, with WordPress.com users liking and reading the posts. Readers from all over the globe are brought to my blog from search engines, as shown through the analytics on the WordPress dashboard. However, the impact of my blog on others is challenging to quantify apart from the analytics, because most people do not comment on the posts. Regardless, and most importantly, my blog has changed MY perception of science. Before I started blogging about science topics, I was unaware of how complicated and connected Earth's processes are, including climate change, natural disasters, human actions and pollution. Overall, this blog has been important to me because it helped define my interests academically, leading me to apply and be accepted to a Masters program at the University of Montana starting in August 2013. The program in Environmental Science and Natural Resource Journalism umbrellas over both my training in communications and my love for the environment. Because of my personal growth through my blog, I am also motivated to create a blogging project for my Masters thesis, possibly focusing on global water issues.
Sandberg, Kristin Ingstad; Bjune, Gunnar
2007-11-01
The number of institutions, representing different groups of stakeholders and organizations, aiming to coordinate global health policy is on the rise. Yet, as each have distinct interests and priorities, the political dimension becomes an important factor in understanding how institutions work, and how the coordination at the global level affects implementation in countries. This is already a topic for research on global environmental cooperation, inciting the question if one can transfer their analytical framework to the health field. This paper combines a presentation of lessons from research on environmental regimes with a review of global immunization policies and initiatives in order to explore that possibility. The paper describes cooperation on vaccines and immunization according the concepts of institutions and regimes, as defined by international relations research. This description emphasizes efforts to fulfill transnational agreements on objectives, the different ways stakeholders organize and the dynamics of such arrangements. An account of the research practice on global environmental cooperation leads to a discussion of how one could adapt the analytical framework. The paper makes the case for the development of a research program, where the analytical approach is modified to account for the interaction between technology production and public-led institutions. The conclusion proposes a number of entry points to research that have already yielded policy-relevant knowledge in the environmental field. These include the formation of new institutions, the contribution of institutional design to effective implementation, and the interplay between vaccine initiatives and other global institutions.
ERIC Educational Resources Information Center
Kollmuss, Anja; Agyeman, Julian
2002-01-01
Describes a few of the most influential and commonly used analytical frameworks including early U.S. linear progression models; altruism, empathy, and prosocial behavior models; and sociological models. Analyzes factors that have been found to have some influence, positive or negative, on pro-environmental behavior such as demographic factors,…
Federal Register 2010, 2011, 2012, 2013, 2014
2013-07-26
... Environmental Assessment (EA) to consider leasing Federal coal in response to lease application ALES-55199 for.... A mine plan scenario will be prepared for the Federal coal resource as an analytical tool to inform... Prepare a Resource Management Plan Amendment and Associated Environmental Assessment for Coal Lease by...
Towards a Mobile Ecogenomic sensor: the Third Generation Environmental Sample Processor (3G-ESP).
NASA Astrophysics Data System (ADS)
Birch, J. M.; Pargett, D.; Jensen, S.; Roman, B.; Preston, C. M.; Ussler, W.; Yamahara, K.; Marin, R., III; Hobson, B.; Zhang, Y.; Ryan, J. P.; Scholin, C. A.
2016-02-01
Researchers are increasingly using one or more autonomous platforms to characterize ocean processes that change in both space and time. Conceptually, studying processes that change quickly both spatially and temporally seems relatively straightforward. One needs to sample in many locations synoptically over time, or follow a coherent water mass and sample it repeatedly. However, implementing either approach presents many challenges. For example, acquiring samples over days to weeks far from shore, without human intervention, requires multiple systems to work together seamlessly, and the level of autonomy, navigation and communications needed to conduct the work exposes the complexity of these requirements. We are addressing these challenges by developing a new generation of robotic systems that are primarily aimed at studies of microbial-mediated processes. As a step towards realizing this new capability, we have taken lessons learned from our second-generation Environmental Sample Processor (2G-ESP), a robotic microbiology "lab-in-a-can" and have re-engineered the system for use on a Tethys-class Long Range AUV (LRAUV). The new instrument is called the third-generation ESP (3G-ESP), and its integration with the LRAUV provides mobility and a persistent presence not seen before in microbial oceanography. The 3G-ESP autonomously filters a water sample and then either preserves that material for eventual return to a laboratory, or processes the sample in real-time for further downstream molecular analytical analyses. The 3G ESP modularizes hardware needed for the collection and preparation of a sample from subsequent molecular analyses by the use of self-contained "cartridges". Cartridges currently come in two forms: one for the preservation of a sample, and the other for onboard homogenization and handoff for downstream processing via one or more analytical devices. The 3G-ESP is designed as a stand-alone instrument, and thus could be deployed on a variety of platforms. This presentation will focus on results from early deployments of the prototype 3G-ESP/LRAUV, the challenges encountered in cartridge design, ESP/LRAUV integration, and operational capabilities that show the potential of mobile, ecogenomic sensors in the ocean sciences.
Stockwell, P. B.; Corns, W. T.
1993-01-01
Considerable attention has been drawn to the environmental levels of mercury, arsenic, selenium and antimony in the last decade. Legislative and environmental pressure has forced levels to be lowered and this has created an additional burden for analytical chemists. Not only does an analysis have to reach lower detection levels, but it also has to be seen to be correct. Atomic fluorescence detection, especially when coupled to vapour generation techniques, offers both sensitivity and specificity. Developments in the design of specified atomic fluorescence detectors for mercury, for the hydride-forming elements and also for cadmium, are described in this paper. Each of these systems is capable of analysing samples in the part per trillion (ppt) range reliably and economically. Several analytical applications are described. PMID:18924964
Analytical methodologies for aluminium speciation in environmental and biological samples--a review.
Bi, S P; Yang, X D; Zhang, F P; Wang, X L; Zou, G W
2001-08-01
It is recognized that aluminium (Al) is a potential environmental hazard. Acidic deposition has been linked to increased Al concentrations in natural waters. Elevated levels of Al might have serious consequences for biological communities. Of particular interest is the speciation of Al in aquatic environments, because Al toxicity depends on its forms and concentrations. In this paper, advances in analytical methodologies for Al speciation in environmental and biological samples during the past five years are reviewed. Concerns about the specific problems of Al speciation and highlights of some important methods are elucidated in sections devoted to hybrid techniques (HPLC or FPLC coupled with ET-AAS, ICP-AES, or ICP-MS), flow-injection analysis (FIA), nuclear magnetic resonance (27Al NMR), electrochemical analysis, and computer simulation. More than 130 references are cited.
NASA Astrophysics Data System (ADS)
Yang, Jing; Li, Jia-yuan; Qiao, Jun-qin; Cui, Shi-hai; Lian, Hong-zhen; Chen, Hong-yuan
2014-12-01
Carbon doped Fe3O4 nanoparticles (Fe3O4/C) prepared by a facile hydrothermal reaction of glucose with iron resource have been applied as magnetic solid-phase extraction (MSPE) sorbent, for the first time, to extract trace brominated flame retardants (BFRs) and pentachlorophenol (PCP) from environmental waters. Various MSPE parameters were optimized including amount of Fe3O4/C nanoparticles, pH of sample solution, enrichment factor of analytes and reusability of Fe3O4/C sorbent. The reliability of the MSPE method was evaluated by the recoveries of BFRs and PCP in spiked water samples. Good recoveries (80.0-110.0%) were achieved with the relative standard deviations range from 0.3% to 6.8%. In this paper, the extraction characteristics of Fe3O4/C sorbent were further elucidated. It is found that the adsorption process of Fe3O4/C to analytes predominates the MSPE efficiency. There is hybrid hydrophobic interaction and hydrogen bonding or dipole-dipole attraction between Fe3O4/C and analytes. Notably, the chemical components of carbon layer on the surface of Fe3O4 nanoparticles were identified by X-ray photoelectron spectroscopy and thermogravimetry-mass spectrometry, and in consequence the covalent bonds between Fe3O4 and the coated carbon have been observed. In addition, the straight influence of synthesis condition of Fe3O4/C nanoparticles including glucose concentration and hydrothermal reaction time on extraction performance for BFRs and PCP has been investigated. It is confirmed that the existence of organic carbon containing functional groups over Fe3O4/C sorbent is responsible for the MSPE extraction.
The analyst's participation in the analytic process.
Levine, H B
1994-08-01
The analyst's moment-to-moment participation in the analytic process is inevitably and simultaneously determined by at least three sets of considerations. These are: (1) the application of proper analytic technique; (2) the analyst's personally-motivated responses to the patient and/or the analysis; (3) the analyst's use of him or herself to actualise, via fantasy, feeling or action, some aspect of the patient's conflicts, fantasies or internal object relationships. This formulation has relevance to our view of actualisation and enactment in the analytic process and to our understanding of a series of related issues that are fundamental to our theory of technique. These include the dialectical relationships that exist between insight and action, interpretation and suggestion, empathy and countertransference, and abstinence and gratification. In raising these issues, I do not seek to encourage or endorse wild analysis, the attempt to supply patients with 'corrective emotional experiences' or a rationalisation for acting out one's countertransferences. Rather, it is my hope that if we can better appreciate and describe these important dimensions of the analytic encounter, we can be better prepared to recognise, understand and interpret the continual streams of actualisation and enactment that are embedded in the analytic process. A deeper appreciation of the nature of the analyst's participation in the analytic process and the dimensions of the analytic process to which that participation gives rise may offer us a limited, although important, safeguard against analytic impasse.
ERIC Educational Resources Information Center
National Academy of Sciences - National Research Council, Washington, DC. Commission on Natural Resources.
This report is one of a series prepared by the National Research Council for the U.S. Environmental Protection Agency. This report takes a critical look at the relationship of energy and the environment and focuses on three main policy questions: (1) Do environmental regulations make too great a demand on scarce resources of energy and the…
Clark, S.G.; Rutherford, M.B.; Auer, M.R.; Cherney, D.N.; Wallace, R.L.; Mattson, D.J.; Clark, D.A.; Foote, L.; Krogman, N.; Wilshusen, P.; Steelman, T.
2011-01-01
Environmental studies and environmental sciences programs in American and Canadian colleges and universities seek to ameliorate environmental problems through empirical enquiry and analytic judgment. In a companion article (Part 1) we describe the environmental program movement (EPM) and discuss factors that have hindered its performance. Here, we complete our analysis by proposing strategies for improvement. We recommend that environmental programs re-organize around three principles. First, adopt as an overriding goal the concept of human dignity-defined as freedom and social justice in healthy, sustainable environments. This clear higher-order goal captures the human and environmental aspirations of the EPM and would provide a more coherent direction for the efforts of diverse participants. Second, employ an explicit, genuinely interdisciplinary analytical framework that facilitates the use of multiple methods to investigate and address environmental and social problems in context. Third, develop educational programs and applied experiences that provide students with the technical knowledge, powers of observation, critical thinking skills and management acumen required for them to become effective professionals and leaders. Organizing around these three principles would build unity in the EPM while at the same time capitalizing on the strengths of the many disciplines and diverse local conditions involved. ?? 2011 Springer Science+Business Media, LLC.
EPA's methods for analyzing PFAS in environmental media are in various stages of development. This fact sheet summarizes EPA's analytical methods development for groundwater, surface water, wastewater, and solids, including soils, sediments, and biosolids
ENVIRONMENTAL CHEMISTRY CAREERS IN GOVERNMENT AGENCIES
Careers in chemistry and chemistry related fields can be very rewarding and enriching. Being an environmental chemist for a government agency requires a broad background in the field of chemistry. A knowledge of the operation of several analytical and preparatory instruments is...
Microbiological Detection Systems for Molecular Analysis of Environmental Water and Soil Samples
Multiple detection systems are being targeted to track various species and genotypes of pathogens found in environmental samples with the overreaching goal of developing analytical separation and detection techniques for Salmonella enterica Serovars Typhi, Cryptosporidium parvum,...
POLLUTION PREVENTION AND ENHANCEMENT OF BIODEGRADABILITY VIA ISOMER ELIMINATION IN CONSUMER PRODUCTS
The purpose of this project is to develop novel methodologies for the analysis and detection of chiral environmental contaminants. Conventional analytical techniques do not discriminate between enantiomers. By using newly developed enantioselective methods, the environmental pers...
Fractals and Spatial Methods for Mining Remote Sensing Imagery
NASA Technical Reports Server (NTRS)
Lam, Nina; Emerson, Charles; Quattrochi, Dale
2003-01-01
The rapid increase in digital remote sensing and GIS data raises a critical problem -- how can such an enormous amount of data be handled and analyzed so that useful information can be derived quickly? Efficient handling and analysis of large spatial data sets is central to environmental research, particularly in global change studies that employ time series. Advances in large-scale environmental monitoring and modeling require not only high-quality data, but also reliable tools to analyze the various types of data. A major difficulty facing geographers and environmental scientists in environmental assessment and monitoring is that spatial analytical tools are not easily accessible. Although many spatial techniques have been described recently in the literature, they are typically presented in an analytical form and are difficult to transform to a numerical algorithm. Moreover, these spatial techniques are not necessarily designed for remote sensing and GIS applications, and research must be conducted to examine their applicability and effectiveness in different types of environmental applications. This poses a chicken-and-egg problem: on one hand we need more research to examine the usability of the newer techniques and tools, yet on the other hand, this type of research is difficult to conduct if the tools to be explored are not accessible. Another problem that is fundamental to environmental research are issues related to spatial scale. The scale issue is especially acute in the context of global change studies because of the need to integrate remote-sensing and other spatial data that are collected at different scales and resolutions. Extrapolation of results across broad spatial scales remains the most difficult problem in global environmental research. There is a need for basic characterization of the effects of scale on image data, and the techniques used to measure these effects must be developed and implemented to allow for a multiple scale assessment of the data before any useful process-oriented modeling involving scale-dependent data can be conducted. Through the support of research grants from NASA, we have developed a software module called ICAMS (Image Characterization And Modeling System) to address the need to develop innovative spatial techniques and make them available to the broader scientific communities. ICAMS provides new spatial techniques, such as fractal analysis, geostatistical functions, and multiscale analysis that are not easily available in commercial GIS/image processing software. By bundling newer spatial methods in a user-friendly software module, researchers can begin to test and experiment with the new spatial analysis methods and they can gauge scale effects using a variety of remote sensing imagery. In the following, we describe briefly the development of ICAMS and present application examples.
Salgueiro-González, N; Castiglioni, S; Zuccato, E; Turnes-Carou, I; López-Mahía, P; Muniategui-Lorenzo, S
2018-09-18
The problem of endocrine disrupting compounds (EDCs) in the environment has become a worldwide concern in recent decades. Besides their toxicological effects at low concentrations and their widespread use in industrial and household applications, these pollutants pose a risk for non-target organisms and also for public safety. Analytical methods to determine these compounds at trace levels in different matrices are urgently needed. This review critically discusses trends in analytical methods for well-known EDCs like alkylphenols and bisphenol A in solid environmental matrices, including sediment and aquatic biological samples (from 2006 to 2018). Information about extraction, clean-up and determination is covered in detail, including analytical quality parameters (QA/QC). Conventional and novel analytical techniques are compared, with their advantages and drawbacks. Ultrasound assisted extraction followed by solid phase extraction clean-up is the most widely used procedure for sediment and aquatic biological samples, although softer extraction conditions have been employed for the latter. The use of liquid chromatography followed by tandem mass spectrometry has greatly increased in the last five years. The majority of these methods have been employed for the analysis of river sediments and bivalve molluscs because of their usefulness in aquatic ecosystem (bio)monitoring programs. Green, simple, fast analytical methods are now needed to determine these compounds in complex matrices. Copyright © 2018 Elsevier B.V. All rights reserved.
Tran, Ngoc Han; Chen, Hongjie; Do, Thanh Van; Reinhard, Martin; Ngo, Huu Hao; He, Yiliang; Gin, Karina Yew-Hoong
2016-10-01
A robust and sensitive analytical method was developed for the simultaneous analysis of 21 target antimicrobials in different environmental water samples. Both single SPE and tandem SPE cartridge systems were investigated to simultaneously extract multiple classes of antimicrobials. Experimental results showed that good extraction efficiencies (84.5-105.6%) were observed for the vast majority of the target analytes when extraction was performed using the tandem SPE cartridge (SB+HR-X) system under an extraction pH of 3.0. HPLC-MS/MS parameters were optimized for simultaneous analysis of all the target analytes in a single injection. Quantification of target antimicrobials in water samples was accomplished using 15 isotopically labeled internal standards (ILISs), which allowed the efficient compensation of the losses of target analytes during sample preparation and correction of matrix effects during UHPLC-MS/MS as well as instrument fluctuations in MS/MS signal intensity. Method quantification limit (MQL) for most target analytes based on SPE was below 5ng/L for surface waters, 10ng/L for treated wastewater effluents, and 15ng/L for raw wastewater. The method was successfully applied to detect and quantify the occurrence of the target analytes in raw influent, treated effluent and surface water samples. Copyright © 2016 Elsevier B.V. All rights reserved.
Kim, Chansik; Ryu, Hong-Duck; Chung, Eu Gene; Kim, Yongseok
2018-05-01
The use of antibiotics and their occurrence in the environment have received significant attention in recent years owing to the generation of antibiotic-resistant bacteria. Antibiotic residues in water near livestock farming areas should be monitored to establish effective strategies for reducing the use of veterinary antibiotics. However, environmental water contamination resulting from veterinary antibiotics has not been studied extensively. In this work, we developed an analytical method for the simultaneous determination of multiple classes of veterinary antibiotic residues in environmental water using on-line solid-phase extraction (SPE)-high performance liquid chromatography (HPLC)-high resolution mass spectrometry (HRMS). Eighteen popular antibiotics (eight classes) were selected as target analytes based on veterinary antibiotics sales in South Korea in 2015. The developed method was validated by calibration-curve linearities, precisions, relative recoveries, and method detection limits (MDLs)/limits of quantification (LOQs) of the selected antibiotics, and applied to the analysis of environmental water samples (groundwater, river water, and wastewater-treatment-plant effluent). All calibration curves exhibited r 2 > 0.995 with MDLs ranging from 0.2 to 11.9 ng/L. Relative recoveries were between 50 and 150% with coefficients of variation below 20% for all analytes (spiked at 500 ng/L) in groundwater and river water samples. Relative standard deviations (RSDs) of standard-spiked samples were lower than 7% for all antibiotics. The on-line SPE system eliminates human-based SPE errors and affords excellent method reproducibility. Amoxicillin, ampicillin, clopidol, fenbendazole, flumequine, lincomycin, sulfadiazine, and trimethoprim were detected in environmental water samples in concentrations ranging from 1.26 to 127.49 ng/L. The developed method is a reliable analytical technique for the potential routine monitoring of veterinary antibiotics. Copyright © 2018 Elsevier B.V. All rights reserved.
Tracking Matrix Effects in the Analysis of DNA Adducts of Polycyclic Aromatic Hydrocarbons
Klaene, Joshua J.; Flarakos, Caroline; Glick, James; Barret, Jennifer T.; Zarbl, Helmut; Vouros, Paul
2015-01-01
LC-MS using electrospray ionization is currently the method of choice in bio-organic analysis covering a wide range of applications in a broad spectrum of biological media. The technique is noted for its high sensitivity but one major limitation which hinders achievement of its optimal sensitivity is the signal suppression due to matrix inferences introduced by the presence of co-extracted compounds during the sample preparation procedure. The analysis of DNA adducts of common environmental carcinogens is particularly sensitive to such matrix effects as sample preparation is a multistep process which involves “contamination” of the sample due to the addition of enzymes and other reagents for digestion of the DNA in order to isolate the analyte(s). This problem is further exacerbated by the need to reach low levels of quantitation (LOQ in the ppb level) while also working with limited (2-5 μg) quantities of sample. We report here on the systematic investigation of ion signal suppression contributed by each individual step involved in the sample preparation associated with the analysis of DNA adducts of polycyclic aromatic hydrocarbon (PAH) using as model analyte dG-BaP, the deoxyguanosine adduct of benzo[a]pyrene (BaP). The individual matrix contribution of each one of these sources to analyte signal was systematically addressed as were any interactive effects. The information was used to develop a validated analytical protocol for the target biomarker at levels typically encountered in vivo using as little as 2 μg of DNA and applied to a dose response study using a metabolically competent cell line. PMID:26607319
Students' science process skill and analytical thinking ability in chemistry learning
NASA Astrophysics Data System (ADS)
Irwanto, Rohaeti, Eli; Widjajanti, Endang; Suyanta
2017-08-01
Science process skill and analytical thinking ability are needed in chemistry learning in 21st century. Analytical thinking is related with science process skill which is used by students to solve complex and unstructured problems. Thus, this research aims to determine science process skill and analytical thinking ability of senior high school students in chemistry learning. The research was conducted in Tiga Maret Yogyakarta Senior High School, Indonesia, at the middle of the first semester of academic year 2015/2016 is using the survey method. The survey involved 21 grade XI students as participants. Students were given a set of test questions consists of 15 essay questions. The result indicated that the science process skill and analytical thinking ability were relatively low ie. 30.67%. Therefore, teachers need to improve the students' cognitive and psychomotor domains effectively in learning process.