Sample records for environmental concentrations generated

  1. Nanoscale zerovalent iron (nZVI) at environmentally relevant concentrations induced multigenerational reproductive toxicity in Caenorhabditis elegans.

    PubMed

    Yang, Ying-Fei; Chen, Pei-Jen; Liao, Vivian Hsiu-Chuan

    2016-05-01

    Nanoscale zerovalent iron (nZVI) is widely used with large scale for environmental remediation for in situ or ex situ applications. The potential impact of nZVI on biota at environmentally relevant concentrations needs to be elucidated. In this study, the reproductive toxicities of three irons species: carboxymethyl cellulose (CMC)-stabilized nZVI, nanoscale iron oxide (nFe3O4), and ferrous ion (Fe(II)aq) in the soil-dwelling nematode Caenorhabditis elegans were examined. In addition, the generational transfer of reproductive toxicity of CMC-nZVI on C. elegans was investigated. The results showed that CMC-nZVI, nFe3O4, and Fe(II)aq did not cause significant mortality after 24 h exposure at the examined concentrations. Reproductive toxicity assays revealed that CMC-nZVI, nFe3O4, and Fe(II)aq significantly decreased offsprings in parental generation (F0) in accompany with the increased intracellular reactive oxygen species (ROS). Furthermore, the reproductive toxicity of CMC-nZVI at environmentally relevant concentrations was transferrable from the F0 to the F1 and F2 generations, but then recovered in the F3 and F4 generations. Further evidence showed that total irons were accumulated in the F0 and F1 generations of C. elegans after CMC-nZVI parental exposure. This study demonstrated that environmentally relevant concentrations of CMC-nZVI induced multigenerational reproductive toxicity which can be ascribed to its high production of ROS in F0 generation, toxicity of Fe(II)aq, and iron accumulation in C. elegans. Since nZVI is widely used for environmental remediation, considering the multigenerational toxicity, this study thus implicates a potential environmental risk of nZVI-induced nanotoxicity in the environment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Concentration levels of new-generation fungicides in throughfall released by foliar wash-off from vineyards.

    PubMed

    Pérez-Rodríguez, P; Soto-Gómez, D; Paradelo, M; López-Periago, J E

    2017-12-01

    The presence of agricultural pesticides in the environment and their effects on ecosystems are major concerns addressed in a significant number of articles. However, limited information is available on the pesticide concentrations released from crops. This study reports losses of new-generation fungicides by foliar wash-off from vineyards and their potential impact on the concentrations of their main active substances (AS) in surface waters. Two experimental plots devoted to vineyards were treated with various combinations of commercial new-generation fungicide formulations. Then, up to sixteen throughfall collectors were installed under the canopy. Concentrations of sixteen different AS in throughfall were determined along nine rainfall episodes. Concentrations in throughfall far exceeded the maximum permissible levels for drinking water established by the European Union regulations. Dynamics of fungicide release indicated a first-flush effect in the wash-off founding the highest concentrations of AS in the first rain episodes after application of the fungicides. This article shows that foliar spray application of commercial formulations of new-generation fungicides does not prevent the release of their AS to soil or the runoff. Concentration data obtained in this research can be valuable in supporting the assessment of environmental effects of new-generation fungicides and modeling their environmental fate. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Detection of the actinides and cesium from environmental samples

    NASA Astrophysics Data System (ADS)

    Snow, Mathew Spencer

    Detection of the actinides and cesium in the environment is important for a variety of applications ranging from environmental remediation to safeguards and nuclear forensics. The utilization of multiple different elemental concentrations and isotopic ratios together can significantly improve the ability to attribute contamination to a unique source term and/or generation process; however, the utilization of multiple elemental "signatures" together from environmental samples requires knowledge of the impact of chemical fractionation for various elements under a variety of environmental conditions (including predominantly aqueous versus arid conditions). The research reported in this dissertation focuses on three major areas: 1. Improving the understanding of actinide-mineral interactions at ultra-low concentrations. Chapter 2 reports a batch sorption and modeling study of Np(V) sorption to the mineral goethite from attomolar to micromolar concentrations. 2. Improving the detection capabilities for Thermal Ionization Mass Spectrometry (TIMS) analyses of ultra-trace cesium from environmental samples. Chapter 4 reports a new method which significantly improves the chemical yields, purification, sample processing time, and ultimately, the detection limits for TIMS analyses of femtogram quantities of cesium from a variety of environmental sample matrices. 3. Demonstrating how actinide and cesium concentrations and isotopic ratios from environmental samples can be utilized together to determine a wealth of information including environmental transport mechanisms (e.g. aqueous versus arid transport) and information on the processes which generated the original material. Chapters1, 3 and 5 demonstrate these principles using Pu, Am, Np, and Cs concentrations and isotopic ratios from contaminated soils taken near the Subsurface Disposal Area (SDA) of Idaho National Laboratory (INL) (a low level radioactive waste disposal site in southeastern Idaho).

  4. Mapping chemicals in air using an environmental CAT scanning system: evaluation of algorithms

    NASA Astrophysics Data System (ADS)

    Samanta, A.; Todd, L. A.

    A new technique is being developed which creates near real-time maps of chemical concentrations in air for environmental and occupational environmental applications. This technique, we call Environmental CAT Scanning, combines the real-time measuring technique of open-path Fourier transform infrared spectroscopy with the mapping capabilitites of computed tomography to produce two-dimensional concentration maps. With this system, a network of open-path measurements is obtained over an area; measurements are then processed using a tomographic algorithm to reconstruct the concentrations. This research focussed on the process of evaluating and selecting appropriate reconstruction algorithms, for use in the field, by using test concentration data from both computer simultation and laboratory chamber studies. Four algorithms were tested using three types of data: (1) experimental open-path data from studies that used a prototype opne-path Fourier transform/computed tomography system in an exposure chamber; (2) synthetic open-path data generated from maps created by kriging point samples taken in the chamber studies (in 1), and; (3) synthetic open-path data generated using a chemical dispersion model to create time seires maps. The iterative algorithms used to reconstruct the concentration data were: Algebraic Reconstruction Technique without Weights (ART1), Algebraic Reconstruction Technique with Weights (ARTW), Maximum Likelihood with Expectation Maximization (MLEM) and Multiplicative Algebraic Reconstruction Technique (MART). Maps were evaluated quantitatively and qualitatively. In general, MART and MLEM performed best, followed by ARTW and ART1. However, algorithm performance varied under different contaminant scenarios. This study showed the importance of using a variety of maps, particulary those generated using dispersion models. The time series maps provided a more rigorous test of the algorithms and allowed distinctions to be made among the algorithms. A comprehensive evaluation of algorithms, for the environmental application of tomography, requires the use of a battery of test concentration data before field implementation, which models reality and tests the limits of the algorithms.

  5. Solids, organic load and nutrient concentration reductions in swine waste slurry using a polyacrylamide (PAM)-aided solids flocculation treatment.

    PubMed

    Walker, Paul; Kelley, Tim

    2003-11-01

    Increased swine production results in concentration of wastes generated within a limited geographical area, which may lead to land application rates exceeding the local or regional assimilatory capacity. This may result in pollutant transfer through surface water or soil-groundwater systems, environmental degradation, and/or odor concerns. Existing swine waste pit storage and lagoon treatment technologies may be inadequate to store or treat waste prior to land application without these concerns resulting. Efficient swine waste solids separation may reduce environmental health concerns and generate a value-added bioresource (solids). This study evaluated the efficiency of a polyacrylamide (PAM) flocculant-aided solids separation treatment to reduce pollution indicator concentrations in raw (untreated) swine waste slurry. Swine waste slurry solids separation efficiency through gravity settling (sedimentation) was evaluated before and after the addition of a proprietary polymeric (PAM) flocculant. Results indicated that polymer amendments at concentrations of 62.5-750 mg/l improved slurry solids separation efficiency and significantly reduced concentrations of other associated aquatic pollution indicators in a majority of analyses conducted (33 of 50 total analyses conducted). Results also suggested that PAM-aided solids separation from swine waste slurry might facilitate further treatment and/or disposal and therefore reduce associated environmental degradation potential.

  6. Engineering and Techno-Economic Assessment | Concentrating Solar Power |

    Science.gov Websites

    performance and technology deployment, and investigates the environmental benefits and impacts of utility System (ReEDS) is a software model used to determine energy and environmental impacts. Learn more[BROKEN estimates the economic impacts of constructing and operating power generation and biofuel plants at the

  7. Modeling and Impacts of Traffic Emissions on Air Toxics Concentrations near Roadways

    EPA Science Inventory

    The dispersion formulation incorporated in the U.S. Environmental Protection Agency’s AERMOD regulatory dispersion model is used to estimate the contribution of traffic-generated emissions of select VOCs – benzene, 1,3-butadiene, toluene – to ambient air concentrations at downwin...

  8. Effect of environmentally-relevant concentrations of nonylphenol on sexual differentiation in zebrafish: a multi-generational study

    NASA Astrophysics Data System (ADS)

    Sun, Dong; Chen, Qi; He, Ning; Diao, Pan-Pan; Jia, Li-Xing; Duan, Shun-Shan

    2017-02-01

    Nonylphenol (NP) is a persistent environmental chemical that can disrupt the organism’s endocrine system, and is detected in the surface water and sea. In this study, we investigated whether NP can alter transcriptional expression of sexual differentiation-related genes. Three generations of zebrafish were exposed to 0, 2, 20 and 200 μg·L-1 of NP, and transcriptional expression of sexual differentiation genes were assessed in 10, 20 and 40 dpf in the F1 and F2 generations. Growth of zebrafish exposed to 200 μg·L-1 of NP was inhibited at 125 dpf in the F1 generation. 20 μg·L-1 of NP resulted in 80% females in the F1 generation, but had no effect on the F2 generation. In terms of the sexual differentiation genes, the transcriptional expression of cyp19a1a and esr1 genes were upregulated in 20 μg·L-1 of NP in the F1 generation. But expression of the sexual differentiation genes were not affected in the F2 generation. Overall, NP could affect sexual differentiation and gene transcriptional expression in the F1 generation. The tolerance of contaminant in the offsprings was improved at low concentration.

  9. Standard reference materials (SRMs) for determination of organic contaminants in environmental samples.

    PubMed

    Wise, Stephen A; Poster, Dianne L; Kucklick, John R; Keller, Jennifer M; Vanderpol, Stacy S; Sander, Lane C; Schantz, Michele M

    2006-10-01

    For the past 25 years the National Institute of Standards and Technology (NIST) has developed certified reference materials (CRMs), known as standard reference materials (SRMs), for determination of organic contaminants in environmental matrices. Assignment of certified concentrations has usually been based on combining results from two or more independent analytical methods. The first-generation environmental-matrix SRMs were issued with certified concentrations for a limited number (5 to 10) of polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs). Improvements in the analytical certification approach significantly expanded the number and classes of contaminants determined. Environmental-matrix SRMs currently available include air and diesel particulate matter, coal tar, marine and river sediment, mussel tissue, fish oil and tissue, and human serum, with concentrations typically assigned for 50 to 90 organic contaminants, for example PAHs, nitro-substituted PAHs, PCBs, chlorinated pesticides, and polybrominated diphenyl ethers (PBDEs).

  10. 75 FR 47591 - Environmental Impacts Statements; Notice Of Availability

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-06

    ... Thomas 559-784-1500 ext. 1164. EIS No. 20100292, Final EIS, BLM, CA, Ivanpah Solar Electric Generating System (07-AFC-5) Project, Proposal to Construct a 400-m Megawatt Concentrated Solar Power Tower, Thermal... Generation Station (GGS) Project, Proposes to Modify its Interconnection Agreement, Basin Electric Power...

  11. Pesticide Environmental Fate Research for the 21st Century: Building Bridges Between Laboratory and Field Studies at Varying Scales

    USDA-ARS?s Scientific Manuscript database

    Accurate determination of predicted environmental concentrations (PECs) is a continuing and often elusive goal of pesticide risk assessment. PECs are typically derived using simulation models that depend on laboratory generated data for key input parameters (t1/2, Koc, etc.). Model flexibility in ...

  12. Pesticide Environmental Fate Research for the 21st Century: Building Bridges Between Laboratory and Field Studies at Varying Scales

    USDA-ARS?s Scientific Manuscript database

    Accurate determination of predicted environmental concentrations (PECs) is a continuing and often elusive goal of pesticide risk assessment. PECs are typically derived using simulation models that depend on laboratory generated data for key input parameters (t1/2, Koc, etc.). Model flexibility in ev...

  13. Protein Sulfenylation: A Novel Readout of Environmental Oxidant Stress

    PubMed Central

    Wages, Phillip A.; Lavrich, Katelyn S.; Zhang, Zhenfa; Cheng, Wan-Yun; Corteselli, Elizabeth; Gold, Avram; Bromberg, Philip; Simmons, Steven O.; Samet, James M.

    2016-01-01

    Oxidative stress is a commonly cited mechanism of toxicity of environmental agents. Ubiquitous environmental chemicals such as the diesel exhaust component 1,2-naphthoquinone (1,2-NQ) induce oxidative stress by redox cycling, which generates hydrogen peroxide (H2O2). Cysteinyl thiolate residues on regulatory proteins are subjected to oxidative modification by H2O2 in physiological contexts and are also toxicological targets of oxidant stress induced by environmental contaminants. We investigated whether exposure to environmentally relevant concentrations of 1,2-NQ can induce H2O2-dependent oxidation of cysteinyl thiols in regulatory proteins as a readout of oxidant stress in human airway epithelial cells. BEAS-2B cells were exposed to 0–1000 μM 1,2-NQ for 0–30 min, and levels of H2O2 were measured by ratiometric spectrofluorometry of HyPer. H2O2-dependent protein sulfenylation was measured using immunohistochemistry, immunoblotting, and isotopic mass spectrometry. Catalase overexpression was used to investigate the relationship between H2O2 generation and protein sulfenylation in cells exposed to 1,2-NQ. Multiple experimental approaches showed that exposure to 1,2-NQ at concentrations as low as 3 μM induces H2O2-dependent protein sulfenylation in BEAS-2B cells. Moreover, the time of onset and duration of 1,2-NQ-induced sulfenylation of the regulatory proteins GAPDH and PTP1B showed significant differences. Oxidative modification of regulatory cysteinyl thiols in human lung cells exposed to relevant concentrations of an ambient air contaminant represents a novel marker of oxidative environmental stress. PMID:26605980

  14. Fathead minnow and bluegill sunfish life-stage responses to 17β-estradiol exposure in outdoor mesocosms

    USGS Publications Warehouse

    Elliott, Sarah M.; Kiesling, Richard L.; Jorgenson, Zachary G.; Rearick, Daniel C.; Schoenfuss, Heiko L.; Fredricks, Kim T.; Gaikowski, Mark P.

    2014-01-01

    Developmental and reproductive effects of 17β-estradiol (E2) exposure on two generations of fathead minnows and one generation of bluegill sunfish were assessed. Fish were exposed to E2 for six continuous weeks in outdoor mesocosms simulating natural lake environments. First generation fish were exposed while sexually mature. Second generation fathead minnows were exposed either during early development, sexual maturity, or both stages. Multiple endpoints were measured to assess effects of E2 exposure on fecundity and fish health and development. Plasma vitellogenin concentrations were highly variable in all fish. Differences in egg production timing for both species indicate differences in fecundity between females exposed to E2 and controls. First generation fathead minnows exposed to E2 had lower body condition factors and reduced secondary sexual characteristic expression by males. Only a difference in relative liver weight was observed in second generation fathead minnows. First generation bluegill males exposed to E2 had significantly smaller testes compared to controls. Although fish response was highly variable, results indicate that exposure to E2 at environmentally relevant concentrations affect fathead minnow and bluegill sunfish health and development, which may have implications for the health and sustainability of fish populations. Furthermore, exposure timing and environmental factors affect fish response to E2 exposure.

  15. Specification and prediction of nickel mobilization using artificial intelligence methods

    NASA Astrophysics Data System (ADS)

    Gholami, Raoof; Ziaii, Mansour; Ardejani, Faramarz Doulati; Maleki, Shahoo

    2011-12-01

    Groundwater and soil pollution from pyrite oxidation, acid mine drainage generation, and release and transport of toxic metals are common environmental problems associated with the mining industry. Nickel is one toxic metal considered to be a key pollutant in some mining setting; to date, its formation mechanism has not yet been fully evaluated. The goals of this study are 1) to describe the process of nickel mobilization in waste dumps by introducing a novel conceptual model, and 2) to predict nickel concentration using two algorithms, namely the support vector machine (SVM) and the general regression neural network (GRNN). The results obtained from this study have shown that considerable amount of nickel concentration can be arrived into the water flow system during the oxidation of pyrite and subsequent Acid Drainage (AMD) generation. It was concluded that pyrite, water, and oxygen are the most important factors for nickel pollution generation while pH condition, SO4, HCO3, TDS, EC, Mg, Fe, Zn, and Cu are measured quantities playing significant role in nickel mobilization. SVM and GRNN have predicted nickel concentration with a high degree of accuracy. Hence, SVM and GRNN can be considered as appropriate tools for environmental risk assessment.

  16. Medaka extended one-generation reproduction test evaluating 4-nonylphenol.

    PubMed

    Watanabe, Haruna; Horie, Yoshifumi; Takanobu, Hitomi; Koshio, Masaaki; Flynn, Kevin; Iguchi, Taisen; Tatarazako, Norihisa

    2017-12-01

    The medaka extended one-generation test (MEOGRT) was developed as a multigenerational toxicity test for chemicals, particularly endocrine-disrupting chemicals. Briefly, 3 generations of Japanese medaka (Oryzias latipes) are exposed to a chemical over a 20-wk period: 3 wk in the parental generation (F0), 15 wk in the first generation (F1), and 2 wk in the second generation (F2). The present study reports the first MEOGRT results concerning branched isomer mixtures of 4-nonylphenol (NP). Adult F0 medaka exposed to NP at 5 actual concentrations (1.27, 2.95, 9.81, 27.8, 89.4 µg/L) were unaffected in terms of reproduction, although vitellogenin in the male liver was increased dose-dependently at concentration of 2.95 µg/L and higher. In F1, in contrast, total egg (fecundity), fertile egg, and fertility decreased as NP increased; lowest-observed-effect concentrations (LOECs) for total egg, fertile egg, and fertility were 1.27, 1.27, 27.8 µg/L, respectively. In F1, but not in F0, secondary sex characteristics (i.e., anal fin papillae in males) were suppressed at 27.8 µg/L NP. Vitellogenin induction in adult male fish was slightly weaker in F1 than it was in F0, however. Gonadal sex abnormality and sex reversal occurred at 27.8 and 89.4 µg/L NP in F1 subadults. At 89.4 µg/L NP, all genotypic F1 males in breeding pairs had female phenotype, and some even demonstrated spawning. Concentrations of NP lower than 89.4 µg/L did not affect F2 survival or hatching. The highest detected NP level in environmental freshwater in Japan was approximately a half of the LOEC (1.27 µg/L for F1 fecundity); in other countries, however, environmental concentrations above the LOEC are reported, suggesting that NP may be affecting fish populations. Environ Toxicol Chem 2017;36:3254-3266. © 2017 SETAC. © 2017 SETAC.

  17. Hydrogeochemistry and microbiology of mine drainage: An update

    USGS Publications Warehouse

    Nordstrom, D. Kirk; Blowes, D.W; Ptacek, C.J.

    2015-01-01

    The extraction of mineral resources requires access through underground workings, or open pit operations, or through drillholes for solution mining. Additionally, mineral processing can generate large quantities of waste, including mill tailings, waste rock and refinery wastes, heap leach pads, and slag. Thus, through mining and mineral processing activities, large surface areas of sulfide minerals can be exposed to oxygen, water, and microbes, resulting in accelerated oxidation of sulfide and other minerals and the potential for the generation of low-quality drainage. The oxidation of sulfide minerals in mine wastes is accelerated by microbial catalysis of the oxidation of aqueous ferrous iron and sulfide. These reactions, particularly when combined with evaporation, can lead to extremely acidic drainage and very high concentrations of dissolved constituents. Although acid mine drainage is the most prevalent and damaging environmental concern associated with mining activities, generation of saline, basic and neutral drainage containing elevated concentrations of dissolved metals, non-metals, and metalloids has recently been recognized as a potential environmental concern. Acid neutralization reactions through the dissolution of carbonate, hydroxide, and silicate minerals and formation of secondary aluminum and ferric hydroxide phases can moderate the effects of acid generation and enhance the formation of secondary hydrated iron and aluminum minerals which may lessen the concentration of dissolved metals. Numerical models provide powerful tools for assessing impacts of these reactions on water quality.

  18. Estimating maquiladora hazardous waste generation on the U.S./Mexico border

    NASA Astrophysics Data System (ADS)

    Bowen, Mace M.; Kontuly, Thomas; Hepner, George F.

    1995-03-01

    Maquiladoras, manufacturing plants that primarily assemble foreign components for reexport, are located in concentrations along the northern frontier of the US/Mexico border. These plants process a wide variety of materials using modern industrial technologies within the context of developing world institutions and infrastructure. Hazardous waste generation by maquiladoras represents a critical environmental management issue because of the spatial concentration of these plants in border municipalities where the infrastructure for waste management is nonexistent or poor. These border municipalities contain rapidly increasing populations, which further stress their waste handling infrastructure capacities while exposing their populations to greater contaminant risks. Limited empirical knowledge exists concerning hazardous waste types and generation rates from maquiladorsas. There is no standard reporting method for waste generation or methodology for estimating generation rates at this time. This paper presents a method that can be used for the rapid assessment of hazardous waste generation. A first approximation of hazardous waste generation is produced for maquiladoras in the three municipalities of Nogales, Sonora, Mexicali, Baja California, and Cd. Juarez, Chihuahua, using the INVENT model developed by the World Bank. In addition, our intent is to evaluate the potential of the INVENT model for adaptation to the US/Mexico border industrial situation. The press of border industrial development, especially with the recent adoption of the NAFTA, make such assessments necessary as a basis for the environmental policy formulation and management needed in the immediate future.

  19. Characterizing the environmental impact of metals in construction and demolition waste.

    PubMed

    Yu, Danfeng; Duan, Huabo; Song, Qingbin; Li, Xiaoyue; Zhang, Hao; Zhang, Hui; Liu, Yicheng; Shen, Weijun; Wang, Jinben

    2018-05-01

    Large quantities of construction and demolition (C&D) waste are generated in China every year, but their potential environmental impacts on the surrounding areas are rarely assessed. This study focuses on metals contained in C&D waste, characterizing the metal concentrations and their related environmental risks. C&D waste samples were collected in Shenzhen City, China, from building demolition sites, renovation areas undergoing refurbishment, landfill sites, and recycling companies (all located in Shenzhen city) that produce recycled aggregate, in order to identify pollution levels of the metals As, Cd, Cr, Cu, Pb, Ni, and Zn. The results showed that (1) the metal concentrations in most demolition and renovation waste samples were below the soil environmental quality standard for agricultural purposes (SQ-Agr.) in China; (2) Cd, Cu, and Zn led to relatively higher environmental risks than other metals, especially for Zn (DM5 tile sample, 360 mg/kg; R4 tile sample, 281 mg/kg); (3) non-inert C&D waste such as wall insulation and foamed plastic had high concentrations of As and Cd, so that these materials required special attention for sound waste management; and (4) C&D waste collected from landfill sites had higher concentrations of Cd and Cu than did waste collected from demolition and refurbishment sites.

  20. The near-source impacts of diesel backup generators in urban environments

    NASA Astrophysics Data System (ADS)

    Tong, Zheming; Zhang, K. Max

    2015-05-01

    Distributed power generation, located close to consumers, plays an important role in the current and future power systems. However, its near-source impacts in complex urban environments are not well understood. In this paper, we focused on diesel backup generators that participate in demand response (DR) programs. We first improved the micro-environmental air quality simulations by employing a meteorology processor, AERMET, to generate site-specific boundary layer parameters for the Large Eddy Simulation (LES) modeling. The modeling structure was then incorporated into the CTAG model to evaluate the environmental impacts of diesel backup generators in near-source microenvironments. We found that the presence of either tall upwind or downwind building can deteriorate the air quality in the near-stack street canyons, largely due to the recirculation zones generated by the tall buildings, reducing the near-stack dispersion. Decreasing exhaust momentum ratio (stack exit velocity/ambient wind velocity) draws more exhaust into the recirculation zone, and reduces the effective stack height, which results in elevated near-ground concentrations inside downwind street canyons. The near-ground PM2.5 concentration for the worst scenarios could well exceed 100 μg m-3, posing potential health risk to people living and working nearby. In general, older diesel backup generators (i.e., Tier 1, 2 or older) without the up-to-date emission control may significantly increase the pollutant concentration in the near-source street canyons if participating in DR programs. Even generators that comply with Tier-4 standards could lead to PM hotspots if their stacks are next to tall buildings. Our study implies that the siting of diesel backup generators stacks should consider not only the interactions of fresh air intake and exhaust outlet for the building housing the backup generators, but also the dispersion of exhaust plumes in the surrounding environment.

  1. Enviromental impact of a hospital waste incineration plant in Krakow (Poland).

    PubMed

    Gielar, Agnieszka; Helios-Rybicka, Edeltrauda

    2013-07-01

    The environmental impact of a hospital waste incineration plant in Krakow was investigated. The objective of this study was to assess the degree of environmental effect of the secondary solid waste generated during the incineration process of medical waste. The analysis of pollution of the air emissions and leaching test of ashes and slag were carried out. The obtained results allowed us to conclude that (i) the hospital waste incineration plant significantly solves the problems of medical waste treatment in Krakow; (ii) the detected contaminant concentrations were generally lower than the permissible values; (iii) the generated ashes and slag contained considerable concentrations of heavy metals, mainly zinc, and chloride and sulfate anions. Ashes and slag constituted 10-15% of the mass of incinerated wastes; they are more harmful for the environment when compared with untreated waste, and after solidification they can be deposited in the hazardous waste disposal.

  2. Evaluation of environmental filtration control of engineered nanoparticles using the Harvard Versatile Engineered Nanomaterial Generation System (VENGES)

    NASA Astrophysics Data System (ADS)

    Tsai, Candace S.-J.; Echevarría-Vega, Manuel E.; Sotiriou, Georgios A.; Santeufemio, Christopher; Schmidt, Daniel; Demokritou, Philip; Ellenbecker, Michael

    2012-05-01

    Applying engineering controls to airborne engineered nanoparticles (ENPs) is critical to prevent environmental releases and worker exposure. This study evaluated the effectiveness of two air sampling and six air cleaning fabric filters at collecting ENPs using industrially relevant flame-made engineered nanoparticles generated using a versatile engineered nanomaterial generation system (VENGES), recently designed and constructed at Harvard University. VENGES has the ability to generate metal and metal oxide exposure atmospheres while controlling important particle properties such as primary particle size, aerosol size distribution, and agglomeration state. For this study, amorphous SiO2 ENPs with a 15.4 nm primary particle size were generated and diluted with HEPA-filtered air. The aerosol was passed through the filter samples at two different filtration face velocities (2.3 and 3.5 m/min). Particle concentrations as a function of particle size were measured upstream and downstream of the filters using a specially designed filter test system to evaluate filtration efficiency. Real time instruments (FMPS and APS) were used to measure particle concentration for diameters from 5 to 20,000 nm. Membrane-coated fabric filters were found to have enhanced nanoparticle collection efficiency by 20-46 % points compared to non-coated fabric and could provide collection efficiency above 95 %.

  3. Evaluation of environmental filtration control of engineered nanoparticles using the Harvard Versatile Engineered Nanomaterial Generation System (VENGES)

    PubMed Central

    Echevarría-Vega, Manuel E.; Sotiriou, Georgios A.; Santeufemio, Christopher; Schmidt, Daniel; Demokritou, Philip; Ellenbecker, Michael

    2013-01-01

    Applying engineering controls to airborne engineered nanoparticles (ENPs) is critical to prevent environmental releases and worker exposure. This study evaluated the effectiveness of two air sampling and six air cleaning fabric filters at collecting ENPs using industrially relevant flame-made engineered nanoparticles generated using a versatile engineered nanomaterial generation system (VENGES), recently designed and constructed at Harvard University. VENGES has the ability to generate metal and metal oxide exposure atmospheres while controlling important particle properties such as primary particle size, aerosol size distribution, and agglomeration state. For this study, amorphous SiO2 ENPs with a 15.4 nm primary particle size were generated and diluted with HEPA-filtered air. The aerosol was passed through the filter samples at two different filtration face velocities (2.3 and 3.5 m/min). Particle concentrations as a function of particle size were measured upstream and downstream of the filters using a specially designed filter test system to evaluate filtration efficiency. Real time instruments (FMPS and APS) were used to measure particle concentration for diameters from 5 to 20,000 nm. Membrane-coated fabric filters were found to have enhanced nanoparticle collection efficiency by 20–46 % points compared to non-coated fabric and could provide collection efficiency above 95 %. PMID:23412707

  4. Bioaccumulation and biotransformation of the beta-blocker propranolol in multigenerational exposure to Daphnia magna.

    PubMed

    Jeong, Tae-Yong; Kim, Tae-Hun; Kim, Sang Don

    2016-09-01

    Multigenerational bioaccumulation and biotransformation activity and short-term kinetics (e.g., uptake and depuration) of propranolol in Daphnia magna were investigated at environmental concentration. The body burden and the major metabolite, desisopropyl propranolol (DIP), of propranolol were quantified using LC-MS/MS at the end of each generation after exposure for 11 generations. The accumulation of propranolol in D. magna at an environmental concentration of 0.2 μg/L was not much different between the parent (F0) and the eleventh filial (F10) generation. However, at 28 μg/L, its accumulation was 1.6 times higher-up to 18.9 μg/g-in the F10 generation relative to the F0. In contrast to propranolol, DIP intensity gradually increased from F0 to F10 at 0.2 μg/L, reflecting an increase in detoxification load and biotransformation performance; no increasing trend was observed at 28 μg/L. The bioaccumulation factor (BAF) showed higher values with a lower concentration and longer period of exposure. The average values of the BAF for 21 days of long-term exposure in successive 11 generations were 440.4 ± 119.7 and 1026.5 ± 208.6 L/kg for 28 μg/L and 0.2 μg/L, respectively. These are comparable to the BAF of 192 for the short-term 72-h exposure at 28 μg/L in the parent generation. It is also recommended that future studies for pharmaceutical ingredients be conducted on drug-drug interaction and structural characteristics on the prediction of biotransformation activity and bioaccumulation rate. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Exposure to tris(1,3-dichloro-2-propyl) phosphate for Two generations decreases fecundity of zebrafish at environmentally relevant concentrations.

    PubMed

    Zhang, Yongkang; Li, Meng; Li, Shuying; Wang, Qiangwei; Zhu, Guonian; Su, Guanyong; Letcher, Robert J; Liu, Chunsheng

    2018-05-14

    Previous studies reported that exposure to environmentally relevant concentrations of TDCIPP significantly decreased the number of cumulative eggs in zebrafish, but effects on the quantity of eggs and sperms remained unknown. Therefore, in this study, effects of TDCIPP on yolk diameter, surface morphology of eggs, sperm density and total motility were evaluated. First generation (F0) zebrafish larvae (Danio rerio) were exposed to 0, 50, 500 or 5000 ng/L tris(1,3-dichloro-2-propyl) phosphate (TDCIPP) from 14 days post fertilization (dpf) to 120 dpf. The F0 generation of zebrafish were paired and F1 generation of embryos were collected and continuously exposed to the same concentrations of TDCIPP until 150 dpf. TDCIPP bioconcentration in the whole body as well as effects on survival and fecundity were evaluated in F1 generation. Exposure to TDCIPP resulted in an accumulation of the chemical and decreased survival of F1 generation of zebrafish. TDCIPP decreased cumulative production and changed surface morphology of eggs in females. In males, TDCIPP decreased total motility of sperm but did not affect sperm density. These effects on quality of egg and sperm might be responsible for the decreased hatching rates observed in cross mating experiments. Furthermore, TDCIPP exposure resulted in down-regulated gene expression related to gonadal development and maturation of germ cells in females or/and males, and the down-regulation was correlated to decreased fecundity. Taken together, the results suggested that exposure to TDCIPP could decrease the quantity of eggs and sperms by down-regulating the expression of genes related to gonadal development and maturation of germ cells in zebrafish. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. ENVIRONMENTAL TECHNOLOGY VERIFICATION REPORT - ON-SITE GENERATION OF SODIUM HYPOCHLORITE CLORTEC, DIVISION OF CAPITAL CONTROLS, CLORTEC MODEL MC100 - NSF 00/16/EPADW395

    EPA Science Inventory

    THE EPA and NSF verified the performance of the ClorTec Model MC100 System under the EPA's ETV program. The concentrated hypochlorite generator stream from the treatment system underwent a twice-daily analysis from 3/8-4/6/00. The chlorine analyses were conducted onsite in United...

  7. Life cycle assessment of second generation (2G) and third generation (3G) mobile phone networks.

    PubMed

    Scharnhorst, Wolfram; Hilty, Lorenz M; Jolliet, Olivier

    2006-07-01

    The environmental performance of presently operated GSM and UMTS networks was analysed concentrating on the environmental effects of the End-of-Life (EOL) phase using the Life Cycle Assessment (LCA) method. The study was performed based on comprehensive life cycle inventory and life cycle modelling. The environmental effects were quantified using the IMPACT2002+ method. Based on technological forecasts, the environmental effects of forthcoming mobile telephone networks were approximated. The results indicate that a parallel operation of GSM and UMTS networks is environmentally detrimental and the transition phase should be kept as short as possible. The use phase (i.e. the operation) of the radio network components account for a large fraction of the total environmental impact. In particular, there is a need to lower the energy consumption of those network components. Seen in relation to each other, UMTS networks provide an environmentally more efficient mobile communication technology than GSM networks. In assessing the EOL phase, recycling the electronic scrap of mobile phone networks was shown to have clear environmental benefits. Under the present conditions, material recycling could help lower the environmental impact of the production phase by up to 50%.

  8. Municipal solid waste generation and disposal in Robe town, Ethiopia.

    PubMed

    Erasu, Duguma; Faye, Tesfaye; Kiros, Amaha; Balew, Abel

    2018-04-20

    The amount of solid waste generated in developing countries is rising from time to time due to economic growth, change in consumer behavior and lifestyles of people. But it is hard to manage and handle the increase of solid waste with existing waste management infrastructure. Thus, the management system of solid waste is very poor and become a serious problem. The main purpose of this study is to quantify the volume of solid waste generated and investigate factors affecting generation and disposal of wastes in the study area. The result of this study indicated that total waste generated from households was about 97.092kg/day.Furthermore, the study reveals that the solid waste generation rate of the town is 0.261kg/person/day.About 57.5% of solid waste is properly disposed of to landfill site whereas the remaining 42.5% is illegally dumped at the roadsides and open fields. Implication Statement Nowadays, in developing countries there is high concentration of people in urban areas and cause for the generation of enormous concentration of municipal waste in urban areas. Therefore this finding will be important for various policy makers and town planners. It may also serve as a benchmark for the municipal authorities of the town for whom the problem is still invisible and negligible and can push environmental protection authorities to reexamine the implementation of their policies and strategies with regard to the broader issues of human and environmental health condition of town dwellers.

  9. Emergy Expenditure Among Municipal Wastewater Treatment Systems Across US

    EPA Science Inventory

    The urbanization of the modern community creates large population centers that generate concentrated wastewater. A large expenditure on wastewater treatment has to be invested to make a modern city function without human and environmental health problems. Society relies on syste...

  10. Long-Term Exposure to Environmental Concentrations of the Pharmaceutical Ethynylestradiol Causes Reproductive Failure in Fish

    PubMed Central

    Nash, Jon P.; Kime, David E.; Van der Ven, Leo T. M.; Wester, Piet W.; Brion, François; Maack, Gerd; Stahlschmidt-Allner, Petra; Tyler, Charles R.

    2004-01-01

    Heightened concern over endocrine-disrupting chemicals is driven by the hypothesis that they could reduce reproductive success and affect wildlife populations, but there is little evidence for this expectation. The pharmaceutical ethynylestradiol (EE2) is a potent endocrine modulator and is present in the aquatic environment at biologically active concentrations. To investigate impacts on reproductive success and mechanisms of disruption, we exposed breeding populations (n = 12) of zebrafish (Danio rerio) over multiple generations to environmentally relevant concentrations of EE2. Life-long exposure to 5 ng/L EE2 in the F1 generation caused a 56% reduction in fecundity and complete population failure with no fertilization. Conversely, the same level of exposure for up to 40 days in mature adults in the parental F0 generation had no impact on reproductive success. Infertility in the F1 generation after life-long exposure to 5 ng/L EE2 was due to disturbed sexual differentiation, with males having no functional testes and either undifferentiated or inter-sex gonads. These F1 males also showed a reduced vitellogenic response when compared with F0 males, indicating an acclimation to EE2 exposure. Depuration studies found only a partial recovery in reproductive capacity after 5 months. Significantly, even though the F1 males lacked functional testes, they showed male-pattern reproductive behavior, inducing the spawning act and competing with healthy males to disrupt fertilization. Endocrine disruption is therefore likely to affect breeding dynamics and reproductive success in group-spawning fish. Our findings raise major concerns about the population-level impacts for wildlife of long-term exposure to low concentrations of estrogenic endocrine disruptors. PMID:15579420

  11. Niagara Falls Storage Site environmental report for calendar year 1992, 1397 Pletcher Road, Lewiston, New York. Formerly Utilized Sites Remedial Action Program (FUSRAP)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1993-05-01

    This report describes the environmental surveillance program at the Niagara Falls Storage Site (NFSS) and provides the results for 1992. From 1944 to the present, the primary use of NFSS has been storage of radioactive residues produced as a by-product of uranium production. All onsite areas of residual radioactivity above guidelines have been remediated. Materials generated during remediation are stored onsite in the 4-ha (10-acre) waste containment structure (WCS). The WCS is a clay-lined, clay-capped, and grass-covered storage pile. The environmental surveillance program at NFSS includes sampling networks for radon concentrations in air; external gamma radiation exposure; and total uraniummore » and radium-226 concentrations in surface water, sediments, and groundwater. Several chemical parameters, including seven metals, are also routinely measured in groundwater. This surveillance program assists in fulfilling the DOE policy of measuring and monitoring effluents from DOE activities and calculating hypothetical doses. Monitoring results are compared with applicable Environmental Protection Agency (EPA) and New York State Department of Environmental Conservation (NYSDEC) standards, DOE derived concentration guides (DCGs), dose limits, and other DOE requirements. Results of environmental monitoring during 1992 indicate that levels of the parameters measured were in compliance with all but one requirement: Concentrations of iron and manganese in groundwater were above NYSDEC groundwater quality standards. However, these elements occur naturally in the soils and groundwater associated with this region. In 1992 there were no environmental occurrences or reportable quantity releases.« less

  12. Levels of metals and semimetals in sedimentary cores in Bertioga Channel, Brazil

    NASA Astrophysics Data System (ADS)

    Sartoretto, J. R.; Salaroli, A.; Figueira, R. C.

    2013-05-01

    The Baixada Santista is one of the most exploited and populated regions of São Paulo state. During the last decades, due to intense industrialization the Baixada Santista has passed through a strong process of environmental degradation. Metals in sediments are persistent, present toxicity in varied concentrations and may be deposited reaching biota habitats. In this context, high concentrations of metals represent environmental concern to costal management. Bertioga Channel is part of this complex system and is known mainly by a wide adjacent mangrove area. The channel is 25 km long, connecting the upstream region of Santos estuary to the adjacent ocean through an inlet located at the city of Bertioga. Urban development generates the concern of potential waste influx from surrounding streams, generating deposits and contaminating surface sediments along the channel, which may lead to adjacent coastal issues. The objective of this study was to characterize the concentration of the following metals at Bertioga Channel sediments: Al, As, Cd, Cr, Cu, Fe, Hg, Mn, Ni, Pb, Sc, V and Zn. Five sediment cores were sampled along the channel and analyzed. Determination of metals concentration was based on methods SW 846 US EPA 3050B and EPA 7471. High As concentrations were observed at all cores, with considerable concentration similarity between the first and second sampling points. Analytical results showed that cores Bertioga 4 and Bertioga 5 have accumulated high quantity of metals and semimetals, mainly As, Cd and Cr. Normalization of concentration values showed low contamination at the cores. Nevertheless, As and Hg values indicated moderate to significant contamination at a few sampling points. Despite of the low probability of contamination demonstrated by the normalized values, increasing at the sediment surface of Enrichment Factor (ER), Pollution Load Index (PLI) and Sediment Pollution Index (SPI) parameters were observed. Results indicate that industrialization process and environmental degradation at the region are acting for the last decades.

  13. Environmental impacts of large-scale CSP plants in northwestern China.

    PubMed

    Wu, Zhiyong; Hou, Anping; Chang, Chun; Huang, Xiang; Shi, Duoqi; Wang, Zhifeng

    2014-01-01

    Several concentrated solar power demonstration plants are being constructed, and a few commercial plants have been announced in northwestern China. However, the mutual impacts between the concentrated solar power plants and their surrounding environments have not yet been addressed comprehensively in literature by the parties involved in these projects. In China, these projects are especially important as an increasing amount of low carbon electricity needs to be generated in order to maintain the current economic growth while simultaneously lessening pollution. In this study, the authors assess the potential environmental impacts of large-scale concentrated solar power plants. Specifically, the water use intensity, soil erosion and soil temperature are quantitatively examined. It was found that some of the impacts are favorable, while some impacts are negative in relation to traditional power generation techniques and some need further research before they can be reasonably appraised. In quantitative terms, concentrated solar power plants consume about 4000 L MW(-1) h(-1) of water if wet cooling technology is used, and the collectors lead to the soil temperature changes of between 0.5 and 4 °C; however, it was found that the soil erosion is dramatically alleviated. The results of this study are helpful to decision-makers in concentrated solar power site selection and regional planning. Some conclusions of this study are also valid for large-scale photovoltaic plants.

  14. High Throughput Assays and Exposure Science (ISES annual meeting)

    EPA Science Inventory

    High throughput screening (HTS) data characterizing chemical-induced biological activity has been generated for thousands of environmentally-relevant chemicals by the US inter-agency Tox21 and the US EPA ToxCast programs. For a limited set of chemicals, bioactive concentrations r...

  15. The worth of land use: a GIS-emergy evaluation of natural and human-made capital.

    PubMed

    Mellino, Salvatore; Buonocore, Elvira; Ulgiati, Sergio

    2015-02-15

    Natural systems make their natural capital and ecosystem services available to human economy. A careful analysis of the interplay between natural and human-made capital is needed to prevent natural capital being overexploited for present economic benefits, affecting lifestyles and wellbeing of future generations. In this study, the emergy synthesis is used to evaluate the natural and the human-made capital of Campania region (southern Italy) by accounting for the environmental support directly and indirectly provided by nature to resource generation. Furthermore, geographic information system (GIS) models are integrated with the emergy accounting procedure to generate maps of the spatial patterns of both natural and human-made capital distribution. Regional storages of natural and human-made capital are identified and evaluated in emergy units (seJ). The human-made capital of the Campania region (6.29E+24seJ) results to be about 11 times higher than the natural capital (5.69E+23seJ) due to the past and present exploitation of the natural resources needed to generate it over time. Moreover, by overlaying the total natural capital map and the total human-made capital map with a map of the protected areas within the region, only the 19% of the regional natural capital appears to be concentrated within protected areas, while most of it (81%) is concentrated outside. These findings suggest that the conservation of natural resources is also necessary outside protected areas by means of suitable policies, directives and investments. The human-made capital is mainly concentrated (88%) inside non-protected areas and interacts with the local natural capital. A management of the interactions between the two categories of wealth is crucial to prevent that the growth of human-made storages degrades the natural ecosystems and the environment. The proposed emergy-GIS framework reveals to be a useful tool for environmental planning and resource management aimed to conserve and protect the regional environmental heritage. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Environmental geochemistry at Red Mountain, an unmined volcanogenic massive sulphide deposit in the Bonnifield district, Alaska Range, east-central Alaska

    USGS Publications Warehouse

    Eppinger, R.G.; Briggs, P.H.; Dusel-Bacon, C.; Giles, S.A.; Gough, L.P.; Hammarstrom, J.M.; Hubbard, B.E.

    2007-01-01

    The unmined, pyrite-rich Red Mountain (Dry Creek) deposit displays a remarkable environmental footprint of natural acid generation, high metal and exceedingly high rate earth element (REE) concentrations in surface waters. The volcanogenic massive sulphide deposit exhibits well-constrained examples of acid-generating, metal-leaching, metal-precipitation and self-mitigation (via co-precipitation, dilution and neutralization) processes that occur in an undisturbed natural setting, a rare occurrence in North America. Oxidative dissolution of pyrite and associated secondary reactions under near-surface oxidizing conditions are the primary causes for the acid generation and metal leaching. The deposit is hosted in Devonian to Mississippian felsic metavolcanic rocks of the Mystic Creek Member of the Totatlanika Schist. Water samples with the lowest pH (many below 3.5), highest specific conductance (commonly >2500 ??S/cm) and highest major- and trace-element concentrations are from springs and streams within the quartz-sericite-pyrite alteration zone. Aluminum, Cd, Co, Cu, Fe, Mn, Ni, Pb, Y, Zn and, particularly, the REEs are found in high concentrations, ranging across four orders of magnitude. Waters collected upstream from the alteration zone have near-neutral pH, lower specific conductance (370 to 830 ??S/cm), lower metal concentrations and measurable alkalinities. Water samples collected downstream of the alteration zone have pH and metal concentrations intermediate between these two extremes. Stream sediments are anomalous in Zn, Pb, S, Fe, Cu, As, Co, Sb and Cd relative to local and regional background abundances. Red Mountain Creek and its tributaries do not, and probably never have, supported significant aquatic life. ?? 2007 AAG/ Geological Society of London.

  17. Environmental analysis of a construction and demolition waste recycling plant in Portugal--Part II: Environmental sensitivity analysis.

    PubMed

    Coelho, André; de Brito, Jorge

    2013-01-01

    Part I of this study deals with the primary energy consumption and CO(2)eq emissions of a 350 tonnes/h construction and demolition waste (CDW) recycling facility, taking into account incorporated, operation and transportation impacts. It concludes that the generated impacts are mostly concentrated in operation and transportation, and that the impacts prevented through material recycling can be up to one order of magnitude greater than those generated. However, the conditions considered for the plant's operation and related transportation system may, and very likely will, vary in the near future, which will affect its environmental performance. This performance is particularly affected by the plant's installed capacity, transportation fuel and input CDW mass. In spite of the variations in overall primary energy and CO(2)eq balances, the prevented impacts are always higher than the generated impacts, at least by a factor of three and maybe even as high as 16 times in particular conditions. The analysis indicates environmental performance for variations in single parameters, except for the plant's capacity, which was considered to vary simultaneously with all the others. Extreme best and worst scenarios were also generated to fit the results into extreme limits. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. Variation of nitric oxide concentration before the Kobe earthquake, Japan

    NASA Astrophysics Data System (ADS)

    Matsuda, Tokiyoshi; Ikeya, Motoji

    The variation and spatial distribution of the atmospheric concentration of nitric oxide (NO) near the epicenter of the Kobe earthquake at local time 5:46, 17 January 1995 have been studied using data at monitoring stations of the local environmental protection agencies. The concentration of NO 8 days before the earthquake was 199 ppb, about ten times larger than the average peak level of 19 ppb, accompanying the retrospectively reported precursory earthquake lightning, increase of radon concentration in well water and of the counts of electromagnetic (EM) signals. The reported thunderstorm over the Japan Sea about 150 km away was too far for the thunder-generated NO to reach the epicenter area. The concentration of NO was also found to have increased before other major earthquakes (Magnitude>5.0) in Japan. Atmospheric discharges by electric charges or EM waves before earthquakes may have generated NO. However, the generation of NO by human activities of fuel combustion soon after holidays is enormously high every year, which makes it difficult to clearly link the increase with the earthquakes. The increase soon after the earthquake due to traffic jams is clear. The concentration of NO should be monitored at a several sites away from human activities as background data of natural variation and to study its generation at a seismic area before a large earthquake.

  19. Bacterial Cellular Materials as Precursors of Chloroform

    NASA Astrophysics Data System (ADS)

    Wang, J.; Ng, T.; Zhang, Q.; Chow, A. T.; Wong, P.

    2011-12-01

    The environmental sources of chloroform and other halocarbons have been intensively investigated because their effects of stratospheric ozone destruction and environmental toxicity. It has been demonstrated that microorganisms could facilitate the biotic generation of chloroform from natural organic matters in soil, but whether the cellular materials itself also serves as an important precursor due to photo-disinfection is poorly known. Herein, seven common pure bacterial cultures (Acinetobacter junii, Aeromonas hydrophila, Bacillus cereus, Bacillus substilis, Escherichia coli, Shigella sonnei, Staphylococcus sciuri) were chlorinated to evaluate the yields of chloroform, dibromochloromethane, dichlorobromomethane, and bromoform. The effects of bromide on these chemical productions and speciations were also investigated. Results showed that, on average, 5.64-36.42 μg-chloroform /mg-C were generated during the bacterial chlorination, in similar order of magnitude to that generated by humic acid (previously reported as 78 μg-chloroform/mg-C). However, unlike humic acid in water chlorination, chloroform concentration did not simply increase with the total organic carbon in water mixture. In the presence of bromide, the yield of brominated species responded linearly to the bromide concentration. This study provides useful information to understand the contributions of chloroform from photodisinfection processes in coastal environments.

  20. Pollution monitoring of puget sound with honey bees.

    PubMed

    Bromenshenk, J J; Carlson, S R; Simpson, J C; Thomas, J M

    1985-02-08

    To show that honey bees are effective biological monitors of environmental contaminants over large geographic areas, beekeepers of Puget Sound, Washington, collected pollen and bees for chemical analysis. From these data, kriging maps of arsenic, cadmium, and fluoride were generated. Results, based on actual concentrations of contaminants in bee tissues, show that the greatest concentrations of contaminants occur close to Commencement Bay and that honey bees are effective as large-scale monitors.

  1. Modelling of environmental impacts of solid waste landfilling within the life-cycle analysis program EASEWASTE.

    PubMed

    Kirkeby, Janus T; Birgisdottir, Harpa; Bhander, Gurbakash Singh; Hauschild, Michael; Christensen, Thomas H

    2007-01-01

    A new computer-based life-cycle assessment model (EASEWASTE) has been developed to evaluate resource and environmental consequences of solid waste management systems. This paper describes the landfilling sub-model used in the life-cycle assessment program EASEWASTE, and examines some of the implications of this sub-model. All quantities and concentrations of leachate and landfill gas can be modified by the user in order to bring them in agreement with the actual landfill that is assessed by the model. All emissions, except the generation of landfill gas, are process specific. The landfill gas generation is calculated on the basis of organic matter in the landfilled waste. A landfill assessment example is provided. For this example, the normalised environmental effects of landfill gas on global warming and photochemical smog are much greater than the environmental effects for landfill leachate or for landfill construction. A sensitivity analysis for this example indicates that the overall environmental impact is sensitive to the gas collection efficiency and the use of the gas, but not to the amount of leachate generated, or the amount of soil or liner material used in construction. The landfill model can be used for evaluating different technologies with different liners, gas and leachate collection efficiencies, and to compare the environmental consequences of landfilling with alternative waste treatment options such as incineration or anaerobic digestion.

  2. 75 FR 54145 - Environmental Impacts Statements; Notice of Availability

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-03

    ... to Construct a Concentrated Solar Thermal Power Plant Facility, Nye County, NV, Comment Period Ends..., GENERIC--License Renewal of Nuclear Plants for Kewaunee Power Station, Supplement 40 to NUREG-1437... EIS, NRC, GA, Vogtle Electric Generating Plant Units 3 and 4, Construction and Operation, Application...

  3. Short-term effects of medetomidine on photosynthesis and protein synthesis in periphyton, epipsammon and plankton communities in relation to predicted environmental concentrations.

    PubMed

    Ohlauson, Cecilia; Eriksson, Karl Martin; Blanck, Hans

    2012-01-01

    Medetomidine is a new antifouling substance, highly effective against barnacles. As part of a thorough ecotoxicological evaluation of medetomidine, its short-term effects on algal and bacterial communities were investigated and environmental concentrations were predicted with the MAMPEC model. Photosynthesis and bacterial protein synthesis for three marine communities, viz. periphyton, epipsammon and plankton were used as effect indicators, and compared with the predicted environmental concentrations (PECs). The plankton community showed a significant decrease in photosynthetic activity of 16% at 2 mg l⁻¹ of medetomidine, which was the only significant effect observed. PECs were estimated for a harbor, shipping lane and marina environment using three different model scenarios (MAMPEC default, Baltic and OECD scenarios). The highest PEC of 57 ng l⁻¹, generated for a marina with the Baltic scenario, was at least 10,000-fold lower than the concentration that significantly decreased photosynthetic activity. It is concluded that medetomidine does not cause any acute toxic effects on bacterial protein synthesis and only small acute effects on photosynthesis at high concentrations in marine microbial communities. It is also concluded that the hazard from medetomidine on these processes is low since the effect levels are much lower than the highest PEC.

  4. A Transgenerational Endocrine Signaling Pathway in Crustacea

    PubMed Central

    LeBlanc, Gerald A.; Wang, Ying H.; Holmes, Charisse N.; Kwon, Gwijun; Medlock, Elizabeth K.

    2013-01-01

    Background Environmental signals to maternal organisms can result in developmental alterations in progeny. One such example is environmental sex determination in Branchiopod crustaceans. We previously demonstrated that the hormone methyl farnesoate could orchestrate environmental sex determination in the early embryo to the male phenotype. Presently, we identify a transcription factor that is activated by methyl farnesoate and explore the extent and significance of this transgenerational signaling pathway. Methodology/Principal Findings Several candidate transcription factors were cloned from the water flea Daphnia pulex and evaluated for activation by methyl farnesoate. One of the factors evaluated, the complex of two bHLH-PAS proteins, dappuMet and SRC, activated a reporter gene in response to methyl farnesoate. Several juvenoid compounds were definitively evaluated for their ability to activate this receptor complex (methyl farnesoate receptor, MfR) in vitro and stimulate male sex determination in vivo. Potency to activate the MfR correlated to potency to stimulate male sex determination of offspring (pyriproxyfen>methyl farnesoate>methoprene, kinoprene). Daphnids were exposed to concentrations of pyriproxyfen and physiologic responses determined over multiple generations. Survivial, growth, and sex of maternal organisms were not affected by pyriproxyfen exposure. Sex ratio among offspring (generation 2) were increasingly skewed in favor of males with increasing pyriproxyfen concentration; while, the number of offspring per brood was progressively reduced. Female generation 2 daphnids were reared to reproductive maturity in the absence of pyriproxyfen. Sex ratios of offspring (generation 3) were not affected in this pyriproxyfen lineage, however, the number of offspring per brood, again, was significantly reduced. Conclusions Results reveal likely components to a hormone/receptor signaling pathway in a crustacean that orchestrates transgenerational modifications to important population metrics (sex ratios, fecundity of females). A model is provided that describes how these signaling processes can facilitate population sustainability under normal conditions or threaten sustainability when perturbed by environmental chemicals. PMID:23613913

  5. Demand response, behind-the-meter generation and air quality.

    PubMed

    Zhang, Xiyue; Zhang, K Max

    2015-02-03

    We investigated the implications of behind-the-meter (BTM) generation participating in demand response (DR) programs. Specifically, we evaluated the impacts of NOx emissions from BTM generators enrolled in the New York Independent System Operator (NYISO)'s reliability-based DR programs. Through analyzing the DR program enrollment data, DR event records, ozone air quality monitoring data, and emission characteristics of the generators, we found that the emissions from BTM generators very likely contribute to exceedingly high ozone concentrations in the Northeast Corridor region, and very likely account for a substantial fraction of total NOx emissions from electricity generation. In addition, a companion study showed that the emissions from BTM generators could also form near-source particulate matter (PM) hotspots. The important policy implications are that the absence of up-to-date regulations on BTM generators may offset the current efforts to reduce the emissions from peaking power plants, and that there is a need to quantify the environmental impacts of DR programs in designing sound policies related to demand-side resources. Furthermore, we proposed the concept of "Green" DR resources, referring to those that not only provide power systems reliability services, but also have verifiable environmental benefits or minimal negative environmental impacts. We argue that Green DR resources that are able to maintain resource adequacy and reduce emissions at the same time are key to achieving the cobenefits of power system reliability and protecting public health during periods with peak electricity demand.

  6. Comparative Emergy Evaluation of Nutrient Removal and Nutrient Recovery Technologies and the Implications to Nutrient Management

    EPA Science Inventory

    The urbanization of the modern community creates large population centers that generate concentrated wastewater. A large expenditure on wastewater treatment has to be invested to make a modern city function without human and environmental health problems. Society relies on syste...

  7. Pollution monitoring of Puget Sound with honey bees

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bromenshenk, J.J.; Carlson, S.R.; Simpson, J.C.

    To show that honey bees are effective biological monitors of environmental contaminants over large geographic areas, beekeepers of Puget Sound, Washington, collected pollen and bees for chemical analysis. From these data, kriging maps of arsenic, cadmium, and fluoride were generated. Results, based on actual concentrations of contaminants in bee tissues, show that the greatest concentrations of contaminants occur close to Commencement Bay and that honey bees are effective as large-scale monitors. 27 references, 2 figures.

  8. Dietary Exposure to Individual Polybrominated Diphenyl Ether Congeners BDE-47 and BDE-99 Alters Innate Immunity and Disease Susceptibility in Juvenile Chinook Salmon.

    PubMed

    Arkoosh, Mary R; Van Gaest, Ahna L; Strickland, Stacy A; Hutchinson, Greg P; Krupkin, Alex B; Dietrich, Joseph P

    2015-06-02

    Polybrominated diphenyl ethers (PBDEs), used as commercial flame-retardants, are bioaccumulating in threatened Pacific salmon. However, little is known of PBDE effects on critical physiological functions required for optimal health and survival. BDE-47 and BDE-99 are the predominant PBDE congeners found in Chinook salmon collected from the Pacific Northwest. In the present study, both innate immunity (phagocytosis and production of superoxide anion) and pathogen challenge were used to evaluate health and survival in groups of juvenile Chinook salmon exposed orally to either BDE-47 or BDE-99 at environmentally relevant concentrations. Head kidney macrophages from Chinook salmon exposed to BDE-99, but not those exposed to BDE-47, were found to have a reduced ability in vitro to engulf foreign particles. However, both congeners increased the in vitro production of superoxide anion in head kidney macrophages. Salmon exposed to either congener had reduced survival during challenge with the pathogenic marine bacteria Listonella anguillarum. The concentration response curves generated for these end points were nonmonotonic and demonstrated a requirement for using multiple environmentally relevant PBDE concentrations for effect studies. Consequently, predicting risk from toxicity reference values traditionally generated with monotonic concentration responses may underestimate PBDE effect on critical physiological functions required for optimal health and survival in salmon.

  9. Formaldehyde Concentration Dynamics of the International Space Station Cabin Atmosphere

    NASA Technical Reports Server (NTRS)

    Perry, J. L.

    2005-01-01

    Formaldehyde presents a significant challenge to maintaining cabin air quality on board crewed spacecraft. Generation sources include offgassing from a variety of non-metallic materials as well as human metabolism. Because generation sources are pervasive and human health can be affected by continual exposure to low concentrations, toxicology and air quality control engineering experts jointly identified formaldehyde as a key compound to be monitored as part the International Space Station's (ISS) environmental health monitoring and maintenance program. Data acquired from in-flight air quality monitoring methods are the basis for assessing the cabin environment's suitability for long-term habitation and monitoring the performance of passive and active controls that are in place to minimize crew exposure. Formaldehyde concentration trends and dynamics served in the ISS cabin atmosphere are reviewed implications to present and future flight operations discussed.

  10. Application of Response Surface Methodology for characterization of ozone production from Multi-Cylinder Reactor in non-thermal plasma device

    NASA Astrophysics Data System (ADS)

    Lian See, Tan; Zulazlan Shah Zulkifli, Ahmad; Mook Tzeng, Lim

    2018-04-01

    Ozone is a reactant which can be applied for various environmental treatment processes. It can be generated via atmospheric air non-thermal plasmas when sufficient voltages are applied through a combination of electrodes and dielectric materials. In this study, the concentration of ozone generated via two different configurations of multi-cylinder dielectric barrier discharge (DBD) reactor (3 x 40 mm and 10 x 10 mm) was investigated. The influence of the voltage and the duty cycle to the concentration of ozone generated by each configuration was analysed using response surface methodology. Voltage was identified as significant factor to the ozone production process. However, the regressed model was biased towards one of the configuration, leaving the predicted results of another configuration to be out of range.

  11. Comparing rapid methods for detecting Listeria in seafood and environmental samples using the most probably number (MPN) technique.

    PubMed

    Cruz, Cristina D; Win, Jessicah K; Chantarachoti, Jiraporn; Mutukumira, Anthony N; Fletcher, Graham C

    2012-02-15

    The standard Bacteriological Analytical Manual (BAM) protocol for detecting Listeria in food and on environmental surfaces takes about 96 h. Some studies indicate that rapid methods, which produce results within 48 h, may be as sensitive and accurate as the culture protocol. As they only give presence/absence results, it can be difficult to compare the accuracy of results generated. We used the Most Probable Number (MPN) technique to evaluate the performance and detection limits of six rapid kits for detecting Listeria in seafood and on an environmental surface compared with the standard protocol. Three seafood products and an environmental surface were inoculated with similar known cell concentrations of Listeria and analyzed according to the manufacturers' instructions. The MPN was estimated using the MPN-BAM spreadsheet. For the seafood products no differences were observed among the rapid kits and efficiency was similar to the BAM method. On the environmental surface the BAM protocol had a higher recovery rate (sensitivity) than any of the rapid kits tested. Clearview™, Reveal®, TECRA® and VIDAS® LDUO detected the cells but only at high concentrations (>10(2) CFU/10 cm(2)). Two kits (VIP™ and Petrifilm™) failed to detect 10(4) CFU/10 cm(2). The MPN method was a useful tool for comparing the results generated by these presence/absence test kits. There remains a need to develop a rapid and sensitive method for detecting Listeria in environmental samples that performs as well as the BAM protocol, since none of the rapid tests used in this study achieved a satisfactory result. Copyright © 2011 Elsevier B.V. All rights reserved.

  12. Comparison of environmental tobacco smoke (ETS) concentrations generated by an electrically heated cigarette smoking system and a conventional cigarette.

    PubMed

    Tricker, Anthony R; Schorp, Matthias K; Urban, Hans-Jörg; Leyden, Donald; Hagedorn, Heinz-Werner; Engl, Johannes; Urban, Michael; Riedel, Kirsten; Gilch, Gerhard; Janket, Dinamis; Scherer, Gerhard

    2009-01-01

    Smoking conventional lit-end cigarettes results in exposure of nonsmokers to potentially harmful cigarette smoke constituents present in environmental tobacco smoke (ETS) generated by sidestream smoke emissions and exhaled mainstream smoke. ETS constituent concentrations generated by a conventional lit-end cigarette and a newly developed electrically heated cigarette smoking system (EHCSS) that produces only mainstream smoke and no sidestream smoke emissions were investigated in simulated "office" and "hospitality" environments with different levels of baseline indoor air quality. Smoking the EHCSS (International Organisation for Standardization yields: 5 mg tar, 0.3 mg nicotine, and 0.6 mg carbon monoxide) in simulated indoor environments resulted in significant reductions in ETS constituent concentrations compared to when smoking a representative lit-end cigarette (Marlboro: 6 mg tar, 0.5 mg nicotine, and 7 mg carbon monoxide). In direct comparisons, 24 of 29 measured smoke constituents (83%) showed mean reductions of greater than 90%, and 5 smoke constituents (17%) showed mean reductions between 80% and 90%. Gas-vapor phase ETS markers (nicotine and 3-ethenylpyridine) were reduced by an average of 97% (range 94-99%). Total respirable suspended particles, determined by online particle measurements and as gravimetric respirable suspended particles, were reduced by 90% (range 82-100%). The mean and standard deviation of the reduction of all constituents was 94 +/- 4%, indicating that smoking the new EHCSS in simulated "office" and "hospitality" indoor environments resulted in substantial reductions of ETS constituents in indoor air.

  13. INTERIM REPORT ON THE EVOLUTION AND ...

    EPA Pesticide Factsheets

    A demonstration of screening technologies for determining the presence of dioxin and dioxin-like compounds in soil and sediment was conducted under the U.S. Environmental Protection Agency's(EPA's) Superfund Innovative Technology Evaluation Program in Saginaw, Michigan in 2004. The objectives of the demonstration included evaluating each participating technology's accuracy, precision, sensitivity, sample throughput, tendency for matrix effects, and cost. The test also included an assessment of how well the technology's results compared to those generated by established laboratory methods using high-resolution mass spectrometry (HRMS). The demonstration objectives were accomplished by evaluating the results generated by each technology from 209 soil, sediment, and extract samples. The test samples included performance evaluation (PE) samples (i.e., contaminant concentrations were certified or the samples were spiked with known contaminants) and environmental samples collected from 10 different sampling locations. The PE and environmental samples were distributed to the technology developers in blind, random order. One of the participants in the original SITE demonstration was Hybrizyme Corporation, which demonstrated the use of the AhRC PCR Kit. The AhRC PCR Kit was a technology that reported the concentration of aryl hydrocarbon receptor (AhR) binding compounds in a sample, with units reported as Ah Receptor Binding Units (AhRBU). At the time of the original dem

  14. Using model-based screening to help discover unknown environmental contaminants.

    PubMed

    McLachlan, Michael S; Kierkegaard, Amelie; Radke, Michael; Sobek, Anna; Malmvärn, Anna; Alsberg, Tomas; Arnot, Jon A; Brown, Trevor N; Wania, Frank; Breivik, Knut; Xu, Shihe

    2014-07-01

    Of the tens of thousands of chemicals in use, only a small fraction have been analyzed in environmental samples. To effectively identify environmental contaminants, methods to prioritize chemicals for analytical method development are required. We used a high-throughput model of chemical emissions, fate, and bioaccumulation to identify chemicals likely to have high concentrations in specific environmental media, and we prioritized these for target analysis. This model-based screening was applied to 215 organosilicon chemicals culled from industrial chemical production statistics. The model-based screening prioritized several recognized organosilicon contaminants and generated hypotheses leading to the selection of three chemicals that have not previously been identified as potential environmental contaminants for target analysis. Trace analytical methods were developed, and the chemicals were analyzed in air, sewage sludge, and sediment. All three substances were found to be environmental contaminants. Phenyl-tris(trimethylsiloxy)silane was present in all samples analyzed, with concentrations of ∼50 pg m(-3) in Stockholm air and ∼0.5 ng g(-1) dw in sediment from the Stockholm archipelago. Tris(trifluoropropyl)trimethyl-cyclotrisiloxane and tetrakis(trifluoropropyl)tetramethyl-cyclotetrasiloxane were found in sediments from Lake Mjøsa at ∼1 ng g(-1) dw. The discovery of three novel environmental contaminants shows that models can be useful for prioritizing chemicals for exploratory assessment.

  15. Developing and applying metamodels of high resolution ...

    EPA Pesticide Factsheets

    As defined by Wikipedia (https://en.wikipedia.org/wiki/Metamodeling), “(a) metamodel or surrogate model is a model of a model, and metamodeling is the process of generating such metamodels.” The goals of metamodeling include, but are not limited to (1) developing functional or statistical relationships between a model’s input and output variables for model analysis, interpretation, or information consumption by users’ clients; (2) quantifying a model’s sensitivity to alternative or uncertain forcing functions, initial conditions, or parameters; and (3) characterizing the model’s response or state space. Using five existing models developed by US Environmental Protection Agency, we generate a metamodeling database of the expected environmental and biological concentrations of 644 organic chemicals released into nine US rivers from wastewater treatment works (WTWs) assuming multiple loading rates and sizes of populations serviced. The chemicals of interest have log n-octanol/water partition coefficients ( ) ranging from 3 to 14, and the rivers of concern have mean annual discharges ranging from 1.09 to 3240 m3/s. Log linear regression models are derived to predict mean annual dissolved and total water concentrations and total sediment concentrations of chemicals of concern based on their , Henry’s Law Constant, and WTW loading rate and on the mean annual discharges of the receiving rivers. Metamodels are also derived to predict mean annual chemical

  16. Life cycle assessment and economic analysis of a low concentrating photovoltaic system.

    PubMed

    De Feo, G; Forni, M; Petito, F; Renno, C

    2016-10-01

    Many new photovoltaic (PV) applications, such as the concentrating PV (CPV) systems, are appearing on the market. The main characteristic of CPV systems is to concentrate sunlight on a receiver by means of optical devices and to decrease the solar cells area required. A low CPV (LCPV) system allows optimizing the PV effect with high increase of generated electric power as well as decrease of active surface area. In this paper, an economic analysis and a life cycle assessment (LCA) study of a particular LCPV scheme is presented and its environmental impacts are compared with those of a PV traditional system. The LCA study was performed with the software tool SimaPro 8.0.2, using the Econinvent 3.1 database. A functional unit of 1 kWh of electricity produced was chosen. Carbon Footprint, Ecological Footprint and ReCiPe 2008 were the methods used to assess the environmental impacts of the LCPV plant compared with a corresponding traditional system. All the methods demonstrated the environmental convenience of the LCPV system. The innovative system allowed saving 16.9% of CO2 equivalent in comparison with the traditional PV plant. The environmental impacts saving was 17% in terms of Ecological Footprint, and, finally, 15.8% with the ReCiPe method.

  17. Trace gas absorption spectroscopy using laser difference-frequency spectrometer for environmental application

    NASA Technical Reports Server (NTRS)

    Chen, W.; Cazier, F.; Boucher, D.; Tittel, F. K.; Davies, P. B.

    2001-01-01

    A widely tunable infrared spectrometer based on difference frequency generation (DFG) has been developed for organic trace gas detection by laser absorption spectroscopy. On-line measurements of concentration of various hydrocarbons, such as acetylene, benzene, and ethylene, were investigated using high-resolution DFG trace gas spectroscopy for highly sensitive detection.

  18. Integrating environmental equity, energy and sustainability: A spatial-temporal study of electric power generation

    NASA Astrophysics Data System (ADS)

    Touche, George Earl

    The theoretical scope of this dissertation encompasses the ecological factors of equity and energy. Literature important to environmental justice and sustainability are reviewed, and a general integration of global concepts is delineated. The conceptual framework includes ecological integrity, quality human development, intra- and inter-generational equity and risk originating from human economic activity and modern energy production. The empirical focus of this study concentrates on environmental equity and electric power generation within the United States. Several designs are employed while using paired t-tests, independent t-tests, zero-order correlation coefficients and regression coefficients to test seven sets of hypotheses. Examinations are conducted at the census tract level within Texas and at the state level across the United States. At the community level within Texas, communities that host coal or natural gas utility power plants and corresponding comparison communities that do not host such power plants are tested for compositional differences. Comparisons are made both before and after the power plants began operating for purposes of assessing outcomes of the siting process and impacts of the power plants. Relationships between the compositions of the hosting communities and the risks and benefits originating from the observed power plants are also examined. At the statewide level across the United States, relationships between statewide composition variables and risks and benefits originating from statewide electric power generation are examined. Findings indicate the existence of some limited environmental inequities, but they do not indicate disparities that confirm the general thesis of environmental racism put forth by environmental justice advocates. Although environmental justice strategies that would utilize Title VI of the 1964 Civil Rights Act and the disparate impact standard do not appear to be applicable, some findings suggest potential inequities in institutional practices involving environmental compliance, monitoring and enforcement that are hardly justifiable within the context of market dynamics.

  19. Fish bioconcentration studies with column-generated analyte concentrations of highly hydrophobic organic chemicals.

    PubMed

    Schlechtriem, Christian; Böhm, Leonard; Bebon, Rebecca; Bruckert, Hans-Jörg; Düring, Rolf-Alexander

    2017-04-01

    The performance of aqueous exposure bioconcentration fish tests according to Organisation for Economic Co-operation and Development (OECD) guideline 305 requires the possibility of preparing stable aqueous concentrations of the test substances. For highly hydrophobic organic chemicals (HOCs; octanol-water partition coefficient [log K OW ] > 5), testing via aqueous exposure may become increasingly difficult. A solid-phase desorption dosing system was developed to generate stable concentrations of HOCs without using solubilizing agents. The system was tested with hexachlorobenzene (HCB), o-terphenyl (oTP), polychlorinated biphenyl (PCB) 153, and dibenz[a,h]anthracene (DBA) (log K OW 5.5-7.8) in 2 flow-through fish tests with rainbow trout (Oncorhynchus mykiss). The analysis of the test media applied during the bioconcentration factor (BCF) studies showed that stable analyte concentrations of the 4 HOCs were maintained in the test system over an uptake period of 8 wk. Bioconcentration factors (L kg -1 wet wt) were estimated for HCB (BCF 35 589), oTP (BCF 12 040), and PCB 153 (BCF 18 539) based on total water concentrations. No bioconcentration could be determined for DBA, probably because of the rapid metabolism of the test item. The solid-phase desorption dosing system is suitable to provide stable aqueous concentrations of HOCs required to determine the bioconcentration in fish and represents a viable alternative to the use of solubilizing agents for the preparation of test solutions. Environ Toxicol Chem 2017;36:906-916. © 2016 The Authors. Environmental Toxicology and Chemistry Published by Wiley Periodicals, Inc. on behalf of SETAC. © 2016 The Authors. Environmental Toxicology and Chemistry Published by Wiley Periodicals, Inc. on behalf of SETAC.

  20. Fish multigeneration test with preliminary short-term reproduction assay for estrone using Japanese medaka (Oryzias latipes).

    PubMed

    Nakamura, Ataru; Tamura, Ikumi; Takanobu, Hitomi; Yamamuro, Masumi; Iguchi, Taisen; Tatarazako, Norihisa

    2015-01-01

    The most potent chemicals potentially causing adverse effects on fish species are estrogens in human waste.Sewage is a source of these estrogens and it is difficult to reduce. In particular, although the bioactivity of estrone is estimated to be about half of that of estradiol, multiple studies report that more than 100 ng l(–1) of estrone can be detected in urban rivers, including discharges from sewage treatment works; approximately two times as high as estradiol. Few studies have been conducted to investigate the long-term effects of estrone on wildlife; therefore, we conducted fish multigeneration test using Japanese medaka (Oryzias latipes). Medaka were exposed to estrone for 27 weeks across three generations in environmentally relevant concentrations, being 5.74, 11.4, 24.0, 47.1 and 91.4 ng l(–1). No effects on reproduction were observed in the first generation; however, a decline in egg production and fertility was observed in the second generation exposed to 91.4 ng l(–1) estrone, which is lower than some known environmental concentrations in urban environments. Furthermore, histopathological abnormalities were observed in the third generation exposed to both 47.1 and 91.4 ng l(–1), suggesting that estrone possibly exerts severe effects on the third or later generations. However, appearances of testis–ova were observed in the second and third generation they were not consistent with actual effects on reproduction, notwithstanding the testis-ovais regarded as the key evidence for endocrine disruption. Accordingly, we consider that qualitative measurement of abnormalities using histopathological observations is required for appropriate evaluation of endocrine disruption.

  1. Potential Impact of the Resistance to Quaternary Ammonium Disinfectants on the Persistence of Listeria monocytogenes in Food Processing Environments.

    PubMed

    Martínez-Suárez, Joaquín V; Ortiz, Sagrario; López-Alonso, Victoria

    2016-01-01

    The persistence of certain strains of Listeria monocytogenes, even after the food processing environment has been cleaned and disinfected, suggests that this may be related to phenomena that reduce the concentration of the disinfectants to subinhibitory levels. This includes (i) the existence of environmental niches or reservoirs that are difficult for disinfectants to reach, (ii) microorganisms that form biofilms and create microenvironments in which adequate concentrations of disinfectants cannot be attained, and (iii) the acquisition of resistance mechanisms in L. monocytogenes, including those that lead to a reduction in the intracellular concentration of the disinfectants. The only available data with regard to the resistance of L. monocytogenes to disinfectants applied in food production environments refer to genotypic resistance to quaternary ammonium compounds (QACs). Although there are several well-characterized efflux pumps that confer resistance to QACs, it is a low-level resistance that does not generate resistance to QACs at the concentrations applied in the food industry. However, dilution in the environment and biodegradation result in QAC concentration gradients. As a result, the microorganisms are frequently exposed to subinhibitory concentrations of QACs. Therefore, the low-level resistance to QACs in L. monocytogenes may contribute to its environmental adaptation and persistence. In fact, in certain cases, the relationship between low-level resistance and the environmental persistence of L. monocytogenes in different food production chains has been previously established. The resistant strains would have survival advantages in these environments over sensitive strains, such as the ability to form biofilms in the presence of increased biocide concentrations.

  2. Potential Impact of the Resistance to Quaternary Ammonium Disinfectants on the Persistence of Listeria monocytogenes in Food Processing Environments

    PubMed Central

    Martínez-Suárez, Joaquín V.; Ortiz, Sagrario; López-Alonso, Victoria

    2016-01-01

    The persistence of certain strains of Listeria monocytogenes, even after the food processing environment has been cleaned and disinfected, suggests that this may be related to phenomena that reduce the concentration of the disinfectants to subinhibitory levels. This includes (i) the existence of environmental niches or reservoirs that are difficult for disinfectants to reach, (ii) microorganisms that form biofilms and create microenvironments in which adequate concentrations of disinfectants cannot be attained, and (iii) the acquisition of resistance mechanisms in L. monocytogenes, including those that lead to a reduction in the intracellular concentration of the disinfectants. The only available data with regard to the resistance of L. monocytogenes to disinfectants applied in food production environments refer to genotypic resistance to quaternary ammonium compounds (QACs). Although there are several well-characterized efflux pumps that confer resistance to QACs, it is a low-level resistance that does not generate resistance to QACs at the concentrations applied in the food industry. However, dilution in the environment and biodegradation result in QAC concentration gradients. As a result, the microorganisms are frequently exposed to subinhibitory concentrations of QACs. Therefore, the low-level resistance to QACs in L. monocytogenes may contribute to its environmental adaptation and persistence. In fact, in certain cases, the relationship between low-level resistance and the environmental persistence of L. monocytogenes in different food production chains has been previously established. The resistant strains would have survival advantages in these environments over sensitive strains, such as the ability to form biofilms in the presence of increased biocide concentrations. PMID:27199964

  3. Technology development program for an advanced microsheet glass concentrator

    NASA Technical Reports Server (NTRS)

    Richter, Scott W.; Lacy, Dovie E.

    1990-01-01

    Solar Dynamic Space Power Systems are candidate electrical power generating systems for future NASA missions. One of the key components in a solar dynamic power system is the concentrator which collects the sun's energy and focuses it into a receiver. In 1985, the NASA Lewis Research Center initiated the Advanced Solar Dynamic Concentrator Program with funding from NASA's Office of Aeronautics and Space Technology (OAST). The objectives of the Advanced Concentrator Program is to develop the technology that will lead to lightweight, highly reflective, accurate, scaleable, and long lived (7 to 10 years) space solar dynamic concentrators. The Advanced Concentrator Program encompasses new and innovative concepts, fabrication techniques, materials selection, and simulated space environmental testing. The Advanced Microsheet Glass Concentrator Program, a reflector concept, that is currently being investigated both in-house and under contract is discussed.

  4. Indoor Chemical Exposures: Humans' Non-respiratory Interactions with Room Air

    ScienceCinema

    Charles Weschler

    2017-12-09

    March 18, 2010 Berkeley Lab Environmental Energy Technology Division distinguished lecture: The marked difference in pollutant concentrations between an occupied and un-occupied room are only partially explained by human bio-effluents. Humans alter levels of ozone and related oxidants such as nitrate and hydroxyl radicals in the rooms they inhabit; in effect, they change the oxidative capacity of room air. Ozone-initiated reactions on exposed skin, hair and clothing generate products, including potentially irritating chemicals whose concentrations are much higher in the occupant's breathing zone than in the core of the room. Charles J. Weschler is a Professor at the School of Public Health, the Department of Environmental and Occupational Medicine and the Environmental and Occupational Health Sciences Institute (EOHSI) at the University of Medicine and Dentistry of New Jersey (UMDNJ)/Robert Wood Johnson Medical School & Rutgers University (New Jersey). He is also a Visiting Professor at the International Centre for Indoor Environment and Energy, Technical University of Denmark (DTU, Lyngby, Denmark).

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Charles Weschler

    March 18, 2010 Berkeley Lab Environmental Energy Technology Division distinguished lecture: The marked difference in pollutant concentrations between an occupied and un-occupied room are only partially explained by human bio-effluents. Humans alter levels of ozone and related oxidants such as nitrate and hydroxyl radicals in the rooms they inhabit; in effect, they change the oxidative capacity of room air. Ozone-initiated reactions on exposed skin, hair and clothing generate products, including potentially irritating chemicals whose concentrations are much higher in the occupant's breathing zone than in the core of the room. Charles J. Weschler is a Professor at the School ofmore » Public Health, the Department of Environmental and Occupational Medicine and the Environmental and Occupational Health Sciences Institute (EOHSI) at the University of Medicine and Dentistry of New Jersey (UMDNJ)/Robert Wood Johnson Medical School & Rutgers University (New Jersey). He is also a Visiting Professor at the International Centre for Indoor Environment and Energy, Technical University of Denmark (DTU, Lyngby, Denmark).« less

  6. Bioaccumulation and ecotoxicity of carbon nanotubes

    PubMed Central

    2013-01-01

    Carbon nanotubes (CNT) have numerous industrial applications and may be released to the environment. In the aquatic environment, pristine or functionalized CNT have different dispersion behavior, potentially leading to different risks of exposure along the water column. Data included in this review indicate that CNT do not cross biological barriers readily. When internalized, only a minimal fraction of CNT translocate into organism body compartments. The reported CNT toxicity depends on exposure conditions, model organism, CNT-type, dispersion state and concentration. In the ecotoxicological tests, the aquatic organisms were generally found to be more sensitive than terrestrial organisms. Invertebrates were more sensitive than vertebrates. Single-walled CNT were found to be more toxic than double-/multi-walled CNT. Generally, the effect concentrations documented in literature were above current modeled average environmental concentrations. Measurement data are needed for estimation of environmental no-effect concentrations. Future studies with benchmark materials are needed to generate comparable results. Studies have to include better characterization of the starting materials, of the dispersions and of the biological fate, to obtain better knowledge of the exposure/effect relationships. PMID:24034413

  7. SCARLET: Design of the Fresnel concentrator array for New Millennium Deep Space 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murphy, D.M.; Eskenazi, M.I.

    1997-12-31

    The primary power for the JPL New Millennium Deep Space 1 spacecraft is a 2.6 kW concentrator solar array. This paper surveys the design and analysis employed to combine line-focus Fresnel lenses and multijunction (GaInP{sub 2}/GaAs/Ge) solar cells in the second-generation SCARLET (Solar Concentrator Array with Refractive Linear Element Technology) system. The array structure and mechanisms are reviewed. Discussion is focused on the lens and receiver, from the optimizations of optical efficiency and thermal management, to the design issues of environmental extremes, reliability, producibility, and control of pointing error.

  8. Deep cleaning of a metallurgical zinc leaching residue and recovery of valuable metals

    NASA Astrophysics Data System (ADS)

    Xing, Peng; Ma, Bao-zhong; Zeng, Peng; Wang, Cheng-yan; Wang, Ling; Zhang, Yong-lu; Chen, Yong-qiang; Wang, Shuo; Wang, Qiu-yin

    2017-11-01

    Huge quantities of zinc leaching residues (ZLRs) generated from zinc production are dumped continuously around the world and pose a potential environmental threat because of their considerable amounts of entrained heavy metals (mainly lead). Most ZLRs have not been properly treated and the valuable metals in them have not yet been effectively recovered. Herein, the deep cleaning of a ZLR and recovery of valuable metals via a hydrometallurgical route were investigated. The cleaning process consists of two essential stages: acid leaching followed by calcium chloride leaching. The optimum conditions for extracting zinc, copper, and indium by acid leaching were a sulfuric acid concentration of 200 g·L-1, a liquid/solid ratio of 4:1 (mL/g), a leaching time of 2 h, and a temperature of 90°C. For lead and silver extractions, the optimum conditions were a calcium chloride concentration of 400 g·L-1, a pH value of 1.0, a leaching time of 1 h, and a temperature of 30°C. After calcium chloride leaching, silver and lead were extracted out and the lead was finally recovered as electrolytic lead by electrowinning. The anglesite phase, which poses the greatest potential environmental hazard, was removed from the ZLR after deep cleaning, thus reducing the cost of environmental management of ZLRs. The treatment of chlorine and spent electrolyte generated in the process was discussed.

  9. Arsenic, cadmium, lead, and mercury in surface soils, Pueblo, Colorado: Implications for population health risk

    USGS Publications Warehouse

    Diawara, D.M.; Litt, J.S.; Unis, D.; Alfonso, N.; Martinez, L.A.; Crock, J.G.; Smith, D.B.; Carsella, J.

    2006-01-01

    Decades of intensive industrial and agricultural practices as well as rapid urbanization have left communities like Pueblo, Colorado facing potential health threats from pollution of its soils, air, water and food supply. To address such concerns about environmental contamination, we conducted an urban geochemical study of the city of Pueblo to offer insights into the potential chemical hazards in soil and inform priorities for future health studies and population interventions aimed at reducing exposures to inorganic substances. The current study characterizes the environmental landscape of Pueblo in terms of heavy metals, and relates this to population distributions. Soil was sampled within the city along transects and analyzed for arsenic (As), cadmium (Cd), mercury (Hg) and lead (Pb). We also profiled Pueblo's communities in terms of their socioeconomic status and demographics. ArcGIS 9.0 was used to perform exploratory spatial data analysis and generate community profiles and prediction maps. The topsoil in Pueblo contains more As, Cd, Hg and Pb than national soil averages, although average Hg content in Pueblo was within reported baseline ranges. The highest levels of As concentrations ranged between 56.6 and 66.5 ppm. Lead concentrations exceeded 300 ppm in several of Pueblo's residential communities. Elevated levels of lead are concentrated in low-income Hispanic and African-American communities. Areas of excessively high Cd concentration exist around Pueblo, including low income and minority communities, raising additional health and environmental justice concerns. Although the distribution patterns vary by element and may reflect both industrial and non-industrial sources, the study confirms that there is environmental contamination around Pueblo and underscores the need for a comprehensive public health approach to address environmental threats in urban communities. ?? Springer 2006.

  10. Development of a passive, in situ, integrative sampler for hydrophilic organic contaminants in aquatic environments

    USGS Publications Warehouse

    Alvarez, D.A.; Petty, J.D.; Huckins, J.N.; Jones-Lepp, T. L.; Getting, D.T.; Goddard, J.P.; Manahan, S.E.

    2004-01-01

    Increasingly it is being realized that a holistic hazard assessment of complex environmental contaminant mixtures requires data on the concentrations of hydrophilic organic contaminants including new generation pesticides, pharmaceuticals, personal care products, and many chemicals associated with household, industrial, and agricultural wastes. To address this issue, we developed a passive in situ sampling device (the polar organic chemical integrative sampler [POCIS]) that integratively concentrates trace levels of complex mixtures of hydrophilic environmental contaminants, enables the determination of their time-weighted average water concentrations, and provides a method of estimating the potential exposure of aquatic organisms to the complex mixture of waterborne contaminants. Using a prototype sampler, linear uptake of selected herbicides and pharmaceuticals with log KowS < 4.0 was observed for up to 56 d. Estimation of the ambient water concentrations of chemicals of interest is achieved by using appropriate uptake models and determination of POCIS sampling rates for appropriate exposure conditions. Use of POCIS in field validation studies targeting the herbicide diuron in the United Kingdom resulted in the detection of the chemical at estimated concentrations of 190 to 600 ng/L. These values are in agreement with reported levels found in traditional grab samples taken concurrently.

  11. Molecular Control of TiO2-NPs Toxicity Formation at Predicted Environmental Relevant Concentrations by Mn-SODs Proteins

    PubMed Central

    Wu, Qiuli; Li, Yiping; Tang, Meng; Ye, Boping; Wang, Dayong

    2012-01-01

    With growing concerns of the safety of nanotechnology, the in vivo toxicity of nanoparticles (NPs) at environmental relevant concentrations has drawn increasing attentions. We investigated the possible molecular mechanisms of titanium nanoparticles (Ti-NPs) in the induction of toxicity at predicted environmental relevant concentrations. In nematodes, small sizes (4 nm and 10 nm) of TiO2-NPs induced more severe toxicities than large sizes (60 nm and 90 nm) of TiO2-NPs on animals using lethality, growth, reproduction, locomotion behavior, intestinal autofluorescence, and reactive oxygen species (ROS) production as endpoints. Locomotion behaviors could be significantly decreased by exposure to 4-nm and 10-nm TiO2-NPs at concentration of 1 ng/L in nematodes. Among genes required for the control of oxidative stress, only the expression patterns of sod-2 and sod-3 genes encoding Mn-SODs in animals exposed to small sizes of TiO2-NPs were significantly different from those in animals exposed to large sizes of TiO2-NPs. sod-2 and sod-3 gene expressions were closely correlated with lethality, growth, reproduction, locomotion behavior, intestinal autofluorescence, and ROS production in TiO2-NPs-exposed animals. Ectopically expression of human and nematode Mn-SODs genes effectively prevented the induction of ROS production and the development of toxicity of TiO2-NPs. Therefore, the altered expression patterns of Mn-SODs may explain the toxicity formation for different sizes of TiO2-NPs at predicted environmental relevant concentrations. In addition, we demonstrated here a strategy to investigate the toxicological effects of exposure to NPs upon humans by generating transgenic strains in nematodes for specific human genes. PMID:22973466

  12. Multigenerational effects of 4-methylbenzylidene camphor (4-MBC) on the survival, development and reproduction of the marine copepod Tigriopus japonicus.

    PubMed

    Chen, Leyun; Li, Xiaolin; Hong, Haizheng; Shi, Dalin

    2018-01-01

    One of the most widely used organic UV filters, 4-methylbenzylidene camphor (4-MBC), is present at high concentrations in offshore waters. The marine copepod Tigriopus japonicus was exposed to different concentrations of 4-MBC (i.e., 0, 0.5, 1, 5 and 10μgL -1 ) for 4 consecutive generations (F0-F3) to evaluate the impact of 4-MBC on marine ecosystems. The results showed that in the F0 generation, 4-MBC caused significant lethal toxicity in T. japonicas at concentrations of 5 and 10μgL -1 and the nauplii were more sensitive to 4-MBC toxicity than the adults. However in the F1-F3 generations, 4-MBC exposure did not affect the survival rate. The hatching rate and the developmental duration from the nauplii to the copepodite (N-C) and from the nauplii to adult (N-A) decreased significantly in the F1-F2 generations and in the F2-F3 generations, respectively, even at the lowest exposure concentration (0.5μgL -1 ). In the subsequent two generations (i.e., the F4-F5 generations) of recovery exposure in clean seawater, the growth rates of the original 4-MBC exposure groups were still faster than the control in both the N-C and N-A stages, suggesting possible transgenerational genetic and/or epigenetic changes upon chronic 4-MBC exposure. The expression of the ecdysone receptor gene was up-regulated by 4-MBC, which was consistent with the decrease of the N-C/N-A duration. In addition, 4-MBC may induce oxidative stress and trigger apoptosis in T. japonicas, resulting in developmental, reproductive and even lethal toxicity. A preliminary risk assessment suggested that under environmentally realistic concentrations, 4-MBC had significant potential to pose a threat to marine crustaceans and marine ecosystems. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Environmentally persistent free radicals (EPFRs)-2. Are free hydroxyl radicals generated in aqueous solutions?

    PubMed

    Khachatryan, Lavrent; Dellinger, Barry

    2011-11-01

    A chemical spin trap, 5,5-dimethyl-1-pyrroline-N-oxide (DMPO), in conjunction with electron paramagnetic resonance (EPR) spectroscopy was employed to measure the production of hydroxyl radical (·OH) in aqueous suspensions of 5% Cu(II)O/silica (3.9% Cu) particles containing environmentally persistent free radicals (EPFRs) of 2-monochlorophenol (2-MCP). The results indicate: (1) a significant differences in accumulated DMPO-OH adducts between EPFR containing particles and non-EPFR control samples, (2) a strong correlation between the concentration of DMPO-OH adducts and EPFRs per gram of particles, and (3) a slow, constant growth of DMPO-OH concentration over a period of days in solution containing 50 μg/mL EPFRs particles + DMPO (150 mM) + reagent balanced by 200 μL phosphate buffered (pH = 7.4) saline. However, failure to form secondary radicals using standard scavengers, such as ethanol, dimethylsulfoxide, sodium formate, and sodium azide, suggests free hydroxyl radicals may not have been generated in solution. This suggests surface-bound, rather than free, hydroxyl radicals were generated by a surface catalyzed-redox cycle involving both the EPFRs and Cu(II)O. Toxicological studies clearly indicate these bound free radicals promote various types of cardiovascular and pulmonary disease normally attributed to unbound free radicals; however, the exact chemical mechanism deserves further study in light of the implication of formation of bound, rather than free, hydroxyl radicals.

  14. High-sensitivity gas-mapping 3D imager and method of operation

    DOEpatents

    Kreitinger, Aaron; Thorpe, Michael

    2018-05-15

    Measurement apparatuses and methods are disclosed for generating high-precision and -accuracy gas concentration maps that can be overlaid with 3D topographic images by rapidly scanning one or several modulated laser beams with a spatially-encoded transmitter over a scene to build-up imagery. Independent measurements of the topographic target distance and path-integrated gas concentration are combined to yield a map of the path-averaged concentration between the sensor and each point in the image. This type of image is particularly useful for finding localized regions of elevated (or anomalous) gas concentration making it ideal for large-area leak detection and quantification applications including: oil and gas pipeline monitoring, chemical processing facility monitoring, and environmental monitoring.

  15. 50 kWp Photovoltaic Concentrator Application Experiment, Phase I. Final report, 1 June 1978-28 February 1979

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maget, H.J.R.

    1979-06-15

    This program consists of a design study and component development for an experimental 50-kWp photovoltaic concentrator system to supply power to the San Ramon substation of the Pacific Gas and Electric Company. The photovoltaic system is optimized to produce peaking power to relieve the air conditioning load on the PG and E system during summer afternoons; and would therefore displace oil-fired power generation capacity. No electrical storage is required. The experiment would use GaAs concentrator cells with point-focus fresnel lenses operating at 400X, in independent tracking arrays of 440 cells each, generating 3.8 kWp. Fourteen arrays, each 9 feet bymore » 33 feet, are connected electrically in series to generate the 50 kWp. The high conversion efficiency possible with GaAs concentrator cells results in a projected annual average system efficiency (AC electric power output to sunlight input) of better than 15%. The capability of GaAs cells for high temperature operation made possible the design of a total energy option, whereby thermal power from selected arrays could be used to heat and cool the control center for the installation. System design and analysis, fabrication and installation, environmental assessment, and cost projections are described in detail. (WHK)« less

  16. Genomics of Adaptation Depends on the Rate of Environmental Change in Experimental Yeast Populations.

    PubMed

    Gorter, Florien A; Derks, Martijn F L; van den Heuvel, Joost; Aarts, Mark G M; Zwaan, Bas J; de Ridder, Dick; de Visser, J Arjan G M

    2017-10-01

    The rate of directional environmental change may have profound consequences for evolutionary dynamics and outcomes. Yet, most evolution experiments impose a sudden large change in the environment, after which the environment is kept constant. We previously cultured replicate Saccharomyces cerevisiae populations for 500 generations in the presence of either gradually increasing or constant high concentrations of the heavy metals cadmium, nickel, and zinc. Here, we investigate how each of these treatments affected genomic evolution. Whole-genome sequencing of evolved clones revealed that adaptation occurred via a combination of SNPs, small indels, and whole-genome duplications and other large-scale structural changes. In contrast to some theoretical predictions, gradual and abrupt environmental change caused similar numbers of genomic changes. For cadmium, which is toxic already at comparatively low concentrations, mutations in the same genes were used for adaptation to both gradual and abrupt increase in concentration. Conversely, for nickel and zinc, which are toxic at high concentrations only, mutations in different genes were used for adaptation depending on the rate of change. Moreover, evolution was more repeatable following a sudden change in the environment, particularly for nickel and zinc. Our results show that the rate of environmental change and the nature of the selection pressure are important drivers of evolutionary dynamics and outcomes, which has implications for a better understanding of societal problems such as climate change and pollution. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  17. Chronic exposure to environmental levels of tribromophenol impairs zebrafish reproduction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deng Jun; Graduate School of the Chinese Academy of Sciences, Beijing 100039; Liu Chunsheng

    Tribromophenol (2,4,6-TBP) is ubiquitously found in aquatic environments and biota. In this study, we exposed zebrafish embryos (F{sub 0}; 2'''' days post-fertilization, dpf) to environmental concentration (0.3 mug/L) and a higher concentration (3.0 mug/L) of TBP and assessed the impact of chronic exposure (120 dpf) on reproduction. TBP exposure did not cause a significant increase in the malformation and reduction in the survival in the F{sub 0}-generation fish. After TBP exposure, the plasma testosterone and estradiol levels significantly increased in males and decreased in females. The transcription of steroidogenic genes (3beta-HSD, 17beta-HSD, CYP17, CYP19A, CYP19B) was significantly upregulated in themore » brain and testes in males and downregulated in the brain and ovary in females. TBP exposure significantly downregulated and upregulated the expression of VTG in the liver of female and male fish, respectively. Meanwhile, TBP exposure altered the sex ratio toward a male-dominant state. The F{sub 1}-generation larvae exhibited increased malformation, reduced survival, and retarded growth, suggesting that TBP in the aquatic environment has significant adverse effects on fish population.« less

  18. Associations between socio-demographic characteristics and chemical concentrations contributing to cumulative exposures in the United States.

    PubMed

    Huang, Hongtai; Tornero-Velez, Rogelio; Barzyk, Timothy M

    2017-11-01

    Association rule mining (ARM) has been widely used to identify associations between various entities in many fields. Although some studies have utilized it to analyze the relationship between chemicals and human health effects, fewer have used this technique to identify and quantify associations between environmental and social stressors. Socio-demographic variables were generated based on U.S. Census tract-level income, race/ethnicity population percentage, education level, and age information from the 2010-2014, 5-Year Summary files in the American Community Survey (ACS) database, and chemical variables were generated by utilizing the 2011 National-Scale Air Toxics Assessment (NATA) census tract-level air pollutant exposure concentration data. Six mobile- and industrial-source pollutants were chosen for analysis, including acetaldehyde, benzene, cyanide, particulate matter components of diesel engine emissions (namely, diesel PM), toluene, and 1,3-butadiene. ARM was then applied to quantify and visualize the associations between the chemical and socio-demographic variables. Census tracts with a high percentage of racial/ethnic minorities and populations with low income tended to have higher estimated chemical exposure concentrations (fourth quartile), especially for diesel PM, 1,3-butadiene, and toluene. In contrast, census tracts with an average population age of 40-50 years, a low percentage of racial/ethnic minorities, and moderate-income levels were more likely to have lower estimated chemical exposure concentrations (first quartile). Unsupervised data mining methods can be used to evaluate potential associations between environmental inequalities and social disparities, while providing support in public health decision-making contexts.

  19. Laccase-catalyzed oxidation of oxybenzone in municipal wastewater primary effluent.

    PubMed

    Garcia, Hector A; Hoffman, Catherine M; Kinney, Kerry A; Lawler, Desmond F

    2011-02-01

    Pharmaceuticals and personal care products (PPCPs) are now routinely detected in raw and treated municipal wastewater. Since conventional wastewater treatment processes are not particularly effective for PPCP removal, treated wastewater discharges are the main entry points for PPCPs into the environment, and eventually into our drinking water. This study investigates the use of laccase-catalyzed oxidation for removing low concentrations of PPCPs from municipal wastewater primary effluent. Oxybenzone was selected as a representative PPCP. Like many other PPCPs, it is not recognized directly by the laccase enzyme. Therefore, mediators were used to expand the oxidative range of laccase, and the efficacy of this laccase-mediator system in primary effluent was evaluated. Eight potential mediators were investigated, and 2,2'-Azino-bis(3-ethylbenzthiazoline-6sulphonic acid) diammonium salt (ABTS), a synthetic mediator, and acetosyringone (ACE), a natural mediator, provided the greatest oxybenzone removal efficiencies. An environmentally relevant concentration of oxybenzone (43.8 nM, 10 μg/L) in primary effluent was completely removed (below the detection limit) after two hours of treatment with ABTS, and 95% was removed after two hours of treatment with ACE. Several mediator/oxybenzone molar ratios were investigated at two different initial oxybenzone concentrations. Higher mediator/oxybenzone molar ratios were required at the lower (environmentally relevant) oxybenzone concentration, and ACE required higher molar ratios than ABTS to achieve comparable oxybenzone removal. Oxybenzone oxidation byproducts generated by the laccase-mediator system were characterized and compared to those generated during ozonation. Enzymatic treatment generated byproducts with higher mass to charge (m/z) ratios, likely due to oxidative coupling reactions. The results of this study suggest that, with further development, the laccase-mediator system has the potential to extend the treatment range of laccase to PPCPs not directly recognized by the enzyme, even in a primary effluent matrix. Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. Separation of sodium chloride from the evaporated residue of the reverse osmosis reject generated in the leather industry--optimization by response surface methodology.

    PubMed

    Boopathy, R; Sekaran, G

    2014-08-01

    Reverse osmosis (RO) concentrate is being evaporated by solar/thermal evaporators to meet zero liquid discharge standards. The resulted evaporated residue (ER) is contaminated with both organic and inorganic mixture of salts. The generation of ER is exceedingly huge in the leather industry, which is being collected and stored under the shelter to avoid groundwater contamination by the leachate. In the present investigation, a novel process for the separation of sodium chloride from ER was developed, to reduce the environmental impact on RO concentrate discharge. The sodium chloride was selectively separated by the reactive precipitation method using hydrogen chloride gas. The selected process variables were optimized for maximum yield ofNaCl from the ER (optimum conditions were pH, 8.0; temperature, 35 degrees C; concentration of ER, 600 g/L and HCl purging time, 3 min). The recovered NaCl purity was verified using a cyclic voltagramm.

  1. Plasmonic nanosensors with inverse sensitivity by means of enzyme-guided crystal growth

    NASA Astrophysics Data System (ADS)

    Rodríguez-Lorenzo, Laura; de La Rica, Roberto; Álvarez-Puebla, Ramón A.; Liz-Marzán, Luis M.; Stevens, Molly M.

    2012-07-01

    Lowering the limit of detection is key to the design of sensors needed for food safety regulations, environmental policies and the diagnosis of severe diseases. However, because conventional transducers generate a signal that is directly proportional to the concentration of the target molecule, ultralow concentrations of the molecule result in variations in the physical properties of the sensor that are tiny, and therefore difficult to detect with confidence. Here we present a signal-generation mechanism that redefines the limit of detection of nanoparticle sensors by inducing a signal that is larger when the target molecule is less concentrated. The key step to achieve this inverse sensitivity is to use an enzyme that controls the rate of nucleation of silver nanocrystals on plasmonic transducers. We demonstrate the outstanding sensitivity and robustness of this approach by detecting the cancer biomarker prostate-specific antigen down to 10-18 g ml-1 (4 × 10-20 M) in whole serum.

  2. Study on nickel and vanadium removal in thermal conversion of oil sludge and oil shale sludge

    NASA Astrophysics Data System (ADS)

    Sombral, L. G. S.; Pickler, A. C.; Aires, J. R.; Riehl, C. A.

    2003-05-01

    The petroleum refining processes and of oil shale industrialization generate solid and semi-solid residues. In those residues heavy metals are found in concentrations that vary according to the production sector. The destination of those residues is encouraging researches looking for new technologies that reach the specifications of environmental organisms, and are being developed and applied to the industry. In this work it is shown that the heavy metals concentrations, previously in the petroleum oily solid residues and in those of the oils shale, treated by low temperature thermal conversion, obtaining in both cases concentrations below Ippm to Nickel and below 5ppm to vanadium.

  3. Heavy Metal Pollution from Gold Mines: Environmental Effects and Bacterial Strategies for Resistance.

    PubMed

    Fashola, Muibat Omotola; Ngole-Jeme, Veronica Mpode; Babalola, Olubukola Oluranti

    2016-10-26

    Mining activities can lead to the generation of large quantities of heavy metal laden wastes which are released in an uncontrolled manner, causing widespread contamination of the ecosystem. Though some heavy metals classified as essential are important for normal life physiological processes, higher concentrations above stipulated levels have deleterious effects on human health and biota. Bacteria able to withstand high concentrations of these heavy metals are found in the environment as a result of various inherent biochemical, physiological, and/or genetic mechanisms. These mechanisms can serve as potential tools for bioremediation of heavy metal polluted sites. This review focuses on the effects of heavy metal wastes generated from gold mining activities on the environment and the various mechanisms used by bacteria to counteract the effect of these heavy metals in their immediate environment.

  4. Heavy Metal Pollution from Gold Mines: Environmental Effects and Bacterial Strategies for Resistance

    PubMed Central

    Fashola, Muibat Omotola; Ngole-Jeme, Veronica Mpode; Babalola, Olubukola Oluranti

    2016-01-01

    Mining activities can lead to the generation of large quantities of heavy metal laden wastes which are released in an uncontrolled manner, causing widespread contamination of the ecosystem. Though some heavy metals classified as essential are important for normal life physiological processes, higher concentrations above stipulated levels have deleterious effects on human health and biota. Bacteria able to withstand high concentrations of these heavy metals are found in the environment as a result of various inherent biochemical, physiological, and/or genetic mechanisms. These mechanisms can serve as potential tools for bioremediation of heavy metal polluted sites. This review focuses on the effects of heavy metal wastes generated from gold mining activities on the environment and the various mechanisms used by bacteria to counteract the effect of these heavy metals in their immediate environment. PMID:27792205

  5. Diversity and interactions of microbial functional genes under differing environmental conditions: insights from a membrane bioreactor and an oxidation ditch.

    PubMed

    Xia, Yu; Hu, Man; Wen, Xianghua; Wang, Xiaohui; Yang, Yunfeng; Zhou, Jizhong

    2016-01-08

    The effect of environmental conditions on the diversity and interactions of microbial communities has caused tremendous interest in microbial ecology. Here, we found that with identical influents but differing operational parameters (mainly mixed liquor suspended solid (MLSS) concentrations, solid retention time (SRT) and dissolved oxygen (DO) concentrations), two full-scale municipal wastewater treatment systems applying oxidation ditch (OD) and membrane bioreactor (MBR) processes harbored a majority of shared genes (87.2%) but had different overall functional gene structures as revealed by two datasets of 12-day time-series generated by a functional gene array-GeoChip 4.2. Association networks of core carbon, nitrogen and phosphorus cycling genes in each system based on random matrix theory (RMT) showed different topological properties and the MBR nodes showed an indication of higher connectivity. MLSS and DO were shown to be effective in shaping functional gene structures of the systems by statistical analyses. Higher MLSS concentrations resulting in decreased resource availability of the MBR system were thought to promote positive interactions of important functional genes. Together, these findings show the differences of functional potentials of some bioprocesses caused by differing environmental conditions and suggest that higher stress of resource limitation increased positive gene interactions in the MBR system.

  6. Diversity and interactions of microbial functional genes under differing environmental conditions: insights from a membrane bioreactor and an oxidation ditch

    NASA Astrophysics Data System (ADS)

    Xia, Yu; Hu, Man; Wen, Xianghua; Wang, Xiaohui; Yang, Yunfeng; Zhou, Jizhong

    2016-01-01

    The effect of environmental conditions on the diversity and interactions of microbial communities has caused tremendous interest in microbial ecology. Here, we found that with identical influents but differing operational parameters (mainly mixed liquor suspended solid (MLSS) concentrations, solid retention time (SRT) and dissolved oxygen (DO) concentrations), two full-scale municipal wastewater treatment systems applying oxidation ditch (OD) and membrane bioreactor (MBR) processes harbored a majority of shared genes (87.2%) but had different overall functional gene structures as revealed by two datasets of 12-day time-series generated by a functional gene array-GeoChip 4.2. Association networks of core carbon, nitrogen and phosphorus cycling genes in each system based on random matrix theory (RMT) showed different topological properties and the MBR nodes showed an indication of higher connectivity. MLSS and DO were shown to be effective in shaping functional gene structures of the systems by statistical analyses. Higher MLSS concentrations resulting in decreased resource availability of the MBR system were thought to promote positive interactions of important functional genes. Together, these findings show the differences of functional potentials of some bioprocesses caused by differing environmental conditions and suggest that higher stress of resource limitation increased positive gene interactions in the MBR system.

  7. Diversity and interactions of microbial functional genes under differing environmental conditions: insights from a membrane bioreactor and an oxidation ditch

    PubMed Central

    Xia, Yu; Hu, Man; Wen, Xianghua; Wang, Xiaohui; Yang, Yunfeng; Zhou, Jizhong

    2016-01-01

    The effect of environmental conditions on the diversity and interactions of microbial communities has caused tremendous interest in microbial ecology. Here, we found that with identical influents but differing operational parameters (mainly mixed liquor suspended solid (MLSS) concentrations, solid retention time (SRT) and dissolved oxygen (DO) concentrations), two full-scale municipal wastewater treatment systems applying oxidation ditch (OD) and membrane bioreactor (MBR) processes harbored a majority of shared genes (87.2%) but had different overall functional gene structures as revealed by two datasets of 12-day time-series generated by a functional gene array-GeoChip 4.2. Association networks of core carbon, nitrogen and phosphorus cycling genes in each system based on random matrix theory (RMT) showed different topological properties and the MBR nodes showed an indication of higher connectivity. MLSS and DO were shown to be effective in shaping functional gene structures of the systems by statistical analyses. Higher MLSS concentrations resulting in decreased resource availability of the MBR system were thought to promote positive interactions of important functional genes. Together, these findings show the differences of functional potentials of some bioprocesses caused by differing environmental conditions and suggest that higher stress of resource limitation increased positive gene interactions in the MBR system. PMID:26743465

  8. Stream dynamics and chemical transformations control the environmental fate of silver and zinc oxide nanoparticles in a watershed-scale model.

    PubMed

    Dale, Amy L; Lowry, Gregory V; Casman, Elizabeth A

    2015-06-16

    Mathematical models are needed to estimate environmental concentrations of engineered nanoparticles (NPs), which enter the environment upon the use and disposal of consumer goods and other products. We present a spatially resolved environmental fate model for the James River Basin, Virginia, that explores the influence of daily variation in streamflow, sediment transport, and stream loads from point and nonpoint sources on water column and sediment concentrations of zinc oxide (ZnO) and silver (Ag) NPs and their reaction byproducts over 20 simulation years. Spatial and temporal variability in sediment transport rates led to high NP transport such that less than 6% of NP-derived metals were retained in the river and sediments. Chemical transformations entirely eliminated ZnO NPs and doubled Zn mobility in the stream relative to Ag. Agricultural runoff accounted for 23% of total metal stream loads from NPs. Average NP-derived metal concentrations in the sediment varied spatially up to 9 orders of magnitude, highlighting the need for high-resolution models. Overall, our results suggest that "first generation" NP risk models have probably misrepresented NP fate in freshwater rivers due to low model resolutions and the simplification of NP chemistry and sediment transport.

  9. The role of vegetation in mitigating air quality impacts from ...

    EPA Pesticide Factsheets

    On Apri1 27-28, 2019, a multi-disciplinary group of researchers and po1icymakers met to discuss the state-of-the-science regarding the potential of roadside vegetation to mitigate near-road air quality impacts. Concerns over population exposures to traffic-generated pollutants near roads have grown with an increasing number of health studies reporting links between proximity to roads and adverse health effects. A recent EM article described how roadway design, including the presence of roadside vegetation, may be a means of mitigating air pollutant concentrations near roads. As a first step in evaluating this concept, representatives from government agencies, academia, state and local agencies, and non-governmental environmental organizations with expertise in air quality, urban forestry, ecosystem services, and environmental policy reviewed the current science and identified future activities in evaluating the potential role of vegetation in mitigating near-road air pollutant concentrations. journal article

  10. Fractal Analysis of Air Pollutant Concentrations

    NASA Astrophysics Data System (ADS)

    Cortina-Januchs, M. G.; Barrón-Adame, J. M.; Vega-Corona, A.; Andina, D.

    2010-05-01

    Air pollution poses significant threats to human health and the environment throughout the developed and developing countries. This work focuses on fractal analysis of pollutant concentration in Salamanca, Mexico. The city of Salamanca has been catalogued as one of the most polluted cities in Mexico. The main causes of pollution in this city are fixed emission sources, such as chemical industry and electricity generation. Sulphur Dioxide (SO2) and Particulate Matter less than 10 micrometer in diameter (PM10) are the most important pollutants in this region. Air pollutant concentrations were investigated by applying the box counting method in time series obtained of the Automatic Environmental Monitoring Network (AEMN). One year of time series of hourly average concentrations were analyzed in order to characterize the temporal structures of SO2 and PM10.

  11. Water Utility Lime Sludge Reuse – An Environmental Sorbent ...

    EPA Pesticide Factsheets

    Lime sludge can be used as an environmental sorbent to remove sulfur dioxide (SO2) and acid gases, by the ultra-fine CaCO3 particles, and to sequester mercury and other heavy metals, by the Natural Organic Matter and residual activated carbon. The laboratory experimental set up included a simulated flue gas preparation unit, a lab-scale wet scrubber, and a mercury analyzer system. The influent mercury concentration was based on a range from 22 surveyed power plants. The reactivity of the lime sludge sample for acid neutralization was determined using a method similar to method ASTM C1318-95. Similar experiments were conducted using reagent calcium carbonate and calcium sulfate to obtain baseline data for comparing with the lime sludge test results. The project also evaluated the techno-economic feasibility and sustainable benefits of reusing lime softening sludge. If implemented on a large scale, this transformative approach for recycling waste materials from water treatment utilities at power generation utilities for environmental cleanup can save both water and power utilities millions of dollars. Huge amounts of lime sludge waste, generated from hundreds of water treatment utilities across the U.S., is currently disposed in landfills. This project evaluated a sustainable and economically-attractive approach to the use of lime sludge waste as a valuable resource for power generation utilities.

  12. Use of a deuterated internal standard with pyrolysis-GC/MS dimeric marker analysis to quantify tire tread particles in the environment.

    PubMed

    Unice, Kenneth M; Kreider, Marisa L; Panko, Julie M

    2012-11-08

    Pyrolysis(pyr)-GC/MS analysis of characteristic thermal decomposition fragments has been previously used for qualitative fingerprinting of organic sources in environmental samples. A quantitative pyr-GC/MS method based on characteristic tire polymer pyrolysis products was developed for tread particle quantification in environmental matrices including soil, sediment, and air. The feasibility of quantitative pyr-GC/MS analysis of tread was confirmed in a method evaluation study using artificial soil spiked with known amounts of cryogenically generated tread. Tread concentration determined by blinded analyses was highly correlated (r2 ≥ 0.88) with the known tread spike concentration. Two critical refinements to the initial pyrolysis protocol were identified including use of an internal standard and quantification by the dimeric markers vinylcyclohexene and dipentene, which have good specificity for rubber polymer with no other appreciable environmental sources. A novel use of deuterated internal standards of similar polymeric structure was developed to correct the variable analyte recovery caused by sample size, matrix effects, and ion source variability. The resultant quantitative pyr-GC/MS protocol is reliable and transferable between laboratories.

  13. Weldon Spring Site Remedial Action Project Federal Facilities Agreement: Quarterly environmental data summary for third quarter 1998

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1998-11-06

    In support of the Weldon Spring Site Remedial Action Project Federal Facilities Agreement, a copy of the Quarterly Environmental Data Summary (QEDS) for the third quarter of 1998 is enclosed. The data presented in this letter and attachment constitute the QEDS. The data, except for air monitoring data and site KPA generated data (uranium analyses), were received from the contract laboratories, verified by the Weldon Spring Site verification group, and merged into the database during the third quarter of 1998. Air monitoring data presented are the most recent complete sets of quarterly data. Significant data, defined as data values thatmore » have exceeded defined above normal Level 2 values, are discussed in this letter for Environmental Monitoring Plan (EMP) generated data only. Above normal Level 2 values are based, in ES and H procedures, on historical high values, DOE Derived Concentration Guides (DCGs), NPDES limits, and other guidelines. The procedures also establish actions to be taken in the event that above normal data occur.« less

  14. Environmental Conditions Associated with Elevated Vibrio parahaemolyticus Concentrations in Great Bay Estuary, New Hampshire.

    PubMed

    Urquhart, Erin A; Jones, Stephen H; Yu, Jong W; Schuster, Brian M; Marcinkiewicz, Ashley L; Whistler, Cheryl A; Cooper, Vaughn S

    2016-01-01

    Reports from state health departments and the Centers for Disease Control and Prevention indicate that the annual number of reported human vibriosis cases in New England has increased in the past decade. Concurrently, there has been a shift in both the spatial distribution and seasonal detection of Vibrio spp. throughout the region based on limited monitoring data. To determine environmental factors that may underlie these emerging conditions, this study focuses on a long-term database of Vibrio parahaemolyticus concentrations in oyster samples generated from data collected from the Great Bay Estuary, New Hampshire over a period of seven consecutive years. Oyster samples from two distinct sites were analyzed for V. parahaemolyticus abundance, noting significant relationships with various biotic and abiotic factors measured during the same period of study. We developed a predictive modeling tool capable of estimating the likelihood of V. parahaemolyticus presence in coastal New Hampshire oysters. Results show that the inclusion of chlorophyll a concentration to an empirical model otherwise employing only temperature and salinity variables, offers improved predictive capability for modeling the likelihood of V. parahaemolyticus in the Great Bay Estuary.

  15. Controlled production of Camembert-type cheeses. Part I: Microbiological and physicochemical evolutions.

    PubMed

    Leclercq-Perlat, Marie-Noëlle; Buono, Frédéric; Lambert, Denis; Latrille, Eric; Spinnler, Henry-Eric; Corrieu, Georges

    2004-08-01

    A holistic approach of a mould cheese ripening is presented. The objective was to establish relationships between the different microbiological and biochemical changes during cheese ripening. Model cheeses were prepared from pasteurized milk inoculated with Kluyveromyces lactis, Geotrichum candidum, Penicillium camemberti and Brevibacterium linens under aseptic conditions. Two cheese-making trials with efficient control of environmental parameters were carried out and showed similar ripening characteristics. K. lactis grew rapidly between days 1 and 6 (generation time around 48 h). G. candidum grew exponentially between days 4 and 10 (generation time around 4.6 d). Brevi. linens also grew exponentially but after day 6 when Pen. camemberti mycelium began developing and the pH of the rind was close to 7. Its exponential growth presented 3 phases in relation to carbon and nitrogen substrate availability. Concentrations of Pen. camemberti mycelium were not followed by viable cell count but they were evaluated visually. The viable microorganism concentrations were well correlated with the carbon substrate concentrations in the core and in the rind. The lactose concentrations were negligible after 10 d ripening, and changes in lactate quantities were correlated with fungi flora. The pH of the inner part depended on NH3. Surface pH was significantly related to NH3 concentration and to fungi growth. The acid-soluble nitrogen (ASN) and non-protein nitrogen (NPN) indexes and NH3 concentrations of the rind were low until day 6, and then increased rapidly to follow the fungi concentrations until day 45. The ASN and NPN indexes and NH3 concentrations in the core were lower than in the rind and they showed the same evolution. G. candidum and Pen. camemberti populations have a major effect on proteolysis; nevertheless, K. lactis and Brevi. linens cell lysis also had an impact on proteolysis. Viable cell counts of K. lactis, G. candidum, Pen. camemberti and Brevi. linens were correlated with the environmental conditions, with proteolytic products and with carbon substrate assimilation. NH3 diffusion from surface to the cheese core during ripening was highly suspected. Interaction phenomena between microorganisms are discussed.

  16. Environmental implications of excessive selenium: a review.

    PubMed

    Lemly, A D

    1997-12-01

    Selenium is a naturally occurring trace element that is nutritionally required in small amounts but it can become toxic at concentrations only twice those required. The narrow margin between beneficial and harmful levels has important implications for human activities that increase the amount of selenium in the environment. Two of these activities, disposal of fossil fuel wastes and agricultural irrigation of arid, seleniferous soils, have poisoned fish and wildlife, and threatened public health at several locations in the United States. Research studies of these episodes have generated a data base that clearly illustrates the environmental hazard of excessive selenium. It is strongly bioaccumulated by aquatic organisms and even slight increases in waterborne concentrations can quickly result in toxic effects such as deformed embryos and reproductive failure in wildlife. The selenium data base has been very beneficial in developing hazard assessment procedures and establishing environmentally sound water quality criteria. The two faces of selenium, required nutrient and potent toxin, make it a particularly important trace element in the health of both animals and man. Because of this paradox, environmental selenium in relation to agriculture, fisheries, and wildlife will continue to raise important land and water management issues for decades to come. If these issues are dealt with using prudence and the available environmental selenium data base, adverse impacts to natural resources and public health can be avoided.

  17. Tracking contributions to human body burden of environmental chemicals by correlating environmental measurements with biomarkers.

    PubMed

    Shin, Hyeong-Moo; McKone, Thomas E; Sohn, Michael D; Bennett, Deborah H

    2014-01-01

    The work addresses current knowledge gaps regarding causes for correlations between environmental and biomarker measurements and explores the underappreciated role of variability in disaggregating exposure attributes that contribute to biomarker levels. Our simulation-based study considers variability in environmental and food measurements, the relative contribution of various exposure sources (indoors and food), and the biological half-life of a compound, on the resulting correlations between biomarker and environmental measurements. For two hypothetical compounds whose half-lives are on the order of days for one and years for the other, we generate synthetic daily environmental concentrations and food exposures with different day-to-day and population variability as well as different amounts of home- and food-based exposure. Assuming that the total intake results only from home-based exposure and food ingestion, we estimate time-dependent biomarker concentrations using a one-compartment pharmacokinetic model. Box plots of modeled R2 values indicate that although the R2 correlation between wipe and biological (e.g., serum) measurements is within the same range for the two compounds, the relative contribution of the home exposure to the total exposure could differ by up to 20%, thus providing the relative indication of their contribution to body burden. The novel method introduced in this paper provides insights for evaluating scenarios or experiments where sample, exposure, and compound variability must be weighed in order to interpret associations between exposure data.

  18. Epigenetics of drought-induced trans-generational plasticity: consequences for range limit development

    PubMed Central

    Alsdurf, Jacob; Anderson, Cynthia; Siemens, David H.

    2016-01-01

    Genetic variation gives plants the potential to adapt to stressful environments that often exist beyond their geographic range limits. However, various genetic, physiological or developmental constraints might prevent the process of adaptation. Alternatively, environmentally induced epigenetic changes might sustain populations for several generations in stressful areas across range boundaries, but previous work on Boechera stricta, an upland mustard closely related to Arabidopsis, documented a drought-induced trans-generational plastic trade-off that could contribute to range limit development. Offspring of parents who were drought treated had higher drought tolerance, but lower levels of glucosinolate toxins. Both drought tolerance and defence are thought to be needed to expand the range to lower elevations. Here, we used methylation-sensitive amplified fragment length polymorphisms to determine whether environmentally induced DNA methylation and thus epigenetics could be a mechanism involved in the observed trans-generational plastic trade-off. We compared 110 offspring from the same self-fertilizing lineages whose parents were exposed to experimental drought stress treatments in the laboratory. Using three primer combinations, 643 polymorphic epi-loci were detected. Discriminant function analysis (DFA) on the amount of methylation detected resulted in significant combinations of epi-loci that distinguished the parent drought treatments in the offspring. Principal component (PC) and univariate association analyses also detected the significant differences, even after controlling for lineage, planting flat, developmental differences and multiple testing. Univariate tests also indicated significant associations between the amount of methylation and drought tolerance or glucosinolate toxin concentration. One epi-locus that was implicated in DFA, PC and univariate association analysis may be directly involved in the trade-off because increased methylation at this site on the genome decreased drought tolerance, but increased glucosinolate concentration. PMID:26685218

  19. Environmental risk assessment of cobalt and manganese from industrial sources in an estuarine system.

    PubMed

    Barrio-Parra, F; Elío, J; De Miguel, E; García-González, J E; Izquierdo, M; Álvarez, R

    2018-04-01

    A total of 74 samples of soil, sediment, industrial sludge, and surface water were collected in a Mediterranean estuarine system in order to assess the potential ecological impact of elevated concentrations of Co and Mn associated with a Terephthalic (PTA) and Isophthalic (PIPA) acids production plant. Samples were analyzed for elemental composition (37 elements), pH, redox potential, organic carbon, and CaCO 3 content, and a group of 16 selected samples were additionally subjected to a Tessier sequential extraction. Co and Mn soil concentrations were significantly higher inside the industrial facility and around its perimeter than in background samples, and maximum dissolved Co and Mn concentrations were found in a creek near the plant's discharge point, reaching values 17,700 and 156 times higher than their respective background concentrations. The ecological risk was evaluated as a function of Co and Mn fractionation and bioavailability which were controlled by the environmental conditions generated by the advance of seawater into the estuarine system during high tide. Co appeared to precipitate near the river mouth due to the pH increase produced by the influence of seawater intrusion, reaching hazardous concentrations in sediments. In terms of their bioavailability and the corresponding risk assessment code, both Co and Mn present sediment concentrations that result in medium to high ecological risk whereas water concentrations of both elements reach values that more than double their corresponding Secondary Acute Values.

  20. Characterization of air contaminants formed by the interaction of lava and sea water.

    PubMed

    Kullman, G J; Jones, W G; Cornwell, R J; Parker, J E

    1994-05-01

    We made environmental measurements to characterize contaminants generated when basaltic lava from Hawaii's Kilauea volcano enters sea water. This interaction of lava with sea water produces large clouds of mist (LAZE). Island winds occasionally directed the LAZE toward the adjacent village of Kalapana and the Hawaii Volcanos National Park, creating health concerns. Environmental samples were taken to measure airborne concentrations of respirable dust, crystalline silica and other mineral compounds, fibers, trace metals, inorganic acids, and organic and inorganic gases. The LAZE contained quantifiable concentrations of hydrochloric acid (HCl) and hydrofluoric acid (HF); HCl was predominant. HCl and HF concentrations were highest in dense plumes of LAZE near the sea. The HCl concentration at this sampling location averaged 7.1 ppm; this exceeds the current occupational exposure ceiling of 5 ppm. HF was detected in nearly half the samples, but all concentrations were <1 ppm Sulfur dioxide was detected in one of four short-term indicator tube samples at approximately 1.5 ppm. Airborne particulates were composed largely of chloride salts (predominantly sodium chloride). Crystalline silica concentrations were below detectable limits, less than approximately 0.03 mg/m3 of air. Settled dust samples showed a predominance of glass flakes and glass fibers. Airborne fibers were detected at quantifiable levels in 1 of 11 samples. These fibers were composed largely of hydrated calcium sulfate. These findings suggest that individuals should avoid concentrated plumes of LAZE near its origin to prevent over exposure to inorganic acids, specifically HCl.

  1. DairyWise, a whole-farm dairy model.

    PubMed

    Schils, R L M; de Haan, M H A; Hemmer, J G A; van den Pol-van Dasselaar, A; de Boer, J A; Evers, A G; Holshof, G; van Middelkoop, J C; Zom, R L G

    2007-11-01

    A whole-farm dairy model was developed and evaluated. The DairyWise model is an empirical model that simulated technical, environmental, and financial processes on a dairy farm. The central component is the FeedSupply model that balanced the herd requirements, as generated by the DairyHerd model, and the supply of homegrown feeds, as generated by the crop models for grassland and corn silage. The output of the FeedSupply model was used as input for several technical, environmental, and economic submodels. The submodels simulated a range of farm aspects such as nitrogen and phosphorus cycling, nitrate leaching, ammonia emissions, greenhouse gas emissions, energy use, and a financial farm budget. The final output was a farm plan describing all material and nutrient flows and the consequences on the environment and economy. Evaluation of DairyWise was performed with 2 data sets consisting of 29 dairy farms. The evaluation showed that DairyWise was able to simulate gross margin, concentrate intake, nitrogen surplus, nitrate concentration in ground water, and crop yields. The variance accounted for ranged from 37 to 84%, and the mean differences between modeled and observed values varied between -5 to +3% per set of farms. We conclude that DairyWise is a powerful tool for integrated scenario development and evaluation for scientists, policy makers, extension workers, teachers and farmers.

  2. Effects of electrolysis time and electric potential on chlorine generation of electrolyzed deep ocean water.

    PubMed

    Hsu, Guoo-Shyng Wang; Lu, Yi-Fa; Hsu, Shun-Yao

    2017-10-01

    Electrolyzed water is a sustainable disinfectant, which can comply with food safety regulations and is environmentally friendly. A two-factor central composite design was adopted for studying the effects of electrolysis time and electric potential on the chlorine generation efficiency of electrolyzed deep ocean water (DOW). DOW was electrolyzed in a glass electrolyzing cell equipped with platinum-plated titanium anode and cathode. The results showed that chlorine concentration reached maximal level in the batch process. Prolonged electrolysis reduced chlorine concentration in the electrolyte and was detrimental to electrolysis efficiency, especially under high electric potential conditions. Therefore, the optimal choice of electrolysis time depends on the electrolyzable chloride in DOW and cell potential adopted for electrolysis. The higher the electric potential, the faster the chlorine level reaches its maximum, but the lower the electric efficiency will be. Copyright © 2016. Published by Elsevier B.V.

  3. Concentrations of environmental organic contaminants in meat and meat products and human dietary exposure: A review.

    PubMed

    Domingo, José L

    2017-09-01

    Meat and meat products is one of the most relevant food groups in an important number of human diets. Recently, the IARC, based on results of a number of epidemiological studies, classified the consumptions of red meat and processed meat as "probably carcinogenic to humans" and as "carcinogenic to humans", respectively. It was suggested that the substances responsible of the potential carcinogenicity would be mainly generated during meat processing, such as curing and smoking, or when meat is heated at high temperatures. However, the exposure to environmental pollutants through meat consumption was not discussed. The purpose of the present paper was to review recent studies reporting the concentrations of PCDD/Fs, DL-PCBs and PAHs in meat and meat products, as well as the human exposure to these pollutants through the diet. It is concluded that the health risks derived from exposure to carcinogenic environmental contaminants must be considered in the context of each specific diet, which besides meat and meat products, includes other foodstuffs containing also chemical pollutants, some of them with carcinogenic potential. Anyhow, meat and meat products are not the main food group responsible of the dietary exposure to carcinogenic (or probably carcinogenic) environmental organic pollutants. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Applications of life cycle assessment and cost analysis in health care waste management

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soares, Sebastiao Roberto, E-mail: soares@ens.ufsc.br; Finotti, Alexandra Rodrigues, E-mail: finotti@ens.ufsc.br; Prudencio da Silva, Vamilson, E-mail: vamilson@epagri.sc.gov.br

    Highlights: Black-Right-Pointing-Pointer Three Health Care Waste (HCW) scenarios were assessed through environmental and cost analysis. Black-Right-Pointing-Pointer HCW treatment using microwave oven had the lowest environmental impacts and costs in comparison with autoclave and lime. Black-Right-Pointing-Pointer Lime had the worst environmental and economic results for HCW treatment, in comparison with autoclave and microwave. - Abstract: The establishment of rules to manage Health Care Waste (HCW) is a challenge for the public sector. Regulatory agencies must ensure the safety of waste management alternatives for two very different profiles of generators: (1) hospitals, which concentrate the production of HCW and (2) small establishments, such as clinics, pharmacies and other sources, that generate dispersed quantities of HCW and are scattered throughout the city. To assist in developing sector regulations for the small generators, we evaluated three management scenarios using decision-making tools. They consisted of a disinfection technique (microwave, autoclave and lime) followed by landfilling, where transportation was also included. The microwave, autoclave and lime techniques were tested at the laboratory to establish the operating parameters to ensure their efficiency in disinfection. Using a life cycle assessment (LCA) and cost analysis, the decision-making tools aimed to determine the technique with the best environmental performance. This consisted of evaluating the eco-efficiency of each scenario. Based on the life cycle assessment, microwaving had the lowest environmental impact (12.64 Pt) followed by autoclaving (48.46 Pt). The cost analyses indicated values of USmore » $$ 0.12 kg{sup -1} for the waste treated with microwaves, US$$ 1.10 kg{sup -1} for the waste treated by the autoclave and US$ 1.53 kg{sup -1} for the waste treated with lime. The microwave disinfection presented the best eco-efficiency performance among those studied and provided a feasible alternative to subsidize the formulation of the policy for small generators of HCW.« less

  5. Poultry litter incineration as a source of energy: reviewing the potential for impacts on environmental health and justice.

    PubMed

    Stingone, Jeanette A; Wing, Steve

    2011-01-01

    Legislation in North Carolina has mandated obtaining renewable energy from the incineration of poultry waste, resulting in proposals for three poultry-litter-fueled power plants statewide. This article summarizes environmental health and environmental justice issues associated with incineration of poultry waste for the generation of electric power. Emissions from poultry waste incineration include particulate matter, dioxins, arsenic, bioaerosols and other toxins; various components are associated with cardiovascular disease, cancer, respiratory illness, and other diseases. Industrial farm animal production tends to be concentrated in low-income, rural communities, where residents may be more vulnerable to air pollutants due to pre-existing diseases, other exposures and stressors, and poor access to medical services. These communities lack the political clout to prevent citing of polluting facilities or to pressure industry and government to follow and enforce regulations. Policies intended to reduce reliance on fossil fuels have the potential to increase environmental injustices and threats to environmental health.

  6. Study on O2 generation and CO2 absorption capability of four co-cultured salad plants in an enclosed system

    NASA Astrophysics Data System (ADS)

    Guo, Shuangsheng; Ai, Weidang; Tang, Yongkang; Cheng, Quanyong; Shen, Yunze; Qin, Lifeng; Ma, Jialu; Zhu, Jingtao; Ren, Jin

    2014-06-01

    The ability to generate O2 and absorb CO2 of several co-cultured vegetable plants in an enclosed system was studied to provide theoretical reference for the future man-plant integrated tests. Four kinds of salad plants (Lactuca sativa L. var. Dasusheng, Lactuca sativa L. var. Youmaicai, Gynura bicolor and Cichorium endivia L.) were grown in the CELSS Integration Test Platform (CITP). The environmental factors including O2 and CO2 concentration were continuously monitored on-line and the plant biomass was measured at the end of the test. The changing rules of O2 and CO2 concentration in the system were basically understood and it was found that the O2 generated by the plants could satisfy the respiratory needs of 1.75 persons by calculation. It was also found that the plants could absorb the CO2 breathed out by 2 persons when the light intensity was raised to 550 mmol m-2 s-1 PPF. The results showed that the co-cultured plants hold good compatibility and excellent O2-generating and CO2-absorbing capability. They could also supply some fresh edible vegetable for a 2-person crew.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bass, D A; TenKate, L B

    Graphite furnace atomic absorption spectrophotometry (GFAAS) is used for determination of ultra-trace metals in environmentally important samples. In the generation of GFAAS calibration curves for many environmental applications, low concentration calibration standards must be prepared dally, as required by the Statement of Work (SOW) for the US Environmental Protection Agency (EPA) Contract Laboratory Program (CLP). This results in significant time and work for the analyst and significant cost to the Analytical Chemistry Laboratory (ACL) for chemicals and waste management. While EPA SW 846 is less prescriptive than the CLP SOW, ACL has been following the CLP guidelines because in-house criteriamore » regarding the stability of GFAAS standards have not been established. A study was conducted to determine the stability of GFAAS standards for analytes commonly used in the ACL (single and mixed) as a function of time. Data were collected over nine months. The results show that GFAAS standards for Sb, Pb, Se, Ag, and TI are stable for a longer period of time than currently assumed by the CLP SOW. Reducing the frequency of preparing these standards will increase efficiency, decrease the handling of hazardous the quantity of hazardous waste generated, and decrease the quantity of hazardous substances to be ordered and stocked by the laboratory. These benefits will improve GFAAS analysis quality, reduce costs, enhance safety, and lower environmental concerns.« less

  8. Solar Energy within the Central Valley, CA: Current Practices and Potential

    NASA Astrophysics Data System (ADS)

    Hoffacker, M. K.; Hernandez, R. R.; Allen, M. F.

    2015-12-01

    Utility-scale solar energy (USSE, ≥ 1 megawatt [MW]) systems are rapidly being deployed in the Central Valley of California, generating clean electricity and new job opportunities. Utility-scale solar energy systems require substantial quantities of land or space, often prompting an evaluation of environmental impacts and trade-offs when selecting their placement. Utilizing salt-contaminated agricultural land (as the sodium absorption and electrical conductivity values are unsuitably high), unsuitable for food production, and lands within the built environment (developed), can serve as a co-benefit opportunity when reclamation of these lands for USSE development is prioritized. In this study, we quantify the theoretical and generation-based solar energy potential for the Central Valley according to land-cover type, crop type, and for salt-contaminated lands. Further, we utilize the Carnegie Energy and Environmental Compatibility (CEEC) model to identify and prioritize solar energy, integrating environmental resource opportunities and constraints most relevant to the Central Valley. We use the CEEC model to generate a value-based environmental compatibility output for the Central Valley. The Central Valley extends across nearly 60,000 km2 of California with the potential of generating 21,800 - 30,300 TWh y-1 and 41,600 TWh y-1 of solar energy for photovoltaic (PV) and concentrating solar power (CSP), respectively. Pasture, hay, and cultivated crops comprise over half of the Central Valley, much of which is considered prime agriculture or of statewide or local importance for farming (28,200 km2). Together, approximately one-third of this region is salt-contaminated (16%) or developed (11%). This confers a generation-based potential of 5713 - 7891 TWh y-1 and 2770 TWh y-1 for PV and CSP, respectively. As energy, food, and land are inextricably linked, our study shows how land favorable for renewable energy systems can be used more effectively in places where land is premium.

  9. Comprehensive assessment of a chlorinated drinking water concentrate in a rat multigenerational reproductive toxicity study.

    PubMed

    Narotsky, Michael G; Klinefelter, Gary R; Goldman, Jerome M; Best, Deborah S; McDonald, Anthony; Strader, Lillian F; Suarez, Juan D; Murr, Ashley S; Thillainadarajah, Inthirany; Hunter, E Sidney; Richardson, Susan D; Speth, Thomas F; Miltner, Richard J; Pressman, Jonathan G; Teuschler, Linda K; Rice, Glenn E; Moser, Virginia C; Luebke, Robert W; Simmons, Jane Ellen

    2013-09-17

    Some epidemiological studies report associations between drinking water disinfection byproducts (DBPs) and adverse reproductive/developmental effects, e.g., low birth weight, spontaneous abortion, stillbirth, and birth defects. Using a multigenerational rat bioassay, we evaluated an environmentally relevant "whole" mixture of DBPs representative of chlorinated drinking water, including unidentified DBPs as well as realistic proportions of known DBPs at low-toxicity concentrations. Source water from a water utility was concentrated 136-fold, chlorinated, and provided as drinking water to Sprague-Dawley rats. Timed-pregnant females (P0 generation) were exposed during gestation and lactation. Weanlings (F1 generation) continued exposures and were bred to produce an F2 generation. Large sample sizes enhanced statistical power, particularly for pup weight and prenatal loss. No adverse effects were observed for pup weight, prenatal loss, pregnancy rate, gestation length, puberty onset in males, growth, estrous cycles, hormone levels, immunological end points, and most neurobehavioral end points. Significant, albeit slight, effects included delayed puberty for F1 females, reduced caput epidydimal sperm counts in F1 adult males, and increased incidences of thyroid follicular cell hypertrophy in adult females. These results highlight areas for future research, while the largely negative findings, particularly for pup weight and prenatal loss, are notable.

  10. Estimated probability of arsenic in groundwater from bedrock aquifers in New Hampshire, 2011

    USGS Publications Warehouse

    Ayotte, Joseph D.; Cahillane, Matthew; Hayes, Laura; Robinson, Keith W.

    2012-01-01

    The statewide maps generated by the probability models are not designed to predict arsenic concentration in any single well, but they are expected to provide useful information in areas of the State that currently contain little to no data on arsenic concentration. They also may aid in resource decision making, in determining potential risk for private wells, and in ecological-level analysis of disease outcomes. The approach for modeling arsenic in groundwater could also be applied to other environmental contaminants that have potential implications for human health, such as uranium, radon, fluoride, manganese, volatile organic compounds, nitrate, and bacteria.

  11. State of the art and review on the treatment technologies of water reverse osmosis concentrates.

    PubMed

    Pérez-González, A; Urtiaga, A M; Ibáñez, R; Ortiz, I

    2012-02-01

    The growing demand for fresh water is partially satisfied by desalination plants that increasingly use membrane technologies and among them reverse osmosis to produce purified water. Operating with water recoveries from 35% to 85% RO plants generate huge volumes of concentrates containing all the retained compounds that are commonly discharged to water bodies and constitute a potentially serious threat to marine ecosystems; therefore there is an urgent need for environmentally friendly management options of RO brines. This paper gives an overview on the potential treatments to overcome the environmental problems associated to the direct discharge of RO concentrates. The treatment options have been classified according to the source of RO concentrates and the maturity of the technologies. For the sake of clarity three different sources of RO concentrates are differentiated i) desalination plants, ii) tertiary processes in WWTP, and iii) mining industries. Starting with traditional treatments such as evaporation and crystallization other technologies that have emerged in last years to reduce the volume of the concentrate before disposal and with the objective of achieving zero liquid discharge and recovery of valuable compounds from these effluents are also reviewed. Most of these emerging technologies have been developed at laboratory or pilot plant scale (see Table 1). With regard to RO concentrates from WWTP, the manuscript addresses recent studies that are mainly focused on reducing the organic pollutant load through the application of innovative advanced oxidation technologies. Finally, works that report the treatment of RO concentrates from industrial sources are analyzed as well. Copyright © 2011 Elsevier Ltd. All rights reserved.

  12. Population specific fitness response of Drosophila subobscura to lead pollution.

    PubMed

    Kenig, Bojan; Stamenković-Radak, Marina; Andelković, Marko

    2013-04-01

    Differences in heavy metal tolerance among separate populations of the same species have often been interpreted as local adaptation. Persistence of differences after removing the stressor indicates that mechanisms responsible for the increased tolerance were genetically determined. Drosophila subobscura Collin (Diptera: Drosophilidae) populations were sampled from two localities with different history of heavy metal pollution, and reared for eight generations in the laboratory on a standard medium and on media with different concentrations of lead (Pb). To determine whether flies from different natural populations exposed to the Pb-contaminated media in the laboratory show population specific variability in fitness components over generations, experimental groups with different concentrations of lead were assayed in three generations (F2 , F5 , and F8 ) for fecundity, developmental time, and egg-to-adult viability. On the contaminated medium, fecundity was reduced in later generations and viability was increased, irrespective of the environmental origin of populations. For both populations, developmental time showed a tendency of slowing down on media with lead. Faster development was observed in later generations. Preadaptation to contamination, meaning higher fecundity, higher viability, and faster egg to adult development in all studied generations, was found in D. subobscura originating from the locality with a higher level of heavy metal pollution. © 2012 The Authors Insect Science © 2012 Institute of Zoology, Chinese Academy of Sciences.

  13. Geochemical modeling of mercury speciation in surface water and implications on mercury cycling in the everglades wetland.

    PubMed

    Jiang, Ping; Liu, Guangliang; Cui, Wenbin; Cai, Yong

    2018-06-01

    The geochemical model PHREEQC, abbreviated from PH (pH), RE (redox), EQ (equilibrium), and C (program written in C), was employed on the datasets generated by the USEPA Everglades Regional Environmental Monitoring and Assessment Program (R-EMAP) to determine the speciation distribution of inorganic mercury (iHg) in Everglades water and to explore the implications of iHg speciation on mercury cycling. The results suggest that sulfide and DOM were the key factors that regulate inorganic Hg speciation in the Everglades. When sulfide was present at measurable concentrations (>0.02 mg/L), Hg-S complexes dominated iHg species, occurring in the forms of HgS 2 2- , HgHS 2 - , and Hg(HS) 2 that were affected by a variety of environmental factors. When sulfide was assumed nonexistent, Hg-DOM complexes occurred as the predominant Hg species, accounting for almost 100% of iHg species. However, when sulfide was presumably present at a very low, environmentally relevant concentration (3.2 × 10 -7  mg/L), both Hg-DOM and Hg-S complexes were present as the major iHg species. These Hg-S species and Hg-DOM complex could be related to methylmercury (MeHg) in environmental matrices such floc, periphyton, and soil, and the correlations are dependent upon different circumstances (e.g., sulfide concentrations). The implications of the distribution of iHg species on MeHg production and fate in the Everglades were discussed. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Nutrient load generated by storm event runoff from a golf course watershed.

    PubMed

    King, K W; Balogh, J C; Hughes, K L; Harmel, R D

    2007-01-01

    Turf, including home lawns, roadsides, golf courses, parks, etc., is often the most intensively managed land use in the urban landscape. Substantial inputs of fertilizers and water to maintain turf systems have led to a perception that turf systems are a major contributor to nonpoint source water pollution. The primary objective of this study was to quantify nutrient (NO(3)-N, NH(4)-N, and PO(4)-P) transport in storm-generated surface runoff from a golf course. Storm event samples were collected for 5 yr (1 Apr. 1998-31 Mar. 2003) from the Morris Williams Municipal Golf Course in Austin, TX. Inflow and outflow samples were collected from a stream that transected the golf course. One hundred fifteen runoff-producing precipitation events were measured. Median NO(3)-N and PO(4)-P concentrations at the outflow location were significantly (p < 0.05) greater than like concentrations measured at the inflow location; however, median outflow NH(4)-N concentration was significantly less than the median inflow concentration. Storm water runoff transported 1.2 kg NO(3)-N ha(-1) yr(-1), 0.23 kg NH(4)-N ha(-1) yr(-1), and 0.51 kg PO(4)-P ha(-1) yr(-1) from the course. These amounts represent approximately 3.3% of applied N and 6.2% of applied P over the contributing area for the same period. NO(3)-N transport in storm water runoff from this course does not pose a substantial environmental risk; however, the median PO(4)-P concentration exiting the course exceeded the USEPA recommendation of 0.1 mg L(-1) for streams not discharging into lakes. The PO(4)-P load measured in this study was comparable to soluble P rates measured from agricultural lands. The findings of this study emphasize the need to balance golf course fertility management with environmental risks, especially with respect to phosphorus.

  15. Assessment of toxicity and genotoxicity of low doses of 5-fluorouracil in zebrafish (Danio rerio) two-generation study.

    PubMed

    Kovács, Róbert; Csenki, Zsolt; Bakos, Katalin; Urbányi, Béla; Horváth, Ákos; Garaj-Vrhovac, Vera; Gajski, Goran; Gerić, Marko; Negreira, Noelia; López de Alda, Miren; Barceló, Damià; Heath, Ester; Kosjek, Tina; Žegura, Bojana; Novak, Matjaž; Zajc, Irena; Baebler, Špela; Rotter, Ana; Ramšak, Živa; Filipič, Metka

    2015-06-15

    Residues of anti-neoplastic drugs represent new and emerging pollutants in aquatic environments. Many of these drugs are genotoxic, and it has been postulated that they can cause adverse effects in aquatic ecosystems. 5-Fluorouracil (5-FU) is one of the most extensively used anti-neoplastic drugs in cancer therapy, and this article describes the results of the first investigation using a two-generation toxicity study design with zebrafish (Danio rerio). Exposure of zebrafish to 5-FU (0.01, 1.0 and 100 μg/L) was initiated with adult zebrafish (F0 generation) and continued through the hatchings and adults of the F1 generation, and the hatchings of the F2 generation, to day 33 post-fertilisation. The exposure did not affect survival, growth and reproduction of the zebrafish; however, histopathological changes were observed in the liver and kidney, along with genotoxic effects, at all 5-FU concentrations. Increases in DNA damage determined using the comet assay were significant in the liver and blood cells, but not in the gills and gonads. In erythrocytes, a significant, dose-dependent increase in frequency of micronuclei was observed at all 5-FU concentrations. Whole genome transcriptomic analysis of liver samples of F1 generation zebrafish exposed to 0.01 μg/L and 1 μg/L 5-FU revealed dose-dependent increases in the number of differentially expressed genes, including up-regulation of several DNA-damage-responsive genes and oncogenes (i.e., jun, myca). Although this chronic exposure to environmentally relevant concentrations of 5-FU did not affect the reproduction of the exposed zebrafish, it cannot be excluded that 5-FU can lead to degenerative changes, including cancers, which over long-term exposure of several generations might affect fish populations. The data from this study contribute to a better understanding of the potential consequences of chronic exposure of fish to low concentrations of anti-neoplastic drugs, and they demonstrate that further studies into multi-generation toxicity are needed. Copyright © 2015. Published by Elsevier Ltd.

  16. Classifying environmental pollutants: Part 3. External validation of the classification system.

    PubMed

    Verhaar, H J; Solbé, J; Speksnijder, J; van Leeuwen, C J; Hermens, J L

    2000-04-01

    In order to validate a classification system for the prediction of the toxic effect concentrations of organic environmental pollutants to fish, all available fish acute toxicity data were retrieved from the ECETOC database, a database of quality-evaluated aquatic toxicity measurements created and maintained by the European Centre for the Ecotoxicology and Toxicology of Chemicals. The individual chemicals for which these data were available were classified according to the rulebase under consideration and predictions of effect concentrations or ranges of possible effect concentrations were generated. These predictions were compared to the actual toxicity data retrieved from the database. The results of this comparison show that generally, the classification system provides adequate predictions of either the aquatic toxicity (class 1) or the possible range of toxicity (other classes) of organic compounds. A slight underestimation of effect concentrations occurs for some highly water soluble, reactive chemicals with low log K(ow) values. On the other end of the scale, some compounds that are classified as belonging to a relatively toxic class appear to belong to the so-called baseline toxicity compounds. For some of these, additional classification rules are proposed. Furthermore, some groups of compounds cannot be classified, although they should be amenable to predictions. For these compounds additional research as to class membership and associated prediction rules is proposed.

  17. The Read-Across Hypothesis and Environmental Risk Assessment of Pharmaceuticals

    PubMed Central

    2013-01-01

    Pharmaceuticals in the environment have received increased attention over the past decade, as they are ubiquitous in rivers and waterways. Concentrations are in sub-ng to low μg/L, well below acute toxic levels, but there are uncertainties regarding the effects of chronic exposures and there is a need to prioritise which pharmaceuticals may be of concern. The read-across hypothesis stipulates that a drug will have an effect in non-target organisms only if the molecular targets such as receptors and enzymes have been conserved, resulting in a (specific) pharmacological effect only if plasma concentrations are similar to human therapeutic concentrations. If this holds true for different classes of pharmaceuticals, it should be possible to predict the potential environmental impact from information obtained during the drug development process. This paper critically reviews the evidence for read-across, and finds that few studies include plasma concentrations and mode of action based effects. Thus, despite a large number of apparently relevant papers and a general acceptance of the hypothesis, there is an absence of documented evidence. There is a need for large-scale studies to generate robust data for testing the read-across hypothesis and developing predictive models, the only feasible approach to protecting the environment. PMID:24006913

  18. Flexing the PECs: Predicting environmental concentrations of veterinary drugs in Canadian agricultural soils.

    PubMed

    Kullik, Sigrun A; Belknap, Andrew M

    2017-03-01

    Veterinary drugs administered to food animals primarily enter ecosystems through the application of livestock waste to agricultural land. Although veterinary drugs are essential for protecting animal health, their entry into the environment may pose a risk for nontarget organisms. A means to predict environmental concentrations of new veterinary drug ingredients in soil is required to assess their environmental fate, distribution, and potential effects. The Canadian predicted environmental concentrations in soil (PECsoil) for new veterinary drug ingredients for use in intensively reared animals is based on the approach currently used by the European Medicines Agency for VICH Phase I environmental assessments. The calculation for the European Medicines Agency PECsoil can be adapted to account for regional animal husbandry and land use practices. Canadian agricultural practices for intensively reared cattle, pigs, and poultry differ substantially from those in the European Union. The development of PECsoil default values and livestock categories representative of typical Canadian animal production methods and nutrient management practices culminates several years of research and an extensive survey and analysis of the scientific literature, Canadian agricultural statistics, national and provincial management recommendations, veterinary product databases, and producers. A PECsoil can be used to rapidly identify new veterinary drugs intended for intensive livestock production that should undergo targeted ecotoxicity and fate testing. The Canadian PECsoil model is readily available, transparent, and requires minimal inputs to generate a screening level environmental assessment for veterinary drugs that can be refined if additional data are available. PECsoil values for a hypothetical veterinary drug dosage regimen are presented and discussed in an international context. Integr Environ Assess Manag 2017;13:331-341. © 2016 Her Majesty the Queen in Right of Canada. Integrated Environmental Assessment and Management published by Wiley Periodicals, Inc. on behalf of SETAC. Reproduced with the permission of the Minister of Health. © 2016 Her Majesty the Queen in Right of Canada. Integrated Environmental Assessment and Management published by Wiley Periodicals, Inc. on behalf of SETAC. Reproduced with the permission of the Minister of Health.

  19. Pharmaceuticals and iodinated contrast media in a hospital wastewater: A case study to analyse their presence and characterise their environmental risk and hazard.

    PubMed

    Mendoza, A; Aceña, J; Pérez, S; López de Alda, M; Barceló, D; Gil, A; Valcárcel, Y

    2015-07-01

    This work analyses the presence of twenty-five pharmaceutical compounds belonging to seven different therapeutic groups and one iodinated contrast media (ICM) in a Spanish medium-size hospital located in the Valencia Region. Analysis of the target compounds in the hospital wastewater was performed by means of solid phase extraction (SPE) followed by liquid chromatography-tandem mass spectrometry analysis (HPLC-MS/MS). A screening level risk assessment combining the measured environmental concentrations (MECs) with dose-response data based on Predicted No Effect Concentration (PNEC) was also applied to estimate Hazard Quotients (HQs) for the compounds investigated. Additionally, the environmental hazard associated to the various compounds measured was assessed through the calculation of the Persistence, Bioaccumulation and Toxicity (PBT) Index, which categorizes compounds according to their environmentally damaging characteristics. The results of the study showed the presence of twenty-four out of the twenty-six compounds analysed at individual concentrations ranging from 5 ng L(-1) to 2 mg L(-1). The highest concentrations corresponded to the ICM iomeprol, found at levels between 424 and 2093 μg L(-1), the analgesic acetaminophen (15-44 μg L(-1)), the diuretic (DIU) furosemide (6-15 μg L(-1)), and the antibiotics (ABIs) ofloxacin and trimethoprim (2-5 μg L(-1)). The lowest levels corresponded to the anti-inflammatory propyphenazone, found at concentrations between 5 and 44 ng L(-1). Differences in terms of concentrations of the analysed compounds have been observed in all the therapeutic groups when comparing the results obtained in this and other recent studies carried out in hospitals with different characteristics from different geographical areas and in different seasons. The screening level risk assessment performed in raw water from the hospital effluent showed that the analgesics and anti-inflammatories (AAFs) acetaminophen, diclofenac, ibuprofen and naproxen, the antibiotics (ABIs) clarithromycin, ofloxacin and trimethoprim, and the β-blocker (BBL) propranolol were present at concentrations leading to HQ values higher than 10, thus indicating high risk. When applying a factor to take into account potential dilution and degradation processes, only the compound ibuprofen showed a HQ higher than 1. Likewise, the cumulative HQ or Toxic Units (TUs) calculated in the raw water for each of the therapeutic groups studied showed that these three classes of drugs were at concentrations high enough to potentially generate high risk to aquatic organisms while taking into account possible dilution and degradation processes only one of them, the AAFs can be considered to represent high risk. Finally, the environmental hazard assessment performed showed that the AAFs diclofenac and ibuprofen and the ABI clarithromycin have the highest, maximum value of 9 of PBT Index due to their inherent environmentally damaging characteristics of persistence, bioaccumulation and toxicity. The methodology followed in the present case study can be taken as a novel approach to classify and categorize pharmaceuticals on the basis of their occurrence in hospital effluents, their derived environmental risks, and their associated environmental hazard. This classification becomes important because it can be used as a model or orientation for hospitals in the process of developing environmentally sustainable policies and as an argument to justify the adoption of advanced, specific treatments for hospital effluents before being discharged into the public sewage system. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Optimization of biogenic methane production from coal

    DOE PAGES

    Fuertez, John; Nguyen, Van; McLennan, John D.; ...

    2017-09-29

    Given continuously increasing global energy needs, diversified efforts have been made to find and exploit new natural gas resources. These include coalbed methane (CBM), which represents an important global, unconventional source of natural gas. Efforts have been underway for some time to more effectively generate methane in-situ in coal plays by introduction of nutrients and/or microbial consortia. However, much is still to be learned about the limitations and environmental conditions that support microbial growth and are conducive to biogenic methane production from coal. Here we evaluated environmental conditions that led to increased methane production from subbituminous coal by introducing amore » foreign methanogenic consortium that included Methanobacterium sp. Furthermore, we used a central composite design (CCD) to explore a broad range of operational conditions, examine the effects of the important environmental factors, such as temperature, pH and salt concentration, and query a feasible region of operation to maximize methane production from coal. An anticipated detrimental effect of NaCl concentration on methane production was observed for the consortium assessed. The range of feasible operational conditions comprised initial pH values between 4.2 and 6.8, temperatures between 23 °C and 37 °C, and NaCl concentrations between 3.7 mg/cm 3 and 9.0 mg/cm 3. Coal biogasification was optimal for this consortium at an initial pH value of 5.5, at 30 °C, and at a NaCl concentration 3.7 mg/cm 3 (i.e., 145,165 ppm, which is 25.6 sft 3/ton).« less

  1. Optimization of biogenic methane production from coal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fuertez, John; Nguyen, Van; McLennan, John D.

    Given continuously increasing global energy needs, diversified efforts have been made to find and exploit new natural gas resources. These include coalbed methane (CBM), which represents an important global, unconventional source of natural gas. Efforts have been underway for some time to more effectively generate methane in-situ in coal plays by introduction of nutrients and/or microbial consortia. However, much is still to be learned about the limitations and environmental conditions that support microbial growth and are conducive to biogenic methane production from coal. Here we evaluated environmental conditions that led to increased methane production from subbituminous coal by introducing amore » foreign methanogenic consortium that included Methanobacterium sp. Furthermore, we used a central composite design (CCD) to explore a broad range of operational conditions, examine the effects of the important environmental factors, such as temperature, pH and salt concentration, and query a feasible region of operation to maximize methane production from coal. An anticipated detrimental effect of NaCl concentration on methane production was observed for the consortium assessed. The range of feasible operational conditions comprised initial pH values between 4.2 and 6.8, temperatures between 23 °C and 37 °C, and NaCl concentrations between 3.7 mg/cm 3 and 9.0 mg/cm 3. Coal biogasification was optimal for this consortium at an initial pH value of 5.5, at 30 °C, and at a NaCl concentration 3.7 mg/cm 3 (i.e., 145,165 ppm, which is 25.6 sft 3/ton).« less

  2. Analysis of polyethylene microplastics in environmental samples, using a thermal decomposition method.

    PubMed

    Dümichen, Erik; Barthel, Anne-Kathrin; Braun, Ulrike; Bannick, Claus G; Brand, Kathrin; Jekel, Martin; Senz, Rainer

    2015-11-15

    Small polymer particles with a diameter of less than 5 mm called microplastics find their way into the environment from polymer debris and industrial production. Therefore a method is needed to identify and quantify microplastics in various environmental samples to generate reliable concentration values. Such concentration values, i.e. quantitative results, are necessary for an assessment of microplastic in environmental media. This was achieved by thermal extraction in thermogravimetric analysis (TGA), connected to a solid-phase adsorber. These adsorbers were subsequently analysed by thermal desorption gas chromatography mass spectrometry (TDS-GC-MS). In comparison to other chromatographic methods, like pyrolyse gas chromatography mass spectrometry (Py-GC-MS), the relatively high sample masses in TGA (about 200 times higher than used in Py-GC-MS) analysed here enable the measurement of complex matrices that are not homogenous on a small scale. Through the characteristic decomposition products known for every kind of polymer it is possible to identify and even to quantify polymer particles in various matrices. Polyethylene (PE), one of the most important representatives for microplastics, was chosen as an example for identification and quantification. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Use of a Deuterated Internal Standard with Pyrolysis-GC/MS Dimeric Marker Analysis to Quantify Tire Tread Particles in the Environment

    PubMed Central

    Unice, Kenneth M.; Kreider, Marisa L.; Panko, Julie M.

    2012-01-01

    Pyrolysis(pyr)-GC/MS analysis of characteristic thermal decomposition fragments has been previously used for qualitative fingerprinting of organic sources in environmental samples. A quantitative pyr-GC/MS method based on characteristic tire polymer pyrolysis products was developed for tread particle quantification in environmental matrices including soil, sediment, and air. The feasibility of quantitative pyr-GC/MS analysis of tread was confirmed in a method evaluation study using artificial soil spiked with known amounts of cryogenically generated tread. Tread concentration determined by blinded analyses was highly correlated (r2 ≥ 0.88) with the known tread spike concentration. Two critical refinements to the initial pyrolysis protocol were identified including use of an internal standard and quantification by the dimeric markers vinylcyclohexene and dipentene, which have good specificity for rubber polymer with no other appreciable environmental sources. A novel use of deuterated internal standards of similar polymeric structure was developed to correct the variable analyte recovery caused by sample size, matrix effects, and ion source variability. The resultant quantitative pyr-GC/MS protocol is reliable and transferable between laboratories. PMID:23202830

  4. Potential Use of Passive Sampling for Environmental Monitoring of Petroleum E&P Operations

    EPA Pesticide Factsheets

    Traditional environmental monitoring relies on water or soil samples being taken at various time increments and sent to offsite laboratories for analysis. Reliance on grab samples generally captures limited “snapshots” of environmental contaminant concentrations, is time intensive, costly, and generates residual waste from excess sample and/or reagents used in the analysis procedures. As an alternative, we are evaluating swellable organosilica sorbents to create passive sampling systems for monitoring applications. Previous work has focused on absorption and detection of fuels, chlorinated solvents, endocrine disruptors, explosives, pesticides, fluorinated chemicals, and metals including Ba, Sr, Hg, Pb, Fe, Cu, and Zn. The advantages of swellable organosilica are that the material cancapture target compounds for an extended periods of time, does not absorb natural organic matter, and resists biofilm formation since the sorbent possesses an animated surface morphology.

  5. Rapid quantification and taxonomic classification of environmentalDNA from both prokaryotic and eukaryotic origins using a microarray

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DeSantis, Todd Z.; Stone, Carol E.; Murray, Sonya R.

    2005-02-22

    A microarray has been designed using 62,358 probes matched to both prokaryotic and eukaryotic small-subunit ribosomal RNA genes. The array categorized environmental DNA to specific phylogenetic clusters in under 9 h. To a background of DNA generated from natural outdoor aerosols, known quantities of rRNA gene copies from distinct organisms were added producing corresponding hybridization intensity scores that correlated well with their concentrations (r=0.917). Reproducible differences in microbial community composition were observed by altering the genomic DNA extraction method. Notably, gentle extractions produced peak intensities for Mycoplasmatales and Burkholderiales, whereas a vigorous disruption produced peak intensities for Vibrionales,Clostridiales, and Bacillales.

  6. Surface- and interface-engineered heterostructures for solar hydrogen generation

    NASA Astrophysics Data System (ADS)

    Chen, Xiangyan; Li, Yanrui; Shen, Shaohua

    2018-04-01

    Photoelectrochemical (PEC) water splitting based on semiconductor photoelectrodes provides a promising platform for reducing environmental pollution and solving the energy crisis by developing clean, sustainable and environmentally friendly hydrogen energy. In this context, metal oxides with their advantages including low cost, good chemical stability and environmental friendliness, have attracted extensive attention among the investigated candidates. However, the large bandgap, poor charge transfer ability and high charge recombination rate limit the PEC performance of metal oxides as photoelectrodes. To solve this limitation, many approaches toward enhanced PEC water splitting performance, which focus on surface and interface engineering, have been presented. In this topical review, we concentrate on the heterostructure design of some typical metal oxides with narrow bandgaps (e.g. Fe2O3, WO3, BiVO4 and Cu2O) as photoelectrodes. An overview of the surface- and interface-engineered heterostructures, including semiconductor heterojunctions, surface protection, surface passivation and cocatalyst decoration, will be given to introduce the recent advances in metal oxide heterostructures for PEC water splitting. This article aims to provide fundamental references and principles for designing metal oxide heterostructures with high activity and stability as photoelectrodes for PEC solar hydrogen generation.

  7. Concentrations of antibiotics predicted to select for resistant bacteria: Proposed limits for environmental regulation.

    PubMed

    Bengtsson-Palme, Johan; Larsson, D G Joakim

    2016-01-01

    There are concerns that selection pressure from antibiotics in the environment may accelerate the evolution and dissemination of antibiotic-resistant pathogens. Nevertheless, there is currently no regulatory system that takes such risks into account. In part, this is due to limited knowledge of environmental concentrations that might exert selection for resistant bacteria. To experimentally determine minimal selective concentrations in complex microbial ecosystems for all antibiotics would involve considerable effort. In this work, our aim was to estimate upper boundaries for selective concentrations for all common antibiotics, based on the assumption that selective concentrations a priori need to be lower than those completely inhibiting growth. Data on Minimal Inhibitory Concentrations (MICs) were obtained for 111 antibiotics from the public EUCAST database. The 1% lowest observed MICs were identified, and to compensate for limited species coverage, predicted lowest MICs adjusted for the number of tested species were extrapolated through modeling. Predicted No Effect Concentrations (PNECs) for resistance selection were then assessed using an assessment factor of 10 to account for differences between MICs and minimal selective concentrations. The resulting PNECs ranged from 8 ng/L to 64 μg/L. Furthermore, the link between taxonomic similarity between species and lowest MIC was weak. This work provides estimated upper boundaries for selective concentrations (lowest MICs) and PNECs for resistance selection for all common antibiotics. In most cases, PNECs for selection of resistance were below available PNECs for ecotoxicological effects. The generated PNECs can guide implementation of compound-specific emission limits that take into account risks for resistance promotion. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  8. Road facilitation of trematode infections in snails of northern Alaska.

    PubMed

    Urban, Mark C

    2006-08-01

    Road disturbances can influence wildlife health by spreading disease agents and hosts or by generating environmental conditions that sustain these agent and host populations. I evaluated field patterns of trematode infections in snails inhabiting ponds at varying distances from the Dalton Highway, a wilderness road that intersects northern Alaska. I also assessed the relationships between trematode infections and snail densities and six environmental variables: calcium concentration, aquatic vegetative cover canopy cover temperature, pond size, and community structure. Presence of trematode infections and snail density were negatively correlated with distance from the highway. Of the pond characteristics measured, only calcium concentration and vegetation density declined with distance from road. However neither variable was positively associated with snail density or trematode presence. One potential explanation for observed patterns is that vehicles, road maintenance, or vertebrate vectors attracted to the highway facilitate colonization of snails or trematodes. Emerging disease threats to biological diversity in northern ecosystems highlight the importance of understanding how roads affect disease transmission.

  9. Xenobiotics: Chapter 15

    USGS Publications Warehouse

    Bridges, Christine M.; Semlitsch, Raymond D.; Lannoo, Michael

    2005-01-01

    While a number of compounds have been reported as toxic to amphibians, until recently, there have been conspicuously few ecotoxicological studies concerning amphibians. Studies are now focusing on the effects of xenobiotics on amphibians, an interest likely stimulated by widespread reports of amphibian declines. It has been speculated that chemical contamination may be partially to blame for some documented amphibian declines, by disrupting growth, reproduction, and behavior. However, evidence that xenobiotics are directly to blame for population declines is sparse because environmental concentrations are typically not great enough to generate direct mortality. Although the effects of environmental contaminants on the amphibian immune system are currently unknown, it is possible that exposure to stressors such as organic pollutants (which enter ecosystems in the form of pesticides) may depress immune system function, thus allowing greater susceptibility to fungal infections. This chapter discusses toxicity testing for xenobiotics and presents the results of a study that has focused on the subtle effects of sublethal concentrations of the chemical carbaryl on tadpoles.

  10. Mercury removal from water streams through the ion exchange membrane bioreactor concept.

    PubMed

    Oehmen, Adrian; Vergel, Dario; Fradinho, Joana; Reis, Maria A M; Crespo, João G; Velizarov, Svetlozar

    2014-01-15

    Mercury is a highly toxic heavy metal that causes human health problems and environmental contamination. In this study, an ion exchange membrane bioreactor (IEMB) process was developed to achieve Hg(II) removal from drinking water and industrial effluents. Hg(II) transport through a cation exchange membrane was coupled with its bioreduction to Hg(0) in order to achieve Hg removal from concentrated streams, with minimal production of contaminated by-products observed. This study involves (1) membrane selection, (2) demonstration of process effectiveness for removing Hg from drinking water to below the 1ppb recommended limit, and (3) process application for treatment of concentrated water streams, where >98% of the Hg was removed, and the throughput of contaminated water was optimised through membrane pre-treatment. The IEMB process represents a novel mercury treatment technology with minimal generation of contaminated waste, thereby reducing the overall environmental impact of the process. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Characterization of UV fluorophores for application to luminescent solar concentrators

    NASA Astrophysics Data System (ADS)

    Hellier, Kaitlin; Carter, Sue

    The implementation of solar as an alternative energy source faces many challenges, including the competition for space with agriculture and the environmental impacts of solar farms in deserts. As a solution to these problems, the Carter Lab has developed Luminescent Solar Concentrator (LSC) panels for applications to greenhouses. These panels utilize a luminescent dye compatible with the spectrum used in photosynthesis for the plants below and front-facing PV cells, achieving power enhancement of greater than 20% compared with the cells alone. To increase this enhancement, additional portions of the unused spectrum must be harvested. In this talk, we will discuss the characterization of UV absorbing fluorophores, including spectra, quantum yield, and the enhancement of light output and power generation. We will also address the combination of these UV dyes with the original LSC dye in low and high concentration, and the FRET efficiency and potential applications associated with high concentration films.

  12. Exposure Cessation During Adulthood Did Not Prevent Immunotoxicity Caused by Developmental Exposure to Low-Level Trichloroethylene in Drinking Water.

    PubMed

    Gilbert, Kathleen M; Bai, Shasha; Barnette, Dustyn; Blossom, Sarah J

    2017-06-01

    Exposure to the water pollutant trichloroethylene (TCE) can promote autoimmunity in both humans and rodents. Using a mouse model we have shown that chronic adult exposure to TCE at 500 μg/ml in drinking water generates autoimmune hepatitis in female MRL+/+ mice. There is increasing evidence that developmental exposure to certain chemicals can be more toxic than adult exposure. This study was designed to test whether exposure to a much lower level of TCE (0.05 μg/ml) during gestation, lactation, and early life generated autoimmunity similar to that found following adult exposure to higher concentrations of TCE. When female MRL+/+ mice were examined at postnatal day (PND) 259 we found that developmental/early life exposure [gestational day 0 to PND 154] to TCE at a concentration 10 000 fold lower than that shown to be effective for adult exposure triggered autoimmune hepatitis. This effect was observed despite exposure cessation at PND 154. In concordance with the liver pathology, female MRL+/+ exposed during development and early life to TCE (0.05 or 500 μg/ml) generated a range of antiliver antibodies detected by Western blotting. Expression of proinflammatory cytokines by CD4+ T cells was also similarly observed at PND 259 in the TCE-exposed mice regardless of concentration. Thus, exposure to TCE at approximately environmental levels from gestational day 0 to PND 154 generated tissue pathology and CD4+ T cell alterations that required higher concentrations if exposure was limited to adulthood. TCE exposure cessation at PND 154 did not prevent the immunotoxicity. © The Author 2017. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  13. Update on a Pharmacokinetic-Centric Alternative Tier II Program for MMT—Part I: Program Implementation and Lessons Learned

    PubMed Central

    Dorman, David C.; Andersen, Melvin E.; Roper, Jerry M.; Taylor, Michael D.

    2012-01-01

    Concerns have been raised regarding environmental manganese exposure since high exposures have been associated with neurological disorders. The USA Environmental Protection Agency most recent human health risk assessment of inhaled manganese conducted in 1993 identified specific areas of uncertainty regarding manganese pharmacokinetics. This led to the development of a test rule under the USA Clean Air Act that required the generation of pharmacokinetic information on the inorganic manganese combustion products of the organometallic fuel additive methylcyclopentadienyl manganese tricarbonyl (MMT). The Alternative Tier 2 testing program for MMT, described in this paper, has yielded substantial pharmacokinetic data and has enabled the generation of physiologically based pharmacokinetic (PBPK) models for manganese. These models are capable of predicting tissue manganese concentrations across a variety of dose routes, levels, and durations while accounting for factors such as age, gender, and reproductive status, enabling the consideration of tissue dosimetry in future risk assessments. PMID:22545047

  14. Carbon dioxide and water exchange of a soybean stand grown in the biomass production chamber

    NASA Technical Reports Server (NTRS)

    Corey, Kenneth A.

    1990-01-01

    Soybean plants were grown under metal halide lamps in NASA's biomass production chamber (BPC). Experiments were conducted to determine whole stand rates of carbon dioxide exchange and transpiration as influenced by time of day, CO2 concentration, irradiance, and temperature. Plants were grown at a population of 24 plants/sq m, a daily cycle of 12 hr light/12 hr dark, and average temperature regime of 26 C light/20 C dark, and a CO2 concentration enriched and maintained at 1000 ppm during the photoperiod. A distinct diurnal pattern in the rate of stand transpiration was measured at both ambient and enriched (1000 ppm) concentration of CO2. Data generated in this study represent true whole stand responses to key developmental and environmental variables and will be valuable in database construction for future working CELSS. Crop growth studies in the BPC were conducted with a high degree of environmental control, gas tightness during growth, and have used large plant stands. These characteristics have placed it in a unique position internationally as a research tool and as a preprototype subcomponent to a fully integrated CELSS. The results from the experiments are presented.

  15. Environmental Conditions Associated with Elevated Vibrio parahaemolyticus Concentrations in Great Bay Estuary, New Hampshire

    PubMed Central

    Urquhart, Erin A.; Jones, Stephen H.; Yu, Jong W.; Schuster, Brian M.; Marcinkiewicz, Ashley L.; Whistler, Cheryl A.; Cooper, Vaughn S.

    2016-01-01

    Reports from state health departments and the Centers for Disease Control and Prevention indicate that the annual number of reported human vibriosis cases in New England has increased in the past decade. Concurrently, there has been a shift in both the spatial distribution and seasonal detection of Vibrio spp. throughout the region based on limited monitoring data. To determine environmental factors that may underlie these emerging conditions, this study focuses on a long-term database of Vibrio parahaemolyticus concentrations in oyster samples generated from data collected from the Great Bay Estuary, New Hampshire over a period of seven consecutive years. Oyster samples from two distinct sites were analyzed for V. parahaemolyticus abundance, noting significant relationships with various biotic and abiotic factors measured during the same period of study. We developed a predictive modeling tool capable of estimating the likelihood of V. parahaemolyticus presence in coastal New Hampshire oysters. Results show that the inclusion of chlorophyll a concentration to an empirical model otherwise employing only temperature and salinity variables, offers improved predictive capability for modeling the likelihood of V. parahaemolyticus in the Great Bay Estuary. PMID:27144925

  16. Simulating indoor concentrations of NO(2) and PM(2.5) in multifamily housing for use in health-based intervention modeling.

    PubMed

    Fabian, P; Adamkiewicz, G; Levy, J I

    2012-02-01

    Residents of low-income multifamily housing can have elevated exposures to multiple environmental pollutants known to influence asthma. Simulation models can characterize the health implications of changing indoor concentrations, but quantifying the influence of interventions on concentrations is challenging given complex airflow and source characteristics. In this study, we simulated concentrations in a prototype multifamily building using CONTAM, a multizone airflow and contaminant transport program. Contaminants modeled included PM(2.5) and NO(2) , and parameters included stove use, presence and operability of exhaust fans, smoking, unit level, and building leakiness. We developed regression models to explain variability in CONTAM outputs for individual sources, in a manner that could be utilized in simulation modeling of health outcomes. To evaluate our models, we generated a database of 1000 simulated households with characteristics consistent with Boston public housing developments and residents and compared the predicted levels of NO(2) and PM(2.5) and their correlates with the literature. Our analyses demonstrated that CONTAM outputs could be readily explained by available parameters (R(2) between 0.89 and 0.98 across models), but that one-compartment box models would mischaracterize concentrations and source contributions. Our study quantifies the key drivers for indoor concentrations in multifamily housing and helps to identify opportunities for interventions. Many low-income urban asthmatics live in multifamily housing that may be amenable to ventilation-related interventions such as weatherization or air sealing, wall and ceiling hole repairs, and exhaust fan installation or repair, but such interventions must be designed carefully given their cost and their offsetting effects on energy savings as well as indoor and outdoor pollutants. We developed models to take into account the complex behavior of airflow patterns in multifamily buildings, which can be used to identify and evaluate environmental and non-environmental interventions targeting indoor air pollutants which can trigger asthma exacerbations. © 2011 John Wiley & Sons A/S.

  17. Long-term variability of wind patterns at hub-height over Texas

    NASA Astrophysics Data System (ADS)

    Jung, J.; Jeon, W.; Choi, Y.; Souri, A.

    2017-12-01

    Wind energy is getting more attention because of its environmentally friendly attributes. Texas is a state with significant capacity and number of wind turbines. Wind power generation is significantly affected by wind patterns, and it is important to understand this seasonal and decadal variability for long-term power generation from wind turbines. This study focused on the trends of changes in wind pattern and its strength at two hub-heights (80 m and 110 m) over 30-years (1986 to 2015). We only analyzed summer data(June to September) because of concentrated electricity usage in Texas. We extracted hub-height wind data (U and V components) from the three-hourly National Centers for Environmental Prediction-North American Regional Reanalysis (NCEP-NARR) and classified wind patterns properly by using nonhierarchical K-means method. Hub-height wind patterns in summer seasons of 1986 to 2015 were classified in six classes at day and seven classes at night. Mean wind speed was 4.6 ms-1 at day and 5.4 ms-1 at night, but showed large variability in time and space. We combined each cluster's frequencies and wind speed tendencies with large scale atmospheric circulation features and quantified the amount of wind power generation.

  18. Global change and mercury

    USGS Publications Warehouse

    Krabbenhoft, David P.; Sunderland, Elsie M.

    2013-01-01

    More than 140 nations recently agreed to a legally binding treaty on reductions in human uses and releases of mercury that will be signed in October of this year. This follows the 2011 rule in the United States that for the first time regulates mercury emissions from electricity-generating utilities. Several decades of scientific research preceded these important regulations. However, the impacts of global change on environmental mercury concentrations and human exposures remain a major uncertainty affecting the potential effectiveness of regulatory activities.

  19. Groundwater vulnerability to pollution mapping of Ranchi district using GIS

    NASA Astrophysics Data System (ADS)

    Krishna, R.; Iqbal, J.; Gorai, A. K.; Pathak, G.; Tuluri, F.; Tchounwou, P. B.

    2015-12-01

    Groundwater pollution due to anthropogenic activities is one of the major environmental problems in urban and industrial areas. The present study demonstrates the integrated approach with GIS and DRASTIC model to derive a groundwater vulnerability to pollution map. The model considers the seven hydrogeological factors [Depth to water table ( D), net recharge ( R), aquifer media ( A), soil media ( S), topography or slope ( T), impact of vadose zone ( I) and hydraulic Conductivity( C)] for generating the groundwater vulnerability to pollution map. The model was applied for assessing the groundwater vulnerability to pollution in Ranchi district, Jharkhand, India. The model was validated by comparing the model output (vulnerability indices) with the observed nitrate concentrations in groundwater in the study area. The reason behind the selection of nitrate is that the major sources of nitrate in groundwater are anthropogenic in nature. Groundwater samples were collected from 30 wells/tube wells distributed in the study area. The samples were analyzed in the laboratory for measuring the nitrate concentrations in groundwater. A sensitivity analysis of the integrated model was performed to evaluate the influence of single parameters on groundwater vulnerability index. New weights were computed for each input parameters to understand the influence of individual hydrogeological factors in vulnerability indices in the study area. Aquifer vulnerability maps generated in this study can be used for environmental planning and groundwater management.

  20. Economic-environmental modeling of point source pollution in Jefferson County, Alabama, USA.

    PubMed

    Kebede, Ellene; Schreiner, Dean F; Huluka, Gobena

    2002-05-01

    This paper uses an integrated economic-environmental model to assess the point source pollution from major industries in Jefferson County, Northern Alabama. Industrial expansion generates employment, income, and tax revenue for the public sector; however, it is also often associated with the discharge of chemical pollutants. Jefferson County is one of the largest industrial counties in Alabama that experienced smog warnings and ambient ozone concentration, 1996-1999. Past studies of chemical discharge from industries have used models to assess the pollution impact of individual plants. This study, however, uses an extended Input-Output (I-O) economic model with pollution emission coefficients to assess direct and indirect pollutant emission for several major industries in Jefferson County. The major findings of the study are: (a) the principal emission by the selected industries are volatile organic compounds (VOC) and these contribute to the ambient ozone concentration; (b) the direct and indirect emissions are significantly higher than the direct emission by some industries, indicating that an isolated analysis will underestimate the emission by an industry; (c) while low emission coefficient industries may suggest industry choice they may also emit the most hazardous chemicals. This study is limited by the assumptions made, and the data availability, however it provides a useful analytical tool for direct and cumulative emission estimation and generates insights on the complexity in choice of industries.

  1. Groundwater vulnerability to pollution mapping of Ranchi district using GIS.

    PubMed

    Krishna, R; Iqbal, J; Gorai, A K; Pathak, G; Tuluri, F; Tchounwou, P B

    2015-12-01

    Groundwater pollution due to anthropogenic activities is one of the major environmental problems in urban and industrial areas. The present study demonstrates the integrated approach with GIS and DRASTIC model to derive a groundwater vulnerability to pollution map. The model considers the seven hydrogeological factors [Depth to water table ( D ), net recharge ( R ), aquifer media ( A ), soil media ( S ), topography or slope ( T ), impact of vadose zone ( I ) and hydraulic Conductivity( C )] for generating the groundwater vulnerability to pollution map. The model was applied for assessing the groundwater vulnerability to pollution in Ranchi district, Jharkhand, India. The model was validated by comparing the model output (vulnerability indices) with the observed nitrate concentrations in groundwater in the study area. The reason behind the selection of nitrate is that the major sources of nitrate in groundwater are anthropogenic in nature. Groundwater samples were collected from 30 wells/tube wells distributed in the study area. The samples were analyzed in the laboratory for measuring the nitrate concentrations in groundwater. A sensitivity analysis of the integrated model was performed to evaluate the influence of single parameters on groundwater vulnerability index. New weights were computed for each input parameters to understand the influence of individual hydrogeological factors in vulnerability indices in the study area. Aquifer vulnerability maps generated in this study can be used for environmental planning and groundwater management.

  2. Monitoring trace elements generated by automobiles: air pollutants with possible health impacts.

    PubMed

    Anwar, Khaleeq; Ejaz, Sohail; Ashraf, Muhammad; Ahmad, Nisar; Javeed, Aqeel

    2013-07-01

    Major transformations in the environmental composition are principally attributable to the combustion of fuels by automobiles. Motorized gasoline-powered two-stroke auto-rickshaws (TSA) and compressed natural gas (CNG)-powered four-stroke auto-rickshaws (FSA) are potential source of air pollution in south Asia and produce toxic amount of particulate matter (PM) to the environment. In this study, we attempted to characterize elemental pollutants from the PM of TSA and FSA using proton-induced X-ray emission (PIXE) analysis. The observations of the existing investigation recognized significant increase in Al (P < 0.05), P (P < 0.01), and Zn (P < 0.01) from the PM samples of FSA. In addition, the concentrations of Cu, Fe, K, Mg, Na and S were also observed exceeding the recommended National Institute for Environmental Studies limits. On the contrary, increased concentration of Sr and V were observed in the PM samples from TSA. It is generally believed that FSA generates smaller amount of PM but data obtained from FSA are clearly describing that emissions from FSA comprised potentially more toxic substances than TSA. The current research is specific to metropolitan population and has evidently revealed an inconsistent burden of exposure to air pollutants engendered by FSA in urban communities, which could lead to the disruption of several biological activities and may cause severe damage to entire ecological system.

  3. Efficient Sorption and Removal of Perfluoroalkyl Acids (PFAAs) from Aqueous Solution by Metal Hydroxides Generated in Situ by Electrocoagulation.

    PubMed

    Lin, Hui; Wang, Yujuan; Niu, Junfeng; Yue, Zhihan; Huang, Qingguo

    2015-09-01

    Removal of environmentally persistent perfluoroalkyl acids (PFAAs), that is, perfluorooctanesulfonate (PFOS) and perfluorocarboxylic acids (PFCAs, C4 ∼ C10) were investigated through sorption on four metal hydroxide flocs generated in situ by electrocoagulation in deionized water with 10 mM NaCl as supporting electrolyte. The results indicated that the zinc hydroxide flocs yielded the highest removal efficiency with a wide range concentration of PFOA/PFOS (1.5 μM ∼ 0.5 mM) at the zinc dosage <150 mg L(-1) with the energy consumption <0.18 Wh L(-1). The sorption kinetics indicated that the zinc hydroxide flocs had an equilibrium adsorbed amount (qe) up to 5.74/7.69 mmol g(-1) (Zn) for PFOA/PFOS at the initial concentration of 0.5 mM with an initial sorption rate (v0) of 1.01 × 10(3)/1.81 × 10(3) mmol g(-1) h(-1). The sorption of PFOA/PFOS reached equilibrium within <10 min. The sorption mechanisms of PFAAs on the zinc hydroxide flocs were proposed based on the investigation of various driving forces. The results indicated that the hydrophobic interaction was primarily responsible for the PFAAs sorption. The electrocoagulation process with zinc anode may have a great potential for removing PFAAs from industrial wastewater as well as contaminated environmental waterbody.

  4. Some thoughts on problems associated with various sampling media used for environmental monitoring

    USGS Publications Warehouse

    Horowitz, A.J.

    1997-01-01

    Modern analytical instrumentation is capable of measuring a variety of trace elements at concentrations down into the single or double digit parts-per-trillion (ng l-1) range. This holds for the three most common sample media currently used in environmental monitoring programs: filtered water, whole-water and separated suspended sediment. Unfortunately, current analytical capabilities have exceeded the current capacity to collect both uncontaminated and representative environmental samples. The success of any trace element monitoring program requires that this issue be both understood and addressed. The environmental monitoring of trace elements requires the collection of calendar- and event-based dissolved and suspended sediment samples. There are unique problems associated with the collection and chemical analyses of both types of sample media. Over the past 10 years, reported ambient dissolved trace element concentrations have declined. Generally, these decreases do not reflect better water quality, but rather improvements in the procedures used to collect, process, preserve and analyze these samples without contaminating them during these steps. Further, recent studies have shown that the currently accepted operational definition of dissolved constituents (material passing a 0.45 ??m membrane filter) is inadequat owing to sampling and processing artifacts. The existence of these artifacts raises questions about the generation of accurate, precise and comparable 'dissolved' trace element data. Suspended sediment and associated trace elements can display marked short- and long-term spatial and temporal variability. This implies that spatially representative samples only can be obtained by generating composites using depth- and width-integrated sampling techniques. Additionally, temporal variations have led to the view that the determination of annual trace element fluxes may require nearly constant (e.g., high-frequency) sampling and subsequent chemical analyses. Ultimately, sampling frequency for flux estimates becomes dependent on the time period of concern (daily, weekly, monthly, yearly) and the amount of acceptable error associated with these estimates.

  5. Co-release of hexabromocyclododecane (HBCD) and Nano- and microparticles from thermal cutting of polystyrene foams.

    PubMed

    Zhang, Haijun; Kuo, Yu-Ying; Gerecke, Andreas C; Wang, Jing

    2012-10-16

    Polystyrene foam is a very important insulation material, and hexabromocyclododecane (HBCD) is frequently used as its flame retardant. HBCD is persistent, bioaccumulative, and toxic, and therefore workplace exposure and environmental emission should be avoided. In this study, we investigated the co-release of HBCD and aerosol particles during the thermal cutting of expanded polystyrene foam (EPS) and extruded polystyrene foam (XPS). The generated particles were simultaneously measured by a fast mobility particle sizer (FMPS) and collected by a cascade impactor (NanoMoudi). In the breathing zone of a cutting worker, the number concentration of aerosol particles was above 1 × 10(12) particles m(-3), and the air concentration of HBCD was more than 50 μg m(-3). Most of the released HBCD was partitioned into particles with an aerodynamic diameter at the nanometer scale. The average concentrations of HBCD in these submicrometer particles generated from the thermal cutting of EPS and XPS were 13 times and 15 times higher than the concentrations in raw foams, respectively. An occupational exposure assessment indicated that more than 60% of HBCD and 70% of particles deposited in the lung of cutting worker would be allocated to the alveolar region. The potential subchronic (or chronic) toxicity jointly caused by the particles and HBCD calls for future studies.

  6. Soil mercury levels in the area surrounding the Cerro Prieto geothermal complex, MEXICO.

    PubMed

    Pastrana-Corral, M A; Wakida, F T; García-Flores, E; Rodriguez-Mendivil, D D; Quiñonez-Plaza, A; Piñon-Colin, T D J

    2016-08-01

    Even though geothermal energy is a renewable energy source that is seen as cost-effective and environmentally friendly, emissions from geothermal plants can impact air, soil, and water in the vicinity of geothermal power plants. The Cerro Prieto geothermal complex is located 30 km southeast of the city of Mexicali in the Mexican state of Baja California. Its installed electricity generation capacity is 720 MW, being the largest geothermal complex in Mexico. The objective of this study was to evaluate whether the emissions generated by the geothermal complex have increased the soil mercury concentration in the surrounding areas. Fifty-four surface soil samples were collected from the perimeter up to an approximate distance of 7660 m from the complex. Additionally, four soil depth profiles were performed in the vicinity of the complex. Mercury concentration in 69 % of the samples was higher than the mercury concentration found at the baseline sites. The mercury concentration ranged from 0.01 to 0.26 mg/kg. Our results show that the activities of the geothermal complex have led to an accumulation of mercury in the soil of the surrounding area. More studies are needed to determine the risk to human health and the ecosystems in the study area.

  7. Modeled occupational exposures to gas-phase medical laser-generated air contaminants.

    PubMed

    Lippert, Julia F; Lacey, Steven E; Jones, Rachael M

    2014-01-01

    Exposure monitoring data indicate the potential for substantive exposure to laser-generated air contaminants (LGAC); however the diversity of medical lasers and their applications limit generalization from direct workplace monitoring. Emission rates of seven previously reported gas-phase constituents of medical laser-generated air contaminants (LGAC) were determined experimentally and used in a semi-empirical two-zone model to estimate a range of plausible occupational exposures to health care staff. Single-source emission rates were generated in an emission chamber as a one-compartment mass balance model at steady-state. Clinical facility parameters such as room size and ventilation rate were based on standard ventilation and environmental conditions required for a laser surgical facility in compliance with regulatory agencies. All input variables in the model including point source emission rates were varied over an appropriate distribution in a Monte Carlo simulation to generate a range of time-weighted average (TWA) concentrations in the near and far field zones of the room in a conservative approach inclusive of all contributing factors to inform future predictive models. The concentrations were assessed for risk and the highest values were shown to be at least three orders of magnitude lower than the relevant occupational exposure limits (OELs). Estimated values do not appear to present a significant exposure hazard within the conditions of our emission rate estimates.

  8. Modeling pollen time series using seasonal-trend decomposition procedure based on LOESS smoothing

    NASA Astrophysics Data System (ADS)

    Rojo, Jesús; Rivero, Rosario; Romero-Morte, Jorge; Fernández-González, Federico; Pérez-Badia, Rosa

    2017-02-01

    Analysis of airborne pollen concentrations provides valuable information on plant phenology and is thus a useful tool in agriculture—for predicting harvests in crops such as the olive and for deciding when to apply phytosanitary treatments—as well as in medicine and the environmental sciences. Variations in airborne pollen concentrations, moreover, are indicators of changing plant life cycles. By modeling pollen time series, we can not only identify the variables influencing pollen levels but also predict future pollen concentrations. In this study, airborne pollen time series were modeled using a seasonal-trend decomposition procedure based on LOcally wEighted Scatterplot Smoothing (LOESS) smoothing (STL). The data series—daily Poaceae pollen concentrations over the period 2006-2014—was broken up into seasonal and residual (stochastic) components. The seasonal component was compared with data on Poaceae flowering phenology obtained by field sampling. Residuals were fitted to a model generated from daily temperature and rainfall values, and daily pollen concentrations, using partial least squares regression (PLSR). This method was then applied to predict daily pollen concentrations for 2014 (independent validation data) using results for the seasonal component of the time series and estimates of the residual component for the period 2006-2013. Correlation between predicted and observed values was r = 0.79 (correlation coefficient) for the pre-peak period (i.e., the period prior to the peak pollen concentration) and r = 0.63 for the post-peak period. Separate analysis of each of the components of the pollen data series enables the sources of variability to be identified more accurately than by analysis of the original non-decomposed data series, and for this reason, this procedure has proved to be a suitable technique for analyzing the main environmental factors influencing airborne pollen concentrations.

  9. Modeling pollen time series using seasonal-trend decomposition procedure based on LOESS smoothing.

    PubMed

    Rojo, Jesús; Rivero, Rosario; Romero-Morte, Jorge; Fernández-González, Federico; Pérez-Badia, Rosa

    2017-02-01

    Analysis of airborne pollen concentrations provides valuable information on plant phenology and is thus a useful tool in agriculture-for predicting harvests in crops such as the olive and for deciding when to apply phytosanitary treatments-as well as in medicine and the environmental sciences. Variations in airborne pollen concentrations, moreover, are indicators of changing plant life cycles. By modeling pollen time series, we can not only identify the variables influencing pollen levels but also predict future pollen concentrations. In this study, airborne pollen time series were modeled using a seasonal-trend decomposition procedure based on LOcally wEighted Scatterplot Smoothing (LOESS) smoothing (STL). The data series-daily Poaceae pollen concentrations over the period 2006-2014-was broken up into seasonal and residual (stochastic) components. The seasonal component was compared with data on Poaceae flowering phenology obtained by field sampling. Residuals were fitted to a model generated from daily temperature and rainfall values, and daily pollen concentrations, using partial least squares regression (PLSR). This method was then applied to predict daily pollen concentrations for 2014 (independent validation data) using results for the seasonal component of the time series and estimates of the residual component for the period 2006-2013. Correlation between predicted and observed values was r = 0.79 (correlation coefficient) for the pre-peak period (i.e., the period prior to the peak pollen concentration) and r = 0.63 for the post-peak period. Separate analysis of each of the components of the pollen data series enables the sources of variability to be identified more accurately than by analysis of the original non-decomposed data series, and for this reason, this procedure has proved to be a suitable technique for analyzing the main environmental factors influencing airborne pollen concentrations.

  10. Generator Set Environmental and Stability Testing

    DTIC Science & Technology

    2015-03-01

    UNCLASSIFIED GENERATOR SET ENVIRONMENTAL AND STABILITY TESTING INTERIM REPORT TFLRF No. 460 by Gregory A. Hansen Edwin A...it to the originator. UNCLASSIFIED GENERATOR SET ENVIRONMENTAL AND STABILITY TESTING INTERIM REPORT TFLRF No. 460 by...TITLE AND SUBTITLE Generator Set Environmental and Stability Testing 5a. CONTRACT NUMBER W56HZV-09-C-0100 5b. GRANT NUMBER 5c. PROGRAM

  11. Extremely Cost‐Effective and Efficient Solar Vapor Generation under Nonconcentrated Illumination Using Thermally Isolated Black Paper

    PubMed Central

    Liu, Zhejun; Song, Haomin; Ji, Dengxin; Li, Chenyu; Cheney, Alec; Liu, Youhai; Zhang, Nan; Zeng, Xie; Chen, Borui; Gao, Jun; Li, Yuesheng; Liu, Xiang; Aga, Diana; Jiang, Suhua; Yu, Zongfu

    2017-01-01

    Passive solar vapor generation represents a promising and environmentally benign method of water purification/desalination. However, conventional solar steam generation techniques usually rely on costly and cumbersome optical concentration systems and have relatively low efficiency due to bulk heating of the entire liquid volume. Here, an efficient strategy using extremely low‐cost materials, i.e., carbon black (powder), hydrophilic porous paper, and expanded polystyrene foam is reported. Due to the excellent thermal insulation between the surface liquid and the bulk volume of the water and the suppressed radiative and convective losses from the absorber surface to the adjacent heated vapor, a record thermal efficiency of ≈88% is obtained under 1 sun without concentration, corresponding to the evaporation rate of 1.28 kg (m2 h)−1. When scaled up to a 100 cm2 array in a portable solar water still system and placed in an outdoor environment, the freshwater generation rate is 2.4 times of that of a leading commercial product. By simultaneously addressing both the need for high‐efficiency operation as well as production cost limitations, this system can provide an approach for individuals to purify water for personal needs, which is particularly suitable for undeveloped regions with limited/no access to electricity. PMID:28616256

  12. Extremely Cost-Effective and Efficient Solar Vapor Generation under Nonconcentrated Illumination Using Thermally Isolated Black Paper.

    PubMed

    Liu, Zhejun; Song, Haomin; Ji, Dengxin; Li, Chenyu; Cheney, Alec; Liu, Youhai; Zhang, Nan; Zeng, Xie; Chen, Borui; Gao, Jun; Li, Yuesheng; Liu, Xiang; Aga, Diana; Jiang, Suhua; Yu, Zongfu; Gan, Qiaoqiang

    2017-02-27

    Passive solar vapor generation represents a promising and environmentally benign method of water purification/desalination. However, conventional solar steam generation techniques usually rely on costly and cumbersome optical concentration systems and have relatively low efficiency due to bulk heating of the entire liquid volume. Here, an efficient strategy using extremely low-cost materials, i.e., carbon black (powder), hydrophilic porous paper, and expanded polystyrene foam is reported. Due to the excellent thermal insulation between the surface liquid and the bulk volume of the water and the suppressed radiative and convective losses from the absorber surface to the adjacent heated vapor, a record thermal efficiency of ≈88% is obtained under 1 sun without concentration, corresponding to the evaporation rate of 1.28 kg (m 2 h) -1 . When scaled up to a 100 cm 2 array in a portable solar water still system and placed in an outdoor environment, the freshwater generation rate is 2.4 times of that of a leading commercial product. By simultaneously addressing both the need for high-efficiency operation as well as production cost limitations, this system can provide an approach for individuals to purify water for personal needs, which is particularly suitable for undeveloped regions with limited/no access to electricity.

  13. Characterization of ambient-generated exposure to fine particles using sulfate as a tracer in the Chinese megacity of Guangzhou.

    PubMed

    Chen, Xiao-Cui; Jahn, Heiko J; Engling, Guenter; Ward, Tony J; Kraemer, Alexander; Ho, Kin-Fai; Chan, Chuen-Yu

    2017-02-15

    Total personal exposures can differ from the concentrations measured at stationary ambient monitoring sites. To provide further insight into factors affecting exposure to particles, chemical tracers were used to separate total personal exposure into its ambient and non-ambient components. Simultaneous measurements of ambient and personal exposure to fine particles (PM 2.5 ) were conducted in eight districts of Guangzhou, a megacity in South China, during the winter of 2011. Considerable significant correlations (Spearman's Rho, r s ) between personal exposures and ambient concentrations of sulfate (SO 4 2- ; r s >0.68) were found in contrast to elemental carbon (EC; r s >0.37). The average fraction of personal SO 4 2- to ambient SO 4 2- resulting in an adjusted ambient exposure factor of α=0.72 and a slope of 0.73 was determined from linear regression analysis when there were minimal indoor sources of SO 4 2- . From all data pooled across the districts, the estimated average ambient-generated and non-ambient-generated exposure to PM 2.5 were 55.3μg/m 3 (SD=23.4μg/m 3 ) and 18.1μg/m 3 (SD=29.1μg/m 3 ), respectively. A significant association was found between ambient-generated exposure and ambient PM 2.5 concentrations (Pearson's r=0.51, p<0.001). As expected, the non-ambient generated exposure was not related to the ambient concentrations. This study highlights the importance of both ambient and non-ambient components of total personal exposure in the megacity of Guangzhou. Our results support the use of SO 4 2- as a tracer of personal exposure to PM 2.5 of ambient origin in environmental and epidemiological studies. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Techno-economics of integrating bioethanol production from spent sulfite liquor for reduction of greenhouse gas emissions from sulfite pulping mills.

    PubMed

    Petersen, Abdul M; Haigh, Kate; Görgens, Johann F

    2014-01-01

    Flow sheet options for integrating ethanol production from spent sulfite liquor (SSL) into the acid-based sulfite pulping process at the Sappi Saiccor mill (Umkomaas, South Africa) were investigated, including options for generation of thermal and electrical energy from onsite bio-wastes, such as bark. Processes were simulated with Aspen Plus® for mass- and energy-balances, followed by an estimation of the economic viability and environmental impacts. Various concentration levels of the total dissolved solids in magnesium oxide-based SSL, which currently fuels a recovery boiler, prior to fermentation was considered, together with return of the fermentation residues (distillation bottoms) to the recovery boiler after ethanol separation. The generation of renewable thermal and electrical energy from onsite bio-wastes were also included in the energy balance of the combined pulping-ethanol process, in order to partially replace coal consumption. The bio-energy supplementations included the combustion of bark for heat and electricity generation and the bio-digestion of the calcium oxide SSL to produce methane as additional energy source. Ethanol production from SSL at the highest substrate concentration was the most economically feasible when coal was used for process energy. However this solution did not provide any savings in greenhouse gas (GHG) emissions for the concentration-fermentation-distillation process. Maximizing the use of renewable energy sources to partially replace coal consumption yielded a satisfactory economic performance, with a minimum ethanol selling price of 0.83 US$/l , and a drastic reduction in the overall greenhouse gas emissions for the entire facility. High substrate concentrations and conventional distillation should be used when considering integrating ethanol production at sulfite pulping mills. Bio-wastes generated onsite should be utilized at their maximum potential for energy generation in order to maximize the GHG emissions reduction.

  15. Autoantibodies associated with prenatal and childhood exposure to environmental chemicals in Faroese children.

    PubMed

    Osuna, Christa E; Grandjean, Philippe; Weihe, Pál; El-Fawal, Hassan A N

    2014-11-01

    Methylmercury, polychlorinated biphenyls (PCBs), and perfluorinated compounds (PFCs) are ubiquitous and persistent environmental chemicals with known or suspected toxic effects on the nervous system and the immune system. Animal studies have shown that tissue damage can elicit production of autoantibodies. However, it is not known if autoantibodies similarly will be generated and detectable in humans following toxicant exposures. Therefore, we conducted a pilot study to investigate if autoantibodies specific for neural and non-neural antigens could be detected in children at age 7 years who have been exposed to environmental chemicals. Both prenatal and age-7 exposures to mercury, PCBs, and PFCs were measured in 38 children in the Faroe Islands who were exposed to widely different levels of these chemicals due to their seafood-based diet. Concentrations of IgM and IgG autoantibodies specific to both neural (neurofilaments, cholineacetyltransferase, astrocyte glial fibrillary acidic protein, and myelin basic protein) and non-neural (actin, desmin, and keratin) antigens were measured and the associations of these autoantibody concentrations with chemical exposures were assessed using linear regression. Age-7 blood-mercury concentrations were positively associated with titers of multiple neural- and non-neural-specific antibodies, mostly of the IgM isotype. Additionally, prenatal blood-mercury and -PCBs were negatively associated with anti-keratin IgG and prenatal PFOS was negatively associated with anti-actin IgG. These exploratory findings demonstrate that autoantibodies can be detected in the peripheral blood following exposure to environmental chemicals. The unexpected association of exposures with antibodies specific for non-neural antigens suggests that these chemicals may have toxicities that have not yet been recognized. © The Author 2014. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  16. Potential role of sea spray generation in the atmospheric transport of perfluorocarboxylic acids.

    PubMed

    Webster, Eva; Ellis, David A

    2010-08-01

    The observed environmental concentrations of perfluorooctanoic acid (PFOA) and its conjugate base (PFO) in remote regions such as the Arctic have been primarily ascribed to the atmospheric transport and degradation of fluorotelomer alcohols (FTOHs) and to direct PFO transport in ocean currents. These mechanisms are each capable of only partially explaining observations. Transport within marine aerosols has been proposed and may explain transport over short distances but will contribute little over longer distances. However, PFO(A) has been shown to have a very short half-life in aqueous aerosols and thus sea spray was proposed as a mechanism for the generation of PFOA in the gas phase from PFO in a water body. Using the observed PFO concentrations in oceans of the Northern Hemisphere and estimated spray generation rates, this mechanism is shown to have the potential for contributing large amounts of PFOA to the atmosphere and may therefore contribute significantly to the concentrations observed in remote locations. Specifically, the rate of PFOA release into the gas phase from oceans in the Northern Hemisphere is calculated to be potentially comparable to global stack emissions to the atmosphere. The subsequent potential for atmospheric degradation of PFOA and its global warming potential are considered. Observed isomeric ratios and predicted atmospheric concentrations due to FTOH degradation are used to elucidate the likely relative importance of transport pathways. It is concluded that gas phase PFOA released from oceans may help to explain observed concentrations in remote regions. The model calculations performed in the present study strongly suggest that oceanic aerosol and gas phase field monitoring is of vital importance to obtain a complete understanding of the global dissemination of PFCAs. Copyright 2010 SETAC

  17. Dioxin emissions from a solid waste incinerator and risk of non-Hodgkin lymphoma.

    PubMed

    Floret, Nathalie; Mauny, Frédéric; Challier, Bruno; Arveux, Patrick; Cahn, Jean-Yves; Viel, Jean-François

    2003-07-01

    It is not clear whether low environmental doses of dioxin affect the general population. We previously detected a cluster of patients with non-Hodgkin lymphoma around a French municipal solid waste incinerator with high dioxin emissions. To explore the environmental route suggested by these findings, we carried out a population-based case-control study in the same area. We compared 222 incident cases of non-Hodgkin lymphoma diagnosed between 1980 and 1995 and controls randomly selected from the 1990 population census, using a 10-to-1 match. Dioxin ground-level concentrations were modeled with a second-generation Gaussian-type dispersion model, yielding four dioxin exposure categories. The latter were linked to individual places of residence, using Geographic Information System technology. The risk of developing non-Hodgkin lymphoma was 2.3 times higher (95% confidence interval = 1.4-3.8) among individuals living in the area with the highest dioxin concentration than among those living in the area with the lowest dioxin concentration. No increased risk was found for the intermediate dioxin exposure categories. Adjustment for a wide range of socioeconomic characteristics at the block group level did not alter the results. Although emissions from incinerators are usually not regarded as an important source of exposure to dioxins compared with other background sources, our findings support the hypothesis that environmental dioxins increase the risk of non-Hodgkin lymphoma among the population living in the vicinity of a municipal solid waste incinerator.

  18. Evaluating the Impact of Air Pollution on Human Health in China: the Price of Clean Air

    NASA Astrophysics Data System (ADS)

    Wang, X.; Mauzerall, D. L.; Hu, Y.; Russell, A. G.; Woo, J.; Streets, D. G.

    2003-12-01

    Population growth, rapid urbanization and economic development are contributing to increased energy consumption in China. One of the unintended consequences is poor air quality due to a lack of environmental controls. The coal dependent energy structure in China only worsens the situation. Quantification of the environmental costs resulting from air pollution is needed in order to provide a mechanism for making strategic energy policy that accounts for the life-cycle cost of energy use. However, few such studies have been conducted for China that examine the entire energy system. Here we examine the extent to which public health has been compromised due to elevated air pollution and how China could incorporate environmental costs into future energy and environmental policies. Taking the Shandong region in eastern China as a case study, we develop a high-resolution regional inventory for anthropogenic emissions of NOx, CO, PM2.5, PM10, VOCs, NH3 and SO2. SMOKE (Sparse Matrix Operator Kernel Emissions Modeling System) is used to process spatial and temporal distributions and chemical speciation of the regional emissions, MM5 (the Fifth-Generation NCAR/Penn State Meso-scale Model, Version 3) is used to generate meteorology and Models3/CMAQ (Community Multi-scale Air Quality Modeling System) is used to simulate ambient concentrations of particulates and other gaseous species in this region. We then estimate the mortality and morbidity in this region resulting from exposure to these air pollutants. We also estimate the monetary values associated with the resulting mortality and morbidity and quantify the contributions from various economic sectors (i.e. power generation, transportation, industry, residential and others). Finally, we examine the potential health benefits that adoption of best available or advanced energy (coal-based, in particular) and environmental technologies in different sectors could bring about. The results of these analyses are intended to provide insight into whether China should choose to continue business as usual, adopt marginal, additional environmental controls for conventional energy technologies, or leapfrog to advanced, low-emission energy technologies. Finally, we make recommendations on which energy sector priority should be placed after environmental costs are taken into account.

  19. Collective Calcium Signaling of Defective Multicellular Networks

    NASA Astrophysics Data System (ADS)

    Potter, Garrett; Sun, Bo

    2015-03-01

    A communicating multicellular network processes environmental cues into collective cellular dynamics. We have previously demonstrated that, when excited by extracellular ATP, fibroblast monolayers generate correlated calcium dynamics modulated by both the stimuli and gap junction communication between the cells. However, just as a well-connected neural network may be compromised by abnormal neurons, a tissue monolayer can also be defective with cancer cells, which typically have down regulated gap junctions. To understand the collective cellular dynamics in a defective multicellular network we have studied the calcium signaling of co-cultured breast cancer cells and fibroblast cells in various concentrations of ATP delivered through microfluidic devices. Our results demonstrate that cancer cells respond faster, generate singular spikes, and are more synchronous across all stimuli concentrations. Additionally, fibroblast cells exhibit persistent calcium oscillations that increase in regularity with greater stimuli. To interpret these results we quantitatively analyzed the immunostaining of purigenic receptors and gap junction channels. The results confirm our hypothesis that collective dynamics are mainly determined by the availability of gap junction communications.

  20. Two-generation reproductive toxicity study of tributyltin chloride in female rats.

    PubMed

    Ogata, R; Omura, M; Shimasaki, Y; Kubo, K; Oshima, Y; Aou, S; Inoue, N

    2001-05-25

    A two-generation reproductive toxicity study of the effects of tributyltin chloride (TBTCl) was conducted in female rats using dietary concentrations of 5, 25, and 125 ppm TBTCl. Reproductive outcomes of dams (number and body weight of pups and the percentage of live pups) and the growth of female pups (the day of eye opening and body weight gain) were significantly decreased in the 125 ppm TBTCl group. A delay in vaginal opening and impaired estrous cyclicity were also observed in the 125 ppm TBTCl group. However, an increase in anogenital distance was found in all TBTCl groups on postnatal d 1. A dose-effect relationship was observed in TBTCl-induced changes in anogenital distance. These results indicate that the whole-life exposure to TBTCl affects the sexual development and reproductive function of female rats. In addition, the TBTCl-induced increase in anogenital distance seems to suggest it may exert a masculinizing effect on female neonates. However, the concentrations of TBTCl used in this study are not environmentally relevant.

  1. A review on the importance of metals and metalloids in atmospheric dust and aerosol from mining operations.

    PubMed

    Csavina, Janae; Field, Jason; Taylor, Mark P; Gao, Song; Landázuri, Andrea; Betterton, Eric A; Sáez, A Eduardo

    2012-09-01

    Contaminants can be transported rapidly and over relatively long distances by atmospheric dust and aerosol relative to other media such as water, soil and biota; yet few studies have explicitly evaluated the environmental implications of this pathway, making it a fundamental but understudied transport mechanism. Although there are numerous natural and anthropogenic activities that can increase dust and aerosol emissions and contaminant levels in the environment, mining operations are notable with respect to the quantity of particulates generated, the global extent of area impacted, and the toxicity of contaminants associated with the emissions. Here we review (i) the environmental fate and transport of metals and metalloids in dust and aerosol from mining operations, (ii) current methodologies used to assess contaminant concentrations and particulate emissions, and (iii) the potential health and environmental risks associated with airborne contaminants from mining operations. The review evaluates future research priorities based on the available literature and suggest that there is a particular need to measure and understand the generation, fate and transport of airborne particulates from mining operations, specifically the finer particle fraction. More generally, our findings suggest that mining operations play an important but underappreciated role in the generation of contaminated atmospheric dust and aerosol and the transport of metal and metalloid contaminants, and highlight the need for further research in this area. The role of mining activities in the fate and transport of environmental contaminants may become increasingly important in the coming decades, as climate change and land use are projected to intensify, both of which can substantially increase the potential for dust emissions and transport. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. A Review on the Importance of Metals and Metalloids in Atmospheric Dust and Aerosol from Mining Operations

    PubMed Central

    Csavina, Janae; Field, Jason; Taylor, Mark P.; Gao, Song; Landázuri, Andrea; Betterton, Eric A.; Sáez, A. Eduardo

    2012-01-01

    Contaminants can be transported rapidly and over relatively long distances by atmospheric dust and aerosol relative to other media such as water, soil and biota; yet few studies have explicitly evaluated the environmental implications of this pathway, making it a fundamental but understudied transport mechanism. Although there are numerous natural and anthropogenic activities that can increase dust and aerosol emissions and contaminant levels in the environment, mining operations are notable with respect to the quantity of particulates generated, the global extent of area impacted, and the toxicity of contaminants associated with the emissions. Here we review (i) the environmental fate and transport of metals and metalloids in dust and aerosol from mining operations, (ii) current methodologies used to assess contaminant concentrations and particulate emissions, and (iii) the potential health and environmental risks associated with airborne contaminants from mining operations. The review evaluates future research priorities based on the available literature and suggest that there is a particular need to measure and understand the generation, fate and transport of airborne particulates from mining operations, specifically the finer particle fraction. More generally, our findings suggest that mining operations play an important but underappreciated role in the generation of contaminated atmospheric dust and aerosol and the transport of metal and metalloid contaminants, and highlight the need for further research in this area. The role of mining activities in the fate and transport of environmental contaminants may become increasingly important in the coming decades, as climate change and land use are projected to intensify, both of which can substantially increase the potential for dust emissions and transport. PMID:22766428

  3. Behavioural responses to human-induced environmental change.

    PubMed

    Tuomainen, Ulla; Candolin, Ulrika

    2011-08-01

    The initial response of individuals to human-induced environmental change is often behavioural. This can improve the performance of individuals under sudden, large-scale perturbations and maintain viable populations. The response can also give additional time for genetic changes to arise and, hence, facilitate adaptation to new conditions. On the other hand, maladaptive responses, which reduce individual fitness, may occur when individuals encounter conditions that the population has not experienced during its evolutionary history, which can decrease population viability. A growing number of studies find human disturbances to induce behavioural responses, both directly and by altering factors that influence fitness. Common causes of behavioural responses are changes in the transmission of information, the concentration of endocrine disrupters, the availability of resources, the possibility of dispersal, and the abundance of interacting species. Frequent responses are alterations in habitat choice, movements, foraging, social behaviour and reproductive behaviour. Behavioural responses depend on the genetically determined reaction norm of the individuals, which evolves over generations. Populations first respond with individual behavioural plasticity, whereafter changes may arise through innovations and the social transmission of behavioural patterns within and across generations, and, finally, by evolution of the behavioural response over generations. Only a restricted number of species show behavioural adaptations that make them thrive in severely disturbed environments. Hence, rapid human-induced disturbances often decrease the diversity of native species, while facilitating the spread of invasive species with highly plastic behaviours. Consequently, behavioural responses to human-induced environmental change can have profound effects on the distribution, adaptation, speciation and extinction of populations and, hence, on biodiversity. A better understanding of the mechanisms of behavioural responses and their causes and consequences could improve our ability to predict the effects of human-induced environmental change on individual species and on biodiversity. © 2010 The Authors. Biological Reviews © 2010 Cambridge Philosophical Society.

  4. Prediction of toxic metals concentration using artificial intelligence techniques

    NASA Astrophysics Data System (ADS)

    Gholami, R.; Kamkar-Rouhani, A.; Doulati Ardejani, F.; Maleki, Sh.

    2011-12-01

    Groundwater and soil pollution are noted to be the worst environmental problem related to the mining industry because of the pyrite oxidation, and hence acid mine drainage generation, release and transport of the toxic metals. The aim of this paper is to predict the concentration of Ni and Fe using a robust algorithm named support vector machine (SVM). Comparison of the obtained results of SVM with those of the back-propagation neural network (BPNN) indicates that the SVM can be regarded as a proper algorithm for the prediction of toxic metals concentration due to its relative high correlation coefficient and the associated running time. As a matter of fact, the SVM method has provided a better prediction of the toxic metals Fe and Ni and resulted the running time faster compared with that of the BPNN.

  5. A preliminary assessment of PM(10) and TSP concentrations in Tuticorin, India.

    PubMed

    Sivaramasundaram, K; Muthusubramanian, P

    2010-06-01

    The respirable particulate matter (RPM; PM(10)) and total suspended particulate matter (TSP) concentrations in ambient air in Tuticorin, India, were preliminarily estimated. Statistical analyses on so-generated database were performed to infer frequency distributions and to identify dominant meteorological factor affecting the pollution levels. Both the RPM and TSP levels were well below the permissible limits set by the US Environmental Protection Agency. As expected, lognormal distribution always fit the data during the study period. However, fit with the normal was also acceptable except for very few seasons. The RPM concentrations ranged between 20.9 and 198.2 mug/m(3), while the TSP concentrations varied from 51.5 to 333.3 mug/m(3) during the study period. There was a better correlation between PM(10-100) and TSP concentrations than that of PM(10) (RPM) and TSP concentrations, but the correlation of RPM fraction was also acceptable. It was found that wind speed was the most important meteorological factor affecting the concentrations of the pollutants of present interest. Significant seasonal variations in the pollutant concentrations of present interest were found at 5% significance level except for TSP concentrations in the year 2006.

  6. Re-Designing of Existing Pharmaceuticals for Environmental Biodegradability: A Tiered Approach with β-Blocker Propranolol as an Example.

    PubMed

    Rastogi, Tushar; Leder, Christoph; Kümmerer, Klaus

    2015-10-06

    Worldwide, contamination of aquatic systems with micropollutants, including pharmaceuticals, is one of the challenges for sustainable management of water resources. Although micropollutants are present at low concentrations, many of them raise considerable toxicological concerns, particularly when present as components of complex mixtures. Recent research has shown that this problem cannot be sustainably solved with advanced effluent treatment. Therefore, an alternative that might overcome these environmental problems is the design of new pharmaceutical molecules or the redesign of existing pharmaceutical molecules that present the functionality needed for their application and have improved environmental biodegradability. Such redesigning can be performed by small molecular changes in the drug molecule with intact drug moiety which could incorporate the additional attribute such as biodegradability while retaining its pharmacological potency. This proof of concept study provides an approach for the rational redesign of a given pharmaceutical (Propranolol as an example). New derivatives with small molecular changes as compared to propranolol molecule were generated by a nontargeted photolysis process. Generated derivatives with intact drug moieties (an aromatic ring and a β-ethanolamine moiety) were further screened for aerobic biodegradability and pharmacological potency. The feasibility of the approach of redesigning an existing pharmaceutical through nontargeted generation of new derivatives with intact drug moiety and through subsequent screening was demonstrated in this study. Application of such approaches in turn might contribute to the protection of water resources in a truly sustainable manner.

  7. Estimation of hydrogen sulfide emission rates at several wastewater treatment plants through experimental concentration measurements and dispersion modeling.

    PubMed

    Llavador Colomer, Fernando; Espinós Morató, Héctor; Mantilla Iglesias, Enrique

    2012-07-01

    The management and operation of wastewater treatment plants (WWTP) usually involve the release into the atmosphere of malodorous substances with the potential to reduce the quality of life of people living nearby. In this type of facility, anaerobic degradation processes contribute to the generation of hydrogen sulfide (H2S), often at quite high concentrations; thus, the presence of this chemical compound in the atmosphere can be a good indicator of the occurrence and intensity of the olfactory impact in a specific area. The present paper describes the experimental and modelling work being carried out by CEAM-UMH in the surroundings of several wastewater treatment plants located in the Valencia Autonomous Community (Spain). This work has permitted the estimation of H2S emission rates at different WWTPs under different environmental and operating conditions. Our methodological approach for analyzing and describing the most relevant aspects of the olfactory impact consisted of several experimental campaigns involving intensive field measurements using passive samplers in the vicinity of several WWTPs, in combination with numerical simulation results from a diagnostic dispersion model. A meteorological tower at each WWTP provided the input values for the dispersion code, ensuring a good fit of the advective component and therefore more confidence in the modelled concentration field in response to environmental conditions. Then, comparisons between simulated and experimental H2S concentrations yielded estimates of the global emission rate for this substance at several WWTPs at different time periods. The results obtained show a certain degree of temporal and spatial (between-plant) variability (possibly due to both operational and environmental conditions). Nevertheless, and more importantly, the results show a high degree of uniformity in the estimates, which consistently stay within the same order of magnitude.

  8. Chronic effects of carbamazepine on life-history strategies of Ceriodaphnia dubia in three successive generations.

    PubMed

    Lamichhane, Kiran; Garcia, Santos N; Huggett, Duane B; DeAngelis, Donald L; La Point, Thomas W

    2013-04-01

    Trace quantities of pharmaceuticals are continuously being discharged into the environment through domestic and industrial wastewater effluents, causing concern among scientists and regulators regarding potential long-term impacts on aquatic ecosystems. These compounds and their metabolites are constantly interacting with organisms at various life-cycle stages and may differentially influence the development of embryonic, larval, juvenile, and adult stages. To understand the possible cumulative effects of exposure to carbamazepine (CBZ), a multigenerational approach was taken in which survival, reproduction, respiration, growth, brood size, and biomass of Ceriodaphnia dubia were assessed at sublethal concentrations over the course of three successive generations. CBZ exposure significantly decreased fecundity at 196.7 μg/L in the F0 and F1 generations over 2 weeks and acclimatized at 264.6 μg/L in the F2 generation. Similarly, a significant decrease of neonate dry weight was observed at the 196.7 μg/L CBZ treatment in the F1 generation, and it acclimatized at 264.6 μg/L treatment level in the F2 generation. Median time to first brood release was significantly delayed at 264.6 μg/L in the F2 generation, indicating slower maturation. Results over three successive generations are not different than what one would obtain by testing simply the F0 generation. Furthermore, the effects measured were observed at concentrations two orders of magnitude higher than are environmentally relevant, and it is unlikely that CBZ poses a substantial risk to the environment regarding the end points measured in this study. However, additional research through laboratory and field multigenerational studies may be required to understand the overall risk of CBZ to other nontarget organisms.

  9. Air Quality and Road Emission Results for Fort Stewart, Georgia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kirkham, Randy R.; Driver, Crystal J.; Chamness, Mickie A.

    2004-02-02

    The Directorate of Public Works Environmental & Natural Resources Division (Fort Stewart /Hunter Army Airfield) contracted with the Pacific Northwest National Laboratory (PNNL) to monitor particulate matter (PM) concentrations on Fort Stewart, Georgia. The purpose of this investigation was to establish a PM sampling network using monitoring equipment typically used in U.S. Environmental Protection Agency (EPA) ''saturation sampling'', to determine air quality on the installation. In this initial study, the emphasis was on training-generated PM, not receptor PM loading. The majority of PM samples were 24-hr filter-based samples with sampling frequency ranging from every other day, to once every sixmore » days synchronized with the EPA 6th day national sampling schedule. Eight measurement sites were established and used to determine spatial variability in PM concentrations and evaluate whether fluctuations in PM appear to result from training activities and forest management practices on the installation. Data collected to date indicate the average installation PM2.5 concentration is lower than that of nearby urban Savannah, Georgia. At three sites near the installation perimeter, analyses to segregate PM concentrations by direction of air flow across the installation boundary indicate that air (below 80 ft) leaving the installation contains less PM2.5 than that entering the installation. This is reinforced by the observation that air near the ground is cleaner on average than the air at the top of the canopy.« less

  10. Removal of organic compounds and trace metals from oil sands process-affected water using zero valent iron enhanced by petroleum coke.

    PubMed

    Pourrezaei, Parastoo; Alpatova, Alla; Khosravi, Kambiz; Drzewicz, Przemysław; Chen, Yuan; Chelme-Ayala, Pamela; Gamal El-Din, Mohamed

    2014-06-15

    The oil production generates large volumes of oil sands process-affected water (OSPW), referring to the water that has been in contact with oil sands or released from tailings deposits. There are concerns about the environmental impacts of the release of OSPW because of its toxicity. Zero valent iron alone (ZVI) and in combination with petroleum coke (CZVI) were investigated as environmentally friendly treatment processes for the removal of naphthenic acids (NAs), acid-extractable fraction (AEF), fluorophore organic compounds, and trace metals from OSPW. While the application of 25 g/L ZVI to OSPW resulted in 58.4% removal of NAs in the presence of oxygen, the addition of 25 g petroleum coke (PC) as an electron conductor enhanced the NAs removal up to 90.9%. The increase in ZVI concentration enhanced the removals of NAs, AEF, and fluorophore compounds from OSPW. It was suggested that the electrons generated from the oxidation of ZVI were transferred to oxygen, resulting in the production of hydroxyl radicals and oxidation of NAs. When OSPW was de-oxygenated, the NAs removal decreased to 17.5% and 65.4% during treatment with ZVI and CZVI, respectively. The removal of metals in ZVI samples was similar to that obtained during CZVI treatment. Although an increase in ZVI concentration did not enhance the removal of metals, their concentrations effectively decreased at all ZVI loadings. The Microtox(®) bioassay with Vibrio fischeri showed a decrease in the toxicity of ZVI- and CZVI-treated OSPW. The results obtained in this study showed that the application of ZVI in combination with PC is a promising technology for OSPW treatment. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Mixture toxicity in the marine environment: Model development and evidence for synergism at environmental concentrations.

    PubMed

    Deruytter, David; Baert, Jan M; Nevejan, Nancy; De Schamphelaere, Karel A C; Janssen, Colin R

    2017-12-01

    Little is known about the effect of metal mixtures on marine organisms, especially after exposure to environmentally realistic concentrations. This information is, however, required to evaluate the need to include mixtures in future environmental risk assessment procedures. We assessed the effect of copper (Cu)-Nickel (Ni) binary mixtures on Mytilus edulis larval development using a full factorial design that included environmentally relevant metal concentrations and ratios. The reproducibility of the results was assessed by repeating this experiment 5 times. The observed mixture effects were compared with the effects predicted with the concentration addition model. Deviations from the concentration addition model were estimated using a Markov chain Monte-Carlo algorithm. This enabled the accurate estimation of the deviations and their uncertainty. The results demonstrated reproducibly that the type of interaction-synergism or antagonism-mainly depended on the Ni concentration. Antagonism was observed at high Ni concentrations, whereas synergism occurred at Ni concentrations as low as 4.9 μg Ni/L. This low (and realistic) Ni concentration was 1% of the median effective concentration (EC50) of Ni or 57% of the Ni predicted-no-effect concentration (PNEC) in the European Union environmental risk assessment. It is concluded that results from mixture studies should not be extrapolated to concentrations or ratios other than those investigated and that significant mixture interactions can occur at environmentally realistic concentrations. This should be accounted for in (marine) environmental risk assessment of metals. Environ Toxicol Chem 2017;36:3471-3479. © 2017 SETAC. © 2017 SETAC.

  12. Chemical Characterization of Dissolved Organic Matter (DOM) in Seawater: Structure, Cycling and the Role of Biology

    DTIC Science & Technology

    2005-02-01

    concentration, excluding hydrocarbons , was less than 2% of the total organic carbon present in the samples, and the samples had not been pre-extracted to...carbon chains that make up the separation phase of the C18 134 column. This carbon chain was most likely generated from petroleum products, and had a...produced, bioaccumulating halogenated organic compound. Environmental Science and Technology 38: 1992-1997. Silfer, J. A., M. H. Engel and S. A

  13. Initial review and analysis of the direct environmental impacts of CSP in the northern Cape, South Africa

    NASA Astrophysics Data System (ADS)

    Rudman, Justine; Gauché, Paul; Esler, Karen J.

    2016-05-01

    The Integrated Resource Plan (IRP) of 2010 and the IRP Update provide the most recent guidance to the electricity generation future of South Africa (SA) and both plans include an increased proportion of renewable energy generation capacity. Given that SA has abundant renewable energy resource potential, this inclusion is welcome. Only 600 MW of the capacity allocated to concentrating solar power (CSP) has been committed to projects in the Northern Cape and represents roughly a fifth of the capacity that has been included in the IRP. Although CSP is particularly new in the electricity generation system of the country, the abundant solar resources of the region with annual DNI values of above 2900 kWh/m2 across the arid Savannah and Nama-Karoo biomes offer a promising future for the development of CSP in South Africa. These areas have largely been left untouched by technological development activities and thus renewable energy projects present a variety of possible direct and indirect environmental, social and economic impacts. Environmental Impact Assessments do focus on local impacts, but given that ecological processes often extend to regional- and landscape scales, understanding this scaled context is important to the alignment of development- and conservation priorities. Given the capacities allocated to CSP for the future of SA's electricity generation system, impacts on land, air, water and biodiversity which are associated with CSP are expected to increase in distribution and the understanding thereof deems valuable already from this early point in CSP's future in SA. We provide a review of direct impacts of CSP on the natural environment and an overview of the anticipated specific significance thereof in the Northern Cape.

  14. Concentrations and environmental fate of Ra in cation-exchange regeneration brine waste disposed to septic tanks and accumulation in sludge, New Jersey Coastal Plain, USA.

    PubMed

    Szabo, Zoltan; Jacobsen, Eric; Kraemer, Thomas F; Parsa, Bahman

    2008-06-01

    Concentrations of Ra in liquid and solid wastes generated from 15 softeners treating domestic well waters from New Jersey Coastal Plain aquifers (where combined Ra ((226)Ra plus (228)Ra) concentrations commonly exceed 0.185 Bq L(-1)) were determined. Softeners, when maintained, reduced combined Ra about 10-fold (<0.024 Bq L(-1)). Combined Ra exceeded 0.185 Bq L(-1) at 1 non-maintained system. Combined Ra was enriched in regeneration brine waste (maximum, 81.2 Bq L(-1)), but concentrations in septic-tank effluents receiving brine waste were less than in the untreated ground waters. The maximum combined Ra concentration in aquifer sands (40.7 Bq kg(-1) dry weight) was less than that in sludge from the septic tanks (range, 84-363 Bq kg(-1)), indicating Ra accumulation in sludge from effluent. The combined Ra concentration in sludge from the homeowners' septic systems falls within the range reported for sludge samples from publicly owned treatment works within the region.

  15. Concentrations and environmental fate of Ra in cation-exchange regeneration brine waste disposed to septic tanks and accumulation in sludge, New Jersey Coastal Plain, USA

    USGS Publications Warehouse

    Szabo, Z.; Jacobsen, E.; Kraemer, T.F.; Parsa, B.

    2008-01-01

    Concentrations of Ra in liquid and solid wastes generated from 15 softeners treating domestic well waters from New Jersey Coastal Plain aquifers (where combined Ra (226Ra plus 228Ra) concentrations commonly exceed 0.185 Bq L-1) were determined. Softeners, when maintained, reduced combined Ra about 10-fold (<0.024 Bq L-1). Combined Ra exceeded 0.185 Bq L-1 at 1 non-maintained system. Combined Ra was enriched in regeneration brine waste (maximum, 81.2 Bq L-1), but concentrations in septic-tank effluents receiving brine waste were less than in the untreated ground waters. The maximum combined Ra concentration in aquifer sands (40.7 Bq kg-1 dry weight) was less than that in sludge from the septic tanks (range, 84-363 Bq kg-1), indicating Ra accumulation in sludge from effluent. The combined Ra concentration in sludge from the homeowners' septic systems falls within the range reported for sludge samples from publicly owned treatment works within the region.

  16. Persistent DNA damage measured by comet assay of Sprague Dawley rat lung cells after five days of inhalation exposure and 1 month post-exposure to dispersed multi-wall carbon nanotubes (MWCNTs) generated by new MWCNT aerosol generation system.

    PubMed

    Kim, Jin Sik; Sung, Jae Huyck; Song, Kyung Seuk; Lee, Ji Hyun; Kim, Sun Man; Lee, Gun Ho; Ahn, Kang Ho; Lee, Jong Seong; Shin, Jae Hoon; Park, Jung Duck; Yu, Il Je

    2012-08-01

    Carbon nanotubes (CNTs) have specific physico-chemical properties that are useful for the electronics, automotive, and construction industries. Yet, despite their many advantages, there is a current lack of available information on the human health and environmental hazards of CNTs. For this reason, the current study investigated the inhalation toxicity potential of multiwall CNTs (MWCNTs). Eight-week-old rats were divided into four groups (10 rats in each group), the fresh-air control (0mg/m(3)), low-concentration group (0.16mg/m(3)), middle-concentration group (0.34mg/m(3)), and high-concentration group (0.94mg/m(3)), and the whole body was exposed to MWCNTs for 5 days (6h/day). Lung cells were then isolated from five rats in each group on day 0 and 1 month after the 5-day exposure, respectively. The MWCNTs were generated by a newly designed generation system, and the MWCNT concentrations in the exposure chambers monitored in accordance with National Institute for Occupational Safety and Health (NIOSH) 0500 using a membrane filter. The MWCNTs were also sampled for an elemental carbon concentration analysis using a glass filter. The animals exhibited no significant body weight changes, abnormal clinical signs, or mortality during the experiment. A single-cell gel electrophoresis assay (Comet assay) was conducted to determine the DNA damage in lung cells obtained from the right lung. As a result, the Olive tail moments were 23.00±1.76, 30.39±1.96, 22.96±1.26, and 33.98±2.21 for the control, low-, middle-, and high-concentration groups, respectively, on day 0 postexposure. Meanwhile, 1 month postexposure, the Olive tail moments were 25.00±2.71, 28.39±3.55, 22.56±1.36, and 31.97±3.16 for the control, low-, middle-, and high-concentration groups, respectively. Thus, the MWCNTs caused a statistically significant increase in lung DNA damage at high concentration (0.94mg/m(3)) when compared with the negative control group on day 0 and 1 month postexposure.

  17. Characterization of air contaminants formed by the interaction of lava and sea water.

    PubMed Central

    Kullman, G J; Jones, W G; Cornwell, R J; Parker, J E

    1994-01-01

    We made environmental measurements to characterize contaminants generated when basaltic lava from Hawaii's Kilauea volcano enters sea water. This interaction of lava with sea water produces large clouds of mist (LAZE). Island winds occasionally directed the LAZE toward the adjacent village of Kalapana and the Hawaii Volcanos National Park, creating health concerns. Environmental samples were taken to measure airborne concentrations of respirable dust, crystalline silica and other mineral compounds, fibers, trace metals, inorganic acids, and organic and inorganic gases. The LAZE contained quantifiable concentrations of hydrochloric acid (HCl) and hydrofluoric acid (HF); HCl was predominant. HCl and HF concentrations were highest in dense plumes of LAZE near the sea. The HCl concentration at this sampling location averaged 7.1 ppm; this exceeds the current occupational exposure ceiling of 5 ppm. HF was detected in nearly half the samples, but all concentrations were <1 ppm Sulfur dioxide was detected in one of four short-term indicator tube samples at approximately 1.5 ppm. Airborne particulates were composed largely of chloride salts (predominantly sodium chloride). Crystalline silica concentrations were below detectable limits, less than approximately 0.03 mg/m3 of air. Settled dust samples showed a predominance of glass flakes and glass fibers. Airborne fibers were detected at quantifiable levels in 1 of 11 samples. These fibers were composed largely of hydrated calcium sulfate. These findings suggest that individuals should avoid concentrated plumes of LAZE near its origin to prevent over exposure to inorganic acids, specifically HCl. Images Figure 1. Figure 2. Figure 3. Figure 4. A Figure 4. B Figure 4. C Figure 4. D PMID:8593853

  18. Evaluation of Environmental Quality Productive Ecosystem Guayas (Ecuador).

    NASA Astrophysics Data System (ADS)

    Pozo, Wilson; Pardo, Francisco; Sanfeliu, Teófilo; Carrera, Gloria; Jordan, Manuel; Bech, Jaume; Roca, Núria

    2015-04-01

    Natural resources are deteriorating very rapidly in the Gulf of Guayaquil and the area of influence in the Guayas Basin due to human activity. Specific problems are generated by the mismanagement of the aquaculture industry affecting the traditional agricultural sectors: rice, banana, sugarcane, cocoa, coffee, and soya also studied, and by human and industrial settlements. The development of industrial activities such as aquaculture (shrimp building for shrimp farming in ponds) and agriculture, have increasingly contributed to the generation of waste, degrading and potentially toxic elements in high concentrations, which can have adverse effects on organisms in the ecosystems, in the health of the population and damage the ecological and environmental balance. The productive Guayas ecosystem, consists of three interrelated ecosystems, the Gulf of Guayaquil, the Guayas River estuary and the Guayas Basin buffer. The objective of this study was to evaluate the environmental quality of the productive Guayas ecosystem (Ecuador), through operational and specific objectives: 1) Draw up the transition coastal zone in the Gulf of Guayaquil, 2) Set temporal spatial variability of soil salinity in wetlands rice, Lower Guayas Basin, 3) evaluate the heavy metals in wetland rice in the Lower Basin of Guayas. The physical and chemical parameters of the soils have been studied. These are indicators of environmental quality. The multivariate statistical method showed the relations of similarities and dissimilarities between variables and parameter studies as stable. Moreover, the boundaries of coastal transition areas, temporal spatial variability of soil salinity and heavy metals in rice cultivation in the Lower Basin of Guayas were researched. The sequential studies included and discussed represent a broad framework of fundamental issues that has been valued as a basic component of the productive Guayas ecosystem. They are determinants of the environmental quality of the Guayas productive ecosystem. Keyword: Evaluation, Environmental Quality, Productive Ecosystem

  19. Cleaner production: Minimizing hazardous waste in Indonesia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bratasida, D.L.

    In the second long-term development plan, industry plays a significant role in economic growth. In Indonesia, industries grow very fast; such fast growth can adversely effect the environment. Exploitation of assets can mean depletion of natural resources and energy, which, if incorrectly managed, can endanger human life and the environment. The inefficient use of natural resources will accelerate their exhaustion and generate pollution, resulting in environmental damage and threats to economic development and human well being. In recent years, changes in the approach used to control pollution have been necessary because of the increasing seriousness of the problems. Initial environmentalmore » management strategies were based on a carrying capacity approach; the natural assimilative capacity accommodated the pollution load that was applied. The environmental management strategies adopted later included technologies applied to the end of the discharge point (so-called {open_quotes}end-of-pipe{close_quotes} treatments). Until now, environmental management strategies focused on end-of-pipe approaches that control pollutants after they are generated. These approaches concentrate on waste treatment and disposal to control pollution and environmental degradation. However, as industry develops, waste volumes continue to increase, thereby creating further environmental problems. In addition, the wastes produced tend to have more complex characteristics and are potentially more difficult to treat for a reasonable cost. There are often technical and financial obstacles to regulatory compliance if waste treatment is relied on as the only means of achieving environmental objectives. Consequently, the reactive end-of-pipe treatment approach has been changed to a proactive cleaner production approach. This approach is based on the concept of sustainable development and is designed to prevent pollution as well as to protect natural resources and the quality of the environment.« less

  20. S-metolachlor promotes oxidative stress in green microalga Parachlorella kessleri - A potential environmental and health risk for higher organisms.

    PubMed

    Špoljarić Maronić, Dubravka; Štolfa Čamagajevac, Ivna; Horvatić, Janja; Žuna Pfeiffer, Tanja; Stević, Filip; Žarković, Neven; Waeg, Georg; Jaganjac, Morana

    2018-05-08

    The estimation of the toxic influences of herbicide products on non-target aquatic organisms is essential for evaluation of environmental contamination. We assessed the effects of the herbicide S-metolachlor (S-MET) on unicellular green microalga Parachlorella kessleri during 4-72 in vitro exposure to concentrations in the range 2-200μg/L. The results have shown that S-MET had a significant effect on algae, even in doses 10 and 20 times lower than the EC50 values obtained for P. kessleri (EC50-72h=1090μg/L). It generates reactive oxygen species in algae, decreases their growth and photosynthetic pigment concentration, changes their ultrastructure and alters the cellular antioxidant defence capacities. The levels of protein adducts with the reactive aldehyde 4-hydroxy-2-nonenal (HNE), the end-product of lipid peroxidation, were significantly elevated in S-MET treated cells revealing the insufficient effectiveness of P. kessleri antioxidant mechanisms and persistent lipid peroxidation. Since algae are fundamental aquatic food component, the damaged algal cells, still capable of dividing while having persistently increased content of HNE upon S-MET contamination could represent an important environmental toxic factor that might further affect higher organisms in the food chain. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Methods for Assessing the Impact of Fog Oil Smoke on Availability, Palatability, & Food Quality of Relevant Life Stages of Insects for Threatened and Endangered Species

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Driver, Crystal J.; Strenge, Dennis L.; Su, Yin-Fong

    2007-04-01

    A methodology for quantifying population dynamics and food source value of insect fauna in areas subjected to fog oil smoke was developed. Our approach employed an environmentally controlled re-circulating wind tunnel outfitted with a high-heat vaporization and re-condensation fog oil generator that has been shown to produce aerosols of comparable chemistry and droplet-size distribution as those of field releases of the smoke. This method provides reproducible exposures of insects under realistic climatic and environmental conditions to fog oil aerosols that duplicate chemical and droplet-size characteristics of field releases of the smoke. The responses measured take into account reduction in foodmore » sources due to death and to changes in availability of relevant life stages of insects that form the prey base for the listed Threatened and Endangered Species. The influence of key environmental factors, wind speed and canopy structure on these responses were characterized. Data generated using this method was used to develop response functions related to particle size, concentration, wind speed, and canopy structure that will allow military personnel to assess and manage impacts to endangered species from fog oil smoke used in military training.« less

  2. Environmentally Persistent Free Radicals in Soils of Past Coking Sites: Distribution and Stabilization.

    PubMed

    Jia, Hanzhong; Zhao, Song; Nulaji, Gulimire; Tao, Kelin; Wang, Fu; Sharma, Virender K; Wang, Chuanyi

    2017-06-06

    This study presents the existence of environmentally persistent free radicals (EPFRs) in soils of past coking sites, mainly contaminated by polycyclic aromatic hydrocarbons (PAHs). Measurements of EPFRs were conducted by electron paramagnetic resonance (EPR) technique with numerous soil samples, which were collected from different distances (0-1000 m) and different depths (0-30 cm) of three contaminant sources. EPR signals with ∼3 × 10 17 radicals/g of the soil samples were obtained, which are very similar to that generated in PAHs contaminated clays, that is, g = 2.0028-2.0036. Concentrations of PAHs and soil components were determined to understand their role in producing EPFRs. PAHs, clay, and iron predominately contributed to generating EPRFs. Meanwhile, organic matter negatively influenced the production of EPRFs. The effects of environmental factors (moisture and oxic/anoxic) were also studied to probe the persistency of EPFRs under various simulated conditions. The EPFRs are stable under relatively dry and oxic conditions. Under anoxic conditions without O 2 and H 2 O, the spin densities decrease initially, followed by gradual increase before attaining constant values in two months period time. The present work implies that continuous formation of EPFRs induced by PAHs is largely responsible for the presence of relatively stable radicals in soils of coking sites.

  3. Ozone reaction with clothing and its initiated particle generation in an environmental chamber

    NASA Astrophysics Data System (ADS)

    Rai, Aakash C.; Guo, Bing; Lin, Chao-Hsin; Zhang, Jianshun; Pei, Jingjing; Chen, Qingyan

    2013-10-01

    Ozone-initiated chemistry in indoor air can produce sub-micron particles, which are potentially harmful for human health. Occupants in indoor spaces constitute potential sites for particle generation through ozone reactions with human skin and clothing. This investigation conducted chamber experiments to examine particle generation from ozone reactions with clothing (a T-shirt) under different indoor conditions. We studied the effect of various factors such as ozone concentration, relative humidity, soiling levels of T-shirt with human skin oils, and air change rate on particle generation. The results showed that ozone reactions with the T-shirt generated sub-micron particles, which were enhanced by the soiling of the T-shirt with human skin oils. In these reactions, a burst of ultrafine particles was observed about one hour after ozone injection, and then the particles grew to larger sizes. The particle generation from the ozone reactions with the soiled T-shirt was significantly affected by the different factors studied and these reactions were identified as another potential source for indoor ultrafine particles.

  4. Selective pressure of antibiotic pollution on bacteria of importance to public health.

    PubMed

    Tello, Alfredo; Austin, Brian; Telfer, Trevor C

    2012-08-01

    Many bacteria of clinical importance survive and may grow in different environments. Antibiotic pollution may exert on them a selective pressure leading to an increase in the prevalence of resistance. In this study we sought to determine whether environmental concentrations of antibiotics and concentrations representing action limits used in environmental risk assessment may exert a selective pressure on clinically relevant bacteria in the environment. We used bacterial inhibition as an assessment end point to link antibiotic selective pressures to the prevalence of resistance in bacterial populations. Species sensitivity distributions were derived for three antibiotics by fitting log-logistic models to end points calculated from minimum inhibitory concentration (MIC) distributions based on worldwide data collated by the European Committee on Antimicrobial Susceptibility Testing (EUCAST). To place bacteria represented in these distributions in a broader context, we performed a brief phylogenetic analysis. The potentially affected fraction of bacterial genera at measured environmental concentrations of antibiotics and environmental risk assessment action limits was used as a proxy for antibiotic selective pressure. Measured environmental concentrations and environmental risk assessment action limits were also directly compared to wild-type cut-off values. The potentially affected fraction of bacterial genera estimated based on antibiotic concentrations measured in water environments is ≤ 7%. We estimated that measured environmental concentrations in river sediments, swine feces lagoons, liquid manure, and farmed soil inhibit wild-type populations in up to 60%, 92%, 100%, and 30% of bacterial genera, respectively. At concentrations used as action limits in environmental risk assessment, erythromycin and ciprofloxacin were estimated to inhibit wild-type populations in up to 25% and 76% of bacterial genera. Measured environmental concentrations of antibiotics, as well as concentrations representing environmental risk assessment action limits, are high enough to exert a selective pressure on clinically relevant bacteria that may lead to an increase in the prevalence of resistance.

  5. Combinatorial influence of environmental parameters on transcription factor activity.

    PubMed

    Knijnenburg, T A; Wessels, L F A; Reinders, M J T

    2008-07-01

    Cells receive a wide variety of environmental signals, which are often processed combinatorially to generate specific genetic responses. Changes in transcript levels, as observed across different environmental conditions, can, to a large extent, be attributed to changes in the activity of transcription factors (TFs). However, in unraveling these transcription regulation networks, the actual environmental signals are often not incorporated into the model, simply because they have not been measured. The unquantified heterogeneity of the environmental parameters across microarray experiments frustrates regulatory network inference. We propose an inference algorithm that models the influence of environmental parameters on gene expression. The approach is based on a yeast microarray compendium of chemostat steady-state experiments. Chemostat cultivation enables the accurate control and measurement of many of the key cultivation parameters, such as nutrient concentrations, growth rate and temperature. The observed transcript levels are explained by inferring the activity of TFs in response to combinations of cultivation parameters. The interplay between activated enhancers and repressors that bind a gene promoter determine the possible up- or downregulation of the gene. The model is translated into a linear integer optimization problem. The resulting regulatory network identifies the combinatorial effects of environmental parameters on TF activity and gene expression. The Matlab code is available from the authors upon request. Supplementary data are available at Bioinformatics online.

  6. Fate and risks of nanomaterials in aquatic and terrestrial environments.

    PubMed

    Batley, Graeme E; Kirby, Jason K; McLaughlin, Michael J

    2013-03-19

    Over the last decade, nanoparticles have been used more frequently in industrial applications and in consumer and medical products, and these applications of nanoparticles will likely continue to increase. Concerns about the environmental fate and effects of these materials have stimulated studies to predict environmental concentrations in air, water, and soils and to determine threshold concentrations for their ecotoxicological effects on aquatic or terrestrial biota. Nanoparticles can be added to soils directly in fertilizers orplant protection products or indirectly through application to land or wastewater treatment products such as sludges or biosolids. Nanoparticles may enter aquatic systems directly through industrial discharges or from disposal of wastewater treatment effluents or indirectly through surface runoff from soils. Researchers have used laboratory experiments to begin to understand the effects of nanoparticles on waters and soils, and this Account reviews that research and the translation of those results to natural conditions. In the environment, nanoparticles can undergo a number of potential transformations that depend on the properties both of the nanoparticle and of the receiving medium. These transformations largely involve chemical and physical processes, but they can involve biodegradation of surface coatings used to stabilize many nanomaterial formulations. The toxicity of nanomaterials to algae involves adsorption to cell surfaces and disruption to membrane transport. Higher organisms can directly ingest nanoparticles, and within the food web, both aquatic and terrestrial organisms can accumulate nanoparticles. The dissolution of nanoparticles may release potentially toxic components into the environment. Aggregation with other nanoparticles (homoaggregation) or with natural mineral and organic colloids (heteroaggregation) will dramatically change their fate and potential toxicity in the environment. Soluble natural organic matter may interact with nanoparticles to change surface charge and mobility and affect the interactions of those nanoparticles with biota. Ultimately, aquatic nanomaterials accumulate in bottom sediments, facilitated in natural systems by heteroaggregation. Homoaggregates of nanoparticles sediment more slowly. Nanomaterials from urban, medical, and industrial sources may undergo significant transformations during wastewater treatment processes. For example, sulfidation of silver nanoparticles in wastewater treatment systems converts most of the nanoparticles to silver sulfides (Ag₂S). Aggregation of the nanomaterials with other mineral and organic components of the wastewater often results in most of the nanomaterial being associated with other solids rather than remaining as dispersed nanosized suspensions. Risk assessments for nanomaterial releases to the environment are still in their infancy, and reliable measurements of nanomaterials at environmental concentrations remain challenging. Predicted environmental concentrations based on current usage are low but are expected to increase as use increases. At this early stage, comparisons of estimated exposure data with known toxicity data indicate that the predicted environmental concentrations are orders of magnitude below those known to have environmental effects on biota. As more toxicity data are generated under environmentally-relevant conditions, risk assessments for nanomaterials will improve to produce accurate assessments that assure environmental safety.

  7. Effect of copper oxide concentration on the formation and persistency of environmentally persistent free radicals (EPFRs) in particulates.

    PubMed

    Kiruri, Lucy W; Khachatryan, Lavrent; Dellinger, Barry; Lomnicki, Slawo

    2014-02-18

    Environmentally persistent free radicals (EPFRs) are formed by the chemisorption of substituted aromatics on metal oxide surfaces in both combustion sources and superfund sites. The current study reports the dependency of EPFR yields and their persistency on metal loading in particles (0.25, 0.5, 0.75, 1, 2, and 5% CuO/silica). The EPFRs were generated through exposure of particles to three adsorbate vapors at 230 °C: phenol, 2-monochlorophenol (2-MCP), and dichlorobenzene (DCBz). Adsorption resulted in the formation of surface-bound phenoxyl- and semiquinoine-type radicals with characteristic EPR spectra displaying a g value ranging from ∼ 2.0037 to 2.006. The highest EPFR yield was observed for CuO concentrations between 1 and 3% in relation to MCP and phenol adsorption. However, radical density, which is expressed as the number of radicals per copper atom, was highest at 0.75-1% CuO loading. For 1,2-dichlorobenzene adsorption, radical concentration increased linearly with decreasing copper content. At the same time, a qualitative change in the radicals formed was observed--from semiquinone to chlorophenoxyl radicals. The two longest lifetimes, 25 and 23 h, were observed for phenoxyl-type radicals on 0.5% CuO and chlorophenoxyl-type radicals on 0.75% CuO, respectively.

  8. From the Cover: Visualization of maltose uptake in living yeast cells by fluorescent nanosensors

    NASA Astrophysics Data System (ADS)

    Fehr, Marcus; Frommer, Wolf B.; Lalonde, Sylvie

    2002-07-01

    Compartmentation of metabolic reactions and thus transport within and between cells can be understood only if we know subcellular distribution based on nondestructive dynamic monitoring. Currently, methods are not available for in vivo metabolite imaging at cellular or subcellular levels. Limited information derives from methods requiring fixation or fractionation of tissue (1, 2). We thus developed a flexible strategy for designing protein-based nanosensors for a wide spectrum of solutes, allowing analysis of changes in solute concentration in living cells. We made use of bacterial periplasmic binding proteins (PBPs), where we show that, on binding of the substrate, PBPs transform their hinge-bend movement into increased fluorescence resonance energy transfer (FRET) between two coupled green fluorescent proteins. By using the maltose-binding protein as a prototype, nanosensors were constructed allowing in vitro determination of FRET changes in a concentration-dependent fashion. For physiological applications, mutants with different binding affinities were generated, allowing dynamic in vivo imaging of the increase in cytosolic maltose concentration in single yeast cells. Control sensors allow the exclusion of the effect from other cellular or environmental parameters on ratio imaging. Thus the myriad of PBPs recognizing a wide spectrum of different substrates is suitable for FRET-based in vivo detection, providing numerous scientific, medical, and environmental applications.

  9. Single-pass environmental chamber for quantifying human responses to airborne chemicals.

    PubMed

    Suarez, Joseph C; Warmath, D Stan; Koetz, Kurt P; Hood, Alison F; Thompson, Mark L; Kendal-Reed, Martin S; Walker, Dianne B; Walker, James C

    2005-03-01

    Despite increasing interest in the short-term effects of airborne environmental contaminants, experimental findings are generated at a very slow pace. This is due in part to the expense and complexity of most environmental chambers, which are needed for quantifying effects of wholebody exposures. We lessened this obstacle by designing, constructing, and testing a single-pass, 10-m3 stainless-steel chamber. Compressed air is purified before being sent to an air dilution olfactometer, which supplies 1000 L (1 m3) per minute (referenced to STP) while maintaining 40% relative humidity (RH) and 22.6 degrees C. Precise control of all stimulus parameters is greatly simplified since air is not recirculated. Vapor-phase odorant concentrations are achieved by varying the proportion of total airflow passing through one or more saturators, and are verified in real time by an infrared (IR) spectrometer. An adjoining 5-m3 anteroom is used for introducing known intensities of more chemically complex vapor and/or particulate stimuli into the chamber. Prior to the point that air is exhausted from the chamber, all components are made of stainless steel, Teflon, or glass. A LabView program contains feedback loops that achieve document chamber conditions and document performance. Additional instrumentation and computer systems provide for the automated collection of perceptual, respiratory, eye blink, heart rate, blood pressure, psychological state, and cognitive data. These endpoints are now being recorded, using this facility, in response to ranges of concentrations of propionic acid and environmental tobacco smoke.

  10. Optimization of the Electrochemical Extraction and Recovery of Metals from Electronic Waste Using Response Surface Methodology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Diaz, Luis A.; Clark, Gemma G.; Lister, Tedd E.

    The rapid growth of the electronic waste can be viewed both as an environmental threat and as an attractive source of minerals that can reduce the mining of natural resources, and stabilize the market of critical materials, such as rare earths. Here in this article surface response methodology was used to optimize a previously developed electrochemical recovery process for base metals from electronic waste using a mild oxidant (Fe 3+). Through this process an effective extraction of base metals can be achieved enriching the concentration of precious metals and significantly reducing environmental impacts and operational costs associated with the wastemore » generation and chemical consumption. The optimization was performed using a bench-scale system specifically designed for this process. Operational parameters such as flow rate, applied current density and iron concentration were optimized to reduce the specific energy consumption of the electrochemical recovery process to 1.94 kWh per kg of metal recovered at a processing rate of 3.3 g of electronic waste per hour.« less

  11. Environmental status of groundwater affected by chromite ore processing residue (COPR) dumpsites during pre-monsoon and monsoon seasons.

    PubMed

    Matern, Katrin; Weigand, Harald; Singh, Abhas; Mansfeldt, Tim

    2017-02-01

    Chromite ore processing residue (COPR) is generated by the roasting of chromite ores for the extraction of chromium. Leaching of carcinogenic hexavalent chromium (Cr(VI)) from COPR dumpsites and contamination of groundwater is a key environmental risk. The objective of the study was to evaluate Cr(VI) contamination in groundwater in the vicinity of three COPR disposal sites in Uttar Pradesh, India, in the pre-monsoon and monsoon seasons. Groundwater samples (n = 57 pre-monsoon, n = 70 monsoon) were taken in 2014 and analyzed for Cr(VI) and relevant hydrochemical parameters. The site-specific ranges of Cr(VI) concentrations in groundwater were <0.005 to 34.8 mg L -1 (Rania), <0.005 to 115 mg L -1 (Chhiwali), and <0.005 to 2.0 mg L -1 (Godhrauli). Maximum levels of Cr(VI) were found close to the COPR dumpsites and significantly exceeded safe drinking water limits (0.05 mg L -1 ). No significant dependence of Cr(VI) concentration on monsoons was observed.

  12. Zoning, equity, and public health.

    PubMed

    Maantay, J

    2001-07-01

    Zoning, the most prevalent land use planning tool in the United States, has substantial implications for equity and public health. Zoning determines where various categories of land use may go, thereby influencing the location of resulting environmental and health impacts. Industrially zoned areas permit noxious land uses and typically carry higher environmental burdens than other areas. Using New York City as a case study, the author shows that industrial zones have large residential populations within them or nearby. Noxious uses tend to be concentrated in poor and minority industrial neighborhoods because more affluent industrial areas and those with lower minority populations are rezoned for other uses, and industrial zones in poorer neighborhoods are expanded. Zoning policies, therefore, can have adverse impacts on public health and equity. The location of noxious uses and the pollution they generate have ramifications for global public health and equity; these uses have been concentrated in the world's poorer places as well as in poorer places within more affluent countries. Planners, policymakers, and public health professionals must collaborate on a worldwide basis to address these equity, health, and land use planning problems.

  13. Optimization of the Electrochemical Extraction and Recovery of Metals from Electronic Waste Using Response Surface Methodology

    DOE PAGES

    Diaz, Luis A.; Clark, Gemma G.; Lister, Tedd E.

    2017-06-08

    The rapid growth of the electronic waste can be viewed both as an environmental threat and as an attractive source of minerals that can reduce the mining of natural resources, and stabilize the market of critical materials, such as rare earths. Here in this article surface response methodology was used to optimize a previously developed electrochemical recovery process for base metals from electronic waste using a mild oxidant (Fe 3+). Through this process an effective extraction of base metals can be achieved enriching the concentration of precious metals and significantly reducing environmental impacts and operational costs associated with the wastemore » generation and chemical consumption. The optimization was performed using a bench-scale system specifically designed for this process. Operational parameters such as flow rate, applied current density and iron concentration were optimized to reduce the specific energy consumption of the electrochemical recovery process to 1.94 kWh per kg of metal recovered at a processing rate of 3.3 g of electronic waste per hour.« less

  14. Analyses of odours from concentrated animal feeding operations: A review

    NASA Astrophysics Data System (ADS)

    Guffanti, P.; Pifferi, V.; Falciola, L.; Ferrante, V.

    2018-02-01

    Concentrated Animal Feeding Operations (CAFOs) are widely present all over the world due to the high population demand for food and products of animal origin. However, they have generated several environmental concerns, including odour nuisance, which affects people health and quality of life. Odours from livestock are a very complex mixtures of molecules and their analytical investigation is highly demanding. Many works have been published regarding the study of odours from CAFOs, using different techniques and technologies to face the issue. Thus, the aim of this review paper is to summarize all the ways to study odours from CAFOs, starting from the sampling methods and then treating in general the principles of Dynamic Olfactometry, Gas Chromatography coupled with Mass Spectrometry and Electronic Noses. Finally, a deep literature summary of Gas Chromatography coupled with Mass Spectrometry and Electronic Noses applied to odours coming from poultry, dairy and swine feeding operations is reported. This work aims to make some order in this field and it wants to help future researchers to deal with this environmental problem, constituting a state-of-the-art in this field.

  15. Environmental tobacco smoke exposure assessment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guerin, M.R.

    Environmental tobacco smoke (ETS) is the material released into the environment as tobacco products are smoked. Cigarettes, pipes, and cigars all produce ETS but the term has become all but synonymous with indoor air contamination by cigarette smoking. This is because cigarettes are by far the most commonly consumed tobacco product and because the principal human exposure occurs indoors. Exposure to ETS is variously termed as passive smoking, involuntary smoking, and as exposure to second-hand smoke. Considerable progress has been made toward a better understanding of ETS exposure. Strengths and limitations of various measures of exposure are better understood andmore » much data has been generated on the quantities of many ETS-constituents in many indoor environments. The properties of ETS, methods for its measurement in indoor air, and many results of field studies have recently been reviewed by the author. The recent EPA report includes a major treatment of exposure estimation including air concentrations, questionnaires, and biomarkers. This paper discusses approaches to exposure assessment and summarizes data on indoor air concentrations of ETS-constituents.« less

  16. Zoning, equity, and public health.

    PubMed Central

    Maantay, J

    2001-01-01

    Zoning, the most prevalent land use planning tool in the United States, has substantial implications for equity and public health. Zoning determines where various categories of land use may go, thereby influencing the location of resulting environmental and health impacts. Industrially zoned areas permit noxious land uses and typically carry higher environmental burdens than other areas. Using New York City as a case study, the author shows that industrial zones have large residential populations within them or nearby. Noxious uses tend to be concentrated in poor and minority industrial neighborhoods because more affluent industrial areas and those with lower minority populations are rezoned for other uses, and industrial zones in poorer neighborhoods are expanded. Zoning policies, therefore, can have adverse impacts on public health and equity. The location of noxious uses and the pollution they generate have ramifications for global public health and equity; these uses have been concentrated in the world's poorer places as well as in poorer places within more affluent countries. Planners, policymakers, and public health professionals must collaborate on a worldwide basis to address these equity, health, and land use planning problems. PMID:11441726

  17. Determination of the soil hazardous concentrations of bisphenol A using the species sensitivity approach.

    PubMed

    Kwak, Jin Il; Moon, Jongmin; Kim, Dokyung; Cui, Rongxue; An, Youn-Joo

    2018-02-15

    This study describes the determination of the species sensitivity distribution (SSD)-based soil hazardous contamination of bisphenol A for environmental risk assessment. We conducted a battery of bioassays, including acute assays using eight species from six different taxonomic groups and chronic assays using five species from four different taxonomic groups. We determined that our dataset satisfied Australia & New Zealand's guidelines for applying the SSD methodology. Finally, the chronic soil HC 5 and HC 50 values for bisphenol A were estimated to be 13.7 and 74.7mg/kg soil, respectively, for soil ecosystem protection against chronic exposure using the data generated from this and previous studies. Because the soil standard values of bisphenol A for protection of the soil ecosystem are not currently available, the HC values of bisphenol A that we suggested based on the SSD approach would be applied as fundamental data to establish soil standards of bisphenol A for soil ecosystem protection. To our knowledge, this is the first study reporting the soil hazardous concentration of bisphenol A for environmental risk assessment. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Use of sediment-trace element geochemical models for the identification of local fluvial baseline concentrations

    USGS Publications Warehouse

    Horowitz, A.J.; Elrick, K.A.; Demas, C.R.; Demcheck, D.K.

    1991-01-01

    Studies have demonstrated the utility of fluvial bed sediment chemical data in assesing local water-quality conditions. However, establishing local background trace element levels can be difficult. Reference to published average concentrations or the use of dated cores are often of little use in small areas of diverse local petrology, geology, land use, or hydrology. An alternative approach entails the construction of a series of sediment-trace element predictive models based on data from environmentally diverse but unaffected areas. Predicted values could provide a measure of local background concentrations and comparison with actual measured concentrations could identify elevated trace elements and affected sites. Such a model set was developed from surface bed sediments collected nationwide in the United States. Tests of the models in a small Louisiana basin indicated that they could be used to establish local trace element background levels, but required recalibration to account for local geochemical conditions outside the range of samples used to generate the nationwide models.

  19. The effect of membrane filtration on dissolved trace element concentrations

    USGS Publications Warehouse

    Horowitz, A.J.; Lum, K.R.; Garbarino, J.R.; Hall, G.E.M.; Lemieux, C.; Demas, C.R.

    1996-01-01

    The almost universally accepted operational definition for dissolved constituents is based on processing whole-water samples through a 0.45-??m membrane filter. Results from field and laboratory experiments indicate that a number of factors associated with filtration, other than just pore size (e.g., diameter, manufacturer, volume of sample processed, amount of suspended sediment in the sample), can produce substantial variations in the 'dissolved' concentrations of such elements as Fe, Al, Cu, Zn, Pb, Co, and Ni. These variations result from the inclusion/exclusion of colloidally- associated trace elements. Thus, 'dissolved' concentrations quantitated by analyzing filtrates generated by processing whole-water through similar pore- sized membrane filters may not be equal/comparable. As such, simple filtration through a 0.45-??m membrane filter may no longer represent an acceptable operational definition for dissolved chemical constituents. This conclusion may have important implications for environmental studies and regulatory agencies.

  20. Chromatographic Separation and Visual Detection on Wicking Microfluidic Devices: Quantitation of Cu2+ in Surface, Ground, and Drinking Water.

    PubMed

    Bandara, Gayan C; Heist, Christopher A; Remcho, Vincent T

    2018-02-20

    Copper is widely applied in industrial and technological applications and is an essential micronutrient for humans and animals. However, exposure to high environmental levels of copper, especially through drinking water, can lead to copper toxicity, resulting in severe acute and chronic health effects. Therefore, regular monitoring of aqueous copper ions has become necessary as recent anthropogenic activities have led to elevated environmental concentrations of copper. On-site monitoring processes require an inexpensive, simple, and portable analytical approach capable of generating reliable qualitative and quantitative data efficiently. Membrane-based lateral flow microfluidic devices are ideal candidates as they facilitate rapid, inexpensive, and portable measurements. Here we present a simple, chromatographic separation approach in combination with a visual detection method for Cu 2+ quantitation, performed in a lateral flow microfluidic channel. This method appreciably minimizes interferences by incorporating a nonspecific polymer inclusion membrane (PIM) based assay with a "dot-counting" approach to quantification. In this study, hydrophobic polycaprolactone (PCL)-filled glass microfiber (GMF) membranes were used as the base substrate onto which the PIM was evenly dispensed as an array of dots. The devices thus prepared were then selectively exposed to oxygen radicals through a mask to generate a hydrophilic surface path along which the sample was wicked. Using this approach, copper concentrations from 1 to 20 ppm were quantified from 5 μL samples using only visual observation of the assay device.

  1. Radiation sensors for medical, industrial and environmental applications: how to engage with schools and the general public

    NASA Astrophysics Data System (ADS)

    Seitz, B.; Campos Rivera, N.; Gray, R.; Powell, A.; Thomson, F.

    2018-01-01

    Radiation, radiation detection and radiation protection are topics in physics and its applications which generate a wide interest in the public. This interest is either generated through medical procedures, applications of nuclear energy or nuclear accidents. The technical nature of these topics usually means that they are not well covered in the normal education stream, opening many opportunities to engage with schools and the general public to showcase the latest developments and their applications. The detection of radiation is at the very heart of understanding radiation, its fascination and associated fears. The outreach group of the nuclear physics group at the University of Glasgow demonstrates a number of successful outreach activities centred around radiation detection and described in this paper, focusing on activities delivered to a variety of audiences and related to applied nuclear physics work within our group. These concentrate on the application of novel sensor technologies for nuclear decommissioning, medical imaging modalities and the monitoring of environmental radioactivity. The paper will provide some necessary background material as well as practical instructions for some of the activities developed.

  2. Generation and Characterization of Environmentally Sensitive Variants of the β-Galactosidase from Lactobacillus delbrueckii subsp. bulgaricus

    PubMed Central

    Yoast, Sienna; Adams, Robin M.; Mainzer, Stanley E.; Moon, Keith; Palombella, Anthony L.; Schmidt, Brian F.

    1994-01-01

    A method is described for generating and screening variants of the β-galactosidase from Lactobacillus delbrueckii subsp. bulgaricus sensitive to several environmental stresses, with potential application in the food industry. Chemical mutagenesis with hydroxylamine or methoxylamine was performed on the β-galactosidase gene carried on an Escherichia coli expression vector. Mutants sensitive to cold, heat, low pH, low magnesium concentration, and the presence of urea were isolated by screening for reduced color development on β-galactosidase indicator plates. The mutations responsible for three variant β-galactosidases were localized, and the base substitutions were determined by DNA sequencing. The amino acid alterations associated with one low-pH-sensitive (pHs) and two urea-sensitive (Us) variants correspond to P584L (pHs1), G400S/R479Q (Us26), and G167E/E168K/E363K/V492M (Us17), respectively. Mutant pHs1 is also heat, cold, low magnesium, and urea sensitive; Us26 is also cold sensitive; and Us17 is also low-pH sensitive. PMID:16349230

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    The Quarterly Environmental Data Summary (QEDS) for the fourth quarter of 1997 is prepared in support of the Weldon Spring Site Remedial Action Project Federal Facilities Agreement. The data presented constitute the QEDS. The data were received from the contract laboratories, verified by the Weldon Spring Site verification group and, except for air monitoring data and site KPA generated data (uranium analyses), merged into the data base during the fourth quarter of 1997. Air monitoring data presented are the most recent complete sets of quarterly data. Air data are not stored in the data base and KPA data are notmore » merged into the regular data base. Significant data, defined as data values that have exceeded defined ``above normal`` level 2 values, are discussed in this letter for Environmental Monitoring Plan (EMP) generated data only. Above normal level 2 values are based, in ES and H procedures, on historical high values, DOE Derived Concentration Guides (DCGs), NPDES limits and other guidelines. The procedures also establish actions to be taken in response to such data. Data received and verified during the fourth quarter were within a permissible range of variability except for those which are detailed.« less

  4. Linking environmental effects to health impacts: a computer modelling approach for air pollution

    PubMed Central

    Mindell, J.; Barrowcliffe, R.

    2005-01-01

    Study objective and Setting: To develop a computer model, using a geographical information system (GIS), to quantify potential health effects of air pollution from a new energy from waste facility on the surrounding urban population. Design: Health impacts were included where evidence of causality is sufficiently convincing. The evidence for no threshold means that annual average increases in concentration can be used to model changes in outcome. The study combined the "contours" of additional pollutant concentrations for the new source generated by a dispersion model with a population database within a GIS, which is set up to calculate the product of the concentration increase with numbers of people exposed within each enumeration district exposure response coefficients, and the background rates of mortality and hospital admissions for several causes. Main results: The magnitude of health effects might result from the increased PM10 exposure is small—about 0.03 deaths each year in a population of 3 500 000, with 0.04 extra hospital admissions for respiratory disease. Long term exposure might bring forward 1.8–7.8 deaths in 30 years. Conclusions: This computer model is a feasible approach to estimating impacts on human health from environmental effects but sensitivity analyses are recommended. Relevance to clinical or professional practice: The availability of GIS and dispersion models on personal computers enables quantification of health effects resulting from the additional air pollution new industrial development might cause. This approach could also be used in environmental impact assessment. Care must be taken in presenting results to emphasise methodological limitations and uncertainties in the numbers. PMID:16286501

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    De Blas, Alfredo; Tapia, Carlos; Riego, Albert

    pGamma is a code developed by the NERG group of the Technical University of Catalonia - Barcelona Tech for the analysis of gamma spectra generated by the Equipment for the Continuous Measurement and Identification of Gamma Radioactivity on Aerosols with Paper Filter developed for our group and Raditel Servies company. Nowadays the code is in the process of adaptation for the monitors of the Environmental Radiological Surveillance Network of the Local Government of Catalonia (Generalitat of Catalonia), Spain. The code is a Spectrum Analysis System, it identifies the gamma emitters on the spectrum, determines its Concentration of Activity, generates alarmsmore » depending on the Activity of the emitters and generates a report. The Spectrum Analysis System includes a library with emitters of interest, NORM and artificial. The code is being used on the three stations with the aerosol monitor of the Network (Asco and Vandellos, near both Nuclear Power Plants and Barcelona). (authors)« less

  6. Environmentally relevant concentration of arsenic trioxide and humic acid promoted tumor progression of human cervical cancer cells: In vivo and in vitro studies.

    PubMed

    Tsai, Min-Ling; Yen, Cheng-Chieh; Lu, Fung-Jou; Ting, Hung-Chih; Chang, Horng-Rong

    2016-09-01

    In a previous study, treatment at higher concentrations of arsenic trioxide or co-exposure to arsenic trioxide and humic acid was found to be inhibited cell growth of cervical cancer cells (SiHa cells) by reactive oxygen species generation. However, treatment at lower concentrations slightly increased cell viability. Here, we investigate the enhancement of progression effects of environmentally relevant concentration of humic acid and arsenic trioxide in SiHa cell lines in vitro and in vivo by measuring cell proliferation, migration, invasion, and the carcinogenesis-related protein (MMP-2, MMP-9, and VEGF-A) expressions. SiHa cells treated with low concentrations of humic acid and arsenic trioxide alone or in co-exposure significantly increased reactive oxygen species, glutathione levels, cell proliferation, scratch wound-healing activities, migration abilities, and MMP-2 expression as compared to the untreated control. In vivo the tumor volume of either single drug (humic acid or arsenic trioxide) or combined drug-treated group was significantly larger than that of the control for an additional 45 days after tumor cell injection on the back of NOD/SCID mice. Levels of MMP-2, MMP-9, and VEGF-A, also significantly increased compared to the control. Histopathologic effects of all tumor cells appeared round in cell shape with high mitosis, focal hyperkeratosis and epidermal hyperplasia in the skin, and some tumor growth in the muscle were observed. Our results may indicate that exposure to low concentrations of arsenic trioxide and humic acid is associated with the progression of cervical cancer. © 2015 Wiley Periodicals, Inc. Environ Toxicol 31: 1121-1132, 2016. © 2015 Wiley Periodicals, Inc.

  7. Bactericidal Efficacy of Hydrogen Peroxide-Based Disinfectants Against Gram-Positive and Gram-Negative Bacteria on Stainless Steel Surfaces.

    PubMed

    Ríos-Castillo, Abel G; González-Rivas, Fabián; Rodríguez-Jerez, José J

    2017-10-01

    In order to develop disinfectant formulations that leverage the effectiveness of hydrogen peroxide (H 2 O 2 ), this study evaluated the bactericidal efficacy of hydrogen peroxide-based disinfectants against Gram-positive and Gram-negative bacteria on stainless steel surfaces. Low concentration of hydrogen peroxide as 0.5% with a cationic polymer, ethoxylated fatty alcohol, and ethyl alcohol had bactericidal efficacy (reductions ≥ 4 log 10 CFU/mL) against Escherichia coli, Staphylococcus aureus, Enterococcus hirae, and Pseudomonas aeruginosa. Hydrogen peroxide-based disinfectants were more effective against E. hirae and P. aeruginosa than to S. aureus. However, the efficacy of hydrogen peroxide against catalase positive bacteria such as S. aureus was increased when this compound was formulated with low concentrations of benzalkonium chloride or ethyl alcohol, lactic acid, sodium benzoate, cationic polymer, and salicylic acid. This study demonstrates that the use of hydrogen peroxide with other antimicrobial products, in adequate concentrations, had bactericidal efficacy in Gram-positive and Gram-negative bacteria on stainless steel surfaces, enabling to reduce the effective concentration of hydrogen peroxide. In the same way, the use of hydrogen peroxide-based disinfectants could reduce the concentrations of traditional disinfectants as quaternary ammonium compounds and therefore a reduction of their chemical residues in the environment after being used. The study of the bactericidal properties of environmentally nontoxic disinfectants such as hydrogen peroxide, sole or in formulations with other disinfectants against Gram-positive and Gram-negative bacteria can enhance the efficacy of various commonly used disinfectant formulations with the hygiene benefits that it entails. Also, the use of hydrogen peroxide formulations can reduce the concentration levels of products that generate environmental residues. © 2017 Institute of Food Technologists®.

  8. Regional accumulation characteristics of cadmium in vegetables: Influencing factors, transfer model and indication of soil threshold content.

    PubMed

    Yang, Yang; Chen, Weiping; Wang, Meie; Peng, Chi

    2016-12-01

    A regional investigation in the Youxian prefecture, southern China, was conducted to analyze the impact of environmental factors including soil properties and irrigation in conjunction with the use of fertilizers on the accumulation of Cd in vegetables. The Cd transfer potential from soil to vegetable was provided by the plant uptake factor (PUF), which varied by three orders of magnitude and was described by a Gaussian distribution model. The soil pH, content of soil organic matter (SOM), concentrations of Zn in the soil, pH of irrigation water and nitrogenous fertilizers contributed significantly to the PUF variations. A path model analysis, however, revealed the principal control of the PUF values resulted from the soil pH, soil Zn concentrations and SOM. Transfer functions were developed using the total soil Cd concentrations, soil pH, and SOM. They explained 56% of the variance for all samples irrespective of the vegetable genotypes. The transfer functions predicted the probability of exceeding China food safety standard concentrations for Cd in four major consumable vegetables under different soil conditions. Poor production practices in the study area involved usage of soil with pH values ≤ 5.5, especially for the cultivation of Raphanus sativus L., even with soil Cd concentrations below the China soil quality standard. We found the soil standard Cd concentrations for cultivating vegetables was not strict enough for strongly acidic (pH ≤ 5.5) and SOM-poor (SOM ≤ 10 g kg -1 ) soils present in southern China. It is thus necessary to address the effect of environmental variables to generate a suitable Cd threshold for cultivated soils. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Influence of pH, curing time and environmental stress on the immobilization of hazardous waste using activated fly ash.

    PubMed

    Srivastava, Shefali; Chaudhary, Rubina; Khale, Divya

    2008-05-30

    The current work is related to inorganic species in sludge generated from Common Effluent Treatment Plant contaminated with hazardous wastes at relatively high concentration. The environmental sensitive metals studied in the sludge are Pb, Fe, Ni, Zn and Mn. The solidification/stabilization (S/S) of heavy metals within fly ash-cement-based matrix was conducted for low cost treatment and reuse of sludge. The study examines the strength of the S/S product by predicting the effect of supplementary cementing material from efficiency factor (k) at 60 degrees C curing temperature. The leaching test was performed at two different pH 7 and 4 to determine the efficiency of heavy metal immobilization. It was observed that replacing 76% OPC by 56% fly ash and 20% sludge for 28 days curing period shows increase in strength as well as rate of stabilization for zinc, iron and manganese at pH 7, lead and nickel were stabilized by 79 and 82%, respectively. Environmental stress test was performed to evaluate the tolerance of extreme adverse environmental condition.

  10. Quality of volatile organic compound data from groundwater and surface water for the National Water-Quality Assessment Program, October 1996–December 2008

    USGS Publications Warehouse

    Bender, David A.; Zogorski, John S.; Mueller, David K.; Rose, Donna L.; Martin, Jeffrey D.; Brenner, Cassandra K.

    2011-01-01

    This report describes the quality of volatile organic compound (VOC) data collected from October 1996 to December 2008 from groundwater and surface-water sites for the U.S. Geological Survey's National Water-Quality Assessment (NAWQA) Program. The VOC data described were collected for three NAWQA site types: (1) domestic and public-supply wells, (2) monitoring wells, and (3) surface-water sites. Contamination bias, based on the 90-percent upper confidence limit (UCL) for the 90th percentile of concentrations in field blanks, was determined for VOC samples from the three site types. A way to express this bias is that there is 90-percent confidence that this amount of contamination would be exceeded in no more than 10 percent of all samples (including environmental samples) that were collected, processed, shipped, and analyzed in the same manner as the blank samples. This report also describes how important native water rinsing may be in decreasing carryover contamination, which could be affecting field blanks. The VOCs can be classified into four contamination categories on the basis of the 90-percent upper confidence limit (90-percent UCL) concentration distribution in field blanks. Contamination category 1 includes compounds that were not detected in any field blanks. Contamination category 2 includes VOCs that have a 90-percent UCL concentration distribution in field blanks that is about an order of magnitude lower than the concentration distribution of the environmental samples. Contamination category 3 includes VOCs that have a 90-percent UCL concentration distribution in field blanks that is within an order of magnitude of the distribution in environmental samples. Contamination category 4 includes VOCs that have a 90-percent UCL concentration distribution in field blanks that is at least an order of magnitude larger than the concentration distribution of the environmental samples. Fifty-four of the 87 VOCs analyzed in samples from domestic and public-supply wells were not detected in field blanks (contamination category 1), and 33 VOC were detected in field blanks. Ten of the 33 VOCs had a 90-percent UCL concentration distribution in field blanks that was at least an order of magnitude lower than the concentration distribution in environmental samples (contamination category 2). These 10 VOCs may have had some contamination bias associated with the environmental samples, but the potential contamination bias was negligible in comparison to the environmental data; therefore, the field blanks were assumed to be representative of the sources of contamination bias affecting the environmental samples for these 10 VOCs. Seven VOCs had a 90-percent UCL concentration distribution of the field blanks that was within an order of magnitude of the concentration distribution of the environmental samples (contamination category 3). Sixteen VOCs had a 90-percent UCL concentration distribution in the field blanks that was at least an order of magnitude greater than the concentration distribution of the environmental samples (contamination category 4). Field blanks for these 16 VOCs appear to be nonrepresentative of the sources of contamination bias affecting the environmental samples because of the larger concentration distributions (and sometimes higher frequency of detection) in field blanks than in environmental samples. Forty-three of the 87 VOCs analyzed in samples from monitoring wells were not detected in field blanks (contamination category 1), and 44 VOCs were detected in field blanks. Eight of the 44 VOCs had a 90-percent UCL concentration distribution in field blanks that was at least an order of magnitude lower than concentrations in environmental samples (contamination category 2). These eight VOCs may have had some contamination bias associated with the environmental samples, but the potential contamination bias was negligible in comparison to the environmental data; therefore, the field blanks were assumed to be representative. Seven VOCs had a 90-percent UCL concentration distribution in field blanks that was of the same order of magnitude as the concentration distribution of the environmental samples (contamination category 3). Twenty-nine VOCs had a 90-percent UCL concentration distribution in the field blanks that was an order of magnitude greater than the distribution of the environmental samples (contamination category 4). Field blanks for these 29 VOCs appear to be nonrepresentative of the sources of contamination bias to the environmental samples. Fifty-four of the 87 VOCs analyzed in surface-water samples were not detected in field blanks (category 1), and 33 VOC were detected in field blanks. Sixteen of the 33 VOCs had a 90-percent UCL concentration distribution in field blanks that was at least an order of magnitude lower than the concentration distribution in environmental samples (contamination category 2). These 16 VOCs may have had some contamination bias associated with the environmental samples, but the potential contamination bias was negligible in comparison to the environmental data; therefore, the field blanks were assumed to be representative. Ten VOCs had a 90-percent UCL concentration distribution in field blanks that was similar to the concentration distribution of environmental samples (contamination category 3). Seven VOCs had a 90-percent UCL concentration distribution in the field blanks that was greater than the concentration distribution in environmental samples (contamination category 4). Field-blank samples for these seven VOCs appear to be nonrepresentative of the sources of contamination bias to the environmental samples. The relation between the detection of a compound in field blanks and the detection in subsequent environmental samples appears to be minimal. The median minimum percent effectiveness of native water rinsing is about 79 percent for the 19 VOCs detected in more than 5 percent of field blanks from all three site types. The minimum percent effectiveness of native water rinsing (10 percent) was for toluene in surface-water samples, likely because of the large detection frequency of toluene in surface-water samples (about 79 percent) and in the associated field-blank samples (46.5 percent). The VOCs that were not detected in field blanks (contamination category 1) from the three site types can be considered free of contamination bias, and various interpretations for environmental samples, such as VOC detection frequency at multiple assessment levels and comparisons of concentrations to benchmarks, are not limited for these VOCs. A censoring level for making comparisons at different assessment levels among environmental samples could be applied to concentrations of 9 VOCs in samples from domestic and public-supply wells, 16 VOCs in samples from monitoring wells, and 9 VOCs in surface-water samples to account for potential low-level contamination bias associated with these selected VOCs. Bracketing the potential contamination by comparing the detection and concentration statistics with no censoring applied to the potential for contamination bias on the basis of the 90-percent UCL for the 90th-percentile concentrations in field blanks may be useful when comparisons to benchmarks are done in a study. The VOCs that were not detected in field blanks (contamination category 1) from the three site types can be considered free of contamination bias, and various interpretations for environmental samples, such as VOC detection frequency at multiple assessment levels and comparisons of concentrations to benchmarks, are not limited for these VOCs. A censoring level for making comparisons at different assessment levels among environmental samples could be applied to concentrations of 9 VOCs in samples from domestic and public-supply wells, 16 VOCs in samples from monitoring wells, and 9 VOCs in surface-water samples to account for potential low-level contamination bias associated with these selected VOCs. Bracketing the potential contamination by comparing the detection and concentration statistics with no censoring applied to the potential for contamination bias on the basis of the 90-percent UCL for the 90th-percentile concentrations in field blanks may be useful when comparisons to benchmarks are done in a study.

  11. The use of dispersion modeling to determine the feasibility of vegetative environmental buffers (VEBS) at controlling odor dispersion

    NASA Astrophysics Data System (ADS)

    Weber, Eric E.

    Concentrated animal feeding operations (CAFOs) have been experiencing increased resistance from surrounding residents making construction of new facilities or expansion of existing ones increasingly limited (Jacobson et al., 2002). Such concerns often include the impact of nuisance odor on peoples’ lives and on the environment (Huang and Miller, 2006). Vegetative environmental buffers (VEBs) have been suggested as a possible odor control technology. They have been found to impact odor plume dispersion and have shown the possibility of being an effective tool for odor abatement when used alone or in combination with other technologies (Lin et al., 2006). The main objective of this study was to use Gaussian-type dispersion modeling to determine the feasibility of use and the effectiveness of a VEB at controlling the spread of odor from a swine feeding operation. First, wind tunnel NH3 dispersion trends were compared to model generated dispersion trends to determine the accuracy of the model at handling VEB dispersion. Next, facility-scale (northern Missouri specific) model simulations with and without a VEB were run to determine its viability as an option for dispersion reduction. Finally, dispersion forecasts that integrated numerical weather forecasts were developed and compared to collected concentration data to determine forecast accuracy. The results of this study found that dispersion models can be used to simulate dispersion around a VEB. AERMOD-generated dispersion trends were found to follow similar patterns of decreasing downwind concentration to those of both wind tunnel simulations and previous research. This shows that a VEB can be incorporated into AERMOD and that the model can be used to determine its effectiveness as an odor control option. The results of this study also showed that a VEB has an effect on odor dispersion by reducing downwind concentrations. This was confirmed by both wind tunnel and AERMOD simulations of dispersion displaying decreased downwind concentrations from a control scenario. This shows that VEBs have the potential to act as an odor control option for CAFOs. This study also found that a forecast method that integrated numerical weather prediction into dispersion models could be developed to forecast areas of high concentration. Model-forecasted dispersion trends had a high spatial correlation with collected concentrations for days when the facility was emitting. This shows that dispersion models can accurately predict high concentration areas using forecasted weather data. The information provided by this study may ultimately prove useful for this particular facility and others and may help to lower tensions with surrounding residents.

  12. A novel method for bacterial inactivation using electrosprayed water nanostructures

    NASA Astrophysics Data System (ADS)

    Pyrgiotakis, Georgios; McDevitt, James; Yamauchi, Toshiyuki; Demokritou, Philip

    2012-08-01

    This is a study focusing on the potential to deactivate biological agents (bacteria and endospores) using engineered water nanostructures (EWNS). The EWNS were generated using an electrospray device that collects water by condensing atmospheric water vapor on a Peltier-cooled electrode. A high voltage is applied between the collection electrode and a grounded electrode resulting in aerosolization of the condensed water and a constant generation of EWNS. Gram-negative Serratia marcescens, gram-positive Staphylococcus aureus, and Bacillus atrophaeus endospores were placed on stainless steel coupons and exposed to generated EWNS at multiple time intervals. Upon exposures, the bacteria were recovered and placed on nutrient agar to grow, and the colony forming units were counted. Ozone levels as well as air temperature and relative humidity were monitored during the experiments. Qualitative confirmation of bacterial destruction was also obtained by transmission electron microscopy. In addition, important EWNS aerosol properties such as particle number concentration as a function of size as well as the average surface charge of the generated EWNS were measured using real-time instrumentation. It was shown that the novel electrospray method can generate over time a constant flux of EWNS. EWNS have a peak number concentration of 8,000 particles per cubic centimeter with a modal peak size around 20 nm. The average surface charge of the generated EWNS was found to be 10 ± 2 electrons per particle. In addition, it was shown that the EWNS have the potential to deactivate both bacteria types from surfaces. At the same administrate dose, however, the endospores were not inactivated. This novel method and the unique properties of the generated EWNS could potentially be used to develop an effective, environmentally friendly, and inexpensive method for bacteria inactivation.

  13. Sub-inhibitory concentrations of heavy metals facilitate the horizontal transfer of plasmid-mediated antibiotic resistance genes in water environment.

    PubMed

    Zhang, Ye; Gu, April Z; Cen, Tianyu; Li, Xiangyang; He, Miao; Li, Dan; Chen, Jianmin

    2018-06-01

    Although widespread antibiotic resistance has been mostly attributed to the selective pressure generated by overuse and misuse of antibiotics, recent growing evidence suggests that chemicals other than antibiotics, such as certain metals, can also select and stimulate antibiotic resistance via both co-resistance and cross-resistance mechanisms. For instance, tetL, merE, and oprD genes are resistant to both antibiotics and metals. However, the potential de novo resistance induced by heavy metals at environmentally-relevant low concentrations (much below theminimum inhibitory concentrations [MICs], also referred as sub-inhibitory) has hardly been explored. This study investigated and revealed that heavy metals, namely Cu(II), Ag(I), Cr(VI), and Zn(II), at environmentally-relevant and sub-inhibitory concentrations, promoted conjugative transfer of antibiotic resistance genes (ARGs) between E. coli strains. The mechanisms of this phenomenon were further explored, which involved intracellular reactive oxygen species (ROS) formation, SOS response, increased cell membrane permeability, and altered expression of conjugation-relevant genes. These findings suggest that sub-inhibitory levels of heavy metals that widely present in various environments contribute to the resistance phenomena via facilitating horizontal transfer of ARGs. This study provides evidence from multiple aspects implicating the ecological effect of low levels of heavy metals on antibiotic resistance dissemination and highlights the urgency of strengthening efficacious policy and technology to control metal pollutants in the environments. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Oxygen Reduction Reaction on Graphene in an Electro-Fenton System: In Situ Generation of H2 O2 for the Oxidation of Organic Compounds.

    PubMed

    Chen, Chen-Yu; Tang, Cheng; Wang, Hao-Fan; Chen, Cheng-Meng; Zhang, Xiaoyuan; Huang, Xia; Zhang, Qiang

    2016-05-23

    Fenton oxidation using an aqueous mixture of Fe(2+) and H2 O2 is a promising environmental remediation strategy. However, the difficulty of storage and shipment of concentrated H2 O2 and the generation of iron sludge limit its broad application. Therefore, highly efficient and cost-effective electrocatalysts are in great need. Herein, a graphene catalyst is proposed for the electro-Fenton process, in which H2 O2 is generated in situ by the two-electron reduction of the dissolved O2 on the cathode and then decomposes to generate (.) OH in acidic solution with Fe(2+) . The π bond of the oxygen is broken whereas the σ bond is generally preserved on the metal-free reduced graphene oxide owing to the high free energy change. Consequently, the oxygen is reduced to H2 O2 through a two-electron pathway. The thermally reduced graphene with a high specific surface area (308.8 m(2)  g(-1) ) and a large oxygen content (10.3 at %) exhibits excellent reactivity for the two-electron oxygen reduction reaction to H2 O2 . A highly efficient peroxide yield (64.2 %) and a remarkable decolorization of methylene blue (12 mg L(-1) ) of over 97 % in 160 min are obtained. The degradation of methylene blue with hydroxyl radicals generated in situ is described by a pseudo first-order kinetics model. This provides a proof-of-concept of an environmentally friendly electro-Fenton process using graphene for the oxygen reduction reaction in an acidic solution to generate H2 O2 . © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. THE ESTROGENS / CHROMIUM INTERACTION IN THE NITRIC OXIDE GENERATION.

    PubMed

    Sawicka, Ewa; Piwowar, Agnieszka; Musiala, Tomasz; Dlugosz, Anna

    2017-05-01

    The interaction of estrogens with environmental toxins in free radicals generation: reactive oxygen species (ROS) or reactive nitrogen species (RNS) which participates in cancerogenesis is not yet recognized. Chromium(VI) is widely present in environment. One of its toxicity pathway is free radicals generation. Estrogens have the ability to scavenge free radicals, but may also act as prooxidants. Both chromium(VI) and estrogens are classified by International Agency for Research on Cancer (IARC) as carcinogens, so synergistic effect seems very dangerous. The interaction of chromium and estrogens in ROS generation are partly described but there are no reports on estrogen/chromium interaction on nitric oxide (NO) generation. The aim of the study was to examine the interaction of chromium(VI) and 17-p-estradiol (E2) on NO level in human blood as well as the role of E2 metabolites: 4-hydroxyestradiol (4-OHE2) and 16a-hydroxyestrone (16α-OHE1) in these processes. The NO level was estimated with the diagnostic kit (Nitric Oxide Colorimetric Detection Kit from Arbor Assays) in human blood in vitm. The results showed that Cr(VI) in used concentration (0.5; 1.0 and 5.0 gg/mL) decreases significantly NO level in blood, acting antagonistically to E2 and 4-OHE2. Estrogens (E2, 4-OHE2 and 16α-OHEI) do not protect against inhibiting effect of Cr(VI) on nitric oxide generation in blood because after combined exposure the decreased production of NO in blood was noted. In conclusion, presented results provide the information about the character of estrogen/Cr(VI) interaction in NO level in human blood. It is important knowledge for cardio protected effect e.g., hormone replacement therapy in environmental or occupational exposure to Cr(VI), chromium supplementation, also important for cancer risk evaluation.

  16. Decontamination of coal mine effluent generated at the Rajrappa coal mine using phytoremediation technology.

    PubMed

    Lakra, Kalpana C; Lal, B; Banerjee, T K

    2017-06-03

    Toxicity of the effluent generated at the Rajrappa coal mine complex under the Central Coalfields Limited (CCL, a subsidiary of Coal India Limited) in Jharkhand, India was investigated. The concentrations (mg L -1 ) of all the toxic metals (Fe, Mn, Ni, Zn, Cu, Pb, Cr, and Cd) in the coal mine effluent were above the safe limit suggested by the Environmental Protection Agency (EPA 2003). Among these, Fe showed the highest concentration (18.21 ± 3.865), while Cr had the lowest effluent concentration (0.15 ± 0.014). Efforts were also made to detoxify the effluent using two species of aquatic macrophytes namely "'Salvinia molesta and Pistia stratiotes." After 10 days of phytoremediation, S. molesta removed Pb (96.96%) > Ni (97.01%) > Cu (96.77%) > Zn (96.38%) > Mn (96.22%) > Fe (94.12%) > Cr (92.85%) > Cd (80.99%), and P. stratiotes removed Pb (96.21%) > Fe (94.34%) > Ni (92.53%) > Mn (85.24%) > Zn (79.51%) > Cr (78.57%) > Cu (74.19%) > Cd (72.72%). The impact of coal mine exposure on chlorophyll content showed a significant decrease of 42.49% and 24.54% from control values in S. molesta and P. stratiotes, respectively, perhaps due to the damage inflicted by the toxic metals, leading to the decay of plant tissues.

  17. Vehicular road influence areas

    NASA Astrophysics Data System (ADS)

    Huertas, María E.; Huertas, José I.; Valencia, Alexander

    2017-02-01

    Vehicle operation over paved and unpaved roads is an emission source that significantly contributes to air pollution. Emissions are derived from vehicle exhaust pipes and re-suspension of particulate matter generated by wind erosion and tire to road surface interactions. Environmental authorities require a methodology to evaluate road impact areas, which enable managers to initiate counter-measures, particularly under circumstances where historic meteorological and/or air quality data is unavailable. The present study describes an analytical and experimental work developed to establish a simplified methodology to estimate the area influenced by vehicular roads. AERMOD was chosen to model pollutant dispersion generated by two roads of common attributes (straight road over flat terrain) under the effects of several arbitrary chosen weather conditions. The resulting pollutant concentration vs. Distance curves collapsed into a single curve when concentration and distance were expressed as dimensionless numbers and this curve can be described by a beta distribution function. This result implied that average concentration at a given distance was proportional to emission intensity and that it showed minor sensitivity to meteorological conditions. Therefore, road influence was defined by the area adjacent to the road limited by distance at which the beta distribution function equaled the limiting value specified by the national air quality standard for the pollutant under consideration.

  18. The occurrence and spatial-temporal distribution of tetrabromobisphenol A in the coastal intertidal zone of Qingdao in China, with a focus on toxicity assessment by biological monitoring.

    PubMed

    Gong, Wen-Jing; Zhu, Li-Yan; Jiang, Tian-Tian; Han, Cui

    2017-10-01

    Tetrabromobisphenol A (TBBPA) is a widely used flame retardant that has increasingly been found as contaminant in aquatic environments. The main goal of this study was to evaluate the pollution level of TBBPA at six locations around Qingdao and assess its biotoxicity through a two-generation toxicity study looking at a copepod species. In the chemical monitoring, the concentration of TBBPA in seawater samples ranged from nd to 1.8 μg/L. Next, the biological indicator monitoring used 1.8 μg/L as the middle exposure concentration to perform quantitative evaluations of the influence of TBBPA on the demographic traits of Pseudodiaptomus inopinus. The results showed that copepods became more sensitive to TBBPA exposure even in environmental concentration (1.8 μg/L) as the generations developed. The detrimental effects of TBBPA further increased naupliar mortality and impaired copepodite development to adulthood. This study demonstrated that the water pollution condition of TBBPA was measured at all 6 sampling locations of Qingdao. Therefore, the present results call for a decreased discharge of TBBPA into the marine environment to avoid impairing copepod reproduction and development. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Gas Chromatic Mass Spectrometer

    NASA Technical Reports Server (NTRS)

    Wey, Chowen

    1995-01-01

    Gas chromatograph/mass spectrometer (GC/MS) used to measure and identify combustion species present in trace concentration. Advanced extractive diagnostic method measures to parts per billion (PPB), as well as differentiates between different types of hydrocarbons. Applicable for petrochemical, waste incinerator, diesel transporation, and electric utility companies in accurately monitoring types of hydrocarbon emissions generated by fuel combustion, in order to meet stricter environmental requirements. Other potential applications include manufacturing processes requiring precise detection of toxic gaseous chemicals, biomedical applications requiring precise identification of accumulative gaseous species, and gas utility operations requiring high-sensitivity leak detection.

  20. Mid-infrared tunable metamaterials

    DOEpatents

    Brener, Igal; Miao, Xiaoyu; Shaner, Eric A.; Passmore, Brandon Scott

    2017-07-11

    A mid-infrared tunable metamaterial comprises an array of resonators on a semiconductor substrate having a large dependence of dielectric function on carrier concentration and a semiconductor plasma resonance that lies below the operating range, such as indium antimonide. Voltage biasing of the substrate generates a resonance shift in the metamaterial response that is tunable over a broad operating range. The mid-infrared tunable metamaterials have the potential to become the building blocks of chip based active optical devices in mid-infrared ranges, which can be used for many applications, such as thermal imaging, remote sensing, and environmental monitoring.

  1. Mid-infrared tunable metamaterials

    DOEpatents

    Brener, Igal; Miao, Xiaoyu; Shaner, Eric A; Passmore, Brandon Scott; Jun, Young Chul

    2015-04-28

    A mid-infrared tunable metamaterial comprises an array of resonators on a semiconductor substrate having a large dependence of dielectric function on carrier concentration and a semiconductor plasma resonance that lies below the operating range, such as indium antimonide. Voltage biasing of the substrate generates a resonance shift in the metamaterial response that is tunable over a broad operating range. The mid-infrared tunable metamaterials have the potential to become the building blocks of chip based active optical devices in mid-infrared ranges, which can be used for many applications, such as thermal imaging, remote sensing, and environmental monitoring.

  2. Modelling and analysis of a direct ascorbic acid fuel cell

    NASA Astrophysics Data System (ADS)

    Zeng, Yingzhi; Fujiwara, Naoko; Yamazaki, Shin-ichi; Tanimoto, Kazumi; Wu, Ping

    L-Ascorbic acid (AA), also known as vitamin C, is an environmentally-benign and biologically-friendly compound that can be used as an alternative fuel for direct oxidation fuel cells. While direct ascorbic acid fuel cells (DAAFCs) have been studied experimentally, modelling and simulation of these devices have been overlooked. In this work, we develop a mathematical model to describe a DAAFC and validate it with experimental data. The model is formulated by integrating the mass and charge balances, and model parameters are estimated by best-fitting to experimental data of current-voltage curves. By comparing the transient voltage curves predicted by dynamic simulation and experiments, the model is further validated. Various parameters that affect the power generation are studied by simulation. The cathodic reaction is found to be the most significant determinant of power generation, followed by fuel feed concentration and the mass-transfer coefficient of ascorbic acid. These studies also reveal that the power density steadily increases with respect to the fuel feed concentration. The results may guide future development and operation of a more efficient DAAFC.

  3. Microglial Immune Response to Low Concentrations of Combustion-Generated Nanoparticles: An In Vitro Model of Brain Health

    PubMed Central

    Duffy, Cayla M.; Swanson, Jacob; Northrop, William; Nixon, Joshua P.; Butterick, Tammy A.

    2018-01-01

    The brain is the central regulator for integration and control of responses to environmental cues. Previous studies suggest that air pollution may directly impact brain health by triggering the onset of chronic neuroinflammation. We hypothesize that nanoparticle components of combustion-generated air pollution may underlie these effects. To test this association, a microglial in vitro biological sensor model was used for testing neuroinflammatory response caused by low-dose nanoparticle exposure. The model was first validated using 20 nm silver nanoparticles (AgNP). Next, neuroinflammatory response was tested after exposure to size-selected 20 nm combustion-generated nanoparticles (CGNP) collected from a modern diesel engine. We show that low concentrations of CGNPs promote low-grade inflammatory response indicated by increased pro-inflammatory cytokine release (tumor necrosis factor-α), similar to that observed after AgNP exposure. We also demonstrate increased production of reactive oxygen species and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) p65 phosphorylation in microglia after CGNP stimulation. Finally, we show conditioned media from CGNP-stimulated microglia significantly reduced hypothalamic neuronal survival in vitro. To our knowledge, this data show for the first time that exposure to AgNP and CGNP elicits microglial neuroinflammatory response through the activation of NF-κB. PMID:29522448

  4. Development and Application of a Next Generation Air Sensor Network for the Hong Kong Marathon 2015 Air Quality Monitoring.

    PubMed

    Sun, Li; Wong, Ka Chun; Wei, Peng; Ye, Sheng; Huang, Hao; Yang, Fenhuan; Westerdahl, Dane; Louie, Peter K K; Luk, Connie W Y; Ning, Zhi

    2016-02-05

    This study presents the development and evaluation of a next generation air monitoring system with both laboratory and field tests. A multi-parameter algorithm was used to correct for the impact of environmental conditions on the electrochemical sensors for carbon monoxide (CO) and nitrogen dioxide (NO2) pollutants. The field evaluation in an urban roadside environment in comparison to designated monitors showed good agreement with measurement error within 5% of the pollutant concentrations. Multiple sets of the developed system were then deployed in the Hong Kong Marathon 2015 forming a sensor-based network along the marathon route. Real-time air pollution concentration data were wirelessly transmitted and the Air Quality Health Index (AQHI) for the Green Marathon was calculated, which were broadcast to the public on an hourly basis. The route-specific sensor network showed somewhat different pollutant patterns than routine air monitoring, indicating the immediate impact of traffic control during the marathon on the roadside air quality. The study is one of the first applications of a next generation sensor network in international sport events, and it demonstrated the usefulness of the emerging sensor-based air monitoring technology in rapid network deployment to supplement existing air monitoring.

  5. Development and Application of a Next Generation Air Sensor Network for the Hong Kong Marathon 2015 Air Quality Monitoring

    PubMed Central

    Sun, Li; Wong, Ka Chun; Wei, Peng; Ye, Sheng; Huang, Hao; Yang, Fenhuan; Westerdahl, Dane; Louie, Peter K.K.; Luk, Connie W.Y.; Ning, Zhi

    2016-01-01

    This study presents the development and evaluation of a next generation air monitoring system with both laboratory and field tests. A multi-parameter algorithm was used to correct for the impact of environmental conditions on the electrochemical sensors for carbon monoxide (CO) and nitrogen dioxide (NO2) pollutants. The field evaluation in an urban roadside environment in comparison to designated monitors showed good agreement with measurement error within 5% of the pollutant concentrations. Multiple sets of the developed system were then deployed in the Hong Kong Marathon 2015 forming a sensor-based network along the marathon route. Real-time air pollution concentration data were wirelessly transmitted and the Air Quality Health Index (AQHI) for the Green Marathon was calculated, which were broadcast to the public on an hourly basis. The route-specific sensor network showed somewhat different pollutant patterns than routine air monitoring, indicating the immediate impact of traffic control during the marathon on the roadside air quality. The study is one of the first applications of a next generation sensor network in international sport events, and it demonstrated the usefulness of the emerging sensor-based air monitoring technology in rapid network deployment to supplement existing air monitoring. PMID:26861336

  6. Sponge-Templated Macroporous Graphene Network for Piezoelectric ZnO Nanogenerator.

    PubMed

    Li, Xinda; Chen, Yi; Kumar, Amit; Mahmoud, Ahmed; Nychka, John A; Chung, Hyun-Joong

    2015-09-23

    We report a simple approach to fabricate zinc oxide (ZnO) nanowire based electricity generators on three-dimensional (3D) graphene networks by utilizing a commercial polyurethane (PU) sponge as a structural template. Here, a 3D network of graphene oxide is deposited from solution on the template and then is chemically reduced. Following steps of ZnO nanowire growth, polydimethylsiloxane (PDMS) backfilling and electrode lamination completes the fabrication processes. When compared to conventional generators with 2D planar geometry, the sponge template provides a 3D structure that has a potential to increase power density per unit area. The modified one-pot ZnO synthesis method allows the whole process to be inexpensive and environmentally benign. The nanogenerator yields an open circuit voltage of ∼0.5 V and short circuit current density of ∼2 μA/cm(2), while the output was found to be consistent after ∼3000 cycles. Finite element analysis of stress distribution showed that external stress is concentrated to deform ZnO nanowires by orders of magnitude compared to surrounding PU and PDMS, in agreement with our experiment. It is shown that the backfilled PDMS plays a crucial role for the stress concentration, which leads to an efficient electricity generation.

  7. Multiobjective optimization for Groundwater Nitrate Pollution Control. Application to El Salobral-Los Llanos aquifer (Spain).

    NASA Astrophysics Data System (ADS)

    Llopis-Albert, C.; Peña-Haro, S.; Pulido-Velazquez, M.; Molina, J.

    2012-04-01

    Water quality management is complex due to the inter-relations between socio-political, environmental and economic constraints and objectives. In order to choose an appropriate policy to reduce nitrate pollution in groundwater it is necessary to consider different objectives, often in conflict. In this paper, a hydro-economic modeling framework, based on a non-linear optimization(CONOPT) technique, which embeds simulation of groundwater mass transport through concentration response matrices, is used to study optimal policies for groundwater nitrate pollution control under different objectives and constraints. Three objectives were considered: recovery time (for meeting the environmental standards, as required by the EU Water Framework Directive and Groundwater Directive), maximum nitrate concentration in groundwater, and net benefits in agriculture. Another criterion was added: the reliability of meeting the nitrate concentration standards. The approach allows deriving the trade-offs between the reliability of meeting the standard, the net benefits from agricultural production and the recovery time. Two different policies were considered: spatially distributed fertilizer standards or quotas (obtained through multi-objective optimization) and fertilizer prices. The multi-objective analysis allows to compare the achievement of the different policies, Pareto fronts (or efficiency frontiers) and tradeoffs for the set of mutually conflicting objectives. The constraint method is applied to generate the set of non-dominated solutions. The multi-objective framework can be used to design groundwater management policies taking into consideration different stakeholders' interests (e.g., policy makers, agricultures or environmental groups). The methodology was applied to the El Salobral-Los Llanos aquifer in Spain. Over the past 30 years the area has undertaken a significant socioeconomic development, mainly due to the intensive groundwater use for irrigated crops, which has provoked a steady decline of groundwater levels as well as high nitrate concentrations at certain locations (above 50 mg/l.). The results showed the usefulness of this multi-objective hydro-economic approach for designing sustainable nitrate pollution control policies (as fertilizer quotas or efficient fertilizer pricing policies) with insight into the economic cost of satisfying the environmental constraints and the tradeoffs with different time horizons.

  8. Using NASA Satellite Aerosol Optical Depth to Enhance PM2.5 Concentration Datasets for Use in Human Health and Epidemiology Studies

    NASA Astrophysics Data System (ADS)

    Huff, A. K.; Weber, S.; Braggio, J.; Talbot, T.; Hall, E.

    2012-12-01

    Fine particulate matter (PM2.5) is a criterion air pollutant, and its adverse impacts on human health are well established. Traditionally, studies that analyze the health effects of human exposure to PM2.5 use concentration measurements from ground-based monitors and predicted PM2.5 concentrations from air quality models, such as the U.S. EPA's Community Multi-scale Air Quality (CMAQ) model. There are shortcomings associated with these datasets, however. Monitors are not distributed uniformly across the U.S., which causes spatially inhomogeneous measurements of pollutant concentrations. There are often temporal variations as well, since not all monitors make daily measurements. Air quality model output, while spatially and temporally uniform, represents predictions of PM2.5 concentrations, not actual measurements. This study is exploring the potential of combining Aerosol Optical Depth (AOD) data from the MODIS instrument on NASA's Terra and Aqua satellites with PM2.5 monitor data and CMAQ predictions to create PM2.5 datasets that more accurately reflect the spatial and temporal variations in ambient PM2.5 concentrations on the metropolitan scale, with the overall goal of enhancing capabilities for environmental public health decision-making. AOD data provide regional information about particulate concentrations that can fill in the spatial and temporal gaps in the national PM2.5 monitor network. Furthermore, AOD is a measurement, so it reflects actual concentrations of particulates in the atmosphere, in contrast to PM2.5 predictions from air quality models. Results will be presented from the Battelle/U.S. EPA statistical Hierarchical Bayesian Model (HBM), which was used to combine three PM2.5 concentration datasets: monitor measurements, AOD data, and CMAQ model predictions. The study is focusing on the Baltimore, MD and New York City, NY metropolitan regions for the period 2004-2006. For each region, combined monitor/AOD/CMAQ PM2.5 datasets generated by the HBM are being correlated with data on inpatient hospitalizations and emergency room visits for seven respiratory and cardiovascular diseases using statistical case-crossover analyses. Preliminary results will be discussed regarding the potential for the addition of AOD data to increase the correlation between PM2.5 concentrations and health outcomes. Environmental public health tracking programs associated with the Maryland Department of Health and Mental Hygiene, the New York State Department of Health, the CDC, and the U.S. EPA have expressed interest in using the results of this study to enhance their existing environmental health surveillance activities.

  9. Impact of forest fires on the concentrations of polychlorinated dibenzo-p-dioxin and dibenzofurans in coastal waters of central Chile.

    PubMed

    Salamanca, Marco; Chandía, Cristian; Hernández, Aldo

    2016-12-15

    The relationship between the occurrence of forest fires in central Chile and the total concentration of dioxins and furans (PCDD/F) in nearby coastal waters was analyzed. The data for this analysis was obtained from a long-term environmental monitoring program (PROMNA) in the Bio-Bio Region. Quantification of PCDD/F was performed using HRGC/HRMS at the MSS laboratory in England. Between 2006 and 2014, peaks were observed in February 2007 and 2012. These concentration maxima coincided with major forest fires in the Bio-Bio Region and particularly with those in the Itata River Basin. The January 2012 fires generated an intense short-term response that was associated with atmospheric transport which increases medium toxicity furan-type congeners concentrations (TCDF, PCDF and HxCDF) and six months later a concentration increase of low toxicity dioxin-type congeners was observed (OCDD, HpCDD and HxCDD) coinciding with maximum winter river flow. These results suggest that forest fires near the coastal zone are responsible for increases in PCDD/F concentration observed in the study area. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Characteristics of environmental pollution related with public complaints in an industrial shipbuilding complex, Korea.

    PubMed

    Chung, Jae-Woo; Lee, Myoung-Eun; Lee, Hyeon-Don

    2011-06-01

    The shipbuilding industry of Korea, ranked number one in the world in annual amount of ship orders, has contributed to national economic growth; however, this has resulted in various environmental problems. Characteristics of environmental pollution, such as particulate matters, odor, and noise, which are closely related with public complaints, were evaluated in an industrial shipbuilding complex. The concentrations of PM-10 and TSP were significantly affected by the distance between the measurement site and shipbuilding workplace, as well as the height of the measurement site. Average PM-10 concentrations in the residential area ranged from 40.10 to 44.10 μg/m(3), which were not high in comparison with the ambient air quality standard and those of major cities in Korea. Paint particles could affect a wider area than typical particulate matters due to their generation and transport properties. The properties of odor in the study area were widely affected by the work intensity in shipyards and the temperature. Twenty-five out of total 54 samples collected in the residential area exceeded the dilution factor of 10, which is the tolerable limit adopted in Korea. Noise had an influence on a limited area due to the extinction effect with distance from the shipyards, while severe noise levels higher than 90 dB(A) were frequently found inside the shipyards.

  11. Nonylphenol and estrogenic activity in aquatic environmental samples

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tanghe, T.; Devriese, G.; Verstraete, W.

    1999-03-01

    The authors surveyed a series of surface waters and sewage treatment plants in Flanders (north of Belgium) for the presence of estrogenic activity and a xeno-estrogenic compound para-nonylphenol (NP), respectively. The surface waters of rural origin, used for drinking water production were free of significant levels of estrogenic activity and NP. Domestic sewage, after proper treatment, appeared to be no major source of this chemical. Yet, in some industrial effluents and surface waters of highly industrialized regions, NP and/or estrogenic activity was prominent, that is, <1 to 122 {micro}g NP/L and 11 to 42 {micro}g NP/L, respectively. This is becausemore » of the ongoing use of NP polyethoxylates in industry. The response of the recombinant yeast estrogen assay to the environmental samples tested was not consistent with the detected concentrations of NP. Standard addition of a natural estrogen, 17{beta}-estradiol, generated no or a reduced response compared to the standard curve concentration. Application of humic acids to standard series of NP and 17{beta}-estradiol resulted in a dose-dependent decrease of the estrogenic response. It appears that this bioassay is subject to considerable interferences due to the complexity of environmental samples. Parallel implementation of extensive chemical screening for xenobiotics and use of the bioassay are needed for adequate assessment of the potential estrogenic hazard to avoid false negative evaluations.« less

  12. Component flow processes at four streams in the Catskill Mountains, New York, analysed using episodic concentration/discharge relationship

    USGS Publications Warehouse

    Evans, C.; Davies, T.D.; Murdoch, Peter S.

    1999-01-01

    Plots of solute concentration against discharge have been used to relate stream hydrochemical variations to processes of flow generation, using data collected at four streams in the Catskill Mountains, New York, during the Episodic Response Project of the US Environmental Protection Agency. Results suggest that a two-component system of shallow and deep saturated subsurface flow, in which the two components respond simultaneously during hydrologic events, may be applicable to the study basins. Using a large natural sea-salt sodium input as a tracer for precipitation, it is argued that an additional distinction can be made between pre-event and event water travelling along the shallow subsurface flow path. Pre-event water is thought to be displaced by infiltrating event water, which becomes dominant on the falling limb of the hydrograph. Where, as appears to be the case for sulfate, a solute equilibrates rapidly within the soil, the pre-event-event water distinction is unimportant. However, for some solutes there are clear and consistent compositional differences between water from the two sources, evident as a hysteresis loop in concentration-discharge plots. Nitrate and acidity, in particular, appear to be elevated in event water following percolation through the organic horizon. Consequently, the most acidic, high nitrate conditions during an episode generally occur after peak discharge. A simple conceptual model of episode runoff generation is presented on the basis of these results.Plots of solute concentration against discharge have been used to relate stream hydrochemical variations to processes of flow generation, using data collected at four streams in the Catskill Mountains, New York, during the Episodic Response Project of the US Environmental Protection Agency. Results suggest that a two-component system of shallow and deep saturated subsurface flow, in which the two components respond simultaneously during hydrologic events, may be applicable to the study basins. Using a large natural sea-salt sodium input as a tracer for precipitation, it is argued that an additional distinction can be made between pre-event and event water travelling along the shallow subsurface flow path. Pre-event water is thought to be displaced by infiltrating event water, which becomes dominant on the falling limb of the hydrograph. Where, as appears to be the case for sulfate, a solute equilibrates rapidly within the soil, the pre-event - event water distinction is unimportant. However, for some solutes there are clear and consistent compositional differences between water from the two sources, evident as a hysteresis loop in concentration-discharge plots. Nitrate and acidity, in particular, appear to be elevated in event water following percolation through the organic horizon. Consequently, the most acidic, high nitrate conditions during an episode generally occur after peak discharge. A simple conceptual model of episode runoff generation is presented on the basis of these results.

  13. Combinatorial influence of environmental parameters on transcription factor activity

    PubMed Central

    Knijnenburg, T.A.; Wessels, L.F.A.; Reinders, M.J.T.

    2008-01-01

    Motivation: Cells receive a wide variety of environmental signals, which are often processed combinatorially to generate specific genetic responses. Changes in transcript levels, as observed across different environmental conditions, can, to a large extent, be attributed to changes in the activity of transcription factors (TFs). However, in unraveling these transcription regulation networks, the actual environmental signals are often not incorporated into the model, simply because they have not been measured. The unquantified heterogeneity of the environmental parameters across microarray experiments frustrates regulatory network inference. Results: We propose an inference algorithm that models the influence of environmental parameters on gene expression. The approach is based on a yeast microarray compendium of chemostat steady-state experiments. Chemostat cultivation enables the accurate control and measurement of many of the key cultivation parameters, such as nutrient concentrations, growth rate and temperature. The observed transcript levels are explained by inferring the activity of TFs in response to combinations of cultivation parameters. The interplay between activated enhancers and repressors that bind a gene promoter determine the possible up- or downregulation of the gene. The model is translated into a linear integer optimization problem. The resulting regulatory network identifies the combinatorial effects of environmental parameters on TF activity and gene expression. Availability: The Matlab code is available from the authors upon request. Contact: t.a.knijnenburg@tudelft.nl Supplementary information: Supplementary data are available at Bioinformatics online. PMID:18586711

  14. Low-Volatility Model Demonstrates Humidity Affects Environmental Toxin Deposition on Plastics at a Molecular Level.

    PubMed

    Hankett, Jeanne M; Collin, William R; Yang, Pei; Chen, Zhan; Duhaime, Melissa

    2016-02-02

    Despite the ever-increasing prevalence of plastic debris and endocrine disrupting toxins in aquatic ecosystems, few studies describe their interactions in freshwater environments. We present a model system to investigate the deposition/desorption behaviors of low-volatility lake ecosystem toxins on microplastics in situ and in real time. Molecular interactions of gas-phase nonylphenols (NPs) with the surfaces of two common plastics, poly(styrene) and poly(ethylene terephthalate), were studied using quartz crystal microbalance and sum frequency generation vibrational spectroscopy. NP point sources were generated under two model environments: plastic on land and plastic on a freshwater surface. We found the headspace above calm water provides an excellent environment for NP deposition and demonstrate significant NP deposition on plastic within minutes at relevant concentrations. Further, NP deposits and orders differently on both plastics under humid versus dry environments. We attributed the unique deposition behaviors to surface energy changes from increased water content during the humid deposition. Lastly, nanograms of NP remained on microplastic surfaces hours after initial NP introduction and agitating conditions, illustrating feasibility for plastic-bound NPs to interact with biota and surrounding matter. Our model studies reveal important interactions between low-volatility environmental toxins and microplastics and hold potential to correlate the environmental fate of endocrine disrupting toxins in the Great Lakes with molecular behaviors.

  15. The Living Filter: Monitoring Nitrate Accumulation after 50 Years of Wastewater Irrigation

    NASA Astrophysics Data System (ADS)

    Hagedorn, J.

    2015-12-01

    As global freshwater sources decline due to environmental contamination and a growing population, more sustainable wastewater renovation techniques will need to be applied to ensure freshwater for future generations. One such example of a sustainable solution is called the Living Filter, located on the campus of Pennsylvania State University. For fifty years, Pennsylvania State University has sprayed treated wastewater onto agricultural fields and forest ecosystems, leaving natural processes to further filter the wastewater. This cyclical process is deemed sustainable because the freshwater is recycled, providing drinking water to an increasing university population and nutrients to agricultural crops, without causing major environmental catastrophes such as fish kills, eutrophication or groundwater contamination. At first glance this project seems sustainable and effective, but for how long can this setup continue without nutrient overloading and environmental contamination? To be truly declared sustainable, the hopeful answer to this question is indefinitely. Using a combination of soil core and monitoring tools, ecosystem indicators such as soil nutrient capacities, moisture levels, and soil characteristics were measured. Comparing data from the initial system installation to present data collected from soil cores showed how ecosystems changed over time. Results revealed that nitrate concentrations were elevated through the profile in all land use types, but the concentrations were below EPA threshold. Soil characteristic analysis including particle size distribution, soil elemental composition, and texture yielded inconclusive results regarding which factors control the nitrate accumulation most significantly. The nitrate depth profile findings suggest that spray irrigation at the Living Filter under the current rates of application has not caused the ultimate stage of nitrogen saturation in the spray irrigation site. Variations in land use present interesting findings about causation for differences in nitrate concentrations. From the viewpoint of nitrate accumulation and potential for environmental contamination, the Living Filter continues to serve as a viable mechanism for absorbing nutrient discharge and serving as the final stage of wastewater treatment.

  16. Environmental assessment of energy generation from agricultural and farm waste through anaerobic digestion.

    PubMed

    Nayal, Figen Sisman; Mammadov, Aydin; Ciliz, Nilgun

    2016-12-15

    While Turkey is one of the world's largest producers and exporters of agricultural goods, it is also, at the same time a net importer of energy carriers. This dichotomy offers a strong incentive to generate energy from agricultural and farming waste; something which could provide energy security for rural areas. Combined with the enhanced energy security for farming areas, the production of energy in this manner could conceivably contribute to the overall national effort to reduce the Turkey's carbon footprint. This study explores the environmental benefits and burdens of one such option, that is, biogas production from a mixture of agricultural and animal waste through anaerobic digestion (AD), and its subsequent use for electricity and heat generation. A life-cycle assessment methodology was used, to measure the potential environmental impact of this option, in terms of global warming and total weighed impact, and to contrast it with the impact of producing the same amount of energy via an integrated gasification combined cycle process and a hard coal power plant. This study concentrates on an AD and cogeneration pilot plant, built in the Kocaeli province of Turkey and attempts to evaluate its potential environmental impacts. The study uses laboratory-scale studies, as well as literature and LCI databases to derive the operational parameters, yield and emissions of the plant. The potential impacts were calculated with EDIP 2003 methodology, using GaBi 5 LCA software. The results indicate that N 2 O emissions, resulting from the application of liquid and solid portions of digestate (a by-product of AD), as an organic fertilizer, are by far the largest contributors to global warming among all the life cycle stages. They constitute 68% of the total, whereas ammonia losses from the same process are the leading cause of terrestrial eutrophication. The photochemical ozone formation potential is significantly higher for the cogeneration phase, compared to other life cycle stages of the proposed scenario, due to NO x being emitted from the gas engine during combustion. Overall, the total environmental impact of the option was determined to be ten times lower than that of a hard coal option and 50% lower than the gasification option, since the latter does not generate digestate that is able to replace mineral fertilizer, thus mitigating the environmental footprint. Finally, the sustainability of energy production from agricultural and farm waste, via AD, was further enhanced by eliminating it from conventional waste management system practiced in the region, i.e. landfilling. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Pharmacopollution and Household Waste Medicine (HWM): how reverse logistics is environmentally important to Brazil.

    PubMed

    Pereira, André Luiz; de Vasconcelos Barros, Raphael Tobias; Pereira, Sandra Rosa

    2017-11-01

    Pharmacopollution is a public health and environmental outcome of some active pharmaceutical ingredients (API) and endocrine-disrupting compounds (EDC) dispersed through water and/or soil. Its most important sources are the pharmaceutical industry, healthcare facilities (e.g., hospitals), livestock, aquaculture, and households (patients' excretion and littering). The last source is the focus of this article. Research questions are "What is the Household Waste Medicine (HWM) phenomenon?", "How HWM and pharmacopollution are related?", and "Why is a reverse logistic system necessary for HWM in Brazil?" This article followed the seven steps proposed by Rother (2007) for a systematic review based on the Cochrane Handbook and the National Health Service (NHS) Center for Reviews Dissemination (CDR) Report. The HWM phenomenon brings many environmental, public health, and, social challenges. The insufficient data is a real challenge to assessing potential human health risks and API concentrations. Therefore, the hazard of long-term exposure to low concentrations of pharmacopollutants and the combined effects of API mixtures is still uncertain. HWM are strongly related to pharmacopollution, as this review shows. The Brazilian HWM case is remarkable because it is the fourth pharmaceutical market (US$ 65,971 billion), with a wide number of private pharmacies and drugstores (3.3: 10,000 pharmacy/inhabitants), self-medication habits, and no national take-back program. The HWM generation is estimated in 56.6 g/per capita, or 10,800 t/year. The absence of a reverse logistics for HWM can lead to serious environmental and public health challenges. The sector agreement for HWM is currently under public consultation.

  18. Hydroclimatology of Dual-Peak Annual Cholera Incidence: Insights from a Spatially Explicit Model

    NASA Astrophysics Data System (ADS)

    Bertuzzo, E.; Mari, L.; Righetto, L.; Gatto, M.; Casagrandi, R.; Rodriguez-Iturbe, I.; Rinaldo, A.

    2012-12-01

    Cholera incidence in some regions of the Indian subcontinent may exhibit two annual peaks although the main environmental drivers that have been linked to the disease (e.g. sea surface temperature, zooplankton abundance, river discharge) peak once per year during the summer. An empirical hydroclimatological explanation relating cholera transmission to river flows and to the disease spatial spreading has been recently proposed. We specifically support and substantiate mechanistically such hypothesis by means of a spatially explicit model of cholera transmission. Our framework directly accounts for the role of the river network in transporting and redistributing cholera bacteria among human communities as well as for spatial and temporal annual fluctuations of precipitation and river flows. To single out the single out the hydroclimatologic controls on the prevalence patterns in a non-specific geographical context, we first apply the model to Optimal Channel Networks as a general model of hydrological networks. Moreover, we impose a uniform distribution of population. The model is forced by seasonal environmental drivers, namely precipitation, temperature and chlorophyll concentration in the coastal environment, a proxy for Vibrio cholerae concentration. Our results show that these drivers may suffice to generate dual-peak cholera prevalence patterns for proper combinations of timescales involved in pathogen transport, hydrologic variability and disease unfolding. The model explains the possible occurrence of spatial patterns of cholera incidence characterized by a spring peak confined to coastal areas and a fall peak involving inland regions. We then proceed applying the model to the specific settings of Bay of Bengal accounting for the actual river networks (derived from digital terrain map manipulations), the proper distribution of population (estimated from downscaling of census data based on remotely sensed features) and precipitation patterns. Overall our modeling framework suggests insights on how environmental drivers concert the generation of complex spatiotemporal infections and proposes an explanation for the different cholera patterns (dual or single annual peaks) exhibited by regions that share similar hydroclimatological forcings.

  19. Quarterly environmental data summary for first quarter 1998

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1998-05-01

    In support of the Weldon Spring Site Remedial Action Project Federal Facilities Agreement, a copy of the Quarterly Environmental Data Summary (QEDS) for the first quarter of 1998 is enclosed. The data presented in this letter and attachment constitute the QEDS. The data were received from the contract laboratories, verified by the Weldon Spring Site verification group and, except for air monitoring data and site KPA generated data (uranium analyses), merged into the data base during the first quarter of 1998. Air monitoring data presented are the most recent complete sets of quarterly data. Air data are not stored inmore » the data base, and KPA data are not merged into the regular data base. Significant data, defined as data values that have exceeded defined {open_quotes}above normal{close_quotes} Level 2 values, are discussed in this letter for Environmental Monitoring Plan (EMP) generated data only. Above normal Level 2 values are based, in ES&H procedures, on historical high values, DOE Derived Concentration Guides (DCGs), NPDES limits and other guidelines. The procedures also establish actions to be taken in the event that {open_quotes}above normal{close_quotes} data occur. All data received and verified during the first quarter were within a permissible range of variability except for those detailed below. Above normal occurrences are cited for groundwater, air, and NPDES data. There were none for springs or surface water. The following discussion offers a brief summary of the data merged during the first quarter that exceeded the above normal criteria and updates on past reported above normal data. The attached tables present the most recent data for air and the data merged into the data base during the first quarter 1998 for groundwater, NPDES, surface water, and springs. Graphs showing concentrations of selected contaminants of concern at some of the critical locations have also been included in this QEDS. The graphs are discussed in the separate sections.« less

  20. Microbial community structure and dynamics in a pilot-scale submerged membrane bioreactor aerobically treating domestic wastewater under real operation conditions.

    PubMed

    Molina-Muñoz, M; Poyatos, J M; Sánchez-Peinado, M; Hontoria, E; González-López, J; Rodelas, B

    2009-06-15

    A pilot scale submerged ultra-filtration membrane bioreactor (MBR) was used for the aerobic treatment of domestic wastewater over 9 months of year 2006 (28th March to 21st December). The MBR was installed at a municipal wastewater facility (EMASAGRA, Granada, Spain) and was fed with real wastewater. The experimental work was divided in 4 stages run under different sets of operation conditions. Operation parameters (total and volatile suspended solids, dissolved oxygen concentration) and environmental variables (temperature, pH, COD and BOD(5) of influent water) were daily monitored. In all the experiments conducted, the MBR generated an effluent of optimal quality complying with the requirements of the European Law (91/271/CEE 1991). A cultivation-independent approach (polymerase chain reaction-temperature gradient gel electrophoresis, PCR-TGGE) was used to analyze changes in the structure of the bacterial communities in the sludge. Cluster analysis of TGGE profiles demonstrated significant differences in community structure related to variations of the operation parameters and environmental factors. Canonical correspondence analysis (CCA) suggested that temperature, hydraulic retention time and concentration of volatile suspended solids were the factors mostly influencing community structure. 23 prominent TGGE bands were successfully reamplified and sequenced, allowing gaining insight into the identities of predominantly present bacterial populations in the sludge. Retrieved partial 16S-rRNA gene sequences were mostly related to the alpha-Proteobacteria, beta-Proteobacteria and gamma-Proteobacteria classes. The community established in the MBR in each of the four stages of operation significantly differed in species composition and the sludge generated displayed dissimilar rates of mineralization, but these differences did not influence the performance of the bioreactor (quality of the permeate). These data indicate that the flexibility of the bacterial community in the sludge and its ability to get adapted to environmental changes play an important role for the stable performance of MBRs.

  1. Gaseous emissions from sewage sludge combustion in a moving bed combustor.

    PubMed

    Batistella, Luciane; Silva, Valdemar; Suzin, Renato C; Virmond, Elaine; Althoff, Chrtistine A; Moreira, Regina F P M; José, Humberto J

    2015-12-01

    Substantial increase in sewage sludge generation in recent years requires suitable destination for this residue. This study evaluated the gaseous emissions generated during combustion of an aerobic sewage sludge in a pilot scale moving bed reactor. To utilize the heat generated during combustion, the exhaust gas was applied to the raw sludge drying process. The gaseous emissions were analyzed both after the combustion and drying steps. The results of the sewage sludge characterization showed the energy potential of this residue (LHV equal to 14.5 MJ kg(-1), db) and low concentration of metals, polycyclic aromatic hydrocarbons (PAH), polychlorinated dibenzo-p-dioxins (PCDD) and polychlorinated dibenzofurans (PCDF). The concentration of CO, NOx, BTEX (benzene, toluene, ethylbenzene and xylenes) emitted from the sludge combustion process were lower than the legal limits. The overall sludge combustion and drying process showed low emissions of PCDD/PCDF (0.42 ng I-TEQ N m(-3)). BTEX and PAH emissions were not detected. Even with the high nitrogen concentration in the raw feed (5.88% db), the sludge combustion process presented NOx emissions below the legal limit, which results from the combination of appropriate feed rate (A/F ratio), excess air, and mainly the low temperature kept inside the combustion chamber. It was found that the level of CO emissions from the overall sludge process depends on the dryer operating conditions, such as the oxygen content and the drying temperature, which have to be controlled throughout the process in order to achieve low CO levels. The aerobic sewage sludge combustion process generated high SO2 concentration due to the high sulfur content (0.67 wt%, db) and low calcium concentration (22.99 g kg(-1)) found in the sludge. The high concentration of SO2 in the flue gas (4776.77 mg N m(-3)) is the main factor inhibiting PCDD/PCDF formation. Further changes are needed in the pilot plant scheme to reduce SO2 and particulate matter emissions, such as the installation of exhaust gas-cleaning systems. According to previous studies, the efficient operation of such cleaning systems is also effective for metals emission control, which makes the combustion of sewage sludge a feasible treatment method from both energetic and environmental perspectives. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Environmental Degradation as a Risk Factor for Landslides in the Motozintla Basin, Chiapas, Mexico

    NASA Astrophysics Data System (ADS)

    Ponce-Pacheco, A. B.; Novelo-Casanova, D. A.

    2015-12-01

    Motozintla Basin is located southeastern Chiapas, Mexico. Most communities in this region are continously affected by landslides even some locations have disappeared because of this natural phenomenon. This study is focused on the communities that are located along the Xelajú river on this basin. The Motozintla basin has a triangular shape with an area of about 98.6 km2. The slopes in the basin are abrupt ranging from 18° to 45° in about 72.11% of its area. The local altitudes range from 1,024 meters at the lowest point to 2,611 meters at the highest sites. These geomorphological features create unstable slopes which favors slow mass movements processes with different concentrations of sediment that can be transformed in sudden landslides. Many of these processes are accelerated by environmental degradation generated by human activities such as road constructions, land use changes from forest to agriculture or urban development. In this work we focus our research on determining how these human degrading actions increase the susceptibility of mass removal processes, mainly landslides. With this purpose, we generated a landslide inventory of our region of study for the period 1985-2014. We classified the landslides according to their origin (natural or man-made). Based on its location and the local characteristics, we could determine if the identified landslide was caused by natural or human actions. In addition, as environmental factors, we considered the land use characteristics and slope changes to determine the impact of the environmental degradation in the landslide susceptibility.

  3. The multigenerational effects of water contamination and endocrine disrupting chemicals on the fitness of Drosophila melanogaster.

    PubMed

    Quesada-Calderón, Suany; Bacigalupe, Leonardo Daniel; Toro-Vélez, Andrés Fernando; Madera-Parra, Carlos Arturo; Peña-Varón, Miguel Ricardo; Cárdenas-Henao, Heiber

    2017-08-01

    Water pollution due to human activities produces sedimentation, excessive nutrients, and toxic chemicals, and this, in turn, has an effect on the normal endocrine functioning of living beings. Overall, water pollution may affect some components of the fitness of organisms (e.g., developmental time and fertility). Some toxic compounds found in polluted waters are known as endocrine disruptors (ED), and among these are nonhalogenated phenolic chemicals such as bisphenol A and nonylphenol. To evaluate the effect of nonhalogenated phenolic chemicals on the endocrine system, we subjected two generations (F0 and F1) of Drosophila melanogaster to different concentrations of ED. Specifically, treatments involved wastewater, which had the highest level of ED (bisphenol A and nonylphenol) and treated wastewater from a constructed Heliconia psittacorum wetland with horizontal subsurface water flow (He); the treated wastewater was the treatment with the lowest level of ED. We evaluated the development time from egg to pupa and from pupa to adult as well as fertility. The results show that for individuals exposed to treated wastewater, the developmental time from egg to pupae was shorter in individuals of the F1 generation than in the F0 generation. Additionally, the time from pupae to adult was longer for flies growing in the H. psittacorum treated wastewater. Furthermore, fertility was lower in the F1 generation than in the F0 generation. Although different concentrations of bisphenol A and nonylphenol had no significant effect on the components of fitness of D. melanogaster (developmental time and fertility), there was a trend across generations, likely as a result of selection imposed on the flies. It is possible that the flies developed different strategies to avoid the effects of the various environmental stressors.

  4. Effect of Copper Oxide Concentration on the Formation and Persistency of Environmentally Persistent Free Radicals (EPFRs) in Particulates

    PubMed Central

    2015-01-01

    Environmentally persistent free radicals (EPFRs) are formed by the chemisorption of substituted aromatics on metal oxide surfaces in both combustion sources and superfund sites. The current study reports the dependency of EPFR yields and their persistency on metal loading in particles (0.25, 0.5, 0.75, 1, 2, and 5% CuO/silica). The EPFRs were generated through exposure of particles to three adsorbate vapors at 230 °C: phenol, 2-monochlorophenol (2-MCP), and dichlorobenzene (DCBz). Adsorption resulted in the formation of surface-bound phenoxyl- and semiquinoine-type radicals with characteristic EPR spectra displaying a g value ranging from ∼2.0037 to 2.006. The highest EPFR yield was observed for CuO concentrations between 1 and 3% in relation to MCP and phenol adsorption. However, radical density, which is expressed as the number of radicals per copper atom, was highest at 0.75–1% CuO loading. For 1,2-dichlorobenzene adsorption, radical concentration increased linearly with decreasing copper content. At the same time, a qualitative change in the radicals formed was observed—from semiquinone to chlorophenoxyl radicals. The two longest lifetimes, 25 and 23 h, were observed for phenoxyl-type radicals on 0.5% CuO and chlorophenoxyl-type radicals on 0.75% CuO, respectively. PMID:24437381

  5. Geological characterization and environmental implications of the placement of the Morelia Dump, Michoacán, Central Mexico.

    PubMed

    Israde-Alcantara, Isabel; Buenrostro Delgado, Otoniel; Carrillo Chavez, Alejandro

    2005-06-01

    The landfill of Morelia, the capital city of the state of Michoacán in central-western Mexico, is located 12 km west of the city and has operated since 1997 without a structure engineered and designed to control the generation in situ of biogas and leachates. A geological evaluation of the landfill site is presented in this paper. The results indicate that the site lacks ideal impermeable subsurface strata. The subsurface strata consist of highly fractured basaltic lava flows (east-west fault and fracture system trend) and sand-size cineritic material with high permeability and porosity. Geochemical analysis of groundwater from Morelia's municipal aquifer shows a high concentration of heavy metals (Cd, Pb, As) exceeding the Mexican environmental regulations, along with the presence of some organic pollutants (phenols). Analyses of samples of the landfill's permanent leachate ponds show very high concentrations of the same contaminants. Samples were taken from the leachate pond and from nearby water-wells during the rainy season (summer 1997) and the dry season (spring 1997, 1998, and 1999). In all cases, the concentration of contaminants registered exceeded the standards for drinking water of the World Health Organization (American Public Health Association, American Water Works Association, and Water Pollution Control Federation, 2000). Some metal contaminants could be leaching directly from the landfill.

  6. Low levels of graphene and graphene oxide inhibit cellular xenobiotic defense system mediated by efflux transporters.

    PubMed

    Liu, Su; Jiang, Wei; Wu, Bing; Yu, Jing; Yu, Haiyan; Zhang, Xu-Xiang; Torres-Duarte, Cristina; Cherr, Gary N

    2016-01-01

    Low levels of graphene and graphene oxide (GO) are considered to be environmentally safe. In this study, we analyzed the potential effects of graphene and GO at relatively low concentrations on cellular xenobiotic defense system mediated by efflux transporters. The results showed that graphene (<0.5 μg/mL) and GO (<20 μg/mL) did not decrease cell viability, generate reactive oxygen species, or disrupt mitochondrial function. However, graphene and GO at the nontoxic concentrations could increase calcein-AM (CAM, an indicator of membrane ATP-binding cassette (ABC) transporter) activity) accumulation, indicating inhibition of ABC transporters' efflux capabilities. This inhibition was observed even at 0.005 μg/mL graphene and 0.05 μg/mL GO, which are 100 times and 400 times lower than their lowest toxic concentration from cytotoxicity experiments, respectively. The inhibition of ABC transporters significantly increased the toxicity of paraquat and arsenic, known substrates of ABC transporters. The inhibition of ABC transporters was found to be based on graphene and GO damaging the plasma membrane structure and fluidity, thus altering functions of transmembrane ABC transporters. This study demonstrates that low levels of graphene and GO are not environmentally safe since they can significantly make cell more susceptible to other xenobiotics, and this chemosensitizing activity should be considered in the risk assessment of graphene and GO.

  7. Environmental tobacco smoke as a source of polycyclic aromatic hydrocarbons in settled household dust.

    PubMed

    Hoh, Eunha; Hunt, Richard N; Quintana, Penelope J E; Zakarian, Joy M; Chatfield, Dale A; Wittry, Beth C; Rodriguez, Edgar; Matt, Georg E

    2012-04-03

    Environmental tobacco smoke is a major contributor to indoor air pollution. Dust and surfaces may remain contaminated long after active smoking has ceased (called 'thirdhand' smoke). Polycyclic aromatic hydrocarbons (PAHs) are known carcinogenic components of tobacco smoke found in settled house dust (SHD). We investigated whether tobacco smoke is a source of PAHs in SHD. House dust was collected from 132 homes in urban areas of Southern California. Total PAHs were significantly higher in smoker homes than nonsmoker homes (by concentration: 990 ng/g vs 756 ng/g, p = 0.025; by loading: 1650 ng/m(2) vs 796 ng/m(2), p = 0.012). We also found significant linear correlations between nicotine and total PAH levels in SHD (concentration, R(2) = 0.105; loading, R(2) = 0.385). Dust collected per square meter (g/m(2)) was significantly greater in smoker homes and might dilute PAH concentration in SHD inconsistently. Therefore, dust PAH loading (ng PAH/m(2)) is a better indicator of PAH content in SHD. House dust PAH loadings in the bedroom and living room in the same home were significantly correlated (R(2) = 0.468, p < 0.001) suggesting PAHs are distributed by tobacco smoke throughout a home. In conclusion, tobacco smoke is a source of PAHs in SHD, and tobacco smoke generated PAHs are a component of thirdhand smoke.

  8. Whole-body nanoparticle aerosol inhalation exposures.

    PubMed

    Yi, Jinghai; Chen, Bean T; Schwegler-Berry, Diane; Frazer, Dave; Castranova, Vince; McBride, Carroll; Knuckles, Travis L; Stapleton, Phoebe A; Minarchick, Valerie C; Nurkiewicz, Timothy R

    2013-05-07

    Inhalation is the most likely exposure route for individuals working with aerosolizable engineered nano-materials (ENM). To properly perform nanoparticle inhalation toxicology studies, the aerosols in a chamber housing the experimental animals must have: 1) a steady concentration maintained at a desired level for the entire exposure period; 2) a homogenous composition free of contaminants; and 3) a stable size distribution with a geometric mean diameter < 200 nm and a geometric standard deviation σg < 2.5 (5). The generation of aerosols containing nanoparticles is quite challenging because nanoparticles easily agglomerate. This is largely due to very strong inter-particle forces and the formation of large fractal structures in tens or hundreds of microns in size (6), which are difficult to be broken up. Several common aerosol generators, including nebulizers, fluidized beds, Venturi aspirators and the Wright dust feed, were tested; however, none were able to produce nanoparticle aerosols which satisfy all criteria (5). A whole-body nanoparticle aerosol inhalation exposure system was fabricated, validated and utilized for nano-TiO2 inhalation toxicology studies. Critical components: 1) novel nano-TiO2 aerosol generator; 2) 0.5 m(3) whole-body inhalation exposure chamber; and 3) monitor and control system. Nano-TiO2 aerosols generated from bulk dry nano-TiO2 powders (primary diameter of 21 nm, bulk density of 3.8 g/cm(3)) were delivered into the exposure chamber at a flow rate of 90 LPM (10.8 air changes/hr). Particle size distribution and mass concentration profiles were measured continuously with a scanning mobility particle sizer (SMPS), and an electric low pressure impactor (ELPI). The aerosol mass concentration (C) was verified gravimetrically (mg/m(3)). The mass (M) of the collected particles was determined as M = (Mpost-Mpre), where Mpre and Mpost are masses of the filter before and after sampling (mg). The mass concentration was calculated as C = M/(Q*t), where Q is sampling flowrate (m(3)/min), and t is the sampling time (minute). The chamber pressure, temperature, relative humidity (RH), O2 and CO2 concentrations were monitored and controlled continuously. Nano-TiO2 aerosols collected on Nuclepore filters were analyzed with a scanning electron microscope (SEM) and energy dispersive X-ray (EDX) analysis. In summary, we report that the nano-particle aerosols generated and delivered to our exposure chamber have: 1) steady mass concentration; 2) homogenous composition free of contaminants; 3) stable particle size distributions with a count-median aerodynamic diameter of 157 nm during aerosol generation. This system reliably and repeatedly creates test atmospheres that simulate occupational, environmental or domestic ENM aerosol exposures.

  9. Whole-Body Nanoparticle Aerosol Inhalation Exposures

    PubMed Central

    Yi, Jinghai; Chen, Bean T.; Schwegler-Berry, Diane; Frazer, Dave; Castranova, Vince; McBride, Carroll; Knuckles, Travis L.; Stapleton, Phoebe A.; Minarchick, Valerie C.; Nurkiewicz, Timothy R.

    2013-01-01

    Inhalation is the most likely exposure route for individuals working with aerosolizable engineered nano-materials (ENM). To properly perform nanoparticle inhalation toxicology studies, the aerosols in a chamber housing the experimental animals must have: 1) a steady concentration maintained at a desired level for the entire exposure period; 2) a homogenous composition free of contaminants; and 3) a stable size distribution with a geometric mean diameter < 200 nm and a geometric standard deviation σg < 2.5 5. The generation of aerosols containing nanoparticles is quite challenging because nanoparticles easily agglomerate. This is largely due to very strong inter-particle forces and the formation of large fractal structures in tens or hundreds of microns in size 6, which are difficult to be broken up. Several common aerosol generators, including nebulizers, fluidized beds, Venturi aspirators and the Wright dust feed, were tested; however, none were able to produce nanoparticle aerosols which satisfy all criteria 5. A whole-body nanoparticle aerosol inhalation exposure system was fabricated, validated and utilized for nano-TiO2 inhalation toxicology studies. Critical components: 1) novel nano-TiO2 aerosol generator; 2) 0.5 m3 whole-body inhalation exposure chamber; and 3) monitor and control system. Nano-TiO2 aerosols generated from bulk dry nano-TiO2 powders (primary diameter of 21 nm, bulk density of 3.8 g/cm3) were delivered into the exposure chamber at a flow rate of 90 LPM (10.8 air changes/hr). Particle size distribution and mass concentration profiles were measured continuously with a scanning mobility particle sizer (SMPS), and an electric low pressure impactor (ELPI). The aerosol mass concentration (C) was verified gravimetrically (mg/m3). The mass (M) of the collected particles was determined as M = (Mpost-Mpre), where Mpreand Mpost are masses of the filter before and after sampling (mg). The mass concentration was calculated as C = M/(Q*t), where Q is sampling flowrate (m3/min), and t is the sampling time (minute). The chamber pressure, temperature, relative humidity (RH), O2 and CO2 concentrations were monitored and controlled continuously. Nano-TiO2 aerosols collected on Nuclepore filters were analyzed with a scanning electron microscope (SEM) and energy dispersive X-ray (EDX) analysis. In summary, we report that the nano-particle aerosols generated and delivered to our exposure chamber have: 1) steady mass concentration; 2) homogenous composition free of contaminants; 3) stable particle size distributions with a count-median aerodynamic diameter of 157 nm during aerosol generation. This system reliably and repeatedly creates test atmospheres that simulate occupational, environmental or domestic ENM aerosol exposures. PMID:23685643

  10. Radium geochemical monitoring in well waters at regional and local scales: an environmental impact indicator-based approach.

    PubMed

    Lagacé, François; Foucher, Delphine; Surette, Céline; Clarisse, Olivier

    2018-04-18

    To assess radium ( 226 Ra) as a potential indicator of impact in well waters, we investigated its behavior under natural conditions using a case study approach. 226 Ra geochemistry was investigated in 67 private wells of southeastern New Brunswick, Canada, a region targeted for potential shale gas exploitation. Objectives were to i) establish 226 Ra baseline in groundwater; ii) characterize 226 Ra spatial distribution and temporal variability; iii) characterize 226 Ra partitioning between dissolved phase and particulate forms in well waters; and iv) understand the mechanisms controlling 226 Ra mobility under natural environmental settings. 226 Ra levels were generally low (median = 0.061 pg L -1 , or 2.2 mBq L -1 ), stable over time, and randomly distributed. A principal component analysis revealed that concentrations of 226 Ra were controlled by key water geochemistry factors: the highest levels were observed in waters with high hardness, and/or high concentrations of individual alkaline earth elements (i.e. Mg, Ca, Sr, Ba), high concentrations of Mn and Fe, and low pH. As for partitioning, 226 Ra was essentially observed in the dissolved phase (106 ± 19%) suggesting that the geochemical conditions of groundwater in the studied regions are prone to limit 226 Ra sorption, enhancing its mobility. Overall, this study provided comprehensive knowledge on 226 Ra background distribution at local and regional scales. Moreover, it provided a framework to establish 226 Ra baselines and determine which geochemical conditions to monitor in well waters in order to use this radionuclide as an indicator of environmental impact caused by anthropogenic activities (e.g. unconventional shale gas exploitation, uranium mining, or nuclear generating power plants). Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Serum metabolome biomarkers associate low-level environmental perfluorinated compound exposure with oxidative /nitrosative stress in humans.

    PubMed

    Wang, Xiaofei; Liu, Liangpo; Zhang, Weibing; Zhang, Jie; Du, Xiaoyan; Huang, Qingyu; Tian, Meiping; Shen, Heqing

    2017-10-01

    Previous in vivo and in vitro studies have linked perfluorinated compound (PFC) exposure with metabolic interruption, but the inter-species difference and high treatment doses usually make the results difficult to be extrapolated to humans directly. The best strategy for identifying the metabolic interruption may be to establish the direct correlations between monitored PFCs data and metabolic data on human samples. In this study, serum metabolome data and PFC concentrations were acquired for a Chinese adult male cohort. The most abundant PFCs are PFOA and PFOS with concentration medians 7.56 and 12.78 nM, respectively; in together they count around 81.6% of the total PFCs. PFC concentration-related serum metabolic profile changes and the related metabolic biomarkers were explored by using partial least squares-discriminant analysis (PLS-DA). Respectively taking PFOS, PFOA and total PFC as the classifiers, serum metabolome can be differentiated between the lowest dose group (1st quartile PFCs) and the highest PFC dose group (4th quartile PFCs). Ten potential PFC biomarkers were identified, mainly involving in pollutant detoxification, antioxidation and nitric oxide (NO) signal pathways. These suggested that low-level environmental PFC exposure has significantly adverse impacts on glutathione (GSH) cycle, Krebs cycle, nitric oxide (NO) generation and purine oxidation in humans. To the best of our knowledge, this is the first report investigating the association of environmental PFC exposure with human serum metabolome alteration. Given the important biological functions of the identified biomarkers, we suggest that PFC could increase the metabolism syndromes risk including diabetes and cardiovascular diseases. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Longitudinal and contemporaneous manganese exposure in apartheid-era South Africa: Implications for the past and future.

    PubMed

    Hess, Catherine A; Smith, Martin J; Trueman, Clive; Schutkowski, Holger

    2015-03-01

    Manganese is a potent environmental toxin, with significant effects on human health. Manganese exposure is of particular concern in South Africa where in the last decade, lead in gasoline has been replaced by methylcyclopentadienyl manganese tricarbonyl (MMT). We investigated recent historical levels of manganese exposure in urban Gauteng, South Africa prior to the introduction of MMT in order to generate heretofore non-existent longitudinal public health data on manganese exposure in urban South Africans. Cortical bone manganese concentration was measured by inductively coupled plasma mass spectrometer in 211 deceased adults with skeletal material from a fully identified archived tissue collection at the University of Pretoria, South Africa. All tissues came from individuals who lived and died in urban Gauteng (Transvaal), between 1958 and 1998. Median Mn concentration within the sampled tissues was 0.3μgg -1 , which is within reported range for bone manganese concentration in non-occupationally exposed populations and significantly below that reported in individuals environmentally exposed to MMT. No significant differences were seen in bone Mn between men and women or in individuals of different ethnicity, which further suggests environmental, as opposed to occupational exposure. There were no significant temporal or geographic differences in bone Mn. The results suggest that Mn exposure was low and uniformly distributed across the whole population prior to the introduction of MMT as a gasoline additive. In addition, should manganese exposure follow the same patterns as vehicle-emitted lead, a clear pattern of exposure will emerge with individuals in the urban core facing the greatest manganese exposure. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Simultaneous determination of total nitrogen and total phosphorus in environmental waters using alkaline persulfate digestion and ion chromatography.

    PubMed

    De Borba, Brian M; Jack, Richard F; Rohrer, Jeffrey S; Wirt, Joan; Wang, Dongmei

    2014-11-21

    An ion chromatography (IC) method was developed for the simultaneous determination of total nitrogen and total phosphorus after alkaline persulfate digestion. This study takes advantage of advances in construction of high-resolution, high-capacity anion-exchange columns that can better tolerate the matrices typically encountered when a determination of total nitrogen and total phosphorous is required. Here, we used an electrolytically generated hydroxide eluent combined with a high-capacity, hydroxide-selective, anion-exchange column for the determination of total nitrogen (as nitrate-N) and total phosphorus (as phosphate-P) in environmental samples by IC. This method yielded LODs for nitrate-N and phosphate-P of 1.0 and 1.3 μg/L, respectively. The LOQs determined for these analytes were 3.4 and 4.2 μg/L, respectively. Due to the dilution factor required and the blank nitrate-N concentration after the persulfate digestion, the quantification limits increased for nitrate-N and phosphate-P to 171 and 63 μg/L, respectively. The suitability of the method was evaluated by determining the nitrogen and phosphorus concentrations from known concentrations of organic-containing nitrogen and phosphorus compounds. In addition, environmental samples consisting of six different wastewaters and 48 reservoir samples were evaluated for total nitrogen and phosphorus. The recoveries of nitrogen and phosphorus from the organic-containing compounds ranged from 93.1 to 100.1% and 85.2 to 97.1%, respectively. In addition, good correlation between results obtained by the colorimetric method and IC was also observed. The linearity, accuracy, and evaluation of potential interferences for determining TN and TP will be discussed. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. The Interactive Effect of Pro-Environmental Disciplinary Concentration under Cooperation versus Competition Contexts

    ERIC Educational Resources Information Center

    Cuadrado, Esther; Tabernero, Carmen; García, Rocío; Luque, Bárbara

    2017-01-01

    This research explores the relevance of cooperation and students' environmental disciplinary concentration on decision-making with respect to environmental issues--specifically the use of water, a limited common-pool resource. For this purpose, 61 environmental sciences students and 46 educational sciences students played the role of farmers and…

  15. Occurrence of greenhouse gases (CO2, N2O and CH4) in groundwater of the Walloon Region (Belgium).

    NASA Astrophysics Data System (ADS)

    Jurado, Anna; Borges, Alberto V.; Pujades, Estanislao; Hakoun, Vivien; Knöller, Kay; Brouyère, Serge

    2017-04-01

    Greenhouse gases (GHGs) are an environmental problem because their concentrations in the atmosphere have continuously risen since the industrial revolution. They can be indirectly transferred to the atmosphere through groundwater discharge into surface water bodies such as rivers. However, their occurrence is poorly evaluated in groundwater. The aim of this work is to identify the hydrogeological contexts (e.g., chalk and limestone aquifers) and the most conductive conditions for the generation of GHGs in groundwater at a regional scale. To this end, carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) concentrations, major and minor elements and environmental isotopes were monitored in several groundwater bodies of the Walloon Region (Belgium) from September 2014 to June 2016. The concentrations of GHGs in groundwater ranged from 1769 to 100519 ppm for the partial pressure of CO2 and from 0 to 1064 nmol/L and 1 to 37062 nmol/L for CH4 and N2O respectively. Overall, groundwater was supersaturated in GHGs with respect to atmospheric equilibrium, suggesting that groundwater contribute to the atmospheric GHGs budget. Prior inspection of the data suggested that N2O in groundwater can be produced by denitrification and nitrification. The most suitable conditions for the accumulation of N2O are promoted by intermediate dissolved oxygen concentrations (2.5-3 mg L-1) and the availability of nitrate (NO3-). These observations will be compared with the isotopes of NO3-. CH4 was less detected and at lower concentration than N2O, suggesting that groundwater redox conditions are not reducing enough to promoted the production of CH4. The results will be presented and discussed in detail in the presentation.

  16. Geochemistry and mineralogy of arsenic in mine wastes and stream sediments in a historic metal mining area in the UK.

    PubMed

    Rieuwerts, J S; Mighanetara, K; Braungardt, C B; Rollinson, G K; Pirrie, D; Azizi, F

    2014-02-15

    Mining generates large amounts of waste which may contain potentially toxic elements (PTE), which, if released into the wider environment, can cause air, water and soil pollution long after mining operations have ceased. The fate and toxicological impact of PTEs are determined by their partitioning and speciation and in this study, the concentrations and mineralogy of arsenic in mine wastes and stream sediments in a former metal mining area of the UK are investigated. Pseudo-total (aqua-regia extractable) arsenic concentrations in all samples from the mining area exceeded background and guideline values by 1-5 orders of magnitude, with a maximum concentration in mine wastes of 1.8×10(5)mgkg(-1) As and concentrations in stream sediments of up to 2.5×10(4)mgkg(-1) As, raising concerns over potential environmental impacts. Mineralogical analysis of the wastes and sediments was undertaken by scanning electron microscopy (SEM) and automated SEM-EDS based quantitative evaluation (QEMSCAN®). The main arsenic mineral in the mine waste was scorodite and this was significantly correlated with pseudo-total As concentrations and significantly inversely correlated with potentially mobile arsenic, as estimated from the sum of exchangeable, reducible and oxidisable arsenic fractions obtained from a sequential extraction procedure; these findings correspond with the low solubility of scorodite in acidic mine wastes. The work presented shows that the study area remains grossly polluted by historical mining and processing and illustrates the value of combining mineralogical data with acid and sequential extractions to increase our understanding of potential environmental threats. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Chronic aquatic effect assessment for the fungicide azoxystrobin.

    PubMed

    van Wijngaarden, Rene P A; Belgers, Dick J M; Zafar, Mazhar I; Matser, Arrienne M; Boerwinkel, Marie-Claire; Arts, Gertie H P

    2014-12-01

    The present study examined the ecological effects of a range of chronic exposure concentrations of the fungicide azoxystrobin in freshwater experimental systems (1270-L outdoor microcosms). Intended and environmentally relevant test concentrations of azoxystrobin were 0 µg active ingredient (a.i.)/L, 0.33 µg a.i./L, 1 µg a.i./L, 3.3 µg a.i./L, 10 µg a.i./L, and 33 µg a.i./L, kept at constant values. Responses of freshwater populations and community parameters were studied. During the 42-d experimental period, the time-weighted average concentrations of azoxystrobin ranged from 93.5% to 99.3% of intended values. Zooplankton, especially copepods and the Daphnia longispina group, were the most sensitive groups. At the population level, a consistent no-observed-effect concentration (NOEC) of 1 µg a.i./L was calculated for Copepoda. The NOEC at the zooplankton community level was 10 µg azoxystrobin/L. The principle of the European Union pesticide directive is that lower-tier regulatory acceptable concentrations (RACs) are protective of higher-tier RACs. This was tested for chronic risks from azoxystrobin. With the exception of the microcosm community chronic RAC (highest tier), all other chronic RAC values were similar to each other (0.5-1 µg a.i./L). The new and stricter first-tier species requirements of the European Union pesticide regulation (1107/2009/EC) are not protective for the most sensitive populations in the microcosm study, when based on the higher tier population RAC. In comparison, the Water Framework Directive generates environmental quality standards that are 5 to 10 times lower than the derived chronic RACs. © 2014 SETAC.

  18. An Analysis of Terrestrial and Aquatic Environmental Controls of Riverine Dissolved Organic Carbon in the Conterminous United States

    DOE PAGES

    Yang, Qichun; Zhang, Xuesong; Xu, Xingya; ...

    2017-05-29

    Riverine carbon cycling is an important, but insufficiently investigated component of the global carbon cycle. Analyses of environmental controls on riverine carbon cycling are critical for improved understanding of mechanisms regulating carbon processing and storage along the terrestrial-aquatic continuum. Here, we compile and analyze riverine dissolved organic carbon (DOC) concentration data from 1402 United States Geological Survey (USGS) gauge stations to examine the spatial variability and environmental controls of DOC concentrations in the United States (U.S.) surface waters. DOC concentrations exhibit high spatial variability, with an average of 6.42 ± 6.47 mg C/ L (Mean ± Standard Deviation). In general,more » high DOC concentrations occur in the Upper Mississippi River basin and the Southeastern U.S., while low concentrations are mainly distributed in the Western U.S. Single-factor analysis indicates that slope of drainage areas, wetlands, forests, percentage of first-order streams, and instream nutrients (such as nitrogen and phosphorus) pronouncedly influence DOC concentrations, but the explanatory power of each bivariate model is lower than 35%. Analyses based on the general multi-linear regression models suggest DOC concentrations are jointly impacted by multiple factors. Soil properties mainly show positive correlations with DOC concentrations; forest and shrub lands have positive correlations with DOC concentrations, but urban area and croplands demonstrate negative impacts; total instream phosphorus and dam density correlate positively with DOC concentrations. Notably, the relative importance of these environmental controls varies substantially across major U.S. water resource regions. In addition, DOC concentrations and environmental controls also show significant variability from small streams to large rivers, which may be caused by changing carbon sources and removal rates by river orders. In sum, our results reveal that general multi-linear regression analysis of twenty one terrestrial and aquatic environmental factors can partially explain (56%) the DOC concentration variation. In conclusion, this study highlights the complexity of the interactions among these environmental factors in determining DOC concentrations, thus calls for processes-based, non-linear methodologies to constrain uncertainties in riverine DOC cycling.« less

  19. pH neutralization of the by-product sludge waste water generated from waste concrete recycling process using the carbon mineralization

    NASA Astrophysics Data System (ADS)

    Ji, Sangwoo; Shin, Hee-young; Bang, Jun Hwan; Ahn, Ji-Whan

    2017-04-01

    About 44 Mt/year of waste concrete is generated in South Korea. More than 95% of this waste concrete is recycled. In the process of regenerating and recycling pulmonary concrete, sludge mixed with fine powder generated during repeated pulverization process and water used for washing the surface and water used for impurity separation occurs. In this way, the solid matter contained in the sludge as a by-product is about 40% of the waste concrete that was input. Due to the cement component embedded in the concrete, the sludge supernatant is very strong alkaline (pH about 12). And it is necessary to neutralization for comply with environmental standards. In this study, carbon mineralization method was applied as a method to neutralize the pH of highly alkaline waste water to under pH 8.5, which is the water quality standard of discharged water. CO2 gas (purity 99%, flow rate 10ml/min.) was injected and reacted with the waste water (Ca concentration about 750mg/L) from which solid matter was removed. As a result of the experiment, the pH converged to about 6.5 within 50 minutes of reaction. The precipitate showed high whiteness. XRD and SEM analysis showed that it was high purity CaCO3. For the application to industry, it is needed further study using lower concentration CO2 gas (about 14%) which generated from power plant.

  20. Electrochemistry Combined with LC-HRMS: Elucidating Transformation Products of the Recalcitrant Pharmaceutical Compound Carbamazepine Generated by the White-Rot Fungus Pleurotus ostreatus.

    PubMed

    Seiwert, Bettina; Golan-Rozen, Naama; Weidauer, Cindy; Riemenschneider, Christina; Chefetz, Benny; Hadar, Yitzhak; Reemtsma, Thorsten

    2015-10-20

    Transformation products (TPs) of environmental pollutants must be identified to understand biodegradation processes and reaction mechanisms and to assess the efficiency of treatment processes. The combination of oxidation by an electrochemical cell (EC) with analysis by liquid chromatography-high-resolution mass spectrometry (LC-HRMS) is a rapid approach for the determination and identification of TPs generated by natural microbial processes. Electrochemically generated TPs of the recalcitrant pharmaceutical carbamazepine (CBZ) were used for a target screening for TPs formed by the white-rot fungus Pleurotus ostreatus. EC with LC-HRMS facilitates detection and identification of TPs because the product spectrum is not superimposed with biogenic metabolites and elevated substrate concentrations can be used. A group of 10 TPs formed in the microbial process were detected by target screening for molecular ions, and another 4 were detected by screening on the basis of characteristic fragment ions. Three of these TPs have never been reported before. For CBZ, EC with LC-HRMS was found to be more effective than software tools in defining targets for the screening and faster than nontarget screening alone in TP identification. EC with LC-HRMS may be used to feed MS databases with spectra of possible TPs of larger numbers of environmental contaminants for an efficient target screening.

  1. An assessment of dispersing pollutants from the pre-harvest burning of sugarcane in rural areas in the northeast of Brazil

    NASA Astrophysics Data System (ADS)

    Rangel, Maria Gabriela L.; Henríquez, Jorge R.; Costa, José A. P.; de Lira Junior, José C.

    2018-04-01

    In recent years, the Brazilian government has been applying several restrictions with regard to preventing environmental pollution. Although Brazilian legislation is becoming stricter as to the pre-harvest burning of sugarcane, this practice is frequently used in order to assist manual harvesting. In the northeast region of Brazil, sugarcane is an important crop, which accounts for about 15% of the national production in a total area of 1,060,660 ha, the average production being 51,119 kg per hectare. The pre-harvest burning of sugarcane generates smoke, which has a high concentration of atmospheric pollutants such as carbon dioxide (CO2), carbon monoxide (CO), particulate matter (P.M. 2.5 and 10), polycyclic aromatic hydrocarbons (PAH), volatile organic compounds (VOC) and nitrogen oxides (NOX). This article estimates the volume of CO, P.M. 2.5 and NOX generated and how they are dispersed in the atmosphere when this arises from the burning of sugarcane biomass in rural areas of Northeast Brazil, and does so by using AERMOD VIEW® simulation software. Using the characteristics of the emissions and environmental (meteorological and topographical) data, quality air profiles based on pollutant dispersion were obtained. Three studies were taken into account in order to determine the relationship between pollutant dispersion and some parameters of the burning process, such as those for the spatial distribution of resources, the duration of pre-harvest burning and the influence of undertaking burning in different months. As to spatial distribution, to divide an area into small lots contributes to decreasing the maximum concentration of pollutants by 53% compared to burning a single area of equivalent size. The study of the burning duration indicated that doing so gradually (using a lengthier procedure) could decrease the maximum concentration of the pollutants by an inverse relation. The harvesting period in this region is between November and April. The pollutants dispersion process was greatest in February. April presented the worst dispersion conditions, and was associated with the highest pollutant concentrations.

  2. Approaches for controlling air pollutants and their environmental impacts generated from coal-based electricity generation in China.

    PubMed

    Xu, Changqing; Hong, Jinglan; Ren, Yixin; Wang, Qingsong; Yuan, Xueliang

    2015-08-01

    This study aims at qualifying air pollutants and environmental impacts generated from coal-based power plants and providing useful information for decision makers on the management of coal-based power plants in China. Results showed that approximately 9.03, 54.95, 62.08, and 12.12% of the national carbon dioxide, sulfur dioxide, nitrogen oxides, and particulate matter emissions, respectively, in 2011were generated from coal-based electricity generation. The air pollutants were mainly generated from east China because of the well-developed economy and energy-intensive industries in the region. Coal-washing technology can simply and significantly reduce the environmental burden because of the relativity low content of coal gangue and sulfur in washed coal. Optimizing the efficiency of raw materials and energy consumption is additional key factor to reduce the potential environmental impacts. In addition, improving the efficiency of air pollutants (e.g., dust, mercury, sulfur dioxide, nitrogen oxides) control system and implementing the strict requirements on air pollutants for power plants are important ways for reducing the potential environmental impacts of coal-based electricity generation in China.

  3. Single-Event Transgene Product Levels Predict Levels in Genetically Modified Breeding Stacks.

    PubMed

    Gampala, Satyalinga Srinivas; Fast, Brandon J; Richey, Kimberly A; Gao, Zhifang; Hill, Ryan; Wulfkuhle, Bryant; Shan, Guomin; Bradfisch, Greg A; Herman, Rod A

    2017-09-13

    The concentration of transgene products (proteins and double-stranded RNA) in genetically modified (GM) crop tissues is measured to support food, feed, and environmental risk assessments. Measurement of transgene product concentrations in breeding stacks of previously assessed and approved GM events is required by many regulatory authorities to evaluate unexpected transgene interactions that might affect expression. Research was conducted to determine how well concentrations of transgene products in single GM events predict levels in breeding stacks composed of these events. The concentrations of transgene products were compared between GM maize, soybean, and cotton breeding stacks (MON-87427 × MON-89034 × DAS-Ø15Ø7-1 × MON-87411 × DAS-59122-7 × DAS-40278-9 corn, DAS-81419-2 × DAS-44406-6 soybean, and DAS-21023-5 × DAS-24236-5 × SYN-IR102-7 × MON-88913-8 × DAS-81910-7 cotton) and their component single events (MON-87427, MON-89034, DAS-Ø15Ø7-1, MON-87411, DAS-59122-7, and DAS-40278-9 corn, DAS-81419-2, and DAS-44406-6 soybean, and DAS-21023-5, DAS-24236-5, SYN-IR102-7, MON-88913-8, and DAS-81910-7 cotton). Comparisons were made within a crop and transgene product across plant tissue types and were also made across transgene products in each breeding stack for grain/seed. Scatter plots were generated comparing expression in the stacks to their component events, and the percent of variability accounted for by the line of identity (y = x) was calculated (coefficient of identity, I 2 ). Results support transgene concentrations in single events predicting similar concentrations in breeding stacks containing the single events. Therefore, food, feed, and environmental risk assessments based on concentrations of transgene products in single GM events are generally applicable to breeding stacks composed of these events.

  4. Geochemical baseline distribution of harmful elements in the surface soils of Campania region.

    NASA Astrophysics Data System (ADS)

    Albanese, Stefano; Lima, Annamaria; Qu, Chengkai; Cicchella, Domenico; Buccianti, Antonella; De Vivo, Benedetto

    2015-04-01

    Environmental geochemical mapping has assumed an increasing relevance and the separation of values to discriminate between anthropogenic pollution and natural (geogenic) sources has become crucial to address environmental problems affecting the quality of life of human beings. In the last decade, a number of geochemical prospecting projects, mostly focused on surface soils (topsoils), were carried out at different scales (from regional to local) across the whole Campania region (Italy) to characterize the distribution of both harmful elements and persistent organic pollutants (POP) in the environment and to generating a valuable database to serve as reference in developing geomedical studies. During the 2014, a database reporting the distribution of 53 chemical elements in 3536 topsoil samples, collected across the whole region, was completed. The geochemical data, after necessary quality controls, were georeferenced and processed in a geochemistry dedicated GIS software named GEODAS. For each considered element a complete set of maps was generated to depict both the discrete and the spatially continuous (interpolated) distribution of elemental concentrations across the region. The interpolated maps were generated using the Multifractal Inverse Distance eighted (MIDW) algorithm. Subsequently, the S-A method, also implemented in GEODAS, was applied to MIDW maps to eliminate spatially limited anomalies from the original grid and to generate the distribution patterns of geochemical baselines for each element. For a selected group of elements geochemical data were also treated by means of a Compositional Data Analysis (CoDA) aiming at investigating the regionalised structure of the data by considering the joint behaviour of several elements constituting for each sample its whole composition. A regional environmental risk assessment was run on the basis of the regional distribution of heavy metals in soil, land use types and population. The risk assessment produced a ranking of priorities and located areas of regional territory where human health risk is more relevant and follow-up activities are required.

  5. Systematic Proteomic Approach to Characterize the Impacts of ...

    EPA Pesticide Factsheets

    Chemical interactions have posed a big challenge in toxicity characterization and human health risk assessment of environmental mixtures. To characterize the impacts of chemical interactions on protein and cytotoxicity responses to environmental mixtures, we established a systems biology approach integrating proteomics, bioinformatics, statistics, and computational toxicology to measure expression or phosphorylation levels of 21 critical toxicity pathway regulators and 445 downstream proteins in human BEAS-28 cells treated with 4 concentrations of nickel, 2 concentrations each of cadmium and chromium, as well as 12 defined binary and 8 defined ternary mixtures of these metals in vitro. Multivariate statistical analysis and mathematical modeling of the metal-mediated proteomic response patterns showed a high correlation between changes in protein expression or phosphorylation and cellular toxic responses to both individual metals and metal mixtures. Of the identified correlated proteins, only a small set of proteins including HIF-1a is likely to be responsible for selective cytotoxic responses to different metals and metals mixtures. Furthermore, support vector machine learning was utilized to computationally predict protein responses to uncharacterized metal mixtures using experimentally generated protein response profiles corresponding to known metal mixtures. This study provides a novel proteomic approach for characterization and prediction of toxicities of

  6. Environmental Issues in Managing Asthma

    PubMed Central

    Diette, Gregory B; McCormack, Meredith C; Hansel, Nadia N; Breysse, Patrick N; Matsui, Elizabeth C

    2008-01-01

    Management of asthma requires attention to environmental exposures both indoors and outdoors. Americans spend most of their time indoors, where they have a greater ability to modify their environment. The indoor environment contains both pollutants (eg, particulate matter, nitrogen dioxide, secondhand smoke, and ozone) and allergens from furred pets, dust mites, cockroaches, rodents, and molds. Indoor particulate matter consists of particles generated from indoor sources such as cooking and cleaning activities, and particles that penetrate from the outdoors. Nitrogen dioxide sources include gas stoves, furnaces, and fireplaces. Indoor particulate matter and nitrogen dioxide are linked to asthma morbidity. The indoor ozone concentration is mainly influenced by the outdoor ozone concentration. The health effects of indoor ozone exposure have not been well studied. In contrast, there is substantial evidence of detrimental health effects from secondhand smoke. Guideline recommendations are not specific for optimizing indoor air quality. The 2007 National Asthma Education and Prevention Program asthma guidelines recommend eliminating indoor smoking and improving the ventilation. Though the guidelines state that there is insufficient evidence to recommend air cleaners, air cleaners and reducing activities that generate indoor pollutants may be sound practical approaches for improving the health of individuals with asthma. The guidelines are more specific about allergen avoidance; they recommend identifying allergens to which the individual is immunoglobin E sensitized and employing a multifaceted, comprehensive strategy to reduce exposure. Outdoor air pollutants that impact asthma include particulate matter, ozone, nitrogen dioxide, and sulfur dioxide, and guidelines recommend that individuals with asthma avoid exertion outdoors when these pollutants are elevated. Outdoor allergens include tree, grass, and weed pollens, which vary in concentration by season. Recommendations to reduce exposure include staying indoors, keeping windows and doors closed, using air conditioning and perhaps high-efficiency particulate arrestor (HEPA) air filters, and thorough daily washing to remove allergens from one’s person. PMID:18426614

  7. Reduction of odours in pilot-scale landfill biocovers.

    PubMed

    Capanema, M A; Cabana, H; Cabral, A R

    2014-04-01

    Unpleasant odours generated from waste management facilities represent an environmental and societal concern. This multi-year study documented odour and total reduced sulfur (TRS) abatement in four experimental landfill biocovers installed on the final cover of the Saint-Nicéphore landfill (Canada). Performance was evaluated based on the reduction in odour and TRS concentrations between the raw biogas collected from a dedicated well and the emitted gases at the surface. Odour analyses were carried out by the sensorial technique of olfactometry, whereas TRS analyses followed the pulse fluorescence technique. The large difference of 2-5 orders of magnitude between raw biogas (average odour concentration=2,100,000OUm(-3)) and emitted gases resulted in odour removal efficiencies of close to 100% for all observations. With respect to TRS concentrations, abatement efficiencies were all greater than 95%, with values averaging 21,000ppb of eq. SO2 in the raw biogas. The influence of water infiltration on odour concentrations was documented and showed that lower odour values were obtained when the 48-h accumulated precipitation prior to sampling was higher. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Aqueous biphasic extraction of uranium and thorium from contaminated soils. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chaiko, D.J.; Gartelmann, J.; Henriksen, J.L.

    1995-07-01

    The aqueous biphasic extraction (ABE) process for soil decontamination involves the selective partitioning of solutes and fine particulates between two immiscible aqueous phases. The biphase system is generated by the appropriate combination of a water-soluble polymer (e.g., polyethlene glycol) with an inorganic salt (e.g., sodium carbonate). Selective partitioning results in 99 to 99.5% of the soil being recovered in the cleaned-soil fraction, while only 0.5 to 1% is recovered in the contaminant concentrate. The ABE process is best suited to the recovery of ultrafine, refractory material from the silt and clay fractions of soils. During continuous countercurrent extraction tests withmore » soil samples from the Fernald Environmental Management Project site (Fernald, OH), particulate thorium was extracted and concentrated between 6- and 16-fold, while the uranium concentration was reduced from about 500 mg/kg to about 77 mg/kg. Carbonate leaching alone was able to reduce the uranium concentration only to 146 mg/kg. Preliminary estimates for treatment costs are approximately $160 per ton of dry soil. A detailed flowsheet of the ABE process is provided.« less

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Qichun; Zhang, Xuesong; Xu, Xingya

    Riverine carbon cycling is an important, but insufficiently investigated component of the global carbon cycle. Analyses of environmental controls on riverine carbon cycling are critical for improved understanding of mechanisms regulating carbon processing and storage along the terrestrial-aquatic continuum. Here, we compile and analyze riverine dissolved organic carbon (DOC) concentration data from 1402 United States Geological Survey (USGS) gauge stations to examine the spatial variability and environmental controls of DOC concentrations in the United States (U.S.) surface waters. DOC concentrations exhibit high spatial variability, with an average of 6.42 ± 6.47 mg C/ L (Mean ± Standard Deviation). In general,more » high DOC concentrations occur in the Upper Mississippi River basin and the Southeastern U.S., while low concentrations are mainly distributed in the Western U.S. Single-factor analysis indicates that slope of drainage areas, wetlands, forests, percentage of first-order streams, and instream nutrients (such as nitrogen and phosphorus) pronouncedly influence DOC concentrations, but the explanatory power of each bivariate model is lower than 35%. Analyses based on the general multi-linear regression models suggest DOC concentrations are jointly impacted by multiple factors. Soil properties mainly show positive correlations with DOC concentrations; forest and shrub lands have positive correlations with DOC concentrations, but urban area and croplands demonstrate negative impacts; total instream phosphorus and dam density correlate positively with DOC concentrations. Notably, the relative importance of these environmental controls varies substantially across major U.S. water resource regions. In addition, DOC concentrations and environmental controls also show significant variability from small streams to large rivers, which may be caused by changing carbon sources and removal rates by river orders. In sum, our results reveal that general multi-linear regression analysis of twenty one terrestrial and aquatic environmental factors can partially explain (56%) the DOC concentration variation. In conclusion, this study highlights the complexity of the interactions among these environmental factors in determining DOC concentrations, thus calls for processes-based, non-linear methodologies to constrain uncertainties in riverine DOC cycling.« less

  10. Airborne Power Ultrasonic Technologies for Intensification of Food and Environmental Processes

    NASA Astrophysics Data System (ADS)

    Riera, Enrique; Acosta, Víctor M.; Bon, José; Aleixandre, Manuel; Blanco, Alfonso; Andrés, Roque R.; Cardoni, Andrea; Martinez, Ignacio; Herranz, Luís E.; Delgado, Rosario; Gallego-Juárez, Juan A.

    Airborne power ultrasound is a green technology with a great potential for food and environmental applications, among others. This technology aims at producing permanent changes in objects and substances by means of the propagation of high-intensity waves through air and multiphase media. Specifically, the nonlinear effects produced in such media are responsible for the beneficial repercussions of ultrasound in airborne applications. Processing enhancement is achieved through minimizing the impedance mismatch between the ultrasonic radiator source and the medium by the generation of large vibration displacements and the concentration of energy radiation thus overcoming the high acoustic absorption of fluids, and in particular of gases such as air. Within this work the enhancing effects of airborne power ultrasound in various solid/liquid/gas applications including drying of solid and semi-solid substances, and the agglomeration of tiny particles in air cleaning processes are presented. Moreover, the design of new ultrasonic devices capable of generating these effects are described along with practical methods aimed at maintaining a stable performance of the tuned systems at operational powers. Hence, design strategies based on finite element modelling (FEM) and experimental methods consolidated through the years for material and tuned assembly characterizations are highlighted.

  11. Production of Hydroxyl Radical via the Activation of Hydrogen Peroxide by Hydroxylamine.

    PubMed

    Chen, Liwei; Li, Xuchun; Zhang, Jing; Fang, Jingyun; Huang, Yanmin; Wang, Ping; Ma, Jun

    2015-09-01

    The production of the hydroxyl radical (HO·) is important in environmental chemistry. This study reports a new source of HO· generated solely from hydrogen peroxide (H2O2) activated by hydroxylamine (HA). Electron paramagnetic resonance analysis and the oxidation of a HO· probe, benzoic acid, were used to confirm the production of HO·. The production of HO· increased with increasing concentrations of either HA or H2O2 as well as decreasing pH. The second-order rate constant for the reaction was (2.2 ± 0.2) × 10(-4) M(-1) s(-1). HO· was probably produced in two steps: the activation of H2O2 by protonated HA and then reaction between the H2O2 and the intermediate protonated aminoxyl radical generated in the first step. Such a two-step oxidation can possibly be ascribed to the ionizable hydroxyl moiety in the molecular structure of HA, as is suggested by comparing the reactivity of a series of HA derivatives in HO· production. The results shed light on a previously unknown source of HO· formation, which broadens the understanding of its role in environmental processes.

  12. Evaluation of the Efficiency of Selective Collection in a Small Town on the State of Rio Grande do Sul - Brazil

    NASA Astrophysics Data System (ADS)

    Schneider, V. E.; Poletto, M.; Peresin, D.; Carra, S. H. Z.; Vanni, D.

    2017-07-01

    With the increase of population concentration in urban areas, there is an increase in the solid waste generation, which demands the search for alternatives and solutions for the environmentally correct destination of these. In this context, this work presents an evaluation on the forms of organic and selective domestic waste collection and the potential for the recyclability of the waste destined to the same, based on the physical characterization and gravimetric composition of the solid wastes generated in the town of Antônio Prado, located in the state of Rio Grande do Sul, Brazil, between 2014 and 2016. It is observed that the population has significant information regarding the correct disposal of waste in the selective collection, since 60% of the waste destined to the same is effectively recyclable. Plastic (24.8%), paper (10.9%), glass (8.8%) and cardboard (8.4%) are the most representative materials in recycled waste samples in the urban area. The importance of continuity and improvement of environmental education programs is essential, due to the evolution in the quantity and complexity of products and materials currently manufactured, and to the method of mechanized waste collection used by the municipality.

  13. Investigation of a sterilization system using active oxygen species generated by ultraviolet irradiation.

    PubMed

    Yoshino, Kiyoshi; Matsumoto, Hiroyuki; Iwasaki, Tatsuyuki; Kinoshita, Shinobu; Noda, Kazutoshi; Oya, Kei; Iwamori, Satoru

    2015-01-01

    We have been investigating an advanced sterilization system that employs active oxygen species (AOS). We designed the sterilization equipment, including an evacuation system, which generates AOS from pure oxygen gas using ultraviolet irradiation, in order to study the conditions necessary for sterilization in the system's chamber. Using Geobachillus stearothermophilus spores (10(6) CFU) in a sterile bag as a biological indicator (BI) in the chamber of the AOS sterilization apparatus, we examined the viability of the BI as a function of exposure time, assessing the role of the decompression level in the sterilization performance. We found that the survival curves showed exponential reduction, and that the decompression level did not exert a significant influence on the survival curve. Subsequently, we investigated the sterilization effect as influenced by the spatial and environmental temperature variation throughout the chamber, and found that the sterilization effect varied with position, due to the varying environmental temperature in the respective areas. We confirmed that temperature is one of the most important factors influencing sterilization in the chamber, and estimated the temperature effect on the distribution of atomic oxygen concentration, using the quartz crystal microbalance (QCM) method with fluorocarbon thin film prepared by radio frequency sputtering.

  14. Identification of spatiotemporal nutrient patterns in a coastal bay via an integrated k-means clustering and gravity model.

    PubMed

    Chang, Ni-Bin; Wimberly, Brent; Xuan, Zhemin

    2012-03-01

    This study presents an integrated k-means clustering and gravity model (IKCGM) for investigating the spatiotemporal patterns of nutrient and associated dissolved oxygen levels in Tampa Bay, Florida. By using a k-means clustering analysis to first partition the nutrient data into a user-specified number of subsets, it is possible to discover the spatiotemporal patterns of nutrient distribution in the bay and capture the inherent linkages of hydrodynamic and biogeochemical features. Such patterns may then be combined with a gravity model to link the nutrient source contribution from each coastal watershed to the generated clusters in the bay to aid in the source proportion analysis for environmental management. The clustering analysis was carried out based on 1 year (2008) water quality data composed of 55 sample stations throughout Tampa Bay collected by the Environmental Protection Commission of Hillsborough County. In addition, hydrological and river water quality data of the same year were acquired from the United States Geological Survey's National Water Information System to support the gravity modeling analysis. The results show that the k-means model with 8 clusters is the optimal choice, in which cluster 2 at Lower Tampa Bay had the minimum values of total nitrogen (TN) concentrations, chlorophyll a (Chl-a) concentrations, and ocean color values in every season as well as the minimum concentration of total phosphorus (TP) in three consecutive seasons in 2008. The datasets indicate that Lower Tampa Bay is an area with limited nutrient input throughout the year. Cluster 5, located in Middle Tampa Bay, displayed elevated TN concentrations, ocean color values, and Chl-a concentrations, suggesting that high values of colored dissolved organic matter are linked with some nutrient sources. The data presented by the gravity modeling analysis indicate that the Alafia River Basin is the major contributor of nutrients in terms of both TP and TN values in all seasons. With this new integration, improvements for environmental monitoring and assessment were achieved to advance our understanding of sea-land interactions and nutrient cycling in a critical coastal bay, the Gulf of Mexico. This journal is © The Royal Society of Chemistry 2012

  15. Hair and toenail arsenic concentrations of residents living in areas with high environmental arsenic concentrations.

    PubMed Central

    Hinwood, Andrea L; Sim, Malcolm R; Jolley, Damien; de Klerk, Nick; Bastone, Elisa B; Gerostamoulos, Jim; Drummer, Olaf H

    2003-01-01

    Surface soil and groundwater in Australia have been found to contain high concentrations of arsenic. The relative importance of long-term human exposure to these sources has not been established. Several studies have investigated long-term exposure to environmental arsenic concentrations using hair and toenails as the measure of exposure. Few have compared the difference in these measures of environmental sources of exposure. In this study we aimed to investigate risk factors for elevated hair and toenail arsenic concentrations in populations exposed to a range of environmental arsenic concentrations in both drinking water and soil as well as in a control population with low arsenic concentrations in both drinking water and soil. In this study, we recruited 153 participants from areas with elevated arsenic concentrations in drinking water and residential soil, as well as a control population with no anticipated arsenic exposures. The median drinking water arsenic concentrations in the exposed population were 43.8 micro g/L (range, 16.0-73 micro g/L) and median soil arsenic concentrations were 92.0 mg/kg (range, 9.1-9,900 mg/kg). In the control group, the median drinking water arsenic concentration was below the limit of detection, and the median soil arsenic concentration was 3.3 mg/kg. Participants were categorized based on household drinking water and residential soil arsenic concentrations. The geometric mean hair arsenic concentrations were 5.52 mg/kg for the drinking water exposure group and 3.31 mg/kg for the soil exposure group. The geometric mean toenail arsenic concentrations were 21.7 mg/kg for the drinking water exposure group and 32.1 mg/kg for the high-soil exposure group. Toenail arsenic concentrations were more strongly correlated with both drinking water and soil arsenic concentrations; however, there is a strong likelihood of significant external contamination. Measures of residential exposure were better predictors of hair and toenail arsenic concentrations than were local environmental concentrations. PMID:12573904

  16. The response of a simulated Mesoscale Convective System to increased aerosol pollution

    NASA Astrophysics Data System (ADS)

    Clavner, Michal

    This work focuses on the impacts of aerosols on the total precipitation amount, rates and spatial distribution of precipitation produced by a Mesoscale Convective System (MCS), as well as the characteristics of a derecho event. Past studies have shown that the impacts on MCS-produced precipitation to changes in aerosol concentration are strongly dependent on environmental conditions, primarily humidity and environmental wind shear. Changes in aerosol concentrations were found to alter MCS-precipitation production directly by modifying precipitation processes and indirectly by affecting the efficiency of the storm's self-propagation. Observational and numerical studies have been conducted that have examined the dynamics responsible for the generation of widespread convectively-induced windstorms, primarily focusing on environmental conditions and the MCS features that generate a derecho event. While the sensitivity of the formation of bow-echoes, the radar signature associated with derecho events, to changes in microphysics has been examined, a study on a derecho-producing MCS characteristics to aerosol concentrations has not. In this study different aerosol concentrations and their effects on precipitation and a derecho produced by an MCS are examined by simulating the 8 May 2009 "Super-Derecho" MCS. The MCS was simulated using the Regional Atmospheric Modeling System (RAMS), a cloud-resolving model (CRM) with sophisticated aerosol and microphysical parameterizations. Three simulations were conducted that varied in their initial aerosol concentration, distribution and hygroscopicity as determined by their emission sources. The first simulation contained aerosols from only natural sources and the second with aerosols sourced from both natural and anthropogenic emissions The third simulation contained the same aerosol distribution as in the second simulation, however multiplied by a factor of 5 in order to represent a highly polluted scenario. In all three of the simulations aerosol concentrations were derived from the output of GEOS-Chem, a 3D chemical transport model. In the simulated MCS, the formation and propagation of the storm was not fundamentally modified by changes in the aerosol concentration, and the total MCS-produced precipitation was not significantly affected. However, the precipitation distribution (convective vs stratiform) and derecho-strength surface wind characteristics did vary among the simulations. The more polluted simulations exhibited higher precipitation rates, higher bulk precipitation efficiency, a larger area with heavier convective precipitation and a smaller area with lighter stratiform precipitation. These differences arose because aerosol pollution enhanced precipitation in the convective region while suppressing precipitation from the stratiform-anvil. Higher aerosol concentrations led to the invigoration of convective updrafts which supported the formation of larger rain drops, and lofted more liquid cloud mass to higher levels, thereby increasing both collision-coalescence and riming processes. The presence of greater aerosol concentrations in the free troposphere, as well as in the boundary layer, reduced both collision-coalescence and riming within the stratiform-anvil region. As a consequence, the more polluted simulations produced the smallest precipitation from the MCS stratiform-anvil region. In order to understand the impact of changes in aerosol concentrations on the derecho characteristics, the dynamical processes which produced the strong surface wind were determined by performing back-trajectory analysis during different periods of the simulated storm. The analysis showed that two main air flows contributed to the formation of the derecho winds at the surface; a rear-inflow jet and an up-down downdraft associated with a mesovortex at the gust font. The changes in aerosol concentrations impacted the simulated derecho event by altering the main flow contributing to the formation of the derecho winds though the amount of melting and evaporation of hydrometeors. Earlier in the storm, changes in melting and evaporation altered the intensity of the storm-produced cold pool. This, in turn, modified the balance between the horizontal relative vertical vorticity generated by the cold pool and that of the low-level environmental shear. The smaller hail and rain hydrometeors in the cleaner simulation exhibited higher melting and evaporation rates due to the larger surface area, which contributed to the formation of a stronger cold pool and led to the tilting of the convective updraft upshear. This, in turn, shifted the flow associated with the derecho event to be predominantly from a Rear-Inflow Jet (RIJ). An increase in aerosol concentration led to a weaker cold pool and therefore an upright convective updraft which promoted the formation of a stronger mesovortex, and subsequently shifting the flow to be predominantly from strong downdrafts following an up-down downdraft (UDD) trajectory. The shift from a RIJ flow to a UDD led to stronger surface winds over a smaller area. As the storm matured, the derecho winds were found to be associated with the formation of a mesovortex at the gust front. At this time, a non-linear trend between aerosol concentrations to derecho intensity was apparent and was attributed to the non-linear trend in mesovortex strength. (Abstract shortened by UMI.).

  17. Uncertainty associated with the gravimetric measurement of particulate matter concentration in ambient air.

    PubMed

    Lacey, Ronald E; Faulkner, William Brock

    2015-07-01

    This work applied a propagation of uncertainty method to typical total suspended particulate (TSP) sampling apparatus in order to estimate the overall measurement uncertainty. The objectives of this study were to estimate the uncertainty for three TSP samplers, develop an uncertainty budget, and determine the sensitivity of the total uncertainty to environmental parameters. The samplers evaluated were the TAMU High Volume TSP Sampler at a nominal volumetric flow rate of 1.42 m3 min(-1) (50 CFM), the TAMU Low Volume TSP Sampler at a nominal volumetric flow rate of 17 L min(-1) (0.6 CFM) and the EPA TSP Sampler at the nominal volumetric flow rates of 1.1 and 1.7 m3 min(-1) (39 and 60 CFM). Under nominal operating conditions the overall measurement uncertainty was found to vary from 6.1x10(-6) g m(-3) to 18.0x10(-6) g m(-3), which represented an uncertainty of 1.7% to 5.2% of the measurement. Analysis of the uncertainty budget determined that three of the instrument parameters contributed significantly to the overall uncertainty: the uncertainty in the pressure drop measurement across the orifice meter during both calibration and testing and the uncertainty of the airflow standard used during calibration of the orifice meter. Five environmental parameters occurring during field measurements were considered for their effect on overall uncertainty: ambient TSP concentration, volumetric airflow rate, ambient temperature, ambient pressure, and ambient relative humidity. Of these, only ambient TSP concentration and volumetric airflow rate were found to have a strong effect on the overall uncertainty. The technique described in this paper can be applied to other measurement systems and is especially useful where there are no methods available to generate these values empirically. This work addresses measurement uncertainty of TSP samplers used in ambient conditions. Estimation of uncertainty in gravimetric measurements is of particular interest, since as ambient particulate matter (PM) concentrations approach regulatory limits, the uncertainty of the measurement is essential in determining the sample size and the probability of type II errors in hypothesis testing. This is an important factor in determining if ambient PM concentrations exceed regulatory limits. The technique described in this paper can be applied to other measurement systems and is especially useful where there are no methods available to generate these values empirically.

  18. Spatial distribution of polychlorinated dibenzo-p-dioxins and dibenzo-furans (PCDDs/Fs) in dust, soil, sediment and health risk assessment from an intensive electronic waste recycling site in Southern China.

    PubMed

    Hu, Jianfang; Xiao, Xiao; Peng, Ping'an; Huang, Weilin; Chen, Deyi; Cai, Ying

    2013-10-01

    Workshop dust, soil and sediment samples were collected to investigate the level and spatial distribution of PCDDs/Fs at an intensive electronic waste (e-waste) recycling site in Southern China, and also to characterize the dioxin emission in different e-waste recycling procedures. The concentrations of total PCDDs/Fs ranged from 1866 to 234292 ng kg(-1) for the dust samples, from 3187 to 63998 ng kg(-1) dry wt for the top soils, and 33718 ng kg(-1) for the surface sediment. All the samples were characterized by abnormally high concentrations of OCDD and an extremely low portion of PCDFs. Different e-waste recycling procedures may generate different congener profiles. Open burning and dismantling were the two procedures emitting relatively higher concentrations of PCDDs/Fs in this case, indicating that low-tech recycling operations were one of the major contributors of PCDDs/Fs to the environment. The variation and distinction of the concentrations and homologue/congener profiles among different environmental matrices reveal the characteristics of contaminant environmental behavior and fate during the transportation from "source" to "sink". Daily intake of PCDDs/Fs through soil ingestion and dermal absorption was negligible, but the rough estimated total PCDD/F intake dose far exceeded the tolerance daily intake value of 4 pg-TEQ per kg per day recommended by WHO, indicating that residents in Longtang were at a high risk of exposure to dioxins, especially children.

  19. Superhydrophobic Analyte Concentration Utilizing Colloid-Pillar Array SERS Substrates

    DOE PAGES

    Wallace, Ryan A.; Charlton, Jennifer J.; Kirchner, Teresa B.; ...

    2014-11-04

    In order to detect a few molecules present in a large sample it is important to know the trace components in the medicinal and environmental sample. Surface enhanced Raman spectroscopy (SERS) is a technique that can be utilized to detect molecules at very low absolute numbers. However, detection at trace concentration levels in real samples requires properly designed delivery and detection systems. Moreover, the following work involves superhydrophobic surfaces that includes silicon pillar arrays formed by lithographic and dewetting protocols. In order to generate the necessary plasmonic substrate for SERS detection, simple and flow stable Ag colloid was added tomore » the functionalized pillar array system via soaking. The pillars are used native and with hydrophobic modification. The pillars provide a means to concentrate analyte via superhydrophobic droplet evaporation effects. A 100-fold concentration of analyte was estimated, with a limit of detection of 2.9 10-12 M for mitoxantrone dihydrochloride. Additionally, analytes were delivered to the surface via a multiplex approach in order to demonstrate an ability to control droplet size and placement for scaled-up applications in real world applications. Finally, a concentration process involving transport and sequestration based on surface treatment selective wicking is demonstrated.« less

  20. Effects of ceiling-mounted HEPA-UV air filters on airborne bacteria concentrations in an indoor therapy pool building.

    PubMed

    Kujundzic, Elmira; Zander, David A; Hernandez, Mark; Angenent, Largus T; Henderson, David E; Miller, Shelly L

    2005-02-01

    The purpose of this study was to assess the effectiveness of a new generation of high-volume, ceiling-mounted high-efficiency particulate air (HEPA)-ultraviolet (UV) air filters (HUVAFs) for their ability to remove or inactivate bacterial aerosol. In an environmentally controlled full-scale laboratory chamber (87 m3), and an indoor therapy pool building, the mitigation ability of air filters was assessed by comparing concentrations of total bacteria, culturable bacteria, and airborne endotoxin with and without the air filters operating under otherwise similar conditions. Controlled chamber tests with pure cultures of aerosolized Mycobacterium parafortuitum cells showed that the HUVAF unit tested provided an equivalent air-exchange rate of 11 hr(-1). Using this equivalent air-exchange rate as a design basis, three HUVAFs were installed in an indoor therapy pool building for bioaerosol mitigation, and their effectiveness was studied over a 2-year period. The HUVAFs reduced concentrations of culturable bacteria by 69 and 80% during monitoring periods executed in respective years. The HUVAFs reduced concentrations of total bacteria by 12 and 76% during the same monitoring period, respectively. Airborne endotoxin concentrations were not affected by the HUVAF operation.

  1. Superhydrophobic Analyte Concentration Utilizing Colloid-Pillar Array SERS Substrates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wallace, Ryan A.; Charlton, Jennifer J.; Kirchner, Teresa B.

    In order to detect a few molecules present in a large sample it is important to know the trace components in the medicinal and environmental sample. Surface enhanced Raman spectroscopy (SERS) is a technique that can be utilized to detect molecules at very low absolute numbers. However, detection at trace concentration levels in real samples requires properly designed delivery and detection systems. Moreover, the following work involves superhydrophobic surfaces that includes silicon pillar arrays formed by lithographic and dewetting protocols. In order to generate the necessary plasmonic substrate for SERS detection, simple and flow stable Ag colloid was added tomore » the functionalized pillar array system via soaking. The pillars are used native and with hydrophobic modification. The pillars provide a means to concentrate analyte via superhydrophobic droplet evaporation effects. A 100-fold concentration of analyte was estimated, with a limit of detection of 2.9 10-12 M for mitoxantrone dihydrochloride. Additionally, analytes were delivered to the surface via a multiplex approach in order to demonstrate an ability to control droplet size and placement for scaled-up applications in real world applications. Finally, a concentration process involving transport and sequestration based on surface treatment selective wicking is demonstrated.« less

  2. Spatio-temporal dynamics of alpine snow algae measured with multi-year imaging spectrometer data

    NASA Astrophysics Data System (ADS)

    Painter, T.; Thomas, W. H.; Duval, B.

    2003-04-01

    The spatio-temporal dynamics of alpine snow algae have not been documented at the basin scale. This study focuses on the interannual variability of the concentration of alga chlamydomonas nivalis as mapped with the Airborne Visible Infrared Imaging Spectrometer (AVIRIS) over the Sierra Nevada, California, USA in the springs of 2000, 2001, and 2002. AVIRIS was flown at high spatial resolution (1.5 m) and medium spatial resolution (8 m) on board the NOAA Twin Otter and the NASA ER-2. AVIRIS data were atmospherically-corrected to apparent surface reflectance using a non-linear least squares vapor-fitting algorithm coupled with the atmospheric transmission MODTRAN4. We calculated algal concentration using a model that relates concentration to the continuum-normalized integral of the coupled chlorophyll-a, b absorption features with peak at 680 nm wavelength in the snow spectral reflectance signatures (Painter et al., 2001, Applied and Environmental Microbiology). The AVIRIS data were georeferenced to a digital elevation model of the Tioga Pass, CA region generated in the NASA Shuttle Radar Topography Mission. Interannual variability in basin-wide concentration and pixel-by-pixel concentration trajectories were evaluated.

  3. Research status of geothermal resources in China

    NASA Astrophysics Data System (ADS)

    Zhang, Lincheng; Li, Guang

    2017-08-01

    As the representative of the new green energy, geothermal resources are characterized by large reserve, wide distribution, cleanness and environmental protection, good stability, high utilization factor and other advantages. According to the characteristics of exploitation and utilization, they can be divided into high-temperature, medium-temperature and low-temperature geothermal resources. The abundant and widely distributed geothermal resources in China have a broad prospect for development. The medium and low temperature geothermal resources are broadly distributed in the continental crustal uplift and subsidence areas inside the plate, represented by the geothermal belt on the southeast coast, while the high temperature geothermal resources concentrate on Southern Tibet-Western Sichuan-Western Yunnan Geothermal Belt and Taiwan Geothermal Belt. Currently, the geothermal resources in China are mainly used for bathing, recuperation, heating and power generation. It is a country that directly makes maximum use of geothermal energy in the world. However, China’s geothermal power generation, including installed generating capacity and power generation capacity, are far behind those of Western European countries and the USA. Studies on exploitation and development of geothermal resources are still weak.

  4. High-yield UV-photochemical vapor generation of iron for sample introduction with inductively coupled plasma optical emission spectrometry.

    PubMed

    Zheng, Chengbin; Sturgeon, Ralph E; Brophy, Christine S; He, Shaopan; Hou, Xiandeng

    2010-04-01

    A novel approach to the generation of volatile iron compounds (likely the pentacarbonyl) with high efficiency is described, wherein solutions containing either Fe(2+) or Fe(3+) and low molecular weight organic acids such as formic, acetic or propionic are exposed to a UV source. An optimum generation efficiency of 60 +/- 2% was achieved in 50% formic acid at pH 2.5 with an irradiation time of 250 s by use of a 17 W low-pressure mercury grid lamp. Compared to conventional solution nebulization, sensitivity and limit of detection were improved 80- and 100-fold, respectively, at the 238.204 nm Fe II emission line. A precision of 0.75% RSD was achieved at a concentration of 100 ng/mL. Photochemical vapor generation sample introduction was used for the determination of trace iron in several environmental Certified Reference Materials, including National Research Council Canada DORM-3 fish muscle tissue, DOLT-3 and DOLT-4 fish liver tissues, and SLRS-5 river water, providing analytical results in excellent agreement with certified values based on a simple external calibration.

  5. Effects of Vacation Rental Websites on the Concentration of Tourists-Potential Environmental Impacts. An Application to the Balearic Islands in Spain.

    PubMed

    Martín, José María Martín; Martín, José Antonio Rodriguez; Mejía, Karla Aída Zermeño; Fernández, José Antonio Salinas

    2018-02-15

    The concentration of tourists at certain times of the year can damage sensitive environments. The use of peer-to-peer vacation rental websites has increased greatly during the last decade. This system could either reduce seasonality in touristic destinations where the tourist activity takes place throughout the year at a lower price or on the contrary, it could increase the number of visitors at certain times of the year even more. This paper intends to analyze the effect that these platforms have on tourism seasonality in order to calculate if they help reduce or increase the pressure on the destinations. To do so, the Gini Index has been applied to one of the main touristic spots in Europe, the Balearic Islands in Spain. The conclusion is that this type of accommodation has aggravated the problem, generating a greater concentration of tourists and a higher pressure on the resources of the islands.

  6. Effects of Vacation Rental Websites on the Concentration of Tourists—Potential Environmental Impacts. An Application to the Balearic Islands in Spain

    PubMed Central

    Rodriguez Martín, José Antonio; Zermeño Mejía, Karla Aída; Salinas Fernández, José Antonio

    2018-01-01

    The concentration of tourists at certain times of the year can damage sensitive environments. The use of peer-to-peer vacation rental websites has increased greatly during the last decade. This system could either reduce seasonality in touristic destinations where the tourist activity takes place throughout the year at a lower price or on the contrary, it could increase the number of visitors at certain times of the year even more. This paper intends to analyze the effect that these platforms have on tourism seasonality in order to calculate if they help reduce or increase the pressure on the destinations. To do so, the Gini Index has been applied to one of the main touristic spots in Europe, the Balearic Islands in Spain. The conclusion is that this type of accommodation has aggravated the problem, generating a greater concentration of tourists and a higher pressure on the resources of the islands. PMID:29462863

  7. Potential hepatic toxicity of buprofezin at sublethal concentrations: ROS-mediated conversion of energy metabolism.

    PubMed

    Ji, Xiaotong; Ku, Tingting; Zhu, Na; Ning, Xia; Wei, Wei; Li, Guangke; Sang, Nan

    2016-12-15

    Buprofezin is known for its broad-spectrum action and environmental safety. The popularity of buprofezin has raised concerns about its potentially adverse effects on human health and risk to the environment. In this study, we first identified the liver as one of the major organs in which buprofezin accumulated, and we detected a severe oxidative stress response. Next, we demonstrated that sublethal concentrations of buprofezin promoted the conversion of energy metabolism from the aerobic tricarboxylic acid (TCA) cycle and oxidative phosphorylation to anaerobic glycolysis. Importantly, reactive oxygen species (ROS) generation partially accounted for the shunting of the energy metabolism through the buprofezin-mediated inhibition of cytochrome c oxidase activity. ROS directly perturbed the activities of several key TCA cycle enzymes, stimulated glycolysis, and indirectly disturbed the activity of the respiratory chain complex by altering mitochondrial DNA (mtDNA). These findings clarify the potential mechanisms of buprofezin toxicity and provide biomarkers for buprofezin-mediated hepatotoxicity at sublethal concentrations. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. The mining sector of Liberia: current practices and environmental challenges.

    PubMed

    Wilson, Samuel T K; Wang, Hongtao; Kabenge, Martin; Qi, Xuejiao

    2017-08-01

    Liberia is endowed with an impressive stock of mineral reserves and has traditionally relied on mining, namely iron ore, gold, and diamonds, as a major source of income. The recent growth in the mining sector has the potential to contribute significantly to employment, income generation, and infrastructure development. However, the development of these mineral resources has significant environmental impacts that often go unnoticed. This paper presents an overview of the Liberian mining sector from historical, current development, and economic perspectives. The efforts made by government to address issues of environmental management and sustainable development expressed in national and international frameworks, as well as some of the environmental challenges in the mining sector are analyzed. A case study was conducted on one of the iron ore mines (China Union Bong Mines Investment) to analyze the effects of the water quality on the local water environment. The results show that the analyzed water sample concentrations were all above the WHO and Liberia water standard Class I guidelines for drinking water. Finally the paper examines the application of water footprint from a life cycle perspective in the Liberian mining sector and suggests some policy options for water resources management.

  9. ENVIRONMENTAL EVALUATION FOR UTILIZATION OF ASH IN SOIL STABILIZATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    David J. Hassett; Loreal V. Heebink

    2001-08-01

    The Minnesota Pollution Control Agency (MPCA) approved the use of coal ash in soil stabilization, indicating that environmental data needed to be generated. The overall project goal is to evaluate the potential for release of constituents into the environment from ash used in soil stabilization projects. Supporting objectives are: (1) To ensure sample integrity through implementation of a sample collection, preservation, and storage protocol to avoid analyte concentration or loss. (2) To evaluate the potential of each component (ash, soil, water) of the stabilized soil to contribute to environmental release of analytes of interest. (3) To use laboratory leaching methodsmore » to evaluate the potential for release of constituents to the environment. (4) To facilitate collection of and to evaluate samples from a field runoff demonstration effort. The results of this study indicated limited mobility of the coal combustion fly ash constituents in laboratory tests and the field runoff samples. The results presented support previous work showing little to negligible impact on water quality. This and past work indicates that soil stabilization is an environmentally beneficial CCB utilization application as encouraged by the U.S. Environmental Protection Agency. This project addressed the regulatory-driven environmental aspect of fly ash use for soil stabilization, but the demonstrated engineering performance and economic advantages also indicate that the use of CCBs in soil stabilization can and should become an accepted engineering option.« less

  10. Environmental and economic analyses of waste disposal options for traditional markets in Indonesia.

    PubMed

    Aye, Lu; Widjaya, E R

    2006-01-01

    Waste from traditional markets in Indonesia is the second largest stream of municipal solid waste after household waste. It has a higher organic fraction and may have greater potential to be managed on a business scale compared to household wastes. The attributed reason is that in general the wastes generated from traditional markets are more uniform, more concentrated and less hazardous than waste from other sources. This paper presents the results of environmental and economic assessments to compare the options available for traditional market waste disposal in Indonesia. The options compared were composting in labour intensive plants, composting in a centralised plant that utilised a simple wheel loader, centralised biogas production and landfill for electricity production. The current open dumping practice was included as the baseline case. A life cycle assessment (LCA) was used for environmental analysis. All options compared have lower environmental impacts than the current practice of open dumping. The biogas production option has the lowest environmental impacts. A cost-benefit analysis, which considered greenhouse gas savings, was used for the economic assessment. It was found that composting at a centralised plant is the most economically feasible option under the present Indonesian conditions. The approach reported in this study could be applied for 'a pre-feasibility first cut comparison' that includes environmental aspects in a decision-making framework for developing countries even though European emission factors were used.

  11. Dynamic Probabilistic Modeling of Environmental Emissions of Engineered Nanomaterials.

    PubMed

    Sun, Tian Yin; Bornhöft, Nikolaus A; Hungerbühler, Konrad; Nowack, Bernd

    2016-05-03

    The need for an environmental risk assessment for engineered nanomaterials (ENM) necessitates the knowledge about their environmental concentrations. Despite significant advances in analytical methods, it is still not possible to measure the concentrations of ENM in natural systems. Material flow and environmental fate models have been used to provide predicted environmental concentrations. However, almost all current models are static and consider neither the rapid development of ENM production nor the fact that many ENM are entering an in-use stock and are released with a lag phase. Here we use dynamic probabilistic material flow modeling to predict the flows of four ENM (nano-TiO2, nano-ZnO, nano-Ag and CNT) to the environment and to quantify their amounts in (temporary) sinks such as the in-use stock and ("final") environmental sinks such as soil and sediment. Caused by the increase in production, the concentrations of all ENM in all compartments are increasing. Nano-TiO2 had far higher concentrations than the other three ENM. Sediment showed in our worst-case scenario concentrations ranging from 6.7 μg/kg (CNT) to about 40 000 μg/kg (nano-TiO2). In most cases the concentrations in waste incineration residues are at the "mg/kg" level. The flows to the environment that we provide will constitute the most accurate and reliable input of masses for environmental fate models which are using process-based descriptions of the fate and behavior of ENM in natural systems and rely on accurate mass input parameters.

  12. Exposure of research personnel to carbon dioxide during euthanasia procedures.

    PubMed

    Amparan, Ashlee A; Djoufack-Momo, Shelly M; Grunden, Beverly; Boivin, Gregory P-

    2014-07-01

    CO₂ is one of the most commonly used euthanasia agents for laboratory animals. Considerable research has gone into the effect of the agent on animals, but little has been done to examine potential human exposure during these procedures. In this study, we examine the CO₂ concentrations to which personnel are exposed while euthanizing rodents with CO₂. To examine the environmental levels of CO₂ generated during euthanasia, we examined several variables including flow rate, inclusion of a cage in the euthanasia chamber, inversion of the euthanasia chamber, chamber size, distance from the euthanasia chamber, and room size. Under all conditions, CO₂ concentrations in the room temporarily increased significantly to 600 to 4000 ppm. The results of this study show that, under several testing scenarios, occupational levels of CO₂ did not exceed governmentally mandated allowable exposure limits during routine rodent euthanasia procedures.

  13. Development of device producing electrolyzed water for home care

    NASA Astrophysics Data System (ADS)

    Umimoto, K.; Nagata, S.; Yanagida, J.

    2013-06-01

    When water containing ionic substances is electrolyzed, electrolyzed water with strong bactericidal ability due to the available chlorine(AC) is generated on the anode side. Slightly acidic to neutral electrolyzed water (pH 6.5 to 7.5) is physiological pH and is suitable for biological applications. For producing slightly acidic to neutral electrolyzed water simply, a vertical-type electrolytic tank with an asymmetric structure was made. As a result, a small amount of strongly alkaline water was generated in the upper cathodic small chamber, and a large amount of weakly acidic water generated in the lower anodic large chamber. The pH and AC concentration in solutin mixed with both electrolyzed water were 6.3 and 39.5 ppm, respectively, This solution was slightly acidic to neutral electrolyzed water and had strong bactericidal activity. This device is useful for producing slightly acidic to neutral electrolyzed water as a disinfectant to employ at home care, when considering economic and environmental factors, since it returns to ordinary water after use.

  14. Ultrafine particle emissions by in-use diesel buses of various generations at low-load regimes

    NASA Astrophysics Data System (ADS)

    Tartakovsky, L.; Baibikov, V.; Comte, P.; Czerwinski, J.; Mayer, A.; Veinblat, M.; Zimmerli, Y.

    2015-04-01

    Ultrafine particles (UFP) are major contributors to air pollution due to their easy gas-like penetration into the human organism, causing adverse health effects. This study analyzes UFP emissions by buses of different technologies (from Euro II till Euro V EEV - Enhanced Environmentally-friendly Vehicle) at low-load regimes. Additionally, the emission-reduction potential of retrofitting with a diesel particle filter (DPF) is demonstrated. A comparison of the measured, engine-out, particle number concentrations (PNC) for buses of different technological generations shows that no substantial reduction of engine-out emissions at low-load operating modes is observed for newer bus generations. Retrofitting the in-use urban and interurban buses of Euro II till Euro IV technologies by the VERT-certified DPF confirmed its high efficiency in reduction of UFP emissions. Particle-count filtration efficiency values of the retrofit DPF were found to be extremely high - greater than 99.8%, similar to that of the OEM filter in the Euro V bus.

  15. Conceptual design of the CZMIL data processing system (DPS): algorithms and software for fusing lidar, hyperspectral data, and digital images

    NASA Astrophysics Data System (ADS)

    Park, Joong Yong; Tuell, Grady

    2010-04-01

    The Data Processing System (DPS) of the Coastal Zone Mapping and Imaging Lidar (CZMIL) has been designed to automatically produce a number of novel environmental products through the fusion of Lidar, spectrometer, and camera data in a single software package. These new products significantly transcend use of the system as a bathymeter, and support use of CZMIL as a complete coastal and benthic mapping tool. The DPS provides a spinning globe capability for accessing data files; automated generation of combined topographic and bathymetric point clouds; a fully-integrated manual editor and data analysis tool; automated generation of orthophoto mosaics; automated generation of reflectance data cubes from the imaging spectrometer; a coupled air-ocean spectral optimization model producing images of chlorophyll and CDOM concentrations; and a fusion based capability to produce images and classifications of the shallow water seafloor. Adopting a multitasking approach, we expect to achieve computation of the point clouds, DEMs, and reflectance images at a 1:1 processing to acquisition ratio.

  16. Generation of shrimp waste-based dispersant for oil spill response.

    PubMed

    Zhang, Kedong; Zhang, Baiyu; Song, Xing; Liu, Bo; Jing, Liang; Chen, Bing

    2018-04-01

    In this study, shrimp waste was enzymatically hydrolyzed to generate a green dispersant and the product was tested for crude oil dispersion in seawater. The hydrolysis process was first optimized based on the dispersant effectiveness (DE) of the product. The functional properties of the product were identified including stability, critical micelle concentration, and emulsification activity. Water was confirmed as a good solvent for dispersant generation when compared with three chemical solvents. The effects of salinity, mixing energy, and temperature on the dispersion of the Alaska North Slope (ANS) crude oil were examined. Microtox acute toxicity test was also conducted to evaluate the toxicity of the produced dispersant. In addition, DE of the product on three different types of crude oil, including ANS crude oil, Prudhoe Bay crude oil (PBC), and Arabian Light crude oil (ALC) was compared with that of the Corexit 9500, respectively. The research output could lead to a promising green solution to the oil spill problem and might result in many other environmental applications.

  17. Preliminary ECLSS waste water model

    NASA Technical Reports Server (NTRS)

    Carter, Donald L.; Holder, Donald W., Jr.; Alexander, Kevin; Shaw, R. G.; Hayase, John K.

    1991-01-01

    A preliminary waste water model for input to the Space Station Freedom (SSF) Environmental Control and Life Support System (ECLSS) Water Processor (WP) has been generated for design purposes. Data have been compiled from various ECLSS tests and flight sample analyses. A discussion of the characterization of the waste streams comprising the model is presented, along with a discussion of the waste water model and the rationale for the inclusion of contaminants in their respective concentrations. The major objective is to establish a methodology for the development of a waste water model and to present the current state of that model.

  18. Effect of retorted-oil shale leachate on a blue-green alga (Anabaena flos-aquae)

    USGS Publications Warehouse

    McKnight, Diane M.; Pereira, Wilfred E.; Rostad, Colleen E.; Stiles, Eric A.

    1983-01-01

    In the event of the development of the large oil shale reserves of Colorado, Utah, and Wyoming, one of the main environmental concerns will be disposal of retorted-oil shale which will be generated in greater volume than the original volume oI the mined oil shale. Investigators have found that leachates of retorted-oil shale are alkaline and have large concentrations of dissolved solids, molybdenum, boron, and fluoride (STOLLENWERK & RUNNELS 1981). STOLLENWERK & RUNNELS (1981) concluded that drainage from waste shale piles could have deleterious effects on the water quality of streams in northwestern Colorado.

  19. Exploring EKC, trends of growth patterns and air pollutants concentration level in Malaysia: A Nemerow Index Approach

    NASA Astrophysics Data System (ADS)

    Bekhet, Hussain A.; >Tahira Yasmin,

    2013-06-01

    The present study examines an Environmental Kuznets Curve (EKC) hypothesis by analyzing annual data of air pollutants concentartion and per capita GDP as economic indicator over the (1996-2010) period in Malaysia. Nemerow Index Approach (I) used to generate a measures of air pollution. The results show that ambient air quality indicators supports the EKC hypothesis which stated that pollution levels increase as a country develops, but begin to decrease as rising incomes pass beyond a turning poin. Also, the I result is justifying that most pollutants are showing value less than 1.

  20. System monitoring feedback in cinemas and harvesting energy of the air conditioning condenser

    NASA Astrophysics Data System (ADS)

    Pop, P. P.; Pop-Vadean, A.; Barz, C.; Latinovic, T.; Chiver, O.

    2017-05-01

    Our article monitors the degree of emotional involvement of the audience in the action film in theaters by measuring the concentration of CO2. The software performs data processing obtained dispersion sensors and displays data during the film. The software will also trigger the start of the air conditioning condenser where we can get harvesting energy by installing a piezoelectric device. Useful energy can be recovered from various waste produced in cinema. The time lag between actions and changes in environmental systems determines that decisions made now will affect subsequent generations and the future of our environment.

  1. Country report: Broiler industry and broiler litter-related problems in the southeastern United States.

    PubMed

    Paudel, Krishna P; McIntosh, Christopher S

    2005-01-01

    This report describes the development of the broiler litter problem in the southeastern United States, including the economic opportunity and environmental challenges brought to the region by the industry. Through an analysis applied to the State of Georgia, land application of litter as a disposal alternative is examined along with its associated benefits. The analysis indicates that litter could be transported economically up to 256 km for cropland application. Excessive broiler litter production in a few concentrated regions is expected to stimulate the development of alternative approaches to broiler litter management, such as electricity generation.

  2. Metabolomic and oxidative effects of quantum dots-indolicidin on three generations of Daphnia magna.

    PubMed

    Falanga, Annarita; Mercurio, Flavia A; Siciliano, Antonietta; Lombardi, Lucia; Galdiero, Stefania; Guida, Marco; Libralato, Giovanni; Leone, Marilisa; Galdiero, Emilia

    2018-05-01

    This study evaluated the effect of QDs functionalized with the antimicrobial peptide indolicidin on oxidative stress and metabolomics profiles of Daphnia magna across three generations (F0, F1, and F2). Exposing D. magna to sub-lethal concentrations of the complex QDs-indolicidin, a normal survival of daphnids was observed from F0 to F2, but a delay of first brood, fewer broods per female, a decrease of length of about 50% compared to control. In addition, QDs-indolicidin induced a significantly higher production of reactive oxygen species (ROS) gradually in each generation and an impairment of enzymes response to oxidative stress such as superoxide dismutase (SOD), catalase (CAT) and glutathione transferase (GST). Effects were confirmed by metabolomics profiles that pointed out a gradual decrease of metabolomics content over the three generations and a toxic effect of QDs-indolicidin likely related to the higher accumulation of ROS and decreased antioxidant capacity in F1 and F2 generations. Results highlighted the capability of metabolomics to reveal an early metabolic response to stress induced by environmental QDs-indolicidin complex. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. A cross-sectional study of determinants of indoor environmental exposures in households with and without chronic exposure to biomass fuel smoke.

    PubMed

    Pollard, Suzanne L; Williams, D'Ann L; Breysse, Patrick N; Baron, Patrick A; Grajeda, Laura M; Gilman, Robert H; Miranda, J Jaime; Checkley, William

    2014-03-24

    Burning biomass fuels indoors for cooking is associated with high concentrations of particulate matter (PM) and carbon monoxide (CO). More efficient biomass-burning stoves and chimneys for ventilation have been proposed as solutions to reduce indoor pollution. We sought to quantify indoor PM and CO exposures in urban and rural households and determine factors associated with higher exposures. A secondary objective was to identify chronic vs. acute changes in cardiopulmonary biomarkers associated with exposure to biomass smoke. We conducted a census survey followed by a cross-sectional study of indoor environmental exposures and cardiopulmonary biomarkers in the main household cook in Puno, Peru. We measured 24-hour indoor PM and CO concentrations in 86 households. We also measured PM2.5 and PM10 concentrations gravimetrically for 24 hours in urban households and during cook times in rural households, and generated a calibration equation using PM2.5 measurements. In a census of 4903 households, 93% vs. 16% of rural vs. urban households used an open-fire stove; 22% of rural households had a homemade chimney; and <3% of rural households participated in a national program encouraging installation of a chimney. Median 24-hour indoor PM2.5 and CO concentrations were 130 vs. 22 μg/m3 and 5.8 vs. 0.4 ppm (all p<0.001) in rural vs. urban households. Having a chimney did not significantly reduce median concentrations in 24-hour indoor PM2.5 (119 vs. 137 μg/m3; p=0.40) or CO (4.6 vs. 7.2 ppm; p=0.23) among rural households with and without chimneys. Having a chimney did not significantly reduce median cook-time PM2.5 (360 vs. 298 μg/m3, p=0.45) or cook-time CO concentrations (15.2 vs. 9.4 ppm, p=0.23). Having a thatched roof (p=0.007) and hours spent cooking (p=0.02) were associated with higher 24-hour average PM concentrations. Rural participants had higher median exhaled CO (10 vs. 6 ppm; p=0.01) and exhaled carboxyhemoglobin (1.6% vs. 1.0%; p=0.04) than urban participants. Indoor air concentrations associated with biomass smoke were six-fold greater in rural vs. urban households. Having a homemade chimney did not reduce environmental exposures significantly. Measures of exhaled CO provide useful cardiopulmonary biomarkers for chronic exposure to biomass smoke.

  4. A cross-sectional study of determinants of indoor environmental exposures in households with and without chronic exposure to biomass fuel smoke

    PubMed Central

    2014-01-01

    Background Burning biomass fuels indoors for cooking is associated with high concentrations of particulate matter (PM) and carbon monoxide (CO). More efficient biomass-burning stoves and chimneys for ventilation have been proposed as solutions to reduce indoor pollution. We sought to quantify indoor PM and CO exposures in urban and rural households and determine factors associated with higher exposures. A secondary objective was to identify chronic vs. acute changes in cardiopulmonary biomarkers associated with exposure to biomass smoke. Methods We conducted a census survey followed by a cross-sectional study of indoor environmental exposures and cardiopulmonary biomarkers in the main household cook in Puno, Peru. We measured 24-hour indoor PM and CO concentrations in 86 households. We also measured PM2.5 and PM10 concentrations gravimetrically for 24 hours in urban households and during cook times in rural households, and generated a calibration equation using PM2.5 measurements. Results In a census of 4903 households, 93% vs. 16% of rural vs. urban households used an open-fire stove; 22% of rural households had a homemade chimney; and <3% of rural households participated in a national program encouraging installation of a chimney. Median 24-hour indoor PM2.5 and CO concentrations were 130 vs. 22 μg/m3 and 5.8 vs. 0.4 ppm (all p<0.001) in rural vs. urban households. Having a chimney did not significantly reduce median concentrations in 24-hour indoor PM2.5 (119 vs. 137 μg/m3; p=0.40) or CO (4.6 vs. 7.2 ppm; p=0.23) among rural households with and without chimneys. Having a chimney did not significantly reduce median cook-time PM2.5 (360 vs. 298 μg/m3, p=0.45) or cook-time CO concentrations (15.2 vs. 9.4 ppm, p=0.23). Having a thatched roof (p=0.007) and hours spent cooking (p=0.02) were associated with higher 24-hour average PM concentrations. Rural participants had higher median exhaled CO (10 vs. 6 ppm; p=0.01) and exhaled carboxyhemoglobin (1.6% vs. 1.0%; p=0.04) than urban participants. Conclusions Indoor air concentrations associated with biomass smoke were six-fold greater in rural vs. urban households. Having a homemade chimney did not reduce environmental exposures significantly. Measures of exhaled CO provide useful cardiopulmonary biomarkers for chronic exposure to biomass smoke. PMID:24655424

  5. Critique on the use of the standardized avian acute oral toxicity test for first generation anticoagulant rodenticides

    USGS Publications Warehouse

    Vyas, Nimish B.; Rattner, Barnett A.

    2012-01-01

    Avian risk assessments for rodenticides are often driven by the results of standardized acute oral toxicity tests without regards to a toxicant's mode of action and time course of adverse effects. First generation anticoagulant rodenticides (FGARs) generally require multiple feedings over several days to achieve a threshold concentration in tissue and cause adverse effects. This exposure regimen is much different than that used in the standardized acute oral toxicity test methodology. Median lethal dose values derived from standardized acute oral toxicity tests underestimate the environmental hazard and risk of FGARs. Caution is warranted when FGAR toxicity, physiological effects, and pharmacokinetics derived from standardized acute oral toxicity testing are used for forensic confirmation of the cause of death in avian mortality incidents and when characterizing FGARs' risks to free-ranging birds.

  6. Effects of electrode gap and electric current on chlorine generation of electrolyzed deep ocean water.

    PubMed

    Hsu, Guoo-Shyng Wang; Hsu, Shun-Yao

    2018-04-01

    Electrolyzed water is a sustainable disinfectant, which can comply with food safety regulations and is environmental friendly. A two-factor central composite design was adopted for studying the effects of electrode gap and electric current on chlorine generation efficiency of electrolyzed deep ocean water. Deep ocean water was electrolyzed in a glass electrolyzing cell equipped with platinum-plated titanium anode and cathode in a constant-current operation mode. Results showed that current density, chlorine concentration, and electrolyte temperature increased with electric current, while electric efficiency decreased with electric current and electrode gap. An electrode gap of less than 11.7 mm, and a low electric current appeared to be a more energy efficient design and operation condition for the electrolysis system. Copyright © 2017. Published by Elsevier B.V.

  7. Use of a Concentration Game for Environmental Chemistry Class Review

    ERIC Educational Resources Information Center

    Nowosielski, Danica A.

    2007-01-01

    The concentration game can be used as a complete class or a portion of it to help reinforce the material being presented or for review sessions. An environmental chemistry class review is presented with the use of the concentration game.

  8. A plasmonic ELISA for the naked-eye detection of chromium ions in water samples.

    PubMed

    Yao, Cuize; Yu, Shiting; Li, Xiuqing; Wu, Ze; Liang, Jiajie; Fu, Qiangqiang; Xiao, Wei; Jiang, Tianjiu; Tang, Yong

    2017-02-01

    Here, we describe the development of a triangular silver nanoprism (AgNPR) etching-based plasmonic ELISA for the colorimetric determination of Cr(III) levels in environmental water samples. This involved the creation of a novel signal generation system (substrate reaction solution) for a competitive ELISA in which hydrogen peroxide (H 2 O 2 ) is used to etch triangular AgNPRs, inducing a change in color. This is achieved by controlling the H 2 O 2 concentration that remains after degradation by catalase, which is conjugated to the secondary antibody of the ELISA. Because the degree of color change and the shift in the absorption spectrum of the substrate reaction solution are closely correlated with the Cr(III) concentration, this plasmonic ELISA can be used not only for the quantification of Cr(III) concentrations ranging from 3.13 to 50 ng/mL, with a limit of detection (LOD) of 3.13 ng/mL, but also for the visual detection (indicated by a color change from blue to mauve) of Cr(III) with a sensitivity of 6.25 ng/mL by the naked eye. Therefore, the plasmonic ELISA developed in this work represents a new strategy for heavy metal ion detection and has high potential applicability in resource-constrained areas. Graphical Abstract Schematic diagram of triangular silver nanoprism etching-based signal generation system.

  9. Planning and implementing an honors degree in environmental science curricula: a case study from the University of Delaware, USA

    NASA Astrophysics Data System (ADS)

    Levia, Delphis

    2015-04-01

    Environmental degradation is undermining the sustainability of our planet. The multi-faceted nature of environmental stressors, which inherently couples human-environment interactions across space and time, necessitates that we train environmental scientists holistically within an interdisciplinary framework. Recruiting top-notch honors students to major in the environmental sciences is a critical step to ensure that we have the human capital to tackle complicated environmental problems successfully. Planning and implementing an honors degree is no trivial task. Based upon a recently completed and implemented set of programmatic revisions*, this poster showcases a successful example of an honors curriculum in environmental science to recruit and educate dynamic thinkers capable of improving the quality of our environment. The interdisciplinary environmental science program at the University of Delaware emphasizes the cross-cutting among earth's spheres through a core set of courses which employ a quantitative approach which is supplemented by several environmental policy courses. The core is coupled with six different thematic concentrations (students choose one) which permit the student to delve into a particular area of environmental science. The honors component of the degree consists of twelve additional credits. These credits are met through a specially designed introductory environmental course, a field experience requiring data collection, analysis, and write-up, a capstone course, and one other environmentally related course. The environmental sciences honors curriculum outlined in this poster may serve as a useful guide to others wishing to establish an honors program of their own in environmental science to recruit and prepare the next generation to mitigate environmental degradation. -------------- * Please note that the planning process for the environmental programs was and is the collective effort of many dedicated people. Current members of the advisory Environmental Council include Drs. Delphis Levia (Program Director & Chair), Nancy Targett (Dean), Frank Newton, Tracy Deliberty, Steve Hastings, John Madsen, Paul Imhoff, Jan Johnson, Jerry Kauffman, Murray Johnston.

  10. Environmental factors associated with long-term changes in chlorophyll concentration in the Sacramento-San Joaquin delta and Suisun Bay, California

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lehman, P.W.

    Long-term changes in chlorophyll concentration were predicted from environmental variables using Box-Jenkins transfer function models for the Sacramento and San Joaquin rivers and Suisun Bay. The indication that oceanic phytoplankton biomass for the California regions is associated with climatic phenomena produced by El Nino and the Southern Oscillation (ENSO) was one of several factors used to standardize the dataset. Data used for the analyses were collected continuously on a semimonthly or monthly basis over the 17-yr period between 1971 and 1987. Groups of highly correlated environmental variables were summarized along three environmental axes using principal component analysis. The first environmentalmore » axis summarized river flow and specific conductance. The second environmental axis summarized water transparency and the third environmental axis summarized air and water temperature. Chlorophyll concentration was significantly cross-correlated with environmental axes and individual environmental variables. Transfer function models developed to describe changes in chlorophyll concentration over time were characterized by lag responses and described between 41% and 51% of the data variation. Significant cross-correlations between environmental axes and the California climate index (CA SLP) were used to develop a conceptual model of the link between regional climate and estuarine production. 50 refs., 5 figs.« less

  11. Correlation between concentrations of n-hexane and toluene in exhaled and environmental air in an occupationally exposed population.

    PubMed

    Periago, J F; Morente, A; Villanueva, M; Luna, A

    1994-01-01

    We determined the correlations between the concentrations of n-hexane and toluene in exhaled and environmental air in the shoe manufacturing industry. Data were collected in 1988 and in 1992 from a total of 265 subjects. Environmental air samples were collected with personal diffusive samplers by adsorption on activated charcoal during exposure and from end-expired air (alveolar air) on cartridges of activated charcoal after exposure. Both compounds were desorbed with carbon disulphide and analysed by gas chromatography. Linear regression analyses showed a good correlation between environmental and end-expired air concentrations (r = 0.82 for n-hexane and r = 0.81 for toluene). These correlations allowed us to calculate the concentrations in expired air corresponding to current environmental limit values. The calculated concentrations in end-expired air that correspond to current environmental threshold limit values of 176 mg m-3 for n-hexane and 377 mg m-3 for toluene are 28 mg m-3 (95% confidence limit, 27-29 mg m-3) and 40 mg m-3 (95% confidence limit, 39-41 mg m-3), respectively. Similar correlations were found when the data from the two study periods were analysed separately.

  12. Inhibition of Glutathione Biosynthesis Alters Compartmental Redox Status and the Thiol Proteome in Organogenesis-Stage Rat Conceptuses

    PubMed Central

    Harris, Craig; Shuster, Daniel Z.; Gomez, Rosaicela Roman; Sant, Karilyn E.; Reed, Matthew S.; Pohl, Jan; Hansen, Jason M.

    2013-01-01

    Developmental signals that control growth and differentiation are regulated by environmental factors that generate reactive oxygen species (ROS) and alter steady state redox environments in tissues and fluids. Protein thiols are selectively oxidized and reduced in distinct spatial and temporal patterns in conjunction with changes in glutathione/glutathione disulfide (GSH/GSSG) and cysteine/cystine (Cys/CySS) redox potentials (E0) to regulate developmental signaling. The purpose of this study was to measure compartment specific thiol redox status in cultured organogenesis-stage rat conceptuses and to evaluate the impact of thiol oxidation on the redox proteome. The visceral yolk sac (VYS) has the highest initial (0 hr) total intracellular GSH (GSH + 2GSSG) concentrations (5.5 mM) and the lowest Eh (−223 mV) as determined by HPLC analysis. Total embryo (EMB) GSH concentrations ranged lower (3.2 mM) and were only slightly more oxidized than the VYS. Total GSH concentrations in yolk sac fluid (YSF) and amniotic fluid (AF) are >500-fold lower than in tissues and are highly oxidized (YSF Eh = −121 mV and AF Eh = −49 mV). Steady state total Cys concentrations (Cys + 2CySS) were significantly lower than GSH in tissues but were otherwise equal in VYS and EMB near 0.5 mM. On gestational day 11, total GSH and Cys concentrations in EMB and VYS increase significantly over the 6 hr time course while Eh remains relatively constant. The Eh (GSH/GSSG) in YSF and AF become more reduced over time while Eh (Cys/CySS) become more oxidized. Addition of L-buthionine-S,R-sulfoximine (BS0) to selectively inhibit GSH synthesis and mimic the effects of some GSH-depleting environmental chemicals, significantly decreased VYS and EMB GSH and cys concentrations and increased Eh over the 6 hr exposure period, showing a greater overall oxidation. In the YSF, BSO caused a significant increase in total Cys concentrations to 1.7 mM but did not significantly change the Eh for Cys/CySS. A significant net oxidation was seen in the BSO-treated AF compartment after 6 hr. Biotinylated iodoacetamide (BIAM) labeling of proteins revealed the significant thiol-oxidation of many EMB proteins following BSO treatment. Quantitative changes in the thiol proteome, associated with developmentally-relevant pathways, were detected using isotope coded affinity tag (ICAT) labeling and mass spectroscopy. Adaptive pathways were selectively enriched with increased concentrations of proteins involved in mRNA processing (splicesome) and mRNA stabilization (glycolysis, GAPDH), as well as, protein synthesis (aminoacyl-tRNA) and protein folding (antigen processing, Hsp70, protein disulfide isomerase). These results show the ability of chemical and environmental modulators to selectively alter compartmental intracellular and extracellular GSH and Cys concentrations and change their corresponding Eh within the intact viable conceptus. The altered Eh were also of sufficient magnitude to alter the redox proteome and change relative protein concentrations suggesting that the mechanistic links through which environmental factors inform and regulate developmental signaling pathways may be discovered using systems developmental biology techniques. PMID:23736079

  13. Inhibition of glutathione biosynthesis alters compartmental redox status and the thiol proteome in organogenesis-stage rat conceptuses.

    PubMed

    Harris, Craig; Shuster, Daniel Z; Roman Gomez, Rosaicela; Sant, Karilyn E; Reed, Matthew S; Pohl, Jan; Hansen, Jason M

    2013-10-01

    Developmental signals that control growth and differentiation are regulated by environmental factors that generate reactive oxygen species (ROS) and alter steady-state redox environments in tissues and fluids. Protein thiols are selectively oxidized and reduced in distinct spatial and temporal patterns in conjunction with changes in glutathione/glutathione disulfide (GSH/GSSG) and cysteine/cystine (Cys/CySS) redox potentials (E(h)) to regulate developmental signaling. The purpose of this study was to measure compartment-specific thiol redox status in cultured organogenesis-stage rat conceptuses and to evaluate the impact of thiol oxidation on the redox proteome. The visceral yolk sac (VYS) has the highest initial (0 h) total intracellular GSH (GSH+2GSSG) concentration (5.5 mM) and the lowest Eh (-223 mV) as determined by HPLC analysis. Total embryo (EMB) GSH concentrations ranged lower (3.2 mM) and were only slightly more oxidized than the VYS. Total GSH concentrations in yolk sac fluid (YSF) and amniotic fluid (AF) are >500-fold lower than in tissues and are highly oxidized (YSF E(h)=-121 mV and AF E(h)=-49 mV). Steady-state total Cys concentrations (Cys+2CySS) were significantly lower than GSH in tissues but were otherwise equal in VYS and EMB near 0.5 mM. On gestational day 11, total GSH and Cys concentrations in EMB and VYS increase significantly over the 6h time course while E(h) remains relatively constant. The Eh (GSH/GSSG) in YSF and AF become more reduced over time while E(h) (Cys/CySS) become more oxidized. Addition of L-buthionine-S,R-sulfoximine (BS0) to selectively inhibit GSH synthesis and mimic the effects of some GSH-depleting environmental chemicals significantly decreased VYS and EMB GSH and Cys concentrations and increased Eh over the 6h exposure period, showing a greater overall oxidation. In the YSF, BSO caused a significant increase in total Cys concentrations to 1.7 mM but did not significantly change the E(h) for Cys/CySS. A significant net oxidation was seen in the BSO-treated AF compartment after 6 h. Biotinylated iodoacetamide (BIAM) labeling of proteins revealed the significant thiol oxidation of many EMB proteins following BSO treatment. Quantitative changes in the thiol proteome, associated with developmentally relevant pathways, were detected using isotope coded affinity tag (ICAT) labeling and mass spectroscopy. Adaptive pathways were selectively enriched with increased concentrations of proteins involved in mRNA processing (splicesome) and mRNA stabilization (glycolysis, GAPDH), as well as protein synthesis (aminoacyl-tRNA) and protein folding (antigen processing, Hsp70, protein disulfide isomerase). These results show the ability of chemical and environmental modulators to selectively alter compartmental intracellular and extracellular GSH and Cys concentrations and change their corresponding E(h) within the intact viable conceptus. The altered E(h) were also of sufficient magnitude to alter the redox proteome and change relative protein concentrations, suggesting that the mechanistic links through which environmental factors inform and regulate developmental signaling pathways may be discovered using systems developmental biology techniques. Copyright © 2013 Elsevier Inc. All rights reserved.

  14. Disparities in Ammonia, Temperature, Humidity, and Airborne Particulate Matter between the Micro-and Macroenvironments of Mice in Individually Ventilated Caging

    PubMed Central

    Rosenbaum, Matthew D; VandeWoude, Susan; Volckens, John; Johnson, Thomas E

    2010-01-01

    Animal room environmental parameters typically are monitored with the assumption that the environment within the cage closely mirrors the room environment. This study evaluated that premise by examining macro- (room) and microenvironmental (cage) parameters in individually ventilated cages housing mice with variable amounts of bedding over a period of 17 d without cage changes. Intracage ammonia levels remained within recommended human guidelines but were higher than room levels, confirming that microisolation caging is efficient at preventing ammonia generated from animal waste from escaping into the room. Humidity and temperature within cages were consistently higher than room levels. Particles in the room predominantly consisted of fine particles (diameter less than 2.5 µm), presumably from the ambient atmosphere; some of these particles were found in the cage microenvironment. In addition, mouse activity within cages produced larger particles, and these particles contributed to substantially higher aerosol mass concentrations within the cage. These findings demonstrate that, although cage and room environmental parameters differ, knowledge of room environmental conditions can be used to predict certain conditions within the cage. This association is relevant in that typical animal care standard operating procedures rely on room measurements, not intracage measurements, which arguably are more important for assessing animal welfare. Further, location and ambient climate can influence particle concentrations in the room, and consequently within the animal cage, suggesting local weather patterns and air quality may account for variability among studies conducted at sites that are geographically divergent. PMID:20353692

  15. Permeable bio-reactive barriers to address petroleum hydrocarbon contamination at subantarctic Macquarie Island.

    PubMed

    Freidman, Benjamin L; Terry, Deborah; Wilkins, Dan; Spedding, Tim; Gras, Sally L; Snape, Ian; Stevens, Geoffrey W; Mumford, Kathryn A

    2017-05-01

    A reliance on diesel generated power and a history of imperfect fuel management have created a legacy of petroleum hydrocarbon contamination at subantarctic Macquarie Island. Increasing environmental awareness and advances in contaminant characterisation and remediation technology have fostered an impetus to reduce the environmental risk associated with legacy sites. A funnel and gate permeable bio-reactive barrier (PRB) was installed in 2014 to address the migration of Special Antarctic Blend diesel from a spill that occurred in 2002, as well as older spills and residual contaminants in the soil at the Main Power House. The PRB gate comprised of granular activated carbon and natural clinoptilolite zeolite. Petroleum hydrocarbons migrating in the soil water were successfully captured on the reactive materials, with concentrations at the outflow of the barrier recorded as being below reporting limits. The nutrient and iron concentrations delivered to the barrier demonstrated high temporal variability with significant iron precipitation observed across the bed. The surface of the granular activated carbon was largely free from cell attachment while natural zeolite demonstrated patchy biofilm formation after 15 months following PRB installation. This study illustrates the importance of informed material selection at field scale to ensure that adsorption and biodegradation processes are utilised to manage the environmental risk associated with petroleum hydrocarbon spills. This study reports the first installation of a permeable bio-reactive barrier in the subantarctic. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Pilot-scale field study for ammonia removal from lagoon biogas using an acid wet scrubber.

    PubMed

    Lin, Hongjian; Wu, Xiao; Miller, Curtis; Zhu, Jun; Hadlocon, Lara Jane; Manuzon, Roderick; Zhao, Lingying

    2014-01-01

    The anaerobic activities in swine slurry storage and treatment generate biogas containing gaseous ammonia component which is a chemical agent that can cause adverse environmental impacts when released to the atmosphere. The aim of this pilot plant study was to remove ammonia from biogas generated in a covered lagoon, using a sulfuric acid wet scrubber. The data showed that, on average, the biogas contained 43.7 ppm of ammonia and its concentration was found to be exponentially related to the air temperature inside the lagoon. When the air temperature rose to 35°C and the biogas ammonia concentration reached 90 ppm, the mass transfer of ammonia/ammonium from the deeper liquid body to the interface between the air and liquid became a limiting factor. The biogas velocity was critical in affecting ammonia removal efficiency of the wet scrubber. A biogas flow velocity of 8 to 12 mm s(-1) was recommended to achieve a removal efficiency of greater than 60%. Stepwise regression revealed that the biogas velocity and air temperature, not the inlet ammonia concentration in biogas, affected the ammonia removal efficiency. Overall, when 73 g L(-1) (or 0.75 M) sulfuric acid solution was used as the scrubber solution, removal efficiencies varied from 0% to 100% with an average of 55% over a 40-d measurement period. Mass balance calculation based on ammonium-nitrogen concentration in final scrubber liquid showed that about 21.3 g of ammonia was collected from a total volume of 1169 m(3) of biogas, while the scrubber solution should still maintain its ammonia absorbing ability until its concentration reaches up to 1 M. These results showed promising use of sulfuric acid wet scrubber for ammonia removal in the digester biogas.

  17. Degradation of toxic contaminants in water using nanotitania on flyash substrate

    NASA Astrophysics Data System (ADS)

    Sharma, Richa; Madan, Shubhangi; Tiwari, Sangeeta

    2018-05-01

    Photocatalysis has been of significant interest due to its new technology for environmental pollution. Titanium dioxide is known to be extensively used photocatalyst for the removal of environmental contaminants. In the present work, the generation of TiO2 nanoparticles by the thermal decomposition of titanium tetraisopropoxide (TTIP) on flyash core was carried out by insitu precipitation technique. Photodegradation of methylene blue as a water pollutant was carried out experimentally using self-made laboratory photocatalytic reactor and then photocatalytic properties of prepared core shell composite are studied by using UV light. Absorbance spectra were measured at different time interval using a spectrophotometer and the concentration of the test solution was calculated. Effect of different annealing temperatures on dye degradation was studied. Composite particles annealed at 800°C showed almost 82% of removal of the dye in just 10 minutes. Our test results showed that prepared composite material is a promising material for treating wastewater.

  18. Co-generation of microbial lipid and bio-butanol from corn cob bagasse in an environmentally friendly biorefinery process.

    PubMed

    Cai, Di; Dong, Zhongshi; Wang, Yong; Chen, Changjing; Li, Ping; Qin, Peiyong; Wang, Zheng; Tan, Tianwei

    2016-09-01

    Biorefinery process of corn cob bagasse was investigated by integrating microbial lipid and ABE fermentation. The effects of NaOH concentration on the fermentations performance were evaluated. The black liquor after pretreatment was used as substrate for microbial lipid fermentation, while the enzymatic hydrolysates of the bagasse were used for ABE fermentation. The results demonstrated that under the optimized condition, the cellulose and hemicellulose in raw material could be effectively utilized. Approximate 87.7% of the polysaccharides were converted into valuable biobased products (∼175.7g/kg of ABE along with ∼36.6g/kg of lipid). At the same time, almost half of the initial COD (∼48.9%) in the black liquor could be degraded. The environmentally friendly biorefinery process showed promising in maximizing the utilization of biomass for future biofuels production. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Comprehensive probabilistic modelling of environmental emissions of engineered nanomaterials.

    PubMed

    Sun, Tian Yin; Gottschalk, Fadri; Hungerbühler, Konrad; Nowack, Bernd

    2014-02-01

    Concerns about the environmental risks of engineered nanomaterials (ENM) are growing, however, currently very little is known about their concentrations in the environment. Here, we calculate the concentrations of five ENM (nano-TiO2, nano-ZnO, nano-Ag, CNT and fullerenes) in environmental and technical compartments using probabilistic material-flow modelling. We apply the newest data on ENM production volumes, their allocation to and subsequent release from different product categories, and their flows into and within those compartments. Further, we compare newly predicted ENM concentrations to estimates from 2009 and to corresponding measured concentrations of their conventional materials, e.g. TiO2, Zn and Ag. We show that the production volume and the compounds' inertness are crucial factors determining final concentrations. ENM production estimates are generally higher than a few years ago. In most cases, the environmental concentrations of corresponding conventional materials are between one and seven orders of magnitude higher than those for ENM. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Does the presence of caffeine in the marine environment represent an environmental risk? A regional and global study.

    PubMed

    Dafouz, Raquel; Cáceres, Neus; Rodríguez-Gil, José Luis; Mastroianni, Nicola; López de Alda, Miren; Barceló, Damià; de Miguel, Ángel Gil; Valcárcel, Yolanda

    2018-02-15

    Caffeine is an emerging contaminant considered to be an indicator of human contamination that has been widely detected in various aquatic systems, especially in continental waters. Nevertheless, the extent of its possible environmental impact is yet to be determined. This study determined the presence of caffeine, and evaluated the environmental hazard posed by this substance, in the "Rías Gallegas", a series of costal inlets in north-west Spain which are of great ecological value and in which fishing and bivalve farming, are a significant source of income. Caffeine was found to be present at concentrations higher than the limit of quantification (LOQ=3.07ngL -1 ) in 15 of the 23 samples analysed, with the highest seawater concentration being 857ngL -1 (the highest measured in seawater in Spain). Six out of 22 seawater samples resulted in a hazard quotient (HQ) from chronic exposure higher than 1 with the highest being 17.14, indicating a high probability of adverse effects in the aquatic environment. Environmental Exposure Distributions (EEDs) generated from a literature review of caffeine levels reported previously in four out of the five continents, showed that 28% of all seawater samples, and 69% of all estuary water samples where caffeine has ever been measured resulted in HQ>1 for chronic exposure. Further studies into the potential adverse effects that may arise from exposure to caffeine in aquatic systems are still required. Indeed, the need to gain a more in-depth understanding of the long-term ecotoxicological effects of caffeine is essential to ensure the quality of our health and environment. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Biomarkers of exposure to stainless steel tungsten inert gas welding fumes and the effect of exposure on exhaled breath condensate.

    PubMed

    Riccelli, Maria Grazia; Goldoni, Matteo; Andreoli, Roberta; Mozzoni, Paola; Pinelli, Silvana; Alinovi, Rossella; Selis, Luisella; Mutti, Antonio; Corradi, Massimo

    2018-08-01

    The respiratory tract is the main target organ of the inhaled hexavalent chromium (Cr-VI) and nickel (Ni) contained in stainless steel (SS) welding fumes (WFs). The aim of this study was to investigate the Cr and Ni content of the exhaled breath condensate (EBC) of SS tungsten inert gas (TIG) welders, and relate their concentrations with oxidative stress and inflammatory biomarkers. EBC and urine from 100 SS TIG welders were collected pre-(T 0 ) and post-shift (T 1 ) on a Friday, and pre-shift (T 2 ) on the following Monday morning. Both EBC and urinary Cr concentrations were higher at T 1 (0.08 μg/L and 0.71 μg/g creatinine) and T 0 (0.06 μg/L and 0.74 μg/g creatinine) than at T 2 (below the limit of detection [LOD] and 0.59 μg/g creatinine), and EBC Ni concentrations generally remained

  2. Vulnerability of US thermoelectric power generation to climate change when incorporating state-level environmental regulations

    NASA Astrophysics Data System (ADS)

    Liu, Lu; Hejazi, Mohamad; Li, Hongyi; Forman, Barton; Zhang, Xiao

    2017-08-01

    Previous modelling studies suggest that thermoelectric power generation is vulnerable to climate change, whereas studies based on historical data suggest the impact will be less severe. Here we explore the vulnerability of thermoelectric power generation in the United States to climate change by coupling an Earth system model with a thermoelectric power generation model, including state-level representation of environmental regulations on thermal effluents. We find that the impact of climate change is lower than in previous modelling estimates due to an inclusion of a spatially disaggregated representation of environmental regulations and provisional variances that temporarily relieve power plants from permit requirements. More specifically, our results indicate that climate change alone may reduce average generating capacity by 2-3% by the 2060s, while reductions of up to 12% are expected if environmental requirements are enforced without waivers for thermal variation. Our work highlights the significance of accounting for legal constructs and underscores the effects of provisional variances in addition to environmental requirements.

  3. Inference for Environmental Intervention Studies using Principal Stratification

    PubMed Central

    Hackstadt, A. J.; Butz, Arlene M.; Williams, D’Ann L.; Diette, Gregory B.; Breysse, Patrick N.; Matsui, Elizabeth C.; Peng, Roger D.

    2014-01-01

    Previous research has found evidence of an association between indoor air pollution and asthma morbidity in children. Environmental intervention studies have been performed to examine the role of household environmental interventions in altering indoor air pollution concentrations and improving health. Previous environmental intervention studies have found only modest effects on health outcomes and it is unclear if the health benefits provided by environmental modification are comparable to those provided by medication. Traditionally, the statistical analysis of environmental intervention studies has involved performing two intention-to-treat analyses that separately estimate the effect of the environmental intervention on health and the effect of the environmental intervention on indoor air pollution concentrations. We propose a principal stratification (PS) approach to examine the extent to which an environmental intervention’s effect on health outcomes coincides with its effect on indoor air pollution. We apply this approach to data from a randomized air cleaner intervention trial conducted in a population of asthmatic children living in Baltimore, Maryland, USA. We find that amongst children for whom the air cleaner reduced indoor particulate matter concentrations, the intervention resulted in a meaningful improvement of asthma symptoms with an effect generally larger than previous studies have shown. A key benefit of using principal stratification in environmental intervention studies is that it allows investigators to estimate causal effects of the intervention for sub-groups defined by changes in the indoor air pollution concentration. PMID:25164949

  4. Inference for environmental intervention studies using principal stratification.

    PubMed

    Hackstadt, Amber J; Matsui, Elizabeth C; Williams, D'Ann L; Diette, Gregory B; Breysse, Patrick N; Butz, Arlene M; Peng, Roger D

    2014-12-10

    Previous research has found evidence of an association between indoor air pollution and asthma morbidity in children. Environmental intervention studies have been performed to examine the role of household environmental interventions in altering indoor air pollution concentrations and improving health. Previous environmental intervention studies have found only modest effects on health outcomes and it is unclear if the health benefits provided by environmental modification are comparable with those provided by medication. Traditionally, the statistical analysis of environmental intervention studies has involved performing two intention-to-treat analyses that separately estimate the effect of the environmental intervention on health and the effect of the environmental intervention on indoor air pollution concentrations. We propose a principal stratification approach to examine the extent to which an environmental intervention's effect on health outcomes coincides with its effect on indoor air pollution. We apply this approach to data from a randomized air cleaner intervention trial conducted in a population of asthmatic children living in Baltimore, Maryland, USA. We find that among children for whom the air cleaner reduced indoor particulate matter concentrations, the intervention resulted in a meaningful improvement of asthma symptoms with an effect generally larger than previous studies have shown. A key benefit of using principal stratification in environmental intervention studies is that it allows investigators to estimate causal effects of the intervention for sub-groups defined by changes in the indoor air pollution concentration. Copyright © 2014 John Wiley & Sons, Ltd.

  5. Addressing Emerging Risks: Scientific and Regulatory Challenges Associated with Environmentally Persistent Free Radicals.

    PubMed

    Dugas, Tammy R; Lomnicki, Slawomir; Cormier, Stephania A; Dellinger, Barry; Reams, Margaret

    2016-06-08

    Airborne fine and ultrafine particulate matter (PM) are often generated through widely-used thermal processes such as the combustion of fuels or the thermal decomposition of waste. Residents near Superfund sites are exposed to PM through the inhalation of windblown dust, ingestion of soil and sediments, and inhalation of emissions from the on-site thermal treatment of contaminated soils. Epidemiological evidence supports a link between exposure to airborne PM and an increased risk of cardiovascular and pulmonary diseases. It is well-known that during combustion processes, incomplete combustion can lead to the production of organic pollutants that can adsorb to the surface of PM. Recent studies have demonstrated that their interaction with metal centers can lead to the generation of a surface stabilized metal-radical complex capable of redox cycling to produce ROS. Moreover, these free radicals can persist in the environment, hence their designation as Environmentally Persistent Free Radicals (EPFR). EPFR has been demonstrated in both ambient air PM2.5 (diameter < 2.5 µm) and in PM from a variety of combustion sources. Thus, low-temperature, thermal treatment of soils can potentially increase the concentration of EPFR in areas in and around Superfund sites. In this review, we will outline the evidence to date supporting EPFR formation and its environmental significance. Furthermore, we will address the lack of methodologies for specifically addressing its risk assessment and challenges associated with regulating this new, emerging contaminant.

  6. Addressing Emerging Risks: Scientific and Regulatory Challenges Associated with Environmentally Persistent Free Radicals

    PubMed Central

    Dugas, Tammy R.; Lomnicki, Slawomir; Cormier, Stephania A.; Dellinger, Barry; Reams, Margaret

    2016-01-01

    Airborne fine and ultrafine particulate matter (PM) are often generated through widely-used thermal processes such as the combustion of fuels or the thermal decomposition of waste. Residents near Superfund sites are exposed to PM through the inhalation of windblown dust, ingestion of soil and sediments, and inhalation of emissions from the on-site thermal treatment of contaminated soils. Epidemiological evidence supports a link between exposure to airborne PM and an increased risk of cardiovascular and pulmonary diseases. It is well-known that during combustion processes, incomplete combustion can lead to the production of organic pollutants that can adsorb to the surface of PM. Recent studies have demonstrated that their interaction with metal centers can lead to the generation of a surface stabilized metal-radical complex capable of redox cycling to produce ROS. Moreover, these free radicals can persist in the environment, hence their designation as Environmentally Persistent Free Radicals (EPFR). EPFR has been demonstrated in both ambient air PM2.5 (diameter < 2.5 µm) and in PM from a variety of combustion sources. Thus, low-temperature, thermal treatment of soils can potentially increase the concentration of EPFR in areas in and around Superfund sites. In this review, we will outline the evidence to date supporting EPFR formation and its environmental significance. Furthermore, we will address the lack of methodologies for specifically addressing its risk assessment and challenges associated with regulating this new, emerging contaminant. PMID:27338429

  7. Environmental Monitoring of Microbe Metabolic Transformation

    NASA Technical Reports Server (NTRS)

    Bebout, Brad (Inventor); Fleming, Erich (Inventor); Piccini, Matthew (Inventor); Beasley, Christopher (Inventor); Bebout, Leslie (Inventor)

    2013-01-01

    Mobile system and method for monitoring environmental parameters involved in growth or metabolic transformation of algae in a liquid. Each of one or more mobile apparati, suspended or partly or wholly submerged in the liquid, includes at least first and second environmental sensors that sense and transmit distinct first and second environmental, growth or transformation parameter values, such as liquid temperature, temperature of gas adjacent to and above the exposed surface, liquid pH, liquid salinity, liquid turbidity, O.sub.2 dissolved in the liquid, CO.sub.2 contained in the liquid, oxidization and reduction potential of the liquid, nutrient concentrations in the liquid, nitrate concentration in the liquid, ammonium concentration in the liquid, bicarbonate concentration in the liquid, phosphate concentration in the liquid, light intensity at the liquid surface, electrical conductivity of the liquid, and a parameter.alpha.(alga) associated with growth stage of the alga, using PAM fluorometry or other suitable parameter measurements.

  8. 75 FR 33656 - Exelon Generation Company, LLC Oyster Creek Nuclear Generating Station Environmental Assessment...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-14

    ... Oyster Creek Nuclear Generating Station Environmental Assessment and Finding of No Significant Impact The... Company, LLC (the licensee), for operation of the Oyster Creek Nuclear Generating Station (Oyster Creek), located in Ocean County, New Jersey. Therefore, as required by 10 CFR Section 51.21, the NRC performed an...

  9. Production of antioxidant compounds of grape seed skin by fermentation and its optimization using response surface method

    NASA Astrophysics Data System (ADS)

    Andayani, D. G. S.; Risdian, C.; Saraswati, V.; Primadona, I.; Mawarda, P. C.

    2017-03-01

    Skins and seeds of grape are waste generated from food industry. These wastes contain nutrients of which able to be utilized as an important source for antioxidant metabolite production. Through an environmentally friendly process, natural antioxidant material was produced. This study aimed to generate antioxidant compounds by liquid fermentation. Optimization was carried out by using Schizosaccharomyces cerevisiae in Katu leaf substrate. Optimization variables through response surface methodology (RSM) were of sucrose concentration, skins and seeds of grape concentration, and pH. Results showed that the optimum conditions for antioxidant production were of 5 g/L sucrose, 5 g/L skins and seed at pH 5, respectively. The resulted antioxidant activity was of 1.62 mg/mL. Mathematical model of variance analysis using a second order polynomial corresponding to the resulted data for the antioxidant was of 20.70124 - 3.86997 A - 0.65996 B - 1.88367 C + 0.19634 A2 - 0.016638 B2 + 0.28848 C2 + 0.26980 AB - 0.068333 AC - 0.12367 BC. From the gained equation, the optimum yield from all variables was significant. Chemical analysis of the antioxidant was carried out using 2,2-Diphenyl-1-picrylhydrazyl (DPPH).

  10. Brain metabolic alterations in mice subjected to postnatal traumatic stress and in their offspring.

    PubMed

    Gapp, Katharina; Corcoba, Alberto; van Steenwyk, Gretchen; Mansuy, Isabelle M; Duarte, João Mn

    2017-07-01

    Adverse environmental and social conditions early in life have a strong impact on health. They are major risk factors for mental diseases in adulthood and, in some cases, their effects can be transmitted across generations. The consequences of detrimental stress conditions on brain metabolism across generations are not well known. Using high-field (14.1 T) magnetic resonance spectroscopy, we investigated the neurochemical profile of adult male mice exposed to traumatic stress in early postnatal life and of their offspring, and of undisturbed control mice. We found that, relative to controls, early life stress-exposed mice have metabolic alterations consistent with neuronal dysfunction, including reduced concentration of N-acetylaspartate, glutamate and γ-aminobutyrate, in the prefrontal cortex in basal conditions. Their offspring have normal neurochemical profiles in basal conditions. Remarkably, when challenged by an acute cold swim stress, the offspring has attenuated metabolic responses in the prefrontal cortex, hippocampus and striatum. In particular, the expected stress-induced reduction in the concentration of N-acetylaspartate, a putative marker of neuronal health, was prevented in the cortex and hippocampus. These findings suggest that paternal trauma can confer beneficial brain metabolism adaptations to acute stress in the offspring.

  11. Benzene induced resistance in exposed Drosophila melanogaster: Outcome of improved detoxification and gene modulation.

    PubMed

    Sharma, Divya; Singh, Mahendra Pratap; Vimal, Divya; Kumar, Saurabh; Jha, Rakesh Roshan; Chowdhuri, D Kar

    2018-06-01

    Adaptive behaviour of an organism has relevance towards developing better resistance in subsequent generations following xenobiotic exposures. Using a genetically tractable and functional insect model, Drosophila melanogaster, we aimed to examine the resistance of the organism against repeated exposures of benzene, an industrial and environmental-chemical and a class I human carcinogen. While 100 mM benzene exposure to one-day old flies for seven days caused ∼95% mortality (F0), its exposure to subsequent generations of flies led a significant decrease in mortality with maximum survival (∼85%) as evident at F28 generation. While burden of benzene and its toxic metabolites was higher in initial generations, in latter generations (F24-F28), concentrations of less toxic metabolites were higher. In parallel, improved metabolism, less oxidative stress, less induction of hsp60 and hsp70 and higher induction of hsp26 and hsp27 along with increased gene dose ratio of three genes (cyp6g1, mrp1, and cyp12d1) were observed in latter generations of benzene exposed flies with maximum benefit accrued in F28 generation. The resistance developed in flies of F28 generation had a negative impact on reproduction which might be due to a cost against selection. The study demonstrates development of benzene resistance in Drosophila with permanent genetic changes. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Salinity Adaptation and the Contribution of Parental Environmental Effects in Medicago truncatula

    PubMed Central

    Moriuchi, Ken S.; Friesen, Maren L.; Cordeiro, Matilde A.; Badri, Mounawer; Vu, Wendy T.; Main, Bradley J.; Aouani, Mohamed Elarbi; Nuzhdin, Sergey V.; Strauss, Sharon Y.; von Wettberg, Eric J. B.

    2016-01-01

    High soil salinity negatively influences plant growth and yield. Some taxa have evolved mechanisms for avoiding or tolerating elevated soil salinity, which can be modulated by the environment experienced by parents or offspring. We tested the contribution of the parental and offspring environments on salinity adaptation and their potential underlying mechanisms. In a two-generation greenhouse experiment, we factorially manipulated salinity concentrations for genotypes of Medicago truncatula that were originally collected from natural populations that differed in soil salinity. To compare population level adaptation to soil salinity and to test the potential mechanisms involved we measured two aspects of plant performance, reproduction and vegetative biomass, and phenological and physiological traits associated with salinity avoidance and tolerance. Saline-origin populations had greater biomass and reproduction under saline conditions than non-saline populations, consistent with local adaptation to saline soils. Additionally, parental environmental exposure to salt increased this difference in performance. In terms of environmental effects on mechanisms of salinity adaptation, parental exposure to salt spurred phenological differences that facilitated salt avoidance, while offspring exposure to salt resulted in traits associated with greater salt tolerance. Non-saline origin populations expressed traits associated with greater growth in the absence of salt while, for saline adapted populations, the ability to maintain greater performance in saline environments was also associated with lower growth potential in the absence of salt. Plastic responses induced by parental and offspring environments in phenology, leaf traits, and gas exchange contribute to salinity adaptation in M. truncatula. The ability of plants to tolerate environmental stress, such as high soil salinity, is likely modulated by a combination of parental effects and within-generation phenotypic plasticity, which are likely to vary in populations from contrasting environments. PMID:26943813

  13. A METHOD TO REMOVE ENVIRONMENTAL INHIBITORS PRIOR TO THE DETECTION OF WATERBORNE ENTERIC VIRUSES BY REVERSE TRANSCRIPTION-POLYMERASE CHAIN REACTION

    EPA Science Inventory

    A method was developed to remove environmental inhibitors from sample concentrates prior to detection of human enteric viruses using the reverse transcription-polymerase chain reaction (RT-PCR).Environmental inhibitors, concentrated along with viruses during water sample processi...

  14. Assessment of environmental radioactivity for Batman, Turkey.

    PubMed

    Damla, Nevzat; Cevik, Ugur; Kobya, Ali Ihsan; Ataksor, Berna; Isik, Umit

    2010-01-01

    The province of Batman, located in southern Anatolia, has a population of approximately 500,000. To our knowledge, there exists no information regarding the environmental radioactivity in this province. Therefore, gamma activity measurements in soil, building materials and water samples and an indoor radon survey have been carried out in the Batman province. The mean activity concentrations of the natural radionuclides (226Ra, 232Th and 40K) and a fission product (137Cs) were 35+/-8, 25+/-10, 274+/-167 and 12+/-7 Bq kg(-1), respectively, in the soil samples. The concentrations of 226Ra, 232Th and 40K in the selected building materials ranged from 18 to 48 Bq kg(-1), 8 to 49 Bq kg(-1) and 68 to 477 Bq kg(-1), respectively. All the calculated radium equivalent (Raeq) activity values of the building material samples are lower than the limit of 370 Bq kg(-1), equivalent to a gamma-dose of 1.5 mSv year(-1). The activity concentrations of 226Ra, 232Th and 40K in tap waters collected from the study area were determined with mean specific activity concentrations of 42+/-15, 35+/-9 and 524+/-190 mBq L(-1), respectively. Indoor radon measurements were made at 95 dwellings in Batman using a CR-39 detector. The radon concentration levels were found to vary from 23 to 145 Bq m(-3). The arithmetic mean of the measured radon concentration levels was found to be 84 Bq m(-3) with a standard deviation value of 23 Bq m(-3). The measurement results obtained in this study did not significantly differ from those taken in other parts of the country. The data generated in this study can be used to determine whether the Batman province is in a normal or high background radiation area and provides a valuable database for future estimations of the impact of radioactive pollution.

  15. Effects of Heat Flux, Oxygen Concentration and Glass Fiber Volume Fraction on Pyrolysate Mass Flux from Composite Solids

    NASA Technical Reports Server (NTRS)

    Rich, D. B.; Lautenberger, C. W.; Yuan, Z.; Fernandez-Pello, A. C.

    2004-01-01

    Experimental work on the effects of heat flux, oxygen concentration and glass fiber volume fraction on pyrolysate mass flux from samples of polypropylene/glass fiber composite (PP/G) is underway. The research is conducted as part of a larger project to develop a test methodology for flammability of materials, particularly composites, in the microgravity and variable oxygen concentration environment of spacecraft and space structures. Samples of PP/G sized at 30 x 30 x 10 mm are flush mounted in a flow tunnel, which provides a flow of oxidizer over the surface of the samples at a fixed value of 1 m/s and oxygen concentrations varying between 18 and 30%. Each sample is exposed to a constant external radiant heat flux at a given value, which varies between tests from 10 to 24 kW/sq m. Continuous sample mass loss and surface temperature measurements are recorded for each test. Some tests are conducted with an igniter and some are not. In the former case, the research goal is to quantify the critical mass flux at ignition for the various environmental and material conditions described above. The later case generates a wider range of mass flux rates than those seen prior to ignition, providing an opportunity to examine the protective effects of blowing on oxidative pyrolysis and heating of the surface. Graphs of surface temperature and sample mass loss vs. time for samples of 30% PPG at oxygen concentrations of 18 and 21% are presented in the figures below. These figures give a clear indication of the lower pyrolysis rate and extended time to ignition that accompany a lower oxygen concentration. Analysis of the mass flux rate at the time of ignition gives good repeatability but requires further work to provide a clear indication of mass flux trends accompanying changes in environmental and material properties.

  16. Effects of Heat Flux, Oxygen Concentration and Glass Fiber Volume Fraction on Pyrolysate Mass Flux from Composite Solids

    NASA Technical Reports Server (NTRS)

    Rich, D. B.; Lautenberger, C. W.; Yuan, Z.; Fernandez-Pello, A. C.

    2004-01-01

    Experimental work on the effects of heat flux, oxygen concentration and glass fiber volume fraction on pyrolysate mass flux from samples of polypropylene/glass fiber composite (PP/G) is underway. The research is conducted as part of a larger project to develop a test methodology for flammability of materials, particularly composites, in the microgravity and variable oxygen concentration environment of spacecraft and space structures. Samples of PP/G sized at 30x30x10 mm are flush mounted in a flow tunnel, which provides a flow of oxidizer over the surface of the samples at a fixed value of 1 m/s and oxygen concentrations varying between 18 and 30%. Each sample is exposed to a constant external radiant heat flux at a given value, which varies between tests from 10 to 24 kW/m2. Continuous sample mass loss and surface temperature measurements are recorded for each test. Some tests are conducted with an igniter and some are not. In the former case, the research goal is to quantify the critical mass flux at ignition for the various environmental and material conditions described above. The later case generates a wider range of mass flux rates than those seen prior to ignition, providing an opportunity to examine the protective effects of blowing on oxidative pyrolysis and heating of the surface. Graphs of surface temperature and sample mass loss vs. time for samples of 30% PPG at oxygen concentrations of 18 and 21% are presented in the figures below. These figures give a clear indication of the lower pyrolysis rate and extended time to ignition that accompany a lower oxygen concentration. Analysis of the mass flux rate at the time of ignition gives good repeatability but requires further work to provide a clear indication of mass flux trends accompanying changes in environmental and material properties.

  17. Exploiting Satellite Remote-Sensing Data in Fine Particulate Matter Characterization for Serving the Environmental Public Health Tracking Network (EPHTN): The HELIX-Atlanta Experience and NPOESS Implications

    NASA Technical Reports Server (NTRS)

    Al-Hamdan, Mohammad Z.; Crosson, William L.; Limaye, Ashutosh S.; Rickman, Douglas L.; Quattrochi, Dale A.; Estes, Maurice G.; Qualters, Judith R.; Sinclair, Amber H.; Tolsma, Dennis D.; Adeniyi, Kafayat A.

    2008-01-01

    As part of the U.S. National Environmental Public Health Tracking Network (EPHTN), the National Center for Environmental Health (NCEH) at the U.S. Centers for Disease Control and Prevention (CDC) led a project in collaboration with the National Aeronautics and Space Administration (NASA) Marshall Space Flight Center (MSFC) called Health and Environment Linked for Information Exchange (HELIX-Atlanta). Under HELIX-Atlanta, pilot projects were conducted to develop methods to better characterize exposure; link health and environmental datasets; and analyze spatial/temporal relationships. This paper describes and demonstrates different techniques for surfacing daily environmental hazards data of particulate matter with aerodynamic diameter less than or equal to 2.5 micrometers (PM(sub 2.5) for the purpose of integrating respiratory health and environmental data for the CDC's pilot study of HELIX-Atlanta. It describes a methodology for estimating ground-level continuous PM(sub 2.5) concentrations using spatial surfacing techniques and leveraging NASA Moderate Resolution Imaging Spectrometer (MODIS) data to complement the U.S. Environmental Protection Agency (EPA) ground observation data. The study used measurements of ambient PM(sub 2.5) from the EPA database for the year 2003 as well as PM(sub 2.5) estimates derived from NASA's MODIS data. Hazard data have been processed to derive the surrogate exposure PM(sub 2.5) estimates. The paper has shown that merging MODIS remote sensing data with surface observations of PM(sub 2.5), may provide a more complete daily representation of PM(sub 2.5), than either data set alone would allow, and can reduce the errors in the PM(sub 2.5) estimated surfaces. Future work in this area should focus on combining MODIS column measurements with profile information provided by satellites like the National Polar-orbiting Operational Environmental Satellite System (NPOESS). The Visible Infrared Imager/Radiometer Suite (VIIRS) and the Aerosol Polarimeter Sensor (APS) NPOESS sensors will provide first-order information on aerosol particle size and are anticipated to provide information on aerosol products at higher resolution and accuracy than MODIS. Use of the NPOESS remote sensing data should result in more robust remotely sensed data that can be coupled with the methods discussed in this paper to generate surface concentrations of PM(2.5) for linkage with health data in Environmental Public Health Tracking.

  18. Interlaboratory comparison of real-time pcr protocols for quantification of general fecal indicator bacteria

    USGS Publications Warehouse

    Shanks, O.C.; Sivaganesan, M.; Peed, L.; Kelty, C.A.; Blackwood, A.D.; Greene, M.R.; Noble, R.T.; Bushon, R.N.; Stelzer, E.A.; Kinzelman, J.; Anan'Eva, T.; Sinigalliano, C.; Wanless, D.; Griffith, J.; Cao, Y.; Weisberg, S.; Harwood, V.J.; Staley, C.; Oshima, K.H.; Varma, M.; Haugland, R.A.

    2012-01-01

    The application of quantitative real-time PCR (qPCR) technologies for the rapid identification of fecal bacteria in environmental waters is being considered for use as a national water quality metric in the United States. The transition from research tool to a standardized protocol requires information on the reproducibility and sources of variation associated with qPCR methodology across laboratories. This study examines interlaboratory variability in the measurement of enterococci and Bacteroidales concentrations from standardized, spiked, and environmental sources of DNA using the Entero1a and GenBac3 qPCR methods, respectively. Comparisons are based on data generated from eight different research facilities. Special attention was placed on the influence of the DNA isolation step and effect of simplex and multiplex amplification approaches on interlaboratory variability. Results suggest that a crude lysate is sufficient for DNA isolation unless environmental samples contain substances that can inhibit qPCR amplification. No appreciable difference was observed between simplex and multiplex amplification approaches. Overall, interlaboratory variability levels remained low (<10% coefficient of variation) regardless of qPCR protocol. ?? 2011 American Chemical Society.

  19. THE WASTE REDUCTION (WAR) ALGORITHM: ENVIRONMENTAL IMPACTS, ENERGY CONSUMPTION, AND ENGINEERING ECONOMICS

    EPA Science Inventory

    A general theory known as the WAste Reduction (WAR) algorithm has been developed to describe the flow and the generation of potential environmental impact through a chemical process. This theory defines potential environmental impact indexes that characterize the generation and t...

  20. Comparison of secondary organic aerosol formed with an aerosol flow reactor and environmental reaction chambers: effect of oxidant concentration, exposure time and seed particles on chemical composition and yield

    NASA Astrophysics Data System (ADS)

    Lambe, A. T.; Chhabra, P. S.; Onasch, T. B.; Brune, W. H.; Hunter, J. F.; Kroll, J. H.; Cummings, M. J.; Brogan, J. F.; Parmar, Y.; Worsnop, D. R.; Kolb, C. E.; Davidovits, P.

    2014-12-01

    We performed a systematic intercomparison study of the chemistry and yields of SOA generated from OH oxidation of a common set of gas-phase precursors in a Potential Aerosol Mass (PAM) continuous flow reactor and several environmental chambers. In the flow reactor, SOA precursors were oxidized using OH concentrations ranging from 2.0×108 to 2.2×1010 molec cm-3 over exposure times of 100 s. In the environmental chambers, precursors were oxidized using OH concentrations ranging from 2×106 to 2×107 molec cm-3 over exposure times of several hours. The OH concentration in the chamber experiments is close to that found in the atmosphere, but the integrated OH exposure in the flow reactor can simulate atmospheric exposure times of multiple days compared to chamber exposure times of only a day or so. A linear correlation analysis of the mass spectra (m=0.91-0.92, r2=0.93-0.94) and carbon oxidation state (m=1.1, r2=0.58) of SOA produced in the flow reactor and environmental chambers for OH exposures of approximately 1011 molec cm-3 s suggests that the composition of SOA produced in the flow reactor and chambers is the same within experimental accuracy as measured with an aerosol mass spectrometer. This similarity in turn suggests that both in the flow reactor and in chambers, SOA chemical composition at low OH exposure is governed primarily by gas-phase OH oxidation of the precursors, rather than heterogeneous oxidation of the condensed particles. In general, SOA yields measured in the flow reactor are lower than measured in chambers for the range of equivalent OH exposures that can be measured in both the flow reactor and chambers. The influence of sulfate seed particles on isoprene SOA yield measurements was examined in the flow reactor. The studies show that seed particles increase the yield of SOA produced in flow reactors by a factor of 3 to 5 and may also account in part for higher SOA yields obtained in the chambers, where seed particles are routinely used.

  1. Emissions from the Bena Landfill

    NASA Astrophysics Data System (ADS)

    Schafer, C.; Blake, D. R.; Hughes, S.

    2016-12-01

    In 2013, Americans generated 254 million tons of municipal solid waste (MSW). The gas generated from the decomposition of MSW is composed of approximately 50% methane, 50% carbon dioxide, and a small proportion of non-methane organic compounds (NMOCs). NMOCs constitute less than 1% of landfill emissions, but they can have a disproportionate environmental impact as they are highly reactive ozone precursors. During the 2016 Student Airborne Research Program (SARP), whole air samples were collected at the Bena landfill outside of Bakersfield, CA and throughout Bakersfield and analyzed using gas chromatography in order to quantify NMOC emissions. This area was determined to have elevated concentrations of benzene, trichloroethylene, and tetrachloroethylene, all of which are categorized by the EPA as hazardous to human health. Benzene was found to have a concentration of 145 ± 4 pptv, four times higher than the background levels in Bakersfield (36 ± 1 pptv). Trichloroethylene and tetrachloroethylene had concentrations of 18 ± 1 pptv and 31 ± 1 pptv which were 18 and 10 times greater than background concentrations, respectively. In addition, hydroxyl radical reactivity (ROH) was calculated to determine the potential for tropospheric ozone formation. The total ROH of the landfill was 7.5 ± 0.2 s-1 compared to total background ROH of 1.0 ± 0.1 s-1 . NMOCs only made up 0.6% of total emissions, but accounted for 67% of total ROH.These results can help to shape future landfill emission policies by highlighting the importance of NMOCs in addition to methane. More research is needed to investigate the ozone forming potential of these compounds at landfills across the country.

  2. Male reproductive system parameters in a two-generation reproduction study of ammonium perfluorooctanoate in rats and human relevance.

    PubMed

    York, Raymond G; Kennedy, Gerald L; Olsen, Geary W; Butenhoff, John L

    2010-04-30

    Ammonium perfluorooctanoate (ammonium PFOA) is an industrial surfactant that has been used primarily as a processing aid in the manufacture of fluoropolymers. The environmental and metabolic stability of PFOA together with its presence in human blood and long elimination half-life have led to extensive toxicological studies in laboratory animals. Two recent publications based on observations from the Danish general population have reported: (1) a negative association between serum concentrations of PFOA in young adult males and their sperm counts and (2) a positive association among women with time to pregnancy. A two-generation reproduction study in rats was previously published (2004) in which no effects on functional reproduction were observed at doses up to 30mg ammonium PFOA/kg body weight. The article contained the simple statement: "In males, fertility was normal as were all sperm parameters". In order to place the recent human epidemiological data in perspective, herein we provide the detailed male reproductive parameters from that study, including sperm quality and testicular histopathology. Sperm parameters in rats from the two-generation study in all ammonium PFOA treatment groups were unaffected by treatment with ammonium PFOA. These observations reflected the normal fertility observations in these males. No evidence of altered testicular and sperm structure and function was observed in ammonium PFOA-treated rats whose mean group serum PFOA concentrations ranged up to approximately 50,000ng/mL. Given that median serum PFOA in the Danish cohorts was approximately 5ng/mL, it seems unlikely that concentrations observed in the general population, including those recently reported in Danish general population, could be associated causally with a real decrement in sperm number and quality.

  3. Acute photo-induced toxicity and toxicokinetics of single compounds and mixtures of polycyclic aromatic hydrocarbons in zebrafish.

    PubMed

    Willis, Alison M; Oris, James T

    2014-09-01

    The present study examined photo-induced toxicity and toxicokinetics for acute exposure to selected polycyclic aromatic hydrocarbons (PAHs) in zebrafish. Photo-enhanced toxicity from co-exposure to ultraviolet (UV) radiation and PAHs enhanced the toxicity and exhibited toxic effects at PAH concentrations orders of magnitude below effects observed in the absence of UV. Because environmental exposure to PAHs is usually in the form of complex mixtures, the present study examined the photo-induced toxicity of both single compounds and mixtures of PAHs. In a sensitive larval life stage of zebrafish, acute photo-induced median lethal concentrations (LC50s) were derived for 4 PAHs (anthracene, pyrene, carbazole, and phenanthrene) to examine the hypothesis that phototoxic (anthracene and pyrene) and nonphototoxic (carbazole and phenanthrene) pathways of mixtures could be predicted from single exposures. Anthracene and pyrene were phototoxic as predicted; however, carbazole exhibited moderate photo-induced toxicity and phenanthrene exhibited weak photo-induced toxicity. The toxicity of each chemical alone was used to compare the toxicity of mixtures in binary, tertiary, and quaternary combinations of these PAHs, and a predictive model for environmental mixtures was generated. The results indicated that the acute toxicity of PAH mixtures was additive in phototoxic scenarios, regardless of the magnitude of photo-enhancement. Based on PAH concentrations found in water and circumstances of high UV dose to aquatic systems, there exists potential risk of photo-induced toxicity to aquatic organisms. © 2014 SETAC.

  4. Gradient microfluidics enables rapid bacterial growth inhibition testing.

    PubMed

    Li, Bing; Qiu, Yong; Glidle, Andrew; McIlvenna, David; Luo, Qian; Cooper, Jon; Shi, Han-Chang; Yin, Huabing

    2014-03-18

    Bacterial growth inhibition tests have become a standard measure of the adverse effects of inhibitors for a wide range of applications, such as toxicity testing in the medical and environmental sciences. However, conventional well-plate formats for these tests are laborious and provide limited information (often being restricted to an end-point assay). In this study, we have developed a microfluidic system that enables fast quantification of the effect of an inhibitor on bacteria growth and survival, within a single experiment. This format offers a unique combination of advantages, including long-term continuous flow culture, generation of concentration gradients, and single cell morphology tracking. Using Escherichia coli and the inhibitor amoxicillin as one model system, we show excellent agreement between an on-chip single cell-based assay and conventional methods to obtain quantitative measures of antibiotic inhibition (for example, minimum inhibition concentration). Furthermore, we show that our methods can provide additional information, over and above that of the standard well-plate assay, including kinetic information on growth inhibition and measurements of bacterial morphological dynamics over a wide range of inhibitor concentrations. Finally, using a second model system, we show that this chip-based systems does not require the bacteria to be labeled and is well suited for the study of naturally occurring species. We illustrate this using Nitrosomonas europaea, an environmentally important bacteria, and show that the chip system can lead to a significant reduction in the period required for growth and inhibition measurements (<4 days, compared to weeks in a culture flask).

  5. Radioactive characterization of the main materials involved in the titanium dioxide production process and their environmental radiological impact.

    PubMed

    Mantero, J; Gazquez, M J; Bolivar, J P; Garcia-Tenorio, R; Vaca, F

    2013-06-01

    A study about the distribution of several radionuclides from the uranium and the thorium series radionuclides along the production process of a typical NORM industry devoted to the production of titanium dioxide has been performed. With this end the activity concentrations in raw materials, final product, co-products, and wastes of the production process have been determined by both gamma-ray and alpha-particle spectrometry. The main raw material used in the studied process (ilmenite) presents activity concentrations of around 300 Bq kg(-1) for Th-series radionuclides and 100 Bq kg(-1) for the U-series ones. These radionuclides in the industrial process are distributed in the different steps of the production process according mostly to the chemical behaviour of each radioelement, following different routes. As an example, most of the radium remains associated with the un-dissolved material waste, with activity concentrations around 3 kBq kg(-1) of (228)Ra and around 1 kBq kg(-1) of (226)Ra, while the final commercial products (TiO2 pigments and co-products) contain negligible amounts of radioactivity. The obtained results have allowed assessing the possible public radiological impact associated with the use of the products and co-products obtained in this type of industry, as well as the environmental radiological impact associated with the solid residues and liquid generated discharges. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Two novel cyanobacterial bioluminescent whole-cell bioreporters based on superoxide dismutases MnSod and FeSod to detect superoxide anion.

    PubMed

    Hurtado-Gallego, J; Martín-Betancor, K; Rodea-Palomares, I; Leganés, F; Rosal, R; Fernández-Piñas, F

    2018-06-01

    This work describes the construction of two novel self-luminescent bioreporter strains of the cyanobacterium Nostoc sp. PCC 7120 by fusing the promoter region of the sodA and sodB genes (encoding the superoxide dismutases MnSod and FeSod, respectively) to luxCDABE from Photorhabdus luminescens aimed at detecting pollutants that generate reactive oxygen species (ROS), particularly O 2 - . Bioreporters were tested against methyl viologen (MV) as the inducer of superoxide anion (O 2 - ). Both bioreporters were specific for O 2 - and Limits of detection (LODs) and Maximum Permissive Concentrations (MPCs) were calculated: Nostoc sp. PCC 7120 pBG2154 (sodA) had a range of detection from 400 to 1000 pM of MV and for Nostoc sp. PCC 7120 pBG2165 (sodB) the range of detection was from 500 to 1800 pM of MV after 5 h-exposure. To further validate the bioreporters, they were tested with the emerging pollutant Triclosan which induced bioluminescence in both strains. Furthermore, the bioreporters performance was tested in two real environmental samples with different water matrix complexity, spiked with MV. Both bioreporters were induced by O 2 - in these environmental samples. In the case of the river water sample, the amount of bioavailable MV as calculated from the bioreporters output was similar to that nominally added. For the waste water sample, the bioavailable MV concentration detected by the bioreporters was one order of magnitude lower than nominal. These differences could be due to MV complexation with organic matter and/or co-occurring organic contaminants. These results confirm their high sensitivity to O 2 - and their suitability to detect oxidative stress-generating pollutants in fresh-waters. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. A compact ion source for intense neutron generation

    NASA Astrophysics Data System (ADS)

    Perkins, Luke Torrilhon

    Today, numerous applications for neutrons, beyond those of the nuclear power industry, are beginning to emerge and become viable. From neutron radiography which, not unlike conventional X-rays, can provide an in-depth image through various materials, to neutron radiotherapy, for the treatment of certain forms of cancer, all these applications promise to improve our quality of life. To meet the growing need for neutrons, greater demands are being made on the neutron 'generator' technology, demands for improved neutron output and reliability at reduced physical sizes and costs. One such example in the field of borehole neutron generators, where, through neutron activation analysis, the elemental composition, concentration and location in the surrounding borehole media can be ascertained. These generators, which commonly rely on the fusion of deuterium (D) and tritium (T) at energies of the order of one hundred thousand Volts, seem to defy their physical limitations to provide neutron outputs approaching a billion per second in packages no greater than two inches in diameter. In an attempt to answer this demand, we, at Lawrence Berkeley National Laboratory (LBNL), have begun developing a new generation of neutron generators making use of recent developments in ion source technology. The specific application which motivates this development is in the environmental monitoring field, where pollutants and their concentrations in the subsurface must be assessed. To achieve the desired direction of low-level concentrations and obtain a better directional sensitivity, a neutron output of 109 to 1010 D-T neutrons per second was targeted for generator package which can fit inside a ~5 cm diameter borehole. To accomplish this performance, a radio-frequency (RF)- driven ion source developed at LBNL was adapted to the requirements of this application. The advantages of this type of ion source are its intrinsic ability to tailor the delivery of RF power to the ion source and therefore control the neutron output (pulse width, repetition rate and magnitude) while operating at low pressures (~5 mTorr). In the experimental testing presented herein, a prototype, 5 cm-diameter, inductively driven ion source has produced unsaturated hydrogen beam current densities in excess of 1 A/cm2 and monatomic species fractions in excess of 90%. This satisfactory performance, with respect to the targeted neutron output, was achieved with a 2 MHz, 60 kW pulse of RF to produce a ~20μs plasma pulse at <100 Hz.

  8. Mercury contamination in fish in midcontinent great rivers of the United States: Importance of species traits and environmental factors

    EPA Science Inventory

    We measured mercury (Hg) concentrations in whole fish from the Upper Mississippi, Missouri and Ohio Rivers to characterize the extent and magnitude of Hg contamination and to identify environmental factors influencing Hg concentrations. Concentrations were generally lower than th...

  9. Earth Mothers (and Fathers): Examining Generativity and Environmental Concerns in Adolescents and Their Parents

    ERIC Educational Resources Information Center

    Pratt, Michael W.; Norris, Joan E.; Alisat, Susan; Bisson, Elise

    2013-01-01

    Erikson's construct of generative concern for future generations seems a plausible structure for supporting environmental behavior and socialization in the family. The present study of 44 Canadian middle-class families with a focal child aged 14-16 years, examined variations in generative concern among parents and their children and tested how…

  10. Trans-generational plasticity in response to immune challenge is constrained by heat stress.

    PubMed

    Roth, Olivia; Landis, Susanne H

    2017-06-01

    Trans-generational plasticity (TGP) is the adjustment of phenotypes to changing habitat conditions that persist longer than the individual lifetime. Fitness benefits (adaptive TGP) are expected upon matching parent-offspring environments. In a global change scenario, several performance-related environmental factors are changing simultaneously. This lowers the predictability of offspring environmental conditions, potentially hampering the benefits of TGP. For the first time, we here explore how the combination of an abiotic and a biotic environmental factor in the parental generation plays out as trans-generational effect in the offspring. We fully reciprocally exposed the parental generation of the pipefish Syngnathus typhle to an immune challenge and elevated temperatures simulating a naturally occurring heatwave. Upon mating and male pregnancy, offspring were kept in ambient or elevated temperature regimes combined with a heat-killed bacterial epitope treatment. Differential gene expression (immune genes and DNA- and histone-modification genes) suggests that the combined change of an abiotic and a biotic factor in the parental generation had interactive effects on offspring performance, the temperature effect dominated over the immune challenge impact. The benefits of certain parental environmental conditions on offspring performance did not sum up when abiotic and biotic factors were changed simultaneously supporting that available resources that can be allocated to phenotypic trans-generational effects are limited. Temperature is the master regulator of trans-generational phenotypic plasticity, which potentially implies a conflict in the allocation of resources towards several environmental factors. This asks for a reassessment of TGP as a short-term option to buffer environmental variation in the light of climate change.

  11. Effects of environmental conditions on point-of-care cardiac biomarker test performance during a simulated rescue: implications for emergency and disaster response.

    PubMed

    Louie, Richard F; Ferguson, William J; Curtis, Corbin M; Vy, John H; Tang, Chloe S; Kost, Gerald J

    2013-01-01

    To characterize the effects of environmental stress on point-of-care (POC) cardiac biomarker testing during a simulated rescue. Multiplex test cassettes for cardiac troponin I (cTnI), brain natriuretic peptide (BNP), CK-MB, myoglobin, and D-dimer were exposed to environmental stresses simulating a 24-hour rescue from Hawaii to the Marshall Islands and back. We used Tenney environmental chambers (T2RC and BTRC) to simulate flight conditions (20°C, 10 percent relative humidity) and ground conditions (22.3-33.9°C, 73-77 percent). We obtained paired measurements using stressed versus control (room temperature) cassettes at seven time points (T1-7 with T1,2,6,7 during flight and T3-5 on ground). We analyzed paired differences (stressed minus control) with Wilcoxon signed rank test. We assessed the impact on decision-making at clinical thresholds. cTnI results from stressed test cassettes (n = 10) at T4 (p < 0.05), T5 (p < 0.01), and T7 (p < 0.05) differed significantly from control, when testing samples with median cTnI concentration of 90 ng/L. During the ground rescue, 36.7 percent (11/30) of cTnI measurements from stressed cassettes generated significantly lowered results. At T5, 20 percent (2/10) of cTnI results were highly discrepant-stressed cassettes reported normal results, when control results were >100 ng/L. With sample median concentration of 108 pg/mL, BNP results from stressed test cassettes differed significantly from controls (p < 0.05). Despite modest, short-term temperature elevation, environmental stresses led to erroneous results. False negative cTnI and BNP results potentially could miss acute myocardial infarction and congestive heart failure, confounded treatment, and increased mortality and morbidity. Therefore, rescuers should protect POC reagents from temperature extremes.

  12. Influence of indoor environmental factors on mass transfer parameters and concentrations of semi-volatile organic compounds.

    PubMed

    Wei, Wenjuan; Mandin, Corinne; Ramalho, Olivier

    2018-03-01

    Semi-volatile organic compounds (SVOCs) in indoor environments can partition among the gas phase, airborne particles, settled dust, and available surfaces. The mass transfer parameters of SVOCs, such as the mass transfer coefficient and the partition coefficient, are influenced by indoor environmental factors. Subsequently, indoor SVOC concentrations and thus occupant exposure can vary depending on environmental factors. In this review, the influence of six environmental factors, i.e., indoor temperature, humidity, ventilation, airborne particle concentration, source loading factor, and reactive chemistry, on the mass transfer parameters and indoor concentrations of SVOCs was analyzed and tentatively quantified. The results show that all mass transfer parameters vary depending on environmental factors. These variations are mostly characterized by empirical equations, particularly for humidity. Theoretical calculations of these parameters based on mass transfer mechanisms are available only for the emission of SVOCs from source surfaces when airborne particles are not present. All mass transfer parameters depend on the temperature. Humidity influences the partition of SVOCs among different phases and is associated with phthalate hydrolysis. Ventilation has a combined effect with the airborne particle concentration on SVOC emission and their mass transfer among different phases. Indoor chemical reactions can produce or eliminate SVOCs slowly. To better model the dynamic SVOC concentration indoors, the present review suggests studying the combined effect of environmental factors in real indoor environments. Moreover, interactions between indoor environmental factors and human activities and their influence on SVOC mass transfer processes should be considered. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Development of an environmental chamber for evaluating the performance of low-cost air quality sensors under controlled conditions

    NASA Astrophysics Data System (ADS)

    Papapostolou, Vasileios; Zhang, Hang; Feenstra, Brandon J.; Polidori, Andrea

    2017-12-01

    A state-of-the-art integrated chamber system has been developed for evaluating the performance of low-cost air quality sensors. The system contains two professional grade chamber enclosures. A 1.3 m3 stainless-steel outer chamber and a 0.11 m3 Teflon-coated stainless-steel inner chamber are used to create controlled aerosol and gaseous atmospheres, respectively. Both chambers are temperature and relative humidity controlled with capability to generate a wide range of environmental conditions. The system is equipped with an integrated zero-air system, an ozone and two aerosol generation systems, a dynamic dilution calibrator, certified gas cylinders, an array of Federal Reference Method (FRM), Federal Equivalent Method (FEM), and Best Available Technology (BAT) reference instruments and an automated control and sequencing software. Our experiments have demonstrated that the chamber system is capable of generating stable and reproducible aerosol and gas concentrations at low, medium, and high levels. This paper discusses the development of the chamber system along with the methods used to quantitatively evaluate sensor performance. Considering that a significant number of academic and research institutions, government agencies, public and private institutions, and individuals are becoming interested in developing and using low-cost air quality sensors, it is important to standardize the procedures used to evaluate their performance. The information discussed herein provides a roadmap for entities who are interested in characterizing air quality sensors in a rigorous, systematic and reproducible manner.

  14. Evaluation of genotoxicity in workers exposed to low levels of formaldehyde in a furniture manufacturing facility.

    PubMed

    Peteffi, Giovana Piva; da Silva, Luciano Basso; Antunes, Marina Venzon; Wilhelm, Camila; Valandro, Eduarda Trevizani; Glaeser, Jéssica; Kaefer, Djeine; Linden, Rafael

    2016-10-01

    Formaldehyde (FA) is a chemical widely used in the furniture industry and has been classified as a potential human carcinogen. The purpose of this study was to evaluate the occupational exposure of workers to FA at a furniture manufacturing facility and the relationship between environmental concentrations of FA, formic acid concentration in urine, and DNA damage. The sample consisted of 46 workers exposed to FA and a control group of 45 individuals with no history of occupational exposure. Environmental concentrations of FA were determined by high-performance liquid chromatography. Urinary formic acid concentrations were determined by gas chromatography with flame ionization detector. DNA damage was evaluated by the micronucleus (MN) test performed in exfoliated buccal cells and comet assay with venous blood. The 8-h time-weighted average of FA environmental concentration ranged from 0.03 ppm to 0.09 ppm at the plant, and the control group was exposed to a mean concentration of 0.012 ppm. Workers exposed to higher environmental FA concentrations had urinary formic acid concentrations significantly different from those of controls (31.85 mg L(-1) vs. 19.35 mg L(-), p ≤ 0.01 Mann-Whitney test). Significant differences were found between control and exposed groups for the following parameters: damage frequency and damage index in the comet assay, frequency of binucleated cells in the MN test, and formic acid concentration in urine. The frequency of micronuclei, nuclear buds, and karyorrhexis did not differ between groups. There was a positive correlation between environmental concentrations of FA and damage frequency (Spearman's rank correlation coefficient [r s] = 0.24), damage index (r s = 0.21), binucleated cells (r s = 0.34), and urinary formic acid concentration (r s = 0.63). The results indicate that, although workers in the furniture manufacturing facility were exposed to low environmental levels of FA, this agent contributes to the observed increase in cytogenetic damage. In addition, urinary formic acid concentrations correlated strongly with occupational exposure to FA. © The Author(s) 2015.

  15. Ground level environmental protein concentrations in various ecuadorian environments: potential uses of aerosolized protein for ecological research

    USGS Publications Warehouse

    Staton, Sarah J.R.; Woodward, Andrea; Castillo, Josemar A.; Swing, Kelly; Hayes, Mark A.

    2014-01-01

    Large quantities of free protein in the environment and other bioaerosols are ubiquitous throughout terrestrial ground level environments and may be integrative indicators of ecosystem status. Samples of ground level bioaerosols were collected from various ecosystems throughout Ecuador, including pristine humid tropical forest (pristine), highly altered secondary humid tropical forest (highly altered), secondary transitional very humid forest (regrowth transitional), and suburban dry montane deforested (suburban deforested). The results explored the sensitivity of localized aerosol protein concentrations to spatial and temporal variations within ecosystems, and their value for assessing environmental change. Ecosystem specific variations in environmental protein concentrations were observed: pristine 0.32 ± 0.09 μg/m3, highly altered 0.07 ± 0.05 μg/m3, regrowth transitional 0.17 ± 0.06 μg/m3, and suburban deforested 0.09 ± 0.04 μg/m3. Additionally, comparisons of intra-environmental differences in seasonal/daily weather (dry season 0.08 ± 0.03 μg/m3 and wet season 0.10 ± 0.04 μg/m3), environmental fragmentation (buffered 0.19 ± 0.06 μg/m3 and edge 0.15 ± 0.06 μg/m3), and sampling height (ground level 0.32 ± 0.09 μg/m3 and 10 m 0.24 ± 0.04 μg/m3) demonstrated the sensitivity of protein concentrations to environmental conditions. Local protein concentrations in altered environments correlated well with satellite-based spectral indices describing vegetation productivity: normalized difference vegetation index (NDVI) (r2 = 0.801), net primary production (NPP) (r2 = 0.827), leaf area index (LAI) (r2 = 0.410). Moreover, protein concentrations distinguished the pristine site, which was not differentiated in spectral indices, potentially due to spectral saturation typical of highly vegetated environments. Bioaerosol concentrations represent an inexpensive method to increase understanding of environmental changes, especially in densely vegetated ecosystems with high canopies or in areas needing high spatial and temporal resolution. Further research to expand understanding of the applicability of bioaerosol concentrations for environmental monitoring is supported by this pilot study.

  16. Early prenatal exposure to air pollution and its associations with birth defects in a state-wide birth cohort from North Carolina.

    PubMed

    Vinikoor-Imler, Lisa C; Davis, J Allen; Meyer, Robert E; Luben, Thomas J

    2013-10-01

    Few studies have examined the potential relationship between air pollution and birth defects. The objective of this study was to investigate whether maternal exposure to particulate matter (PM2.5 ) and ozone (O3 ) during pregnancy is associated with birth defects among women living throughout North Carolina. Information on maternal and infant characteristics was obtained from North Carolina birth certificates and health service data (2003-2005) and linked with information on birth defects from the North Carolina Birth Defects Monitoring Program. The 24-hr PM2.5 and O3 concentrations were estimated using a hierarchical Bayesian model of air pollution generated by combining modeled air pollution predictions from the U.S. Environmental Protection Agency's Community Multi-Scale Air Quality model with air monitor data from the Environmental Protection Agency's Air Quality System. Maternal residence was geocoded and assigned pollutant concentrations averaged over weeks 3 to 8 of gestation. Binomial regression was performed and adjusted for potential confounders. No association was observed between either PM2.5 or O3 concentrations and most birth defects. Positive effect estimates were observed between air pollution and microtia/anotia and lower limb deficiency defects, but the 95% confidence intervals were wide and included the null. Overall, this study suggested a possible relationship between air pollution concentration during early pregnancy and certain birth defects (e.g., microtia/anotia, lower limb deficiency defects), although this study did not have the power to detect such an association. The risk for most birth defects does not appear to be affected by ambient air pollution. Copyright © 2013 Wiley Periodicals, Inc.

  17. Environmental and health impacts of effluents from textile industries in Ethiopia: the case of Gelan and Dukem, Oromia Regional State.

    PubMed

    Dadi, Diriba; Stellmacher, Till; Senbeta, Feyera; Van Passel, Steven; Azadi, Hossein

    2017-01-01

    This study focuses on four textile industries (DH-GEDA, NOYA, ALMHADI, and ALSAR) established between 2005 and 2008 in the peri-urban areas of Dukem and Gelan. The objectives of the study were to generate baseline information regarding the concentration levels of selected pollutants and to analyze their effects on biophysical environments. This study also attempts to explore the level of exposure that humans and livestock have to polluted effluents and the effects thereof. The findings of this study are based on data empirically collected from two sources: laboratory analysis of sample effluents from the four selected textile plants and quantitative as well as qualitative socioeconomic data collection. As part of the latter, a household survey and focus group discussions (FGDs) with elderly and other focal persons were employed in the towns of Dukem and Gelan. The results of the study show that large concentrations of biological oxygen demand (BOD 5 ), chemical oxygen demand (COD), total suspended solids (TSS), and pH were found in all the observed textile industries, at levels beyond the permissible discharge limit set by the national Environmental Protection Authority (EPA). Furthermore, sulfide (S 2) , R-phosphate (R-PO 4 3 ), and Zn were found in large concentrations in DH-GEDA and ALMHADI, while high concentrations were also identified in samples taken from ALSAR and ALMHADI. In spite of the clear-cut legal tools, this study shows that the local environment, people, and their livestock are exposed to highly contaminated effluents. We therefore recommend that the respective federal and regional government bodies should reexamine the compliance to and actual implementation of the existing legal procedures and regulations and respond appropriately.

  18. Evidence for in situ production of chlorinated polycyclic aromatic hydrocarbons on tidal flats: environmental monitoring and laboratory scale experiment.

    PubMed

    Sankoda, Kenshi; Nomiyama, Kei; Yonehara, Takayuki; Kuribayashi, Tomonori; Shinohara, Ryota

    2012-07-01

    This study investigated environmental distributions and production mechanisms of chlorinated polycyclic aromatic hydrocarbons (Cl-PAHs) in the sediments from some tidal flats located in Asia. Cl-PAHs were found in sediments taken from Arao tidal flat, Kikuchigawa River and Shirakawa River. The range of ∑Cl-PAHs was from 25.5 to 483 pg g(-1) for Kikuchigawa River and Arao tidal flat, respectively. Concentrations of PAHs and Cl-PAHs showed no significant correlations (r=0.134). This result suggests that the origins of these compounds differ. In the identified Cl-PAH isomers, the most abundant Cl-PAH isomer was 9,10-dichloroanthracene (9,10-di-Cl-ANT) in the three sites. In general, concentrations of Cl-ANTs in the coastal environment are about 3-5 orders of magnitude lower than those of anthracene (ANT). However, concentration ratios between Cl-ANTs and ANT (Cl-ANTs/ANT) in the sediments ranged from 4.1% to 24.6%. This result indicated that Cl-PAHs were not generated under industrial processes but the high concentration ratios have resulted from the contribution of photochemical production of Cl-ANTs in the sediments because ANT is known to have high photochemical reactivity. For examining this phenomenon, ANT adsorbed onto glass beads was irradiated with UV under the mimicked field conditions of tidal flats. As a result, it was noticed that, while chlorinated derivatives were negligible in a light-controlled group, production of 2-Cl-ANT, 9-Cl-ANT and 9,10-diCl-ANT on the irradiated surface were found in this study. These results suggest that photochemical reaction of PAHs can be a potential source of the occurrence of Cl-PAHs in the coastal environment. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. The Nitrate Inventory of Unsaturated Soils at the Barrow Environmental Observatory: Current Conditions and Potential Future Trajectories

    NASA Astrophysics Data System (ADS)

    Heikoop, J. M.; Newman, B. D.; Arendt, C. A.; Andresen, C. G.; Lara, M. J.; Wainwright, H. M.; Throckmorton, H.; Graham, D. E.; Wilson, C. J.; Wullschleger, S. D.; Romanovsky, V. E.; Bolton, W. R.; Wales, N. A.; Rowland, J. C.

    2016-12-01

    Studies conducted in the Barrow Environmental Observatory under the auspices of the United States Department of Energy Next Generation Ecosystem Experiment (NGEE) - Arctic have demonstrated measurable nitrate concentrations ranging from <1 to 17 mg/L in the unsaturated centers of high-centered polygons. Conversely, nitrate concentrations in saturated areas of polygonal terrain were generally below the limit of detection. Isotopic analysis of this nitrate demonstrates that it results from microbial nitrification. The study site currently comprises mostly saturated soils. Several factors, however, could lead to drying of soils on different time scales. These include 1) topographic inversion of polygonal terrain associated with ice-wedge degradation, 2) increased connectivity and drainage of polygon troughs, similarly related to the thawing and subsidence of ice-wedges, and 3) near-surface soil drainage associated with wide-spread permafrost thaw and active layer deepening. Using a GIS approach we will estimate the current inventory of nitrate in the NGEE intensive study site using soil moisture data and existing unsaturated zone nitrate concentration data and new concentration data collected in the summer of 2016 from high- and flat-centered polygons and the elevated rims of low-centered polygons. Using this baseline, we will present potential future inventories based on various scenarios of active layer thickening and landscape geomorphic reorganization associated with permafrost thaw. Predicted inventories will be based solely on active layer moisture changes, ignoring for now potential changes associated with mineralization and nitrification of previously frozen old organic matter and changes in vegetation communities. We wish to demonstrate that physical landscape changes alone could have a profound effect on future nitrate availability. Nitrate data from recent NGEE campaigns in the Seward Peninsula of Alaska will also be presented.

  20. Quantification of Plant Chlorophyll Content Using Google Glass

    PubMed Central

    Cortazar, Bingen; Koydemir, Hatice Ceylan; Tseng, Derek; Feng, Steve; Ozcan, Aydogan

    2015-01-01

    Measuring plant chlorophyll concentration is a well-known and commonly used method in agriculture and environmental applications for monitoring plant health, which also correlates with many other plant parameters including, e.g., carotenoids, nitrogen, maximum green fluorescence, etc. Direct chlorophyll measurement using chemical extraction is destructive, complex and time-consuming, which has led to the development of mobile optical readers, providing non-destructive but at the same time relatively expensive tools for evaluation of plant chlorophyll levels. Here we demonstrate accurate measurement of chlorophyll concentration in plant leaves using Google Glass and a custom-developed software application together with a cost-effective leaf holder and multi-spectral illuminator device. Two images, taken using Google Glass, of a leaf placed in our portable illuminator device under red and white (i.e., broadband) light-emitting-diode (LED) illumination are uploaded to our servers for remote digital processing and chlorophyll quantification, with results returned to the user in less than 10 seconds. Intensity measurements extracted from the uploaded images are mapped against gold-standard colorimetric measurements made through a commercially available reader to generate calibration curves for plant leaf chlorophyll concentration. Using five plant species to calibrate our system, we demonstrate that our approach can accurately and rapidly estimate chlorophyll concentration of fifteen different plant species under both indoor and outdoor lighting conditions. This Google Glass based chlorophyll measurement platform can display the results in spatiotemporal and tabular forms and would be highly useful for monitoring of plant health in environmental and agriculture related applications, including e.g., urban plant monitoring, indirect measurements of the effects of climate change, and as an early indicator for water, soil, and air quality degradation. PMID:25669673

  1. Evaluation and assessment of 25 years of environmental radioactivity monitoring data at Tarapur (India) nuclear site.

    PubMed

    Rao, D D; Baburajan, A; Sudheendran, V; Verma, P C; Hegde, A G

    2010-08-01

    The evaluation and assessment of monitoring data generated over a period of 1983-2007 (25 years) of a nuclear facility is presented. Time trends of particulate radioactivity, correlation between (137)Cs in discharge canal seawater and station discharged activity and correlation of (137)Cs, (60)Co, and (131)I in marine species such as sponge and Nerita (gastropod) and corresponding discharged activity are discussed. The concentration of (137)Cs and (131)I in seawater versus biota are discussed. A good correlation between (137)Cs in seawater and (137)Cs in liquid waste discharged was observed (R(2) = 0.8, p < 0.001). Similarly, correlation was good for Nerita and discharged concentration of (137)Cs, (131)I and (60)Co (R(2) = 0.55-0.73 and p < 0.001). The measurements over the years indicated that there is no accumulation of radionuclides in either the terrestrial or aquatic environments. The mean (137)Cs decreased from the pre-operational levels: 7.0-3.6 Bq kg(-1) in soil, 0.91-0.016 Bq L(-1) in milk and 0.28-0.036 Bq kg(-1) in vegetation. Similarly, the mean (90)Sr in these matrixes decreased from 3.9 to 0.26 Bq kg(-1); 0.37-0.011 Bq L(-1) and 0.34-0.022 Bq kg(-1) respectively. Cesium-137 of about 700 microBq m(-3) was measured in the air filter disks during 1986 and there was a decrease of three orders of magnitude in concentration over the 25 years. The evaluation of environmental data indicated that the radionuclide concentrations and potential impacts, in terms of effective dose to the members of public, have significantly reduced since 1969. Copyright 2010 Elsevier Ltd. All rights reserved.

  2. Trace metal mobilization from oil sands froth treatment thickened tailings exhibiting acid rock drainage.

    PubMed

    Kuznetsova, Alsu; Kuznetsov, Petr; Foght, Julia M; Siddique, Tariq

    2016-11-15

    Froth treatment thickened tailings (TT) are a waste product of bitumen extraction from surface-mined oil sands ores. When incubated in a laboratory under simulated moist oxic environmental conditions for ~450d, two different types of TT (TT1 and TT2) exhibited the potential to generate acid rock drainage (ARD) by producing acid leachate after 250 and 50d, respectively. We report here the release of toxic metals from TT via ARD, which could pose an environmental threat if oil sands TT deposits are not properly managed. Trace metal concentrations in leachate samples collected periodically revealed that Mn and Sr were released immediately even before the onset of ARD. Spikes in Co and Ni concentrations were observed both pre-ARD and during active ARD, particularly in TT1. For most elements measured (Fe, Cr, V, As, Cu, Pb, Zn, Cd, and Se), leaching was associated with ARD production. Though equivalent acidification (pH2) was achieved in leachate from both TT types, greater metal release was observed from TT2 where concentrations reached 10,000ppb for Ni, 5000ppb for Co, 3000ppb for As, 2000ppb for V, and 1000ppb for Cr. Generally, metal concentrations decreased in leachate with time during ARD and became negligible by the end of incubation (~450d) despite appreciable metals remaining in the leached TT. These results suggest that using TT for land reclamation purposes or surface deposition for volume reduction may unfavorably impact the environment, and warrants application of appropriate strategies for management of pyrite-enriched oil sands tailings streams. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Assessment of elemental and NROM/TENORM hazard potential from non-nuclear industries in North Sinai, Egypt.

    PubMed

    El-Mekawy, A F; Badran, H M; Seddeek, M K; Sharshar, T; Elnimr, T

    2015-09-01

    Non-nuclear industries use raw materials containing significant levels of naturally occurring radioactive material (NORM). The processing of these materials may expose workers engaged in or even people living near such sites to technologically enhanced naturally occurring radioactive material (TENORM) above the natural background. Inductively coupled plasma and gamma ray spectrometry have been used to determine major and trace elements and radionuclide concentrations in various samples, respectively, in order to investigate the environmental impact of coal mining and cement plant in North Sinai, Egypt. Generally, very little attention was directed to the large volumes of waste generated by either type of industrial activities. Different samples were analyzed including various raw materials, coal, charcoal, Portland and white cement, sludge, and wastes. Coal mine and cement plant workers dealing with waste and kaolin, respectively, are subjected to a relatively high annual effective dose. One of the important finding is the enhancement of all measured elements and radionuclides in the sludge found in coal mine. It may pose an environmental threat because of its large volume and its use as combustion material. The mine environment may have constituted Al, Fe, Cr, and V pollution source for the local area. Higher concentration of Al, Fe, Mn, B, Co, Cr, Mn, Ni, Sr, V, and TENORM were found in Portland cement and Zn in white cement. Coal has higher concentrations of Al, Fe, B, Co, Cr, and V as well as (226)Ra and (232)Th. The compiled results from the present study and different worldwide investigations demonstrate the obvious unrealistic ranges normally used for (226)Ra and (232)Th activity concentrations in coal and provided ranges for coal, Portland and white cement, gypsum, and limestone.

  4. Quantification of plant chlorophyll content using Google Glass.

    PubMed

    Cortazar, Bingen; Koydemir, Hatice Ceylan; Tseng, Derek; Feng, Steve; Ozcan, Aydogan

    2015-04-07

    Measuring plant chlorophyll concentration is a well-known and commonly used method in agriculture and environmental applications for monitoring plant health, which also correlates with many other plant parameters including, e.g., carotenoids, nitrogen, maximum green fluorescence, etc. Direct chlorophyll measurement using chemical extraction is destructive, complex and time-consuming, which has led to the development of mobile optical readers, providing non-destructive but at the same time relatively expensive tools for evaluation of plant chlorophyll levels. Here we demonstrate accurate measurement of chlorophyll concentration in plant leaves using Google Glass and a custom-developed software application together with a cost-effective leaf holder and multi-spectral illuminator device. Two images, taken using Google Glass, of a leaf placed in our portable illuminator device under red and white (i.e., broadband) light-emitting-diode (LED) illumination are uploaded to our servers for remote digital processing and chlorophyll quantification, with results returned to the user in less than 10 seconds. Intensity measurements extracted from the uploaded images are mapped against gold-standard colorimetric measurements made through a commercially available reader to generate calibration curves for plant leaf chlorophyll concentration. Using five plant species to calibrate our system, we demonstrate that our approach can accurately and rapidly estimate chlorophyll concentration of fifteen different plant species under both indoor and outdoor lighting conditions. This Google Glass based chlorophyll measurement platform can display the results in spatiotemporal and tabular forms and would be highly useful for monitoring of plant health in environmental and agriculture related applications, including e.g., urban plant monitoring, indirect measurements of the effects of climate change, and as an early indicator for water, soil, and air quality degradation.

  5. Solar Thermal Propulsion Optical Figure Measuring and Rocket Engine Testing

    NASA Technical Reports Server (NTRS)

    Bonometti, Joseph

    1997-01-01

    Solar thermal propulsion has been an important area of study for four years at the Propulsion Research Center. Significant resources have been devoted to the development of the UAH Solar Thermal Laboratory that provides unique, high temperature, test capabilities. The facility is fully operational and has successfully conducted a series of solar thruster shell experiments. Although presently dedicated to solar thermal propulsion, the facility has application to a variety of material processing, power generation, environmental clean-up, and other fundamental research studies. Additionally, the UAH Physics Department has joined the Center in support of an in-depth experimental investigation on Solar Thermal Upper Stage (STUS) concentrators. Laboratory space has been dedicated to the concentrator evaluation in the UAH Optics Building which includes a vertical light tunnel. Two, on-going, research efforts are being sponsored through NASA MSFC (Shooting Star Flight Experiment) and the McDonnell Douglas Corporation (Solar Thermal Upper Stage Technology Ground Demonstrator).

  6. The effects of tropospheric ozone on net primary productivity and implications for climate change.

    PubMed

    Ainsworth, Elizabeth A; Yendrek, Craig R; Sitch, Stephen; Collins, William J; Emberson, Lisa D

    2012-01-01

    Tropospheric ozone (O(3)) is a global air pollutant that causes billions of dollars in lost plant productivity annually. It is an important anthropogenic greenhouse gas, and as a secondary air pollutant, it is present at high concentrations in rural areas far from industrial sources. It also reduces plant productivity by entering leaves through the stomata, generating other reactive oxygen species and causing oxidative stress, which in turn decreases photosynthesis, plant growth, and biomass accumulation. The deposition of O(3) into vegetation through stomata is an important sink for tropospheric O(3), but this sink is modified by other aspects of environmental change, including rising atmospheric carbon dioxide concentrations, rising temperature, altered precipitation, and nitrogen availability. We review the atmospheric chemistry governing tropospheric O(3) mass balance, the effects of O(3) on stomatal conductance and net primary productivity, and implications for agriculture, carbon sequestration, and climate change.

  7. Oxygen decline in biotesting of environmental samples--is there a need for consideration in the acute zebrafish embryo assay?

    PubMed

    Küster, Eberhard; Altenburger, Rolf

    2008-12-01

    Environmental samples such as groundwater, sediment pore water, native or freeze dried sediments may be difficult to analyze for toxic effects with organismic aquatic bioassays. These samples might evoke low oxygen concentration or oxygen depletion during the test. The toxicity assessment could thus be confounded by low oxygen concentrations. The acute zebrafish embryo assay was used to analyze the influence of oxygen deficit on the embryonic development in the first 48 h post fertilization. Embryos were exposed to varying oxygen concentrations ranging from <30 to >80% oxygen saturation of water. A clear concentration dependent retardation of fish embryo development was observed. Because of a retarded development toxic thresholds of environmental samples which might include substances slowing down the development will be altered. For the purpose of identification of critical contaminants in complex environmental samples, it is proposed to actively aerate environmental samples which are likely to be oxygen depleted during the duration of the zebrafish embryo bioassay. 2008 Wiley Periodicals, Inc.

  8. Sowing Seeds for Future Generations: Development of Generative Concern and Its Relation to Environmental Narrative Identity

    ERIC Educational Resources Information Center

    Jia, Fanli; Soucie, Kendall; Alisat, Susan; Pratt, Michael

    2016-01-01

    In this longitudinal study, we examined the relationship between the trajectory of generative concern measured at ages 23, 26 and 32 and environmental narrative identity at age 32. Canadian participants completed a questionnaire on generative concern at ages 23, 26 and 32 and were then interviewed about their personal experiences with the…

  9. Application of Highly Purified Electrolyzed Chlorine Dioxide for Tilapia Fillet Disinfection

    PubMed Central

    Yu, Chen-Hsing; Huang, Tzou-Chi; Chung, Chao-Chin; Huang, Hao-Hsun

    2014-01-01

    This research aimed to develop an electrolysis method to generate high-concentration chlorine dioxide (ClO2) for tilapia fillet disinfection. The designed generator produced up to 3500 ppm of ClO2 at up to 99% purity. Tilapia fillets were soaked in a 400 ppm ClO2 solution for 5, 10, and 25 min. Results show that total plate counts of tilapia, respectively, decreased by 5.72 to 3.23, 2.10, and 1.09 log CFU/g. In addition, a 200 ppm ClO2 solution eliminated coliform bacteria and Escherichia coli in 5 min with shaking treatment. Furthermore, ClO2 and trihalomethanes (THMs) residuals on tilapia fillets were analyzed by GC/MS and were nondetectable (GC-MS detection limit was 0.12 ppb). The results conform to Taiwan's environmental protection regulations and act governing food sanitation. PMID:24696651

  10. The development status of candidate life support technology for a space station

    NASA Technical Reports Server (NTRS)

    Samonski, F. H., Jr.

    1984-01-01

    The establishment of a permanently-manned Space Station has recently been selected as the next major step in the U.S. space program. The requirements of a manned operations base in space appear to be best satisfied by on-board Environmental Control/Life Support Systems (ECLSS) which are free from, or have minimum dependence on, use of expendables and the frequent earth resupply missions which are part of systems using expendables. The present investigation is concerned with the range of regenerative life support system options which NASA is developing to be available for the Space Station designer. An air revitalization system is discussed, taking into account devices concerned with the carbon dioxide concentration, approaches of CO2 reduction, oxygen generation, trace contaminant control, and atmospheric quality monitoring. Attention is also given to an independent air revitalization system, nitrogen generation, a water reclamation system, a waste management system, applications of the technology, and future development requirements.

  11. New insights into co-digestion of activated sludge and food waste: Biogas versus biofertilizer.

    PubMed

    Ma, Yingqun; Yin, Yao; Liu, Yu

    2017-10-01

    This study explored two holistic approaches for co-digestion of activated sludge and food waste. In Approach 1, mixed activated sludge and food waste were first hydrolyzed with fungal mash, and produced hydrolysate without separation was directly subject to anaerobic digestion. In Approach 2, solid generated after hydrolysis of food waste by fungal mash was directly converted to biofertilizer, while separated liquid with high soluble COD concentration was further co-digested with activated sludge for biomethane production. Although the potential energy produced from Approach 1 was about 1.8-time higher than that from Approach 2, the total economic revenue generated from Approach 2 was about 1.9-fold of that from Approach 1 due to high market value of biofertilizer. It is expected that this study may lead to a paradigm shift in biosolid management towards environmental and economic sustainability. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Improvement of Energy Efficiency and Environmental Safety of Thermal Energy Through the Implementation of Contact Energy Exchange Processes

    NASA Astrophysics Data System (ADS)

    Varlamov, Gennadii Borysovich; Romanova, Kateryna Alexandrovna; Nazarova, Iryna; Daschenko, Olga; Kapustiansky, Andry

    2017-12-01

    Energy efficiency improvement and ecological safety of heat power plants are urgent problems, which require scientifically grounded approaches and solutions. These problems can be solved partly within the presented heat-and-power cycles by including contact energy exchange equipment in the circuits of existing installations. A significant positive effect is obtained in the contact energy exchange installations, such as gas-steam installation `Aquarius' and the contact hydrogen heat generator that also can use hydrogen as a fuel. In these plants, the efficiency increases approximately by 10-12% in comparison with traditional installations, and the concentration of toxic substances, such as nitrogen oxides and carbon monoxide in flue gas can be reduced to 30 mg/m3 and to 5 mg/m3, respectively. Moreover, the plants additionally `generate' the clean water, which can be used for technical purposes.

  13. Development of model for prediction of Leachate Pollution Index (LPI) in absence of leachate parameters.

    PubMed

    Lothe, Anjali G; Sinha, Alok

    2017-05-01

    Leachate pollution index (LPI) is an environmental index which quantifies the pollution potential of leachate generated in landfill site. Calculation of Leachate pollution index (LPI) is based on concentration of 18 parameters present in leachate. However, in case of non-availability of all 18 parameters evaluation of actual values of LPI becomes difficult. In this study, a model has been developed to predict the actual values of LPI in case of partial availability of parameters. This model generates eleven equations that helps in determination of upper and lower limit of LPI. The geometric mean of these two values results in LPI value. Application of this model to three landfill site results in LPI value with an error of ±20% for ∑ i n w i ⩾0.6. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Urban-rural mining: waste utilization in Guangdong, China

    NASA Astrophysics Data System (ADS)

    Zhao, D. D.; Huhetaoli; Yuan, H. R.; Tang, Z. H.

    2018-05-01

    Attitudes towards waste have changed gradually in view of the environmental pollution created and the potential of waste as a resource. This has led to the city and countryside of China being viewed as a complete "urban-rural mine" resources are extracted from what was once considered waste. Guangdong is a developed province and annual waste generation has recently exceeded 300 million tons. The waste distribution characteristics are as follows: most industrial solid waste is produced in the Pearl River Delta and Mountainous Region, waste associated with domestic activities is concentrated in the Pearl River Delta, and agricultural waste is found throughout the province. The ratios of material recycling and energy recovery are 58% and 11%, respectively, of collected waste. Recycled products include construction material, artificial boards, fuel, plastic, metal, chemicals, oil, and fibers. Energy is recovered by generating electricity from domestic waste, landfill gas, and forest and crop residue.

  15. Chemometric comparison of polychlorinated biphenyl residues and toxicologically active polychlorinated biphenyl congeners in the eggs of Forster's Terns (Sterna fosteri)

    USGS Publications Warehouse

    Schwartz, Ted R.; Stalling, David L.

    1991-01-01

    The separation and characterization of complex mixtures of polychlorinated biphenyls (PCBs) is approached from the perspective of a problem in chemometrics. A technique for quantitative determination of PCB congeners is described as well as an enrichment technique designed to isolate only those congener residues which induce mixed aryl hydrocarbon hydroxylase enzyme activity. A congener-specific procedure is utilized for the determination of PCBs in whichn-alkyl trichloroacetates are used as retention index marker compounds. Retention indices are reproducible in the range of ±0.05 to ±0.7 depending on the specific congener. A laboratory data base system developed to aid in the editing and quantitation of data generated from capillary gas chromatography was employed to quantitate chromatographic data. Data base management was provided by computer programs written in VAX-DSM (Digital Standard MUMPS) for the VAX-DEC (Digital Equipment Corp.) family of computers.In the chemometric evaluation of these complex chromatographic profiles, data are viewed from a single analysis as a point in multi-dimensional space. Principal Components Analysis was used to obtain a representation of the data in a lower dimensional space. Two-and three-dimensional proections based on sample scores from the principal components models were used to visualize the behavior of Aroclor® mixtures. These models can be used to determine if new sample profiles may be represented by Aroclor profiles. Concentrations of individual congeners of a given chlorine substitution may be summed to form homologue concentration. However, the use of homologue concentrations in classification studies with environmental samples can lead to erroneous conclusions about sample similarity. Chemometric applications are discussed for evaluation of Aroclor mixture analysis and compositional description of environmental residues of PCBs in eggs of Forster's terns (Sterna fosteri) collected from colonies near Lake Poygan and Green Bay, Wisconsin. The application of chemometrics is extended to the comparison of: a) Aroclors and PCB-containing environmental samples; to b) fractions of Aroclors and of environmental samples that have been enriched in congeners which induce mixed aryl hydrocarbon hydroxylase enzyme activity.

  16. The response of stream periphyton to Pacific salmon: using a model to understand the role of environmental context

    USGS Publications Warehouse

    Bellmore, J. Ryan; Fremier, Alexander K.; Mejia, Francine; Newsom, Michael

    2014-01-01

    1. In stream ecosystems, Pacific salmon deliver subsidies of marine-derived nutrients and disturb the stream bed during spawning. The net effect of this nutrient subsidy and physical disturbance on biological communities can be hard to predict and is likely to be mediated by environmental conditions. For periphyton, empirical studies have revealed that the magnitude and direction of the response to salmon varies from one location to the next. Salmon appear to increase periphyton biomass and/or production in some contexts (a positive response), but decrease them in others (a negative response). 2. To reconcile these seemingly conflicting results, we constructed a system dynamics model that links periphyton biomass and production to salmon spawning. We used this model to explore how environmental conditions influence the periphyton response to salmon. 3. Our simulations suggest that the periphyton response to salmon is strongly mediated by both background nutrient concentrations and the proportion of the stream bed suitable for spawning. Positive periphyton responses occurred when both background nutrient concentrations were low (nutrient limiting conditions) and when little of the stream bed was suitable for spawning (because the substratum is too coarse). In contrast, negative responses occurred when nutrient concentrations were higher or a larger proportion of the bed was suitable for spawning. 4. Although periphyton biomass generally remained above or below background conditions for several months following spawning, periphyton production returned quickly to background values shortly afterwards. As a result, based upon our simulations, salmon did not greatly increase or decrease overall annual periphyton production. This suggests that any increase in production by fish or invertebrates in response to returning salmon is more likely to occur via direct consumption of salmon carcasses and/or eggs, rather than the indirect effects of greater periphyton production. 5. Overall, our simulations suggest that environmental factors need to be taken into account when considering the effects of spawning salmon on aquatic ecosystems. Our model offers researchers a framework for testing periphyton response to salmon across a range of conditions, which can be used to generate hypotheses, plan field experiments and guide data collection.

  17. Environmental and economic analyses of waste disposal options for traditional markets in Indonesia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aye, Lu; Widjaya, E.R.

    2006-07-01

    Waste from traditional markets in Indonesia is the second largest stream of municipal solid waste after household waste. It has a higher organic fraction and may have greater potential to be managed on a business scale compared to household wastes. The attributed reason is that in general the wastes generated from traditional markets are more uniform, more concentrated and less hazardous than waste from other sources. This paper presents the results of environmental and economic assessments to compare the options available for traditional market waste disposal in Indonesia. The options compared were composting in labour intensive plants, composting in amore » centralised plant that utilised a simple wheel loader, centralised biogas production and landfill for electricity production. The current open dumping practice was included as the baseline case. A life cycle assessment (LCA) was used for environmental analysis. All options compared have lower environmental impacts than the current practice of open dumping. The biogas production option has the lowest environmental impacts. A cost-benefit analysis, which considered greenhouse gas savings, was used for the economic assessment. It was found that composting at a centralised plant is the most economically feasible option under the present Indonesian conditions. The approach reported in this study could be applied for 'a pre-feasibility first cut comparison' that includes environmental aspects in a decision-making framework for developing countries even though European emission factors were used.« less

  18. Dysregulation of autism-associated synaptic proteins by psychoactive pharmaceuticals at environmental concentrations.

    PubMed

    Kaushik, Gaurav; Xia, Yu; Pfau, Jean C; Thomas, Michael A

    2017-11-20

    Autism Spectrum Disorders (ASD) are complex neurological disorders for which the prevalence in the U.S. is currently estimated to be 1 in 50 children. A majority of cases of idiopathic autism in children likely result from unknown environmental triggers in genetically susceptible individuals. These triggers may include maternal exposure of a developing embryo to environmentally relevant minute concentrations of psychoactive pharmaceuticals through ineffectively purified drinking water. Previous studies in our lab examined the extent to which gene sets associated with neuronal development were up- and down-regulated (enriched) in the brains of fathead minnows treated with psychoactive pharmaceuticals at environmental concentrations. The aim of this study was to determine whether similar treatments would alter in vitro expression of ASD-associated synaptic proteins on differentiated human neuronal cells. Human SK-N-SH neuroblastoma cells were differentiated for two weeks with 10μM retinoic acid (RA) and treated with environmentally relevant concentrations of fluoxetine, carbamazepine or venlafaxine, and flow cytometry technique was used to analyze expression of ASD-associated synaptic proteins. Data showed that carbamazepine individually, venlafaxine individually and mixture treatment at environmental concentrations significantly altered the expression of key synaptic proteins (NMDAR1, PSD95, SV2A, HTR1B, HTR2C and OXTR). Data indicated that psychoactive pharmaceuticals at extremely low concentrations altered the in vitro expression of key synaptic proteins that may potentially contribute to neurological disorders like ASD by disrupting neuronal development. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Multi-criteria decision analysis of concentrated solar power with thermal energy storage and dry cooling.

    PubMed

    Klein, Sharon J W

    2013-12-17

    Decisions about energy backup and cooling options for parabolic trough (PT) concentrated solar power have technical, economic, and environmental implications. Although PT development has increased rapidly in recent years, energy policies do not address backup or cooling option requirements, and very few studies directly compare the diverse implications of these options. This is the first study to compare the annual capacity factor, levelized cost of energy (LCOE), water consumption, land use, and life cycle greenhouse gas (GHG) emissions of PT with different backup options (minimal backup (MB), thermal energy storage (TES), and fossil fuel backup (FF)) and different cooling options (wet (WC) and dry (DC). Multicriteria decision analysis was used with five preference scenarios to identify the highest-scoring energy backup-cooling combination for each preference scenario. MB-WC had the highest score in the Economic and Climate Change-Economy scenarios, while FF-DC and FF-WC had the highest scores in the Equal and Availability scenarios, respectively. TES-DC had the highest score for the Environmental scenario. DC was ranked 1-3 in all preference scenarios. Direct comparisons between GHG emissions and LCOE and between GHG emissions and land use suggest a preference for TES if backup is require for PT plants to compete with baseload generators.

  20. Health-risk assessment based on an additive to paints made from isobutyric aldehyde condensation products

    NASA Astrophysics Data System (ADS)

    Jan Tic, Wilhelm

    2017-10-01

    Solvents are primarily used for making protective coatings. Considering their chemical nature, there are a great variety of coatings, including those based on liquid hydrocarbons and organic chloroderivatives. These products are a serious load to the environment because of their physicochemical properties, therefore, they have for some time been replaced with more-environmentally friendly, new generation products. One of them is the hydroxyester HE-1: made from isobutyric aldehyde condensation products, it is an alternative to those coalescents for paints and varnishes which are intended to be replaced or their use restricted. The results of selected toxicological tests relating to the human health risk effect of the hydroxyester HE-1 - environmentally-friendly additive to paints and varnishes are presented. The test results indicate that HE-1 causes skin irritation in rabbit only when used at its maximum concentrations. No lesions in the cornea or iris were observed in any of the test rabbits after the application of the hydroxyester HE-1. In the mutagenic effect test of HE-1 on the bacteria Salmonella typhimurium, the result was negative. Based on the test results, it was found that the hydroxyester HE-1 may only have a human health risk effect when used at its maximum concentrations.

  1. Monitoring of styrene oligomers as indicators of polystyrene plastic pollution in the North-West Pacific Ocean.

    PubMed

    Kwon, Bum Gun; Amamiya, Keiji; Sato, Hideto; Chung, Seon-Yong; Kodera, Yoichi; Kim, Seung-Kyu; Lee, Eung Jae; Saido, Katsuhiko

    2017-08-01

    Styrene oligomers (SOs) as global contaminants are an environmental concern. However, little is known on the distribution of SOs in the ocean. Here, we show the distribution of anthropogenic SOs generated from discarded polystyrene (PS) plastic monitored from the coastal ocean surface waters (horizontal distribution) and deep seawaters (vertical distribution) in the North-West Pacific Ocean. SOs concentrations in surface seawater and deep seawater ranged from 0.17 to 4.26 μg L -1 (total mean: 1.48 ± 1.23 μg L -1 ) and from 0.31 to 4.31 μg L -1 (total mean: 1.32 ± 0.87 μg L -1 ), respectively. Since there is no significant difference in the mean concentrations, SOs seems to be spread across marine environment selected in this study. Nevertheless, regional SOs appears to persist to varying degrees with their broad horizontal and vertical distribution in the ocean. Each horizontal and vertical distribution of SOs differs by approximately 1.95-2.57 times, probably depending on the events of weather and global ocean circulation. These results provide the distribution pattern of SOs for assessing environmental pollution arising from PS plastic. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Technologically enhanced 210Pb and 210Po in iron and steel industry.

    PubMed

    Khater, Ashraf E M; Bakr, Wafaa F

    2011-05-01

    Iron and steel manufacture has been ranked as the largest industrial source of environmental contamination in the USA; the wastes generated in their production processes contain heavy elements that can be a source of contamination, and natural radionuclides that can produce an occupational and/or public radiological impact. In this work the potential occupational effective dose rate (μSv/y) due to inhalation in four integrated steel-making factories from Egypt has been evaluated, by assuming a well defined scenario and with basis in the (210)Pb and (210)Po activity concentrations determined in ore and wastes collected in the aforementioned factories. Activity concentrations, in Bq/kg, of (210)Pb and (210)Po, and leachable Pb and Fe were measured using gamma-ray spectrometry based on HPGe detector, alpha particle spectrometry based on PIPS detector, and inductively coupled plasma-mass spectrometry (ICP-MS). Levels of (210)Pb and (210)Po in the range of

  3. A novel polymer inclusion membrane based method for continuous clean-up of thiocyanate from gold mine tailings water.

    PubMed

    Cho, Youngsoo; Cattrall, Robert W; Kolev, Spas D

    2018-01-05

    Thiocyanate is present in gold mine tailings waters in concentrations up to 1000mgL -1 and this has a serious environmental impact by not allowing water reuse in the flotation of gold ore. This significantly increases the consumption of fresh water and the amount of wastewater discharged in tailings dams. At the same time thiocyanate in tailings waters often leads to groundwater contamination. A novel continuous membrane-based method for the complete clean-up of thiocyanate in concentrations as high as 1000mgL -1 from its aqueous solutions has been developed. It employs a flat sheet polymer inclusion membrane (PIM) of composition 70wt% PVC, 20wt% Aliquat 336 and 10wt% 1-tetradecanol which separates counter-current streams of a feed thiocyanate solution and a 1M NaNO 3 receiving solution. The PIM-based system has been operated continuously for 45days with 99% separation efficiency. The volume of the receiving solution has been drastically reduced by recirculating it and continuously removing thiocyanate by precipitating it with in-situ generated Cu(I). The newly developed PIM-based thiocyanate clean-up method is environmentally friendly in terms of reagent use and inexpensive with respect to both equipment and running costs. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Alternative photocatalysts to TiO2 for the photocatalytic reduction of CO2

    NASA Astrophysics Data System (ADS)

    Nikokavoura, Aspasia; Trapalis, Christos

    2017-01-01

    The increased concentration of CO2 in the atmosphere, originating from the burning of fossil fuels in stationary and mobile sources, is referred as the "Anthropogenic Greenhouse Effect" and constitutes a major environmental concern. The scientific community is highly concerned about the resulting enhancement of the mean atmospheric temperature, so a vast diversity of methods has been applied. Thermochemical, electrochemical, photocatalytic, photoelectrochemical processes, as well as combination of solar electricity generation and water splitting processes have been performed in order to lower the CO2 atmospheric levels. Photocatalytic methods are environmental friendly and succeed in reducing the atmospheric CO2 concentration and producing fuels or/and useful organic compounds at the same time. The most common photocatalysts for the CO2 reduction are the inorganic, the carbon based semiconductors and the hybrids based on semiconductors, which combine stability, low cost and appropriate structure in order to accomplish redox reactions. In this review, inorganic semiconductors such as single-metal oxide, mixed-metal oxides, metal oxide composites, layered double hydroxides (LDHs), salt composites, carbon based semiconductors such as graphene based composites, CNT composites, g-C3N4 composites and hybrid organic-inorganic materials (ZIFs) were studied. TiO2 and Ti based photocatalysts are extensively studied and therefore in this review they are not mentioned.

  5. DARTAB: a program to combine airborne radionuclide environmental exposure data with dosimetric and health effects data to generate tabulations of predicted health impacts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Begovich, C.L.; Eckerman, K.F.; Schlatter, E.C.

    1981-08-01

    The DARTAB computer code combines radionuclide environmental exposure data with dosimetric and health effects data to generate tabulations of the predicted impact of radioactive airborne effluents. DARTAB is independent of the environmental transport code used to generate the environmental exposure data and the codes used to produce the dosimetric and health effects data. Therefore human dose and risk calculations need not be added to every environmental transport code. Options are included in DARTAB to permit the user to request tabulations by various topics (e.g., cancer site, exposure pathway, etc.) to facilitate characterization of the human health impacts of the effluents.more » The DARTAB code was written at ORNL for the US Environmental Protection Agency, Office of Radiation Programs.« less

  6. The carbonic anhydrase CAH1 is an essential component of the carbon-concentrating mechanism in Nannochloropsis oceanica.

    PubMed

    Gee, Christopher W; Niyogi, Krishna K

    2017-04-25

    Aquatic photosynthetic organisms cope with low environmental CO 2 concentrations through the action of carbon-concentrating mechanisms (CCMs). Known eukaryotic CCMs consist of inorganic carbon transporters and carbonic anhydrases (and other supporting components) that culminate in elevated [CO 2 ] inside a chloroplastic Rubisco-containing structure called a pyrenoid. We set out to determine the molecular mechanisms underlying the CCM in the emerging model photosynthetic stramenopile, Nannochloropsis oceanica , a unicellular picoplanktonic alga that lacks a pyrenoid. We characterized CARBONIC ANHYDRASE 1 ( CAH1 ) as an essential component of the CCM in N. oceanica CCMP1779. We generated insertions in this gene by directed homologous recombination and found that the cah1 mutant has severe defects in growth and photosynthesis at ambient CO 2 We identified CAH1 as an α-type carbonic anhydrase, providing a biochemical role in CCM function. CAH1 was found to localize to the lumen of the epiplastid endoplasmic reticulum, with its expression regulated by the external inorganic carbon concentration at both the transcript and protein levels. Taken together, these findings show that CAH1 is an indispensable component of what may be a simple but effective and dynamic CCM in N. oceanica .

  7. Evaluation of flotation for purification of pyrite for use in thermal batteries

    NASA Astrophysics Data System (ADS)

    Guidotti, R. A.; Reinhardt, F. W.

    1992-07-01

    The purification of pyrite (FeS2) used in Li-alloy/FeS2 thermal batteries by the physical process of flotation was evaluated for reduction of the quartz impurity. The process was compared to the standard process of leaching with concentrated hydrofluoric acid. Flotation was an attractive alternative because it avoided many of the safety and environmental concerns posed by the use of concentrated HF. The effects of particle size and initial purity of the pyrite feed material upon the final purity and yield of the product concentrate were examined for batch sizes from 3.5 to 921 kg. Feed materials as coarse as 8 mm and as fine as -325 mesh were treated; the coarse pyrite was ground wet in a rod mill or dry in a vibratory mill to -230 mesh prior to flotation. Both the HF-leached and the flotation-treated pyrite were leached with HCI (1:1 v/v) to remove acid-soluble impurities. The flotation-purified pyrite concentrates were formulated into catholytes; their electrochemical performance was evaluated in both single cells and 5-cell batteries for comparison to data generated under the same discharge conditions for catholytes formulated with HF/HCI purified pyrite.

  8. Experimental design for the evaluation of struvite sedimentation obtained from an ammonium concentrated wastewater.

    PubMed

    Castro, Samuel Rodrigues; Araújo, Mahira Adna Cota; Lange, Liséte Celina

    2013-01-01

    Chemical precipitation of struvite as a technique of ammonium nitrogen (NH(4)-N) removal from concentrated wastewater has been shown to be an attractive alternative due to its high effectiveness, reaction rate, simplicity, environmental sustainability and, especially, the application potential of the generated solids for the fertilizer industry. The technique of experimental design has been used in order to identify and evaluate the optimum conditions of chemical precipitation reaction applied in a struvite sedimentation study. The preliminary tests were performed using synthetic effluent with a concentration equal to 500.0 mg N L(-1). The stoichiometric ratio Mg:NH(4):PO(4) equal to 1.5:1.0:1.25 and pH equal to 8.5 were taken to be the optimum conditions, where a NH(4)-N removal equal to 98.6% was achieved with only 10-min reaction time. This condition has been used to evaluate the struvite sedimentation from synthetic wastewaters, intending to check the optimum conditions achieved by the experimental design in different initial concentrations, 1,000 and 2,000 mg N L(-1). The results were typical of a good zonal sedimentation and can be used in the scale up the system.

  9. Uncertainty of water type-specific hazardous copper concentrations derived with biotic ligand models.

    PubMed

    Vijver, Martina G; De Koning, Arjan; Peijnenburg, Willie J G M

    2008-11-01

    One of the aims of the Water Framework Directive is to derive Europe-wide environmental quality standards that are scientifically based and protective of surface waters. Accounting for water type-specific bioavailability corrections presents challenges and opportunities for metals research. In this study, we present generally applicable approaches for tiered risk assessment of chemicals for prospective use. The objective of the present study was to derive water type-specific dissolved copper criteria for Dutch surface waters. The intent was to show the utility of accounting for bioavailability by using biotic ligand models (BLMs) and two different ways of extrapolating these BLMs in order to obtain reliable bioavailability-corrected species sensitivity distributions. Water type-specific criteria estimations were generated for six different water quality conditions. Average hazard concentrations as calculated using the BLMs and the two alternate normalization scenarios varied significantly among the different water types, from 5.6 to 73.6 microg/L. Water types defined as large rivers, sandy springs, and acid ponds were most sensitive for Cu. Streams and brooks had the highest hazard concentrations. The two different options examined for toxicity data normalization did impact the calculated hazard concentrations for each water type.

  10. Spatially resolved air-water emissions tradeoffs improve regulatory impact analyses for electricity generation.

    PubMed

    Gingerich, Daniel B; Sun, Xiaodi; Behrer, A Patrick; Azevedo, Inês L; Mauter, Meagan S

    2017-02-21

    Coal-fired power plants (CFPPs) generate air, water, and solids emissions that impose substantial human health, environmental, and climate change (HEC) damages. This work demonstrates the importance of accounting for cross-media emissions tradeoffs, plant and regional emissions factors, and spatially variation in the marginal damages of air emissions when performing regulatory impact analyses for electric power generation. As a case study, we assess the benefits and costs of treating wet flue gas desulfurization (FGD) wastewater at US CFPPs using the two best available treatment technology options specified in the 2015 Effluent Limitation Guidelines (ELGs). We perform a life-cycle inventory of electricity and chemical inputs to FGD wastewater treatment processes and quantify the marginal HEC damages of associated air emissions. We combine these spatially resolved damage estimates with Environmental Protection Agency estimates of water quality benefits, fuel-switching benefits, and regulatory compliance costs. We estimate that the ELGs will impose average net costs of $3.01 per cubic meter for chemical precipitation and biological wastewater treatment and $11.26 per cubic meter for zero-liquid discharge wastewater treatment (expected cost-benefit ratios of 1.8 and 1.7, respectively), with damages concentrated in regions containing a high fraction of coal generation or a large chemical manufacturing industry. Findings of net cost for FGD wastewater treatment are robust to uncertainty in auxiliary power source, location of chemical manufacturing, and binding air emissions limits in noncompliant regions, among other variables. Future regulatory design will minimize compliance costs and HEC tradeoffs by regulating air, water, and solids emissions simultaneously and performing regulatory assessments that account for spatial variation in emissions impacts.

  11. Spatially resolved air-water emissions tradeoffs improve regulatory impact analyses for electricity generation

    PubMed Central

    Gingerich, Daniel B.; Behrer, A. Patrick; Azevedo, Inês L.

    2017-01-01

    Coal-fired power plants (CFPPs) generate air, water, and solids emissions that impose substantial human health, environmental, and climate change (HEC) damages. This work demonstrates the importance of accounting for cross-media emissions tradeoffs, plant and regional emissions factors, and spatially variation in the marginal damages of air emissions when performing regulatory impact analyses for electric power generation. As a case study, we assess the benefits and costs of treating wet flue gas desulfurization (FGD) wastewater at US CFPPs using the two best available treatment technology options specified in the 2015 Effluent Limitation Guidelines (ELGs). We perform a life-cycle inventory of electricity and chemical inputs to FGD wastewater treatment processes and quantify the marginal HEC damages of associated air emissions. We combine these spatially resolved damage estimates with Environmental Protection Agency estimates of water quality benefits, fuel-switching benefits, and regulatory compliance costs. We estimate that the ELGs will impose average net costs of $3.01 per cubic meter for chemical precipitation and biological wastewater treatment and $11.26 per cubic meter for zero-liquid discharge wastewater treatment (expected cost-benefit ratios of 1.8 and 1.7, respectively), with damages concentrated in regions containing a high fraction of coal generation or a large chemical manufacturing industry. Findings of net cost for FGD wastewater treatment are robust to uncertainty in auxiliary power source, location of chemical manufacturing, and binding air emissions limits in noncompliant regions, among other variables. Future regulatory design will minimize compliance costs and HEC tradeoffs by regulating air, water, and solids emissions simultaneously and performing regulatory assessments that account for spatial variation in emissions impacts. PMID:28167772

  12. Spatial patterns and environmental controls of particulate organic carbon in surface waters in the conterminous United States

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Qichun; Zhang, Xuesong; Xu, Xingya

    2016-06-01

    Carbon stocks and fluxes in inland waters have been identified as important, but poorly constrained components of the global carbon cycle. In this study, we compile and analyze particulate organic carbon (POC) concentration data from 1145 U.S. Geological Survey (USGS) hydrologic stations to investigate the spatial variability and environmental controls of POC concentration. We observe substantial spatial variability in POC concentration (1.43 ± 2.56 mg C/ L, Mean ± Standard Deviation), with the Upper Mississippi River basin and the Piedmont region in the eastern U.S. having the highest POC concentration. Further, we employ generalized linear regression models to analyze themore » impacts of sediment transport and algae growth as well as twenty-one other environmental factors on the POC variability. Suspended sediment and chlorophyll-a explain 26% and 17% of the variability in POC concentration, respectively. At the national level, the twenty-one selected environmental factors combined can explain ca. 40% of the spatial variance in POC concentration. Overall, urban area and soil clay content show significant negative correlation with POC concentration, while soil water content and soil bulk density correlate positively with POC. In addition, total phosphorus concentration and dam density covariate positively with POC concentration. Furthermore, regional scale analyses reveal substantial variation in environmental controls determining POC concentration across the 18 major water resource regions in the U.S. The POC concentration and associated environmental controls also vary non-monotonically with river order. These findings indicate complex interactions among multiple factors in regulating POC production over different spatial scales and across various sections of the river networks. This complexity together with the large unexplained uncertainty highlight the need for consideration of non-linear processes that control them and developing appropriate methodologies to track the transformation and transport of carbon in these terrestrial-aquatic systems. Such scientific advancements will also benefit greatly the Earth system models that are currently deficient in representing properly this component of global carbon cycle.« less

  13. Superhydrophobic analyte concentration utilizing colloid-pillar array SERS substrates.

    PubMed

    Wallace, Ryan A; Charlton, Jennifer J; Kirchner, Teresa B; Lavrik, Nickolay V; Datskos, Panos G; Sepaniak, Michael J

    2014-12-02

    The ability to detect a few molecules present in a large sample is of great interest for the detection of trace components in both medicinal and environmental samples. Surface enhanced Raman spectroscopy (SERS) is a technique that can be utilized to detect molecules at very low absolute numbers. However, detection at trace concentration levels in real samples requires properly designed delivery and detection systems. The following work involves superhydrophobic surfaces that have as a framework deterministic or stochastic silicon pillar arrays formed by lithographic or metal dewetting protocols, respectively. In order to generate the necessary plasmonic substrate for SERS detection, simple and flow stable Ag colloid was added to the functionalized pillar array system via soaking. Native pillars and pillars with hydrophobic modification are used. The pillars provide a means to concentrate analyte via superhydrophobic droplet evaporation effects. A ≥ 100-fold concentration of analyte was estimated, with a limit of detection of 2.9 × 10(-12) M for mitoxantrone dihydrochloride. Additionally, analytes were delivered to the surface via a multiplex approach in order to demonstrate an ability to control droplet size and placement for scaled-up uses in real world applications. Finally, a concentration process involving transport and sequestration based on surface treatment selective wicking is demonstrated.

  14. Noninvasive evaluation of the chronic influence of local air velocity from an air conditioner using salivary cortisol and skin caspase-14 as biomarkers of psychosomatic and environmental stress.

    PubMed

    Yamaguchi, M; Nishimiya, H

    2012-01-01

    To demonstrate the possibility of evaluating the chronic influence of local air velocity from an air conditioner using noninvasive biomarkers. Over a consecutive 5-day period, 16 healthy young male adults were exposed to air flow from a whole ceiling-type air conditioner (low local air velocity) and from a commercial concentrated exhaust air conditioner (high local air velocity). Salivary cortisol was used as an index of the psychological effects and caspase-14, collected from the stratum corneum, was used as a marker of environmental stress on the skin. Local air velocity generated from the whole ceiling-type air conditioner where the subject's head was positioned was one-seventh that of the exhaust air conditioner. After exposure to the exhaust air conditioner for 5 days, salivary cortisol decreased significantly from morning to evening and skin caspase-14 gradually increased during the day. A significant increase in hydration index from the morning to the evening was found with the whole ceiling-type air conditioner. The effects of chronic exposure to air movement generated by an air conditioner may be quantified by measurement of salivary cortisol and skin caspase-14.

  15. Metasurfaces Leveraging Solar Energy for Icephobicity.

    PubMed

    Mitridis, Efstratios; Schutzius, Thomas M; Sicher, Alba; Hail, Claudio U; Eghlidi, Hadi; Poulikakos, Dimos

    2018-06-29

    Inhibiting ice accumulation on surfaces is an energy-intensive task and is of significant importance in nature and technology where it has found applications in windshields, automobiles, aviation, renewable energy generation, and infrastructure. Existing methods rely on on-site electrical heat generation, chemicals, or mechanical removal, with drawbacks ranging from financial costs to disruptive technical interventions and environmental incompatibility. Here we focus on applications where surface transparency is desirable and propose metasurfaces with embedded plasmonically enhanced light absorption heating, using ultrathin hybrid metal-dielectric coatings, as a passive, viable approach for de-icing and anti-icing, in which the sole heat source is renewable solar energy. The balancing of transparency and absorption is achieved with rationally nanoengineered coatings consisting of gold nanoparticle inclusions in a dielectric (titanium dioxide), concentrating broadband absorbed solar energy into a small volume. This causes a > 10 °C temperature increase with respect to ambient at the air-solid interface, where ice is most likely to form, delaying freezing, reducing ice adhesion, when it occurs, to negligible levels (de-icing) and inhibiting frost formation (anti-icing). Our results illustrate an effective unexplored pathway toward environmentally compatible, solar-energy-driven icephobicity, enabled by respectively tailored plasmonic metasurfaces, with the ability to design the balance of transparency and light absorption.

  16. Organelle redox autonomy during environmental stress.

    PubMed

    Bratt, Avishay; Rosenwasser, Shilo; Meyer, Andreas; Fluhr, Robert

    2016-09-01

    Oxidative stress is generated in plants because of inequalities in the rate of reactive oxygen species (ROS) generation and scavenging. The subcellular redox state under various stress conditions was assessed using the redox reporter roGFP2 targeted to chloroplastic, mitochondrial, peroxisomal and cytosolic compartments. In parallel, the vitality of the plant was measured by ion leakage. Our results revealed that during certain physiological stress conditions the changes in roGFP2 oxidation are comparable to application of high concentrations of exogenous H2 O2 . Under each stress, particular organelles were affected. Conditions of extended dark stress, or application of elicitor, impacted chiefly on the status of peroxisomal redox state. In contrast, conditions of drought or high light altered the status of mitochondrial or chloroplast redox state, respectively. Amalgamation of the results from diverse environmental stresses shows cases of organelle autonomy as well as multi-organelle oxidative change. Importantly, organelle-specific oxidation under several stresses proceeded cell death as measured by ion leakage, suggesting early roGFP oxidation as predictive of cell death. The measurement of redox state in multiple compartments enables one to look at redox state connectivity between organelles in relation to oxidative stress as well as assign a redox fingerprint to various types of stress conditions. © 2016 John Wiley & Sons Ltd.

  17. Investigation on the efficiency of treated Palm Tree waste for removal of organic pollutants

    NASA Astrophysics Data System (ADS)

    Azoulay, Karima; El HajjajiI, Souad; Dahchour, Abdelmalek

    2017-04-01

    Development of the industrial sector generates several problems of environmental pollution. This issue rises concern among scientific community and decision makers, in this work; we e interested in water resources polluted by the chemical substances, which can cause various problems of health. As an example, dyes generated by different industrial activities such as textile, cosmetic, metal plating, leather, paper and plastic sectors, constitute an important source of pollution. In this work, we aim at investigating the efficiency of palm tree waste for removal of dyes from polluted solution. Our work presents a double environmental aspect, on one hand it constitutes an attempt for valorization of Palm Tree waste, and on the other hand it provides natural adsorbent. The study focuses on the effectiveness of the waste in removing Methylene Bleu and Methyl Orange taken as models of pollutants from aqueous solution. Kinetics and isotherm experiments were conducted in order to determine the sorption behavior of the examined dye. The effects of initial dye and adsorbent concentrations are considered. The results indicate that the correlation coefficient calculated from pseudo-second order equation was higher than the other kinetic equations, indicating that equilibrium data fitted well with pseudo-second order model where adsorption process was chemisorption. The adsorption equilibrium was well described by Langmuir isotherm model.

  18. Vitamin C enhances substantially formation of 5-hydroxymethyluracil in cellular DNA.

    PubMed

    Modrzejewska, Martyna; Gawronski, Maciej; Skonieczna, Magdalena; Zarakowska, Ewelina; Starczak, Marta; Foksinski, Marek; Rzeszowska-Wolny, Joanna; Gackowski, Daniel; Olinski, Ryszard

    2016-12-01

    The most plausible mechanism behind active demethylation of 5-methylcytosine involves TET proteins which participate in oxidation of 5-methylcytosine to 5-hydroxymethylcytosine; the latter is further oxidized to 5-formylcytosine and 5-carboxycytosine. 5-Hydroxymethyluracil can be also generated from thymine in a TET-catalyzed process. Ascorbate was previously demonstrated to enhance generation of 5-hydroxymethylcytosine in cultured cells. The aim of this study was to determine the levels of the abovementioned TET-mediated oxidation products of 5-methylcytosine and thymine after addition of ascorbate, using an isotope-dilution automated online two-dimensional ultra-performance liquid chromatography with electrospray ionization tandem mass spectrometry. Intracellular concentration of ascorbate was determined by means of ultra-performance liquid chromatography with UV detection. Irrespective of its concentration in culture medium (10-100µM) and inside the cell, ascorbate stimulated a moderate (2- to 3-fold) albeit persistent (up to 96-h) increase in the level of 5-hydroxymethylcytosine. However, exposure of cells to higher concentrations of ascorbate (100µM or 1mM) stimulated a substantial increase in 5-formylcytosine and 5-carboxycytosine levels. Moreover, for the first time we demonstrated a spectacular (up to 18.5-fold) increase in 5-hydroxymethyluracil content what, in turn, suggests that TET enzymes contributed to the presence of the modification in cellular DNA. These findings suggest that physiological concentrations of ascorbate in human serum (10-100µM) are sufficient to maintain a stable level of 5-hydroxymethylcytosine in cellular DNA. However, markedly higher concentrations of ascorbate (ca. 100µM in the cell milieu or ca. 1mM inside the cell) were needed to obtain a sustained increase in 5-formylcytosine, 5-carboxycytosine and 5-hydroxymethyluracil levels. Such feedback to elevated concentrations of ascorbate may reflect adaptation of the cell to environmental conditions. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Biofuels from Bacteria Is PNNL Biochemist’s Goal (DOE Pulse Profile)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wiley, Julie G.; Manke, Kristin L.

    When you ask Mary Lipton what her strengths are, she quickly responds with her personality type. 'I'm an Expressive,' she says, aptly punctuating her words with her hands. 'The plus side is that I communicate and collaborate well, and I look at the bigger picture. On the other hand, I don't concentrate on details. But I can incorporate the details into a larger vision.' Regardless of how they are perceived, these traits have served Lipton well as a scientist at Pacific Northwest National Laboratory. She's nationally recognized for applying new mass spectrometry-based technologies to characterize environmental microbes and microbial communities,more » particularly for their use in generating biofuels. 'I work on biofuels because at some point, everyone pays for the high cost of fuel. It affects all of us, whether directly at the gas pump or by higher food and materials costs,' says Lipton. Lipton categorizes her biofuels research area as environmental proteomics, which she defines as the application of advanced protein-based techniques to understanding environmental and biological systems. But she's quick to note that environmental proteomics doesn't just aid development of new biofuels, but also helps further understanding of the impact of climate change and the use of organisms for bioremediation.« less

  20. Environmental enrichment imparts disease-modifying and transgenerational effects on genetically-determined epilepsy and anxiety.

    PubMed

    Dezsi, Gabi; Ozturk, Ezgi; Salzberg, Michael R; Morris, Margaret; O'Brien, Terence J; Jones, Nigel C

    2016-09-01

    The absence epilepsies are presumed to be caused by genetic factors, but the influence of environmental exposures on epilepsy development and severity, and whether this influence is transmitted to subsequent generations, is not well known. We assessed the effects of environmental enrichment on epilepsy and anxiety outcomes in multiple generations of GAERS - a genetic rat model of absence epilepsy that manifests comorbid elevated anxiety-like behaviour. GAERS were exposed to environmental enrichment or standard housing beginning either prior to, or after epilepsy onset, and underwent EEG recordings and anxiety testing. Then, we exposed male GAERS to early enrichment or standard housing and generated F1 progeny, which also underwent EEG recordings. Hippocampal CRH mRNA expression and DNA methylation were assessed using RT-PCR and pyrosequencing, respectively. Early environmental enrichment delayed the onset of epilepsy in GAERS, and resulted in fewer seizures in adulthood, compared with standard housed GAERS. Enrichment also reduced the frequency of seizures when initiated in adulthood. Anxiety levels were reduced by enrichment, and these anti-epileptogenic and anxiolytic effects were heritable into the next generation. We also found reduced expression of CRH mRNA in GAERS exposed to enrichment, but this was not due to changes in DNA methylation. Environmental enrichment produces disease-modifying effects on genetically determined absence epilepsy and anxiety, and these beneficial effects are transferable to the subsequent generation. Reduced CRH expression was associated with these phenotypic improvements. Environmental stimulation holds promise as a naturalistic therapy for genetically determined epilepsy which may benefit subsequent generations. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. 78 FR 26356 - Notice of Environmental Site Review

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-06

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Notice of Environmental Site Review York Haven Power Company, LLC Project No. 1888-030. Exelon Generation Company, LLC Project No. 405-106. Exelon Generation Company, LLC Project No. 2355-018. On May 21, 22, and 23, 2013, Commission staff will hold an environmental site review for the...

  2. 76 FR 79227 - Exemption Request Submitted by Oyster Creek Nuclear Generating Station; Exelon Generation Company...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-21

    ... Commission. ACTION: Environmental assessment and finding of no significant impact. SUPPLEMENTARY INFORMATION... included as Attachment 3 to the licensee's exemption request. Environmental Impacts of the Proposed Action... any environmental impacts that would be incurred by performance of the drill (e.g., use of roads or...

  3. The Environmental Impact of Electrical Power Generation: Nuclear and Fossil.

    ERIC Educational Resources Information Center

    Pennsylvania State Dept. of Education, Harrisburg.

    This text was written to accompany a course concerning the need, environmental costs, and benefits of electrical power generation. It was compiled and written by a committee drawn from educators, health physicists, members of industry and conservation groups, and environmental scientists. Topics include: the increasing need for electrical power,…

  4. Anthropogenic activities and coastal environmental quality: a regional quantitative analysis in southeast China with management implications.

    PubMed

    Chen, Kai; Liu, Yan; Huang, Dongren; Ke, Hongwei; Chen, Huorong; Zhang, Songbin; Yang, Shengyun; Cai, Minggang

    2018-02-01

    Regional analysis of environmental issues has always been a hot topic in the field of sustainable development. Because the different levels of economic growth, urbanization, resource endowments, etc. in different regions generate apparently different ecological responses, a better description and comparison across different regions will provide more valuable implications for ecological improvement and policymaking. In this study, seven typical bays in southeast China that are a rapid developing area were selected to quantitatively analyze the relationship between socioeconomic development and coastal environmental quality. Based on the water quality data from 2007 to 2015, the multivariate statistical method was applied to analyze the potential environmental risks and to classify the seven bays based on their environmental quality status. The possible variation trends of environmental indices were predicted based on the cross-regional panel data by Environmental Kuznets Curve. The results showed that there were significant regional differences among the seven bays, especially Quanzhou, Xiamen, and Luoyuan Bays, suffered from severer artificial disturbances than other bays, despite their different development patterns. Socioeconomic development level was significantly associated with some water quality indices (pH, DIN, PO 4 -P); the association was roughly positive: the areas with higher GDP per capita have some worse water quality indices. In addition, the decreasing trend of pH values and the increasing trend of nutrient concentration in the seven bays will continue in the foreseeable future. In consideration of the variation trends, the limiting nutrient strategy should be implemented to mitigate the deterioration of the coastal environments.

  5. Environmental water demand assessment under climate change conditions.

    PubMed

    Sarzaeim, Parisa; Bozorg-Haddad, Omid; Fallah-Mehdipour, Elahe; Loáiciga, Hugo A

    2017-07-01

    Measures taken to cope with the possible effects of climate change on water resources management are key for the successful adaptation to such change. This work assesses the environmental water demand of the Karkheh river in the reach comprising Karkheh dam to the Hoor-al-Azim wetland, Iran, under climate change during the period 2010-2059. The assessment of the environmental demand applies (1) representative concentration pathways (RCPs) and (2) downscaling methods. The first phase of this work projects temperature and rainfall in the period 2010-2059 under three RCPs and with two downscaling methods. Thus, six climatic scenarios are generated. The results showed that temperature and rainfall average would increase in the range of 1.7-5.2 and 1.9-9.2%, respectively. Subsequently, flows corresponding to the six different climatic scenarios are simulated with the unit hydrographs and component flows from rainfall, evaporation, and stream flow data (IHACRES) rainfall-runoff model and are input to the Karkheh reservoir. The simulation results indicated increases of 0.9-7.7% in the average flow under the six simulation scenarios during the period of analysis. The second phase of this paper's methodology determines the monthly minimum environmental water demands of the Karkheh river associated with the six simulation scenarios using a hydrological method. The determined environmental demands are compared with historical ones. The results show that the temporal variation of monthly environmental demand would change under climate change conditions. Furthermore, some climatic scenarios project environmental water demand larger than and some of them project less than the baseline one.

  6. Environmentally relevant concentrations of nitrate increase plasma testosterone concentrations in female American alligators (Alligator mississippiensis).

    PubMed

    Hamlin, Heather J; Edwards, Thea M; McCoy, Jessica; Cruze, Lori; Guillette, Louis J

    2016-11-01

    Anthropogenic nitrogen is a ubiquitous environmental contaminant that is contributing to the degradation of freshwater, estuarine, and coastal ecosystems worldwide. The effects of environmental nitrate, a principal form of nitrogen, on the health of aquatic life is of increasing concern. We exposed female American alligators to three concentrations of nitrate (0.7, 10 and 100mg/L NO 3 -N) for a duration of five weeks and five months from hatch. We assessed growth, plasma sex steroid and thyroid hormone concentrations, and transcription levels of key genes involved in steroidogenesis (StAR, 3β-HSD, and P450 scc ) and hepatic clearance (Cyp1a, Cyp3a). Exposure to 100mg/L NO 3 -N for both five weeks and five months resulted in significantly increased plasma testosterone (T) concentrations compared with alligators in the reference treatment. No differences in 17β-estradiol, progesterone, or thyroid hormones were observed, nor were there differences in alligator weight or the mRNA abundance of steroidogenic or hepatic genes. Plasma and urinary nitrate concentrations increased with increasing nitrate treatment levels, although relative plasma concentrations of nitrate were significantly lower in five month, versus five week old animals, possibly due to improved kidney function in older animals. These results indicate that environmentally relevant concentrations of nitrate can increase circulating concentrations of T in young female alligators. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Potential Occupational Exposures and Health Risks Associated with Biomass-Based Power Generation.

    PubMed

    Rohr, Annette C; Campleman, Sharan L; Long, Christopher M; Peterson, Michael K; Weatherstone, Susan; Quick, Will; Lewis, Ari

    2015-07-22

    Biomass is increasingly being used for power generation; however, assessment of potential occupational health and safety (OH&S) concerns related to usage of biomass fuels in combustion-based generation remains limited. We reviewed the available literature on known and potential OH&S issues associated with biomass-based fuel usage for electricity generation at the utility scale. We considered three potential exposure scenarios--pre-combustion exposure to material associated with the fuel, exposure to combustion products, and post-combustion exposure to ash and residues. Testing of dust, fungal and bacterial levels at two power stations was also undertaken. Results indicated that dust concentrations within biomass plants can be extremely variable, with peak levels in some areas exceeding occupational exposure limits for wood dust and general inhalable dust. Fungal spore types, identified as common environmental species, were higher than in outdoor air. Our review suggests that pre-combustion risks, including bioaerosols and biogenic organics, should be considered further. Combustion and post-combustion risks appear similar to current fossil-based combustion. In light of limited available information, additional studies at power plants utilizing a variety of technologies and biomass fuels are recommended.

  8. Potential Occupational Exposures and Health Risks Associated with Biomass-Based Power Generation

    PubMed Central

    Rohr, Annette C.; Campleman, Sharan L.; Long, Christopher M.; Peterson, Michael K.; Weatherstone, Susan; Quick, Will; Lewis, Ari

    2015-01-01

    Biomass is increasingly being used for power generation; however, assessment of potential occupational health and safety (OH&S) concerns related to usage of biomass fuels in combustion-based generation remains limited. We reviewed the available literature on known and potential OH&S issues associated with biomass-based fuel usage for electricity generation at the utility scale. We considered three potential exposure scenarios—pre-combustion exposure to material associated with the fuel, exposure to combustion products, and post-combustion exposure to ash and residues. Testing of dust, fungal and bacterial levels at two power stations was also undertaken. Results indicated that dust concentrations within biomass plants can be extremely variable, with peak levels in some areas exceeding occupational exposure limits for wood dust and general inhalable dust. Fungal spore types, identified as common environmental species, were higher than in outdoor air. Our review suggests that pre-combustion risks, including bioaerosols and biogenic organics, should be considered further. Combustion and post-combustion risks appear similar to current fossil-based combustion. In light of limited available information, additional studies at power plants utilizing a variety of technologies and biomass fuels are recommended. PMID:26206568

  9. Behavioural and biochemical responses to metals tested alone or in mixture (Cd-Cu-Ni-Pb-Zn) in Gammarus fossarum: From a multi-biomarker approach to modelling metal mixture toxicity.

    PubMed

    Lebrun, Jérémie D; Uher, Emmanuelle; Fechner, Lise C

    2017-12-01

    Metals are usually present as mixtures at low concentrations in aquatic ecosystems. However, the toxicity and sub-lethal effects of metal mixtures on organisms are still poorly addressed in environmental risk assessment. Here we investigated the biochemical and behavioural responses of Gammarus fossarum to Cu, Cd, Ni, Pb and Zn tested individually or in mixture (M2X) at concentrations twice the levels of environmental quality standards (EQSs) from the European Water Framework Directive. The same metal mixture was also tested with concentrations equivalent to EQSs (M1X), thus in a regulatory context, as EQSs are proposed to protect aquatic biota. For each exposure condition, mortality, locomotion, respiration and enzymatic activities involved in digestive metabolism and moult were monitored over a 120h exposure period. Multi-metric variations were summarized by the integrated biomarker response index (IBR). Mono-metallic exposures shed light on biological alterations occurring at environmental exposure levels in gammarids and depending on the considered metal and gender. As regards mixtures, biomarkers were altered for both M2X and M1X. However, no additive or synergistic effect of metals was observed comparing to mono-metallic exposures. Indeed, bioaccumulation data highlighted competitive interactions between metals in M2X, decreasing subsequently their internalisation and toxicity. IBR values indicated that the health of gammarids was more impacted by M1X than M2X, because of reduced competitions and enhanced uptakes of metals for the mixture at lower, EQS-like concentrations. Models using bioconcentration data obtained from mono-metallic exposures generated successful predictions of global toxicity both for M1X and M2X. We conclude that sub-lethal effects of mixtures identified by the multi-biomarker approach can lead to disturbances in population dynamics of gammarids. Although IBR-based models offer promising lines of enquiry to predict metal mixture toxicity, further studies are needed to confirm their predictive quality on larger ranges of metallic combinations before their use in field conditions. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. An analysis on the environmental Kuznets curve of Chengdu

    NASA Astrophysics Data System (ADS)

    Gao, Zijian; Peng, Yue; Zhao, Yue

    2017-12-01

    In this paper based on the environmental and economic data of Chengdu from 2005 to 2014, the measurement models were established to analyze 3 kinds of environmental flow indicators and 4 kinds of environmental stock indicators to obtain their EKC evolution trajectories and characters. The results show that the relationship curve between the discharge of SO2 from industry and the GDP per capita is a positive U shape, just as the curve between discharge of COD from industry and the GDP per person. The relationship curve between the dust discharge from industry and the GDP per capita is an inverted N shape. In the central of the urban the relationship curve between the concentration of SO2 in the air and the GDP per person is a positive U shape. The relationship curves between the concentration of NO2 in the air and the GDP per person, between the concentration of the particulate matters and the GDP per person, and between the concentration of the fallen dusts and the GDP per person are fluctuating. So the EKC curves of the 7 kinds of environmental indicators are not accord with inverted U shape feature. In the development of this urban the environmental problems can’t be resolved only by economic growth. The discharge of industrial pollutants should be controlled to improve the atmospheric environmental quality and reduce the environmental risks.

  11. Combining exposure and effect modeling into an integrated probabilistic environmental risk assessment for nanoparticles.

    PubMed

    Jacobs, Rianne; Meesters, Johannes A J; Ter Braak, Cajo J F; van de Meent, Dik; van der Voet, Hilko

    2016-12-01

    There is a growing need for good environmental risk assessment of engineered nanoparticles (ENPs). Environmental risk assessment of ENPs has been hampered by lack of data and knowledge about ENPs, their environmental fate, and their toxicity. This leads to uncertainty in the risk assessment. To deal with uncertainty in the risk assessment effectively, probabilistic methods are advantageous. In the present study, the authors developed a method to model both the variability and the uncertainty in environmental risk assessment of ENPs. This method is based on the concentration ratio and the ratio of the exposure concentration to the critical effect concentration, both considered to be random. In this method, variability and uncertainty are modeled separately so as to allow the user to see which part of the total variation in the concentration ratio is attributable to uncertainty and which part is attributable to variability. The authors illustrate the use of the method with a simplified aquatic risk assessment of nano-titanium dioxide. The authors' method allows a more transparent risk assessment and can also direct further environmental and toxicological research to the areas in which it is most needed. Environ Toxicol Chem 2016;35:2958-2967. © 2016 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals, Inc. on behalf of SETAC. © 2016 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals, Inc. on behalf of SETAC.

  12. Article: Next Generation Compliance

    EPA Pesticide Factsheets

    The article Next Generation Compliance by Cynthia Giles, Assistant Administrator for OECA was published in The Environmental Forum, Sept-Oct 2013 explains EPA's strategy on using new technologies to improve compliance with environmental laws.

  13. Emission & Generation Resource Integrated Database (eGRID)

    EPA Pesticide Factsheets

    The Emissions & Generation Resource Integrated Database (eGRID) is an integrated source of data on environmental characteristics of electric power generation. Twelve federal databases are represented by eGRID, which provides air emission and resource mix information for thousands of power plants and generating companies. eGRID allows direct comparison of the environmental attributes of electricity from different plants, companies, States, or regions of the power grid.

  14. Environmental exposure modeling and monitoring of human pharmaceutical concentrations in the environment

    USGS Publications Warehouse

    Versteeg, D.J.; Alder, A. C.; Cunningham, V. L.; Kolpin, D.W.; Murray-Smith, R.; Ternes, T.

    2005-01-01

    Human pharmaceuticals are receiving increased attention as environmental contaminants. This is due to their biological activity and the number of monitoring programs focusing on analysis of these compounds in various environmental media and compartments. Risk assessments are needed to understand the implications of reported concentrations; a fundamental part of the risk assessment is an assessment of environmental exposures. The purpose of this chapter is to provide guidance on the use of predictive tools (e.g., models) and monitoring data in exposure assessments for pharmaceuticals in the environment. Methods to predict environmental concentrations from equations based on first principles are presented. These equations form the basis of existing GIS (geographic information systems)-based systems for understanding the spatial distribution of pharmaceuticals in the environment. The pharmaceutical assessment and transport (PhATE), georeferenced regional exposure assessment tool for European rivers (GREAT-ER), and geographical information system (GIS)-ROUT models are reviewed and recommendations are provided concerning the design and execution of monitoring studies. Model predictions and monitoring data are compared to evaluate the relative utility of each approach in environmental exposure assessments. In summary, both models and monitoring data can be used to define representative exposure concentrations of pharmaceuticals in the environment in support of environmental risk assessments.

  15. Modeling flows and concentrations of nine engineered nanomaterials in the Danish environment.

    PubMed

    Gottschalk, Fadri; Lassen, Carsten; Kjoelholt, Jesper; Christensen, Frans; Nowack, Bernd

    2015-05-22

    Predictions of environmental concentrations of engineered nanomaterials (ENM) are needed for their environmental risk assessment. Because analytical data on ENM-concentrations in the environment are not yet available, exposure modeling represents the only source of information on ENM exposure in the environment. This work provides material flow data and environmental concentrations of nine ENM in Denmark. It represents the first study that distinguishes between photostable TiO₂ (as used in sunscreens) and photocatalytic TiO₂ (as used in self-cleaning surfaces). It also provides first exposure estimates for quantum dots, carbon black and CuCO₃. Other ENM that are covered are ZnO, Ag, CNT and CeO₂. The modeling is based for all ENM on probability distributions of production, use, environmental release and transfer between compartments, always considering the complete life-cycle of products containing the ENM. The magnitude of flows and concentrations of the various ENM depends on the one hand on the production volume but also on the type of products they are used in and the life-cycles of these products and their potential for release. The results reveal that in aquatic systems the highest concentrations are expected for carbon black and photostable TiO₂, followed by CuCO₃ (under the assumption that the use as wood preservative becomes important). In sludge-treated soil highest concentrations are expected for CeO₂ and TiO₂. Transformation during water treatments results in extremely low concentrations of ZnO and Ag in the environment. The results of this study provide valuable environmental exposure information for future risk assessments of these ENM.

  16. Chemical composition of submicron and fine particulate matter collected in Krakow, Poland. Consequences for the APARIC project.

    PubMed

    Samek, Lucyna; Furman, Leszek; Mikrut, Magdalena; Regiel-Futyra, Anna; Macyk, Wojciech; Stochel, Grażyna; van Eldik, Rudi

    2017-11-01

    Submicron particulate matter containing particles with an aerodynamic diameter ≤1 μm (PM1) are not monitored continuously by Environmental Protection Agencies around the World and are seldom studied. Numerous studies have indicated that people exposed to ultrafine (≤100 nm), submicron and fine particulate matter containing particles with an aerodynamic diameter ≤2.5 μm (PM2.5), can suffer from respiratory track diseases, cardiovascular, immunological or heart diseases and others. Inorganic pollutants containing redox active transition metals and small gaseous molecules, are involved in the generation of reactive oxygen and reactive nitrogen species. Inhalation of this kind of particles can affect immune-toxicity. Environmental pollution may aggravate the course of autoimmune diseases, in particular influence the mechanisms of the autoimmune system. Important factors that influence the toxicity of particulate matter, are particle size distribution, composition and concentration. This report deals with the composition of PM1 and PM2.5 fractions collected in Krakow, Poland. In spring 2015, the mean concentrations of PM1 and PM2.5 were 19 ± 14 and 27 ± 19 μg/m 3 , respectively. The PM2.5 fraction contained approximately 70 ± 17% of submicron particulate matter. In spring 2016, the mean concentrations of PM1 and PM2.5 were 12 ± 5 and 22 ± 12 μg/m 3 , respectively. The PM2.5 fraction contained approximately 60 ± 15% of submicron particulate matter. The concentrations of the elements Cl, K, Ca, Ti, Cr, Mn, Fe, Ni, Cu, Zn, Br, Rb, Sr and Pb in both fractions were determined by X-ray fluorescence spectrometry. Most of the analyzed metals had higher concentrations in the fine fraction than in the submicron one. Concentrations of V and As were below the detection limit in both fractions, whereas concentrations of Mn and Ca were below the detection limits in the PM1 fraction. The results are discussed in terms of the consequences they may have on the APARIC project presently underway in Krakow. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Health, growth and reproductive success of mice exposed to environmentally relevant levels of Ra-226 via drinking water over multiple generations.

    PubMed

    Walsh, Stephanie; Satkunam, Meloja; Su, Ben; Festarini, Amy; Bugden, Michelle; Peery, Harry; Mothersill, Carmel; Stuart, Marilyne

    2015-07-01

    To assess health, growth and reproductive success of mammals exposed for multiple generations to levels of radium-226 known to occur in environments surrounding uranium mines and mills in Canada. The study consisted of a control group and four treatment groups each containing 40 mice (20 males and 20 females) of the CBA/CaJ strain that were continuously exposed to a range of radium-226 levels via drinking water. Breeding was at 8-10 weeks of age and the study was concluded after three breeding cycles. When compared to control mice, constant consumption of drinking water containing 0.012, 0.076, 0.78 and 8.0 Bq/l of radium-226 over four generations of mice did not demonstrably affect physical condition, weight, pregnancy rate, number of pups per litter, sex ratio and bodyweight gain of pups. Between generations, the observed differences in pregnancy rates that were noted in all groups, including controls, seemed to directly correlate with the weight and age of the females at breeding. Based on the endpoints measured on four generations of mice, there is no indication that the consumption of radium-226 via drinking water (at activity concentrations up to 8.0 Bq/l) affects health, growth and reproductive fitness.

  18. Multigenerational Effects of Heavy Metals on Feeding, Growth, Initial Reproduction and Antioxidants in Caenorhabditis elegans

    PubMed Central

    Yu, ZhenYang; Zhang, Jing; Yin, DaQiang

    2016-01-01

    Earlier studies showed that toxicities of excessive metals lasted over generations. Yet, these studies mainly employed one-generation exposure, and the effects of multigenerational challenges need further studies. Presently, Caenorhabditis elegans were exposed to cadmium, copper, lead and zinc for four consecutive generations (G1 to G4) at environmental concentrations. The feeding, growth, initial reproduction, superoxide dismutase (SOD) and catalase (CAT) were determined. All data were represented in the percentage of that in control (POC), and POC in the control was normalized to 100%. In G1 and G2, the POC values in feeding, growth and initial reproduction were generally within 10% of the control (100%), indicating non-significant effects. The POC values in SOD and CAT were significantly higher than 100%, showing stimulatory effects. In G3 and G4, the POC values in feeding, growth and initial reproduction were significantly lower than 100%, showing inhibitory effects which were more severe in G4 than in G3. Meanwhile, SOD and CAT continuously showed stimulatory effects, and the stimulatory effects on SOD increased from G1 to G4. The effects with multigenerational challenges were different from those in one-generation exposure. The effects in later generations demonstrated the importance of multigenerational challenges in judging long-term influences of metals. PMID:27116222

  19. Full-scale chamber investigation and simulation of air freshener emissions in the presence of ozone.

    PubMed

    Liu, Xiaoyu; Mason, Mark; Krebs, Kenneth; Sparks, Leslie

    2004-05-15

    Volatile organic compound (VOC) emissions from one electrical plug-in type of pine-scented air freshener and their reactions with O3 were investigated in the U.S. Environmental Protection Agency indoor air research large chamber facility. Ozone was generated from a device marketed as an ozone generator air cleaner. Ozone and oxides of nitrogen concentrations and chamber conditions such as temperature, relative humidity, pressure, and air exchange rate were controlled and/or monitored. VOC emissions and some of the reaction products were identified and quantified. Source emission models were developed to predict the time/concentration profiles of the major VOCs (limonene, alpha-pinene, beta-pinene, 3-carene, camphene, benzyl propionate, benzyl alcohol, bornyl acetate, isobornyl acetate, and benzaldehyde) emitted bythe air freshener. Gas-phase reactions of VOCs from the air freshener with O3 were simulated by a photochemical kinetics simulation system using VOC reaction mechanisms and rate constants adopted from the literature. The concentration-time predictions were in good agreement with the data for O3 and VOCs emitted from the air freshener and with some of the primary reaction products. Systematic differences between the predictions and the experimental results were found for some species. Poor understanding of secondary reactions and heterogeneous chemistry in the chamber is the likely cause of these differences. The method has the potential to provide data to predict the impact of O3/VOC interactions on indoor air quality.

  20. Long-term effects of antibiotics, norfloxacin, and sulfamethoxazole, in a partial life-cycle study with zebrafish (Danio rerio): effects on growth, development, and reproduction.

    PubMed

    Yan, Zhenhua; Lu, Guanghua; Ye, Qiuxia; Liu, Jianchao

    2016-09-01

    A partial life-cycle study with zebrafish (Danio rerio) was conducted to evaluate the long-term effects of antibiotics, norfloxacin (NOR) and sulfamethoxazole (SMX). A series of bio-endpoints correlated to the growth, development, and reproduction was assessed. The results showed that the body weight and the condition factor were depressed by SMX at 200 μg/L during the growth period. Meanwhile, the activities of metabolic enzyme (ethoxyresorufin O-deethylase, EROD) and antioxidant enzymes (superoxide dismutase, SOD and catalase, CAT) were stimulated in all cases. The consequences of parental exposure to antibiotics for the next generation were also examined. The egg production of parents were depressed by the 200 μg/L NOR and SMX alone or in combination. Similarly, decreased hatching, survival, and enhanced development abnormality of the next generation also occurred after parental exposure to SMX at the highest concentration. The heartbeat however was not altered in all cases. Furthermore, there was no significant difference in the bio-endpoints between the combined and individual treatment in most cases, with the exception of lower EROD activity and egg production in the co-treatment. The results suggest that long-term exposure to NOR and SMX at environmentally relevant concentrations, individually and in a mixture, may not significantly pose a threat to the growth, development, and reproduction of zebrafish, and an adverse effect may be expected at high concentration.

  1. Generation and detection of metal ions and volatile organic compounds (VOCs) emissions from the pretreatment processes for recycling spent lithium-ion batteries.

    PubMed

    Li, Jia; Wang, Guangxu; Xu, Zhenming

    2016-06-01

    The recycling of spent lithium-ion batteries brings benefits to both economic and environmental terms, but it can also lead to contaminants in a workshop environment. This study focused on metals, non-metals and volatile organic compounds generated by the discharging and dismantling pretreatment processes which are prerequisite for recycling spent lithium-ion batteries. After discharging in NaCl solution, metal contents in supernate and concentrated liquor were detected. Among results of condition #2, #3, #4 and #5, supernate and concentrated liquor contain high levels of Na, Al, Fe; middle levels of Co, Li, Cu, Ca, Zn; and low levels of Mn, Sn, Cr, Zn, Ba, K, Mg, V. The Hg, Ag, Cr and V are not detected in any of the analyzed supernate. 10wt% NaCl solution was a better discharging condition for high discharge efficiency, less possible harm to environment. To collect the gas released from dismantled LIB belts, a set of gas collecting system devices was designed independently. Two predominant organic vapour compounds were dimethyl carbonate (4.298mgh(-1)) and tert-amylbenzene (0.749mgh(-1)) from one dismantled battery cell. To make sure the concentrations of dimethyl carbonate under recommended industrial exposure limit (REL) of 100mgL(-1), for a workshop on dismantling capacity of 1000kg spent LIBs, the minimum flow rate of ventilating pump should be 235.16m(3)h(-1). Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Parental Concern about Environmental Chemical Exposures and Children's Urinary Concentrations of Phthalates and Phenols.

    PubMed

    Pell, Tripler; Eliot, Melissa; Chen, Aimin; Lanphear, Bruce P; Yolton, Kimberly; Sathyanarayana, Sheela; Braun, Joseph M

    2017-07-01

    To examine whether parents' concerns about environmental chemical exposures were associated with urinary phthalate and phenol concentrations in their school-age children. In a prospective cohort of 218 mother-child pairs from Cincinnati, Ohio (2010-2014), we measured 11 phthalate metabolites and 5 phenols in urine samples when children were age 8 years and used questionnaire data from caregivers. We estimated the covariate-adjusted percent difference in phthalates and phenols among children of parents who expressed concern about environmental chemical exposures compared with children whose parents did not. Concentrations of 4 phthalates, bisphenol S, and bisphenol A were lower among children whose parents expressed concern about environmental chemicals (n = 122) compared with those who did not (n = 96). Di-2-ethylhexyl phthalate metabolites, bisphenol S, and bisphenol A concentrations were 23% (95% CI -38, -5), 37% (95% CI -49, -21), and 13% (95% CI -26, 3) lower, respectively, among children whose parents expressed concern compared with those whose parents did not. Triclosan concentrations were 35% greater (95% CI -2, 87) among children whose parents expressed concern compared with children whose parents did not. Parental concern about environmental chemicals was associated with lower childhood urine concentrations of several phthalates and phenols; unexpectedly, parental concern was associated with greater triclosan concentrations. These results suggest that parental concern may be an important factor in mitigating children's phthalate and phenol exposures. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Nonparametric estimation of groundwater residence time distributions: What can environmental tracer data tell us about groundwater residence time?

    NASA Astrophysics Data System (ADS)

    McCallum, James L.; Engdahl, Nicholas B.; Ginn, Timothy R.; Cook, Peter. G.

    2014-03-01

    Residence time distributions (RTDs) have been used extensively for quantifying flow and transport in subsurface hydrology. In geochemical approaches, environmental tracer concentrations are used in conjunction with simple lumped parameter models (LPMs). Conversely, numerical simulation techniques require large amounts of parameterization and estimated RTDs are certainly limited by associated uncertainties. In this study, we apply a nonparametric deconvolution approach to estimate RTDs using environmental tracer concentrations. The model is based only on the assumption that flow is steady enough that the observed concentrations are well approximated by linear superposition of the input concentrations with the RTD; that is, the convolution integral holds. Even with large amounts of environmental tracer concentration data, the entire shape of an RTD remains highly nonunique. However, accurate estimates of mean ages and in some cases prediction of young portions of the RTD may be possible. The most useful type of data was found to be the use of a time series of tritium. This was due to the sharp variations in atmospheric concentrations and a short half-life. Conversely, the use of CFC compounds with smoothly varying atmospheric concentrations was more prone to nonuniqueness. This work highlights the benefits and limitations of using environmental tracer data to estimate whole RTDs with either LPMs or through numerical simulation. However, the ability of the nonparametric approach developed here to correct for mixing biases in mean ages appears promising.

  4. Optimization and characterization of gelatin and chitosan extracted from fish and shrimp waste

    NASA Astrophysics Data System (ADS)

    Ait Boulahsen, M.; Chairi, H.; Laglaoui, A.; Arakrak, A.; Zantar, S.; Bakkali, M.; Hassani, M.

    2018-05-01

    Fish and seafood processing industries generate large quantities of waste which are at the origin of several environmental, economic and social problems. However fish waste could contain high value-added substances such as biopolymers. This work focuses on optimizing the gelatin and chitosan extraction from tilapia fish skins and shrimp shells respectively. The gelatin extraction process was optimized using alkali acid treatment prior to thermal hydrolysis. Three different acids were tested at different concentrations. Chitosan was obtained after acid demineralization followed by simultaneous hydrothermal deproteinization and deacetylation by an alkali treatment with different concentrations of HCl and NaOH. The extracted gelatin and chitosan with the highest yield were characterized by determining their main physicochemical properties (Degree of deacetylation, viscosity, pH, moisture and ash content). Results show a significant influence of the acid type and concentration on the extraction yield of gelatin and chitosan, with an average yield of 12.24% and 3.85% respectively. Furthermore, the obtained physicochemical properties of both extracted gelatin and chitosan were within the recommended standard values of the commercial ones used in the industry.

  5. Influences of pH and Iron Concentration on the Salivary Microbiome in Individual Humans with and without Caries

    PubMed Central

    Zhou, Jianye; Jiang, Nan; Wang, Zhenzhen; Li, Longqing; Zhang, Jumei; Ma, Rui; Nie, Hongbing

    2016-01-01

    ABSTRACT This study aimed to identify the differences in the oral microbial communities in saliva from patients with and without caries by performing sequencing with the Illumina MiSeq platform, as well as to further assess their relationships with environmental factors (salivary pH and iron concentration). Forty-three volunteers were selected, including 21 subjects with and 22 without caries, from one village in Gansu, China. Based on 966,255 trimmed sequences and clustering at the 97% similarity level, 1,303 species-level operational taxonomic units were generated. The sequencing data for the two groups revealed that (i) particular distribution patterns (synergistic effects or competition) existed in the subjects with and without caries at both the genus and species levels and (ii) both the salivary pH and iron concentration had significant influences on the microbial community structure. IMPORTANCE The significant influences of the oral environment observed in this study increase the current understanding of the salivary microbiome in caries. These results will be useful for expanding research directions and for improving disease diagnosis, prognosis, and therapy. PMID:27940544

  6. Refurbishment of one-person regenerative air revitalization system

    NASA Technical Reports Server (NTRS)

    Powell, Ferolyn T.

    1989-01-01

    Regenerative processes for the revitalization of spacecraft atmospheres and reclamation of waste waters are essential for making long-term manned space missions a reality. Processes studied include: static feed water electrolysis for oxygen generation, Bosch carbon dioxide reduction, electrochemical carbon dioxide concentration, vapor compression distillation water recovery, and iodine monitoring. The objectives were to: provide engineering support to Marshall Space Flight Center personnel throughout all phases of the test program, e.g., planning through data analysis; fabricate, test, and deliver to Marshall Space Flight Center an electrochemical carbon dioxide module and test stand; fabricate and deliver an iodine monitor; evaluate the electrochemical carbon dioxide concentrator subsystem configuration and its ability to ensure safe utilization of hydrogen gas; evaluate techniques for recovering oxygen from a product oxygen and carbon dioxide stream; and evaluate the performance of an electrochemical carbon dioxide concentrator module to operate without hydrogen as a method of safe haven operation. Each of the tasks were related in that all focused on providing a better understanding of the function, operation, and performance of developmental pieces of environmental control and life support system hardware.

  7. Influences of pH and Iron Concentration on the Salivary Microbiome in Individual Humans with and without Caries.

    PubMed

    Zhou, Jianye; Jiang, Nan; Wang, Zhenzhen; Li, Longqing; Zhang, Jumei; Ma, Rui; Nie, Hongbing; Li, Zhiqiang

    2017-02-15

    This study aimed to identify the differences in the oral microbial communities in saliva from patients with and without caries by performing sequencing with the Illumina MiSeq platform, as well as to further assess their relationships with environmental factors (salivary pH and iron concentration). Forty-three volunteers were selected, including 21 subjects with and 22 without caries, from one village in Gansu, China. Based on 966,255 trimmed sequences and clustering at the 97% similarity level, 1,303 species-level operational taxonomic units were generated. The sequencing data for the two groups revealed that (i) particular distribution patterns (synergistic effects or competition) existed in the subjects with and without caries at both the genus and species levels and (ii) both the salivary pH and iron concentration had significant influences on the microbial community structure. The significant influences of the oral environment observed in this study increase the current understanding of the salivary microbiome in caries. These results will be useful for expanding research directions and for improving disease diagnosis, prognosis, and therapy. Copyright © 2017 Zhou et al.

  8. In vivo effects of environmental concentrations of produced water on the reproductive function of polar cod (Boreogadus saida).

    PubMed

    Geraudie, P; Nahrgang, J; Forget-Leray, J; Minier, C; Camus, L

    2014-01-01

    Offshore oil and gas drilling processes generate operational discharges such as produced water (PW), a complex mixture of seawater with polycyclic aromatic hydrocarbons (PAH) and alkylphenols (AP). Some of these compounds may interact with the endocrine system of marine organisms and alter reproductive functions. In this study, polar cod were exposed for up to 28 d to a mixture of PAH, alkylated PAH, and AP simulating the composition of North Sea PW, at low and high concentrations (1:2000 and 1:1000 dilution of the original concentrate, respectively). Potential adverse effects of PW on polar cod physiology were investigated through biomarkers of biotransformation (hepatic ethoxyresorufin O-deethylase [EROD] activity and bile PAH metabolites), endocrine disruption (plasma vitellogenin [VTG] levels and sex steroid concentrations), and gonad histology. Plasma sexual steroid levels in fish were not markedly affected by PW exposure, while higher plasma VTG concentrations were measured in females exposed to the high PW treatment for 7 and 28 d. In males exposed to the higher PW concentration, inhibition of spermatogenesis was observed after 28 d in addition to increase of melano-macrophage occurrence in testis. Females exposed to the high PW treatment for 21 d showed a significant increase of atresia incidence. Finally, a significant decrease in oocyte number was observed in high PW exposed female ovaries after 28 d of exposure.

  9. Acute toxicity of arsenic and oxidative stress responses in the embryonic development of the common South American toad Rhinella arenarum.

    PubMed

    Mardirosian, Mariana Noelia; Lascano, Cecilia Inés; Ferrari, Ana; Bongiovanni, Guillermina Azucena; Venturino, Andrés

    2015-05-01

    Arsenic (As), a natural element of ecological relevance, is found in natural water sources throughout Argentina in concentrations between 0.01 mg/L and 15 mg/L. The autochthonous toad Rhinella arenarum was selected to study the acute toxicity of As and the biochemical responses elicited by the exposure to As in water during its embryonic development. The median lethal concentration (LC50) value averaged 24.3 mg/L As and remained constant along the embryonic development. However, As toxicity drastically decreased when embryos were exposed from heartbeat-stage on day 4 of development, suggesting the onset of detoxification mechanisms. Given the environmental concentrations of As in Argentina, there is a probability of exceeding lethal levels at 1% of sites. Arsenic at sublethal concentrations caused a significant decrease in the total antioxidant potential but generated an increase in endogenous glutathione (GSH) content and glutathione S-transferase (GST) activity. This protective response might prevent a deeper decline in the antioxidant system and further oxidative damage. Alternatively, it might be linked to As conjugation with GSH for its excretion. The authors conclude that toad embryos are more sensitive to As during early developmental stages and that relatively high concentrations of this toxic element are required to elicit mortality, but oxidative stress may be an adverse effect at sublethal concentrations. © 2014 SETAC.

  10. Effect of Lead stress on phosphatase activity and reducing power assay of Triticum aestivum.

    PubMed

    Gubrelay, U; Agnihotri, R K; Shrotriya, S; Sharma, R

    2015-06-24

    Lead (Pb) is a highly toxic heavy metal for both plants and animals; the environment is increasingly polluted with heavy metals and reduces crop productivity. Plants possess homeostatic mechanisms that allow them to keep correct concentrations of essential metal ions in cellular compartments and to minimize the damaging effects of an excess of nonessential ones. One of their adverse effects on plants are the generation of harmful active oxygen species, leading to oxidative stress and the antioxidative activity seems to be of fundamental importance for adaptive response of plant against environmental stress. The present study explores the effects of lead (soil treated twice/ week) with (10, 30 and 60 mM) on the specific activities of phosphatases which might lead to reducing power assay in (Triticum aestivum PBW344) seedling. A significant decrease in the redox potential of shoot compared to root was observed at the similar concentration of lead. A similar trend on leaves was also noted. Acid and alkaline phosphatase activities were significantly higher in roots than in shoot at all the three concentration of lead i.e. 10, 30 and 60 mM, compared to controls. The above mentioned changes were more pronounced at 60 mM concentration of lead than two other concentrations. These results lead us to suggest that increased lead concentration in soil might lead to adverse effects on plant growth and phosphatase activities.

  11. Killer whales (Orcinus orca) face protracted health risks associated with lifetime exposure to PCBs.

    PubMed

    Hickie, Brendan E; Ross, Peter S; Macdonald, Robie W; Ford, John K B

    2007-09-15

    Polychlorinated biphenyl (PCB) concentrations declined rapidly in environmental compartments and most biota following implementation of regulations in the 1970s. However, the metabolic recalcitrance of PCBs may delay responses to such declines in large, long-lived species, such as the endangered and highly PCB-contaminated resident killer whales (Orcinus orca) of the Northeastern Pacific Ocean. To investigate the influence of life history on PCB-related health risks, we developed models to estimate PCB concentrations in killer whales during the period from 1930 forward to 2030, both within a lifetime (approximately 50 years) and across generations, and then evaluated these in the context of health effects thresholds established for marine mammals. Modeled PCB concentrations in killer whales responded slowly to changes in loadings to the environment as evidenced by slower accumulation and lower magnitude increases in PCB concentrations relative to prey, and a delayed decline that was particularly evident in adult males. Since PCBs attained peak levels well above the effects threshold (17 mg/kg lipid) in approximately 1969, estimated concentrations in both the northern and the more contaminated southern resident populations have declined gradually. Projections suggest that the northern resident population could largely fall below the threshold concentration by 2030 while the endangered southern residents may not do so until at least 2063. Long-lived aquatic mammals are therefore not protected from PCBs by current dietary residue guidelines.

  12. Using species sensitivity distribution approach to assess the risks of commonly detected agricultural pesticides to Australia's tropical freshwater ecosystems.

    PubMed

    Pathiratne, Asoka; Kroon, Frederieke J

    2016-02-01

    To assess the potential impacts of agricultural pesticides on tropical freshwater ecosystems, the present study developed temperature-specific, freshwater species protection concentrations (i.e., ecotoxicity threshold values) for 8 pesticides commonly detected in Australia's tropical freshwaters. Because relevant toxicity data for native tropical freshwater species to assess the ecological risks were mostly absent, scientifically robust toxicity data obtained at ≥20 °C were used for ecologically relevant taxonomic groups representing primary producers and consumers. Species sensitivity distribution (SSD) curves were subsequently generated for predicted chronic exposure using Burrlioz 2.0 software with mixed chronic and converted acute data relevant to exposure conditions at ≥20 °C. Ecotoxicity threshold values for tropical freshwater ecosystem protection were generated for ametryn, atrazine, diuron, metolachlor, and imidacloprid (all moderate reliability), as well as simazine, hexazinone, and tebuthiuron (all low reliability). Using these SSD curves, the retrospective risk assessments for recently reported pesticide concentrations highlight that the herbicides ametryn, atrazine, and diuron are of major concern for ecological health in Australia's tropical freshwater ecosystems. The insecticide imidacloprid also appears to pose an emerging threat to the most sensitive species in tropical freshwater ecosystems. The exposed temperature-specific approach may be applied to develop water quality guideline values for other environmental contaminants detected in tropical freshwater ecosystems until reliable and relevant toxicity data are generated using representative native species. © 2015 SETAC.

  13. Audits of hazardous waste TSDFs let generators sleep easy. [Hazardous waste treatment, storage and disposal facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carr, F.H.

    1990-02-01

    Because of the increasingly strict enforcement of the Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) and the Resource Conservation and Recovery Act (RCRA), generators of hazardous waste are compelled to investigate the hazardous waste treatment, storage and disposal facility (TSDF) they use. This investigation must include an environmental and a financial audit. Simple audits may be performed by the hazardous waste generator, while more thorough ones such as those performed for groups of generators are more likely to be conducted by environmental consultants familiar with treatment, storage, and disposal techniques and the regulatory framework that guides them.

  14. Environmental Risk Assessment of Pharmaceutical Mixtures: Demands, Gaps, and Possible Bridges.

    PubMed

    Backhaus, Thomas

    2016-07-01

    The ecotoxicological risk of pharmaceutical mixtures typically exceeds the risk of each individual compound, which calls specific attention to the fact that monitoring surveys routinely find complex pharmaceutical mixtures in various environmental compartments. However, although the body of evidence on the ecotoxicology of pharmaceutical mixtures is quite consistent, the current guidelines for the environmental risk assessment of pharmaceuticals often do not explicitly address mixture effects. Data availability and acceptable methods often limit such assessments. A tiered approach that begins with summing up individual risk quotients, i.e., the ratio between the predicted or measured environmental concentration and the predicted no effect concentration (PNEC) is therefore suggested in this paper, in order to improve the realism of the environmental risk assessment of pharmaceuticals. Additionally, the use of a mixture-specific assessment factor, as well as the classical mixture toxicity concepts of concentration addition and independent action is explored. Finally, specific attention is given to the exposure-based waiving of environmental risk assessments, as currently implemented in screening or pre-screening phases (tier 0 in Europe, categorical exclusion in the USA), since even low, individually non-toxic concentrations might combine to produce substantial mixture effects.

  15. Methods To Characterize Contaminant Residuals After Environmental Dredging

    EPA Science Inventory

    Environmental dredging is a common remedial action for managing contaminated sediments. However, post dredging contaminant concentrations in surface sediment are difficult to predict prior to initiating dredging actions. In some cases, post surface concentrations have been high...

  16. Modeling the Environmental Fate of Graphene Oxide and Its Phototransformation Products in Brier Creek Watershed Using the Water Quality Analysis Simulation Program 8 (WASP8)

    NASA Astrophysics Data System (ADS)

    Han, Y.; Bouchard, D.; Chang, X.; Hsieh, H. S.; Knightes, C. D.; Spear, J.; Zepp, R. G.

    2017-12-01

    The production of graphene-family nanoparticles (GFNs) appreciably increased in recent years. Among GFNs, graphene oxide (GO) is one of the most highly studied members due to its inexpensive synthesis cost compared to graphene, its stability in aqueous media and its broad application. However, GO also has been found to be the most toxic among GFNs. Lab studies showed that GO undergoes phototransformation in surface waters, resulting in products that include reduced GO (rGO) and polycyclic aromatic hydrocarbons (PAHs). Due to technical and analytical limitations, it is still difficult to conduct in-situ measurement of GO and rGO concentrations released in the environment, and it is of utmost importance to establish a model that can predict their environmental exposure concentrations in the environment. In this study, we develop a fate and transport model to predict time-dependent environmental exposure concentrations of GO for the Brier Creek Watershed in the GA coastal plain. We investigate the influence of sunlight radiation on the distribution of GO and its phototransformation products in the watershed over a 20-year period using the most updated Water Quality Analysis Simulation Program (WASP8). Flow rate, sediment transport data and sunlight radiation data are input into WASP8, and WASP8 is used to internally calculate a GO phototransformation rate and productions of rGO and PAHs. Heteroaggregation coefficients of GO and rGO with suspended solids were measured in an EPA laboratory, and then input into WASP8. GO and rGO concentrations in the watershed are calculated by WASP8. Mass fraction results show that GO is the predominant species among GO derived species, which account for 99% of the mass throughout the whole watershed of interest, while rGO species, including free rGO and rGO heteroaggregated to suspended solids, only account for 1%. We also found that almost all free GO and rGO are present in water column due to their extremely low settling velocity. rGO can be precipitated through heteroaggregation processes and predominantly accumulate in sediment. The identification of the exact PAHs species generated during GO phototransformation and simulation of PAHs concentrations in both water column and sediment using WASP8 are useful tools to facilitate the risk assessment of PAHs in watersheds.

  17. Ciprofloxacin residue and antibiotic-resistant biofilm bacteria in hospital effluent.

    PubMed

    Ory, Jérôme; Bricheux, Geneviève; Togola, Anne; Bonnet, Jean Louis; Donnadieu-Bernard, Florence; Nakusi, Laurence; Forestier, Christiane; Traore, Ousmane

    2016-07-01

    Discharge of antimicrobial residues and resistant bacteria in hospital effluents is supposed to have strong impacts on the spread of antibiotic resistant bacteria in the environment. This study aimed to characterize the effluents of the Gabriel Montpied teaching hospital, Clermont-Ferrand, France, by simultaneously measuring the concentration of ciprofloxacin and of biological indicators resistant to this molecule in biofilms formed in the hospital effluent and by comparing these data to ciprofloxacin consumption and resistant bacterial isolates of the hospital. Determination of the measured environmental concentration of ciprofloxacin by spot sampling and polar organic chemical integrative (POCIS) sampling over 2 weeks, and comparison with predicted environmental concentrations produced a hazard quotient >1, indicating a potential ecotoxicological risk. A negative impact was also observed with whole hospital effluent samples using the Tetrahymena pyriformis biological model. During the same period, biofilms were formed within the hospital effluent, and analysis of ciprofloxacin-resistant isolates indicated that Gamma-Proteobacteria were numerous, predominantly Aeromonadaceae (69.56%) and Enterobacteriaceae (22.61%). Among the 115 isolates collected, plasmid-mediated fluoroquinolone-resistant genes were detected, with mostly aac(6')-lb-cr and qnrS. In addition, 60% of the isolates were resistant to up to six antibiotics, including molecules mostly used in the hospital (aminosides and third-generation cephalosporins). In parallel, 1247 bacteria isolated from hospitalized patients and resistant to at least one of the fluoroquinolones were collected. Only 5 of the 14 species identified in the effluent biofilm were also found in the clinical isolates, but PFGE typing of the Gram-negative isolates found in both compartments showed there was no clonality among the strains. Altogether, these data confirm the role of hospital loads as sources of pollution for wastewater and question the role of environmental biofilms communities as efficient shelters for hospital-released resistance genes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Bioavailability and toxicity of trace metals to the cladoceran Daphnia magna in relation to cadmium exposure history

    NASA Astrophysics Data System (ADS)

    Guan, Rui

    The cladoceran Daphnia magna is widely used in freshwater bioassessments and ecological risk assessments. This study designed a series of experiments employing radiotracer methodology to quantify the trace metals (mainly Cd and Zn) biokinetics in D. magna under different environmental and biological conditions and to investigate the influences of different Cd exposure histories on the bioavailability and toxicity of trace metals to D. magna. A bioenergetic-based kinetic model was finally applied in predicting the Cd accumulation dynamics in D. magna and the model validity under non-steady state was assessed. Cd assimilation was found in this study to be influenced by the food characteristics (e.g., metal concentration in food particles), the metal exposure history of the animals, and the genetic characteristics. Some of these influences could be interpreted by the capacity and/or competition of those metal binding sites within the digestive tract and/or the detoxifying proteins metallothionein (MT). My study demonstrated a significant induction of MT in response to Cd exposure and it was the dominant fraction in sequestering the internal nonessential trace metals in D. magna. The ratio of Cd body burden to MT might better predict the Cd toxicity on the digestion systems of D. magna than the Cd tissue burden alone within one-generational exposure to Cd. It was found that metal elimination (rate constant and contribution of different release routes) was independent of the food concentration and the dietary metal concentration, implying that the elimination may not be metabolically controlled. The incorporation of the bioenergetic-based kinetic model, especially under non-steady state, is invaluable in helping to understand the fate of trace metals in aquatic systems and potential environmental risks. The dependence of biokinetic parameters on environmental factors rather than on genotypes implies a great potential of using biokinetics in inter-laboratory comparisons.

  19. Understanding Genetic and Environmental Influences on the Development of Reading: Reaching for Higher Fruit

    ERIC Educational Resources Information Center

    Wagner, Richard K.

    2005-01-01

    The transition from first-generation to second-generation studies of genetic and environmental influences on the development of reading is underway. The first generation of quantitative genetic studies yielded an extraordinary conclusion: Fifty percent or more of the variance in most constructs, including reading, is attributable to genetic…

  20. 75 FR 52045 - Arizona Public Service Company, Palo Verde Nuclear Generating Station, Unit 3; Environmental...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-24

    ... Company, Palo Verde Nuclear Generating Station, Unit 3; Environmental Assessment and Finding of No.... NPF-74, issued to Arizona Public Service Company (APS, the licensee), for operation of Palo Verde... Statement for the Palo Verde Nuclear Generating Station, NUREG-0841, dated February 1982. Agencies and...

  1. Analysis of transient thermal stress in heat-generating plates and hollow cylinders caused by sudden environmental temperature changes

    NASA Technical Reports Server (NTRS)

    Rosenberg, G. S.; Schoeberle, D. F.; Valentin, R. A.

    1969-01-01

    Analysis and solution are presented for transient thermal stresses in a free heat-generating flat plate and a free, hollow-generating cylinder as a result of sudden environmental changes. The technique used and graphical results obtained are of interest to the heat transfer industry.

  2. Life-cycle studies with 2 marine species and bisphenol A: The mysid shrimp (Americamysis bahia) and sheepshead minnow (Cyprinodon variegatus).

    PubMed

    Mihaich, Ellen; Staples, Charles; Ortego, Lisa; Klečka, Gary; Woelz, Jan; Dimond, Steve; Hentges, Steven

    2018-02-01

    Bisphenol A (BPA) is a high production volume compound primarily used to produce epoxy resins and polycarbonate plastic. Exposure to low concentrations of BPA occurs in freshwater and marine systems, primarily from wastewater treatment plant discharges. The dataset for chronic toxicity of BPA to freshwater organisms includes studies on fish, amphibians, invertebrates, algae, and aquatic plants. To broaden the dataset, a 1.5-generation test with sheepshead minnow (Cyprinodon variegatus) and a full life-cycle test with mysid shrimp (Americamysis bahia) were conducted. Testing focused on apical endpoints of survival, growth and development, and reproduction. The respective no-observed-effect concentration (NOEC) and lowest-observed-effect concentration (LOEC) values of 170 and 370 µg/L for mysid and 66 and 130 μg/L for sheepshead were based on reduced fecundity. The hazardous concentrations for 5% of the species (HC5) values of 18 μg/L were calculated from species sensitivity distributions (SSDs) with freshwater-only data and combined freshwater and marine data. Inclusion of marine data resulted in no apparent difference in SSD shape, R 2 values for the distributions, or HC5 values. Upper-bound 95th percentile concentrations of BPA measured in marine waters of North America and Europe (0.024 and 0.15 μg/L, respectively) are below the HC5 value of 18 μg/L. These results suggest that marine and freshwater species are of generally similar sensitivity and that chronic studies using a diverse set of species can be combined to assess the aquatic toxicity of BPA. Environ Toxicol Chem 2018;37:398-410. © 2017 The Authors. Environmental Toxicology and Chemistry Published by Wiley Periodicals, Inc. on behalf of SETAC. © 2017 The Authors. Environmental Toxicology and Chemistry Published by Wiley Periodicals, Inc. on behalf of SETAC.

  3. Enhanced nitrate-nitrogen removal by modified attapulgite-supported nanoscale zero-valent iron treating simulated groundwater.

    PubMed

    Dong, Lei; Lin, Li; Li, Qingyun; Huang, Zhuo; Tang, Xianqiang; Wu, Min; Li, Chao; Cao, Xiaohuan; Scholz, Miklas

    2018-05-01

    Attapulgite (or palygorskite) is a magnesium aluminium phyllosilicate. Modified attapulgite-supported nanoscale zero-valent iron (NZVI) was created by a liquid-phase reduction method and then applied for nitrate-nitrogen (NO 3 -N) removal (transformation) in simulated groundwater. Nanoscale zero-valent iron was sufficiently dispersed on the surface of thermally modified attapulgite. The NO 3 -N removal efficiency reached up to approximately 83.8% with an initial pH values of 7.0. The corresponding thermally modified attapulgite-supported nanoscale zero-valent iron (TATP-NZVI) and NO 3 -N concentrations were 2.0 g/L and 20 mg/L respectively. Moreover, 72.1% of the water column NO 3 -N was converted to ammonium-nitrogen (NH 4 -N) within 6 h. The influence of environmental boundary conditions including dissolved oxygen (DO) concentration, light illumination and water temperature on NO 3 -N removal was also investigated with batch experiments. The results indicated that the DO concentration greatly impacted on NO 3 -N removal in the TATP-NZVI-contained solution, and the NO 3 -N removal efficiencies were 58.5% and 83.3% with the corresponding DO concentrations of 9.0 and 0.3 mg/L after 6 h of treatment, respectively. Compared to DO concentrations, no significant (p > 0.05) effect of light illumination on NO 3 -N removal and NH 4 -N generation was detected. The water temperature also has great importance concerning NO 3 -N reduction, and the removal efficiency of NO 3 -N at 25 °C was 1.25 times than that at 15 °C. For groundwater, therefore, environmental factors such as water temperature, anaerobic conditions and darkness could influence the NO 3 -N removal efficiency when TATP-NZVI is present. This study also demonstrated that TATP-NZVI has the potential to be developed as a suitable material for direct remediation of NO 3 -N-contaminated groundwater. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. Particulate matter emissions of different brands of mentholated cigarettes.

    PubMed

    Gerharz, Julia; Bendels, Michael H K; Braun, Markus; Klingelhöfer, Doris; Groneberg, David A; Mueller, Ruth

    2018-06-01

    Inhaling particulate matter (PM) in environmental tobacco smoke (ETS) endangers the health of nonsmokers. Menthol, an additive in cigarettes, attenuates respiratory irritation of tobacco smoke. It reduces perceptibility of smoke and therefore passive smokers may inhale ETS unnoticed. To investigate a possible effect of menthol on PM concentrations (PM 10 , PM 2.5 , and PM 1 ), ETS of four mentholated cigarette brands (Elixyr Menthol, Winston Menthol, Reyno Classic, and Pall Mall Menthol Blast) with varying menthol content was analyzed. ETS was generated in a standardized way using an automatic environmental tobacco smoke emitter (AETSE), followed by laser aerosol spectrometry. This analysis shows that the tested cigarette brands, despite having different menthol concentrations, do not show differences with regard to PM emissions, with the exception of Reyno Classic, which shows an increased emission, although the menthol level ranged in the midfield. More than 90% of the emitted particles had a size smaller than or equal to 1 µm. Regardless of the menthol level, the count median diameter (CMD) and the mass median diameter (MMD) were found to be 0.3 µm and 0.5 µm, respectively. These results point out that there is no effect of menthol on PM emission and that other additives might influence the increased PM emission of Reyno Classic. Particulate matter (PM) in ETS endangers the health of nonsmokers and smokers. This study considers the effect of menthol, an additive in cigarettes, on PM emissions. Does menthol increase the amount of PM? Due to the exposure to secondhand smoke nearly 900,000 people die each year worldwide. The aim of the study is to measure the particle concentration (L -1 ), mass concentration (µg m -3 ), and dust mass fractions shown as PM 10 , PM 2.5 , and PM 1 of five different cigarette brands, including four with different menthol concentrations and one menthol-free reference cigarette, in a well-established standardized system.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nabeel, A.; Khan, T.A.; Sharma, D.K.

    The use of low-grade coal in thermal power stations is leading to environmental pollution due to the generation of large amounts of fly ash, bottom ash, and CO{sub 2} besides other pollutants. It is therefore important to clean the coal before using it in thermal power stations, steel plants, or cement industries etc. Physical beneficiation of coal results in only limited cleaning of coal. The increasing environmental pollution problems from the use of coal have led to the development of clean coal technologies. In fact, the clean use of coal requires the cleaning of coal to ultra low ash contents,more » keeping environmental norms and problems in view and the ever-growing need to increase the efficiency of coal-based power generation. Therefore this requires the adaptation of chemical cleaning techniques for cleaning the coal to obtain ultra clean coal having ultra low ash contents. Presently the reaction conditions for chemical demineralization of low-grade coal using 20% aq NaOH treatment followed by 10% H{sub 2}SO{sub 4} leaching under reflux conditions have been optimized. In order to reduce the concentration of alkali and acid used in this process of chemical demineralization of low-grade coals, stepwise, i.e., three step process of chemical demineralization of coal using 1% or 5% aq NaOH treatment followed by 1% or 5% H{sub 2}SO{sub 4} leaching has been developed, which has shown good results in demineralization of low-grade coals. In order to conserve energy, the alkali-acid leaching of coal was also carried out at room temperature, which gave good results.« less

  6. National patterns in environmental injustice and inequality: outdoor NO2 air pollution in the United States.

    PubMed

    Clark, Lara P; Millet, Dylan B; Marshall, Julian D

    2014-01-01

    We describe spatial patterns in environmental injustice and inequality for residential outdoor nitrogen dioxide (NO2) concentrations in the contiguous United States. Our approach employs Census demographic data and a recently published high-resolution dataset of outdoor NO2 concentrations. Nationally, population-weighted mean NO2 concentrations are 4.6 ppb (38%, p<0.01) higher for nonwhites than for whites. The environmental health implications of that concentration disparity are compelling. For example, we estimate that reducing nonwhites' NO2 concentrations to levels experienced by whites would reduce Ischemic Heart Disease (IHD) mortality by ∼7,000 deaths per year, which is equivalent to 16 million people increasing their physical activity level from inactive (0 hours/week of physical activity) to sufficiently active (>2.5 hours/week of physical activity). Inequality for NO2 concentration is greater than inequality for income (Atkinson Index: 0.11 versus 0.08). Low-income nonwhite young children and elderly people are disproportionately exposed to residential outdoor NO2. Our findings establish a national context for previous work that has documented air pollution environmental injustice and inequality within individual US metropolitan areas and regions. Results given here can aid policy-makers in identifying locations with high environmental injustice and inequality. For example, states with both high injustice and high inequality (top quintile) for outdoor residential NO2 include New York, Michigan, and Wisconsin.

  7. 75 FR 63213 - Northern States Power Company-Minnesota; Prairie Island Nuclear Generating Plant, Units 1 and 2...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-14

    ... Company--Minnesota; Prairie Island Nuclear Generating Plant, Units 1 and 2; Environmental Assessment and... accordance with 10 CFR 51.21, the NRC performed an environmental assessment in support of this requested exemption. Based on the results of the environmental assessment, the NRC is issuing a finding of no...

  8. Benefits of clean development mechanism application on the life cycle assessment perspective: a case study in the palm oil industry.

    PubMed

    Chuen, Onn Chiu; Yusoff, Sumiani

    2012-03-01

    This study performed an assessment on the beneficial of the Clean Development Mechanism (CDM) application on waste treatment system in a local palm oil industry in Malaysia. Life cycle assessment (LCA) was conducted to assess the environmental impacts of the greenhouse gas (GHG) reduction from the CDM application. Calculations on the emission reduction used the methodology based on AM002 (Avoided Wastewater and On-site Energy Use Emissions in the Industrial Sector) Version 4 published by United Nations Framework Convention on Climate Change (UNFCC). The results from the studies showed that the introduction of CDM in the palm oil mill through conversion of the captured biogas from palm oil mill effluent (POME) treatment into power generation were able to reduce approximate 0.12 tonnes CO2 equivalent concentration (tCO2e) emission and 30 kW x hr power generation per 1 tonne of fresh fruit bunch processed. Thus, the application of CDM methodology on palm oil mill wastewater treatment was able to reduce up to 1/4 of the overall environment impact generated in palm oil mill.

  9. Cytotoxicity of aluminum oxide nanoparticles on Allium cepa root tip--effects of oxidative stress generation and biouptake.

    PubMed

    Rajeshwari, A; Kavitha, S; Alex, Sruthi Ann; Kumar, Deepak; Mukherjee, Anita; Chandrasekaran, Natarajan; Mukherjee, Amitava

    2015-07-01

    The commercial usage of Al2O3 nanoparticles (Al2O3 NPs) has gone up significantly in the recent times, enhancing the risk of environmental contamination with these agents and their consequent adverse effects on living systems. The current study has been designed to evaluate the cytogenetic potential of Al2O3 NPs in Allium cepa (root tip cells) at a range of exposure concentrations (0.01, 0.1, 1, 10, and 100 μg/mL), their uptake/internalization profile, and the oxidative stress generated. We noted a dose-dependent decrease in the mitotic index (42 to 28 %) and an increase in the number of chromosomal aberrations. Various chromosomal aberrations, e.g. sticky, multipolar and laggard chromosomes, chromosomal breaks, and the formation of binucleate cells, were observed by optical, fluorescence, and confocal laser scanning microscopy. FT-IR analysis demonstrated the surface chemical interaction between the nanoparticles and root tip cells. The biouptake of Al2O3 in particulate form led to reactive oxygen species generation, which in turn probably contributed to the induction of chromosomal aberrations.

  10. Environmental externalities: Thinking globally, taxing locally

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trisko, E.M.

    1993-03-01

    Assigning monetary externality values to the airborne emissions of electric power plants is gaining the attention of state utility commissions as a means to measure the social costs of alternative energy investments. Some commissions are using environmental externalities to encourage utility investments in energy conservation and renewable energy technologies such as solar, wind, and biomass. However, the monetization of externalities through so-called adders to direct generation costs can lead to inefficient resource allocation and expose consumers to electric rate increases without corresponding environmental benefits. The addition of externality values to direct electric generation costs distorts the economics of power supplymore » planning by creating artificial subsidies for generation sources that are not currently competitive in the market. Businesses and consumers will be forced to support higher-cost sources of electric generation as a consequence. Because pollutant emissions of all new sources of electric generation are stringently regulated, and generally are well below those of existing fossil-fired sources, little demonstrable environmental benefit would result from the expanded use of externality valuation.« less

  11. THE USE AND LIMITATIONS OF DETECTION AND QUANTITATION LIMITS IN ENVIRONMENTAL ANALYSIS

    EPA Science Inventory

    Site assessment, remediation and compliance monitoring require the routine determination of the concentration of regulated substances in environmental samples. Each measurement methodology providing the concentration determinations, is required to specify key data quality elemen...

  12. Formation and fate of gaseous and particulate mutagens and carcinogens in real and simulated atmospheres.

    PubMed Central

    Pitts, J N

    1983-01-01

    The growing use of coal for heating and electric power generation and diesel engines in light duty motor vehicles will increase not only the existing atmospheric concentrations of criteria pollutants such as NO2, SO2, O3 and fine particulates, but also the concentrations of a number of highly reactive gaseous copollutants such as HONO, HONO2, PAN and the nitrate radical, NO3. These gaseous noncriteria pollutants are of interest not only because of their roles in the chemistry of the "clean" and polluted troposphere, including "acid rain," but also because they may pose health risks disproportionate to their relatively low ambient concentrations, and through complex heterogeneous reactions, they may serve as precursors or catalysts in the formation of "nonclassical" particulate mutagens and carcinogens such as certain nitroarenes associated with combustion generated particulate polycyclic organic matter (POM). Results of research efforts to establish current ambient levels of these noncriteria pollutants and to develop an understanding of their sources, formation and sinks are reported here. First, long pathlength (greater than or equal to 1 km) infrared and UV-visible spectroscopic studies of ambient levels of gaseous HONO, NO3, HONO2, PAN, HCHO and HCOOH in southern California atmospheres are described, and data given on their ambient concentrations. Second, an integrated chemical/microbiological investigation is described. It is directed toward identifying the nature of direct-acting mutagens found in extracts of diesel and ambient POM, as well as those formed upon exposure of environmentally relevant PAH to simulated natural and polluted atmospheres. The identification of certain of these mutagens, including a newly identified class of mutagenic PAH-lactones is discussed, along with the mechanisms of their formation and fate in the natural and polluted troposphere. PMID:6337822

  13. How private vehicle use increases ambient air pollution concentrations at schools during the morning drop-off of children

    NASA Astrophysics Data System (ADS)

    Adams, Matthew D.; Requia, Weeberb J.

    2017-09-01

    A child's exposure to environmental pollutants can have life-long health effects. Thus it is critical to understand the potential exposure pathways. In this paper, we examine the increase in ambient PM2.5 concentrations at schools from private vehicle use for dropping children off at school. In North America, students are commonly driven to school in a private vehicle. Additionally, students walk or cycle, or take a school bus. Our vehicle surveys recorded between 23 and 116 personal vehicles at 25 schools, where enrolment ranged from 160 to 765 students. We fit a linear regression model to predict the number of vehicles at schools we did not observe within our study area, which explained 57% of the variation in our surveys. A microsimulation traffic model was created for each of the 86 schools we studied. Outputs from the traffic model were used to determine the emissions generated at each school. PM2.5 emissions varied from 0.14 to 6.38 g. Lastly, we dispersed the emissions produced by private vehicles dropping off students, which are emissions generated by unnecessary trips because students further than walking distance are provided transportation by the school board. At the drop-off location in front of the school, we found ambient concentration increases of at least 5 μg/m3, 10 μg/m3, 25 μg/m3 and 50 μg/m3 during 16.8%, 7.6%, 2.0% and 0.5% of the mornings, respectively. This research was conducted in a medium-sized North American city and should allow transferability to similar cities. We conclude that the use of private vehicles can significantly increase local concentrations, regardless of background conditions.

  14. Implications of stillage land disposal: a critical review on the impacts of fertigation.

    PubMed

    Fuess, Lucas Tadeu; Garcia, Marcelo Loureiro

    2014-12-01

    Stillage is the main wastewater from ethanol production, generated specifically in the step of distillation. Regardless the feedstock, stillage contains high concentrations of organic matter, potassium and sulfates, as well as acidic and corrosive characteristics. Currently almost the entire volume of stillage generated in Brazilian distilleries is directed to the fertigation of sugarcane fields, due to its fertilizer character. However, the polluting potential of stillage characterizes its land disposal as problematic, considering probable negative impacts on the soil structure and water resources in case of excessive dosages. Since the literature lacks critical content describing clearly the cons related to the reuse of stillage in agriculture in the long-term, this review aimed to assess the real polluting potential of stillage, and the implications of its land disposal and/or discharge into water bodies. Evidence from the literature indicate that the main obstacles to reuse stillage in natura include risks of soil salinization; clogging of pores, reduction in the microbial activity and the significant depletion of dissolved oxygen concentrations in water bodies; contamination per nitrates and eutrophication; soil structure destabilization due to high concentrations of potassium and sodium; and, possible acidification of soil and water resources, considering the low pH of stillage (∼4,5). Toxic metals, such as cadmium, lead, copper, chromium and nickel, were also identified in concentrations above the recommended limits in stillage samples, increasing risks to human health (e.g. carcinogenic potential) and to crops (e.g. productivity loss). In short, although some studies report benefits from the land application of stillage, its treatment prior to disposal is essential to make fertigation an environmentally suitable practice. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Multimedia modeling of engineered nanoparticles with SimpleBox4nano: model definition and evaluation.

    PubMed

    Meesters, Johannes A J; Koelmans, Albert A; Quik, Joris T K; Hendriks, A Jan; van de Meent, Dik

    2014-05-20

    Screening level models for environmental assessment of engineered nanoparticles (ENP) are not generally available. Here, we present SimpleBox4Nano (SB4N) as the first model of this type, assess its validity, and evaluate it by comparisons with a known material flow model. SB4N expresses ENP transport and concentrations in and across air, rain, surface waters, soil, and sediment, accounting for nanospecific processes such as aggregation, attachment, and dissolution. The model solves simultaneous mass balance equations (MBE) using simple matrix algebra. The MBEs link all concentrations and transfer processes using first-order rate constants for all processes known to be relevant for ENPs. The first-order rate constants are obtained from the literature. The output of SB4N is mass concentrations of ENPs as free dispersive species, heteroaggregates with natural colloids, and larger natural particles in each compartment in time and at steady state. Known scenario studies for Switzerland were used to demonstrate the impact of the transport processes included in SB4N on the prediction of environmental concentrations. We argue that SB4N-predicted environmental concentrations are useful as background concentrations in environmental risk assessment.

  16. Environmental Stewardship at the Savannah River Site: Generations of Success - 13212

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Looney, Brian B.; Bergren, Christopher L.; Gaughan, Thomas F.

    2013-07-01

    Approximately sixty years ago, the Savannah River Site (SRS) was built to produce nuclear materials. SRS production operations impacted air, soil, groundwater, ecology, and the local environment. Throughout its history, SRS has addressed these contamination issues directly and has maintained a commitment to environmental stewardship. The Site boasts many environmental firsts. Notably, SRS was the first major Department of Energy (DOE) facility to perform a baseline ecological assessment. This pioneering effort, by Ruth Patrick and the Philadelphia Academy of Sciences, was performed during SRS planning and construction in the early 1950's. This unique early generation of work set the stagemore » for subsequent efforts. Since that time, the scientists and engineers at SRS pro-actively identified environmental problems and developed and implemented effective and efficient environmental management and remediation solutions. This second generation, spanning the 1980's through the 2000's, is exemplified by numerous large and small cleanup actions to address metals and radionuclides, solvents and hydrocarbons, facility and area decommissioning, and ecological restoration. Recently, a third generation of environmental management was initiated as part of Enterprise SRS. This initiative to 'Develop and Deploy Next Generation Cleanup Technologies' formalizes and organizes the major technology matching, development, and implementation processes associated with historical SRS cleanup success as a resource to support future environmental management missions throughout DOE. The four elements of the current, third generation, effort relate to: 1) transition from active to passive cleanup, 2) in situ decommissioning of large nuclear facilities, 3) new long term monitoring paradigms, and 4) a major case study related to support for recovery and restoration of the Japanese Fukushima-Daiichi nuclear power plant and surrounding environment. (authors)« less

  17. Maywood Interim Storage Site: Annual environmental report for calendar year 1990, Maywood, New Jersey

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1991-09-01

    Environmental monitoring of the US Department of Energy's (DOE) Maywood Interim Storage Site (MISS) and surrounding area began in 1984. MISS is part of the Formerly Utilized Sites Remedial Action Program (FUSRAP), a DOE program to decontaminate or otherwise control sites where residual radioactive materials remain from the early years of the nation's atomic energy program or from commercial operations causing conditions that Congress has authorized DOE to remedy. The MISS Environmental monitoring programs was established to accommodate facility characteristics, applicable regulations, hazard potential, quantities and concentrations of materials released, extent and use of affected land and water, and localmore » public interest or concern. The environmental monitoring program at MISS includes sampling networks for radon concentrations in air; external gamma radiation exposure; and total uranium, radium-226, and thorium-232 concentrations in surface water, sediment, and groundwater. Additionally, several nonradiological parameters are measured in surface water, sediment, and groundwater. Monitoring results are compared with applicable Environmental Protection Agency (EPA) standards; federal, state, and local applicable or relevant and appropriate requirements (ARARs); and/or DOE derived concentration guidelines (DCGs). Environmental standards, ARARs, and DCGs are established to protect public health and the environment. Results from the 1990 environmental monitoring program show that concentrations of the contaminants of concern were all below applicable standards. Because the site is used only for interim storage and produces no processing effluents, all monitoring, except for radon and direct gamma radiation, was done on a quarterly basis. 18 refs., 17 figs., 28 tabs.« less

  18. Environmentally persistent free radicals inhibit cytochrome P450 activity in rat liver microsomes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reed, James R., E-mail: rreed@lsuhsc.edu; The Stanley S. Scott Cancer Center, Louisiana State University Health Science Center, 533 Bolivar St., New Orleans, LA 70112; Cawley, George F.

    2014-06-01

    Combustion processes generate particulate matter that affects human health. When incineration fuels include components that are highly enriched in aromatic hydrocarbons (especially halogenated varieties) and redox-active metals, ultrafine particulate matter containing air-stable, environmentally persistent free radicals (EPFRs) is generated. The exposure to fine EPFRs (less than 2.5 μm in diameter) has been shown to negatively influence pulmonary and cardiovascular functions in living organisms. The goal of this study was to determine if these EPFRs have a direct effect on cytochrome P450 function. This was accomplished by direct addition of the EPFRs to rat liver microsomal preparations and measurement of severalmore » P450 activities using form-selective substrates. The EPFRs used in this study were formed by heating vapors from an organic compound (either monochlorophenol (MCP230) or 1,2-dichlorobenzene (DCB230)) and 5% copper oxide supported on silica (approximately 0.2 μm in diameter) to 230 °C under vacuum. Both types of EPFRs (but not silica, physisorbed silica, or silica impregnated with copper oxide) dramatically inhibited the activities of CYP1A, CYP2B, CYP2E1, CYP2D2 and CYP3A when incubated at concentrations less than 0.1 mg/ml with microsomes and NADPH. Interestingly, at the same concentrations, the EPFRs did not inhibit HO-1 activity or the reduction of cytochrome c by NADPH-cytochrome P450 reductase. CYP2D2-selective metabolism by rat liver microsomes was examined in more detail. The inhibition of CYP2D2-selective metabolism by both DCB230- and MCP230-EPFRs appeared to be largely noncompetitive and was attenuated in the presence of catalase suggesting that reactive oxygen species may be involved in the mechanism of inhibition. - Highlights: • Combustion of organic pollutants generates long-lived particulate radicals (EPFRs). • EPFRs inhibit metabolism by all cytochromes P450 tested in rat liver microsomes. • EPFR-mediated inhibition is related to spin content and is sensitive to catalase. • EPFR inhibition of CYP2D2 is noncompetitive with respect to substrate. • Exposure to EPFRs may impair the ability to eliminate xenobiotics.« less

  19. Detection of environmentally persistent free radicals at a superfund wood treating site.

    PubMed

    dela Cruz, Albert Leo N; Gehling, William; Lomnicki, Slawomir; Cook, Robert; Dellinger, Barry

    2011-08-01

    Environmentally persistent free radicals (EPFRs) have previously been observed in association with combustion-generated particles and airborne PM(2.5) (particulate matter, d < 2.5um). The purpose of this study was to determine if similar radicals were present in soils and sediments at Superfund sites. The site was a former wood treating facility containing pentachlorophenol (PCP) as a major contaminant. Both contaminated and noncontaminated (just outside the contaminated area) soil samples were collected. The samples were subjected to the conventional humic substances (HS) extraction procedure. Electron paramagnetic resonance (EPR) spectroscopy was used to measure the EPFR concentrations and determine their structure for each sample fraction. Analyses revealed a ∼30× higher EPFR concentration in the PCP contaminated soils (20.2 × 10(17) spins/g) than in the noncontaminated soil (0.7 × 10(17) spins/g). Almost 90% of the EPFR signal originated from the minerals/clays/humins fraction. GC-MS analyses revealed ∼6500 ppm of PCP in the contaminated soil samples and none detected in the background samples. Inductively coupled plasma-atomic emission spectrophotometry (ICP-AES) analyses revealed ∼7× higher concentrations of redox-active transition metals, in the contaminated soils than the noncontaminated soil. Vapor phase and liquid phase dosing of the clays/minerals/humins fraction of the soil with PCP resulted in an EPR signal identical to that observed in the contaminated soil, strongly suggesting the observed EPFR is pentachlorophenoxyl radical. Chemisorption and electron transfer from PCP to transition metals and other electron sinks in the soil are proposed to be responsible for EPFR formation.

  20. Study of cultivation and growth rate kinetic for mixed cultures of local microalgae as third generation (G-3) bioethanol feedstock in thin layer photobioreactor

    NASA Astrophysics Data System (ADS)

    Prihastuti Yuarrina, Wahyu; Surya Pradana, Yano; Budiman, Arief; Majid, Akmal Irfan; Indarto; Agus Suyono, Eko

    2018-05-01

    The increasing use of fossil fuels causes the depletion in supply and contributes to climate change by GHG emissions into the atmosphere. Microalgae indicate as renewable and sustainable energy sources as they have a high potential for producing large amounts of biomass for third-generation biofuels (bioethanol and biodiesel) feedstock. However, there are several parameters which should be considered for microalgae cultivation, such as environmental conditions, medium composition and microalgae species. The aim of this research was to study cultivation of mixed microalgae cultures (Glagah consortium and Arthrospira maxima) in a thin layer photobioreactor. Farmpion medium, Bold’s Basal Medium (BBM) and Thoriq Eko Arief (TEA) medium were investigated as cultivation medium for bioethanol feedstock for 7 days. The results showed that the highest dry weight concentration of microalgae was in Farmpion medium (0.35 mg/ml) and the highest carbohydrate concentration of microalgae was in BBM (0.14 mg/ml). Thus, the optimum medium of microalgae cultivation for bioethanol feedstock was BBM because of the highest carbohydrate-dry weight ratio (0.88). In addition, mathematical approach by using Contois model was used to find out the growth rate of microalgae cultivation in each medium.

  1. Formaldehyde and some fully n-methylated substances in boar seminal fluids. Short communication.

    PubMed

    Szilágyi, M; Németh, Z I; Albert, L; Sarlós, P; Tyihák, E

    2006-03-01

    On the basis of recent observations it is supposed that seminal fluids may contain--mainly in hydroxymethyl groups--formaldehyde (HCHO) and quaternary ammonium compounds as potential HCHO generators, therefore, preliminary investigations were carried out for the identification of these compounds in pig seminal fluids using OPLC, HPLC and MALDI MS techniques. The fresh pig seminal fluid was frozen in liquid nitrogen, powdered and aliquots (0.25 g) were treated with 0.7 ml ethanolic dimedone solution. The suspension was centrifuged and the clear supernatant was used for analysis by OPLC or after dilution with HPLC or MALDI MS technique. After OPLC separation of formaldemethone the fully N-methylated compounds which are stayed on the start point were separated by OPLC using an other eluent system. It has been established that the HCHO is really a normal component of the pig seminal fluid, as well. It can be isolated and identified in dimedone adduct form. The measurable amount of HCHO depended on the concentration applied of dimedone. According to OPLC and MALDI MS investigations L-carnitine is the main quaternary ammonium compound in pig seminal fluid which can generate a protection of the sperm cells against environmental and other influences. Considerable differences have been found among individuals concerning concentrations of quaternary ammonium compounds in the seminal fluid of pigs.

  2. Fieldwork, Co-Teaching and Co-Generative Dialogue in Lower Secondary School Environmental Science

    ERIC Educational Resources Information Center

    Rahmawati, Yuli; Koul, Rekha

    2016-01-01

    This article reports one of the case studies in a 3-year longitudinal study in environmental science education. This case explores the process of teaching about ecosystems through co-teaching and co-generative dialogue in a Year-9 science classroom in Western Australia. Combining with co-teaching and co-generative dialogue aimed at transforming…

  3. Indirect evolutionary rescue: prey adapts, predator avoids extinction

    PubMed Central

    Yamamichi, Masato; Miner, Brooks E

    2015-01-01

    Recent studies have increasingly recognized evolutionary rescue (adaptive evolution that prevents extinction following environmental change) as an important process in evolutionary biology and conservation science. Researchers have concentrated on single species living in isolation, but populations in nature exist within communities of interacting species, so evolutionary rescue should also be investigated in a multispecies context. We argue that the persistence or extinction of a focal species can be determined solely by evolutionary change in an interacting species. We demonstrate that prey adaptive evolution can prevent predator extinction in two-species predator–prey models, and we derive the conditions under which this indirect evolutionary interaction is essential to prevent extinction following environmental change. A nonevolving predator can be rescued from extinction by adaptive evolution of its prey due to a trade-off for the prey between defense against predation and population growth rate. As prey typically have larger populations and shorter generations than their predators, prey evolution can be rapid and have profound effects on predator population dynamics. We suggest that this process, which we term ‘indirect evolutionary rescue’, has the potential to be critically important to the ecological and evolutionary responses of populations and communities to dramatic environmental change. PMID:26366196

  4. Impact of spectral irradiance distribution and temperature on the outdoor performance of concentrator photovoltaic system

    NASA Astrophysics Data System (ADS)

    Husna, Husyira Al; Shibata, Naoki; Sawano, Naoki; Ueno, Seiya; Ota, Yasuyuki; Minemoto, Takashi; Araki, Kenji; Nishioka, Kensuke

    2013-09-01

    Multi-junction solar cell is designed to have considerable effect towards the solar spectrum distribution so that the maximum solar radiation could be absorbed hence, enhancing the energy conversion efficiency of the cell. Due to its application in CPV system, the system's characteristics are more sensitive to environmental factor in comparison to flat-plate PV system which commonly equipped with Si-based solar cell. In this paper, the impact of environmental factors i.e. average photon energy (APE) and temperature of solar cell (Tcell) towards the performance of the tracking type CPV system were discussed. A year data period of direct spectral irradiance, cell temperature, and power output which recorded from November 2010 to October 2011 at a CPV system power generator plant located at Miyazaki, Japan was used in this study. The result showed that most frequent condition during operation was at APE = 1.87±0.005eV, Tcell = 65±2.5°C with performance ratio of 83.9%. Furthermore, an equivalent circuit simulation of a CPV subsystem in module unit was conducted in order to investigate the influence of environmental factors towards the performance of the module.

  5. Future generations, environmental ethics, and global environmental change

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tonn, B.E.

    1994-12-31

    The elements of a methodology to be employed by the global community to investigate the consequences of global environmental change upon future generations and global ecosystems are outlined in this paper. The methodology is comprised of two major components: A possible future worlds model; and a formal, citizen-oriented process to judge whether the possible future worlds potentially inheritable by future generations meet obligational standards. A broad array of descriptors of future worlds can be encompassed within this framework, including survival of ecosystems and other species and satisfaction of human concerns. The methodology expresses fundamental psychological motivations and human myths journey,more » renewal, mother earth, and being-in-nature-and incorporates several viewpoints on obligations to future generations-maintaining options, fairness, humility, and the cause of humanity. The methodology overcomes several severe drawbacks of the economic-based methods most commonly used for global environmental policy analysis.« less

  6. Overview of waste reduction techniques leading to pollution prevention

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hunt, G.E.

    Liquid, solid, and/or gaseous waste materials are always generated during the manufacture of any product. In addition to creating environmental hazards, these wastes represent losses of valuable materials and energy from the production process and require a significant investment in pollution control. Traditionally, pollution control relies on ``end-of-the-pipe`` and ``out-the-back-door`` management approaches that require labor hours, energy, materials, and capital expenditures. Such an approach removes pollutants from one source, such as wastewater, but places them somewhere else, such as in a landfill. More regulations, higher disposal expenses, increased liability costs, and increased public awareness have caused industrial and governmental leadersmore » to begin critical examinations of end-of-the-pipe control technologies. The value of reducing waste during the manufacturing process has become apparent to many industries. These companies are looking at broader environmental management objectives, rather than concentrating solely on pollution control. Waste reduction not only is very often economically beneficial for an industry, it also improves the quality of the environment.« less

  7. Energy conversion of animal manures: Feasibility analysis for thirteen western states

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Whittier, J.; Haase, S.; Milward, R.

    1993-12-31

    The growth and concentration of the livestock industry has led to environmental disposal problems for large quantities of manure at feedlots, dairies, poultry production plants, animal holding areas and pasturelands. Consequently, waste management systems that facilitate energy recovery are becoming increasingly attractive since they address pollution problems and allow for energy generation from manure resources. This paper presents a manure resource assessment for the 13 US Department of Energy, Western Regional Biomass Energy Program states, describes and evaluates available energy conversion technologies, identifies environmental and regulatory factors associated with manure collection, storage and disposal, and identifies common disposal practices specificmore » to animal types and areas within the WRBEP region. The paper also presents a pro forma economic analysis for selected manure-to-energy conversion technologies. The annual energy potential of various manures within the WRBEP region is equivalent to approximately 111 {times} 10{sup 13} Btu. Anaerobic digestion systems, both lagoon and plug flow, offer positive economic returns in a broad range of utility service territories.« less

  8. Management and utilization of poultry wastes.

    PubMed

    Williams, C M; Barker, J C; Sims, J T

    1999-01-01

    Waste by-products such as excreta or bedding material that are generated by the worldwide annual production of more than 40 million metric tons (t) of poultry meat and 600 billion eggs are generally land applied as the final step of a producer's waste management strategy. Under proper land application conditions, the nutrients and organisms in poultry wastes pose little environmental threat. Environmental contamination occurs when land application of poultry wastes is in excess of crop utilization potential, or is done under poor management conditions causing nutrient loss from environmental factors such as soil erosion or surface runoff during rainfall. Environmental parameters of concern are N, P, and certain metals (Cu and Zn in particular), as well as pathogenic microorganisms that may be contained in poultry waste. The biochemical cycle of N is very dynamic, and N contained in poultry waste may either be removed by crop harvest, leave the animal production facility, waste treatment lagoon, or application field as a gas (NH3, NO, NO2, N2O, or N2), or, due to its mobility in soil, be transported in organic or inorganic N forms in the liquid state via surface runoff or leaching into groundwater. Elevated concentrations of NO3-N in groundwater used for human consumption is a health risk to infants that are susceptible to methemoglobinemia. An environmental impact resulting from elevated NO3-N is eutrophication of surface waters. Ammonia loss from poultry waste is an environmental concern because of volatilized wet and dry deposits of NH3 into nitrogen-sensitive ecosystems. Phosphorus in poultry wastes may contribute to environmental degradation by accelerating the process of eutrophication. Unlike N, P is very immobile in soil and must first be transported to a surface water environment to have an environmental impact. It is generally accepted, however, that this nutrient affects receiving waters via transport in eroding soil as sediment-bound P or in surface runoff as soluble inorganic or organic P. Numerous studies have reported that excess P contained in land-applied manures may contribute to eutrophication. Soils containing P concentrations that greatly exceed the agronomic potential of crops may require years or even decades to return to levels that are crop limiting for this nutrient. Environmental concerns include the capacity of such soils to adsorb new P and the amount of P loss from these soils from erosion, runoff, drainage, or leaching to groundwater. Although much information is available regarding the loss of P from agricultural fields from erosion and runoff, less information is available regarding P losses from fields receiving poultry wastes. However, studies have shown that there are many challenges to controlling P losses from fields receiving manures. In addition, subsurface transport of P resulting from repeated application of poultry manure onto soils that are artificially drained is an environmental concern where drainage waters enter or interact with water bodies sensitive to eutrophication. Trace elements such as As, Co, Cu, Fe, Mn, Se, and Zn are often added in excess to poultry feed to increase the animal's rate of weight gain, feed efficiency, and egg production and to prevent diseases. Because most of the excess trace elements are not absorbed by the bird, the concentration of elements excreted in the manure will reflect dietary overformulation. Because trace elements are generally required in very small quantities for crop growth and, like P, are immobile in most soil types, their concentrations will increase with repeated land application of poultry wastes. Of particular concern are accumulations of Cu and Zn in certain soil types utilized for certain crops. Copper and Zn toxicity for some crops have been documented in some areas receiving repeated land-applied poultry wastes. A potential environmental concern relative to poultry litter and trace elements in receiving soils involves the transpor

  9. INTERSPECIES CORRELATION ESTIMATES PREDICT PROTECTIVE ENVIRONMENTAL CONCENTRATIONS

    EPA Science Inventory

    Environmental risk assessments often use multiple single species toxicity test results and species sensitivity distributions (SSDs) to derive a predicted no-effect concentration in the environment, typically the 5th percentile of the SSD, termed the HC5. The shape and location of...

  10. RELATIONSHIPS BETWEEN NEAR-BOTTOM DISSOLVED OXYGEN AND SEDIMENT PROFILE CAMERA MEASUREMENTS

    EPA Science Inventory

    The United States Environmental Protection Agency (U.S. EPA) and other environmental authorities regulate concentrations of dissolved oxygen (DO) as a measure of nutrient-related eutrophication in estuarine and coastal waters. However, in situ DO concentrations are extremely var...

  11. Comparison of hydro-environmental impacts for ebb-only and two-way generation for a Severn Barrage

    NASA Astrophysics Data System (ADS)

    Ahmadian, Reza; Falconer, Roger A.; Bockelmann-Evans, Bettina

    2014-10-01

    Marine renewable energy is playing an increasing significant role in many parts of the world, mainly due to a rise in the awareness of climate change, and its detrimental effects, and the increasing cost of natural resources. The Severn Estuary, located between South West England and South Wales, has a tidal range of up to 14 m which makes it the second highest tidal range in the world. There are a number of barrage proposals amongst various marine renewable energy schemes proposed to be built in the estuary. The Cardiff-Weston STPG (Severn Tidal Power Group) Barrage, which would be one of the world's largest tidal renewable energy schemes if built, is one of the most publicised schemes to-date. This barrage would generate about 17 TWh/annum of power, which is approximately 5% of the UK's electricity consumption, whilst causing significant hydro-environmental and ecological impact on the estuary. This study mainly focuses on investigating the hydro-environmental impacts of the STPG barrage for the option of two-way generation, and compares this with the commonly investigated option of ebb-only generation. The impacts of the barrage were modelled by implementing a linked 1-D/2-D hydro-environmental model, with the capability of modelling several key environmental processes. The model predictions show that the hydro-environmental impacts of the barrage on the Severn Estuary and Bristol Channel, such as changes in the maximum velocity and reduction in suspended sediment and bacteria levels, were less significant for the two-way generation scheme when compared with the corresponding impacts for ebb-only generation.

  12. The influence of biological and environmental factors on metallothionein concentration in the blood.

    PubMed

    Kowalska, Katarzyna; Bizoń, Anna; Zalewska, Marta; Milnerowicz, Halina

    2015-01-01

    The concentration of metallothionein (MT), a low-molecular-weight protein, is regulated by many factors, primarily metals (zinc, cadmium, copper), cytokines, glucocorticoides and free radicals. These factors are determined by such aspects of human biology as gender, pregnancy and age, as well as by environmental factors including the use of oral contraceptives and cigarette smoking, all which may affect MT levels in the body. The aim of this study was to investigate the influence of these biological and environmental factors on MT concentrations in erythrocyte lysate and in plasma. MT concentrations were determined by a two-step direct enzyme-linked immunosorbent assay. Evaluation of exposure to cigarette smoking was performed by checking cotinine levels in the plasma of subjects. The studies showed higher MT concentrations in both the erythrocyte lysate and plasma of women when compared to men. Furthermore, pregnancy causes an increase of MT concentration in plasma, while oral contraceptives cause an elevated concentration of MT in erythrocyte lysate. Age impacts plasma MT concentrations in men, whereas it does not affect concentrations of MT in erythrocyte lysate. Copyright © 2014 Elsevier GmbH. All rights reserved.

  13. Environmental optimization of chromium recovery from tannery sludge using a life cycle assessment approach.

    PubMed

    Kiliç, Eylem; Puig, Rita; Baquero, Grau; Font, Joaquim; Colak, Selime; Gürler, Deniz

    2011-08-15

    Life cycle assessment (LCA) was used to evaluate the environmental impact of an oxidative chromium recovery method from tannery sludge, in comparison with the usual landfilling process. Three improvement options (water reduction, byproduct use and anaerobic sludge digestion) were considered. The results showed that the proposed chromium recovery process would be better environmentally than conventional landfilling in all the evaluated impact categories if the amount of chromium recovered was 43 kg per ton of sludge. This amount could be recovered if the chromium concentration was about 20 times higher than that considered in this study. Alternatively, a lower chromium concentration would produce a better result if the recovery method was optimized and implemented at industrial rather than laboratory scale, and if more accurate data were provided on environmental credits for avoiding the chromium production process. Thus, the recovery method is environmentally beneficial when tannery sludge contains a chromium concentration of about 100,000 ppm. According to the literature, such concentrations are not unusual. The results could serve as the basis for further environmental improvements in chromium recovery and tannery sludge management and should be used in decision-making processes, especially for end-of-pipe treatments. Copyright © 2011 Elsevier B.V. All rights reserved.

  14. Hanford Site near-facility environmental monitoring annual report, calendar year 1997

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perkins, C.J.

    1998-07-28

    Near-facility environmental monitoring provides a means to measure the impacts of operations, waste management, and remediation activities on the environment adjacent to facilities and ensure compliance with local, state, and federal environmental regulations. Specifically, near-facility environmental monitoring monitors new and existing sites, processes, and facilities for potential impacts and releases; fugitive emissions and diffuse sources associated with contaminated areas, facilities (both active and those undergoing surveillance and maintenance), and environmental restoration activities. External radiation, ambient air particulates, ground and surface water, soil, sediment, and biota (plants and animals) are sampled or monitored. Parameters include, as appropriate, radionuclides; radiation fields; chemicalmore » or physical constituents, such as nitrates; pH; and water temperature. All ambient air results were below the US Department of Energy (DOE) Derived Concentration Guides (DCGs). Groundwater concentrations at the two wells at the 107-N Facility were below both the DOE DCG and US Environmental Protection Agency Interim Drinking Water Standards for gamma emitting radionuclides. Soil and vegetation results were generally within historic ranges and mostly below the Accessible Soil Concentration limits (included in HNF-PRO-454, Inactive Waste Sites) with the exception of one soil sampling location at 1 00 N Area. External radiation fields continued an overall downward trend. Surface water disposal unit samples (water, sediment, and aquatic vegetation) showed radionuclide concentrations below their respective DCG and Accessible Soil Concentration limits. The 100 N Area Columbia river shoreline springs results were below DCGs with the exception of one Sr concentration. More than 4,600 ha (11,300 acres) of radiologically controlled areas were surveyed in 1997, approximately the same as in 1996.« less

  15. Environmental protection, the economy, and jobs: national and regional analyses.

    PubMed

    Bezdek, Roger H; Wendling, Robert M; Diperna, Paula

    2008-01-01

    The relationship between environmental protection (EP), the economy, and jobs has been an issue of harsh contention for decades. Does EP harm the economy and destroy jobs or facilitate economic growth and create jobs? We address this issue by summarizing the results of the Jobs and the Environment Initiative, research funded by nonprofit foundations to quantify the relationship between EP, the economy, and jobs. We estimate the size of the US environmental industry and the numbers of environment-related jobs at the national level and in the states of Florida, Michigan, Minnesota, North Carolina, Ohio, and Wisconsin. This is the first time that such comprehensive, detailed estimates have been developed. Our major finding is that, contrary to conventional wisdom, EP, economic growth, and jobs creation are complementary and compatible: investments in EP create jobs and displace jobs, but the net effect on employment is positive. Second, environment protection has grown rapidly to become a major sales-generating, job-creating industry--$300 billion/year and 5 million jobs in 2003. Third, most of the 5 million jobs created are standard jobs for accountants, engineers, computer analysts, clerks, factory workers, etc., and the classic environmental job (environmental engineer, ecologist, etc.) constitutes only a small portion of the jobs created. Most of the persons employed in the jobs created may not even realize that they owe their livelihood to protecting the environment. Fourth, at the state level, the relationship between environmental policies and economic/job growth is positive, not negative. States can have strong economies and simultaneously protect the environment. Finally, environmental jobs are concentrated in manufacturing and professional, information, scientific, and technical services, and are thus disproportionately the types of jobs all states seek to attract.

  16. Comparison of field olfactometers in a controlled chamber using hydrogen sulfide as the test odorant.

    PubMed

    McGinley, M A; McGinley, C M

    2004-01-01

    A standard method for measuring and quantifying odour in the ambient air utilizes a portable odour detecting and measuring device known as a field olfactometer (US Public Health Service Project Grant A-58-541). The field olfactometer dynamically dilutes the ambient air with carbon-filtered air in distinct ratios known as "Dilutions-to-Threshold" dilution factors (D/Ts), i.e. 2, 4, 7, 15, etc. Thirteen US states and several cities in North America currently utilize field olfactometry as a key component of determining compliance to odour regulations and ordinances. A controlled environmental chamber was utilized, with hydrogen sulfide as the known test odorant. A hydrogen sulfide environment was created in this controlled chamber using an Advanced Calibration Designs, Inc. Cal2000 Hydrogen Sulfide Generator. The hydrogen sulfide concentration inside the chamber was monitored using an Arizona Instruments, Inc. Jerome Model 631 H2S Analyzer. When the environmental chamber reached a desired test concentration, test operators entered the chamber. The dilution-to-threshold odour concentration was measured using a Nasal Ranger Field Olfactometer (St Croix Sensory, Inc.) and a Barnebey Sutcliffe Corp. Scentometer. The actual hydrogen sulfide concentration was also measured at the location in the room where the operators were standing while using the two types of field olfactometers. This paper presents a correlation between dilution-to-threshold values (D/T) and hydrogen sulfide ambient concentration. For example, a D/T of 7 corresponds to ambient H2S concentrations of 5.7-15.6 microg/m3 (4-11 ppbv). During this study, no significant difference was found between results obtained using the Scentometer or the Nasal Ranger (r = 0.82). Also, no significant difference was found between results of multiple Nasal Ranger users (p = 0.309). The field olfactometers yielded hydrogen sulfide thresholds of 0.7-3.0 microg/m3 (0.5-2.0 ppbv). Laboratory olfactometry yielded comparable thresholds of 0.64-1.3 microg/m3 (0.45-0.9 ppbv). These thresholds are consistent with published values.

  17. Modeling Geographic and Demographic Variability in Residential Concentrations of Environmental Tobacco Smoke Using National Data Sets

    EPA Science Inventory

    Despite substantial attention toward environmental tobacco smoke (ETS) exposure, previous studies have not provided adequate information to apply broadly within community-scale risk assessments. We aim to estimate residential concentrations of particulate matter (PM) from ETS in ...

  18. Imagining CO2: development and assessment of interactive visualizations for high resolution greenhouse gas observations collected by BEACO2N

    NASA Astrophysics Data System (ADS)

    Raheja, G.; Shusterman, A.; Martin, S.; Shahar, E.; Laughner, J.; Turner, A. J.; Miller, M. K.; Cohen, R. C.

    2016-12-01

    The Berkeley Atmospheric CO2 Observation Network (BEACO2N) is a high-density network of 28 carbon dioxide sensors distributed around the San Francisco Bay Area that serve to enhance understanding of intra-city variations in CO2 concentrations that are not necessarily captured by sparser networks maintained by local and national air quality management agencies. We partner with designers at the San Francisco Exploratorium to create a suite of interactive exhibits and hands-on activities that creatively visualize data from BEACO2N for general audiences. Museum goers can manipulate a light-up "bar graph" of live CO2 concentrations by exhaling on an in-room sensor, query the current readings of rooftop sensors using a scale model of the Wired Pier observation system, scroll through the data from other BEACO2N sites projected on a 3-D "topographic table" of the Bay Area, and view interpolated CO2 fields driven by research-grade weather models on a nine-screen LCD display. We present lessons learned from these initial installations, from layperson audience feedback to details of the Stochastic Time-Inverted Lagrangian Transport (STILT) model coupled to Weather Research and Forecasting (WRF) weather fields used to generate intuitive concentration maps. We propose that compelling visual demonstrations of elevated CO2 concentrations due to routine small-scale high-emission anthropogenic activities (e.g. rush hour) and/or special events (such as fireworks or factory fires) generate deeper engagement in local environmental issues and interest in undertaking personal actions that can become part of the broader climate solution. While global means and other large-scale aggregate climate metrics can lead to feelings of disconnect and subsequent ambivalence, via such exhibitions, distributed network instruments like BEACO2N can provide the local sensitivity needed to "personalize" greenhouse gas concentrations to a given individual or community and incite the drive toward understanding, education, and action.

  19. Biochemical process of low level radioactive liquid simulation waste containing detergent

    NASA Astrophysics Data System (ADS)

    Kundari, Noor Anis; Putra, Sugili; Mukaromah, Umi

    2015-12-01

    Research of biochemical process of low level radioactive liquid waste containing detergent has been done. Thse organic liquid wastes are generated in nuclear facilities such as from laundry. The wastes that are cotegorized as hazard and poison materials are also radioactive. It must be treated properly by detoxification of the hazard and decontamination of the radionuclides to ensure that the disposal of the waste meets the requirement of standard quality of water. This research was intended to determine decontamination factor and separation efficiensies, its kinetics law, and to produce a supernatant that ensured the environmental quality standard. The radioactive element in the waste was thorium with activity of 5.10-5 Ci/m3. The radioactive liquid waste which were generated in simulation plant contains detergents that was further processed by aerobic biochemical process using SGB 103 bacteria in a batch reactor equipped with aerators. Two different concentration of samples were processed and analyzed for 212 hours and 183 hours respectively at a room temperature. The product of this process is a liquid phase called as supernatant and solid phase material called sludge. The chemical oxygen demand (COD), biological oxygen demand (BOD), suspended solid (SS), and its alpha activity were analyzed. The results show that the decontamination factor and the separation efficiency of the lower concentration samples are higher compared to the samples with high concentration. Regarding the decontamination factor, the result for 212 hours processing of waste with detergent concentration of 1.496 g/L was 3.496 times, whereas at the detergent concentration of 0.748 g/L was 15.305 times for 183 hours processing. In case of the separation efficiency, the results for both samples were 71.396% and 93.465% respectively. The Bacterial growth kinetics equation follow Monod's model and the decreasing of COD and BOD were first order with the rate constant of 0.01 hour-1.

  20. Biochemical process of low level radioactive liquid simulation waste containing detergent

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kundari, Noor Anis, E-mail: nooranis@batan.go.id; Putra, Sugili; Mukaromah, Umi

    Research of biochemical process of low level radioactive liquid waste containing detergent has been done. Thse organic liquid wastes are generated in nuclear facilities such as from laundry. The wastes that are cotegorized as hazard and poison materials are also radioactive. It must be treated properly by detoxification of the hazard and decontamination of the radionuclides to ensure that the disposal of the waste meets the requirement of standard quality of water. This research was intended to determine decontamination factor and separation efficiensies, its kinetics law, and to produce a supernatant that ensured the environmental quality standard. The radioactive elementmore » in the waste was thorium with activity of 5.10{sup −5} Ci/m{sup 3}. The radioactive liquid waste which were generated in simulation plant contains detergents that was further processed by aerobic biochemical process using SGB 103 bacteria in a batch reactor equipped with aerators. Two different concentration of samples were processed and analyzed for 212 hours and 183 hours respectively at a room temperature. The product of this process is a liquid phase called as supernatant and solid phase material called sludge. The chemical oxygen demand (COD), biological oxygen demand (BOD), suspended solid (SS), and its alpha activity were analyzed. The results show that the decontamination factor and the separation efficiency of the lower concentration samples are higher compared to the samples with high concentration. Regarding the decontamination factor, the result for 212 hours processing of waste with detergent concentration of 1.496 g/L was 3.496 times, whereas at the detergent concentration of 0.748 g/L was 15.305 times for 183 hours processing. In case of the separation efficiency, the results for both samples were 71.396% and 93.465% respectively. The Bacterial growth kinetics equation follow Monod’s model and the decreasing of COD and BOD were first order with the rate constant of 0.01 hour{sup −1}.« less

  1. Glucocorticoid activity detected by in vivo zebrafish assay and in vitro glucocorticoid receptor bioassay at environmental relevant concentrations.

    PubMed

    Chen, Qiyu; Jia, Ai; Snyder, Shane A; Gong, Zhiyuan; Lam, Siew Hong

    2016-02-01

    Glucocorticoids are pharmaceutical contaminants of emerging concern due to their incomplete removal during wastewater treatment, increased presence in aquatic environment and their biological potency. The zebrafish is a popular model for aquatic toxicology and environmental risk assessment. This study aimed to determine if glucocorticoids at environmental concentrations would perturb expression of selected glucocorticoid-responsive genes in zebrafish and to investigate their potentials as an in vivo zebrafish assay in complementing in vitro glucocorticoid receptor bioassay. The relative expression of eleven glucocorticoid-responsive genes in zebrafish larvae and liver of adult male zebrafish exposed to three representative glucocorticoids (dexamethasone, prednisolone and triamcinolone) was determined. The expression of pepck, baiap2 and pxr was up-regulated in zebrafish larvae and the expression of baiap2, pxr and mmp-2 was up-regulated in adult zebrafish exposed to glucocorticoids at concentrations equivalent to total glucocorticoids reported in environmental samples. The responsiveness of the specific genes were sufficiently robust in zebrafish larvae exposed to a complex environmental sample detected with in vitro glucocorticoid activity equivalent to 478 pM dexamethasone (DEX-EQ) and confirmed to contain low concentration (0.2 ng/L or less) of the targeted glucocorticoids, and possibly other glucocorticoid-active compounds. The findings provided in vivo relevance to the in vitro glucocorticoid activity and suggested that the environmental sample can perturb glucocorticoid-responsive genes in its original, or half the diluted, concentration as may be found in the environment. The study demonstrated the important complementary roles of in vivo zebrafish and in vitro bioassays coupled with analytical chemistry in monitoring environmental glucocorticoid contaminants. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Satellite mirror systems for providing terrestrial power - System concept

    NASA Technical Reports Server (NTRS)

    Billman, K. W.; Gilbreath, W. P.; Bowen, S. W.

    1978-01-01

    A system of orbiting reflectors, SOLARES, has been studied as a possible means of providing terrestrial power with a space system of minimum mass and complexity. The key impact that such a system, providing continuous and slightly concentrated insolation, makes on the economic viability of solar farming is demonstrated. New developments in solar sailing are incorporated to reduce mirror mass and transportation cost. The system is compatible with incremental implementation and continual expansion to produce the world's power needs. Key technology, environmental, and economic issues and payoffs are identified. SOLARES appears to be economically superior to other advanced, and even conventional, energy systems and could be scaled to completely abate our fossil fuel usage for power generation.

  3. Aging of biogenic secondary organic aerosol via gas-phase OH radical reactions

    PubMed Central

    Donahue, Neil M.; Henry, Kaytlin M.; Mentel, Thomas F.; Kiendler-Scharr, Astrid; Spindler, Christian; Bohn, Birger; Brauers, Theo; Dorn, Hans P.; Fuchs, Hendrik; Tillmann, Ralf; Wahner, Andreas; Saathoff, Harald; Naumann, Karl-Heinz; Möhler, Ottmar; Leisner, Thomas; Müller, Lars; Reinnig, Marc-Christopher; Hoffmann, Thorsten; Salo, Kent; Hallquist, Mattias; Frosch, Mia; Bilde, Merete; Tritscher, Torsten; Barmet, Peter; Praplan, Arnaud P.; DeCarlo, Peter F.; Dommen, Josef; Prévôt, Andre S.H.; Baltensperger, Urs

    2012-01-01

    The Multiple Chamber Aerosol Chemical Aging Study (MUCHACHAS) tested the hypothesis that hydroxyl radical (OH) aging significantly increases the concentration of first-generation biogenic secondary organic aerosol (SOA). OH is the dominant atmospheric oxidant, and MUCHACHAS employed environmental chambers of very different designs, using multiple OH sources to explore a range of chemical conditions and potential sources of systematic error. We isolated the effect of OH aging, confirming our hypothesis while observing corresponding changes in SOA properties. The mass increases are consistent with an existing gap between global SOA sources and those predicted in models, and can be described by a mechanism suitable for implementation in those models. PMID:22869714

  4. Economic and toxicological aspects of copper industry in Katanga, DR Congo.

    PubMed

    Kalenga, John Ngoy

    2013-02-01

    The Katanga province is well known for its copper and cobalt reserves. During the early 2000s a boom of mining projects in Katanga brought again hope for better future to Congolese people. The paper aims to evaluate the impact of recent production recovery on economy and environment. We collected primary and secondary sources on copper industry for economic analysis. We use results of laboratory analysis conducted at the Congolese Office of Control by provincial division of environment for toxicological analysis. The comparison of heavy metal concentration to standards shows that mining industry is the main source of environmental pollution in Katanga. Copper industry generates income for economic growth of the region.

  5. A Coincidence Signature Library for Multicoincidence Radionuclide Analysis Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Leon E.; Ellis, J E.; Valsan, Andrei B.

    Pacific Northwest National Laboratory (PNNL) is currently developing multicoincidence systems to perform trace radionuclide analysis at or near the sample collection point, for applications that include emergency response, nuclear forensics, and environmental monitoring. Quantifying radionuclide concentrations with these systems requires a library of accurate emission intensities for each detected signature, for all candidate radionuclides. To meet this need, a Coincidence Lookup Library (CLL) is being developed to calculate the emission intensities of coincident signatures from a user-specified radionuclide, or conversely, to determine the radionuclides that may be responsible for a specific detected coincident signature. The algorithms used to generate absolutemore » emission intensities and various query modes for our developmental CLL are described.« less

  6. Validation of two dilution models to predict chloramine-T concentrations in aquaculture facility effluent

    USGS Publications Warehouse

    Gaikowski, M.P.; Larson, W.J.; Steuer, J.J.; Gingerich, W.H.

    2004-01-01

    Accurate estimates of drug concentrations in hatchery effluent are critical to assess the environmental risk of hatchery drug discharge resulting from disease treatment. This study validated two dilution simple n models to estimate chloramine-T environmental introduction concentrations by comparing measured and predicted chloramine-T concentrations using the US Geological Survey's Upper Midwest Environmental Sciences Center aquaculture facility effluent as an example. The hydraulic characteristics of our treated raceway and effluent and the accuracy of our water flow rate measurements were confirmed with the marker dye rhodamine WT. We also used the rhodamine WT data to develop dilution models that would (1) estimate the chloramine-T concentration at a given time and location in the effluent system and (2) estimate the average chloramine-T concentration at a given location over the entire discharge period. To test our models, we predicted the chloramine-T concentration at two sample points based on effluent flow and the maintenance of chloramine-T at 20 mg/l for 60 min in the same raceway used with rhodamine WT. The effluent sample points selected (sample points A and B) represented 47 and 100% of the total effluent flow, respectively. Sample point B is-analogous to the discharge of a hatchery that does not have a detention lagoon, i.e. The sample site was downstream of the last dilution water addition following treatment. We then applied four chloramine-T flow-through treatments at 20mg/l for 60 min and measured the chloramine-T concentration in water samples collected every 15 min for about 180 min from the treated raceway and sample points A and B during and after application. The predicted chloramine-T concentration at each sampling interval was similar to the measured chloramine-T concentration at sample points A and B and was generally bounded by the measured 90% confidence intervals. The predicted aver,age chloramine-T concentrations at sample points A or B (2.8 and 1.3 mg/l, respectively) were not significantly different (P > 0.05) from the average measured chloramine-T concentrations (2.7 and 1.3 mg/l, respectively). The close agreement between our predicted and measured chloramine-T concentrations indicate either of the dilution models could be used to adequately predict the chloramine-T environmental introduction concentration in Upper Midwest Environmental Sciences Center effluent. (C) 2003 Elsevier B.V. All rights reserved.

  7. Acute and chronic sensitivity of white sturgeon (Acipenser transmontanus) and rainbow trout (Oncorhynchus mykiss) to cadmium, copper, lead, or zinc in laboratory water-only exposures

    USGS Publications Warehouse

    Ingersoll, Christopher G.; Contributions by Wang, Ning; Calfee, Robin D.; Beahan, Erinn; Brumbaugh, William G.; Dorman, Rebecca A.; Hardesty, Doug K.; Kunz, James L.; Little, Edward E.; Mebane, Christopher A.; Puglis, Holly J.

    2014-01-01

    White sturgeon (Acipenser transmontanus) are experiencing poor recruitment in the trans boundary reach of the upper Columbia River in eastern Washington State. Limited toxicity data indicated that early life stages of white sturgeon are sensitive to metals. In acute 4-day (d) exposures with larval white sturgeon, previous studies have reported that the 4-day median lethal concentrations (LC50) based on biotic ligand model (BLM) normalization for copper were below the U.S. Environmental Protection Agency national recommended acute water-quality criterion. In previously published chronic 66-d exposures starting with newly fertilized eggs of white sturgeon, 20-percent lethal effect concentrations (LC20s) for copper, cadmium, or zinc generally were within a factor of two of the chronic values of the most sensitive fish species in the databases of the U.S. Environmental Protection Agency water-quality criteria (WQC) for the three metals. However, there were some uncertainties in the chronic exposures previously performed with white sturgeon, including (1) low control survival (37 percent), (2) more control fish tested in each replicate compared to other treatments, (3) limited replication of treatments (n=2), (4) lack of reported growth data (such as dry weight), and (5) wide dilution factors for exposure concentrations (6- to 8-fold dilutions). The U.S. Environmental Protection Agency concluded that additional studies are needed to generate more toxicity data to better define lethal and sublethal toxicity thresholds for metals for white sturgeon. The objective of the study was to further evaluate the acute and chronic toxicity of cadmium, copper, lead, or zinc to early life stages of white sturgeon in water-only exposures. Toxicity tests also were performed with commonly tested rainbow trout (Oncorhynchus mykiss) under similar test conditions to determine the relative sensitivity between white sturgeon and rainbow trout to these metals. Toxicity data generated from this study were used to evaluate the sensitivity of early life stages of white sturgeon and rainbow trout relative to data published for other test organisms. Toxicity data generated from this study also were used to evaluate the level of protection of U.S. Environmental Protection Agency WQC or Washington State water-quality standards (WQS) for copper, zinc, cadmium, or lead to white sturgeon inhabiting the upper Columbia River. Chapter A of this report summarizes the results of acute toxicity tests performed for 4 d with white sturgeon and rainbow trout exposed to copper, cadmium, or zinc. Chapter B of this report summarizes the results of chronic toxicity tests performed for as many as 53 days with white sturgeon or rainbow trout exposed to copper, cadmium, zinc, or lead. Appendixes to the report are available at http://pubs.usgs.gov/sir/2013/5204. Supporting documentation for chapter A toxicity testing is provided in appendix 1. Supporting documentation for chapter B toxicity testing is provided in Appendix 2. Supporting documentation on analysis of water chemistry for chapter A and chapter B is provided in appendix 3 and 4. The rationale for applying corrections to measured copper and zinc values in water samples from some of the toxicity tests performed in chapter A is provided in appendix 5. A summary of dissolved organic carbon measurement variability and implications for biotic ligand model normalization for toxicity data summarized in chapter A and chapter B are provided in appendix 6. An evaluation of an interlaboratory comparison of analyses for dissolved organic carbon in water from the U.S. Geological Survey Columbia Environmental Research Center and University of Saskatchewan is provided in appendix 7. Finally, appendix 8 provides a summary of retesting of white sturgeon in 2012 to determine if improved survival of sturgeon would affect copper effect concentrations in 24-d copper exposures started with newly hatched larvae, and to evaluate the effect of light intensity or temperature on the response of newly hatched larvae during a 25-d study.

  8. Purification and Concentration of Nanoparticles Using Diafiltration: Scientific Operating Procedure Series: SOP-P-1

    DTIC Science & Technology

    2015-07-01

    Coupled Plasma Mass Spectroscopy (ICP-MS) analysis If the nanoparticle of choice is a metal such as gold or silver , an aliquot can be measured using USEPA...ER D C/ EL S R- 15 -4 Environmental Consequences of Nanotechnologies Purification and Concentration of Nanoparticles Using...Environmental Consequences of Nanotechnologies ERDC/EL SR-15-4 July 2015 Purification and Concentration of Nanoparticles Using Diafiltration

  9. Methods to Calculate the Heat Index as an Exposure Metric in Environmental Health Research

    PubMed Central

    Bell, Michelle L.; Peng, Roger D.

    2013-01-01

    Background: Environmental health research employs a variety of metrics to measure heat exposure, both to directly study the health effects of outdoor temperature and to control for temperature in studies of other environmental exposures, including air pollution. To measure heat exposure, environmental health studies often use heat index, which incorporates both air temperature and moisture. However, the method of calculating heat index varies across environmental studies, which could mean that studies using different algorithms to calculate heat index may not be comparable. Objective and Methods: We investigated 21 separate heat index algorithms found in the literature to determine a) whether different algorithms generate heat index values that are consistent with the theoretical concepts of apparent temperature and b) whether different algorithms generate similar heat index values. Results: Although environmental studies differ in how they calculate heat index values, most studies’ heat index algorithms generate values consistent with apparent temperature. Additionally, most different algorithms generate closely correlated heat index values. However, a few algorithms are potentially problematic, especially in certain weather conditions (e.g., very low relative humidity, cold weather). To aid environmental health researchers, we have created open-source software in R to calculate the heat index using the U.S. National Weather Service’s algorithm. Conclusion: We identified 21 separate heat index algorithms used in environmental research. Our analysis demonstrated that methods to calculate heat index are inconsistent across studies. Careful choice of a heat index algorithm can help ensure reproducible and consistent environmental health research. Citation: Anderson GB, Bell ML, Peng RD. 2013. Methods to calculate the heat index as an exposure metric in environmental health research. Environ Health Perspect 121:1111–1119; http://dx.doi.org/10.1289/ehp.1206273 PMID:23934704

  10. Impact of Groundwater Salinity on Bioremediation Enhanced by Micro-Nano Bubbles

    PubMed Central

    Li, Hengzhen; Hu, Liming; Xia, Zhiran

    2013-01-01

    Micro-nano bubbles (MNBs) technology has shown great potential in groundwater bioremediation because of their large specific surface area, negatively charged surface, long stagnation, high oxygen transfer efficiency, etc. Groundwater salinity, which varies from sites due to different geological and environmental conditions, has a strong impact on the bioremediation effect. However, the groundwater salinity effect on MNBs’ behavior has not been reported. In this study, the size distribution, oxygen transfer efficiency and zeta potential of MNBs was investigated in different salt concentrations. In addition, the permeability of MNBs’ water through sand in different salt concentrations was studied. The results showed that water salinity has no influence on bubble size distribution during MNBs generation. MNBs could greatly enhance the oxygen transfer efficiency from inner bubbles to outer water, which may greatly enhance aerobic bioremediation. However, the enhancement varied depending on salt concentration. 0.7 g/L was found to be the optimal salt concentration to transfer oxygen. Moreover, MNBs in water salinity of 0.7 g/L had the minimum zeta potential. The correlation of zeta potential and mass transfer was discussed. The hydraulic conductivities of sand were similar for MNBs water with different salt concentrations. The results suggested that salinity had a great influence on MNBs performance, and groundwater salinity should be taken into careful consideration in applying MNBs technology to the enhancement of bioremediation. PMID:28788299

  11. Photodegradation of 2,4-D induced by NO₂(-) in aqueous solutions: the role of NO₂.

    PubMed

    Yu, Chunyan; Wang, Hua; Liu, Xuan; Quan, Xie; Chen, Shuo; Zhang, Jianlin; Zhang, Peng

    2014-07-01

    To elucidate the effect of nitrite ion (NO₂(-)) on the photodegradation of organic pollutants, a 300 W mercury lamp and Pyrex tubes restricting the transmission of wavelengths below 290 nm were used to simulate sunlight, and the photodegradation processes of 2,4-dichlorophenoxyacetic acid (2,4-D) with different concentrations of NO₂(-) in freshwater and seawater were studied. The effect of reactive oxygen species (ROS) on the photolysis of 2,4-D was also demonstrated using electron paramagnetic resonance (EPR). The results indicated that the 2,4-D photolysis reaction followed the first-order kinetics in freshwater and seawater under different concentrations of NO₂(-). Meanwhile, the photochemical reaction rate of 2,4-D increased with increasing concentration of NO₂(-). When the concentration of NO₂(-) was lower than 23 mg/L, the photodegradation rate of 2,4-D in seawater was higher than that in freshwater. However, when the concentration of NO₂(-) was reached 230 mg/L, 2,4-D degradation slowed down in seawater. It was important to note that EPR spectra showed NO₂ radical was generated in the NO₂(-) solution under simulated sunlight irradiation, indicating that 2,4-D photodegradation could be induced by NO₂. These results show the key role of NO₂(-) in photochemistry and are helpful for better understanding of the phototransformation of environmental contaminants in natural aquatic systems. Copyright © 2014. Published by Elsevier B.V.

  12. [Distributions and influencing factors of total dissolved inorganic antimony in the coastal area of Zhejiang and Fujian].

    PubMed

    Zhang, Xu-Zhou; Ren, Jing-Ling; Liu, Zong-Guang; Fan, Xiao-Peng; Liu, Cheng-Gang; Wu, Ying

    2014-02-01

    Antimony has been ubiquitously present in the aquatic environment as a toxic and rare metalloid element. The contamination of antimony and its compounds in the environment is increasingly severe, so it has been received extensive attention by the international scientific community. The cruise was carried out in the coastal area of Zhejiang and Fujian provinces in the East China Sea (ECS) in May 2008. The concentrations of total dissolved inorganic antimony (TDISb) were measured by Hydride Generation-Atomic Fluorescence (HG-AFS). The concentration ranges of TDISb in the surface and bottom layer were 0.68-5.64 nmol x L(-1) and 0.71-5.25 nmol x L(-1) with averages of 2.25 and 1.79 nmol x L(-1), respectively. The concentration of TDISb in the study area was lower than the environmental quality standards for surface water of China and drinking water standards of World Health Organization (about 41.08 nmol x L(-1)), indicating that it remained at the pristine level. The concentration of TDISb decreased gradually from the coastal area to the central ECS shelf with higher concentration in the surface layer than the bottom. Water mass mixing, adsorption/desorption behavior on the surface of the suspended particulate matters (SPM) and biological activities were the main influence factors of TDISb biogeochemistry in the study area.

  13. The potential for portable X-ray fluorescence determination of soil copper at ancient metallurgy sites, and considerations beyond measurements of total concentrations.

    PubMed

    Tighe, M; Rogan, G; Wilson, S C; Grave, P; Kealhofer, L; Yukongdi, P

    2018-01-15

    Copper (Cu) at ancient metallurgy sites represents the earliest instance of anthropogenically generated metal pollution. Such sites are spread across a wide range of environments from Eurasia to South America, and provide a unique opportunity to investigate the past and present extent and impact of metalworking contamination. Establishing the concentration and extent of soil Cu at archaeometallurgy sites can enhance archaeological interpretations of site use but can also, more fundamentally, provide an initial indication of contamination risk from such sites. Systematic evaluations of total soil Cu concentrations at ancient metalworking sites have not been conducted, due in part to the limitations of conventional laboratory-based protocols. In this paper, we first review what is known about Cu soil concentrations at ancient metallurgy sites. We then assess the benefits and challenges of portable X-ray fluorescence spectrometry (pXRF) as an alternative, rapid technique for the assessment of background and contaminant levels of Cu in soils. We conclude that pXRF is an effective tool for identifying potential contamination. Finally, we provide an overview of some major considerations beyond total Cu concentrations, such as bioavailability assessments, that will need to be considered at such sites to move toward a complete assessment of environmental and human risk. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Radionuclides, Metals, and Hydrocarbons in Oil and Gas Operational Discharges and Environmental Samples Associated with Offshore Production Facilities on the Texas/Louisiana Continental Shelf with an Environmental Assessment of Metals and Hydrocarbons.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1997-06-01

    This report presents concentrations of radionuclides, metals, and hydrocarbons in samples of produced water and produced sand from oil and gas production platforms located offshore Texas and Louisiana. concentrations in produced water discharge plume / receiving water, ambient seawater, sediment, interstitial water, and marine animal tissue samples collected in the vicinity of discharging platforms and reference sites distant from discharges are also reported and discussed. An environmental risk assessment is made on the basis of the concentration of metals and hydrocarbons determined in the samples.

  15. Radionuclides, Metals, and Hydrocarbons in Oil and Gas Operational Discharges and Environmental Samples Associated with Offshore Production Facilities on the Texas/Louisiana Continental Shelf with an Environmental Assessment of Metals and Hydrocarbons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Continental Shelf Associates, Inc.

    1999-08-16

    This report presents concentrations of radionuclides, metals, and hydrocarbons in samples of produced water and produced sand from oil and gas production platforms located offshore Texas and Louisiana. Concentrations in produced water discharge plume/receiving water, ambient seawater, sediment, interstitial water, and marine animal tissue samples collected in the vicinity of discharging platforms and reference sites distant from discharges are also reported and discussed. An environmental risk assessment is made on the basis of the concentrations of metals and hydrocarbons determined in the samples.

  16. Variability in PCB and OH-PCB Serum Levels in Children and Their Mothers in Urban and Rural U.S. Communities

    PubMed Central

    2015-01-01

    Environmental exposures that affect accumulation of polychlorinated biphenyls (PCBs) in humans are complex and not fully understood. One challenge in linking environmental exposure to accumulation is determining variability of PCB concentrations in samples collected from the same person at different times. We hypothesized that PCBs in human blood serum are consistent from year to year in people who live in the same environment between sampling. We analyzed blood serum from children and their mothers from urban and rural U.S. communities (n = 200) for all 209 PCBs (median ∑PCBs = 45 ng/g lw) and 12 hydroxylated PCBs (median ∑OH-PCBs = 0.09 ng/g fw). A subset of these participants (n = 155) also had blood PCB and OH-PCB concentrations analyzed during the previous calendar year. Although many participants had similar levels of PCBs and OH-PCBs in their blood from one year to the next, some participants had surprisingly different levels. Year-to-year variability in ∑PCBs ranged from −87% to 567% and in ∑OH-PCBs ranged from −51 to 358% (5th–95th percentile). This is the first study to report variability of all PCBs and major metabolites in two generations of people and suggests short-term exposures to PCBs may be a significant component of what is measured in human serum. PMID:25300024

  17. Pearl aquaculture-profitable environmental remediation?

    PubMed

    Gifford, S; Dunstan, R H; O'Connor, W; Roberts, T; Toia, R

    2004-02-05

    Bivalve molluscs are filter feeders, with pearl oysters able to filter water at rates up to 25 lh(-1)g(-1) of dry wt. tissue. Since this process leads to rapid bioaccumulation of recalcitrant pollutants such as heavy metals, organochlorine pesticides and hydrocarbons from impacted sites, it has prompted the widespread use of molluscs as biomonitors to quantify levels of marine pollution. This paper proposes pearl oyster deployment as a novel bioremediation technology for impacted sites to remove toxic contaminants, reduce nutrient loads and lower concentrations of microbial pathogens. Estimates extrapolated from the literature suggest that a modest pearl oyster farm of 100 t oyster material per year could remove 300 kg heavy metals plus 24 kg of organic contaminants via deposition into the tissue and shell. Furthermore, it was estimated that up to 19 kg of nitrogen may be removed from the coastal ecosystem per tonne of pearl oyster harvested. Pearl oysters are also likely to filter substantial amounts of sewage associated microbial pathogens from the water column. Method of cultivation and site selection are the key to minimising negative environmental impacts of bivalve cultivation. Deployment of oysters at sites with high nutrient and contaminant loadings would be advantageous, as these compounds would be removed from the ecosystem whilst generating a value-added product. Future potential may exist for harvesting bio-concentrated elements for commercial production.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hinwood, A.L., E-mail: a.hinwood@ecu.edu.au; Callan, A.C.; Ramalingam, M.

    Recent literature suggests that exposure to low concentrations of heavy metals may affect both maternal and child health. This study aimed to determine the biological heavy metals concentrations of pregnant women as well as environmental and dietary factors that may influence exposure concentrations. One hundred and seventy three pregnant women were recruited from Western Australia, each providing a sample of blood, first morning void urine, residential soil, dust and drinking water samples. Participants also completed a questionnaire which included a food frequency component. All biological and environmental samples were analysed for heavy metals using ICP-MS. Biological and environmental concentrations ofmore » lead and mercury were generally low (Median Pb Drinking Water (DW) 0.04 µg/L; Pb soil <3.0 µg/g; Pb dust 16.5 µg/g; Pb blood 3.67 µg/L; Pb urine 0.55; µg/L Hg DW <0.03; Hg soil <1.0 µg/g; Hg dust <1.0 µg/g; Hg blood 0.46 µg/L; Hg urine <0.40 µg/L). Cadmium concentrations were low in environmental samples (Median CdDW 0.02 µg/L; Cdsoil <0.30 ug/g; Cddust <0.30) but elevated in urine samples (Median 0.55 µg/L, creatinine corrected 0.70 µg/g (range <0.2–7.06 µg/g creatinine) compared with other studies of pregnant women. Predictors of increased biological metals concentrations in regression models for blood cadmium were residing in the Great Southern region of Western Australia and not using iron/folic acid supplements and for urinary cadmium was having lower household annual income. However, these factors explained little of the variation in respective biological metals concentrations. The importance of establishing factors that influence low human exposure concentrations is becoming critical in efforts to reduce exposures and hence the potential for adverse health effects. -- Highlights: • Biological heavy metals concentrations in women in their 3rd trimester of pregnancy. • Exposure assessment including environmental, lifestyle and activity data. • Urinary cadmium concentrations were elevated in this group of pregnant women. • Blood lead and mercury concentrations were below recommended biological guideline values.« less

  19. Dissolved oxygen, stream temperature, and fish habitat response to environmental water purchases.

    PubMed

    Null, Sarah E; Mouzon, Nathaniel R; Elmore, Logan R

    2017-07-15

    Environmental water purchases are increasingly used for ecological protection. In Nevada's Walker Basin (western USA), environmental water purchases augment streamflow in the Walker River and increase lake elevation of terminal Walker Lake. However, water quality impairments like elevated stream temperatures and low dissolved oxygen concentrations also limit ecosystems and species, including federally-threatened Lahontan cutthroat trout. In this paper, we prioritize water volumes and locations that most enhance water quality for riverine habitat from potential environmental water rights purchases. We monitored and modeled streamflows, stream temperatures, and dissolved oxygen concentrations using River Modeling System, an hourly, physically-based hydrodynamic and water quality model. Modeled environmental water purchases ranged from average daily increases of 0.11-1.41 cubic meters per second (m 3 /s) during 2014 and 2015, two critically dry years. Results suggest that water purchases consistently cooled maximum daily stream temperatures and warmed nightly minimum temperatures. This prevented extremely low dissolved oxygen concentrations below 5.0 mg/L, but increased the duration of moderate conditions between 5.5 and 6.0 mg/L. Small water purchases less than approximately 0.71 m 3 /s per day had little benefit for Walker River habitat. Dissolved oxygen concentrations were affected by upstream environmental conditions, where suitable upstream water quality improved downstream conditions and vice versa. Overall, this study showed that critically dry water years degrade environmental water quality and habitat, but environmental water purchases of at least 0.71 m 3 /s were promising for river restoration. Published by Elsevier Ltd.

  20. Analysis of environmental dispersion in a wetland flow under the effect of wind: Extended solution

    NASA Astrophysics Data System (ADS)

    Wang, Huilin; Huai, Wenxin

    2018-02-01

    The accurate analysis of the contaminant transport process in wetland flows is essential for environmental assessment. However, dispersivity assessment becomes complicated when the wind strength and direction are taken into consideration. Prior studies illustrating the wind effect on environmental dispersion in wetland flows simply focused on the mean longitudinal concentration distribution. Moreover, the results obtained by these analyses are not accurate when done on a smaller scale, namely, the initial stage of the contaminant transport process. By combining the concentration moments method (the Aris' method) and Gill's expansion theory, the previous researches on environmental dispersion in wetland flows with effect of wind have been extended. By adopting up to 4th-order moments, the wind effect-as illustrated by dimensionless parameters Er (wind force) and ω (wind direction)-on kurtosis and skewness is discussed, the up to 4th-order vertical concentration distribution is obtained, and the two-dimensional concentration distribution is illustrated. This work demonstrates that wind intensity and direction can significantly affect the contaminant dispersion. Moreover, the study presents a more accurate analytical solution of environmental dispersion in wetland flows under various wind conditions.

Top