Sample records for environmental controls oceanography

  1. Assessment of the U. S. outer continental shelf environmental studies program. 1. Physical oceanography. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    Federal responsibility for oil and gas development on the U.S. outer continental shelf (OCS) resides with the Minerals Management Service (MMS) of the U.S. Department of the Interior (DOI). The DOI's Environmental Studies Program (ESP) is the program through which MMS conducts environmental studies on the OCS and collects information to prepare environmental impact statements (EISs). It appeared to MMS in 1986 that the time was ripe to assess the status of the present program and to explore the needs for future studies. MMS requested an evaluation of the adequacy and applicability of ESP studies, a review of the generalmore » state of knowledge in the appropriate disciplines, and recommendations for future studies. Three panels were established, one of which, the Physical Oceanography Panel, investigated the physical oceanographic aspects of the ESP, the subject of the report, which is the first of three in a series. In reviewing the ESP's physical oceanography program, the panel evaluated the quality and relevance of studies carried out in waters under federal control, which extend from the limits of state jurisdictions (3-12 miles offshore) and include the central and outer continental shelf waters and the continental slope.« less

  2. Remote sensing applied to crop disease control, urban planning, and monitoring aquatic plants, oil spills, rangelands, and soil moisture

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The application of remote sensing techniques to land management, urban planning, agriculture, oceanography, and environmental monitoring is discussed. The results of various projects are presented along with cost effective considerations.

  3. Index to Ecology (Multimedia). Second Edition.

    ERIC Educational Resources Information Center

    University of Southern California, Los Angeles. National Information Center for Educational Media.

    This expanded catalog lists over 8,000 films, filmstrips, videotapes, transparencies, audiotapes, and records dealing with environmental and ecological topics. Subjects include: amphibians, botany, birth control, city planning, evolution, food chains, farming, oceanography, and sea life. Titles are listed alphabetically. Though entries are not…

  4. Northeastern Gulf of Mexico coastal and marine ecosystem program: Data search and synthesis, annotated bibliography. Appendix A: Physical oceanography. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    This study summarizes environmental and socioeconomic information related to the Florida Panhandle Outer Continental Shelf (OCS). It contains a conceptual model of active processes and identification of information gaps that will be useful in the design of future environmental studies in the geographic area. The annotated bibliography for this study is printer in six volumes, each pertaining to a specific topic. They are as follows: Appendix A--Physical Oceanography; Appendix B--Meteorology; Appendix C--Geology; Appendix D--Chemistry; Appendix E--Biology; and Appendix F--Socioeconomics. This volume contains bibliographic references pertaining to physical oceanography.

  5. Marine and Environmental Studies Field Manual.

    ERIC Educational Resources Information Center

    Cranston School Dept., RI.

    This laboratory manual was developed for a field-oriented high school oceanology program. The organization of the units includes a selection of supplementary activities to allow students to explore ocean studies in more depth. Included are 19 units. The units include biological oceanography, physical oceanography, and some social science topics. A…

  6. Chemical Oceanography and the Marine Carbon Cycle

    NASA Astrophysics Data System (ADS)

    Emerson, Steven; Hedges, John

    The principles of chemical oceanography provide insight into the processes regulating the marine carbon cycle. The text offers a background in chemical oceanography and a description of how chemical elements in seawater and ocean sediments are used as tracers of physical, biological, chemical and geological processes in the ocean. The first seven chapters present basic topics of thermodynamics, isotope systematics and carbonate chemistry, and explain the influence of life on ocean chemistry and how it has evolved in the recent (glacial-interglacial) past. This is followed by topics essential to understanding the carbon cycle, including organic geochemistry, air-sea gas exchange, diffusion and reaction kinetics, the marine and atmosphere carbon cycle and diagenesis in marine sediments. Figures are available to download from www.cambridge.org/9780521833134. Ideal as a textbook for upper-level undergraduates and graduates in oceanography, environmental chemistry, geochemistry and earth science and a valuable reference for researchers in oceanography.

  7. Some Thoughts on Free Textbooks

    ERIC Educational Resources Information Center

    Stewart, Robert

    2009-01-01

    The author publishes and freely distributes three online textbooks. "Introduction to Physical Oceanography" is available as a typeset book in Portable Document Format (PDF) or as web pages. "Our Ocean Planet: Oceanography in the 21st Century" and "Environmental Science in the 21st Century" are both available as web pages. All three books, which…

  8. Oceanography: the present and future

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brewer, P.G.

    This volume is the proceedings of a symposium held September 29 to October 2, 1980 at Woods Hole, Massachusetts, commemorating the 50th anniversary of the founding of the Woods Hole Oceanographic Institution. The book is the companion volume to ''Oceanography: the Past'' also published by Springer-Verlag. The papers are organized not by conventional disciplinary topics but by the ''scale'' of the oceanographic process: Part I, Small and Local Scale Oceanography; Part II, Regional Scale Oceanography; Part III, Global Scale Oceanography; and Part IV, The Human Scale. The articles presented, however, do not summarize such projects but give recognizable disciplinary summariesmore » and predictions in line with the subtitle of the book. In general, the articles are classed by this scale concept, although ''Shoreline Research'' by Pilkey and ''The Oceans Nearby'' by Murphy are better placed in the section The Human Scale and Bolin's ''Changing Global Biogeochemistry'' switched from The Human Scale to Global Scale as indicated by the title. This volume should be of value to marine geologists and geochemists, sedimentologists, and public-interest (environmental) geologists interested in oceanographic processes.« less

  9. EPOCA-95 cruise report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    King, S.E.; Carroll, J.; Johnson, D.R.

    1996-02-13

    The EPOCA 95 expedition (Environmental Pollution and Oceanography in Arctic Seas) collected data and samples in the Kara Sea in order to assess the impact of anthropogenic pollution, both radioactive and chemical on one of the marginal Arctic seas and to study the oceanography of the Kara Sea in order to better understand circulation and transport pathways of potential pollutants. This expedition included measurements near dump sites for the fueled reactors dumped by the former Soviet Union.

  10. Putting the Deep Biosphere on the Map for Oceanography Courses: Gas Hydrates As a Case Study for the Deep Biosphere

    NASA Astrophysics Data System (ADS)

    Sikorski, J. J.; Briggs, B. R.

    2014-12-01

    The ocean is essential for life on our planet. It covers 71% of the Earth's surface, is the source of the water we drink, the air we breathe, and the food we eat. Yet, the exponential growth in human population is putting the ocean and thus life on our planet at risk. However, based on student evaluations from our introductory oceanography course it is clear that our students have deficiencies in ocean literacy that impact their ability to recognize that the ocean and humans are inextricably connected. Furthermore, life present in deep subsurface marine environments is also interconnected to the study of the ocean, yet the deep biosphere is not typically covered in undergraduate oceanography courses. In an effort to improve student ocean literacy we developed an instructional module on the deep biosphere focused on gas hydrate deposits. Specifically, our module utilizes Google Earth and cutting edge research about microbial life in the ocean to support three inquiry-based activities that each explore different facets of gas hydrates (i.e. environmental controls, biologic controls, and societal implications). The relevant nature of the proposed module also makes it possible for instructors of introductory geology courses to modify module components to discuss related topics, such as climate, energy, and geologic hazards. This work, which will be available online as a free download, is a solid contribution toward increasing the available teaching resources focused on the deep biosphere for geoscience educators.

  11. Key Concepts in Microbial Oceanography

    NASA Astrophysics Data System (ADS)

    Bruno, B. C.; Achilles, K.; Walker, G.; Weersing, K.; Team, A

    2008-12-01

    The Center for Microbial Oceanography: Research and Education (C-MORE) is a multi-institution Science and Technology Center, established by the National Science Foundation in 2006. C-MORE's research mission is to facilitate a more comprehensive understanding of the diverse assemblages of microorganisms in the sea, ranging from the genetic basis of marine microbial biogeochemistry including the metabolic regulation and environmental controls of gene expression, to the processes that underpin the fluxes of carbon, related bioelements, and energy in the marine environment. The C-MORE education and outreach program is focused on increasing scientific literacy in microbial oceanography among students, educators, and the general public. A first step toward this goal is defining the key concepts that constitute microbial oceanography. After lengthy discussions with scientists and educators, both within and outside C-MORE, we have arrived at six key concepts: 1) Marine microbes are very small and have been around for a long time; 2) Life on Earth could not exist without microbes; 3) Most marine microbes are beneficial; 4) Microbes are everywhere: they are extremely abundant and diverse; 5) Microbes significantly impact our global climate; and 6) There are new discoveries every day in the field of microbial oceanography. A C-MORE-produced brochure on these six key concepts will be distributed at the meeting. Advanced copies may be requested by email or downloaded from the C-MORE web site(http://cmore.soest.hawaii.edu/downloads/MO_key_concepts_hi-res.pdf). This brochure also includes information on career pathways in microbial oceanography, with the aim of broadening participation in the field. C-MORE is eager to work in partnership to incorporate these key concepts into other science literacy publications, particularly those involving ocean and climate literacy. We thank the following contributors and reviewers: P Chisholm, A Dolberry, and A Thompson (MIT); N Lawrence (Santa Cruz Boardwalk); R Foster, S Mansergh and P Moisander (UC Santa Cruz); A Culley, K Doggett, J Edmonds, A Eiler, A Fong, D Hayakawa, D Karl, P Kemp, B Li, N Puniwai, B Wai, and S Wilson (U Hawaii); J Becker and M Nieto-Cid (WHOI); M McCaffrey (CIRES).

  12. Environmental Reference Series, Earth and Environmental Studies, Part II.

    ERIC Educational Resources Information Center

    Qutub, Musa, Comp.

    Compiled in this reference work are bibliographic citations for books and articles dealing with the earth and environmental studies. Specific categories are geology, oceanography, meteorology, and astronomy. Items are indexed only by title but information about author, source, and date of publication is also noted. (BL)

  13. Gulf of Mexico physical-oceanography program final report: years 1 and 2. Volume 1. Executive summary. Technical report, 1983-1985

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    In 1982, Minerals Management Service (MMS) initiated a multi-year program under contract with Science Applications International Corp. (SAIC) to study the physical oceanography of the Gulf of Mexico as part of its outer continental shelf environmental-studies programs. This particular program, called the Gulf of Mexico Physical Oceanography Program (GOMPOP), has two primary goals: (1) develop a better understanding and description of conditions and processes governing Gulf circulation; and (2) establish a data base that could be used as initial and boundary conditions by a companion MMS-funded numerical circulation-modeling program. The report presents results from the first two of three yearsmore » of observations in the eastern Gulf.« less

  14. Merging Marine Ecosystem Models and Genomics

    NASA Astrophysics Data System (ADS)

    Coles, V.; Hood, R. R.; Stukel, M. R.; Moran, M. A.; Paul, J. H.; Satinsky, B.; Zielinski, B.; Yager, P. L.

    2015-12-01

    oceanography. One of the grand challenges of oceanography is to develop model techniques to more effectively incorporate genomic information. As one approach, we developed an ecosystem model whose community is determined by randomly assigning functional genes to build each organism's "DNA". Microbes are assigned a size that sets their baseline environmental responses using allometric response cuves. These responses are modified by the costs and benefits conferred by each gene in an organism's genome. The microbes are embedded in a general circulation model where environmental conditions shape the emergent population. This model is used to explore whether organisms constructed from randomized combinations of metabolic capability alone can self-organize to create realistic oceanic biogeochemical gradients. Realistic community size spectra and chlorophyll-a concentrations emerge in the model. The model is run repeatedly with randomly-generated microbial communities and each time realistic gradients in community size spectra, chlorophyll-a, and forms of nitrogen develop. This supports the hypothesis that the metabolic potential of a community rather than the realized species composition is the primary factor setting vertical and horizontal environmental gradients. Vertical distributions of nitrogen and transcripts for genes involved in nitrification are broadly consistent with observations. Modeled gene and transcript abundance for nitrogen cycling and processing of land-derived organic material match observations along the extreme gradients in the Amazon River plume, and they help to explain the factors controlling observed variability.

  15. Argo workstation: a key component of operational oceanography

    NASA Astrophysics Data System (ADS)

    Dong, Mingmei; Xu, Shanshan; Miao, Qingsheng; Yue, Xinyang; Lu, Jiawei; Yang, Yang

    2018-02-01

    Operational oceanography requires the quantity, quality, and availability of data set and the timeliness and effectiveness of data products. Without steady and strong operational system supporting, operational oceanography will never be proceeded far. In this paper we describe an integrated platform named Argo Workstation. It operates as a data processing and management system, capable of data collection, automatic data quality control, visualized data check, statistical data search and data service. After it is set up, Argo workstation provides global high quality Argo data to users every day timely and effectively. It has not only played a key role in operational oceanography but also set up an example for operational system.

  16. Marine Science Careers. A Sea Grant Guide to Ocean Opportunities.

    ERIC Educational Resources Information Center

    Maine Univ., Orono.

    This document, which is intended for high school students who are considering a marine science career, contains 38 profiles of individuals employed in one of the following occupations: marine biologist, environmental educator, fishery biologist, marine ecologist, aquaculture microbiologist, geological oceanography, environmental consultant, ocean…

  17. Innovations

    ERIC Educational Resources Information Center

    Journal of College Science Teaching, 1972

    1972-01-01

    Listed are some new programs added in different institutions. Topics listed are oceanography, environmental education, interdisciplinary education, computer assisted instruction in chemistry laboratory, elementary education and FORTRAN IV for beginning students. (PS)

  18. Oceanography and Geoscience Scholars at Texas A&M University Funded through the NSF S-STEM (Scholarships in Science, Technology, Engineering and Mathematics) Program

    NASA Astrophysics Data System (ADS)

    Richardson, M. J.; Gardner, W. D.

    2016-02-01

    Over the last seven years we have led the creation and implementation of the Oceanography and Geoscience Scholars programs at Texas A&M University. Through these programs we have been able to provide scholarship support for 92 undergraduates in Geosciences and 29 graduate students in Oceanography. Fifty-seven undergraduate scholars have graduated in Geosciences: 30 undergraduate students in Meteorology, 7 in Geology, and 20 in Environmental Geosciences. Two students have graduated in other STEM disciplines. Twenty-four students are in the process of completing their undergraduate degrees in STEM disciplines. Twenty-three students have graduated with MS or PhD degrees in Oceanography and five PhD students are completing their dissertations. As specified in the program solicitation all of the scholars are academically talented students with demonstrated financial need as defined by the FAFSA (Free Application for Federal Student Aid). We have endeavored to recruit students from underrepresented groups. One-third of the undergraduate scholars were from underrepresented groups; 28% of the graduate students. We will present the challenges and successes of these programs.

  19. Flower Garden Banks (northwest Gulf of Mexico): Environmental characteristics and human interaction. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deslarzes, K.J.P.

    1998-10-01

    This report is a multidisciplinary update of various topics concerning the Banks -- oceanography, meteorology, commercial fishing, recreation, military activities, hydrocarbon development, and potential environmental impacts. The area surrounding the Flower Garden Banks is increasingly active with oil and gas development.

  20. American Society of Limnology and Oceanography Symposium Report on What Controls Phytoplankton Production in Nutrient-Rich Areas of the Open Sea Held at San Marcos, California on 22-24 February 1991

    DTIC Science & Technology

    1991-06-25

    issue of Lininology and Oceantg- raphv (in prep.) was provided by: the U.S. Environmental Protection Agency’s Global Change Research Program and the...proposition, along with the outstanding scientific issues , call for rigorous discussion and debate on the regulation of productivity in these regions. To...this issue are convinced that sufficient evidence exists in support of the hypothesis that iron plays an important role in regulating the produc

  1. Graphical methods and Cold War scientific practice: the Stommel Diagram's intriguing journey from the physical to the biological environmental sciences.

    PubMed

    Vance, Tiffany C; Doel, Ronald E

    2010-01-01

    In the last quarter of the twentieth century, an innovative three-dimensional graphical technique was introduced into biological oceanography and ecology, where it spread rapidly. Used to improve scientists' understanding of the importance of scale within oceanic ecosystems, this influential diagram addressed biological scales from phytoplankton to fish, physical scales from diurnal tides to ocean currents, and temporal scales from hours to ice ages. Yet the Stommel Diagram (named for physical oceanographer Henry Stommel, who created it in 1963) had not been devised to aid ecological investigations. Rather, Stommel intended it to help plan large-scale research programs in physical oceanography, particularly as Cold War research funding enabled a dramatic expansion of physical oceanography in the 1960s. Marine ecologists utilized the Stommel Diagram to enhance research on biological production in ocean environments, a key concern by the 1970s amid growing alarm about overfishing and ocean pollution. Before the end of the twentieth century, the diagram had become a significant tool within the discipline of ecology. Tracing the path that Stommel's graphical techniques traveled from the physical to the biological environmental sciences reveals a great deal about practices in these distinct research communities and their relative professional and institutional standings in the Cold War era. Crucial to appreciating the course of that path is an understanding of the divergent intellectual and social contexts of the physical versus the biological environmental sciences.

  2. Earth resources programs at the Langley Research Center. Part 2: Coastal zone oceanography program

    NASA Technical Reports Server (NTRS)

    Bressette, W. E.

    1972-01-01

    The approaches used to develop the coastal zone oceanic research program are outlined, and activities in the areas of satellite application, estuaries, continental shelf and environmental modeling are briefly described.

  3. Techniques for integrating the animations, multimedia, and interactive features of NASA’s climate change website, Climate Change: NASA’s Eyes on the Earth, into the classroom to advance climate literacy and encourage interest in STEM disciplines

    NASA Astrophysics Data System (ADS)

    Tenenbaum, L. F.; Jackson, R.; Greene, M.

    2009-12-01

    I developed a variety of educational content for the "Climate Change: NASA’s Eyes on the Earth" website, notably an interactive feature for the "Key Indicators: Ice Mass Loss" link that includes photo pair images of glaciers around the world, changes in Arctic sea ice extent videos, Greenland glacial calving time lapse videos, and Antarctic ice shelf break up animations, plus news pieces and a Sea Level Quiz. I integrated these resources and other recent NASA and JPL climate and oceanography data and information into climate change components of Oceanography Lab exercises, Oceanography lectures and Introduction to Environmental Technology courses. I observed that using these Internet interactive features in the classroom greatly improved student participation, topic comprehension, scientific curiosity and interest in Earth and climate science across diverse student populations. Arctic Sea Ice Extent Summer 2007 Credit: NASA

  4. Oceanography - Naval Oceanography Portal

    Science.gov Websites

    section Advanced Search... Sections Home Time Earth Orientation Astronomy Meteorology Oceanography Ice You are here: Home › Oceanography USNO Logo USNO Info Oceanography The following Oceanography components have moved their publicly-available products to http://www.metoc.navy.mil: Naval Oceanography

  5. U.S. Federal Agency Implementation Overviews.

    ERIC Educational Resources Information Center

    Library Hi Tech, 1995

    1995-01-01

    Describes roles of eight federal agencies in the Global Change Data and Information System (GCDIS) that will gather information concerning natural resources, agriculture and forestry, climate, earth science and geophysics, oceanography, defense issues, energy and atmospheric concerns, land management, environmental pollution, aeronautics and…

  6. Airborne multicamera system for geo-spatial applications

    NASA Astrophysics Data System (ADS)

    Bachnak, Rafic; Kulkarni, Rahul R.; Lyle, Stacey; Steidley, Carl W.

    2003-08-01

    Airborne remote sensing has many applications that include vegetation detection, oceanography, marine biology, geographical information systems, and environmental coastal science analysis. Remotely sensed images, for example, can be used to study the aftermath of episodic events such as the hurricanes and floods that occur year round in the coastal bend area of Corpus Christi. This paper describes an Airborne Multi-Spectral Imaging System that uses digital cameras to provide high resolution at very high rates. The software is based on Delphi 5.0 and IC Imaging Control's ActiveX controls. Both time and the GPS coordinates are recorded. Three successful test flights have been conducted so far. The paper present flight test results and discusses the issues being addressed to fully develop the system.

  7. Dispersant Effectiveness, In-Situ Droplet Size Distribution and Numerical Modeling to Assess Subsurface Dispersant Injection as a Deepwater Blowout Oil Spill Response Option and Evaluation of Oil Fluorescence Characteristics to Improve Forensic Response Tools

    EPA Science Inventory

    This report summarizes two projects covered under an Interagency Agreement between the Bureau of Safety and Environmental Enforcement (BSEE) and the U.S. Environmental Protection Agency (EPA) in collaboration with the Bedford Institute of Oceanography, Department of Fisheries and...

  8. Ecosystem oceanography for global change in fisheries.

    PubMed

    Cury, Philippe Maurice; Shin, Yunne-Jai; Planque, Benjamin; Durant, Joël Marcel; Fromentin, Jean-Marc; Kramer-Schadt, Stephanie; Stenseth, Nils Christian; Travers, Morgane; Grimm, Volker

    2008-06-01

    Overexploitation and climate change are increasingly causing unanticipated changes in marine ecosystems, such as higher variability in fish recruitment and shifts in species dominance. An ecosystem-based approach to fisheries attempts to address these effects by integrating populations, food webs and fish habitats at different scales. Ecosystem models represent indispensable tools to achieve this objective. However, a balanced research strategy is needed to avoid overly complex models. Ecosystem oceanography represents such a balanced strategy that relates ecosystem components and their interactions to climate change and exploitation. It aims at developing realistic and robust models at different levels of organisation and addressing specific questions in a global change context while systematically exploring the ever-increasing amount of biological and environmental data.

  9. Microbial oceanography: paradigms, processes and promise.

    PubMed

    Karl, David M

    2007-10-01

    Life on Earth most likely originated as microorganisms in the sea. Over the past approximately 3.5 billion years, microorganisms have shaped and defined Earth's biosphere and have created conditions that have allowed the evolution of macroorganisms and complex biological communities, including human societies. Recent advances in technology have highlighted the vast and previously unknown genetic information that is contained in extant marine microorganisms, from new protein families to novel metabolic processes. Now there is a unique opportunity, using recent advances in molecular ecology, metagenomics, remote sensing of microorganisms and ecological modelling, to achieve a comprehensive understanding of marine microorganisms and their susceptibility to environmental variability and climate change. Contemporary microbial oceanography is truly a sea of opportunity and excitement.

  10. Oceanography Products - Naval Oceanography Portal

    Science.gov Websites

    section Advanced Search... Sections Home Time Earth Orientation Astronomy Meteorology Oceanography Ice You are here: Home › FNMOC › Oceanography Products FNMOC Logo FNMOC Navigation Meteorology Products Oceanography Products Tropical Applications Climatology and Archived Data Info Oceanography Products Global

  11. Meteorology/Oceanography Help - Naval Oceanography Portal

    Science.gov Websites

    section Advanced Search... Sections Home Time Earth Orientation Astronomy Meteorology Oceanography Ice You are here: Home › Help › Meteorology/Oceanography Help USNO Logo USNO Info Meteorology/Oceanography Help Send an e-mail regarding meteorology or oceanography products. Privacy Advisory Your E-Mail

  12. Environmental Influences on Diel Calling Behavior in Baleen Whales

    DTIC Science & Technology

    2012-09-30

    small copepods (e.g., Oithona spp.) to large euphausiids (e.g., Meganyctiphanes norvegica). Sampling will occur during both day and night to assess...vocalization rates and the vertical migration of their copepod prey observed from ocean gliders. Limnology and Oceanography 53:2197-2209

  13. Polar Seas Oceanography: An Integrated Case Study of the Kara Sea

    NASA Astrophysics Data System (ADS)

    Harms, Ingo

    2004-02-01

    What strikes first when browsing through this book is that the main title is misleading. Polar Seas Oceanography is, first of all, a book on ``an integrated case study of the Kara Sea,'' as the subtitle says. For readers who are interested more generally in polar oceanography, the book is probably the wrong choice. The Kara Sea is a rather shallow shelf sea within the Arctic Ocean, located between the Barents Sea to the west and the Laptev Sea to the east. The importance of the Kara Sea is manifold: climate change issues like ice formation and freshwater runoff, environmental problems from dumping of radioactive waste or oil exploitation, and finally, the Northern Sea route, which crosses large parts of the Kara Sea, underline the economical and ecological relevance of that region. In spite of severe climate conditions, the Kara Sea is relatively well investigated. This was achieved through intense oceanographic expeditions, aircraft surveys, and polar drift stations. Russian scientists from the Arctic and Antarctic Research Institute (AARI) carried out a major part of this outstanding work during the second half of the last century.

  14. Evaluation of brine disposal from the Bryan Mound site of the Strategic Petroleum Reserve Program. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hann, R.W. Jr.; Randall, R.E.

    1980-12-01

    The purpose of this report is to describe the environmental conditions found by the principal investigators during the predisposal study conducted from September 1977 through February 1980 prior to the start of brine discharge in March 1980. The major areas of investigation are physical oceanography, analysis of the discharge plume, water and sediment quality, nekton, benthos, phytoplankton, zooplankton, and data management. Volume 1 describes the results of the predisposal study, and it is divided into eight chapters entitled: Physical Oceanography, Analsyis of the Discharge Plume, Water and Sediment Quality, Nekton, Benthos, Zooplankton, Phytoplankton, and Data Management. Volume 2 consists ofmore » appendices which contain additional supporting data in the form of figures and tables.« less

  15. Evaluation of brine disposal from the Bryan Mound site of the Strategic Petroleum Reserve Program. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hann, R.W. Jr.; Randall, R.E.

    1980-12-01

    The purpose of this report is to describe the environmental conditions found by the principal investigators during the predisposal study conducted from September 1977 through February 1980 prior to the start of brine discharge in March 1980. The major areas of investigation are physical oceanography, analysis of the discharge plume, water and sediment quality, nekton, benthos, phytoplankton, zooplankton, and data management. Volume 1 describes the results of the predisposal study, and it is divided into eight chapters entitled: Physical Oceanography, Analysis of the Discharge Plume, Water and Sediment Quality, Nekton, Benthos, Zooplankton, Phytoplankton, and Data Management. Volume 2 consists ofmore » appendices which contain additional supporting data in the form of figures and tables.« less

  16. Applied oceanography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bishop, J.M.

    This book combines oceanography principles and applications such as marine pollution, resources, and transportation. It is divided into two main parts treating the basic principles of physical oceanography, and presenting a unique systems framework showing how physical oceanography, marine ecology, economics, and government policy may be combined to define the newly developing field of applied oceanography.

  17. Employment Outlook, Environmental Scientists, Geologists, Geophysicists, Meteorologists, Oceanographers.

    ERIC Educational Resources Information Center

    1970

    Described is employment in four branches of earth science: geology, geophysics, meteorology, and oceanography. Considered for each employment area is the nature of the work, places of employment, type of training and qualifications for advancement, employment outlook, and earnings and working conditions. The demand for specialists in these four…

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    Information is presented under the following section headings: introduction; user guide; information sources; recent releases; and, literature review. The literature reviewed includes abstracts when available on the following subjects: general; geology; environmental quality; hydrology; vegetation; oceanography; regional planning and land use; data manipulation; and instrumentation and technology. An author index and document order form are included. (JGB)

  19. Satellite observations of temporal terrestrial features

    NASA Technical Reports Server (NTRS)

    Rabchevsky, G. A.

    1972-01-01

    The application of satellite data to earth resources and environmental studies and the effects of resolution of the photographs and imagery are discussed. The nature of the data acquired by manned space flight and unmanned satellites is described. Specific applications of remotely sensed data for oceanography, hydrology, geography, and geology are examined.

  20. Department of Defense Basic Research Program.

    DTIC Science & Technology

    1983-01-01

    25 Environmental Sciences oceanography ........................................................................... 27...budget category and increased emphasis on high- risk , high-payoff, and named Basic Research, most of the effort funded under long-term research was...proximity fue, °.tchooie-o examplsi, radar, theus prxiit fuzenan asrsk purchasing power because of inflation and was risking nuclear weapons, homing

  1. Meeting on the Physical Oceanography of Sea Straits (2nd). Held in Villefanche-sur-Mer, France on 15-19 April 2002

    DTIC Science & Technology

    2002-04-19

    apply in the presence of mixing and dissipation. Some people prefer to think of control in terms of information transmission (wave propagation...2002, in preparation. Officer. C . B., Physical Oceanography of Estuaries. John Wiley and Sons, 1976. Pawlak, G. & Armi, L. Vortex dynamics in a...few decades. Hard thinking , new obser- 1964. vational techniques. and increasingly sophisticated models Gerdes. F, C . Garrett, and D. Farmer, On

  2. First in new environmental spacecraft series to be launched

    NASA Technical Reports Server (NTRS)

    1978-01-01

    A series of operational meteorological monitoring satellites (TIROS-N) is described. Emphasis is placed on environmental monitoring instruments onboard the satellites that provide technological advances over previous sensors. Benefits in the areas of weather forecasting, oceanography, water resource management, and flood forecasting are discussed along with the operational capability to collect and transmit environmental data from platforms on land, at sea, and airborne, and to track stations motion. The participation of Canada, Great Britain, and France is mentioned and a description of the launch vehicle is included.

  3. Environmental controls, oceanography and population dynamics of pathogens and harmful algal blooms: connecting sources to human exposure.

    PubMed

    Dyble, Julianne; Bienfang, Paul; Dusek, Eva; Hitchcock, Gary; Holland, Fred; Laws, Ed; Lerczak, James; McGillicuddy, Dennis J; Minnett, Peter; Moore, Stephanie K; O'Kelly, Charles; Solo-Gabriele, Helena; Wang, John D

    2008-11-07

    Coupled physical-biological models are capable of linking the complex interactions between environmental factors and physical hydrodynamics to simulate the growth, toxicity and transport of infectious pathogens and harmful algal blooms (HABs). Such simulations can be used to assess and predict the impact of pathogens and HABs on human health. Given the widespread and increasing reliance of coastal communities on aquatic systems for drinking water, seafood and recreation, such predictions are critical for making informed resource management decisions. Here we identify three challenges to making this connection between pathogens/HABs and human health: predicting concentrations and toxicity; identifying the spatial and temporal scales of population and ecosystem interactions; and applying the understanding of population dynamics of pathogens/HABs to management strategies. We elaborate on the need to meet each of these challenges, describe how modeling approaches can be used and discuss strategies for moving forward in addressing these challenges.

  4. The Naval Oceanography Operations Command (NOOC) - Naval Oceanography

    Science.gov Websites

    Oceanography Ice You are here: Home › NOOC NOOC Logo NOOC FWC Norfolk Logo FWC-N FWC-SD Logo FWC-SD JTWC Logo JTWC NOAC-Yokosuka NOAC-Y Info The Naval Oceanography Operations Command (NOOC) The NOOC advises Navy Center - Pearl Harbor and the Naval Oceanography Antisubmarine Warfare Center - Yokosuka. The Fleet

  5. Proceedings of the Space Shuttle Sortie Workshop. Volume 2: Working group reports

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Details are presented on the mission planning progress in each of the working paper reports. The general topics covered are the following: space technology; materials processing and space manufacturing; communications and navigation; earth and ocean physics; oceanography; earth resources and surface environmental quality; meteorology and atmospheric environmental quality; life sciences; atmospheric and space physics; solar physics; high energy cosmic rays; X-ray and gamma ray astronomy; ultraviolet-optical astronomy; planetary astronomy; and infrared astronomy.

  6. Remote sensing of atmosphere and oceans; Proceedings of Symposium 1 and of the Topical Meeting of the 27th COSPAR Plenary Meeting, Espoo, Finland, July 18-29, 1988

    NASA Technical Reports Server (NTRS)

    Raschke, E. (Editor); Ghazi, A. (Editor); Gower, J. F. R. (Editor); Mccormick, P. (Editor); Gruber, A. (Editor); Hasler, A. F. (Editor)

    1989-01-01

    Papers are presented on the contribution of space remote sensing observations to the World Climate Research Program and the Global Change Program, covering topics such as space observations for global environmental monitoring, experiments related to land surface fluxes, studies of atmospheric composition, structure, motions, and precipitation, and remote sensing for oceanography, observational studies of the atmosphere, clouds, and the earth radiation budget. Also, papers are given on results from space observations for meteorology, oceanography, and mesoscale atmospheric and ocean processes. The topics include vertical atmospheric soundings, surface water temperature determination, sea level variability, data on the prehurricane atmosphere, linear and circular mesoscale convective systems, Karman vortex clouds, and temporal patterns of phytoplankton abundance.

  7. "Water and Environmental Systems": Achieving Student-Centered Learning Objectives with an Undergraduate Journal.

    ERIC Educational Resources Information Center

    Charlesworth, Susanne M.; Foster, Ian D. L.

    1996-01-01

    Describes and evaluates an unusual and innovative assessment procedure used in an undergraduate hydrology and oceanography class. Working in teams, English students produce research articles published by an in-house, though refereed, academic journal. Professors and students agree that the process stimulates students to perform at their highest…

  8. Environmental Files and Data Bases. Part A. Introduction and Oceanographic Management Information System.

    DTIC Science & Technology

    1981-09-01

    Management Information System Naval Oceanography Program Naval Oceanographic Requirements Acoustic Reference Service Research Vehicle...THE OCEANOGRAPHIC MANAGEMENT INFORMATION SYSTEM . .. .... 2-1 3. ACOUSTIC DATA .. .. .... ......... ...... 3-1 4. GEOLOGICAL AND GEOPHYSICAL DATA...36 CHAPTER 2 THE OCEANOGRAPHIC MANAGEMENT INFORMATION SYSTEM 2-i CHAPTER 2 THE OCEANOGRAPHIC MANAGEMENT INFORMATION SYSTEM CONTENTS Page

  9. HF Surface Wave Radar for Oceanography -- A Review of Activities in Germany

    DTIC Science & Technology

    2005-04-14

    Environmental and Remote Sensing Center (NERSC). The model and data assimilation technique is described by Breivik and Sætra [2]. Figure 10 shows a...forecasts with the measurements taken at that time, the rms error increases to 20 cm/s. Breivik and Sætra, 2001, present scatter plots and correlations

  10. Oceanography in the next decade: Building new partnerships

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The field of oceanography has existed as a major scientific discipline in the United States since World War 2, largely funded by the federal government. In this report, the Ocean Studies Board documents the state of the field of oceanography and assesses the health of the partnership between the federal government and the academic oceanography community. The objectives are to document and discuss important trends in the human, physical, and fiscal resources available to oceanographers, especially academic oceanographers, over the last decade; to present the Ocean Studies Board's best assessment of scientific opportunities in physical oceanography, marine geochemistry, marine geology and geophysics, biological oceanography, and coastal oceanography during the upcoming decade; and to provide a blueprint for more productive partnerships between academic oceanographers and federal agencies.

  11. C-MORE Science Kits: Putting Technology in the Hands of K-12 Teachers and Students

    NASA Astrophysics Data System (ADS)

    Achilles, K.; Weersing, K.; Daniels, C.; Puniwai, N.; Matsuzaki, J.; Bruno, B. C.

    2008-12-01

    The Center for Microbial Oceanography: Research and Education (C-MORE) is a NSF Science and Technology Center based at the University of Hawaii. The C-MORE education and outreach program offers a variety of resources and professional development opportunities for science educators, including online resources, participation in oceanography research cruises, teacher-training workshops, mini-grants to incorporate microbial oceanography-related content and activities into their classroom and, most recently, C- MORE science kits. C-MORE science kits provide hands-on classroom, field, and laboratory activities related to microbial oceanography for K-12 students. Each kit comes with complete materials and instructions, and is available free of charge to Hawaii's public school teachers. Several kits are available nationwide. C-MORE science kits cover a range of topics and technologies and are targeted at various grade levels. Here is a sampling of some available kits: 1) Marine Murder Mystery: The Case of the Missing Zooxanthellae. Students learn about the effect of climate change and other environmental threats on coral reef destruction through a murder-mystery experience. Participants also learn how to use DNA to identify a suspect. Grades levels: 3-8. 2) Statistical sampling. Students learn basic statistics through an exercise in random sampling, with applications to microbial oceanography. The laptops provided with this kit enable students to enter, analyze, and graph their data using EXCEL. Grades levels: 6-12. 3) Chlorophyll Lab. A research-quality fluorometer is used to measure the chlorophyll content in marine and freshwater systems. This enables students to compare biomass concentrations in samples collected from various locations. Grades levels: 9-12. 4) Conductivity-Temperature-Depth (CTD). Students predict how certain variables (e.g., temperature, pressure, chlorophyll, oxygen) vary with depth. A CTD, attached to a laptop computer, is deployed into deep water off a dock or a ship to collect real-time data and test their hypotheses. Grades levels: 9-12.

  12. Careers in Oceanography.

    ERIC Educational Resources Information Center

    Hollister, Charles D., Ed.

    This booklet was prepared by practicing oceanographers to help college students in their search for professional direction. The booklet: (1) points out some frontiers of current research; (2) describes five major subfields of oceanography (marine geology and geophysics, oceanographic engineering, physical oceanography, chemical oceanography, and…

  13. Evolution of a Western Arctic Ice Ocean Boundary Layer and Mixed Layer Across a Developing Thermodynamically Forced Marginal Ice Zone

    DTIC Science & Technology

    2016-09-01

    Submitted in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY IN PHYSICAL OCEANOGRAPHY from the NAVAL POSTGRADUATE...SCHOOL September 2016 Approved by: Timothy P. Stanton William J. Shaw Research Professor of Research Associate Professor Oceanography of... Oceanography Dissertation Committee Chair Timour Radko Andrew Roberts Associate Professor of Research Assistant Professor Oceanography of Oceanography

  14. Meteorology Products - Naval Oceanography Portal

    Science.gov Websites

    section Advanced Search... Sections Home Time Earth Orientation Astronomy Meteorology Oceanography Ice You Oceanography Products Tropical Applications Climatology and Archived Data Info Meteorology Products Global Tropical Warnings Naval Meteorology and Oceanography Command, 1100 Balch Blvd, Stennis Space Center, MS

  15. In Pursuit of Oceanography and a Better Life for All.

    ERIC Educational Resources Information Center

    Hollister, Charles D.

    1983-01-01

    Discusses the nature of and activities in marine geology/geophysics, oceanographic engineering, physical oceanography, chemical oceanography, and biological oceanography. This information, which includes comments on major employment positions (academic, government, industry, consulting), is provided to help students select possible careers in…

  16. Operationele Oceanografie en Rapid Environmental Assessment (Operational Oceanography and Rapid Environmental Assessment)

    DTIC Science & Technology

    2008-11-01

    Datum Auteur (s) november 2008 dr. LA. teRaa dr. I.PA. Lam dr. ir. M.W. Schouten Rubricering rappon Vastgesteld door Vastgesteld d.d. I ltd...DenV@tno.nl TNO-rapportnummer TNO-DV2008A418 Opdrachtnummer Datum november 2008 Auteur (s) dr. L.A. te Raa dr. F.P.A. Lam dr. ir. M.W. Schouten...verdamping. Een oceaanmodel is gebaseerd op wiskundige vergelijkingen die de dynamica en thermodynamica van de oceaan beschrijven. In theorie geven deze

  17. Geophysics and nutritional science: toward a novel, unified paradigm.

    PubMed

    Eshel, Gidon; Martin, Pamela A

    2009-05-01

    This article discusses a few basic geophysical processes, which collectively indicate that several nutritionally adverse elements of current Western diets also yield environmentally harmful food consumption patterns. We address oceanic dead zones, which are at the confluence of oceanography, aquatic chemistry, and agronomy and which are a clear environmental problem, and agriculture's effects on the surface heat budget. These exemplify the unknown, complex, and sometimes unexpected large-scale environmental effects of agriculture. We delineate the significant alignment in purpose between nutritional and environmental sciences. We identify red meat, and to a lesser extent the broader animal-based portion of the diet, as having the greatest environmental effect, with clear nutritional parallels.

  18. Reading in Marine Science, A Partially Annotated Bibliography for Young Readers, Nonprofessionals, and Teachers.

    ERIC Educational Resources Information Center

    Oregon State Univ., Corvallis. Dept. of Oceanography.

    Included is a partially annotated bibliography of mostly non-technical books for non-professional readers, young readers, and teachers. There are about 300 entries grouped into these subjects: general references, historical and exploration, biological oceanography, chemical oceanography, geological oceanography, and physical oceanography. (PR)

  19. A Source Book for Teaching Chemical Oceanography.

    ERIC Educational Resources Information Center

    Loder, Theodore C.; Glibert, Patricia M.

    Chemical oceanography or marine chemistry are taught in many colleges and universities. This publication provides sources for instructors of such courses. The first section of this report is a detailed composite outline of a course in chemical oceanography. It includes fundamental topics taught in many chemical oceanography classes. The outline…

  20. Air-Sea Interaction

    NASA Astrophysics Data System (ADS)

    Csanady, G. T.

    2001-03-01

    In recent years air-sea interaction has emerged as a subject in its own right, encompassing small-scale and large-scale processes in both air and sea. Air-Sea Interaction: Laws and Mechanisms is a comprehensive account of how the atmosphere and the ocean interact to control the global climate, what physical laws govern this interaction, and its prominent mechanisms. The topics covered range from evaporation in the oceans, to hurricanes, and on to poleward heat transport by the oceans. By developing the subject from basic physical (thermodynamic) principles, the book is accessible to graduate students and research scientists in meteorology, oceanography, and environmental engineering. It will also be of interest to the broader physics community involved in the treatment of transfer laws, and thermodynamics of the atmosphere and ocean.

  1. Fleet Weather Center- San Diego, California - Naval Oceanography Portal

    Science.gov Websites

    section Advanced Search... Sections Home Time Earth Orientation Astronomy Meteorology Oceanography Ice You Oceanography Portal at its new location: http://www.metoc.navy.mil/fwcsd/fwc-sd.html USNO Master Clock Time for Atlantic Tropical Warnings Naval Meteorology and Oceanography Command, 1100 Balch Blvd, Stennis

  2. Oceanography. Boy Scouts of America Merit Badge Series.

    ERIC Educational Resources Information Center

    Boy Scouts of America, Irving, TX.

    Presented are various activities and projects intended to help Boy Scouts earn a merit badge in oceanography. Each project and/or activity is related to a requirement (objective) found in a list at the beginning of the booklet. Topic areas and/or related activities and projects include: (1) nature of oceanography (naming oceanography branches,…

  3. The Oceanography Concept Inventory: A Semicustomizable Assessment for Measuring Student Understanding of Oceanography

    ERIC Educational Resources Information Center

    Arthurs, Leilani; Hsia, Jennifer F.; Schweinle, William

    2015-01-01

    We developed and evaluated an Oceanography Concept Inventory (OCI), which used a mixed-methods approach to test student achievement of 11 learning goals for an introductory-level oceanography course. The OCI was designed with expert input, grounded in research on student (mis)conceptions, written with minimal jargon, tested on 464 students, and…

  4. Honors

    NASA Astrophysics Data System (ADS)

    2012-02-01

    James Yoder, vice president for academic programs and dean at the Woods Hole Oceanographic Institution, Woods Hole, Mass., has been selected as a fellow of the Oceanography Society (TOS) “for his innovative and visionary application of satellite ocean color technologies to interdisciplinary oceanography and his extraordinary service to oceanography.” TOS also has three new councilors. Blanche Meeson of NASA Goddard Space Flight Center, Greenbelt, Md., is TOS's education councilor; Janet Sprintall, Scripps Institution of Oceanography, La Jolla, Calif., is TOS's councilor for physical biology; and Deborah Steinberg, Virginia Institute of Marine Sciences, Gloucester Point, is biological oceanography councilor.

  5. Mapping the Intricacies of the Gulf of Mexico's Circulation

    NASA Astrophysics Data System (ADS)

    Lugo-Fernández, Alexis; Green, Rebecca E.

    2011-01-01

    From hosting key shipping lines, drilling platforms, and commercial fisheries, to sustaining mangrove swamps that shelter the coastline from the hurricanes that churn its waters, the Gulf of Mexico is important to the nations surrounding it for socio-economic, ecological, military, political, and scientific reasons. Critical to all of these sectors is the Gulf's circulation—it controls hurricane tracks and intensity, biological productivity, and larvae dispersal. Since 1982, the Environmental Studies Program (ESP) of the U.S. Bureau of Ocean Energy Management, Regulation and Enforcement (BOEMRE) has invested more than $67 million in field and numerical modeling studies to improve our understanding of the Gulf's circulation (see Figure 1). ESP-funded research has covered a broad array of topics, some applied and some basic. Studies carried out on behalf of the bureau reflect the bureau's information needs, stakeholder input, and offshore energy exploration and development trends. All ESP studies culminate in a technical report—127 technical reports on physical oceanography are publicly available (see http://www.gomr.boemre.gov/homepg/regulate/environ/techsumm/rec_pubs.html). Additionally, more than 100 peer-reviewed publications have been issued on the Gulf's physical oceanography and circulation. The AGU Geophysical Monograph Circulation in the Gulf of Mexico: Observations and Models, the very first circulation overview since 1972, was funded by ESP. Additionally, data collected during fieldwork are deposited in national archives for public dissemination.

  6. Naval Oceanography Portal

    Science.gov Websites

    section Advanced Search... Sections Home Time Earth Orientation Astronomy Meteorology Oceanography Ice You Tropical Warnings Naval Meteorology and Oceanography Command, 1100 Balch Blvd, Stennis Space Center, MS

  7. Help - Naval Oceanography Portal

    Science.gov Websites

    section Advanced Search... Sections Home Time Earth Orientation Astronomy Meteorology Oceanography Ice You Atlantic Tropical Warnings Naval Meteorology and Oceanography Command, 1100 Balch Blvd, Stennis Space

  8. Using a Laboratory Simulator in the Teaching and Study of Chemical Processes in Estuarine Systems

    ERIC Educational Resources Information Center

    Garcia-Luque, E.; Ortega, T.; Forja, J. M.; Gomez-Parra, A.

    2004-01-01

    The teaching of Chemical Oceanography in the Faculty of Marine and Environmental Sciences of the University of Cadiz (Spain) has been improved since 1994 by the employment of a device for the laboratory simulation of estuarine mixing processes and the characterisation of the chemical behaviour of many substances that pass through an estuary. The…

  9. Ice - Naval Oceanography Portal

    Science.gov Websites

    section Advanced Search... Sections Home Time Earth Orientation Astronomy Meteorology Oceanography Ice You Center Norfolk new site for Atlantic Tropical Warnings Naval Meteorology and Oceanography Command, 1100

  10. Environmental controls, oceanography and population dynamics of pathogens and harmful algal blooms: connecting sources to human exposure

    PubMed Central

    Dyble, Julianne; Bienfang, Paul; Dusek, Eva; Hitchcock, Gary; Holland, Fred; Laws, Ed; Lerczak, James; McGillicuddy, Dennis J; Minnett, Peter; Moore, Stephanie K; O'Kelly, Charles; Solo-Gabriele, Helena; Wang, John D

    2008-01-01

    Coupled physical-biological models are capable of linking the complex interactions between environmental factors and physical hydrodynamics to simulate the growth, toxicity and transport of infectious pathogens and harmful algal blooms (HABs). Such simulations can be used to assess and predict the impact of pathogens and HABs on human health. Given the widespread and increasing reliance of coastal communities on aquatic systems for drinking water, seafood and recreation, such predictions are critical for making informed resource management decisions. Here we identify three challenges to making this connection between pathogens/HABs and human health: predicting concentrations and toxicity; identifying the spatial and temporal scales of population and ecosystem interactions; and applying the understanding of population dynamics of pathogens/HABs to management strategies. We elaborate on the need to meet each of these challenges, describe how modeling approaches can be used and discuss strategies for moving forward in addressing these challenges. PMID:19025676

  11. Seeing the oceans in the shadow of Bergen values.

    PubMed

    Hamblin, Jacob Darwin

    2014-06-01

    Although oceanographers such as Roger Revelle are typically associated with key indicators of anthropogenic change, he and other scientists at midcentury had very different scientific priorities and ways of seeing the oceans. How can we join the narrative of the triumph of mathematical, dynamic oceanography with the environmental narrative? Dynamic methods entailed a broad set of values that touched the professional lives of marine scientists in a variety of disciplines all over the world, for better or for worse. The present essay highlights three aspects of "Bergen values" in need of greater exploration by scholars. First, how did the dominance of Scandinavian outlooks influence scientific questions across the broad spectrum of oceanography? Second, did oceanographers' particular means of making the oceans legible through instrumentation challenge their ability to perceive the oceans differently? Third, given the immense quantity of data, was the historical legacy of the dynamic oceanographers more descriptive than they imagined?

  12. Review of the physical oceanography of the Cape Hatteras, North Carolina Region. Volume 1. Literature synthesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adams, C.E.; Berger, T.J.; Boicourt, W.C.

    The present study is part of a sequence of programs designed to provide the MMS with a basis for evaluating the potential environmental impacts of oil and gas production off of the Cape Hatteras region. The primary objective of this review is to summarize and critique the present state of knowledge of the physical oceanography of the complex region offshore of Cape Hatteras, North Carolina, within the context of understanding the regional circulation and its relation to the fate of any discharges resulting from offshore oil and gas activity. The two other related objectives are to produce an annotated bibliographymore » of the pertinent literature, primarily from 1970 to the present, and to identify relevant oceanographic data sets which can provide a basis for an improved understanding of circulation patterns and physical oceanographic conditions in the study area.« less

  13. ONR Ocean Wave Dynamics Workshop

    NASA Astrophysics Data System (ADS)

    In anticipation of the start (in Fiscal Year 1988) of a new Office of Naval Research (ONR) Accelerated Research Initiative (ARI) on Ocean Surface Wave Dynamics, a workshop was held August 5-7, 1986, at Woods Hole, Mass., to discuss new ideas and directions of research. This new ARI on Ocean Surface Wave Dynamics is a 5-year effort that is organized by the ONR Physical Oceanography Program in cooperation with the ONR Fluid Mechanics Program and the Physical Oceanography Branch at the Naval Ocean Research and Development Activity (NORDA). The central theme is improvement of our understanding of the basic physics and dynamics of surface wave phenomena, with emphasis on the following areas: precise air-sea coupling mechanisms,dynamics of nonlinear wave-wave interaction under realistic environmental conditions,wave breaking and dissipation of energy,interaction between surface waves and upper ocean boundary layer dynamics, andsurface statistical and boundary layer coherent structures.

  14. Annual Tropical Cyclone Reports - Naval Oceanography Portal

    Science.gov Websites

    section Advanced Search... Sections Home Time Earth Orientation Astronomy Meteorology Oceanography Ice You Center Norfolk new site for Atlantic Tropical Warnings Naval Meteorology and Oceanography Command, 1100

  15. News! from the Naval Observatory - Naval Oceanography Portal

    Science.gov Websites

    section Advanced Search... Sections Home Time Earth Orientation Astronomy Meteorology Oceanography Ice You More... Naval Meteorology and Oceanography Command, 1100 Balch Blvd, Stennis Space Center, MS 39529

  16. Ask the Librarian - Naval Oceanography Portal

    Science.gov Websites

    section Advanced Search... Sections Home Time Earth Orientation Astronomy Meteorology Oceanography Ice You Oceanography Command, 1100 Balch Blvd, Stennis Space Center, MS 39529 Fleet Forces Command | navy.com | Freedom

  17. The Naval Oceanographic Office (NAVO) - Naval Oceanography Portal

    Science.gov Websites

    section Advanced Search... Sections Home Time Earth Orientation Astronomy Meteorology Oceanography Ice You Center Norfolk new site for Atlantic Tropical Warnings Naval Meteorology and Oceanography Command, 1100

  18. News, Tours, & Events - Naval Oceanography Portal

    Science.gov Websites

    section Advanced Search... Sections Home Time Earth Orientation Astronomy Meteorology Oceanography Ice You This Week The Sky This Week, 2018 May 22 - 29 More... Naval Meteorology and Oceanography Command, 1100

  19. Tour Information for USNO Washington DC - Naval Oceanography Portal

    Science.gov Websites

    section Advanced Search... Sections Home Time Earth Orientation Astronomy Meteorology Oceanography Ice You Week, 2018 May 22 - 29 More... Naval Meteorology and Oceanography Command, 1100 Balch Blvd, Stennis

  20. Data Assembly and Processing for Operational Oceanography: 10 Years of Achievements

    DTIC Science & Technology

    2009-07-20

    Processing for Operational Oceanography: 10 Years of Acheivements 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 0602435N 6... operational oceanography infrastructure. They provide data and products needed by modeling and data assimilation systems; they also provide products...directly useable for applications. The paper will discuss the role and functions of the data centers for operational oceanography and describe some of

  1. Biological Oceanography

    NASA Astrophysics Data System (ADS)

    Dyhrman, Sonya

    2004-10-01

    The ocean is arguably the largest habitat on the planet, and it houses an astounding array of life, from microbes to whales. As a testament to this diversity and its importance, the discipline of biological oceanography spans studies of all levels of biological organization, from that of single genes, to organisms, to their population dynamics. Biological oceanography also includes studies on how organisms interact with, and contribute to, essential global processes. Students of biological oceanography are often as comfortable looking at satellite images as they are electron micrographs. This diversity of perspective begins the textbook Biological Oceanography, with cover graphics including a Coastal Zone Color Scanner image representing chlorophyll concentration, an electron micrograph of a dinoflagellate, and a photograph of a copepod. These images instantly capture the reader's attention and illustrate some of the different scales on which budding oceanographers are required to think. Having taught a core graduate course in biological oceanography for many years, Charlie Miller has used his lecture notes as the genesis for this book. The text covers the subject of biological oceanography in a manner that is targeted to introductory graduate students, but it would also be appropriate for advanced undergraduates.

  2. AN ASSESSMENT OF THE ECOLOGICAL CONDITION OF COASTAL WATERS SURROUNDING THE GULF OF MEXICO IAPSO INTERNATIONAL ASSOCIATION FOR BIOLOGICAL OCEANOGRAPHY MEETING, LA PLATA, ARGENTINA, OCTOBER 2001

    EPA Science Inventory

    Assessment of the Ecological Condition of Coastal Waters Surrounding the Gulf of Mexico (Abstract). To be presented at the Joint IAPSO/IABO Assembly: 2001 An Ocean Odyssey, 21-26 October 2001, Mar del Plata, Argentina. 1 p. (ERL,GB R844).

    The purpose of the Environmental ...

  3. An Analysis of Undersea Glider Architectures and an Assessment of Undersea Glider Integration into Undersea Applications

    DTIC Science & Technology

    2012-09-01

    Marine Mammal Survey • Inspection and Security • Environmental Monitoring Launch & Recovery • Man Portable (1-2 people) Features • Length: 2.2 m...Oceanography & Science • Pollution Detection • Water Quality Monitoring • Rapid Environment Assessment • Marine Mammals Assessment Launch & Recovery...Figure 29. Slocum Electric Launch from Surface Ship Guide Rails from (Quest Marine Services, 2007

  4. Honors

    NASA Astrophysics Data System (ADS)

    2014-05-01

    Lisa Tauxe, distinguished professor of geophysics in the Geosciences Research Division and department chair and deputy director for education at Scripps Institution of Oceanography of the University of California, San Diego, received the Franklin Institute's Benjamin Franklin Medal in Earth and Environmental Science "for the development of observational techniques and theoretical models providing an improved understanding of the behavior of, and variations in intensity of, the Earth's magnetic field through geologic time."

  5. From Scientists to the Public: Communicating Science through Blogs on oceanbites.org and envirobites.org

    NASA Astrophysics Data System (ADS)

    Lemon, M. G.; McDonough, C. A.; Schifman, L. A.

    2017-12-01

    Science communication is increasingly important. Our world is facing difficult environmental challenges that can only be addressed if an understanding of the basic scientific principles exists. With this in mind, we founded oceanbites.org in 2013, and recently (August 2017) also started envirobites.org. For both blogs, graduate students, postdoctoral researchers, and science professionals come together to write and edit easy-to-read, compelling summaries of recent, cutting-edge research papers in environmental science or oceanography and make them accessible to non-experts. We want to share our passion for research with all non-scientists who are interested to learn more about the environment and our oceans: This ranges in scale from identifying science problems and solutions in cities to explaining the complex environmental challenges facing our planet as a whole. Because science is also about identifying and applying technologies to address these challenges, we also cover some success stories! For envirobites.org, topics of posts include science in and for cities, global transport of pollutants, toxic effects of pollution, climate change, and environmental remediation. Oceanbites.org covers topics ranging from chemical, to biological, and physical oceanography. Currently, oceanbites.org has 24 writers and publishes posts daily, whereas envirobites.org has 26 writers and we publish posts on our blog three times per week. We hope to recruit more members and editors, but most of all, increase our readership to make a big splash in the communication of science to the public, whether we reach K-12 classrooms or living rooms.

  6. Data Analysis and Synthesis for the ONR Undersea Sand Dunes in the South China Sea Field Experiments

    DTIC Science & Technology

    2015-09-30

    understanding of coastal oceanography by means of applying simple dynamical theories to high-quality observations obtained in the field. My primary...area of expertise is physical oceanography , but I also enjoy collaborating with biological, chemical, acoustical, and optical oceanographers to work... oceanography , and impact of the bottom configuration and physical oceanography on acoustic propagation. • The space and time scales of the dune

  7. Physics as an Integrative Theme in Oceanography.

    ERIC Educational Resources Information Center

    Myers, Richard L.

    1990-01-01

    The teaching of physics as an integral part of an undergraduate oceanography course is described. A general outline of oceanography and the corresponding physics topics is given. The objectives, organization, and difficulties of such a course are discussed. (CW)

  8. Oceanography Information Sources 70.

    ERIC Educational Resources Information Center

    Vetter, Richard C.

    This booklet lists oceanography information sources in the first section under industries, laboratories and departments of oceanography, and other organizations which can provide free information and materials describing programs and activities. Publications listed in the second section include these educational materials: bibliographies, career…

  9. Stratified Fronts in Well-Mixed Estuaries

    DTIC Science & Technology

    2013-09-01

    Thornton Thomas Murphree Professor of Oceanography (Emer.) Professor of Meteorology Approved by...J. C. Warner (2012), Bathymetric controls on sediment transport in the Hudson River estuary: Lateral asymmetry and frontal trapping, J. Geophys

  10. AVIRIS user's guide

    NASA Technical Reports Server (NTRS)

    Johnson, Howell K.; Green, Robert O.

    1995-01-01

    This paper serves as a brief overview of the AVIRIS instrument (Airborne Visible/Infrared Imaging Spectrometer). The AVIRIS sensor collects data that will be used for quantitative characterization of the Earth's surface and atmosphere from geometrically coherent spectroradiometric measurements. This data can be applied to studies in the fields of oceanography, environmental science, snow hydrology, geology, volcanology, soil and land management, atmospheric and aerosol studies, agriculture, and limnology. Applications under development include the assessment and monitoring of environmental hazards such as toxic waste, oil spills, and land/air/water pollution. Mission planning and flight operations are discussed, and recommendations are given regarding the deployment of ground truth experiments.

  11. Environmental Oceanography of the Arctic Ocean and Its Marginal Seas

    DTIC Science & Technology

    1997-09-30

    held on 12-14 November 1996 at Mutsu , Aomori, Japan. Japan Marine Science Foundation, Tokyo, pp. 233-248. Honjo, S., Honda, M., Manganini, S. J. and...Proceedings of the International Marine Science Symposium held on 12-14 November 1996 at Mutsu , Aomori, Japan. Japan Marine Science Foundation, Tokyo...Collaborative Investigations.” Invited keynote paper for The International Marine Science Symposium, Mutsu , Aomori, Japan (invited). November 12-14 1996.

  12. European Science Notes Information Bulletin Reports on Current European/ Middle Eastern Science

    DTIC Science & Technology

    1989-03-01

    Palo-Oceanography, Marine Geophysics, Marine Environmental Geology, and Petrology of the Oceanic Crust. The spe- cific concerns of each of these...integration To compute numerically the expected value of an over the fermion fields, leaving an integral over the gauge operator, the configuration space...ethrough the machine (one space point per processor).In the gauge field theories of elementary particles, This is appropriate for generating gauge field

  13. Remote Sensing of Earth Resources: A literature survey with indexes (1970 - 1973 supplement). Section 1: Abstracts

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Abstracts of reports, articles, and other documents introduced into the NASA scientific and technical information system between March 1970 and December 1973 are presented in the following areas: agriculture and forestry, environmental changes and cultural resources, geodesy and cartography, geology and mineral resources, oceanography and marine resources, hydrology and water management, data processing and distribution systems, instrumentation and sensors, and economic analysis.

  14. Doctoral Scientists in Oceanography.

    ERIC Educational Resources Information Center

    National Academy of Sciences-National Research Council, Washington, DC. Assembly of Mathematical and Physical Sciences.

    The purpose of this report was to classify and count doctoral scientists in the United States trained in oceanography and/or working in oceanography. Existing data from three sources (National Research Council's "Survey of Earned Doctorates," and "Survey of Doctorate Recipients," and the Ocean Sciences Board's "U.S. Directory of Marine…

  15. What Oceanography Concepts are Taught in Ohio's Schools?

    ERIC Educational Resources Information Center

    Skinner, Ray, Jr.; Martin, Ralph E., Jr.

    1985-01-01

    A survey listing 21 major oceanographic concepts and several sub-concepts was mailed to all Ohio earth science teachers. Respondents indicated that most of the oceanography topics taught were geologically-oriented. Oceanography concepts relating to ecology, chemical, physical or life science are considered less important. (DH)

  16. Dynamic oceanography determines fine scale foraging behavior of Masked Boobies in the Gulf of Mexico

    PubMed Central

    Harrison, Autumn-Lynn; Vallarino, Adriana; Gerard, Patrick D.; Jodice, Patrick G. R.

    2017-01-01

    During breeding, foraging marine birds are under biological, geographic, and temporal constraints. These contraints require foraging birds to efficiently process environmental cues derived from physical habitat features that occur at nested spatial scales. Mesoscale oceanography in particular may change rapidly within and between breeding seasons, and findings from well-studied systems that relate oceanography to seabird foraging may transfer poorly to regions with substantially different oceanographic conditions. Our objective was to examine foraging behavior of a pan-tropical seabird, the Masked Booby (Sula dactylatra), in the understudied Caribbean province, a moderately productive region driven by highly dynamic currents and fronts. We tracked 135 individuals with GPS units during May 2013, November 2013, and December 2014 at a regionally important breeding colony in the southern Gulf of Mexico. We measured foraging behavior using characteristics of foraging trips and used area restricted search as a proxy for foraging events. Among individual attributes, nest stage contributed to differences in foraging behavior whereas sex did not. Birds searched for prey at nested hierarchical scales ranging from 200 m—35 km. Large-scale coastal and shelf-slope fronts shifted position between sampling periods and overlapped geographically with overall foraging locations. At small scales (at the prey patch level), the specific relationship between environmental variables and foraging behavior was highly variable among individuals but general patterns emerged. Sea surface height anomaly and velocity of water were the strongest predictors of area restricted search behavior in random forest models, a finding that is consistent with the characterization of the Gulf of Mexico as an energetic system strongly influenced by currents and eddies. Our data may be combined with tracking efforts in the Caribbean province and across tropical regions to advance understanding of seabird sensing of the environment and serve as a baseline for anthropogenic based threats such as development, pollution, and commercial fisheries. PMID:28575078

  17. Dynamic oceanography determines fine scale foraging behavior of Masked Boobies in the Gulf of Mexico.

    PubMed

    Poli, Caroline L; Harrison, Autumn-Lynn; Vallarino, Adriana; Gerard, Patrick D; Jodice, Patrick G R

    2017-01-01

    During breeding, foraging marine birds are under biological, geographic, and temporal constraints. These contraints require foraging birds to efficiently process environmental cues derived from physical habitat features that occur at nested spatial scales. Mesoscale oceanography in particular may change rapidly within and between breeding seasons, and findings from well-studied systems that relate oceanography to seabird foraging may transfer poorly to regions with substantially different oceanographic conditions. Our objective was to examine foraging behavior of a pan-tropical seabird, the Masked Booby (Sula dactylatra), in the understudied Caribbean province, a moderately productive region driven by highly dynamic currents and fronts. We tracked 135 individuals with GPS units during May 2013, November 2013, and December 2014 at a regionally important breeding colony in the southern Gulf of Mexico. We measured foraging behavior using characteristics of foraging trips and used area restricted search as a proxy for foraging events. Among individual attributes, nest stage contributed to differences in foraging behavior whereas sex did not. Birds searched for prey at nested hierarchical scales ranging from 200 m-35 km. Large-scale coastal and shelf-slope fronts shifted position between sampling periods and overlapped geographically with overall foraging locations. At small scales (at the prey patch level), the specific relationship between environmental variables and foraging behavior was highly variable among individuals but general patterns emerged. Sea surface height anomaly and velocity of water were the strongest predictors of area restricted search behavior in random forest models, a finding that is consistent with the characterization of the Gulf of Mexico as an energetic system strongly influenced by currents and eddies. Our data may be combined with tracking efforts in the Caribbean province and across tropical regions to advance understanding of seabird sensing of the environment and serve as a baseline for anthropogenic based threats such as development, pollution, and commercial fisheries.

  18. Dynamic oceanography determines fine scale foraging behavior of Masked Boobies in the Gulf of Mexico

    USGS Publications Warehouse

    Poli, Caroline L.; Harrison, Autumn-Lynn; Vallarino, Adriana; Gerard, Patrick D.; Jodice, Patrick G.R.

    2017-01-01

    During breeding, foraging marine birds are under biological, geographic, and temporal constraints. These contraints require foraging birds to efficiently process environmental cues derived from physical habitat features that occur at nested spatial scales. Mesoscale oceanography in particular may change rapidly within and between breeding seasons, and findings from well-studied systems that relate oceanography to seabird foraging may transfer poorly to regions with substantially different oceanographic conditions. Our objective was to examine foraging behavior of a pan-tropical seabird, the Masked Booby (Sula dactylatra), in the understudied Caribbean province, a moderately productive region driven by highly dynamic currents and fronts. We tracked 135 individuals with GPS units during May 2013, November 2013, and December 2014 at a regionally important breeding colony in the southern Gulf of Mexico. We measured foraging behavior using characteristics of foraging trips and used area restricted search as a proxy for foraging events. Among individual attributes, nest stage contributed to differences in foraging behavior whereas sex did not. Birds searched for prey at nested hierarchical scales ranging from 200 m—35 km. Large-scale coastal and shelf-slope fronts shifted position between sampling periods and overlapped geographically with overall foraging locations. At small scales (at the prey patch level), the specific relationship between environmental variables and foraging behavior was highly variable among individuals but general patterns emerged. Sea surface height anomaly and velocity of water were the strongest predictors of area restricted search behavior in random forest models, a finding that is consistent with the characterization of the Gulf of Mexico as an energetic system strongly influenced by currents and eddies. Our data may be combined with tracking efforts in the Caribbean province and across tropical regions to advance understanding of seabird sensing of the environment and serve as a baseline for anthropogenic based threats such as development, pollution, and commercial fisheries.

  19. High School Oceanography.

    ERIC Educational Resources Information Center

    Falmouth Public Schools, MA.

    This book is a compilation of a series of papers designed to aid high school teachers in organizing a course in oceanography for high school students. It consists of twelve papers, with references, covering each of the following: (1) Introduction to Oceanography, (2) Geology of the Ocean, (3) The Continental Shelves, (4) Physical Properties of Sea…

  20. LABORATORY EXERCISES IN OCEANOGRAPHY FOR HIGH SCHOOLS.

    ERIC Educational Resources Information Center

    National Science Foundation, Washington, DC.

    DESCRIBED ARE LABORATORY EXERCISES IN OCEANOGRAPHY DEVELOPED FOR USE IN HIGH SCHOOLS BY THE SECONDARY SCHOOL TEACHERS IN THE 1967 NATIONAL SCIENCE FOUNDATION (NSF) SUMMER INSTITUTE IN OCEANOGRAPHY AT FLORIDA STATE UNIVERSITY. INCLUDED ARE SUCH ACTIVITIES AS (1) THE MEASUREMENT OF TEMPERATURE, WATER VAPOR, PRESSURE, SALINITY, DENSITY, AND OTHERS,…

  1. Microprocessor-based interface for oceanography

    NASA Technical Reports Server (NTRS)

    Hansen, G. R.

    1979-01-01

    Ocean floor imaging system incorporates five identical microprocessor-based interface units each assigned to specific sonar instrument to simplify system. Central control module based on same microprocessor eliminates need for custom tailoring hardware interfaces for each instrument.

  2. A Study of Enlisted Training and Education in Applied Oceanography.

    ERIC Educational Resources Information Center

    Schriner, Karl Leonard

    The study concludes that the primary reason for present programs of enlisted training and education in oceanography is to support Anti-Submarine Warfare (ASW). There is a significant lack of courses, schools, and self-study material available to enlisted personnel on the subject of oceanography. Through more extensive training the aviation ASW…

  3. Curriculum Outline for a General Oceanography Field Laboratory (Review Cycle-Annual).

    ERIC Educational Resources Information Center

    Schlenker, Richard M.

    A curriculum guide, in outline form, for oceanography field laboratories is presented. Designed to complement and expand upon an oceanography lecture course, it provides a list of objectives related to student experiences in three areas: (1) operating oceanographic equipment; (2) gathering, manipulating, and evaluating data; and (3) writing formal…

  4. Assessment of Differences in University Oceanography Students' Scientific Writing.

    ERIC Educational Resources Information Center

    Takao, Allison Y.; Kelly, Gregory J.

    The purpose of this paper is to assess the differences in university oceanography students' scientific writing. Specifically, the authors examine the argumentation structures of a high scoring paper and a low scoring paper. This study was conducted in an introductory level oceanography course in a large public university. In this course students…

  5. Estuarine Oceanography. CEGS Programs Publication Number 18.

    ERIC Educational Resources Information Center

    Wright, F. F.

    Estuarine Oceanography is one in a series of single-topic problem modules intended for use in undergraduate and earth science courses. Designed for those interested in coastal oceanography or limnology, the module is structured as a laboratory supplement for undergraduate college classes but should be useful at all levels. The module has two…

  6. Environmental Fluctuations in Forward Scatter and Reverberation

    DTIC Science & Technology

    2014-09-30

    Experiment 2013 (TREX13) was carried out in ~20 m deep water off Panama City, FL [1]. The Marine Physical Laboratory ( MPL ) participated at-sea aboard the...Sharp). In addition, 16 self-recording temperature loggers were attached to two of the VLAs. Source tows and stations were carried out by MPL on 22...Reverberation Experiment 2013 (TREX13): MPL Trip Report,” Marine Physical Laboratory, Scripps Institution of Oceanography, 13 July 2013 (2013). [3

  7. Honors

    NASA Astrophysics Data System (ADS)

    2013-02-01

    Sallie Chisholm received the National Medal of Science from U.S. president Barack Obama during a 1 February ceremony at the White House. Chisholm, a biological oceanographer, was cited for her "contributions to the discovery and understanding of the dominant photosynthetic organisms in the ocean, promotion of the field of microbial oceanography and influence on marine policy and management." Chisholm is the Lee and Geraldine Martin Professor of Environmental Studies and a professor of biology at the Massachusetts Institute of Technology (MIT).

  8. Diploma of Higher Studies in Oceanography. Red Sea & Gulf of Aden Programme (PERSGA).

    ERIC Educational Resources Information Center

    Arab Organization for Education and Science, Cairo (Egypt).

    This document presents four courses for the diploma of higher studies in oceanography conducted by the Department of Oceanography, Faculty of Science, University of Alexandria, Egypt. These courses are organized by the Arab League Educational, Cultural and Scientific Organization (ALECSO). Each course is designed to be taught in one academic year…

  9. Environmental drivers of epibenthic megafauna on a deep temperate continental shelf: A multiscale approach

    NASA Astrophysics Data System (ADS)

    Lacharité, Myriam; Metaxas, Anna

    2018-03-01

    Evaluating the role of abiotic factors in influencing the distribution of deep-water (>75-100 m depth) epibenthic megafaunal communities at mid-to-high latitudes is needed to estimate effects of environmental change, and support marine spatial planning since these factors can be effectively mapped. Given the disparity in scales at which these factors operate, incorporating multiple spatial and temporal scales is necessary. In this study, we determined the relative importance of 3 groups of environmental drivers at different scales (sediment, geomorphology, and oceanography) on epibenthic megafauna on a deep temperate continental shelf in the eastern Gulf of Maine (northwest Atlantic). Twenty benthic photographic transects (range: 611-1021 m; total length surveyed: 18,902 m; 996 images; average of 50 ± 16 images per transect) were performed in July and August 2009 to assess the abundance, composition and diversity of these communities. Surficial geology was assessed using seafloor imagery processed with a novel approach based on computer vision. A bathymetric terrain model (horizontal resolution: 100 m) was used to derive bathymetric variability in the vicinity of transects (1.5, 5 km). Oceanography at the seafloor (temperature, salinity, current speed, current direction) over 10 years (1999-2008) was determined using empirical (World Ocean Database 2013) and modelled data (Finite-Volume Community Ocean Model; 45 vertical layers; horizontal resolution: 1.7-9.5 km). The relative influence of environmental drivers differed between community traits. Abundance was enhanced primarily by swift current speeds, while higher diversity was observed in coarser and more heterogeneous substrates. In both cases, the role of geomorphological features was secondary to these drivers. Environmental variables were poor predictors of change in community composition at the scale of the eastern Gulf of Maine. This study demonstrated the need for explicitly incorporating scales into habitat modelling studies in these regions, and targeting specific drivers for community traits of interest.

  10. Coastal Environment, Bathymetry and Physical Oceanography along the Beaufort, Chukchi and Bering Seas.

    DTIC Science & Technology

    1980-01-01

    Unit No. 347 , Vol. III, Chukchi-Beaufort Sea, 409 pp. 3. Hopkins, D.M. and R.W. Hartz, 1978, Coastal morphology, coastal erosion, and barrier islands of...U.S. Department of Commerce, Alaska Outer Continental Shelf Environmental Assessment Program Final Report, Research Unit No. 347 , vol. III, Chukchi...Assessment Program Final Report, Research Univ No. 347 , vol. II, Bering Sea, 443 pp. 3. U.S. Department of Commerce, 1964, Pacific and Arctic Coasts

  11. General linear methods and friends: Toward efficient solutions of multiphysics problems

    NASA Astrophysics Data System (ADS)

    Sandu, Adrian

    2017-07-01

    Time dependent multiphysics partial differential equations are of great practical importance as they model diverse phenomena that appear in mechanical and chemical engineering, aeronautics, astrophysics, meteorology and oceanography, financial modeling, environmental sciences, etc. There is no single best time discretization for the complex multiphysics systems of practical interest. We discuss "multimethod" approaches that combine different time steps and discretizations using the rigourous frameworks provided by Partitioned General Linear Methods and Generalize-structure Additive Runge Kutta Methods..

  12. Environmental Fluctuations in Forward Scatter and Reverberation

    DTIC Science & Technology

    2015-09-30

    TREX13) was carried out in ~20 m deep water off Panama City, FL [1]. The Marine Physical Laboratory ( MPL ) participated at-sea aboard the R/V Walton...addition, 16 self-recording temperature loggers were attached to two of the VLAs. Source tows and stations were carried out by MPL on 22-24 April 2013...TREX13): MPL Trip Report,” Marine Physical Laboratory, Scripps Institution of Oceanography, 13 July 2013 (2013). [3] W.S. Hodgkiss, D.E. Ensberg, and

  13. Continuous resistivity profiling to delineate submarine groundwater discharge - Examples and limitations

    USGS Publications Warehouse

    Day-Lewis, F. D.; White, E.A.; Johnson, C.D.; Lane, J.W.; Belaval, M.

    2006-01-01

    Aquifer-ocean interaction, saline intrusion, and submarine groundwater discharge (SGD) are emerging topics in hydrology and oceanography with important implications for water-resource management and estuarine ecology. Although the threat of saltwater intrusion has long been recognized in coastal areas, SGD has, until recently, received much less attention. It is clear that SGD constitutes a major nutrient flux to coastal waters, with implications for estuarine ecology, eutrophication, and loss of coral reefs; however, fundamental questions regarding SGD remain unanswered: What are the spatial and temporal distributions of SGD offshore? How do seasonal and storm-related variations in aquifer recharge affect SGD flux and nutrient loading? What controls do aquifer structure and heterogeneity impose? How are SGD and saline recirculation related? Geophysical methods can provide insights to help answer these questions and improve the understanding of this intriguing and environmentally relevant hydrologic phenomenon. ?? 2006 Society of Exploration Geophysicists.

  14. A statistical model for water quality predictions from a river discharge using coastal observations

    NASA Astrophysics Data System (ADS)

    Kim, S.; Terrill, E. J.

    2007-12-01

    Understanding and predicting coastal ocean water quality has benefits for reducing human health risks, protecting the environment, and improving local economies which depend on clean beaches. Continuous observations of coastal physical oceanography increase the understanding of the processes which control the fate and transport of a riverine plume which potentially contains high levels of contaminants from the upstream watershed. A data-driven model of the fate and transport of river plume water from the Tijuana River has been developed using surface current observations provided by a network of HF radar operated as part of a local coastal observatory that has been in place since 2002. The model outputs are compared with water quality sampling of shoreline indicator bacteria, and the skill of an alarm for low water quality is evaluated using the receiver operating characteristic (ROC) curve. In addition, statistical analysis of beach closures in comparison with environmental variables is also discussed.

  15. Toward More Productive Naval Shipbuilding

    DTIC Science & Technology

    1984-01-01

    J. Seymour Exxon Production Research Scripps Institution of Oceanography •HeuiLon,.Tleas La Jolla, California William Creelman William H. Silcox...subassemblies move to become finished products. Figure 14 indicates the many organizational functions and physical steps through which information and...supplier control, and in some cases physical material control systems unique to its requirements. Systems developed along organizational linesuse some

  16. Discovery of Sound in the Sea 2014 Annual Report

    DTIC Science & Technology

    2014-09-30

    Gail Scowcroft Graduate School of Oceanography University of Rhode Island Narragansett, RI 02882 phone: (401) 874-6724 fax: (401) 874-6486 email...past twelve years, Marine Acoustics, Inc. (MAI) and the University of Rhode Island’s Graduate School of Oceanography (GSO) have developed a...Peter Worcester (Scripps Institution of Oceanography), James H. Miller ( University of Rhode Island), and Darlene Ketten (Harvard University Medical

  17. Bringing the Ocean into the Social Studies Classroom: What Can Oceanography Do for Sixth through Twelfth Grade Social Studies?

    ERIC Educational Resources Information Center

    Nagel, Paul B.; Earl, Richard A.

    2003-01-01

    In this article, the authors show how oceanography can enlighten and energize the teaching of middle- and high-school social studies on a grade-by-grade basis, and they describe "hooks" from oceanography that will heighten students' interest in various social studies topics. They base the article on their own experiences--as a…

  18. Kuwait oil spill studied

    NASA Astrophysics Data System (ADS)

    Bush, Susan

    1992-02-01

    More than a year after the Persian Gulf War, scientists are still trying to assess the environmental impact of the estimated 6-8 million barrels of oil that were dumped into the gulf and to understand the environmental processes that take place in such a disturbance. Many atmospheric studies were done in the months immediately following the war, but oceanographic studies have been slower in getting started.The National Oceanic and Atmospheric Administration is currently spearheading a major oceanographic study being undertaken in the Persian Gulf by the research vessel Mt. Mitchell. The ship left its home port of Norfolk, Va., in mid-January and arrived in Muscat, Oman, on February 16 to begin a 100-day oceanographic and environmental survey. The six-leg cruise will feature physical oceanography, near-shore, and marine life studies.

  19. The sixth conference on satellite meteorology and oceanography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hauth, F.F.; Purdom, J.F.W.

    The Sixth Conference on Satellite Meteorology and Oceanography was held in conjunction with the AMS Annual Meeting in Atlanta, Georgia, the week of 6 January 1992. Over 150 scientific papers were presented orally or in poster sessions. Joint sessions were held with the Symposium on Weather Forecasting and the Eighth International Conference on Interactive Information and Processing Systems for Meteorology, Oceanography, and Hydrology. The quality of the papers in the preprint volume, as well as in the presentations at both oral and poster sessions, reflects the robustness of national and international operational and research interests in satellite meteorology and oceanography.more » A preprint volume for this conference is available through the AMS.« less

  20. Quantifying Acoustic Uncertainty due to Marine Mammals and Fish Near the Shelfbreak Front off Cape Hatteras

    DTIC Science & Technology

    2016-10-19

    SUPPLEMENTARY NOTES NA 14. ABSTRACT See attached. 15. SUBJECTTERMS Ocean Acoustics, Fish Scatter, Acoustic Propagation, Oceanography 16...imaging fish schools and tracking vocalizing marine mam mals, and 3) understand the correlation between the detailed physica l oceanography and the...Cape Hatteras, N.C. to measure the acoustics, biology, and physica l oceanography of fish schools) and 2) finish publishing our results. APPROACH

  1. John Murray / MABAHISS expedition versus the International Indian Ocean Expedition (IIOE) in retrospect

    NASA Astrophysics Data System (ADS)

    Aleem, A. A.; Morcos, S. A.

    In addition to its scientific achievements, the John Murray/Mabahiss Expedition was a unique experiment in technology transfer and it pioneered bilateral relations in the field of oceanography, at a time when the Law of the Sea was not even an embryonic concept. The Expedition will be remembered for its profound influence on the development of oceanography in Egypt, and subsequently in several Arab and African countries, as well as for its socio-economic impact in Egypt. The International Indian Ocean Expedition (IIOE) was an elaborate exercise involving both the most sophisticated developments in oceanography of the day and the full complexity of international relations which necessitated the scientific, coordinating and supporting mechanisms of SCOR, IOC and Unesco combined. Each exercise separated by 25 years represented a significant event in the development of oceanography. Each was a natural product of the prevailing state of the art and the international climate. Oceanography had made a quantum jump in technology in the intervening quarter of a century, which had put the cost of deep sea oceanography quite beyond the financial capabilities of many developing countries, an important factor to bear in mind when comparing the impact of the John Murray/Mabahiss Expedition on Egypt with that of the IIOE, on the Indian Ocean countries.

  2. Utilizing social media for informal ocean conservation and education: The BioOceanography Project

    NASA Astrophysics Data System (ADS)

    Payette, J.

    2016-02-01

    Science communication through the use of social media is a rapidly evolving and growing pursuit in academic and scientific circles. Online tools and social media are being used in not only scientific communication but also scientific publication, education, and outreach. Standards and usage of social media as well as other online tools for communication, networking, outreach, and publication are always in development. Caution and a conservative attitude towards these novel "Science 2.0" tools is understandable because of their rapidly changing nature and the lack of professional standards for using them. However there are some key benefits and unique ways social media, online systems, and other Open or Open Source technologies, software, and "Science 2.0" tools can be utilized for academic purposes such as education and outreach. Diverse efforts for ocean conservation and education will continue to utilize social media for a variety of purposes. The BioOceanography project is an informal communication, education, outreach, and conservation initiative created for enhancing knowledge related to Oceanography and Marine Science with an unbiased yet conservation-minded approach and in an Open Source format. The BioOceanography project is ongoing and still evolving, but has already contributed to ocean education and conservation communication in key ways through a concerted web presence since 2013, including a curated Twitter account @_Oceanography and BioOceanography blog style website. Social media tools like those used in this project, if used properly can be highly effective and valuable for encouraging students, networking with researchers, and educating the general public in Oceanography.

  3. From satellite altimetry to Argo and operational oceanography: three revolutions in oceanography

    NASA Astrophysics Data System (ADS)

    Le Traon, P. Y.

    2013-10-01

    The launch of the French/US mission Topex/Poseidon (T/P) (CNES/NASA) in August 1992 was the start of a revolution in oceanography. For the first time, a very precise altimeter system optimized for large-scale sea level and ocean circulation observations was flying. T/P alone could not observe the mesoscale circulation. In the 1990s, the ESA satellites ERS-1/2 were flying simultaneously with T/P. Together with my CLS colleagues, we demonstrated that we could use T/P as a reference mission for ERS-1/2 and bring the ERS-1/2 data to an accuracy level comparable to T/P. Near-real-time high-resolution global sea level anomaly maps were then derived. These maps have been operationally produced as part of the SSALTO/DUACS system for the last 15 yr. They are now widely used by the oceanographic community and have contributed to a much better understanding and recognition of the role and importance of mesoscale dynamics. Altimetry needs to be complemented with global in situ observations. At the end of the 90s, a major international initiative was launched to develop Argo, the global array of profiling floats. This has been an outstanding success. Argo floats now provide the most important in situ observations to monitor and understand the role of the ocean on the earth climate and for operational oceanography. This is a second revolution in oceanography. The unique capability of satellite altimetry to observe the global ocean in near-real-time at high resolution and the development of Argo were essential for the development of global operational oceanography, the third revolution in oceanography. The Global Ocean Data Assimilation Experiment (GODAE) was instrumental in the development of the required capabilities. This paper provides an historical perspective on the development of these three revolutions in oceanography which are very much interlinked. This is not an exhaustive review and I will mainly focus on the contributions we made together with many colleagues and friends.

  4. From satellite altimetry to Argo and operational oceanography: three revolutions in oceanography

    NASA Astrophysics Data System (ADS)

    Le Traon, P. Y.

    2013-07-01

    The launch of the US/French mission Topex/Poseidon (T/P) (CNES/NASA) in August 1992 was the start of a revolution in oceanography. For the first time, a very precise altimeter system optimized for large scale sea level and ocean circulation observations was flying. T/P alone could not observe the mesoscale circulation. In the 1990s, the ESA satellites ERS-1/2 were flying simultaneously with T/P. Together with my CLS colleagues, we demonstrated that we could use T/P as a reference mission for ERS-1/2 and bring the ERS-1/2 data to an accuracy level comparable to T/P. Near real time high resolution global sea level anomaly maps were then derived. These maps have been operationally produced as part of the SSALTO/DUACS system for the last 15 yr. They are now widely used by the oceanographic community and have contributed to a much better understanding and recognition of the role and importance of mesoscale dynamics. Altimetry needs to be complemented with global in situ observations. In the end of the 90s, a major international initiative was launched to develop Argo, the global array of profiling floats. This has been an outstanding success. Argo floats now provide the most important in situ observations to monitor and understand the role of the ocean on the earth climate and for operational oceanography. This is a second revolution in oceanography. The unique capability of satellite altimetry to observe the global ocean in near real time at high resolution and the development of Argo were essential to the development of global operational oceanography, the third revolution in oceanography. The Global Ocean Data Assimilation Experiment (GODAE) was instrumental in the development of the required capabilities. This paper provides an historical perspective on the development of these three revolutions in oceanography which are very much interlinked. This is not an exhaustive review and I will mainly focus on the contributions we made together with many colleagues and friends.

  5. Phytoplankton-Environmental Interactions in Reservoirs. Volume I. Papers Presented at Workshop, 10-12 April 1979, Monterey, California.

    DTIC Science & Technology

    1981-09-01

    Antarctic waters. Symp. Antarctic Oceanography. Santiago , Chile . Eppley, R.W. 1972. Temperature and phytoplankton growth in the sea. Fish. Bull. 70:1063...photorespiration is largely dependent on the partial pressure of car- bon dioxide and oxygen concentrations . When CO2 limits photosynthesis and oxygen...hardness and alkalinity concentrations (> 200 mg/i as CaCO 3). As CO2 is removed from the alkalinity _ystem, pH increases and most alkalinity is

  6. Focus: knowing the ocean: a role for the history of science.

    PubMed

    Rozwadowski, Helen M

    2014-06-01

    While most historians have treated the sea as a surface or a void, the history of science is well positioned to draw the ocean itself into history. The contributors to this Focus section build on the modest existing tradition of history of oceanography and extend that tradition to demonstrate both the insights to be gained by studying oceans historically and the critical role that the history of science should play in future environmental history of the ocean.

  7. The Canadian Diving Symposium (2nd) Held at Defence and Civil Institute of Environmental Medicine, 31 October - 1 November 1977.

    DTIC Science & Technology

    1977-11-01

    in oceanography, marine sL veying and marine engineering. The elective subjects cover such topics as hydrographic sur- veying, sounding , underwater...and Diving in Mr. J. Tomlinson D.F.E. Department of Fisheries and Marine Services L.Portable System for Ultrasonic Mr. B. EAtock, DCIEM Doppler...semi-tropical and temperate environments (1). As with all homeothermic mammals , the human body has a deep internal temperattre of approximately 37 0

  8. Mission requirements for a manned earth observatory. Volume 1, task 1: Experiment selection, definition, and documentation

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Information related to proposed earth observation experiments for shuttle sortie missions (SSM) in the 1980's is presented. The step-wise progression of study activities and the development of the rationale that led to the identification, selection, and description of earth observation experiments for SSM are listed. The selected experiments are described, defined, and documented by individual disciplines. These disciplines include: oceanography; meteorology; agriculture, forestry, and rangeland; geology; hydrology; and environmental impact.

  9. Promoting Ocean Literacy through American Meteorological Society Programs

    NASA Astrophysics Data System (ADS)

    Passow, Michael; Abshire, Wendy; Weinbeck, Robert; Geer, Ira; Mills, Elizabeth

    2017-04-01

    American Meteorological Society Education Programs provide course materials, online and physical resources, educator instruction, and specialized training in ocean, weather, and climate sciences (https://www.ametsoc.org/ams/index.cfm/education-careers/education-program/k-12-teachers/). Ocean Science literacy efforts are supported through the Maury Project, DataStreme Ocean, and AMS Ocean Studies. The Maury Project is a summer professional development program held at the US Naval Academy designed to enhance effective teaching of the science, technology, engineering, and mathematics of oceanography. DataStreme Ocean is a semester-long course offered twice a year to participants nationwide. Created and sustained with major support from NOAA, DS Ocean explores key concepts in marine geology, physical and chemical oceanography, marine biology, and climate change. It utilizes electronically-transmitted text readings, investigations and current environmental data. AMS Ocean Studies provides complete packages for undergraduate courses. These include online textbooks, investigations manuals, RealTime Ocean Portal (course website), and course management system-compatible files. It can be offered in traditional lecture/laboratory, completely online, and hybrid learning environments. Assistance from AMS staff and other course users is available.

  10. Brachiopod δ18O values do reflect ambient oceanography: Lacepede Shelf, southern Australia

    NASA Astrophysics Data System (ADS)

    James, Noel P.; Bone, Yvonne; Kurtis Kyser, T.

    1997-06-01

    Although commonly used as proxies for attributes of ancient ocean waters, the δ18O values of brachiopods from modern seas are little studied. To evaluate the utility of brachiopods as recorders of regional oceanography, modern shells from the Lacepede Shelf (25 000 km2) of southern Australia were analyzed for δ18O, and the results were compared to the values of ambient seawater. Southern Ocean waters cover this area of extensive cool-water carbonate deposition, but there are distinct sectors of seasonal upwelling and lesser fluvial outflow. δ18O values of brachiopods across the environmental spectrum from 40 to 300 m water depth are in general isotopic equilibrium with surrounding seawater. Nevertheless, δ18O values from individual sample sites vary as much as 0.60‰. The area of cold-water upwelling in particular is clearly delimited by a group of high δ18O values. The range of values across this one shelf, on the order of 2.5‰, is similar to the range of values postulated on the basis of similar results for secular changes in many ancient oceans.

  11. Subseabed Disposal Project annual report, FY85 to termination of project: Physical Oceanography and Water Column Geochemistry Studies, October 1984 through May 1986

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kupferman, S.L.

    This report covers the work of the Physical Oceanography and Water Column Geochemistry (POWCG) Studies Group of the Subseabed Disposal Project (SDP) from October 1984 to termination of the project in May 1986. The overview of the work includes an introduction, general descriptions of the activities, and a summary. Detailed discussions are included as appendices. During the period of this report the POWCG Studies Group held a meeting to develop a long-term research plan for the Nares Abyssal Plain, which was recently designated as a study area for the Environmental Study Group of the SDP. The POWCG Studies Group hasmore » also planned and participated in two interdisciplinary oceanographic missions to the Nares which have resulted in the acquisition of data and samples which can be used to begin to understand the workings of the ecosystem at the site, and for developing a preliminary site assessment. The papers in the appendices have been processed for inclusion in the Energy Data Base.« less

  12. Strategic science: new frameworks to bring scientific expertise to environmental disaster response

    USGS Publications Warehouse

    Stoepler, Teresa Michelle; Ludwig, Kristin A.

    2015-01-01

    Science is critical to society’s ability to prepare for, respond to, and recover from environmental crises. Natural and technological disasters such as disease outbreaks, volcanic eruptions, hurricanes, oil spills, and tsunamis require coordinated scientific expertise across a range of disciplines to shape effective policies and protocols. Five years after the Deepwater Horizon oil spill, new organizational frameworks have arisen for scientists and engineers to apply their expertise to disaster response and recovery in a variety of capacities. Here, we describe examples of these opportunities, including an exciting new collaboration between the Association for the Sciences of Limnology and Oceanography (ASLO) and the Department of the Interior’s (DOI) Strategic Sciences Group (SSG).

  13. 78 FR 53285 - Seagoing Barges

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-29

    ... exclusively in instruction in oceanography or limnology, or both, or exclusively in oceanographic research.... 441 an oceanographic research vessel ``. . . being employed exclusively in instruction in oceanography...

  14. The Chemical Oceanographer.

    ERIC Educational Resources Information Center

    Abel, Robert B.

    1983-01-01

    Discusses career opportunities in oceanography for chemists. These include opportunities related to food, physical oceanography, mining, drugs, and other areas. Educational background needed and degree program are considered. (JN)

  15. Modeling & Simulation Education for the Acquisition and T&E Workforce: FY07 Deliverable Package

    DTIC Science & Technology

    2007-12-01

    oceanography, meteorology, and near- earth space science) to represent how systems interact with and are influenced by their environment. E12.1 E12.2 E12.3 E12.4...fundamentals of terrestrial science (geology, oceanography, meteorology, and near- earth space science) to represent how systems interact with and...description: Describe the fundamentals of terrestrial science (geology, oceanography, meteorology, and near- earth space science) to represent how systems

  16. Centre of Excellence in Observational Oceanography: Nippon Foundation and POGO Supported Programme at the Bermuda Institute of Ocean Sciences

    NASA Astrophysics Data System (ADS)

    Plumley, F. G.; Sathyendranath, S.; Frouin, R.; Knap, T.

    2008-05-01

    Building on previous experience in capacity building for ocean observations, the Nippon Foundation (NF) and the Partnership for Observations of the Global Oceans (POGO) have announced a new Centre of Excellence (C of E) at the Bermuda Institute of Ocean Sciences (BIOS). The goals of the C of E are to expand the world-wide capacity and expertise to observe the oceans and to expand capacity-building projects and promote international collaboration and networking in ocean sciences. Over the past 104 years, BIOS has built a global reputation in blue-water oceanography, coral reef ecology, and the relationships between ocean health and human health coupled with high quality education programmes that provide direct, hands-on experience with BIOS-based research. The C of E at BIOS will build upon this model to establish a new, graduate-level education and training programme in operational oceanography. The 10 month Programme will offer course modules in ocean disciplines with a focus on observatory sciences complemented by hands-on training in observational methods and techniques based on the multi-disciplinary expertise of BIOS and BIOS-affiliated scientists who direct ongoing, ocean observational programmes such as: - Hydrostation S, since 1954; - Bermuda Atlantic Time-series Study, since 1988; - Oceanic Flux Program sediment trap time-series, since 1978; - Bermuda Test-Bed and Science Mooring, since 1994; - Bermuda Microbial Observatory, since 1997; - Bermuda Bio-Optics Program, since 1992; - Atmospheric chemistry and air-sea fluxes, since 1990 Additional areas of BIOS research expertise will be incorporated in the C of E to broaden the scope of education and training. These include the nearshore observational network of the BIOS Marine Environmental Program and the environmental air-water chemistry network of the Bermuda Environmental Quality Program. A key resource of the C of E is the newly acquired 168 ft. research vessel, the RV Atlantic Explorer, which was specifically designed to provide for ocean research and education (e.g., sufficient berths for scientists and the NF- POGO Scholars; an education-specific classroom). The Atlantic Explorer will serve as a unique platform for the NF-POGO Scholars to gain hands-on, at-sea experience as participants on all scheduled research cruises. The NF-POGO Scholars will take courses that focus on the theoretical and policy side of observational oceanography and participate in a Core Skills module that emphasizes numeracy, data analysis, science management, and written and oral scientific communication. There will be one Regional Training Programme for a Developing Country each year, focused on local issues and how to resolve them. The course is open to 10 participants from developing countries (or countries with economies in transition). NF- POGO Scholars must have at least a first degree in science. Preference will be given to applicants who currently hold a position in a research or academic institution in a developing country and anticipate returning to the country after the training period. Candidates must demonstrate immediate relevance of their training to on-going or planned ocean observations in their home country.

  17. NOAC Yokosuka

    Science.gov Websites

    Naval Oceanography Antisubmarine Warfare Center Fleet Activities Yokosuka The NOAC Yokosuka Portal has moved to Naval Oceanography Portal - Public Facing(NOP-PF) Please update your bookmarks. You will

  18. Early Student Support for Process Studies of Surface Freshwater Dispersal

    DTIC Science & Technology

    2016-06-24

    Hole Oceanographic Institution REPORT NUMBER Department of Physical Oceanography - MS #29 FINAL Woods Hole, MA 02543 9. SPONSORING/MONITORING AGENCY...s proJect supports .e researc m p ysrcal oceanography of a Ph.D. student m the MIT/WHO! Jomt Program. The prOJect beoefited from, and... oceanography and has presented his work at meetings and conferences. He is working on manuscripts for publication and expects to complete his Ph.D. in 20 18

  19. Extended Analysis of the PhilSea10 Data Set from the Western Tropical Pacific and Transitioning Results to the Operational Navy

    DTIC Science & Technology

    2015-09-30

    term goal is to enhance our understanding of coastal oceanography by means of applying simple dynamical theories to high-quality observations...obtained in the field. My primary area of expertise is physical oceanography , but I also enjoy collaborating with biological, chemical, acoustical, and...for the operational models. The results can be understood by understanding the oceanography that sound is propagating through, and its variability

  20. The International System of Units (SI) in Oceanography. Report of IAPSO Working Group on Symbols, Units and Nomenclature in Physical Oceanography (SUN). Unesco Technical Papers in Marine Science 45. IAPSO Publication Scientifique No. 32.

    ERIC Educational Resources Information Center

    United Nations Educational, Scientific, and Cultural Organization, Paris (France). Div. of Marine Sciences.

    This report introduces oceanographers to the International System of Units (SI) in physical oceanography. The SI constitutes a universal language, designed to be understood by all scientists. It facilitates their mutual comprehension and exchange of views and results of their work. The first part of the report is devoted to physical quantities,…

  1. Graduate students in oceanography: Recruitment, success, and career prospects

    NASA Astrophysics Data System (ADS)

    Nowell, Arthur R. M.; Hollister, Charles D.

    Graduate education, student quality, stipend support, and subsequent employment form a triad of concern to many oceanographers. While the number of graduate degree programs in oceanography in the U.S. exceeds 50, remarkably few data are available on numbers of student applications, student survival rates, the quality of the applicants and accepted students, and their subsequent employment.Consequently, most discussions within an institution are based on data from a single school, while most statements made to federal government program managers by scientists are based on personal perceptions and feelings. With the emerging global initiatives, which are very labor intensive, it appears appropriate to ask, “Is there an impending crisis in graduate education in oceanography?” Widespread concern about availability of new talent, the quality of incoming students, and the overall national crisis in science and engineering student recruitment has led many scientists to state that oceanography has widespread problems in terms of student numbers and, more importantly, quality. Often, when a scientist does not find a student in the spring application rites, the scientist declares there is a national shortage of well-qualified students. Moreover, in certain subdisciplines of the field (e.g., physical oceanography) the crisis is perceived as severe and immediate, though as we shall see, physical oceanography is in an improving mode and is also experiencing an interesting increase in the numbers of well-qualified women applicants.

  2. Astrometry - Naval Oceanography Portal

    Science.gov Websites

    section Advanced Search... Sections Home Time Earth Orientation Astronomy Meteorology Oceanography Ice You is the branch of astronomy concerned with the determination of positions, proper motions, and

  3. Natural Resources Technologies: A Suggested Post High School Program Development Guide.

    ERIC Educational Resources Information Center

    Soles, Robert L.

    This post high school program development guide considers the following natural resources technological areas: air pollution control, forest, rangeland, minerals and mineral fuels, geological, outdoor recreation, soil, urban-regional planning, landscape, water, wastewater, oceanography, wildlife, fish, and marine life. Within each area, the…

  4. Use-Inspired Data Information Services for NOAA's National Centers for Environmental Information

    NASA Astrophysics Data System (ADS)

    Owen, T.

    2015-12-01

    Leveraging environmental data and information to make specific, informed decisions is critical to the Nation's economy, environment, and public safety. The ability to successfully transform past and recent data into environmental intelligence is predicated on the articulation of use-inspired, actionable requirements for product and service development. With the formation of the National Centers for Environmental Information (NCEI), there is a unique opportunity to revolutionize the delivery of information services in support of customer requirements. Such delivery cuts across the disciplines of meteorology, geophysics, and oceanography, as well as regions and sectors for the United States. At NCEI, information services are based on a two-way dialogue that (i) raises awareness of environmental data products and services and (ii) captures user needs for product and services sustainment and development. To this end, NCEI information services has developed a formal process for collecting user needs and translating them into requirements. This process reflects economically-prevalent and regionally-focused sectors based on Census Bureau classifications.

  5. Barely Afloat, or Please Pass the Plankton

    ERIC Educational Resources Information Center

    Hemenway, Leone

    1974-01-01

    Although oceanography is included in most elementary school curricula, there are few easily read oceanography books for the school library. An annotated list of 70 recommended titles is included. (PF)

  6. Contact Information Regarding Products - Naval Oceanography Portal

    Science.gov Websites

    section Advanced Search... Sections Home Time Earth Orientation Astronomy Meteorology Oceanography Ice You UTGPS (GPS-based UT1-like quantity). Astronomy Products Astronomical phenomena, astronomical data

  7. Moored Observations of Internal Waves in Luzon Strait: 3-D Structure, Dissipation, and Evolution

    DTIC Science & Technology

    2016-03-01

    Strait: 3-D Structure, Dissipation, and Evolution Matthew H. Alford Scripps Institution of Oceanography 9500 Gilman Drive, mail code 0213 La...during IWISE. This work is done in collaboration with Craig Lee (APL/UW), and Dan Rudnick and Shaun Johnston at Scripps Institution of Oceanography ...Y.J. Yang, M.-H. Chang, and Q. Li. 2011. From Luzon Strait to Dongsha Plateau: Stages in the life of an internal wave. Oceanography 24(4):64–77

  8. Oceanography, Volume 5, Number 1

    DTIC Science & Technology

    1992-01-01

    SIGNIFICANT NUMBER OF COLOR PAGES WHICH DO NOT REPRODUCE LEGIBLY ON BLACK AND WHITE MICROFICHE. N k At H I R I OCEANOGRAPHY"SERVIN(i OAIrAN SCIENC!’ I\\ S APPLI...79 Cglw I;E.TU D Oceanographv (ISSN 1042-8275) is published by The Oceanography Society, 1701 K Street, NW.. #300. Washington. D.C., 20006-1509...focused on the exciting topic of "Words in Our Publications." The polarization of 1701 K Street, N W. #300Washington, D C 20006-1509 this topic quickly

  9. From Chaos To MAOS: Launching an Oceanography High School.

    ERIC Educational Resources Information Center

    Martin, Marlene

    1997-01-01

    Discusses the background of a specialty high school in Monterey Bay, California focusing on oceanography. Describes the collaborative research relationship that exists between the school and the scientific community. (DDR)

  10. Amery Ice Shelf

    Atmospheric Science Data Center

    2013-04-16

    ... funded by NASA and undertaken by the Scripps Institution of Oceanography and the Australian Antarctic Division. The Multi-angle Imaging ... Laboratory), and Helen A. Fricker (Scripps Institution of Oceanography). Other formats available at JPL Oct 6, ...

  11. Oceanic Transport

    NASA Technical Reports Server (NTRS)

    Chase, R.; Mcgoldrick, L.

    1984-01-01

    The importance of large-scale ocean movements to the moderation of Global Temperature is discussed. The observational requirements of physical oceanography are discussed. Satellite-based oceanographic observing systems are seen as central to oceanography in 1990's.

  12. The Central Role of the Mississippi River and its Delta in the Oceanography, Ecology and Economy of the Gulf of Mexico: A Synthesis

    NASA Astrophysics Data System (ADS)

    Kolker, A.; Chu, P. Y.; Taylor, C.; Roberts, B. J.; Renfro, A. A.; Peyronnin, N.; Fitzpatrick, C.

    2017-12-01

    While it has long been recognized that the Mississippi River is the largest source of freshwater, nutrients and sediments to the Gulf of Mexico, many questions remain unanswered about the impacts of the material on oceanography of the system. Here we report on the results of a regional synthesis study that examined how the Mississippi River and its delta influence the oceanography, ecology and the economy of the Gulf of Mexico. By employing a series of expert-opinion working groups, and using multi-dimensional numerical physical oceanographic models coupled to in-situ environmental data, this project is working to quantify how variability in discharge, meteorological forcings, and seasonal conditions influence the spatial distribution of the Mississippi River plume and its influence. Results collected to date indicate that the dimensions of the river plume are closely coupled to discharge, but in a non-linear fashion, that incorporates fluxes, flow distributions, offshore and meteorological forcings in the context of the local bathymetry. Ongoing research is using these human and numerical tools to help further elucidate the impacts of this river on the biogeochemistry of the region, and the distribution of key macrofauna. Further work by this team is examining how the delta's impacts on the ecology of the region, and the role that the delta plays as both a source of material for key offshore fauna, and a barrier to dispersal. This information is being used to help further the development of a research agenda for the northern Gulf of Mexico that will be useful through the mid-21st century.

  13. 78 FR 12676 - Timing Requirements for the Submission of a Site Assessment Plan (SAP) or General Activities Plan...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-25

    ...: Including: (1) Hazard information Meteorology, oceanography, sediment transport, geology, and shallow...: (1) Hazard information Meteorology, oceanography, sediment transport, geology, and shallow geological...

  14. Tropical Applications - Naval Oceanography Portal

    Science.gov Websites

    are here: Home › FNMOC › Tropical Applications FNMOC Logo FNMOC Navigation Meteorology Products Oceanography Products Tropical Applications Climatology and Archived Data Info Tropical Applications Satellite

  15. Earth Resources: A continuing bibliography with indexes, issue 1

    NASA Technical Reports Server (NTRS)

    1974-01-01

    This bibliography lists 616 reports, articles, and other documents introduced into the NASA scientific and technical information system between January 1974 and March 1974. Emphasis is placed on the use of remote sensing and geophysical instrumentation in spacecraft and aircraft to survey and inventory, natural resources and urban areas. Subject matter is grouped according to agriculture and forestry, environmental changes and cultural resources, geodesy and cartography, geology and mineral resources, oceanography and marine resources, hydrology and water management, data processing and distribution systems, instrumentation and sensors, and economic analysis.

  16. Earth resources: A continuing bibliography with indexes, issue 3

    NASA Technical Reports Server (NTRS)

    1975-01-01

    This bibliography lists 472 reports, articles, and other documents introduced into the NASA scientific and technical information system between July 1974 and September 1974. Emphasis is placed on the use of remote sensing and geophysical instrumentation in spacecraft and aircraft to survey and inventory, natural resources and urban areas. Subject matter is grouped according to agriculture and forestry, environmental changes and cultural resources, geodesy and cartography, geology and mineral resources, oceanography and marine resources, hydrology and water management, data processing, and distribution systems, instrumentation and sensors, and economic analysis.

  17. Brave New Media World: Science Communication Voyages through the Global Seas

    NASA Astrophysics Data System (ADS)

    Clark, C. L.; Reisewitz, A.

    2010-12-01

    By leveraging online tools, such as blogs, Twitter, Facebook, Google Earth, flickr, web-based discussion boards, and a bi-monthly electronic magazine for the non-scientist, Scripps Institution of Oceanography is taking science communications out of the static webpage to create interactive journeys that spark social dialogue and helped raise awareness of science-based research on global marine environmental issues. Several new initiatives are being chronicled through popular blogs and expedition web sites as researchers share interesting scientific facts and unusual findings in near real-time.

  18. Earth resources: A continuing bibliography with indexes (issue 60)

    NASA Technical Reports Server (NTRS)

    1989-01-01

    This bibliography lists 485 reports, articles, and other documents introduced into the NASA scientific and technical information system between October 1 and December 31, 1988. Emphasis is placed on the use of remote sensing and geophysical instrumentation in spacecraft and aircraft to survey and inventory natural resources and urban areas. Subject matter is grouped according to agriculture and forestry, environmental changes and cultural resources, geodesy and cartography, geology and mineral resources, oceanography and marine resources, hydrology and water management, data processing and distribution systems, and instrumentation and sensors.

  19. Development of specifications for surface and subsurface oceanic environmental data

    NASA Technical Reports Server (NTRS)

    Wolff, P. M.

    1976-01-01

    The existing need for synoptic subsurface observations was demonstrated giving special attention to the requirements of meteorology. The current state of synoptic oceanographic observations was assessed; a preliminary design for the Basic Observational Network needed to fulfill the minimum needs of synoptic meteorology and oceanography was presented. There is an existing critical need for such a network in the support of atmospheric modeling and operational meteorological prediction, and through utilization of the regional water mass concept an adequate observational system can be designed which is realistic in terms of cost and effort.

  20. Earth resources: A continuing bibliography with indexes (issue 61)

    NASA Technical Reports Server (NTRS)

    1989-01-01

    This bibliography lists 606 reports, articles, and other documents introduced into the NASA scientific and technical information system between January 1 and March 31, 1989. Emphasis is placed on the use of remote sensing and geophysical instrumentation in spacecraft and aircraft to survey and inventory natural resources and urban areas. Subject matter is grouped according to agriculture and forestry, environmental changes and cultural resources, geodesy and cartography, geology and mineral resources, oceanography and marine resources, hydrology and water management, data processing and distribution systems, and instrumentation and sensors, and economic analysis.

  1. Earth Resources: a Continuing Bibliography with Indexes (Issue 63)

    NASA Technical Reports Server (NTRS)

    1989-01-01

    This bibliography lists 449 reports, articles, and other documents introduced into the NASA scientific and technical information system between July 1 and September 31, 1989. Emphasis is placed on the use of remote sensing and geophysical instrumentation in spacecraft and aircraft to survey and inventory natural resources and urban areas. Subject matter is grouped according to agriculture and forestry, environmental changes and cultural resources, geodesy and cartography, geology and mineral resources, oceanography and marine resources, hydrology and water management, data processing and distribution systems, and instrumentation and sensors.

  2. Earth resources: A continuing bibliography with indexes (issue 59)

    NASA Technical Reports Server (NTRS)

    1988-01-01

    This bibliography lists 518 reports, articles, and other documents introduced into the NASA scientific and technical information system between July 1 and September 30, 1988. Emphasis is placed on the use of remote sensing and geophysical instrumentation in spacecraft and aircraft to survey and inventory natural resources and urban areas. Subject matter is grouped according to agriculture and forestry, environmental changes and cultural resources, geodesy and cartography, geology and mineral resources, oceanography and marine resources, hydrology and water management, data processing and distribution systems, and instrumentation and sensors.

  3. Introductory Oceanography Taught as a Laboratory Science--An Experiment That Worked.

    ERIC Educational Resources Information Center

    Anderson, Franz E.

    1979-01-01

    Describes a college level introductory oceanography course that incorporates a hands-on laboratory component. The activities include the determination of density and buoyancy, light transmission in sea water, and wave refraction. (MA)

  4. Historical Photos, Artwork, and Objects - Naval Oceanography Portal

    Science.gov Websites

    section Advanced Search... Sections Home Time Earth Orientation Astronomy Meteorology Oceanography Ice You along with a vast collection of rare astronomy texts. USNO Master Clock Time Javascript must be Enabled

  5. The Fleet Numerical Meteorology and Oceanography Center (FNMOC) - Naval

    Science.gov Websites

    Prediction Charts (EFS). WxMAP depictions of NAVGEM predictions for side-by-side comparison with NCEP global NWP model (GFS) are also available. Oceanography Products This area provides Global & Regional

  6. Perspectives on chemical oceanography in the 21st century: Participants of the COME ABOARD Meeting examine aspects of the field in the context of 40 years of DISCO

    USGS Publications Warehouse

    Fassbender, Andrea J.; Palevsky, Hilary I.; Martz, Todd R.; Ingalls, Anitra E.; Gledhill, Martha; Fawcett, Sarah E.; Brandes, Jay; Aluwihare, Lihini; Anderson, Robert M.; Bender, Sara; Boyle, Ed; Bronk, Debbie; Buesseler, Ken; Burdige, David J.; Casciotti, Karen; Close, Hilary; Conte, Maureen; Cutter, Greg; Estapa, Meg; Fennel, Katja; Ferron, Sara; Glazer, Brian; Goni, Miguel; Grand, Max; Guay, Chris; Hatta, Mariko; Hayes, Chris; Horner, Tristan; Ingall, Ellery; Johnson, Kenneth G.; Juranek, Laurie; Knapp, Angela; Lam, Phoebe; Luther, George; Matrai, Paty; Nicholson, David; Paytan, Adina; Pellenbarg, Robert; Popendorf, Kim; Reddy, Christopher M.; Ruttenberg, Kathleen; Sabine, Chris; Sansone, Frank; Shaltout, Nayrah; Sikes, Liz; Sundquist, Eric T.; Valentine, David; Wang, Zhao (Aleck); Wilson, Sam; Barrett, Pamela; Behrens, Melanie; Belcher, Anna; Biermann, Lauren; Boiteau, Rene; Clarke, Jennifer; Collins, Jamie; Coppola, Alysha; Ebling, Alina M.; Garcia-Tigreros, Fenix; Goldman, Johanna; Guallart, Elisa F.; Haskell, William; Hurley, Sarah; Janssen, David; Johnson, Winn; Lennhartz, Sinikka; Liu, Shuting; Rahman, Shaily; Ray, Daisy; Sarkar, Amit; Steiner, Zvika; Widner, Brittany; Yang, Bo

    2017-01-01

    The questions that chemical oceanographers prioritize over the coming decades, and the methods we use to address these questions, will define our field's contribution to 21st century science. In recognition of this, the U.S. National Science Foundation and National Oceanic and Atmospheric Administration galvanized a community effort (the Chemical Oceanography MEeting: A BOttom-up Approach to Research Directions, or COME ABOARD) to synthesize bottom-up perspectives on selected areas of research in Chemical Oceanography. Representing only a small subset of the community, COME ABOARD participants did not attempt to identify targeted research directions for the field. Instead, we focused on how best to foster diverse research in Chemical Oceanography, placing emphasis on the following themes: strengthening our core chemical skillset; expanding our tools through collaboration with chemists, engineers, and computer scientists; considering new roles for large programs; enhancing interface research through interdisciplinary collaboration; and expanding ocean literacy by engaging with the public. For each theme, COME ABOARD participants reflected on the present state of Chemical Oceanography, where the community hopes to go and why, and actionable pathways to get there. A unifying concept among the discussions was that dissimilar funding structures and metrics of success may be required to accommodate the various levels of readiness and stages of knowledge development found throughout our community. In addition to the science, participants of the concurrent Dissertations Symposium in Chemical Oceanography (DISCO) XXV, a meeting of recent and forthcoming Ph.D. graduates in Chemical Oceanography, provided perspectives on how our field could show leadership in addressing long-standing diversity and early-career challenges that are pervasive throughout science. Here we summarize the COME ABOARD Meeting discussions, providing a synthesis of reflections and perspectives on the field.

  7. An oceanography summer school in Ghana, West Africa

    NASA Astrophysics Data System (ADS)

    Arbic, B. K.; Ansong, J. K.; Johnson, W.; Nyadjro, E. S.; Nyarko, E.

    2016-02-01

    Because oceanography is a global science, it clearly benefits from the existence of a world-wide network of oceanographers. As with most STEM disciplines, sub-Saharan Africa is not as well represented in the field of oceanography as it should be, given its large population. The need for oceanographers in sub-Saharan Africa is great, due to a long list of ocean-related issues affecting African development, including but not limited to fishing, oil drilling, sea level rise, coastal erosion, shipping, and piracy. We view this as an opportunity as well as a challenge. Many of the world's fastest growing economies are in sub-Saharan Africa, and STEM capacity building could further fuel this growth. With support from the US National Science Foundation, we ran an oceanography summer school from August 24-27, 2015, at the Regional Maritime University (RMU) in Ghana, West Africa. This first summer school was lecture-based, with a focus on basic chemical oceanography, basic physical oceanography, ocean modeling, and satellite oceanography. About 35 participants came to almost every lecture, and about 20 other participants came to some of the lectures as their time permitted. The participants included RMU faculty, 12 students from the Kwame Nkrumah University of Science and Technology, one Associate Oceanographer from the University of Ghana, and some participants from private sector companies and Ghanaian governmental agencies. There were long and lively discussions at the end of each lecture, and there was a lengthy discussion at the conclusion of the school on how to improve future summer schools. In 2016 and 2017, we plan to divide into smaller groups so that participants can pursue their particular interests in greater depth, and to allow time for student presentations. We also plan to begin exploring the potential for research partnerships, and to utilize distance learning to involve more faculty and students from locations throughout Ghana and perhaps from even other countries in sub-Saharan Africa.

  8. Applied Coastal Oceanography--A Course That Integrates Science and Business.

    ERIC Educational Resources Information Center

    Montvilo, Jerome A.; Levin, Douglas R.

    1998-01-01

    Describes a course designed to teach students the fundamentals of coastal oceanography and the scientific methodologies used in studying this field. Business applications of this information also play an important role in the course. (DDR)

  9. Oceanography, the new Frontier for the Twenty-First Century

    ERIC Educational Resources Information Center

    Marshall, Nelson

    1973-01-01

    Discusses the discipline of oceanography and some of its specific areas of concern. Describes the major resources of the oceans and reflects on how these may be utilized and shared by nations in the future. (JR)

  10. Mentoring Women in Physical Oceanography

    NASA Astrophysics Data System (ADS)

    Gerber, Lisa M.; Lozier, M. Susan

    2010-08-01

    MPOWIR Pattullo Conference; Charleston, South Carolina, 23-26 May 2010; Initiated in 2004, Mentoring Physical Oceanography Women to Increase Retention (MPOWIR) is a community-initiated and community-led program aimed at providing mentoring to junior women in physical oceanography to improve their retention in the field. The centerpiece of the MPOWIR program is the Pattullo Conference, a two-and-a-half-day mentoring event held biannually. The second conference was held in South Carolina. The conference is named for June Pattullo, the first woman to receive a Ph.D. in physical oceanography. The goals of the Pattullo Conference are to build community networks among junior and senior scientists, to provide junior scientists with feedback on their current and planned research projects, to provide advice to junior scientists on their career goals, to introduce both senior and junior scientists to aspects of professional development, and to raise awareness of issues confronting junior women among the senior scientist community.

  11. Macroecology: A Primer for Biological Oceanography

    NASA Astrophysics Data System (ADS)

    Li, W. K. W.

    2016-02-01

    Macroecology is the study of ecological patterns discerned at a spatial, temporal, or organization scale higher than that at which the focal entities interact. Such patterns are statistical or emergent manifestations arising from the ensemble of component entities. Although macroecology is a neologism largely based in terrestrial and avian ecology, macroscopic patterns have long been recognised in biological oceanography. Familiar examples include Redfield elemental stoichiometry, Elton trophic pyramids, Sheldon biomass spectrum, and Margalef life-forms mandala. Macroecological regularities can often be found along various continua, such as along body size in power-law scaling or along habitat temperature in metabolic theory. Uniquely in oceanography, a partition of the world ocean continuum into Longhurst biogeochemical provinces provides a spatial organization well-suited for macroecological investigations. In this rational discrete approach, fundamental processes in physical and biological oceanography that differentiate a set of non-overlapping ocean regions also appear to shape the macroecological structure of phytoplankton communities.

  12. An example of fisheries oceanography: Walleye pollock in Alaskan waters

    NASA Astrophysics Data System (ADS)

    Schumacher, Jim; Kendall, Arthur W.

    1995-07-01

    A major area of research in fisheries oceanography examines relationships between recruitment dynamics of fish populations and the marine environment. A primary goal is to understand the natural causes of variability in year-class strength of commercially valuable species and apply this knowledge to management [Perry, 1994]. The paradigm that the majority of mortality occurs during transport of early life history stages from spawning to nursery grounds [Rothschild, 1986; Houde, 1987] provides an initial temporal focus for most research. The spatial domain includes the region occupied by early life history stages. Since global climate variability impacts regional ecosystem dynamics, however, the spatial domain often must be expanded. The relative importance and manifestation of biological factors [starvation and predation] that limit survival varies each year. Marked interannual and longer period variations in temperature (an influence on metabolic rates and behavior), transport of planktonic stages, and turbulence can exert an influence on both survival of early life history stages, and distribution of juveniles and adults. To understand how these environmental factors influence reproductive success of fish stocks also requires knowledge of the impact of these factors on predators and prey throughout the food web.

  13. A Comparative Model of Field Investigations: Aligning School Science Inquiry with the Practices of Contemporary Science

    ERIC Educational Resources Information Center

    Windschitl, Mark; Dvornich, Karen; Ryken, Amy E.; Tudor, Margaret; Koehler, Gary

    2007-01-01

    Field investigations are not characterized by randomized and manipulated control group experiments; however, most school science and high-stakes tests recognize only this paradigm of investigation. Scientists in astronomy, genetics, field biology, oceanography, geology, and meteorology routinely select naturally occurring events and conditions and…

  14. Dynamic biogeochemical provinces in the global ocean

    NASA Astrophysics Data System (ADS)

    Reygondeau, Gabriel; Longhurst, Alan; Martinez, Elodie; Beaugrand, Gregory; Antoine, David; Maury, Olivier

    2013-12-01

    In recent decades, it has been found useful to partition the pelagic environment using the concept of biogeochemical provinces, or BGCPs, within each of which it is assumed that environmental conditions are distinguishable and unique at global scale. The boundaries between provinces respond to features of physical oceanography and, ideally, should follow seasonal and interannual changes in ocean dynamics. But this ideal has not been fulfilled except for small regions of the oceans. Moreover, BGCPs have been used only as static entities having boundaries that were originally established to compute global primary production. In the present study, a new statistical methodology based on non-parametric procedures is implemented to capture the environmental characteristics within 56 BGCPs. Four main environmental parameters (bathymetry, chlorophyll a concentration, surface temperature, and salinity) are used to infer the spatial distribution of each BGCP over 1997-2007. The resulting dynamic partition allows us to integrate changes in the distribution of BGCPs at seasonal and interannual timescales, and so introduces the possibility of detecting spatial shifts in environmental conditions.

  15. The Sky This Week, 2015 December 15 - 22 - Naval Oceanography Portal

    Science.gov Websites

    section Advanced Search... Sections Home Time Earth Orientation Astronomy Meteorology Oceanography Ice You . Even my high-school astronomy teacher, who served as a gunnery officer on a convoy transport in World

  16. 32 CFR 770.31 - List of major naval installations in the State of Hawaii and cognizant commanders authorized to...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 96860. (2) Naval Western Oceanography Center, Pearl Harbor. Contact: Commanding Officer, Naval Western Oceanography Center, Box 113, Pearl Harbor, HI 96860. (3) Naval Air Station, Barbers Point. Contact: Commanding...

  17. 32 CFR 770.31 - List of major naval installations in the State of Hawaii and cognizant commanders authorized to...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 96860. (2) Naval Western Oceanography Center, Pearl Harbor. Contact: Commanding Officer, Naval Western Oceanography Center, Box 113, Pearl Harbor, HI 96860. (3) Naval Air Station, Barbers Point. Contact: Commanding...

  18. 32 CFR 770.31 - List of major naval installations in the State of Hawaii and cognizant commanders authorized to...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 96860. (2) Naval Western Oceanography Center, Pearl Harbor. Contact: Commanding Officer, Naval Western Oceanography Center, Box 113, Pearl Harbor, HI 96860. (3) Naval Air Station, Barbers Point. Contact: Commanding...

  19. 32 CFR 770.31 - List of major naval installations in the State of Hawaii and cognizant commanders authorized to...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 96860. (2) Naval Western Oceanography Center, Pearl Harbor. Contact: Commanding Officer, Naval Western Oceanography Center, Box 113, Pearl Harbor, HI 96860. (3) Naval Air Station, Barbers Point. Contact: Commanding...

  20. 32 CFR 770.31 - List of major naval installations in the State of Hawaii and cognizant commanders authorized to...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 96860. (2) Naval Western Oceanography Center, Pearl Harbor. Contact: Commanding Officer, Naval Western Oceanography Center, Box 113, Pearl Harbor, HI 96860. (3) Naval Air Station, Barbers Point. Contact: Commanding...

  1. Inverse Problems in Hydrologic Radiative Transfer

    DTIC Science & Technology

    2003-09-30

    Light scattering by nonspherical particles: application to coccoliths detached from Emiliania huxleyi, Limnology and Oceanography, 46, 1438⎯1454...coccoliths detached from Emiliania huxleyi, Limnology and Oceanography, 46, 1438⎯1454. G.C. Boynton and H.R. Gordon, 2002, An irradiance inversion

  2. Application of optimal data assimilation techniques in oceanography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, R.N.

    Application of optimal data assimilation methods in oceanography is, if anything, more important than it is in numerical weather prediction, due to the sparsity of data. Here, a general framework is presented and practical examples taken from the author`s work are described, with the purpose of conveying to the reader some idea of the state of the art of data assimilation in oceanography. While no attempt is made to be exhaustive, references to other lines of research are included. Major challenges to the community include design of statistical error models and handling of strong nonlinearity.

  3. Dissertations Initiative for the Advancement of Limnology and Oceanography (DIALOG)

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The DIALOG Program was founded by the American Society of Limnology and Oceanography (ASLO), in order to reduce the historical, institutional and philosophical barriers that limit the exchange of information between limnologists and oceanographers, and to foster interdisciplinary and inter-institutional research. This was achieved by targeting a recent cohort of Ph.D. recipients whose work included a biological component of limnology or oceanography. The program included: (1) publication of the submitted Ph.D. dissertation abstracts; (2) a symposium to facilitate exchange across institutions and disciplines; and (3) establishment of a centralized data base for applicant characterization and tracking.

  4. ASW Reach-Back Cell Oceanography Analysis System (ARCOAS) Version 3 User’s Guide

    DTIC Science & Technology

    2012-02-24

    65 Table of Figures Figure 2.1: Warning dialog box indicating ActiveX ...Click OK in response to the message box indicating that ActiveX controls are being used by the application (Figure 2.1). Figure 2.1: Warning...dialog box indicating ActiveX controls could be unsafe. 3. Open an existing map or create a new empty map. 4. Start ARCOAS by clicking the ARCOAS

  5. Applications of remote sensing data to the Alaskan environment

    NASA Technical Reports Server (NTRS)

    Belon, A. E.; Iller, J. M.

    1973-01-01

    The ERTS program provides a means to overcome the formidable logistic and economic costs of preparing environmental surveys of the vast and relatively unexplored regions of Alaska. There is an excellent potential in satellite remote sensing to benefit Federal, state, local, and private agencies, by providing a new synoptic data base which is necessary for the preparation of the needed surveys and the search for solutions to environmental management problems. One approach in coupling satellite data to Alaskan problems is a major program initiated by the University of Alaska and funded by NASA's Goddard Space Flight Center. This included 12 projects whose aims were to study the feasibility of applying ERTS data to the disciplines of ecology, agriculture, hydrology, wildlife management, oceanography, geology, glaciology, volcanology, and archaeology.

  6. The Structure of Oceanography in China.

    ERIC Educational Resources Information Center

    Churgin, James

    1984-01-01

    Describes the structure of marine science in China. Includes organization and activities of China's National Bureau of Oceanography and programs administered through various ministries, Academia Sinica (China's Academy of Sciences), universities, and provincial institutes. Comments on research vessionals and other development initiatives are also…

  7. Teachers Guide.

    ERIC Educational Resources Information Center

    Linsky, Ronald B.; Schnitger, Ronald L.

    This guide provides teachers with copies of the materials given to students participating in the oceanography program of the Orange County Floating Laboratory Program and provides information concerning colleges and universities offering courses in oceanography and marine science, source of films, and sources of publications concerning the Navy's…

  8. The Biological and Chemical Oceanography Data Management Office

    NASA Astrophysics Data System (ADS)

    Allison, M. D.; Chandler, C. L.; Groman, R. C.; Wiebe, P. H.; Glover, D. M.; Gegg, S. R.

    2011-12-01

    Oceanography and marine ecosystem research are inherently interdisciplinary fields of study that generate and require access to a wide variety of measurements. In late 2006 the Biological and Chemical Oceanography Sections of the National Science Foundation (NSF) Geosciences Directorate Division of Ocean Sciences (OCE) funded the Biological and Chemical Oceanography Data Management Office (BCO-DMO). In late 2010 additional funding was contributed to support management of research data from the NSF Office of Polar Programs Antarctic Organisms & Ecosystems Program. The BCO-DMO is recognized in the 2011 Division of Ocean Sciences Sample and Data Policy as one of several program specific data offices that support NSF OCE funded researchers. BCO-DMO staff members offer data management support throughout the project life cycle to investigators from large national programs and medium-sized collaborative research projects, as well as researchers from single investigator awards. The office manages and serves all types of oceanographic data and information generated during the research process and contributed by the originating investigators. BCO-DMO has built a data system that includes the legacy data from several large ocean research programs (e.g. United States Joint Global Ocean Flux Study and United States GLOBal Ocean ECosystems Dynamics), to which data have been contributed from recently granted NSF OCE and OPP awards. The BCO-DMO data system can accommodate many different types of data including: in situ and experimental biological, chemical, and physical measurements; modeling results and synthesis data products. The system enables reuse of oceanographic data for new research endeavors, supports synthesis and modeling activities, provides availability of "real data" for K-12 and college level use, and provides decision-support field data for policy-relevant investigations. We will present an overview of the data management system capabilities including: map-based and text-based data discovery and access systems; recent enhancements to data search tools; data export and download utilities; and strategic use of controlled vocabularies to facilitate data integration and to improve data system interoperability.

  9. The status of coastal oceanography in heavily impacted Yellow and East China Sea: Past trends, progress, and possible futures

    NASA Astrophysics Data System (ADS)

    Wang, Xiao Hua; Cho, Yang-Ki; Guo, Xinyu; Wu, Chau-Ron; Zhou, Junliang

    2015-09-01

    Coastal environments are a key location for transport, commercial, residential and defence infrastructure, and have provided conditions suitable for economic growth. They also fulfil important cultural, recreational and aesthetic needs; have intrinsic ecosystem service values; and provide essential biogeochemical functions such as primary productivity, nutrient cycling and water filtration. The rapid expansion in economic development and anticipated growth of the population in the coastal zones along the Yellow and East China Sea basin has placed this region under intense multiple stresses. Here we aim to: 1) synthesize the new knowledge/science in coastal oceanography since 2010 within the context of the scientific literature published in English; 2) report on a citation analysis that assesses whether new research topics have emerged and integrated over time, indicate the location of modelling and field-based studies; and 3) suggest where the new research should develop for heavily impacted estuaries and coastal seas of East Asia. The conclusions of the synthesis include: 1) China has emerged as a dominant force in the region in producing scientific literature in coastal oceanography, although the area of publications has shifted from its traditional fields such as physical oceanography; 2) there has been an increasing number of publications with cross-disciplinary themes between physical oceanography and other fields of the biological, chemical, and geological disciplines, but vigorous and systematic funding mechanisms are still lacking to ensure the viability of large scale multi-disciplinary teams and projects in order to support trans-disciplinary research and newly emerging fields; 3) coastal oceanography is responding to new challenges, with many papers studying the impacts of human activities on marine environment and ecology, but so far very few studying management and conservation strategies or offering policy solutions.

  10. Science and Security before the Atomic Bomb: The Loyalty Case of Harald U. Sverdrup

    NASA Astrophysics Data System (ADS)

    Oreskes, Naomi; Rainger, Ronald

    In the summer of 1941, Harald Sverdrup, the Norwegian-born Director of the Scripps Institution of Oceanography (SIO) in La Jolla, California, was denied security clearance to work on Navy-sponsored research in underwater acoustics applied to anti-submarine warfare. The clearance denial embarrassed the world renown oceanographer and Arctic explorer, who repeatedly offered his services to the U.S. government only to see scientists of far lesser reputation called upon to aid the war effort. The official story of Sverdrup's denial was the risk of blackmail over relatives in occupied Norway. Declassified documents tell a different story. Although Sverdrup's integrity was defended on the highest levels of U.S. science, doubt was cast upon him by members of his own institution, who accused him of being a Nazi sympathiser. Personal distrust, rooted in scientific and intellectual disagreement, spilled over into questions about Sverdrup's loyalty and judgement. These doubts were considered sufficient grounds for withholding clearance, until Roger Revelle, a former student of Sverdrup now working within the Navy, was able to obtain a limited clearance for Sverdrup to develop techniques to forecast surf conditions during amphibious assaults. After the war, this work was credited with saving many lives, but at the time it placed Sverdrup out of the mainstream of Navy-sponsored oceanographic research. In being denied access to major areas of scientific work, Sverdrup's position as a leader of American oceanography was undermined. The loyalty case of Harald Sverdrup illustrates the emergence of an institutional apparatus through which the U.S. military began to control and shape the organisation of American science in the twentieth century. Military sponsorship of scientific research, begun during the open conflicts of World War II and continuing into the simmering tensions of the Cold War, involved explicit control by the U.S. military of who had access to critical information. This in turn meant who could do science in conjunction with the military. As the U.S. Navy became the principal sponsor of oceanography in the post-war years, clearance to do military work became to a great extent clearance to do oceanography. Choices about who could be trusted were also choices about who would do science, and what kind of science they would do.

  11. 1960-69 Cumulative Index of Articles Related to Oceanography and Limnology Education in The Science Teacher.

    ERIC Educational Resources Information Center

    Cohen, Maxwell

    Indexed are articles relating to oceanography and limnology published in "The Science Teacher" between 1960 and 1969. Articles are indexed under title, author, and topic. Topics include background information, course descriptions, and laboratory equipment and techniques. (EB)

  12. AGOR 28: SIO Shipyard Representative Bi-Weekly Progress Report

    DTIC Science & Technology

    2015-12-12

    Prepared by: Paul D. Bueren Scripps Institution of Oceanography (SIO) 297 Rosecrans St. San Diego, CA 98106 Date: 12 December 2015 Program Officer...ORGANIZATION NAME(S) AND ADDRESS(ES) Scripps Institution of Oceanography (SIO),,297 Rosecrans St.,,San Diego,,CA, 98106 8. PERFORMING ORGANIZATION

  13. Additional Resources - Naval Oceanography Portal

    Science.gov Websites

    section Advanced Search... Sections Home Time Earth Orientation Astronomy Meteorology Oceanography Ice You , including research and development results. Includes Astronomy and Space, as well as Earth and Ocean Sciences subject categories. Astronomy Resources Union List of Astronomy Serials (ULAS) - Bibliographic

  14. Software Products - Naval Oceanography Portal

    Science.gov Websites

    section Advanced Search... Sections Home Time Earth Orientation Astronomy Meteorology Oceanography Ice You astronomy. Available as Fortran, C, or Python source code. Current version: 3.1 Software Products by Our computer or programmable calculator. Standards Of Fundamental Astronomy (SOFA) Libraries The International

  15. The Oceans and You.

    ERIC Educational Resources Information Center

    American Society for Oceanography, Washington, DC.

    This Oceanographic Information Kit consists of seven booklets which discuss career opportunities and related information in oceanography as follows: a general overview of the nature of oceanography and the study necessary in preparing for a career in this field; oceanographic employment opportunities possible with the federal government described…

  16. United States data collection activities and requirements, volume 1

    NASA Technical Reports Server (NTRS)

    Hrin, S.; Mcgregor, D.

    1977-01-01

    The potential market for a data collection system was investigated to determine whether the user needs would be sufficient to support a satellite relay data collection system design. The activities of 107,407 data collections stations were studied to determine user needs in agriculture, climatology, environmental monitoring, forestry, geology, hydrology, meteorology, and oceanography. Descriptions of 50 distinct data collections networks are described and used to form the user data base. The computer program used to analyze the station data base is discussed, and results of the analysis are presented in maps and graphs. Information format and coding is described in the appendix.

  17. Meteorological and Environmental Inputs to Aviation Systems

    NASA Technical Reports Server (NTRS)

    Camp, Dennis W. (Editor); Frost, Walter (Editor)

    1988-01-01

    Reports on aviation meteorology, most of them informal, are presented by representatives of the National Weather Service, the Bracknell (England) Meteorological Office, the NOAA Wave Propagation Lab., the Fleet Numerical Oceanography Center, and the Aircraft Owners and Pilots Association. Additional presentations are included on aircraft/lidar turbulence comparison, lightning detection and locating systems, objective detection and forecasting of clear air turbulence, comparative verification between the Generalized Exponential Markov (GEM) Model and official aviation terminal forecasts, the evaluation of the Prototype Regional Observation and Forecast System (PROFS) mesoscale weather products, and the FAA/MIT Lincoln Lab. Doppler Weather Radar Program.

  18. Shedding Light on the Sea: André Morel's Legacy to Optical Oceanography

    NASA Astrophysics Data System (ADS)

    Antoine, David; Babin, Marcel; Berthon, Jean-François; Bricaud, Annick; Gentili, Bernard; Loisel, Hubert; Maritorena, Stéphane; Stramski, Dariusz

    2014-01-01

    André Morel (1933-2012) was a prominent pioneer of modern optical oceanography, enabling significant advances in this field. Through his forward thinking and research over more than 40 years, he made key contributions that this field needed to grow and to reach its current status. This article first summarizes his career and then successively covers different aspects of optical oceanography where he made significant contributions, from fundamental work on optical properties of water and particles to global oceanographic applications using satellite ocean color observations. At the end, we share our views on André's legacy to our research field and scientific community.

  19. Marine geology and oceanography of Arabian Sea and coastal Pakistan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haq, B.U.; Milliman, J.D.

    This volume is a collection of papers presented at the first US-Pakistan workshop in marine science held in Karachi, Pakistan, in November 1982. Of the twenty-four contributions in this book, fourteen cover topics specific to the Arabian Sea-coastal Pakistan region. These include six papers on the geology, tectonics, and petroleum potential of Pakistan, four papers on sedimentary processes in the Indus River delta-fan complex, and four papers on the biological oceanography of the Arabian Sea and coastal Pakistan. The additional ten papers are overviews of shelf sedimentation processes, paleoceanography, the marine nutrient cycle, and physical and chemical oceanography.

  20. Shedding light on the sea: André Morel's legacy to optical oceanography.

    PubMed

    Antoine, David; Babin, Marcel; Berthon, Jean-François; Bricaud, Annick; Gentili, Bernard; Loisel, Hubert; Maritorena, Stéphane; Stramski, Dariusz

    2014-01-01

    André Morel (1933-2012) was a prominent pioneer of modern optical oceanography, enabling significant advances in this field. Through his forward thinking and research over more than 40 years, he made key contributions that this field needed to grow and to reach its current status. This article first summarizes his career and then successively covers different aspects of optical oceanography where he made significant contributions, from fundamental work on optical properties of water and particles to global oceanographic applications using satellite ocean color observations. At the end, we share our views on André's legacy to our research field and scientific community.

  1. Physics in Oceanography.

    ERIC Educational Resources Information Center

    Charnock, H.

    1980-01-01

    Described is physical oceanography as analyzed by seven dependent variables, (three components of velocity, the pressure, density, temperature and salinity) as a function of three space variables and time. Topics discussed include the heat balance of the earth, current patterns in the ocean, heat transport, the air-sea interaction, and prospects…

  2. Connecting Middle School, Oceanography, and the Real World.

    ERIC Educational Resources Information Center

    Brown, Susan W.; Hansen, Terri M.

    2000-01-01

    Introduces an activity that features 16 oceanography work stations and integrates other disciplines. Assigns students different oceanic life forms and requires students to work in stations. Explains seven of 16 stations which cover oil spills, the periodic table, ocean floor, currents, and classification of oceanic organisms. (YDS)

  3. Astronomy - Naval Oceanography Portal

    Science.gov Websites

    section Advanced Search... Sections Home Time Earth Orientation Astronomy Meteorology Oceanography Ice You are here: Home › Astronomy USNO Logo USNO Astronomical Applications AA Data Services Astronomical Optical/IR Products VLBI-based Products Astrometry Information Center Info Astronomy The Sky This Week a

  4. A Field Study of an Iris Identification System

    DTIC Science & Technology

    2008-05-01

    conducted a field trial of a commercial iris identification scanner at the US Navy Fleet Numerical Meterology and Oceanography Center (FNMOC) in...identification scanner at the US Navy Fleet Numerical Meterology and Oceanography Center (FNMOC) in Mon- terey, CA. Scans were performed by US military guards

  5. Modeling the nitrogen cycle one gene at a time

    NASA Astrophysics Data System (ADS)

    Coles, V.; Stukel, M. R.; Hood, R. R.; Moran, M. A.; Paul, J. H.; Satinsky, B.; Zielinski, B.; Yager, P. L.

    2016-02-01

    Marine ecosystem models are lagging the revolution in microbial oceanography. As a result, modeling of the nitrogen cycle has largely failed to leverage new genomic information on nitrogen cycling pathways and the organisms that mediate them. We developed a nitrogen based ecosystem model whose community is determined by randomly assigning functional genes to build each organism's "DNA". Microbes are assigned a size that sets their baseline environmental responses using allometric response curves. These responses are modified by the costs and benefits conferred by each gene in an organism's genome. The microbes are embedded in a general circulation model where environmental conditions shape the emergent population. This model is used to explore whether organisms constructed from randomized combinations of metabolic capability alone can self-organize to create realistic oceanic biogeochemical gradients. Community size spectra and chlorophyll-a concentrations emerge in the model with reasonable fidelity to observations. The model is run repeatedly with randomly-generated microbial communities and each time realistic gradients in community size spectra, chlorophyll-a, and forms of nitrogen develop. This supports the hypothesis that the metabolic potential of a community rather than the realized species composition is the primary factor setting vertical and horizontal environmental gradients. Vertical distributions of nitrogen and transcripts for genes involved in nitrification are broadly consistent with observations. Modeled gene and transcript abundance for nitrogen cycling and processing of land-derived organic material match observations along the extreme gradients in the Amazon River plume, and they help to explain the factors controlling observed variability.

  6. Epistemic Levels in Argument: An Analysis of University Oceanography Students' Use of Evidence in Writing.

    ERIC Educational Resources Information Center

    Kelly, Gregory J.; Takao, Allison

    2002-01-01

    Examines university oceanography students' use of evidence in writing considering the relative epistemic status of propositions comprising student' written texts. Defines the epistemic levels by discipline-specific geological constructs from descriptions of data, to identification of features, to relational aspects of features, to theoretical…

  7. Education in Marine Science and Technology--Historical and Current Issues.

    ERIC Educational Resources Information Center

    Abel, Robert B.

    This review of marine science and technology education and related issues was presented to the American Association for the Advancement of Science, December 27, 1967. Areas reviewed include manpower supply and demand, oceanography education history, oceanography and the social sciences, training of technicians, the ocean engineer, education for…

  8. The Epistemological Framing of a Discipline: Writing Science in University Oceanography.

    ERIC Educational Resources Information Center

    Kelly, Gregory J.; Chen, Catherine; Prothero, William

    2000-01-01

    Examines how instruction in scientific writing in a university oceanography course communicated epistemological positions of the discipline. Uses an ethnographic perspective to explore how teachers and students came to define particular views of disciplinary knowledge. Identifies epistemological issues such as uses of evidence, role of expertise,…

  9. Synthesis of Moored Observations Collected During the IWISE 2011 Field Program in the South China Sea

    DTIC Science & Technology

    2015-09-30

    understanding of coastal oceanography by means of applying simple dynamical theories to high-quality observations obtained in the field. My primary...area of expertise is physical oceanography , but I also enjoy collaborating with biological, chemical, acoustical, and optical oceanographers to work

  10. Digital image enhancement techniques used in some ERTS application problems. [geology, geomorphology, and oceanography

    NASA Technical Reports Server (NTRS)

    Goetz, A. F. H.; Billingsley, F. C.

    1974-01-01

    Enhancements discussed include contrast stretching, multiratio color displays, Fourier plane operations to remove striping and boosting MTF response to enhance high spatial frequency content. The use of each technique in a specific application in the fields of geology, geomorphology and oceanography is demonstrated.

  11. Publications about Products - Naval Oceanography Portal

    Science.gov Websites

    section Advanced Search... Sections Home Time Earth Orientation Astronomy Meteorology Oceanography Ice You are here: Home › USNO › Earth Orientation › Publications about Products USNO Logo USNO Navigation Earth Orientation Products GPS-based Products VLBI-based Products EO Information Center

  12. Software - Naval Oceanography Portal

    Science.gov Websites

    section Advanced Search... Sections Home Time Earth Orientation Astronomy Meteorology Oceanography Ice You are here: Home › USNO › Earth Orientation › Software USNO Logo USNO Navigation Earth Orientation Search databases Auxiliary Software Supporting Software Form Folder Earth Orientation Matrix Calculator

  13. VLBI-based Products - Naval Oceanography Portal

    Science.gov Websites

    section Advanced Search... Sections Home Time Earth Orientation Astronomy Meteorology Oceanography Ice You terrestrial reference frames and to predict the variable orientation of the Earth in three-dimensional space antennas that define a VLBI-based Terrestrial Reference Frame (TRF) and the Earth Orientation Parameters

  14. Data Services - Naval Oceanography Portal

    Science.gov Websites

    section Advanced Search... Sections Home Time Earth Orientation Astronomy Meteorology Oceanography Ice You the Earth's surface for any date and time. Apparent Disk of Solar System Object Creates a synthetic image of the telescopic appearance of the Moon or other solar system object for specified date and time

  15. Astronomical Applications - Naval Oceanography Portal

    Science.gov Websites

    section Advanced Search... Sections Home Time Earth Orientation Astronomy Meteorology Oceanography Ice You Information Center Background information on common astronomical phenomena, calendars and time, and related topics Rise, Set, and Twilight Definitions World Time Zone Map Phases of the Moon and Percent of the Moon

  16. Naval Oceanography Portal

    Science.gov Websites

    section Advanced Search... Sections Home Time Earth Orientation Astronomy Meteorology Oceanography Ice You ) provides a wide range of astronomical data and products, and serves as the official source of time for the U.S. Department of Defense and a standard of time for the entire United States. The following NMOC

  17. USNO Scientific Colloquia - Naval Oceanography Portal

    Science.gov Websites

    section Advanced Search... Sections Home Time Earth Orientation Astronomy Meteorology Oceanography Ice You Navigation Tour Information USNO Scientific Colloquia Info USNO Scientific Colloquia Time and Place: Unless departure. Add additional time prior to arriving at the colloquium for issuance of a visitors badge and

  18. Oceanography for Landlocked Classrooms. Monograph V.

    ERIC Educational Resources Information Center

    Madrazo, Gerry M., Jr., Ed.; Hounshell, Paul B., Ed.

    This monograph attempts to show the importance of bringing marine biology into science classrooms, discusses what makes the ocean so important and explains why oceanography should be included in the science curriculum regardless of where students live. Section I, "Getting Started," includes discussions on the following: (1) "Why Marine Biology?";…

  19. Physical Controls on Copepod Aggregations in the Gulf of Maine

    DTIC Science & Technology

    2013-06-01

    endangered North Atlantic right whales . Certain ocean processes may generate dense copepod aggrega- tions, while others may destroy them; this thesis...for tropical ocean - global atmosphere coupled- ocean atmosphere response experiment. Journal of Geophysical Research, 101, 3747–3764. Fong, D., W...Oceanography/ Applied Ocean Science and Engineering Massachusetts Institute of Technology Woods Hole Oceanographic Institution MIT/WHOI 2013-18

  20. IIth AMS Conference on Satellite Meteorology and Oceanography.

    NASA Astrophysics Data System (ADS)

    Velden, Christopher; Digirolamo, Larry; Glackin, Mary; Hawkins, Jeffrey; Jedlovec, Gary; Lee, Thomas; Petty, Grant; Plante, Robert; Reale, Anthony; Zapotocny, John

    2002-11-01

    The American Meteorological Society (AMS) held its 11th Conference on Satellite Meteorology and Oceanography at the Monona Terrace Convention Center in Madison, Wisconsin, during 15-18 October 2001. The purpose of the conference, typically held every 18 months, is to promote a forum for AMS membership, international scientists, and student members to present and discuss the latest advances in satellite remote sensing for meteorological and oceanographical applications. This year, surrounded by inspirational designs by famed architect Frank Lloyd Wright, the meeting focused on several broad topics related to remote sensing from space, including environmental applications of land and oceanic remote sensing, climatology and long-term satellite data studies, operational applications, radiances and retrievals, and new technology and methods. A vision of an increasing convergence of satellite systems emerged that included operational and research satellite programs and interdisciplinary user groups.The conference also hosted NASA's Electronic Theater, which was presented to groups of middle and high school students totaling over 5500. It was truly a successful public outreach event. The conference banquet was held on the final evening, where a short tribute to satellite pioneer Verner Suomi was given by Joanne Simpson. Suomi was responsible for establishing the Space Science and Engineering Center at the University of Wisconsin in Madison.

  1. Galveston Symposium: Physical Oceanography of the Louisiana/Texas Continental Shelf

    NASA Astrophysics Data System (ADS)

    Mitchell, Thomas M.; Brown, Murray

    The Minerals Management Service (MMS), Gulf of Mexico Outer Continental Shelf (OCS) Region sponsored a symposium on the Physical Oceanography of the Louisiana/Texas (LA/TX) Shelf in Galveston, Texas, on May 24-26, 1988. The symposium brought together a number of physical oceanographers, meteorologists, and ecologists to discuss the state of knowledge and to begin the planning process for a long-term study of shelf circulation covering the region from the mouth of the Mississippi River to approximately 24° latitude along the Mexican coast and from the shore out to a depth of approximately 500 m. The proposed study, to be a component of the ongoing MMS Environmental Studies Program, is expected to take place during the period 1989-1991. It is anticipated that the work will be done principally through contracts after a competitive procurement process. Specific charges to the participants were as follows:to assess the current state of knowledge concerning the circulation on the LA/TX shelfto identify significant gaps in that knowledgeto recommend a field measurement program to address these gapsto recommend a circulation modeling program for the LA/TX shelf that will improve MMS' oil spill risk assessmentsto identify and initiate coordination mechanisms and data-sharing arrangements with other proposed research efforts

  2. Experiential Learning: High School Student Response to Learning Oceanography at Sea

    NASA Astrophysics Data System (ADS)

    Fiedler, J. W.; Tamsitt, V. M.; Crosby, S. C.; Ludka, B. C.

    2016-12-01

    The GOTO-SEE (Graduate students Onboard Teaching Oceanography - Scripps Educational Experience) cruises were conducted with two days of ship time off of Point Loma, CA, on the R/V Robert Gordon Sproul in July 2016. The cruises, funded through UC Ship Funds program, provided a unique training opportunity for graduate students to design, coordinate and conduct ship-based field experiments as well as teaching and mentoring students. The cruises allowed for instruction at sea for high school students in the UCSD Academic Connections program in two small classes: a two-week long Global Environmental Leadership and Sustainability Program and a 3-week long class entitled Wind, Waves and Currents: Physics of the Ocean World. Students in both classes assisted with the collection of data, including two repeat cross-shore vertical CTD sections with nutrient sampling, and the deployment and recovery of a 10-day moored vertical thermistor array. Additional activities included plankton net tows, sediment sampling, depth soundings, and simple experiments regarding light absorption in the ocean. The students later plotted the data collected as a class assignment and presented a scientific poster to their peers. Here, we present the lessons learned from the cruises as well as student responses to the unique in-the-field experience, and how those responses differed by curriculum.

  3. The use of remotely sensed data for operational fisheries oceanography

    NASA Technical Reports Server (NTRS)

    Fiuza, Armando F. G.

    1992-01-01

    Satellite remote sensing data are used under two contexts in fisheries: as a tool for fisheries research and as a means to provide operational support to fishing activities. Fishing operations need synoptic data provided timely; fisheries research needs that type of data and, also, good short-term climatologies. A description is given of several experiences conducted around the world which have employed or are using satellite data for operational fisheries problems. An overview is included of the Portuguese program for fisheries support using remotely sensed data provided by satellites and in situ observations conducted by fishermen. Environmental products useful for fisheries necessarily combine satellite and in situ data. The role of fishermen as a source of good, near-real-time in situ environmental data is stressed; so far, this role seems to have been largely overlooked.

  4. From Proposal Writing to Data Collection to Presentation: Physical Oceanography Laboratory Class Students Explore the Fundamentals of Science

    NASA Astrophysics Data System (ADS)

    Buijsman, M. C.; Church, I.; Haydel, J.; Martin, K. M.; Shiller, A. M.; Wallace, D. J.; Blancher, J.; Foltz, A.; Griffis, A. M.; Kosciuch, T. J.; Kincketootle, A.; Pierce, E.; Young, V. A.

    2016-02-01

    To better prepare first-year Department of Marine Science MSc students of the University of Southern Mississippi for their science careers, we plan to execute a semester-long Physical Oceanography laboratory class that exposes the enrolled students to all aspects of interdisciplinary research: writing a proposal, planning a cruise, collecting and analyzing data, and presenting their results. Although some of these aspects may be taught in any such class, the incorporation of all these aspects makes this class unique.The fieldwork will be conducted by boat in the Rigolets in Louisiana, a 13-km long tidal strait up to 1 km wide connecting the Mississippi Sound with Lake Pontchartrain. The students have the opportunity to collect ADCP, CTD, multibeam sonar, sediment and water samples.A second novel characteristic of this class is that the instructor partnered with the Lake Pontchartrain Basin Foundation, a not for profit environmental advocacy group. The foundation will give an hour-long seminar on the natural history of the study area and its environmental problems. This information provides context for the students' research proposals and allows them to formulate research questions and hypotheses that connect their research objectives to societally relevant issues, such as coastal erosion, salt water intrusion, and water quality. The proposal writing and cruise planning is done in the first month of the 3.5-month long semester. In the second month two surveys are conducted. The remainder of the semester is spent on analysis and reporting. Whenever possible we teach Matlab for the students to use in their data analysis. In this presentation, we will report on the successes and difficulties associated with teaching such a multi-faceted class.

  5. Active-Learning Methods To Improve Student Performance and Scientific Interest in a Large Introductory Oceanography Course.

    ERIC Educational Resources Information Center

    Yuretich, Richard F.; Khan, Samia A.; Leckie, R. Mark; Clement, John J.

    2001-01-01

    Transfers the environment of a large enrollment oceanography course by modifying lectures to include cooperative learning via interactive in-class exercises and directed discussion. Results of student surveys, course evaluations, and exam performance demonstrate that learning of the subject under these conditions has improved. (Author/SAH)

  6. Officer Education and Training in Oceanography for ASW and Other Naval Applications.

    ERIC Educational Resources Information Center

    Waterman, Larry Wayne

    The study into the knowledge and experience required for optimum performance by officers assigned to operational, R & D, and managerial duties in Anti-submarine Warfare concludes that oceanography should receive the major emphasis on an interdisciplinary graduate level program of the contributing disciplines in ASW. In planning education and…

  7. Research and Teaching: Implementation of Interactive Engagement Teaching Methods in a Physical Oceanography Course

    ERIC Educational Resources Information Center

    Keiner, Louis E.; Gilman, Craig

    2015-01-01

    This study measures the effects of increased faculty-student engagement on student learning, success rates, and perceptions in a Physical Oceanography course. The study separately implemented two teaching methods that had been shown to be successful in a different discipline, introductory physics. These methods were the use of interactive…

  8. Use of the Research Vessel Savannah in Support of 2015 ONR S and T Demo, Project ID: 104458

    DTIC Science & Technology

    2016-07-26

    Approved for Public Release; distribution is Unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT The Skidaway Institute of Oceanography provided the RV...Skidaway Institute of Oceanography of the University of Georgia was approached and agreed to supply the Research Vessel Savannah to support work funded by

  9. The Sky This Week - Naval Oceanography Portal

    Science.gov Websites

    section Advanced Search... Sections Home Time Earth Orientation Astronomy Meteorology Oceanography Ice You . Read More... The Sky This Week, 2018 April 17 - 24 Celebrate Dark-sky Week and Astronomy Day! Read More More... The Sky This Week, 2018 April 3 - 10 April is Astronomy Month...no fooling. Read More... The

  10. Leap Second Announcement - Naval Oceanography Portal

    Science.gov Websites

    section Advanced Search... Sections Home Time Earth Orientation Astronomy Meteorology Oceanography Ice You are here: Home › USNO › Earth Orientation › Leap Second Announcement USNO Logo USNO Navigation Earth Orientation Products GPS-based Products VLBI-based Products EO Information Center Publications

  11. Earth Orientation - Naval Oceanography Portal

    Science.gov Websites

    section Advanced Search... Sections Home Time Earth Orientation Astronomy Meteorology Oceanography Ice You are here: Home › USNO › Earth Orientation USNO Logo USNO Navigation Earth Orientation Products GPS -based Products VLBI-based Products EO Information Center Publications about Products Software Info Earth

  12. Skills Conversion Project: Chapter 10, Ocean Engineering and Oceanography. Final Report.

    ERIC Educational Resources Information Center

    National Society of Professional Engineers, Washington, DC.

    In order to determine the potential utilization of displaced aerospace and defense technical professionals in oceanography and ocean engineering, a study of ocean-oriented industry in Florida and Southern California was conducted by The National Society of Professional Engineers for the U.S. Department of Labor. After recent consolidation, this…

  13. C-MORE Science Kits as a Classroom Learning Tool

    ERIC Educational Resources Information Center

    Foley, J. M.; Bruno, B. C.; Tolman, R. T.; Kagami, R. S.; Hsia, M. H.; Mayer, B.; Inazu, J. K.

    2013-01-01

    To support teachers in enhancing ocean literacy, the Center for Microbial Oceanography: Research and Education (C-MORE) has developed a series of portable, hands-on science kits on selected topics in oceanography. This paper provides an overview of kit content, describes how the kits were developed, and evaluates their efficacy as a curriculum…

  14. The United States Naval Observatory (USNO) - Naval Oceanography Portal

    Science.gov Websites

    section Advanced Search... Sections Home Time Earth Orientation Astronomy Meteorology Oceanography Ice You Orientation Precise Time James M. Gilliss Library News, Tours & Events About Us Info The United States positions and motion of celestial bodies, motions of the Earth, and precise time. USNO provides tailored

  15. Warning Graphic Legend - Naval Oceanography Portal

    Science.gov Websites

    section Advanced Search... Sections Home Time Earth Orientation Astronomy Meteorology Oceanography Ice You The next radii represents 64 knot winds. Typhoon Back to top Time Labels Labels indicate the time of = universal time/Zulu Label Back to top Current Postion The current position is the black tropical cyclone

  16. A Resource Guide for Oceanography and Coastal Processes.

    ERIC Educational Resources Information Center

    Walker, Sharon H., Ed.; Damon-Randall, Kimberly, Ed.; Walters, Howard D., Ed.

    This resource guide was developed for elementary, middle, and high school teachers to teach about oceanography and coastal processes. This guide contains information on the program's history and names and contact information for all Operation Pathfinder participants since 1993. The body is divided into 6 topics. Topic 1 is on Physical Parameters,…

  17. Let's Talk About You and Sharks, American Oceanography Special Educational Newsletter.

    ERIC Educational Resources Information Center

    Kraft, Thomas L.; Miloy, Leatha

    1971-01-01

    This special educational newsletter of the American Society for Oceanography presents information on marine oriented subjects, primarily for reading by junior high and secondary school students. Major articles consider the habits and stinging effects of sharks, jelly fish, and sting rays, and what one should do if stung by these fish while…

  18. [Towards a dialogue of knowledge between subsistence fishermen, shellfish gatherers and environmental labor law].

    PubMed

    Carvalho, Ingrid Gil Sales; Rêgo, Rita de Cássia Franco; Larrea-Killinger, Cristina; da Rocha, Júlio César de Sá; Pena, Paulo Gilvane Lopes; Machado, Louise Oliveira Ramos

    2014-10-01

    The dialogue of knowledge between subsistence fishermen and shellfish gatherers on the right to a healthy working environment is established as a new process for claims for an improvement in working conditions by populations affected by environmental problems, and especially in Todos os Santos Bay (BTS). The communities surrounding the BTS have complained to the State Public Prosecutor about the harmful effects to health and the environment caused by the Aratu Industrial Complex and the Port of Aratu. Researchers in the fields of, chemistry, toxicology, oceanography, biology and medicine from the Federal University of Bahia (UFBA) have demonstrated the effects of contamination on the BTS in sundry scientific publications. The scope of this article is to reflect on the contribution of that dialogue on environmental labor law (DAT) in Brazil. The methodology of this study involved semi-structured interviews, participant observation and document analysis. The conclusion reached is that environmental labor law in Brazil must include the dialogue of knowledge to ensure access to a healthy working environment for subsistence fishermen and shellfish gatherers.

  19. From marine ecology to biological oceanography

    NASA Astrophysics Data System (ADS)

    Mills, Eric L.

    1995-03-01

    Looking back from the 1990s it seems natural to view the work done in the Biologische Anstalt Helgoland by Friedrich Heincke and his colleagues, beginning in 1892, as marine ecology or marine biology, and that done in Kiel, under Victor Hensen and Karl Brandt, as biological oceanography. But historical analysis shows this view to be untenable. Biological oceanography, as a research category and a profession, does not appear until at least the 1950's. In the German tradition of marine research, “Ozeanographie”, originating in 19th century physical geography, did not include the biological sciences. The categories “Meereskunde” and “Meeresforschung” covered all aspects of marine research in Germany from the 1890's to the present day. “Meeresbiologie” like that of Brandt, Heincke, and other German marine scientists, fitted comfortably into these. But in North America no such satisfactory professional or definitional structure existed before the late 1950's. G. A. Riley, one of the first biological oceanographers, fought against descriptive, nonquantitative American ecology. In 1951 he described biological oceanography as the “ecology of marine populations”, linking it with quantitative population ecology in the U.S.A. By the end of the 1960's the U.S. National Science Foundation had recognized biological oceanography as a research area supported separately from marine biology. There was no need for the category “biological oceanography” in German marine science because its subject matter lay under the umbrella of “Meereskunde” or “Meeresforschung”. But in North America, biological oceanography — a fundamental fusion of physics and chemistry with marine biology — was created to give this marine science a status higher than that of the conceptually overloaded ecological sciences. The sociologists Durkheim and Mauss claimed in 1903 that, “the classification of things reproduces the classification of men”; similarly, in science, the classification of professions reproduces the status that their practitioners hope to achieve.

  20. An Earth Summit in a Large General Education Oceanography Class

    NASA Astrophysics Data System (ADS)

    Dodson, H.; Prothero, W. A.

    2001-12-01

    An Earth Summit approach in UCSB's undergraduate physical oceanography course has raised student interest level while it also supports the course goals of increased learner awareness of the process of science, and critical analysis of scientific claims. At the beginning of the quarter, each group of students chooses a country to represent in the Earth Summit. During the course of the quarter, these groups relate each of the class themes to their chosen country. Themes include 1) ocean basins and plate tectonics, 2) atmospheres, oceans and climate, and 3) fisheries. Students acquire and utilize Earth data to support their positions. Earth data sources include the "Our Dynamic Planet" CDROM (http://oceanography.geol.ucsb.edu/ODP_Advert/odp_onepage.htm), NOAA's ocean and climate database (http://ferret.wrc.noaa.gov/las/), WorldWatcher CD (http://www.worldwatcher.northwestern.edu/) and JPL's Seawinds web site (http://haifung.jpl.nasa.gov/index.html). During the atmospheres, oceans and climate theme, students choose from 12 mini-studies that use various kinds of on-line Earth data related to important global or regional phenomena relevant to the course. The Earth datasets that the students access for their analysis include: winds; atmospheric pressure; ocean chemistry; sea surface temperature; solar radiation; precipitation, etc. The first group of 6 mini-studies focus on atmosphere and ocean, and are: 1) global winds and surface currents, 2) atmosphere and ocean interactions, 3) stratospheric ozone depletion, 4) El Nino, 5) Indian monsoon, and 6) deep ocean circulation. The second group focus on the Earth's heat budget and climate and are: 1) influence of man's activities on the climate, 2) the greenhouse effect, 3) seasonal variation and the Earth's heat budget, 4) global warming, 5) paleoclimate, and 6) volcanoes and climate. The students use what they have learned in these mini-studies to address atmospheric and climatic issues pertinent to their specific Earth Summit countries. For example, students representing the country of Chile might model their investigations after a)winds and surface currents, b)atmosphere and ocean interactions, c) stratospheric ozone depletion, d)El Nino; and/or e)volcanoes and climate. Please join the "Oceanography" interest group of DLESE to discuss, develop, and access oceanography related mini-studies that use earth data (http://oceanography.geol.ucsb.edu/dlese/wg_oceanog/Index.html). >http://oceanography.geol.ucsb.edu/AWP/Class_Info/GS-4/Labs/Labs Index.html

  1. From satellite altimetry to operational oceanography and Argo: three revolutions in oceanography (Fridtjof Nansen Medal Lecture)

    NASA Astrophysics Data System (ADS)

    Le Traon, P. Y.

    2012-04-01

    The launch of the US/French mission Topex/Poseidon (T/P) (CNES/NASA) in August 1992 was the start of a revolution in oceanography. For the first time, a very precise altimeter system optimized for large scale sea level and ocean circulation observations was flying. Topex/Poseidon revolutionized our vision and understanding of the ocean. It provided new views of the large scale seasonal and interannual sea level and ocean circulation variations. T/P alone could not observe the mesoscale circulation. In the 1990s, the ESA satellites ERS-1/2 were flying simultaneously with T/P. The ERS-1/2 orbit was well adapted for mesoscale circulation sampling but the orbit determination and altimeter performance were much less precise than for T/P. We demonstrated that we could use T/P as a reference mission for ERS-1/2 and bring the ERS-1/2 data to an accuracy level comparable to T/P. This was an essential first step for the merging of T/P and ERS-1/2. The second step required the development of a global optimal interpolation method. Near real time high resolution global sea level anomaly maps were then derived. These maps have been operationally produced as part of the SSALTO/DUACS system for the last 15 years. They are now widely used by the oceanographic community and have contributed to a much better understanding and recognition of the role and importance of mesoscale dynamics. The unique capability of satellite altimetry to observe the global ocean in near real time at high resolution was essential to the development of global ocean forecasting, a second revolution in oceanography. The Global Ocean Data Assimilation Experiment (GODAE) (1998-2008) was phased with the T/P and ERS-1/2 successors (Jason-1 and ENVISAT) and was instrumental in the development of global operational oceanography capabilities. Europe played a leading role in GODAE. In 1998, the global in-situ observing system was inadequate for the global scope of GODAE. This led to the development of Argo, an initial joint venture between CLIVAR and GODAE. Argo has been an outstanding success. The 3000 Argo profiling floats now provide the most important global in-situ observations to monitor and understand the role of the ocean on the earth climate. This is a third revolution in oceanography. I was lucky enough to be involved with many colleagues and friends in these three revolutions or breakthroughs in oceanography. The presentation will provide some historical background on the development of the SSALTO/DUACS merged altimeter products and an overview of their utility and use for ocean research and operational oceanography. I will thengo throughthe development of operational oceanography and Argo over the past 15 years focussing on European contributions, in particular, in the framework of the GMES Marine Service, EuroGOOSand the Euro-Argo research infrastructure. Perspectives and new challenges for the integrated global ocean observing system will be finally discussed.

  2. Verification of Meteorological and Oceanographic Ensemble Forecasts in the U.S. Navy

    NASA Astrophysics Data System (ADS)

    Klotz, S.; Hansen, J.; Pauley, P.; Sestak, M.; Wittmann, P.; Skupniewicz, C.; Nelson, G.

    2013-12-01

    The Navy Ensemble Forecast Verification System (NEFVS) has been promoted recently to operational status at the U.S. Navy's Fleet Numerical Meteorology and Oceanography Center (FNMOC). NEFVS processes FNMOC and National Centers for Environmental Prediction (NCEP) meteorological and ocean wave ensemble forecasts, gridded forecast analyses, and innovation (observational) data output by FNMOC's data assimilation system. The NEFVS framework consists of statistical analysis routines, a variety of pre- and post-processing scripts to manage data and plot verification metrics, and a master script to control application workflow. NEFVS computes metrics that include forecast bias, mean-squared error, conditional error, conditional rank probability score, and Brier score. The system also generates reliability and Receiver Operating Characteristic diagrams. In this presentation we describe the operational framework of NEFVS and show examples of verification products computed from ensemble forecasts, meteorological observations, and forecast analyses. The construction and deployment of NEFVS addresses important operational and scientific requirements within Navy Meteorology and Oceanography. These include computational capabilities for assessing the reliability and accuracy of meteorological and ocean wave forecasts in an operational environment, for quantifying effects of changes and potential improvements to the Navy's forecast models, and for comparing the skill of forecasts from different forecast systems. NEFVS also supports the Navy's collaboration with the U.S. Air Force, NCEP, and Environment Canada in the North American Ensemble Forecast System (NAEFS) project and with the Air Force and the National Oceanic and Atmospheric Administration (NOAA) in the National Unified Operational Prediction Capability (NUOPC) program. This program is tasked with eliminating unnecessary duplication within the three agencies, accelerating the transition of new technology, such as multi-model ensemble forecasting, to U.S. Department of Defense use, and creating a superior U.S. global meteorological and oceanographic prediction capability. Forecast verification is an important component of NAEFS and NUOPC. Distribution Statement A: Approved for Public Release; distribution is unlimited

  3. Verification of Meteorological and Oceanographic Ensemble Forecasts in the U.S. Navy

    NASA Astrophysics Data System (ADS)

    Klotz, S. P.; Hansen, J.; Pauley, P.; Sestak, M.; Wittmann, P.; Skupniewicz, C.; Nelson, G.

    2012-12-01

    The Navy Ensemble Forecast Verification System (NEFVS) has been promoted recently to operational status at the U.S. Navy's Fleet Numerical Meteorology and Oceanography Center (FNMOC). NEFVS processes FNMOC and National Centers for Environmental Prediction (NCEP) meteorological and ocean wave ensemble forecasts, gridded forecast analyses, and innovation (observational) data output by FNMOC's data assimilation system. The NEFVS framework consists of statistical analysis routines, a variety of pre- and post-processing scripts to manage data and plot verification metrics, and a master script to control application workflow. NEFVS computes metrics that include forecast bias, mean-squared error, conditional error, conditional rank probability score, and Brier score. The system also generates reliability and Receiver Operating Characteristic diagrams. In this presentation we describe the operational framework of NEFVS and show examples of verification products computed from ensemble forecasts, meteorological observations, and forecast analyses. The construction and deployment of NEFVS addresses important operational and scientific requirements within Navy Meteorology and Oceanography (METOC). These include computational capabilities for assessing the reliability and accuracy of meteorological and ocean wave forecasts in an operational environment, for quantifying effects of changes and potential improvements to the Navy's forecast models, and for comparing the skill of forecasts from different forecast systems. NEFVS also supports the Navy's collaboration with the U.S. Air Force, NCEP, and Environment Canada in the North American Ensemble Forecast System (NAEFS) project and with the Air Force and the National Oceanic and Atmospheric Administration (NOAA) in the National Unified Operational Prediction Capability (NUOPC) program. This program is tasked with eliminating unnecessary duplication within the three agencies, accelerating the transition of new technology, such as multi-model ensemble forecasting, to U.S. Department of Defense use, and creating a superior U.S. global meteorological and oceanographic prediction capability. Forecast verification is an important component of NAEFS and NUOPC.

  4. Atlantic Oceanography. Volume 1

    DTIC Science & Technology

    1978-08-01

    studies under aerobic and anaerobic conditions will be quantified (Ailor, 1971 ; Uhlig, 1971 ). Later studies will include the effect of pollutants on...an emphasis on deep sea bound- ary layer research. The round trip is $600 plus 4 days’ expenses. Literature Cited Ailor, W. H. 1971 . Handbook on...Measurement with radioactive tracer. Limnol. Oceanogr. (in press). Uhlig, H. H. 1971 . Corrosion and Corrosion Control. John Wiley & Sons, New York Wirsen

  5. Short Training Course in Oceanography. Red Sea & Gulf of Aden Programme (PERSGA).

    ERIC Educational Resources Information Center

    Arab Organization for Education and Science, Cairo (Egypt).

    This document presents a training course in oceanography intended for Junior Bachelor of Science (B.S.) graduates in physics, mathematics, chemistry, zoology, botany or geology to give them the minimum qualifications required to work in any of the marine science stations. This 14-week course, organized by the Arab League Educational, Cultural and…

  6. Oceanographic satellite remote sensing: Registration, rectification, and data integration requirements

    NASA Technical Reports Server (NTRS)

    Nichols, D. A.

    1982-01-01

    The problem of data integration in oceanography is discussed. Recommendations are made for technique development and evaluation, understanding requirements, and packaging techniques for speed, efficiency and ease of use. The primary satellite sensors of interest to oceanography are summarized. It is concluded that imaging type sensors make image processing an important tool for oceanographic studies.

  7. Coupled Research in Ocean Acoustics and Signal Processing for the Next Generation of Underwater Acoustic Communication Systems

    DTIC Science & Technology

    2016-08-05

    the analysis of data collected during the VHF acoustics test con- ducted in a wave tank at the Scripps Institution of Oceanography in October 2015...Institution of Oceanography , the co-PI on these exper- iments, undertook the design and fabrication of a new mounting mechanism to eliminate this mounting

  8. Applying Argumentation Analysis To Assess the Quality of University Oceanography Students' Scientific Writing.

    ERIC Educational Resources Information Center

    Takao, Allison Y.; Prothero, William A.; Kelly, Gregory J.

    2002-01-01

    Presents the methods and results of an assessment of students' scientific writing. Studies an introductory oceanography course in a large public university that used an interactive CD-ROM, "Our Dynamic Planet". Analyzes the quality of students' written arguments by using a grading rubric and an argumentation analysis model. Includes 18…

  9. Astronomy Help - Naval Oceanography Portal

    Science.gov Websites

    section Advanced Search... Sections Home Time Earth Orientation Astronomy Meteorology Oceanography Ice You are here: Home › Help › Astronomy Help USNO Logo USNO Info Astronomy Help Send an e-mail regarding Astronomy related products. Please choose from the topical menu below. Privacy Advisory Your E-Mail Address

  10. VLBI-based Products - Naval Oceanography Portal

    Science.gov Websites

    section Advanced Search... Sections Home Time Earth Orientation Astronomy Meteorology Oceanography Ice You are here: Home › USNO › Earth Orientation › VLBI-based Products USNO Logo USNO Navigation Earth determine Earth Orientation Parameters (EOP) is Very Long Baseline Interferometry (VLBI). USNO provides both

  11. Earth Orientation Help - Naval Oceanography Portal

    Science.gov Websites

    section Advanced Search... Sections Home Time Earth Orientation Astronomy Meteorology Oceanography Ice You are here: Home › Help › Earth Orientation Help USNO Logo USNO Info Earth Orientation Help Send an e-mail regarding Earth Orientation products. Privacy Advisory Your E-Mail Address Subject ■ Select

  12. USNO Master Clock - Naval Oceanography Portal

    Science.gov Websites

    section Advanced Search... Sections Home Time Earth Orientation Astronomy Meteorology Oceanography Ice You are here: Home › USNO › Precise Time › Master Clock USNO Logo USNO Navigation Master Clock GPS Display Clocks TWSTT Telephone Time NTP Info USNO Master Clock clock vault The USNO Master Clock is the

  13. GPS timing products - Naval Oceanography Portal

    Science.gov Websites

    section Advanced Search... Sections Home Time Earth Orientation Astronomy Meteorology Oceanography Ice You are here: Home › USNO › Precise Time › GPS USNO Logo USNO Navigation Master Clock GPS Display Clocks TWSTT Telephone Time NTP Info GPS timing products USNO monitors the GPS constellation and provides

  14. Precise Time - Naval Oceanography Portal

    Science.gov Websites

    section Advanced Search... Sections Home Time Earth Orientation Astronomy Meteorology Oceanography Ice You are here: Home › USNO › Precise Time USNO Logo USNO Navigation Master Clock GPS Display Clocks TWSTT Telephone Time NTP Info Precise Time The U. S. Naval Observatory is charged with maintaining the

  15. Time Help - Naval Oceanography Portal

    Science.gov Websites

    section Advanced Search... Sections Home Time Earth Orientation Astronomy Meteorology Oceanography Ice You are here: Home › Help › Time Help USNO Logo USNO Info Time Help Send in a request for help on our timing products. Privacy Advisory Your E-Mail Address Subject General Time Inquiries GPS TWSTT NTP

  16. Two-way Satellite Time Transfer - Naval Oceanography Portal

    Science.gov Websites

    section Advanced Search... Sections Home Time Earth Orientation Astronomy Meteorology Oceanography Ice You are here: Home › USNO › Precise Time › TWSTT USNO Logo USNO Navigation Master Clock GPS Display Clocks TWSTT What is TWSTT? Operational Services Calibration Services Precision Telephone Time NTP Info

  17. Just-In-Time Altimetry: International Collaboration in Provision of Altimetry Datasets

    NASA Astrophysics Data System (ADS)

    Snaith, H. M.; Scharroo, R.; Naeije, M.

    2006-07-01

    Environmen tal resear ch requir es access to quality controlled, calibrated data. Satellite altimeter data ar e used in a range of environmental research , including oceanography, ice and land surface studies. Users who are not altimeter specialists may not be aw are of, or have access to, the latest updates and most appropriate corrections to use for their application . We propose a G RID based methodology to give all users access to the b est possib le altimeter data product at the time of the r equest, tailor mad e for th eir sp ecific application . A data por tal system wou ld be based on a "Network of Trust" consisting of the data providers and a certificating authority. D ata could be served through a fully interactive web 'front- end' or directly from with in analysis programmes. This system would build on the experiences gain ed in combin ing two existing Altimeter Data serv ices (GA PS and RAD S) to produce a coh erent data service with alternativ e w eb interfaces and conf igurable user s access.

  18. An interdisciplinary study of the estuarine and coastal oceanography of Block Island Sound and adjacent New York coastal waters

    NASA Technical Reports Server (NTRS)

    Yost, E. (Principal Investigator)

    1972-01-01

    The author has identified the following significant results. The synoptic repetitive coverage of the multispectral imagery from the ERTS-1 satellite, when photographically reprocessed using the state-of-the-art techniques, has given indication of spectral differences in Block Island and adjacent New England waters which were heretofore unknown. Of particular interest was the possible detection of relatively small amounts of phytoplankton prior to the occurrence of the red tide in Massachusetts waters. Preparation of spatial and temporal hydrographic charts using ERTS-1 imagery and ground truth analysis will hopefully determine the environmental impact on New York coastal waters.

  19. Compilation of Abstracts of Theses Submitted by Candidates for Degrees

    DTIC Science & Technology

    1988-09-30

    MONITORING OF CIVILIAN TRAINING RECORDS Sharon Elizabeth Slominski Lieutenant Commander, United States Navy B.A., Radford College, 1975 Ivon Ralph Young...mechanical ice removal. Master of Science in Advisor: R.H. Bourke Meteorology and Oceanography Department of December 1987 Oceanography 494 THE EFFECTS OF...588, 592, 599, 600 Bonsper, D.E.----------------------------------- 383 Bourke , R.H.------------------------------------ 493-4 Bradley, G.H

  20. Autonomous Observations of the Upper Ocean Stratification and Velocity Field about the Seasonally-Retreating Marginal Ice Zone

    DTIC Science & Technology

    2016-12-30

    of Oceanography . Also, ITP-V investigators have collaborated with aNa a! Postgraduate School 3 student (Gallaher) whose dissertation is based on...under Arctic sea-ice. Journal of Physical Oceanography , doi: http://dx.doi.org/l 0.1175/JPO-D-12-0191.1 Cole, S.T. , F.T. Thwaites, R.A. Krishfield

  1. Developing a Teaching Assistant Preparation Program in the School of Oceanography, University of Washington.

    ERIC Educational Resources Information Center

    McManus, Dean A.

    2002-01-01

    Reports on the development of a program preparing graduate students to teach in the School of Oceanography, University of Washington, in response to repeated graduate student complaints about the lack of a program. Describes the program which is based on surveys of groups affected by the program and research on teaching assistant preparation,…

  2. Learning about Oceanography. Superific Science Book VII. A Good Apple Science Activity Book for Grades 5-8+.

    ERIC Educational Resources Information Center

    Conway, Lorraine

    Based upon the recognition that the sea has great potential as a future source of energy, minerals, and water, this document was developed to provide students with learning experiences in oceanography. It contains background information about ocean tides, waves, chemistry, depths, and plant and animal life. The book provides the teacher with…

  3. Oceanography and Mine Warfare

    DTIC Science & Technology

    2000-03-13

    of breaking waves , the position and strength of surface currents, and the propagation of the tide into very shallow waters. In the surf zone...6) sediment properties determine shock wave propagation , a method for mine neutralization in the surf zone. 48 OCEANOGRAPHY AND MINE WARFARE...mines will be buried in the sediments, sedimentary explosive shock wave propagation is critical for determining operational performance. Presently, we

  4. Syllabus for an Associate Degree Program in Applied Marine Biology and Oceanography.

    ERIC Educational Resources Information Center

    Banerjee, Tapan

    Included is a detailed outline of the content of each course required or offered as an elective in the associate degree program. With an 18 or 19 unit load each semester the program requires two years, and includes 64 hours at sea every semester. In addition to chemistry, physics, biology, and oceanography courses, there is a required course in…

  5. Telephone Time - Naval Oceanography Portal

    Science.gov Websites

    section Advanced Search... Sections Home Time Earth Orientation Astronomy Meteorology Oceanography Ice You are here: Home › USNO › Precise Time › Telephone Time USNO Logo USNO Navigation Master Clock GPS Display Clocks TWSTT Telephone Time NTP Info Telephone Time USNO provides both voice announcements of the

  6. Astronomical Information Center - Naval Oceanography Portal

    Science.gov Websites

    section Advanced Search... Sections Home Time Earth Orientation Astronomy Meteorology Oceanography Ice You the Moon Illuminated Time Universal Time and Greenwich Mean Time What is Terrestrial Time? Computing Greenwich Apparent Sidereal Time What are the U.S. Time Zones? World Time Zone Map When Does Daylight Time

  7. The Sky This Week, 2016 February 2 - 9 - Naval Oceanography Portal

    Science.gov Websites

    section Advanced Search... Sections Home Time Earth Orientation Astronomy Meteorology Oceanography Ice You Moon occurs on the 8th at 9:39 am Eastern Daylight Time. Look for Luna about four degrees northwest of same time! According to folklore, the lack of a shadow cast by an indigenous rodent in rural

  8. Web-Based Time Synchronization - Naval Oceanography Portal

    Science.gov Websites

    section Advanced Search... Sections Home Time Earth Orientation Astronomy Meteorology Oceanography Ice You are here: Home › USNO › Precise Time › Display Clocks USNO Logo USNO Navigation Master Clock GPS Display Clocks TWSTT Telephone Time NTP Info Web-Based Time Synchronization Web time displays from the

  9. The Sky This Week, 2016 March 8 - 15 - Naval Oceanography Portal

    Science.gov Websites

    section Advanced Search... Sections Home Time Earth Orientation Astronomy Meteorology Oceanography Ice You This Week, 2016 March 8 - 15 Info The Sky This Week, 2016 March 8 - 15 Springing forward in time week, waxing to First Quarter on the 15th at 1:03 pm Eastern Daylight Time. She joins the stars of the

  10. The Sky This Week, 2016 April 5 - 12 - Naval Oceanography Portal

    Science.gov Websites

    section Advanced Search... Sections Home Time Earth Orientation Astronomy Meteorology Oceanography Ice You to the evening sky this week, with New Moon falling on the 7th at 7:24 am Eastern Daylight Time. Try . Take some time this week to consider the night sky and the wonderful resource that it truly is. During

  11. Network Time Protocol - Naval Oceanography Portal

    Science.gov Websites

    section Advanced Search... Sections Home Time Earth Orientation Astronomy Meteorology Oceanography Ice You are here: Home › USNO › Precise Time › NTP USNO Logo USNO Navigation Master Clock GPS Display Clocks TWSTT Telephone Time NTP Eastern TZ Mountain TZ DoD Customers Info Network Time Protocol Network

  12. The Sky This Week, 2016 April 12 - 19 - Naval Oceanography Portal

    Science.gov Websites

    section Advanced Search... Sections Home Time Earth Orientation Astronomy Meteorology Oceanography Ice You constellations. First Quarter occurs on the 13th at 11:59 pm Eastern daylight Time. Luna will pass just over a time to talk about artificial night lighting and its role in reducing our view of the sky. It's a great

  13. Spatially extensive microbial biogeography of the Indian Ocean provides insights into the unique community structure of a pristine coral atoll.

    PubMed

    Jeffries, Thomas C; Ostrowski, Martin; Williams, Rohan B; Xie, Chao; Jensen, Rachelle M; Grzymski, Joseph J; Senstius, Svend Jacob; Givskov, Michael; Hoeke, Ron; Philip, Gayle K; Neches, Russell Y; Drautz-Moses, Daniela I; Chénard, Caroline; Paulsen, Ian T; Lauro, Federico M

    2015-10-20

    Microorganisms act both as drivers and indicators of perturbations in the marine environment. In an effort to establish baselines to predict the response of marine habitats to environmental change, here we report a broad survey of microbial diversity across the Indian Ocean, including the first microbial samples collected in the pristine lagoon of Salomon Islands, Chagos Archipelago. This was the first large-scale ecogenomic survey aboard a private yacht employing a 'citizen oceanography' approach and tools and protocols easily adapted to ocean going sailboats. Our data highlighted biogeographic patterns in microbial community composition across the Indian Ocean. Samples from within the Salomon Islands lagoon contained a community which was different even from adjacent samples despite constant water exchange, driven by the dominance of the photosynthetic cyanobacterium Synechococcus. In the lagoon, Synechococcus was also responsible for driving shifts in the metatranscriptional profiles. Enrichment of transcripts related to photosynthesis and nutrient cycling indicated bottom-up controls of community structure. However a five-fold increase in viral transcripts within the lagoon during the day, suggested a concomitant top-down control by bacteriophages. Indeed, genome recruitment against Synechococcus reference genomes suggested a role of viruses in providing the ecological filter for determining the β-diversity patterns in this system.

  14. Charney's Influence on Modern Oceanography

    NASA Astrophysics Data System (ADS)

    Cane, M. A.

    2017-12-01

    In this talk I will review some of Jule Charney's impacts on current oceanographic research. He was of course a major seminal figure in geophysical fluid dynamics, an approach to understanding the atmosphere and oceans that has been thoroughly absorbed in contemporary thinking. In oceanography, his publications make vorticity dynamics the centerpiece of his analysis. Here I pursue two other aspects of his work. The first is to note that his 1955 paper "The Gulf Stream as an inertial boundary layer" appears to be the earliest numerical model in oceanography. The second is that his work on the equatorial undercurrent leads to a simplification of equatorial ocean structure that was exploited by Zebiak and Cane in their model for ENSO, and thus structures later views of how equatorial ocean dynamics influence sea surface temperature.

  15. AGU Fellow Roger Revelle Dies

    NASA Astrophysics Data System (ADS)

    DeVito, M. Catherine

    AGU Fellow Roger R.D. Revelle, past Oceanography section president and recipient of the William Bowie Medal, died July 15. Revelle was a pioneer in global warming research and plate tectonics, and a major contributor to oceanography, education, and public policy.Appointed an AGU Fellow in 1936, Revelle was president of the Oceanography section from 1953-1956. In 1968 he was awarded the Bowie Medal, AGU's highest honor. Revelle extended his activities beyond the limits of his specialty to actively work with scientists in other fields for the betterment of science. In presenting the award, George E. Backus described Revelle's career as one of bold and selfless service to science and his fellow man. “If scientific progress is built on the shoulders of giants, Roger Revelle is certainly to be counted among the giants.”

  16. Real-time sea-level gauge observations and operational oceanography.

    PubMed

    Mourre, Baptiste; Crosnier, Laurence; Provost, Christian Le

    2006-04-15

    The contribution of tide-gauge data, which provide a unique monitoring of sea-level variability along the coasts of the world ocean, to operational oceanography is discussed in this paper. Two distinct applications that both demonstrate tide-gauge data utility when delivered in real-time are illustrated. The first case details basin-scale operational model validation of the French Mercator operational system applied to the North Atlantic. The accuracy of model outputs in the South Atlantic Bight both at coastal and offshore locations is evaluated using tide-gauge observations. These data enable one to assess the model's nowcasts and forecasts reliability which is needed in order for the model boundary conditions to be delivered to other coastal prediction systems. Such real-time validation is possible as long as data are delivered within a delay of a week. In the second application, tide-gauge data are assimilated in a storm surge model of the North Sea and used to control model trajectories in real-time. Using an advanced assimilation scheme that takes into account the swift evolution of model error statistics, these observations are shown to be very efficient to control model error, provided that they can be assimilated very frequently (i.e. available within a few hours).

  17. Functional genetic divergence in high CO2 adapted Emiliania huxleyi populations.

    PubMed

    Lohbeck, Kai T; Riebesell, Ulf; Collins, Sinéad; Reusch, Thorsten B H

    2013-07-01

    Predicting the impacts of environmental change on marine organisms, food webs, and biogeochemical cycles presently relies almost exclusively on short-term physiological studies, while the possibility of adaptive evolution is often ignored. Here, we assess adaptive evolution in the coccolithophore Emiliania huxleyi, a well-established model species in biological oceanography, in response to ocean acidification. We previously demonstrated that this globally important marine phytoplankton species adapts within 500 generations to elevated CO2 . After 750 and 1000 generations, no further fitness increase occurred, and we observed phenotypic convergence between replicate populations. We then exposed adapted populations to two novel environments to investigate whether or not the underlying basis for high CO2 -adaptation involves functional genetic divergence, assuming that different novel mutations become apparent via divergent pleiotropic effects. The novel environment "high light" did not reveal such genetic divergence whereas growth in a low-salinity environment revealed strong pleiotropic effects in high CO2 adapted populations, indicating divergent genetic bases for adaptation to high CO2 . This suggests that pleiotropy plays an important role in adaptation of natural E. huxleyi populations to ocean acidification. Our study highlights the potential mutual benefits for oceanography and evolutionary biology of using ecologically important marine phytoplankton for microbial evolution experiments. © 2012 The Author(s). Evolution © 2012 The Society for the Study of Evolution.

  18. Ocean studies board has new chairman

    NASA Astrophysics Data System (ADS)

    Katsouros, Mary Hope

    John Sclater of the University of Texas at Austin has succeeded Walter Munk as chairman of the National Research Council's Ocean Studies Board. His term runs to June 30, 1991. The 17 members of OSB represent major disciplines in oceanography. The board advises the academic community and agencies of the federal government responsible for funding basic and applied research in oceanography and for maintaining the wellbeing of the oceans.

  19. SWOT Oceanography and Hydrology Data Product Simulators

    NASA Technical Reports Server (NTRS)

    Peral, Eva; Rodriguez, Ernesto; Fernandez, Daniel Esteban; Johnson, Michael P.; Blumstein, Denis

    2013-01-01

    The proposed Surface Water and Ocean Topography (SWOT) mission would demonstrate a new measurement technique using radar interferometry to obtain wide-swath measurements of water elevation at high resolution over ocean and land, addressing the needs of both the hydrology and oceanography science communities. To accurately evaluate the performance of the proposed SWOT mission, we have developed several data product simulators at different levels of fidelity and complexity.

  20. Autonomous Observations of the Upper Ocean Stratification and Velocity Field about the Seasonality Retreating Marginal Ice Zone

    DTIC Science & Technology

    2016-12-30

    graduate school at the Scripps institution of Oceanography . Also, ITP-Y investigators have collaborated with a Naval Postgraduate School 3 student...Physical Oceanography , doi: http://dx.doi.org/10. l J 75/JPO-D-1 2-0 19 l. l Cole, S.T., F.T. Thwaites, R.A. Kri shfield, and J.M. Toole, 2015

  1. Science requirements for free-flying imaging radar (FIREX) experiment for sea ice, renewable resources, nonrenewable resources and oceanography

    NASA Technical Reports Server (NTRS)

    Carsey, F.

    1982-01-01

    A future bilateral SAR program was studied. The requirements supporting a SAR mission posed by science and operations in sea-ice-covered waters, oceanography, renewable resources, and nonrenewable resources are addressed. The instrument, mission, and program parameters were discussed. Research investigations supporting a SAR flight and the subsequent overall mission requirements and tradeoffs are summarized.

  2. The Sky This Week, 2016 February 23 - March 1 - Naval Oceanography Portal

    Science.gov Websites

    section Advanced Search... Sections Home Time Earth Orientation Astronomy Meteorology Oceanography Ice You Time. Luna rises with Jupiter on the evening of the 23rd, then passes the bright star Spica in the wee goes back to the time of Ptolemy, but it was the Roman emperor Julius Caesar who first gave us our

  3. What Is Physical Oceanography? A Learning Experience for Coastal and Oceanic Awareness Studies, No. 217. [Project COAST].

    ERIC Educational Resources Information Center

    Delaware Univ., Newark. Coll. of Education.

    This unit is concerned with an overview of physical oceanography - the study of currents, tides, waves, and particle movements. The activities are designed for use by junior high school age students. Included in the unit are activities related to properties of sea water, physical phenomena of the ocean, and physical features of the ocean.…

  4. A community engagement project in an undergraduate oceanography course to increase engagement and representation in marine science among high school students

    NASA Astrophysics Data System (ADS)

    Clark, C. D.; Prairie, J. C.; Walters, S. A.

    2016-02-01

    In the context of undergraduate education in oceanography, we are constantly striving for innovative ways to enhance student learning and enthusiasm for marine science. Community engagement is a form of experiential education that not only promotes a better understanding of concepts among undergraduate students but also allows them to interact with the community in a way that is mutually beneficial to both parties. Here I present on my experience in incorporating a community engagement project in my undergraduate physical oceanography course at the University of San Diego (USD) in collaboration with Mission Bay High School (MBHS), a local Title 1 International Baccalaureate high school with a high proportion of low-income students and students from underrepresented groups in STEM. As part of this project, the undergraduate students from my physical oceanography course were challenged to develop interactive workshops to present to the high school students at MBHS on some topic in oceanography. Prior to the workshops, the USD students met with the high school students at MBHS during an introductory meeting in which they could learn about each other's interests and backgrounds. The USD students then worked in teams of three to design a workshop proposal in which they outlined their plan for a workshop that was interactive and engaging, relying on demonstrations and activities rather than lecture. Each of the three teams then presented their workshops on separate days in the Mission Bay High School classroom. Finally, the USD students met again with the high school students at MBHS for a conclusion day in which both sets of students could discuss their experiences with the community engagement project. Through the workshop itself and a reflection essay written afterwards, the USD students learned to approach concepts in oceanography from a different perspective, and think about how student backgrounds can inform teaching these concepts. I will describe preliminary outcomes of this project and discuss the potential of community engagement projects in general to positively impact and integrate both undergraduate and high school education in ocean science.

  5. The Effective and Evolving Role of Graduate Students in the SURFO REU Program

    NASA Astrophysics Data System (ADS)

    Pockalny, R. A.

    2005-12-01

    The Summer Undergraduate Research Fellowships in Oceanography (SURFO) program is a 10-week research/educational program designed to expose 9 undergraduates per year to cutting-edge, authentic oceanographic research at the Graduate School of Oceanography/University of Rhode Island. The SURFO program primarily focuses on the more quantitative aspects of oceanography (e.g., physical oceanography, geophysical fluid dynamics and marine geophysics), which closely parallel the strengths of GSO/URI. Thus, the primary undergraduate population targeted by the program includes students from various disciplines, but with strong backgrounds in math, physics, computer science, and engineering. Over its 20-year existence, the SURFO program has continuously evolved; however, three basics goals of the program have been maintained: 1) expose students to the breadth and depth of oceanography, 2) provide students with an authentic research experience, and 3) integrate/assimilate students into the lifestyle and community of a graduate research institution. An integral component for achieving these goals has been the inclusion of graduate students as workshop leaders/instructors, research mentors, and social directors. In these roles the graduate students act as a 'big brother/sister' to transition the undergraduates into the academic and research community. The graduate students also initially behave as liaisons between the senior researcher and the SURFO participant by fielding questions and concerns the undergraduate may be too intimidated to voice. As the summer progresses, the graduate students typically evolve into a lead research advisor and begin to learn effective techniques for advising students. Responses from SURFO participants on exit questionnaires frequently comment on how their experience and research project were directly affected by the extent of graduate student participation during the summer. Anecdotal evidence also indicates the participating graduate students gain maturity in their approach to research and become more willing advisees.

  6. The Canadian experience in frontier environmental protection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, G.H.

    1991-03-01

    Early Canadian frontier exploration (from 1955 onshore and from 1966 for offshore drilling) caused insignificant public concern. The 1967-1968 Torrey Canyon Tanker and Santa Barbara disasters roused public opinion and governments. In Canada, 1969-1970 Arctic gas blowouts, a tanker disaster, and damage to the 'Manhattan' exacerbated concerns and resulted in new environmental regulatory constraints. From 1970, the Arctic Petroleum Operations Association learned to operate safely with environmental responsibility. It studied physical environment for design criteria, and the biological and human environment to ameliorate impact. APOA's research projects covered sea-ice, permafrost, sea-bottom, oil-spills, bird and mammal migration, fish habitat, food chains,more » oceanography, meteorology, hunters'/trappers' harvests, etc. In 1971 Eastcoast Petroleum Operators' Association and Alaska Oil and Gas Association followed APOA's cooperative research model. EPOA stressed icebergs and fisheries. Certain research was handled by the Canadian Offshore Oil Spill Research Association. By the mid-1980s these associations had undertaken $70,000,000 of environmental oriented research, with equivalent additional work by member companies on specific needs and similar sums by Federal agencies often working with industry on complementary research. The frontier associations then merged with the Canadian Petroleum Association, already active environmentally in western Canada. Working with government and informing environmental interest groups, the public, natives, and local groups, most Canadian frontier petroleum operations proceeded with minimal delay and environmental disturbance.« less

  7. Remote sensing for oceanography: Past, present, future

    NASA Technical Reports Server (NTRS)

    Mcgoldrick, L. F.

    1984-01-01

    Oceanic dynamics was traditionally investigated by sampling from instruments in situ, yielding quantitative measurements that are intermittent in both space and time; the ocean is undersampled. The need to obtain proper sampling of the averaged quantities treated in analytical and numerical models is at present the most significant limitation on advances in physical oceanography. Within the past decade, many electromagnetic techniques for the study of the Earth and planets were applied to the study of the ocean. Now satellites promise nearly total coverage of the world's oceans using only a few days to a few weeks of observations. Both a review of the early and present techniques applied to satellite oceanography and a description of some future systems to be launched into orbit during the remainder of this century are presented. Both scientific and technologic capabilities are discussed.

  8. Tenth AMS Conference on Satellite Meteorology and Oceanography

    NASA Technical Reports Server (NTRS)

    Ferraro, R.; Colton, M.; Deblonde, G.; Jedlovec, G.; Lee, T.

    2000-01-01

    The American Meteorological Society held its Tenth Conference on Satellite Meteorology and Oceanography in conjunction with the 80th Annual Meeting in Long Beach, California. For the second consecutive conference, a format that consisted of primarily posters, complemented by invited theme oriented oral presentations, and panel discussions on various aspects on satellite remote sensing were utilized. Joint sessions were held with the Second Conference on Artificial Intelligence, the Eleventh Conference on Middle Atmosphere, and the Eleventh symposium on Global Change Studies. In total, there were 23 oral presentations, 170 poster presentations, and four panel discussions. Over 450 people representing a wide spectrum of the society attended one or more of the sessions in the five-day meeting. The program for the Tenth Conference on Satellite Meteorology and Oceanography can viewed in the October 1999 issue of the Bulletin.

  9. Teaching marine science to the next generation: Innovative programs for 6th”8th Graders gain momentum

    NASA Astrophysics Data System (ADS)

    Tebbens, S. F.; Coble, P. G.; Greely, T.

    Three educational outreach programs designed for middle school students (grades 6, 7, and 8) by faculty at the University of South Florida (USF) Department of Marine Science are turning kids onto science. The programs are bringing marine science research and its various technologies into the classroom, where students follow up with hands-on activities. Project Oceanography (PO) is an interactive broadcast that exposes students to the concepts and tools of current marine science research. The Oceanography Camp for Girls (OCG) boosts girls' curiosity and interest in science and nature. And teachers become better equipped to present current marine science topics and technology to their students at the Teachers Oceanography Workshop (TOW). All of the programs created by USF are provided at no cost to students or their institutions.

  10. Biologging, remotely-sensed oceanography and the continuous plankton recorder reveal the environmental determinants of a seabird wintering hotspot.

    PubMed

    Fort, Jérôme; Beaugrand, Grégory; Grémillet, David; Phillips, Richard A

    2012-01-01

    Marine environments are greatly affected by climate change, and understanding how this perturbation affects marine vertebrates is a major issue. In this context, it is essential to identify the environmental drivers of animal distribution. Here, we focused on the little auk (Alle alle), one of the world's most numerous seabirds and a major component in Arctic food webs. Using a multidisciplinary approach, we show how little auks adopt specific migratory strategies and balance environmental constraints to optimize their energy budgets. Miniature electronic loggers indicate that after breeding, birds from East Greenland migrate >2000 km to overwinter in a restricted area off Newfoundland. Synoptic data available from the Continuous Plankton Recorder (CPR) indicate that this region harbours some of the highest densities of the copepod Calanus finmarchicus found in the North Atlantic during winter. Examination of large-scale climatic and oceanographic data suggests that little auks favour patches of high copepod abundance in areas where air temperature ranges from 0°C to 5°C. These results greatly advance our understanding of animal responses to extreme environmental constraints, and highlight that information on habitat preference is key to identifying critical areas for marine conservation.

  11. The United States Navy Arctic Roadmap for 2014 to 2030

    DTIC Science & Technology

    2014-02-01

    of the Oceanographer of the Navy; the Chief of Naval Research; Commander, Naval Meteorology and Oceanography Command; Commander, Office of Naval...Q3, FY14 Q3, FY15 FY15-18 FY18 2.3.4: Improve traditional meteorological forecast capability in the polar regions through the...CNE Commander Naval Forces Europe CNIC Commander Navy Installations Command CNMOC Commander Naval Meteorology and Oceanography Command CNO Chief

  12. Review of the physical oceanography of the Cape Hatteras, North Carolina Region. Volume 1. Literature synthesis. Appendix A. Annotated bibliography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adams, C.E.; Berger, T.J.; Boicourt, W.C.

    The report, second in a three set series, is an annotated bibliography of the pertinent literature, primarily from 1970 to the present. The literature discusses the physical oceanography of the complex region offshore of Cape Hatteras, North Carolina as it relates to the ocean circulation and fate of any discharges resulting from offshore oil and gas activity.

  13. New developments in satellite oceanography and current measurements

    NASA Technical Reports Server (NTRS)

    Huang, N. E.

    1979-01-01

    Principal satellite remote sensing techniques and instruments are described and attention is given to the application of such techniques to ocean current measurement. The use of radiometers, satellite tracking drifters, and altimeters for current measurement is examined. Consideration is also given to other applications of satellite remote sensing in physical oceanography, including measurements of surface wind stress, sea state, tides, ice, sea surface temperature, salinity, ocean color, and oceanic leveling.

  14. Secretary of the Navy Professor of Oceanography

    DTIC Science & Technology

    2013-11-18

    of better predicting polar ice melting processes and the associated global rise in sea level. 15. SUBJECT TERMS Wind-drag, ocean surface roughness...Ross Sea with the goal of better predicting polar ice melting processes and the associated global rise in sea level. PUBLICATIONS Farrell, W. and W...Oceanography, LaJolla, CA; 12 May 2011 Attended: International Symposium on Interactions of Glaciers and Ice Sheets with the Ocean SIO, Scripps Institution

  15. Pelagic and benthic communities of the Antarctic ecosystem of Potter Cove: Genomics and ecological implications.

    PubMed

    Abele, D; Vazquez, S; Buma, A G J; Hernandez, E; Quiroga, C; Held, C; Frickenhaus, S; Harms, L; Lopez, J L; Helmke, E; Mac Cormack, W P

    2017-06-01

    Molecular technologies are more frequently applied in Antarctic ecosystem research and the growing amount of sequence-based information available in databases adds a new dimension to understanding the response of Antarctic organisms and communities to environmental change. We apply molecular techniques, including fingerprinting, and amplicon and metagenome sequencing, to understand biodiversity and phylogeography to resolve adaptive processes in an Antarctic coastal ecosystem from microbial to macrobenthic organisms and communities. Interpretation of the molecular data is not only achieved by their combination with classical methods (pigment analyses or microscopy), but furthermore by combining molecular with environmental data (e.g., sediment characteristics, biogeochemistry or oceanography) in space and over time. The studies form part of a long-term ecosystem investigation in Potter Cove on King-George Island, Antarctica, in which we follow the effects of rapid retreat of the local glacier on the cove ecosystem. We formulate and encourage new approaches to integrate molecular tools into Antarctic ecosystem research, environmental conservation actions, and polar ocean observatories. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Oceanography at coastal scales: Introduction to the special issue on results from the EU FP7 FIELD_AC project

    NASA Astrophysics Data System (ADS)

    Sánchez-Arcilla, Agustín; Wolf, Judith; Monbaliu, Jaak

    2014-09-01

    The high-resolution and coupled forecasting of wind, waves and currents, in restricted coastal domains, offer a number of important challenges; these limit the quality of predictions, in the present state-of-the-art. This paper presents the main results obtained for such coastal domains, with reference to a variety of modelling suites and observing networks for: a) Liverpool Bay; b) German Bight; c) Gulf of Venice; and d) the Catalan coast. All of these areas are restricted domains, where boundary effects play a significant role in the resulting inner dynamics. This contribution addresses also the themes of the other papers in this Special Issue, ranging from observations to simulations. Emphasis is placed upon the physics controlling such restricted areas. The text deals also with the transfer to end-users and other interested parties, since the requirements on resolution, accuracy and robustness must be linked to their applications. Finally, some remarks are included on the way forward for coastal oceanography and the synergetic combination of in-situ and remote measurements, with high-resolution 3D simulations.

  17. Effects of Small-Scale Bathymetric Roughness on the Global Internal Wave Field

    DTIC Science & Technology

    2008-09-30

    Navy. Much of the interest stems from the suggestion by Munk and Wunsch (1998) that the strength of the meridional overturning circulation is controlled... meridional overturning circulation . Journal of Physical Oceanography 32, 3578-3595. St. Laurent, L.C., 1999. Diapycnal advection by double diffusion...waves generated by flows over the rough seafloor. On the time scales of internal waves, mesoscale eddies and the general circulation can be regarded as

  18. Ocean observer study: A proposed national asset to augment the future U.S. operational satellite system

    USGS Publications Warehouse

    Cunningham, J.D.; Chambers, D.; Davis, C.O.; Gerber, A.; Helz, R.; McGuire, J.P.; Pichel, W.

    2003-01-01

    The next generation of U.S. polar orbiting environmental satellites, are now under development. These satellites, jointly developed by the Department of Defense (DoD), the Department of Commerce (DOC), and the National Aeronautics and Space Administration (NASA), will be known as the National Polar-orbiting Operational Environmental Satellite System (NPOESS). It is expected that the first of these satellites will be launched in 2010. NPOESS has been designed to meet the operational needs of the U.S. civilian meteorological, environmental, climatic, and space environmental remote sensing programs, and the Global Military Space and Geophysical Environmental remote sewing programs. This system, however, did not meet all the needs of the user community interested in operational oceanography (particularly in coastal regions). Beginning in the fall of 2000, the Integrated Program Office (IPO), a joint DoD, DOC, and NASA office responsible for the NPOESS development, initiated the Ocean Observer Study (OOS). The purpose of this study was to assess and recommend how best to measure the missing or inadequately sampled ocean parameters. This paper summarizes the ocean measurement requirements documented in the OOS, describes the national need to measure these parameters, and describes the satellite instrumentation required to make those measurements.

  19. Latency features of SafetyNet ground systems architecture for the National Polar-orbiting Operational Environmental Satellite System (NPOESS)

    NASA Astrophysics Data System (ADS)

    Duda, James L.; Mulligan, Joseph; Valenti, James; Wenkel, Michael

    2005-01-01

    A key feature of the National Polar-orbiting Operational Environmental Satellite System (NPOESS) is the Northrop Grumman Space Technology patent-pending innovative data routing and retrieval architecture called SafetyNetTM. The SafetyNetTM ground system architecture for the National Polar-orbiting Operational Environmental Satellite System (NPOESS), combined with the Interface Data Processing Segment (IDPS), will together provide low data latency and high data availability to its customers. The NPOESS will cut the time between observation and delivery by a factor of four when compared with today's space-based weather systems, the Defense Meteorological Satellite Program (DMSP) and NOAA's Polar-orbiting Operational Environmental Satellites (POES). SafetyNetTM will be a key element of the NPOESS architecture, delivering near real-time data over commercial telecommunications networks. Scattered around the globe, the 15 unmanned ground receptors are linked by fiber-optic systems to four central data processing centers in the U. S. known as Weather Centrals. The National Environmental Satellite, Data and Information Service; Air Force Weather Agency; Fleet Numerical Meteorology and Oceanography Center, and the Naval Oceanographic Office operate the Centrals. In addition, this ground system architecture will have unused capacity attendant with an infrastructure that can accommodate additional users.

  20. Naval Meteorology and Oceanography Command exhibit

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Designed to entertain while educating, StenniSphere at the John C. Stennis Space Center in Hancock County, Miss., includes informative displays and exhibits from NASA and other agencies located at Stennis, such as this one from the Naval Meteorology and Oceanography Command. Visitors can 'travel' three-dimensionally under the sea and check on the weather back home in the Weather Center. StenniSphere is open free of charge from 9 a.m. to 5 p.m. daily.

  1. Marine Science Syllabus for Secondary Schools. Report of an IOC Workshop on the Preparation of a Marine Science Syllabus for Secondary Schools. Unesco Reports in Marine Science, 5.

    ERIC Educational Resources Information Center

    United Nations Educational, Scientific, and Cultural Organization, Paris (France). Div. of Marine Sciences.

    Presented is a syllabus for introducing oceanography and the marine environment into the secondary school curricula of all IOC Member States, whether developed or developing. The main purpose of the syllabus is to promote an understanding of oceanography and the marine environment. The syllabus is action- and output-oriented, as well as…

  2. Physical oceanography and tracer chemistry of the southern ocean

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    This report considers technical and scientific developments and research questions in studies of the Southern Ocean since its predecessor, /open quotes/Southern Ocean Dynamics--A Strategy for Scientific Exploration 1973-1983/close quotes/ was published. The summary lists key research questions in Southern Ocean oceanography. Chapter 1 describes how Southern Ocean research has evolved to provide the basis for timely research toward more directed objectives. Chapter 2 recommends four research programs, encompassing many of the specific recommendations that follow. Appendix A provides the scientific background and Reference/Bibliography list for this report for: on air-sea-ice interaction; the Antarctic Circumpolar Current; water mass conversion; chemical tracermore » oceanography; and numerical modeling of the Southern Ocean. Appendix B describes the satellite-based observation systems expected to be active during the next decade. Appendix C is a list of relevant reports published during 1981-1987. 146 refs.« less

  3. Scripps museum receives NSF grant

    NASA Astrophysics Data System (ADS)

    Scripps Institution of Oceanography has been awarded a $500,000 grant from the National Science Foundation for a 37,000-square-foot museum exhibition on ocean sciences entitled “Exploring the Blue Planet.” The exhibition will be installed in the Scripps Hall of Oceanography of the new Stephen Birch Aquarium-Museum. The facility is under construction at the University of California, San Diego, and is scheduled to open in fall 1992.NSF is providing approximately half of the funds required for “Exploring the Blue Planet,” which is designed to help visitors explore the many fields of oceanography. “This NSF grant will fund interactive exhibits and changing displays featuring the latest Scripps research that will allow children and adults to experience science as an approachable, creative process that can be used to understand the changing world,” said Luther Williams, NSF Assistant Director for Education and Human Resources.

  4. SUPPORT FOR THE CONFERENCE ''WOCE & BEYOND'' TO BE HELD NOVEMBER 2002

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nowlin, Worth, D., Jr., Distinguished Professor, Department of Oceanography, Texas A&M University

    OAK B188 We are proud to report that the WOCE and Beyond meeting was a tremendous success, garnering praise for its content and execution from federal agency representatives, international sponsors, the speakers, and the audience. The conference attracted 379 registered participants (total attendance was 401) from 22 countries; 319 posters were presented; and 30 oral presentations by distinguished researchers touched on all aspects of WOCE science.Particularly gratifying to the organizers was the active participation of 43 students from around the world. In addition to helping underwrite infrastructure costs related to the poster sessions, DOE's grant supported the travel and subsistencemore » of 12 students and funded the awards for outstanding student posters (31 student posters were judged for three prizes of $500 each). Thus a strategic goal of the meeting-entraining young scientists into the WOCE research stream-was achieved with the help of DOE funding.Post-conference, the meeting' s website (http://www.woce2002.tamu.edu) was revamped to link to the plenary session presentations and poster abstracts. This website will be maintained until June of 2003. A copy of the meeting document, combining the program and poster abstracts will be sent to Dr. Anna Palmisano, DOE Scientific Officer.Recipients of travel support were: Mr Marcelo Barreiro, Texas A&M University Ms Elena Brambilla, Scripps Institution of Oceanography Ms Shuimin Chen, University of Hawaii Ms Meyre da Silva, Texas A&M University Ms Elizabeth Douglass, Scripps Institution of Oceanography Mr Shane Elipot, Scripps Institution of Oceanography Mr Joong-Tae Kim, Texas A&M University Mr Yueng-Djern Lenn, Scripps Institution of Oceanography's Nadja Lonnroth, Texas A&M University Mr Alvaro Montenegro, Florida State University Ms Sarah Zedler, Scripps Institution of Oceanography's Li Zhang, Texas A&M University Recipients of $500 Prizes for Outstanding Student Posters: Mr Geoffrey Gebbie, Massachusetts Institute of Technology ''An Eddy-resolving State Estimate of the Ocean Circulation during the Subduction Experiment Using a North Atlantic Regional Model (ECCO)'' Mr Hiroki Uehara, Tohoku University ''The role of Mesoscale Eddies on Formation and Transport of the North Pacific Subtropical Mode Water Demonstrated with Argo Floats'' Mr Josh Willis, Scripps Institution of Oceanography ''Combining Altimetric Height with Broadside Profile Data: A Technique for Estimating Subsurface Variability''« less

  5. The Utility of the Myers-Briggs Type Indicator and the Strong Interest Inventory in Predicting Service Community Selection at the United States Naval Academy

    DTIC Science & Technology

    2002-06-01

    These include intelligence , cryptology, oceanography, medicine, civil engineering, supply, and aviation maintenance. Despite the Combat Exclusion Law...Butcher, 1968) shows that personality predicts achievement even when intelligence is statistically controlled. The 16PF5 takes the 16 factors of...assesses the likelihood of job stability and helps to clarify situations the individual may perceive as career obstacles ( Gottfredson , 2002). 25 The

  6. Factors Controlling the Formation of Oxidized Root Channels: A Review and Annotated Bibliography

    DTIC Science & Technology

    1993-08-01

    professor at the Wetland Bio - geochemistry Institute and the Department of Oceanography and Coastal Science at LoLisiana State University. The work was...accumulated in the cells of the epidermis, exodermis, endodermis, and marginal layers of the stele . Zinc and phosphorus appeared to be associated possibly...intercellular spaces. Iron was also found on the tissue diaphragms that traverse the cortex of the root, connecting its outer cortex with the stele . Electron

  7. Navy Sea Ice Prediction Systems

    DTIC Science & Technology

    2002-01-01

    for the IABP drifting buoys (red), the model (green), and the model with assimilation (black). 55 Oceanography • Vol. 15 • No. 1/2002 trate the need...SPECIAL ISSUE – NAVY OPERATIONAL MODELS : TEN YEARS LATER Oceanography • Vol. 15 • No. 1/2002 44 ice extent and/or ice thickness. A general trend...most often based on a combination of models and data. Modeling sea ice can be a difficult problem, as it exists in many different forms (Figure 1). It

  8. Assessment of Superflux relative to marine science and oceanography. [airborne remote sensing of the Chesapeake Bay plume and shelf regions

    NASA Technical Reports Server (NTRS)

    Esaias, W. E.

    1981-01-01

    A general assessment of the Superflux project is made in relation to marine science and oceanography. It is commented that the program clearly demonstrated the effectiveness of state-of-the-art technology required to study highly dynamic estuarine plumes, and the necessity of a broadly interdisciplinary, interactive remote sensing and shipboard program required to significantly advance the understanding of transport processes and impacts of estuarine outflows.

  9. Naval Meteorology and Oceanography Command exhibit entrance

    NASA Technical Reports Server (NTRS)

    2000-01-01

    StenniSphere at NASA's John C. Stennis Space Center in Hancock County, Miss., invites visitors to discover why America comes to Stennis Space Center before going into space. Designed to entertain while educating, StenniSphere includes informative displays and exhibits from NASA and other agencies located at Stennis, such as this one from the Naval Meteorology and Oceanography Command. Visitors can 'travel' three-dimensionally under the sea and check on the weather back home in the Weather Center.

  10. USSR and Eastern Europe Scientific Abstracts, Geophysics, Astronomy and Space, Number 427.

    DTIC Science & Technology

    1978-08-15

    Friction in Tropical Circulation 6 III. OCEANOGRAPHY.. 7 News ’ "Akademik Kurchatov" Participates in " Polimode " Experiment... 7 Notes on...OCEANOGRAPHY News "AKADEMIK KURCHATOV" PARTICIPATES IN " POLIMODE " EXPERIMENT Moscow IZVESTIYA in Russian 28 Jul 78 p 3 [Article by V. Vukovich : "To...where it will participate in the final stage of the joint Soviet-American hydrophysical " POLIMODE " experiment. [5] [516] NOTES ON OPERATIONS OF

  11. Letter exchange documents 50 years of progress in oceanography

    NASA Astrophysics Data System (ADS)

    Leipper, Dale F.; Lewis, John M.

    During World War II the Scripps Institution of Oceanography (SIO) became involved in the oceanographic training of officers. This, combined with a rekindling of interest in the Pacific Ocean during and after the war, catapulted SIO in the late 1940s to a position of prominence in oceanographic education. The leader of the institution, both administratively and academically, was Harald Sverdrup (Figure 1). When he became director in 1936, only five graduate students were enrolled.

  12. Physical oceanography of the US Atlantic and eastern Gulf of Mexico. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Milliman, J.D.; Imamura, E.

    The report provides a summary of the physical oceanography of the U.S. Atlantic and Eastern Gulf of Mexico and its implication to offshore oil and gas exploration and development. Topics covered in the report include: meteorology and air-sea interactions, circulation on the continental shelf, continental slope and rise circulation, Gulf Stream, Loop Current, deep-western boundary current, surface gravity-wave climatology, offshore engineering implications, implications for resource commercialization, and numerical models of pollutant dispersion.

  13. The Sky This Week, 2016 January 27 - February 2 - Naval Oceanography

    Science.gov Websites

    Oceanography Ice You are here: Home › USNO › News, Tours & Events › Sky This Week › The Sky This Sky This Week The Sky This Week, 2016 January 27 - February 2 Info The Sky This Week, 2016 January 27 - February 2 Lest we forget. NOFS_Winter_2016_01small.jpg Dome of the Kaj Strand 1.55-meter (61-inch

  14. Ocean images in music compositions and folksongs

    NASA Astrophysics Data System (ADS)

    Liu, C. M.

    2017-12-01

    In general, ocean study usually ranges from physical oceanography, chemical oceanography, marine biology, marine geology, and other related fields. In addition to pure scientific fields, ocean phenomenon influence not only human mood but also the shaping of local cultures. In this paper, we present some ocean images and concepts appeared in music compositions and folksongs to show the mixing, influence and interaction between them. This may give a novel way not for science teachers but also music teachers to deliver the knowledge of ocean science in classes.

  15. Oceanography: 1998 Paris Meeting Abstracts: Coastal and Marginal Seas. Volume 11, Number 2.

    DTIC Science & Technology

    1998-01-01

    Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503. 1. AGENCY USE ONLY (Laave blank) 2. REPORT DATE 18 MAR 1999 3. REPORT...Richard W. Spinrad Small-Scale Hydrodynamics of Feeding Appendages of Marine Animals 10 M.A.R. Koehl Controls on Floe Size in the Sea 13 Paul S...we’ve included our first inter- view with one of community’s most influential leaders, the Chief of Naval Research, Rear Admiral Paul G. Gaffney, Jr

  16. Increasing Climate Literacy in Introductory Oceanography Classes Using Ocean Observation Data from Project Dynamo

    NASA Astrophysics Data System (ADS)

    Hams, J. E.

    2015-12-01

    This session will present educational activities developed for an introductory Oceanography lecture and laboratory class by NOAA Teacher-at-Sea Jacquelyn Hams following participation in Leg 3 of Project DYNAMO (Dynamics of the Madden-Julian Oscillation) in November-December 2011. The Madden-Julian Oscillation (MJO) is an important tropical weather phenomenon with origins in the Indian Ocean that impacts many other global climate patterns such as the El Nino Southern Oscillation (ENSO), Northern Hemisphere monsoons, tropical storm development, and pineapple express events. The educational activities presented include a series of lessons based on the observational data collected during Project DYNAMO which include atmospheric conditions, wind speeds and direction, surface energy flux, and upper ocean turbulence and mixing. The lessons can be incorporated into any introductory Oceanography class discussion on ocean properties such as conductivity, temperature, and density, ocean circulation, and layers of the atmosphere. A variety of hands-on lessons will be presented ranging from short activities used to complement a lecture to complete laboratory exercises.

  17. The Pale Blue Dot: Utilizing Real World Globes in High School and Undergraduate Oceanography Classrooms

    NASA Astrophysics Data System (ADS)

    Rogers, D. B.

    2017-12-01

    Geoscience classrooms have benefitted greatly from the use of interactive, dry-erasable globes to supplement instruction on topics that require three-dimensional visualization, such as seismic wave propagation and the large-scale movements of tectonic plates. Indeed, research by Bamford (2013) demonstrates that using three-dimensional visualization to illustrate complex processes enhances student comprehension. While some geoscience courses tend to bake-in lessons on visualization, other disciplines of earth science that require three-dimensional visualization, such as oceanography, tend to rely on students' prior spatial abilities. In addition to spatial intelligence, education on the three-dimensional structure of the ocean requires knowledge of the external processes govern the behavior of the ocean, as well as the vertical and lateral distribution of water properties around the globe. Presented here are two oceanographic activities that utilize RealWorldGlobes' dry-erase globes to supplement traditional oceanography lessons on thermohaline and surface ocean circulation. While simultaneously promoting basic plotting techniques, mathematical calculations, and unit conversions, these activities touch on the processes that govern global ocean circulation, the principles of radiocarbon dating, and the various patterns exhibited by surface ocean currents. These activities challenge students to recognize inherent patterns within their data and synthesize explanations for their occurrence. Spatial visualization and critical thinking are integral to any geoscience education, and the combination of these abilities with engaging hands-on activities has the potential to greatly enhance oceanography education in both secondary and postsecondary settings

  18. Connecting Oceanography and Music

    NASA Astrophysics Data System (ADS)

    Beauregard, J. L.

    2016-02-01

    Capturing and retaining the interest of non-science majors in science classes can be difficult, no matter what type of science. At Berklee College of Music, this challenge is especially significant, as all students are music majors. In my Introductory Oceanography course, I use a final project as a way for the students to link class material with their own interests. The students may choose any format to present their projects to the class; however, many students write and perform original music. The performances of ocean-themed music have become a huge draw of the Introductory Oceanography course. In an effort to expand the reach of this music, several colleagues and I organized the first Earth Day event at Berklee, `Earthapalooza 2015.' This event included performances of music originally written for the final projects, as well as other musical performances, poetry readings, guest talks, and information booths. Although the idea of an Earth Day event is not new, this event is unique in that student performances really resonate with the student audience. Additionally, since many of these students will enter professional careers in the performance and recording industries, the potential exists for them to expose large audiences to the issues of oceanography through music. In this presentation, I will play examples of original student compositions and show video of the live student performances. I will also discuss the benefits and challenges of the final projects and the Earth Day event. Finally, I will highlight the future plans to continue ocean-themed music at Berklee.

  19. Developing Online Oceanography at UCSB

    NASA Astrophysics Data System (ADS)

    Prothero, W. A.; Dodson, H.

    2001-12-01

    Oceanography at UCSB is an introductory general education science course taken by up to 200 students per quarter. The emphasis is on learning science process by engaging in authentic science activities that use real earth data. Recently, to increase student motivation, the course has been modified to include an Earth Summit framework. The online support being developed for this course is the first step in the creation of a completely online oceanography class. Foundation software was first tested in the class during Spring 2001. Online activities that are supported are writing and instructor feedback, online threaded discussion with live chat and graphics, automatically graded homeworks and games, auto graded quizzes with questions randomly selected from a database, and thought problems graded by the instructor(s). Future plans include integration with commercial course management software. To allow choice of assignments, all course activities totaled110%. Since grades were based on A=90-100, B=80-90, C= 70-80, etc, it was possible to get a better than A grade. Students see the effect (on their grade) of each assignment by calculating their current course grade. Course activities included (most of which are automatically graded): weekly lab homeworks, weekly mini-quizzes (10 multiple choice questions selected at random from a topic database), weekly thought questions (graded by the TA), 3 written assignments, and "Question of the Day" from lecture (credit given for handing it in), The online writing software allowed students to enter their writing, edit and link to graphic images, print the paper, and electronically hand it in. This has the enormous advantage of allowing the instructor and TA's convenient access to all student papers. At the end of the course, students were asked how effective each of the course activities were in learning the course material. On a five point scale, ranging from highest contribution to lowest, the percentage of students giving ratings of 4 or 5 (highest) were: lectures: 27%, labs: 70%, earth summit activities: 57%, weekly thought questions: 36%, Questions of the day: 34%, weekly quizzes: 51%, weekly homeworks: 48%, writing assignments: 68%. Course difficulty responses were symmetrically peaked at a rating of 3, indicating that the course was taught at the right level. 64% of the students responded with 4 or 5 level to "I worked very hard in this class." Join the DLESE "Oceanography" interest group (www.dlese.org) to discuss and help develop oceanography course materials. >http://oceanography.geol.ucsb.edu/Support/CourseWare/Index.html

  20. Highlights of the 2014 Ocean Sciences Meeting

    NASA Astrophysics Data System (ADS)

    Sharp, Jonathan; Briscoe, Melbourne; Itsweire, Eric

    2014-07-01

    The 2014 Ocean Sciences Meeting was the 17th biennial gathering since the inception of ocean sciences meetings in 1982. A joint venture of the Association for the Sciences of Limnology and Oceanography (ASLO), The Oceanography Society (TOS), and the Ocean Sciences section of AGU, the meeting was by far the largest ever: More than 5600 attendees made this meeting more than 30% larger than any previous one. Forty percent of attendees live outside the United States, hailing from 55 countries, showing the importance of this meeting as an international gathering of ocean scientists.

  1. Fast neural network surrogates for very high dimensional physics-based models in computational oceanography.

    PubMed

    van der Merwe, Rudolph; Leen, Todd K; Lu, Zhengdong; Frolov, Sergey; Baptista, Antonio M

    2007-05-01

    We present neural network surrogates that provide extremely fast and accurate emulation of a large-scale circulation model for the coupled Columbia River, its estuary and near ocean regions. The circulation model has O(10(7)) degrees of freedom, is highly nonlinear and is driven by ocean, atmospheric and river influences at its boundaries. The surrogates provide accurate emulation of the full circulation code and run over 1000 times faster. Such fast dynamic surrogates will enable significant advances in ensemble forecasts in oceanography and weather.

  2. Genomic perspectives in microbial oceanography.

    PubMed

    DeLong, Edward F; Karl, David M

    2005-09-15

    The global ocean is an integrated living system where energy and matter transformations are governed by interdependent physical, chemical and biotic processes. Although the fundamentals of ocean physics and chemistry are well established, comprehensive approaches to describing and interpreting oceanic microbial diversity and processes are only now emerging. In particular, the application of genomics to problems in microbial oceanography is significantly expanding our understanding of marine microbial evolution, metabolism and ecology. Integration of these new genome-enabled insights into the broader framework of ocean science represents one of the great contemporary challenges for microbial oceanographers.

  3. JPL Physical Oceanography Distributed Active Archive Center (PO.DAAC) data availability, version 1-94

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The Physical Oceanography Distributed Active Archive Center (PO.DAAC) archive at the Jet Propulsion Laboratory (JPL) includes satellite data sets for the ocean sciences and global-change research to facilitate multidisciplinary use of satellite ocean data. Parameters include sea-surface height, surface-wind vector, sea-surface temperature, atmospheric liquid water, and integrated water vapor. The JPL PO.DAAC is an element of the Earth Observing System Data and Information System (EOSDIS) and is the United States distribution site for Ocean Topography Experiment (TOPEX)/POSEIDON data and metadata.

  4. Multibeam synthetic aperture radar for global oceanography

    NASA Technical Reports Server (NTRS)

    Jain, A.

    1979-01-01

    A single-frequency multibeam synthetic aperture radar concept for large swath imaging desired for global oceanography is evaluated. Each beam iilluminates a separate range and azimuth interval, and images for different beams may be separated on the basis of the Doppler spectrum of the beams or their spatial azimuth separation in the image plane of the radar processor. The azimuth resolution of the radar system is selected so that the Doppler spectrum of each beam does not interfere with the Doppler foldover due to the finite pulse repetition frequency of the radar system.

  5. Cumulative and Synergistic Effects of Physical, Biological, and Acoustic Signals on Marine Mammal Habitat Use Physical Oceanography Component: Soundscapes Under Sea Ice: Can We Listen for Open Water?

    DTIC Science & Technology

    2013-09-30

    Physical, Biological, and Acoustic Signals on Marine Mammal Habitat Use Physical Oceanography Component: Soundscapes Under Sea Ice: Can we listen for... Soundscapes Under Sea Ice: Can we listen for open water? 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d...the source. These different sounds can be described as “ soundscapes ”, and graphically represented by comparing two or more features of the sound

  6. NSF-Sponsored Biological and Chemical Oceanography Data Management Office

    NASA Astrophysics Data System (ADS)

    Allison, M. D.; Chandler, C. L.; Copley, N.; Galvarino, C.; Gegg, S. R.; Glover, D. M.; Groman, R. C.; Wiebe, P. H.; Work, T. T.; Biological; Chemical Oceanography Data Management Office

    2010-12-01

    Ocean biogeochemistry and marine ecosystem research projects are inherently interdisciplinary and benefit from improved access to well-documented data. Improved data sharing practices are important to the continued exploration of research themes that are a central focus of the ocean science community and are essential to interdisciplinary and international collaborations that address complex, global research themes. In 2006, the National Science Foundation Division of Ocean Sciences (NSF OCE) funded the Biological and Chemical Oceanography Data Management Office (BCO-DMO) to serve the data management requirements of scientific investigators funded by the National Science Foundation’s Biological and Chemical Oceanography Sections. BCO-DMO staff members work with investigators to manage marine biogeochemical, ecological, and oceanographic data and information developed in the course of scientific research. These valuable data sets are documented, stored, disseminated, and protected over short and intermediate time frames. One of the goals of the BCO-DMO is to facilitate regional, national, and international data and information exchange through improved data discovery, access, display, downloading, and interoperability. In May 2010, NSF released a statement to the effect that in October 2010, it is planning to require that all proposals include a data management plan in the form of a two-page supplementary document. The data management plan would be an element of the merit review process. NSF has long been committed to making data from NSF-funded research publicly available and the new policy will strengthen this commitment. BCO-DMO is poised to assist in creating the data management plans and in ultimately serving the data and information resulting from NSF OCE funded research. We will present an overview of the data management system capabilities including: geospatial and text-based data discovery and access systems; recent enhancements to data search tools; data export and download utilities; and strategic use of controlled vocabularies to facilitate data integration and improve interoperability.

  7. Towards a healthier Gulf of Finland - results of the International Gulf of Finland Year 2014

    NASA Astrophysics Data System (ADS)

    Myrberg, Kai; Lips, Urmas; Orlova, Marina

    2017-07-01

    The international collaboration to protect the marine environment of the Gulf of Finland (GoF) dates back to 1968. Since then, Finland and the Soviet Union, and later on, Estonia, Finland, and Russia have collaborated trilaterally in the environmental front with a vision of a healthier GoF. The first Gulf of Finland Year organized in 1996 was a major step forward in trilateral cooperation and GoF research. It produced comprehensive scientific reports on different aspects of the GoF environment (Sarkkula, 1997), including an updated review of the physical oceanography of the Gulf (Alenius et al., 1998; Soomere et al., 2008) and recognition of the internal nutrient fluxes as a factor counteracting the decrease in external load (Pitkänen et al., 2001).

  8. Research and technology developments in aeronautics, atmospheric and oceanographic measurements, radar applications, and remote sensing of insects using radar

    NASA Technical Reports Server (NTRS)

    Oberholtzer, J. D. (Editor)

    1980-01-01

    Highlights of the year's activities and accomplishments are reported in the areas of aircraft safety, scientific ballooning, mid-air payload retrieval, and the design of a microwave power reception and conversion system for on use on a high altitude powered platform. The development and application of an agro-environmental system to provide crop management advisory information to Virginia farmers, and the radar tracking of insects are described. Aircraft systems, developed for measuring atmospheric ozone and nitric acid were used to sample emissions from Mount St. Helens. Investigations of the reliability and precision of the U.S. standard meteorological rocketsonde, applications of the microwave altimeter and airborne lidar system in oceanography, and the development of a multibeam altimeter concept are also summarized.

  9. Critical Analyses of Data Differences Between FNMOC and AFGWC Spawned SSM/I Datasets

    NASA Technical Reports Server (NTRS)

    Ritchie, Adrian A., Jr.; Smith, Matthew R.; Goodman, H. Michael; Schudalla, Ronald L.; Conway, Dawn K.; LaFontaine, Frank J.; Moss, Don; Motta, Brian

    1998-01-01

    Antenna temperatures and the corresponding geolocation data from the five sources of the Special Sensor Microwave/Imager data from the Defense Meteorological Satellite Program F11 satellite have been characterized. Data from the Fleet Numerical Meteorology and Oceanography Center (FNMOC) have been compared with data from other sources to define and document the differences resulting from different processing systems. While all sources used similar methods to calculate antenna temperatures, different calibration averaging techniques and other processing methods yielded temperature differences. Analyses of the geolocation data identified perturbations in the FNMOC and National Environmental Satellite, Data and Information Service data. The effects of the temperature differences were examined by generating rain rates using the Goddard Scattering Algorithm. Differences in the geophysical precipitation products are directly attributable to antenna temperature differences.

  10. Improved Access to NSF Funded Ocean Research Data

    NASA Astrophysics Data System (ADS)

    Chandler, C. L.; Groman, R. C.; Kinkade, D.; Shepherd, A.; Rauch, S.; Allison, M. D.; Gegg, S. R.; Wiebe, P. H.; Glover, D. M.

    2015-12-01

    Data from NSF-funded, hypothesis-driven research comprise an essential part of the research results upon which we base our knowledge and improved understanding of the impacts of climate change. Initially funded in 2006, the Biological and Chemical Oceanography Data Management Office (BCO-DMO) works with marine scientists to ensure that data from NSF-funded ocean research programs are fully documented and freely available for future use. BCO-DMO works in partnership with information technology professionals, other marine data repositories and national data archive centers to ensure long-term preservation of these valuable environmental research data. Data contributed to BCO-DMO by the original investigators are enhanced with sufficient discipline-specific documentation and published in a variety of standards-compliant forms designed to enable discovery and support accurate re-use.

  11. Looking Down on the Earth: How Satellites Have Revolutionized Our Understanding of Our Home Planet

    NASA Astrophysics Data System (ADS)

    Freilich, Michael

    2017-04-01

    Earth is a complex, dynamic system we do not yet fully understand. The Earth system, like the human body, comprises diverse components that interact in complex ways. We need to understand the Earth's atmosphere, lithosphere, hydrosphere, cryosphere, and biosphere as a single connected system. Our planet is changing on all spatial and temporal scales. This presentation will highlight how satellite observations are revolutionizing our understanding of and its response to natural or human-induced changes, and to improve prediction of climate, weather, and natural hazards. Bio: MICHAEL H. FREILICH, Director of the Earth Science Division, Science Mission Directorate at NASA Headquarters. Prior to NASA, he was a Professor and Associate Dean in the College of Oceanic and Atmospheric Sciences at Oregon State University. He received Ph.D. in Oceanography from Scripps Institution of Oceanography (Univ. of CA., San Diego) in 1982. Dr. Freilich's research focuses on the determination, validation, and geophysical analysis of ocean surface wind velocity measured by satellite-borne microwave radar and radiometer instruments. He has developed scatterometer and altimeter wind model functions, as well as innovative validation techniques for accurately quantifying the accuracy of spaceborne environmental measurements. Dr. Freilich has served on many NASA, National Research Council (NRC), and research community advisory and steering groups, including the WOCE Science Steering Committee, the NASA EOS Science Executive Committee, the NRC Ocean Studies Board, and several NASA data system review committees. Freilich's non-scientific passions include nature photography and soccer refereeing at the youth, high school, and adult levels.

  12. Looking Down on the Earth: How Satellites Have Revolutionized Our Understanding of Our Home Planet

    NASA Astrophysics Data System (ADS)

    Freilich, Michael

    2016-04-01

    Earth is a complex, dynamic system we do not yet fully understand. The Earth system, like the human body, comprises diverse components that interact in complex ways. We need to understand the Earth's atmosphere, lithosphere, hydrosphere, cryosphere, and biosphere as a single connected system. Our planet is changing on all spatial and temporal scales. This presentation will highlight how satellite observations are revolutionizing our understanding of and its response to natural or human-induced changes, and to improve prediction of climate, weather, and natural hazards. Bio: MICHAEL H. FREILICH, Director of the Earth Science Division, Science Mission Directorate at NASA Headquarters. Prior to NASA, he was a Professor and Associate Dean in the College of Oceanic and Atmospheric Sciences at Oregon State University. He received Ph.D. in Oceanography from Scripps Institution of Oceanography (Univ. of CA., San Diego) in 1982. Dr. Freilich's research focuses on the determination, validation, and geophysical analysis of ocean surface wind velocity measured by satellite-borne microwave radar and radiometer instruments. He has developed scatterometer and altimeter wind model functions, as well as innovative validation techniques for accurately quantifying the accuracy of spaceborne environmental measurements. Dr. Freilich has served on many NASA, National Research Council (NRC), and research community advisory and steering groups, including the WOCE Science Steering Committee, the NASA EOS Science Executive Committee, the NRC Ocean Studies Board, and several NASA data system review committees. Freilich's non-scientific passions include nature photography and soccer refereeing at the youth, high school, and adult levels.

  13. Graduate Education in Coastal Science: Then and Now

    NASA Astrophysics Data System (ADS)

    Inman, D. L.

    2002-12-01

    Coastal science began in the early 20th century in geology disciplines with descriptive field studies of ancient shorelines (G. K. Gilbert, 1885) and coastal observations (Douglas Johnson, 1919). World War II placed a strong emphasis on the importance of coastal processes in military operations. The most profound impact was associated with the interdisciplinary approach to coastal science demonstrated by The Oceans (1942). The first organized graduate program in oceanography opened at Scripps Institution of Oceanography in 1946 and offered courses in marine geology as well as physical oceanography, biology at the sea, chemistry of sea water and applied mathematics. Those first classes and the new "Sverdrup" curriculum inspired the rapid growth and transfer of knowledge in the new oceanographic sciences. Graduates of these classes established Sverdrup-type interdisciplinary curricula throughout the world. Research and descriptive understanding of the world's oceans and coasts burgeoned during the 1950s. The aqualung, introduced to Shepard's students in 1948 by Jacques Cousteau, became a new scientific tool for studies in nearshore waters, and instruments were designed for studying waves, currents, and sediment transport. A new quantitative coastal science emerged from the concepts of Bagnold and others. Funding came from the Office of Naval Research, coastal engineering (Beach Erosion Board), and the oil industry. A significant contribution to the literature of classical nearshore processes was the series of Conferences on Coastal Engineering sponsored by the University of California and edited by Joe Johnson. Starting with the first conference held in Long Beach in 1950, the conferences brought together researchers from diverse backgrounds and published their findings expeditiously. This research soon was synthesized into textbooks such as Shepard's Submarine Geology (2nd edition, 1963); Hill's 1963 edited volume The Sea v. 3 The Earth Beneath the Sea, with the first discussion of "Beach and Nearshore Processes"; Wiegel's Oceanographical Engineering in 1964; and Ippen's Estuary and Coastline Hydrodynamics in 1966. An excellent example of the transition from descriptive to quantitative nearshore processes is given by comparison between the first edition in 1948 and the second edition in 1963 of Submarine Geology, with sections added on the mechanics of waves, currents, and sediment transport. In the last two decades, the global scale of environmental research and the power of computers have shifted the focus of coastal research to large scale experiments and process modeling.

  14. Satellite observations of the ice cover of the Kuril Basin region of the Okhotsk Sea and its relation to the regional oceanography

    NASA Technical Reports Server (NTRS)

    Wakatsuchi, Masaaki; Martin, Seelye

    1990-01-01

    For the period 1978-1982, this paper examines the nature of the sea ice which forms over the Kuril Basin of the Okhotsk Sea and describes the impact of this ice on the regional oceanography. The oceanographic behavior during the heavy ice season associated with the cold 1979 winter is compared with the behavior during the lighter ice years of 1980 and 1982. Examination of the oceanography in the Okhotsk and the adjacent Pacific shows that the early summer water column structure depends on the heat loss from the Okhotsk during the preceding ice season, the total amount of Okhotsk ice formation, and, specifically, the amount of the ice formation in the Kuril Basin. Following the 1979 ice season, the upper 200-300 m of the Kuril Basin waters were cooler, less saline, and richer in oxygen than for the other years. This modification appears to be a process local to the Kuril Basin, driven by eddy-induced mixing, local cooling, and ice melting.

  15. West Hackberry Strategic Petroleum Reserve site brine-disposal monitoring, Year I report. Volume IV. Bibliography and supporting data for physical oceanography. Final report. [421 references

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DeRouen, L.R.; Hann, R.W.; Casserly, D.M.

    This project centers around the Strategic Petroleum Site (SPR) known as the West Hackberry salt dome which is located in southwestern Louisiana and which is designed to store 241 million barrels of crude oil. Oil storage caverns are formed by injecting water into salt deposits, and pumping out the resulting brine. Studies described in this report were designed as follow-on studies to three months of pre-discharge characterization work, and include data collected during the first year of brine leaching operations. The objectives were to: (1) characterize the environment in terms of physical, chemical and biological attributes; (2) determine if significantmore » adverse changes in ecosystem productivity and stability of the biological community are occurring as a result of brine discharge; and (3) determine the magnitude of any change observed. Volume IV contains the following: bibliography; appendices for supporting data for physical oceanography, and summary of the physical oceanography along the western Louisiana coast.« less

  16. Numerical Modeling of Ocean Circulation

    NASA Astrophysics Data System (ADS)

    Miller, Robert N.

    2007-01-01

    The modelling of ocean circulation is important not only for its own sake, but also in terms of the prediction of weather patterns and the effects of climate change. This book introduces the basic computational techniques necessary for all models of the ocean and atmosphere, and the conditions they must satisfy. It describes the workings of ocean models, the problems that must be solved in their construction, and how to evaluate computational results. Major emphasis is placed on examining ocean models critically, and determining what they do well and what they do poorly. Numerical analysis is introduced as needed, and exercises are included to illustrate major points. Developed from notes for a course taught in physical oceanography at the College of Oceanic and Atmospheric Sciences at Oregon State University, this book is ideal for graduate students of oceanography, geophysics, climatology and atmospheric science, and researchers in oceanography and atmospheric science. Features examples and critical examination of ocean modelling and results Demonstrates the strengths and weaknesses of different approaches Includes exercises to illustrate major points and supplement mathematical and physical details

  17. Parallel structure among environmental gradients and three trophic levels in a subarctic estuary

    USGS Publications Warehouse

    Speckman, Suzann G.; Piatt, John F.; Minte-Vera, C. V.; Parrish, Julia K.

    2005-01-01

    We assessed spatial and temporal variability in the physical environment of a subarctic estuary, and examined concurrent patterns of chlorophyll α abundance (fluorescence), and zooplankton and forage fish community structure. Surveys were conducted in lower Cook Inlet, Alaska, during late July and early August from 1997 through 1999. Principle components analysis (PCA) revealed that spatial heterogeneity in the physical oceanographic environment of lower Cook Inlet could be modeled as three marine-estuarine gradients characterized by temperature, salinity, bottom depth, and turbidity. The gradients persisted from 1997 through 1999, and PCA explained 68% to 92% of the variance in physical oceanography for each gradient-year combination. Correlations between chlorophyll α abundance and distribution and the PCA axes were weak. Chlorophyll was reduced by turbidity, and low levels occurred in areas with high levels of suspended sediments. Detrended correspondence analysis (DCA) was used to order the sample sites based on species composition and to order the zooplankton and forage fish taxa based on similarities among sample sites for each gradient-year. Correlations between the structure of the physical environment (PCA axis 1) and zooplankton community structure (DCA axis 1) were strong (r = 0.43-0.86) in all years for the three marine-estuarine gradients, suggesting that zooplankton community composition was structured by the physical environment. The physical environment (PCA) and forage fish community structure (DCA) were weakly correlated in all years along Gradient 2, defined by halocline intensity and surface temperature and salinity, even though these physical variables were more important for defining zooplankton habitats. However, the physical environment (PCA) and forage fish community structure (DCA) were strongly correlated along the primary marine-estuarine gradient (#1) in 1997 (r = 0.87) and 1998 (r = 0.82). The correlation was poor (r = 0.32) in 1999, when fish community structure changed markedly in lower Cook Inlet. Capelin (Mallotus villosus), walleye pollock (Theragra chalcogramma), and arrowtooth flounder (Atheresthes stomias) were caught farther north than in previous years. Waters were significantly colder and more saline in 1999, a La Nina year, than in other years of the study. Interannual fluctuations in environmental conditions in lower Cook Inlet did not have substantial effects on zooplankton community structure, although abundance of individual taxa varied significantly. The abundance and distribution of chlorophyll α, zooplankton and forage fish were affected much more by spatial variability in physical oceanography than by interannual variability. Our examination of physical-biological linkages in lower Cook Inlet supports the concept of "bottom-up control," i.e., that variability in the physical environment structures higher trophic-level communities by influencing their distribution and abundance across space.

  18. Parallel structure among environmental gradients and three trophic levels in a subarctic estuary

    NASA Astrophysics Data System (ADS)

    Speckman, Suzann G.; Piatt, John F.; Minte-Vera, Carolina V.; Parrish, Julia K.

    2005-07-01

    We assessed spatial and temporal variability in the physical environment of a subarctic estuary, and examined concurrent patterns of chlorophyll α abundance (fluorescence), and zooplankton and forage fish community structure. Surveys were conducted in lower Cook Inlet, Alaska, during late July and early August from 1997 through 1999. Principle components analysis (PCA) revealed that spatial heterogeneity in the physical oceanographic environment of lower Cook Inlet could be modeled as three marine-estuarine gradients characterized by temperature, salinity, bottom depth, and turbidity. The gradients persisted from 1997 through 1999, and PCA explained 68% to 92% of the variance in physical oceanography for each gradient-year combination. Correlations between chlorophyll α abundance and distribution and the PCA axes were weak. Chlorophyll was reduced by turbidity, and low levels occurred in areas with high levels of suspended sediments. Detrended correspondence analysis (DCA) was used to order the sample sites based on species composition and to order the zooplankton and forage fish taxa based on similarities among sample sites for each gradient-year. Correlations between the structure of the physical environment (PCA axis 1) and zooplankton community structure (DCA axis 1) were strong ( r = 0.43-0.86) in all years for the three marine-estuarine gradients, suggesting that zooplankton community composition was structured by the physical environment. The physical environment (PCA) and forage fish community structure (DCA) were weakly correlated in all years along Gradient 2, defined by halocline intensity and surface temperature and salinity, even though these physical variables were more important for defining zooplankton habitats. However, the physical environment (PCA) and forage fish community structure (DCA) were strongly correlated along the primary marine-estuarine gradient (#1) in 1997 ( r = 0.87) and 1998 ( r = 0.82). The correlation was poor ( r = 0.32) in 1999, when fish community structure changed markedly in lower Cook Inlet. Capelin ( Mallotus villosus), walleye pollock ( Theragra chalcogramma), and arrowtooth flounder ( Atheresthes stomias) were caught farther north than in previous years. Waters were significantly colder and more saline in 1999, a La Niña year, than in other years of the study. Interannual fluctuations in environmental conditions in lower Cook Inlet did not have substantial effects on zooplankton community structure, although abundance of individual taxa varied significantly. The abundance and distribution of chlorophyll α, zooplankton and forage fish were affected much more by spatial variability in physical oceanography than by interannual variability. Our examination of physical-biological linkages in lower Cook Inlet supports the concept of “bottom-up control,” i.e., that variability in the physical environment structures higher trophic-level communities by influencing their distribution and abundance across space.

  19. Global Environmental Leadership and Sustainability: High School Students Teaching Environmental Science to Policymakers

    NASA Astrophysics Data System (ADS)

    Wilson, S.; Tamsitt, V. M.

    2016-02-01

    A two week high school course for high-achieving 10th-12th graders was developed through the combined efforts of Scripps Institution of Oceanography (SIO) Graduate Students and UC San Diego Academic Connections. For the high school students involved, one week was spent at SIO learning basic climate science and researching climate-related topics, and one week was spent in Washington D.C. lobbying Congress for an environmental issue of their choosing. The specific learning goals of the course were for students to (1) collect, analyze and interpret scientific data, (2) synthesize scientific research for policy recommendations, (3) craft and deliver a compelling policy message, and (4) understand and experience change. In this first year, 10 students conducted research on two scientific topics; sea level rise using pier temperature data and California rainfall statistics using weather stations. Simultaneous lessons on policy messaging helped students learn how to focus scientific information for non-scientists. In combining the importance of statistics from their Science lessons with effective communication from their Policy lessons, the students developed issue papers which highlighted an environmental problem, the solution, and the reason their solution is most effective. The course culminated in two days of meetings on Capitol Hill, where they presented their solutions to their Congressional and Senate Members, conversed with policymakers, and received constructive feedback. Throughout the process, the students effectively defined arguments for an environmental topic in a program developed by SIO Graduate Students.

  20. (abstract) Satellite Physical Oceanography Data Available From an EOSDIS Archive

    NASA Technical Reports Server (NTRS)

    Digby, Susan A.; Collins, Donald J.

    1996-01-01

    The Physical Oceanography Distributed Active Archive Center (PO.DAAC) at the Jet Propulsion Laboratory archives and distributes data as part of the Earth Observing System Data and Information System (EOSDIS). Products available from JPL are largely satellite derived and include sea-surface height, surface-wind speed and vectors, integrated water vapor, atmospheric liquid water, sea-surface temperature, heat flux, and in-situ data as it pertains to satellite data. Much of the data is global and spans fourteen years.There is email access, a WWW site, product catalogs, and FTP capabilities. Data is free of charge.

  1. Study of the marine environment of the northern Gulf of California. [seasonal variations in oceanography

    NASA Technical Reports Server (NTRS)

    Hendrickson, J. R. (Principal Investigator)

    1973-01-01

    The author has identified the following significant results. Results of studies of the oceanography of the northern Gulf of California (Mexico) are reported. A remote, instrumented buoy measuring and telemetering oceanographic data by ERTS-1 satellite was designed, constructed, deployed, and tested. Regular cruises by a research ship on a pattern of 47 oceanographic stations collected data which are analyzed and referenced to analysis of ERTS-1 satellite imagery. A thermal dynamic model of current patterns in the northern Gulf of California is proposed. Findings are examined in relation to the model.

  2. Lindstrom Receives 2013 Ocean Sciences Award: Citation

    NASA Astrophysics Data System (ADS)

    Gordon, Arnold L.; Lagerloef, Gary S. E.

    2014-09-01

    Eric J. Lindstrom's record over the last 3 decades exemplifies both leadership and service to the ocean science community. Advancement of ocean science not only depends on innovative research but is enabled by support of government agencies. As NASA program scientist for physical oceanography for the last 15 years, Eric combined his proven scientific knowledge and skilled leadership abilities with understanding the inner workings of our government bureaucracy, for the betterment of all. He is a four-time NASA headquarters medalist for his achievements in developing a unified physical oceanography program that is well integrated with those of other federal agencies.

  3. Dispersant Effectiveness, In-Situ Droplet Size Distribution and ...

    EPA Pesticide Factsheets

    This report summarizes two projects covered under an Interagency Agreement between the Bureau of Safety and Environmental Enforcement (BSEE) and the U.S. Environmental Protection Agency (EPA) in collaboration with the Bedford Institute of Oceanography, Department of Fisheries and Oceans Canada (BIO DFO), New Jersey Institute of Technology (NJIT) and Dalhousie University. Both projects dovetail together in addressing the ability to differentiate physical from chemical dispersion effectiveness using dispersed oil simulations within a flume tank for improving forensic response monitoring tools. This report is split into separateTasks based upon the two projects funded by BSEE: 1) Dispersant Effectiveness, In-Situ Droplet Size Distribution and Numerical Modeling to Assess Subsurface Dispersant Injection as a Deepwater Blowout Oil Spill Response Option. 2) Evaluation of Oil Fluorescence Characteristics to Improve Forensic Response Tools. This report summarizes 2 collaborative projects funded through an Interagency Agreement with DOI BSEE and a Cooperative Agreement with DFO Canada. BSEE required that the projects be combined into one report as they are both covered under the one Interagency Agreement. Task B (Fluorescence of oils) is an SHC 3.62 FY16 product.

  4. Exploring Greenland: science and technology in Cold War settings.

    PubMed

    Heymann, Matthias; Knudsen, Henrik; Lolck, Maiken L; Nielsen, Henry; Nielsen, Kristian H; Ries, Christopher J

    2010-01-01

    This paper explores a vacant spot in the Cold War history of science: the development of research activities in the physical environmental sciences and in nuclear science and technology in Greenland. In the post-war period, scientific exploration of the polar areas became a strategically important element in American and Soviet defence policy. Particularly geophysical fields like meteorology, geology, seismology, oceanography, and others profited greatly from military interest. While Denmark maintained formal sovereignty over Greenland, research activities were strongly dominated by U.S. military interests. This paper sets out to summarize the limited current state of knowledge about activities in the environmental physical sciences in Greenland and their entanglement with military, geopolitical, and colonial interests of both the USA and Denmark. We describe geophysical research in the Cold War in Greenland as a multidimensional colonial endeavour. In a period of decolonization after World War II, Greenland, being a Danish colony, became additionally colonized by the American military. Concurrently, in a period of emerging scientific internationalism, the U.S. military "colonized" geophysical research in the Arctic, which increasingly became subject to military directions, culture, and rules.

  5. The Internet of Scientific Research Things

    NASA Astrophysics Data System (ADS)

    Chandler, Cynthia; Shepherd, Adam; Arko, Robert; Leadbetter, Adam; Groman, Robert; Kinkade, Danie; Rauch, Shannon; Allison, Molly; Copley, Nancy; Gegg, Stephen; Wiebe, Peter; Glover, David

    2016-04-01

    The sum of the parts is greater than the whole, but for scientific research how do we identify the parts when they are curated at distributed locations? Results from environmental research represent an enormous investment and constitute essential knowledge required to understand our planet in this time of rapid change. The Biological and Chemical Oceanography Data Management Office (BCO-DMO) curates data from US NSF Ocean Sciences funded research awards, but BCO-DMO is only one repository in a landscape that includes many other sites that carefully curate results of scientific research. Recent efforts to use persistent identifiers (PIDs), most notably Open Researcher and Contributor ID (ORCiD) for person, Digital Object Identifier (DOI) for publications including data sets, and Open Funder Registry (FundRef) codes for research grants and awards are realizing success in unambiguously identifying the pieces that represent results of environmental research. This presentation uses BCO-DMO as a test case for adding PIDs to the locally-curated information published out as standards compliant metadata records. We present a summary of progress made thus far; what has worked and why, and thoughts on logical next steps.

  6. The Prestige crisis: operational oceanography applied to oil recovery, by the Basque fishing fleet.

    PubMed

    González, Manuel; Uriarte, Adolfo; Pozo, Rogelio; Collins, Michael

    2006-01-01

    On 19th November 2002, the oil tanker Prestige (containing 77,000 tonnes of heavy fuel no. 2 (M100)) sank in 3500 m of water, off the coast of northwestern Spain. Intermittent discharge of oil from the stricken tanker, combined with large-scale sea surface dispersion, created a tracking and recovery problem. Initially, conventional oil recovery approaches were adopted, close to the wreck. With time and distance from the source, the oil dispersed dramatically and became less viscous. Consequently, a unique monitoring, prediction and data dissemination system was established, based upon the principles of 'operational oceanography'; this utilised in situ tracked buoys and numerical (spill trajectory) modelling outputs, in combination with remote sensing (satellite sensors and visual observation). Overall, wind effects on the surface waters were found to be the most important mechanism controlling the smaller oil slick movements. The recovery operation involved up to 180 fishing boats, 9-30 m in length. Such labour-intensive recovery of the oil (21,000 tonnes, representing an unprecedented ratio of 6.6 tonnes at sea, per tonne recovered on land) continued over a 10 month period. The overall recovery at sea, by the fishing vessels, represented 63% of the total oil recovered at sea; this compares to only 37% recovered by specialised 'counter- pollution' vessels.

  7. In the Footsteps of Roger Revelle: Seagoing Oceanography for Middle School Science

    NASA Astrophysics Data System (ADS)

    Brice, D.; Foley, S.; Knox, R. A.; Mauricio, P.

    2007-12-01

    Now in its fourth year, "In the Footsteps of Roger Revelle" (IFRR) is a middle school science education program that draws student interest, scientific content and coherence with National Science Standards from real-time research at sea in fields of physical science. As a successful collaboration involving Scripps Institution of Oceanography (SIO), Woods Hole Oceanographic Institution (WHOI), National Oceanic and Atmospheric Administration (NOAA), Office of Naval Research (ONR), National Science Foundation (NSF), San Diego County Office of Education (SDCOE), and San Marcos Middle School (SMMS), IFRR brings physical oceanography and related sciences to students at the San Marcos Middle School in real-time from research vessels at sea using SIO's HiSeasNet satellite communication system. With their science teacher on the ship as an education outreach specialist or ashore guiding students in their interactions with selected scientists at sea, students observe shipboard research being carried out live via videoconference, daily e-mails, interviews, digital whiteboard sessions, and web interaction. Students then research, design, develop, deploy, and field-test their own data-collecting physical oceanography instruments in their classroom. The online interactive curriculum encourages active inquiry with intellectually stimulating problem-solving, enabling students to gain critical insight and skill while investigating some of the most provocative questions of our time, and seeing scientists as role- models. Recent science test scores with IFRR students have shown significant increases in classes where this curriculum has been implemented as compared to other classes where the traditional curriculum has been used. IFRR has provided students in the San Diego area with a unique opportunity for learning about oceanographic research, which could inspire students to become oceanographers or at least scientifically literate citizens - a benefit for a country that depends increasingly on technically proficient personnel, and a benefit for society at large.

  8. Oceanographic connectivity and environmental correlates of genetic structuring in Atlantic herring in the Baltic Sea

    PubMed Central

    Teacher, Amber GF; André, Carl; Jonsson, Per R; Merilä, Juha

    2013-01-01

    Marine fish often show little genetic structuring in neutral marker genes, and Atlantic herring (Clupea harengus) in the Baltic Sea are no exception; historically, very low levels of population differentiation (FST ≍ 0.002) have been found, despite a high degree of interpopulation environmental heterogeneity in salinity and temperature. Recent exome sequencing and SNP studies have however shown that many loci are under selection in this system. Here, we combined population genetic analyses of a large number of transcriptome-derived microsatellite markers with oceanographic modelling to investigate genetic differentiation and connectivity in Atlantic herring at a relatively fine scale within the Baltic Sea. We found evidence for weak but robust and significant genetic structuring (FST = 0.008) explainable by oceanographic connectivity. Genetic differentiation was also associated with site differences in temperature and salinity, with the result driven by the locus Her14 which appears to be under directional selection (FST = 0.08). The results show that Baltic herring are genetically structured within the Baltic Sea, and highlight the role of oceanography and environmental factors in explaining this structuring. The results also have implications for the management of herring fisheries, the most economically important fishery in the Baltic Sea, suggesting that the current fisheries management units may be in need of revision. PMID:23745145

  9. The University of Miami Center for Oceans and Human Health

    NASA Astrophysics Data System (ADS)

    Fleming, L. E.; Smith, S. L.; Minnett, P. J.

    2007-05-01

    Two recent major reports on the health of the oceans in the United States have warned that coastal development and population pressures are responsible for the dramatic degradation of U.S. ocean and coastal environments. The significant consequences of this increased population density, particularly in sub/tropical coastal regions, can be seen in recent weather events: Hurricanes Andrew, Ivan, and Katrina in the US Gulf of Mexico states, and the Tsunami in Southeast Asia in December 2004, all causing significant deaths and destruction. Microbial contamination, man-made chemicals, and a variety of harmful algal blooms and their toxins are increasingly affecting the health of coastal human populations via the seafood supply, as well as the commercial and recreational use of coastal marine waters. At the same time, there has been the realization that the oceans are a source of unexplored biological diversity able to provide medicinal, as well as nutritional, benefits. Therefore, the exploration and preservation of the earth's oceans have significant worldwide public health implications for current and future generations. The NSF/NIEHS Center for Oceans and Human Health Center (COHH) at the University of Miami Rosenstiel School and its collaborators builds on several decades of collaborative and interdisciplinary research, education, and training to address the NIEHS-NSF research initiative in Oceans and Human Health. The COHH focuses on issues relevant to the Southeastern US and Caribbean, as well as global Sub/Tropical areas worldwide, to integrate interdisciplinary research between biomedical and oceanographic scientists. The Center includes three Research Projects: (1) research into the application of toxic algal culture, toxin analysis, remote sensing, oceanography, and genomics to subtropical/tropical Harmful Algal Bloom (HAB) organism and toxin distribution; (2) exploring the interaction between functional genomics and oceanography of the subtropical/tropical HAB organism, Karenia brevis, and its environmental interactions; and (3) exploring the relationship between microbial indicators and human health effects in sub/tropical recreational marine waters. There are three Facilities Cores supporting this research in Genomics, Remote Sensing, and Toxic Algal Culture. To accomplish this research program in subtropical/tropical oceans and human health, the University of Miami Oceans & Human Health Center collaborates with interdisciplinary scientists at Florida International University (FIU), the Centers for Disease Control and Prevention (CDC), the Miami Dade County Dept of Health, the University of Florida, and other institutions, as well as other Oceans and Human Health Centers and researchers.

  10. Equatorial oceanography. [review of research

    NASA Technical Reports Server (NTRS)

    Cane, M. A.; Sarachik, E. S.

    1983-01-01

    United States progress in equatorial oceanography is reviewed, focusing on the low frequency response of upper equatorial oceans to forcing by the wind. Variations of thermocline depth, midocean currents, and boundary currents are discussed. The factors which determine sea surface temperature (SST) variability in equatorial oceans are reviewed, and the status of understanding of the most spectacular manifestation of SST variability, the El Nino-Southern Oscillation phenomenon, is discussed. The problem of observing surface winds, regarded as a fundamental factor limiting understanding of the equatorial oceans, is addressed. Finally, an attempt is made to identify those current trends which are expected to bear fruit in the near and distant future.

  11. Data catalog for JPL Physical Oceanography Distributed Active Archive Center (PO.DAAC)

    NASA Technical Reports Server (NTRS)

    Digby, Susan

    1995-01-01

    The Physical Oceanography Distributed Active Archive Center (PO.DAAC) archive at the Jet Propulsion Laboratory contains satellite data sets and ancillary in-situ data for the ocean sciences and global-change research to facilitate multidisciplinary use of satellite ocean data. Geophysical parameters available from the archive include sea-surface height, surface-wind vector, surface-wind speed, surface-wind stress vector, sea-surface temperature, atmospheric liquid water, integrated water vapor, phytoplankton pigment concentration, heat flux, and in-situ data. PO.DAAC is an element of the Earth Observing System Data and Information System and is the United States distribution site for TOPEX/POSEIDON data and metadata.

  12. Fall 1991 Ocean Sciences Student Papers

    NASA Astrophysics Data System (ADS)

    1992-04-01

    Michele Okihiro received an Outstanding Student Paper Award for a paper she presented at the AGU Fall 1991 Meeting entitled “Infragravity Bound Waves in Shallow and Deep Water.” Okihiro received a Bachelor of Arts degree in mathematics from Pomona College in 1980, a Bachelor of Science degree in civil engineering from the University of Hawaii in 1988, and a Master of Science degree in oceanography from the University of California at San Diego in 1986. Okihiro is currently working toward her doctorate in oceanography at the University of California at San Diego. Her research at Scripps Institution concerns infragravity waves and their role in forcing resonant harbor oscillations.

  13. Is the Oceanography of the New Zealand Subantarctic Region Responding to the Tropics?

    NASA Astrophysics Data System (ADS)

    Forcen-Vazquez, A. N.

    2016-02-01

    The Campbell Plateau, south of New Zealand plays an important role in New Zealand's regional climate and its oceanography may have a significant impact on fluctuations in fish stocks and marine mammal populations. It is located between the Subtropical and Subantarctic Fronts and exhibits marked variability over long time scales. It has been previously assumed, because of its location, that the Campbell Plateau oceanography is driven by Subantarctic and polar processes. Recent analysis, presented here, suggests this in not the case, and instead forcing comes from the tropics and subtropics. This is supported by positive correlations of Sea Level Anomalies (SLA) and Sea Surface Temperature (SST) with the Southern Oscillation Index (SOI) with SOI leading changes on the Campbell Plateau by two months for SLA and seven months for SST. Here we will present evidence of the similarity between the Campbell Plateau and the Tasman Sea SLA trends which suggests a closer relationship with the subtropical region. Satellite collected SLA data and SST from the last two decades are investigated to understand trends and long-term variability over the Campbell Plateau and its relationship with the surrounding open ocean, and other potential remote drivers of variability.

  14. Retaining STEM women with community-based mentoring

    NASA Astrophysics Data System (ADS)

    Lozier, M.

    2011-12-01

    While women have been graduating from physical oceanography programs in increasing numbers for the past two decades, the number of women occupying senior positions in the field remains relatively low. Thus, the disparity between the percentages of women at various career stages seems to be related to the retention of those completing graduate school in physical oceanography, not in recruiting women to the field. Studies indicate that a positive mentoring experience is strongly correlated with success in science, and as such, MPOWIR (Mentoring Physical Oceanography Women to Increase Retention) provides this essential mentoring to physical oceanographers from late graduate school through their early careers. Our network includes over 400 scientists at 70 institutions participating in a variety of online and face-to-face mentoring opportunities. The MPOWIR website (www.mpowir.org) includes resources for junior scientists, ways to get involved, data and career profiles, and a blog with job postings and relevant information. In October 2011, we will hold the third Pattullo conference to bring mentors and mentees together. The 43 participants at this conference will share their research, attend professional development sessions, and openly discuss issues related to the retention of young scientists in the field.

  15. Remote sensing validation through SOOP technology: implementation of Spectra system

    NASA Astrophysics Data System (ADS)

    Piermattei, Viviana; Madonia, Alice; Bonamano, Simone; Consalvi, Natalizia; Caligiore, Aurelio; Falcone, Daniela; Puri, Pio; Sarti, Fabio; Spaccavento, Giovanni; Lucarini, Diego; Pacci, Giacomo; Amitrano, Luigi; Iacullo, Salvatore; D'Andrea, Salvatore; Marcelli, Marco

    2017-04-01

    The development of low-cost instrumentation plays a key role in marine environmental studies and represents one of the most innovative aspects of marine research. The availability of low-cost technologies allows the realization of extended observatory networks for the study of marine phenomena through an integrated approach merging observations, remote sensing and operational oceanography. Marine services and practical applications critically depends on the availability of large amount of data collected with sufficiently dense spatial and temporal sampling. This issue directly influences the robustness both of ocean forecasting models and remote sensing observations through data assimilation and validation processes, particularly in the biological domain. For this reason it is necessary the development of cheap, small and integrated smart sensors, which could be functional both for satellite data validation and forecasting models data assimilation as well as to support early warning systems for environmental pollution control and prevention. This is particularly true in coastal areas, which are subjected to multiple anthropic pressures. Moreover, coastal waters can be classified like case 2 waters, where the optical properties of inorganic suspended matter and chromophoric dissolved organic matter must be considered and separated by the chlorophyll a contribution. Due to the high costs of mooring systems, research vessels, measure platforms and instrumentation a big effort was dedicated to the design, development and realization of a new low cost mini-FerryBox system: Spectra. Thanks to the modularity and user-friendly employment of the system, Spectra allows to acquire continuous in situ measures of temperature, conductivity, turbidity, chlorophyll a and chromophoric dissolved organic matter (CDOM) fluorescences from voluntary vessels, even by non specialized operators (Marcelli et al., 2014; 2016). This work shows the preliminary application of this technology to remote sensing data validation.

  16. UK Environmental Prediction - integration and evaluation at the convective scale

    NASA Astrophysics Data System (ADS)

    Fallmann, Joachim; Lewis, Huw; Castillo, Juan Manuel; Pearson, David; Harris, Chris; Saulter, Andy; Bricheno, Lucy; Blyth, Eleanor

    2016-04-01

    It has long been understood that accurate prediction and warning of the impacts of severe weather requires an integrated approach to forecasting. For example, high impact weather is typically manifested through various interactions and feedbacks between different components of the Earth System. Damaging high winds can lead to significant damage from the large waves and storm surge along coastlines. The impact of intense rainfall can be translated through saturated soils and land surface processes, high river flows and flooding inland. The substantial impacts on individuals, businesses and infrastructure of such events indicate a pressing need to understand better the value that might be delivered through more integrated environmental prediction. To address this need, the Met Office, NERC Centre for Ecology & Hydrology and NERC National Oceanography Centre have begun to develop the foundations of a coupled high resolution probabilistic forecast system for the UK at km-scale. This links together existing model components of the atmosphere, coastal ocean, land surface and hydrology. Our initial focus has been on a 2-year Prototype project to demonstrate the UK coupled prediction concept in research mode. This presentation will provide an update on UK environmental prediction activities. We will present the results from the initial implementation of an atmosphere-land-ocean coupled system and discuss progress and initial results from further development to integrate wave interactions. We will discuss future directions and opportunities for collaboration in environmental prediction, and the challenges to realise the potential of integrated regional coupled forecasting for improving predictions and applications.

  17. Sailing for Science: on board experiences for transferring knowledge on Historical Oceanography for Future Innovation

    NASA Astrophysics Data System (ADS)

    Garvani, Sara; Carmisciano, Cosmo; Locritani, Marina; Grossi, Luigi; Mori, Anna; Stroobant, Mascha; Schierano, Erika; De Strobel, Federico; Manzella, Giuseppe; Muzi, Enrico; Leccese, Dario; Sinapi, Luigi; Morellato, Claudio; La Tassa, Hebert; Talamoni, Roberta; Coelho, Emanuel; Nacini, Francesca

    2017-04-01

    Smart, sustainable and inclusive Blue Growth means also knowing past technology and the paths followed by ancients in order to understand and monitor marine environments. In general, history of Science is a matter that is not enough explored and explained or promoted in high schools or university official programmes, and, usually, scientist do not consider it as an important part of their curricula. However, bad or good ideas, abandoned or forgotten beliefs, concepts, opinions, do still have a great potential for inspiring present and future scientists, no matter in which historical period they may have been formulated: they should be always be taken into consideration, critically examined and observed by a very close point of view, not just as part of the intellectual framework of some obsolete 'Cabinet of Curiosities' with limited access except for the chosen few. Moreover, history of Science should be transmitted in a more practical way, with hands-on labs showing the limits and challenges that prior generations of ocean explorers, investigators and seafarers had to face in order to answer to crucial questions as self-orientation in open sea, understanding main currents and waves, predicting meteorological conditions for a safe navigation. Oceanography is a relatively young branch of science, and still needs further approvals and knowledge (National Science Foundation, 2000). The Scientific Dissemination Group (SDG) "La Spezia Gulf of Science" - made up by Research Centres, Schools and Cultural associations located in La Spezia (Liguria, Italy) - has a decadal experience in initiatives aimed at people and groups of people of all ages, who are keen on science or who can be guided in any case to take an interest in scientific matters (Locritani et al., 2015). Amongst the SDG activities, the tight relationship with the Historical Oceanography Society, the Italian Navy and the Naval Technical Museum (that collects a rich heritage of civilization, technology and culture witnesses, related to the naval history of seamanship from the origins up to nowadays), allowed the creation of a special educational format based on Historical Oceanography, for university and high school students as an integration for their curriculum. The Historical Oceanography Society has provided the major knowledges included in the ancient volumes of its archive, thanks to the availability of its members that also held theoretical and practical lessons during the course. The present paper will describe the one-week special course (about 60 hours of theory and practice with technical visits to Research centres and Museums) that has been planned to be carried out on board of the Italian Training Navy Ship (A. Vespucci) and has been organized in order to give the hints about on board life, as well as theoretical lessons on modern and historical oceanography, hands-on labs on oceanographic instruments from public and private collections, physiology of diving techniques and astronomy. The general aim of this course has been, hence, to give to excellent students all those technological but also creative and imaginative features of our past. References M. Locritani, I. Batzu, C. Carmisciano, F. Muccini, R. Talamoni, H.L. Tassa, M. Stroobant, G. Guccinelli, L. Benvenuti, M. Abbate, S. Furia, A. Benedetti, M.I. Bernardini, R. Centi, L. Casale, C. Vannucci, F. Giacomazzi, C. Marini, D. Tosi, S. Merlino, E. Mioni, F. Nacini, Feeling the pulse of public perception of science: Does research make our hearts beat faster?, in: MTS/IEEE OCEANS 2015 - Genova: Discovering Sustainable Ocean Energy for a New World, 2015. National Science Foundation, 50 Years of Ocean Discovery: National Science Foundation 1950-2000. Ocean Studies Board, National Research Council ISBN: 0-309-51744-3, 276 pages, 8.5 x 11, 2000. E.L. Mills, The Historian of Science and Oceanography After Twenty Years, Earth Sciences History. 12 (1993) 5-18. J.A. Bennett, History of Technology - McConnell Anita, Historical instruments in oceanography. London: Her Majesty's Stationery Office, 1981. Pp. iv + 51. ISBN 0-11-290324-X. £95. A. McConnell, No sea too deep: the history of oceanographic instruments. Bristol: Adam, The British Journal for the History of Science. 17 (1984) 332.

  18. Habitat preferences of baleen whales in a mid-latitude habitat

    NASA Astrophysics Data System (ADS)

    Prieto, Rui; Tobeña, Marta; Silva, Mónica A.

    2017-07-01

    Understanding the dynamics of baleen whale distribution is essential to predict how environmental changes can affect their ecology and, in turn, ecosystem functioning. Recent work showed that mid-latitude habitats along migratory routes may play an important role on the feeding ecology of baleen whales. This study aimed to investigate the function of a mid-latitude habitat for blue (Balaenoptera musculus), fin (Balaenoptera physalus) and sei (Balaenoptera borealis) whales occurring in sympatry during spring and summer months and to what extent their environmental niches overlap. We addressed those questions by developing environmental niche models (ENM) for each species and then making pairwise comparisons of niche overlap and relative habitat patch importance among the three species. ENMs were created using sightings from the Azorean Fisheries Observer Program from May to November, between 2004 and 2009, and a set of 18 predictor environmental variables. We then assessed monthly (April-July) overlap among ENMs using a modified Hellinger's distance metric (I). Results show that the habitat niches of blue and fin whales are strongly influenced by primary productivity and sea surface temperature and are highly dynamic both spatially and temporally due to the oceanography of the region. Niche overlap analyses show that blue and fin whale environmental niches are similar and that the suitable habitats for the two species have high degree of spatial coincidence. These results in combination suggest that this habitat may function as a mid-latitude feeding ground to both species while conditions are adequate. The sei whale model, on the other hand, did not include variables considered to be proxies for prey distribution and little environmental niche overlap was found between this species and the other two. We argue that these results suggest that the region holds little importance as a foraging habitat for the sei whale.

  19. NCAR CSM ocean model by the NCAR oceanography section. Technical note

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    This technical note documents the ocean component of the NCAR Climate System Model (CSM). The ocean code has been developed from the Modular Ocean Model (version 1.1) which was developed and maintained at the NOAA Geophysical Fluid Dynamics Laboratory in Princeton. As a tribute to Mike Cox, and because the material is still relevant, the first four sections of this technical note are a straight reproduction from the GFDL Technical Report that Mike wrote in 1984. The remaining sections document how the NCAR Oceanography Section members have developed the MOM 1.1 code, and how it is forced, in order tomore » produce the NCAR CSM Ocean Model.« less

  20. Coupling biology and oceanography in models.

    PubMed

    Fennel, W; Neumann, T

    2001-08-01

    The dynamics of marine ecosystems, i.e. the changes of observable chemical-biological quantities in space and time, are driven by biological and physical processes. Predictions of future developments of marine systems need a theoretical framework, i.e. models, solidly based on research and understanding of the different processes involved. The natural way to describe marine systems theoretically seems to be the embedding of chemical-biological models into circulation models. However, while circulation models are relatively advanced the quantitative theoretical description of chemical-biological processes lags behind. This paper discusses some of the approaches and problems in the development of consistent theories and indicates the beneficial potential of the coupling of marine biology and oceanography in models.

  1. [Oceanography and King Dom Carlos I's collection of iconography].

    PubMed

    Jardim, Maria Estela; Peres, Isabel Marília; Ré, Pedro Barcia; Costa, Fernanda Madalena

    2014-01-01

    After the Challenger expedition (1872-1878), other nations started to show interest in oceanographic research and organizing their own expeditions. As of 1885, Prince Albert I of Monaco conducted oceanographic campaigns with the collaboration of some of the best marine biologists and physical oceanographers of the day, inventing new techniques and instruments for the oceanographic work. Prince Albert's scientific activity certainly helped kindle the interest of his friend, Dom Carlos I, king of Portugal, in the study of the oceans and marine life. Both shared the need to use photography to document their studies. This article analyzes the role of scientific photography in oceanography, especially in the expeditions organized by the Portuguese monarch.

  2. Ontogenetic development of migration: Lagrangian drift trajectories suggest a new paradigm for sea turtles.

    PubMed

    Hays, Graeme C; Fossette, Sabrina; Katselidis, Kostas A; Mariani, Patrizio; Schofield, Gail

    2010-09-06

    Long distance migration occurs in a wide variety of taxa including birds, insects, fishes, mammals and reptiles. Here, we provide evidence for a new paradigm for the determinants of migration destination. As adults, sea turtles show fidelity to their natal nesting areas and then at the end of the breeding season may migrate to distant foraging sites. For a major rookery in the Mediterranean, we simulated hatchling drift by releasing 288 000 numerical particles in an area close to the nesting beaches. We show that the pattern of adult dispersion from the breeding area reflects the extent of passive dispersion that would be experienced by hatchlings. Hence, the prevailing oceanography around nesting areas may be crucial to the selection of foraging sites used by adult sea turtles. This environmental forcing may allow the rapid evolution of new migration destinations if ocean currents alter with climate change.

  3. Temporal variation in pelagic food chain length in response to environmental change

    PubMed Central

    Ruiz-Cooley, Rocio I.; Gerrodette, Tim; Fiedler, Paul C.; Chivers, Susan J.; Danil, Kerri; Ballance, Lisa T.

    2017-01-01

    Climate variability alters nitrogen cycling, primary productivity, and dissolved oxygen concentration in marine ecosystems. We examined the role of this variability (as measured by six variables) on food chain length (FCL) in the California Current (CC) by reconstructing a time series of amino acid–specific δ15N values derived from common dolphins, an apex pelagic predator, and using two FCL proxies. Strong declines in FCL were observed after the 1997–1999 El Niño Southern Oscillation (ENSO) event. Bayesian models revealed longer FCLs under intermediate conditions for surface temperature, chlorophyll concentration, multivariate ENSO index, and total plankton volume but not for hypoxic depth and nitrate concentration. Our results challenge the prevalent paradigm that suggested long-term stability in the food web structure in the CC and, instead, reveal that pelagic food webs respond strongly to disturbances associated with ENSO events, local oceanography, and ongoing changes in climate. PMID:29057322

  4. Offshore Wind Guidance Document: Oceanography and Sediment Stability (Version 1) Development of a Conceptual Site Model.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roberts, Jesse D.; Jason Magalen; Craig Jones

    This guidance document provide s the reader with an overview of the key environmental considerations for a typical offshore wind coastal location and the tools to help guide the reader through a thoro ugh planning process. It will enable readers to identify the key coastal processes relevant to their offshore wind site and perform pertinent analysis to guide siting and layout design, with the goal of minimizing costs associated with planning, permitting , and long - ter m maintenance. The document highlight s site characterization and assessment techniques for evaluating spatial patterns of sediment dynamics in the vicinity of amore » wind farm under typical, extreme, and storm conditions. Finally, the document des cribe s the assimilation of all of this information into the conceptual site model (CSM) to aid the decision - making processes.« less

  5. Meteorological Instruction Software

    NASA Technical Reports Server (NTRS)

    1990-01-01

    At Florida State University and the Naval Postgraduate School, meteorology students have the opportunity to apply theoretical studies to current weather phenomena, even prepare forecasts and see how their predictions stand up utilizing GEMPAK. GEMPAK can display data quickly in both conventional and non-traditional ways, allowing students to view multiple perspectives of the complex three-dimensional atmospheric structure. With GEMPAK, mathematical equations come alive as students do homework and laboratory assignments on the weather events happening around them. Since GEMPAK provides data on a 'today' basis, each homework assignment is new. At the Naval Postgraduate School, students are now using electronically-managed environmental data in the classroom. The School's Departments of Meteorology and Oceanography have developed the Interactive Digital Environment Analysis (IDEA) Laboratory. GEMPAK is the IDEA Lab's general purpose display package; the IDEA image processing package is a modified version of NASA's Device Management System. Bringing the graphic and image processing packages together is NASA's product, the Transportable Application Executive (TAE).

  6. Antarctic Meteorology and Climatology

    NASA Astrophysics Data System (ADS)

    King, J. C.; Turner, J.

    1997-07-01

    This book is a comprehensive survey of the climatology and meteorology of Antarctica. The first section of the book reviews the methods by which we can observe the Antarctic atmosphere and presents a synthesis of climatological measurements. In the second section, the authors consider the processes that maintain the observed climate, from large-scale atmospheric circulation to small-scale processes. The final section reviews our current knowledge of the variability of Antarctic climate and the possible effects of "greenhouse" warming. The authors stress links among the Antarctic atmosphere, other elements of the Antarctic climate system (oceans, sea ice and ice sheets), and the global climate system. This volume will be of greatest interest to meteorologists and climatologists with a specialized interest in Antarctica, but it will also appeal to researchers in Antarctic glaciology, oceanography and biology. Graduates and undergraduates studying physical geography, and the earth, atmospheric and environmental sciences will find much useful background material in the book.

  7. Perils of correlating CUSUM-transformed variables to infer ecological relationships (Breton et al. 2006; Glibert 2010)

    USGS Publications Warehouse

    Cloern, James E.; Jassby, Alan D.; Carstensen, Jacob; Bennett, William A.; Kimmerer, Wim; Mac Nally, Ralph; Schoellhamer, David H.; Winder, Monika

    2012-01-01

    We comment on a nonstandard statistical treatment of time-series data first published by Breton et al. (2006) in Limnology and Oceanography and, more recently, used by Glibert (2010) in Reviews in Fisheries Science. In both papers, the authors make strong inferences about the underlying causes of population variability based on correlations between cumulative sum (CUSUM) transformations of organism abundances and environmental variables. Breton et al. (2006) reported correlations between CUSUM-transformed values of diatom biomass in Belgian coastal waters and the North Atlantic Oscillation, and between meteorological and hydrological variables. Each correlation of CUSUM-transformed variables was judged to be statistically significant. On the basis of these correlations, Breton et al. (2006) developed "the first evidence of synergy between climate and human-induced river-based nitrate inputs with respect to their effects on the magnitude of spring Phaeocystis colony blooms and their dominance over diatoms."

  8. An R package for simulating growth and organic wastage in aquaculture farms in response to environmental conditions and husbandry practices

    PubMed Central

    Baldan, Damiano; Porporato, Erika Maria Diletta; Pastres, Roberto

    2018-01-01

    A new R software package, RAC, is presented. RAC allows to simulate the rearing cycle of 4 species, finfish and shellfish, highly important in terms of production in the Mediterranean Sea. The package works both at the scale of the individual and of the farmed population. Mathematical models included in RAC were all validated in previous works, and account for growth and metabolism, based on input data characterizing the forcing functions—water temperature, and food quality/quantity. The package provides a demo dataset of forcings for each species, as well as a typical set of husbandry parameters for Mediterranean conditions. The present work illustrates RAC main features, and its current capabilities/limitations. Three test cases are presented as a proof of concept of RAC applicability, and to demonstrate its potential for integrating different open products nowadays provided by remote sensing and operational oceanography. PMID:29723208

  9. Ontogenetic development of migration: Lagrangian drift trajectories suggest a new paradigm for sea turtles

    PubMed Central

    Hays, Graeme C.; Fossette, Sabrina; Katselidis, Kostas A.; Mariani, Patrizio; Schofield, Gail

    2010-01-01

    Long distance migration occurs in a wide variety of taxa including birds, insects, fishes, mammals and reptiles. Here, we provide evidence for a new paradigm for the determinants of migration destination. As adults, sea turtles show fidelity to their natal nesting areas and then at the end of the breeding season may migrate to distant foraging sites. For a major rookery in the Mediterranean, we simulated hatchling drift by releasing 288 000 numerical particles in an area close to the nesting beaches. We show that the pattern of adult dispersion from the breeding area reflects the extent of passive dispersion that would be experienced by hatchlings. Hence, the prevailing oceanography around nesting areas may be crucial to the selection of foraging sites used by adult sea turtles. This environmental forcing may allow the rapid evolution of new migration destinations if ocean currents alter with climate change. PMID:20236958

  10. Application of remote sensing data to surveys of the Alaskan environment

    NASA Technical Reports Server (NTRS)

    Belon, A. E.; Miller, J. M.

    1974-01-01

    Coupling of satellite data to resource management problems in Alaska is implemented through feasibility studies of applicability of Landsat data to specific environmental surveys in ecology, agriculture, hydrology, wildlife management, oceanography, geology, etc.; and using the results of these studies to extend the benefits of satellite data applications to the operational needs of mission-oriented agencies of federal, state, and regional governments, as well as private industry. Activities designed to encourage the participation of users in the Landsat program at levels most appropriate to the users' interests are described and include: observation, coordination, and information exchange; training courses and workshops; data exchange; consulting services; data processing services; user participation in University research projects; and university participation in the operational projects of user agencies. Progress in these areas is reported. The effectiveness of this broad-based approach in overcoming the initial apprehensiveness of users is demonstrated.

  11. Research Applications of Data from Arctic Ocean Drifting Platforms: The Arctic Buoy Program and the Environmental Working Group CD's.

    NASA Astrophysics Data System (ADS)

    Moritz, R. E.; Rigor, I.

    2006-12-01

    ABSTRACT: The Arctic Buoy Program was initiated in 1978 to measure surface air pressure, surface temperature and sea-ice motion in the Arctic Ocean, on the space and time scales of synoptic weather systems, and to make the data available for research, forecasting and operations. The program, subsequently renamed the International Arctic Buoy Programme (IABP), has endured and expanded over the past 28 years. A hallmark of the IABP is the production, dissemination and archival of research-quality datasets and analyses. These datasets have been used by the authors of over 500 papers on meteorolgy, sea-ice physics, oceanography, air-sea interactions, climate, remote sensing and other topics. Elements of the IABP are described briefly, including measurements, analysis, data dissemination and data archival. Selected highlights of the research applications are reviewed, including ice dynamics, ocean-ice modeling, low-frequency variability of Arctic air-sea-ice circulation, and recent changes in the age, thickness and extent of Arctic Sea-ice. The extended temporal coverage of the data disseminated on the Environmental Working Group CD's is important for interpreting results in the context of climate.

  12. Myths in funding ocean research at the National Science Foundation

    NASA Astrophysics Data System (ADS)

    Duce, Robert A.; Benoit-Bird, Kelly J.; Ortiz, Joseph; Woodgate, Rebecca A.; Bontempi, Paula; Delaney, Margaret; Gaines, Steven D.; Harper, Scott; Jones, Brandon; White, Lisa D.

    2012-12-01

    Every 3 years the U.S. National Science Foundation (NSF), through its Advisory Committee on Geosciences, forms a Committee of Visitors (COV) to review different aspects of the Directorate for Geosciences (GEO). This year a COV was formed to review the Biological Oceanography (BO), Chemical Oceanography (CO), and Physical Oceanography (PO) programs in the Ocean Section; the Marine Geology and Geophysics (MGG) and Integrated Ocean Drilling Program (IODP) science programs in the Marine Geosciences Section; and the Ocean Education and Ocean Technology and Interdisciplinary Coordination (OTIC) programs in the Integrative Programs Section of the Ocean Sciences Division (OCE). The 2012 COV assessed the proposal review process for fiscal year (FY) 2009-2011, when 3843 proposal actions were considered, resulting in 1141 awards. To do this, COV evaluated the documents associated with 206 projects that were randomly selected from the following categories: low-rated proposals that were funded, high-rated proposals that were funded, low-rated proposals that were declined, high-rated proposals that were declined, some in the middle (53 awarded, 106 declined), and all (47) proposals submitted to the Rapid Response Research (RAPID) funding mechanism. NSF provided additional data as requested by the COV in the form of graphs and tables. The full COV report, including graphs and tables, is available at http://www.nsf.gov/geo/acgeo_cov.jsp.

  13. Improving quantitative skills in introductory geoscience courses at a four-year public institution using online math modules

    NASA Astrophysics Data System (ADS)

    Gordon, E. S.

    2011-12-01

    Fitchburg State University has a diverse student population comprised largely of students traditionally underrepresented in higher education, including first-generation, low-income, and/or students with disabilities. Approximately half of our incoming students require developmental math coursework, but often enroll in science classes prior to completing those courses. Since our introductory geoscience courses (Oceanography, Meteorology, Geology, Earth Systems Science) do not have prerequisites, many students who take them lack basic math skills, but are taking these courses alongside science majors. In order to provide supplemental math instruction without sacrificing time for content, "The Math You Need, When You Need It (TMYN), a set of online math tutorials placed in a geoscience context, will be implemented in three of our introductory courses (Oceanography, Meteorology, and Earth Systems Science) during Fall, 2011. Students will complete 5-6 modules asynchronously, the topics of which include graphing skills, calculating rates, unit conversions, and rearranging equations. Assessment of quantitative skills will be tracked with students' pre- and post-test results, as well as individual module quiz scores. In addition, student assessment results from Oceanography will be compared to student data from Academic Year 2010-11, during which quantitative skills were evaluated with pre- and post-test questions, but students did not receive online supplemental instruction.

  14. The role of sedimentology, oceanography, and alteration on the δ56Fe value of the Sokoman Iron Formation, Labrador Trough, Canada

    NASA Astrophysics Data System (ADS)

    Raye, Urmidola; Pufahl, Peir K.; Kyser, T. Kurtis; Ricard, Estelle; Hiatt, Eric E.

    2015-09-01

    The Sokoman Formation is a ca. 100-m-thick succession of interbedded iron formation and fine-grained siliciclastics deposited at 1.88 Ga. Accumulation occurred on a dynamic paleoshelf where oxygen stratification, coastal upwelling of hydrothermally derived Fe and Si, microbial processes, tide and storm currents, diagenesis, and low-grade prehnite-pumpellyite metamorphism controlled lithofacies character and produced complex associations of multigenerational chert, hematite, magnetite, greenalite, stilpnomelane and Fe carbonate. Hematite-rich facies were deposited along suboxic segments of the coastline where photosynthetic oxygen oases impinged on the seafloor. Hematitic, cross-stratified grainstones were formed by winnowing and reworking of freshly precipitated Fe-(oxyhydr)oxide and opal-A by waves and currents into subaqueous dunes. Magnetite-rich facies contain varying proportions of greenalite and stilpnomelane and record deposition in anoxic middle shelf environments beneath an oxygen chemocline. Minor negative Ce anomalies in hematitic facies, but prominent positive Ce and Eu anomalies and high LREE/HREE ratios in magnetite-rich facies imply the existence of a weakly oxygenated surface ocean above anoxic bottom waters. The Fe isotopic composition of 31 whole rock (-0.46 ⩽ δ56Fe ⩽ 0.47‰) and 21 magnetite samples (-0.29 ⩽ δ56Fe ⩽ 0.22‰) from suboxic and anoxic lithofacies was controlled primarily by the physical oceanography of the paleoshelf. Despite low-grade metamorphism recorded by the δ18O values of paragenetically related quartz and magnetite, the Sokoman Formation preserves a robust primary Fe isotopic signal. Coastal upwelling is interpreted to have affected the isotopic equilibria between Fe2+aq and Fe-(oxyhydr)oxide in open marine versus coastal environments, which controlled the Fe isotopic composition of lithofacies. Unlike previous work that focuses on microbial and abiotic fractionation processes with little regard for paleoenvironment, our work demonstrates that depositional setting is paramount in governing the Fe isotopic composition of iron formations irrespective of what Fe-bearing minerals precipitated.

  15. GROTTO visualization for decision support

    NASA Astrophysics Data System (ADS)

    Lanzagorta, Marco O.; Kuo, Eddy; Uhlmann, Jeffrey K.

    1998-08-01

    In this paper we describe the GROTTO visualization projects being carried out at the Naval Research Laboratory. GROTTO is a CAVE-like system, that is, a surround-screen, surround- sound, immersive virtual reality device. We have explored the GROTTO visualization in a variety of scientific areas including oceanography, meteorology, chemistry, biochemistry, computational fluid dynamics and space sciences. Research has emphasized the applications of GROTTO visualization for military, land and sea-based command and control. Examples include the visualization of ocean current models for the simulation and stud of mine drifting and, inside our computational steering project, the effects of electro-magnetic radiation on missile defense satellites. We discuss plans to apply this technology to decision support applications involving the deployment of autonomous vehicles into contaminated battlefield environments, fire fighter control and hostage rescue operations.

  16. The social oceanography of top oceanic predators and the decline of sharks: A call for a new field

    NASA Astrophysics Data System (ADS)

    Jacques, Peter J.

    2010-07-01

    The decline of top oceanic predators (TOPs), such as great sharks, and worldwide erosion of the marine food web is among the most important functional changes in marine systems. Yet, even though human pressures on sharks are one of the most important factors in the collapse of TOPs, the social science of shark fishing has not kept pace with the biophysical science. Such a gap highlights the need for a marine social science, and this paper uses the case of sharks to illustrate some advances that a coherent marine social science community could bring to science and sustainability, and calls for the development of this new field. Social oceanography is proposed as a “discursive space” that will allow multiple social science and humanities disciplines to holistically study and bring insight to a diverse but essential community. Such a community will not provide answers for the physical sciences, but it will add a new understanding of the contingencies that riddle social behavior that ultimately interact with marine systems. Such a field should reflect the broad and diverse approaches, epistemologies, philosophies of science and foci that are in the human disciplines themselves. Social oceanography would complete the triumvirate of biological and physical oceanography where human systems profoundly impact these other areas. This paper tests the theory that institutional rules are contingent on social priorities and paradigms. I used content analysis of all available (1995-2006) State of the World Fisheries and Aquaculture (SOFIA) reports from the United Nations Food and Agricultural Organization (FAO) to measure the symbolic behavior-i.e., what they say-as an indication of the value of sharks in world fisheries. Similar tests were also performed for marine journals and the Convention on Migratory Species of Wild Animals to corroborate these findings. Then, I present an institutional analysis of all international capacity building and regulatory institutions as they pertain to sharks. We find that sharks are not a high priority compared to other fisheries; and, amongst issue areas, ecological concerns are overshadowed by a paradigm of economism (economic values are demonstrated above all others). Further, sharks have no global binding institutions for conservation, and only new and problematic rules at regional levels. Consequently, human pressures on sharks are partially explained through social marginalization that legitimizes permissive international rules that: (1) have limited scope of authority, (2) provide little-to-no active management of sharks, (3) have important enforcement problems, and (4) are generally not reinforced with National Plans of Action demonstrating a lack of commitment at both national and international scales. Thus, active management of shark populations is nearly non-existent meanwhile pressures on sharks, such as through finning, have increased in the last 20 years and there is strong evidence that many shark species are in decline and may not be able to recover. This paper concludes by arguing that biological oceanography of sharks is fundamentally linked to human dimensions, and, therefore, theories and systematic study of human dimensions in oceanography are crucial to provide more comprehensive understanding of complete social-marine systems.

  17. National Weather Service, Emergency Medical Services, Scripps Institution of Oceanography/UCSD and California EPA Collaboration on Heat Health Impact and Public Notification for San Diego County

    NASA Astrophysics Data System (ADS)

    Tardy, A. O.; Corcus, I.; Guirguis, K.

    2015-12-01

    The National Weather Service (NWS) has issued official heat alerts in the form of either a heat advisory or excessive heat warning product to the public and core partners for many years. This information has traditionally been developed through the use of triggers for heat indices which combine humidity and temperature. The criteria typically used numeric thresholds and did not consider impact from a particular heat episode, nor did it factor seasonality or population acclimation. In 2013, the Scripps Institution of Oceanography, University of California, San Diego in collaboration with the Office of Environmental Health Hazard Assessment, of the California Environmental Protection Agency and the NWS completed a study of heat health impact in California, while the NWS San Diego office began modifying their criteria towards departure from climatological normal with much less dependence on humidity or heat index. The NWS changes were based on initial findings from the California Department of Public Health, EpiCenter California Injury Data Online system which documents heat health impacts. Results from the UCSD study were finalized and published in 2014; they supported the need for significant modification of the traditional criteria. In order to better understand the impacts of heat on community health, medical outcome data were provided by the County of San Diego Emergency Medical Services Branch, which is charged by the County's Public Health Officer to monitor heat-related illness and injury daily from June through September. The data were combined with UCSD research to inform the modification of local NWS heat criteria and establish trigger points to pilot new procedures for the issuance of heat alerts. Finally, practices and procedures were customized for each of the county health departments in the NWS area of responsibility across extreme southwest California counties in collaboration with their Office of Emergency Services. The end result of the collaboration was to better define temperature thresholds relative to local climate, levels of heat related responses and activation, as well as to develop standardized terminology on public notifications. In 2014, the County of San Diego Office of Emergency Services incorporated heat alerts into the emergency push notification system for 2 significant heat waves.

  18. Summary of the physical oceanography of the Pacific Northwest Coast

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Purdy, D.F.

    The technical report summarizes current information on the physical oceanography of the Pacific Coast of Washington and Oregon, including information on currents, water mass characteristics, vertical stratification and mixing, upwelling, and waves. A general outline of the California current system is given, including the California and Davidson surface currents, the California and Washington undercurrents, and shelf currents. Conditions affecting local and nearshore currents, considered important in the event of an oil spill, are discussed. A summary of wave data is included from several sources including the Corps of Engineers WIS (Wave Information Study), based on meteorological information, and the Mineralsmore » Management Service's Coastal Wave Statistical Data Base (CWSDB), based on high quality data from a system of buoys.« less

  19. IEDA Thesaurus: A Controlled Vocabulary for IEDA Systems to Advance Integration

    NASA Astrophysics Data System (ADS)

    Ji, P.; Lehnert, K. A.; Arko, R. A.; Song, L.; Hsu, L.; Carter, M. R.; Ferrini, V. L.; Ash, J.

    2014-12-01

    Integrated Earth Data Applications (IEDA) is a community-based facility that serves to support, sustain, and advance the geosciences by providing data services for observational geoscience data from the Ocean, Earth, and Polar Sciences. Many dedicated systems such as the Petrological Database (PetDB), Marine Geoscience Data System (MGDS), System for Earth Sample Registration (SESAR), Data Coordination Center for the U.S. Antarctic Program (USAP-DCC), etc., under the umbrella of the IEDA framework, were developed to support the preservation, discovery, retrieval, and analysis of a wide range of observational field and analytical data types from diverse communities. However, it is currently difficult to maintain consistency of indexing content within IEDA schema, and perform unified or precise searching of the data in these diverse systems as each system maintains separate vocabularies, hierarchies, authority files, or sub taxonomies. We present here the IEDA Thesaurus, a system, which combines existing separate controlled vocabularies from the different systems under the IEDA schema into a single master controlled vocabulary, also introducing some new top facets for future long-term use. The IEDA thesaurus contains structured terminology for petrology, geochemistry, sedimentology, oceanography, geochronology, and volcanology, and other general metadata fields. 18 top facets (also called 'top categories') are defined, including equipment, geographic gazetteer, geologic ages, geologic units, materials, etc. The terms of the thesaurus are cross validated with others popular geoscience vocabularies such as GeoRef Thesaurus, U.S. Geological Survey Library Classification System, Global Change Master Directory (GCMD), and Semantic Web for Earth and Environmental Terminology (SWEET) ontologies. The thesaurus is organized along with the ANSI/NISO Z39.19-2005 Guidelines for the Construction, Format, and Management of Monolingual Controlled Vocabularies, and is published using Simple Knowledge Organization System (SKOS) format. The IEDA thesaurus server provides classic web semantic features such as SPARQL, RESTful web services, and unique URI based on open source technologies.

  20. Science at Sea.

    ERIC Educational Resources Information Center

    Phillips, Mary Nied

    2001-01-01

    Describes a three-week inservice teacher education program that involves two sessions of preparatory classes ashore in nautical science and oceanography, and concludes with a nine-day sea voyage. (ASK)

  1. Observing earth from Skylab

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Skylab technology and observations of earth resources are discussed. Special attention was given to application of Skylab data to mapmaking, geology/geodesy, water resources, oceanography, meteorology, and geography/ecology.

  2. New Species Found!

    ERIC Educational Resources Information Center

    Reinemann, Deborah; Thomas, Jolie

    2003-01-01

    Explains a 4th grade lesson on oceans in which students create imaginary marine animals. Creatively assesses student understanding of habitat and adaptation. Overviews 14 lessons in the oceanography unit. (SOE)

  3. Development and application of mass spectrometric techniques for ultra-trace determination of 236U in environmental samples-A review.

    PubMed

    Bu, Wenting; Zheng, Jian; Ketterer, Michael E; Hu, Sheng; Uchida, Shigeo; Wang, Xiaolin

    2017-12-01

    Measurements of the long-lived radionuclide 236 U are an important endeavor, not only in nuclear safeguards work, but also in terms of using this emerging nuclide as a tracer in chemical oceanography, hydrology, and actinide sourcing. Depending on the properties of a sample and its neutron irradiation history, 236 U/ 238 U ratios from different sources vary significantly. Therefore, this ratio can be treated as an important fingerprint for radioactive source identification, and in particular, affords a definitive means of discriminating between naturally occurring U and specific types of anthropogenic U. The development of mass spectrometric techniques makes it possible to determine ultra-trace levels of 236 U in environmental samples. In this paper, we review the current status of mass spectrometric approaches for determination of 236 U in environmental samples. Various sample preparation methods are summarized and compared. The mass spectrometric techniques emphasized herein are thermal ionization mass spectrometry (TIMS), inductively coupled plasma mass spectrometry (ICP-MS) and accelerator mass spectrometry (AMS). The strategies or principles used by each technique for the analysis of 236 U are described. The performances of these techniques in terms of abundance sensitivity and detection limit are discussed in detail. To date, AMS exhibits the best capability for ultra-trace determinations of 236 U. The levels and behaviors of 236 U in various environmental media are summarized and discussed as well. Results suggest that 236 U has an important, emerging role as a tracer for geochemical studies. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Effective, Active Learning Strategies for the Oceanography Classroom

    NASA Astrophysics Data System (ADS)

    Dmochowski, J. E.; Marinov, I.

    2014-12-01

    A decline in enrollment in STEM fields at the university level has prompted extensive research on alternative ways of teaching and learning science. Inquiry-based learning as well as the related "flipped" or "active" lectures, and similar teaching methods and philosophies have been proposed as more effective ways to disseminate knowledge in science classes than the traditional lecture. We will provide a synopsis of our experiences in implementing some of these practices into our Introductory Oceanography, Global Climate Change, and Ocean Atmosphere Dynamics undergraduate courses at the University of Pennsylvania, with both smaller and larger enrollments. By implementing tools such as at-home modules; computer labs; incorporation of current research; pre- and post-lecture quizzes; reflective, qualitative writing assignments; peer review; and a variety of in-class learning strategies, we aim to increase the science literacy of the student population and help students gain a more comprehensive knowledge of the topic, enhance their critical thinking skills, and correct misconceptions. While implementing these teaching techniques with college students is not without complications, we argue that a blended class that flexibly and creatively accounts for class size and science level improves the learning experience and the acquired knowledge. We will present examples of student assignments and activities as well as describe the lessons we have learned, and propose ideas for moving forward to best utilize innovative teaching tools in order to increase science literacy in oceanography and other climate-related courses.

  5. Honors

    NASA Astrophysics Data System (ADS)

    Anonymous

    2012-10-01

    Many AGU members are among the American Meteorological Society's (AMS) 2013 honorary members, awardees, lecturers, and fellows. Among the AMS honorary members is Susan Solomon, the Ellen Swallow Richards Professor of Atmospheric Chemistry and Climate Science at the Massachusetts Institute of Technology (MIT). Dennis Hartmann, of the University of Washington, Seattle, is the recipient of AMS's Carl-Gustaf Rossby Research Medal "for significant contributions to the synthesis of knowledge of radiative and dynamical processes leading to a deeper understanding of the climate system." R. Alan Plumb, professor of meteorology at MIT, receives the Jule G. Charney Award "for fundamental contributions to the understanding of geophysical fluid dynamics, stratospheric dynamics, chemical transport, and the general circulation of the atmosphere and oceans." The Verner E. Suomi Award has been given to Richard Johnson, professor of atmospheric science at Colorado State University, Fort Collins, "for exquisite design of rawinsonde networks in field campaigns and insightful analysis of interactions between convective clouds and the largescale atmospheric circulation." W. Kendall Melville, professor of oceanography at the Scripps Institution of Oceanography, University of California, San Diego, has been awarded the Sverdrup Gold Medal Award "for pioneering contributions in advancing knowledge on the role of surface wave breaking and related processes in air-sea interaction." AMS announced that Laurence Armi, also a professor of oceanography at Scripps, is recipient of the Henry Stommel Research Award "for his deeply insightful studies of stratified flow, his pioneering work on boundary mixing and other turbulent mechanisms."

  6. The Indigo V Indian Ocean Expedition: a prototype for citizen microbial oceanography

    NASA Astrophysics Data System (ADS)

    Lauro, Federico; Senstius, Jacob; Cullen, Jay; Lauro, Rachelle; Neches, Russell; Grzymski, Joseph

    2014-05-01

    Microbial Oceanography has long been an extremely expensive discipline, requiring ship time for sample collection and thereby economically constraining the number of samples collected. This is especially true for under-sampled water bodies such as the Indian Ocean. Specialised scientific equipment only adds to the costs. Moreover, long term monitoring of microbial communities and large scale modelling of global biogeochemical cycles requires the collection of high-density data both temporally and spatially in a cost-effective way. Thousands of private ocean-going vessels are cruising around the world's oceans every day. We believe that a combination of new technologies, appropriate laboratory protocols and strategic operational partnerships will allow researchers to broaden the scope of participation in basic oceanographic research. This will be achieved by equipping sailing vessels with small, satcom-equipped sampling devices, user-friendly collection techniques and a 'pre-addressed-stamped-envelope' to send in the samples for analysis. We aim to prove that 'bigger' is not necessarily 'better' and the key to greater understanding of the world's oceans is to forge the way to easier and cheaper sample acquisition. The ultimate goal of the Indigo V Expedition is to create a working blue-print for 'citizen microbial oceanography'. We will present the preliminary outcomes of the first Indigo V expedition, from Capetown to Singapore, highlighting the challenges and opportunities of such endeavours.

  7. Depth distributions of uranium-236 and cesium-137 in the Japan/East Sea; toward the potential use as a new oceanic circulation tracer

    NASA Astrophysics Data System (ADS)

    Sakaguchi, A.; Kadokura, A.; Steier, P.; Takahashi, Y.; Shizuma, K.; Yamamoto, M.

    2012-04-01

    137Cs (T1/2=30.2 y) has been spread all over the world as a fission product of atmospheric nuclear weapons tests in the 1960s. This nuclide has been used as a powerful tool for oceanography due to the well-defined origin and conservative behaviour in water . However, the number of atoms has decayed already to one thirds compared with its initial levels, and it will become more difficult to measure. In this situation, we focus on 236U (T1/2=2.342-107 y) as a candidate for a new isotopic tracer for oceanography. The detection of 236U in the environment has become possible only recently, by the development of measuring techniques with high sensitivity based on AMS. Our group showed that global fallout from bomb tests contains 236U, which might be produced as nuclear reactions of 235U(n,γ) and/or 238U(n,3n). So 236U has been therefore globally distributed in the surface environment. Thus, 236U has a similar potential as a tracer for environmental dynamics as 137Cs, especially for oceanography. In this study, a comprehensive attempt was made to measure the concentration of 236U in marine samples such as water, suspended solid and bottom sediments to clarify the environmental behaviour of this isotope. Furthermore, the discussion of the circulation of deep and bottom water in "Miniature Ocean", the Japan Sea, has been attempted. Bottom sediments (4 sites) and seawater samples (7 sites) were collected from the Japan Sea. The sediment core was cut into 1 cm segments from the surface to 5 cm in depth within a few hours after the sampling. About 20 L of seawater samples were collected from some depths in each site, and immediately after the sampling, the water was filtered with 0.45 μm pore-size membrane-filters. After the appropriate pre-treatment for each sample, uranium isotope and 137Cs were measured with AMS and Ge-detector, respectively. 236U was successfully detected for all seawater samples, and 236U/238U atom ratios in seawater were in the range of (0.19-1.75)-10-9. The dissolved 236U concentration showed a subsurface maximum and decreased steeply with depth. The minimum value was found at a depth of 2500 m and bottom (about 3000 m in depth) in the northern and the southern areas, respectively. These profiles are markedly different from that of natural 238U which is nearly constant over the depth, suggesting that 236U has not yet reached steady state. For the SS sample, 236U could not be detected in significant levels. The total 236U inventory of the water column was estimated at 1012-1013 atom/m2. This value is nearly the same as the global fallout level (17.8-1012 atom/m2). 236U was also found in the bottom sediments, and the inventory was about 1/40 compared with that in water column. All above characters are comparable with 137Cs which is anthropogenic conservative nuclide in ocean. Actually, the diffusion coefficients for both nuclides show the nearly same value. The detail discussion including the circulation of deep-water in the Japan Sea will be given in our presentation.

  8. Resources and References for Earth Science Teachers

    ERIC Educational Resources Information Center

    Wall, Charles A.; Wall, Janet E.

    1976-01-01

    Listed are resources and references for earth science teachers including doctoral research, new textbooks, and professional literature in astronomy, space science, earth science, geology, meteorology, and oceanography. (SL)

  9. Elective Program Projects

    ERIC Educational Resources Information Center

    Estrada, Christelle

    1976-01-01

    Outlined is an interdisciplinary program in Ecology and Oceanography for grades six through eight. Numerous student projects are suggested in the outline and the course requirements and the project system are explained. (MA)

  10. 78 FR 38358 - Call for Nominations: North Slope Science Initiative, Science Technical Advisory Panel, Alaska

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-26

    ... disciplines: North Slope traditional and local knowledge, landscape ecology, petroleum engineering, civil engineering, geology, sociology, cultural anthropology, economics, ornithology, oceanography, fisheries...

  11. 78 FR 55754 - Second Call for Nominations: North Slope Science Initiative, Science Technical Advisory Panel

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-11

    ... disciplines: North Slope traditional and local knowledge, landscape ecology, petroleum engineering, civil engineering, geology, sociology, cultural anthropology, economics, ornithology, oceanography, fisheries...

  12. Oceanography Satellite Launches on This Week @NASA – January 22, 2016

    NASA Image and Video Library

    2016-01-22

    On Jan. 17, Jason-3, a U.S.-European oceanography satellite mission launched from California’s Vandenberg Air Force Base aboard a SpaceX Falcon 9 rocket. The mission is led by the National Oceanic and Atmospheric Administration (NOAA) in partnership with NASA, the French space agency, CNES, and the European Organisation for the Exploitation of Meteorological Satellites. After a six-month checkout period, Jason-3 will start full science operations – continuing a nearly quarter-century record of tracking global sea level rise, direction of ocean currents and amount of solar energy stored by oceans – all, key data to understanding changes in global climate and more accurately forecasting severe weather. Also, 2015 global temperatures announced, 10-year anniversary of New Horizons’ launch and ABCs from space!

  13. Cruise to the Chukchi Borderland, Arctic Ocean

    USGS Publications Warehouse

    Grantz, Arthur; ,

    1993-01-01

    Oceanography and geology were the principal focuses of the U.S. Geological Survey-sponsored expedition Arctic Summer West '92, which traveled to the eastern part of the Chukchi Borderland of the Amerasia Basin, western Arctic Ocean. The expedition took place from August 20 to September 25, 1992, aboard the Coast Guard cutter Polar Star. USGS investigated the geologic framework and tectonic origin of the borderland, Arctic Quaternary paleoclimate, sea-ice transport of particulate matter in the Beaufort Gyre, and possible radionuclide contamination of the water column and seafloor off Alaska from sources in the Russian Arctic. Researchers from five other institutions studied the area's oceanography, age of the water column, paleoenvironment of the Holocene sediment, physical properties and synthetic-aperture radar backscatter of sea ice, and the drop-stone content of late Quaternary sediment.

  14. Problems inherent in using aircraft for radio oceanography studies

    NASA Technical Reports Server (NTRS)

    Walsh, E. J.

    1977-01-01

    Some of the disadvantages relating to altitude stability and proximity to the ocean are described for radio oceanography studies using aircraft. The random oscillatory motion introduced by the autopilot in maintaining aircraft altitude requires a more sophisticated range tracker for a radar altimeter than would be required in a satellite application. One-dimensional simulations of the sea surface (long-crested waves) are performed using both the JONSWAP spectrum and the Pierson-Moskowitz spectrum. The results of the simulation indicate that care must be taken in trying to experimentally verify instrument measurement accuracy. Because of the relatively few wavelengths examined from an aircraft due to proximity to the ocean and low velocity compared to a satellite, the random variation in the sea surface parameters being measured can far exceed an instrument's ability to measure them.

  15. Geomicrobiology in oceanography: microbe-mineral interactions at and below the seafloor.

    PubMed

    Edwards, Katrina J; Bach, Wolfgang; McCollom, Thomas M

    2005-09-01

    Oceanography is inherently interdisciplinary and, since its inception, has included the study of microbe-mineral interactions. From early studies of manganese nodules, to the discovery of hydrothermal vents, it has been recognized that microorganisms are involved at various levels in the transformation of rocks and minerals at and below the seafloor. Recent studies include mineral weathering at low temperatures and microbe-mineral interactions in the subseafloor "deep biosphere". A common characteristic of seafloor and subseafloor geomicrobiological processes that distinguishes them from terrestrial or near-surface processes is that they occur in the dark, one or more steps removed from the sunlight that fuels the near-surface biosphere on Earth. This review focuses on geomicrobiological studies and energy flow in dark, deep-ocean and subseafloor rock habitats.

  16. Virophages to viromes: a report from the frontier of viral oceanography.

    PubMed

    Culley, Alexander I

    2011-07-01

    The investigation of marine viruses has advanced our understanding of ecology, evolution, microbiology, oceanography and virology. Significant findings discussed in this review include the discovery of giant viruses that have genome sizes and metabolic capabilities that distort the line between virus and cell, viruses that participate in photosynthesis and apoptosis, the detection of communities of viruses of all genomic compositions and the preeminence of viruses in the evolution of marine microbes. Although we have made great progress, we have yet to synthesize the rich archive of viral genomic data with oceanographic processes. The development of cutting edge methods such as single virus genomics now provide a toolset to better integrate viruses into the ecology of the ocean. Copyright © 2011 Elsevier B.V. All rights reserved.

  17. Time series of the northeast Pacific

    NASA Astrophysics Data System (ADS)

    Peña, M. Angelica; Bograd, Steven J.

    2007-10-01

    In July 2006, the North Pacific Marine Science Organization (PICES) and Fisheries & Oceans Canada sponsored the symposium “Time Series of the Northeast Pacific: A symposium to mark the 50th anniversary of Line P”. The symposium, which celebrated 50 years of oceanography along Line P and at Ocean Station Papa (OSP), explored the scientific value of the Line P and other long oceanographic time series of the northeast Pacific (NEP). Overviews of the principal NEP time-series were presented, which facilitated regional comparisons and promoted interaction and exchange of information among investigators working in the NEP. More than 80 scientists from 8 countries attended the symposium. This introductory essay is a brief overview of the symposium and the 10 papers that were selected for this special issue of Progress in Oceanography.

  18. 46 CFR 90.10-16 - Industrial vessel.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... ventures. Included in this classification are such vessels as drill rigs, missile range ships, dredges... classification are vessels carrying freight for hire or engaged in oceanography, limnology, or the fishing...

  19. 46 CFR 90.10-16 - Industrial vessel.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... ventures. Included in this classification are such vessels as drill rigs, missile range ships, dredges... classification are vessels carrying freight for hire or engaged in oceanography, limnology, or the fishing...

  20. 46 CFR 90.10-16 - Industrial vessel.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... ventures. Included in this classification are such vessels as drill rigs, missile range ships, dredges... classification are vessels carrying freight for hire or engaged in oceanography, limnology, or the fishing...

  1. 46 CFR 90.10-16 - Industrial vessel.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... ventures. Included in this classification are such vessels as drill rigs, missile range ships, dredges... classification are vessels carrying freight for hire or engaged in oceanography, limnology, or the fishing...

  2. 46 CFR 90.10-16 - Industrial vessel.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... ventures. Included in this classification are such vessels as drill rigs, missile range ships, dredges... classification are vessels carrying freight for hire or engaged in oceanography, limnology, or the fishing...

  3. Communicating Ocean Science at the Lower-Division Level

    NASA Astrophysics Data System (ADS)

    Coopersmith, A.

    2011-12-01

    Pacific Ocean Literacy for Youth, Publics, Professionals, and Scientists (POLYPPS) is an NSF-funded collaboration between the University of Hawai`i and the Center for Ocean Science Education Excellence (COSEE) - California, which is based at the Lawrence Hall of Science, University of California - Berkeley. One of the objectives of this project is to instutionalize ocean science communications courses at colleges and universities in Hawai`i. Although the focus of most of these communications courses has been on training graduate students and scientists, lower-division students interested in the ocean sciences are finding this background helpful. At the University of Hawai`i Maui College there are several marine science courses and certificate programs that require students to interact with the public through internships, research assistantships, and course-related service-learning projects. Oceanography 270, Communicating Ocean Science, is now offered to meet the needs of these students who engage with the public in informal educational settings. Other students who enroll in this course have a general interest in the marine environment and are considering careers in K-12 formal education. This course gives this group of students an opportunity to explore formal education by assisting classroom teachers and preparing and presenting problem-based, hands-on, inquiry activities. Employers at marine-related businesses and in the tourist industry have welcomed this course with a focus on communication skills and indicate that they prefer to hire local people with strong backgrounds in marine and natural sciences. A basic premise of POLYPPS is that science education must draw not only from the latest advances in science and technology but also from the cultural contexts in which the learners are embedded and that this will achieve increased understanding and stewardship of ocean environments. Students in Oceanography 270 integrate traditional Hawaiian knowledge into their activities and presentations with the advice of local practitioners who share their experiences for incorporating both Hawaiian ways of learning and environmental practices.

  4. Watching the Blue Planet from Space over Recent Decades: What's up for Science and Society?

    NASA Technical Reports Server (NTRS)

    Lindstrom, Eric J.

    2015-01-01

    Since the first photographs of “Earth Rise” taken by the Apollo astronauts in the 1960s galvanized the environmental movement, imaging of our planet from low Earth orbit has grown more sophisticated and diverse. Satellite and astronaut observations and imagery of the changing ocean still have the power to galvanize oceanographers and society. So what are some of the key ideas for oceanography and society that come out of out recent decades of ocean observation from space? Satellite oceanography has made fundamental contributions to our understanding and estimation of changing sea level, winds and storminess over the oceans, primary productivity of the seas, the role of the ocean in the water cycle, and the changes in the ocean known as ocean acidification. Some of these phenomena interact in complex ways and Mother Nature hides the future well. However, some things are clear. Sea level rise has been monitored from space for more than 20 years and now we have a more nuanced understanding of regional variation in sea level rise and the contributions of ocean thermal expansion and the melting of glaciers and ice sheets. Wind vectors at the ocean surface have been measured for more than 2 decades and provide evidence for shifts in wind patterns that help, for example, explain some of the regional variations in sea level rise. Chlorophyll-a has been estimated in a multi-decadal record of observations and is being used to describe the shifts and trends in ocean primary productivity. Sea surface temperature estimation from space has records going back to the 1970s and provides critical information for the interaction of the ocean with the atmosphere. Sea surface salinity has been measured from space only within the last decade and provides a novel new view of regional, seasonal, and inter-annual changes in the ocean related to precipitation, river run-off, and eddy transport. Potential changes in the Earth’s water cycle have a huge societal impact.

  5. Characterizing habitat suitability for a central-place forager in a dynamic marine environment.

    PubMed

    Briscoe, Dana K; Fossette, Sabrina; Scales, Kylie L; Hazen, Elliott L; Bograd, Steven J; Maxwell, Sara M; McHuron, Elizabeth A; Robinson, Patrick W; Kuhn, Carey; Costa, Daniel P; Crowder, Larry B; Lewison, Rebecca L

    2018-03-01

    Characterizing habitat suitability for a marine predator requires an understanding of the environmental heterogeneity and variability over the range in which a population moves during a particular life cycle. Female California sea lions ( Zalophus californianus ) are central-place foragers and are particularly constrained while provisioning their young. During this time, habitat selection is a function of prey availability and proximity to the rookery, which has important implications for reproductive and population success. We explore how lactating females may select habitat and respond to environmental variability over broad spatial and temporal scales within the California Current System. We combine near-real-time remotely sensed satellite oceanography, animal tracking data ( n  = 72) from November to February over multiple years (2003-2009) and Generalized Additive Mixed Models (GAMMs) to determine the probability of sea lion occurrence based on environmental covariates. Results indicate that sea lion presence is associated with cool ( <14°C ), productive waters, shallow depths, increased eddy activity, and positive sea-level anomalies. Predictive habitat maps generated from these biophysical associations suggest winter foraging areas are spatially consistent in the nearshore and offshore environments, except during the 2004-2005 winter, which coincided with an El Niño event. Here, we show how a species distribution model can provide broadscale information on the distribution of female California sea lions during an important life history stage and its implications for population dynamics and spatial management.

  6. North Atlantic Deep Water Formation

    NASA Technical Reports Server (NTRS)

    Bennett, T. (Editor); Broecker, W. S. (Editor); Hansen, J. (Editor)

    1984-01-01

    Various studies concerning differing aspects of the North Atlantic are presented. The three major topics under which the works are classified include: (1) oceanography; (2) paleoclimate; and (3) ocean, ice and climate modeling.

  7. 75 FR 71734 - Outer Continental Shelf (OCS), Scientific Committee (SC)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-24

    ... program covers a wide range of field and laboratory studies in biology, chemistry, and physical... SC has 15 vacancies in the following disciplines: Biological oceanography/marine biology; social...

  8. Coastal oceanography sets the pace of rocky intertidal community dynamics.

    PubMed

    Menge, B A; Lubchenco, J; Bracken, M E S; Chan, F; Foley, M M; Freidenburg, T L; Gaines, S D; Hudson, G; Krenz, C; Leslie, H; Menge, D N L; Russell, R; Webster, M S

    2003-10-14

    The structure of ecological communities reflects a tension among forces that alter populations. Marine ecologists previously emphasized control by locally operating forces (predation, competition, and disturbance), but newer studies suggest that inputs from large-scale oceanographically modulated subsidies (nutrients, particulates, and propagules) can strongly influence community structure and dynamics. On New Zealand rocky shores, the magnitude of such subsidies differs profoundly between contrasting oceanographic regimes. Community structure, and particularly the pace of community dynamics, differ dramatically between intermittent upwelling regimes compared with relatively persistent down-welling regimes. We suggest that subsidy rates are a key determinant of the intensity of species interactions, and thus of structure in marine systems, and perhaps also nonmarine communities.

  9. In the Footsteps of Roger Revelle: A STEM Partnership Between Scripps Institution of Oceanography, Office of Naval Research and Middle School Science Students Bringing Next Generation Science Standards into the Classroom through Ocean Science

    NASA Astrophysics Data System (ADS)

    Brice, D.; Appelgate, B., Jr.; Mauricio, P.

    2014-12-01

    Now in its tenth year, "In the Footsteps of Roger Revelle" (IFRR) is a middle school science education program that draws student interest, scientific content and coherence with Next Generation Science Standards from real-time research at sea in fields of physical science. As a successful collaboration involving Scripps Institution of Oceanography (SIO),Office of Naval Research (ONR), and San Marcos Middle School (SMMS), IFRR brings physical oceanography and related sciences to students at the San Marcos Middle School in real-time from research vessels at sea using SIO's HiSeasNet satellite communication system. With a generous grant from ONR, students are able to tour the SIO Ships and spend a day at sea doing real oceanographic data collection and labs. Through real-time and near-realtime broadcasts and webcasts, students are able to share data with scientists and gain an appreciation for the value of Biogeochemical research in the field as it relates to their classroom studies. Interaction with scientists and researchers as well as crew members gives students insights into not only possible career paths, but the vital importance of cutting edge oceanographic research on our society. With their science teacher on the ship as an education outreach specialist or ashore guiding students in their interactions with selected scientists at sea, students observe shipboard research being carried out live via videoconference, Skype, daily e-mails, interviews, digital whiteboard sessions, and web interaction. Students then research, design, develop, deploy, and field-test their own data-collecting physical oceanography instruments in their classroom. The online interactive curriculum models the Next Generation Science Standards encouraging active inquiry and critical thinking with intellectually stimulating problem- solving, enabling students to gain critical insight and skill while investigating some of the most provocative questions of our time, and seeing scientists as role-models. IFRR has provided students in the San Diego area with a unique opportunity for learning about oceanographic research, which could inspire students to become oceanographers or at least scientifically literate citizens, a benefit for our society at large.

  10. Using Oceanography to Support Active Learning

    NASA Astrophysics Data System (ADS)

    Byfield, V.

    2012-04-01

    Teachers are always on the lookout for material to give their brightest students, in order to keep them occupied, stimulated and challenged, while the teacher gets on with helping the rest. They are also looking for material that can inspire and enthuse those who think that school is 'just boring!' Oceanography, well presented, has the capacity to do both. As a relatively young science, oceanography is not a core curriculum subject (possibly an advantage), but it draws on the traditional sciences of biology, chemistry, physic and geology, and can provide wonderful examples for teaching concepts in school sciences. It can also give good reasons for learning science, maths and technology. Exciting expeditions (research cruises) to far-flung places; opportunities to explore new worlds, a different angle on topical debates such as climate change, pollution, or conservation can bring a new life to old subjects. Access to 'real' data from satellites or Argo floats can be used to develop analytical and problem solving skills. The challenge is to make all this available in a form that can easily be used by teachers and students to enhance the learning experience. We learn by doing. Active teaching methods require students to develop their own concepts of what they are learning. This stimulates new neural connections in the brain - the physical manifestation of learning. There is a large body of evidence to show that active learning is much better remembered and understood. Active learning develops thinking skills through analysis, problem solving, and evaluation. It helps learners to use their knowledge in realistic and useful ways, and see its importance and relevance. Most importantly, properly used, active learning is fun. This paper presents experiences from a number of education outreach projects that have involved the National Oceanography Centre in Southampton, UK. All contain some element of active learning - from quizzes and puzzles to analysis of real data from satellites and Argo floats - all combined with background information about the Ocean. Many also aim to inspire and enthuse, by bringing in the human and personal, for example through blogs and Q/A sessions. This presentation takes a look at what has worked, and what may perhaps have been a little less successful.

  11. Developments in Airborne Oceanography and Air-Sea Interaction

    NASA Astrophysics Data System (ADS)

    Melville, W. K.

    2014-12-01

    One of the earliest ocean-related flights was that of Amundsen to be first across the North Pole and Arctic from Svalbard to Alaska in the airship Norge in 1926. Twenty five years later Cox & Munk flew a B-17G "Flying Fortress" bomber over Hawaiian waters measuring sea surface slope statistics from photographs of sun glitter and wind speed from a yacht. The value of Cox & Munk's "airborne oceanography" became apparent another twenty five years later with the short-lived Seasat microwave remote-sensing mission, since interpretation of the Seasat data in geophysical variables required scattering theories that relied on their data. The universal acceptance of remote sensing in oceanography began in 1992 with the launch of, and successful analysis of sea surface height data from, the Topex/Poseidon radar altimeter. With that and the development of more realistic coupled atmosphere-ocean models it became apparent that our understanding of weather and climate variability in both the atmosphere and the ocean depends crucially on our ability to measure processes in boundary layers spanning the interface. Ten years ago UNOLS formed the Scientific Committee for Oceanographic Aircraft Research (SCOAR) "...to improve access to research aircraft facilities for ocean sciences"; an attempt to make access to aircraft as easy as access to research vessels. SCOAR emphasized then that "Aircraft are ideal for both fast-response investigations and routine, long-term measurements, and they naturally combine atmospheric measurements with oceanographic measurements on similar temporal and spatial scales." Since then developments in GPS positioning and miniaturization have made scientific measurements possible from smaller and smaller platforms, including the transition from manned to unmanned aerial vehicles (UAVs). Furthermore, ship-launched and recovered UAVs have demonstrated how they can enhance the capabilities and reach of the research vessels, "projecting" research and science, just as aircraft carriers "project force". Now we can measure winds, waves, temperatures, currents, radiative transfer, images and air-sea fluxes from aircraft over the ocean.I will review some of the history of airborne oceanography and present examples of how it can extend our knowledge and understanding of air-sea interaction.

  12. A global biogeographic classification of the mesopelagic zone

    NASA Astrophysics Data System (ADS)

    Sutton, Tracey T.; Clark, Malcolm R.; Dunn, Daniel C.; Halpin, Patrick N.; Rogers, Alex D.; Guinotte, John; Bograd, Steven J.; Angel, Martin V.; Perez, Jose Angel A.; Wishner, Karen; Haedrich, Richard L.; Lindsay, Dhugal J.; Drazen, Jeffrey C.; Vereshchaka, Alexander; Piatkowski, Uwe; Morato, Telmo; Błachowiak-Samołyk, Katarzyna; Robison, Bruce H.; Gjerde, Kristina M.; Pierrot-Bults, Annelies; Bernal, Patricio; Reygondeau, Gabriel; Heino, Mikko

    2017-08-01

    We have developed a global biogeographic classification of the mesopelagic zone to reflect the regional scales over which the ocean interior varies in terms of biodiversity and function. An integrated approach was necessary, as global gaps in information and variable sampling methods preclude strictly statistical approaches. A panel combining expertise in oceanography, geospatial mapping, and deep-sea biology convened to collate expert opinion on the distributional patterns of pelagic fauna relative to environmental proxies (temperature, salinity, and dissolved oxygen at mesopelagic depths). An iterative Delphi Method integrating additional biological and physical data was used to classify biogeographic ecoregions and to identify the location of ecoregion boundaries or inter-regions gradients. We define 33 global mesopelagic ecoregions. Of these, 20 are oceanic while 13 are 'distant neritic.' While each is driven by a complex of controlling factors, the putative primary driver of each ecoregion was identified. While work remains to be done to produce a comprehensive and robust mesopelagic biogeography (i.e., reflecting temporal variation), we believe that the classification set forth in this study will prove to be a useful and timely input to policy planning and management for conservation of deep-pelagic marine resources. In particular, it gives an indication of the spatial scale at which faunal communities are expected to be broadly similar in composition, and hence can inform application of ecosystem-based management approaches, marine spatial planning and the distribution and spacing of networks of representative protected areas.

  13. Oscillation Rules as the Pacific Cools

    NASA Image and Video Library

    2008-12-13

    The latest image of sea-surface height measurements from NASA U.S./French Jason-1 oceanography satellite shows the Pacific Ocean remains locked in a strong, cool phase of the Pacific Decadal Oscillation.

  14. Early Adolescence: Active Science for Middle Schoolers.

    ERIC Educational Resources Information Center

    Padilla, Michael; Griffin, Nancy

    1980-01-01

    Describes activities appropriate for involving middle school students as active participants in the learning process. Topics discussed include archaeology, bulletin boards, dramatizations, physics experiments using the human body, oceanography, and ecology. (CS)

  15. Ten Days at Sea: For Grades K through 3

    ERIC Educational Resources Information Center

    Seddon, Marian

    1977-01-01

    Outlines a 10-day unit in oceanography for the primary grades. Suggest stories, chalkboard work, topics for discussion, coloring projects, experiments, films, reference books, and topics for research projects. (CS)

  16. Oceanography: A sea butterfly flaps its wings

    NASA Astrophysics Data System (ADS)

    Ries, Justin B.

    2012-12-01

    Ocean acidification is predicted to harm the ocean's shell-building organisms over the coming centuries. Sea butterflies, an ecologically important group of molluscs in the Arctic and Southern oceans, are already suffering the effects.

  17. Progress in the Determination of the Earth's Gravity Field

    NASA Technical Reports Server (NTRS)

    Rapp, Richard H. (Editor)

    1989-01-01

    Topics addressed include: global gravity model development; methods for approximation of the gravity field; gravity field measuring techniques; global gravity field applications and requirements in geophysics and oceanography; and future gravity missions.

  18. Centering on Sea Life in the Classroom.

    ERIC Educational Resources Information Center

    Gruendike, Janis L.

    1982-01-01

    Describes an oceanography learning center for elementary/middle school students, focusing on use of games (review jeopardy), instructional tapes, flash cards, activity felt boards, picture puzzles, reading materials, science displays, and experiment stations. (JN)

  19. The Great Hydrometer Construction Contest!

    ERIC Educational Resources Information Center

    McGinnis, James Randy; Padilla, Michael J.

    1991-01-01

    The relationship between specific gravity, salinity, and density in brine solutions is investigated. Students construct hydrometers to reinforce concepts learned in oceanography. Background information, salt requirements for the unknowns, directions, and reproducible worksheets are included. (KR)

  20. MAOS: An Innovative Way to Teach High School.

    ERIC Educational Resources Information Center

    Harray, Nancy; And Others

    1997-01-01

    Describes an innovative high school program that uses oceanography, mathematics, and science as common threads in the instructional program. The program utilizes an innovative class structure, community involvement, and hands on activities. (DDR)

  1. The James Melville Gilliss Library - Naval Oceanography Portal

    Science.gov Websites

    Librarian Search - URANIA SAO/NASA ADS Library Collections Historical Photos, Artwork, Objects Library Astrophysical Data System (ADS) Search the SAO/NASA Astrophysical Data System (ADS) Library Collections Recently

  2. Capturing Excitement: Oceanography

    ERIC Educational Resources Information Center

    Boyer, Robert E.; Butts, David P.

    1971-01-01

    Describes four elementary school earth science activities. Each student experience is designed to help children answer questions about the ocean floor, continental drift, volcanism and mountain chains. Includes a bibliography of related articles, books, and maps. (JM)

  3. The role of ocean climate data in operational Naval oceanography

    NASA Technical Reports Server (NTRS)

    Chesbrough, Radm G.

    1992-01-01

    Local application of global-scale models describes the U.S. Navy's basic philosophy for operational oceanography in support of fleet operations. Real-time data, climatologies, coupled air/ocean models, and large scale computers are the essential components of the Navy's system for providing the war fighters with the performance predictions and tactical decision aids they need to operate safely and efficiently. In peacetime, these oceanographic predictions are important for safety of navigation and flight. The paucity and uneven distribution of real-time data mean we have to fall back on climatology to provide the basic data to operate our models. The Navy is both a producer and user of climatologies; it provides observations to the national archives and in turn employs data from these archives to establish data bases. Suggestions for future improvements to ocean climate data are offered.

  4. Applications of the Coastal Zone Color Scanner in oceanography

    NASA Technical Reports Server (NTRS)

    Mcclain, C. R.

    1988-01-01

    Research activity has continued to be focused on the applications of the Coastal Zone Color Scanner (CZCS) imagery in oceanography. A number of regional studies were completed including investigations of temporal and spatial variability of phytoplankton populations in the South Atlantic Bight, Northwest Spain, Weddell Sea, Bering Sea, Caribbean Sea and in tropical Atlantic Ocean. In addition to the regional studies, much work was dedicated to developing ancillary global scale meteorological and hydrographic data sets to complement the global CZCS processing products. To accomplish this, SEAPAK's image analysis capability was complemented with an interface to GEMPAK (Severe Storm Branch's meteorological analysis software package) for the analysis and graphical display of gridded data fields. Plans are being made to develop a similar interface to SEAPAK for hydrographic data using EPIC (a hydrographic data analysis package developed by NOAA/PMEL).

  5. A two-dimensional composite grid numerical model based on the reduced system for oceanography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xie, Y.F.; Browning, G.L.; Chesshire, G.

    The proper mathematical limit of a hyperbolic system with multiple time scales, the reduced system, is a system that contains no high-frequency motions and is well posed if suitable boundary conditions are chosen for the initial-boundary value problem. The composite grid method, a robust and efficient grid-generation technique that smoothly and accurately treats general irregular boundaries, is used to approximate the two-dimensional version of the reduced system for oceanography on irregular ocean basins. A change-of-variable technique that substantially increases the accuracy of the model and a method for efficiently solving the elliptic equation for the geopotential are discussed. Numerical resultsmore » are presented for circular and kidney-shaped basins by using a set of analytic solutions constructed in this paper.« less

  6. Conference on Satellite Meteorology and Oceanography, 6th, Atlanta, GA, Jan. 5-10, 1992, Preprints

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    The present volume on satellite meteorology and oceanography discusses cloud retrieval from collocated IR sounder data and imaging systems, satellite retrievals of marine stratiform cloud systems, multispectral analysis of satellite observations of smoke and dust, and image and graphical analysis of principal components of satellite sounding channels. Attention is given to an evaluation of results from classification retrieval methods, the use of TOVS radiances, estimation of path radiance on the basis of remotely sensed data, and a reexamination of SST as a predictor for tropical storm intensity. Topics addressed include optimal smoothing of GOES VAS for upper-atmosphere thermal waves, obtainingmore » cloud motion vectors from polar orbiting satellites, the use of cloud relative animation in the analysis of satellite data, and investigations of a polar low using geostationary satellite data.« less

  7. High-precision GPS autonomous platforms for sea ice dynamics and physical oceanography

    NASA Astrophysics Data System (ADS)

    Elosegui, P.; Wilkinson, J.; Olsson, M.; Rodwell, S.; James, A.; Hagan, B.; Hwang, B.; Forsberg, R.; Gerdes, R.; Johannessen, J.; Wadhams, P.; Nettles, M.; Padman, L.

    2012-12-01

    Project "Arctic Ocean sea ice and ocean circulation using satellite methods" (SATICE), is the first high-rate, high-precision, continuous GPS positioning experiment on sea ice in the Arctic Ocean. The SATICE systems collect continuous, dual-frequency carrier-phase GPS data while drifting on sea ice. Additional geophysical measurements also collected include ocean water pressure, ocean surface salinity, atmospheric pressure, snow-depth, air-ice-ocean temperature profiles, photographic imagery, and others, enabling sea ice drift, freeboard, weather, ice mass balance, and sea-level height determination. Relatively large volumes of data from each buoy are streamed over a satellite link to a central computer on the Internet in near real time, where they are processed to estimate the time-varying buoy positions. SATICE system obtains continuous GPS data at sub-minute intervals with a positioning precision of a few centimetres in all three dimensions. Although monitoring of sea ice motions goes back to the early days of satellite observations, these autonomous platforms bring out a level of spatio-temporal detail that has never been seen before, especially in the vertical axis. These high-resolution data allows us to address new polar science questions and challenge our present understanding of both sea ice dynamics and Arctic oceanography. We will describe the technology behind this new autonomous platform, which could also be adapted to other applications that require high resolution positioning information with sustained operations and observations in the polar marine environment, and present results pertaining to sea ice dynamics and physical oceanography.

  8. Physical oceanography of continental shelves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allen, J.S.; Beardlsey, R.C.; Blanton, J.O.

    Knowledge of the physical oceanography of continental shelves has increased tremendously in recent years, primarily as a result of new current and hydrographic measurements made in locations where no comparable measurements existed previously. In general, observations from geographically distinct continental shelves have shown that the nature of the flow may vary considerably from region to region. Although some characteristics, such as the response of currents to wind forcing, are common to many shelves, the relative importance of various physical processes in influencing the shelf flow field frequently is different. In the last several years, the scientific literature on shelf studiesmore » has expanded rapidly, with that for separate regions, to some extent, developing independently because of the variable role played by different physical effects. Consequently, it seems that a simultaneous review of progress in physical oceanographic research in different shelf regions would be especially useful at this time in order to help assess the overall progress in the field. This multi-author report has been compiled as a result. Included are sections on the physical oceanography of continental shelves, in or off of, the eastern Bering Sea, northern Gulf of Alaska, Pacific Northwest, southern California, west Florida, southeastern US, Middle Atlantic Bight, Georges Bank and Peru. These discussions clearly point to the diverse nature of the dominant physics in several of the regions, as well as to some of the dynamical features they share in common. 390 references, 23 figures.« less

  9. Geophysical Fluid Dynamics Laboratory Open Days at the Woods Hole Oceanographic Institution

    NASA Astrophysics Data System (ADS)

    Hyatt, Jason; Cenedese, Claudia; Jensen, Anders

    2015-11-01

    This event was hosted for one week for two consecutive years in 2013 and 2014. It targeted postdocs, graduate students, K-12 students and local community participation. The Geophysical Fluid Dynamics Laboratory at the Woods Hole Oceanographic Institution hosted 10 hands-on demonstrations and displays, with something for all ages, to share the excitement of fluid mechanics and oceanography. The demonstrations/experiments spanned as many fluid mechanics problems as possible in all fields of oceanography and gave insight into using fluids laboratory experiments as a research tool. The chosen experiments were `simple' yet exciting for a 6 year old child, a high school student, a graduate student, and a postdoctoral fellow from different disciplines within oceanography. The laboratory is a perfect environment in which to create excitement and stimulate curiosity. Even what we consider `simple' experiments can fascinate and generate interesting questions from both a 6 year old child and a physics professor. How does an avalanche happen? How does a bath tub vortex form? What happens to waves when they break? How does a hurricane move? Hands-on activities in the fluid dynamics laboratory helped students of all ages in answering these and other intriguing questions. The laboratory experiments/demonstrations were accompanied by `live' videos to assist in the interpretation of the demonstrations. Posters illustrated the oceanographic/scientific applicability and the location on Earth where the dynamics in the experiments occur. Support was given by the WHOI Doherty Chair in Education.

  10. What's New in the Ocean in Google Earth and Maps

    NASA Astrophysics Data System (ADS)

    Austin, J.; Sandwell, D. T.

    2014-12-01

    Jenifer Austin, Jamie Adams, Kurt Schwehr, Brian Sullivan, David Sandwell2, Walter Smith3, Vicki Ferrini4, and Barry Eakins5, 1 Google Inc., 1600 Amphitheatre Parkway, Mountain View, California, USA 2 University of California-San Diego, Scripps Institute of Oceanography, La Jolla, California ,USA3 NOAA Laboratory for Satellite Altimetry, College Park, Maryland, USA4 Lamont Doherty, Columbia University5 NOAAMore than two-thirds of Earth is covered by oceans. On the almost 6 year anniversary of launching an explorable ocean seafloor in Google Earth and Maps, we updated our global underwater terrain dataset in partnership with Lamont-Doherty at Columbia, the Scripps Institution of Oceanography, and NOAA. With this update to our ocean map, we'll reveal an additional 2% of the ocean in high resolution representing 2 years of work by Columbia, pulling in data from numerous institutions including the Campeche Escarpment in the Gulf of Mexico in partnership with Charlie Paul at MBARI and the Schmidt Ocean Institute. The Scripps Institution of Oceanography at UCSD has curated 30 years of data from more than 8,000 ship cruises and 135 different institutions to reveal 15 percent of the seafloor at 1 km resolution. In addition, explore new data from an automated pipeline built to make updates to our Ocean Map more scalable in partnership with NOAA's National Geophysical Data Center (link to http://www.ngdc.noaa.gov/mgg/bathymetry/) and the University of Colorado CIRES program (link to http://cires.colorado.edu/index.html).

  11. Interested in Pelagic Food Webs? BCO-DMO has your Data.

    NASA Astrophysics Data System (ADS)

    Chandler, C. L.; Groman, R. C.; Kinkade, D.; Rauch, S.; Allison, M. D.; Gegg, S. R.; Shepherd, A.; Wiebe, P. H.; Glover, D. M.

    2016-02-01

    Interdisciplinary research collaborations that address complex, global research themes such as the interactive effects of global warming and studies of pelagic food webs require access to a broad range of data types from all disciplines of oceanography, from all platforms (e.g. ships, gliders, floats, moorings), with the in situ observations complementing and being complemented by laboratory and model results. In an effort to build a comprehensive database of marine ecosystem research data, the National Science Foundation (NSF) funded the Biological and Chemical Oceanography Data Management Office (BCO-DMO; bco-dmo.org) to support the data management requirements of investigators funded by the NSF's Polar Programs (PLR) and Biological and Chemical Oceanography Sections (OCE). Since 2006, investigators funded by NSF PLR and OCE have been working with support from BCO-DMO data scientists, to build a data system that now includes the full range of ocean biogeochemistry data resulting from decades of research. In addition to data from recently funded PIs, the BCO-DMO data system also serves data from legacy programs (e.g. US Joint Global Ocean Flux Study and US Global Ocean Ecosystem Dynamics). The data are open-access, available for download in a variety of user-selectable formats, and accompanied by sufficient documentation to enable re-use. This presentation will highlight the diversity of data available from the BCO-DMO system and demonstrate some of the features that enable discovery, access and download of data relevant to studies of pelagic food webs.

  12. Technologies for Online Data Management of Oceanographic Data

    NASA Astrophysics Data System (ADS)

    Zodiatis, G.; Hayes, D.; Karaolia, A.; Stylianou, S.; Nikolaidis, A.; Constantinou, I.; Michael, S.; Galanis, G.; Georgiou, G.

    2012-04-01

    The need for efficient and effective on line data management is greatly recognized today by the marine research community. The Cyprus Oceanography Center at the University of Cyprus, realizing this need, is continuously working in this area and has developed a variety of data management and visualization tools which are currently utilized for both the Mediterranean and the Black Sea. Bythos, CYCOFOS and LAS server are three different systems employed by the Oceanography Center, each one dealing with different data sets and processes. Bythos is a rich internet application that combines the latest technologies and enables scientists to search, visualize and download climatological oceanographic data with capabilities of being applied worldwide. CYCOFOS is an operational coastal ocean forecasting and observing system which provides in near real time predictions for sea currents, hydrological characteristics, waves, swells and tides, remote sensing and in-situ data from various remote observing platforms in the Mediterranean Sea, the EEZ and the coastal areas of Cyprus. LAS (Live Access Server) is deployed to present distributed various types of data sets as a unified virtual data base through the use of OpenDap networking. It is first applied for providing an integrated, high resolution system for monitoring the energy potential from sea waves in the Exclusive Economic Zone of Cyprus and the Eastern Mediterranean Levantine Basin. This paper presents the aforementioned technologies as currently adopted by the Cyprus Oceanography Center and describes their utilization that supports both the research and operational activities in the Mediterranean.

  13. Honors

    NASA Astrophysics Data System (ADS)

    2012-10-01

    Many AGU members are among the American Meteorological Society's (AMS) 2013 honorary members, awardees, lecturers, and fellows. Among the AMS honorary members is Susan Solomon, the Ellen Swallow Richards Professor of Atmospheric Chemistry and Climate Science at the Massachusetts Institute of Technology (MIT). Dennis Hartmann, of the University of Washington, Seattle, is the recipient of AMS's Carl-Gustaf Rossby Research Medal “for significant contributions to the synthesis of knowledge of radiative and dynamical processes leading to a deeper understanding of the climate system.” R. Alan Plumb, professor of meteorology at MIT, receives the Jule G. Charney Award “for fundamental contributions to the understanding of geophysical fluid dynamics, stratospheric dynamics, chemical transport, and the general circulation of the atmosphere and oceans.” The Verner E. Suomi Award has been given to Richard Johnson, professor of atmospheric science at Colorado State University, Fort Collins, “for exquisite design of rawinsonde networks in field campaigns and insightful analysis of interactions between convective clouds and the largescale atmospheric circulation.” W. Kendall Melville, professor of oceanography at the Scripps Institution of Oceanography, University of California, San Diego, has been awarded the Sverdrup Gold Medal Award “for pioneering contributions in advancing knowledge on the role of surface wave breaking and related processes in air-sea interaction.” AMS announced that Laurence Armi, also a professor of oceanography at Scripps, is recipient of the Henry Stommel Research Award “for his deeply insightful studies of stratified flow, his pioneering work on boundary mixing and other turbulent mechanisms.”

  14. Forecast-Informed Reservoir Operations: Lessons Learned from a Multi-Agency Collaborative Research and Operations Effort to improve Flood Risk Management, Water Supply and Environmental Benefits

    NASA Astrophysics Data System (ADS)

    Talbot, C. A.; Ralph, M.; Jasperse, J.; Forbis, J.

    2017-12-01

    Lessons learned from the multi-agency Forecast-Informed Reservoir Operations (FIRO) effort demonstrate how research and observations can inform operations and policy decisions at Federal, State and Local water management agencies with the collaborative engagement and support of researchers, engineers, operators and stakeholders. The FIRO steering committee consists of scientists, engineers and operators from research and operational elements of the National Oceanographic and Atmospheric Administration and the US Army Corps of Engineers, researchers from the US Geological Survey and the US Bureau of Reclamation, the state climatologist from the California Department of Water Resources, the chief engineer from the Sonoma County Water Agency, and the director of the Scripps Institution of Oceanography's Center for Western Weather and Water Extremes at the University of California-San Diego. The FIRO framework also provides a means of testing and demonstrating the benefits of next-generation water cycle observations, understanding and models in water resources operations.

  15. Developing Geosciences Research Partnerships With Colleagues from SOPAC

    NASA Astrophysics Data System (ADS)

    Edsall, D. W.

    2003-12-01

    Members of the AGU have an opportunity to become involved in cooperative research with scientists from the Cook Islands, Fiji, Guam, Federated States of Micronesia, Kiribati, Marshall Islands, Papua New Guinea, Solomon Islands, Tonga, Tuvalu, Vanuatu, Western Samoa as well as Australia and New Zealand. Governmental officials and scientists from the member countries of the South Pacific Applied Geoscience Commission (SOPAC) and its Science Technology and Resources Network (STAR) are looking for individuals, academic and research organizations, foundations, private industry, governmental agencies and professional societies to assist with important research efforts. Involvement would include: promoting; training; funding; equipping, facilitating; coordinating; advising; monitoring; collaborating; interpreting; evaluating and reporting. Studies in all onshore, coastal and offshore environments are needed. Topics include: development of natural resources; reduction of environmental vulnerability; support of sustainable development; development of potable water supplies; protecting coral reef environments; and basic investigations of local weather, climatology, biology, geology, geophysics and oceanography. This paper addresses ways to create such research partnerships.

  16. Global Ocean Prediction with the HYbrid Coordinate Ocean Model, HYCOM

    NASA Astrophysics Data System (ADS)

    Chassignet, E.

    A broad partnership of institutions is collaborating in developing and demonstrating the performance and application of eddy-resolving, real-time global and Atlantic ocean prediction systems using the the HYbrid Coordinate Ocean Model (HYCOM). These systems will be transitioned for operational use by both the U.S. Navy at the Naval Oceanographic Office (NAVOCEANO), Stennis Space Center, MS, and the Fleet Numerical Meteorology and Oceanography Centre (FNMOC), Monterey, CA, and by NOAA at the National Centers for Environmental Prediction (NCEP), Washington, D.C. These systems will run efficiently on a variety of massively parallel computers and will include sophisticated data assimilation techniques for assimilation of satellite altimeter sea surface height and sea surface temperature as well as in situ temperature, salinity, and float displacement. The Partnership addresses the Global Ocean Data Assimilation Experiment (GODAE) goals of three-dimensional (3D) depiction of the ocean state at fine resolution in real-time and provision of boundary conditions for coastal and regional models. An overview of the effort will be presented.

  17. Offshore oceanographic and environmental monitoring services for the Strategic Petroleum Reserve. Annual report for the Bryan Mound site, September 1982-August 1983. Volume III. Executive summary

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hann, R.W. Jr.; Giammona, C.P.; Randall, R.E.

    1984-03-01

    This report describes the findings for the 12 months of postdisposal study conducted from September 1982 through August 1983. The areas of investigation are benthos, brine plume, data management, nekton, physical oceanography, and water and sediment quality. The specific objectives of this report are: (1) to describe the physical oceanographic and meteorological conditions which have been measured at the offshore diffuser site and in the surrounding waters; (2) to describe the effect of brine discharge on the benthic community in the diffuser site area; (3) to discuss the effect of the brine discharge on the quality of the water andmore » sediment in the vicinity of the diffuser site; (4) to describe the measurement and empirical prediction of the areal and vertical extent of the brine plume; and (5) to characterize the effect of brine discharge on the nekton community in the vicinity of the diffuser. 2 figures.« less

  18. A strategy for detecting derelict fishing gear at sea.

    PubMed

    McElwee, Kris; Donohue, Mary J; Courtney, Catherine A; Morishige, Carey; Rivera-Vicente, Ariel

    2012-01-01

    Derelict fishing gear (DFG) is a highly persistent form of marine pollution known to cause environmental and economic damage. At-sea detection of DFG would support pelagic removal of this gear to prevent and minimize impacts on marine environments and species. In 2008, experts in marine debris, oceanography, remote sensing, and marine policy outlined a strategy to develop the capability to detect and ultimately remove DFG from the open ocean. The strategy includes three interrelated components: understanding the characteristics of the targeted DFG, indirectly detecting DFG by modeling likely locations, and directly detecting pelagic DFG using remote sensing. Together, these components aim to refine the search area, increase the likelihood of detection, and decrease mitigation response time, thereby providing guidance for removal operations. Here, we present this at-sea detection strategy, relate it to relevant extant research and technology, and identify gaps that currently prevent successful at-sea detection and removal of DFG. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. Atmospheric Nitrogen Inputs to the Ocean and their Impact

    NASA Astrophysics Data System (ADS)

    Jickells, Tim D.

    2016-04-01

    Atmospheric Nitrogen Inputs to the Ocean and their Impact T Jickells (1), K. Altieri (2), D. Capone (3), E. Buitenhuis (1), R. Duce (4), F. Dentener (5), K. Fennel (6), J. Galloway (7), M. Kanakidou (8), J. LaRoche (9), K. Lee (10), P. Liss (1), J. Middleburg (11), K. Moore (12), S. Nickovic (13), G. Okin (14), A. Oschilies (15), J. Prospero (16), M. Sarin (17), S. Seitzinger (18), J. Scharples (19), P. Suntharalingram (1), M. Uematsu (20), L. Zamora (21) Atmospheric nitrogen inputs to the ocean have been identified as an important source of nitrogen to the oceans which has increased greatly as a result of human activity. The significance of atmospheric inputs for ocean biogeochemistry were evaluated in a seminal paper by Duce et al., 2008 (Science 320, 893-7). In this presentation we will update the Duce et al 2008 study estimating the impact of atmospheric deposition on the oceans. We will summarise the latest model estimates of total atmospheric nitrogen deposition to the ocean, their chemical form (nitrate, ammonium and organic nitrogen) and spatial distribution from the TM4 model. The model estimates are somewhat smaller than the Duce et al estimate, but with similar spatial distributions. We will compare these flux estimates with a new estimate of the impact of fluvial nitrogen inputs on the open ocean (Sharples submitted) which estimates some transfer of fluvial nitrogen to the open ocean, particularly at low latitudes, compared to the complete trapping of fluvial inputs on the continental shelf assumed by Duce et al. We will then estimate the impact of atmospheric deposition on ocean primary productivity and N2O emissions from the oceans using the PlankTOM10 model. The impacts of atmospheric deposition we estimate on ocean productivity here are smaller than those predicted by Duce et al impacts, consistent with the smaller atmospheric deposition estimates. However, the atmospheric input is still larger than the estimated fluvial inputs to the open ocean, even with the increased transport across shelf to the open ocean from low latitude fluvial systems identified. 1. School of Environmental Science University of East Anglia UK 2. Energy Research Centre University of Cape Town SA 3. Department of Biological Sciences University of S California USA 4. Departments of Oceanography and Atmospheric Sciences Texas A&M University USA 5. JRC Ispra Italy 6. Department of Oceanography Dalhousie University Canada 7. Department of Environmental Sciences U. Virginia USA 8. Department of Chemistry, University of Crete, Greece 9. Department of Biology Dalhousie University, Canada 10. School of Environmental Science and Engineering Pohang University S Korea. 11. Faculty of Geosciences University of Utrecht Netherlands 12. Department of Earth System Science University of California at Irvine USA 13. WMO Geneva 14. Department of Geography University of California USA 15. GEOMAR Keil Germany 16. Department of Atmospheric Sciences, University of Miami, USA 17. Geosciences Division at Physical Research Laboratory, Ahmedabad, India 18. Department of Environmental Studies, University of Victoria, Canada 19. School of Environmentak Sciences, U Liverpool UK 20. Center for International Collaboration, Atmosphere and Ocean Research Institute, The University of Tokyo Japan 21. Oak Ridge Associated Universities USA

  20. UK Environmental Prediction - integration and evaluation at the convective scale

    NASA Astrophysics Data System (ADS)

    Fallmann, Joachim; Lewis, Huw; Castillo, Juan Manuel; Pearson, David; Harris, Chris; Saulter, Andy; Bricheno, Lucy; Blyth, Eleanor

    2016-04-01

    Traditionally, the simulation of regional ocean, wave and atmosphere components of the Earth System have been considered separately, with some information on other components provided by means of boundary or forcing conditions. More recently, the potential value of a more integrated approach, as required for global climate and Earth System prediction, for regional short-term applications has begun to gain increasing research effort. In the UK, this activity is motivated by an understanding that accurate prediction and warning of the impacts of severe weather requires an integrated approach to forecasting. The substantial impacts on individuals, businesses and infrastructure of such events indicate a pressing need to understand better the value that might be delivered through more integrated environmental prediction. To address this need, the Met Office, NERC Centre for Ecology & Hydrology and NERC National Oceanography Centre have begun to develop the foundations of a coupled high resolution probabilistic forecast system for the UK at km-scale. This links together existing model components of the atmosphere, coastal ocean, land surface and hydrology. Our initial focus has been on a 2-year Prototype project to demonstrate the UK coupled prediction concept in research mode. This presentation will provide an update on UK environmental prediction activities. We will present the results from the initial implementation of an atmosphere-land-ocean coupled system, including a new eddy-permitting resolution ocean component, and discuss progress and initial results from further development to integrate wave interactions in this relatively high resolution system. We will discuss future directions and opportunities for collaboration in environmental prediction, and the challenges to realise the potential of integrated regional coupled forecasting for improving predictions and applications.

  1. El Niño Continues to Grow

    NASA Image and Video Library

    2002-12-12

    The latest image from NASA Jason oceanography satellite, taken during a 10-day collection cycle ending December 2, 2002, shows the Pacific dominated by two significant areas of higher-than-normal sealevel warmer ocean temperatures.

  2. El Ni?o Last Stand?

    NASA Image and Video Library

    2010-03-16

    Recent sea-level height data from NASA Jason-2 oceanography satellite show a weakening of trade winds in western and central equatorial Pacific during late-January through February has triggered yet another strong, eastward-moving Kelvin wave.

  3. Applications of adenine nucleotide measurements in oceanography

    NASA Technical Reports Server (NTRS)

    Holm-Hansen, O.; Hodson, R.; Azam, F.

    1975-01-01

    The methodology involved in nucleotide measurements is outlined, along with data to support the premise that ATP concentrations in microbial cells can be extrapolated to biomass parameters. ATP concentrations in microorganisms and nucleotide analyses are studied.

  4. Earth Science Principles Pertinent to the General Education Programs in Junior High Schools

    ERIC Educational Resources Information Center

    Henson, Kenneth Tyrone

    1970-01-01

    Presents the procedures, and findings of a study designed to identify principles in astronomy, geology, meterology, oceanography and physical geography pertinent to general education programs in junior high schools. (LC)

  5. About Us - Naval Oceanography Portal

    Science.gov Websites

    USNO's Telescopes A Brief History Frequently Asked Questions The James M. Gilliss Library Info About Us Questions The James M. Gilliss Library CONTACTBANNER.gif AA_Logo_Border.jpg U.S. Naval Observatory 3450

  6. Propagation Limitations in Remote Sensing.

    DTIC Science & Technology

    Contents: Multi-sensors and systems in remote sensing ; Radar sensing systems over land; Remote sensing techniques in oceanography; Influence of...propagation media and background; Infrared techniques in remote sensing ; Photography in remote sensing ; Analytical studies in remote sensing .

  7. SSC marks anniversary of Hurricane Katrina

    NASA Technical Reports Server (NTRS)

    2006-01-01

    At the Hurricane Katrina observance held Aug. 29 in the StenniSphere auditorium, Stennis Space Center Deputy Director David Throckmorton (left) and RAdm. Timothy McGee, Commander, Naval Meteorology and Oceanography Command, unveil a plaque dedicated to SSC employees.

  8. SSC marks anniversary of Hurricane Katrina

    NASA Image and Video Library

    2006-08-29

    At the Hurricane Katrina observance held Aug. 29 in the StenniSphere auditorium, Stennis Space Center Deputy Director David Throckmorton (left) and RAdm. Timothy McGee, Commander, Naval Meteorology and Oceanography Command, unveil a plaque dedicated to SSC employees.

  9. Mission Possible: The Sea Semester Program.

    ERIC Educational Resources Information Center

    Saveland, Robert N.; Stoner, Allan W.

    1985-01-01

    The "Research Vessel Westward" provides a sea-going research laboratory for students from various disciplines to learn oceanography concepts and research techniques while earning university credit. Descriptions of equipment, organizational structure, and student research responsibilities are presented. (DH)

  10. Building Websites for Science Literacy.

    ERIC Educational Resources Information Center

    Welborn, Victoria; Kanar, Bryn

    2000-01-01

    Suggests guidelines for evaluating and organizing Websites on scientific concepts that are developed from definitions of science literacy and science information literacy. Includes a sample webilography and a sample search strategy on the topic of acoustical oceanography. (Author/LRW)

  11. Underwater Web Work

    ERIC Educational Resources Information Center

    Wighting, Mervyn J.; Lucking, Robert A.; Christmann, Edwin P.

    2004-01-01

    Teachers search for ways to enhance oceanography units in the classroom. There are many online resources available to help one explore the mysteries of the deep. This article describes a collection of Web sites on this topic appropriate for middle level classrooms.

  12. A Semester of Geology in Bermuda.

    ERIC Educational Resources Information Center

    Pestana, Harold R.

    1982-01-01

    Described is a nine-week undergraduate semester program (12 credit hours) conducted at the Bermuda Biological Station for Research which included three courses: introductory oceanography, sedimentology, and independent field study. Brief descriptions of sample student projects are included. (DC)

  13. Library Collections - Naval Oceanography Portal

    Science.gov Websites

    are here: Home › USNO › James M. Gilliss Library › Library Collections USNO Logo USNO Navigation of the James M. Gilliss library include: recently cataloged books, electronic journals, publications

  14. Climatology and Archived Data - Naval Oceanography Portal

    Science.gov Websites

    Archived Data godae_text_logo.png Global Ocean Data Assimilation Experiment (GODAE) The Global Ocean Data Assimilation Experiment (GODAE) is a practical demonstration of near-real-time, global ocean data assimilation

  15. The Chemistry of Seashells.

    ERIC Educational Resources Information Center

    Kinard, W. Frank

    1980-01-01

    Describes the use of infrared and atomic absorption spectrometry in an introductory chemical oceanography course to introduce students to carbonate mineralogy by having them determine both the crystal structure and the magnesium content of seashells that they have collected. (Author/JN)

  16. Conference on Satellite Meteorology and Oceanography, 5th, London, England, Sept. 3-7, 1990, Preprints

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    The present conference on satellite meteorology and oceanography discusses climate and clouds, retrieval algorithms, air-sea phenomenology, oceanographic applications, SSM/I, mesoscale, synoptic, and NWP applications, and future satellites and systems. Attention is given to the properties of cirrus clouds measured by satellites and lidars, the geographical variation of the diurnal cycle of clouds from ISCCP, the susceptibility of cloud reflectance to pollution, and a global analysis of aerosol-cloud interactions. Topics addressed include precision intercomparisons between MSU channel 2 and radiosonde data over the U.S., humidity estimates from Meteosat observations, the assimilation of altimeter observations into a global wave model, and atmosphericmore » stratification effects on scatterometer model functions. Also discussed are observations of Indian Ocean eddy variability, the deconvolution of GOES infrared data, short-range variations in total cloud cover in the tropics, and rainfall monitoring by the SSM/I in middle latitudes.« less

  17. Biological Oceanography

    NASA Technical Reports Server (NTRS)

    Abbott, M. R.

    1984-01-01

    Within the framework of global biogeochemical cycles and ocean productivity, there are two areas that will be of particular interest to biological oceanography in the 1990s. The first is the mapping in space time of the biomass and productivity of phytoplankton in the world ocean. The second area is the coupling of biological and physical processes as it affects the distribution and growth rate of phytoplankton biomass. Certainly other areas will be of interest to biological oceanographers, but these two areas are amenable to observations from satellites. Temporal and spatial variability is a regular feature of marine ecosystems. The temporal and spatial variability of phytoplankton biomass and productivity which is ubiquitous at all time and space scales in the ocean must be characterized. Remote sensing from satellites addresses these problems with global observations of mesocale (2 to 20 days, 10 to 200 km) features over a long period of time.

  18. The EOSDIS Version 0 Distributed Active Archive Center for physical oceanography and air-sea interaction

    NASA Technical Reports Server (NTRS)

    Hilland, Jeffrey E.; Collins, Donald J.; Nichols, David A.

    1991-01-01

    The Distributed Active Archive Center (DAAC) at the Jet Propulsion Laboratory will support scientists specializing in physical oceanography and air-sea interaction. As part of the NASA Earth Observing System Data and Information System Version 0 the DAAC will build on existing capabilities to provide services for data product generation, archiving, distribution and management of information about data. To meet scientist's immediate needs for data, existing data sets from missions such as Seasat, Geosat, the NOAA series of satellites and the Global Positioning Satellite system will be distributed to investigators upon request. In 1992, ocean topography, wave and surface roughness data from the Topex/Poseidon radar altimeter mission will be archived and distributed. New data products will be derived from Topex/Poseidon and other sensor systems based on recommendations of the science community. In 1995, ocean wind field measurements from the NASA Scatterometer will be supported by the DAAC.

  19. Kick-off symposium series to help New Ph.D.s is a success

    NASA Astrophysics Data System (ADS)

    Chernys, Michael; Roughan, Moninya

    The U.S. National Science Foundation (NSF) and the U.S. Office of Naval Research (ONR) recently sponsored the first of what is expected to be many symposia to be held every couple of years to help new scientists begin their research careers. The inaugural dissertation symposium, Physical Oceanography Dissertation Symposium I (PODS I), provided a forum for new Ph.D.s and doctoral candidates soon to receive their degrees in physical oceanography or a related field, to discuss science and forge future professional relationships. The next symposium is expected to be in October 2003, in Hawaii, in concert with the Dissertation Symposium for Chemical Oceanographers (DISCO); information to be posted at http://spars.aibs.org/pods/. Applications from prospective participants were sought internationally, with the sponsoring agencies and coordinators advertising by e-mail, through personal communication with established researchers, and by informing degree-granting institutions in the related fields.

  20. The Equations of Oceanic Motions

    NASA Astrophysics Data System (ADS)

    Müller, Peter

    2006-10-01

    Modeling and prediction of oceanographic phenomena and climate is based on the integration of dynamic equations. The Equations of Oceanic Motions derives and systematically classifies the most common dynamic equations used in physical oceanography, from large scale thermohaline circulations to those governing small scale motions and turbulence. After establishing the basic dynamical equations that describe all oceanic motions, M|ller then derives approximate equations, emphasizing the assumptions made and physical processes eliminated. He distinguishes between geometric, thermodynamic and dynamic approximations and between the acoustic, gravity, vortical and temperature-salinity modes of motion. Basic concepts and formulae of equilibrium thermodynamics, vector and tensor calculus, curvilinear coordinate systems, and the kinematics of fluid motion and wave propagation are covered in appendices. Providing the basic theoretical background for graduate students and researchers of physical oceanography and climate science, this book will serve as both a comprehensive text and an essential reference.

  1. The PO.DAAC Portal and its use of the Drupal Framework

    NASA Astrophysics Data System (ADS)

    Alarcon, C.; Huang, T.; Bingham, A.; Cosic, S.

    2011-12-01

    The Physical Oceanography Distributed Active Archive Center portal (http://podaac.jpl.nasa.gov) is the primary interface for discovering and accessing oceanographic datasets collected from the vantage point of space. In addition, it provides information about NASA's satellite missions and operational activities at the data center. Recently the portal underwent a major redesign and deployment utilizing the Drupal framework. The Drupal framework was chosen as the platform for the portal due to its flexibility, open source community, and modular infrastructure. The portal features efficient content addition and management, mailing lists, forums, role based access control, and a faceted dataset browse capability. The dataset browsing was built as a custom Drupal module and integrates with a SOLR search engine.

  2. GOCE User Toolbox and Tutorial

    NASA Astrophysics Data System (ADS)

    Benveniste, Jérôme; Knudsen, Per

    2016-07-01

    The GOCE User Toolbox GUT is a compilation of tools for the utilisation and analysis of GOCE Level 2 products. GUT support applications in Geodesy, Oceanography and Solid Earth Physics. The GUT Tutorial provides information and guidance in how to use the toolbox for a variety of applications. GUT consists of a series of advanced computer routines that carry out the required computations. It may be used on Windows PCs, UNIX/Linux Workstations, and Mac. The toolbox is supported by The GUT Algorithm Description and User Guide and The GUT Install Guide. A set of a-priori data and models are made available as well. Without any doubt the development of the GOCE user toolbox have played a major role in paving the way to successful use of the GOCE data for oceanography. The GUT version 2.2 was released in April 2014 and beside some bug-fixes it adds the capability for the computation of Simple Bouguer Anomaly (Solid-Earth). During this fall a new GUT version 3 has been released. GUTv3 was further developed through a collaborative effort where the scientific communities participate aiming on an implementation of remaining functionalities facilitating a wider span of research in the fields of Geodesy, Oceanography and Solid earth studies. Accordingly, the GUT version 3 has: - An attractive and easy to use Graphic User Interface (GUI) for the toolbox, - Enhance the toolbox with some further software functionalities such as to facilitate the use of gradients, anisotropic diffusive filtering and computation of Bouguer and isostatic gravity anomalies. - An associated GUT VCM tool for analyzing the GOCE variance covariance matrices.

  3. Satellite observations of the ice cover of the Kuril Basin Region of the Okhotsk Sea and its relation to the regional oceanography

    NASA Astrophysics Data System (ADS)

    Wakatsuchi, Masaaki; Martin, Seelye

    1990-08-01

    For the period 1978-1982, this paper examines the nature of the sea ice which forms over the Kuril Basin of the Okhotsk Sea and describes the impact of this ice on the regional oceanography. The paper compares the oceanographic behavior during the heavy ice season associated with the cold 1979 winter with the behavior during the lighter ice years of 1980 and 1982. Examination of the oceanography in the Okhotsk and the adjacent Pacific shows that the early summer water column structure depends on the heat loss from the Okhotsk during the preceding ice season, the total amount of Okhotsk ice formation, and specifically the amount of ice formation in the Kuril Basin. Following the 1979 ice season, the upper 200-300 m of the Kuril Basin waters were cooler, less saline, and richer in oxygen than for the other years. This modification appears to be a process local to the Kuril Basin, driven by eddy-induced mixing, local cooling, and ice melting. In the depths 300-1200 m, the water modification is caused by the advection of water from the northern Okhotsk. For 1979, this deeper water is also less saline, colder, and richer in oxygen than for the lighter ice years. The water modified in the Okhotsk enters the adjacent North Pacific through the Bussol' Strait, where for 1979 the adjacent waters are also cooler, less saline, and richer in oxygen down to a depth of 1000 m than for the lighter ice years.

  4. A Preliminary Evaluation of the GFS Physics in the Navy Global Environmental Model

    NASA Astrophysics Data System (ADS)

    Liu, M.; Langland, R.; Martini, M.; Viner, K.

    2017-12-01

    Global extended long-range weather forecast is a goal in the near future at Navy's Fleet Numerical Meteorology and Oceanography Center (FNMOC). In an effort to improve the performance of the Navy Global Environmental Model (NAVGEM) operated at FNMOC, and to gain more understanding of the impact of atmospheric physics in the long-range forecast, the physics package of the Global Forecast System (GFS) of the National Centers for Environmental Prediction is being evaluated in the framework of NAVGEM. That is GFS physics being transported by NAVGEM Semi-Lagrangian Semi-Implicit advection, and update-cycled by the 4D-variational data assimilation along with the assimilated land surface data of NASA's Land Information System. The output of free long runs of 10-day GFS physics forecast in a summer and a winter season are evaluated through the comparisons with the output of NAVGEM physics long forecast, and through the validations with observations and with the European Center's analyses data. It is found that the GFS physics is able to effectively reduce some of the modeling biases of NAVGEM, especially wind speed of the troposphere and land surface temperature that is an important surface boundary condition. The bias corrections increase with forecast leads, reaching maximum at 240 hours. To further understand the relative roles of physics and dynamics in extended long-range forecast, the tendencies of physics components and advection are also calculated and analyzed to compare their forces of magnitudes in the integration of winds, temperature, and moisture. The comparisons reveal the strength and limitation of GFS physics in the overall improvement of NAVGEM prediction system.

  5. UK Environmental Prediction - integration and evaluation at the convective scale

    NASA Astrophysics Data System (ADS)

    Lewis, Huw; Brunet, Gilbert; Harris, Chris; Best, Martin; Saulter, Andrew; Holt, Jason; Bricheno, Lucy; Brerton, Ashley; Reynard, Nick; Blyth, Eleanor; Martinez de la Torre, Alberto

    2015-04-01

    It has long been understood that accurate prediction and warning of the impacts of severe weather requires an integrated approach to forecasting. This was well demonstrated in the UK throughout winter 2013/14 when an exceptional run of severe winter storms, often with damaging high winds and intense rainfall led to significant damage from the large waves and storm surge along coastlines, and from saturated soils, high river flows and significant flooding inland. The substantial impacts on individuals, businesses and infrastructure indicate a pressing need to understand better the value that might be delivered through more integrated environmental prediction. To address this need, the Met Office, Centre for Ecology & Hydrology and National Oceanography Centre have begun to develop the foundations of a coupled high resolution probabilistic forecast system for the UK at km-scale. This links together existing model components of the atmosphere, coastal ocean, land surface and hydrology. Our initial focus on a 2-year Prototype project will demonstrate the UK coupled prediction concept in research mode, including an analysis of the winter 2013/14 storms and its impacts. By linking science development to operational collaborations such as the UK Natural Hazards Partnership, we can ensure that science priorities are rooted in user requirements. This presentation will provide an overview of UK environmental prediction activities and an update on progress during the first year of the Prototype project. We will present initial results from the coupled model development and discuss the challenges to realise the potential of integrated regional coupled forecasting for improving predictions and applications.

  6. Comparative Research Productivity Measures for Economic Departments.

    ERIC Educational Resources Information Center

    Huettner, David A.; Clark, William

    1997-01-01

    Develops a simple theoretical model to evaluate interdisciplinary differences in research productivity between economics departments and related subjects. Compares the research publishing statistics of economics, finance, psychology, geology, physics, oceanography, chemistry, and geophysics. Considers a number of factors including journal…

  7. 78 FR 50037 - Hydrographic Services Review Panel

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-16

    ... pilotage, coastal and fishery management, and other disciplines as determined appropriate by the... oceanography; coastal resource management, including fisheries management and regional marine planning; and...) Describe your leadership or professional experiences which you believe will contribute to the effectiveness...

  8. La Niña Exit Leaves Climate Forecasts in Limbo

    NASA Image and Video Library

    2011-07-06

    The latest image of Pacific Ocean sea surface heights from the NASA OSTIM/Jason-2 oceanography satellite, on June 11, 2010, shows that Pacific has switched from warm red to cold blue during the last few months.

  9. Catalog of Computer Programs Used in Undergraduate Geological Education. Second Edition. Installment 4.

    ERIC Educational Resources Information Center

    Burger, H. Robert

    1984-01-01

    Describes 70 computer programs related to (1) structural geology; (2) sedimentology and stratigraphy; and (3) the environment, groundwater, glacial geology, and oceanography. Potential use(s), language, required hardware, and sources are included. (JM)

  10. Updating the Vision for Marine Education.

    ERIC Educational Resources Information Center

    Klemm, E. Barbara

    1988-01-01

    Discusses the need to update the content, philosophical stance, and pedagogy of marine education to reflect recent advances in these areas. Cites some developments in oceanography and ocean engineering. Proposes ways teachers can learn about and utilize this knowledge. (RT)

  11. Earth Observing System. Volume 1, Part 2: Science and Mission Requirements. Working Group Report Appendix

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Areas of global hydrologic cycles, global biogeochemical cycles geophysical processes are addressed including biological oceanography, inland aquatic resources, land biology, tropospheric chemistry, oceanic transport, polar glaciology, sea ice and atmospheric chemistry.

  12. An Overview of Global Observing Systems Relevant to GODAE

    DTIC Science & Technology

    2009-10-29

    GODAE Paper presented1 at the Final GODAE Symposium. Nice. France. November 12-15, 2008. Abstract available at: http-V/www.gouac. •wg/2.1 SW-abstract html (accessed lune 2, 2009). Oceanography September 2009 33

  13. Microbial oceanography: Killers of the winners

    NASA Astrophysics Data System (ADS)

    Kirchman, David L.

    2013-02-01

    Viruses that infect the SAR11 group of oceanic bacteria have finally been found and sequenced. Because SAR11 is ubiquitous, these viruses may be the most abundant in the oceans -- and perhaps in the entire biosphere. See Letter p.357

  14. 46 CFR 169.107 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... now or hereafter amended. Recognized Classification Society means the American Bureau of Shipping or other classification society recognized by the Commandant. Rules of the Road means the statutory and... operation and the sea, including seamanship, navigation, oceanography, other nautical and marine sciences...

  15. 46 CFR 169.107 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... now or hereafter amended. Recognized Classification Society means the American Bureau of Shipping or other classification society recognized by the Commandant. Rules of the Road means the statutory and... operation and the sea, including seamanship, navigation, oceanography, other nautical and marine sciences...

  16. 46 CFR 169.107 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... now or hereafter amended. Recognized Classification Society means the American Bureau of Shipping or other classification society recognized by the Commandant. Rules of the Road means the statutory and... operation and the sea, including seamanship, navigation, oceanography, other nautical and marine sciences...

  17. 46 CFR 169.107 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... now or hereafter amended. Recognized Classification Society means the American Bureau of Shipping or other classification society recognized by the Commandant. Rules of the Road means the statutory and... operation and the sea, including seamanship, navigation, oceanography, other nautical and marine sciences...

  18. Foundations of geophysics. [College textbook

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scheidegger, A.E.

    1976-01-01

    The following subjects are covered/: geography, geodesy, and geology; seismology, gravity, and the Earth's interior; magnetic and electrical properties of the earth; thermicity of the earth and related subjects; tectonophysics; geophysical exploration; geohydrology; physical oceanography; physical meteorology; and engineering geophysics. (MHR)

  19. The ARMADA Project: Bringing Oceanography and the Arctic to the Midwest

    NASA Astrophysics Data System (ADS)

    Pazol, J.

    2010-12-01

    In the fall of 2009, I spent 6 weeks aboard the Coast Guard Icebreaker Healy on a mapping expedition in the Arctic Ocean, through participation in the University of Rhode Island's ARMADA Project. Because I grew up in the Midwest, went to college here, and teach in the Chicago suburbs, I had limited first-hand experience in oceanography, as did most of my students. During my time aboard the ship, I primarily served as a member of the mapping team, collecting bathymetric and seismic data. My other science activities included aiding geologists and acoustic engineers in dredging projects and deployment of under-ice recording devices. I collected water data, sent off weather balloons, and assisted marine mammal observers. For the ARMADA Project I kept an on-line journal, which had a far-reaching impact. Students in many schools kept track of my activities and communicated with me via e-mail. Colleagues and friends shared the journal through other media, such as Facebook. Several of my entries were published in blogs belonging to NOAA and the USGS. I received a grant for renting a satellite phone, and through it was able to make "Live from the Arctic" phone calls. After introductory PowerPoints I communicated with more than 420 students in 5 schools in 3 states. When I returned, I made a series of presentations about the Arctic and my adventures to hundreds of people and was featured in an educational magazine with a circulation of more than 90,000. I also participated in an in-depth mentoring program with a new teacher to help her succeed during the first years of her career. The results: My students and I now have a direct connection to the Arctic and to the fields of oceanography, acoustic engineering, and geology. On their own initiative, students have developed individual projects exploring aspects of my research. They have attended presentations from the Extreme Ice Center and have become involved in drilling issues in the Chukchi Sea. A group of students is exploring the possibility of working with scientists from Scripps Institution of Oceanography to analyze the acoustic data. These are just some of the ways that a teacher's research experience can be effectively translated into the classroom setting.

  20. The Offshore Environmental Studies Program (1973-1989)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hurwitz, N.; Lang, W.; Norman, H.

    1990-12-01

    This report provides an overview of the first 15 years of the Environmental Studies Program (ESP), conducted initially by the Bureau of Land Management and now as part of the Minerals Management Service. From 1973 to 1988, the ESP spent nearly $500 million on studies directed to better understand the US Outer Continental Shelf (OCS) and coastal environment and to use this information to document or predict effects of offshore oil and gas activities. This report organizes the hundreds of completed studies and thousands of resulting documents into 15 study topic chapters. Each chapter cites selected studies and provides amore » general discussion of program objectives and results. Where appropriate, each topic is discussed by OCS Region (Alaska, Atlantic, Gulf of Mexico, and Pacific). The goal of this report is to provide readers with a general account of the ESP's technical accomplishments and sources of detailed information. An introductory chapter provides background on the history of the ESP, the OCS leasing process, and the planning processes and ongoing objectives of the ESP. Technical chapters explain: geology and hazards; physical oceanography and pollution transport; remote sensing; air quality; water quality; coastal impacts; ecological monitoring; fish and fisheries resources; coastal and marine birds; protected species; archaeological resources; sociology and community planning; economics; visual and recreational resources; and information synthesis, management, and dissemination. Each chapter has been processed separately for inclusion on the data base.« less

  1. Welcome to NASA's Earth Science Enterprise: Educational CD-ROM Activity Supplement

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Since its inception in 1958, NASA has been studying the Earth and its changing environment by observing the atmosphere, oceans, land, ice, and snow, and their influence on weather and climate. We now understand that the key to gaining a better understanding of the global environment is exploring how the Earth's systems of air, land, water, and life interact with each other. This approach-called Earth Systems Science-blends together fields like meteorology, oceanography, geology, and biology. In 1991, NASA launched a more comprehensive program to study the Earth as an integrated environmental system. They call it NASA's Earth Science Enterprise. A major component of the Earth Science Enterprise is the Earth Observing System (EOS). EOS is series of satellites to be launched over the next two decades that will be used to intensively study the Earth, with the hopes of expanding our under- standing of how natural processes affect us, and how we might be affecting them. Such studies will yield improved weather forecasts, tools for managing agriculture and forests, information for fishermen and local planners, and, eventually, the ability to predict how the climate will change in the future. Today's program is laying the foundation for long-term environmental and climate monitoring and prediction. Potentially, this will provide the understanding needed in the future to support difficult decisions regarding the Earth's environment.

  2. Floating Classroom Outreach as an Introduction to Ocean Studies

    NASA Astrophysics Data System (ADS)

    McFadden, M.

    2016-02-01

    Many children and young adults living within only one hour of the coast never have the opportunity to explore a beach or go out on a boat because of financial challenges or lack of transportation.These types of experiences are the spark that helped many ocean scientists become fascinated with the ocean and later pursue a career related to the ocean. This presentation will discuss a variety of outreach projects and the efficacy of each. Projects vary in age, complexity and cost. These projects include a Beach Clean-Up open to students and their families at a community college organized by a campus volunteer group with a focus on social issues, a Marine Biology and Physical Oceanography class joint floating classroom trip open to college students to introduce non-STEM students to marine science in an exciting setting, and an education outreach trip for 8-12 years old children from the Boys and Girls Club in Newport, RI in collaboration with The International SeaKeepers Society, a non-profit that facilitates ocean research and education by working closely with the yachting community. Emphasis on environmental education in the U.S. has grown considerably over recent years, and the development of unique and innovative approaches to hands-on marine science education are needed to excite students to explore the marine environment and care about environmental stewardship.

  3. A Model for Teaching the Dynamical Theory of Tides.

    ERIC Educational Resources Information Center

    Railsback, L. Bruce

    1991-01-01

    The dynamical theory of tides is often neglected in teaching oceanography because students have difficulty in visualizing the movements of the tides across the glove. A schematic diagram portraying amphidromic systems as mechanical gears helps overcome these problems. (Author)

  4. Ecosystem Effects of the Atlantic Multidecadal Oscillation

    EPA Science Inventory

    Multidecadal variability in the Atlantic Ocean and its importance to the Earth’s climate system has been the subject of study in the physical oceanography field for decades. Only recently, however, has the importance of this variability, termed the Atlantic Multidecadal Oscillati...

  5. Global Energy-saving Map of Strong Ocean Currents

    DTIC Science & Technology

    2015-01-01

    Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 80424, Taiwan) 2(Department of Oceanography, National Sun Yat-sen University, Kaohsiung...World Bank and FAO. (2009). The sunken billions. The economic justification for fisheries reform. Washington, DC, Agriculture and Rural Development

  6. Student Enrollment in Geoscience Departments. 1982-1983.

    ERIC Educational Resources Information Center

    American Geological Inst., Washington, DC.

    Presented in table format are student enrollment data for geoscience disciplines at colleges and universities in the United States and Canada. Subfields for both countries include: geology; geophysics; oceanography; marine science; geological engineering; geophysical engineering; geochemistry; hydrology; mineralogy; paleontology; soil science;…

  7. Summary of Research 1997 Department of Oceanography.

    DTIC Science & Technology

    1999-01-01

    M., Zambianchi, E., Sellschopp, J., and Ribera , M., "Lagrangian Measurements of Surface Circulation in the Straits of Sicily," Joint IAMAS/IAPSO...Meeting, San Francisco, CA, December 1997. 71 PUBLICATIONS/PRESENTATIONS Poulain, P.-M., Zambianchi, E., Sellschopp, J., and Ribera , M

  8. Sea Floor off San Diego, California

    USGS Publications Warehouse

    Dartnell, Peter; Gibbons, Helen

    2009-01-01

    Ocean-floor image generated from multibeam-bathymetry data acquired by the U.S. Geological Survey (USGS); Woods Hole Oceanographic Institution; Scripps Institution of Oceanography; California State University, Monterey Bay; and Fugro Pelagos. To learn more, visit http://pubs.usgs.gov/sim/2007/2959/.

  9. For DoD Users - Naval Oceanography Portal

    Science.gov Websites

    are here: Home › USNO › Astronomical Applications › For DoD Users USNO Logo USNO Navigation Data Services Astronomical Information Center Almanacs and Other Publications Software Products For DoD Users

  10. Experiments with Tropical Cyclone Wave and Intensity Forecasts

    DTIC Science & Technology

    2008-09-30

    algorithm In collaboration with Paul Wittmann (Fleet Numerical Metorology and Oceanography Center) and Hendrik Tolman (National Centers for...Wittmann, P.A., C Sampson and H. Tolman: 2006: Wave Analysis Guidance for Tropical Cyclone Forecast Advisories. 9th International Workshop on Wave

  11. Enhancing Ocean Research Data Access

    NASA Astrophysics Data System (ADS)

    Chandler, Cynthia; Groman, Robert; Shepherd, Adam; Allison, Molly; Arko, Robert; Chen, Yu; Fox, Peter; Glover, David; Hitzler, Pascal; Leadbetter, Adam; Narock, Thomas; West, Patrick; Wiebe, Peter

    2014-05-01

    The Biological and Chemical Oceanography Data Management Office (BCO-DMO) works in partnership with ocean science investigators to publish data from research projects funded by the Biological and Chemical Oceanography Sections and the Office of Polar Programs Antarctic Organisms & Ecosystems Program at the U.S. National Science Foundation. Since 2006, researchers have been contributing data to the BCO-DMO data system, and it has developed into a rich repository of data from ocean, coastal and Great Lakes research programs. While the ultimate goal of the BCO-DMO is to ensure preservation of NSF funded project data and to provide open access to those data, achievement of those goals is attained through a series of related phases that benefits from active collaboration and cooperation with a large community of research scientists as well as curators of data and information at complementary data repositories. The BCO-DMO is just one of many intermediate data management centers created to facilitate long-term preservation of data and improve access to ocean research data. Through partnerships with other data management professionals and active involvement in local and global initiatives, BCO-DMO staff members are working to enhance access to ocean research data available from the online BCO-DMO data system. Continuing efforts in use of controlled vocabulary terms, development of ontology design patterns and publication of content as Linked Open Data are contributing to improved discovery and availability of BCO-DMO curated data and increased interoperability of related content available from distributed repositories. We will demonstrate how Semantic Web technologies (e.g. RDF/XML, SKOS, OWL and SPARQL) have been integrated into BCO-DMO data access and delivery systems to better serve the ocean research community and to contribute to an expanding global knowledge network.

  12. Topex: Observing the Oceans from Space

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Measurement of global ocean topography by a radar altimeter aboard the TOPEX satellite is discussed. Technical aspects of satellite altimetry as they pertain to the measurement of ocean circulation are described. The TOPEX mission is explained and a general history of oceanography is included.

  13. Making Science Come Alive.

    ERIC Educational Resources Information Center

    Whitford, Dennis J.; Eisman, Greg A.

    1997-01-01

    The U.S. Naval Academy oceanography major is bucking the nationwide trend toward declining enrollments in science majors study tracks. Nontraditional approaches used include interdisciplinary and applied science, significant instructor experience in applying the major outside academia, hands-on laboratories in all classes, and an oceanography…

  14. Near-Real-Time Acoustic Monitoring of Beaked Whales and Other Cetaceans Using a Seaglider(TM)

    DTIC Science & Technology

    2012-05-18

    their copepod prey observed from ocean gliders. Limnology and Oceanography 53: 2197–2209. Acoustic Monitoring of Cetaceans Using a Seaglider PLoS ONE | www.plosone.org 8 May 2012 | Volume 7 | Issue 5 | e36128

  15. Statistics and Physical Oceanography

    DTIC Science & Technology

    1993-01-01

    1987; Institute of Mathematical Statistics, 1988; NRC, 1990a; see also Goel et al., 1990; Gnanadesikan , 1990; Hoadley and Kettenring, 1990), together...1621. Fukumori, I. J. Benveniste, C. Wunsch, and D. B. HaidvogeL 1993. Assimilation of sea surface 57 Gnanadesikan , R. 1990. Looking ahead: Cross

  16. 46 CFR 169.107 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... under section 501(a) of such Code, as now or hereafter amended. Recognized Classification Society means the American Bureau of Shipping or other classification society recognized by the Commandant. Rules of..., oceanography, other nautical and marine sciences, and maritime history and literature. In conjunction with any...

  17. Remote Sensing of Earth and Environment

    ERIC Educational Resources Information Center

    Schertler, Ronald J.

    1974-01-01

    Discusses basic principles of remote sensing applications and five areas of the earth resources survey program: agriculture and forestry production; geography, cartography, cultural resources; geology and mineral resources; hydrology and water resources; and oceanography and marine resources. Indicates that information acquisition is the first…

  18. Project COLD.

    ERIC Educational Resources Information Center

    Kazanjian, Wendy C.

    1982-01-01

    Describes Project COLD (Climate, Ocean, Land, Discovery) a scientific study of the Polar Regions, a collection of 35 modules used within the framework of existing subjects: oceanography, biology, geology, meterology, geography, social science. Includes a partial list of topics and one activity (geodesic dome) from a module. (Author/SK)

  19. US National Report to International Union of Geodesy and Geophysics 1987-1990

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    USAF, Geophysics Laboratory, Hanscom AFB, MA

    1991-01-01

    An authoritative record of contributions of geophysical research in the U.S. during 1987-1990 is reported. Major areas of research include atmospheric sciences, geodesy, hydrology, planetology, geomagnetism, paleomagnetism, volcanology, geochemistry, petrology, oceanography, seismology, tectonophysics, and solar-planetary relations.

  20. Source and distribution of sedimentary thallium in the Bohai Sea: Implications for hydrodynamic forces and anthropogenic impact

    NASA Astrophysics Data System (ADS)

    Hu, Ningjing; Liu, Jihua; Shi, Xuefa

    2015-04-01

    Source and distribution of sedimentary thallium in the Bohai Sea: Implications for hydrodynamic forces and anthropogenic impact Hu Ningjing, Liu Jihua, Shi Xuefa First Institute of Oceanography, State Oceanic Administration, Qingdao 266061, China Thallium (Tl), a non-essential and highly toxic trace metal, is listed as priority toxic pollutant by the United States Environmental Protection Agency (USEPA) (Keith and Telliard, 1979). However, its geochemical cycling in aquatic environment has received far less attention than that of many other trace metals. This has been attributed to relatively little commercial interest in Tl and, until recently, problems inherent in its detection at environmental concentrations (Meeravali and Jiang, 2008). In this study, we investigated the sources, distribution and fate of Tl in surface sediments of the Bohai Sea (BS), China, based on the datasets of total Tl and chemical speciation of Tl of 408 surface sediment samples in the total entire BS. The enrichment factors and chemical speciation of Tl indicated that Tl in BS was dominated by natural Tl, although anthropogenic Tl contamination was observed in the Liuguhe River mouth; the mud deposits are the sinks of Tl and the regional currents and tide systems play a key role on the accumulation of Tl in BS. The distribution of Tl consistent with that of MnO and Fe2O3 as well as the level of Fe-Mn fraction is relatively high, indicating MnO and Fe2O3 influence the geochemical behaviors of Tl in the BS. Although the positive correlation between Tl and TOC is observed for the samples in the BS, however, level of Tl in oxidizable faction could be neglected, suggesting TOC might not be a major factor affecting the concentration of Tl in BS. The low proportion of Tl in the non-residual fraction dominated by the Fe-Mn oxides suggested that the labile Tl was controlled by the Fe-Mn oxides and Tl has a low bioavailability and a minor potential threat to biota in BS. Acknowledgements: this work was jointly supported by National Natural Science Foundation of China (Grant Nos.41076032, 41276052 and 41376073) and the State Oceanic Administration, China (Grant No. 201105003). References Keith, L.H., Telliard, W.A., 1979. Priority pollutants-A perspective view. Environmental Science and Technology 13, 416-423. Meeravali, N.M., Jiang, S.-J., 2008. Ultra-trace speciation analysis of thallium in environmental water samples by inductively coupled plasma mass spectrometry after a novel sequential mixed-micelle cloud point extraction. Journal of Analytical Atomic Spectrometry 23, 555-560.

Top