Science.gov

Sample records for environmental germ-cell mutagenesis

  1. HISTORY OF GERM CELL MUTAGENESIS

    EPA Science Inventory

    Much of the early work on germ cell mutation analysis was conducted with nonmammalian species, but this historical overview will begin with the rodent studies that provided quantitative data on induced mutations. The initial studies of mutation induction utilized the newly develo...

  2. HISTORY OF GERM CELL MUTAGENESIS

    EPA Science Inventory

    Much of the early work on germ cell mutation analysis was conducted with nonmammalian species, but this historical overview will begin with the rodent studies that provided quantitative data on induced mutations. The initial studies of mutation induction utilized the newly develo...

  3. Assessing Human Germ-Cell Mutagenesis in the Postgenome Era: A Celebration of the Legacy of William Lawson (Bill) Russell

    PubMed Central

    Wyrobek, Andrew J.; Mulvihill, John J.; Wassom, John S.; Malling, Heinrich V.; Shelby, Michael D.; Lewis, Susan E.; Witt, Kristine L.; Preston, R. Julian; Perreault, Sally D.; Allen, James W.; DeMarini, David M.; Woychik, Richard P.; Bishop, Jack B.

    2007-01-01

    specialty groups should be convened to review and prioritize the evidence for germ-cell mutagenicity from common environmental, occupational, medical, and lifestyle exposures. Workshop attendees agreed on the need for a full-scale assault to address key fundamental questions in human germ-cell environmental mutagenesis. These include, but are not limited to, the following: Do human germ-cell mutagens exist? What are the risks to future generations? Are some parents at higher risk than others for acquiring and transmitting germ-cell mutations? Obtaining answers to these, and other critical questions, will require strong support from relevant funding agencies, in addition to the engagement of scientists outside the fields of genomics and germ-cell mutagenesis. PMID:17295306

  4. Germ cell regeneration-mediated, enhanced mutagenesis in the ascidian Ciona intestinalis reveals flexible germ cell formation from different somatic cells.

    PubMed

    Yoshida, Keita; Hozumi, Akiko; Treen, Nicholas; Sakuma, Tetsushi; Yamamoto, Takashi; Shirae-Kurabayashi, Maki; Sasakura, Yasunori

    2017-03-15

    The ascidian Ciona intestinalis has a high regeneration capacity that enables the regeneration of artificially removed primordial germ cells (PGCs) from somatic cells. We utilized PGC regeneration to establish efficient methods of germ line mutagenesis with transcription activator-like effector nucleases (TALENs). When PGCs were artificially removed from animals in which a TALEN pair was expressed, somatic cells harboring mutations in the target gene were converted into germ cells, this germ cell population exhibited higher mutation rates than animals not subjected to PGC removal. PGC regeneration enables us to use TALEN expression vectors of specific somatic tissues for germ cell mutagenesis. Unexpectedly, cis elements for epidermis, neural tissue and muscle could be used for germ cell mutagenesis, indicating there are multiple sources of regenerated PGCs, suggesting a flexibility of differentiated Ciona somatic cells to regain totipotency. Sperm and eggs of a single hermaphroditic, PGC regenerated animal typically have different mutations, suggesting they arise from different cells. PGCs can be generated from somatic cells even though the maternal PGCs are not removed, suggesting that the PGC regeneration is not solely an artificial event but could have an endogenous function in Ciona. This study provides a technical innovation in the genome-editing methods, including easy establishment of mutant lines. Moreover, this study suggests cellular mechanisms and the potential evolutionary significance of PGC regeneration in Ciona.

  5. Germ cell comparative Drosophila mutagenesis: sensitivity and mutation pattern in chemically treated stem cells

    SciTech Connect

    Abrahamson, S.; Houtchens, K.; Li Jia, X.; Foureman, P.

    1983-01-01

    Mutagenesis studies on Drosophila oogonial cells with methylnitrosourea, dimethylnitrosamine, and diethylnitrosamine revealed unexpectedly high rates of sex-linked recessive lethals relative to other male and female germ cell stages. Indeed, the oogonial mutation rates with chemicals are higher than with massive x-ray or neutron exposures of oogonia. Analysis of the distribution of lethals per treated female suggests most of the mutations recovered are of independent origin, with very small levels of clustering of identical mutations. In the male stem cell population (spermatogonia) on the other hand, the distribution of lethals is primarily nonrandom and highly clustered. The nature of the mutational endpoint and the different pattern of germ cell development in the two sexes are the probable causes of this difference. The oogonial sensitivity to chemical mutagens may have important bearing on strategies for assessing human hazard.

  6. Meeting Report. Assessing Human Germ-Cell Mutagenesis in thePost-Genome Era: A Celebration of the Legacy of William Lawson (Bill)Russell

    SciTech Connect

    Wyrobek, Andrew J.; Mulvihill, John J.; Wassom, John S.; Malling,Heinrich V.; Shelby, Michael D.; Lewis, Susan E.; Witt, Kristine L.; Preston, R. Julian; Perreault-Darney, Sally; Allen, James W.; DeMarini,David M.; Woychik, Richard P.; Bishop Jack B; Workshop Presenters

    2006-04-18

    scientificspecialty groups be convened to address specific questions regarding thepotential germ-cell mutagenicity of environmental, occupational, andlifestyle exposures. Strong support from relevant funding agencies andengagement of scientists outside the fields of genomics and germ-cellmutagenesis will be required to launch a full-scale assault on some ofthe most pressing and enduring questions in environmental mutagenesis: Dohuman germ-cell mutagens exist, what risk do they pose to futuregenerations, and are some parents at higher risk than others foracquiring and transmitting germ-cell mutations?

  7. Mutagenesis Is Elevated in Male Germ Cells Obtained from DNA Polymerase-beta Heterozygous Mice1

    PubMed Central

    Allen, Diwi; Herbert, Damon C.; McMahan, C. Alex; Rotrekl, Vladimir; Sobol, Robert W.; Wilson, Samuel H.; Walter, Christi A.

    2008-01-01

    Gametes carry the DNA that will direct the development of the next generation. By compromising genetic integrity, DNA damage and mutagenesis threaten the ability of gametes to fulfill their biological function. DNA repair pathways function in germ cells and serve to ameliorate much DNA damage and prevent mutagenesis. High base excision repair (BER) activity is documented for spermatogenic cells. DNA polymerase-beta (POLB) is required for the short-patch BER pathway. Because mice homozygous null for the Polb gene die soon after birth, mice heterozygous for Polb were used to examine the extent to which POLB contributes to maintaining spermatogenic genomic integrity in vivo. POLB protein levels were reduced only in mixed spermatogenic cells. In vitro short-patch BER activity assays revealed that spermatogenic cell nuclear extracts obtained from Polb heterozygous mice had one third the BER activity of age-matched control mice. Polb heterozygosity had no effect on the BER activities of somatic tissues tested. The Polb heterozygous mouse line was crossed with the lacI transgenic Big Blue mouse line to assess mutant frequency. The spontaneous mutant frequency for mixed spermatogenic cells prepared from Polb heterozygous mice was 2-fold greater than that of wild-type controls, but no significant effect was found among the somatic tissues tested. These results demonstrate that normal POLB abundance is necessary for normal BER activity, which is critical in maintaining a low germline mutant frequency. Notably, spermatogenic cells respond differently than somatic cells to Polb haploinsufficiency.. PMID:18650495

  8. Environmentally Induced Transgenerational Epigenetic Reprogramming of Primordial Germ Cells and the Subsequent Germ Line

    PubMed Central

    Skinner, Michael K.; Haque, Carlos Guerrero-Bosagna M.; Nilsson, Eric; Bhandari, Ramji; McCarrey, John R.

    2013-01-01

    A number of environmental factors (e.g. toxicants) have been shown to promote the epigenetic transgenerational inheritance of disease and phenotypic variation. Transgenerational inheritance requires the germline transmission of altered epigenetic information between generations in the absence of direct environmental exposures. The primary periods for epigenetic programming of the germ line are those associated with primordial germ cell development and subsequent fetal germline development. The current study examined the actions of an agricultural fungicide vinclozolin on gestating female (F0 generation) progeny in regards to the primordial germ cell (PGC) epigenetic reprogramming of the F3 generation (i.e. great-grandchildren). The F3 generation germline transcriptome and epigenome (DNA methylation) were altered transgenerationally. Interestingly, disruptions in DNA methylation patterns and altered transcriptomes were distinct between germ cells at the onset of gonadal sex determination at embryonic day 13 (E13) and after cord formation in the testis at embryonic day 16 (E16). A larger number of DNA methylation abnormalities (epimutations) and transcriptional alterations were observed in the E13 germ cells than in the E16 germ cells. These observations indicate that altered transgenerational epigenetic reprogramming and function of the male germline is a component of vinclozolin induced epigenetic transgenerational inheritance of disease. Insights into the molecular control of germline transmitted epigenetic inheritance are provided. PMID:23869203

  9. Environmentally induced transgenerational epigenetic reprogramming of primordial germ cells and the subsequent germ line.

    PubMed

    Skinner, Michael K; Guerrero-Bosagna, Carlos; Haque, M; Nilsson, Eric; Bhandari, Ramji; McCarrey, John R

    2013-01-01

    A number of environmental factors (e.g. toxicants) have been shown to promote the epigenetic transgenerational inheritance of disease and phenotypic variation. Transgenerational inheritance requires the germline transmission of altered epigenetic information between generations in the absence of direct environmental exposures. The primary periods for epigenetic programming of the germ line are those associated with primordial germ cell development and subsequent fetal germline development. The current study examined the actions of an agricultural fungicide vinclozolin on gestating female (F0 generation) progeny in regards to the primordial germ cell (PGC) epigenetic reprogramming of the F3 generation (i.e. great-grandchildren). The F3 generation germline transcriptome and epigenome (DNA methylation) were altered transgenerationally. Interestingly, disruptions in DNA methylation patterns and altered transcriptomes were distinct between germ cells at the onset of gonadal sex determination at embryonic day 13 (E13) and after cord formation in the testis at embryonic day 16 (E16). A larger number of DNA methylation abnormalities (epimutations) and transcriptional alterations were observed in the E13 germ cells than in the E16 germ cells. These observations indicate that altered transgenerational epigenetic reprogramming and function of the male germline is a component of vinclozolin induced epigenetic transgenerational inheritance of disease. Insights into the molecular control of germline transmitted epigenetic inheritance are provided.

  10. Role of mouse germ-cell mutagenesis in understanding genetic risk and in generating mutations that are prime tools for studies in modern biology.

    PubMed

    Russell, L B

    1994-01-01

    Highlights are presented on (1) the role mouse germ-cell mutagenesis has played in assessing the genetic harm from radiations and chemicals, and (2) the contributions to the field of modern biology that are being made by the products of this research--the propagated mutations. Among the numerous findings in radiation mutagenesis were the humped dose-effect curve for spermatogonial stem cells, the major differences between the sexes and between germ-cell stages of each sex in both yield and nature of mutations, the dose-rate effect, which provided the first evidence for repair of mutational (or premutational) damage, the augmenting effect of certain regimes of dose fractionation, and many others. Chemical mutagenesis studies that followed revealed at least three patterns of mutation yield and demonstrated that germ-cell stage--much more than the nature of the chemical--governs the nature of the DNA lesions induced. Two "supermutagens," one for intragenic mutations and one for deletions and other rearrangements, have become very useful in the manufacture of mutations for specific purposes. The mutations propagated from radiation- and chemical-mutagenesis experiments are providing prime resources for basic studies in genome organization, gene structure, and function. DNA lesions that involve specific loci have made possible increasingly detailed characterization of extensive deletion complexes that facilitate high-intensity physical and functional mapping within them. Numerous loci associated with interesting developmental anomalies have been identified and have become accessible to positional cloning. Several of the genes accessed with the aid of induced mutations (deletions, other rearrangements, and point mutations) are furnishing prime reagents for elucidating human disease conditions.

  11. Reciprocal relationship between mouse germ-cell mutagenesis and basic genetics: from early beginnings to future opportunities.

    PubMed

    Russell, L B

    1989-01-01

    The scientific foundations for several mammalian germ-line mutagenesis tests in common use today were laid in the 1930s, 1940s, and early 1950s. Subsequent developments in the field have had multiple objectives: detection of mutagenicity of environmental agents (which has led to the development of numerous methodologies), identification of biological and physical factors that affect mutation yield, analysis of the structural nature of the genetic alterations, and assessment of the organismic effects of various types of mutations. Mutagenesis studies have made numerous contributions to basic genetics by generating mutant types that led to elucidation of sex-determining mechanisms in mammals; formulation of the single-active-, or inactive-, X-chromosome hypothesis; correlation of genetic and cytological maps; discovery of genetic "imprinting" phenomena; study of developmental pathways and cell lineages, etc. Particularly useful are sets of complexly overlapping deletions that have been recovered in radiation mutagenesis studies, propagated in breeding stocks, and genetically analyzed; these have constituted prerequisites for molecular genetic studies aimed at development of the DNA structure-function relationships for important genomic regions. Mutagenesis experiments have also served to identify mutagens that are particularly effective in inducing specific types of genetic lesions desired for basic studies. Reciprocally, basic genetics has contributed to the development of mutagenesis tests and has enhanced the value of the specific-locus test by adding to its quantitative capabilities the capability for qualitatively characterizing the actions of mutagens.

  12. Impact of environmental pollutants on the male: effects on germ cell differentiation

    PubMed Central

    Rao Veeramachaneni, D. N.

    2008-01-01

    A variety of so-called innocuous chemicals can have insidious and long lasting effects on the developing male reproductive system. Developmental exposures of male rabbits to common industrial contaminants in drinking water (a mixture of arsenic, chromium, lead, benzene, chloroform, phenol, and trichloroethylene); alkyl phenols (e.g. octylphenol); water disinfection by-products (e.g. dibromoacetic acid); anti-androgenic pesticides (e.g. p,p’-DDT and vinclozolin); and plasticizers (e.g. dibutyl phthalate) produce testicular dysgenesis. The lesions include testicular carcinoma in situ, also called intratubular germ cell neoplasia—the precursor lesion of germ cell tumors in men, and acrosomal dysgenesis—characterized by sharing of a dysplastic acrosome by two or more spermatids resulting in characteristic sperm acrosomal-nuclear malformations. Certain manifestations of testicular dysgenesis arch across environmental agents, and sequelae of intentional developmental exposures of rabbits duplicate what has been encountered in deer, horses, and humans for which the etiology is uncertain. PMID:18155861

  13. Germ cell mutagenesis in medaka fish after exposures to high-energy cosmic ray nuclei: A human model

    PubMed Central

    Shimada, Atsuko; Shima, Akihiro; Nojima, Kumie; Seino, Yo; Setlow, Richard B.

    2005-01-01

    Astronauts beyond the Earth's orbit are exposed to high-energy cosmic-ray nuclei with high values of linear energy transfer (LET), resulting in much more biological damage than from x-rays or γ-rays and may result in mutations and cancer induction. The relative biological effectiveness of these nuclei depends on the LET, rising to as high as ≈50 at LET values of ≈100-200 keV/μm. An endpoint of concern is germ cell mutations passed on to offspring, arising from exposure to these nuclei. A vertebrate model for germ cell mutation is Medaka fish (Oryzias latipes). We exposed wild type males to doses of 1 GeV per nucleon Fe nuclei or to 290 MeV per nucleon C nuclei. They were mated to females with recessive mutations at five-color loci. The transparent embryos from >100 days of mating (representing exposed sperm, spermatids, or spermatogonia) were observed so as to detect dominant lethal mutations and total color mutations, even though the embryos might not hatch. The relative number of mutant embryos as a function of dose were compared with those induced by γ-rays. The relative biological effectiveness values for dominant lethal mutations and total color mutations for exposed sperm and spermatids were 1.3-2.1 for exposure to C nuclei and 1.5-3.0 for exposure to Fe nuclei. (The spermatogonial data were uncertain.) These low values, and the negligible number of viable mutations, compared with those for mutations in somatic cells and for neoplastic transformation, indicate that germ cell mutations arising from exposures to cosmic ray nuclei are not a significant hazard to astronauts. PMID:15829584

  14. Germ cell mutagenesis in medaka fish after exposures to high-energy cosmic ray nuclei: A human model.

    PubMed

    Shimada, Atsuko; Shima, Akihiro; Nojima, Kumie; Seino, Yo; Setlow, Richard B

    2005-04-26

    Astronauts beyond the Earth's orbit are exposed to high-energy cosmic-ray nuclei with high values of linear energy transfer (LET), resulting in much more biological damage than from x-rays or gamma-rays and may result in mutations and cancer induction. The relative biological effectiveness of these nuclei depends on the LET, rising to as high as approximately 50 at LET values of approximately 100-200 keV/microm. An endpoint of concern is germ cell mutations passed on to offspring, arising from exposure to these nuclei. A vertebrate model for germ cell mutation is Medaka fish (Oryzias latipes). We exposed wild type males to doses of 1 GeV per nucleon Fe nuclei or to 290 MeV per nucleon C nuclei. They were mated to females with recessive mutations at five-color loci. The transparent embryos from >100 days of mating (representing exposed sperm, spermatids, or spermatogonia) were observed so as to detect dominant lethal mutations and total color mutations, even though the embryos might not hatch. The relative number of mutant embryos as a function of dose were compared with those induced by gamma-rays. The relative biological effectiveness values for dominant lethal mutations and total color mutations for exposed sperm and spermatids were 1.3-2.1 for exposure to C nuclei and 1.5-3.0 for exposure to Fe nuclei. (The spermatogonial data were uncertain.) These low values, and the negligible number of viable mutations, compared with those for mutations in somatic cells and for neoplastic transformation, indicate that germ cell mutations arising from exposures to cosmic ray nuclei are not a significant hazard to astronauts.

  15. Germ cell mutagenesis in medaka fish after exposures to high-energy cosmic ray nuclei: A human model

    NASA Astrophysics Data System (ADS)

    Shimada, Atsuko; Shima, Akihiro; Nojima, Kumie; Seino, Yo; Setlow, Richard B.

    2005-04-01

    Astronauts beyond the Earth's orbit are exposed to high-energy cosmic-ray nuclei with high values of linear energy transfer (LET), resulting in much more biological damage than from x-rays or -rays and may result in mutations and cancer induction. The relative biological effectiveness of these nuclei depends on the LET, rising to as high as 50 at LET values of 100-200 keV/µm. An endpoint of concern is germ cell mutations passed on to offspring, arising from exposure to these nuclei. A vertebrate model for germ cell mutation is Medaka fish (Oryzias latipes). We exposed wild type males to doses of 1 GeV per nucleon Fe nuclei or to 290 MeV per nucleon C nuclei. They were mated to females with recessive mutations at five-color loci. The transparent embryos from >100 days of mating (representing exposed sperm, spermatids, or spermatogonia) were observed so as to detect dominant lethal mutations and total color mutations, even though the embryos might not hatch. The relative number of mutant embryos as a function of dose were compared with those induced by -rays. The relative biological effectiveness values for dominant lethal mutations and total color mutations for exposed sperm and spermatids were 1.3-2.1 for exposure to C nuclei and 1.5-3.0 for exposure to Fe nuclei. (The spermatogonial data were uncertain.) These low values, and the negligible number of viable mutations, compared with those for mutations in somatic cells and for neoplastic transformation, indicate that germ cell mutations arising from exposures to cosmic ray nuclei are not a significant hazard to astronauts. astronaut hazards | linear energy transfer | relative biological effect

  16. MEETING REPORT ASSESSING HUMAN GERM-CELL MUTAGENESIS IN THE POST-GENOME ERA: A CELEBRATION OF THE LEGACY OF WILLIAM LAWSON (BILL) RUSSELL

    EPA Science Inventory

    Although numerous germ-cell mutagens have been identified in animal model systems, to date, no human germ-cell mutagens have been confirmed. Because the genomic integrity of our germ cells is essential for the continuation of the human species, a resolution of this enduring conu...

  17. MEETING REPORT ASSESSING HUMAN GERM-CELL MUTAGENESIS IN THE POST-GENOME ERA: A CELEBRATION OF THE LEGACY OF WILLIAM LAWSON (BILL) RUSSELL

    EPA Science Inventory

    Although numerous germ-cell mutagens have been identified in animal model systems, to date, no human germ-cell mutagens have been confirmed. Because the genomic integrity of our germ cells is essential for the continuation of the human species, a resolution of this enduring conu...

  18. Human primordial germ cell formation is diminished by exposure to environmental toxicants acting through the AHR signaling pathway.

    PubMed

    Kee, Kehkooi; Flores, Martha; Cedars, Marcelle I; Reijo Pera, Renee A

    2010-09-01

    Historically, effects of environmental toxicants on human development have been deduced via epidemiological studies because direct experimental analysis has not been possible. However, in recent years, the derivation of human pluripotent stem cells has provided a potential experimental system to directly probe human development. Here, we used human embryonic stem cells (hESCs) to study the effect of environmental toxicants on human germ cell development, with a focus on differentiation of the founding population of primordial germ cells (PGCs), which will go on to form the oocytes of the adult. We demonstrate that human PGC numbers are specifically reduced by exposure to polycyclic aromatic hydrocarbons (PAHs), a group of toxicants common in air pollutants released from gasoline combustion or tobacco smoke. Further, we demonstrate that the adverse effects of PAH exposure are mediated through the aromatic hydrocarbon receptor (AHR) and BAX pathway. This study demonstrates the utility of hESCs as a model system for direct examination of the molecular and genetic pathways of environmental toxicants on human germ cell development.

  19. Occupational and Environmental Exposures Associated with Testicular Germ Cell Tumours: Systematic Review of Prenatal and Life-Long Exposures

    PubMed Central

    Béranger, Rémi; Le Cornet, Charlotte; Schüz, Joachim; Fervers, Béatrice

    2013-01-01

    Background Testicular germ cell tumours (TGCT) are the most common cancers in men aged between 15 and 44 years and the incidence has increased steeply over the past 30 years. The rapid increase in the incidence, the spatial variation and the evolution of incidence in migrants suggest that environmental risk factors play a role in TGCT aetiology. The purpose of our review is to summarise the current state of knowledge on occupational and environmental factors thought to be associated with TGCT. Methods A systematic literature search of PubMed. All selected articles were quality appraised by two independent researchers using the ‘Newcastle-Ottawa Quality Assessment Scale’. Results After exclusion of duplicate reports, 72 relevant articles were selected; 65 assessed exposure in adulthood, 7 assessed parental exposures and 2 assessed both. Associations with occupation was reported for agricultural workers, construction workers, firemen, policemen, military personnel, as well as workers in paper, plastic or metal industries. Electromagnetic fields, PCBs and pesticides were also suggested. However, results were inconsistent and studies showing positive associations tended to had lower quality ranking using the assessment scale (p=0.02). Discussion Current evidence does not allow concluding on existence of any clear association between TGCT and adulthood occupational or environmental exposure. The limitations of the studies may partly explain the inconsistencies observed. The lack of association with adulthood exposure is in line with current hypotheses supporting the prenatal origin of TGCT. Future research should focus on prenatal or early life exposure, as well as combined effect of prenatal and later life exposure. National and international collaborative studies should allow for more adequately powered epidemiological studies. More sophisticated methods for assessing exposure as well as evaluating gene–environment interactions will be necessary to establish

  20. CHALLENGES FOR THE FUTURE IN ENVIRONMENTAL MUTAGENESIS

    EPA Science Inventory

    CHALLENGES FOR THE FUTURE IN ENVIRONMENTAL MUTAGENESIS
    Michael D. Waters
    US Environmental Protection Agency, MD-51A, Research Triangle Park, NC 27711 USA

    Our rapidly growing understanding of the structure of the human genome is forming the basis for numerous new...

  1. CHALLENGES FOR THE FUTURE IN ENVIRONMENTAL MUTAGENESIS

    EPA Science Inventory

    CHALLENGES FOR THE FUTURE IN ENVIRONMENTAL MUTAGENESIS
    Michael D. Waters
    US Environmental Protection Agency, MD-51A, Research Triangle Park, NC 27711 USA

    Our rapidly growing understanding of the structure of the human genome is forming the basis for numerous new...

  2. [Retroperitoneal germ cell tumor].

    PubMed

    Borrell Palanca, A; García Garzón, J; Villamón Fort, R; Domenech Pérez, C; Martínez Lorente, A; Gunthner, S; García Sisamón, F

    1999-03-01

    We report a case of retroperitoneal extragonadal germ-cell tumor in an 17 years old patient who presented with aedema and pain in left inferior extremity asociated with hemopthysis caused by pulmonar metastasis, who was treated with chemotherapy and resection of residual mass and pulmonary nodes. Dyagnosis was stableshed by fine neadle aspiration biopsy of the wass. We comment on the difficult of stableshing differential dyagnosis between retroperitoneal extragonadal germ-cell tumor and metastasis of a testicular tumor. Dyagnosis is stableshed by the finding of a histologically malignant germ-cell tumor with normal testis. We considered physical examination and ecographyc exploration enough for a correct dyagnosis.

  3. Development of a possible nonmammalian test system for radiation-induced germ-cell mutagenesis using a fish, the Japanese medaka (Oryzias latipes)

    SciTech Connect

    Shima, A.; Shimada, A. )

    1991-03-15

    To develop a specific-locus test (SLT) system for environmental mutagenesis using vertebrate species other than the mouse, we first established a tester stock of the fish medaka (Oryzias latipes) that is homozygous recessive at three loci. The phenotypic expression of these loci can be easily recognized early in embryonic development by observation through the transparent egg membrane. We irradiated wild-type males with 137Cs gamma-rays to determine the dose-response relationships for dominant lethal and specific-locus mutations induced in sperm, spermatids, and spermatogonia. Through observation of 322,666 loci in control offspring and 374,026 loci in offspring obtained from 0.64-, 4.75-, or 9.50-Gy-irradiated gametes, specific-locus mutations were phenotypically detected during early development. These putative mutations, designated total mutation, can be recognized only in embryos of oviparous animals. The developmental fate of these mutant embryos was precisely followed. During subsequent embryonic development, a large fraction died and thus was unavailable for test-crossing, which was used to identify viable mutations. Our medaka SLT system demonstrates that the vast majority of total mutations is associated with dominant lethal mutations. Thus far only one spontaneous viable mutation has been observed, so that all doubling calculations involving this endpoint carry a large error. With these reservations, however, we conclude that the quantitative data so far obtained from the medaka SLT are quite comparable to those from the mouse SLT and, hence, indicate the validity of the medaka SLT as a possible nonmammalian test system.

  4. [Testicular germ cell tumors].

    PubMed

    Dourthe, L M; Ouachet, M; Fizazi, K; Droz, J P

    1998-09-01

    Testicle germ cells tumors are the most common young men neoplasm. The incidence is maximal in Scandinavian countries. Cryptorchidism is a predisposing factor. Diagnosis is clinic, first treatment is radical orchidectomy by inguinal incision, after study of tumor markers. Histology shows seminoma or non seminomatous tumor. Carcinoma in situ is the precursor of invasive germ cell tumors. Germ cell tumors have no p53 mutation, and have isochrome of the short arm of chromosome 12 as a specific marker. With the results of histological, biochemical and radiographic evaluation, patient are classified as follows: good, intermediate and poor risk prognosis. Standard treatment of stage I seminoma is prophylactic irradiation. Stage II with less than 3 cm lymph node too. Other situations need a cisplatin based chemotherapy. In case of metastatic residuals masses more than 3 cm, surgery need to be discussed. Stage I non seminomatous germ cell tumors are treated by retroperitoneal lymphadenectomy, by surveillance or by two cycles of adjuvant chemotherapy with cisplatin, etoposide and bleomycin (BEP). Standard treatment of good prognosis stage II and III is three cycles of BEP, four for poor prognosis. Residual mass need surgery, adjuvant chemotherapy is necessary in presence of viable germ cell. Standard treatment for relapses is chemotherapy with cisplatin, ifosfamide and vinblastine with a 30% remission rate. The place of high dose chemotherapy with autologous stem cell transplantation is not yet standardised. New drugs, as paclitaxel, are under studies.

  5. Ovarian Germ Cell Tumors Treatment

    MedlinePlus

    ... Tube, & Primary Peritoneal Cancer Screening Research Ovarian Germ Cell Tumors Treatment (PDQ®)–Patient Version General Information About Ovarian Germ Cell Tumors Go to Health Professional Version Key Points ...

  6. Finding their way: themes in germ cell migration

    PubMed Central

    Barton, Lacy J.; LeBlanc, Michelle G.; Lehmann, Ruth

    2016-01-01

    Embryonic germ cell migration is a vital component of the germline lifecycle. The translocation of germ cells from the place of origin to the developing somatic gonad involves several processes including passive movements with underlying tissues, transepithelial migration, cell adhesion dynamics, the establishment of environmental guidance cues and the ability to sustain directed migration. How germ cells accomplish these feats in established model organisms will be discussed in this review, with a focus on recent discoveries and themes conserved across species. PMID:27484857

  7. Emerging methods to generate artificial germ cells from stem cells.

    PubMed

    Zeng, Fanhui; Huang, Fajun; Guo, Jingjing; Hu, Xingchang; Liu, Changbai; Wang, Hu

    2015-04-01

    Germ cells are responsible for the transmission of genetic and epigenetic information across generations. At present, the number of infertile couples is increasing worldwide; these infertility problems can be traced to environmental pollutions, infectious diseases, cancer, psychological or work-related stress, and other factors, such as lifestyle and genetics. Notably, lack of germ cells and germ cell loss present real obstacles in infertility treatment. Recent research aimed at producing gametes through artificial germ cell generation from stem cells may offer great hope for affected couples to treat infertility in the future. Therefore, this rapidly emerging area of artificial germ cell generation from nongermline cells has gained considerable attention from basic and clinical research in the fields of stem cell biology, developmental biology, and reproductive biology. Here, we review the state of the art in artificial germ cell generation. © 2015 by the Society for the Study of Reproduction, Inc.

  8. Cadmium increases human fetal germ cell apoptosis.

    PubMed

    Angenard, Gaëlle; Muczynski, Vincent; Coffigny, Hervé; Pairault, Catherine; Duquenne, Clotilde; Frydman, René; Habert, René; Rouiller-Fabre, Virginie; Livera, Gabriel

    2010-03-01

    Cadmium (Cd) is a common environmental pollutant and a major constituent of tobacco smoke. Adverse effects of this heavy metal on reproductive function have been identified in adults; however, no studies have examined its effects on human reproductive organs during development. Using our previously developed organ culture system, we investigated the effects of cadmium chloride on human gonads at the beginning of fetal life, a critical stage in the development of reproductive function. Human fetal gonads were recovered during the first trimester (711 weeks postconception) and cultured with or without Cd. We used different concentrations of Cd and compared results with those obtained with mouse fetal gonads at similar stages. Cd, at concentrations as low as 1 microM, significantly decreased the germ cell density in human fetal ovaries. This correlated with an increase in germ cell apoptosis, but there was no effect on proliferation. Similarly, in the human fetal testis, Cd (1 microM) reduced germ cell number without affecting testosterone secretion. In mouse fetal gonads, Cd increased only female germ cell apoptosis. This is the first experimental demonstration that Cd, at low concentrations, alters the survival of male and female germ cells in humans. Considering data demonstrating extensive human exposure, we believe that current environmental levels of Cd could be deleterious to early gametogenesis.

  9. History of attempts to quantify environmental mutagenesis

    SciTech Connect

    Hollaender, A.

    1981-01-01

    It became obvious in the early 1960's that the ready recognition of mutations produced by chemicals could have a profound influence on the refinement of methods to detect environmental mutagens. The experience derived over the previous 30 years in characterizing the effects of ionizing and ultraviolet radiation on the genetic mechanism came to serve us in good stead. Although the effects of chemicals are considerably more complicated and often require the analysis of individual substances, nonetheless, the area has developed rapidly in recent decades. The establishment and historical background of the International Association of Environmental Mutagen Societies (IAEMS) will be discussed. An attempt at the quantitation of chemical effects has been developed in comparison with radiation mutagenesis. As a first step, a definition of the Mutagen Burden or unavoidable exposure to chemicals will be discussed. A mathematical approach (Haynes/Eckhardt) will be considered and finally an outline for the comprehensive investigation of detailed interscience study will be made of less than six chemicals.

  10. Treatment Option Overview (Extragonadal Germ Cell Tumors)

    MedlinePlus

    ... Professional Extragonadal Germ Cell Tumors Treatment Extragonadal Germ Cell Tumors Treatment (PDQ®)–Patient Version General Information About Extragonadal Germ Cell Tumors Go to Health Professional Version Key Points ...

  11. General Information about Extragonadal Germ Cell Tumors

    MedlinePlus

    ... Professional Extragonadal Germ Cell Tumors Treatment Extragonadal Germ Cell Tumors Treatment (PDQ®)–Patient Version General Information About Extragonadal Germ Cell Tumors Go to Health Professional Version Key Points ...

  12. Germ cell mutations of the ascidian Ciona intestinalis with TALE nucleases.

    PubMed

    Yoshida, Keita; Treen, Nicholas; Hozumi, Akiko; Sakuma, Tetsushi; Yamamoto, Takashi; Sasakura, Yasunori

    2014-05-01

    Targeted mutagenesis of genes-of-interest, or gene-knockout, is a powerful method to address the functions of genes. Engineered nucleases have enabled this approach in various organisms because of their ease of use. The ascidian Ciona intestinalis is an excellent organism to analyze gene functions by means of genetic technologies. In our previous study, we reported mutagenesis of Ciona somatic cells with TALE nucleases (TALENs) by electroporating expression constructs. In this study, we report germ cell mutagenesis of Ciona by microinjecting mRNAs encoding TALENs. TALEN mRNAs introduced mutations to target genes in both somatic and germ cells. TALEN-mediated mutations in the germ cell genome were inherited by the next generation. We conclude that knockout lines of Ciona that have disrupted target genes can be established through TALEN-mediated germ cell mutagenesis.

  13. Germ Cell Intercellular Bridges

    PubMed Central

    Greenbaum, Michael P.; Iwamori, Tokuko; Buchold, Gregory M.; Matzuk, Martin M.

    2011-01-01

    Stable intercellular bridges are a conserved feature of gametogenesis in multicellular animals observed more than 100 years ago, but their function was unknown. Many of the components necessary for this structure have been identified through the study of cytokinesis in Drosophila; however, mammalian intercellular bridges have distinct properties from those of insects. Mammalian germ cell intercellular bridges are composed of general cytokinesis components with additional germ cell–specific factors including TEX14. TEX14 is an inactive kinase essential for the maintenance of stable intercellular bridges in gametes of both sexes but whose loss specifically impairs male meiosis. TEX14 acts to impede the terminal steps of abscission by competing for essential component CEP55, blocking its interaction in nongerm cells with ALIX and TSG101. Additionally, TEX14-interacting protein RBM44, whose localization in stabile intercellular bridges is limited to pachytene and secondary spermatocytes, may participate in processes such as RNA transport but is nonessential to the maintenance of intercellular bridge stability. PMID:21669984

  14. Extragonadal Germ Cell Cancer (EGC)

    MedlinePlus

    ... germ cells are first seen outside of the embryo in the yolk sac. At about 4 to ... weeks of development, these cells migrate into the embryo where they populate the developing testes or ovaries. ...

  15. What Can a Micronucleus Teach? Learning about Environmental Mutagenesis

    ERIC Educational Resources Information Center

    Linde, Ana R.; Garcia-Vazquez, Eva

    2009-01-01

    The micronucleus test is widely employed in environmental health research. It can also be an excellent tool for learning important concepts in environmental health. In this article we present an inquiry-based laboratory exercise where students explore several theoretical and practical aspects of environmental mutagenesis employing the micronucleus…

  16. What Can a Micronucleus Teach? Learning about Environmental Mutagenesis

    ERIC Educational Resources Information Center

    Linde, Ana R.; Garcia-Vazquez, Eva

    2009-01-01

    The micronucleus test is widely employed in environmental health research. It can also be an excellent tool for learning important concepts in environmental health. In this article we present an inquiry-based laboratory exercise where students explore several theoretical and practical aspects of environmental mutagenesis employing the micronucleus…

  17. Palifosfamide in Treating Patients With Recurrent Germ Cell Tumors

    ClinicalTrials.gov

    2015-06-11

    Adult Central Nervous System Germ Cell Tumor; Adult Teratoma; Malignant Extragonadal Germ Cell Tumor; Malignant Extragonadal Non-Seminomatous Germ Cell Tumor; Extragonadal Seminoma; Recurrent Malignant Testicular Germ Cell Tumor; Recurrent Ovarian Germ Cell Tumor; Stage IV Extragonadal Non-Seminomatous Germ Cell Tumor; Stage IV Extragonadal Seminoma; Stage IV Ovarian Germ Cell Tumor

  18. RNA Granules in Germ Cells

    PubMed Central

    Voronina, Ekaterina; Seydoux, Geraldine; Sassone-Corsi, Paolo; Nagamori, Ippei

    2011-01-01

    “Germ granules” are cytoplasmic, nonmembrane-bound organelles unique to germline. Germ granules share components with the P bodies and stress granules of somatic cells, but also contain proteins and RNAs uniquely required for germ cell development. In this review, we focus on recent advances in our understanding of germ granule assembly, dynamics, and function. One hypothesis is that germ granules operate as hubs for the posttranscriptional control of gene expression, a function at the core of the germ cell differentiation program. PMID:21768607

  19. Environmental stress induces trinucleotide repeat mutagenesis in human cells.

    PubMed

    Chatterjee, Nimrat; Lin, Yunfu; Santillan, Beatriz A; Yotnda, Patricia; Wilson, John H

    2015-03-24

    The dynamic mutability of microsatellite repeats is implicated in the modification of gene function and disease phenotype. Studies of the enhanced instability of long trinucleotide repeats (TNRs)-the cause of multiple human diseases-have revealed a remarkable complexity of mutagenic mechanisms. Here, we show that cold, heat, hypoxic, and oxidative stresses induce mutagenesis of a long CAG repeat tract in human cells. We show that stress-response factors mediate the stress-induced mutagenesis (SIM) of CAG repeats. We show further that SIM of CAG repeats does not involve mismatch repair, nucleotide excision repair, or transcription, processes that are known to promote TNR mutagenesis in other pathways of instability. Instead, we find that these stresses stimulate DNA rereplication, increasing the proportion of cells with >4 C-value (C) DNA content. Knockdown of the replication origin-licensing factor CDT1 eliminates both stress-induced rereplication and CAG repeat mutagenesis. In addition, direct induction of rereplication in the absence of stress also increases the proportion of cells with >4C DNA content and promotes repeat mutagenesis. Thus, environmental stress triggers a unique pathway for TNR mutagenesis that likely is mediated by DNA rereplication. This pathway may impact normal cells as they encounter stresses in their environment or during development or abnormal cells as they evolve metastatic potential.

  20. Environmental stress induces trinucleotide repeat mutagenesis in human cells

    PubMed Central

    Chatterjee, Nimrat; Lin, Yunfu; Santillan, Beatriz A.; Yotnda, Patricia; Wilson, John H.

    2015-01-01

    The dynamic mutability of microsatellite repeats is implicated in the modification of gene function and disease phenotype. Studies of the enhanced instability of long trinucleotide repeats (TNRs)—the cause of multiple human diseases—have revealed a remarkable complexity of mutagenic mechanisms. Here, we show that cold, heat, hypoxic, and oxidative stresses induce mutagenesis of a long CAG repeat tract in human cells. We show that stress-response factors mediate the stress-induced mutagenesis (SIM) of CAG repeats. We show further that SIM of CAG repeats does not involve mismatch repair, nucleotide excision repair, or transcription, processes that are known to promote TNR mutagenesis in other pathways of instability. Instead, we find that these stresses stimulate DNA rereplication, increasing the proportion of cells with >4 C-value (C) DNA content. Knockdown of the replication origin-licensing factor CDT1 eliminates both stress-induced rereplication and CAG repeat mutagenesis. In addition, direct induction of rereplication in the absence of stress also increases the proportion of cells with >4C DNA content and promotes repeat mutagenesis. Thus, environmental stress triggers a unique pathway for TNR mutagenesis that likely is mediated by DNA rereplication. This pathway may impact normal cells as they encounter stresses in their environment or during development or abnormal cells as they evolve metastatic potential. PMID:25775519

  1. Treatment Option Overview (Ovarian Germ Cell Tumors)

    MedlinePlus

    ... Tube, & Primary Peritoneal Cancer Screening Research Ovarian Germ Cell Tumors Treatment (PDQ®)–Patient Version General Information About Ovarian Germ Cell Tumors Go to Health Professional Version Key Points ...

  2. General Information about Ovarian Germ Cell Tumors

    MedlinePlus

    ... Tube, & Primary Peritoneal Cancer Screening Research Ovarian Germ Cell Tumors Treatment (PDQ®)–Patient Version General Information About Ovarian Germ Cell Tumors Go to Health Professional Version Key Points ...

  3. European Community research on environmental mutagenesis and carcinogenesis.

    PubMed Central

    Sors, A I

    1993-01-01

    Within the 12 Member States of the European Community (EC), environmental policy is now formulated primarily at Community level. As a result, the EC has important regulatory responsibilities for the protection of workers, consumers, and the general public from risks that may arise from environmental chemicals, foremost among them potential carcinogens and mutagens. An important part of EC environmental research and development is intended to provide a scientific basis for these regulations as well as increasing understanding of the basic mechanisms involved in environmental carcinogenesis and mutagenesis. This paper contains a brief introduction to EC environment policy and research, followed by an overview of EC chemicals control activities that are of particular relevance to the research and development program. Community-level research on environmental mutagenesis and carcinogenesis is then reviewed in some detail, including the achievements of recent projects, the scientific content of the current program, and perspectives for the future. PMID:8143645

  4. Primordial Germ Cell Specification and Migration.

    PubMed

    Marlow, Florence

    2015-01-01

    Primordial germ cells are the progenitor cells that give rise to the gametes. In some animals, the germline is induced by zygotic transcription factors, whereas in others, primordial germ cell specification occurs via inheritance of maternally provided gene products known as germ plasm. Once specified, the primordial germ cells of some animals must acquire motility and migrate to the gonad in order to survive. In all animals examined, perinuclear structures called germ granules form within germ cells. This review focuses on some of the recent studies, conducted by several groups using diverse systems, from invertebrates to vertebrates, which have provided mechanistic insight into the molecular regulation of germ cell specification and migration.

  5. Introduction to Germ Cell Development in C. elegans

    PubMed Central

    Pazdernik, Nanette; Schedl, Tim

    2013-01-01

    A central feature of the continuum of life in sexually reproducing metazoans is the cycle of the germline from one generation to the next. This volume describes the cycle of the germline for Caenorhabditis elegans, through chapters that are focused on distinct aspects or processes in germ cell development. Topics include sequential and dependent processes such as specification of germ cells as distinct from somatic cells, sex determination, stem cell proliferative fate versus meiotic development decision, recombination/ progression through meiotic prophase, contemporaneous processes such as gametogenesis, meiotic development and apoptosis, and continuing the cycle into the next generation through fertilization and the oocyte-to-embryo-transition. Throughout germ cell development, translational control and epigenetic mechanisms play prominent roles. These different aspects of germ cell development are seamlessly integrated under optimal conditions and are modified in the different reproductive strategies that are employed by C. elegans under harsh environmental conditions. In this chapter we set the stage by providing a brief background on the C. elegans system and germ cell development, indicating processes in the cycle of the germline that are covered in each chapter. PMID:22872472

  6. Environmental mutagenesis and radiation biology: The legacy of William Morgan.

    PubMed

    Schwartz, Jeffrey L

    2017-07-25

    A symposium entitled Environmental Mutagenesis and Radiation Biology was held on September 27, 2016 to honor the memory of Dr. William F. Morgan who passed away unexpectedly on November 13, 2015. The speakers presented the latest reviews on homologous recombination repair, induced genetic instability, bystander effects, and risk estimate development. Their presentations are presented following the introduction. Copyright © 2017. Published by Elsevier B.V.

  7. Reprogramming of germ cells into pluripotency

    PubMed Central

    Sekita, Yoichi; Nakamura, Toshinobu; Kimura, Tohru

    2016-01-01

    Primordial germ cells (PGCs) are precursors of all gametes, and represent the founder cells of the germline. Although developmental potency is restricted to germ-lineage cells, PGCs can be reprogrammed into a pluripotent state. Specifically, PGCs give rise to germ cell tumors, such as testicular teratomas, in vivo, and to pluripotent stem cells known as embryonic germ cells in vitro. In this review, we highlight the current knowledge on signaling pathways, transcriptional controls, and post-transcriptional controls that govern germ cell differentiation and de-differentiation. These regulatory processes are common in the reprogramming of germ cells and somatic cells, and play a role in the pathogenesis of human germ cell tumors. PMID:27621759

  8. Pollen tetrads in the detection of environmental mutagenesis

    SciTech Connect

    Mulcahy, D.L.

    1981-01-01

    Although pollen is a very sensitive indicator of environmental mutagenesis, it is also sensitive to nonmutagenic environmental stress. By analyzing pollen tetrads, rather than individual pollen grains, it is possible to distinguish between mutagenic and nonmutagenic influences. Another advantage of using pollen tetrads in mutagenicity studies is that it is possible to discriminate between pre- and post-pachytene mutations. This eliminates the mutant sector problem of a single mutational event giving rise to a large number of mutant cells. Methods of analyzing pollen tetrads are described.

  9. Molecular biology of testicular germ cell tumors.

    PubMed

    Gonzalez-Exposito, R; Merino, M; Aguayo, C

    2016-06-01

    Testicular germ cell tumors (TGCTs) are the most common solid tumors in young adult men. They constitute a unique pathology because of their embryonic and germ origin and their special behavior. Genetic predisposition, environmental factors involved in their development and genetic aberrations have been under study in many works throughout the last years trying to explain the susceptibility and the transformation mechanism of TGCTs. Despite the high rate of cure in this type of tumors because its particular sensitivity to cisplatin, there are tumors resistant to chemotherapy for which it is needed to find new therapies. In the present work, it has been carried out a literature review on the most important molecular aspects involved in the onset and development of such tumors, as well as a review of the major developments regarding prognostic factors, new prognostic biomarkers and the possibility of new targeted therapies.

  10. Identification of Potential Germ-Cell Mutagens

    EPA Science Inventory

    The existence of agents that can induce germ-cell mutations in experimental systems has been recognized since 1927 with the discovery of the ability of X-rays to induce such mutations in Drosophila. Various rodent-based germ-cell mutation assays have been developed, and ~50 germ...

  11. Identification of Potential Germ-Cell Mutagens

    EPA Science Inventory

    The existence of agents that can induce germ-cell mutations in experimental systems has been recognized since 1927 with the discovery of the ability of X-rays to induce such mutations in Drosophila. Various rodent-based germ-cell mutation assays have been developed, and ~50 germ...

  12. Primordial Germ Cell Specification and Migration

    PubMed Central

    Marlow, Florence

    2015-01-01

    Primordial germ cells are the progenitor cells that give rise to the gametes. In some animals, the germline is induced by zygotic transcription factors, whereas in others, primordial germ cell specification occurs via inheritance of maternally provided gene products known as germ plasm. Once specified, the primordial germ cells of some animals must acquire motility and migrate to the gonad in order to survive. In all animals examined, perinuclear structures called germ granules form within germ cells. This review focuses on some of the recent studies, conducted by several groups using diverse systems, from invertebrates to vertebrates, which have provided mechanistic insight into the molecular regulation of germ cell specification and migration. PMID:26918157

  13. Germ cell specification and regeneration in planarians.

    PubMed

    Newmark, P A; Wang, Y; Chong, T

    2008-01-01

    In metazoans, two apparently distinct mechanisms specify germ cell fate: Determinate specification (observed in animals including Drosophila, Caenorhabditis elegans, zebra fish, and Xenopus) uses cytoplasmic factors localized to specific regions of the egg, whereas epigenetic specification (observed in many basal metazoans, urodeles, and mammals) involves inductive interactions between cells. Much of our understanding of germ cell specification has emerged from studies of model organisms displaying determinate specification. In contrast, our understanding of epigenetic/inductive specification is less advanced and would benefit from studies of additional organisms. Freshwater planarians--widely known for their remarkable powers of regeneration--are well suited for studying the mechanisms by which germ cells can be induced. Classic experiments showed that planarians can regenerate germ cells from body fragments entirely lacking reproductive structures, suggesting that planarian germ cells could be specified by inductive signals. Furthermore, the availability of the genome sequence of the planarian Schmidtea mediterranea, coupled with the animal's susceptibility to systemic RNA interference (RNAi), facilitates functional genomic analyses of germ cell development and regeneration. Here, we describe recent progress in studies of planarian germ cells and frame some of the critical unresolved questions for future work.

  14. In vivo epigenomic profiling of germ cells reveals germ cell molecular signatures.

    PubMed

    Ng, Jia-Hui; Kumar, Vibhor; Muratani, Masafumi; Kraus, Petra; Yeo, Jia-Chi; Yaw, Lai-Ping; Xue, Kun; Lufkin, Thomas; Prabhakar, Shyam; Ng, Huck-Hui

    2013-02-11

    The limited number of in vivo germ cells poses an impediment to genome-wide studies. Here, we applied a small-scale chromatin immunoprecipitation sequencing (ChIP-seq) method on purified mouse fetal germ cells to generate genome-wide maps of four histone modifications (H3K4me3, H3K27me3, H3K27ac, and H2BK20ac). Comparison of active chromatin state between somatic, embryonic stem, and germ cells revealed promoters and enhancers needed for stem cell maintenance and germ cell development. We found the nuclear receptor Nr5a2 motif to be enriched at a subset of germ cell cis-regulatory regions, and our results implicate Nr5a2 in germ cell biology. Interestingly, in germ cells, the H3K27me3 histone modification occurs more frequently at regions that are enriched for retrotransposons and MHC genes, indicating that these loci are specifically silenced in germ cells. Together, our study provides genome-wide histone modification maps of in vivo germ cells and reveals the molecular chromatin signatures of germ cells. Copyright © 2013 Elsevier Inc. All rights reserved.

  15. Lifetime stress experience: transgenerational epigenetics and germ cell programming

    PubMed Central

    Bale, Tracy L.

    2014-01-01

    The transgenerational epigenetic programming involved in the passage of environmental exposures to stressful periods from one generation to the next has been examined in human populations, and mechanistically in animal models. Epidemiological studies suggest that gestational exposures to environmental factors including stress are strongly associated with an increased risk of neurodevelopmental disorders, including attention deficit-hyperactivity disorder, schizophrenia, and autism spectrum disorders. Both maternal and paternal life experiences with stress can be passed on to offspring directly during pregnancy or through epigenetic marks in the germ cell. Animal models of parental stress have examined relevant offspring phenotypes and transgenerational outcomes, and provided unique insight into the germ cell epigenetic changes associated with disruptions in neurodevelopment. Understanding germline susceptibility to exogenous signals during stress exposure and the identification of the types of epigenetic marks is critical for defining mechanisms underlying disease risk. PMID:25364281

  16. Lifetime stress experience: transgenerational epigenetics and germ cell programming.

    PubMed

    Bale, Tracy L

    2014-09-01

    The transgenerational epigenetic programming involved in the passage of environmental exposures to stressful periods from one generation to the next has been examined in human populations, and mechanistically in animal models. Epidemiological studies suggest that gestational exposures to environmental factors including stress are strongly associated with an increased risk of neurodevelopmental disorders, including attention deficit-hyperactivity disorder, schizophrenia, and autism spectrum disorders. Both maternal and paternal life experiences with stress can be passed on to offspring directly during pregnancy or through epigenetic marks in the germ cell. Animal models of parental stress have examined relevant offspring phenotypes and transgenerational outcomes, and provided unique insight into the germ cell epigenetic changes associated with disruptions in neurodevelopment. Understanding germline susceptibility to exogenous signals during stress exposure and the identification of the types of epigenetic marks is critical for defining mechanisms underlying disease risk.

  17. Sex determination in mammalian germ cells

    PubMed Central

    Spiller, Cassy M; Bowles, Josephine

    2015-01-01

    Germ cells are the precursors of the sperm and oocytes and hence are critical for survival of the species. In mammals, they are specified during fetal life, migrate to the developing gonads and then undergo a critical period during which they are instructed, by the soma, to adopt the appropriate sexual fate. In a fetal ovary, germ cells enter meiosis and commit to oogenesis, whereas in a fetal testis, they avoid entry into meiosis and instead undergo mitotic arrest and mature toward spermatogenesis. Here, we discuss what we know so far about the regulation of sex-specific differentiation of germ cells, considering extrinsic molecular cues produced by somatic cells, as well as critical intrinsic changes within the germ cells. This review focuses almost exclusively on our understanding of these events in the mouse model. PMID:25791730

  18. Sex determination in mammalian germ cells.

    PubMed

    Spiller, Cassy M; Bowles, Josephine

    2015-01-01

    Germ cells are the precursors of the sperm and oocytes and hence are critical for survival of the species. In mammals, they are specified during fetal life, migrate to the developing gonads and then undergo a critical period during which they are instructed, by the soma, to adopt the appropriate sexual fate. In a fetal ovary, germ cells enter meiosis and commit to oogenesis, whereas in a fetal testis, they avoid entry into meiosis and instead undergo mitotic arrest and mature toward spermatogenesis. Here, we discuss what we know so far about the regulation of sex-specific differentiation of germ cells, considering extrinsic molecular cues produced by somatic cells, as well as critical intrinsic changes within the germ cells. This review focuses almost exclusively on our understanding of these events in the mouse model.

  19. Regulation of germ cell function by SUMOylation

    PubMed Central

    Rodriguez, Amanda; Pangas, Stephanie A.

    2015-01-01

    Oogenesis and spermatogenesis are tightly regulated complex processes that are critical for fertility function. Germ cells undergo meiosis to generate haploid cells necessary for reproduction. Errors in meiosis, including the generation of chromosomal abnormalities, can result in reproductive defects and infertility. Meiotic proteins are regulated by post-translational modifications including SUMOylation, the covalent attachment of small ubiquitin-like modifier (SUMO) proteins. Here, we review the role of SUMO proteins in controlling germ cell development and maturation based on recent findings from mouse models. Several studies have characterized the localization of SUMO proteins in male and female germ cells. However, a deeper understanding of how SUMOylation regulates proteins with essential roles in oogenesis and spermatogenesis will provide useful insight into the underlying mechanisms of germ cell development and fertility. PMID:26374733

  20. Environmental mutagenesis during the end-Permian ecological crisis.

    PubMed

    Visscher, Henk; Looy, Cindy V; Collinson, Margaret E; Brinkhuis, Henk; van Konijnenburg-van Cittert, Johanna H A; Kürschner, Wolfram M; Sephton, Mark A

    2004-08-31

    During the end-Permian ecological crisis, terrestrial ecosystems experienced preferential dieback of woody vegetation. Across the world, surviving herbaceous lycopsids played a pioneering role in repopulating deforested terrain. We document that the microspores of these lycopsids were regularly released in unseparated tetrads indicative of failure to complete the normal process of spore development. Although involvement of mutation has long been hinted at or proposed in theory, this finding provides concrete evidence for chronic environmental mutagenesis at the time of global ecological crisis. Prolonged exposure to enhanced UV radiation could account satisfactorily for a worldwide increase in land plant mutation. At the end of the Permian, a period of raised UV stress may have been the consequence of severe disruption of the stratospheric ozone balance by excessive emission of hydrothermal organohalogens in the vast area of Siberian Traps volcanism. Copyright 2004 The National Academy of Sciencs of the USA

  1. Environmental mutagenesis during the end-Permian ecological crisis

    PubMed Central

    Visscher, Henk; Looy, Cindy V.; Collinson, Margaret E.; Brinkhuis, Henk; van Konijnenburg-van Cittert, Johanna H. A.; Kürschner, Wolfram M.; Sephton, Mark A.

    2004-01-01

    During the end-Permian ecological crisis, terrestrial ecosystems experienced preferential dieback of woody vegetation. Across the world, surviving herbaceous lycopsids played a pioneering role in repopulating deforested terrain. We document that the microspores of these lycopsids were regularly released in unseparated tetrads indicative of failure to complete the normal process of spore development. Although involvement of mutation has long been hinted at or proposed in theory, this finding provides concrete evidence for chronic environmental mutagenesis at the time of global ecological crisis. Prolonged exposure to enhanced UV radiation could account satisfactorily for a worldwide increase in land plant mutation. At the end of the Permian, a period of raised UV stress may have been the consequence of severe disruption of the stratospheric ozone balance by excessive emission of hydrothermal organohalogens in the vast area of Siberian Traps volcanism. PMID:15282373

  2. Endocrine disrupters, microRNAs, and primordial germ cells: a dangerous cocktail.

    PubMed

    Brieño-Enríquez, Miguel Angel; Larriba, Eduardo; Del Mazo, Jesús

    2016-09-15

    Endocrine-disrupting chemicals (EDCs) are environmental pollutants that may change the homeostasis of the endocrine system, altering the differentiation of germ cells with consequences for reproduction. In mammals, germ cell differentiation begins with primordial germ cells (PGCs) during embryogenesis. Primordial germ cell development and gametogenesis are genetically regulated processes, in which the posttranscriptional gene regulation could be mediated by small noncoding RNAs (sncRNAs) such as microRNAs (miRNAs). Here, we review the deleterious effects of exposure during fetal life to EDCs mediated by deregulation of ncRNAs, and specifically miRNAs on PGC differentiation. Moreover, the environmental stress induced by exposure to some EDCs during the embryonic window of development could trigger reproductive dysfunctions transgenerationally transmitted by epigenetic mechanisms with the involvement of miRNAs expressed in germ line cells. Copyright © 2016 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  3. Function of cyclins in regulating the mitotic and meiotic cell cycles in male germ cells

    PubMed Central

    Wolgemuth, Debra J.

    2014-01-01

    The specialized cell cycles that characterize various aspects of the differentiation of germ cells provide a unique opportunity to understand heretofore elusive aspects of the in vivo function of cell cycle regulators. Key components of the cell cycle machinery are the regulatory sub-units, the cyclins, and their catalytic partners, the cyclin-dependent kinases. Some of the cyclins exhibit unique patterns of expression in germ cells that suggest possible concomitant distinct functions, predictions that are being explored by targeted mutagenesis in mouse models. A novel, meiosis-specific function has been shown for one of the A-type cyclins, cyclin A1. Embryonic lethality has obviated understanding of the germline functions of cyclin A2 and cyclin B1, while yet other cyclins, although expressed at specific stages of germ cell development, may have less essential function in the male germline. PMID:19001847

  4. Dissecting Germ Cell Metabolism through Network Modeling.

    PubMed

    Whitmore, Leanne S; Ye, Ping

    2015-01-01

    Metabolic pathways are increasingly postulated to be vital in programming cell fate, including stemness, differentiation, proliferation, and apoptosis. The commitment to meiosis is a critical fate decision for mammalian germ cells, and requires a metabolic derivative of vitamin A, retinoic acid (RA). Recent evidence showed that a pulse of RA is generated in the testis of male mice thereby triggering meiotic commitment. However, enzymes and reactions that regulate this RA pulse have yet to be identified. We developed a mouse germ cell-specific metabolic network with a curated vitamin A pathway. Using this network, we implemented flux balance analysis throughout the initial wave of spermatogenesis to elucidate important reactions and enzymes for the generation and degradation of RA. Our results indicate that primary RA sources in the germ cell include RA import from the extracellular region, release of RA from binding proteins, and metabolism of retinal to RA. Further, in silico knockouts of genes and reactions in the vitamin A pathway predict that deletion of Lipe, hormone-sensitive lipase, disrupts the RA pulse thereby causing spermatogenic defects. Examination of other metabolic pathways reveals that the citric acid cycle is the most active pathway. In addition, we discover that fatty acid synthesis/oxidation are the primary energy sources in the germ cell. In summary, this study predicts enzymes, reactions, and pathways important for germ cell commitment to meiosis. These findings enhance our understanding of the metabolic control of germ cell differentiation and will help guide future experiments to improve reproductive health.

  5. Specification of germ cell fate in mice.

    PubMed Central

    Saitou, Mitinori; Payer, Bernhard; Lange, Ulrike C; Erhardt, Sylvia; Barton, Sheila C; Surani, M Azim

    2003-01-01

    An early fundamental event during development is the segregation of germ cells from somatic cells. In many organisms, this is accomplished by the inheritance of preformed germ plasm, which apparently imposes transcriptional repression to prevent somatic cell fate. However, in mammals, pluripotent epiblast cells acquire germ cell fate in response to signalling molecules. We have used single cell analysis to study how epiblast cells acquire germ cell competence and undergo specification. Germ cell competent cells express Fragilis and initially progress towards a somatic mesodermal fate. However, a subset of these cells, the future primordial germ cells (PGCs), then shows rapid upregulation of Fragilis with concomitant transcriptional repression of a number of genes, including Hox and Smad genes. This repression may be a key event associated with germ cell specification. Furthermore, PGCs express Stella and other genes, such as Oct-4 that are associated with pluripotency. While these molecules are also detected in mature oocytes as maternally inherited factors, their early role is to regulate development and maintain pluripotency, and they do not serve the role of classical germline determinants. PMID:14511483

  6. Greetings from The International Association of Environmental Mutagenesis and Genomics Societies.

    PubMed

    Nohmi, Takehiko

    2015-01-01

    The International Association of Environmental Mutagenesis and Genomics Societies (IAEMGS) is an organization that promotes basic and applied research on environmental mutagenesis and genomics. In this article, as President of IAEMGS, I stress the important role of Genes and Environment to spread the voice of Asia to the international scientific community. Open access will support the journal in achieving this mission.

  7. Surgery for germ cell tumors.

    PubMed

    Sagae, S; Kudo, R

    2000-01-01

    We performed a review of the current modalities of surgical treatment of malignant ovarian germ cell tumors by clinical stages and histological types. Stage IA dysgerminoma is performed with a unilateral salpingo-oophorectomy (USO) without chemotherapy. However, for Stage IB or IC patients with dysgerminoma, USO plus chemotherapy as a primary treatment may or may not be followed with a second-look operation (SLO). For non-dysgerminomas, USO is indicated only for Stage IA immature teratoma grade 1. The treatment for Stage IA immature teratoma grade 2 or 3 and other histological types is USO plus chemotherapy. Patients with Stage IB, IC or higher with non-dysgerminoma are treated with USO plus chemotherapy or USO with contralateral partial ovariectomy plus chemotherapy. For patients who require non-conservative surgery, a total abdominal hysterectomy (TAH) and a bilateral salpingo-oophorectomy (BSO) plus chemotherapy are performed. For patients with Stage II of all histological types, conservative surgery consists of USO and a cytoreductive operation plus chemotherapy, followed by SLO or a second cytoreductive operation. For non-conservative surgery, TAH+BSO with or without a cytoreductive operation plus chemotherapy is followed by SLO. Conservative surgery for patients with Stage III and IV is USO and a cytoreductive operation plus chemotherapy followed by a second cytoreductive operation. Non-conservative surgery is TAH+BSO with a cytoreductive operation plus chemotherapy, followed by SLO or a second cytoreductive operation. However, primary or secondary cytoreductive surgery with or without lymphadenectomy and SLO are still controversial in terms of improving patient survival. Copyright 2000 Wiley-Liss, Inc.

  8. Dearth and Delayed Maturation of Testicular Germ Cells in Fanconi Anemia E Mutant Male Mice

    PubMed Central

    Fu, Chun; Begum, Khurshida; Jordan, Philip W.; He, Yan; Overbeek, Paul A.

    2016-01-01

    After using a self-inactivating lentivirus for non-targeted insertional mutagenesis in mice, we identified a transgenic family with a recessive mutation that resulted in reduced fertility in homozygous transgenic mice. The lentiviral integration site was amplified by inverse PCR. Sequencing revealed that integration had occurred in intron 8 of the mouse Fance gene, which encodes the Fanconi anemia E (Fance) protein. Fanconi anemia (FA) proteins play pivotal roles in cellular responses to DNA damage and Fance acts as a molecular bridge between the FA core complex and Fancd2. To investigate the reduced fertility in the mutant males, we analyzed postnatal development of testicular germ cells. At one week after birth, most tubules in the mutant testes contained few or no germ cells. Over the next 2–3 weeks, germ cells accumulated in a limited number of tubules, so that some tubules contained germ cells around the full periphery of the tubule. Once sufficient numbers of germ cells had accumulated, they began to undergo the later stages of spermatogenesis. Immunoassays revealed that the Fancd2 protein accumulated around the periphery of the nucleus in normal developing spermatocytes, but we did not detect a similar localization of Fancd2 in the Fance mutant testes. Our assays indicate that although Fance mutant males are germ cell deficient at birth, the extant germ cells can proliferate and, if they reach a threshold density, can differentiate into mature sperm. Analogous to previous studies of FA genes in mice, our results show that the Fance protein plays an important, but not absolutely essential, role in the initial developmental expansion of the male germ line. PMID:27486799

  9. Dearth and Delayed Maturation of Testicular Germ Cells in Fanconi Anemia E Mutant Male Mice.

    PubMed

    Fu, Chun; Begum, Khurshida; Jordan, Philip W; He, Yan; Overbeek, Paul A

    2016-01-01

    After using a self-inactivating lentivirus for non-targeted insertional mutagenesis in mice, we identified a transgenic family with a recessive mutation that resulted in reduced fertility in homozygous transgenic mice. The lentiviral integration site was amplified by inverse PCR. Sequencing revealed that integration had occurred in intron 8 of the mouse Fance gene, which encodes the Fanconi anemia E (Fance) protein. Fanconi anemia (FA) proteins play pivotal roles in cellular responses to DNA damage and Fance acts as a molecular bridge between the FA core complex and Fancd2. To investigate the reduced fertility in the mutant males, we analyzed postnatal development of testicular germ cells. At one week after birth, most tubules in the mutant testes contained few or no germ cells. Over the next 2-3 weeks, germ cells accumulated in a limited number of tubules, so that some tubules contained germ cells around the full periphery of the tubule. Once sufficient numbers of germ cells had accumulated, they began to undergo the later stages of spermatogenesis. Immunoassays revealed that the Fancd2 protein accumulated around the periphery of the nucleus in normal developing spermatocytes, but we did not detect a similar localization of Fancd2 in the Fance mutant testes. Our assays indicate that although Fance mutant males are germ cell deficient at birth, the extant germ cells can proliferate and, if they reach a threshold density, can differentiate into mature sperm. Analogous to previous studies of FA genes in mice, our results show that the Fance protein plays an important, but not absolutely essential, role in the initial developmental expansion of the male germ line.

  10. Genomic Landscape of Developing Male Germ Cells

    PubMed Central

    Lee, Tin-Lap; Pang, Alan Lap-Yin; Rennert, Owen M.; Chan, Wai-Yee

    2010-01-01

    Spermatogenesis is a highly orchestrated developmental process by which spermatogonia develop into mature spermatozoa. This process involves many testis- or male germ cell-specific gene products whose expressions are strictly regulated. In the past decade the advent of high-throughput gene expression analytical techniques has made functional genomic studies of this process, particularly in model animals such as mice and rats, feasible and practical. These studies have just begun to reveal the complexity of the genomic landscape of the developing male germ cells. Over 50% of the mouse and rat genome are expressed during testicular development. Among transcripts present in germ cells, 40% – 60% are uncharacterized. A number of genes, and consequently their associated biological pathways, are differentially expressed at different stages of spermatogenesis. Developing male germ cells present a rich repertoire of genetic processes. Tissue-specific as well as spermatogenesis stage-specific alternative splicing of genes exemplifies the complexity of genome expression. In addition to this layer of control, discoveries of abundant presence of antisense transcripts, expressed psuedogenes, non-coding RNAs (ncRNA) including long ncRNAs, microRNAs (miRNAs) and Piwi-interacting RNAs (piRNAs), and retrogenes all point to the presence of multiple layers of expression and functional regulation in male germ cells. It is anticipated that application of systems biology approaches will further our understanding of the regulatory mechanism of spermatogenesis.† PMID:19306351

  11. Paediatric extracranial germ-cell tumours.

    PubMed

    Shaikh, Furqan; Murray, Matthew J; Amatruda, James F; Coleman, Nicholas; Nicholson, James C; Hale, Juliet P; Pashankar, Farzana; Stoneham, Sara J; Poynter, Jenny N; Olson, Thomas A; Billmire, Deborah F; Stark, Daniel; Rodriguez-Galindo, Carlos; Frazier, A Lindsay

    2016-04-01

    Management of paediatric extracranial germ-cell tumours carries a unique set of challenges. Germ-cell tumours are a heterogeneous group of neoplasms that present across a wide age range and vary in site, histology, and clinical behaviour. Patients with germ-cell tumours are managed by a diverse array of specialists. Thus, staging, risk stratification, and treatment approaches for germ-cell tumours have evolved disparately along several trajectories. Paediatric germ-cell tumours differ from the adolescent and adult disease in many ways, leading to complexities in applying age-appropriate, evidence-based care. Suboptimal outcomes remain for several groups of patients, including adolescents, and patients with extragonadal tumours, high tumour markers at diagnosis, or platinum-resistant disease. Survivors have significant long-term toxicities. The challenge moving forward will be to translate new insights from molecular studies and collaborative clinical data into improved patient outcomes. Future trials will be characterised by improved risk-stratification systems, biomarkers for response and toxic effects, rational reduction of therapy for low-risk patients and novel approaches for poor-risk patients, and improved international collaboration across paediatric and adult cooperative research groups. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Tests for urethane induction of germ-cell mutations and germ-cell killing in the mouse.

    PubMed

    Russell, L B; Hunsicker, P R; Oakberg, E F; Cummings, C C; Schmoyer, R L

    1987-08-01

    Urethane, a chemical that has given varied results in mutagenesis assays, was tested in the mouse specific-locus test, and its effect on germ-cell survival was explored. Altogether 32,828 offspring were observed from successive weekly matings of males exposed to the maximum tolerated i.p. dose of 1750 mg urethane/kg. The combined data rule out (at the 5% significance level) an induced mutation rate greater than 1.7 times the historical control rate. For spermatogonial stem cells alone, the multiple ruled out is 3.2, and for poststem-cell stages, 3.5. Litter sizes from successive conceptions made in any of the first 7 weeks give no indication of induced dominant lethality, confirming results of past dominant-lethal assays. That urethane (or an active metabolite) reaches germ cells is indicated by SCE induction in spermatogonia demonstrated by other investigators. Cytotoxic effects in spermatogonia are suggested by our finding of a slight reduction in numbers of certain types of spermatogonia in seminiferous tubule cross-sections and of a borderline decrease in the number of litters conceived during the 8th and 9th posttreatment weeks. The negative results for induction of gene mutations as well as clastogenic damage are at variance with Nomura's reports of dominant effects (F1 cancers and malformations) produced by urethane.

  13. Specifying and protecting germ cell fate

    PubMed Central

    Strome, Susan; Updike, Dustin

    2015-01-01

    Germ cells are the special cells in the body that undergo meiosis to generate gametes and subsequently entire new organisms after fertilization, a process that continues generation after generation. Recent studies have expanded our understanding of the factors and mechanisms that specify germ cell fate, including the partitioning of maternally supplied ‘germ plasm’, inheritance of epigenetic memory and expression of transcription factors crucial for primordial germ cell (PGC) development. Even after PGCs are specified, germline fate is labile and thus requires protective mechanisms, such as global transcriptional repression, chromatin state alteration and translation of only germline-appropriate transcripts. Findings from diverse species continue to provide insights into the shared and divergent needs of these special reproductive cells. PMID:26122616

  14. [Germ cell membrane lipids in spermatogenesis].

    PubMed

    Wang, Ting; Shi, Xiao; Quan, Song

    2016-05-01

    Spermatogenesis is a complex developmental process in which a diploid progenitor germ cell transforms into highly specialized spermatozoa. During spermatogenesis, membrane remodeling takes place, and cell membrane permeability and liquidity undergo phase-specific changes, which are all associated with the alteration of membrane lipids. Lipids are important components of the germ cell membrane, whose volume and ratio fluctuate in different phases of spermatogenesis. Abnormal lipid metabolism can cause spermatogenic dysfunction and consequently male infertility. Germ cell membrane lipids are mainly composed of cholesterol, phospholipids and glycolipids, which play critical roles in cell adhesion and signal transduction during spermatogenesis. An insight into the correlation of membrane lipids with spermatogenesis helps us to better understand the mechanisms of spermatogenesis and provide new approaches to the diagnosis and treatment of male infertility.

  15. Attraction rules: germ cell migration in zebrafish.

    PubMed

    Raz, Erez; Reichman-Fried, Michal

    2006-08-01

    The migration of zebrafish primordial germ cell towards the region where the gonad develops is guided by the chemokine SDF-1a. Recent studies show that soon after their specification, the cells undergo a series of morphological alterations before they become motile and are able to respond to attractive cues. As migratory cells, primordial germ cells move towards their target while correcting their path upon exiting a cyclic phase in which morphological cell polarity is lost. In the following stages, the cells gather at specific locations and move as cell clusters towards their final target. In all of these stages, zebrafish germ cells respond as individual cells to alterations in the shape of the sdf-1a expression domain, by directed migration towards their target - the position where the gonad develops.

  16. Surgery and Combination Chemotherapy in Treating Children With Extracranial Germ Cell Tumors

    ClinicalTrials.gov

    2016-05-06

    Childhood Embryonal Tumor; Childhood Extracranial Germ Cell Tumor; Childhood Extragonadal Germ Cell Tumor; Childhood Malignant Ovarian Germ Cell Tumor; Childhood Malignant Testicular Germ Cell Tumor; Childhood Teratoma; Ovarian Embryonal Carcinoma; Ovarian Yolk Sac Tumor; Stage II Malignant Testicular Germ Cell Tumor; Stage IIA Ovarian Germ Cell Tumor; Stage IIB Ovarian Germ Cell Tumor; Stage IIC Ovarian Germ Cell Tumor; Stage III Malignant Testicular Germ Cell Tumor; Stage IIIA Ovarian Germ Cell Tumor; Stage IIIB Ovarian Germ Cell Tumor; Stage IIIC Ovarian Germ Cell Tumor; Testicular Choriocarcinoma and Yolk Sac Tumor; Testicular Embryonal Carcinoma

  17. Intracardiac metastasis from germ cell testicular tumor.

    PubMed

    Jonjev, Z S; Rajić, J; Majin, M; Donat, D

    2012-09-01

    Intracardiac metastases of germ cell testicular tumors are not commonly seen in clinical practice. The clinical presentation of right-sided heart metastases ranges widely. Depending upon its size and intracardiac location, it could be highly symptomatic, leading to a congestive heart failure, pulmonary embolism, and death, or completely asymptomatic. Improved imaging techniques and treatment strategies demonstrate that right-sided heart metastasis should be considered a potentially dangerous but treatable disease. Presented is the case of a 24-year-old man with a testicular nonseminomatous germ cell tumor, which after metastasizing in the right atrium differentiated into a teratoma and resulted in an inflow obstruction of the right ventricle.

  18. Lessons learned from epidemiologic studies of environmental exposure and genetic disease.

    PubMed

    Olshan, A F

    1995-01-01

    The induction of germ cell mutations with ionizing radiation and chemicals has been clearly demonstrated in experimental animal test systems. Less is known about the effects of environmental and other exposures on human germ cells. Epidemiologic studies of atomic bomb and childhood cancer survivors and their offspring have generally not indicated an excess risk for a variety of adverse reproductive outcomes and childhood diseases, including those due to germ cell mutations. Other epidemiologic studies, including the investigation of cancer among the offspring of fathers employed at the Sellafield nuclear facility in Great Britain and studies of paternal occupation and birth defects, have found associations. This paper reviews these studies and the methodologic problems inherent in the epidemiologic approach to evaluating environmentally induced germ cell mutagenesis in humans. Epidemiologic studies incorporating newly developed techniques for the detection of mutations and abnormalities in sperm may provide the sensitivity needed to determine precisely the magnitude of risk.

  19. Childhood Central Nervous System Germ Cell Tumors Treatment

    MedlinePlus

    ... Ependymoma Treatment Research Childhood Central Nervous System Germ Cell Tumors Treatment (PDQ®)–Patient Version General Information About Childhood Central Nervous System (CNS) Germ Cell Tumors Go to Health Professional Version Key Points ...

  20. Treatment Options By Stage (Ovarian Germ Cell Tumors)

    MedlinePlus

    ... Tube, & Primary Peritoneal Cancer Screening Research Ovarian Germ Cell Tumors Treatment (PDQ®)–Patient Version General Information About Ovarian Germ Cell Tumors Go to Health Professional Version Key Points ...

  1. Histopathology of pineal germ cell tumors.

    PubMed

    Vasiljevic, A; Szathmari, A; Champier, J; Fèvre-Montange, M; Jouvet, A

    2015-01-01

    Germ cell tumors (GCTs) classically occur in gonads. However, they are the most frequent neoplasms in the pineal region. The pineal location of GCTs may be caused by the neoplastic transformation of a primordial germ cell that has mismigrated. The World Health Organization (WHO) recognizes 5 histological types of intracranial GCTs: germinoma and non-germinomatous tumors including embryonal carcinoma, yolk sac tumor, choriocarcinoma and mature or immature teratoma. Germinomas and teratomas are frequently encountered as pure tumors whereas the other types are mostly part of mixed GCTs. In this situation, the neuropathologist has to be able to identify each component of a GCT. When diagnosis is difficult, use of recent immunohistochemical markers such as OCT(octamer-binding transcription factor)3/4, Glypican 3, SALL(sal-like protein)4 may be required. OCT3/4 is helpful in the diagnosis of germinomas, Glypican 3 in the diagnosis of yolk sac tumors and SALL4 in the diagnosis of the germ cell nature of an intracranial tumor. When the germ cell nature of a pineal tumor is doubtful, the finding of an isochromosome 12p suggests the diagnosis of GCT. The final pathological report should always be confronted with the clinical data, especially the serum or cerebrospinal fluid levels of β-human chorionic gonadotropin (HCG) and alpha-fetoprotein.

  2. Multispecies Purification of Testicular Germ Cells.

    PubMed

    Lima, Ana C; Jung, Min; Rusch, Jannette; Usmani, Abul; Lopes, Alexandra; Conrad, Donald F

    2016-08-24

    Advanced methods of cellular purification are required to apply genome technology to the study of spermatogenesis. One approach, based on flow cytometry of murine testicular cells stained with Hoechst-33342 (Ho-FACS), has been extensively optimized and currently allows the isolation of 9 germ cell types. This staining technique is straightforward to implement, highly effective at purifying specific germ cell types and yields sufficient cell numbers for high throughput studies. Ho-FACS is a technique that does not require species-specific markers, but whose applicability to other species is largely unexplored. We hypothesized that, due to the similar cell physiology of spermatogenesis across mammals, Ho-FACS could be used to produce highly purified subpopulations of germ cells in mammals other than mouse. To test this hypothesis, we applied Ho-FACS to 4 mammalian species that are widely used in testis research - Rattus norvegicus, Cavia porcellus, Canis familiaris and Sus scrofa domesticus We successfully isolated 4 germ cell populations from these species with average purity of 79% for spermatocytes, and 90% for spermatids and 66% for spermatogonia. Additionally, we compare the performance of mechanical and chemical dissociation for each species, and propose an optimized gating strategy to better discriminate round and elongating spermatids in the mouse, which can potentially be applied to other species. Our work indicates that spermatogenesis may be uniquely accessible among mammalian developmental systems, as a single set of reagents may be sufficient to isolate germ cell populations from many different mammalian species, opening new avenues in the fields of development and male reproductive biology.

  3. Multispecies Purification of Testicular Germ Cells1

    PubMed Central

    Lima, Ana C.; Jung, Min; Rusch, Jannette; Usmani, Abul; Lopes, Alexandra M.; Conrad, Donald F.

    2016-01-01

    Advanced methods of cellular purification are required to apply genome technology to the study of spermatogenesis. One approach, based on flow cytometry of murine testicular cells stained with Hoechst-33342 (Ho-FACS), has been extensively optimized and currently allows the isolation of nine germ cell types. This staining technique is straightforward to implement, is highly effective at purifying specific germ cell types, and yields sufficient cell numbers for high-throughput studies. Ho-FACS is a technique that does not require species-specific markers, but whose applicability to other species is largely unexplored. We hypothesized that, because of the similar cell physiology of spermatogenesis across mammals, Ho-FACS could be used to produce highly purified subpopulations of germ cells in mammals other than mouse. To test this hypothesis, we applied Ho-FACS to four mammalian species that are widely used in testis research: Rattus norvegicus, Cavia porcellus, Canis familiaris, and Sus scrofa domesticus. We successfully isolated four germ cell populations from these species with average purity of 79% for spermatocytes, 90% for spermatids, and 66% for spermatogonia. Additionally, we compare the performance of mechanical and chemical dissociation for each species, and propose an optimized gating strategy to better discriminate round and elongating spermatids in the mouse, which can potentially be applied to other species. Our work indicates that spermatogenesis may be uniquely accessible among mammalian developmental systems, as a single set of reagents may be sufficient to isolate germ cell populations from many different mammalian species, opening new avenues in the fields of development and male reproductive biology. PMID:27557646

  4. Pathogenesis of germ cell neoplasia in testicular dysgenesis and disorders of sex development.

    PubMed

    Jørgensen, Anne; Lindhardt Johansen, Marie; Juul, Anders; Skakkebaek, Niels E; Main, Katharina M; Rajpert-De Meyts, Ewa

    2015-09-01

    Development of human gonads is a sex-dimorphic process which evolved to produce sex-specific types of germ cells. The process of gonadal sex differentiation is directed by the action of the somatic cells and ultimately results in germ cells differentiating to become functional gametes through spermatogenesis or oogenesis. This tightly controlled process depends on the proper sequential expression of many genes and signalling pathways. Disturbances of this process can be manifested as a large spectrum of disorders, ranging from severe disorders of sex development (DSD) to - in the genetic male - mild reproductive problems within the testicular dysgenesis syndrome (TDS), with large overlap between the syndromes. These disorders carry an increased but variable risk of germ cell neoplasia. In this review, we discuss the pathogenesis of germ cell neoplasia associated with gonadal dysgenesis, especially in individuals with 46,XY DSD. We summarise knowledge concerning development and sex differentiation of human gonads, with focus on sex-dimorphic steps of germ cell maturation, including meiosis. We also briefly outline the histopathology of germ cell neoplasia in situ (GCNIS) and gonadoblastoma (GDB), which are essentially the same precursor lesion but with different morphological structure dependent upon the masculinisation of the somatic niche. To assess the risk of germ cell neoplasia in different types of DSD, we have performed a PubMed search and provide here a synthesis of the evidence from studies published since 2006. We present a model for pathogenesis of GCNIS/GDB in TDS/DSD, with the risk of malignancy determined by the presence of the testis-inducing Y chromosome and the degree of masculinisation. The associations between phenotype and the risk of neoplasia are likely further modulated in each individual by the constellation of the gene polymorphisms and environmental factors. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Rebuilding pluripotency from primordial germ cells.

    PubMed

    Leitch, Harry G; Nichols, Jennifer; Humphreys, Peter; Mulas, Carla; Martello, Graziano; Lee, Caroline; Jones, Ken; Surani, M Azim; Smith, Austin

    2013-01-01

    Mammalian primordial germ cells (PGCs) are unipotent progenitors of the gametes. Nonetheless, they can give rise directly to pluripotent stem cells in vitro or during teratocarcinogenesis. This conversion is inconsistent, however, and has been difficult to study. Here, we delineate requirements for efficient resetting of pluripotency in culture. We demonstrate that in defined conditions, routinely 20% of PGCs become EG cells. Conversion can occur from the earliest specified PGCs. The entire process can be tracked from single cells. It is driven by leukemia inhibitory factor (LIF) and the downstream transcription factor STAT3. In contrast, LIF signaling is not required during germ cell ontogeny. We surmise that ectopic LIF/STAT3 stimulation reconstructs latent pluripotency and self-renewal. Notably, STAT3 targets are significantly upregulated in germ cell tumors, suggesting that dysregulation of this pathway may underlie teratocarcinogenesis. These findings demonstrate that EG cell formation is a robust experimental system for exploring mechanisms involved in reprogramming and cancer.

  6. The yeast environmental stress response regulates mutagenesis induced by proteotoxic stress.

    PubMed

    Shor, Erika; Fox, Catherine A; Broach, James R

    2013-01-01

    Conditions of chronic stress are associated with genetic instability in many organisms, but the roles of stress responses in mutagenesis have so far been elucidated only in bacteria. Here, we present data demonstrating that the environmental stress response (ESR) in yeast functions in mutagenesis induced by proteotoxic stress. We show that the drug canavanine causes proteotoxic stress, activates the ESR, and induces mutagenesis at several loci in an ESR-dependent manner. Canavanine-induced mutagenesis also involves translesion DNA polymerases Rev1 and Polζ and non-homologous end joining factor Ku. Furthermore, under conditions of chronic sub-lethal canavanine stress, deletions of Rev1, Polζ, and Ku-encoding genes exhibit genetic interactions with ESR mutants indicative of ESR regulating these mutagenic DNA repair processes. Analyses of mutagenesis induced by several different stresses showed that the ESR specifically modulates mutagenesis induced by proteotoxic stress. Together, these results document the first known example of an involvement of a eukaryotic stress response pathway in mutagenesis and have important implications for mechanisms of evolution, carcinogenesis, and emergence of drug-resistant pathogens and chemotherapy-resistant tumors.

  7. The Yeast Environmental Stress Response Regulates Mutagenesis Induced by Proteotoxic Stress

    PubMed Central

    Shor, Erika; Fox, Catherine A.; Broach, James R.

    2013-01-01

    Conditions of chronic stress are associated with genetic instability in many organisms, but the roles of stress responses in mutagenesis have so far been elucidated only in bacteria. Here, we present data demonstrating that the environmental stress response (ESR) in yeast functions in mutagenesis induced by proteotoxic stress. We show that the drug canavanine causes proteotoxic stress, activates the ESR, and induces mutagenesis at several loci in an ESR-dependent manner. Canavanine-induced mutagenesis also involves translesion DNA polymerases Rev1 and Polζ and non-homologous end joining factor Ku. Furthermore, under conditions of chronic sub-lethal canavanine stress, deletions of Rev1, Polζ, and Ku-encoding genes exhibit genetic interactions with ESR mutants indicative of ESR regulating these mutagenic DNA repair processes. Analyses of mutagenesis induced by several different stresses showed that the ESR specifically modulates mutagenesis induced by proteotoxic stress. Together, these results document the first known example of an involvement of a eukaryotic stress response pathway in mutagenesis and have important implications for mechanisms of evolution, carcinogenesis, and emergence of drug-resistant pathogens and chemotherapy-resistant tumors. PMID:23935537

  8. Dnd knockout ablates germ cells and demonstrates germ cell independent sex differentiation in Atlantic salmon

    PubMed Central

    Wargelius, Anna; Leininger, Sven; Skaftnesmo, Kai Ove; Kleppe, Lene; Andersson, Eva; Taranger, Geir Lasse; Schulz, Rüdiger W; Edvardsen, Rolf B

    2016-01-01

    Introgression of farmed salmon escapees into wild stocks is a major threat to the genetic integrity of wild populations. Using germ cell-free fish in aquaculture may mitigate this problem. Our study investigated whether it is possible to produce germ cell-free salmon in F0 by using CRISPR-Cas9 to knock out dnd, a factor required for germ cell survival in vertebrates. To avoid studying mosaic animals, sgRNA targeting alb was simultaneously used as a visual tracer since the phenotype of alb KO is complete loss of pigmentation. Induced mutations for the tracer (alb) and the target (dnd) genes were highly correlated and produced germ cell-less fish lacking pigmentation, underlining the suitability of alb KO to serve as tracer for targeted double allelic mutations in F0 animals in species with prohibitively long generation times. This is also the first report describing dnd knockout in any fish species. Analyzing gene expression and histology of dnd KO fish revealed that sex differentiation of the somatic compartment does not depend on the presence of germ cells. However, the organization of the ovarian somatic compartment seems compromised in mutant fish. PMID:26888627

  9. Dnd knockout ablates germ cells and demonstrates germ cell independent sex differentiation in Atlantic salmon.

    PubMed

    Wargelius, Anna; Leininger, Sven; Skaftnesmo, Kai Ove; Kleppe, Lene; Andersson, Eva; Taranger, Geir Lasse; Schulz, Rüdiger W; Edvardsen, Rolf B

    2016-02-18

    Introgression of farmed salmon escapees into wild stocks is a major threat to the genetic integrity of wild populations. Using germ cell-free fish in aquaculture may mitigate this problem. Our study investigated whether it is possible to produce germ cell-free salmon in F0 by using CRISPR-Cas9 to knock out dnd, a factor required for germ cell survival in vertebrates. To avoid studying mosaic animals, sgRNA targeting alb was simultaneously used as a visual tracer since the phenotype of alb KO is complete loss of pigmentation. Induced mutations for the tracer (alb) and the target (dnd) genes were highly correlated and produced germ cell-less fish lacking pigmentation, underlining the suitability of alb KO to serve as tracer for targeted double allelic mutations in F0 animals in species with prohibitively long generation times. This is also the first report describing dnd knockout in any fish species. Analyzing gene expression and histology of dnd KO fish revealed that sex differentiation of the somatic compartment does not depend on the presence of germ cells. However, the organization of the ovarian somatic compartment seems compromised in mutant fish.

  10. Building on the Past, Shaping the Future: The Environmental Mutagenesis and Genomics Society

    EPA Science Inventory

    In late 2012 the members of the Environmental Mutagen Society voted to change its name to the Environmental Mutagenesis and Genomics Society. Here we describe the thought process that led to adoption of the new name, which both respects the rich history of a Society founded in 19...

  11. Building on the Past, Shaping the Future: The Environmental Mutagenesis and Genomics Society

    EPA Science Inventory

    In late 2012 the members of the Environmental Mutagen Society voted to change its name to the Environmental Mutagenesis and Genomics Society. Here we describe the thought process that led to adoption of the new name, which both respects the rich history of a Society founded in 19...

  12. Gender differences in the induction of chromosomal aberrations and gene mutations in rodent germ cells

    SciTech Connect

    Adler, Ilse-Dore; Carere, Angelo; Eichenlaub-Ritter, Ursula

    2007-05-15

    Germ cell mutagenicity testing provides experimental data to quantify genetic risk for exposed human populations. The majority of tests are performed with exposure of males, and female data are relatively rare. The reason for this paucity lies in the differences between male and female germ cell biology. Male germ cells are produced throughout reproductive life and all developmental stages can be ascertained by appropriate breeding schemes. In contrast, the female germ cell pool is limited, meiosis begins during embryogenesis and oocytes are arrested over long periods of time until maturation processes start for small numbers of oocytes during the oestrus cycle in mature females. The literature data are reviewed to point out possible gender differences of germ cells to exogenous agents such as chemicals or ionizing radiation. From the limited information, it can be concluded that male germ cells are more sensitive than female germ cells to the induction of chromosomal aberrations and gene mutations. However, exceptions are described which shed doubt on the extrapolation of experimental data from male rodents to the genetic risk of the human population. Furthermore, the female genome may be more sensitive to mutation induction during peri-conceptional stages compared to the male genome of the zygote. With few exceptions, germ cell experiments have been carried out under high acute exposure to optimize the effects and to compensate for the limited sample size in animal experiments. Human exposure to environmental agents, on the other hand, is usually chronic and involves low doses. Under these conditions, gender differences may become apparent that have not been studied so far. Additionally, data are reviewed that suggest a false impression of safety when responses are negative under high acute exposure of male rodents while a mutational response is induced by low chronic exposure. The classical (morphological) germ cell mutation tests are not performed anymore

  13. Sex Specification and Heterogeneity of Primordial Germ Cells in Mice.

    PubMed

    Sakashita, Akihiko; Kawabata, Yukiko; Jincho, Yuko; Tajima, Shiun; Kumamoto, Soichiro; Kobayashi, Hisato; Matsui, Yasuhisa; Kono, Tomohiro

    2015-01-01

    In mice, primordial germ cells migrate into the genital ridges by embryonic day 13.5 (E13.5), where they are then subjected to a sex-specific fate with female and male primordial germ cells undergoing mitotic arrest and meiosis, respectively. However, the sex-specific basis of primordial germ cell differentiation is poorly understood. The aim of this study was to investigate the sex-specific features of mouse primordial germ cells. We performed RNA-sequencing (seq) of E13.5 female and male mouse primordial germ cells using next-generation sequencing. We identified 651 and 428 differentially expressed transcripts (>2-fold, P < 0.05) in female and male primordial germ cells, respectively. Of these, many transcription factors were identified. Gene ontology and network analysis revealed differing functions of the identified female- and male-specific genes that were associated with primordial germ cell acquisition of sex-specific properties required for differentiation into germ cells. Furthermore, DNA methylation and ChIP-seq analysis of histone modifications showed that hypomethylated gene promoter regions were bound with H3K4me3 and H3K27me3. Our global transcriptome data showed that in mice, primordial germ cells are decisively assigned to a sex-specific differentiation program by E13.5, which is necessary for the development of vital germ cells.

  14. On the development of extragonadal and gonadal human germ cells.

    PubMed

    Heeren, A Marijne; He, Nannan; de Souza, Aline F; Goercharn-Ramlal, Angelique; van Iperen, Liesbeth; Roost, Matthias S; Gomes Fernandes, Maria M; van der Westerlaken, Lucette A J; Chuva de Sousa Lopes, Susana M

    2016-02-01

    Human germ cells originate in an extragonadal location and have to migrate to colonize the gonadal primordia at around seven weeks of gestation (W7, or five weeks post conception). Many germ cells are lost along the way and should enter apoptosis, but some escape and can give rise to extragonadal germ cell tumors. Due to the common somatic origin of gonads and adrenal cortex, we investigated whether ectopic germ cells were present in the human adrenals. Germ cells expressing DDX4 and/or POU5F1 were present in male and female human adrenals in the first and second trimester. However, in contrast to what has been described in mice, where 'adrenal' and 'ovarian' germ cells seem to enter meiosis in synchrony, we were unable to observe meiotic entry in human 'adrenal' germ cells until W22. By contrast, 'ovarian' germ cells at W22 showed a pronounced asynchronous meiotic entry. Interestingly, we observed that immature POU5F1+ germ cells in both first and second trimester ovaries still expressed the neural crest marker TUBB3, reminiscent of their migratory phase. Our findings highlight species-specific differences in early gametogenesis between mice and humans. We report the presence of a population of ectopic germ cells in the human adrenals during development. © 2016. Published by The Company of Biologists Ltd.

  15. On the development of extragonadal and gonadal human germ cells

    PubMed Central

    Heeren, A. Marijne; He, Nannan; de Souza, Aline F.; Goercharn-Ramlal, Angelique; van Iperen, Liesbeth; Roost, Matthias S.; Gomes Fernandes, Maria M.; van der Westerlaken, Lucette A. J.; Chuva de Sousa Lopes, Susana M.

    2016-01-01

    ABSTRACT Human germ cells originate in an extragonadal location and have to migrate to colonize the gonadal primordia at around seven weeks of gestation (W7, or five weeks post conception). Many germ cells are lost along the way and should enter apoptosis, but some escape and can give rise to extragonadal germ cell tumors. Due to the common somatic origin of gonads and adrenal cortex, we investigated whether ectopic germ cells were present in the human adrenals. Germ cells expressing DDX4 and/or POU5F1 were present in male and female human adrenals in the first and second trimester. However, in contrast to what has been described in mice, where ‘adrenal’ and ‘ovarian’ germ cells seem to enter meiosis in synchrony, we were unable to observe meiotic entry in human ‘adrenal’ germ cells until W22. By contrast, ‘ovarian’ germ cells at W22 showed a pronounced asynchronous meiotic entry. Interestingly, we observed that immature POU5F1+ germ cells in both first and second trimester ovaries still expressed the neural crest marker TUBB3, reminiscent of their migratory phase. Our findings highlight species-specific differences in early gametogenesis between mice and humans. We report the presence of a population of ectopic germ cells in the human adrenals during development. PMID:26834021

  16. Combination Chemotherapy in Treating Young Patients With Recurrent or Resistant Malignant Germ Cell Tumors

    ClinicalTrials.gov

    2017-02-07

    Childhood Extracranial Germ Cell Tumor; Childhood Extragonadal Germ Cell Tumor; Childhood Malignant Ovarian Germ Cell Tumor; Childhood Malignant Testicular Germ Cell Tumor; Ovarian Choriocarcinoma; Ovarian Embryonal Carcinoma; Ovarian Yolk Sac Tumor; Recurrent Childhood Malignant Germ Cell Tumor; Recurrent Malignant Testicular Germ Cell Tumor; Recurrent Ovarian Germ Cell Tumor; Testicular Choriocarcinoma; Testicular Choriocarcinoma and Embryonal Carcinoma; Testicular Choriocarcinoma and Yolk Sac Tumor; Testicular Embryonal Carcinoma; Testicular Embryonal Carcinoma and Yolk Sac Tumor; Testicular Yolk Sac Tumor

  17. Regulation of germ cell meiosis in the fetal ovary.

    PubMed

    Spiller, Cassy M; Bowles, Josephine; Koopman, Peter

    2012-01-01

    Fertility depends on correct regulation of meiosis, the special form of cell division that gives rise to haploid gametes. In female mammals, germ cells enter meiosis during fetal ovarian development, while germ cells in males avoid entering meiosis until puberty. Decades of research have shown that meiotic entry, and germ cell sex determination, are not initiated intrinsically within the germ cells. Instead, meiosis is induced by signals produced by the surrounding somatic cells. More recently, retinoic acid (RA), the active derivative of vitamin A, has been implicated in meiotic induction during fetal XX and postnatal XY germ cell development. Evidence for an intricate system of RA synthesis and degradation in the fetal ovary and testis has emerged, explaining past observations of infertility in vitamin A-deficient rodents. Here we review how meiosis is triggered in fetal ovarian germ cells, paying special attention to the role of RA in this process.

  18. Mutagenesis and differentiation induction in mammalian cells by environmental chemicals

    SciTech Connect

    Friedman, J.; Huberman, E.

    1980-01-01

    These studies indicate that in agreement with the somatic mutation hypothesis, chemical carcinogens: (1) are mutagenic for mammalian cells as tested in the cell-mediated assay; (2) the degree of mutagenicity is correlated with their degree of carcinogenicity; (3) that at least in cases when analyzed carefully the metabolites responsible for mutagenesis are also responsible for initiating the carcinogenic event; and (4) that a cell organ type specificity can be established using the cell-mediated assay. Studies with HL-60 cells and HO melanoma cells and those of others suggest that tumor-promoting phorbol diesters can alter cell differentiation in various cell types and that the degree of the observed alteration in the differentiation properties may be related to the potency of the phorbol esters. Thus these and similar systems may serve as models for both studies and identification of certain types of tumor promoting agents. (ERB)

  19. Molecular mechanisms of male germ cell differentiation.

    PubMed

    Hecht, N B

    1998-07-01

    During spermatogenesis, diploid stem cells differentiate, undergo meiosis, and transform into haploid spermatozoa. As this precisely timed series of events proceeds, chromosomal ploidy is reduced and the nucleosomes of the chromatin are replaced by a transcriptionally quiescent protamine-containing nucleus. The premature termination of transcription during the haploid phase of spermatogenesis necessitates an especially prominent role for posttranscriptional regulation in the temporal and spatial expression of many testis-specific proteins and isozymes. In this review article, discussion will focus on novel mechanisms regulating gene expression in mammalian male germ cells from genome to protein.

  20. Intracranial germ cell tumor mimicking anorexia nervosa.

    PubMed

    Andreu Martínez, F J; Martínez Mateu, J M

    2006-12-01

    We report on a case of a 23 year-old female diagnosed as having a germ-cell tumour located in the sellar region. The patient referred anorexia, psychic disorders, weight loss of 15 kilograms and secondary amenorrhea during the previous three years. This is the reason why the patient was diagnosed as having anorexia nervosa. Subsequently, the patient presented some endocrine dysfunction. MRI revealed the existence of a lesion located in suprasellar and hypothalamic regions. This case shows that the presence of intracranial tumours next to the hypothalamus must be borne in mind as a rare but real possibility in cases of anorexia nervosa, specially in those non-typical cases.

  1. Environmental Stress Induces Trinucleotide Repeat Mutagenesis in Human Cells by Alt-Nonhomologous End Joining Repair.

    PubMed

    Chatterjee, Nimrat; Lin, Yunfu; Yotnda, Patricia; Wilson, John H

    2016-07-31

    Multiple pathways modulate the dynamic mutability of trinucleotide repeats (TNRs), which are implicated in neurodegenerative disease and evolution. Recently, we reported that environmental stresses induce TNR mutagenesis via stress responses and rereplication, with more than 50% of mutants carrying deletions or insertions-molecular signatures of DNA double-strand break repair. We now show that knockdown of alt-nonhomologous end joining (alt-NHEJ) components-XRCC1, LIG3, and PARP1-suppresses stress-induced TNR mutagenesis, in contrast to the components of homologous recombination and NHEJ, which have no effect. Thus, alt-NHEJ, which contributes to genetic mutability in cancer cells, also plays a novel role in environmental stress-induced TNR mutagenesis. Published by Elsevier Ltd.

  2. Black carp vasa identifies embryonic and gonadal germ cells.

    PubMed

    Xue, Ting; Yu, Miao; Pan, Qihua; Wang, Yizhou; Fang, Jian; Li, Lingyu; Deng, Yu; Chen, Kai; Wang, Qian; Chen, Tiansheng

    2017-07-01

    Identification of molecular markers is an essential step in the study of germ cells. Vasa is an RNA helicase and a well-known germ cell marker that plays a crucial role in germ cell development. Here, we identified the Vasa homolog termed Mpvasa as the first germ cell marker in black carp (Mylopharyngodon piceus). First, a 2819-bp full-length Mpvasa complementary DNA (cDNA) was cloned by PCR using degenerated primers of conserved sequences and gene-specific primers. The Mpvasa cDNA sequence encodes a 637-amino acid protein that contains eight conserved characteristic motifs of the DEAD box protein family, and shares high identity to grass carp (81%) and zebrafish (74%) vasa homologs. Second, Mpvasa expression was restricted to the gonad in adulthood by RT-PCR and Western blot analysis. The dynamic patterns of temporal-spatial expression of Mpvasa during gametogenesis were examined by in situ hybridization, and Mpvasa transcripts were strictly detected in gonadal germ cells throughout oogenesis, predominantly in immature oocytes (stage I, II, and III oocytes). Third, Mpvasa transcripts were highly detected in unfertilized eggs and early embryos, and the signal indicated a dynamic migration of the primordial germ cells during embryogenesis, suggesting that Mpvasa transcripts were maternally inherited and specifically distributed in germ cells. Taken together, these results demonstrated that Mpvasa is an applicable molecular marker for identification of gonadal and embryonic germ cells, which facilitates the isolation and utilization of germ cells in black carp.

  3. Mitotic Arrest in Teratoma Susceptible Fetal Male Germ Cells

    PubMed Central

    Western, Patrick S.; Ralli, Rachael A.; Wakeling, Stephanie I.; Lo, Camden; van den Bergen, Jocelyn A.; Miles, Denise C.; Sinclair, Andrew H.

    2011-01-01

    Formation of germ cell derived teratomas occurs in mice of the 129/SvJ strain, but not in C57Bl/6 inbred or CD1 outbred mice. Despite this, there have been few comparative studies aimed at determining the similarities and differences between teratoma susceptible and non-susceptible mouse strains. This study examines the entry of fetal germ cells into the male pathway and mitotic arrest in 129T2/SvJ mice. We find that although the entry of fetal germ cells into mitotic arrest is similar between 129T2/SvJ, C57Bl/6 and CD1 mice, there were significant differences in the size and germ cell content of the testis cords in these strains. In 129T2/SvJ mice germ cell mitotic arrest involves upregulation of p27KIP1, p15INK4B, activation of RB, the expression of male germ cell differentiation markers NANOS2, DNMT3L and MILI and repression of the pluripotency network. The germ-line markers DPPA2 and DPPA4 show reciprocal repression and upregulation, respectively, while FGFR3 is substantially enriched in the nucleus of differentiating male germ cells. Further understanding of fetal male germ cell differentiation promises to provide insight into disorders of the testis and germ cell lineage, such as testis tumour formation and infertility. PMID:21674058

  4. Cancer testis antigen expression in testicular germ cell tumorigenesis.

    PubMed

    Bode, Peter K; Thielken, Andrea; Brandt, Simone; Barghorn, André; Lohe, Bernd; Knuth, Alexander; Moch, Holger

    2014-06-01

    Cancer testis antigens are encoded by germ line-associated genes that are present in normal germ cells of testis and ovary but not in differentiated tissues. Their expression in various human cancer types has been interpreted as 're-expression' or as intratumoral progenitor cell signature. Cancer testis antigen expression patterns have not yet been studied in germ cell tumorigenesis with specific emphasis on intratubular germ cell neoplasia unclassified as a precursor lesion for testicular germ cell tumors. Immunohistochemistry was used to study MAGEA3, MAGEA4, MAGEC1, GAGE1 and CTAG1B expression in 325 primary testicular germ cell tumors, including 94 mixed germ cell tumors. Seminomatous and non-seminomatous components were separately arranged and evaluated on tissue microarrays. Spermatogonia in the normal testis were positive, whereas intratubular germ cell neoplasia unclassified was negative for all five CT antigens. Cancer testis antigen expression was only found in 3% (CTAG1B), 10% (GAGE1, MAGEA4), 33% (MAGEA3) and 40% (MAGEC1) of classic seminoma but not in non-seminomatous testicular germ cell tumors. In contrast, all spermatocytic seminomas were positive for cancer testis antigens. These data are consistent with a different cell origin in spermatocytic seminoma compared with classic seminoma and support a progression model with loss of cancer testis antigens in early tumorigenesis of testicular germ cell tumors and later re-expression in a subset of seminomas.

  5. Translational Control of Germ Cell Decisions.

    PubMed

    Pushpa, Kumari; Kumar, Ganga Anil; Subramaniam, Kuppuswamy

    2017-01-01

    Germline poses unique challenges to gene expression control at the transcriptional level. While the embryonic germline maintains a global hold on new mRNA transcription, the female adult germline produces transcripts that are not translated into proteins until embryogenesis of subsequent generation. As a consequence, translational control plays a central role in governing various germ cell decisions including the formation of primordial germ cells, self-renewal/differentiation decisions in the adult germline, onset of gametogenesis and oocyte maturation. Mechanistically, several common themes such as asymmetric localization of mRNAs, conserved RNA-binding proteins that control translation by 3' UTR binding, translational activation by the cytoplasmic elongation of the polyA tail and the assembly of mRNA-protein complexes called mRNPs have emerged from the studies on Caenorhabditis elegans, Xenopus and Drosophila. How mRNPs assemble, what influences their dynamics, and how a particular 3' UTR-binding protein turns on the translation of certain mRNAs while turning off other mRNAs at the same time and space are key challenges for future work.

  6. Germ Cell Differentiation from Pluripotent Cells

    PubMed Central

    Medrano, Jose V.; Pera, Renee A. Reijo; Simón, Carlos

    2014-01-01

    Infertility is a medical condition with an increasing impact in Western societies with causes linked to toxins, genetics, and aging (primarily delay of motherhood). Within the different pathologies that can lead to infertility, poor quality or reduced quantity of gametes plays an important role. Gamete donation and therefore demand on donated sperm and eggs in fertility clinics is increasing. It is hoped that a better understanding of the conditions related to poor gamete quality may allow scientists to design rational treatments. However, to date, relatively little is known about human germ cell development in large part due to the inaccessibility of human development to molecular genetic analysis. It is hoped that pluripotent human embryonic stem cells and induced pluripotent stem cells may provide an accessible in vitro model to study germline development; these cells are able to differentiate to cells of all three primary embryonic germ layers, as well as to germ cells in vitro. We review the state of the art in germline differentiation from pluripotent stem cells. PMID:23329632

  7. Standard-Dose Combination Chemotherapy or High-Dose Combination Chemotherapy and Stem Cell Transplant in Treating Patients With Relapsed or Refractory Germ Cell Tumors

    ClinicalTrials.gov

    2017-08-15

    Germ Cell Tumor; Teratoma; Choriocarcinoma; Germinoma; Mixed Germ Cell Tumor; Yolk Sac Tumor; Childhood Teratoma; Malignant Germ Cell Neoplasm; Extragonadal Seminoma; Non-seminomatous Germ Cell Tumor; Seminoma

  8. Exposure to endocrine disruptor induces transgenerational epigenetic deregulation of microRNAs in primordial germ cells.

    PubMed

    Brieño-Enríquez, Miguel A; García-López, Jesús; Cárdenas, David B; Guibert, Sylvain; Cleroux, Elouan; Děd, Lukas; Hourcade, Juan de Dios; Pěknicová, Jana; Weber, Michael; Del Mazo, Jesús

    2015-01-01

    In mammals, germ cell differentiation is initiated in the Primordial Germ Cells (PGCs) during fetal development. Prenatal exposure to environmental toxicants such as endocrine disruptors may alter PGC differentiation, development of the male germline and induce transgenerational epigenetic disorders. The anti-androgenic compound vinclozolin represents a paradigmatic example of molecule causing transgenerational effects on germ cells. We performed prenatal exposure to vinclozolin in mice and analyzed the phenotypic and molecular changes in three successive generations. A reduction in the number of embryonic PGCs and increased rate of apoptotic cells along with decrease of fertility rate in adult males were observed in F1 to F3 generations. Blimp1 is a crucial regulator of PGC differentiation. We show that prenatal exposure to vinclozolin deregulates specific microRNAs in PGCs, such as miR-23b and miR-21, inducing disequilibrium in the Lin28/let-7/Blimp1 pathway in three successive generations of males. As determined by global maps of cytosine methylation, we found no evidence for prominent changes in DNA methylation in PGCs or mature sperm. Our data suggest that embryonic exposure to environmental endocrine disruptors induces transgenerational epigenetic deregulation of expression of microRNAs affecting key regulatory pathways of germ cells differentiation.

  9. High-frequency induction of chromosomal rearrangements in mouse germ cells by the chemotherapeutic agent chlorambucil.

    PubMed

    Rinchik, E M; Flaherty, L; Russell, L B

    1993-12-01

    Recent mutagenesis studies have demonstrated that the chemotherapeutic agent, chlorambucil (CHL), is highly mutagenic in male germ cells of the mouse. Post-meiotic germ cells, and especially early spermatids, are the most sensitive to the cytotoxic and mutagenic effects of this agent. Genetic, cytogenetic and molecular analyses of many induced mutations have shown that, in these germ-cell stages, CHL induces predominantly chromosomal rearrangements (deletions and translocations), and mutation-rate studies show that, in terms of tolerated doses, CHL is perhaps five to ten times more efficient in inducing rearrangements than is radiation exposure. Appropriate breeding protocols, along with knowledge of the advantages and limitations associated with the use of CHL, can be used to expand the current resource of chromosomal rearrangements in the mouse and to provide new phenotype-associated mutations amenable to positional-cloning techniques. The analysis of CHL-induced mutations has also contributed to understanding the factors that affect the yield and nature of chemically induced germline mutations in mammals.

  10. An Overview on Predictive Biomarkers of Testicular Germ Cell Tumors.

    PubMed

    Chieffi, Paolo

    2017-02-01

    Testicular germ cell tumors (TGCTs) are frequent solid malignant tumors and cause of death in men between 20-40 years of age. Genetic and environmental factors play an important role in the origin and development of TGCTs. Although the majority of TGCTs are responsive to chemotherapy, about 20% of patient presents incomplete response or tumors relapse. In addition, the current treatments cause acute toxicity and several chronic collateral effects, including sterility. The present mini-review collectively summarize the most recent findings on the new discovered molecular biomarkers such as tyrosine kinases, HMGAs, Aurora B kinase, and GPR30 receptor predictive of TGCTs and as emerging new possible molecular targets for therapeutic strategies. J. Cell. Physiol. 232: 276-280, 2017. © 2016 Wiley Periodicals, Inc.

  11. Gly429 is the major determinant of uncompetitive inhibition of human germ cell alkaline phosphatase by L-leucine.

    PubMed Central

    Hummer, C; Millán, J L

    1991-01-01

    The catalytic activity of human placental alkaline phosphatase (PLAP) and germ cell alkaline phosphatase (GCAP) can be inhibited, through an uncompetitive mechanism, by L-Phe. GCAP is also selectively inhibited by L-Leu. Site-directed mutagenesis of five of the 12 residues which are different in PLAP and GCAP revealed that Gly429 is the primary determinant of GCAP inhibition by L-Leu, and Ser84 and Leu297 play a modulatory role in the inhibition. PMID:2001256

  12. Building on the past, shaping the future: the Environmental Mutagenesis and Genomics Society.

    PubMed

    Wilson, Thomas E; DeMarini, David M; Dertinger, Stephen D; Engelward, Bevin P; Hanawalt, Philip C; MacGregor, James T; Smith-Roe, Stephanie L; Witt, Kristine L; Yauk, Carole L; Ljungman, Mats; Schwartz, Jeffrey L; Klein, Catherine B

    2013-04-01

    In late 2012, the members of the Environmental Mutagen Society voted to change its name to the Environmental Mutagenesis and Genomics Society. Here, we describe the thought process that led to adoption of the new name, which both respects the rich history of a Society founded in 1969 and reflects the many advances in our understanding of the nature and breadth of gene-environment interactions during the intervening 43 years. Copyright © 2013 Wiley Periodicals, Inc.

  13. The Formation of Germ Cell for Organizational Learning

    ERIC Educational Resources Information Center

    Ivaldi, Silvia; Scaratti, Giuseppe

    2016-01-01

    Purpose: The aim of the paper is to analyze the process of "germ cell" formation by framing it as an opportunity for promoting organizational learning and transformation. The paper aims to specifically answer two research questions: Why does the "germ cell" have a pivotal role in organization's transformation? and Which…

  14. Poland syndrome with intracranial germ cell tumor in a child.

    PubMed

    Elli, Murat; Oğur, Gönül; Dağdemir, Ayhan; Pinarli, Güçlü; Ceyhan, Meltem; Dağçinar, Adnan

    2009-01-01

    Poland syndrome is an uncommon unilateral deformity of chest wall and upper extremity with variable manifestations. Although numerous case reports of Poland syndrome associated with malignancies have been published, intracranial germ cell tumor in Poland syndrome has not been previously reported. The authors describe a 15-year-old male patient with intracranial germ cell tumor and Poland syndrome.

  15. Is Tobacco Smoke a Germ-Cell Mutagen?

    EPA Science Inventory

    Although no international organization exists to declare whether an agent is a germ-cell mutagen, tobacco smoke may be a human germ-cell mutagen. In the mouse, tobacco smoke induces a significant increase in the mutation frequency at an expanded simple tandem repeat (ESTR) locus....

  16. Isolation and transplantation of sturgeon early-stage germ cells.

    PubMed

    Pšenička, Martin; Saito, Taiju; Linhartová, Zuzana; Gazo, Ievgeniia

    2015-04-01

    We report, for the first time, a series of baseline techniques comprising isolation and transplantation of female and male early-stage germ cells in sturgeon to generate a germline chimera as a potential tool for surrogate reproduction and gene banking. Cells were dissociated from testis, characterized by mostly spermatogonia, and from ovary, exclusively comprising oogonia and previtellogenic oocytes, of Acipenser baerii, using 0.3% trypsin (2 hours, 23 °C) dissolved in PBS, isotonic with blood plasma. The dissociated germ cells were sorted by Percoll gradient centrifugation followed by immunolabeling with germ cell-specific vasa antibody DDX4, while 10% to 30% Percoll solution contained 79.4% and 70.8% labeled testicular and ovarian cells. Sorted germ cells were transplanted into a cavity close to a presumptive genital ridge of newly hatched heterospecific Acipenser ruthenus larvae with fluorescein isothiocyanate-labeled endogenous primordial germ cells. The transplanted germ cells were randomly distributed in the body cavity through 30-day posttransplantation (dpt). Subsequently, the cells were organized into genital ridges 50 dpt and proliferated 90 dpt. The number of both transplanted and endogenous germ cells significantly increased from 18.1, 22.2, and 29.1 (30 dpt) to 108.5, 90.8, and 118.5 (90 dpt) in ovarian, testicular, and endogenous germ cells, respectively (P < 0.05). The efficiency of transplantation was 60% (counted 90 dpt). Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  17. The Formation of Germ Cell for Organizational Learning

    ERIC Educational Resources Information Center

    Ivaldi, Silvia; Scaratti, Giuseppe

    2016-01-01

    Purpose: The aim of the paper is to analyze the process of "germ cell" formation by framing it as an opportunity for promoting organizational learning and transformation. The paper aims to specifically answer two research questions: Why does the "germ cell" have a pivotal role in organization's transformation? and Which…

  18. Is Tobacco Smoke a Germ-Cell Mutagen?

    EPA Science Inventory

    Although no international organization exists to declare whether an agent is a germ-cell mutagen, tobacco smoke may be a human germ-cell mutagen. In the mouse, tobacco smoke induces a significant increase in the mutation frequency at an expanded simple tandem repeat (ESTR) locus....

  19. Lin28a regulates germ cell pool size and fertility

    PubMed Central

    Shinoda, Gen; de Soysa, T. Yvanka; Seligson, Marc T.; Yabuuchi, Akiko; Fujiwara, Yuko; Huang, Pei Yi; Hagan, John P.; Gregory, Richard I.; Moss, Eric G.; Daley, George Q.

    2013-01-01

    Overexpression of LIN28A is associated with human germ cell tumors and promotes primordial germ cell (PGC) development from embryonic stem cells in vitro and in chimeric mice. Knockdown of Lin28a inhibits PGC development in vitro, but how constitutional Lin28a deficiency affects the mammalian reproductive system in vivo remains unknown. Here, we generated Lin28a knockout (KO) mice and found that Lin28a deficiency compromises the size of the germ cell pool in both males and females by affecting PGC proliferation during embryogenesis. Interestingly however, in Lin28a KO males the germ cell pool partially recovers during postnatal expansion, while fertility remains impaired in both males and females mated to wild type mice. Embryonic overexpression of let-7, a microRNA negatively regulated by Lin28a, reduces the germ cell pool, corroborating the role of the Lin28a/let-7 axis in regulating the germ lineage. PMID:23378032

  20. Primordial Germ Cells: Current Knowledge and Perspectives

    PubMed Central

    Nikolic, Aleksandar; Volarevic, Vladislav; Armstrong, Lyle; Lako, Majlinda; Stojkovic, Miodrag

    2016-01-01

    Infertility is a condition that occurs very frequently and understanding what defines normal fertility is crucial to helping patients. Causes of infertility are numerous and the treatment often does not lead to desired pregnancy especially when there is a lack of functional gametes. In humans, the primordial germ cell (PGC) is the primary undifferentiated stem cell type that will differentiate towards gametes: spermatozoa or oocytes. With the development of stem cell biology and differentiation protocols, PGC can be obtained from pluripotent stem cells providing a new therapeutic possibility to treat infertile couples. Recent studies demonstrated that viable mouse pups could be obtained from in vitro differentiated stem cells suggesting that translation of these results to human is closer. Therefore, the aim of this review is to summarize current knowledge about PGC indicating the perspective of their use in both research and medical application for the treatment of infertility. PMID:26635880

  1. The emerging role of matrix metalloproteases of the ADAM family in male germ cell apoptosis

    PubMed Central

    Urriola-Muñoz, Paulina; Lagos-Cabré, Raúl

    2011-01-01

    Constitutive germ cell apoptosis during mammalian spermatogenesis is a key process for controlling sperm output and to eliminate damaged or unwanted cells. An increase or decrease in the apoptosis rate has deleterious consequences and leads to low sperm production. Apoptosis in spermatogenesis has been widely studied, but the mechanism by which it is induced under physiological or pathological conditions has not been clarified. We have recently identified the metalloprotease ADAM17 (TACE) as a putative physiological inducer of germ cell apoptosis. The mechanisms involved in regulating the shedding of the ADAM17 extracellular domain are still far from being understood, although they are important in order to understand cell-cell communications. Here, we review the available data regarding apoptosis during mammalian spermatogenesis and the localization of ADAM proteins in the male reproductive tract. We propose an integrative working model where ADAM17, p38 MAPK, protein kinase C (PKC) and the tyrosine kinase c-Abl participate in the physiological signalling cascade inducing apoptosis in germ cells. In our model, we also propose a role for the Sertoli cell in regulating the Fas/FasL system in order to induce the extrinsic pathway of apoptosis in germ cells. This working model could be applied to further understand constitutive apoptosis in spermatogenesis and in pathological conditions (e.g., varicocele) or following environmental toxicants exposure (e.g., genotoxicity or xenoestrogens). PMID:22319668

  2. Testicular germ cell tumors: pathogenesis, diagnosis and treatment.

    PubMed

    Winter, Christian; Albers, Peter

    2011-01-01

    Testicular germ cell tumors represent the most common solid malignancy of young men aged 15-40 years. Histopathologically, testicular germ cell tumors are divided into two major groups: pure seminoma and nonseminoma. The pathogenesis of testicular germ cell tumors remains unknown; however, cryptorchidism is the main risk factor, and molecular studies have shown strong evidence of an association between genetic alterations and testicular germ cell tumors. In cases of suspicion for testicular germ cell tumor, a surgical exploration with orchiectomy is obligatory. After completion of diagnostic procedures, levels of serum tumor markers and the clinical stage based on the International Union Against Cancer tumor-node-metastasis classification should be defined. Patients with early-stage testicular germ cell tumors are treated by individualized risk stratification within a multidisciplinary approach. The individual management (surveillance, chemotherapy or radiotherapy) has to be balanced according to clinical features and the risk of short-term and long-term toxic effects. Treatment for metastatic tumors is based on risk stratification according to International Germ Cell Cancer Collaborative Group classification and is performed with cisplatin-based chemotherapy and residual tumor resection in cases of residual tumor lesion. High-dose chemotherapy represents a curative option for patients with second or subsequent relapses.

  3. Meiosis and retrotransposon silencing during germ cell development in mice.

    PubMed

    Ollinger, Rupert; Reichmann, Judith; Adams, Ian R

    2010-03-01

    In mammals, germ cells derive from the pluripotent cells that are present early in embryogenesis, and then differentiate into male sperm or female eggs as development proceeds. Fusion between an egg and a sperm at fertilization allows genetic information from both parents to be transmitted to the next generation, and produces a pluripotent zygote to initiate the next round of embryogenesis. Meiosis is a central event in this self-perpetuating cycle that creates genetic diversity by generating new combinations of existing genetic alleles, and halves the number of chromosomes in the developing male and female germ cells to allow chromosome number to be maintained through successive generations. The developing germ cells also help to maintain genetic and chromosomal stability through the generations by protecting the genome from excessive de novo mutation. Several mouse mutants have recently been characterised whose germ cells exhibit defects in silencing the potentially mutagenic endogenous retroviruses and other retrotransposons that are prevalent in mammalian genomes, and these germ cells also exhibit defects in progression through meiosis. Here we review how mouse germ cells develop and proceed through meiosis, how mouse germ cells silence endogenous retroviruses and other retrotransposons, and discuss why silencing of endogenous retroviruses and other retrotransposons may be required for meiotic progression in mice.

  4. Hedgehog does not guide migrating Drosophila germ cells

    PubMed Central

    Renault, Andrew D.; Ricardo, Sara; Kunwar, Prabhat S.; Santos, Ana; Starz-Gaiano, Michelle; Stein, Jennifer; Lehmann, Ruth

    2009-01-01

    In many species, the germ cells, precursors of sperm and egg, migrate during embryogenesis. The signals that regulate this migration are thus essential for fertility. In flies, lipid signals have been shown to affect germ cell guidance. In particular, the synthesis of geranylgeranyl pyrophosphate through the 3-hydroxy-3-methyl-glutaryl coenzyme A reductase (Hmgcr) pathway is critical for attracting germ cells to their target tissue. In a genetic analysis of signaling pathways known to affect cell migration of other migratory cells, we failed to find a role for the Hedgehog (Hh) pathway in germ cell migration. However, previous reports had implicated Hh as a germ cell attractant in flies and suggested that Hh signaling is enhanced through the action of the Hmgcr pathway. We therefore repeated several critical experiments and carried out further experiments to test specifically whether Hh is a germ cell attractant in flies. In contrast to previously reported findings and consistent with findings in zebrafish our data do not support the notion that Hh has a direct role in the guidance of migrating germ cells in flies. PMID:19389345

  5. Epigenetic transitions in germ cell development and meiosis.

    PubMed

    Kota, Satya K; Feil, Robert

    2010-11-16

    Germ cell development is controlled by unique gene expression programs and involves epigenetic reprogramming of histone modifications and DNA methylation. The central event is meiosis, during which homologous chromosomes pair and recombine, processes that involve histone alterations. At unpaired regions, chromatin is repressed by meiotic silencing. After meiosis, male germ cells undergo chromatin remodeling, including histone-to-protamine replacement. Male and female germ cells are also differentially marked by parental imprints, which contribute to sex determination in insects and mediate genomic imprinting in mammals. Here, we review epigenetic transitions during gametogenesis and discuss novel insights from animal and human studies.

  6. Retinoic acid, meiosis and germ cell fate in mammals.

    PubMed

    Bowles, Josephine; Koopman, Peter

    2007-10-01

    Although mammalian sex is determined genetically, the sex-specific development of germ cells as sperm or oocytes is initiated by cues provided by the gonadal environment. During embryogenesis, germ cells in an ovary enter meiosis, thereby committing to oogenesis. By contrast, germ cells in a testicular environment do not enter meiosis until puberty. Recent findings indicate that the key to this sex-specific timing of meiosis entry is the presence or absence of the signaling molecule retinoic acid. Although this knowledge clarifies a long-standing mystery in reproductive biology, it also poses many new questions, which we discuss in this review.

  7. Alvocidib and Oxaliplatin With or Without Fluorouracil and Leucovorin Calcium in Treating Patients With Relapsed or Refractory Germ Cell Tumors

    ClinicalTrials.gov

    2017-01-20

    Recurrent Extragonadal Seminoma; Recurrent Malignant Extragonadal Germ Cell Tumor; Recurrent Malignant Extragonadal Non-Seminomatous Germ Cell Tumor; Recurrent Malignant Testicular Germ Cell Tumor; Recurrent Ovarian Germ Cell Tumor; Stage III Testicular Cancer; Stage IV Extragonadal Non-Seminomatous Germ Cell Tumor; Stage IV Extragonadal Seminoma; Stage IV Ovarian Germ Cell Tumor

  8. Tritium effects on germ cells and fertility

    SciTech Connect

    Dobson, R.L.; Kwan, T.C.; Straume, T.

    1982-11-19

    Primordial oocytes in juvenile mice show acute gamma-ray LD/sub 50/ as low as 6 rad. This provides opportunities for determining dose-response relations at low doses and chronic exposure in the intact animal - conditions of particular interest for hazard evaluation. Examined in this way, /sup 3/HOH in body water is found to kill murine oocytes exponentially with dose, the LD/sub 50/ level for chronic exposure being only 2..mu..Ci/ml (delivering 0.4 rad/day). At very low doses and dose rates, where comparisons between tritium and other radiations are of special significance for radiological protection, the RBE of tritium compared with /sup 60/Co gamma radiation reaches approximately 3. Effects on murine fertility from tritium-induced oocyte loss have been quantified by reproductive capacity measurements. Chronic low-level exposure has been examined also in three primate species - squirrel, rhesus, and bonnet monkeys. In squirrel monkeys the ovarian germ-cell supply is 99% destroyed by the time of birth from prenatal exposure to body-water levels of /sup 3/HOH (administered in maternal drinking water) of only 3 ..mu..Ci/ml, the LD/sub 50/ level being 0.5 ..mu..Ci/ml (giving 0.1 rad/day), one fourth that in mice. Though not completely ruled out, similar high sensitivity of female germ cells has not been found in macaques; and it probably does not occur in man. The exquisite radiosensitivity of primordial oocytes in mice is apparently due to vulnerability of the plasma membrane (or something of similar geometry and location), not DNA. Evidence for this comes from tritium data as well as neutron studies. Tritium administered as /sup 3/HOH, and therefore generally distributed, is much more effective in killing murine oocytes than is tritium administered as /sup 3/H-TdR, localized in the nucleus. This situation in the mouse may have implications for estimating radiation genetic risk in the human female.

  9. Baldness, acne and testicular germ cell tumors

    PubMed Central

    Trabert, Britton; Sigurdson, Alice J.; Sweeney, Anne M.; Amato, Robert J.; Strom, Sara S.; McGlynn, Katherine A.

    2013-01-01

    Androgen levels during critical periods of testicular development may be involved in the etiology of testicular germ cell tumors (TGCT). We evaluated the roles of adolescent and early adult life correlates of androgen exposure and TGCT in a hospital-based case control study. TGCT cases (n=187) and controls (n=148), matched on age, race and state of residence, participated in the study. Unconditional logistic regression was used to estimate associations between TGCT and male pattern baldness, severe acne, markers of puberty onset and body size. Cases were significantly less likely to report hair loss than controls (OR, 0.6; 95% CI, 0.4, 1.0). Amount of hair loss, increasing age at onset and increasing rate of loss were all inversely associated with TGCT (rate of hair loss: p-trend=0.03; age at onset: p-trend=0.03; amount of hair loss: p-trend=0.01). History of severe acne was inversely associated with TGCT (OR, 0.5; 95% CI, 0.3, 0.9) and height was positively associated with TGCT (p-trend=0.02). Increased endogenous androgen levels during puberty and early adulthood may be associated with decreased risk of TGCT. Additional studies of endogenous hormone levels during puberty and early adult life are warranted, especially studies evaluating the role of androgen synthesis, metabolism and uptake. PMID:21128977

  10. Transient translational quiescence in primordial germ cells.

    PubMed

    Oulhen, Nathalie; Swartz, S Zachary; Laird, Jessica; Mascaro, Alexandra; Wessel, Gary

    2017-02-24

    Stem cells in animals often exhibit a slow cell cycle and/or low transcriptional activity referred to as quiescence. Here we report that the translational activity in the primordial germ cells (PGCs) of the sea urchin embryo (Strongylocentrotus purpuratus) is quiescent. We measured new protein synthesis with O-propargyl-puromycin, and L-homopropargylglycine, Click-iT technologies and determined that these cells synthesize protein at only 6% the level of their adjacent somatic cells. Knock-down of translation of the RNA-binding protein Nanos2 by morpholino anti-sense oligonucleotides, or knock-out of the Nanos2 gene by CRISPR/Cas9 resulted in a significant, but partial increase (47%) in general translation specifically in the PGCs. We found that the mRNA of the translation factor eEF1A is excluded from the PGCs in a Nanos2-dependent manner, a consequence of a Nanos/Pumilio response element (PRE) in its 3'UTR. In addition to eEF1A, the cytoplasmic pH of the PGCs appears to repress translation and simply increasing the pH also significantly restores translation selectively in the PGCs. We conclude that the PGCs of this sea urchin institute parallel pathways to quiesce translation thoroughly but transiently.

  11. Female germ cell loss from radiation and chemical exposures

    SciTech Connect

    Dobson, R.L.; Felton, J.S.

    1983-01-01

    Female germ cells in some mammals are extremely sensitive to killing by ionizing radiation, especially during development. Primordial oocytes in juvenile mice have an LD50 of only 6-7 rad, and the germ cell pool in squirrel monkeys is destroyed by prenatal exposure of 0.7 rad/day. Sensitivity varies greatly with species and germ cell stage. Unusually high sensitivity has not been found in macaques and may not occur in man, but this has not been established for all developmental stages. The exquisite oocyte radiosensitivity in mice apparently reflects vulnerability of the plasma membrane, not DNA, which may have implications for estimating human genetic risks. Germ cells can be killed also by chemicals. Such oocyte loss, with similarities to radiation effects, is under increasing study, including chemotherapy observations in women. More than 75 compounds have been tested in mice, with in vivo toxicity quantified by oocyte loss; certain chemicals apparently act on the membrane.

  12. Current Management of Refractory Germ Cell Tumors and Future Directions.

    PubMed

    Allen, J Clayton; Kirschner, Austin; Scarpato, Kristen R; Morgans, Alicia K

    2017-02-01

    We review current management strategies for patients with relapsed and refractory germ cell tumors (GCTs), defined as relapsed or persistent disease following at least one line of cisplatin-based chemotherapy. Additionally, we discuss future directions in the management of these patients. Recent studies involving targeted therapies have been disappointing. Nevertheless, studies of the management of refractory germ cell cancer are ongoing, with a focus on optimal utilization of high-dose chemotherapy and autologous stem cell transplant, as well as the role of immune checkpoint inhibitors in refractory germ cell tumors. Studies aiming to identify those patients who may benefit from more intensive treatment up front to prevent the development of refractory disease are also in progress. Testicular germ cell tumors are among the most curable of all solid tumor malignancies, with cure being possible even in the refractory, metastatic setting. Treatment of refractory disease remains a challenging clinical scenario, but potentially practice changing studies are ongoing.

  13. Embryonic stem cells: testing the germ-cell theory.

    PubMed

    Hochedlinger, Konrad

    2011-10-25

    The exact cellular origin of embryonic stem cells remains elusive. Now a new study provides compelling evidence that embryonic stem cells, established under conventional culture conditions, originate from a transient germ-cell state.

  14. An Evolutionarily Conserved Plant RKD Factor Controls Germ Cell Differentiation.

    PubMed

    Koi, Satoshi; Hisanaga, Tetsuya; Sato, Katsutoshi; Shimamura, Masaki; Yamato, Katsuyuki T; Ishizaki, Kimitsune; Kohchi, Takayuki; Nakajima, Keiji

    2016-07-11

    In contrast to animals, in which the germ cell lineage is established during embryogenesis, plant germ cells are generated in reproductive organs via reprogramming of somatic cells. The factors that control germ cell differentiation and reprogramming in plants are poorly understood. Members of the RKD subfamily of plant-specific RWP-RK transcription factors have been implicated in egg cell formation in Arabidopsis based on their expression patterns and ability to cause an egg-like transcriptome upon ectopic expression [1]; however, genetic evidence of their involvement is lacking, due to possible genetic redundancy, haploid lethality, and the technical difficulty of analyzing egg cell differentiation in angiosperms. Here we analyzed the factors that govern germ cell formation in the liverwort Marchantia polymorpha. This recently revived model bryophyte has several characteristics that make it ideal for studies of germ cell formation, such as low levels of genetic redundancy, readily accessible germ cells, and the ability to propagate asexually via gemma formation [2, 3]. Our analyses revealed that MpRKD, a single RWP-RK factor closely related to angiosperm RKDs, is preferentially expressed in developing eggs and sperm precursors in M. polymorpha. Targeted disruption of MpRKD had no effect on the gross morphology of the vegetative and reproductive organs but led to striking defects in egg and sperm cell differentiation, demonstrating that MpRKD is an essential regulator of germ cell differentiation. Together with previous findings [1, 4-6], our results suggest that RKD factors are evolutionarily conserved regulators of germ cell differentiation in land plants. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Alleviative effect of quercetin on germ cells intoxicated by 3-methyl-4-nitrophenol from diesel exhaust particles*

    PubMed Central

    Bu, Tong-liang; Jia, Yu-dong; Lin, Jin-xing; Mi, Yu-ling; Zhang, Cai-qiao

    2012-01-01

    As a component of diesel exhaust particles, 3-methyl-4-nitrophenol (4-nitro-m-cresol, PNMC) is also a metabolite of the insecticide fenitrothion and imposes hazardous effects on human health. In the present study, the alleviative effect of a common antioxidant flavonoid quercetin on mouse germ cells intoxicated by PNMC was investigated. Results showed that a single intraperitoneal injection of PNMC at 100 mg/kg induced severe testicular damage after one week. PNMC-treated mice showed a significant loss of germ cells (approximate 40% loss of round germ cells). PNMC caused an increase of hydroxyl radical and hydrogen peroxide production and lipid peroxidation, as well as a decrease in glutathione level, superoxide dismutase and glutathione peroxidase activities. Furthermore, treatment of PNMC increased expression of the pro-apoptotic protein Bax and decreased expression of the anti-apoptotic protein Bcl-XL in germ cells. In addition, testicular caspase-3 activity was significantly up-regulated and germ cell apoptosis was significantly increased in the PNMC-treated mice. In contrast, combined administration of quercetin at 75 mg/kg significantly attenuated PNMC-induced testicular toxicity. These results indicate that the antioxidant quercetin displays a remarkable protective effect on PNMC-induced oxidative damage in mouse testes and may represent an efficient supplement to attenuate reproductive toxicity by environmental toxicants to ensure healthy sperm production. PMID:22467373

  16. Transgenic rodent assay for quantifying male germ cell mutant frequency.

    PubMed

    O'Brien, Jason M; Beal, Marc A; Gingerich, John D; Soper, Lynda; Douglas, George R; Yauk, Carole L; Marchetti, Francesco

    2014-08-06

    De novo mutations arise mostly in the male germline and may contribute to adverse health outcomes in subsequent generations. Traditional methods for assessing the induction of germ cell mutations require the use of large numbers of animals, making them impractical. As such, germ cell mutagenicity is rarely assessed during chemical testing and risk assessment. Herein, we describe an in vivo male germ cell mutation assay using a transgenic rodent model that is based on a recently approved Organisation for Economic Co-operation and Development (OECD) test guideline. This method uses an in vitro positive selection assay to measure in vivo mutations induced in a transgenic λgt10 vector bearing a reporter gene directly in the germ cells of exposed males. We further describe how the detection of mutations in the transgene recovered from germ cells can be used to characterize the stage-specific sensitivity of the various spermatogenic cell types to mutagen exposure by controlling three experimental parameters: the duration of exposure (administration time), the time between exposure and sample collection (sampling time), and the cell population collected for analysis. Because a large number of germ cells can be assayed from a single male, this method has superior sensitivity compared with traditional methods, requires fewer animals and therefore much less time and resources.

  17. Transgenic Rodent Assay for Quantifying Male Germ Cell Mutant Frequency

    PubMed Central

    O'Brien, Jason M.; Beal, Marc A.; Gingerich, John D.; Soper, Lynda; Douglas, George R.; Yauk, Carole L.; Marchetti, Francesco

    2014-01-01

    De novo mutations arise mostly in the male germline and may contribute to adverse health outcomes in subsequent generations. Traditional methods for assessing the induction of germ cell mutations require the use of large numbers of animals, making them impractical. As such, germ cell mutagenicity is rarely assessed during chemical testing and risk assessment. Herein, we describe an in vivo male germ cell mutation assay using a transgenic rodent model that is based on a recently approved Organisation for Economic Co-operation and Development (OECD) test guideline. This method uses an in vitro positive selection assay to measure in vivo mutations induced in a transgenic λgt10 vector bearing a reporter gene directly in the germ cells of exposed males. We further describe how the detection of mutations in the transgene recovered from germ cells can be used to characterize the stage-specific sensitivity of the various spermatogenic cell types to mutagen exposure by controlling three experimental parameters: the duration of exposure (administration time), the time between exposure and sample collection (sampling time), and the cell population collected for analysis. Because a large number of germ cells can be assayed from a single male, this method has superior sensitivity compared with traditional methods, requires fewer animals and therefore much less time and resources. PMID:25145276

  18. Development, differentiation and manipulation of chicken germ cells.

    PubMed

    Nakamura, Yoshiaki; Kagami, Hiroshi; Tagami, Takahiro

    2013-01-01

    Germ cells are the only cell type capable of transmitting genetic information to the next generation. During development, they are set aside from all somatic cells of the embryo. In many species, germ cells form at the fringe of the embryo proper and then traverse through several developing somatic tissues on their migration to the emerging gonads. Primordial germ cells (PGCs) are the only cells in developing embryos with the potential to transmit genetic information to the next generation. Unlike other species, in avian embryos, PGCs use blood circulation for transport to the future gonadal region. This unique accessibility of avian PGCs during early development provides an opportunity to collect and transplant PGCs. The recent development of methods for production of germline chimeras by transfer of PGCs, and long-term cultivation methods of chicken PGCs without losing their germline transmission ability have provided important breakthroughs for the preservation of germplasm , for the production of transgenic birds and study the germ cell system. This review will describe the development, migration, differentiation and manipulation of germ cells, and discuss the prospects that germ cell technologies offer for agriculture, biotechnology and academic research. © 2013 The Authors Development, Growth & Differentiation © 2013 Japanese Society of Developmental Biologists.

  19. Epigenetics: a way to understand the origin and biology of testicular germ cell tumors.

    PubMed

    Okamoto, Keisei

    2012-06-01

    Testicular germ cell tumors are neoplasms carrying two unique features. First, testicular germ cell tumors have a pluripotential nature and show protean histology ranging from that of germ cells to embryonal and differentiated somatic cells. Therefore, testicular germ cell tumors are interesting resources positioned at a crossroad in developmental and neoplastic processes. The second unique feature of testicular germ cell tumors is their exquisite sensitivity to cisplatin-based chemotherapy. This review summarizes recent research progress in the epigenetics of testicular germ cell tumors in an attempt to explain the abovementioned biological and clinical characteristics of testicular germ cell tumors.

  20. Lipid phosphate phosphatase activity regulates dispersal and bilateral sorting of embryonic germ cells in Drosophila

    PubMed Central

    Renault, Andrew D.; Kunwar, Prabhat S.; Lehmann, Ruth

    2010-01-01

    In Drosophila, germ cell survival and directionality of migration are controlled by two lipid phosphate phosphatases (LPP), wunen (wun) and wunen-2 (wun2). wun wun2 double mutant analysis reveals that the two genes, hereafter collectively called wunens, act redundantly in primordial germ cells. We find that wunens mediate germ cell-germ cell repulsion and that this repulsion is necessary for germ cell dispersal and proper transepithelial migration at the onset of migration and for the equal sorting of the germ cells between the two embryonic gonads during their migration. We propose that this dispersal function optimizes adult fecundity by assuring maximal germ cell occupancy of both gonads. Furthermore, we find that the requirement for wunens in germ cell survival can be eliminated by blocking germ cell migration. We suggest that this essential function of Wunen is needed to maintain cell integrity in actively migrating germ cells. PMID:20431117

  1. Primordial germ cell biology at the beginning of the XXI century.

    PubMed

    De Felici, Massimo

    2009-01-01

    At the XIV Workshop on the Development and Function of the Reproductive Organs held at the Congress Centre of the University of Rome Tor Vergata, Monteporzio Catone, Rome, Italy, the introduction to the first session entitled Mammalian primordial germ cells dedicated to the memory of Anne McLaren, was the occasion for a concise review of the state of art of research on the biology of primordial germ cells (PGCs). This great, unforgettable scientist, who died in a car accident in July 2007, dedicated most of her studies to this field over the last 25 years. Topics briefly reviewed in this Meeting Report are: 1) how the germ line is determined; 2) what are the mechanisms underlying PGC migration; 3) to what extent PGC survival, proliferation and differentiation are cell autonomous or environmentally controlled processes and 4) how the potential for totipotency is retained in PGCs.

  2. Molecular biology of testicular germ cell tumors: unique features awaiting clinical application.

    PubMed

    Boublikova, Ludmila; Buchler, Tomas; Stary, Jan; Abrahamova, Jitka; Trka, Jan

    2014-03-01

    Testicular germ cell tumors (TGCTs) are the most common solid tumors in young adult men characterized by distinct biologic features and clinical behavior. Both genetic predispositions and environmental factors probably play a substantial role in their etiology. TGTCs arise from a malignant transformation of primordial germ cells in a process that starts prenatally, is often associated with a certain degree of gonadal dysgenesis, and involves the acquirement of several specific aberrations, including activation of SCF-CKIT, amplification of 12p with up-regulation of stem cell genes, and subsequent genetic and epigenetic alterations. Their embryonic and germ origin determines the unique sensitivity of TGCTs to platinum-based chemotherapy. Contrary to the vast majority of other malignancies, no molecular prognostic/predictive factors nor targeted therapy is available for patients with these tumors. This review summarizes the principal molecular characteristics of TGCTs that could represent a potential basis for development of novel diagnostic and treatment approaches.

  3. Germ Cell Origins of Posttraumatic Stress Disorder Risk: The Transgenerational Impact of Parental Stress Experience.

    PubMed

    Rodgers, Ali B; Bale, Tracy L

    2015-09-01

    Altered stress reactivity is a predominant feature of posttraumatic stress disorder (PTSD) and may reflect disease vulnerability, increasing the probability that an individual will develop PTSD following trauma exposure. Environmental factors, particularly prior stress history, contribute to the developmental programming of the hypothalamic-pituitary-adrenal stress axis. Critically, the consequences of stress experiences are transgenerational, with parental stress exposure impacting stress reactivity and PTSD risk in subsequent generations. Potential molecular mechanisms underlying this transmission have been explored in rodent models that specifically examine the paternal lineage, identifying epigenetic signatures in male germ cells as possible substrates of transgenerational programming. Here, we review the role of these germ cell epigenetic marks, including posttranslational histone modifications, DNA methylation, and populations of small noncoding RNAs, in the development of offspring stress axis sensitivity and disease risk.

  4. Hormonal control of germ cell development and spermatogenesis.

    PubMed

    O'Shaughnessy, Peter J

    2014-05-01

    Spermatogenesis is completely dependent on the pituitary hormone follicle-stimulating hormone (FSH) and androgens locally produced in response to luteinising hormone (LH). This dual control has been known since the 1930s and 1940s but more recent work, particularly using transgenic mice, has allowed us to determine which parts of the spermatogenic pathway are regulated by each hormone. During the first spermatogenic cycle after puberty both FSH and androgen act to limit the massive wave of germ cell apoptosis which occurs at this time. The established role of FSH in all cycles is to increase spermatogonial and subsequent spermatocyte numbers with a likely effect also on spermiation. Mice lacking FSH or its receptor are fertile, albeit with reduced germ cell numbers, and so this hormone is not an essential regulator of spermatogenesis but acts to optimise germ cell production Androgens also appear to regulate spermatogonial proliferation but, crucially, they are also required to allow spermatocytes to complete meiosis and form spermatids. Animals lacking androgen receptors fail to generate post-meiotic germ cells, therefore, and are infertile. There is also strong evidence that androgens act to ensure appropriate spermiation of mature spermatids. Androgen regulation of spermatogenesis is dependent upon action on the Sertoli cell but recent studies have shown that androgenic stimulation of the peritubular myoid cells is also essential for normal germ cells development. While FSH or androgen alone will both stimulate germ cell development, together they act synergistically to maximise germ cell number. The other hormones/local factors which can regulate spermatogenesis include activins and estrogens although their role in normal physiological regulation of this process needs to be more clearly established. Regulation of spermatogenesis in primates appears to be similar to that in rodents although the role of FSH may be greater. While our knowledge of hormone function

  5. Etoposide damages female germ cells in the developing ovary.

    PubMed

    Stefansdottir, Agnes; Johnston, Zoe C; Powles-Glover, Nicola; Anderson, Richard A; Adams, Ian R; Spears, Norah

    2016-08-11

    As with many anti-cancer drugs, the topoisomerase II inhibitor etoposide is considered safe for administration to women in the second and third trimesters of pregnancy, but assessment of effects on the developing fetus have been limited. The purpose of this research was to examine the effect of etoposide on germ cells in the developing ovary. Mouse ovary tissue culture was used as the experimental model, thus allowing us to examine effects of etoposide on all stages of germ cell development in the same way, in vitro. Fetal ovaries from embryonic day 13.5 CD1 mice or neonatal ovaries from postnatal day 0 CD1 mice were cultured with 50-150 ng ml(-1) or 50-200 ng ml(-1) etoposide respectively, concentrations that are low relative to that in patient serum. When fetal ovaries were treated prior to follicle formation, etoposide resulted in dose-dependent damage, with 150 ng ml(-1) inducing a near-complete absence of healthy follicles. In contrast, treatment of neonatal ovaries, after follicle formation, had no effect on follicle numbers and only a minor effect on follicle health, even at 200 ng ml(-1). The sensitivity of female germ cells to etoposide coincided with topoisomerase IIα expression: in the developing ovary of both mouse and human, topoisomerase IIα was expressed in germ cells only prior to follicle formation. Exposure of pre-follicular ovaries, in which topoisomerase IIα expression was germ cell-specific, resulted in a near-complete elimination of germ cells prior to follicle formation, with the remaining germ cells going on to form unhealthy follicles by the end of culture. In contrast, exposure to follicle-enclosed oocytes, which no longer expressed topoisomerase IIα in the germ cells, had no effect on total follicle numbers or health, the only effect seen specific to transitional follicles. Results indicate the potential for adverse effects on fetal ovarian development if etoposide is administered to pregnant women when germ cells are not yet

  6. Lin28a regulates germ cell pool size and fertility.

    PubMed

    Shinoda, Gen; De Soysa, T Yvanka; Seligson, Marc T; Yabuuchi, Akiko; Fujiwara, Yuko; Huang, Pei Yi; Hagan, John P; Gregory, Richard I; Moss, Eric G; Daley, George Q

    2013-05-01

    Overexpression of LIN28A is associated with human germ cell tumors and promotes primordial germ cell (PGC) development from embryonic stem cells in vitro and in chimeric mice. Knockdown of Lin28a inhibits PGC development in vitro, but how constitutional Lin28a deficiency affects the mammalian reproductive system in vivo remains unknown. Here, we generated Lin28a knockout (KO) mice and found that Lin28a deficiency compromises the size of the germ cell pool in both males and females by affecting PGC proliferation during embryogenesis. Interestingly however, in Lin28a KO males, the germ cell pool partially recovers during postnatal expansion, while fertility remains impaired in both males and females mated to wild-type mice. Embryonic overexpression of let-7, a microRNA negatively regulated by Lin28a, reduces the germ cell pool, corroborating the role of the Lin28a/let-7 axis in regulating the germ lineage. Copyright © 2013 AlphaMed Press.

  7. Use of Stirred Suspension Bioreactors for Male Germ Cell Enrichment

    PubMed Central

    Sakib, Sadman; Dores, Camila; Rancourt, Derrick

    2016-01-01

    Spermatogenesis is a stem cell based system. Both therapeutic and biomedical research applications of spermatogonial stem cells require a large number of cells. However, there are only few germ line stem cells in the testis, contained in the fraction of undifferentiated spermatogonia. The lack of specific markers makes it difficult to isolate these cells. The long term maintenance and proliferation of nonrodent germ cells in culture has so far been met with limited success, partially due to the lack of highly enriched starting populations. Differential plating, which depends on the differential adhesion properties of testicular somatic and germ cells to tissue culture dishes, has been the method of choice for germ cell enrichment, especially for nonrodent germ cells. However, for large animals, this process becomes labor intensive and increases variability due to the need for extensive handling. Here, we describe the use of stirred suspension bioreactors, as a novel system for enriching undifferentiated germ cells from 1-week-old pigs. This method capitalizes on the adherent properties of somatic cells within a controlled environment, thus promoting the enrichment of progenitor cells with minimal handling and variability. PMID:27066790

  8. Mechanisms and chemical induction of aneuploidy in rodent germ cells

    SciTech Connect

    Mailhes, J B; Marchetti, F

    2004-10-15

    The objective of this review is to suggest that the advances being made in our understanding of the molecular events surrounding chromosome segregation in non-mammalian and somatic cell models be considered when designing experiments for studying aneuploidy in mammalian germ cells. Accurate chromosome segregation requires the temporal control and unique interactions among a vast array of proteins and cellular organelles. Abnormal function and temporal disarray among these, and others to be inidentified, biochemical reactions and cellular organelles have the potential for predisposing cells to aneuploidy. Although numerous studies have demonstrated that certain chemicals (mainly those that alter microtubule function) can induce aneuploidy in mammalian germ cells, it seems relevant to point out that such data can be influenced by gender, meiotic stage, and time of cell-fixation post-treatment. Additionally, a consensus has not been reached regarding which of several germ cell aneuploidy assays most accurately reflects the human condition. More recent studies have shown that certain kinase, phosphatase, proteasome, and topoisomerase inhibitors can also induce aneuploidy in rodent germ cells. We suggest that molecular approaches be prudently incorporated into mammalian germ cell aneuploidy research in order to eventually understand the causes and mechanisms of human aneuploidy. Such an enormous undertaking would benefit from collaboration among scientists representing several disciplines.

  9. Differentiation of germ cells and gametes from stem cells.

    PubMed

    Marques-Mari, A I; Lacham-Kaplan, O; Medrano, J V; Pellicer, A; Simón, C

    2009-01-01

    Advances in stem cell research have opened new perspectives for regenerative and reproductive medicine. Stem cells (SC) can differentiate under appropriate in vitro and in vivo conditions into different cell types. Several groups have reported their ability to differentiate SCs into germline cells, and some of them have been successful in obtaining male and female gamete-like cells by using different methodologies. This review summarizes the current knowledge in this field and emphasizes significant embryological, genetic and epigenetic aspects of germ cells and gametes in vitro differentiation in humans and other species, highlighting major obstacles that need to be overcome for successful gametogenesis in culture: studies reporting development of germ cell-like cells from murine and human embryonic (ESC) and somatic SCs are critically reviewed. Published studies indicate that germ cells can be consistently differentiated from mouse and human ESC. However, further differentiation of germ cells through gametogenesis still has important genetic and epigenetic obstacles to be efficient. Differentiation of germ cells from SCs has the potential of becoming a future source of gametes for research use, although further investigation is needed to understand and develop the appropriate niches and culture conditions. Additionally, if genetic and epigenetic methodological limitations could be solved, therapeutic opportunities could be also considered.

  10. Mouse germ cell mutation tests in genetic risk evaluation of chemical mutagens.

    PubMed

    Generoso, W M

    1988-12-01

    That certain environmental chemicals can induce transmissible mutations in germ cells of experimental mammal is clear. The assumption that under certain conditions these chemicals are also likely to be mutagenic to human germ cells is not detectable. However, it is a difficult challenge to determine the level of human exposure at which such chemicals can be produced and used economically without significantly harming human health. Data on transmitted genetic effects in mice are necessary, not only as a measure of endpoints that are considered directly in genetic risk assessment, but also as the standard for evaluating the usefulness of non-germ-cell effects as predictors in genetic risk assessment. To carry out a "real world" genetic risk assessment exercise, in vivo mouse data are being obtained for two model chemicals--ethylene oxide and acrylamide. Both chemicals are capable of inducing transmissible genetic effects in mice; their production and use involve measurable human exposures; and, because they are socially and economically important, they are not likely to be banned altogether despite their mutagenicity. For both chemicals, data are not sufficient for accurate low-dose and low-dose-rate extrapolations.

  11. Germ-cell testicular cancer in offspring of Finnish immigrants to Sweden.

    PubMed

    Montgomery, Scott M; Granath, Fredrik; Ehlin, Anna; Sparén, Pär; Ekbom, Anders

    2005-01-01

    Variation in testicular cancer incidence can be used to assist in identification of risks. Finland has a significantly lower germ-cell testicular cancer risk than Sweden. Finns who immigrate to Sweden maintain their lower risk irrespective of age at immigration. We investigated difference in risk between Finland and Sweden by examining germ-cell testicular cancer incidence in males born in Sweden to Finnish immigrant parents. Swedish general population registers were used to identify 11,662 males born in Sweden where both Finnish parents immigrated to Sweden from Finland from 1969 or afterward. All of these offspring were at least 15 years old by final follow-up in 2001. Some six offspring (all diagnosed between ages 20 and 24 years) had a diagnosis of germ-cell testicular cancer. Comparison with the Swedish population rate produced standardized incidence ratios [SIR (95% confidence interval)] of 0.85 (0.31-1.84) for all the men and 1.75 (0.64-3.81) for the 20- to 24-year age group. SIRs calculated using the Finnish population rates produced an overall SIR (95% confidence interval) of 1.11 (0.41-2.41) and 2.95 (1.08-6.42) for the 20- to 24-year age group. Although the substantially reduced risk of testicular cancer previously observed in Finnish immigrant to Sweden was not found, this study had insufficient statistical power to conclude that environmental exposures explain the difference in germ-cell testicular cancer risk between Finland and Sweden.

  12. A high-content assay for identifying small molecules that reprogram C. elegans germ cell fate.

    PubMed

    Benson, Joshua A; Cummings, Erin E; O'Reilly, Linda P; Lee, Myon-Hee; Pak, Stephen C

    2014-08-01

    Recent breakthrough discoveries have shown that committed cell fates can be reprogrammed by genetic, chemical and environmental manipulations. The germline of the nematode Caenorhabditis elegans provides a tractable system for studying cell fate reprogramming within the context of a whole organism. To explore the possibility of using C. elegans in high-throughput screens (HTS), we developed a high-throughput workflow for testing compounds that modulate cell fate reprogramming. We utilized puf-8; lip-1 mutants that have enhanced MPK-1 (an ERK homolog)/MAP kinase (MAPK) signaling. Wild-type C. elegans hermaphrodites produce both sperm and oocytes, and are thus self-fertile. However, puf-8; lip-1 mutants produce only sperm and are sterile. Notably, compounds that pharmacologically down-regulate MPK-1 (an ERK homolog)/MAP kinase (MAPK) signaling are able to reprogram germ cell fate and restore fertility to these animals. puf-8; lip-1 mutants provide numerous challenges for HTS. First, they are sterile as homozygotes and must be maintained as heterozygotes using a balancer chromosome. Second, homozygous animals for experimentation must be physically separated from the rest of the population. Third, a high quality, high-content assay has not been developed to measure compound effects on germ cell fate reprogramming. Here we describe a semi-automated high-throughput workflow that enables effective sorting of homozygous puf-8; lip-1 mutants into 384-well plates using the COPAS™ BIOSORT. In addition, we have developed an image-based assay for rapidly measuring germ cell reprogramming by measuring the number of viable progeny in wells. The methods presented in this report enable the use of puf-8; lip-1 mutants in HTS campaigns for chemical modulators of germ cell reprogramming within the context of a whole organism. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. On the formation of germ cells: The good, the bad and the ugly.

    PubMed

    Chuva de Sousa Lopes, Susana M; Roelen, Bernard A J

    2010-03-01

    Mammalian germ cells are powerful cells, the only ones that transmit information to the next generation ensuring the continuation of the species. But "with great power, comes great responsibility", meaning that germ cells are only a few steps away from turning carcinogenic. Despite recent advances little is known about germ cell formation in mammals, predominantly because of the inaccessibility of these cells. Moreover, it is difficult to pin down what in essence is characteristic of a germ cell, as germ cells keep changing place, morphology, expression markers and epigenetic identity. Formation of (primordial) germ cells in primate ES cell cultures would therefore be helpful to identify molecular signalling pathways associated with germ cell differentiation and to study epigenetic changes in germ cells. In addition, the in vitro derivation of functional germ cells from ES cells could be used in combination with therapeutic cloning to generate patient-specific ES cell lines, and can have applications in animal breeding. In this review we present the state-of-the-art on how mouse and human germ cells are formed in vivo (the good), we discuss the link between germ cells, pluripotency and germ cell tumours (the bad) and show that despite continuous progress in trying to differentiate germ cells in vitro (the ugly) the generation of functional germ cells is still a real challenge.

  14. Germ cell migration across Sertoli cell tight junctions.

    PubMed

    Smith, Benjamin E; Braun, Robert E

    2012-11-09

    The blood-testis barrier includes strands of tight junctions between somatic Sertoli cells that restricts solutes from crossing the paracellular space, creating a microenvironment within seminiferous tubules and providing immune privilege to meiotic and postmeiotic cells. Large cysts of germ cells transit the Sertoli cell tight junctions (SCTJs) without compromising their integrity. We used confocal microscopy to visualize SCTJ components during germ cell cyst migration across the SCTJs. Cysts become enclosed within a network of transient compartments fully bounded by old and new tight junctions. Dissolution of the old tight junctions releases the germ cells into the adluminal compartment, thus completing transit across the blood-testis barrier. Claudin 3, a tight junction protein, is transiently incorporated into new tight junctions and then replaced by claudin 11.

  15. Germ cell tumors of the testicle among aircraft repairmen.

    PubMed

    Ducatman, A M; Conwill, D E; Crawl, J

    1986-10-01

    A cluster of testicular germ cell tumors occurred among 3 of 153 white men who worked in a shop engaged in repair of exterior surfaces and electrical components of the airframes of F4 Phantom Jet aircraft. Evaluation of an occupationally identical shop at a second F4 rework facility at which there had been no previous reports of excess neoplasms revealed 4 additional men with a history of testicular germ cell tumors (p less than 0.01, Poisson, compared to the expected number of cases based on national incidence rates). Our investigation raises but does not prove a hypothesis of association between subsequent development of testicular germ cell cancer and history of extensive exposure to a mixture containing dimethylformamide, which had been used in F4 repair work at these facilities in the 1960s and 1970s. This represents the first report of 2 corresponding mini-epidemics of testicular tumors among workers in occupationally identical industrial settings.

  16. Reproduction of wild birds via interspecies germ cell transplantation.

    PubMed

    Kang, Seok Jin; Choi, Jin Won; Kim, Sun Young; Park, Kyung Je; Kim, Tae Min; Lee, Young Mok; Kim, Heebal; Lim, Jeong Mook; Han, Jae Yong

    2008-11-01

    The present study was conducted to apply an interspecies germ cell transfer technique to wild bird reproduction. Pheasant (Phasianus colchicus) primordial germ cells (PGCs) retrieved from the gonads of 7-day-old embryos were transferred to the bloodstream of 2.5-day-old chicken (Gallus gallus) embryos. Pheasant-to-chicken germline chimeras hatched from the recipient embryos, and 10 pheasants were derived from testcross reproduction of the male chimeras with female pheasants. Gonadal migration of the transferred PGCs, their involvement in spermatogenesis, and production of chimeric semen were confirmed. The phenotype of pheasant progenies derived from the interspecies transfer was identical to that of wild pheasants. The average efficiency of reproduction estimated from the percentage of pheasants to total progenies was 17.5%. In conclusion, interspecies germ cell transfer into a developing embryo can be used for wild bird reproduction, and this reproductive technology may be applicable in conserving endangered bird species.

  17. Giant Mediastinal Germ Cell Tumour: An Enigma of Surgical Consideration

    PubMed Central

    Ali, Nurayub Mohd; Azizan, Nornazirah; Zakaria, Andee Dzulkarnaen; Rahman, Mohd Ramzisham Abdul

    2016-01-01

    We present a case of 16-year-old male, who was referred from private centre for dyspnoea, fatigue, and orthopnea. The chest radiograph revealed complete opacification of left chest which was confirmed by computed tomography as a large left mediastinal mass measuring 14 × 15 × 18 cm. The diagnostic needle core biopsy revealed mixed germ cell tumour with possible combination of embryonal carcinoma, yolk sac, and teratoma. After 4 cycles of neoadjuvant BEP regime, there was initial response of tumour markers but not tumour bulk. Instead of classic median sternotomy or clamshell incision, posterolateral approach with piecemeal manner was chosen. Histology confirmed mixed germ cell tumour with residual teratomatous component without yolk sac or embryonal carcinoma component. Weighing 3.5 kg, it is one of the largest mediastinal germ cell tumours ever reported. We describe this rare and gigantic intrathoracic tumour and discuss the spectrum of surgical approach and treatment of this exceptional tumour. PMID:27807495

  18. Klinefelter Syndrome with Poor Risk Extragonadal Germ Cell Tumor.

    PubMed

    Konheim, Jeremy A; Israel, Jonathan A; Delacroix, Scott E

    2017-01-01

    Germ cell tumors are the most common malignancy in men aged 15-35 years old, with a small percentage presenting in an extragonadal location. These tumors are seldom identified in the gastrointestinal tract. There is increased risk of extragonadal germ cell tumors (EGCT) in men with Klinefelter syndrome (KS). We report a rare case of a 37-year-old male with KS and EGCT discovered in the duodenum and pelvis. After treatment with Bleomycin-Etoposide-Cisplatin (BEP), he developed growing teratoma syndrome (GTS) and myelodysplasia. Despite surgical excision of the pelvic growing teratoma, he unfortunately died secondary to complications of severe bone marrow suppression.

  19. Repression of the soma-specific transcriptome by Polycomb-repressive complex 2 promotes male germ cell development

    PubMed Central

    Mu, Weipeng; Starmer, Joshua; Fedoriw, Andrew M.; Yee, Della; Magnuson, Terry

    2014-01-01

    Polycomb-repressive complex 2 (PRC2) catalyzes the methylation of histone H3 Lys27 (H3K27) and functions as a critical epigenetic regulator of both stem cell pluripotency and somatic differentiation, but its role in male germ cell development is unknown. Using conditional mutagenesis to remove the core PRC2 subunits EED and SUZ12 during male germ cell development, we identified a requirement for PRC2 in both mitotic and meiotic germ cells. We observed a paucity of mutant spermatogonial stem cells (SSCs), which appears independent of repression of the known cell cycle inhibitors Ink4a/Ink4b/Arf. Moreover, mutant spermatocytes exhibited ectopic expression of somatic lamins and an abnormal distribution of SUN1 proteins on the nuclear envelope. These defects were coincident with abnormal chromosome dynamics, affecting homologous chromosome pairing and synapsis. We observed acquisition of H3K27me3 on stage-specific genes during meiotic progression, indicating a requirement for PRC2 in regulating the meiotic transcriptional program. Together, these data demonstrate that transcriptional repression of soma-specific genes by PRC2 facilitates homeostasis and differentiation during mammalian spermatogenesis. PMID:25228648

  20. Origin of germ cells and formation of new primary follicles in adult human ovaries

    PubMed Central

    Bukovsky, Antonin; Caudle, Michael R; Svetlikova, Marta; Upadhyaya, Nirmala B

    2004-01-01

    Recent reports indicate that functional mouse oocytes and sperm can be derived in vitro from somatic cell lines. We hypothesize that in adult human ovaries, mesenchymal cells in the tunica albuginea (TA) are bipotent progenitors with a commitment for both primitive granulosa and germ cells. We investigated ovaries of twelve adult women (mean age 32.8 ± 4.1 SD, range 27–38 years) by single, double, and triple color immunohistochemistry. We show that cytokeratin (CK)+ mesenchymal cells in ovarian TA differentiate into surface epithelium (SE) cells by a mesenchymal-epithelial transition. Segments of SE directly associated with ovarian cortex are overgrown by TA, forming solid epithelial cords, which fragment into small (20 micron) epithelial nests descending into the lower ovarian cortex, before assembling with zona pellucida (ZP)+ oocytes. Germ cells can originate from SE cells which cover the TA. Small (10 micron) germ-like cells showing PS1 meiotically expressed oocyte carbohydrate protein are derived from SE cells via asymmetric division. They show nuclear MAPK immunoexpression, subsequently divide symmetrically, and enter adjacent cortical vessels. During vascular transport, the putative germ cells increase to oocyte size, and are picked-up by epithelial nests associated with the vessels. During follicle formation, extensions of granulosa cells enter the oocyte cytoplasm, forming a single paranuclear CK+ Balbiani body supplying all the mitochondria of the oocyte. In the ovarian medulla, occasional vessels show an accumulation of ZP+ oocytes (25–30 microns) or their remnants, suggesting that some oocytes degenerate. In contrast to males, adult human female gonads do not preserve germline type stem cells. This study expands our previous observations on the formation of germ cells in adult human ovaries. Differentiation of primitive granulosa and germ cells from the bipotent mesenchymal cell precursors of TA in adult human ovaries represents a most

  1. Intrinsic and environmental mutagenesis drive diversification and persistence of Pseudomonas aeruginosa in chronic lung infections.

    PubMed

    Rodríguez-Rojas, Alexandro; Oliver, Antonio; Blázquez, Jesús

    2012-01-01

    Pseudomonas aeruginosa is a versatile opportunistic pathogen causing a wide variety of hospital-acquired acute infections in immunocompromised patients as well as chronic respiratory infections in patients suffering from cystic fibrosis or other chronic respiratory diseases. Several traits contribute to its ability to colonize and persist in the lungs of chronically infected patients, including development of high resistance to antimicrobials and hypermutability, biofilm growth, and alginate hyperproduction, or a customized pathogenicity, which may include the loss of classical virulence factors and metabolic changes. Here we argue that a combination of both intrinsic and environmental mutagenesis leads to a high number of mutant variants in the population. The conducive environment then triggers a positive feedback loop leading to adaptation and persistence of P. aeruginosa, rendering these chronic infections almost impossible to eradicate.

  2. A functional genomic screen in planarians identifies novel regulators of germ cell development.

    PubMed

    Wang, Yuying; Stary, Joel M; Wilhelm, James E; Newmark, Phillip A

    2010-09-15

    Germ cells serve as intriguing examples of differentiated cells that retain the capacity to generate all cell types of an organism. Here we used functional genomic approaches in planarians to identify genes required for proper germ cell development. We conducted microarray analyses and in situ hybridization to discover and validate germ cell-enriched transcripts, and then used RNAi to screen for genes required for discrete stages of germ cell development. The majority of genes we identified encode conserved RNA-binding proteins, several of which have not been implicated previously in germ cell development. We also show that a germ cell-specific subunit of the conserved transcription factor CCAAT-binding protein/nuclear factor-Y is required for maintaining spermatogonial stem cells. Our results demonstrate that conserved transcriptional and post-transcriptional mechanisms regulate germ cell development in planarians. These findings suggest that studies of planarians will inform our understanding of germ cell biology in higher organisms.

  3. A functional genomic screen in planarians identifies novel regulators of germ cell development

    PubMed Central

    Wang, Yuying; Stary, Joel M.; Wilhelm, James E.; Newmark, Phillip A.

    2010-01-01

    Germ cells serve as intriguing examples of differentiated cells that retain the capacity to generate all cell types of an organism. Here we used functional genomic approaches in planarians to identify genes required for proper germ cell development. We conducted microarray analyses and in situ hybridization to discover and validate germ cell-enriched transcripts, and then used RNAi to screen for genes required for discrete stages of germ cell development. The majority of genes we identified encode conserved RNA-binding proteins, several of which have not been implicated previously in germ cell development. We also show that a germ cell-specific subunit of the conserved transcription factor CCAAT-binding protein/nuclear factor-Y is required for maintaining spermatogonial stem cells. Our results demonstrate that conserved transcriptional and post-transcriptional mechanisms regulate germ cell development in planarians. These findings suggest that studies of planarians will inform our understanding of germ cell biology in higher organisms. PMID:20844018

  4. [Human Primordial Germ Cell Specification--Breakthrough In Culture and Hopes for Therapeutic Utilization].

    PubMed

    Magnúsdóttir, Erna

    2015-10-01

    Germ cells are the precursors to the gametes that carry genetic and epigenetic information between human generations and generate a new individual. Because germ cells are specified early during embryogenesis, at the time of embryo implantation, they are inaccessible for research. Our understanding of their biology has therefore developed slowly since their identification over one hundred years ago. As a result of research into the properties of human and mouse embryonic stem cells and primordial germ cells, scientists have now succeeded in efficiently generating human primordial germ cells in culture by embryonic stem cell and induced pluripotent stem cell culture. In this review we will discuss the state of our knowledge of human primordial germ cells and how research into the pluripotent properties of human and mouse embryonic germ cells has led to this breakthrough. In addition we will discuss the possible utilization of a cell culture system of human primordial germ cells for research into and treatment of germ cell related abnormalities.

  5. Cholesterol induces proliferation of chicken primordial germ cells.

    PubMed

    Chen, Dongyang; Chen, Meijuan; Lu, Zhenping; Yang, Mengmeng; Xie, Long; Zhang, Wenxin; Xu, Huiyan; Lu, Kehuan; Lu, Yangqing

    2016-08-01

    Primordial germ cells (PGCs) are the precursors of sperm and eggs and may serve as suitable cells for use in research in developmental biology and transgenic animals. However, the long-term propagation of PGCs in vitro has so far been plagued by the loss of their germ cell characteristics. This is largely because of the scarcity of knowledge concerning cell division and proliferation in these cells and the poor optimization of the culture medium. The sonic hedgehog (SHH) signaling pathway is involved in proliferation of many types of cells, but little is known about its role in chicken PGCs. The results of the current study indicate that the proliferation of chicken PGCs increases significantly when cholesterol, a molecule that facilitates the trafficking of HH ligands, is supplemented in the culture medium. This effect was attenuated when an SHH antagonist, cyclopamine was added, suggesting the involvement of SHH signaling in this process. The characterization of PGCs treated with cholesterol has shown that these cells express germ-cell-related markers and retain their capability to colonize the embryonic gonad after re-introduction to vasculature of stage-15 HH embryos, indicating that proliferation of PGCs induced by cholesterol does not alter the germ cell characteristics of these cells.

  6. HMG-CoA reductase guides migrating primordial germ cells.

    PubMed

    Van Doren, M; Broihier, H T; Moore, L A; Lehmann, R

    1998-12-03

    The enzyme 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase is best known for catalysing a rate-limiting step in cholesterol biosynthesis, but it also participates in the production of a wide variety of other compounds. Some clinical benefits attributed to inhibitors of HMG-CoA reductase are now thought to be independent of any serum cholesterol-lowering effect. Here we describe a new cholesterol-independent role for HMG-CoA reductase, in regulating a developmental process: primordial germ cell migration. We show that in Drosophila this enzyme is highly expressed in the somatic gonad and that it is necessary for primordial germ cells to migrate to this tissue. Misexpression of HMG-CoA reductase is sufficient to attract primordial germ cells to tissues other than the gonadal mesoderm. We conclude that the regulated expression of HMG-CoA reductase has a critical developmental function in providing spatial information to guide migrating primordial germ cells.

  7. Curing metastatic cancer: lessons from testicular germ-cell tumours.

    PubMed

    Masters, John R W; Köberle, Beate

    2003-07-01

    Most metastatic cancers are fatal. More than 80% of patients with metastatic testicular germ-cell tumours (TGCTs), however, can be cured using cisplatin-based combination chemotherapy. Why are TGCTs more sensitive to chemotherapeutics than most other tumour types? Answers to this question could lead to new treatments for metastatic cancers.

  8. Declaring the Existence of Human Germ-Cell Mutagens

    EPA Science Inventory

    After more than 80 years of searching for human germ-cell mutagens, I think that sufficient evidence already exists for a number of agents to be so considered, and definitive confirmation seems imminent due to the application ofrecently developed genomic techniques. In preparatio...

  9. Declaring the Existence of Human Germ-Cell Mutagens

    EPA Science Inventory

    After more than 80 years of searching for human germ-cell mutagens, I think that sufficient evidence already exists for a number of agents to be so considered, and definitive confirmation seems imminent due to the application ofrecently developed genomic techniques. In preparatio...

  10. Germ cell DNA quantification shortly after IR laser radiation.

    PubMed

    Bermúdez, D; Carrasco, F; Diaz, F; Perez-de-Vargas, I

    1991-01-01

    The immediate effect of IR laser radiation on rat germ cells was studied by cytophotometric quantification of the nuclear DNA content in testicular sections. Two different levels of radiation were studied: one according to clinical application (28.05 J/cm2) and another known to increase the germ cell number (46.80 J/cm2). The laser beam induced changes in the germ cell DNA content depending on the cell type, the cell cycle phase and the doses of radiation energy applied. Following irradiation at both doses the percentage of spermatogonia showing a 4c DNA content was increased, while the percentage of these with a 2c DNA content was decreased. Likewise, the percentages of primary spermatocytes with a DNA content equal to 4c (at 28.05 J/cm2), between 2c and 4c (at 46.80 J/cm2) and higher than 4c (at both doses) were increased. No change in the mean spermatid DNA content was observed. Nevertheless, at 46.80 J/cm2 the percentages of elongated spermatids with a c or 2c DNA content differed from the controls. Data show that, even at laser radiation doses used in therapy, the germ cell DNA content is increased shortly after IR laser radiation.

  11. Developmental epigenetic programming of adult germ cell death disease: Polycomb protein EZH2-miR-101 pathway.

    PubMed

    Siddeek, Bénazir; Lakhdari, Nadjem; Inoubli, Lilia; Paul-Bellon, Rachel; Isnard, Véronique; Thibault, Emmanuelle; Bongain, André; Chevallier, Daniel; Repetto, Emanuela; Trabucchi, Michele; Michiels, Jean-François; Yzydorczyk, Catherine; Simeoni, Umberto; Urtizberea, Michel; Mauduit, Claire; Benahmed, Mohamed

    2016-11-01

    The Developmental Origin of Health and Disease refers to the concept that early exposure to toxicants or nutritional imbalances during perinatal life induces changes that enhance the risk of developing noncommunicable diseases in adulthood. Patients/materials & methods: An experimental model with an adult chronic germ cell death phenotype resulting from exposure to a xenoestrogen was used. A reciprocal negative feedback loop involving decreased EZH2 protein level and increased miR-101 expression was identified. In vitro and in vivo knockdown of EZH2 induced an apoptotic process in germ cells through increased levels of apoptotic factors (BIM and BAD) and DNA repair alteration via topoisomerase 2B deregulation. The increased miR-101 levels were observed in the animal blood, meaning that miR-101 may be a part of a circulating mark of germ cell death. miR-101-EZH2 pathway deregulation could represent a novel pathophysiological epigenetic basis for adult germ cell disease with environmental and developmental origins.

  12. [Effects of formaldehyde on germ cells of male mice].

    PubMed

    Tang, Mingde; Xie, Ying; Yi, Yizhen; Wang, Wei

    2003-11-01

    General toxicity and genetic materials damage of formaldehyde on germ cells in different stages was studied. In order to discover the toxicity mechanism of formaldehyde on germ cells and the biomarkers of effect after the presence of damage in germ cells and the estimation index, the relationships between the damage of germ cells and the MDA, SDH activity and Cu and Zn. in testicle tissue were investigated. Male mice exposed to formaldehyde by i.p. for 5 days. Formaldehyde doses were: 0.20 mg/kg, 2.00 mg/kg, 20.00 mg/kg. Mice were killed at the 6th day and the 14th day. HE staining was used to study the pathological changes happened in testicle tissue. In order to study the changes in sperm, the sperms and the abnormality of the sperm's heads were observed. In order to study the damage of the genetic material in the germ cells, the frequencies of sister chromosome exchanges and the frequencies of MN cells were studied. MDA was measured by MDA diagnosis box. Copper and zinc were determined by FAAS. US was used to determine the SDH activity in serum and testicle tissue. The results showed that: The main pathological changes in testicle tissue of formaldehyde groups were degeneration; The sperm quantity was decreased and the sperm heads deformation ratio was increased in all formaldehyde groups; There were a significant increase of MN ratio in early spermatogenic cells and SCE ratio in medial and high dose groups; The MDA in testicle tissue significant increased in high dose group. The SDH activity in testicle tissue was declined in all formaldehyde groups; There were a significant decline of copper and zinc in testicle tissue in high dose group. It is suggested that: Formaldehyde could induce genetic materials in spermatogone, primary spermatocyte and caused degeneration and necrosis in secondary spermatocyte, spermatogenic cell, sperm; The damage of LPO, decline of copper and zinc and SDH activity in mice's testicle tissue could be caused by formaldehyde; The effect

  13. Enhanced Genetic Integrity in Mouse Germ Cells1

    PubMed Central

    Murphey, Patricia; McLean, Derek J.; McMahan, C. Alex; Walter, Christi A.; McCarrey, John R.

    2012-01-01

    ABSTRACT Genetically based diseases constitute a major human health burden, and de novo germline mutations represent a source of heritable genetic alterations that can cause such disorders in offspring. The availability of transgenic rodent systems with recoverable, mutation reporter genes has been used to assess the occurrence of spontaneous point mutations in germline cells. Previous studies using the lacI mutation reporter transgenic mouse system showed that the frequency of spontaneous mutations is significantly lower in advanced male germ cells than in somatic cell types from the same individuals. Here we used this same mutation reporter transgene system to show that female germ cells also display a mutation frequency that is lower than that in corresponding somatic cells and similar to that seen in male germ cells, indicating this is a common feature of germ cells in both sexes. In addition, we showed that statistically significant differences in mutation frequencies are evident between germ cells and somatic cells in both sexes as early as mid-fetal stages in the mouse. Finally, a comparison of the mutation frequency in a general population of early type A spermatogonia with that in a population enriched for Thy-1-positive spermatogonia suggests there is heterogeneity among the early spermatogonial population such that a subset of these cells are predestined to form true spermatogonial stem cells. Taken together, these results support the disposable soma theory, which posits that genetic integrity is normally maintained more stringently in the germ line than in the soma and suggests that this is achieved by minimizing the initial occurrence of mutations in early germline cells and their subsequent gametogenic progeny relative to that in somatic cells. PMID:23153565

  14. Childhood Central Nervous System Germ Cell Tumors Treatment (PDQ®)—Patient Version

    Cancer.gov

    Childhood central nervous system (CNS) germ cell tumors form from germ cells (a type of cell that forms as a fetus develops and later becomes sperm in the testicles or eggs in the ovaries). Learn about the signs, tests to diagnose, and treatment of pediatric germ cell tumors in the brain in this expert-reviewed summary.

  15. DNA Analysis in Samples From Younger Patients With Germ Cell Tumors and Their Parents or Siblings

    ClinicalTrials.gov

    2016-10-05

    Childhood Malignant Ovarian Germ Cell Tumor; Childhood Malignant Testicular Germ Cell Tumor; Ovarian Choriocarcinoma; Ovarian Embryonal Carcinoma; Ovarian Mixed Germ Cell Tumor; Ovarian Teratoma; Ovarian Yolk Sac Tumor; Testicular Choriocarcinoma; Testicular Embryonal Carcinoma; Testicular Seminoma; Testicular Teratoma; Testicular Yolk Sac Tumor

  16. The pathology of late recurrence of testicular germ cell tumors.

    PubMed

    Michael, H; Lucia, J; Foster, R S; Ulbright, T M

    2000-02-01

    A total of 91 men had histologically documented late recurrences of testicular germ cell tumors characterized by a complete response to treatment with a subsequent disease-free interval of at least 2 years and no evidence of a second primary lesion. Ninety percent of the patients for whom information was available received chemotherapy shortly after their initial diagnosis of testicular germ cell tumors; most of the other patients were known to have stage I disease initially. Overall, 60% of patients had teratoma in their late recurrences, including 20 patients (22%) in whom teratoma was the only element. Thus, teratoma was the most common type of neoplasm in late recurrences. Excluding teratoma coexisting with other types of neoplasms, yolk sac tumor was the most frequent type of tumor in patients with late recurrence. It occurred in 47% of patients, either alone or with teratoma, another nonteratomatous germ cell tumor type, or a "nongerm cell malignant tumor." Unusual types of yolk sac tumor, including glandular, parietal, clear cell, and pleomorphic patterns, were seen frequently in late recurrences and often raised differential diagnostic problems with "nongerm cell" carcinomas. A smaller number of late recurrences consisted of other types of neoplasms. Twenty percent of patients with late recurrence had a nonteratomatous germ cell tumor other than yolk sac tumor, either alone, with yolk sac tumor, or with a "nongerm cell malignant tumor." Most of these nonteratomatous germ cell tumors other than yolk sac tumor were embryonal carcinoma, although rarely seminoma and choriocarcinoma were encountered. "Nongerm cell malignant tumors," including both sarcomas and carcinomas of various types, occurred in 23% of late-recurrence patients, either alone or with a nonteratomatous germ cell tumor. Late recurrences were seen in many different sites in these patients, including the retroperitoneum, abdomen, pelvis, liver, mediastinum, lung, bone (femur, vertebra, and rib

  17. Prmt5 is required for germ cell survival during spermatogenesis in mice

    PubMed Central

    Wang, Yanbo; Zhu, Tianxiang; Li, Qiuling; Liu, Chunyi; Han, Feng; Chen, Min; Zhang, Lianjun; Cui, Xiuhong; Qin, Yan; Bao, Shilai; Gao, Fei

    2015-01-01

    During germ cell development, epigenetic modifications undergo extensive remodeling. Abnormal epigenetic modifications usually result in germ cell loss and reproductive defect. Prmt5 (Protein arginine methyltransferase 5) encodes a protein arginine methyltransferase which has been demonstrated to play important roles in germ cell development during embryonic stages. In the present study, we found that Prmt5 was also abundantly expressed in male germ cells after birth. Inactivation of this gene by crossing with Stra8-Cre transgenic mice resulted in germ cell loss during spermatogenesis. Further study revealed that the germ cell development was grossly normal before P10. However, most of the germ cells in Prmt5Δ/f; Stra8-Cre mice were blocked at meiotic stage. The expression of meiosis associated genes was reduced in Prmt5Δ/f; Stra8-Cre testes compared to control testes at P10. γH2AX was detected in sex body of control germ cells at P12, whereas multiple foci were observed in Prmt5-deficient germ cells. Further study revealed that H4R3me2s was virtually absent in germ cells after Prmt5 inactivation. The results of this study indicate that Prmt5 also plays important roles in germ cell development during spermatogenesis. PMID:26072710

  18. Induction of specific-locus mutations in male germ cells of the mouse by acrylamide monomer.

    PubMed

    Russell, L B; Hunsicker, P R; Cacheiro, N L; Generoso, W M

    1991-02-01

    Acrylamide monomer (AA), injected into male mice at the maximum tolerated dose of 5 x 50 mg/kg (24-h intervals), significantly increased the specific-locus mutation rate in certain poststem-cell stages of spermatogenesis, but not in spermatogonial stem cells. Germ-cell stages in which the treatment induced dominant lethals--namely, exposed spermatozoa and late spermatids (number of surviving offspring only 3% and 27%, respectively, of those in concurrent controls)--jointly yielded the highest frequency of specific-locus mutations. AA thus conforms to Pattern 1 in our earlier classification of chemicals according to the spermatogenic stage at which they elicit maximum response (Russell et al., 1990). No specific-locus mutations were observed among 17,112 offspring derived from exposed spermatogonial stem cells, a result which rules out (at the 5% significance level) an induced mutation rate greater than 2.3 times the historical control rate. A sustained high productivity in matings made for several months following week 3 indicates that there is no significant spermatogonial killing and that cell selection is presumably not the explanation for the negative result. On the basis of genetic and/or cytogenetic evidence, the mutations induced postmeiotically by AA were 'large lesions' (multi-locus), while one of 2 recovered from exposure of differentiating spermatogonia is probably a small lesion. An earlier survey of mammalian mutagenesis results led us to conclude that, regardless of the classification of a chemical according to the stage at which it elicits its maximum response, the nature of mutations is determined by the germ-cell stage in which they are induced (Russell et al., 1990). The AA results on lesion size and on distribution of mutations among the loci fit the general pattern.

  19. Induction of Germ Cell-like Cells from Porcine Induced Pluripotent Stem Cells

    PubMed Central

    Wang, Hanning; Xiang, Jinzhu; Zhang, Wei; Li, Junhong; Wei, Qingqing; Zhong, Liang; Ouyang, Hongsheng; Han, Jianyong

    2016-01-01

    The ability to generate germ cells from pluripotent stem cells (PSCs) is valuable for human regenerative medicine and animal breeding. Germ cell-like cells (GCLCs) have been differentiated from mouse and human PSCs, but not from porcine PSCs, which are considered an ideal model for stem cell applications. Here, we developed a defined culture system for the induction of primordial germ cell-like cells (PGCLCs) from porcine induced PSCs (piPSCs). The identity of the PGCLCs was characterized by observing cell morphology, detecting germ cell marker gene expression and evaluating epigenetic properties. PGCLCs could further differentiate into spermatogonial stem cell-like cells (SSCLCs) in vitro. Importantly, meiosis occurred during SSCLC induction. Xenotransplantation of GCLCs into seminiferous tubules of infertile immunodeficient mice resulted in immunohistochemically identifiable germ cells in vivo. Overall, our study provides a feasible strategy for directing piPSCs to the germ cell fate and lays a foundation for exploring germ cell development mechanisms. PMID:27264660

  20. Management of Pediatric Malignant Germ Cell Tumors: ICMR Consensus Document.

    PubMed

    Agarwala, Sandeep; Mitra, Aparajita; Bansal, Deepak; Kapoor, Gauri; Vora, Tushar; Prasad, Maya; Chinnaswamy, Girish; Arora, Brijesh; Radhakrishnan, Venkatraman; Laskar, Siddharth; Kaur, Tanvir; Dhaliwal, Rupinder Singh; Rath, G K; Bakhshi, Sameer

    2017-06-01

    With the introduction of cisplatin, the outcome of children with malignant germ cell tumors (MGCT) has improved to nearly 90% 5 year survival. Over the years, through the results of various multinational co-operative trials, the chemotherapy and surgical guidelines for both the gonadal and extra-gonadal MGCTs have been refined to decrease the early and late morbidities and at the same time improve survival. Introduction of risk categorization has further added to this effort. There has been no recommendation on how the children with malignant germ cell tumors should be treated in India. The current manuscript is written with the objective of developing a consensus guideline for practitioners at a National level. Based on extensively reviewed literature and personal experience of the major pediatric oncology centres in India, the ICMR Expert group has made recommendations for management of children with MGCT India.

  1. Mediastinal germ cell tumors: a radiologic-pathologic review.

    PubMed

    Drevelegas, A; Palladas, P; Scordalaki, A

    2001-01-01

    Germ cell tumors of the mediastinum are histologically identical to those found in the testes and ovaries. Early diagnosis and treatment improve the survival rate. Imaging studies of teratoma demonstrate a rounded, often lobulated heterogeneous mass containing soft tissue elements with fluid and fat attenuation. Calcification is present in 20-43% of cases. Seminomas are large masses of homogeneous soft tissue attenuation. Malignant nonseminomatous germ cell tumors are heterogeneous tumors with irregular borders due to invasion of adjacent structures. CT shows the location and extent of the tumors as well as intrinsic elements including soft tissue, fat, fluid, and calcification. CT is the modality of choice for the diagnostic evaluation of these tumors. MRI reveals masses of heterogeneous signal intensity, is more sensitive in depicting infiltration of the adjacent structures by fat plane obliteration, and is performed as an ancillary study.

  2. Paraneoplastic tumefactive demyelination with underlying combined germ cell cancer.

    PubMed

    Broadfoot, Jack R; Archer, Hilary A; Coulthard, Elizabeth; Appelman, Auke P A; Sutak, Judit; Braybrooke, Jeremy P; Love, Seth

    2015-12-01

    Paraneoplastic demyelination is a rare disorder of the central nervous system. We describe a 60-year-old man with tumefactive demyelination who had an underlying retroperitoneal germ cell cancer. He presented with visuospatial problems and memory loss and had a visual field defect. His MRI was interpreted as a glioma but stereotactic biopsy showed active demyelination. Investigation for multiple sclerosis was negative but CT imaging showed retroperitoneal lymphadenopathy, and nodal biopsy confirmed a combined germ cell cancer. He responded poorly to corticosteroid treatment, and his visual field defect progressed. However, 6 months after plasma exchange and successful chemotherapy, he has partially improved clinically and radiographically. Tumefactive demyelination is typically associated with multiple sclerosis but may be paraneoplastic. It is important to recognise paraneoplastic tumefactive demyelination early, as the neurological outcome relies on treating the associated malignancy.

  3. Unique Aspects of Transcription Regulation in Male Germ Cells

    PubMed Central

    White-Cooper, Helen; Davidson, Irwin

    2011-01-01

    Spermatogenesis is a complex and ordered differentiation process in which the spermatogonial stem cell population gives rise to primary spermatocytes that undergo two successive meiotic divisions followed by a major biochemical and structural reorganization of the haploid cells to generate mature elongate spermatids. The transcriptional regulatory programs that orchestrate this process have been intensively studied in model organisms such as Drosophila melanogaster and mouse. Genetic and biochemical approaches have identified the factors involved and revealed mechanisms of action that are unique to male germ cells. In a well-studied example, cofactors and pathways distinct from those used in somatic tissues mediate the action of CREM in male germ cells. But perhaps the most striking feature concerns the paralogs of somatically expressed transcription factors and of components of the general transcription machinery that act in distinct regulatory mechanisms in both Drosophila and murine spermatogenesis. PMID:21555408

  4. Intraperitoneal germ cell transplantation in the Nile tilapia Oreochromis niloticus.

    PubMed

    Farlora, Rodolfo; Hattori-Ihara, Shoko; Takeuchi, Yukata; Hayashi, Makoto; Octavera, Anna; Alimuddin; Yoshizaki, Goro

    2014-06-01

    Germ cell transplantation offers promising applications in finfish aquaculture and the preservation of endangered species. Here, we describe an intraperitoneal spermatogonia transplantation procedure in the Nile tilapia Oreochromis niloticus. Through histological analysis of early gonad development, we first determined the best suitable stage at which exogenous germ cells should be transplanted into the recipients. For the transplantation procedure, donor testes from a transgenic Nile tilapia strain carrying the medaka β-actin/enhanced green fluorescent protein (EGFP) gene were subjected to enzymatic dissociation. These testicular cells were then stained with PKH26 and microinjected into the peritoneal cavity of the recipient fish. To confirm colonization of the donor-derived germ cells, the recipient gonads were examined by fluorescent and confocal microscopy. PKH26-labeled cells exhibiting typical spermatogonial morphology were incorporated into the recipient gonads and were not rejected within 22 days posttransplantation. Long-term survival of transgenic donor-derived germ cells was then verified in the gonads of 5-month-old recipients and in the milt and vitelogenic oocytes of 1-year-old recipients, by means of PCR using EGFP-specific primers. EGFP-positive milt from adult male recipients was used to fertilize non-transgenic oocytes and produced transgenic offspring expressing the donor-derived phenotype. These results imply that long-term survival, proliferation, and differentiation of the donor-derived spermatogonia into vitelogenic oocytes and functional spermatozoa are all possible. Upon further improvements in the transplantation efficiency, this intraperitoneal transplantation system could become a valuable tool in the conservation of genetic resources for cichlid species.

  5. DAZ Family Proteins, Key Players for Germ Cell Development.

    PubMed

    Fu, Xia-Fei; Cheng, Shun-Feng; Wang, Lin-Qing; Yin, Shen; De Felici, Massimo; Shen, Wei

    2015-01-01

    DAZ family proteins are found almost exclusively in germ cells in distant animal species. Deletion or mutations of their encoding genes usually severely impair either oogenesis or spermatogenesis or both. The family includes Boule (or Boll), Dazl (or Dazla) and DAZ genes. Boule and Dazl are situated on autosomes while DAZ, exclusive of higher primates, is located on the Y chromosome. Deletion of DAZ gene is the most common causes of infertility in humans. These genes, encoding for RNA binding proteins, contain a highly conserved RNA recognition motif and at least one DAZ repeat encoding for a 24 amino acids sequence able to bind other mRNA binding proteins. Basically, Daz family proteins function as adaptors for target mRNA transport and activators of their translation. In some invertebrate species, BOULE protein play a pivotal role in germline specification and a conserved regulatory role in meiosis. Depending on the species, DAZL is expressed in primordial germ cells (PGCs) and/or pre-meiotic and meiotic germ cells of both sexes. Daz is found in fetal gonocytes, spermatogonia and spermatocytes of adult testes. Here we discuss DAZ family genes in a phylogenic perspective, focusing on the common and distinct features of these genes, and their pivotal roles during gametogenesis evolved during evolution.

  6. Progress towards human primordial germ cell specification in vitro.

    PubMed

    Canovas, S; Campos, R; Aguilar, E; Cibelli, J B

    2017-01-01

    Primordial germ cells (PGCs) have long been considered the link between one generation and the next. PGC specification begins in the early embryo as a result of a highly orchestrated combination of transcriptional and epigenetic mechanisms. Understanding the molecular events that lead to proper PGC development will facilitate the development of new treatments for human infertility as well as species conservation. This article describes the latest, most relevant findings about the mechanisms of PGC formation, emphasizing human PGC. It also discusses our own laboratory's progress in using transdifferentiation protocols to derive human PGCs (hPGCs). Our preliminary results arose from our pursuit of a sequential hPGC induction strategy that starts with the repression of lineage-specific factors in the somatic cell, followed by the reactivation of germ cell-related genes using specific master regulators, which can indeed reactivate germ cell-specific genes in somatic cells. While it is still premature to assume that fully functional human gametes can be obtained in a dish, our results, together with those recently published by others, provide strong evidence that generating their precursors, PGCs, is within reach. © The Author 2016. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  7. Role of surgical resection for refractory germ cell tumors.

    PubMed

    Daneshmand, Siamak

    2015-08-01

    This article aims to critically review the current recommendations with regard to the role of surgery following salvage chemotherapy, growing teratoma syndrome, late relapse, as well as malignant transformation. All the literature published in English and available on Pubmed pertaining to refractory germ cell tumors was reviewed and the relevant articles, as well as our own institutional experience were included in this review. There is universal agreement that patients with non-seminoma who have residual tumor measuring greater than one centimeter should undergo post-chemotherapy retroperitoneal lymph node dissection (PC-RPLND) for resection of potential teratoma or viable germ cell tumor. The role of surgical resection is less clear in patients who are deemed to have germ cell tumors refractory to chemotherapy. Patients with residual masses following second line therapy, those with growing teratoma, late relapse, and malignant transformation should all be considered for upfront surgical resection. Compared with the typical PC-RPLND, these operations are generally more complex, with a higher proportion requiring adjunctive procedures; and should be performed in experienced, tertiary referral centers. Patients who have complete resection of disease are sill curable and patients with chemorefractory disease should have evaluation by an expert surgeon. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. In vitro differentiation of germ cells from stem cells: a comparison between primordial germ cells and in vitro derived primordial germ cell-like cells.

    PubMed

    Ge, W; Chen, C; De Felici, M; Shen, W

    2015-10-15

    Stem cells are unique cell types capable to proliferate, some of them indefinitely, while maintaining the ability to differentiate into a few or any cell lineages. In 2003, a group headed by Hans R. Schöler reported that oocyte-like cells could be produced from mouse embryonic stem (ES) cells in vitro. After more than 10 years, where have these researches reached? Which are the major successes achieved and the problems still remaining to be solved? Although during the last years, many reviews have been published about these topics, in the present work, we will focus on an aspect that has been little considered so far, namely a strict comparison between the in vitro and in vivo developmental capabilities of the primordial germ cells (PGCs) isolated from the embryo and the PGC-like cells (PGC-LCs) produced in vitro from different types of stem cells in the mouse, the species in which most investigation has been carried out. Actually, the formation and differentiation of PGCs are crucial for both male and female gametogenesis, and the faithful production of PGCs in vitro represents the basis for obtaining functional germ cells.

  9. In vitro differentiation of germ cells from stem cells: a comparison between primordial germ cells and in vitro derived primordial germ cell-like cells

    PubMed Central

    Ge, W; Chen, C; De Felici, M; Shen, W

    2015-01-01

    Stem cells are unique cell types capable to proliferate, some of them indefinitely, while maintaining the ability to differentiate into a few or any cell lineages. In 2003, a group headed by Hans R. Schöler reported that oocyte-like cells could be produced from mouse embryonic stem (ES) cells in vitro. After more than 10 years, where have these researches reached? Which are the major successes achieved and the problems still remaining to be solved? Although during the last years, many reviews have been published about these topics, in the present work, we will focus on an aspect that has been little considered so far, namely a strict comparison between the in vitro and in vivo developmental capabilities of the primordial germ cells (PGCs) isolated from the embryo and the PGC-like cells (PGC-LCs) produced in vitro from different types of stem cells in the mouse, the species in which most investigation has been carried out. Actually, the formation and differentiation of PGCs are crucial for both male and female gametogenesis, and the faithful production of PGCs in vitro represents the basis for obtaining functional germ cells. PMID:26469955

  10. Porcine reproductive and respiratory syndrome virus replicates in testicular germ cells, alters spermatogenesis, and induces germ cell death by apoptosis.

    PubMed Central

    Sur, J H; Doster, A R; Christian, J S; Galeota, J A; Wills, R W; Zimmerman, J J; Osorio, F A

    1997-01-01

    Like other arteriviruses, porcine reproductive and respiratory syndrome virus (PRRSV) is shed in semen, a feature that is critical for the venereal transmission of this group of viruses. In spite of its epidemiological importance, little is known of the association of PRRSV or other arteriviruses with gonadal tissues. We experimentally infected a group of boars with PRRSV 12068-96, a virulent field strain. By combined use of in situ hybridization and immunohistochemistry, we detected infection by PRRSV in the testes of these boars. The PRRSV testicular replication in testis centers on two types of cells: (i) epithelial germ cells of the seminiferous tubules, primarily spermatids and spermatocytes, and (ii) macrophages, which are located in the interstitium of the testis. Histopathologically, hypospermatogenesis, formation of multinucleated giant cells (MGCs), and abundant germ cell depletion and death were observed. We obtained evidence that such germ cell death occurs by apoptosis, as determined by a characteristic histologic pattern and evidence of massive DNA fragmentation detected in situ (TUNEL [terminal deoxynucleotidyltransferase-mediated digoxigenin-UTP nick end labeling] assay). Simultaneously with these testicular alterations, we observed that there is a significant increase in the number of immature sperm cells (mainly MGCs, spermatids, and spermatocytes) in the ejaculates of the PRRSV-inoculated boars and that these cells are infected with PRRSV. Our results indicate that PRRSV may infect target cells other than macrophages, that these infected cells can be primarily responsible for the excretion of infectious PRRSV in semen, and that PRRSV induces apoptosis in these germ cells in vivo. PMID:9371575

  11. Prepubertal male rats with high rates of germ-cell apoptosis present exacerbated rates of germ-cell apoptosis after serotonin depletion.

    PubMed

    Méndez Palacios, Néstor; Escobar, María Elena Ayala; Mendoza, Maximino Méndez; Crispín, Rubén Huerta; Andrade, Octavio Guerrero; Melández, Javier Hernández; Martínez, Andrés Aragón

    2016-04-01

    Male germ-cell apoptosis occurs naturally and can be increased by exposure to drugs and toxic chemicals. Individuals may have different rates of apoptosis and are likely to also exhibit differential sensitivity to outside influences. Previously, we reported that p-chloroamphetamine (pCA), a substance that inhibits serotonin synthesis, induced germ-cell apoptosis in prepubertal male rats. Here, we identified prepubertal rats with naturally high or low rates of germ-cell apoptosis and evaluated gene expression in both groups. Bax and Shbg mRNA levels were higher in rats with high rates of germ-cell apoptosis. Rats were then treated with pCA and the neuro-hormonal response and gene expression were evaluated. Treatment with pCA induced a reduction in serotonin concentrations but levels of sex hormones and gonadotrophins were not changed. Rats with initially high rates of germ-cell apoptosis had even higher rates of germ-cell apoptosis after treatment with pCA. In rats with high rates of germ-cell apoptosis Bax mRNA expression remained high after treatment with pCA. On the basis of category, an inverse relationship between mRNA expression of Bax and Bcl2, Bax and AR and Bax and Hsd3b2 was found. Here we provide evidence that innate levels of germ-cell apoptosis could be explained by the level of mRNA expression of genes involved with apoptosis and spermatogenesis.

  12. Production of fertile zebrafish (Danio rerio) possessing germ cells (gametes) originated from primordial germ cells recovered from vitrified embryos.

    PubMed

    Higaki, Shogo; Eto, Yoshiki; Kawakami, Yutaka; Yamaha, Etsuro; Kagawa, Noriko; Kuwayama, Masashige; Nagano, Masashi; Katagiri, Seiji; Takahashi, Yoshiyuki

    2010-04-01

    This study aimed to produce fertile zebrafish (Danio rerio) possessing germ cells (gametes) that originated from cryopreserved primordial germ cells (PGCs). First, to improve the vitrification procedure of PGCs in segmentation stage embryos, dechorionated yolk-intact and yolk-removed embryos, the PGCs of which were labeled with green fluorescent protein, were cooled rapidly after serial exposures to equilibration solution (ES) and vitrification solution (VS), which contained ethylene glycol, DMSO, and sucrose. Yolk removal well prevented ice formation in the embryos during cooling and improved the viability of cryopreserved PGCs. The maximum recovery rate of live PGCs in the yolk-removed embryos vitrified after optimum exposure to ES and VS was estimated to be about 90%, and about 50% of the live PGCs showed pseudopodial movement. Next, to elucidate the ability of cryopreserved PGCs to differentiate into functional gametes, PGCs recovered from the yolk-removed embryos (striped-type) that were vitrified under the optimum exposure to ES and VS were transplanted individually into 218 sterilized recipient blastulae (golden-type). Two days after the transplantation, 7.5% (14/187) of morphologically normal embryos had PGC(s) in the genital ridges. Six (5 males and 1 female) of the 14 recipient embryos developed into mature fish and generated progeny with characteristics inherited from PGC donors. In conclusion, we demonstrated the successful cryopreservation of PGCs by vitrification of yolk-removed embryos and the production of fertile zebrafish possessing germ cells that originated from the PGCs in vitrified embryos.

  13. Functional analysis of the Drosophila embryonic germ cell transcriptome by RNA interference.

    PubMed

    Jankovics, Ferenc; Henn, László; Bujna, Ágnes; Vilmos, Péter; Spirohn, Kerstin; Boutros, Michael; Erdélyi, Miklós

    2014-01-01

    In Drosophila melanogaster, primordial germ cells are specified at the posterior pole of the very early embryo. This process is regulated by the posterior localized germ plasm that contains a large number of RNAs of maternal origin. Transcription in the primordial germ cells is actively down-regulated until germ cell fate is established. Bulk expression of the zygotic genes commences concomitantly with the degradation of the maternal transcripts. Thus, during embryogenesis, maternally provided and zygotically transcribed mRNAs determine germ cell development collectively. In an effort to identify novel genes involved in the regulation of germ cell behavior, we carried out a large-scale RNAi screen targeting both maternal and zygotic components of the embryonic germ line transcriptome. We identified 48 genes necessary for distinct stages in germ cell development. We found pebble and fascetto to be essential for germ cell migration and germ cell division, respectively. Our data uncover a previously unanticipated role of mei-P26 in maintenance of embryonic germ cell fate. We also performed systematic co-RNAi experiments, through which we found a low rate of functional redundancy among homologous gene pairs. As our data indicate a high degree of evolutionary conservation in genetic regulation of germ cell development, they are likely to provide valuable insights into the biology of the germ line in general.

  14. Tre1, a G Protein-Coupled Receptor, Directs Transepithelial Migration of Drosophila Germ Cells

    PubMed Central

    Bainton, Roland J; Heberlein, Ulrike

    2003-01-01

    In most organisms, germ cells are formed distant from the somatic part of the gonad and thus have to migrate along and through a variety of tissues to reach the gonad. Transepithelial migration through the posterior midgut (PMG) is the first active step during Drosophila germ cell migration. Here we report the identification of a novel G protein-coupled receptor (GPCR), Tre1, that is essential for this migration step. Maternal tre1 RNA is localized to germ cells, and tre1 is required cell autonomously in germ cells. In tre1 mutant embryos, most germ cells do not exit the PMG. The few germ cells that do leave the midgut early migrate normally to the gonad, suggesting that this gene is specifically required for transepithelial migration and that mutant germ cells are still able to recognize other guidance cues. Additionally, inhibiting small Rho GTPases in germ cells affects transepithelial migration, suggesting that Tre1 signals through Rho1. We propose that Tre1 acts in a manner similar to chemokine receptors required during transepithelial migration of leukocytes, implying an evolutionarily conserved mechanism of transepithelial migration. Recently, the chemokine receptor CXCR4 was shown to direct migration in vertebrate germ cells. Thus, germ cells may more generally use GPCR signaling to navigate the embryo toward their target. PMID:14691551

  15. Functional Analysis of the Drosophila Embryonic Germ Cell Transcriptome by RNA Interference

    PubMed Central

    Bujna, Ágnes; Vilmos, Péter; Spirohn, Kerstin; Boutros, Michael; Erdélyi, Miklós

    2014-01-01

    In Drosophila melanogaster, primordial germ cells are specified at the posterior pole of the very early embryo. This process is regulated by the posterior localized germ plasm that contains a large number of RNAs of maternal origin. Transcription in the primordial germ cells is actively down-regulated until germ cell fate is established. Bulk expression of the zygotic genes commences concomitantly with the degradation of the maternal transcripts. Thus, during embryogenesis, maternally provided and zygotically transcribed mRNAs determine germ cell development collectively. In an effort to identify novel genes involved in the regulation of germ cell behavior, we carried out a large-scale RNAi screen targeting both maternal and zygotic components of the embryonic germ line transcriptome. We identified 48 genes necessary for distinct stages in germ cell development. We found pebble and fascetto to be essential for germ cell migration and germ cell division, respectively. Our data uncover a previously unanticipated role of mei-P26 in maintenance of embryonic germ cell fate. We also performed systematic co-RNAi experiments, through which we found a low rate of functional redundancy among homologous gene pairs. As our data indicate a high degree of evolutionary conservation in genetic regulation of germ cell development, they are likely to provide valuable insights into the biology of the germ line in general. PMID:24896584

  16. The Diversity of Nanos Expression in Echinoderm Embryos Supports Different Mechanisms in Germ Cell Specification

    PubMed Central

    Fresques, Tara; Swartz, S. Zachary; Juliano, Celina; Morino, Yoshiaki; Kikuchi, Mani; Akasaka, Koji; Wada, Hiroshi; Yajima, Mamiko; Wessel, Gary M.

    2016-01-01

    Specification of the germ cell lineage is required for sexual reproduction in all animals. However, the timing and mechanisms of germ cell specification is remarkably diverse in animal development. Echinoderms, such as sea urchins and sea stars, are excellent model systems to study the molecular and cellular mechanisms that contribute to germ cell specification. In several echinoderm embryos tested, the germ cell factor Vasa accumulates broadly during early development and is restricted after gastrulation to cells that contribute to the germ cell lineage. In the sea urchin, however, the germ cell factor Vasa is restricted to a specific lineage by the 32-cell stage. We therefore hypothesized that the germ cell specification program in the sea urchin/Euechinoid lineage has evolved to an earlier developmental time point. To test this hypothesis we determined the expression pattern of a second germ cell factor, Nanos, in four out of five extant echinoderm clades. Here we find that Nanos mRNA does not accumulate until the blastula stage or later during the development of all other echinoderm embryos except those that belong to the Echinoid lineage. Instead, Nanos is expressed in a restricted domain at the 32–128 cell stage in Echinoid embryos. Our results support the model that the germ cell specification program underwent a heterochronic shift in the Echinoid lineage. A comparison of Echinoid and non-Echinoid germ cell specification mechanisms will contribute to our understanding of how these mechanisms have changed during animal evolution. PMID:27402572

  17. The diversity of nanos expression in echinoderm embryos supports different mechanisms in germ cell specification.

    PubMed

    Fresques, Tara; Swartz, Steven Zachary; Juliano, Celina; Morino, Yoshiaki; Kikuchi, Mani; Akasaka, Koji; Wada, Hiroshi; Yajima, Mamiko; Wessel, Gary M

    2016-07-01

    Specification of the germ cell lineage is required for sexual reproduction in all animals. However, the timing and mechanisms of germ cell specification is remarkably diverse in animal development. Echinoderms, such as sea urchins and sea stars, are excellent model systems to study the molecular and cellular mechanisms that contribute to germ cell specification. In several echinoderm embryos tested, the germ cell factor Vasa accumulates broadly during early development and is restricted after gastrulation to cells that contribute to the germ cell lineage. In the sea urchin, however, the germ cell factor Vasa is restricted to a specific lineage by the 32-cell stage. We therefore hypothesized that the germ cell specification program in the sea urchin/Euechinoid lineage has evolved to an earlier developmental time point. To test this hypothesis we determined the expression pattern of a second germ cell factor, Nanos, in four out of five extant echinoderm clades. Here we find that Nanos mRNA does not accumulate until the blastula stage or later during the development of all other echinoderm embryos except those that belong to the Echinoid lineage. Instead, Nanos is expressed in a restricted domain at the 32-128 cell stage in Echinoid embryos. Our results support the model that the germ cell specification program underwent a heterochronic shift in the Echinoid lineage. A comparison of Echinoid and non-Echinoid germ cell specification mechanisms will contribute to our understanding of how these mechanisms have changed during animal evolution. © 2016 Wiley Periodicals, Inc.

  18. Presence of Germ Cells in Disorders of Sex Development: Implications for Fertility Potential and Preservation

    PubMed Central

    Finlayson, Courtney; Fritsch, Michael K.; Johnson, Emilie K.; Rosoklija, Ilina; Gosiengfiao, Yasmin; Yerkes, Elizabeth; Madonna, Mary Beth; Woodruff, Teresa K.; Cheng, Earl

    2017-01-01

    Purpose We sought to determine the presence of germ cells in the gonads of patients with disorders of sex development to establish whether preservation of germ cells for future fertility potential is possible. We hypothesized that germ cells are present but vary by age and diagnosis. Materials and Methods We reviewed histology from patients with disorders of sex development who underwent gonadectomy/biopsy from 2002 to 2014 at a single institution for pathological classification of the gonad, composition of gonadal stroma and germ cell presence. Results A total of 44 patients were identified and germ cells were present in 68%. The presence and average number of germ cells per mm2 were analyzed by gonad type and diagnosis. By gonad type all ovotestes, most testes, ovaries and dysgenetic testes, and 15% of streak gonads had germ cells present. By diagnosis germ cells were present in all patients with complete androgen insensitivity syndrome, Denys-Drash syndrome, SRY mutation, mixed gonadal dysgenesis, ovotesticular conditions and StAR (steroid acute regulatory protein) deficiency, in some patients with persistent müllerian duct syndrome, XO/XY Turner syndrome and disorders of sex development not otherwise specified, and in none with complete or partial gonadal dysgenesis. Germ cells were present in the gonads of 88% of patients 0 to 3 years old, 50% of those 4 to 11 years old and 43% of those older than 12 years. Conclusions Germ cells were present in the majority of our cohort and the presence decreased with age. This novel, fertility driven evaluation of germ cell quantity in a variety of disorders of sex development suggests that fertility potential may be greater than previously thought. Further studies must be done to evaluate a larger population and examine germ cell quality to determine the viability of these germ cells. PMID:27840018

  19. Presence of Germ Cells in Disorders of Sex Development: Implications for Fertility Potential and Preservation.

    PubMed

    Finlayson, Courtney; Fritsch, Michael K; Johnson, Emilie K; Rosoklija, Ilina; Gosiengfiao, Yasmin; Yerkes, Elizabeth; Madonna, Mary Beth; Woodruff, Teresa K; Cheng, Earl

    2017-03-01

    We sought to determine the presence of germ cells in the gonads of patients with disorders of sex development to establish whether preservation of germ cells for future fertility potential is possible. We hypothesized that germ cells are present but vary by age and diagnosis. We reviewed histology from patients with disorders of sex development who underwent gonadectomy/biopsy from 2002 to 2014 at a single institution for pathological classification of the gonad, composition of gonadal stroma and germ cell presence. A total of 44 patients were identified and germ cells were present in 68%. The presence and average number of germ cells per mm(2) were analyzed by gonad type and diagnosis. By gonad type all ovotestes, most testes, ovaries and dysgenetic testes, and 15% of streak gonads had germ cells present. By diagnosis germ cells were present in all patients with complete androgen insensitivity syndrome, Denys-Drash syndrome, SRY mutation, mixed gonadal dysgenesis, ovotesticular conditions and StAR (steroid acute regulatory protein) deficiency, in some patients with persistent müllerian duct syndrome, XO/XY Turner syndrome and disorders of sex development not otherwise specified, and in none with complete or partial gonadal dysgenesis. Germ cells were present in the gonads of 88% of patients 0 to 3 years old, 50% of those 4 to 11 years old and 43% of those older than 12 years. Germ cells were present in the majority of our cohort and the presence decreased with age. This novel, fertility driven evaluation of germ cell quantity in a variety of disorders of sex development suggests that fertility potential may be greater than previously thought. Further studies must be done to evaluate a larger population and examine germ cell quality to determine the viability of these germ cells. Copyright © 2017 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  20. Germ cell dynamics during the annual reproductive cycle of Dendropsophus minutus (Anura: Hylidae).

    PubMed

    Santos, Lia Raquel de Souza; Franco-Belussi, Lilian; de Oliveira, Classius

    2011-11-01

    Thirty male specimens of Dendropsophus minutus Peters, 1972, were collected from April 2004 to March 2005 in the region de Sao José do Rio Preto/SP, to conduct a histological study during the seasonal and annual cycles. Testicular activity was inferred based on the volume occupied by each type of cellular cyst present in the seminiferous tubules, as well as the quantity of germ cells in the final development stage, the spermatozoids. All data analyzed were correlated with climatic variables (temperature, rainfall and photoperiod) registered in the region where specimens were collected. A significant variation was verified in the quantity of spermatozoids as well as in the volume occupied by spermatids and spermatozoids throughout the year and between the cold/dry and hot/ humid seasons. It has also been reported that environmental conditions are important factors closely related to species reproduction and that production of germ cells and volume occupied by germ cysts is independent of anatomical aspect of the gonads. Thus, it was possible to verify that although the species reproduces throughout the year, individuals exhibit a preferential reproduction season, resulting in a reproductive (October to the end of February) and a post-reproductive period.

  1. Production of reproductively sterile fish: A mini-review of germ cell elimination technologies.

    PubMed

    Wong, Ten-Tsao; Zohar, Yonathan

    2015-09-15

    As seafood consumption shifts from fisheries harvests to artificially propagated aquatic species, the increase of aquaculture activities poses a biological threat to our environment. Selectively bred, non-native and (eventually) genetically engineered farmed fish may escape from aquaculture operations, propagate and/or interbreed with wild stocks and subsequently alter the genetic makeup of populations in the environment. Thus, an effective strategy for bio-containment of farmed fish is critically needed. Farming reproductively sterile fish is the most environmentally sustainable approach to ensure complete bio-containment in large-scale aquaculture operations. Chromosome set manipulations to produce sterile fish, including polyploidy and hybridization, are currently the most common practices in the aquaculture industry. However, they do not always result in 100% sterility of the treated fish. Moreover, triploid fish typically do not perform as well as the non-manipulated diploids under commercial culture conditions. In the last half decade, several genetic engineering methods have been developed to produce sterile fish. In this review, we will address the latest technologies that use transgenic approaches to eliminate germ cells, resulting in the production of sterile fish. These latest advances also led us to the development of egg/embryo immersion methodologies to deliver and screen compounds that can be used to eliminate primordial germ cells and produce sterile fish. This emerging non-transgenic strategy for the production of reproductively sterile fish in aquaculture will also be discussed.

  2. Generation of exogenous germ cells in the ovaries of sterile NANOS3-null beef cattle

    PubMed Central

    Ideta, Atsushi; Yamashita, Shiro; Seki-Soma, Marie; Yamaguchi, Ryosaku; Chiba, Shiori; Komaki, Haruna; Ito, Tetsuya; Konishi, Masato; Aoyagi, Yoshito; Sendai, Yutaka

    2016-01-01

    Blastocyst complementation (BC) systems have enabled in vivo generation of organs from allogeneic pluripotent cells, compensating for an empty germ cell niche in gene knockout (KO) animals. Here, we succeeded in producing chimeric beef cattle (Wagyu) by transferring allogenic germ cells into ovaries using somatic cell nuclear transfer and BC technology. The KO of NANOS3 (NANOS3−/−) in Wagyu bovine ovaries produced a complete loss of germ cells. Holstein blastomeres (NANOS3+/+) were injected into NANOS3−/− Wagyu embryos. Subsequently, exogenous germ cells (NANOS3+/+) were identified in the NANOS3−/− ovary. These results clearly indicate that allogeneic germ cells can be generated in recipient germ cell-free gonads using cloning and BC technologies. PMID:27117862

  3. Generation of exogenous germ cells in the ovaries of sterile NANOS3-null beef cattle.

    PubMed

    Ideta, Atsushi; Yamashita, Shiro; Seki-Soma, Marie; Yamaguchi, Ryosaku; Chiba, Shiori; Komaki, Haruna; Ito, Tetsuya; Konishi, Masato; Aoyagi, Yoshito; Sendai, Yutaka

    2016-04-27

    Blastocyst complementation (BC) systems have enabled in vivo generation of organs from allogeneic pluripotent cells, compensating for an empty germ cell niche in gene knockout (KO) animals. Here, we succeeded in producing chimeric beef cattle (Wagyu) by transferring allogenic germ cells into ovaries using somatic cell nuclear transfer and BC technology. The KO of NANOS3 (NANOS3(-/-)) in Wagyu bovine ovaries produced a complete loss of germ cells. Holstein blastomeres (NANOS3(+/+)) were injected into NANOS3(-/-) Wagyu embryos. Subsequently, exogenous germ cells (NANOS3(+/+)) were identified in the NANOS3(-/-) ovary. These results clearly indicate that allogeneic germ cells can be generated in recipient germ cell-free gonads using cloning and BC technologies.

  4. Mechanisms guiding primordial germ cell migration: strategies from different organisms

    PubMed Central

    Richardson, Brian E.; Lehmann, Ruth

    2015-01-01

    Preface The regulated migration of cells is essential for development and tissue homeostasis, and aberrant cell migration can lead to an impaired immune response and the progression of cancer. Primordial germ cells (PGCs), precursors to sperm and eggs, have to migrate across the embryo to reach somatic gonadal precursors (SGPs) and fulfill their function. Studies of model organisms have revealed that, despite important differences, several features of PGC migration are conserved. PGCs require both an intrinsic motility program and external guidance cues to survive and successfully migrate. Proper guidance involves both attractive and repulsive cues mediated by protein and lipid signalling. PMID:20027186

  5. Autonomous regulation of sex-specific developmental programming in mouse fetal germ cells.

    PubMed

    Iwahashi, Kazuhiro; Yoshioka, Hirotaka; Low, Eleanor W; McCarrey, John R; Yanagimachi, Ryuzo; Yamazaki, Yukiko

    2007-10-01

    In mice, unique events regulating epigenetic programming (e.g., genomic imprinting) and replication state (mitosis versus meiosis) occur during fetal germ cell development. To determine whether these processes are autonomously programmed in fetal germ cells or are dependent upon ongoing instructive interactions with surrounding gonadal somatic cells, we isolated male and female germ cells at 13.5 days postcoitum (dpc) and maintained them in culture for 6 days, either alone or in the presence of feeder cells or gonadal somatic cells. We examined allele-specific DNA methylation in the imprinted H19 and Snrpn genes, and we also determined whether these cells remained mitotic or entered meiosis. Our results show that isolated male germ cells are able to establish a characteristic "paternal" methylation pattern at imprinted genes in the absence of any support from somatic cells. On the other hand, cultured female germ cells maintain a hypomethylated status at these loci, characteristic of the normal "maternal" methylation pattern in endogenous female germ cells before birth. Further, the surviving female germ cells entered first meiotic prophase and reached the pachytene stage, whereas male germ cells entered mitotic arrest. These results indicate that mechanisms controlling both epigenetic programming and replication state are autonomously regulated in fetal germ cells that have been exposed to the genital ridge prior to 13.5 dpc.

  6. Insights into female germ cell biology: from in vivo development to in vitro derivations

    PubMed Central

    Jung, Dajung; Kee, Kehkooi

    2015-01-01

    Understanding the mechanisms of human germ cell biology is important for developing infertility treatments. However, little is known about the mechanisms that regulate human gametogenesis due to the difficulties in collecting samples, especially germ cells during fetal development. In contrast to the mitotic arrest of spermatogonia stem cells in the fetal testis, female germ cells proceed into meiosis and began folliculogenesis in fetal ovaries. Regulations of these developmental events, including the initiation of meiosis and the endowment of primordial follicles, remain an enigma. Studying the molecular mechanisms of female germ cell biology in the human ovary has been mostly limited to spatiotemporal characterizations of genes or proteins. Recent efforts in utilizing in vitro differentiation system of stem cells to derive germ cells have allowed researchers to begin studying molecular mechanisms during human germ cell development. Meanwhile, the possibility of isolating female germline stem cells in adult ovaries also excites researchers and generates many debates. This review will mainly focus on presenting and discussing recent in vivo and in vitro studies on female germ cell biology in human. The topics will highlight the progress made in understanding the three main stages of germ cell developments: namely, primordial germ cell formation, meiotic initiation, and folliculogenesis. PMID:25652637

  7. Insights into female germ cell biology: from in vivo development to in vitro derivations.

    PubMed

    Jung, Dajung; Kee, Kehkooi

    2015-01-01

    Understanding the mechanisms of human germ cell biology is important for developing infertility treatments. However, little is known about the mechanisms that regulate human gametogenesis due to the difficulties in collecting samples, especially germ cells during fetal development. In contrast to the mitotic arrest of spermatogonia stem cells in the fetal testis, female germ cells proceed into meiosis and began folliculogenesis in fetal ovaries. Regulations of these developmental events, including the initiation of meiosis and the endowment of primordial follicles, remain an enigma. Studying the molecular mechanisms of female germ cell biology in the human ovary has been mostly limited to spatiotemporal characterizations of genes or proteins. Recent efforts in utilizing in vitro differentiation system of stem cells to derive germ cells have allowed researchers to begin studying molecular mechanisms during human germ cell development. Meanwhile, the possibility of isolating female germline stem cells in adult ovaries also excites researchers and generates many debates. This review will mainly focus on presenting and discussing recent in vivo and in vitro studies on female germ cell biology in human. The topics will highlight the progress made in understanding the three main stages of germ cell developments: namely, primordial germ cell formation, meiotic initiation, and folliculogenesis.

  8. Conversion of primordial germ cells to pluripotent stem cells: methods for cell tracking and culture conditions.

    PubMed

    Nagamatsu, Go; Suda, Toshio

    2013-01-01

    Primordial germ cells (PGCs) are unipotent cells committed to germ lineage: PGCs can only differentiate into gametes in vivo. However, upon fertilization, germ cells acquire the capacity to differentiate into all cell types in the body, including germ cells. Therefore, germ cells are thought to have the potential for pluripotency. PGCs can convert to pluripotent stem cells in vitro when cultured under specific conditions that include bFGF, LIF, and the membrane-bound form of SCF (mSCF). Here, the culture conditions which efficiently convert PGCs to pluripotent embryonic germ (EG) cells are described, as well as methods used for identifying pluripotent candidate cells during culture.

  9. A zebrafish homologue of the chemokine receptor Cxcr4 is a germ-cell guidance receptor.

    PubMed

    Knaut, Holger; Werz, Christian; Geisler, Robert; Nüsslein-Volhard, Christiane

    2003-01-16

    Germ cells preserve an individual's genetic information and transmit it to the next generation. Early in development germ cells are set aside and undergo a specialized developmental programme, a hallmark of which is the migration from their site of origin to the future gonad. In Drosophila, several factors have been identified that control germ-cell migration to their target tissues; however, the germ-cell chemoattractant or its receptor have remained unknown. Here we apply genetics and in vivo imaging to show that odysseus, a zebrafish homologue of the G-protein-coupled chemokine receptor Cxcr4, is required specifically in germ cells for their chemotaxis. odysseus mutant germ cells are able to activate the migratory programme, but fail to undergo directed migration towards their target tissue, resulting in randomly dispersed germ cells. SDF-1, the presumptive cognate ligand for Cxcr4, shows a similar loss-of-function phenotype and can recruit germ cells to ectopic sites in the embryo, thus identifying a vertebrate ligand-receptor pair guiding migratory germ cells at all stages of migration towards their target.

  10. A zebrafish homologue of the chemokine receptor Cxcr4 is a germ-cell guidance receptor

    NASA Astrophysics Data System (ADS)

    Knaut, Holger; Werz, Christian; Geisler, Robert; Tübingen 2000 Screen Consortium; Nüsslein-Volhard, Christiane

    2003-01-01

    Germ cells preserve an individual's genetic information and transmit it to the next generation. Early in development germ cells are set aside and undergo a specialized developmental programme, a hallmark of which is the migration from their site of origin to the future gonad. In Drosophila, several factors have been identified that control germ-cell migration to their target tissues; however, the germ-cell chemoattractant or its receptor have remained unknown. Here we apply genetics and in vivo imaging to show that odysseus, a zebrafish homologue of the G-protein-coupled chemokine receptor Cxcr4, is required specifically in germ cells for their chemotaxis. odysseus mutant germ cells are able to activate the migratory programme, but fail to undergo directed migration towards their target tissue, resulting in randomly dispersed germ cells. SDF-1, the presumptive cognate ligand for Cxcr4, shows a similar loss-of-function phenotype and can recruit germ cells to ectopic sites in the embryo, thus identifying a vertebrate ligand-receptor pair guiding migratory germ cells at all stages of migration towards their target.

  11. Regulative germ cell specification in axolotl embryos: a primitive trait conserved in the mammalian lineage.

    PubMed Central

    Johnson, Andrew D; Crother, Brian; White, Mary E; Patient, Roger; Bachvarova, Rosemary F; Drum, Matthew; Masi, Thomas

    2003-01-01

    How germ cells are specified in the embryos of animals has been a mystery for decades. Unlike most developmental processes, which are highly conserved, embryos specify germ cells in very different ways. Curiously, in mouse embryos germ cells are specified by extracellular signals; they are not autonomously specified by maternal germ cell determinants (germ plasm), as are the germ cells in most animal model systems. We have developed the axolotl (Ambystoma mexicanum), a salamander, as an experimental system, because classic experiments have shown that the germ cells in this species are induced by extracellular signals in the absence of germ plasm. Here, we provide evidence that the germ cells in axolotls arise from naive mesoderm in response to simple inducing agents. In addition, by analysing the sequences of axolotl germ-cell-specific genes, we provide evidence that mice and urodele amphibians share a common mechanism of germ cell development that is ancestral to tetrapods. Our results imply that germ plasm, as found in species such as frogs and teleosts, is the result of convergent evolution. We discuss the evolutionary implications of our findings. PMID:14511484

  12. Abnormal sperm morphology in mouse germ cells after short-term exposures to acetamiprid, propineb, and their mixture.

    PubMed

    Rasgele, Pinar Göç

    2014-03-01

    Pesticides are one of the most potent environmental contaminants, which accumulate in biotic and abiotic components of ecosystems. Acetamiprid (Acm), a neonicotinoid insecticide, and Propineb (Pro), a dithiocarbamate fungicide, are widely used to control sucking insects and fungal infections on crops, respectively. The present study was undertaken to investigate the genotoxic effects of these compounds, individually and in mixtures, in mouse germ cells by using the sperm morphology assay. Mice were injected intraperitoneally with 0.625, 1.25, and 2.50 μg mL⁻¹ of Acm, 12.5, 25, and 50 μg mL⁻¹ of Pro, and their mixture at the same concentrations over 24 and 48 h. Acm did not significantly increase the percentage of abnormal sperm at any concentration. The frequency of abnormal sperm significantly increased after 24 and 48 h of exposure to 50 μg mL⁻¹ of Pro. The mixtures of 2.50 μg mL⁻¹ of Acm and 50 μg mL⁻¹ of Pro induced sperm abnormalities antagonistically both after 24 and 48 h of exposure. Results suggest that Acm was non-genotoxic for mouse germ cells, while Pro may have been a germ cell mutagen due to the observed increase in the frequency of sperm abnormalities. However, to gain better insight into the mutagenicity and DNA damaging potential of both of these pesticides, further studies at molecular level should be done.

  13. Germline mutagenesis mediated by Sleeping Beauty transposon system in mice

    PubMed Central

    Takeda, Junji; Keng, Vincent W; Horie, Kyoji

    2007-01-01

    Following the descovery of its transposition activity in mammalian culture systems, the Sleeping Beauty (SB) transposon has since been applied to achieve germline mutagenesis in mice. Initially, the transposition efficiency was found to be low in cultured systems, but its activity in germ cells was unexpectedly high. This difference in transposition efficiency was found to be largely dependent on chromosomal status of the host genomic DNA and transposon vector design. The SB transposon system has been found to be suitable for comprehensive mutagenesis in mice. Therefore, it is an effective tool as a forward genetics screen for tagged insertional mutagenesis in mice. PMID:18047691

  14. MASTL is essential for anaphase entry of proliferating primordial germ cells and establishment of female germ cells in mice

    PubMed Central

    Risal, Sanjiv; Zhang, Jingjing; Adhikari, Deepak; Liu, Xiaoman; Shao, Jingchen; Hu, Mengwen; Busayavalasa, Kiran; Tu, Zhaowei; Chen, Zijiang; Kaldis, Philipp; Liu, Kui

    2017-01-01

    In mammals, primordial germ cells (PGCs) are the embryonic cell population that serve as germ cell precursors in both females and males. During mouse embryonic development, the majority of PGCs are arrested at the G2 phase when they migrate into the hindgut at 7.75–8.75 dpc (days post coitum). It is after 9.5 dpc that the PGCs undergo proliferation with a doubling time of 12.6 h. The molecular mechanisms underlying PGC proliferation are however not well studied. In this work. Here we studied how MASTL (microtubule-associated serine/threonine kinase-like)/Greatwall kinase regulates the rapid proliferation of PGCs. We generated a mouse model where we specifically deleted Mastl in PGCs and found a significant loss of PGCs before the onset of meiosis in female PGCs. We further revealed that the deletion of Mastl in PGCs did not prevent mitotic entry, but led to a failure of the cells to proceed beyond metaphase-like stage, indicating that MASTL-mediated molecular events are indispensable for anaphase entry in PGCs. These mitotic defects further led to the death of Mastl-null PGCs by 12.5 dpc. Moreover, the defect in mitotic progression observed in the Mastl-null PGCs was rescued by simultaneous deletion of Ppp2r1a (α subunit of PP2A). Thus, our results demonstrate that MASTL, PP2A, and therefore regulated phosphatase activity have a fundamental role in establishing female germ cell population in gonads by controlling PGC proliferation during embryogenesis. PMID:28224044

  15. Endogenous interleukin 18 regulates testicular germ cell apoptosis during endotoxemia.

    PubMed

    Inoue, Taketo; Aoyama-Ishikawa, Michiko; Kamoshida, Shingo; Nishino, Satoshi; Sasano, Maki; Oka, Nobuki; Yamashita, Hayato; Kai, Motoki; Nakao, Atsunori; Kotani, Joji; Usami, Makoto

    2015-08-01

    Orchitis (testicular swelling) often occurs during systemic inflammatory conditions, such as sepsis. Interleukin 18 (IL18) is a proinflammatory cytokine and is an apoptotic mediator during endotoxemia, but the role of IL18 in response to inflammation in the testes was unclear. WT and IL18 knockout (KO) mice were injected lipopolysaccharide (LPS) to induce endotoxemia and examined 12 and 48  h after LPS administration to model the acute and recovery phases of endotoxemia. Caspase activation was assessed using immunohistochemistry. Protein and mRNA expression were examined by western blot and quantitative real-time RT-PCR respectively. During the acute phase of endotoxemia, apoptosis (as indicated by caspase-3 cleavage) was increased in WT mice but not in IL18 KO mice. The death receptor-mediated and mitochondrial-mediated apoptotic pathways were both activated in the WT mice but not in the KO mice. During the recovery phase of endotoxemia, apoptosis was observed in the IL18 KO mice but not in the WT mice. Activation of the death-receptor mediated apoptotic pathway could be seen in the IL18 KO mice but not the WT mice. These results suggested that endogenous IL18 induces germ cell apoptosis via death receptor mediated- and mitochondrial-mediated pathways during the acute phase of endotoxemia and suppresses germ cell apoptosis via death-receptor mediated pathways during recovery from endotoxemia. Taken together, IL18 could be a new therapeutic target to prevent orchitis during endotoxemia.

  16. Management of poor-prognosis testicular germ cell tumors

    PubMed Central

    Khurana, Kiranpreet; Gilligan, Timothy D.; Stephenson, Andrew J.

    2010-01-01

    Currently, the outcome of patients with intermediate-and poor-risk germ cell tumors at diagnosis is optimized by the use of risk-appropriate chemotherapy and post-chemotherapy surgical resection of residual masses. Currently, there is no role for high-dose chemotherapy in the first-line setting. Patients who progress on first-line chemotherapy or who relapse after an initial complete response also have a poor prognosis. In the setting of early relapse, the standard approach at most centers is conventional-dose, ifosfamide-based regimens and post-chemotherapy resection of residual masses. The treatment of patients with late relapse is complete surgical resection whenever feasible. Salvage chemotherapy for late relapse may be used prior to surgery in patients where a complete resection is not feasible. A complete surgical resection of all residual sites of disease after chemotherapy is critical for the prevention of relapse and the long-term survival of patients with advanced germ cell tumors. PMID:20535296

  17. Control of mammalian germ cell entry into meiosis.

    PubMed

    Feng, Chun-Wei; Bowles, Josephine; Koopman, Peter

    2014-01-25

    Germ cells are unique in undergoing meiosis to generate oocytes and sperm. In mammals, meiosis onset is before birth in females, or at puberty in males, and recent studies have uncovered several regulatory steps involved in initiating meiosis in each sex. Evidence suggests that retinoic acid (RA) induces expression of the critical pre-meiosis gene Stra8 in germ cells of the fetal ovary, pubertal testis and adult testis. In the fetal testis, CYP26B1 degrades RA, while FGF9 further antagonises RA signalling to suppress meiosis. Failsafe mechanisms involving Nanos2 may further suppress meiosis in the fetal testis. Here, we draw together the growing knowledge relating to these meiotic control mechanisms, and present evidence that they are co-ordinately regulated and that additional factors remain to be identified. Understanding this regulatory network will illuminate not only how the foundations of mammalian reproduction are laid, but also how mis-regulation of these steps can result in infertility or germline tumours.

  18. The effects of steel mutation on testicular germ cell differentiation.

    PubMed

    Nishimune, Y; Haneji, T; Kitamura, Y

    1980-10-01

    The effects of artificial cryptorchidism and its surgical reversal on spermatogenesis were examined in germ cell mutant, S1/+ and wild type, +/+, mice. In cryptorchid testes no difference was found between S1/+ and +/+ mice in the number of undifferentiated type A spermatogonia. The activity of type A spermatogonia in mutant mice appeared normal as judged by its mitotic cell number and DNA synthesis. The surgical reversal of cryptorchidism resulted in regenerative differentiation of mature germ cells in both types of mice, but the pattern of cellular differentiation in the mutant testes was completely different from that of the wild type testes. At two steps of cellular differentiation, intermediate or type B spermatogonia and spermatid, the numbers of cells were much smaller in the S1/+ testes than those in the +/+ testes. The steel gene was therefore suggested to exert its effects on the differentiation of type A spermatogonia to intermediate or type B spermatogonia, on meiotic division and/or the survival rate of these cells, but not on the undifferentiated type A spermatogonia or stem cells.

  19. Telomere homeostasis in mammalian germ cells: a review.

    PubMed

    Reig-Viader, Rita; Garcia-Caldés, Montserrat; Ruiz-Herrera, Aurora

    2016-06-01

    Telomeres protect against genome instability and participate in chromosomal movements during gametogenesis, especially in meiosis. Thus, maintaining telomere structure and telomeric length is essential to both cell integrity and the production of germ cells. As a result, alteration of telomere homeostasis in the germ line may result in the generation of aneuploid gametes or gametogenesis disruption, triggering fertility problems. In this work, we provide an overview on fundamental aspects of the literature regarding the organization of telomeres in mammalian germ cells, paying special attention to telomere structure and function, as well as the maintenance of telomeric length during gametogenesis. Moreover, we discuss the different roles recently described for telomerase and TERRA in maintaining telomere functionality. Finally, we review how new findings in the field of reproductive biology underscore the role of telomere homeostasis as a potential biomarker for infertility. Overall, we anticipate that the study of telomere stability and equilibrium will contribute to improve diagnoses of patients; assess the risk of infertility in the offspring; and in turn, find new treatments.

  20. Current chemotherapeutic approaches for recurrent or refractory germ cell tumors.

    PubMed

    O'Carrigan, Brent; Grimison, Peter

    2015-08-01

    Up to 25% of patients with metastatic testicular germ cell tumour (GCT) are not cured by first line therapy and require treatment for refractory or relapsed disease. A literature search was conducted through PubMed, Medline, Cochrane and EMBASE from January 1950 to April 2014 for articles relating to trials of chemotherapy for patients with relapsed or refractory germ cell tumours. Relevant review papers and conference proceedings were hand searched for additional references. A range of conventional dose chemotherapy (CDCT) regimens can provide durable remissions in 20-30% of patients at first or subsequent salvage. This article reviews the evidence underlying commonly used salvage CDCT based on ifosfamide and cisplatin such as TIP, VIP and VeIP; other active combinations; and single agent salvage regimens. The treatment of growing teratoma syndrome and malignant transformation of teratoma will also be discussed. Companion articles will explore the role of high dose chemotherapy (HDCT) and novel targeted agents. Crown Copyright © 2015. Published by Elsevier Inc. All rights reserved.

  1. Cryopreservation of specialized chicken lines using cultured primordial germ cells.

    PubMed

    Nandi, S; Whyte, J; Taylor, L; Sherman, A; Nair, V; Kaiser, P; McGrew, M J

    2016-08-01

    Biosecurity and sustainability in poultry production requires reliable germplasm conservation. Germplasm conservation in poultry is more challenging in comparison to other livestock species. Embryo cryopreservation is not feasible for egg-laying animals, and chicken semen conservation has variable success for different chicken breeds. A potential solution is the cryopreservation of the committed diploid stem cell precursors to the gametes, the primordial germ cells ( PGCS: ). Primordial germ cells are the lineage-restricted cells found at early embryonic stages in birds and form the sperm and eggs. We demonstrate here, using flocks of partially inbred, lower-fertility, major histocompatibility complex- ( MHC-: ) restricted lines of chicken, that we can easily derive and cryopreserve a sufficient number of independent lines of male and female PGCs that would be sufficient to reconstitute a poultry breed. We demonstrate that germ-line transmission can be attained from these PGCs using a commercial layer line of chickens as a surrogate host. This research is a major step in developing and demonstrating that cryopreserved PGCs could be used for the biobanking of specialized flocks of birds used in research settings. The prospective application of this technology to poultry production will further increase sustainability to meet current and future production needs. © The Author 2016. Published by Oxford University Press on behalf of Poultry Science Association.

  2. Formation and cultivation of medaka primordial germ cells.

    PubMed

    Li, Zhendong; Li, Mingyou; Hong, Ni; Yi, Meisheng; Hong, Yunhan

    2014-07-01

    Primordial germ cell (PGC) formation is pivotal for fertility. Mammalian PGCs are epigenetically induced without the need for maternal factors and can also be derived in culture from pluripotent stem cells. In egg-laying animals such as Drosophila and zebrafish, PGCs are specified by maternal germ plasm factors without the need for inducing factors. In these organisms, PGC formation and cultivation in vitro from indeterminate embryonic cells have not been possible. Here, we report PGC formation and cultivation in vitro from blastomeres dissociated from midblastula embryos (MBEs) of the fish medaka (Oryzias latipes). PGCs were identified by using germ-cell-specific green fluorescent protein (GFP) expression from a transgene under the control of the vasa promoter. Embryo perturbation was exploited to study PGC formation in vivo, and dissociated MBE cells were cultivated under various conditions to study PGC formation in vitro. Perturbation of somatic development did not prevent PGC formation in live embryos. Dissociated MBE blastomeres formed PGCs in the absence of normal somatic structures and of known inducing factors. Most importantly, under culture conditions conducive to stem cell derivation, some dissociated MBE blastomeres produced GFP-positive PGC-like cells. These GFP-positive cells contained genuine PGCs, as they expressed PGC markers and migrated into the embryonic gonad to generate germline chimeras. Our data thus provide evidence for PGC preformation in medaka and demonstrate, for the first time, that PGC formation and derivation can be obtained in culture from early embryos of medaka as a lower vertebrate model.

  3. Etiology and early pathogenesis of malignant testicular germ cell tumors: towards possibilities for preinvasive diagnosis

    PubMed Central

    Elzinga-Tinke, Jenny E; Dohle, Gert R; Looijenga, Leendert HJ

    2015-01-01

    Malignant testicular germ cell tumors (TGCT) are the most frequent cancers in Caucasian males (20–40 years) with an 70% increasing incidence the last 20 years, probably due to combined action of (epi)genetic and (micro)environmental factors. It is expected that TGCT have carcinoma in situ (CIS) as their common precursor, originating from an embryonic germ cell blocked in its maturation process. The overall cure rate of TGCT is more than 90%, however, men surviving TGCT can present long-term side effects of systemic cancer treatment. In contrast, men diagnosed and treated for CIS only continue to live without these long-term side effects. Therefore, early detection of CIS has great health benefits, which will require an informative screening method. This review described the etiology and early pathogenesis of TGCT, as well as the possibilities of early detection and future potential of screening men at risk for TGCT. For screening, a well-defined risk profile based on both genetic and environmental risk factors is needed. Since 2009, several genome wide association studies (GWAS) have been published, reporting on single-nucleotide polymorphisms (SNPs) with significant associations in or near the genes KITLG, SPRY4, BAK1, DMRT1, TERT, ATF7IP, HPGDS, MAD1L1, RFWD3, TEX14, and PPM1E, likely to be related to TGCT development. Prenatal, perinatal, and postnatal environmental factors also influence the onset of CIS. A noninvasive early detection method for CIS would be highly beneficial in a clinical setting, for which specific miRNA detection in semen seems to be very promising. Further research is needed to develop a well-defined TGCT risk profile, based on gene-environment interactions, combined with noninvasive detection method for CIS. PMID:25791729

  4. Improvement of Biocatalysts for Industrial and Environmental Purposes by Saturation Mutagenesis

    PubMed Central

    Valetti, Francesca; Gilardi, Gianfranco

    2013-01-01

    Laboratory evolution techniques are becoming increasingly widespread among protein engineers for the development of novel and designed biocatalysts. The palette of different approaches ranges from complete randomized strategies to rational and structure-guided mutagenesis, with a wide variety of costs, impacts, drawbacks and relevance to biotechnology. A technique that convincingly compromises the extremes of fully randomized vs. rational mutagenesis, with a high benefit/cost ratio, is saturation mutagenesis. Here we will present and discuss this approach in its many facets, also tackling the issue of randomization, statistical evaluation of library completeness and throughput efficiency of screening methods. Successful recent applications covering different classes of enzymes will be presented referring to the literature and to research lines pursued in our group. The focus is put on saturation mutagenesis as a tool for designing novel biocatalysts specifically relevant to production of fine chemicals for improving bulk enzymes for industry and engineering technical enzymes involved in treatment of waste, detoxification and production of clean energy from renewable sources. PMID:24970191

  5. Improvement of biocatalysts for industrial and environmental purposes by saturation mutagenesis.

    PubMed

    Valetti, Francesca; Gilardi, Gianfranco

    2013-10-08

    Laboratory evolution techniques are becoming increasingly widespread among protein engineers for the development of novel and designed biocatalysts. The palette of different approaches ranges from complete randomized strategies to rational and structure-guided mutagenesis, with a wide variety of costs, impacts, drawbacks and relevance to biotechnology. A technique that convincingly compromises the extremes of fully randomized vs. rational mutagenesis, with a high benefit/cost ratio, is saturation mutagenesis. Here we will present and discuss this approach in its many facets, also tackling the issue of randomization, statistical evaluation of library completeness and throughput efficiency of screening methods. Successful recent applications covering different classes of enzymes will be presented referring to the literature and to research lines pursued in our group. The focus is put on saturation mutagenesis as a tool for designing novel biocatalysts specifically relevant to production of fine chemicals for improving bulk enzymes for industry and engineering technical enzymes involved in treatment of waste, detoxification and production of clean energy from renewable sources.

  6. nanos function is essential for development and regeneration of planarian germ cells.

    PubMed

    Wang, Yuying; Zayas, Ricardo M; Guo, Tingxia; Newmark, Phillip A

    2007-04-03

    Germ cells are required for the successful propagation of sexually reproducing species. Understanding the mechanisms by which these cells are specified and how their totipotency is established and maintained has important biomedical and evolutionary implications. Freshwater planarians serve as fascinating models for studying these questions. They can regenerate germ cells from fragments of adult tissues that lack reproductive structures, suggesting that inductive signaling is involved in planarian germ cell specification. To study the development and regeneration of planarian germ cells, we have functionally characterized an ortholog of nanos, a gene required for germ cell development in diverse organisms, from Schmidtea mediterranea. In the hermaphroditic strain of this species, Smed-nanos mRNA is detected in developing, regenerating, and mature ovaries and testes. However, it is not detected in the vast majority of newly hatched planarians or in small tissue fragments that will ultimately regenerate germ cells, consistent with an epigenetic origin of germ cells. We show that Smed-nanos RNA interference (RNAi) results in failure to develop, regenerate, or maintain gonads in sexual planarians. Unexpectedly, Smed-nanos mRNA is also detected in presumptive testes primordia of asexual individuals that reproduce strictly by fission. These presumptive germ cells are lost after Smed-nanos RNAi, suggesting that asexual planarians specify germ cells, but their differentiation is blocked downstream of Smed-nanos function. Our results reveal a conserved function of nanos in germ cell development in planarians and suggest that these animals will serve as useful models for dissecting the molecular basis of epigenetic germ cell specification.

  7. Misexpression of cyclin D1 in embryonic germ cells promotes testicular teratoma initiation.

    PubMed

    Lanza, Denise G; Dawson, Emily P; Rao, Priya; Heaney, Jason D

    2016-01-01

    Testicular teratomas result from anomalies in embryonic germ cell development. In the 129 family of inbred mouse strains, teratomas arise during the same developmental period that male germ cells normally enter G1/G0 mitotic arrest and female germ cells initiate meiosis (the mitotic:meiotic switch). Dysregulation of this switch associates with teratoma susceptibility and involves three germ cell developmental abnormalities seemingly critical for tumor initiation: delayed G1/G0 mitotic arrest, retention of pluripotency, and misexpression of genes normally restricted to embryonic female and adult male germ cells. One misexpressed gene, cyclin D1 (Ccnd1), is a known regulator of cell cycle progression and an oncogene in many tissues. Here, we investigated whether Ccnd1 misexpression in embryonic germ cells is a determinant of teratoma susceptibility in mice. We found that CCND1 localizes to teratoma-susceptible germ cells that fail to enter G1/G0 arrest during the mitotic:meiotic switch and is the only D-type cyclin misexpressed during this critical developmental time frame. We discovered that Ccnd1 deficiency in teratoma-susceptible mice significantly reduced teratoma incidence and suppressed the germ cell proliferation and pluripotency abnormalities associated with tumor initiation. Importantly, Ccnd1 expression was dispensable for somatic cell development and male germ cell specification and maturation in tumor-susceptible mice, implying that the mechanisms by which Ccnd1 deficiency reduced teratoma incidence were germ cell autonomous and specific to tumorigenesis. We conclude that misexpression of Ccnd1 in male germ cells is a key component of a larger pro-proliferative program that disrupts the mitotic:meiotic switch and predisposes 129 inbred mice to testicular teratocarcinogenesis.

  8. Cell cycle analysis of fetal germ cells during sex differentiation in mice

    PubMed Central

    Spiller, Cassy; Wilhelm, Dagmar; Koopman, Peter

    2009-01-01

    Background information. Primordial germ cells in developing male and female gonads are responsive to somatic cell cues that direct their sex-specific differentiation into functional gametes. The first divergence of the male and female pathways is a change in cell cycle state observed from 12.5 dpc (days post coitum) in mice. At this time XY and XX germ cells cease mitotic division and enter G1/G0 arrest and meiosis prophase I respectively. Aberrant cell cycle regulation at this time can lead to disrupted ovarian development, germ cell apoptosis, reduced fertility and/or the formation of germ cell tumours. Results. In order to unravel the mechanisms utilized by germ cells to achieve and maintain the correct cell cycle states, we analysed the expression of a large number of cell cycle genes in purified germ cells across the crucial time of sex differentiation. Our results revealed common signalling for both XX and XY germ cell survival involving calcium signalling. A robust mechanism for apoptosis and checkpoint control was observed in XY germ cells, characterized by p53 and Atm (ataxia telangiectasia mutated) expression. Additionally, a member of the retinoblastoma family and p21 were identified, linking these factors to XY germ cell G1/G0 arrest. Lastly, in XX germ cells we observed a down-regulation of genes involved in both G1- and G2-phases of the cell cycle consistent with their entry into meiosis. Conclusion. The present study has provided a detailed analysis of cell cycle gene expression during fetal germ cell development and identified candidate factors warranting further investigation in order to understand cases of aberrant cell cycle control in these specialized cells. PMID:19419345

  9. When is incomplete epigenetic resetting in germ cells favoured by natural selection?

    PubMed Central

    Uller, Tobias; English, Sinead; Pen, Ido

    2015-01-01

    Resetting of epigenetic marks, such as DNA methylation, in germ cells or early embryos is not always complete. Epigenetic states may therefore persist, decay or accumulate across generations. In spite of mounting empirical evidence for incomplete resetting, it is currently poorly understood whether it simply reflects stochastic noise or plays an adaptive role in phenotype determination. Here, we use a simple model to show that incomplete resetting can be adaptive in heterogeneous environments. Transmission of acquired epigenetic states prevents mismatched phenotypes when the environment changes infrequently relative to generation time and when maternal and environmental cues are unreliable. We discuss how these results may help to interpret the emerging data on transgenerational epigenetic inheritance in plants and animals. PMID:26136447

  10. The Ter Mutation In The Dead End Gene Causes Germ Cell Loss And Testicular Germ Cell Tumours

    SciTech Connect

    Youngren, Kirsten K.; Coveney, Douglas; Peng, Xiaoning; Bhattacharya, Chitralekha; Schmidt, Laura S.; Nickerson, Michael L.; Lamb, Bruce T.; Deng Jian Min; Behringer, Richard R.; Capel, Blanche; Rubin, Edward M.; Nadeau, Joseph H.; Matin, Angabin

    2005-01-01

    In mice, the Ter mutation causes primordial germ cell (PGC) loss in all genetic backgrounds1. Ter is also a potent modifier of spontaneous testicular germ cell tumour (TGCT) susceptibility in the 129 family of inbred strains, and markedly increases TGCT incidence in 129-Ter/Ter males2 4. In 129-Ter/Ter mice, some of the remaining PGCs transform into undifferentiated pluripotent embryonal carcinoma cells2 6, and after birth differentiate into various cells and tissues that compose TGCTs. Here, we report the positional cloning of Ter, revealing a point mutation that introduces a termination codon in the mouse orthologue (Dnd1) of the zebrafish dead end (dnd) gene. PGC deficiency is corrected both with bacterial artificial chromosomes that contain Dnd1 and with a Dnd1-encoding transgene. Dnd1 is expressed in fetal gonads during the critical period when TGCTs originate. DND1 has an RNA recognition motif and is most similar to the apobec complementation factor, a component of the cytidine t o uridine RNA-editing complex. These results suggest that Ter may adversely affect essential aspects of RNA biology during PGC development. DND1 is the first protein known to have an RNA recognition motif directly implicated as a heritable cause of spontaneous tumorigenesis. TGCT development in the 129-Ter mouse strain models paediatric TGCT in humans. This work will have important implications for our understanding of the genetic control of TGCT pathogenesis and PGC biology.

  11. Genome-wide methylation profiles in primary intracranial germ cell tumors indicate a primordial germ cell origin for germinomas.

    PubMed

    Fukushima, Shintaro; Yamashita, Satoshi; Kobayashi, Hisato; Takami, Hirokazu; Fukuoka, Kohei; Nakamura, Taishi; Yamasaki, Kai; Matsushita, Yuko; Nakamura, Hiromi; Totoki, Yasushi; Kato, Mamoru; Suzuki, Tomonari; Mishima, Kazuhiko; Yanagisawa, Takaaki; Mukasa, Akitake; Saito, Nobuhito; Kanamori, Masayuki; Kumabe, Toshihiro; Tominaga, Teiji; Nagane, Motoo; Iuchi, Toshihiko; Yoshimoto, Koji; Mizoguchi, Masahiro; Tamura, Kaoru; Sakai, Keiichi; Sugiyama, Kazuhiko; Nakada, Mitsutoshi; Yokogami, Kiyotaka; Takeshima, Hideo; Kanemura, Yonehiro; Matsuda, Masahide; Matsumura, Akira; Kurozumi, Kazuhiko; Ueki, Keisuke; Nonaka, Masahiro; Asai, Akio; Kawahara, Nobutaka; Hirose, Yuichi; Takayama, Tatusya; Nakazato, Yoichi; Narita, Yoshitaka; Shibata, Tatsuhiro; Matsutani, Masao; Ushijima, Toshikazu; Nishikawa, Ryo; Ichimura, Koichi

    2017-03-01

    Intracranial germ cell tumors (iGCTs) are the second most common brain tumors among children under 14 in Japan. The World Health Organization classification recognizes several subtypes of iGCTs, which are conventionally subclassified into pure germinoma or non-germinomatous GCTs. Recent exhaustive genomic studies showed that mutations of the genes involved in the MAPK and/or PI3K pathways are common in iGCTs; however, the mechanisms of how different subtypes develop, often as a mixed-GCT, are unknown. To elucidate the pathogenesis of iGCTs, we investigated 61 GCTs of various subtypes by genome-wide DNA methylation profiling. We showed that pure germinomas are characterized by global low DNA methylation, a unique epigenetic feature making them distinct from all other iGCTs subtypes. The patterns of methylation strongly resemble that of primordial germ cells (PGC) at the migration phase, possibly indicating the cell of origin for these tumors. Unlike PGC, however, hypomethylation extends to long interspersed nuclear element retrotransposons. Histologically and epigenetically distinct microdissected components of mixed-GCTs shared identical somatic mutations in the MAPK or PI3K pathways, indicating that they developed from a common ancestral cell.

  12. Paediatric germ cell tumours and congenital abnormalities: a Children's Oncology Group study

    PubMed Central

    Johnson, K J; Ross, J A; Poynter, J N; Linabery, A M; Robison, L L; Shu, X O

    2009-01-01

    Methods: Maternally reported congenital abnormalities (CAs) were examined in a case–control study of 278 cases of paediatric germ cell tumours (GCTs) and 423 controls. Results and conclusions Germ cell tumours were significantly associated with cryptorchidism in males (OR=10.8, 95% CI: 2.1–55.1), but not with any other specific CA in either sex. PMID:19603020

  13. Are There Human Germ-Cell Mutagens? We May Know Soon

    EPA Science Inventory

    The existence of agents that can induce germ-cell mutations in experimental systems has been recognized since 1927 with the discovery of the ability of X-rays to induce such mutations in Drosophila. Since then, various rodent-based assays have been used to identify ~50 germ-cell...

  14. Transient regression of an intracranial germ cell tumour after intravenous steroid administration: a case report

    PubMed Central

    Mascalchi, M.; Roncaroli, F.; Salvi, F.; Frank, G.

    1998-01-01

    Magnetic resonance imaging showed transient regression of the lesion after intravenous steroid administration in a patient with intracranial multifocal germ cell tumour. Prominent lymphocyte infiltration of the tumour was seen at histological examination and presumably accounts for the regression. Germ cell tumour must be included in the differential diagnosis of intracranial mass lesions sensitive to steroids.

 PMID:9598688

  15. Are There Human Germ-Cell Mutagens? We May Know Soon

    EPA Science Inventory

    The existence of agents that can induce germ-cell mutations in experimental systems has been recognized since 1927 with the discovery of the ability of X-rays to induce such mutations in Drosophila. Since then, various rodent-based assays have been used to identify ~50 germ-cell...

  16. Stem cells and germ cells: microRNA and gene expression signatures.

    PubMed

    Dyce, Paul William; Toms, Derek; Li, Julang

    2010-04-01

    The study of primordial germ cell development in vivo is hampered by their low numbers and inaccessibility. Recent research has shown the ability of embryonic and adult stem cells to differentiate into primordial germ cells and more mature gametes and this generation of germ cells in vitro may be an attractive model for their study. One of the biggest challenges facing in vitro differentiation of stem cells into primordial germ cells is the lack of markers to clearly distinguish the two. As both cell types originate early in embryonic development they share many pluripotent markers such as OCT4, VASA, FRAGILIS, and NANOG. Genome wide microarray profiling has been used to identify transcriptome patterns unique to primordial germ cells. A more thorough analysis of the temporal and quantitative expression of a panel of genes may be more robust in distinguishing these two cell populations. MicroRNAs, short RNA molecules that have been shown to regulate translation through interactions with mRNA transcripts, have also recently come under investigation for the role they may play in pluripotency. Attempts to elucidate key microRNAs responsible for both stem cell and primordial germ cell characteristics have recently been undertaken. Unique microRNAs, either individually or as global profiles, may also help to distinguish differentiated primordial germ cells from stem cells in vitro. This review will examine gene expression and microRNA signatures in stem cells and germ cells as ways to distinguish these closely related cell types.

  17. Mixed Malignant Germ Cell Tumour of Third Ventricle with Hydrocephalus: A Rare Case with Recurrence

    PubMed Central

    Monappa, Vidya; Rao, Lakshmi; Kudva, Ranjini

    2014-01-01

    Malignant Germ Cell Tumours (GCTs) are rare, accounting for 3% of intracranial tumours and just like their extracranial counterparts represent a wide array of disease. Combination of Germinoma with Teratoma is very rare. Here in, we describe a case of Mixed Malignant Germ cell tumor of third ventricle with recurrence with emphasis on histopathological and radiological findings. PMID:25584231

  18. Germ Cells Are Not Required to Establish the Female Pathway in Mouse Fetal Gonads

    PubMed Central

    Maatouk, Danielle M.; Mork, Lindsey; Hinson, Ashley; Kobayashi, Akio; McMahon, Andrew P.; Capel, Blanche

    2012-01-01

    The fetal gonad is composed of a mixture of somatic cell lineages and germ cells. The fate of the gonad, male or female, is determined by a population of somatic cells that differentiate into Sertoli or granulosa cells and direct testis or ovary development. It is well established that germ cells are not required for the establishment or maintenance of Sertoli cells or testis cords in the male gonad. However, in the agametic ovary, follicles do not form suggesting that germ cells may influence granulosa cell development. Prior investigations of ovaries in which pre-meiotic germ cells were ablated during fetal life reported no histological changes during stages prior to birth. However, whether granulosa cells underwent normal molecular differentiation was not investigated. In cases where germ cell loss occurred secondary to other mutations, transdifferentiation of granulosa cells towards a Sertoli cell fate was observed, raising questions about whether germ cells play an active role in establishing or maintaining the fate of granulosa cells. We developed a group of molecular markers associated with ovarian development, and show here that the loss of pre-meiotic germ cells does not disrupt the somatic ovarian differentiation program during fetal life, or cause transdifferentiation as defined by expression of Sertoli markers. Since we do not find defects in the ovarian somatic program, the subsequent failure to form follicles at perinatal stages is likely attributable to the absence of germ cells rather than to defects in the somatic cells. PMID:23091613

  19. Delayed BMP4 exposure increases germ cell differentiation in mouse embryonic stem cells.

    PubMed

    Talaei-Khozani, Tahereh; Zarei Fard, Nehleh; Bahmanpour, Soghra; Jaberipour, Mansoureh; Hosseini, Ahmah; Esmaeilpour, Tahereh

    2014-01-01

    Fate mapping studies have revealed that bone morphogenetic protein 4 (BMP4) signaling has a key role in segregation of primordial germ cells from proximal epiblast. Adding BMP4 to the culture media of embryonic stem (ES) cells could induce expression of germ cell markers; however, to provide a desired number of germ cells has remained a challenge. In the current study, we intended to establish an in vitro system to obtain reliable germ cells derived from ES cells. Differentiation was induced in ES cells via embryoid body (EB) and monolayer culture system. Cells were cultured with BMP4 from the beginning (++BMP4) or after 48 hours (+BMP4) of culturing for five days. The cultures were assessed for alkaline phosphatase (ALP) activity, expression of Oct4, Mvh and c-kit. In EB culture protocol, the expression of Mvh, Oct4 and ALP activity significantly increased in +BMP4 culture condition, but a significant down-regulation in the expression of germ cell markers was shown in ++BMP4 condition compared with the control group. Parallel differentiation experiments using monolayer culture system indicated the number of putative germ cells did not change. In the current study, we compared two differentiation methods (EB and monolayer) to achieve an optimal germ cell production. The EBs with a short exposure time period to BMP4, showing typical characteristics of germ cells. Therefore, our approach provides a strategy for the production of germline cells from ES cells.

  20. The role of germ cell loss during primordial follicle assembly: a review of current advances.

    PubMed

    Sun, Yuan-Chao; Sun, Xiao-Feng; Dyce, Paul W; Shen, Wei; Chen, Hong

    2017-01-01

    In most female mammals, early germline development begins with the appearance of primordial germ cells (PGCs), and develops to form mature oocytes following several vital processes. It remains well accepted that significant germ cell apoptosis and oocyte loss takes place around the time of birth. The transition of the ovarian environment from fetal to neonatal, coincides with the loss of germ cells and the timing of follicle formation. All told it is common to lose approximately two thirds of germ cells during this transition period. The current consensus is that germ cell loss can be attributed, at least in part, to programmed cell death (PCD). Recently, autophagy has been implicated as playing a part in germ cell loss during the time of parturition. In this review, we discuss the major opinions and mechanisms of mammalian ovarian PCD during the process of germ cell loss. We also pay close attention to the function of autophagy in germ cell loss, and speculate that autophagy may also serve as a critical and necessary process during the establishment of primordial follicle pool.

  1. Primordial germ cell proliferation is impaired in Fused Toes mutant embryos.

    PubMed

    Kim, Bongki; Kim, Youngha; Sakuma, Rui; Hui, Chi-Chung; Rüther, Ulrich; Jorgensen, Joan S

    2011-01-15

    Over the first 4 days of their life, primordial germ cells invade the endoderm, migrate into and through the developing hindgut, and traverse to the genital ridge where they cluster and ultimately inhabit the nascent gonad. Specific signal-receptor combinations between primordial germ cells and their immediate environment establish successful migration and colonization. Here we demonstrate that disruption of a cluster of six genes on murine chromosome 8, as exemplified by the Fused Toes (Ft) mutant mouse model, results in severely decreased numbers of primordial germ cells within the early gonad. Primordial germ cell migration appeared normal within Ft mutant embryos; however, germ cell counts progressively decreased during this time. Although no difference in apoptosis was detected, we report a critical decrease in primordial germ cell proliferation by E12.5. The six genes within the Ft locus include the IrxB cluster (Irx3, -5, -6), Fts, Ftm, and Fto, of which only Ftm, Fto, and Fts are expressed in primordial germ cells of the early gonad. From these studies, we have discovered that the Ft locus on mouse chromosome 8 is associated with cell cycle deficits within the primordial germ cell population that initiates just before translocation into the genital ridge. Copyright © 2010 Elsevier Inc. All rights reserved.

  2. The role of sex chromosomes in mammalian germ cell differentiation: can the germ cells carrying X and Y chromosomes differentiate into fertile oocytes?

    PubMed

    Taketo, Teruko

    2015-01-01

    The sexual differentiation of germ cells into spermatozoa or oocytes is strictly regulated by their gonadal environment, testis or ovary, which is determined by the presence or absence of the Y chromosome, respectively. Hence, in normal mammalian development, male germ cells differentiate in the presence of X and Y chromosomes, and female germ cells do so in the presence of two X chromosomes. However, gonadal sex reversal occurs in humans as well as in other mammalian species, and the resultant XX males and XY females can lead healthy lives, except for a complete or partial loss of fertility. Germ cells carrying an abnormal set of sex chromosomes are efficiently eliminated by multilayered surveillance mechanisms in the testis, and also, though more variably, in the ovary. Studying the molecular basis for sex-specific responses to a set of sex chromosomes during gametogenesis will promote our understanding of meiotic processes contributing to the evolution of sex determining mechanisms. This review discusses the fate of germ cells carrying various sex chromosomal compositions in mouse models, the limitation of which may be overcome by recent successes in the differentiation of functional germ cells from embryonic stem cells under experimental conditions.

  3. Benzo(a)pyrene Induced p53 Mediated Male Germ Cell Apoptosis: Synergistic Protective Effects of Curcumin and Resveratrol

    PubMed Central

    Banerjee, Bhaswati; Chakraborty, Supriya; Ghosh, Debidas; Raha, Sanghamitra; Sen, Parimal C.; Jana, Kuladip

    2016-01-01

    Benzo(a)pyrene (B(a)P) is an environmental toxicant that induces male germ cell apoptosis. Curcumin and resveratrol are phytochemicals with cytoprotective and anti-oxidative properties. At the same time resveratrol is also a natural Aryl hydrocarbon Receptor (AhR) antagonist. Our present study in isolated testicular germ cell population from adult male Wistar rats, highlighted the synergistic protective effect of curcumin and resveratrol against B(a)P induced p53 mediated germ cell apoptosis. Curcumin-resveratrol significantly prevented B(a)P induced decrease in sperm cell count and motility, as well as increased serum testosterone level. Curcumin-resveratrol co-treatment actively protected B(a)P induced testicular germ cell apoptosis. Curcumin-resveratrol co-treatment decreased the expression of pro-apoptotic proteins like cleaved caspase 3, 8 and 9, cleaved PARP, Apaf1, FasL, tBid. Curcumin-resveratrol co-treatment decreased Bax/Bcl2 ratio, mitochondria to cytosolic translocation of cytochrome c and activated the survival protein Akt. Curcumin-resveratrol decreased the expression of p53 dependent apoptotic genes like Fas, FasL, Bax, Bcl2, and Apaf1. B(a)P induced testicular reactive oxygen species (ROS) generation and oxidative stress were significantly ameliorated with curcumin and resveratrol. Curcumin-resveratrol co-treatment prevented B(a)P induced nuclear translocation of AhR and CYP1A1 (Cytochrome P4501A1) expression. The combinatorial treatment significantly inhibited B(a)P induced ERK 1/2, p38 MAPK and JNK 1/2 activation. B(a)P treatment increased the expression of p53 and its phosphorylation (p53 ser 15). Curcumin-resveratrol co-treatment significantly decreased p53 level and its phosphorylation (p53 ser 15). The study concludes that curcumin-resveratrol synergistically modulated MAPKs and p53, prevented oxidative stress, regulated the expression of pro and anti-apoptotic proteins as well as the proteins involved in B(a)P metabolism thus protected germ

  4. Intratubular germ cell neoplasia of the human testis: heterogeneous protein expression and relation to invasive potential.

    PubMed

    Mitchell, Rod T; E Camacho-Moll, Maria; Macdonald, Joni; Anderson, Richard A; Kelnar, Christopher J H; O'Donnell, Marie; Sharpe, Richard M; Smith, Lee B; Grigor, Ken M; Wallace, W Hamish B; Stoop, Hans; Wolffenbuttel, Katja P; Donat, Roland; Saunders, Philippa Tk; Looijenga, Leendert Hj

    2014-09-01

    Testicular germ cell cancer develops from premalignant intratubular germ cell neoplasia, unclassified cells that are believed to arise from failure of normal maturation of fetal germ cells from gonocytes (OCT4(+)/MAGEA4(-)) into pre-spermatogonia (OCT4(-)/MAGEA4(+)). Intratubular germ cell neoplasia cell subpopulations based on stage of germ cell differentiation have been described, however the importance of these subpopulations in terms of invasive potential has not been reported. We hypothesized that cells expressing an immature (OCT4(+)/MAGEA4(-)) germ cell profile would exhibit an increased proliferation rate compared with those with a mature profile (OCT4(+)/MAGEA4(+)). Therefore, we performed triple immunofluorescence and stereology to quantify the different intratubular germ cell neoplasia cell subpopulations, based on expression of germ cell (OCT4, PLAP, AP2γ, MAGEA4, VASA) and proliferation (Ki67) markers, in testis sections from patients with preinvasive disease, seminoma, and non-seminoma. We compared these subpopulations with normal human fetal testis and with seminoma cells. Heterogeneity of protein expression was demonstrated in intratubular germ cell neoplasia cells with respect to gonocyte and spermatogonial markers. It included an embryonic/fetal germ cell subpopulation lacking expression of the definitive intratubular germ cell neoplasia marker OCT4, that did not correspond to a physiological (fetal) germ cell subpopulation. OCT4(+)/MAGEA4(-) cells showed a significantly increased rate of proliferation compared with the OCT4(+)/MAGEA4(+) population (12.8 versus 3.4%, P<0.0001) irrespective of histological tumor type, reflected in the predominance of OCT4(+)/MAGEA4(-) cells in the invasive tumor component. Surprisingly, OCT4(+)/MAGEA4(-) cells in patients with preinvasive disease showed significantly higher proliferation compared to those with seminoma or non-seminoma (18.1 versus 10.2 versus 7.2%, P<0.05, respectively). In conclusion, this study

  5. Complete androgen insensitivity syndrome: factors influencing gonadal histology including germ cell pathology.

    PubMed

    Kaprova-Pleskacova, Jana; Stoop, Hans; Brüggenwirth, Hennie; Cools, Martine; Wolffenbuttel, Katja P; Drop, Stenvert L S; Snajderova, Marta; Lebl, Jan; Oosterhuis, J Wolter; Looijenga, Leendert H J

    2014-05-01

    Patients with complete androgen insensitivity syndrome are at an increased risk for the development of gonadal germ cell cancer. Residual androgen receptor (AR) activity and abnormal gonadal location may influence the survival of atypical germ cells and the development of other histopathological features. To assess this, we evaluated 37 gonads from 19 patients with complete androgen insensitivity (ranging in age from 3 months to 18 years). Histological abnormalities were examined using hematoxylin and eosin-stained sections and sections stained for POU5F1 and KITLG, markers of early changes in germ cells at risk for malignant transformation. Hamartomatous nodules (HNs), Leydig cell hyperplasia (LCH), decreased germ cells, tubular atrophy and stromal fibrosis were more pronounced as age increased (P<0.001). Expected residual AR activity acted as a positive predictor only for non-malignant germ cell survival in (post)pubertal patients (P<0.05). Immunohistochemical studies indicated that delayed maturation of germ cells was present in three patients, whereas intermediate changes that occurred between delayed maturation and intratubular germ cell neoplasia, designated pre-intratubular germ cell neoplasia, were identified in four cases. Intratubular germ cell neoplasia was observed in one patient. Neither POU5F1 nor KITLG expression was dependent on expected residual AR activity. An independent effect of inguinal versus abdominal position of the gonads was difficult to assess because inguinal gonads were present primarily in the youngest individuals. In conclusion, many histological changes occur increasingly with age. Expected residual AR activity contributes to better survival of the general germ cell population in (post)pubertal age; however, it did not seem to have an important role in the survival of the germ cells at risk for malignant transformation (defined by POU5F1 positivity and KITLG overexpression) in complete androgen insensitivity. Comparison of the high

  6. Germ cells influence cord formation and Leydig cell gene expression during mouse testis development.

    PubMed

    Rios-Rojas, Clarissa; Spiller, Cassy; Bowles, Josephine; Koopman, Peter

    2016-04-01

    It is widely accepted that, during the development of testes in the mammalian embryo, male germ cells are influenced by signals from the surrounding somatic cells, but not vice versa, so that germ cells are dispensable for the formation of testes. We now demonstrate that development of the mouse fetal testis is compromised in the absence of germ cells. Using two- and three-dimensional imaging techniques, we reveal that W(e)/W(e) mutant testes devoid of germ cells have misshapen and poorly organized cords. We also found that mutant gonads have fewer Sertoli cells than normal and that the Leydig cells express key markers at higher than normal levels. These observations point to the existence of germ cell-derived signals that directly or indirectly affect the Sertoli and Leydig cell populations, and provide a new paradigm for the organogenesis of the mammalian testes. © 2015 Wiley Periodicals, Inc.

  7. The mouse dead-end gene isoform α is necessary for germ cell and embryonic viability

    PubMed Central

    Bhattacharya, Chitralekha; Aggarwal, Sita; Zhu, Rui; Kumar, Madhu; Zhao, Ming; Meistrich, Marvin L.; Matin, Angabin

    2007-01-01

    Inactivation of the dead-end (Dnd1) gene in the Ter mouse strain results in depletion of primordial germ cells (PGCs) so that mice become sterile. However, on the 129 mouse strain background, loss of Dnd1 also increases testicular germ cell tumor incidence in parallel to PGC depletion. We report that inactivation of Dnd1 also affects embryonic viability in the 129 strain. Mouse Dnd1 encodes two protein isoforms, DND1-isoform α (DND1- α) and DND1-isoform β (DND1-β). Using isoform specific antibodies, we determined DND1-α is expressed in embryos and embryonic gonads whereas DND1-β expression is restricted to germ cells of the adult testis. Our data implicates DND1-α isoform to be necessary for germ cell viability and therefore its loss in Ter mice results in PGC depletion, germ cell tumor development and partial embryonic lethality in the 129 strain. PMID:17291453

  8. Management of clinical stage I nonseminomatous germ cell tumors.

    PubMed

    Isharwal, Sumit; Risk, Michael C

    2014-09-01

    Therapeutic options for clinical stage I nonseminomatous germ cell tumor include active surveillance, adjuvant chemotherapy and retroperitoneal lymph node dissection (RPLND). Lymphovascular invasion (LVI) determines risk of recurrence, as those without LVI have 15% risk of relapse on surveillance while those with LVI have a 50% risk. This stratifies patients into high risk(LVI+) and low risk(LVI-) groups which direct treatment recommendations. Surveillance is preferred for those with low risk disease, and is an option for those with high risk disease, as at least half are over-treated with other options. Adjuvant chemotherapy is an option for all patients as it can eradicate micrometastatic disease and reduce recurrence by at least 90%. RPLND benefits patients with low volume retroperitoneal disease with a cure rate of RPLND alone at approximately 70%. All three treatment modalities have similar survival rates approaching 100% but differing potential morbidities, which, along with patient preferences and compliance, should guide treatment decisions.

  9. The challenge of poor-prognosis germ cell tumors.

    PubMed

    Toner, Guy C

    2007-05-01

    Patients who have a poor prognosis can be identified at presentation by well-defined prognostic factors. Prognostic groups as defined by the International Germ Cell Consensus Classification should be used in the clinic, in clinical trials, and when reporting results. No systemic treatment has been shown to improve outcome compared with four cycles of chemotherapy composed of bleomycin, etoposide, and cisplatin, which remains the standard of care. Surgery to resect residual masses after chemotherapy and in the salvage setting is a vital component of optimal care. The best outcomes occur with treatment at a center with experience and expertise in their management. Further major improvements are likely to require novel systemic therapies rather than modifications of existing approaches.

  10. Germ cell mutagenicity of phthalic acid in mice.

    PubMed

    Jha, A M; Singh, A C; Bharti, M

    1998-12-03

    Mutagenicity of phthalic acid was evaluated by employing dominant lethal mutation and sperm head abnormality assays in male Swiss albino mice. For the dominant lethal mutation assay, adult male mice received a single intraperitoneal (i.p.) injection of either 40 mg or 80 mg/kg b.w. of phthalic acid for 5 consecutive days. For the sperm head abnormality assay, the mice were treated with 50, 100, 150, 200 and 300 mg/kg b.w. as a single i.p. injection. Treatment of adult male mice with phthalic acid resulted in induction of dominant lethal mutations and abnormal sperm heads. The results obtained indicate that phthalic acid is a germ cell mutagen.

  11. Possibilities in Germ Cell Research: An Engineering Insight.

    PubMed

    Esfandiari, Fereshteh; Mashinchian, Omid; Ashtiani, Mohammad Kazemi; Ghanian, Mohammad Hossein; Hayashi, Katsuhiko; Saei, Amir Ata; Mahmoudi, Morteza; Baharvand, Hossein

    2015-12-01

    Germ cells (GCs) are responsible for fertility and disruptions in their development or function cause infertility. However, current knowledge about the diverse mechanisms involved in GC development and function is still in its infancy. This is mainly because there are low numbers of GCs, especially during embryonic development. A deeper understanding of GCs would enhance our ability to produce them from stem cells. In addition, such information would enable the production of healthy gametes for infertile couples. In this regard, pluripotent stem cells (PSCs) demonstrated a promising ability to produce GCs in vitro. In this review, we highlight recent advances in the field of tissue engineering that suggest novel strategies to enhance GC research.

  12. Oct4 is required for primordial germ cell survival

    PubMed Central

    Kehler, James; Tolkunova, Elena; Koschorz, Birgit; Pesce, Maurizio; Gentile, Luca; Boiani, Michele; Lomelí, Hilda; Nagy, Andras; McLaughlin, K John; Schöler, Hans R; Tomilin, Alexey

    2004-01-01

    Previous studies have shown that Oct4 has an essential role in maintaining pluripotency of cells of the inner cell mass (ICM) and embryonic stem cells. However, Oct4 null homozygous embryos die around the time of implantation, thus precluding further analysis of gene function during development. We have used the conditional Cre/loxP gene targeting strategy to assess Oct4 function in primordial germ cells (PGCs). Loss of Oct4 function leads to apoptosis of PGCs rather than to differentiation into a trophectodermal lineage, as has been described for Oct4-deficient ICM cells. These new results suggest a previously unknown function of Oct4 in maintaining viability of mammalian germline. PMID:15486564

  13. Emerging Therapeutic Targets for Male Germ Cell Tumors.

    PubMed

    Fankhauser, Christian Daniel; Honecker, Friedemann; Beyer, Jörg; Bode, Peter Karl

    2015-12-01

    Male germ cell tumors (GCTs) are curable cancers, yet 10-15 % of patients with metastatic disease fail cisplatin-based first-line treatments. While therapeutic options have increased for various other cancers, little progress has been made in the management of GCT in the last decades. A better understanding of the molecular alterations underlying the disease and identification of new therapeutic targets are needed. Several phase I/II studies with promising new agents are ongoing or have been completed, but most of those trials have been small and have not included translational research. Therefore, molecular profiles predictive for response or new agents have not been identified in male GCT so far. The purpose of this review is to highlight emerging targets and therapies with the potential to improve systemic treatment of metastatic male GCT and to develop strategies for future clinical trials.

  14. Reproductive function after treatment of ovarian germ cell malignancy.

    PubMed

    Anita, A N; Rushdan, M N

    2012-02-01

    This study was undertaken to evaluate the reproductive and oncologic outcomes of patients diagnosed with Ovarian Germ Cell Malignancy (OGCM) who underwent fertility preserving surgery and adjuvant chemotherapy treated in Gynaecology Oncology Unit, Sultanah Bahiyah Hospital, Kedah, Malaysia. We retrospectively reviewed 33 patients who had fertility preserving surgery and adjuvant chemotherapy in our center from 2000 - 2010. Gynaecology oncology record and histopathology database were reviewed. Patients were contacted, assessed and interviewed via telephone using standardized questionnaire to assess their menstrual, reproductive function and disease status after treatment, post therapeutic status of pregnancy or delivery and overall survival. Thirty three patients diagnosed with OGCM underwent unilateral salphingo oophorectomy and staging surgery followed by adjuvant chemotherapy (BEP regimen). The mean age at presentation was 19.8 years (range, 9 -34 years). Histological subtypes were 21.2% dysgerminoma, 21.2% immature teratoma, 42.4% yolk sac tumour and 15.2% mixed germ cell tumour. After treatment, 71.4% resumed their menstrual cycles within 6 months. During follow up, 5 patients conceived with 5 live birth deliveries and 3 miscarriages (3 patients had two pregnancies). The overall survival rate was 87.9% with median follow up of 45.2 months. 30.3% of patient had disease recurrence with median disease free interval of 5 months while 6.0% had disease progression despite of adjuvant chemotherapy. One of the most important adverse prognostic factors for recurrence and disease progression is Yolk sac tumour (non DSG/IMT) histotype. Fertility preserving surgery and adjuvant chemotherapy appear to have little effect on fertility and menstrual cycle with a good overall survival. Patients diagnosed with histopathological yolk sac tumour element had poor outcome and perhaps need more aggressive and longer adjuvant therapy.

  15. Development of interspecies testicular germ-cell transplantation in flatfish.

    PubMed

    Pacchiarini, Tiziana; Sarasquete, Carmen; Cabrita, Elsa

    2014-06-01

    Interspecific testicular germ cell (TGC) transplantation was investigated in two commercial flatfish species. Testes from donor species (Senegalese sole) were evaluated using classical histological techniques (haematoxylin-eosin staining and haematoxylin-light green-orange G-acid fuchsine staining), in situ hybridisation and immunohistochemical analysis. Both Ssvasa1-2 mRNAs and SsVasa protein allowed the characterisation of TGCs, confirming the usefulness of the vasa gene in the detection of Senegalese sole TGCs. Xenogenic transplants were carried out using TGCs from one-year-old Senegalese sole into turbot larvae. Propidium iodide-SYBR-14 and 4',6'-diamidino-2-phenylindole (DAPI) staining showed that 87.98% of the extracted testicular cells were viable for microinjection and that 15.63% of the total recovered cells were spermatogonia. The vasa gene was characterised in turbot recipients using cDNA cloning. Smvasa mRNA was confirmed as a germ cell-specific molecular marker in this species. Smvasa expression analysis during turbot ontogeny was carried out before Senegalese sole TGC transplants into turbot larvae. Turbot larvae at 18 days after hatching (DAH) proved to be susceptible to manipulation procedures. High survival rates (83.75±15.90-100%) were obtained for turbot larvae at 27, 34 and 42 DAH. These data highlight the huge potential of this species for transplantation studies. Quantitative PCR was employed to detect Senegalese sole vasa mRNAs (Ssvasa1-2) in the recipient turbot larvae. The Ssvasa mRNAs showed a significant increase in relative expression in 42-DAH microinjected larvae three weeks after treatment, showing the proliferation of Senegalese sole spermatogonia in transplanted turbot larvae.

  16. Germ cell pluripotency, premature differentiation and susceptibility to testicular teratomas in mice

    PubMed Central

    Heaney, Jason D.; Anderson, Ericka L.; Michelson, Megan V.; Zechel, Jennifer L.; Conrad, Patricia A.; Page, David C.; Nadeau, Joseph H.

    2012-01-01

    Testicular teratomas result from anomalies in germ cell development during embryogenesis. In the 129 family of inbred strains of mice, teratomas initiate around embryonic day (E) 13.5 during the same developmental period in which female germ cells initiate meiosis and male germ cells enter mitotic arrest. Here, we report that three germ cell developmental abnormalities, namely continued proliferation, retention of pluripotency, and premature induction of differentiation, associate with teratoma susceptibility. Using mouse strains with low versus high teratoma incidence (129 versus 129-Chr19MOLF/Ei), and resistant to teratoma formation (FVB), we found that germ cell proliferation and expression of the pluripotency factor Nanog at a specific time point, E15.5, were directly related with increased tumor risk. Additionally, we discovered that genes expressed in pre-meiotic embryonic female and adult male germ cells, including cyclin D1 (Ccnd1) and stimulated by retinoic acid 8 (Stra8), were prematurely expressed in teratoma-susceptible germ cells and, in rare instances, induced entry into meiosis. As with Nanog, expression of differentiation-associated factors at a specific time point, E15.5, increased with tumor risk. Furthermore, Nanog and Ccnd1, genes with known roles in testicular cancer risk and tumorigenesis, respectively, were co-expressed in teratoma-susceptible germ cells and tumor stem cells, suggesting that retention of pluripotency and premature germ cell differentiation both contribute to tumorigenesis. Importantly, Stra8-deficient mice had an 88% decrease in teratoma incidence, providing direct evidence that premature initiation of the meiotic program contributes to tumorigenesis. These results show that deregulation of the mitotic-meiotic switch in XY germ cells contributes to teratoma initiation. PMID:22438569

  17. Direct Reprogramming of Human Primordial Germ Cells into Induced Pluripotent Stem Cells: Efficient Generation of Genetically Engineered Germ Cells

    PubMed Central

    Bazley, Faith A.; Liu, Cyndi F.; Yuan, Xuan; Hao, Haiping; All, Angelo H.; De Los Angeles, Alejandro; Zambidis, Elias T.; Gearhart, John D.

    2015-01-01

    Abstract Primordial germ cells (PGCs) share many properties with embryonic stem cells (ESCs) and innately express several key pluripotency-controlling factors, including OCT4, NANOG, and LIN28. Therefore, PGCs may provide a simple and efficient model for studying somatic cell reprogramming to induced pluripotent stem cells (iPSCs), especially in determining the regulatory mechanisms that fundamentally define pluripotency. Here, we report a novel model of PGC reprogramming to generate iPSCs via transfection with SOX2 and OCT4 using integrative lentiviral. We also show the feasibility of using nonintegrative approaches for generating iPSC from PGCs using only these two factors. We show that human PGCs express endogenous levels of KLF4 and C-MYC protein at levels similar to embryonic germ cells (EGCs) but lower levels of SOX2 and OCT4. Transfection with both SOX2 and OCT4 together was required to induce PGCs to a pluripotent state at an efficiency of 1.71%, and the further addition of C-MYC increased the efficiency to 2.33%. Immunohistochemical analyses of the SO-derived PGC-iPSCs revealed that these cells were more similar to ESCs than EGCs regarding both colony morphology and molecular characterization. Although leukemia inhibitory factor (LIF) was not required for the generation of PGC-iPSCs like EGCs, the presence of LIF combined with ectopic exposure to C-MYC yielded higher efficiencies. Additionally, the SO-derived PGC-iPSCs exhibited differentiation into representative cell types from all three germ layers in vitro and successfully formed teratomas in vivo. Several lines were generated that were karyotypically stable for up to 24 subcultures. Their derivation efficiency and survival in culture significantly supersedes that of EGCs, demonstrating their utility as a powerful model for studying factors regulating pluripotency in future studies. PMID:26154167

  18. Direct Reprogramming of Human Primordial Germ Cells into Induced Pluripotent Stem Cells: Efficient Generation of Genetically Engineered Germ Cells.

    PubMed

    Bazley, Faith A; Liu, Cyndi F; Yuan, Xuan; Hao, Haiping; All, Angelo H; De Los Angeles, Alejandro; Zambidis, Elias T; Gearhart, John D; Kerr, Candace L

    2015-11-15

    Primordial germ cells (PGCs) share many properties with embryonic stem cells (ESCs) and innately express several key pluripotency-controlling factors, including OCT4, NANOG, and LIN28. Therefore, PGCs may provide a simple and efficient model for studying somatic cell reprogramming to induced pluripotent stem cells (iPSCs), especially in determining the regulatory mechanisms that fundamentally define pluripotency. Here, we report a novel model of PGC reprogramming to generate iPSCs via transfection with SOX2 and OCT4 using integrative lentiviral. We also show the feasibility of using nonintegrative approaches for generating iPSC from PGCs using only these two factors. We show that human PGCs express endogenous levels of KLF4 and C-MYC protein at levels similar to embryonic germ cells (EGCs) but lower levels of SOX2 and OCT4. Transfection with both SOX2 and OCT4 together was required to induce PGCs to a pluripotent state at an efficiency of 1.71%, and the further addition of C-MYC increased the efficiency to 2.33%. Immunohistochemical analyses of the SO-derived PGC-iPSCs revealed that these cells were more similar to ESCs than EGCs regarding both colony morphology and molecular characterization. Although leukemia inhibitory factor (LIF) was not required for the generation of PGC-iPSCs like EGCs, the presence of LIF combined with ectopic exposure to C-MYC yielded higher efficiencies. Additionally, the SO-derived PGC-iPSCs exhibited differentiation into representative cell types from all three germ layers in vitro and successfully formed teratomas in vivo. Several lines were generated that were karyotypically stable for up to 24 subcultures. Their derivation efficiency and survival in culture significantly supersedes that of EGCs, demonstrating their utility as a powerful model for studying factors regulating pluripotency in future studies.

  19. AZFa protein DDX3Y is differentially expressed in human male germ cells during development and in testicular tumours: new evidence for phenotypic plasticity of germ cells.

    PubMed

    Gueler, B; Sonne, S B; Zimmer, J; Hilscher, B; Hilscher, W; Græm, N; Rajpert-De Meyts, E; Vogt, P H

    2012-06-01

    DDX3Y (DBY), located within AZoospermia Factor a (AZFa) region of the human Y chromosome (Yq11), encodes a conserved DEAD-box RNA helicase expressed only in germ cells and with a putative function at G1-S phase of the cell cycle. Deletion of AZFa results most often in germ cell aplasia, i.e. Sertoli-cell-only syndrome. To investigate the function of DDX3Y during human spermatogenesis, we examined its expression during development and maturation of the testis and in several types of testicular germ cell tumours (TGCTs), including the pre-invasive carcinoma in situ (CIS) precursor cells which are believed to originate from fetal gonocytes. DDX3Y protein expression was analysed during development in different tissues by western blotting. The localization of DDX3Y in normal fetal and prepubertal testis tissue of different ages as well as in a series of distinct TGCT tissue samples (CIS, classical seminoma, spermatocytic seminoma, teratoma and embryonal carcinoma) was performed by immunohistochemistry. Germ cell-specific expression of DDX3Y protein was revealed in fetal prospermatogonia but not in gonocytes and not before the 17th gestational week. After birth, DDX3Y was expressed at first only in the nuclei of Ap spermatogonia, then also in the cytoplasm similarly to that seen after puberty. In CIS cells, DDX3Y was highly expressed and located predominantly in the nuclei. In invasive TGCT, significant DDX3Y expression was found in seminomas of the classical and spermatocytic type, but not in somatically differentiated non-seminomas, consistent with its germ-cell specific function. The fetal germ cell DDX3Y expression suggests a role in early spermatogonial proliferation and implies that, in men with AZFa deletion, germ cell depletion may begin prenatally. The strong expression of DDX3Y in CIS cells, but not in gonocytes, indicates phenotypic plasticity of CIS cells and suggests partial maturation to spermatogonia, likely due to their postpubertal microenvironment.

  20. Involvement of Fas/Fas-L and Bax/Bcl-2 systems in germ cell death following immunization with syngeneic testicular germ cells in mice.

    PubMed

    Kuerban, Maimaiti; Naito, Munekazu; Hirai, Shuichi; Terayama, Hayato; Qu, Ning; Musha, Muhetaerjiang; Ikeda, Ayumi; Koji, Takehiko; Itoh, Masahiro

    2012-01-01

    Experimental autoimmune orchitis (EAO) is characterized by T cell-dependent lymphocytic inflammation and seminiferous tubule damage, which can result in the death of germ cells. The aim of the present study is to investigate the roles of the Fas/Fas-L and Bax/Bcl-2 systems in the death of germ cells in mice with EAO that is induced by immunization with syngeneic testicular germ cells (TGC). The results using real-time reverse transcription-polymerase chain reaction and immunostaining show that many terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling staining germ cells were present in seminiferous tubules during the active inflammation stage, and these cells were persistently observed in the seminiferous epithelium until the postactive inflammation stage. Intratesticular mRNA expression levels of both Fas and Bax were increased during the active inflammation stage and were dramatically decreased during the post-active inflammation stage. In contrast, the intratesticular mRNA expression levels of both Fas-L and Bcl-2 did not show significant changes during the active inflammation stage but showed extreme increases during the post-active inflammation stage. Immunohistochemically, some Fas- and Bax-positive germ cells were detected during the active inflammation stage, but these were hardly found during the post-active inflammation stage. In contrast, some Fas-L- and Bcl-2-positive germ cells were found during the active inflammation stage, and many of these were also observed during the post-active inflammation stage. These results indicate that germ cell death during TGC-induced EAO is mediated by the Fas/Fas-L and Bax/Bcl-2 systems during the active inflammation stage but not during the post-active inflammation stage.

  1. Regulatory mechanism of protein metabolic pathway during the differentiation process of chicken male germ cell.

    PubMed

    Li, Dong; Zuo, Qisheng; Lian, Chao; Zhang, Lei; Shi, Qingqing; Zhang, Zhentao; Wang, Yingjie; Ahmed, Mahmoud F; Tang, Beibei; Xiao, Tianrong; Zhang, Yani; Li, Bichun

    2015-08-01

    We explored the regulatory mechanism of protein metabolism during the differentiation process of chicken male germ cells and provide a basis for improving the induction system of embryonic stem cell differentiation to male germ cells in vitro. We sequenced the transcriptome of embryonic stem cells, primordial germ cells, and spermatogonial stem cells with RNA sequencing (RNA-Seq), bioinformatics analysis methods, and detection of the key genes by quantitative reverse transcription PCR (qRT-PCR). Finally, we found 16 amino acid metabolic pathways enriched in the biological metabolism during the differentiation process of embryonic stem cells to primordial germ cells and 15 amino acid metabolic pathways enriched in the differentiation stage of primordial germ cells to spermatogonial stem cells. We found three pathways, arginine-proline metabolic pathway, tyrosine metabolic pathway, and tryptophan metabolic pathway, significantly enriched in the whole differentiation process of embryonic stem cells to spermatogonial stem cells. Moreover, for these three pathways, we screened key genes such as NOS2, ADC, FAH, and IDO. qRT-PCR results showed that the expression trend of these genes were the same to RNA-Seq. Our findings showed that the three pathways and these key genes play an important role in the differentiation process of embryonic stem cells to male germ cells. These results provide basic information for improving the induction system of embryonic stem cell differentiation to male germ cells in vitro.

  2. The human VASA gene is specifically expressed in the germ cell lineage

    PubMed Central

    Castrillon, Diego H.; Quade, Bradley J.; Wang, T. Y.; Quigley, Catherine; Crum, Christopher P.

    2000-01-01

    To understand the origins and function of the human germ cell lineage and to identify germ cell-specific markers we have isolated a human ortholog of the Drosophila gene vasa. The gene was mapped to human chromosome 5q (near the centromere) by radiation hybrid mapping. We show by Northern analysis of fetal and adult tissues that expression of the human VASA gene is restricted to the ovary and testis and is undetectable in somatic tissues. We generated polyclonal antibodies that bind to the VASA protein in formalin-fixed, paraffin-embedded tissue and characterized VASA protein expression in human germ cells at various stages of development. The VASA protein is cytoplasmic and expressed in migratory primordial germ cells in the region of the gonadal ridge. VASA protein is present in fetal and adult gonadal germ cells in both males and females and is most abundant in spermatocytes and mature oocytes. The gene we have isolated is thus a highly specific marker of germ cells and should be useful for studies of human germ cell determination and function. PMID:10920202

  3. The cytogenetic theory of the pathogenesis of human adult male germ cell tumors. Review article.

    PubMed

    Chaganti, R S; Houldsworth, J

    1998-01-01

    Human male germ cell tumors (GCTs) represent a biological paradox because, in order to develop into a pluripotential tumor, a germ cell destined to a path of limited or no proliferation must acquire the potential for unlimited proliferation. In addition, it must acquire the ability to elicit embryonal differentiation patterns without the reciprocal inputs from fertilization and the imprinting-associated genomic changes which are a part of normal embryonal development. Although much speculated about, the genetic mechanisms underlying these properties of male GCTs remain enigmatic. Recent cytogenetic and molecular genetic analyses of these tumors are providing new insights and new testable hypotheses. Based on our recent work, we propose two such hypotheses. One relates to the mechanism of germ cell transformation and germ cell tumor development. We suggest that the invariable 12p amplification noted as early as in carcinoma in situ/intratubular germ cell neoplasia (CIS/ITGCN) lesions leads to deregulated overexpression of cyclin D2, a cell cycle G1/S checkpoint regulator with oncogeneic potential. Such overexpression reinitiates the cell cycle. We visualize this happening during the pachytene stage of meiosis through aberrant recombinational events which lead to 12p amplification. The other hypothesis relates to the origin of primary extragonadal GCTs. By comparing cytogenetic changes in primary mediastinal versus gonadal lesions, we propose that, in contrast to long-standing speculation that primary extra-gonadal tumors arise from embryonally misplaced primordial germ cells, these lesions arise from migration of transformed gonadal germ cells.

  4. Generation of male differentiated germ cells from various types of stem cells.

    PubMed

    Hou, Jingmei; Yang, Shi; Yang, Hao; Liu, Yang; Liu, Yun; Hai, Yanan; Chen, Zheng; Guo, Ying; Gong, Yuehua; Gao, Wei-Qiang; Li, Zheng; He, Zuping

    2014-06-01

    Infertility is a major and largely incurable disease caused by disruption and loss of germ cells. It affects 10-15% of couples, and male factor accounts for half of the cases. To obtain human male germ cells 'especially functional spermatids' is essential for treating male infertility. Currently, much progress has been made on generating male germ cells, including spermatogonia, spermatocytes, and spermatids, from various types of stem cells. These germ cells can also be used in investigation of the pathology of male infertility. In this review, we focused on advances on obtaining male differentiated germ cells from different kinds of stem cells, with an emphasis on the embryonic stem (ES) cells, the induced pluripotent stem (iPS) cells, and spermatogonial stem cells (SSCs). We illustrated the generation of male differentiated germ cells from ES cells, iPS cells and SSCs, and we summarized the phenotype for these stem cells, spermatocytes and spermatids. Moreover, we address the differentiation potentials of ES cells, iPS cells and SSCs. We also highlight the advantages, disadvantages and concerns on derivation of the differentiated male germ cells from several types of stem cells. The ability of generating mature and functional male gametes from stem cells could enable us to understand the precise etiology of male infertility and offer an invaluable source of autologous male gametes for treating male infertility of azoospermia patients. © 2014 Society for Reproduction and Fertility.

  5. Epigenetic regulation during the differentiation of stem cells to germ cells.

    PubMed

    Sun, Yuan-Chao; Wang, Yong-Yong; Ge, Wei; Cheng, Shun-Feng; Dyce, Paul W; Shen, Wei

    2017-08-22

    Gametogenesis is an essential process to ensure the transfer of genetic information from one generation to the next. It also provides a mechanism by which genetic evolution can take place. Although the genome of primordial germ cells (PGCs) is exactly the same with somatic cells within an organism, there are significant differences between their developments. For example, PGCs eventually undergo meiosis to become functional haploid gametes, and prior to that they undergo epigenetic imprinting which greatly alter their genetic regulation. Epigenetic imprinting of PGCs involves the erasure of DNA methylation and the reestablishment of them during sperm and oocyte formation. These processes are necessary and important during gametogenesis. Also, histone modification and X-chromosome inactivation have important roles during germ cell development. Recently, several studies have reported that functional sperm or oocytes can be derived from stem cells in vivo or in vitro. To produce functional germ cells, induction of germ cells from stem cells must recapitulate these processes similar to endogenous germ cells, such as epigenetic modifications. This review focuses on the epigenetic regulation during the process of germ cell development and discusses their importance during the differentiation from stem cells to germ cells.

  6. NOTCH1 gain of function in germ cells causes failure of spermatogenesis in male mice.

    PubMed

    Huang, Zaohua; Rivas, Bryan; Agoulnik, Alexander I

    2013-01-01

    NOTCH1 is a member of the NOTCH receptor family, a group of single-pass trans-membrane receptors. NOTCH signaling is highly conserved in evolution and mediates communication between adjacent cells. NOTCH receptors have been implicated in cell fate determination, as well as maintenance and differentiation of stem cells. In the mammalian testis expression of NOTCH1 in somatic and germ cells has been demonstrated, however its role in spermatogenesis was not clear. To study the significance of NOTCH1 in germ cells, we applied a cre/loxP approach in mice to induce NOTCH1 gain- or loss-of function specifically in male germ cells. Using a Stra8-icre transgene we produced mice with conditional activation of the NOTCH1 intracellular domain (NICD) in germ cells. Spermatogenesis in these mutants was progressively affected with age, resulting in decreased testis weight and sperm count. Analysis of downstream target genes of NOTCH1 signaling showed an increased expression of Hes5, with a reduction of the spermatogonial differentiation marker, Neurog3 expression in the mutant testis. Apoptosis was significantly increased in mouse germ cells with the corresponding elevation of pro-apoptotic Trp53 and Trp63 genes' expression. We also showed that the conditional germ cell-specific ablation of Notch1 had no effect on spermatogenesis or male fertility. Our data suggest the importance of NOTCH signaling regulation in male germ cells for their survival and differentiation.

  7. Epigenetic regulation during the differentiation of stem cells to germ cells

    PubMed Central

    Ge, Wei; Cheng, Shun-Feng; Dyce, Paul W.; Shen, Wei

    2017-01-01

    Gametogenesis is an essential process to ensure the transfer of genetic information from one generation to the next. It also provides a mechanism by which genetic evolution can take place. Although the genome of primordial germ cells (PGCs) is exactly the same with somatic cells within an organism, there are significant differences between their developments. For example, PGCs eventually undergo meiosis to become functional haploid gametes, and prior to that they undergo epigenetic imprinting which greatly alter their genetic regulation. Epigenetic imprinting of PGCs involves the erasure of DNA methylation and the reestablishment of them during sperm and oocyte formation. These processes are necessary and important during gametogenesis. Also, histone modification and X-chromosome inactivation have important roles during germ cell development. Recently, several studies have reported that functional sperm or oocytes can be derived from stem cells in vivo or in vitro. To produce functional germ cells, induction of germ cells from stem cells must recapitulate these processes similar to endogenous germ cells, such as epigenetic modifications. This review focuses on the epigenetic regulation during the process of germ cell development and discusses their importance during the differentiation from stem cells to germ cells. PMID:28915715

  8. Radiation-induced bystander signaling from somatic cells to germ cells in Caenorhabditis elegans.

    PubMed

    Guo, Xiaoying; Sun, Jie; Bian, Po; Chen, Lianyun; Zhan, Furu; Wang, Jun; Xu, An; Wang, Yugang; Hei, Tom K; Wu, Lijun

    2013-09-01

    Recently, radiation-induced bystander effects (RIBE) have been studied in mouse models in vivo, which clearly demonstrated bystander effects among somatic cells. However, there is currently no evidence for RIBE between somatic cells and germ cells in animal models in vivo. In the current study, the model animal Caenorhabditis elegans was used to investigate the bystander signaling from somatic cells to germ cells, as well as underlying mechanisms. C. elegans body size allows for precise microbeam irradiation and the abundant mutant strains for genetic dissection relative to currently adopted mouse models make it ideal for such analysis. Our results showed that irradiation of posterior pharynx bulbs and tails of C. elegans enhanced the level of germ cell apoptosis in bystander gonads. The irradiation of posterior pharynx bulbs also increased the level of DNA damage in bystander germ cells and genomic instability in the F1 progeny of irradiated worms, suggesting a potential carcinogenic risk in progeny even only somatic cells of parents are exposed to ionizing radiation (IR). It was also shown that DNA damage-induced germ cell death machinery and MAPK signaling pathways were both involved in the induction of germ cell apoptosis by microbeam induced bystander signaling, indicating a complex cooperation among multiple signaling pathways for bystander effects from somatic cells to germ cells.

  9. NUP50 is necessary for the survival of primordial germ cells in mouse embryos.

    PubMed

    Park, Eunsook; Lee, Bobae; Clurman, Bruce E; Lee, Keesook

    2016-01-01

    Nucleoporin 50 kDa (NUP50), a component of the nuclear pore complex, is highly expressed in male germ cells, but its role in germ cells is largely unknown. In this study, we analyzed the expression and function of NUP50 during the embryonic development of germ cells using NUP50-deficient mice. NUP50 was expressed in germ cells of both sexes at embryonic day 15.5 (E15.5), E13.5, and E12.5. In addition, NUP50 expression was also detected in primordial germ cells (PGCs) migrating into the genital ridges at E9.5. The gonads of Nup50-/- embryos of both sexes contained few PGCs at both E11.5 and E12.5 and no developing germ cells at E15.5. The migratory PGCs in Nup50-/- embryos at E9.5 showed increased apoptosis but a normal rate of proliferation, resulting in the progressive loss of germ cells at later stages. Taken together, these results suggest that NUP50 plays an essential role in the survival of PGCs during embryonic development. © 2016 Society for Reproduction and Fertility.

  10. Identification of genes specific to mouse primordial germ cells through dynamic global gene expression.

    PubMed

    Sabour, Davood; Araúzo-Bravo, Marcos J; Hübner, Karin; Ko, Kinarm; Greber, Boris; Gentile, Luca; Stehling, Martin; Schöler, Hans R

    2011-01-01

    Molecular mechanisms underlying the commitment of cells to the germ cell lineage during mammalian embryogenesis remain poorly understood due to the limited availability of cellular materials to conduct in vitro analyses. Although primordial germ cells (PGCs)--precursors to germ cells--have been generated from embryonic stem cells (ESCs)--pluripotent stem cells derived from the inner cell mass of the blastocyst of the early embryo in vitro-the simultaneous expression of cell surface receptors and transcription factors complicates the detection of PGCs. To date, only a few genes that mark the onset of germ cell commitment in the epiblast--the outer layer of cells of the embryo--including tissue non-specific alkaline phosphatase (TNAP), Blimp1, Stella and Fragilis--have been used with some success to detect PGC formation in in vitro model systems. Here, we identified 11 genes (three of which are novel) that are specifically expressed in male and female fetal germ cells, both in vivo and in vitro, but are not expressed in ESCs. Expression of these genes allows us to distinguish committed germ cells from undifferentiated pluripotent cell populations, a prerequisite for the successful derivation of germ cells and gametes in vitro.

  11. Control over the morphology and segregation of Zebrafish germ cell granules during embryonic development

    PubMed Central

    Strasser, Markus J; Mackenzie, Natalia C; Dumstrei, Karin; Nakkrasae, La-Iad; Stebler, Jürg; Raz, Erez

    2008-01-01

    Background Zebrafish germ cells contain granular-like structures, organized around the cell nucleus. These structures share common features with polar granules in Drosophila, germinal granules in Xenopus and chromatoid bodies in mice germ cells, such as the localization of the zebrafish Vasa, Piwi and Nanos proteins, among others. Little is known about the structure of these granules as well as their segregation in mitosis during early germ-cell development. Results Using transgenic fish expressing a fluorescently labeled novel component of Zebrafish germ cell granules termed Granulito, we followed the morphology and distribution of the granules. We show that whereas these granules initially exhibit a wide size variation, by the end of the first day of development they become a homogeneous population of medium size granules. We investigated this resizing event and demonstrated the role of microtubules and the minus-end microtubule dependent motor protein Dynein in the process. Last, we show that the function of the germ cell granule resident protein the Tudor domain containing protein-7 (Tdrd7) is required for determination of granule morphology and number. Conclusion Our results suggest that Zebrafish germ cell granules undergo a transformation process, which involves germ cell specific proteins as well as the microtubular network. PMID:18507824

  12. Methods to study maternal regulation of germ cell specification in zebrafish

    PubMed Central

    Kaufman, O.H.; Marlow, F.L.

    2016-01-01

    The process by which the germ line is specified in the zebrafish embryo is under the control of maternal gene products that were produced during oogenesis. Zebrafish are highly amenable to microscopic observation of the processes governing maternal germ cell specification because early embryos are transparent, and the germ line is specified rapidly (within 4–5 h post fertilization). Advantages of zebrafish over other models used to study vertebrate germ cell formation include their genetic tractability, the large numbers of progeny, and the easily manipulable genome, all of which make zebrafish an ideal system for studying the genetic regulators and cellular basis of germ cell formation and maintenance. Classical molecular biology techniques, including expression analysis through in situ hybridization and forward genetic screens, have laid the foundation for our understanding of germ cell development in zebrafish. In this chapter, we discuss some of these classic techniques, as well as recent cutting-edge methodologies that have improved our ability to visualize the process of germ cell specification and differentiation, and the tracking of specific molecules involved in these processes. Additionally, we discuss traditional and novel technologies for manipulating the zebrafish genome to identify new components through loss-of-function studies of putative germ cell regulators. Together with the numerous aforementioned advantages of zebrafish as a genetic model for studying development, we believe these new techniques will continue to advance zebrafish to the forefront for investigation of the molecular regulators of germ cell specification and germ line biology. PMID:27312489

  13. Most regions of mouse epididymis are able to phagocytose immature germ cells.

    PubMed

    Ramos-Ibeas, P; Pericuesta, E; Fernández-González, R; Ramírez, M A; Gutierrez-Adan, A

    2013-01-01

    The role of the epididymis as a quality control organ in preventing infertile gametes entering the ejaculate has been extensively explored, and it has been suggested that a specific region of mammalian epididymis is able to phagocytose abnormal germ cells. This study examines whether the epithelium of certain zones of the mouse epididymis can act as a selection barrier by removing immature germ cells from the lumen by phagocytosis. To detect the presence of immature germ cells in the epididymis, we generated transgenic mice expressing enhanced green fluorescent protein under the deleted in azoospermia-like (mDazl) promoter to easily identify immature germ cells under fluorescence microscopy. Using this technique, we observed that during the first stage of spermatogenesis in prepuberal mice, a wave of immature germ cells is released into the epididymis and that the immature epididymis is not able to react to this abnormal situation. By contrast, when immature germ cells were artificially released into the epididymis in adult mice, a phagocytic response was observed. Phagosomes appeared inside principal cells of the epididymal epithelium and were observed to contain immature germ cells at different degradation stages in different zones of the epididymis, following the main wave of immature germ cells. In this paper, we describe how the epididymal epithelium controls sperm quality by clearing immature germ cells in response to their artificially induced massive shedding into the epididymal lumen. Our observations indicate that this phenomenon is not restricted to a given epididymis region and that phagocytic capacity is gradually acquired during epididymal development.

  14. Meiotic germ cells antagonize mesonephric cell migration and testis cord formation in mouse gonads

    PubMed Central

    Yao, Humphrey H.-C.; DiNapoli, Leo; Capel, Blanche

    2014-01-01

    Summary The developmental fate of primordial germ cells in the mammalian gonad depends on their environment. In the XY gonad, Sry induces a cascade of molecular and cellular events leading to the organization of testis cords. Germ cells are sequestered inside testis cords by 12.5 dpc where they arrest in mitosis. If the testis pathway is not initiated, germ cells spontaneously enter meiosis by 13.5 dpc, and the gonad follows the ovarian fate. We have previously shown that some testis-specific events, such as mesonephric cell migration, can be experimentally induced into XX gonads prior to 12.5 dpc. However, after that time, XX gonads are resistant to the induction of cell migration. In current experiments, we provide evidence that this effect is dependent on XX germ cells rather than on XX somatic cells. We show that, although mesonephric cell migration cannot be induced into normal XX gonads at 14.5 dpc, it can be induced into XX gonads depleted of germ cells. We also show that when 14.5 dpc XX somatic cells are recombined with XY somatic cells, testis cord structures form normally; however, when XX germ cells are recombined with XY somatic cells, cord structures are disrupted. Sandwich culture experiments suggest that the inhibitory effect of XX germ cells is mediated through short-range interactions rather than through a long-range diffusible factor. The developmental stage at which XX germ cells show a disruptive effect on the male pathway is the stage at which meiosis is normally initiated, based on the immunodetection of meiotic markers. We suggest that at the stage when germ cells commit to meiosis, they reinforce ovarian fate by antagonizing the testis pathway. PMID:14561636

  15. In vivo analysis of germ cell apoptosis reveals the existence of stage-specific 'social' control of germ cell death in the seminiferous epithelium.

    PubMed

    Blanco-Rodríguez, J; Martínez-García, C

    1997-12-01

    It has become clear in recent years that programmed cell death is regulated during development by signals from other cells. Nevertheless, compared to the 'social' control of cell proliferation, relatively little is known about the 'social' control of cell death in other systems. Since in a previous study we showed that induced germ cell apoptosis occurs at specific stages of the spermatogenic cycle, in this study we aimed to ascertain the existence of supracellular control of germ cell death during spermatogenesis. Therefore, the TUNEL technique has been used to analyse whether all of the different germ cell types are induced to die at these specific stages in animals injected intratesticularly with one of several inducers of apoptosis. Our findings suggest that all of the investigated agents trigger apoptosis in all the diverse progenies of germ cells existing at stages I, XII or XIV of the spermatogenic cycle. In contrast, at most other stages the number of apoptotic cells was similar to that found in control animals. These data are consistent with the existence of an intercellular control of germ cell death during spermatogenesis. We conclude that the seminiferous epithelium provides a suitable in vivo model to study the mechanisms underlying the 'social' control of apoptosis.

  16. Chemotherapy for Good-Risk Nonseminomatous Germ Cell Tumors: Current Concepts and Controversies.

    PubMed

    In, Gino; Dorff, Tanya

    2015-08-01

    The rate of diagnosis of germ cell tumors has remained fairly constant. By the International Germ Cell Cancer Consensus Classification, roughly 60% of all metastatic germ cell tumors are classified as good risk. This group of patients has an excellent prognosis, with greater than 90% expectation of cure. Treatment standards have not changed much in recent years. This article focuses on key concepts in the development of the currently accepted first-line regimens and addresses some evolving areas of interest, if not controversy.

  17. Acute Leukemia and Concurrent Mediastinal Germ Cell Tumor: Case Report and Literature Review.

    PubMed

    Maese, Luke; Li, K David; Xu, Xinjie; Afify, Zeinab; Paxton, Christian N; Putnam, Angelica

    2017-04-01

    There is a known association of primary nonseminomatous mediastinal germ cell tumors (NSMGCT) and hematologic malignancy in younger males not linked to treatment. When combined these two rare entities convey a very poor prognosis. Here we report a 16-year-old male with an anterior mediastinal mass diagnosed as a malignant germ cell tumor based on elevation of serologic markers. He was found to have acute leukemia with megakaryocytic differentiation several days later. We focus our report on the pathologic findings, including a review of the literature, and a novel molecular analysis of the germ cell tumor.

  18. Gonadal germ cell tumors in children and adolescents

    PubMed Central

    Cecchetto, Giovanni

    2014-01-01

    Pediatric germ cell tumors (GCT) are rare tumors: 80% are benign, 20% malignant (2-3% of all malignant pediatric tumors). The gonadal sites (ovary and testis) account for 40% of cases. Ovarian GCTs: Represent 30% of GCTs and 70% of neoplastic ovarian masses, being the most common ovarian neoplasms in children and teenagers. Benign and immature forms (teratomas) constitute about 80% of all ovarian GCTs, malignant forms represent 20% increasing during adolescence. The most common malignant entity in children is the yolk sac tumors (YST); dysgerminoma is frequent during adolescence and being bilateral in 10% of cases. Presentation is similar in malignant and benign lesions; abdominal pain (70-80%) and lower abdominal mass are common symptoms. Evaluation of alpha-fetoprotein (αFP) or beta subunit of human chorionic gonadotropin (βHCG) is essential to address the nature of the tumors: Their elevation means presence of malignancy. Surgery includes intraoperative staging procedures and requires ovariectomy or ovarosalpingectomy for malignant lesions, but may be conservative in selected benign tumors. Since malignant GCTs are very chemosensitive, primary chemotherapy is recommended in metastatic or locally advanced tumors. Testicular GCT: Represent 10% of pediatric GCT, and about 30% of malignant GCT with two age peaks: Children <3 years may experience mature teratoma and malignant GCTs, represented almost exclusively by YST, while adolescents may also show seminomas or other mixed tumors. The main clinical feature is a painless scrotal mass. Surgery represents the cornerstone of the management of testicular GCTs, with an inguinal approach and a primary high orchidectomy for malignant tumors, while a testis-sparing surgery can be considered for benign lesions. A retroperitoneal lymph node (LN) biopsy may be necessary to define the staging when the involvement of retroperitoneal LN is uncertain at imaging investigations. Conclusion: Patients with gonadal malignant GCTs

  19. Detection of occupational and environmental exposures by bacterial mutagenesis assays of human body fluids.

    PubMed

    Everson, R B

    1986-08-01

    Assays of human body fluids provide a means to document human exposure to mutagens in the environment. In contrast to measurements of ambient levels, these assays demonstrate absorption of mutagens and provide estimates of minimal systemic doses. For most studies reviewed here, specimens of urine were concentrated by adsorption to columns of XAD-2 resin or by liquid partition extraction prior to the mutagenesis assays. The resulting extracts most commonly were analyzed for mutagenicity using the Salmonella/mammalian microsomal plate assay. Less frequently used assays included bacterial fluctuation tests instead of the plate assay and assays for the induction of sister chromatid exchanges in cultured mammalian cells. In addition to reviewing literature reports where body fluids were tested, the advantages, disadvantages, and potential role of this approach will be briefly discussed and compared with other approaches to the identification of mutagenic hazards in the workplace.

  20. Detection of occupational and environmental exposures by bacterial mutagenesis assays of human body fluids

    SciTech Connect

    Everson, R.B.

    1986-08-01

    Assays of human body fluids provide a means to document human exposure to mutagens in the environment. In contrast to measurements of ambient levels, these assays demonstrate absorption of mutagens and provide estimates of minimal systemic doses. For most studies reviewed here, specimens of urine were concentrated by adsorption to columns of XAD-2 resin or by liquid partition extraction prior to the mutagenesis assays. The resulting extracts most commonly were analyzed for mutagenicity using the Salmonella/mammalian microsomal plate assay. Less frequently used assays included bacterial fluctuation tests instead of the plate assay and assays for the induction of sister chromatid exchanges in cultured mammalian cells. In addition to reviewing literature reports where body fluids were tested, the advantages, disadvantages, and potential role of this approach will be briefly discussed and compared with other approaches to the identification of mutagenic hazards in the workplace.

  1. Poultry genetic resource conservation using primordial germ cells

    PubMed Central

    NAKAMURA, Yoshiaki

    2016-01-01

    The majority of poultry genetic resources are maintained in situ in living populations. However, in situ conservation of poultry genetic resources always carries the risk of loss owing to pathogen outbreaks, genetic problems, breeding cessation, or natural disasters. Cryobanking of germplasm in birds has been limited to the use of semen, preventing conservation of the W chromosome and mitochondrial DNA. A further challenge is posed by the structure of avian eggs, which restricts the cryopreservation of ova and fertilized embryos, a technique widely used for mammalian species. By using a unique biological property and accessibility of avian primordial germ cells (PGCs), precursor cells for gametes, which temporally circulate in the vasculature during early development, an avian PGC transplantation technique has been established. To date, several techniques for PGC manipulation including purification, cryopreservation, depletion, and long-term culture have been developed in chickens. PGC transplantation combined with recent advanced PGC manipulation techniques have enabled ex situ conservation of poultry genetic resources in their complete form. Here, the updated technologies for avian PGC manipulation are introduced, and then the concept of a poultry PGC-bank is proposed by considering the biological properties of avian PGCs. PMID:27210834

  2. Nanog regulates primordial germ cell migration through Cxcr4b.

    PubMed

    Sánchez-Sánchez, Ana Virginia; Camp, Esther; Leal-Tassias, Aránzazu; Atkinson, Stuart P; Armstrong, Lyle; Díaz-Llopis, Manuel; Mullor, José L

    2010-09-01

    Gonadal development in vertebrates depends on the early determination of primordial germ cells (PGCs) and their correct migration to the sites where the gonads develop. Several genes have been implicated in PGC specification and migration in vertebrates. Additionally, some of the genes associated with pluripotency, such as Oct4 and Nanog, are expressed in PGCs and gonads, suggesting a role for these genes in maintaining pluripotency of the germ lineage, which may be considered the only cell type that perpetually maintains stemness properties. Here, we report that medaka Nanog (Ol-Nanog) is expressed in the developing PGCs. Depletion of Ol-Nanog protein causes aberrant migration of PGCs and inhibits expression of Cxcr4b in PGCs, where it normally serves as the receptor of Sdf1a to guide PGC migration. Moreover, chromatin immunoprecipitation analysis demonstrates that Ol-Nanog protein binds to the promoter region of Cxcr4b, suggesting a direct regulation of Cxcr4b by Ol-Nanog. Simultaneous overexpression of Cxcr4b mRNA and depletion of Ol-Nanog protein in PGCs rescues the migration defective phenotype induced by a loss of Ol-Nanog, whereas overexpression of Sdf1a, the ligand for Cxcr4b, does not restore proper PGC migration. These results indicate that Ol-Nanog mediates PGC migration by regulating Cxcr4b expression.

  3. Management of primary germ cell tumors of the mediastinum.

    PubMed

    Economou, J S; Trump, D L; Holmes, E C; Eggleston, J E

    1982-05-01

    Twenty-eight patients with primary malignant germ cell tumors (GCT) of the mediastinum were treated at the University of California at Los Angeles and The Johns Hopkins Hospital in the past 30 years. Of 11 patients with pure seminomas, nine (82%) are free of disease from 6 months to 15 years following therapy. The primary treatment modality in these patients was mediastinal radiation; one patient with metastatic disease had a complete remission and prolonged survival following combination chemotherapy. Seventeen patients had GCT with nonseminomatous elements. Only three (18%) are alive and free of disease. One patient treated only surgically is alive at 15 years and two patients treated with combination chemotherapy and operation are alive and free of disease at 6 months and 3 years. When analyzed by a Kaplan-Meier actuarial survival estimate, patients with nonseminomatous GCT who were treated with cisplatin-bleomycin-based chemotherapy had a median survival of 14.0 months whereas those treated with chemotherapy regimens not employing these agents had a median survival of 4.0 months (generalized Wilcoxon test, p = 0.0495). Patients with pure seminomas are effectively treated with radiation therapy. Patients with nonseminomatous tumors have a much poorer prognosis and deserve aggressive multimodality therapy with cisplatin-bleomycin-based chemotherapy.

  4. Control of male germ-cell development in flowering plants.

    PubMed

    Singh, Mohan B; Bhalla, Prem L

    2007-11-01

    Plant reproduction is vital for species survival, and is also central to the production of food for human consumption. Seeds result from the successful fertilization of male and female gametes, but our understanding of the development, differentiation of gamete lineages and fertilization processes in higher plants is limited. Germ cells in animals diverge from somatic cells early in embryo development, whereas plants have distinct vegetative and reproductive phases in which gametes are formed from somatic cells after the plant has made the transition to flowering and the formation of the reproductive organs. Recently, novel insights into the molecular mechanisms underlying male germ-line initiation and male gamete development in plants have been obtained. Transcriptional repression of male germ-line genes in non-male germ-line cells have been identified as a key mechanism for spatial and temporal control of male germ-line development. This review focuses on molecular events controlling male germ-line development especially, on the nature and regulation of gene expression programs operating in male gametes of flowering plants.

  5. A pilgrim's progress: Seeking meaning in primordial germ cell migration.

    PubMed

    Cantú, Andrea V; Laird, Diana J

    2017-07-18

    Comparative studies of primordial germ cell (PGC) development across organisms in many phyla reveal surprising diversity in the route of migration, timing and underlying molecular mechanisms, suggesting that the process of migration itself is conserved. However, beyond the perfunctory transport of cellular precursors to their later arising home of the gonads, does PGC migration serve a function? Here we propose that the process of migration plays an additional role in quality control, by eliminating PGCs incapable of completing migration as well as through mechanisms that favor PGCs capable of responding appropriately to migration cues. Focusing on PGCs in mice, we explore evidence for a selective capacity of migration, considering the tandem regulation of proliferation and migration, cell-intrinsic and extrinsic control, the potential for tumors derived from failed PGC migrants, the potential mechanisms by which migratory PGCs vary in their cellular behaviors, and corresponding effects on development. We discuss the implications of a selective role of PGC migration for in vitro gametogenesis. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  6. Chlorambucil effectively induces deletion mutations in mouse germ cells.

    PubMed Central

    Russell, L B; Hunsicker, P R; Cacheiro, N L; Bangham, J W; Russell, W L; Shelby, M D

    1989-01-01

    The chemotherapeutic agent chlorambucil was found to be more effective than x-rays or any chemical investigated to date in inducing high yields of mouse germ-line mutations that appear to be deletions or other structural changes. Induction of mutations involving seven specific loci was studied after exposures of various male germ-cell stages to chlorambucil at 10-25 mg/kg. A total of 60,750 offspring was scored. Mutation rates in spermatogonial stem cells were not significantly increased over control values; this negative result is not attributable to selective elimination of mutant cells. Mutations were, however, clearly induced in treated post-stem-cell stages, among which marked variations in mutational response were found. Maximum yield occurred after exposure of early spermatids, with approximately 1% of all offspring carrying a specific-locus mutation in the 10 mg/kg group. The stage-response pattern for chlorambucil differs from that of all other chemicals investigated to date in the specific-locus test. Thus far, all but one of the tested mutations induced by chlorambucil in post-stem-cell stages have been proved deletions or other structural changes by genetic, cytogenetic, and/or molecular criteria. Deletion mutations have recently been useful for molecular mapping and for structure-function correlations of genomic regions. For generating presumed large-lesion germ-line mutations at highest frequencies, chlorambucil may be the mutagen of choice. Images PMID:2726748

  7. Testicular structure and germ cells morphology in salamanders

    PubMed Central

    Uribe, Mari Carmen; Mejía-Roa, Víctor

    2014-01-01

    Testes of salamanders or urodeles are paired elongated organs that are attached to the dorsal wall of the body by a mesorchium. The testes are composed of one or several lobes. Each lobe is morphologically and functionally a similar testicular unit. The lobes of the testis are joined by cords covered by a single peritoneal epithelium and subjacent connective tissue. The cords contain spermatogonia. Spermatogonia associate with Sertoli cells to form spermatocysts or cysts. The spermatogenic cells in a cyst undergo their development through spermatogenesis synchronously. The distribution of cysts displays the cephalo-caudal gradient in respect to the stage of spermatogenesis. The formation of cysts at cephalic end of the testis causes their migration along the lobules to the caudal end. Consequently, the disposition in cephalo-caudal regions of spermatogenesis can be observed in longitudinal sections of the testis. The germ cells are spermatogonia, diploid cells with mitotic activity; primary and second spermatocytes characterized by meiotic divisions that develop haploid spermatids; during spermiogenesis the spermatids differentiate to spermatozoa. During spermiation the cysts open and spermatozoa leave the testicular lobules. After spermiation occurs the development of Leydig cells into glandular tissue. This glandular tissue regressed at the end of the reproductive cycle. PMID:26413406

  8. Chlorambucil effectively induces deletion mutations in mouse germ cells

    SciTech Connect

    Russell, L.B.; Hunsicker, P.R.; Cacheiro, N.L.A.; Bangham, J.W.; Russell, W.L.; Shelby, M.D. )

    1989-05-01

    The chemotherapeutic agent chlorambucil was found to be more effective than x-rays or any chemical investigated to data in inducing high yields of mouse germ-line mutations that appear to be deletions or other structural changes. Induction of mutations involving seven specific loci was studied after exposures of various male germ-cell stages to chlorambucil at 10-25 mg/kg. A total of 60,750 offspring was scored. Mutation rates in spermatogonial stem cells were not significantly increased over control values; this negative result is not attributable to selective elimination of mutant cells. Mutations were, however, clearly induced in treated post-stem-cell stages, among which marked variations in mutational response were found. Maximum yield occurred after exposure of early spermatids, with {approx} 1% of all offspring carrying a specific-locus mutation in the 10 mg/kg group. The stage-response pattern for chlorambucil differs from that of all other chemicals investigated to date in the specific-locus test. Thus far, all but one of the tested mutations induced by chlorambucil in post-stem-cell stages have been proved deletions or other structural changes by genetic, cytogenetic, and/or molecular criteria. Deletion mutations have recently been useful for molecular mapping and for structure-function correlations of genomic regions. For generating presumed large-lesion germline mutations at highest frequencies, chlorambucil may be the mutagen of choice.

  9. Inguinal lymph node metastases from germ cell testicular tumors.

    PubMed

    Klein, F A; Whitmore, W F; Sogani, P C; Batata, M; Fisher, H; Herr, H W

    1984-03-01

    Between 1948 and 1982, 22 patients were seen with metastasis to the inguinal nodes from testicular germ cell tumors: 8 had a history of unilateral or bilateral orchiopexy with or without herniorrhaphy, 4 had nonsurgically corrected or uncorrected cryptorchidism, 9 had a history of herniorrhaphy, hydrocelectomy or transscrotal orchiectomy and 1 had no history of scrotal, iliac or inguinal surgery, or of tunica vaginalis or scrotal wall involvement by tumor. The histological type was pure seminoma in 5 patients, embryonal carcinoma in 7 and mixed tumor in 10. Treatment was individualized for tumor type and mode of presentation, and varied during the years according to the modalities available. At the time of this report 8 of 22 patients (36 per cent) are alive without evidence of disease from 2 to 29.5 years, 3 (16 per cent) have died without evidence of disease 10 to 17 years after treatment, 10 (45 per cent) have died of metastases 10 months to 6 years after treatment and 1 has been lost to followup. The over-all incidence of groin metastases from testicular carcinoma is low, even with a history of scrotal or inguinal surgery.

  10. Familial testicular germ cell tumor: no associated syndromic pattern identified

    PubMed Central

    2014-01-01

    Background Testicular germ cell tumor (TGCT) is the most common malignancy in young men. Familial clustering, epidemiologic evidence of increased risk with family or personal history, and the association of TGCT with genitourinary (GU) tract anomalies have suggested an underlying genetic predisposition. Linkage data have not identified a rare, highly-penetrant, single gene in familial TGCT (FTGCT) cases. Based on its association with congenital GU tract anomalies and suggestions that there is an intrauterine origin to TGCT, we hypothesized the existence of unrecognized dysmorphic features in FTGCT. Methods We evaluated 38 FTGCT individuals and 41 first-degree relatives from 22 multiple-case families with detailed dysmorphology examinations, physician-based medical history and physical examination, laboratory testing, and genitourinary imaging studies. Results The prevalence of major abnormalities and minor variants did not significantly differ between either FTGCT individuals or their first-degree relatives when compared with normal population controls, except for tall stature, macrocephaly, flat midface, and retro-/micrognathia. However, these four traits were not manifest as a constellation of features in any one individual or family. We did detect an excess prevalence of the genitourinary anomalies cryptorchidism and congenital inguinal hernia in our population, as previously described in sporadic TGCT, but no congenital renal, retroperitoneal or mediastinal anomalies were detected. Conclusions Overall, our study did not identify a constellation of dysmorphic features in FTGCT individuals, which is consistent with results of genetic studies suggesting that multiple low-penetrance genes are likely responsible for FTGCT susceptibility. PMID:24559313

  11. An Integrative Omics Strategy to Assess the Germ Cell Secretome and to Decipher Sertoli-Germ Cell Crosstalk in the Mammalian Testis

    PubMed Central

    Lavigne, Régis; Hernio, Nolwen; Teixeira-Gomes, Ana-Paula; Dacheux, Jean-Louis; Pineau, Charles

    2014-01-01

    Mammalian spermatogenesis, which takes place in complex testicular structures called seminiferous tubules, is a highly specialized process controlled by the integration of juxtacrine, paracrine and endocrine information. Within the seminiferous tubules, the germ cells and Sertoli cells are surrounded by testicular fluid (TF), which probably contains most of the secreted proteins involved in crosstalk between these cells. It has already been established that germ cells can modulate somatic Sertoli cell function through the secretion of diffusible factors. We studied the germ cell secretome, which was previously considered inaccessible, by analyzing the TF collected by microsurgery in an “integrative omics” strategy combining proteomics, transcriptomics, genomics and interactomics data. This approach identified a set of proteins preferentially secreted by Sertoli cells or germ cells. An interaction network analysis revealed complex, interlaced cell-cell dialog between the secretome and membranome of seminiferous cells, mediated via the TF. We then focused on germ cell-secreted candidate proteins, and we identified several potential interacting partners located on the surface of Sertoli cells. Two interactions, APOH/CDC42 and APP/NGFR, were validated in situ, in a proximity ligation assay (PLA). Our results provide new insight into the crosstalk between germ cells and Sertoli cells occurring during spermatogenesis. Our findings also demonstrate that this “integrative omics” strategy is powerful enough for data mining and highlighting meaningful cell-cell communication events between different types of cells in a complex tissue, via a biological fluid. This integrative strategy could be applied more widely, to gain access to secretomes that have proved difficult to study whilst avoiding the limitations of in vitro culture. PMID:25111155

  12. Dispersed crude oil amplifies germ cell apoptosis in Caenorhabditis elegans, followed a CEP-1-dependent pathway.

    PubMed

    Polli, Joseph Ryan; Zhang, Yanqiong; Pan, Xiaoping

    2014-03-01

    The Deepwater Horizon oil spill is among the most severe environmental disasters in US history. The extent of crude oil released and the subsequent dispersant used for cleanup was unprecedented. The dispersed crude oil represents a unique form of environmental contaminant that warrants investigations of its environmental and human health impacts. Lines of evidence have demonstrated that dispersed oil affects reproduction in various organisms, in a more potent manner than oil- and dispersant-only exposures. However, the action mechanism of dispersed oil remains largely unknown. In this study, we utilized the model organism Caenorhabditis elegans to investigate impacts of dispersed oil exposure on sex cell apoptosis and related gene expressions. Worms were exposed to different diluted levels of crude oil-dispersant (oil-dis) mixtures (20:1, v/v; at 500×, 2,000×, and 5,000× dilutions). The dispersed crude oil significantly increases the number of apoptotic germ cells in treated worms when compared with control at all exposure levels (p < 0.05). Genes involved in the apoptosis pathway were dysregulated, which include ced-13, ced-3, ced-4, ced-9, cep-1, dpl-1, efl-1, efl-2, egl-1, egl-38, lin-35, pax-2, and sir-2.1. Many aberrant expressed genes encoding for core components in apoptosis machinery (cep-1/p53, ced-13/BH3, ced-9/Bcl-2, ced-4/Apaf-1, and ced-3/caspase) displayed consistent expression patterns across all exposure levels. Significantly ced-3/caspase was upregulated at all dispersed oil-treated groups, consistent with the observed apoptosis phenotype. Given cep-1/p53 was activated at all dispersed oil treatments and the germ cell apoptosis was suppressed in the CEP-1 loss of function mutant, the increased apoptosis is likely CEP-1 dependent. In addition, the anti-apoptotic ced-9/Bcl-2 was activated in response to the increase in cell death. This study provides a mechanism understanding of dispersed crude oil-induced reproductive toxicity.

  13. Mouse oocytes differentiate through organelle enrichment from sister cyst germ cells.

    PubMed

    Lei, Lei; Spradling, Allan C

    2016-04-01

    Oocytes differentiate in diverse species by receiving organelles and cytoplasm from sister germ cells while joined in germline cysts or syncytia. Mouse primordial germ cells form germline cysts, but the role of cysts in oogenesis is unknown. We find that mouse germ cells receive organelles from neighboring cyst cells and build a Balbiani body to become oocytes, whereas nurselike germ cells die. Organelle movement, Balbiani body formation, and oocyte fate determination are selectively blocked by low levels of microtubule-dependent transport inhibitors. Membrane breakdown within the cyst and an apoptosis-like process are associated with organelle transfer into the oocyte, events reminiscent of nurse cell dumping in Drosophila We propose that cytoplasmic and organelle transport plays an evolutionarily conserved and functionally important role in mammalian oocyte differentiation. Copyright © 2016, American Association for the Advancement of Science.

  14. Germ-cell deficient (gcd), an insertional mutation manifested as infertility in transgenic mice.

    PubMed Central

    Pellas, T C; Ramachandran, B; Duncan, M; Pan, S S; Marone, M; Chada, K

    1991-01-01

    A genetic analysis is necessary to gain a greater understanding of the complex developmental processes in mammals. Toward this end, an insertional transgenic mouse mutant has been isolated that results in abnormal germ-cell development. This recessive mutation manifests as infertility in both males and females and is specific for the reproductive organs, since all other tissues examined were histologically normal. A developmental analysis of the gonadal tissues demonstrated that the germ cells were specifically depleted as early as day 11.5 of embryonic development, while the various somatic cells were apparently unaffected. Therefore, the mutated locus must play a critical role in the migration/proliferation of primordial germ cells to the genital ridges of developing embryos. In addition, females homozygous for the mutation could potentially be a valuable animal model of a human syndrome, premature ovarian failure. This mutation has been named germ-cell deficient, gcd. Images PMID:1924340

  15. Autophagy is a cell survival program for female germ cells in the murine ovary.

    PubMed

    Gawriluk, Thomas R; Hale, Amber N; Flaws, Jodi A; Dillon, Christopher P; Green, Douglas R; Rucker, Edmund B

    2011-06-01

    It is estimated that infertility affects 15-20% of couples and can arise from female or male reproductive defects. Mouse models have ascribed roles to over 100 genes in the maintenance of female fertility. Although previous models have determined roles for apoptosis in male and female fertility, we find that compromised autophagy within the perinatal ovary, through the loss of Becn1 or Atg7, results in the premature loss of female germ cells. Becn1(+/-) ovaries have a 56% reduction of germ cells compared with control ovaries at post-natal day 1, whereas Atg7(-/-) ovaries lack discernable germ cells at this stage. Thus autophagy appears to be a cell survival mechanism to maintain the endowment of female germ cells prior to establishing primordial follicle pools in the ovary.

  16. Fertility facts: male and female germ cell development requires translational control by CPEB.

    PubMed

    Gebauer, F; Hentze, M W

    2001-08-01

    In the August issue of Developmental Cell, Tay and Richter examine the consequences of eliminating CPEB function in mice. Their studies reveal an important role for this translational regulator at the pachytene stage of germ cell differentiation.

  17. Germ cells are not the primary factor for sexual fate determination in goldfish.

    PubMed

    Goto, Rie; Saito, Taiju; Takeda, Takahiro; Fujimoto, Takafumi; Takagi, Misae; Arai, Katsutoshi; Yamaha, Etsuto

    2012-10-01

    The presence of germ cells in the early gonad is important for sexual fate determination and gonadal development in vertebrates. Recent studies in zebrafish and medaka have shown that a lack of germ cells in the early gonad induces sex reversal in favor of a male phenotype. However, it is uncertain whether the gonadal somatic cells or the germ cells are predominant in determining gonadal fate in other vertebrate. Here, we investigated the role of germ cells in gonadal differentiation in goldfish, a gonochoristic species that possesses an XX-XY genetic sex determination system. The primordial germ cells (PGCs) of the fish were eliminated during embryogenesis by injection of a morpholino oligonucleotide against the dead end gene. Fish without germ cells showed two types of gonadal morphology: one with an ovarian cavity; the other with seminiferous tubules. Next, we tested whether function could be restored to these empty gonads by transplantation of a single PGC into each embryo, and also determined the gonadal sex of the resulting germline chimeras. Transplantation of a single GFP-labeled PGC successfully produced a germline chimera in 42.7% of the embryos. Some of the adult germline chimeras had a developed gonad on one side that contained donor derived germ cells, while the contralateral gonad lacked any early germ cell stages. Female germline chimeras possessed a normal ovary and a germ-cell free ovary-like structure on the contralateral side; this structure was similar to those seen in female morphants. Male germline chimeras possessed a testis and a contralateral empty testis that contained some sperm in the tubular lumens. Analysis of aromatase, foxl2 and amh expression in gonads of morphants and germline chimeras suggested that somatic transdifferentiation did not occur. The offspring of fertile germline chimeras all had the donor-derived phenotype, indicating that germline replacement had occurred and that the transplanted PGC had rescued both female and

  18. [Reconsidering the roles of female germ cells in ovarian development and folliculogenesis].

    PubMed

    Guigon, Céline J; Cohen-Tannoudji, Michel

    2011-01-01

    The production of fertilizable ova is the consequence of multiple events that start as soon as ovarian development and culminate at the time of ovulation. Throughout their development, germ cells are associated with companion somatic cells, which ensure germ cell survival, growth and maturation. Data obtained in vitro and in vivo on several animal models of germ cell depletion have led to uncover the many roles of germ cells on both ovarian development and folliculogenesis. During ovarian development, germ cells become progressively enclosed within epithelial structures called "ovigerous cords" constituted by pregranulosa cells, lined by a basement membrane. At the end of ovarian development, ovigerous cords fragment into primordial follicles, which are epithelial units constituted by an oocyte surrounded by a single layer of granulosa cells. Germ cells are necessary for the fragmentation of ovigerous cords into follicles, since in their absence, no follicle will form. Germ cells also ensure the differentiation of the ovarian somatic lineage, and they may inhibit the testis-differentiating pathway by preventing the conversion of pregranulosa cells into Sertoli cells, their counterpart in the testis. Regularly, primordial follicles are recruited into the growing follicle pool and initiate their growth. They develop through primary, preantral, antral and preovulatory stages before being ovulated. Interestingly, the action of the oocyte on companion somatic cells tightly depends on the follicular stage. In primordial follicles, the oocyte prevents the transdifferentiation of granulosa cells into cells resembling Sertoli cells. By contrast, as soon as the follicle enters growth, the oocyte regulates the functional differentiation of granulosa cells and at the latest stages, it prevents their premature maturation into luteal cells. Overall, these data demonstrate that the female germ cell act on companion somatic cells to regulate ovarian development and

  19. Apoptosis mediated by phosphatidylserine externalization in the elimination of aneuploid germ cells during human spermatogenesis.

    PubMed

    Garcia-Quevedo, L; Blanco, J; Sarrate, Z; Vidal, F

    2014-11-01

    It has been described that aneuploidies trigger cell cycle checkpoints leading to apoptosis. The aim of this study was to assess the relationship between the presence of chromosomal abnormalities and apoptosis in germ cells and in Sertoli cells. Fourteen diagnostic testicular biopsies from infertile patients were processed following a sequential methodology, which included enzymatic disaggregation, apoptotic staining, cell sorting, cell fixation, and fluorescent in situ hybridization analysis. The chromosome constitution of germ cells (interphase pre-meiotic germ cells, meiotic figures, post-reductional germ cells, and spermatozoa) and Sertoli cells was evaluated in non-sorted and flow-sorted cell populations (apoptotic and viable). The mean percentage of aneuploidy was compared between the three fractions in each cell type using a Kruskal-Wallis test. If significant results were obtained, a two-by-two Chi-squared test was performed. There were significant differences between the apoptotic fraction and the viable and non-sorted fractions in the pre-meiotic germ cells (p < 0.01). In the remaining cell types, no association between the presence of aneuploidy and apoptotic processes was observed, even in the case of post-reductional germ cells in which we detected the highest rates of aneuploidy regardless of the fraction analyzed. From our data, it can be inferred that most of the aneuploid post-reductional germ cells are efficiently removed from the testicular epithelium without differentiating into spermatozoa. Our results suggest that the elimination of aneuploid testicular epithelial cells is triggered by different mechanisms. Accordingly, the cellular elimination of aneuploid germ cells beyond the blood-testis barrier does not involve phosphatidylserine externalization. © 2014 American Society of Andrology and European Academy of Andrology.

  20. Management of germ cell tumors with somatic type malignancy: pathological features, prognostic factors and survival outcomes.

    PubMed

    Rice, Kevin R; Magers, Martin J; Beck, Stephen D W; Cary, K Clint; Einhorn, Lawrence H; Ulbright, Thomas M; Foster, Richard S

    2014-11-01

    Germ cell tumors with somatic type malignancy are rare, occurring in approximately 2.7% to 8.6% of germ cell tumor cases. Prognostic factors and optimal management remain poorly defined. The Indiana University testis cancer database was queried from 1979 to 2011 for patients demonstrating germ cell tumor with somatic type malignancy at orchiectomy or subsequent resection. Patients with transformation to primitive neuroectodermal tumor only were excluded from study due to distinct management. Chart review, pathological review and survival analysis were performed. A total of 121 patients met the study inclusion criteria. The most common somatic type malignancy histologies were sarcoma (59), carcinoma (31) and sarcomatoid yolk sac tumor (17). Of these patients 32 demonstrated somatic type malignancy at germ cell tumor diagnosis. For those with delayed identification, median time from germ cell tumor to somatic type malignancy diagnosis was 33 months. This interval was longest for carcinomas (108 months). At a median followup of 71 months, 5-year cancer specific survival was 64%. Predictors of poorer cancer specific survival included somatic type malignancy diagnosed at late relapse (p = 0.017), referral to Indiana University for reoperative retroperitoneal lymph node dissection (p = 0.026) and grade (p = 0.026). None of these factors maintained prognostic significance on multivariate analysis. Somatic type malignancy histology subtype, stage, risk category and number of resections were not predictive of cancer specific survival. Germ cell tumor with somatic type malignancy is associated with poorer cancer specific survival than traditional germ cell tumor. Established prognostic factors for germ cell tumor lose predictive value in the setting of somatic type malignancy. Aggressive and serial resections are often necessary to optimize cancer specific survival. Tumor grade is an important prognostic factor in sarcomas and sarcomatoid yolk sac tumors. Copyright

  1. Unusual liver locations of growing teratoma syndrome in ovarian malignant germ cell tumors.

    PubMed

    Lorusso, Domenica; Malaguti, Paola; Trivellizzi, Ilaria Nausica; Scambia, Giovanni

    2011-01-01

    ► Growing teratoma syndrome (GTS) with unusual liver locations are described after fertility preserving surgery and chemotherapy treatment for mixed malignant ovarian germ cell tumors (MGCT). ► It's a rare syndrome of mixed malignant ovarian germ cell tumors and in both cases enlarged and growing liver masses appeared during cisplatin-etoposide-bleomicin (BEP) chemotherapy. ► Radiological exams (CT scan and MRI) were suggestive for secondary metastasis and serum markers became negative during chemotherapy.

  2. Germ cells of the centipede Strigamia maritima are specified early in embryonic development.

    PubMed

    Green, Jack E; Akam, Michael

    2014-08-15

    We provide the first systematic description of germ cell development with molecular markers in a myriapod, the centipede Strigamia maritima. By examining the expression of Strigamia vasa and nanos orthologues, we find that the primordial germ cells are specified from at least the blastoderm stage. This is a much earlier embryonic stage than previously described for centipedes, or any other member of the Myriapoda. Using these genes as markers, and taking advantage of the developmental synchrony of Strigamia embryos within single clutches, we are able to track the development of the germ cells throughout embryogenesis. We find that the germ cells accumulate at the blastopore; that the cells do not internalize through the hindgut, but rather through the closing blastopore; and that the cells undergo a long-range migration to the embryonic gonad. This is the first evidence for primordial germ cells displaying these behaviours in any myriapod. The myriapods are a phylogenetically important group in the arthropod radiation for which relatively little developmental data is currently available. Our study provides valuable comparative data that complements the growing number of studies in insects, crustaceans and chelicerates, and is important for the correct reconstruction of ancestral states and a fuller understanding of how germ cell development has evolved in different arthropod lineages.

  3. Toward a more precise and informative nomenclature describing fetal and neonatal male germ cells in rodents.

    PubMed

    McCarrey, John R

    2013-08-01

    The germ cell lineages are among the best characterized of all cell lineages in mammals. This characterization includes precise nomenclature that distinguishes among numerous, often subtle, changes in function or morphology as development and differentiation of germ cells proceed to form the gametes. In male rodents, there are at least 41 distinct cell types that occur during progression through the male germ cell lineage that gives rise to spermatozoa. However, there is one period during male germ cell development-that which occurs immediately following the primordial germ cell stage and prior to the spermatogonial stage-for which the system of precise and informative cell type terminology is not adequate. Often, male germ cells during this period are referred to simply as "gonocytes." However, this term is inadequate for multiple reasons, and it is suggested here that nomenclature originally proposed in the 1970s by Hilscher et al., which employs the terms M-, T1-, and T2-prospermatogonia, is preferable. In this Minireview, the history, proper utilization, and advantages of this terminology relative to that of the term gonocytes are described.

  4. DNA damage in germ cells induces an innate immune response that triggers systemic stress resistance.

    PubMed

    Ermolaeva, Maria A; Segref, Alexandra; Dakhovnik, Alexander; Ou, Hui-Ling; Schneider, Jennifer I; Utermöhlen, Olaf; Hoppe, Thorsten; Schumacher, Björn

    2013-09-19

    DNA damage responses have been well characterized with regard to their cell-autonomous checkpoint functions leading to cell cycle arrest, senescence and apoptosis. In contrast, systemic responses to tissue-specific genome instability remain poorly understood. In adult Caenorhabditis elegans worms germ cells undergo mitotic and meiotic cell divisions, whereas somatic tissues are entirely post-mitotic. Consequently, DNA damage checkpoints function specifically in the germ line, whereas somatic tissues in adult C. elegans are highly radio-resistant. Some DNA repair systems such as global-genome nucleotide excision repair (GG-NER) remove lesions specifically in germ cells. Here we investigated how genome instability in germ cells affects somatic tissues in C. elegans. We show that exogenous and endogenous DNA damage in germ cells evokes elevated resistance to heat and oxidative stress. The somatic stress resistance is mediated by the ERK MAP kinase MPK-1 in germ cells that triggers the induction of putative secreted peptides associated with innate immunity. The innate immune response leads to activation of the ubiquitin-proteasome system (UPS) in somatic tissues, which confers enhanced proteostasis and systemic stress resistance. We propose that elevated systemic stress resistance promotes endurance of somatic tissues to allow delay of progeny production when germ cells are genomically compromised.

  5. RNF17, a component of the mammalian germ cell nuage, is essential for spermiogenesis.

    PubMed

    Pan, Jieyan; Goodheart, Mary; Chuma, Shinichiro; Nakatsuji, Norio; Page, David C; Wang, P Jeremy

    2005-09-01

    Nuages are found in the germ cells of diverse organisms. However, nuages in postnatal male germ cells of mice are poorly studied. Previously, we cloned a germ cell-specific gene named Rnf17, which encodes a protein containing both a RING finger and tudor domains. Here, we report that RNF17 is a component of a novel nuage in male germ cells--the RNF17 granule, which is an electron-dense non-membrane bound spherical organelle with a diameter of 0.5 mum. RNF17 granules are prominent in late pachytene and diplotene spermatocytes, and in elongating spermatids. RNF17 granules are distinguishable from other known nuages, such as chromatoid bodies. RNF17 is able to form dimers or polymers both in vitro and in vivo, indicating that it may play a role in the assembly of RNF17 granules. Rnf17-deficient male mice were sterile and exhibited a complete arrest in round spermatids, demonstrating that Rnf17 encodes a novel key regulator of spermiogenesis. Rnf17-null round spermatids advanced to step 4 but failed to produce sperm. These results have shown that RNF17 is a component of a novel germ cell nuage and is required for differentiation of male germ cells.

  6. DNA methylation and chromatin accessibility profiling of mouse and human fetal germ cells

    PubMed Central

    Guo, Hongshan; Hu, Boqiang; Yan, Liying; Yong, Jun; Wu, Yan; Gao, Yun; Guo, Fan; Hou, Yu; Fan, Xiaoying; Dong, Ji; Wang, Xiaoye; Zhu, Xiaohui; Yan, Jie; Wei, Yuan; Jin, Hongyan; Zhang, Wenxin; Wen, Lu; Tang, Fuchou; Qiao, Jie

    2017-01-01

    Chromatin remodeling is important for the epigenetic reprogramming of human primordial germ cells. However, the comprehensive chromatin state has not yet been analyzed for human fetal germ cells (FGCs). Here we use nucleosome occupancy and methylation sequencing method to analyze both the genome-wide chromatin accessibility and DNA methylome at a series of crucial time points during fetal germ cell development in both human and mouse. We find 116 887 and 137 557 nucleosome-depleted regions (NDRs) in human and mouse FGCs, covering a large set of germline-specific and highly dynamic regulatory genomic elements, such as enhancers. Moreover, we find that the distal NDRs are enriched specifically for binding motifs of the pluripotency and germ cell master regulators such as NANOG, SOX17, AP2γ and OCT4 in human FGCs, indicating the existence of a delicate regulatory balance between pluripotency-related genes and germ cell-specific genes in human FGCs, and the functional significance of these genes for germ cell development in vivo. Our work offers a comprehensive and high-resolution roadmap for dissecting chromatin state transition dynamics during the epigenomic reprogramming of human and mouse FGCs. PMID:27824029

  7. Germ cell transplantation as a potential biotechnological approach to fish reproduction.

    PubMed

    Lacerda, S M S N; Costa, G M J; Campos-Junior, P H A; Segatelli, T M; Yazawa, R; Takeuchi, Y; Morita, T; Yoshizaki, G; França, L R

    2013-02-01

    Although the use of germ cell transplantation has been relatively well established in mammals, the technique has only been adapted for use in fish after entering the 2000s. During the last decade, several different approaches have been developed for germ cell transplantation in fish using recipients of various ages and life stages, such as blastula-stage embryos, newly hatched larvae and sexually mature specimens. As germ cells can develop into live organisms through maturation and fertilization processes, germ cell transplantation in fish has opened up new avenues of research in reproductive biotechnology and aquaculture. For instance, the use of xenotransplantation in fish has lead to advances in the conservation of endangered species and the production of commercially valuable fish using surrogated recipients. Further, this could also facilitate the engineering of transgenic fish. However, as is the case with mammals, knowledge regarding the basic biology and physiology of germline stem cells in fish remains incomplete, imposing a considerable limitation on the application of germ cell transplantation in fish. Furthering our understanding of germline stem cells would contribute significantly to advances regarding germ cell transplantation in fish.

  8. The biology of germ cell tumors in disorders of sex development.

    PubMed

    Hersmus, Remko; van Bever, Yolande; Wolffenbuttel, Katja P; Biermann, Katharina; Cools, Martine; Looijenga, Leendert H J

    2017-02-01

    Development of a malignant germ cell tumor, i.e., germ cell cancer (GCC) in individuals with disorders of sex development (DSD) depends on a number of (epi-)genetic factors related to early gonadal- and germ cell development, possibly related to genetic susceptibility. Fetal development of germ cells is orchestrated by strict processes involving specification, migration and the development of a proper gonadal niche. In this review we will discuss the early (epi-)genetic events in normal and aberrant germ cell and gonadal development. Focus will be on the formation of the precursor lesions of GCC in individuals who have DSD. In our view, expression of the different embryonic markers in, and epigenetic profile of the precursor lesions reflects the developmental stage in which these cells are blocked in their maturation. Therefore, these are not a primary pathogenetic driving force. Progression later in life towards a full blown cancer likely depends on additional factors such as a changed endocrine environment in a susceptible individual. Genetic susceptibility is, as evidenced by the presence of specific risk genetic variants (SNPs) in patients with a testicular GCC, related to genes involved in early germ cell and gonadal development.

  9. Contrasting mechanisms of de novo copy number mutagenesis suggest the existence of different classes of environmental copy number mutagens.

    PubMed

    Conover, Hailey N; Argueso, Juan Lucas

    2016-01-01

    While gene copy number variations (CNVs) are abundant in the human genome, and often are associated with disease consequences, the mutagenic pathways and environmental exposures that cause these large structural mutations are understudied relative to conventional nucleotide substitutions in DNA. The members of the environmental mutagenesis community are currently seeking to remedy this deficiency, and there is a renewed interest in the development of mutagenicity assays to identify and characterize compounds that may induce de novo CNVs in humans. To achieve this goal, it is critically important to acknowledge that CNVs exist in two very distinct classes: nonrecurrent and recurrent CNVs. The goal of this commentary is to emphasize the deep contrasts that exist between the proposed pathways that lead to these two mutation classes. Nonrecurrent de novo CNVs originate primarily in mitotic cells through replication-dependent DNA repair pathways that involve microhomologies (<10 bp), and are detected at higher frequency in children of older fathers. In contrast, recurrent de novo CNVs are most often formed in meiotic cells through homologous recombination between nonallelic large low-copy repeats (>10,000 bp), without an associated paternal age effect. Given the biological differences between the two CNV classes, it is our belief that nonrecurrent and recurrent CN mutagens will probably differ substantially in their modes of action. Therefore, each CNV class may require their own uniquely designed assays, so that we as a field may succeed in uncovering the broadest possible spectrum of environmental CN mutagens. © 2015 Wiley Periodicals, Inc.

  10. Specification of primordial germ cells in medaka (Oryzias latipes)

    PubMed Central

    Herpin, Amaury; Rohr, Stefan; Riedel, Dietmar; Kluever, Nils; Raz, Erez; Schartl, Manfred

    2007-01-01

    Background Primordial germ cells (PGCs) give rise to gametes that are responsible for the development of a new organism in the next generation. Two modes of germ line specification have been described: the inheritance of asymmetrically-localized maternally provided cytoplasmic determinants and the induction of the PGC fate by other cell types. PGCs specification in zebrafish appears to depend on inheritance of germ plasm in which several RNA molecules such as vasa and nanos reside. Whether the specification mode of PGCs found in zebrafish is general for other fish species was brought into question upon analysis of olvas expression – the vasa homologue in another teleost, medaka (Oryzias latipes). Here, in contrast to the findings in zebrafish, the PGCs are found in a predictable position relative to a somatic structure, the embryonic shield. This finding, coupled with the fact that vasa mRNA, which is localized to the germ plasm of zebrafish but does not label a similar structure in medaka opened the possibility of fundamentally different mechanisms governing PGC specification in these two fish species. Results In this study we addressed the question concerning the mode of PGC specification in medaka using embryological experiments, analysis of RNA stability in the PGCs and electron microscopy observations. Dramatic alterations in the somatic environment, i.e. induction of a secondary axis or mesoderm formation alteration, did not affect the PGC number. Furthermore, the PGCs of medaka are capable of protecting specific RNA molecules from degradation and could therefore exhibit a specific mRNA expression pattern controlled by posttrancriptional mechanisms. Subsequent analysis of 4-cell stage medaka embryos using electron microscopy revealed germ plasm-like structures located at a region corresponding to that of zebrafish germ plasm. Conclusion Taken together, these results are consistent with the idea that in medaka the inheritance of maternally provided

  11. Endogenous DNA Damage and Risk of Testicular Germ Cell Tumors

    SciTech Connect

    Cook, M B; Sigurdson, A J; Jones, I M; Thomas, C B; Graubard, B I; Korde, L; Greene, M H; McGlynn, K A

    2008-01-18

    Testicular germ cell tumors (TGCT) are comprised of two histologic groups, seminomas and nonseminomas. We postulated that the possible divergent pathogeneses of these histologies may be partially explained by variable endogenous DNA damage. To assess our hypothesis, we conducted a case-case analysis of seminomas and nonseminomas using the alkaline comet assay to quantify single-strand DNA breaks and alkali-labile sites. The Familial Testicular Cancer study and the U.S. Radiologic Technologists cohort provided 112 TGCT cases (51 seminomas & 61 nonseminomas). A lymphoblastoid cell line was cultured for each patient and the alkaline comet assay was used to determine four parameters: tail DNA, tail length, comet distributed moment (CDM) and Olive tail moment (OTM). Odds ratios (OR) and 95% confidence intervals (95%CI) were estimated using logistic regression. Values for tail length, tail DNA, CDM and OTM were modeled as categorical variables using the 50th and 75th percentiles of the seminoma group. Tail DNA was significantly associated with nonseminoma compared to seminoma (OR{sub 50th percentile} = 3.31, 95%CI: 1.00, 10.98; OR{sub 75th percentile} = 3.71, 95%CI: 1.04, 13.20; p for trend=0.039). OTM exhibited similar, albeit statistically non-significant, risk estimates (OR{sub 50th percentile} = 2.27, 95%CI: 0.75, 6.87; OR{sub 75th percentile} = 2.40, 95%CI: 0.75, 7.71; p for trend=0.12) whereas tail length and CDM showed no association. In conclusion, the results for tail DNA and OTM indicate that endogenous DNA damage levels are higher in patients who develop nonseminoma compared with seminoma. This may partly explain the more aggressive biology and younger age-of-onset of this histologic subgroup compared with the relatively less aggressive, later-onset seminoma.

  12. Scrotal Involvement with Testicular Nonseminomatous Germ Cell Tumour

    PubMed Central

    Allen, J. A.; O'Brien, F.; Tuthill, A.; Power, D. G.

    2016-01-01

    A 37-year-old male presented with a traumatic injury to the scrotal region necessitating emergency surgery. Evacuation of a haematoma and bilateral orchidectomy were performed. A left sided nonseminomatous germ cell tumour (NSGCT), predominantly yolk sac, was identified. Microscopic margins were positive for tumour. Initial tumour markers revealed an AFP of 22,854 ng/mL, HCG of <1 mIU/mL, and LDH of 463 IU/L. Eight weeks after surgery, AFP levels remained elevated at 11,646 ng/mL. Computed tomography (CT) scanning demonstrated left inguinal adenopathy, 1.5 cm in max dimension. On review, extensive evidence of scrotal involvement was evident. His tumour was staged as stage IIIC, poor risk NSGCT. He was treated with 4 cycles of bleomycin, etoposide, and cisplatin over a 12-week period. His tumour markers normalised after 3 cycles. There was a marked improvement noted clinically. Follow-up CT scans demonstrated complete resolution of his tumour. He later underwent further surgery to remove a small amount of remaining spermatic cord. Histology revealed no malignant tissue. The patient suffered many complications including testosterone deficiency, osteopenia, infertility, and psychological distress. Discussion. A small proportion of testicular cancer may present in an atypical manner. The scrotum and testicle have markedly different embryonic origins and therefore a distinct anatomic separation. As a result the scrotum is not a typical site of spread of testicular cancer. Case reports have been described that were managed in a similar manner with good outcomes. Therefore, even with significant scrotal involvement, if timely and appropriate treatment is administered, complete resolution of the tumour may be achieved. PMID:27830100

  13. Primordial Germ Cell Specification from Embryonic Stem Cells

    PubMed Central

    Liu, Haisong; Zhang, Donghui; Yang, Weifeng; Deng, Hongkui

    2008-01-01

    Background Primordial germ cell (PGC) specification is the first crucial step in germ line development. However, owing to significant challenges regarding the in vivo system, such as the complex cellular environment and potential problems with embryo manipulation, it is desirable to generate embryonic stem (ES) cells that are capable of overcoming these aforementioned limitations in order to provide a potential in vitro model to recapitulate the developmental processes in vivo. Methodology and Principal Findings Here, we studied the detailed process of PGC specification from stella-GFP ES cells. We first observed the heterogeneous expression of stella in ES cells. However, neither Stella-positive ES cells nor Stella-negative ES cells shared a similar gene expression pattern with either PGCs or PGC precursors. Second, we derived PGCs from ES cells using two differentiation methods, namely the attachment culture technique and the embryoid body (EB) method. Compared with PGCs derived via the attachment culture technique, PGCs derived via the EB method that had undergone the sequential erasure of Peg3 followed by Igf2r resulted in a cell line in which the expression dynamics of T, Fgf8 and Sox17, in addition to the expression of the epiblast markers, were more similar to the in vivo expression, thus demonstrating that the process of PGC derivation was more faithfully recapitulated using the EB method. Furthermore, we developed an in vitro model of PGC specification in a completely chemically defined medium (CDM) that indicated that BMP4 and Wnt3a promoted PGC derivation, whereas BMP8b and activinA had no observable effect on PGC derivation. Conclusions and Significance The in vitro model we have established can recapitulate the developmental processes in vivo and provides new insights into the mechanism of PGC specification. PMID:19107197

  14. Primordial germ cell specification from embryonic stem cells.

    PubMed

    Wei, Wei; Qing, Tingting; Ye, Xin; Liu, Haisong; Zhang, Donghui; Yang, Weifeng; Deng, Hongkui

    2008-01-01

    Primordial germ cell (PGC) specification is the first crucial step in germ line development. However, owing to significant challenges regarding the in vivo system, such as the complex cellular environment and potential problems with embryo manipulation, it is desirable to generate embryonic stem (ES) cells that are capable of overcoming these aforementioned limitations in order to provide a potential in vitro model to recapitulate the developmental processes in vivo. Here, we studied the detailed process of PGC specification from stella-GFP ES cells. We first observed the heterogeneous expression of stella in ES cells. However, neither Stella-positive ES cells nor Stella-negative ES cells shared a similar gene expression pattern with either PGCs or PGC precursors. Second, we derived PGCs from ES cells using two differentiation methods, namely the attachment culture technique and the embryoid body (EB) method. Compared with PGCs derived via the attachment culture technique, PGCs derived via the EB method that had undergone the sequential erasure of Peg3 followed by Igf2r resulted in a cell line in which the expression dynamics of T, Fgf8 and Sox17, in addition to the expression of the epiblast markers, were more similar to the in vivo expression, thus demonstrating that the process of PGC derivation was more faithfully recapitulated using the EB method. Furthermore, we developed an in vitro model of PGC specification in a completely chemically defined medium (CDM) that indicated that BMP4 and Wnt3a promoted PGC derivation, whereas BMP8b and activinA had no observable effect on PGC derivation. The in vitro model we have established can recapitulate the developmental processes in vivo and provides new insights into the mechanism of PGC specification.

  15. Risk estimation based on germ-cell mutations in animals.

    PubMed

    Favor, J

    1989-01-01

    The set of mouse germ cell mutation rate results following spermatogonial exposure to high dose rate irradiation have been presented as the most relevant experimental results upon which to extrapolate the expected genetic risk of offspring of the survivors of the Hiroshima and Nagasaki atomic bombings. Results include mutation rates to recessive specific-locus, dominant cataract, protein-charge, and enzyme-activity alleles. The mutability as determined by the various genetic end points differed: the mutation rates to recessive specific-locus alleles and enzyme-activity alleles were similar and greater than the mutation rates to dominant cataract and protein-charge alleles. It is argued that the type of mutation event scored by a particular test will determine the mutability of the genetic end point screened. When the loss of functional gene product can be scored in a particular mutation test, as in the recessive specific-locus and enzyme-activity tests, a wide spectrum of DNA alterations may result in a loss of and a higher mutation rate is observed. When an altered gene product is scored, as in the dominant cataract and protein-charge tests, a narrower spectrum of DNA alterations is screened and a lower mutation rate is observed. The radiation doubling dose, defined as the dose that induces as many mutations as occur spontaneously per generation, was shown to be four times higher in the dominant cataract test than the specific-locus test. These results indicate that to extrapolate to genetic risks in humans using the doubling-dose method, the extrapolation must be based on experimental mutation rate results for the same genetic end point.(ABSTRACT TRUNCATED AT 250 WORDS)

  16. The PUF binding landscape in metazoan germ cells

    PubMed Central

    Prasad, Aman; Porter, Douglas F.; Kroll-Conner, Peggy L.; Mohanty, Ipsita; Ryan, Anne R.; Crittenden, Sarah L.; Wickens, Marvin; Kimble, Judith

    2016-01-01

    PUF (Pumilio/FBF) proteins are RNA-binding proteins and conserved stem cell regulators. The Caenorhabditis elegans PUF proteins FBF-1 and FBF-2 (collectively FBF) regulate mRNAs in germ cells. Without FBF, adult germlines lose all stem cells. A major gap in our understanding of PUF proteins, including FBF, is a global view of their binding sites in their native context (i.e., their “binding landscape”). To understand the interactions underlying FBF function, we used iCLIP (individual-nucleotide resolution UV crosslinking and immunoprecipitation) to determine binding landscapes of C. elegans FBF-1 and FBF-2 in the germline tissue of intact animals. Multiple iCLIP peak-calling methods were compared to maximize identification of both established FBF binding sites and positive control target mRNAs in our iCLIP data. We discovered that FBF-1 and FBF-2 bind to RNAs through canonical as well as alternate motifs. We also analyzed crosslinking-induced mutations to map binding sites precisely and to identify key nucleotides that may be critical for FBF–RNA interactions. FBF-1 and FBF-2 can bind sites in the 5′UTR, coding region, or 3′UTR, but have a strong bias for the 3′ end of transcripts. FBF-1 and FBF-2 have strongly overlapping target profiles, including mRNAs and noncoding RNAs. From a statistically robust list of 1404 common FBF targets, 847 were previously unknown, 154 were related to cell cycle regulation, three were lincRNAs, and 335 were shared with the human PUF protein PUM2. PMID:27165521

  17. Novel somatic and germline mutations in intracranial germ cell tumors

    PubMed Central

    Wang, Linghua; Yamaguchi, Shigeru; Burstein, Matthew D.; Terashima, Keita; Chang, Kyle; Ng, Ho-Keung; Nakamura, Hideo; He, Zongxiao; Doddapaneni, Harshavardhan; Lewis, Lora; Wang, Mark; Suzuki, Tomonari; Nishikawa, Ryo; Natsume, Atsushi; Terasaka, Shunsuke; Dauser, Robert; Whitehead, William; Adekunle, Adesina; Sun, Jiayi; Qiao, Yi; Marth, Gábor; Muzny, Donna M.; Gibbs, Richard A.; Leal, Suzanne M.; Wheeler, David A.; Lau, Ching C.

    2015-01-01

    Intracranial germ cell tumors (IGCTs) are a group of rare heterogeneous brain tumors which are clinically and histologically similar to the more common gonadal GCTs. IGCTs show great variation in their geographic and gender distribution, histological composition and treatment outcomes. The incidence of IGCTs is historically 5–8 fold greater in Japan and other East Asian countries than in Western countries1 with peak incidence near the time of puberty2. About half of the tumors are located in the pineal region. The male-to-female incidence ratio is approximately 3–4:1 overall but even higher for tumors located in the pineal region3. Due to the scarcity of tumor specimens available for research, little is currently known about this rare disease. Here we report the analysis of 62 cases by next generation sequencing, SNP array and expression array. We find the KIT/RAS signaling pathway frequently mutated in over 50% of IGCTs including novel recurrent somatic mutations in KIT, its downstream mediators KRAS and NRAS, and its negative regulator CBL. Novel somatic alterations in the AKT/mTOR pathway included copy number gain of the AKT1 locus at 14q32.33 in 19% of patients, with corresponding upregulation of AKT1 expression. We identified loss-of-function mutations in BCORL1, a transcriptional corepressor and tumor suppressor. We report significant enrichment of novel and rare germline variants in JMJD1C, a histone demethylase and coactivator of the androgen receptor, among Japanese IGCT patients. This study establishes a molecular foundation for understanding the biology of IGCTs and suggests potentially promising therapeutic strategies focusing on the inhibition of KIT/RAS activation and the AKT1/mTOR pathway. PMID:24896186

  18. Time series analysis supporting the hypothesis that enhanced cosmic radiation during germ cell formation can increase breast cancer mortality in germ cell cohorts

    NASA Astrophysics Data System (ADS)

    Juckett, D. A.; Rosenberg, Barnett

    Techniques from cancer epidemiology and time series analysis were used to explore the hypothesis that cosmic radiation can induce germ cell changes leading to increases in future breast cancer mortality. A birth cohort time series for female breast cancer mortality was obtained using a model-independent, age-period-cohort analysis on age-specific mortality data for 1940-1990. The birth cohort series contained several oscillatory components, which were isolated and compared to the corresponding frequency components of a cosmic ray surrogate time series - Greenland ice-core 10Be concentrations. A technique, referred to as component wave-train alignment, was used to show that the breast cancer and cosmic ray oscillations were phase-locked approx. 25 years before the time of birth. This is consistent with the time of germ cell formation, which occurs during the fetal development stage of the preceding generation. Evidence is presented that the observable oscillations in the birth cohort series were residues of oscillations of much larger amplitude in the germ cell cohort, which were attenuated by the effect of the broad maternal age distribution. It is predicted that a minimum of 50% of breast cancer risk is associated with germ cell damage by cosmic radiation (priming event), which leads to the development of individuals with a higher risk of breast cancer. It is proposed that the priming event, by preceding other steps of carcinogenesis, works in concert with risk factor exposure during life. The priming event is consistent with epigenetic changes such as imprinting.

  19. Sexual dimorphic expression of dnd in germ cells during sex reversal and its requirement for primordial germ cell survival in protogynous hermaphroditic grouper.

    PubMed

    Sun, Zhi-Hui; Zhou, Li; Li, Zhi; Liu, Xiao-Chun; Li, Shui-Sheng; Wang, Yang; Gui, Jian-Fang

    2017-06-01

    Dead end (dnd), vertebrate-specific germ cell marker, had been demonstrated to be essential for primordial germ cell (PGC) migration and survival, and the link between PGC number and sex change had been revealed in some teleost species, but little is known about dnd in hermaphroditic vertebrates. In the present study, a protogynous hermaphroditic orange-spotted grouper (Epinephelus coioides) dnd homologue (Ecdnd) was identified and characterized. Quantitative real-time PCR and in situ hybridization analysis revealed a dynamic and sexually dimorphic expression pattern in PGCs and germ cells of gonads. During sex changing, the Ecdnd transcript sharply increased in early transitional gonad, reached the highest level at late transitional gonad stage, and decreased after testis maturation. Visualization of zebrafish PGCs by injecting with RFP-Ecdnd-3'UTR RNA and GFP-zfnanos3-3'UTR RNA confirmed importance of Ecdnd 3'UTR for the PGC distribution. In addition, knockdown of EcDnd by using antisense morpholinos (MO) caused the ablation of PGCs in orange-spotted grouper. Therefore, the current data indicate that Ecdnd is essential for PGCs survival and may serve as a useful germ cell marker during gametogenesis in hermaphroditic grouper. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Humanin protects against chemotherapy-induced stage-specific male germ cell apoptosis in rats*

    PubMed Central

    Lue, Y.; Doumit, T.; Jia, Y.; Atienza, V.; Liu, P. Y.; Swerdloff, R. S.; Wang, C.

    2016-01-01

    SUMMARY Humanin (HN) has cytoprotective action on male germ cells after testicular stress induced by heat and hormonal deprivation. To examine whether HN has protective effects on chemotherapy-induced male germ cell apoptosis, we treated four groups of adult rats with (i) vehicle (control), (ii) HN, (iii) cyclophosphamide (CP); or (iv) HN+CP. To investigate whether the protective effects of HN on germ cells require the presence of Leydig cells, another four groups of rats were pre-treated with ethane dimethanesulfonate (EDS), a Leydig cell toxicant, to eliminate Leydig cells. After 3 days, when Leydig cells were depleted by EDS, we administered: (i) vehicle, (ii) HN, (iii) CP; or (iv) HN+CP to rats. All rats were killed 12 h after the injection of HN and/or CP. Germ cell apoptosis was detected by TUNEL assay and quantified by numerical count. Compared with control and HN (alone), CP significantly increased germ cell apoptosis; HN +CP significantly reduced CP-induced apoptosis at early (I–VI) and late stages (IX–XIV) but not at middle stages (VII–VIII) of the seminiferous epithelial cycle. Pre-treatment with EDS markedly suppressed serum and intratesticular testosterone (T) levels, and significantly increased germ cell apoptosis at the middle (VII–VIII) stages. CP did not further increase germ cell apoptosis in the EDS-pre-treated rats. HN significantly attenuated germ cell apoptosis at the middle stages in EDS pre-treated rats. To investigate whether HN has any direct effects on Leydig cell function, adult Leydig cells were isolated and treated with ketoconazole (KTZ) to block testosterone synthesis. HN was not effective in preventing the reduction of T production by KTZ in vitro. We conclude that HN decreases CP and/or EDS-induced germ cell apoptosis in a stage-specific fashion. HN acts directly on germ cells to protect against EDS-induced apoptosis in the absence of Leydig cells and intratesticular testosterone levels are very low. PMID:25891800

  1. Tumor loci and their interactions on mouse chromosome 19 that contribute to testicular germ cell tumors

    PubMed Central

    2014-01-01

    Background Complex genetic factors underlie testicular germ cell tumor (TGCT) development. One experimental approach to dissect the genetics of TGCT predisposition is to use chromosome substitution strains, such as the 129.MOLF-Chr 19 (M19). M19 carries chromosome (Chr) 19 from the MOLF whereas all other chromosomes are from the 129 strain. 71% of M19 males develop TGCTs in contrast to 5% in 129 strain. To identify and map tumor loci from M19 we generated congenic strains harboring MOLF chromosome 19 segments on 129 strain background and monitored their TGCT incidence. Results We found 3 congenic strains that each harbored tumor promoting loci that had high (14%-32%) whereas 2 other congenics had low (4%) TGCT incidences. To determine how multiple loci influence TGCT development, we created double and triple congenic strains. We found additive interactions were predominant when 2 loci were combined in double congenic strains. Surprisingly, we found an example where 2 loci, both which do not contribute significantly to TGCT, when combined in a double congenic strain resulted in greater than expected TGCT incidence (positive interaction). In an opposite example, when 2 loci with high TGCT incidences were combined, males of the double congenic showed lower than expected TGCT incidence (negative interaction). For the triple congenic strain, depending on the analysis, the overall TGCT incidence could be additive or could also be due to a positive interaction of one region with others. Additionally, we identified loci that promote bilateral tumors or testicular abnormalities. Conclusions The congenic strains each with their characteristic TGCT incidences, laterality of tumors and incidence of testicular abnormalities, are useful for identification of TGCT susceptibility modifier genes that map to Chr 19 and also for studies on the genetic and environmental causes of TGCT development. TGCTs are a consequence of aberrant germ cell and testis development. By defining

  2. The effects of humanin and its analogues on male germ cell apoptosis induced by chemotherapeutic drugs.

    PubMed

    Jia, Yue; Ohanyan, Aikoui; Lue, Yan-He; Swerdloff, Ronald S; Liu, Peter Y; Cohen, Pinchas; Wang, Christina

    2015-04-01

    Human (HN) prevents stress-induced apoptosis in many cells/tissues. In this study we showed that HN ameliorated chemotherapy [cyclophosphamide (CP) and Doxorubicin (DOX)]-induced male germ cell apoptosis both ex vivo in seminiferous tubule cultures and in vivo in the testis. HN acts by several putative mechanisms via binding to: an IL-12 like trimeric membrane receptor; BAX; or insulin-like growth factor binding protein-3 (IGFBP-3, a proapoptotic factor). To understand the mechanisms of HN on male germ cell apoptosis, we studied five HN analogues including: HNG (HN-S14G, a potent agonist), HNG-F6A (no binding to IGFBP-3), HN-S7A (no self-dimerization), HN-C8P (no binding to BAX), and HN-L12A (a HN antagonist) on CP-induced male germ cell apoptosis in mice. CP-induced germ cell apoptosis was inhibited by HN, HNG, HNG-F6A, HN-S7A, and HN-C8P (less effective); but not by HN-L12A. HN-L12A, but not HN-S7A or HN-C8P, blocked the protective effect of HN against CP-induced male germ cell apoptosis. HN, HN-S7A, and HN-C8P restored CP-suppressed STAT3 phosphorylation. These results suggest that HN: (1) decreases DOX (ex vivo) and CP (in vivo) induced male germ cell apoptosis; (2) action is mediated by the membrane receptor/STAT3 with minor contribution by BAX-binding pathway; (3) self-dimerization or binding to IGFBP-3 may not be involved in HN's effect in testis. HN is an important molecule in the regulation of germ cell homeostasis after injury and agonistic analogues may be developed for treating male infertility or protection against chemotherapy side effects.

  3. Germ Cell-Specific Excision of loxP-Flanked Transgenes in Rainbow Trout Oncorhynchus mykiss.

    PubMed

    Katayama, Naoto; Kume, Sachi; Hattori-Ihara, Shoko; Sadaie, Sakiko; Hayashi, Makoto; Yoshizaki, Goro

    2016-04-01

    Cre/loxP-mediated DNA excision in germ cell lineages could contribute substantially to the study of germ cell biology in salmonids, which are emerging as a model species in this field. However, a cell type-specific Cre/loxPsystem has not been successfully developed for any salmonid species. Therefore, we examined the feasibility of Cre/loxP-mediated, germ cell-specific gene excision and transgene activation in rainbow trout. Double-transgenic (wTg) progeny were obtained by mating a transgenic male carryingcrewith a transgenic female carrying thehsc-LRLGgene;crewas driven by rainbow troutvasaregulatory regions and thehsc-LRLGgene was made up of the rainbow troutheat-shock-cognate71promoter, theDsRedgene flanked by twoloxPsites, and theEgfpgene. PCR analysis, fluorescence imaging, and histological analysis revealed that excision of theloxP-flanked sequence and activation ofEgfpoccurred only in germ cells of wTg fish. However, progeny tests revealed that the excision efficiency ofloxP-flanked sequence in germ cells was low (≤3.27%). In contrast, the other wTg fish derived from two differentcre-transgenic males frequently excised theloxP-flanked sequence in germ cells (≤89.25%). Thus, we showed for the first time successful germ cell-specific transgene manipulation via the Cre/loxPsystem in rainbow trout. We anticipate that this technology will be suitable for studies of cell function through cell targeting, cell-linage tracing, and generating cell type-specific conditional gene knockouts and separately for developing sterile rainbow trout in aquaculture. © 2016 by the Society for the Study of Reproduction, Inc.

  4. Light and electron microscopic analyses of Vasa expression in adult germ cells of the fish medaka.

    PubMed

    Yuan, Yongming; Li, Mingyou; Hong, Yunhan

    2014-07-15

    Germ cells of diverse animal species have a unique membrane-less organelle called germ plasm (GP). GP is usually associated with mitochondria and contains RNA binding proteins and mRNAs of germ genes such as vasa. GP has been described as the mitochondrial cloud (MC), intermitochondrial cement (IC) and chromatoid body (CB). The mechanism underlying varying GP structures has remained incompletely understood. Here we report the analysis of GP through light and electron microscopy by using Vasa as a marker in adult male germ cells of the fish medaka (Oryzias latipes). Immunofluorescence light microscopy revealed germ cell-specific Vasa expression. Vasa is the most abundant in mitotic germ cells (oogonia and spermatogonia) and reduced in meiotic germ cells. Vasa in round spermatids exist as a spherical structure reminiscent of CB. Nanogold immunoelectron microscopy revealed subcellular Vasa redistribution in male germ cells. Vasa in spermatogonia concentrates in small areas of the cytoplasm and is surrounded by mitochondria, which is reminiscent of MC. Vasa is intermixed with mitochondria to form IC in primary spermatocytes, appears as the free cement (FC) via separation from mitochondria in secondary spermatocyte and becomes condensed in CB at the caudal pole of round spermatids. During spermatid morphogenesis, Vasa redistributes and forms a second CB that is a ring-like structure surrounding the dense fiber of the flagellum in the midpiece. These structures resemble those described for GP in various species. Thus, Vasa identifies GP and adopts varying structures via dynamic reorganization at different stages of germ cell development. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Male Differentiation of Germ Cells Induced by Embryonic Age-Specific Sertoli Cells in Mice1

    PubMed Central

    Ohta, Kohei; Yamamoto, Miyuki; Lin, Yanling; Hogg, Nathanael; Akiyama, Haruhiko; Behringer, Richard R.; Yamazaki, Yukiko

    2012-01-01

    ABSTRACT Retinoic acid (RA) is a meiosis-inducing factor. Primordial germ cells (PGCs) in the developing ovary are exposed to RA, resulting in entry into meiosis. In contrast, PGCs in the developing testis enter mitotic arrest to differentiate into prospermatogonia. Sertoli cells express CYP26B1, an RA-metabolizing enzyme, providing a simple explanation for why XY PGCs do not initiate meios/is. However, regulation of entry into mitotic arrest is likely more complex. To investigate the mechanisms that regulate male germ cell differentiation, we cultured XX and XY germ cells at 11.5 and 12.5 days postcoitus (dpc) with an RA receptor inhibitor. Expression of Stra8, a meiosis initiation gene, was suppressed in all groups. However, expression of Dnmt3l, a male-specific gene, during embryogenesis was elevated but only in 12.5-dpc XY germ cells. This suggests that inhibiting RA signaling is not sufficient for male germ cell differentiation but that the male gonadal environment also contributes to this pathway. To define the influence of Sertoli cells on male germ cell differentiation, Sertoli cells at 12.5, 15.5, and 18.5 dpc were aggregated with 11.5 dpc PGCs, respectively. After culture, PGCs aggregated with 12.5 dpc Sertoli cells increased Nanos2 and Dnmt3l expression. Furthermore, these PGCs established male-specific methylation imprints of the H19 differentially methylated domains. In contrast, PGCs aggregated with Sertoli cells at late embryonic ages did not commit to the male pathway. These findings suggest that male germ cell differentiation is induced both by inhibition of RA signaling and by molecule(s) production by embryonic age-specific Sertoli cells. PMID:22262692

  6. BMP4 can generate primordial germ cells from bone-marrow-derived pluripotent stem cells.

    PubMed

    Shirazi, Reza; Zarnani, Amir Hassan; Soleimani, Masoud; Abdolvahabi, Mir Abbas; Nayernia, Karim; Ragerdi Kashani, Iraj

    2012-01-01

    Evidence of germ cell derivation from embryonic and somatic stem cells provides an in vitro model for the study of germ cell development, associated epigenetic modification and mammalian gametogenesis. More importantly, in vitro derived gametes also represent a potential strategy for treating infertility. In mammals, male and female gametes, oocyte and sperm, are derived from a specific cell population, PGCs (primordial germ cells) that segregate early in embryogenesis. We have isolated pluripotent SSEA-1+ (stage-specific embryonic antigen-1+) cells from mice bone marrow using a MACS (magnetic-activated cell sorting) system. SSEA-1+ cells were directly separated from the suspension of MMCs (murine mononuclear cells) harvested from bone marrow of 2-4-week-old mice. Flow-cytometry assay immediately after sorting and culturing under undifferentiated condition showed 55±7% and 87±4% purity respectively. RT-PCR (reverse transcription-PCR) analysis after differentiation of SSEA-1+ cells into derivations of three germ layers showed the pluripotency properties of isolated cells. SSEA-1+ cells were induced to differentiate along germ cell lineage by adding BMP4 (bone morphogenic factor-4) to the medium. Regarding the expression of germ cell markers (PGCs, male and female germ cell lineage), it was found that adding exogenous BMP4 to culture medium could differentiate pluripotent SSEA-1+ cells isolated from an adult tissue into gamete precursors, PGCs. Differentiated cells expressed specific molecular markers of PGCs, including Oct4, fragilis, Stella and Mvh (mouse vasa homologue). Therefore BMP4 is insufficient to induce SSEA-1+ cells derived from PGCs to develop further into late germ cells in vitro.

  7. The Effects of Humanin and Its Analogues on Male Germ Cell Apoptosis Induced by Chemotherapeutic Drugs

    PubMed Central

    Jia, Yue; Ohanyan, Aikoui; Lue, Yan-He; Swerdloff, Ronald S.; Liu, Peter Y.; Cohen, Pinchas; Wang, Christina

    2015-01-01

    Human (HN) prevents stress-induced apoptosis in many cells/tissues. In this study we showed that HN ameliorated chemotherapy (Cyclophosphamide, CP and Doxorubicin, DOX)-induced male germ cell apoptosis both ex vivo in seminiferous tubule cultures and in vivo in the testis. HN acts by several putative mechanisms via binding to: an IL-12 like trimeric membrane receptor; BAX; or Insulin-Like Growth Factor Binding Protein-3 (IGFBP-3, a proapoptotic factor). To understand the mechanisms of HN on male germ cell apoptosis, we studied five HN analogues including: HNG (HN-S14G, a potent agonist), HNG-F6A (no binding to IGFBP-3), HN-S7A (no self-dimerization), HN-C8P (no binding to BAX), and HN-L12A (a HN antagonist) on CP-induced male germ cell apoptosis in mice. CP-induced germ cell apoptosis was inhibited by HN, HNG, HNG-F6A, HN-S7A, and HN-C8P (less effective); but not by HN-L12A. HN-L12A, but not HN-S7A or HN-C8P, blocked the protective effect of HN against CP-induced male germ cell apoptosis. HN, HN-S7A, and HN-C8P restored CP-suppressed STAT3 phosphorylation. These results suggest that HN: 1) decreases DOX (ex vivo) and CP (in vivo) induced male germ cell apoptosis; 2) action is mediated by the membrane receptor/STAT3 with minor contribution by BAX-binding pathway; 3) self-dimerization or binding to IGFBP-3 may not be involved in HN’s effect in testis. HN is an important molecule in the regulation of germ cell homeostasis after injury and agonistic analogues may be developed for treating male infertility or protection against chemotherapy side effects. PMID:25666707

  8. Regulatory elements and transcriptional control of chicken vasa homologue (CVH) promoter in chicken primordial germ cells.

    PubMed

    Jin, So Dam; Lee, Bo Ram; Hwang, Young Sun; Lee, Hong Jo; Rim, Jong Seop; Han, Jae Yong

    2017-01-01

    Primordial germ cells (PGCs), the precursors of functional gametes, have distinct characteristics and exhibit several unique molecular mechanisms to maintain pluripotency and germness in comparison to somatic cells. They express germ cell-specific RNA binding proteins (RBPs) by modulating tissue-specific cis- and trans-regulatory elements. Studies on gene structures of chicken vasa homologue (CVH), a chicken RNA binding protein, involved in temporal and spatial regulation are thus important not only for understanding the molecular mechanisms that regulate germ cell fate, but also for practical applications of primordial germ cells. However, very limited studies are available on regulatory elements that control germ cell-specific expression in chicken. Therefore, we investigated the intricate regulatory mechanism(s) that governs transcriptional control of CVH. We constructed green fluorescence protein (GFP) or luciferase reporter vectors containing the various 5' flanking regions of CVH gene. From the 5' deletion and fragmented assays in chicken PGCs, we have identified a CVH promoter that locates at -316 to +275 base pair fragment with the highest luciferase activity. Additionally, we confirmed for the first time that the 5' untranslated region (UTR) containing intron 1 is required for promoter activity of the CVH gene in chicken PGCs. Furthermore, using a transcription factor binding prediction, transcriptome analysis and siRNA-mediated knockdown, we have identified that a set of transcription factors play a role in the PGC-specific CVH gene expression. These results demonstrate that cis-elements and transcription factors localizing in the 5' flanking region including the 5' UTR and an intron are important for transcriptional regulation of the CVH gene in chicken PGCs. Finally, this information will contribute to research studies in areas of reproductive biology, constructing of germ cell-specific synthetic promoter for tracing primordial germ cells as well as

  9. Germ Cell Cancer and Multiple Relapses: Toxicity and Survival.

    PubMed

    Lauritsen, Jakob; Kier, Maria G G; Mortensen, Mette S; Bandak, Mikkel; Gupta, Ramneek; Holm, Niels V; Agerbaek, Mads; Daugaard, Gedske

    2015-10-01

    A small number of patients with germ cell cancer (GCC) receive more than one line of treatment for disseminated disease. The purpose of this study was to evaluate late toxicity and survival in an unselected cohort of patients who experienced relapse after receiving first-line treatment for disseminated disease. From the Danish Testicular Cancer database, we identified all patients who received more than one line of treatment for disseminated disease. Information about late toxicity and mortality was obtained by means of linkage to national registers. Prognostic factors for relapse and death were identified and compared with the International Prognostic Factors Study Group (IPFSG) classification. In total, 268 patients received more than one line of treatment for disseminated GCC. Approximately half of patients (n=136) died as a result of GCC. The 132 remaining patients, compared with patients treated with only orchiectomy, had an increased risk for a second cancer (hazard ratio [HR], 3.2; 95% CI, 1.9 to 5.5), major cardiovascular disease (HR, 1.9; 95% CI, 1.0 to 3.3), pulmonary disease (HR, 2.0; 95% CI, 1.0 to 3.8), GI disease (HR, 7.3; 95% CI, 3.6 to 14.8), renal impairment (HR, 8.3; 95% CI, 3.0 to 23.2), neurologic disorders (HR, 6.3; 95% CI, 3.1 to 12.6), and death as a result of other causes (HR, 2.6; 95% CI, 1.6 to 4.2). In large part, the IPFSG classification was confirmed in our population; however, we could not confirm the primary site and the level of human chorionic gonadotropin as independent factors. We identified increasing age as a possible new prognostic factor for treatment failure after second-line treatment (HR, 1.2 per 10 years; 95% CI, 1.2 to 15). Patients with GCC who survive after more than one line of treatment for disseminated disease have a highly increased risk of late toxicity and death as a result of causes other than GCC. Therefore, they should be candidates for life-long follow-up. The IPFSG classification was confirmed in this

  10. DNA oxidation: investigating its key role in environmental mutagenesis with the comet assay.

    PubMed

    Azqueta, Amaya; Shaposhnikov, Sergey; Collins, Andrew R

    2009-03-31

    DNA oxidation, which can have potentially serious mutagenic consequences, commonly accompanies exposure to environmental mutagens. Oxidised bases can be measured chromatographically, but spurious oxidation during sample preparation leads to serious over-estimation of low levels of damage. A more reliable approach is to employ endonucleases specific for oxidised bases, to introduce breaks in cellular DNA that are then most commonly measured using the comet assay (alkaline single cell gel electrophoresis). The two enzymes in general use are formamidopyrimidine DNA glycosylase, which detects primarily 8-oxo-7,8-dihydroguanine (8-oxoGua), and endonuclease III which recognises oxidised pyrimidines. We give a brief account of the recommended experimental procedures, and then describe applications in various areas of environmental research. Cultured cell lines or white blood cells have been exposed to a range of environmental mutagens, including natural products, industrial chemicals, radiation and nanoparticles. In vivo exposure of animals and humans to pollutants is more challenging but can give particularly valuable information in relation to real life exposure. Possibly the most useful application is in biomonitoring of human population groups suffering actual exposure to environmental or occupational mutagens. Finally, the potential use of this technique to monitor effects of contaminants in the natural environment has yet to be fully exploited.

  11. Perinatal programming of adult rat germ cell death after exposure to xenoestrogens: role of microRNA miR-29 family in the down-regulation of DNA methyltransferases and Mcl-1.

    PubMed

    Meunier, Léo; Siddeek, Bénazir; Vega, Aurélie; Lakhdari, Nadjem; Inoubli, Lilia; Bellon, Rachel Paul; Lemaire, Géraldine; Mauduit, Claire; Benahmed, Mohamed

    2012-04-01

    Different studies have pointed out that developmental exposure to environmental endocrine disruptors can induce long-term testicular germ cell death probably through epigenetic mechanisms. By using a model of early neonatal post-natal day (PND) 1 to 5 exposure of male rats to a xenoestrogen, estradiol benzoate (EB), we investigated the role of microRNA and DNA methyltransferases (DNMT) on the developmental effects of EB on the adult germ cell death process. Neonatal exposure to EB induced adult germ cell apoptosis together with a dose-dependent increase in miR-29a, miR-29b, and miR-29c expression. Increased miR-29 expression resulted in a decrease in DNMT1, DNMT3a, and DNMT3b and antiapoptotic myeloid cell leukemia sequence 1 (Mcl-1) protein levels as shown in 1) germ cells of adult rats exposed neonatally to EB and 2) in spermatogonial GC-1 transfected with miR-29. The DNMT decrease was associated with a concomitant increase in transcript levels of DNA methylation target genes, such as L1td1-1 ORF1 and ORF2, Cdkn2a, and Gstp1, in correlation with their pattern of methylation. Finally, GC-1 cell lines transfection with miR-29a, miR-29b, or miR-29c undergo apoptosis evidenced by Annexin-V expression. Together, the increased miR-29 with a subsequent reduction in DNMT and Mcl-1 protein levels may represent a basis of explanation for the adult expression of the germ cell apoptosis phenotype. These observations suggest that the increased expression of the "apoptomir" miR-29 family represents the upstream mechanism identified until now that is involved in adult germ cell apoptosis induced by a neonatal hormonal disruption.

  12. A comparison of enzyme activity mutation frequencies in germ cells of mice (Mus musculus) and golden hamsters (Mesocricetus auratus) after exposure to 2 + 2 Gy gamma-irradiation.

    PubMed

    Pretsch, W; Neuhäuser-Klaus, A; Favor, J

    2000-01-01

    The radiation-induced germ cell mutation rate has been investigated in two species of mammals. Mice and golden hamsters of both sexes were exposed to 2 + 2 Gy gamma-irradiation with a 24 h fractionation interval and mated to untreated partners. In mice, specific locus mutations were examined as positive controls and the obtained mutation rates (per locus and gamete x10(-5)) were 51.4, 10.1, 13.6 and 17.4 for irradiated post-spermatogonia, spermatogonia and 1-7 and >7 days post-treatment oocytes, respectively. Offspring of mice and golden hamsters were screened for activity alterations of 10 erythrocyte enzymes coded by at least 14 loci. The observed mutation rates per locus per gamete x10(-5) for treated post-spermatogonial stages, spermatogonia and oocytes 1-7 and >7 days post-treatment were 6.5, 1.5, 8.8 and 7.0, respectively, for mice and 16.7, 0, 7.6 and 0, respectively, for golden hamsters. There is a significant difference for mutation rates in mouse oocytes 1-7 days post-treatment compared with the control. No differences in the frequencies of mutations in the various germ cell stages could be observed between mice and golden hamsters. A critical assumption for the extrapolation of experimental mutagenesis studies to humans is that no species effects exist in sensitivity to mutation induction by irradiation. Our results do not contradict this assumption.

  13. [Testicular cancer - a matter of geography? Epidemiology and etiopathogenesis of germ cell tumors].

    PubMed

    Mikuz, G

    2014-05-01

    More than 90 % of testicular tumors are germ cell tumors. There is no doubt that ethnicity is one of the single overriding etiological factors in the development of these tumors. White males living in western industrialized countries, particularly in northern Europe show the highest incidence rates, whereas black males in Africa show the lowest. These differences are the result of interaction of genetic factors and exogenous noxious agents. Some of these agents are chemical substances with an estrogen-like effect. Many exogenous substances have been blamed for causing testicular cancer, but clear epidemiological evidence is lacking for most cases. Some well-established risk factors prevail, such as cryptorchidism, familial association, gonadal dysgenesis (intersex) and germ cell tumor in the contralateral testis. In terms of importance, overalimentation appears to outweigh occupation. The development of germ cell tumors is assumed to have an intrauterine origin through defect gonocytes which evolve into atypical germ cells of unclassified intratubular germ cell neoplasms. The trigger event is, however, the appearance of isochromosome 12p, which makes these cells aggressive and results in overt invasive testicular cancer.

  14. Retinoic acid derived from the fetal ovary initiates meiosis in mouse germ cells.

    PubMed

    Mu, Xinyi; Wen, Jing; Guo, Meng; Wang, Jianwei; Li, Ge; Wang, Zhengpin; Wang, Yijing; Teng, Zhen; Cui, Yan; Xia, Guoliang

    2013-03-01

    Meiotic initiation of germ cells at 13.5 dpc (days post-coitus) indicates female sex determination in mice. Recent studies reveal that mesonephroi-derived retinoic acid (RA) is the key signal for induction of meiosis. However, whether the mesonephroi is dispensable for meiosis is unclear and the role of the ovary in this meiotic process remains to be clarified. This study provides data that RA derived from fetal ovaries is sufficient to induce germ cell meiosis in a fetal ovary culture system. When fetal ovaries were collected from 11.5 to 13.5 dpc fetuses, isolated and cultured in vitro, germ cells enter meiosis in the absence of mesonephroi. To exclude RA sourcing from mesonephroi, 11.5 dpc urogenital ridges (UGRs; mesonephroi and ovary complexes) were treated with diethylaminobenzaldehyde (DEAB) to block retinaldehyde dehydrogenase (RALDH) activity in the mesonephros and the ovary. Meiosis occurred when DEAB was withdrawn and the mesonephros was removed 2 days later. Furthermore, RALDH1, rather than RALDH2, serves as the major RA synthetase in UGRs from 12.5 to 15.5 dpc. DEAB treatment to the ovary alone was able to block germ cell meiotic entry. We also found that exogenously supplied RA dose-dependently reduced germ cell numbers in ovaries by accelerating the entry into meiosis. These results suggest that ovary-derived RA is responsible for meiosis initiation.

  15. Hotspot TERT promoter mutations are rare events in testicular germ cell tumors.

    PubMed

    Cárcano, Flavio Mavignier; Vidal, Daniel Onofre; van Helvoort Lengert, André; Neto, Cristovam Scapulatempo; Queiroz, Luisa; Marques, Herlander; Baltazar, Fátima; da Silva Martinelli, Camila Maria; Soares, Paula; da Silva, Eduardo Caetano Albino; Lopes, Luiz Fernando; Reis, Rui Manuel

    2016-04-01

    The abnormal activation of telomerase, codified by the telomerase reverse transcriptase (TERT) gene, is related to one of cancer hallmarks. Hotspot somatic mutations in the promoter region of TERT, specifically the c.-124:C>T and c.-146:C>T, were recently identified in a range of human cancers and have been associated with a more aggressive behavior. Testicular germ cell tumors frequently exhibit a good prognosis; however, the development of refractory disease is still a clinical challenge. In this study, we aim to evaluate for the first time the presence of the hotspot telomerase reverse transcriptase gene promoter mutations in testicular germ cell tumors. A series of 150 testicular germ cell tumor cases and four germ cell tumor cell lines were evaluated by PCR followed by direct Sanger sequencing and correlated with patient's clinical pathological features. Additionally, we genotyped the telomerase reverse transcriptase gene promoter single nucleotide polymorphism rs2853669 (T>C) located at -245 position. We observed the presence of the TERT promoter mutation in four patients, one exhibited the c.-124:C>T and three the c.-146:C>T. No association between TERT mutation status and clinicopathological features could be identified. The analysis of the rs2853669 showed that variant C was present in 22.8 % of the cases. In conclusion, we showed for the first time that TERT promoter mutations occur in a small subset (~3 %) of testicular germ cell tumors.

  16. [Pathological features and origin of primary pineal mixed germ cell tumors].

    PubMed

    XIAO, Gang; FANG, Lu-xiong; QIU, Bing-hui; QI, Song-tao

    2011-03-01

    To investigate the origin of mixed germ cell tumors in the pineal region based on the image data, surgical findings and pathological examination of the tumor. The preoperative CT and magnetic resonance imaging (MRI) findings and tumor specimens were retrospectively analyzed in 15 cases of pineal mixed germ cell tumors confirmed by postoperative histological examination between January 2000 and September 2010. Radiographic examination of the tumor revealed calcification in 12 cases, cystic changes in 10 cases, and the presence of lipid in 5 cases. On the anteroposterior images, the tumors appeared round or elliptic with smooth edge in 6 cases, and showed irregular shape with multiple processes on the edge in 9 cases. Surgical exploration found all the tumors located in the the suprapineal recess enclosed by the arachnoidal envelope of the Galen vein. Pathologically, 13 specimens contained germinoma component, 9 contained teratoma component, 4 had embryonic carcinoma component, 3 had choriocarcinoma component, 7 showed yolk sac tumor component, and 3 showed rhabdomyoma component. Germinoma components were found on the tumor margin in 7 specimens, and intermingled germinoma and other components were found in 10 specimens. Pineal mixed germ cell tumor originates from the residue germ cells around the pineal gland, and most likely evolves from single primordial germ cells.

  17. Effect of 4-octylphenol on germ cell number in cultured human fetal gonads.

    PubMed

    Bendsen, E; Laursen, S; Olesen, C; Westergaard, L; Andersen, C; Byskov, A

    2001-02-01

    This study evaluates whether a hormone disruptor found in environment, 4-octylphenol, affects the rate of proliferation of germ cells from human fetal gonads during a 3 week culture period. Five testis and five ovaries were obtained from fetuses of women undergoing legal abortions between the 6th and 9th week of fetal life, representing the period where early gonadal differentiation takes place. Each gonad was divided into equal sized test and control tissue. The test tissue was exposed to a continued presence of 10 micromol/l 4-octylphenol in the culture medium. The cultures were terminated by fixation of the tissues, which where then processed for histology and serially sectioned. The mitotic index of the germ cells (i.e. number of mitosis per 100 germ cells) and the number of germ cells per area was determined. Each of the five testes cultured in 4-octylphenol exhibited a significantly reduced mitotic index and number of pre-spermatogonia compared to the control, whereas none of the five ovaries exposed to 4-octylphenol revealed any difference compared to the control. It is concluded that 4-octylphenol exerts a sex-specific effect on male germ cells.

  18. Mouse primordial germ cells produce cysts that partially fragment prior to meiosis

    PubMed Central

    Lei, Lei; Spradling, Allan C.

    2013-01-01

    Mammalian germ cells divide mitotically and form nests of associated cells just prior to entering meiosis. At least some nests contain germline cysts that arise by synchronous, incomplete mitotic divisions, but others may form by aggregation. To systematically investigate early murine germ cell development, we lineage marked the progeny of individual, newly arrived primordial germ cells in the E10.5 gonad. All the marked germ cells initially develop into clones containing two, four or eight cells, indicating cyst formation. Surprisingly, growing cysts in both sexes partially fragment into smaller cysts prior to completion and associate with cysts from unrelated progenitors. At the time divisions cease, female clones comprise five cysts on average that eventually give rise to about six primordial follicles. Male cyst cells break apart and probably become spermatogonial stem cells. Thus, cysts are invariant units of mouse germ cell development and cyst fragmentation provides insight into the amplification of spermatogonial stem cells and the origin of primordial follicles. PMID:23578925

  19. Toll-like receptor 11-initiated innate immune response in male mouse germ cells.

    PubMed

    Chen, Qiaoyuan; Zhu, Weiwei; Liu, Zhenghui; Yan, Keqin; Zhao, Shutao; Han, Daishu

    2014-02-01

    Toxoplasma gondii and uropathogenic Escherichia coli (UPEC) may infect the testis and impair testicular function. Mechanisms underlying testicular innate immune response to these two pathogens remain to be clarified. The present study examined the function of TLR11, which can be recognized by T. gondii-derived profilin and UPEC, in initiating innate immune response in male mouse germ cells. TLR11 is predominantly expressed in spermatids. Profilin and UPEC induced the expressions of different inflammatory cytokine profiles in the germ cells. In particular, profilin induced the expressions of macrophage chemotactic protein 1 (MCP1), interleukin 12 (IL12), and interferon gamma (IFNG) through nuclear factor KB (NFKB) activation. UPEC induced the expressions of MCP1, IL12, and IFNG, as well as tumor necrosis factor alpha (TNFA), IL6, and IFNB, through the activation of NFKB, IFN regulatory factor 3, and mitogen-activated protein kinases. Evidence showed that profilin induced the innate response in male germ cells through TLR11 signaling, and UPEC triggered the response through TLR11 and other TLR-signaling pathways. We also provided evidence that local injection of profilin or UPEC induces the innate immune response in the germ cells. Data describe TLR11-mediated innate immune function of male germ cells in response to T. gondii profilin and UPEC stimulations. This system may play a role in testicular defense against T. gondii and UPEC infections in mice.

  20. Licensing of Primordial Germ Cells for Gametogenesis Depends on Genital Ridge Signaling

    PubMed Central

    Hu, Yueh-Chiang; Nicholls, Peter K.; Soh, Y. Q. Shirleen; Daniele, Joseph R.; Junker, Jan Philipp; van Oudenaarden, Alexander; Page, David C.

    2015-01-01

    In mouse embryos at mid-gestation, primordial germ cells (PGCs) undergo licensing to become gametogenesis-competent cells (GCCs), gaining the capacity for meiotic initiation and sexual differentiation. GCCs then initiate either oogenesis or spermatogenesis in response to gonadal cues. Germ cell licensing has been considered to be a cell-autonomous and gonad-independent event, based on observations that some PGCs, having migrated not to the gonad but to the adrenal gland, nonetheless enter meiosis in a time frame parallel to ovarian germ cells -- and do so regardless of the sex of the embryo. Here we test the hypothesis that germ cell licensing is cell-autonomous by examining the fate of PGCs in Gata4 conditional mutant (Gata4 cKO) mouse embryos. Gata4, which is expressed only in somatic cells, is known to be required for genital ridge initiation. PGCs in Gata4 cKO mutants migrated to the area where the genital ridge, the precursor of the gonad, would ordinarily be formed. However, these germ cells did not undergo licensing and instead retained characteristics of PGCs. Our results indicate that licensing is not purely cell-autonomous but is induced by the somatic genital ridge. PMID:25739037

  1. Licensing of primordial germ cells for gametogenesis depends on genital ridge signaling.

    PubMed

    Hu, Yueh-Chiang; Nicholls, Peter K; Soh, Y Q Shirleen; Daniele, Joseph R; Junker, Jan Philipp; van Oudenaarden, Alexander; Page, David C

    2015-03-01

    In mouse embryos at mid-gestation, primordial germ cells (PGCs) undergo licensing to become gametogenesis-competent cells (GCCs), gaining the capacity for meiotic initiation and sexual differentiation. GCCs then initiate either oogenesis or spermatogenesis in response to gonadal cues. Germ cell licensing has been considered to be a cell-autonomous and gonad-independent event, based on observations that some PGCs, having migrated not to the gonad but to the adrenal gland, nonetheless enter meiosis in a time frame parallel to ovarian germ cells -- and do so regardless of the sex of the embryo. Here we test the hypothesis that germ cell licensing is cell-autonomous by examining the fate of PGCs in Gata4 conditional mutant (Gata4 cKO) mouse embryos. Gata4, which is expressed only in somatic cells, is known to be required for genital ridge initiation. PGCs in Gata4 cKO mutants migrated to the area where the genital ridge, the precursor of the gonad, would ordinarily be formed. However, these germ cells did not undergo licensing and instead retained characteristics of PGCs. Our results indicate that licensing is not purely cell-autonomous but is induced by the somatic genital ridge.

  2. Generation and Application of Male Mice with Specific Expression of Green Fluorescent Protein in Germ Cells.

    PubMed

    Wang, Zhiru; Li, Jun; Cao, Dong; Liu, Xiaomei; Zhu, Desheng

    2016-10-01

    The study aimed to generate a mouse line with green fluorescent protein (GFP) specifically expressed in male germ cells to assess testicular toxicity. The mouse line with GFP specifically expressed in male germ cells was generated by mating a germ cell-specific transgenic Cre male mouse with a double-fluorescent reporter female mouse using Cre/loxP. The mouse line was administered ethylene glycol monomethyl ether (EGME) by oral gavage. Then, the green fluorescence intensity in the testes was used as an indicator to examine the potential for testicular toxicity testing by molecular biology, histopathology, and in vivo imaging techniques. Specific testicular GFP expression was observed in mice. GFP was mainly expressed in the germ cell lineage and concentrated in secondary spermatocytes/spermatocytes and spermatozoa. After administration of EGME, at the organ level, the green fluorescent intensity of the testes was decreased by 11 days and had disappeared by 34 days. Frozen testicular sections stained with DAPI showed significantly decreased green fluorescence in secondary spermatocytes and sperm cells. These observations were consistent with the testis weight and results of testicular histopathology. With the application of in vivo imaging becoming popular, this mouse line with GFP specifically expressed in the male germ cells may have some advantages for the study of reproductive toxicity.

  3. Germline stem cells are critical for sexual fate decision of germ cells

    PubMed Central

    2016-01-01

    Egg or sperm? The mechanism of sexual fate decision in germ cells has been a long‐standing issue in biology. A recent analysis identified foxl3 as a gene that determines the sexual fate decision of germ cells in the teleost fish, medaka. foxl3/Foxl3 acts in female germline stem cells to repress commitment into male fate (spermatogenesis), indicating that the presence of mitotic germ cells in the female is critical for continuous sexual fate decision of germ cells in medaka gonads. Interestingly, foxl3 is found in most vertebrate genomes except for mammals. This provides the interesting possibility that the sexual fate of germ cells in mammals is determined in a different way compared to foxl3‐possessing vertebrates. Considering the fact that germline stem cells are the cells where foxl3 begins to express and sexual fate decision initiates and mammalian ovary does not have typical germline stem cells, the mechanism in mammals may have been co‐evolved with germline stem cell loss in mammalian ovary. PMID:27699806

  4. Human iPS Cell-Derived Germ Cells: Current Status and Clinical Potential

    PubMed Central

    Ishii, Tetsuya

    2014-01-01

    Recently, fertile spermatozoa and oocytes were generated from mouse induced pluripotent (iPS) cells using a combined in vitro and in vivo induction system. With regard to germ cell induction from human iPS cells, progress has been made particularly in the male germline, demonstrating in vitro generation of haploid, round spermatids. Although iPS-derived germ cells are expected to be developed to yield a form of assisted reproductive technology (ART) that can address unmet reproductive needs, genetic and/or epigenetic instabilities abound in iPS cell generation and germ cell induction. In addition, there is still room to improve the induction protocol in the female germline. However, rapid advances in stem cell research are likely to make such obstacles surmountable, potentially translating induced germ cells into the clinical setting in the immediate future. This review examines the current status of the induction of germ cells from human iPS cells and discusses the clinical potential, as well as future directions. PMID:26237592

  5. Specific variants of general transcription factors regulate germ cell development in diverse organisms

    PubMed Central

    Freiman, Richard N.

    2009-01-01

    Through the reductive divisions of meiosis, sexually reproducing organisms have gained the ability to produce specialized haploid cells called germ cells that fuse to establish the diploid genome of the resulting progeny. The totipotent nature of these germ cells is highlighted by their ability to provide a single fertilized egg cell with all the genetic information necessary to develop the complete repertoire of cell types of the future organism. Thus, the production of these germ cells must be tightly regulated to ensure the continued success of the germ line in future generations. One surprising germ cell development mechanism utilizes variation of the global transcriptional machinery, such as TFIID and TFIIA. Like histone variation, general transcription factor variation serves to produce gonadal-restricted or -enriched expression of selective transcriptional regulatory factors required for establishing and/or maintaining the germ line of diverse organisms. This strategy is observed among invertebrates and vertebrates, and perhaps plants, suggesting that a common theme in germ cell evolution is the diversification of selective promoter initiation factors to regulate critical gonadal-specific programs of gene expression required for sexual reproduction. This review discusses the identification and characterization of a subset of these specialized general transcription factors in diverse organisms that share a common goal of germ line regulation through transcriptional control at its most fundamental level. PMID:19437618

  6. Human germ cell formation in xenotransplants of induced pluripotent stem cells carrying X chromosome aneuploidies

    PubMed Central

    Dominguez, Antonia A.; Chiang, H. Rosaria; Sukhwani, Meena; Orwig, Kyle E.; Reijo Pera, Renee A.

    2014-01-01

    Turner syndrome is caused by complete or partial loss of the second sex chromosome and is characterized by spontaneous fetal loss in >90% of conceptions. Survivors possess an array of somatic and germline clinical characteristics. Induced pluripotent stem cells (iPSCs) offer an opportunity for insight into genetic requirements of the X chromosome linked to Turner syndrome. We derived iPSCs from Turner syndrome and control individuals and examined germ cell development as a function of X chromosome composition. We demonstrate that two X chromosomes are not necessary for reprogramming or maintenance of pluripotency and that there are minimal differences in gene expression, at the single cell level, linked to X chromosome aneuploidies. Formation of germ cells, as assessed in vivo through a murine xenotransplantation model, indicated that undifferentiated iPSCs, independent of X chromosome composition, are capable of forming germ-cell-like cells (GCLCs) in vivo. In combination with clinical data regarding infertility in women with X chromosome aneuploidies, results suggest that two intact X chromosomes are not required for human germ cell formation, qualitatively or quantitatively, but rather are likely to be required for maintenance of human germ cells to adulthood. PMID:25242416

  7. DDX4 (VASA) is conserved in germ cell development in marsupials and monotremes.

    PubMed

    Hickford, Danielle E; Frankenberg, Stephen; Pask, Andrew J; Shaw, Geoff; Renfree, Marilyn B

    2011-10-01

    DDX4 (VASA) is an RNA helicase expressed in the germ cells of all animals. To gain greater insight into the role of this gene in mammalian germ cell development, we characterized DDX4 in both a marsupial (the tammar wallaby) and a monotreme (the platypus). DDX4 is highly conserved between eutherian, marsupial, and monotreme mammals. DDX4 protein is absent from tammar fetal germ cells but is present from Day 1 postpartum in both sexes. The distribution of DDX4 protein during oogenesis and spermatogenesis in the tammar is similar to eutherians. Female tammar germ cells contain DDX4 protein throughout all stages of postnatal oogenesis. In males, DDX4 is in gonocytes, and during spermatogenesis it is present in spermatocytes and round spermatids. A similar distribution of DDX4 occurs in the platypus during spermatogenesis. There are several DDX4 isoforms in the tammar, resulting from both pre- and posttranslational modifications. DDX4 in marsupials and monotremes has multiple splice variants and polyadenylation motifs. Using in silico analyses of genomic databases, we found that these previously unreported splice variants also occur in eutherians. In addition, several elements implicated in the control of Ddx4 expression in the mouse, including RGG (arginine-glycine-glycine) and dimethylation of arginine motifs and CpG islands within the Ddx4 promoter, are also highly conserved. Collectively these data suggest that DDX4 is essential for the regulation of germ cell proliferation and differentiation across all three extant mammalian groups-eutherians, marsupials, and monotremes.

  8. Human germ cell formation in xenotransplants of induced pluripotent stem cells carrying X chromosome aneuploidies.

    PubMed

    Dominguez, Antonia A; Chiang, H Rosaria; Sukhwani, Meena; Orwig, Kyle E; Reijo Pera, Renee A

    2014-09-22

    Turner syndrome is caused by complete or partial loss of the second sex chromosome and is characterized by spontaneous fetal loss in >90% of conceptions. Survivors possess an array of somatic and germline clinical characteristics. Induced pluripotent stem cells (iPSCs) offer an opportunity for insight into genetic requirements of the X chromosome linked to Turner syndrome. We derived iPSCs from Turner syndrome and control individuals and examined germ cell development as a function of X chromosome composition. We demonstrate that two X chromosomes are not necessary for reprogramming or maintenance of pluripotency and that there are minimal differences in gene expression, at the single cell level, linked to X chromosome aneuploidies. Formation of germ cells, as assessed in vivo through a murine xenotransplantation model, indicated that undifferentiated iPSCs, independent of X chromosome composition, are capable of forming germ-cell-like cells (GCLCs) in vivo. In combination with clinical data regarding infertility in women with X chromosome aneuploidies, results suggest that two intact X chromosomes are not required for human germ cell formation, qualitatively or quantitatively, but rather are likely to be required for maintenance of human germ cells to adulthood.

  9. A seamless trespass: germ cell migration across the seminiferous epithelium during spermatogenesis

    PubMed Central

    Wang, Claire Q.F.; Cheng, C. Yan

    2007-01-01

    During spermatogenesis, preleptotene spermatocytes traverse the blood–testis barrier (BTB) in the seminiferous epithelium, which is reminiscent of viral pathogens breaking through the tight junctions of host epithelial cells. The process also closely resembles the migration of leukocytes across endothelial tight junctions to reach inflammation sites. Cell adhesion molecules of the immunoglobulin superfamily (e.g., JAM/CAR/nectin) participate in germ cell migration by conferring transient adhesion between Sertoli and germ cells through homophilic and heterophilic interactions. The same molecules also comprise the junctional complexes at the BTB. Interestingly, JAM/CAR/nectin molecules mediate virus uptake and leukocyte transmigration in strikingly similar manners. It is likely that the strategy used by viruses and leukocytes to break through junctional barriers is used by germ cells to open up the inter–Sertoli cell junctions. In associating these diverse cellular events, we highlight the “guiding” role of JAM/CAR/nectin molecules for germ cell passage. Knowledge on viral invasion and leukocyte transmigration has also shed insights into germ cell movement during spermatogenesis. PMID:17698604

  10. Vasa identifies germ cells and critical stages of oogenesis in the Asian seabass.

    PubMed

    Xu, Hongyan; Lim, Menghuat; Dwarakanath, Manali; Hong, Yunhan

    2014-01-01

    Germ cells produce sperm and eggs for reproduction and fertility. The Asian seabass (Lates calcarifer), a protandrous marine fish, undergoes male-female sex reversal and thus offers an excellent model to study the role of germ cells in sex differentiation and sex reversal. Here we report the cloning and expression of vasa as a first germ cell marker in this organism. A 2241-bp cDNA was cloned by PCR using degenerate primers of conserved sequences and gene-specific primers. This cDNA contains a polyadenylation signal and a full open reading frame for 645 amino acid residues, which was designated as Lcvasa for the seabass vasa, as its predicted protein is homologous to Vasa proteins. The Lcvasa RNA is maternally supplied and specific to gonads in adulthood. By chromogenic and fluorescent in situ hybridization we revealed germ cell-specific Lcvasa expression in both the testis and ovary. Importantly, Lcvasa shows dynamic patterns of temporospatial expression and subcellular distribution during gametogenesis. At different stages of oogenesis, for example, Lcvasa undergoes nuclear-cytoplasmic redistribution and becomes concentrated preferentially in the Balbiani body of stage-II~III oocytes. Thus, the vasa RNA identifies both female and male germ cells in the Asian seabass, and its expression and distribution delineate critical stages of gametogenesis.

  11. Dazl is a target RNA suppressed by mammalian NANOS2 in sexually differentiating male germ cells

    PubMed Central

    Kato, Yuzuru; Katsuki, Takeo; Kokubo, Hiroki; Masuda, Aki; Saga, Yumiko

    2016-01-01

    Evolutionally conserved Nanos RNA-binding proteins play crucial roles in germ cell development. While a mammalian Nanos family protein, NANOS2, is required for sexual differentiation of male (XY) germ cells in mice, the underlying mechanisms and the identities of its target RNAs in vivo remain elusive. Using comprehensive microarray analysis and a bacterial artificial chromosome transgenic system, here we identify Dazl, a germ cell-specific gene encoding an RNA-binding protein implicated in translation, as a crucial target of NANOS2. Importantly, removal of the Dazl 3′-untranslated region in XY germ cells stabilizes the Dazl mRNA, resulting in elevated meiotic gene expression, abnormal resumption of the cell cycle and impaired processing-body formation, reminiscent of Nanos2-knockout phenotypes. Furthermore, our data suggest that NANOS2 acts as an antagonist of the DAZL protein. We propose a dual system of NANOS2-mediated suppression of Dazl expression as a pivotal molecular mechanism promoting sexual differentiation of XY germ cells. PMID:27072294

  12. Stationary phase mutagenesis: mechanisms that accelerate adaptation of microbial populations under environmental stress.

    PubMed

    Kivisaar, Maia

    2003-10-01

    Microorganisms are exposed to constantly changing environmental conditions. In a growth-restricting environment (e.g. during starvation), mutants arise that are able to take over the population by a process known as stationary phase mutation. Genetic adaptation of a microbial population under environmental stress involves mechanisms that lead to an elevated mutation rate. Under stressful conditions, DNA synthesis may become more erroneous because of the induction of error-prone DNA polymerases, resulting in a situation in which DNA repair systems are unable to cope with increasing amounts of DNA lesions. Transposition may also increase genetic variation. One may ask whether the rate of mutation under stressful conditions is elevated as a result of malfunctioning of systems responsible for accuracy or are there specific mechanisms that regulate the rate of mutations under stress. Evidence for the presence of mutagenic pathways that have probably been evolved to control the mutation rate in a cell will be discussed.

  13. Efficient genetic modification and germ-line transmission of primordial germ cells using piggyBac and Tol2 transposons.

    PubMed

    Macdonald, Joni; Taylor, Lorna; Sherman, Adrian; Kawakami, Koichi; Takahashi, Yoshiko; Sang, Helen M; McGrew, Michael J

    2012-06-05

    The derivation of germ-line competent avian primordial germ cells establishes a cell-based model system for the investigation of germ cell differentiation and the production of genetically modified animals. Current methods to modify primordial germ cells using DNA or retroviral vectors are inefficient and prone to epigenetic silencing. Here, we validate the use of transposable elements for the genetic manipulation of primordial germ cells. We demonstrate that chicken primordial germ cells can be modified in vitro using transposable elements. Both piggyBac and Tol2 transposons efficiently transpose primordial germ cells. Tol2 transposon integration sites were spread throughout both the macro- and microchromosomes of the chicken genome and were more prevalent in gene transcriptional units and intronic regions, consistent with transposon integrations observed in other species. We determined that the presence of insulator elements was not required for reporter gene expression from the integrated transposon. We further demonstrate that a gene-trap cassette carried in the Tol2 transposon can trap and mutate endogenous transcripts in primordial germ cells. Finally, we observed that modified primordial germ cells form functional gametes as demonstrated by the generation of transgenic offspring that correctly expressed a reporter gene carried in the transposon. Transposable elements are therefore efficient vectors for the genetic manipulation of primordial germ cells and the chicken genome.

  14. Development and Validation of Rapid In Situ Assays of Environmental Mutagenesis

    DTIC Science & Technology

    1990-10-31

    S. A., and K. McBee. Heavy metal bioaccumulation in wild rodents from a hazardous waste site. Environmental Toxicology and Chemistry. IN PREPARATION...of North Texas, Denton, TX, 12-14 Apr 1990. Tull, S. A., K. McBee, and S. Kimball. Heavy metal bioaccumulation in wild rodents from a hazardous waste...Tull, S. A., K. McBee, and S. Kimball. Heavy metal bioaccumulation in wild rodents from a hazardous waste site. Annual Meetings of the Southcentral

  15. Chromosomal aberrations in resident small mammals at a petrochemical waste dump site: a natural model for analysis of environmental mutagenesis. [Peromyscus leucopus; Sigmodon hispidus

    SciTech Connect

    McBee, K.

    1985-01-01

    Small mammals of two species (Peromyscus leucopus and Sigmodon hispidus) were trapped at a locality polluted with a complex mixture of petrochemical waste products, heavy metals, and PCB's, and from two matched, uncontaminated localities. Three cytogenetic techniques were employed to evaluate the use of these resident small mammals as indicators of environmental mutagenesis. Each technique also was assessed for its power of resolution in characterizing the action of environmental mutagens. Standard karyological analysis of flow cytometric analysis clearly indicated significant differences in chromosomal aberrancy between animals collected at the polluted site and the uncontaminated sites. Examination of flow DNA histograms of Peromyscus from the polluted site revealed broadened and flattened G/sub 1/ peaks and increases in CVs (coefficients of variation) for DNA content. CVs in animals from the polluted site consistently fell outside confidence limits set around values from animals collected at the uncontaminated site. These patterns are characteristically seen in laboratory animals challenged with powerful clastogens which suggests that individuals at the polluted site may be experiencing similar clastogenic events. This study demonstrates that small mammals are a feasible test model for evaluating environmental mutagenesis. Evaluation of different cytogenetic techniques suggests that a battery of several assays will provide the most accurate characterization of the action of environmental mutagenesis.

  16. De novo spinal teratoma after treatment of an intracranial germ cell tumor.

    PubMed

    Tohma, Y; Kaneko, T; Kita, D; Iwato, M; Hayashi, Y; Tachibana, O; Hasegawa, M; Yamashita, J

    2000-11-01

    The authors report an extremely rare case of de novo spinal teratoma after treatment for intracranial germ cell tumor. A 17-year-old male developed pain of bilateral lower extremities and urinary retention 18 months after complete remission of intracranial mixed germ cell tumor. Magnetic resonance imaging revealed a huge spinal tumor associated with spina bifida occulta. Total resection was performed, and histogenetical findings led to the diagnosis of a mature teratoma with normal p16 gene, whereas analysis of intracranial tumor showed p16 deletion. The spinal anomaly and genetic analysis strongly suggest that the spinal teratoma was a de novo tumor rather than a metastasis or dissemination of the original intracranial germ cell tumor.

  17. Efficient TALEN-mediated gene targeting of chicken primordial germ cells

    PubMed Central

    Taylor, Lorna; Carlson, Daniel F.; Nandi, Sunil; Sherman, Adrian; Fahrenkrug, Scott C.

    2017-01-01

    In this work we use TALE nucleases (TALENs) to target a reporter construct to the DDX4 (vasa) locus in chicken primordial germ cells (PGCs). Vasa is a key germ cell determinant in many animal species and is posited to control avian germ cell formation. We show that TALENs mediate homology-directed repair of the DDX4 locus on the Z sex chromosome at high (8.1%) efficiencies. Large genetic deletions of 30 kb encompassing the entire DDX4 locus were also created using a single TALEN pair. The targeted PGCs were germline competent and were used to produce DDX4 null offspring. In DDX4 knockout chickens, PGCs are initially formed but are lost during meiosis in the developing ovary, leading to adult female sterility. TALEN-mediated gene targeting in avian PGCs is therefore an efficient process. PMID:28174243

  18. Prolonged expression of the c-kit receptor in germ cells of intersex fetal testes.

    PubMed

    Rajpert-De Meyts, E; Jørgensen, N; Müller, J; Skakkebaek, N E

    1996-02-01

    Stem cell factor (SCF) and its receptor Kit encoded by the c-kit proto-oncogene are crucial for the development and migration of primordial germ cells in rodents. The expression of Kit has been examined immunohistochemically in gonads obtained from five specimens of fetal tissues with intersex conditions which included 45,X/46,XY mosaicism; androgen insensitivity syndrome; and 46,XY/iso(p)Y mosaicism. Individuals with such disorders of sexual differentiation and Y-chromosome material carry a very high risk of developing testicular neoplasms. Fetal testicular germ cells of the intersex subjects expressed Kit at a later developmental age than controls, in which no Kit protein was detectable beyond the 15th week of gestation. This finding may indicate a disturbance of the chronology of germ cell development, or it may suggest a change of the regulation of c-kit expression in subjects with disorders of gonadal development.

  19. New perspective on molecular markers as promising therapeutic targets in germ cell tumors

    PubMed Central

    Chieffi, Paolo

    2016-01-01

    Summary Testicular germ cell tumors (TGCTs) are the most frequent solid malignant tumors in men 20–40 years of age and the most frequent cause of death from solid tumors in this age group. TGCTs comprise two major histologic groups: seminomas and non-seminomas germ cell tumors (NSGCTs). NSGCTs can be further divided into embryonal carcinoma, Teratoma, yolk sac tumor, and choriocarcinoma. Seminomas and NSGCTs present significant differences in clinical features, therapy, and prognosis, and both show characteristics of the Primordial Germ Cells (PGCs). Many discovered biomarkers including HMGA1, GPR30, Aurora-B, estrogen receptor β, and others have given further advantages to discriminate between histological subgroups and could represent useful therapeutic targets. PMID:27195201

  20. Recent Advances on New Discovered Molecular Targets in Testicular Germ Cell Tumors.

    PubMed

    Chieffi, Paolo

    2017-10-03

    Testicular germ cell tumor (TGCT) is the most common solid malignancy occurring in young men between 20 and 34 years of age, and its incidence has increased significantly over the last decades. TGCTs can be subdivided into seminoma and non-seminoma a germ cell tumor (NSGCTs) which includes yolk sac tumor, choriocarcinoma, embryonal cell carcinoma, and teratoma. Seminomas and NSGCTs present significant differences in therapy, prognosis, and both show characteristics of the Primordial Germ Cells (PGCs). A large number of new biomarkers have given further advantages to discriminate the different histotypes and could represent useful novel molecular targets for anticancer strategies. A deeper understanding of the pathogenesis of TGCTs is likely to significantly improve not only our knowledge on stem cells and oncogenesis but also the disease management with more selective tumor treatment. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  1. Germ cell formation from embryonic stem cells and the use of somatic cell nuclei in oocytes.

    PubMed

    Pelosi, Emanuele; Forabosco, Antonino; Schlessinger, David

    2011-03-01

    Embryonic stem cells (ESCs) have remarkable properties of pluripotency and self-renewal, along with the retention of chromosomal integrity. Germ cells function as a kind of "transgenerational stem cells," transmitting genetic information from one generation to the next. The formation of putative primordial germ cells (PGCs) and germ cells from mouse and human ESCs (hESCs) has, in fact, been shown, and the apparent derivation of functional mouse male gametes has also been described. Additionally, investigators have successfully reprogrammed somatic nuclei into a pluripotent state by inserting them into ESCs or oocytes. This would enable the generation of ESCs genetically identical to the somatic cell donor and their use in cell therapy. However, these methodologies are still inefficient and their mechanisms poorly understood. Until full comprehension of these processes is obtained, clinical applications remain remote. Nevertheless, they represent promising tools in the future, enhancing methods of therapeutic cloning and infertility treatment.

  2. Xenopus Vasa Homolog XVLG1 is Essential for Migration and Survival of Primordial Germ Cells.

    PubMed

    Shimaoka, Kazumi; Mukumoto, Yoshiko; Tanigawa, Yoko; Komiya, Tohru

    2017-04-01

    Xenopus vasa-like gene 1 (XVLG1), a DEAD-Box Helicase 4 (DDX4) gene identified as a vertebrate vasa homologue, is required for the formation of primordial germ cells (PGCs). However, it remains to be clarified when and how XVLG1 functions in the formation of the germ cells. To gain a better understanding of the molecular mechanisms underlying XVLG1 during PGC development, we injected XVLG1 morpholino oligos into germ-plasm containing blastomeres of 32-cell stage of Xenopus embryos, and traced cell fates of the injected blastomere-derived PGCs. As a result of this procedure, migration of the PGCs was impaired and the number of PGCs derived from the blastomeres was significantly decreased. In addition, TUNEL staining in combination with in situ hybridization revealed that the loss of PGCs peaked at stage 27 was caused by apoptosis. This data strongly suggests an essential role for XVLG1 in migration and survival of the germ cells.

  3. An ABC transporter controls export of a Drosophila germ cell attractant.

    PubMed

    Ricardo, Sara; Lehmann, Ruth

    2009-02-13

    Directed cell migration, which is critical for embryonic development, leukocyte trafficking, and cell metastasis, depends on chemoattraction. 3-hydroxy-3-methylglutaryl coenzyme A reductase regulates the production of an attractant for Drosophila germ cells that may itself be geranylated. Chemoattractants are commonly secreted through a classical, signal peptide-dependent pathway, but a geranyl-modified attractant would require an alternative pathway. In budding yeast, pheromones produced by a-cells are farnesylated and secreted in a signal peptide-independent manner, requiring the adenosine triphosphate-binding cassette (ABC) transporter Ste6p. Here we show that Drosophila germ cell migration uses a similar pathway, demonstrating that invertebrate germ cells, like yeast cells, are attracted to lipid-modified peptides. Components of this unconventional export pathway are highly conserved, suggesting that this pathway may control the production of similarly modified chemoattractants in organisms ranging from yeast to humans.

  4. Heterozygosity for a Bub1 mutation causes female-specific germ cell aneuploidy in mice

    SciTech Connect

    Leland, Shawn; Nagarajan, Prabakaran; Polyzos, Aris; Thomas, Sharon; Samaan, George; Donnell, Robert; Marchetti, Francesco; Venkatachalam, Sundaresan

    2009-06-24

    Aneuploidy, the most common chromosomal abnormality at birth and the main ascertained cause of pregnancy loss in humans, originates primarily from chromosome segregation errors during oogenesis. Here we report that heterozygosity for a mutation in the mitotic checkpoint kinase gene, Bub1, induces aneuploidy in female germ cells of mice, and that the effect increases with advancing maternal age. Analysis of Bub1 heterozygous oocytes showed that aneuploidy occurred primarily during the first meiotic division and involved premature sister chromatid separation. Furthermore, aneuploidy was inherited in zygotes and resulted in the loss of embryos after implantation. The incidence of aneuploidy in zygotes was sufficient to explain the reduced litter size in matings with Bub1 heterozygous females. No effects were seen in germ cells from heterozygous males. These findings show that Bub1 dysfunction is linked to inherited aneuploidy in female germ cells and may contribute to the maternal age-related increase in aneuploidy and pregnancy loss.

  5. Recent advances in molecular and cell biology of testicular germ-cell tumors.

    PubMed

    Chieffi, Paolo

    2014-01-01

    Testicular germ-cell tumors (TGCTs) are the most frequent solid malignant tumors in men 20-40 years of age and the most frequent cause of death from solid tumors in this age group. TGCTs comprise two major histologic groups: seminomas and nonseminomas germ-cell tumors (NSGCTs). NSGCTs can be further divided into embryonal, carcinoma, Teratoma, yolk sac tumor, and choriocarcinoma. Seminomas and NSGCTs present significant differences in clinical features, therapy, and prognosis, and both show characteristics of the primordial germ cells. Many discovered biomarkers including OCT3/4, SOX2, SOX17, HMGA1, Nek2, GPR30, Aurora-B, estrogen receptor β, and others have given further advantages to discriminate between histological subgroups and could represent useful novel molecular targets for antineoplastic strategies. More insight into the pathogenesis of TGCTs is likely to improve disease management not only to better treatment of these tumors but also to a better understanding of stem cells and oncogenesis.

  6. Conservation of migration and differentiation circuits in primordial germ cells between avian species.

    PubMed

    Park, Tae Sub; Han, Jae Yong

    2013-01-01

    Germ cell differentiation in reverse-sexed reproductive organs and interspecies germ line chimeras provides insight into the mechanism of germ cell development and represents a useful tool for conservation of endangered birds. We investigated the migration and survival capacity of male chicken primordial germ cells (PGCs) in female chicken embryos and in quail and Korean ring-necked pheasant embryos of both sexes. Interestingly, the PGCs were successfully reintroduced in all cases. Furthermore, the cells survived in the recipient gonads until hatching regardless of sex and species of the recipient. In the case of male recipient chickens, PGC-derived offspring were produced. However, the reverse-sexed female chickens, quails and pheasants of both sexes did not generate any male donor PGC-derived progeny. These results suggest that migration and survival circuits in chicken PGCs are conserved in both sexes and between avian species during embryonic development.

  7. First-line chemotherapy of non-seminomatous germ cell tumors(NSGCTs).

    PubMed

    Pliarchopoulou, K; Pectasides, D

    2009-11-01

    Germ cell tumors (GCTs) account for the majority of testicular cancer cases occurring in men of young age and are divided into two main histologic groups, seminomas and non-seminomas. The introduction of cisplatin in the treatment of germ cell tumors was a breakthrough, classifying them among curable diseases. The identification of 3 subgroups of patients with non-seminomatous tumors (good-risk, intermediate and poor-risk), with different profiles concerning prognosis and response to treatment, supported clinical trials aiming to assess different treatment strategies and recommend the most effective and less toxic regimens. This review describes the toxic effects of therapy and the efforts aiming to overcome toxicity and improve treatment efficacy, focusing on the trials which form the basis of current standard treatment of non-seminomatous germ cell tumors.

  8. Conservation of Migration and Differentiation Circuits in Primordial Germ Cells Between Avian Species

    PubMed Central

    PARK, Tae Sub; HAN, Jae Yong

    2013-01-01

    Abstract Germ cell differentiation in reverse-sexed reproductive organs and interspecies germ line chimeras provides insight into the mechanism of germ cell development and represents a useful tool for conservation of endangered birds. We investigated the migration and survival capacity of male chicken primordial germ cells (PGCs) in female chicken embryos and in quail and Korean ring-necked pheasant embryos of both sexes. Interestingly, the PGCs were successfully reintroduced in all cases. Furthermore, the cells survived in the recipient gonads until hatching regardless of sex and species of the recipient. In the case of male recipient chickens, PGC-derived offspring were produced. However, the reverse-sexed female chickens, quails and pheasants of both sexes did not generate any male donor PGC-derived progeny. These results suggest that migration and survival circuits in chicken PGCs are conserved in both sexes and between avian species during embryonic development. PMID:23386102

  9. Nephroblastoma Arising from Primary Testicular Germ Cell Tumor: A Case Report and Literature Review

    PubMed Central

    Alatassi, Houda; O'Bryan, Brittany E.; Messer, Jamie C.

    2016-01-01

    Adult extrarenal nephroblastoma is a very rare tumor. Nephroblastoma arising from primary testicular germ cell tumor is exceedingly rare. To our knowledge, only three cases have been reported in the English literature. We report a case of a 19-year-old man who presented with a large right testicle. Image studies showed a large retroperitoneal mass along with liver and lung metastases. Orchiectomy demonstrated a mixed germ cell tumor composed of yolk sac tumor, embryonal carcinoma, and mature and immature teratoma with a significant portion of nephroblastoma. The patient received chemotherapy and no recurrence was noted during six months of followup. WT-1 expression was also studied due to the lack of consistency of its expression in testicular nephroblastoma in the literature. We also present a discussion and review of the literature due to its rarity, which indicate an adverse prognosis for patients with nephroblastoma components receiving standard chemotherapeutical regimes for testicular germ cell tumors. PMID:27957372

  10. The problem of antibiotic resistant bacteria. The important role of environmentally responsive mutagenesis, its relevance to a new paradigm that may allow a solution.

    PubMed

    Lieber, Michael

    2011-01-01

    The frequent creation of antibiotic resistant bacteria through mutation poses a severe medical problem. As a way towards solving the problem, mutations conferring antibiotic sensitivity could be induced in such bacteria at very high frequency through the controlled process of environmentally responsive mutagenesis, an adaptively responsive mutator process. Such induction, as a necessary developmental stage towards global adaptation, would be enabled by patterns of mild stresses. The stresses and their patterns would be elucidated through in vitro experiments and clinical trials. The effective application of this ordered process, whose detection was allowed through a change in experimental design, requires a new and more comprehensive paradigm of mutagenesis than the one currently applied. This would be a new paradigm that has holistic and developmental features. Yet, the effective and ongoing emergence of such a paradigm will depend on experimental setups that will enable or provide, unlike previous experimental arrangements, new insights as to the developmental connections between innerly controlled mutagenesis and its environments. This should demonstrate controlled ways to generate and make manifest those genomic changes that, as developmental stages, give rise to antibiotic sensitivity in antibiotic resistant bacteria. The ultimate consequence of such a developed paradigm of mutagenesis may very well be a major and benign medical and biotechnical revolution.

  11. Systemic mastocytosis in a patient with ovarian germ cell carcinoma and mast cell leukemia

    SciTech Connect

    Sun, G.; Hajianpour, M.J.; Hajianpour, A.K.

    1994-09-01

    We report a 12-year-old female with a history of mixed germ cell carcinoma of the right ovary who developed a generalized skin rash after oophorectomy and chemotherapy. She also presented with periodic episodes of flushing, anemia, tachycardia, shortness of breath, high fever, hepatosplenomegaly, nausea, abdominal cramping with diarrhea, and a papuloerythematous skin rash. There was no evidence of secondary carcinoma. Skin biopsy revealed nonspecific inflammatory cells with negative staining for mast cells. Peripheral blood smear showed an increased number of mast cells, thrombocytopenia and normal white cells count. Bone marrow showed hypercellularity with 38% of the nucleated cells being mast cells. Bone marrow chromosome analysis revealed hyperdiploidy in 30% of the cells: 58-64,XX, +1, +2, +5, +6, +7, +8, +14, +16, +18, +19, +19, +20, +21, +22. She expired two months after the occurrence of systemic mastocytosis. Systemic mastocytosis has been reported in association with hematopoietic disorders and with germ cell tumors. The association between mediastinal germ cell tumors and hematological malignancies has also been observed. To our knowledge, combination of most cell leukemia, systemic mastocytosis, and ovarian germ cell carcinoma has not been observed. It is know that mutations at the locus of either proto-oncogene c-kit receptor or its ligand, mast/stem cell factor (SCF) may impair the development of three stem cell populations: hematopoietic stem cells, germ cells and melanoblasts. There have been also extensive investigations on the expression and modulation of the SCF/c-kit interaction in various malignancies. Further molecular studies in patients with germ cell tumor/hematopoietic malignancy syndrome are required to delineate underlying mechanisms.

  12. The C. elegans TIA-1/TIAR homolog TIAR-1 is required to induce germ cell apoptosis.

    PubMed

    Silva-García, Carlos Giovanni; Estela Navarro, Rosa

    2013-10-01

    In Caenorhabditis elegans, physiological germ cell apoptosis eliminates more than half of the cells in the hermaphrodite gonad to support gamete quality and germline homeostasis by a still unidentified mechanism. External factors can also affect germ cell apoptosis. The BH3-only protein EGL-1 induces germ cell apoptosis when animals are exposed to pathogens or agents that produce DNA damage. DNA damage-induced apoptosis also requires the nematode p53 homolog CEP-1. Previously, we found that heat shock, oxidative, and osmotic stresses induce germ cell apoptosis through an EGL-1 and CEP-1 independent mechanism that requires the MAPKK pathway. However, we observed that starvation increases germ cell apoptosis by an unknown pathway. Searching for proteins that participate in stress-induced apoptosis, we found the RNA-binding protein TIAR-1 (a homolog of the mammalian TIA-1/TIAR family of proteins). Here, we show that TIAR-1 in C. elegans is required to induce apoptosis in the germline under several conditions. We also show that TIAR-1 acts downstream of CED-9 (a BCL2 homolog) to induce apoptosis under stress conditions, and apparently does not seem to regulate ced-4 or ced-3 mRNAs accumulation directly. TIAR-1 is expressed ubiquitously in the cytoplasm of the soma as well as the germline, where it sometimes associates with P granules. We show that animals lacking TIAR-1 expression are temperature sensitive sterile due to oogenesis and spermatogenesis defects. Our work shows that TIAR-1 is required for proper germline function and demonstrates that this protein is important to induce germ cell apoptosis under several conditions.

  13. [Expression and diagnostic significance of OCT4, CD117 and CD30 in germ cell tumors].

    PubMed

    Teng, Liang-Hong; Lu, De-Hong; Xu, Qing-Zhong; Fu, Yong-Juan; Yang, Hong; He, Zhi-Li

    2005-11-01

    To study the immunohistochemical expression of OCT4, CD117 and CD30 in germ cell tumors and to assess their diagnostic value. Immunohistochemical study for OCT4 was performed on formalin-fixed, paraffin-embedded tissues of 63 cases of germ cell tumors, including seminoma (21), dysgerminoma (7), germinoma (8), embryonal carcinoma (8), yolk sac tumor (6), mature teratoma (10) and immature teratoma (3), as well as 25 cases of non-germ cell tumors, including granulosa cell tumor (8), clear cell adenocarcinoma (4), Leydig's cell tumor (5), diffuse large B-cell lymphoma (4) and malignant melanoma (4). Besides, the expression of CD117 and CD30 in all germ cell tumors was studied. All cases of seminoma and germinoma, 6/7 cases of dysgerminoma and 7/8 cases of embryonal carcinoma were positive for OCT4, with strong nuclear staining. All other germ cell tumors and non-germ cell tumors were negative for OCT4, except for 1 case of yolk sac tumor and 1 case of clear cell adenocarcinoma which showed weak staining. Positive membranous expression of CD117 was demonstrated in 19/21(90.5%) seminoma, 5/7 dysgerminoma and 7/8 germinoma. Focal weak membranous staining was also noted in 1 case of yolk sac tumor. The melanocytes in teratoma were also positive for CD117. All cases of embryonal carcinoma were negative. On the other hand, positive membranous expression of CD30 were demonstrated in 6/8 embryonal carcinoma. One case of germinoma and 1 case of yolk sac tumor showed weak cytoplasmic positivity. All cases of seminoma and dysgerminoma, 7/8 germinoma and all cases of teratoma were negative for CD30. OCT4 is a sensitive and relatively specific marker for diagnosing seminoma, dysgerminoma, germinoma and embryonal carcinoma. CD117 and CD30 immunostains, when used in combination, represent valuable tools for distinguishing embryonal carcinoma and seminoma, dysgerminoma, germinoma.

  14. Reproductive stage-dependent effects of additional cryoprotectant agents for the cryopreservation of stallion germ cells.

    PubMed

    Jung, Heejun; Kim, Namyoung; Yoon, Minjung

    2016-10-01

    The main objective of this study was to evaluate the efficacy of an additional cryoprotectant in 10% dimethyl sulfoxide (DMSO) on cryopreserving germ cells from stallions at different reproductive stages. Testicular samples were obtained from pre-pubertal (1-1.5 yr, n=6) and post-pubertal (3-7 yr, n=5) stallions. Germ cells were isolated using a two-enzyme digestion procedure and cryopreserved in minimal essential medium alpha containing 10% fetal bovine serum and 10% DMSO with or without addition of trehalose (50, 100, or 200mM) or polyethylene glycol (PEG, 2.5, 5, or 10%). Viability, cell population, and viable population were assessed after 1 and 3 months of cryopreservation. The viable UTF1-positive population of pre-pubertal stallion germ cells was also measured using immunocytochemistry after 1 and 3 months of cryopreservation. As expected, the viability, cell population, and viable cell population were significantly reduced after 1 and 3 months of cryopreservation. At the pre-pubertal stage, the addition of trehalose or PEG to 10% DMSO did not show any effect on the viability, cell population, viable cell population, or viable UTF1-positive germ cells at either 1 or 3 months after cryopreservation. However, at the post-pubertal stage, the viable population was significantly higher in germ cells that were cryopreserved with 5% or 10% PEG, than in the cells cryopreserved with 10% DMSO only. In conclusion, PEG at 5% or 10% added to 10% DMSO serves as an optimal cryoprotectant agent for the cryopreservation of germ cells from post-pubertal stallions. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Expression of steroidogenesis-related genes in murine male germ cells.

    PubMed

    Culty, Martine; Liu, Ying; Manku, Gurpreet; Chan, Wai-Yee; Papadopoulos, Vassilios

    2015-11-01

    For decades, only few tissues and cell types were defined as steroidogenic, capable of de novo steroid synthesis from cholesterol. However, with the refinement of detection methods, several tissues have now been added to the list of steroidogenic tissues. Besides their critical role as long-range acting hormones, steroids are also playing more discreet roles as local mediators and signaling molecules within the tissues they are produced. In testis, steroidogenesis is carried out by the Leydig cells through a broad network of proteins, mediating cholesterol delivery to CYP11A1, the first cytochrome of the steroidogenic cascade, and the sequential action of enzymes insuring the production of active steroids, the main one being testosterone. The knowledge that male germ cells can be directly regulated by steroids and that they express several steroidogenesis-related proteins led us to hypothesize that germ cells could produce steroids, acting as autocrine, intracrine and juxtacrine modulators, as a way to insure synchronized progression within spermatogenic cycles, and preventing inappropriate cell behaviors between neighboring cells. Gene expression and protein analyses of mouse and rat germ cells from neonatal gonocytes to spermatozoa showed that most steroidogenesis-associated genes are expressed in germ cells, showing cell type-, spermatogenic cycle-, and age-specific expression profiles. Highly expressed genes included genes involved in steroidogenesis and other cell functions, such as Acbd1 and 3, Tspo and Vdac1-3, and genes involved in fatty acids metabolism or synthesis, including Hsb17b4 10 and 12, implying broader roles than steroid synthesis in germ cells. These results support the possibility of an additional level of regulation of spermatogenesis exerted between adjacent germ cells. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. In vitro responses to known in vivo genotoxic agents in mouse germ cells.

    PubMed

    Habas, Khaled; Brinkworth, Martin H; Anderson, Diana

    2017-03-01

    Genotoxic compounds have induced DNA damage in male germ cells and have been associated with adverse clinical outcomes including enhanced risks for maternal, paternal and offspring health. DNA strand breaks represent a great threat to the genomic integrity of germ cells. Such integrity is essential to maintain spermatogenesis and prevent reproduction failure. The Comet assay results revealed that the incubation of isolated germ cells with n-ethyl-n-nitrosourea (ENU), 6-mercaptopurine (6-MP) and methyl methanesulphonate (MMS) led to increase in length of Olive tail moment and % tail DNA when compared with the untreated control cells and these effects were concentration-dependent. All compounds were significantly genotoxic in cultured germ cells. Exposure of isolated germ cells to ENU produced the highest concentration-related increase in both DNA damage and gene expression changes in spermatogonia. Spermatocytes were most sensitive to 6-MP, with DNA damage and gene expression changes while spermatids were particularly susceptible to MMS. Real-time PCR results showed that the mRNA level expression of p53 increased and bcl-2 decreased significantly with the increasing ENU, 6-MP and MMS concentrations in spermatogonia, spermatocytes and spermatids respectively for 24 hr. Both are gene targets for DNA damage response and apoptosis. These observations may help explain the cell alterations caused by ENU, 6-MP and MMS in spermatogonia, spermatocytes and spermatids. Taken together, ENU, 6-MP and MMS induced DNA damage and decreased apoptosis associated gene expression in the germ cells in vitro. Environ. Mol. Mutagen. 58:99-107, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  17. Comparative molecular portraits of human unfertilized oocytes and primordial germ cells at 10 weeks of gestation.

    PubMed

    Diedrichs, Ferdinand; Mlody, Barbara; Matz, Peggy; Fuchs, Heiko; Chavez, Lukas; Drews, Katharina; Adjaye, James

    2012-01-01

    Primordial germ cells (PGCs) are precursors of gametes and share several features in common with pluripotent stem cells, such as alkaline phosphatase activity and the expression of pluripotency-associated genes such as OCT4 and NANOG. PGCs are able to differentiate into oocytes and spermatogonia and establish totipotency after fertilization. However, our knowledge of human germ cell development is still fragmentary. In this study, we have carried out genome-wide comparisons of the transcriptomes and molecular portraits of human male PGCs (mPGCs), female PGCs (fPGCs) and unfertilized oocytes. We detected 9210 genes showing elevated expression in fPGCs, 9184 in mPGCs and 9207 in oocytes, with 6342 of these expressed in common. As well as known germ cell-related genes such as BLIMP1/PRDM1, PIWIL2, VASA/DDX4, DAZL, STELLA/DPPA3 and LIN28, we also identified 465 novel non-annotated genes with orthologs in the mouse. A plethora of olfactory receptor-encoding genes were detected in all samples, which would suggest their involvement not only in sperm chemotaxis, but also in the development of female germ cells and oocytes. We anticipate that our data might increase our meagre knowledge of the genes and associated signaling pathways operative during germ cell development. This in turn might aid in the development of strategies enabling better differentiation and molecular characterisation of germ cells derived from either embryonic or induced pluripotent stem cells. Ultimately, this would have a profound relevance for reproductive as well as regenerative medicine.

  18. RA induces differentiation of multipotent P19 cells towards male germ cell.

    PubMed

    Zhang, Lei; Tang, Jiangjing; Haines, Christopher J; Feng, Huai; Teng, Xiaoming; Han, Yibing

    2015-01-01

    Generating male germ cells in vitro from multipotent stem cells is still a challenge for stem cell biologists. The difficulty is caused by the lack of knowledge about spermatogenesis molecular-controlling mechanisms. In vivo, PGCs differentiate into male germ cells in a very complicated environment through many middle steps. In this study, we use the pluripotent p19 cells to test their responses to different retinoic acid (RA) concentrations by evaluating markers for stem cells (bmp4, egr3), primordial germ cells (ddx4), spermatogonia (c-kit), premeiotic cells (stra8), and male germ cells (dazl and plzf). We have found that cyp26b1, which will catalyze RA, increases dramatically in p19 cells 1 d after RA treatment. Bmp3, egr3, and stra8 are stimulated after 1 d of RA treatment and then recover to normal after 3 d of RA treatment. C-kit keeps being expressed when treated with 10 nM-4 μM RA. Dazl and plzf are gained after 3 d of stimulation. The morphology of RA (100 nM-4 μM)-treated cells changes distinctively, and cell colonies are formed. Typical neural cell-like and germ cell-like morphologies appear in the 100 nM and 4 μM RA groups, respectively. We conclude that 100-500 nM RA can cause responses in p19 cells, but a high concentration of RA (1-4 μM) can drive these pluripotent cells' differentiation towards male germ cells. However, high concentrations of RA are also toxic. Some colonies that survived from 4 μM RA begin to express ddx4 and c-kit. Selection of the c-kit(+), dazl(+), and ddx4(+) cells after RA stimulation and creating a special culture medium for their propagation might benefit successful spermatogenesis induction in vitro.

  19. The transcriptional repressor Blimp-1 acts downstream of BMP signaling to generate primordial germ cells in the cricket Gryllus bimaculatus.

    PubMed

    Nakamura, Taro; Extavour, Cassandra G

    2016-01-15

    Segregation of the germ line from the soma is an essential event for transmission of genetic information across generations in all sexually reproducing animals. Although some well-studied systems such as Drosophila and Xenopus use maternally inherited germ determinants to specify germ cells, most animals, including mice, appear to utilize zygotic inductive cell signals to specify germ cells during later embryogenesis. Such inductive germ cell specification is thought to be an ancestral trait of Bilateria, but major questions remain as to the nature of an ancestral mechanism to induce germ cells, and how that mechanism evolved. We previously reported that BMP signaling-based germ cell induction is conserved in both the mouse Mus musculus and the cricket Gryllus bimaculatus, which is an emerging model organism for functional studies of induction-based germ cell formation. In order to gain further insight into the functional evolution of germ cell specification, here we examined the Gryllus ortholog of the transcription factor Blimp-1 (also known as Prdm1), which is a widely conserved bilaterian gene known to play a crucial role in the specification of germ cells in mice. Our functional analyses of the Gryllus Blimp-1 ortholog revealed that it is essential for Gryllus primordial germ cell development, and is regulated by upstream input from the BMP signaling pathway. This functional conservation of the epistatic relationship between BMP signaling and Blimp-1 in inductive germ cell specification between mouse and cricket supports the hypothesis that this molecular mechanism regulated primordial germ cell specification in a last common bilaterian ancestor.

  20. Production of placental alkaline phosphatase (PLAP) and PLAP-like material by epithelial germ cell and non-germ cell tumours in vitro.

    PubMed Central

    Iles, R. K.; Ind, T. E.; Chard, T.

    1994-01-01

    Placental and placental-like alkaline phosphatase (PLAP) levels in the culture media of 87 cell lines of neoplastic and 'normal' origin were measured by a conventional immunosorbent enzymatic assay (IAEA) and by a new immunoradiometric assay (IRMA). The IRMA detected immunoreactive PLAP in 37 of 80 (46%) human epithelial and germ cell cultures, while the IAEA detected PLAP in only 25 (33%). Of the 52 non-germ cell tumour cultures, the IRMA detected expression in 24 (46%) and the IAEA in only 16 (31%). In 17 cases (21%) the IRMA recorded levels double that of the IAEA, while in five cultures (6%) the reverse was true. The IRMA was much more robust than the IAEA and had considerably lower inter- and intra-assay coefficients of variation (3.75-8.5% vs 5.2-46%). Detection of PLAP(-like) expression by IAEA is dependent on neoplastic expression of enzymatically functional molecules and quantification assumes constant enzyme kinetics. PLAP-like material has a higher catalytic rate constant than PLAP and thus will give higher values on a stoichiometric basis in an IAEA. The higher detection rate and levels of PLAP-like material in neoplastic cultures when measured by the IRMA clearly demonstrate ectopic expression of non-enzymatic PLAP and PLAP-like genes. The incidence of PLAP(-like) expression by non-germ cell and possible germ cell tumours has been underestimated and its utility as a tumour marker should be re-examined using assays which measure antigen mass rather than phosphatase activity. PMID:8297725

  1. Ghrelin modulates testicular germ cells apoptosis and proliferation in adult normal rats

    SciTech Connect

    Kheradmand, Arash; Dezfoulian, Omid; Alirezaei, Masoud; Rasoulian, Bahram

    2012-03-09

    Highlights: Black-Right-Pointing-Pointer Spermatogenesis is closely associated with the balance between germ cells proliferation and apoptosis. Black-Right-Pointing-Pointer Numerous studies have documented the direct action of ghrelin in the modulation of apoptosis in different cell types. Black-Right-Pointing-Pointer Ghrelin may be considered as a modulator of spermatogenesis in normal adult rats. Black-Right-Pointing-Pointer Ghrelin may be potentially implicated for abnormal spermatogenesis in some testicular germ cell tumors. -- Abstract: Under normal condition in the most mammals, spermatogenesis is closely associated with the balance between germ cells proliferation and apoptosis. The present study was designed to determine the effects of ghrelin treatment on in vivo quality and quantity expression of apoptosis and proliferation specific indices in rat testicular germ cells. Twenty eight adult normal rats were subdivided into equal control and treatment groups. Treatment group received 3 nmol of ghrelin as subcutaneous injection for 30 consecutive days or vehicle to the control animals. The rats from each group (n = 7) were killed on days 10 and 30 and their testes were taken for immunocytochemical evaluation and caspase-3 assay. Immunohistochemical analysis indicated that the accumulations of Bax and PCNA peptides are generally more prominent in spermatocytes and spermatogonia of both groups. Likewise, the mean percentage of immunoreactive spermatocytes against Bax increased (P < 0.01) in the ghrelin-treated group on day 10, while despite of 30% increment in the Bax level of spermatocytes in the treated rats on day 30, however, it was not statistically significant. During the experimental period, only a few spermatogonia represented Bax expression and the changes of Bax immunolabling cells were negligible upon ghrelin treatment. Likewise, there were immunostaining cells against Bcl-2 in each germ cell neither in the control nor in the treated animals. In fact

  2. Intratubular Germ Cell Neoplasia of the Testis, Bilateral Testicular Cancer, and Aberrant Histologies.

    PubMed

    Sharma, Pranav; Dhillon, Jasreman; Sexton, Wade J

    2015-08-01

    Intratubular germ cell neoplasia (ITGCN) is a precursor lesion for testicular germ cell tumors, most of which are early stage. ITGCN is also associated with testicular cancer or ITGCN in the contralateral testis, leading to a risk of bilateral testicular malignancy. Testicular biopsy detects most cases, and orchiectomy is the treatment of choice in patients with unilateral ITGCN. Low-dose radiation therapy is recommended in patients with bilateral ITGCN or ITGCN in the solitary testis, but the long-term risks of infertility and hypogonadism need to be discussed with the patient. Rare histologies of primary testicular cancer are also discussed.

  3. Identification and Genetic Analysis of Wunen, a Gene Guiding Drosophila Melanogaster Germ Cell Migration

    PubMed Central

    Zhang, N.; Zhang, J.; Cheng, Y.; Howard, K.

    1996-01-01

    We describe a novel genetic locus, wunen (wun), required for guidance of germ cell migration in early Drosophila development. Loss of wun function does not abolish movement but disrupts the orientation of the motion causing the germ cells to disperse even though their normal target, the somatic gonad, is well formed. We demonstrate that the product of this gene enables a signal to pass from the soma to the germ line and propose that the function of this signal is to selectively stabilize certain cytoplasmic extensions resulting in oriented movement. To characterize this guidance factor, we have mapped wun to within 100 kb of cloned DNA. PMID:8807296

  4. [Should the contralateral testis be systematically biopsied after orchidectomy for unilateral germ cell tumour of the testis?].

    PubMed

    Iborra, François; Mottet, Nicolas

    2005-04-01

    Intratubular neoplasia (ITN) of the testis is a precursor of germ cell tumour, apart from spermatocytic seminoma. It is often detected in testicular tissue adjacent to germ cell tumours, but is less common in the contralateral testis. Early diagnosis of ITN by testicular biopsy would allow earlier, conservative management. However, this approach remains highly controversial except in very specific indications.

  5. Uncoupling of pathways that promote postmitotic life span and apoptosis from replicative immortality of Caenorhabditis elegans germ cells.

    PubMed

    Ahmed, Shawn

    2006-12-01

    A dichotomy exists between germ and somatic cells in most organisms, such that somatic cell lineages proliferate for a single generation, whereas the germ cell lineage has the capacity to proliferate from one generation to the next, indefinitely. Several theories have been proposed to explain the unlimited replicative life span of germ cells, including the elimination of damaged germ cells by apoptosis or expression of high levels of gene products that prevent aging in somatic cells. These theories were tested in the nematode Caenorhabditis elegans by examining the consequences of eliminating either apoptosis or the daf-16, daf-18 or sir-2.1 genes that promote longevity of postmitotic somatic cells. However, germ cells of strains deficient for these activities displayed an unlimited proliferative capacity. Thus, C. elegans germ cells retain their youthful character via alternative pathways that prevent or eliminate damage that accumulates as a consequence of cell proliferation.

  6. Sex determination. foxl3 is a germ cell-intrinsic factor involved in sperm-egg fate decision in medaka.

    PubMed

    Nishimura, Toshiya; Sato, Tetsuya; Yamamoto, Yasuhiro; Watakabe, Ikuko; Ohkawa, Yasuyuki; Suyama, Mikita; Kobayashi, Satoru; Tanaka, Minoru

    2015-07-17

    Sex determination is an essential step in the commitment of a germ cell to a sperm or egg. However, the intrinsic factors that determine the sexual fate of vertebrate germ cells are unknown. Here, we show that foxl3, which is expressed in germ cells but not somatic cells in the gonad, is involved in sperm-egg fate decision in medaka fish. Adult XX medaka with disrupted foxl3 developed functional sperm in the expanded germinal epithelium of a histologically functional ovary. In chimeric medaka, mutant germ cells initiated spermatogenesis in female wild-type gonad. These results indicate that a germ cell-intrinsic cue for the sperm-egg fate decision is present in medaka and that spermatogenesis can proceed in a female gonadal environment.

  7. Consumption of alcoholic beverages in adolescence and adulthood and risk of testicular germ cell tumor.

    PubMed

    Biggs, Mary L; Doody, David R; Trabert, Britton; Starr, Jacqueline R; Chen, Chu; Schwartz, Stephen M

    2016-12-01

    The etiology of testicular germ cell tumor (TGCT) remains obscure and accumulating evidence suggests that postnatal environmental or lifestyle factors may play a role. To investigate whether consumption of alcoholic beverages during adolescence or adulthood is associated with TGCT risk, we analyzed data from a USA population-based case-control study of 540 18-44 year-old TGCT cases and 1,280 age-matched controls. Participants were queried separately about consumption of beer, wine and liquor during grades 7-8, grades 9-12 and the 5 years before reference date (date of diagnosis for cases and corresponding date for controls). We used logistic regression to estimate odds ratios (OR) and 95% confidence intervals (CI) for the association of TGCT risk with alcoholic beverage consumption during the different periods, both total and by specific beverage types and separately for seminomas and nonseminomas. Compared with nondrinkers in the 5 years before reference date, the OR (95% CI) for 1-6, 7-13 and ≥14 drinks per week were 1.20 (0.85, 1.69), 1.23 (0.81, 1.85) and 1.56 (1.03, 2.37), respectively (p-trend = 0.04). The corresponding results for alcohol consumption in grades 9-12 were 1.39 (1.06, 1.82), 1.07 (0.72, 1.60), 1.53 (1.01, 2.31) (p-trend = 0.05). Alcohol consumption in grades 7-8 was uncommon and no statistically significant associations with TGCT were observed. Associations with alcohol consumption in the 5 years before reference date appeared stronger for nonseminomas than for seminomas, but the differences were not statistically significant (p≥0.10). Associations were similar across different alcoholic beverage types. Consumption of alcoholic beverages may be associated with an increased TGCT risk.

  8. Temporal germ cell development strategy during continuous spermatogenesis within the montane lizard, Sceloporus bicanthalis (Squamata; Phrynosomatidae).

    PubMed

    Gribbins, Kevin; Anzalone, Marla; Collier, Matthew; Granados-González, Gisela; Villagrán-Santa Cruz, Maricela; Hernández-Gallegos, Oswaldo

    2011-10-01

    Sceloporus bicanthalis is a viviparous lizard that lives at higher elevations in Mexico. Adult male S. bicanthalis were collected (n = 36) from the Nevado de Toluca, Mexico (elevation is 4200 m) during August to December, 2007 and January to July, 2008. Testes were extracted, fixed in Trumps, and dehydrated in a graded series of ethanol. Tissues were embedded, sectioned (2 μm), stained, and examined via a light microscope to determine the spermatogenic developmental strategy of S. bicanthalis. In all months examined, the testes were spermiogenically active; based on this, plus the presence of sperm in the lumina of seminiferous tubules, we inferred that S. bicanthalis had year-round or continuous spermatogenesis, unlike most reptiles that occupy a temperate or montane habitat. It was recently reported that seasonally breeding reptiles had a temporal germ cell development strategy similar to amphibians, where germ cells progress through spermatogenesis as a single population, which leads to a single spermiation event. This was much different than spatial development within the testis of other derived amniotes. We hypothesized that germ cell development was temporal in S. bicanthalis. Therefore, we wanted to determine whether reptiles that practice continuous spermatogenesis have a mammalian-like spatial germ cell development, which is different than the typical temperate reptile exhibiting a temporal development. In the present study, S. bicanthalis had a temporal development strategy, despite its continuous spermatogenic cycle, making them similar to tropical anoles.

  9. Utility of Dexrazoxane for the Attenuation of Epirubicin-Induced Genetic Alterations in Mouse Germ Cells

    PubMed Central

    Ahmad, Sheikh F.; Ansaria, Mushtaq A.; Nadeem, Ahmed; Al-Shabanah, Othman A.; Al-Harbi, Mohammed M.; Bakheet, Saleh A.

    2016-01-01

    Dexrazoxane has been approved to treat anthracycline-induced cardiomyopathy and extravasation. However, the effect of dexrazoxane on epirubicin-induced genetic alterations in germ cells has not yet been reported. Thus, the aim of this study was to determine whether dexrazoxane modulates epirubicin-induced genetic damage in the germ cells of male mice. Our results show that dexrazoxane was not genotoxic at the tested doses. Furthermore, it protected mouse germ cells against epirubicin-induced genetic alterations as detected by the reduction in disomic and diploid sperm, spermatogonial chromosomal aberrations, and abnormal sperm heads. The attenuating effect of dexrazoxane was greater at higher dose, indicating a dose-dependent effect. Moreover, sperm motility and count were ameliorated by dexrazoxane pretreatment. Epirubicin induced marked biochemical changes characteristic of oxidative DNA damage including elevated 8-hydroxy-2ʹ-deoxyguanosine levels and reduction in reduced glutathione. Pretreatment of mice with dexrazoxane before epirubicin challenge restored these altered endpoints. We conclude that dexrazoxane may efficiently mitigate the epirubicin insult in male germ cells, and prevent the enhanced risk of abnormal reproductive outcomes and associated health risks. Thus, pretreating patients with dexrazoxane prior to epirubicin may efficiently preserve not only sperm quality but also prevent the transmission of genetic damage to future generations. PMID:27690233

  10. Gonadal status of male recipient mice influences germ cell development in immature buffalo testis tissue xenograft.

    PubMed

    Reddy, Niranjan; Mahla, Ranjeet Singh; Thathi, Revanth; Suman, Sanjay Kumar; Jose, Jedy; Goel, Sandeep

    2012-01-01

    Growth and development of immature testis xenograft from various domestic mammals has been shown in mouse recipients; however, buffalo testis xenografts have not been reported to date. In this study, small fragments of testis tissue from 8-week-old buffalo calves were implanted subcutaneously onto the back of immunodeficient male mouse recipients, which were either castrated or left intact (non-castrated). The xenografts were retrieved and analyzed 12 and 24 weeks later. The grafted tissue survived and grew in both types of recipient with a significant increase in weight and seminiferous tubule diameter. Recovery of grafts from intact recipients 24 weeks post-grafting was significantly lower than that from the castrated recipients. Seminal vesicle indices and serum testosterone levels were lower in castrated recipients at both collection time points in comparison to the intact recipients and non-grafted intact mouse controls. Pachytene spermatocytes were the most advanced germ cells observed in grafts recovered from castrated recipients 24 weeks post-grafting. Complete spermatogenesis, as indicated by the presence of elongated spermatids, was present only in grafts from intact recipients collected 24 weeks post-grafting. However, significant number of germ cells with DNA damage was also detected in these grafts as indicated by TUNEL assay. The complete germ cell differentiation in xenografts from intact recipients may be attributed to efficient Sertoli cell maturation. These results suggest that germ cell differentiation in buffalo testis xenograft can be completed by altering the recipient gonadal status.

  11. Germ cell proliferation and apoptosis during testicular regression in a seasonal breeding fish kept in captivity.

    PubMed

    Ribeiro, Yves Moreira; Matos, Santer Alvares de; Domingos, Fabricio Flavio Theophilo; Santos, Helio Batista Dos; Cruz Vieira, Augusto Bicalho; Bazzoli, Nilo; Rizzo, Elizete

    2017-09-12

    Cell proliferation and apoptosis regulate germ cells stock and sperm production, eliminate anomalous gametes, and are essential parameters to consider in fish farming. Herein, spermatogenic activity as well as germ cell proliferation and apoptosis were assessed in Leporinus taeniatus, a seasonal breeding species from the São Francisco River basin, Brazil. Testes of 24 adult fishes from a farming station were sampled between December and July and processed for light and transmission electron microscopy and immunohistochemistry for PCNA and TUNEL assay. The gonadosomatic index and seminiferous tubule diameters presented higher values during the breeding season (December/January and February/March), and then significantly reduced during the regression and resting stages (April/May and June/July). Phagocytosis of spermatozoa by Sertoli cells was evident during gonadal regression, but a significant number (up to 30%) remained at the tubular lumen during the resting stage. A higher PCNA/TUNEL ratio occurred in the breeding period, leading to an elevated proportion (%) of spermatogonia (GA and GB) in resting. Moreover, a higher TUNEL/PCNA ratio indicates the contribution of apoptosis to the reduction of germ cells during testicular regression. Together, these results indicate a shift in the balance between cell proliferation and apoptosis that contributes to the regulation of the spermatogenic cycle and germ cells pool of L. taeniatus kept in captivity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Germ cell cluster organization and oogenesis in the tardigrade Dactylobiotus parthenogeneticus Bertolani, 1982 (Eutardigrada, Murrayidae).

    PubMed

    Poprawa, Izabela; Hyra, Marta; Rost-Roszkowska, Magdalena Maria

    2015-07-01

    Germ cell cluster organization and the process of oogenesis in Dactylobiotus parthenogeneticus have been described using transmission electron microscopy and light microscopy. The reproductive system of D. parthenogeneticus is composed of a single, sac-like, meroistic ovary and a single oviduct that opens into the cloaca. Two zones can be distinguished in the ovary: a small germarium that is filled with oogonia and a vitellarium that is filled with germ cell clusters. The germ cell cluster, which has the form of a modified rosette, consists of eight cells that are interconnected by stable cytoplasmic bridges. The cell that has the highest number of stable cytoplasmic bridges (four bridges) finally develops into the oocyte, while the remaining cells become trophocytes. Vitellogenesis of a mixed type occurs in D. parthenogeneticus. One part of the yolk material is produced inside the oocyte (autosynthesis), while the second part is synthesized in the trophocytes and transported to the oocyte through the cytoplasmic bridges. The eggs are covered with two envelopes: a thin vitelline envelope and a three-layered chorion. The surface of the chorion forms small conical processes, the shape of which is characteristic for the species that was examined. In our paper, we present the first report on the rosette type of germ cell clusters in Parachela.

  13. Premeiotic germ cell defect in seminiferous tubules of Atm-null testis

    SciTech Connect

    Takubo, Keiyo . E-mail: keiyot@gmail.com; Hirao, Atsushi; Ohmura, Masako; Azuma, Masaki; Arai, Fumio; Nagamatsu, Go; Suda, Toshio . E-mail: sudato@sc.itc.keio.ac.jp

    2006-12-29

    Lifelong spermatogenesis is maintained by coordinated sequential processes including self-renewal of stem cells, proliferation of spermatogonial cells, meiotic division, and spermiogenesis. It has been shown that ataxia telangiectasia-mutated (ATM) is required for meiotic division of the seminiferous tubules. Here, we show that, in addition to its role in meiosis, ATM has a pivotal role in premeiotic germ cell maintenance. ATM is activated in premeiotic spermatogonial cells and the Atm-null testis shows progressive degeneration. In Atm-null testicular cells, differing from bone marrow cells of Atm-null mice, reactive oxygen species-mediated p16{sup Ink4a} activation does not occur in Atm-null premeiotic germ cells, which suggests the involvement of different signaling pathways from bone marrow defects. Although Atm-null bone marrow undergoes p16{sup Ink4a}-mediated cellular senescence program, Atm-null premeiotic germ cells exhibited cell cycle arrest and apoptotic elimination of premeiotic germ cells, which is different from p16{sup Ink4a}-mediated senescence.

  14. Arginine methylation of SmB is required for Drosophila germ cell development.

    PubMed

    Anne, Joël

    2010-09-01

    Sm proteins constitute the common core of spliceosomal small nuclear ribonucleoproteins. Although Sm proteins are known to be methylated at specific arginine residues within the C-terminal arginine-glycine dipeptide (RG) repeats, the biological relevance of these modifications remains unknown. In this study, a tissue-specific function of arginine methylation of the SmB protein was identified in Drosophila. Analysis of the distribution of SmB during oogenesis revealed that this protein accumulates at the posterior pole of the oocyte, a cytoplasmic region containing the polar granules, which are necessary for the formation of primordial germ cells. The pole plasm localisation of SmB requires the methylation of arginine residues in its RG repeats by the Capsuléen-Valois methylosome complex. Functional studies showed that the methylation of these arginine residues is essential for distinct processes of the germline life cycle, including germ cell formation, migration and differentiation. In particular, the methylation of a subset of these arginine residues appears essential for the anchoring of the polar granules at the posterior cortex of the oocyte, whereas the methylation of another subset controls germ cell migration during embryogenesis. These results demonstrate a crucial role of arginine methylation in directing the subcellular localisation of SmB and that this modification contributes specifically to the establishment and development of germ cells.

  15. The function and regulation of vasa-like genes in germ-cell development

    PubMed Central

    Raz, Erez

    2000-01-01

    The vasa gene, essential for germ-cell development, was originally identified in Drosophila, and has since been found in other invertebrates and vertebrates. Analysis of these vasa homologs has revealed a highly conserved role for Vasa protein among different organisms, as well as some important differences in its regulation. PMID:11178242

  16. Ectopic Expression of Testis Germ Cell Proteins in Cancer and Its Potential Role in Genomic Instability

    PubMed Central

    Nielsen, Aaraby Yoheswaran; Gjerstorff, Morten Frier

    2016-01-01

    Genomic instability is a hallmark of human cancer and an enabling factor for the genetic alterations that drive cancer development. The processes involved in genomic instability resemble those of meiosis, where genetic material is interchanged between homologous chromosomes. In most types of human cancer, epigenetic changes, including hypomethylation of gene promoters, lead to the ectopic expression of a large number of proteins normally restricted to the germ cells of the testis. Due to the similarities between meiosis and genomic instability, it has been proposed that activation of meiotic programs may drive genomic instability in cancer cells. Some germ cell proteins with ectopic expression in cancer cells indeed seem to promote genomic instability, while others reduce polyploidy and maintain mitotic fidelity. Furthermore, oncogenic germ cell proteins may indirectly contribute to genomic instability through induction of replication stress, similar to classic oncogenes. Thus, current evidence suggests that testis germ cell proteins are implicated in cancer development by regulating genomic instability during tumorigenesis, and these proteins therefore represent promising targets for novel therapeutic strategies. PMID:27275820

  17. bFGF signaling-mediated reprogramming of porcine primordial germ cells.

    PubMed

    Zhang, Yu; Ma, Jing; Li, Hai; Lv, Jiawei; Wei, Renyue; Cong, Yimei; Liu, Zhonghua

    2016-05-01

    Primordial germ cells (PGCs) have the ability to be reprogrammed into embryonic germ cells (EGCs) in vitro and are an alternative source of embryonic stem cells. Other than for the mouse, the systematic characterization of mammalian PGCs is still lacking, especially the process by which PGCs convert to pluripotency. This hampers the understanding of germ cell development and the derivation of authenticated EGCs from other species. We observed the morphological development of the genital ridge from Bama miniature pigs and found primary sexual differentiation in the E28 porcine embryo, coinciding with Blimp1 nuclear exclusion in PGCs. To explore molecular events involved in porcine PGC reprogramming, transcriptome data of porcine EGCs and fetal fibroblasts (FFs) were assembled and 1169 differentially expressed genes were used for Gene Ontology analysis. These genes were significantly enriched in cell-surface receptor-linked signal transduction, in agreement with the activation of LIF/Stat3 signaling and FGF signaling during the derivation of porcine EG-like cells. Using a growth-factor-defined culture system, we explored the effects of bFGF on the process and found that bFGF not only functioned at the very beginning of PGC dedifferentiation by impeding Blimp1 nuclear expression via a PI3K/AKT-dependent pathway but also maintained the viability of cultured PGCs thereafter. These results provide further insights into the development of germ cells from livestock and the mechanism of porcine PGC reprogramming.

  18. Hydrogen sulfide protects testicular germ cells against heat-induced injury.

    PubMed

    Li, Guang; Xie, Zhi-Zhong; Chua, Jason M W; Wong, P C; Bian, Jinsong

    2015-04-30

    The present study was designed to investigate whether H2S can protect testicular germ cells against heat exposure induced injury and the underlying mechanisms. It was found that all three H2S generating enzymes, cystathionine β-synthase (CBS), cystathionine γ-lysase (CSE), and 3-mercaptopyruvate sulfurtransferase (3 MST), were expressed in mouse testicular tissue. Three episodes of heat exposure (42 °C, 30 min/day, 3 days) significantly decreased endogenous H2S production and down-regulated the expression of CBS and CSE in testes. In primary cultured testicular germ cells, exogenous application of NaHS (an H2S donor) attenuated heat stress (42 °C, 30 min) induced cell death and apoptosis. This was mediated by the inhibitory effects of H2S on cytochrome C release and the ratio of the Bax/Bcl-2. NaHS also improved mitochondrial function by decreasing oxygen consumption and increasing ATP production. NaHS treatment also stimulated SOD activity and reduced ROS production. Our results revealed both physiological and pharmacological roles of H2S in testicular germ cells. Exogenous application of H2S may protect germ cells by preservation of mitochondrial function and stimulation of anti-oxidant activity. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Generation of germ cells in vitro in the era of induced pluripotent stem cells.

    PubMed

    Imamura, Masanori; Hikabe, Orie; Lin, Zachary Yu-Ching; Okano, Hideyuki

    2014-01-01

    Induced pluripotent stem cells (iPSCs) are stem cells that can be artificially generated via "cellular reprogramming" using gene transduction in somatic cells. iPSCs have enormous potential in stem-cell biology as they can give rise to numerous cell lineages, including the three germ layers. An evaluation of germ-line competency by blastocyst injection or tetraploid complementation, however, is critical for determining the developmental potential of mouse iPSCs towards germ cells. Recent studies have demonstrated that primordial germ cells obtained by the in vitro differentiation of iPSCs produce functional gametes as well as healthy offspring. These findings illustrate not only that iPSCs are developmentally similar to embryonic stem cells (ESCs), but also that somatic cells from adult tissues can produce gametes in vitro, that is, if they are reprogrammed into iPSCs. In this review, we discuss past and recent advances in the in vitro differentiation of germ cells using pluripotent stem cells, with an emphasis on ESCs and iPSCs. While this field of research is still at a stage of infancy, it holds great promises for investigating the mechanisms of germ-cell development, especially in humans, and for advancing reproductive and developmental engineering technologies in the future. © 2013 Wiley Periodicals, Inc.

  20. Trans-generational epigenetic regulation of C. elegans primordial germ cells

    PubMed Central

    2010-01-01

    Background The processes through which the germline maintains its continuity across generations has long been the focus of biological research. Recent studies have suggested that germline continuity can involve epigenetic regulation, including regulation of histone modifications. However, it is not clear how histone modifications generated in one generation can influence the transcription program and development of germ cells of the next. Results We show that the histone H3K36 methyltransferase maternal effect sterile (MES)-4 is an epigenetic modifier that prevents aberrant transcription activity in Caenorhabditis elegans primordial germ cells (PGCs). In mes-4 mutant PGCs, RNA Pol II activation is abnormally regulated and the PGCs degenerate. Genetic and genomewide analyses of MES-4-mediated H3K36 methylation suggest that MES-4 activity can operate independently of ongoing transcription, and may be predominantly responsible for maintenance methylation of H3K36 in germline-expressed loci. Conclusions Our data suggest a model in which MES-4 helps to maintain an 'epigenetic memory' of transcription that occurred in germ cells of previous generations, and that MES-4 and its epigenetic product are essential for normal germ cell development. PMID:20704745

  1. Second primary germ cell tumors in patients with seminoma of the testis.

    PubMed

    Cockburn, A G; Vugrin, D; Batata, M; Hajdu, S; Whitmore, W F

    1983-08-01

    In a review of our experience with seminoma 9 cases of bilateral primary testis germ cell tumors were encountered, including 2 simultaneous and 7 successive. Of the 9 cases 6 were bilateral seminomas and 7 were stage I, contributing to the good survival experience. Treatment policy is specified and discussed.

  2. Positive mRNA Translational Control in Germ Cells by Initiation Factor Selectivity

    PubMed Central

    Friday, Andrew J.; Keiper, Brett D.

    2015-01-01

    Ultimately, the production of new proteins in undetermined cells pushes them to new fates. Other proteins hold a stem cell in a mode of self-renewal. In germ cells, these decision-making proteins are produced largely from translational control of preexisting mRNAs. To date, all of the regulation has been attributed to RNA binding proteins (RBPs) that repress mRNAs in many models of germ cell development (Drosophila, mouse, C. elegans, and Xenopus). In this review, we focus on the selective, positive function of translation initiation factors eIF4E and eIF4G, which recruit mRNAs to ribosomes upon derepression. Evidence now shows that the two events are not separate but rather are coordinated through composite complexes of repressors and germ cell isoforms of eIF4 factors. Strikingly, the initiation factor isoforms are themselves mRNA selective. The mRNP complexes of translation factors and RBPs are built on specific populations of mRNAs to prime them for subsequent translation initiation. Simple rearrangement of the partners causes a dormant mRNP to become synthetically active in germ cells when and where they are required to support gametogenesis. PMID:26357652

  3. Germ cell development in the scleractinian coral Euphyllia ancora (Cnidaria, Anthozoa).

    PubMed

    Shikina, Shinya; Chen, Chieh-Jhen; Liou, Jhe-Yu; Shao, Zi-Fan; Chung, Yi-Jou; Lee, Yan-Horn; Chang, Ching-Fong

    2012-01-01

    Sexual reproduction of scleractinian coral is among the most important means of establishing coral populations. However, thus far, little is known about the mechanisms underlying coral gametogenesis. To better understand coral germ cell development, we performed a histological analysis of gametogenesis in Euphyllia ancora and characterized the coral homolog of the Drosophila germline marker gene vasa. The histological analysis revealed that E. ancora gametogenesis occurs in the mesenterial mesoglea between the mesenterial filaments and the retractor muscle bands. The development of germ cells takes approximately one year in females and half a year in males. Staining of tissue sections with an antibody against E. ancora Vasa (Eavas) revealed anti-Eavas immunoreactivity in the oogonia, early oocyte, and developing oocyte, but only faint or undetectable reactivity in developing oocytes that were >150 µm in diameters. In males, Eavas could be detected in the spermatogonia and primary spermatocytes but was only faintly detectable in the secondary spermatocytes, spermatids, and sperms. Furthermore, a reverse transcription-polymerase chain reaction analysis and Western blotting analysis of unfertilized mature eggs proved the presence of Eavas transcripts and proteins, suggesting that Eavas may be a maternal factor. Vasa may represent a germ cell marker for corals, and would allow us to distinguish germ cells from somatic cells in coral bodies that have no distinct organs.

  4. Germ Cell Development in the Scleractinian Coral Euphyllia ancora (Cnidaria, Anthozoa)

    PubMed Central

    Shikina, Shinya; Chen, Chieh-Jhen; Liou, Jhe-Yu; Shao, Zi-Fan; Chung, Yi-Jou; Lee, Yan-Horn; Chang, Ching-Fong

    2012-01-01

    Sexual reproduction of scleractinian coral is among the most important means of establishing coral populations. However, thus far, little is known about the mechanisms underlying coral gametogenesis. To better understand coral germ cell development, we performed a histological analysis of gametogenesis in Euphyllia ancora and characterized the coral homolog of the Drosophila germline marker gene vasa. The histological analysis revealed that E. ancora gametogenesis occurs in the mesenterial mesoglea between the mesenterial filaments and the retractor muscle bands. The development of germ cells takes approximately one year in females and half a year in males. Staining of tissue sections with an antibody against E. ancora Vasa (Eavas) revealed anti-Eavas immunoreactivity in the oogonia, early oocyte, and developing oocyte, but only faint or undetectable reactivity in developing oocytes that were >150 µm in diameters. In males, Eavas could be detected in the spermatogonia and primary spermatocytes but was only faintly detectable in the secondary spermatocytes, spermatids, and sperms. Furthermore, a reverse transcription-polymerase chain reaction analysis and Western blotting analysis of unfertilized mature eggs proved the presence of Eavas transcripts and proteins, suggesting that Eavas may be a maternal factor. Vasa may represent a germ cell marker for corals, and would allow us to distinguish germ cells from somatic cells in coral bodies that have no distinct organs. PMID:22848529

  5. From testis to teratomas: a brief history of male germ cells in mammals.

    PubMed

    De Felici, Massimo; Dolci, Susanna

    2013-01-01

    In antiquity, many theories were advanced on reproduction and the functions of the gonads. The male genitalia were called "testes" probably from the Latin word "testis" that originally meant "witnesses", because they provide evidence of virility. Through the first dissection of the seminipherous tubules by Renier de Graaf (1668), the discovery of spermatozoa by Antonj van Leeuwenhoek (1677) and in vitro fertilization by Spallanzani (1780) and later by George Newport and George Vines Ellis (1854), it was only in the early part of the XIX century when it was realized that testes produce spermatozoa and that they are essential for egg fertilization and subsequent embryo development. In the period between the end of the XIX and the beginning of the XX century, scientists such as Albert von Kölliker, Franz von Leydig, Enrico Sertoli and Gustaf Retzius (1842-1919) did microscopic observations of testis that marked the history of male germ cells and established the bases for the development of contemporary in vitro culture and molecular studies that are revealing the deeper secrets of male germ cells. Among these, those by Leroy Stevens on embryonal carcinoma cells in the early 1950s led to the present concepts that germ cells and cancer cells share several characteristics and that a close relationship exists between germ cells and stem cells, these being two pillars of modern developmental biology.

  6. The Magea gene cluster regulates male germ cell apoptosis without affecting the fertility in mice

    PubMed Central

    Hou, Siyuan; Xian, Li; Shi, Peiliang; Li, Chaojun; Lin, Zhaoyu; Gao, Xiang

    2016-01-01

    While apoptosis is essential for male germ cell development, improper activation of apoptosis in the testis can affect spermatogenesis and cause reproduction defects. Members of the MAGE-A (melanoma antigen family A) gene family are frequently clustered in mammalian genomes and are exclusively expressed in the testes of normal animals but abnormally activated in a wide variety of cancers. We investigated the potential roles of these genes in spermatogenesis by generating a mouse model with a 210-kb genomic deletion encompassing six members of the Magea gene cluster (Magea1, Magea2, Magea3, Magea5, Magea6 and Magea8). Male mice carrying the deletion displayed smaller testes from 2 months old with a marked increase in apoptotic germ cells in the first wave of spermatogenesis. Furthermore, we found that Magea genes prevented stress-induced spermatogenic apoptosis after N-ethyl-N-nitrosourea (ENU) treatment during the adult stage. Mechanistically, deletion of the Magea gene cluster resulted in a dramatic increase in apoptotic germ cells, predominantly spermatocytes, with activation of p53 and induction of Bax in the testes. These observations demonstrate that the Magea genes are crucial in maintaining normal testicular size and protecting germ cells from excessive apoptosis under genotoxic stress. PMID:27226137

  7. Intensive chemotherapy as salvage treatment for solid tumors: focus on germ cell cancer

    PubMed Central

    Selle, F.; Gligorov, J.; Richard, S.; Khalil, A.; Alexandre, I.; Avenin, D.; Provent, S.; Soares, D.G.; Lotz, J.P.

    2014-01-01

    Germ cell tumors present contrasting biological and molecular features compared to many solid tumors, which may partially explain their unusual sensitivity to chemotherapy. Reduced DNA repair capacity and enhanced induction of apoptosis appear to be key factors in the sensitivity of germ cell tumors to cisplatin. Despite substantial cure rates, some patients relapse and subsequently die of their disease. Intensive doses of chemotherapy are used to counter mechanisms of drug resistance. So far, high-dose chemotherapy with hematopoietic stem cell support for solid tumors is used only in the setting of testicular germ cell tumors. In that indication, high-dose chemotherapy is given as the first or late salvage treatment for patients with either relapsed or progressive tumors after initial conventional salvage chemotherapy. High-dose chemotherapy is usually given as two or three sequential cycles using carboplatin and etoposide with or without ifosfamide. The administration of intensive therapy carries significant side effects and can only be efficiently and safely conducted in specialized referral centers to assure optimum patient care outcomes. In breast and ovarian cancer, most studies have demonstrated improvement in progression-free survival (PFS), but overall survival remained unchanged. Therefore, most of these approaches have been dropped. In germ cell tumors, clinical trials are currently investigating novel therapeutic combinations and active treatments. In particular, the integration of targeted therapies constitutes an important area of research for patients with a poor prognosis. PMID:25493378

  8. Chub mackerel gonads support colonization, survival, and proliferation of intraperitoneally transplanted xenogenic germ cells.

    PubMed

    Yazawa, Ryosuke; Takeuchi, Yutaka; Higuchi, Kentaro; Yatabe, Takashi; Kabeya, Naoki; Yoshizaki, Goro

    2010-05-01

    The production of xenogenic gametes from large-bodied, commercially important marine fish species in closely related smaller host fish species with short generation times may enable rapid and simple seed production of the target species. As a first step toward this goal, we assessed the suitability of chub mackerel, Scomber japonicus, as a small-bodied recipient species for xenogenic spermatogonial transplantation. Histological observation of the early gonadal development of chub mackerel larvae and transplantation of fluorescent-labeled spermatogonia from Nibe croaker, Nibea mitsukurii, revealed that 5.3-mm chub mackerel larvae were suitable recipients for successful transplantation. Intraperitoneally transplanted xenogenic spermatogonia efficiently colonized the gonads of these recipient larvae, and donor-derived Nibe croaker germ cells proliferated rapidly soon after colonization. Moreover, gonadal soma-derived growth factor (gsdf) mRNA, a gonadal somatic cell marker, was expressed in recipient-derived cells surrounding the incorporated donor-derived germ cells, suggesting that donor-derived germ cells had settled at an appropriate location in the recipient gonad. Our data show that xenogenic spermatogonial transplantation was successful in chub mackerel and that the somatic microenvironment of the chub mackerel gonad can support the colonization, survival, and proliferation of intraperitoneally transplanted xenogenic germ cells derived from a donor species of a different taxonomic family.

  9. Robust In Vitro Induction of Human Germ Cell Fate from Pluripotent Stem Cells.

    PubMed

    Sasaki, Kotaro; Yokobayashi, Shihori; Nakamura, Tomonori; Okamoto, Ikuhiro; Yabuta, Yukihiro; Kurimoto, Kazuki; Ohta, Hiroshi; Moritoki, Yoshinobu; Iwatani, Chizuru; Tsuchiya, Hideaki; Nakamura, Shinichiro; Sekiguchi, Kiyotoshi; Sakuma, Tetsushi; Yamamoto, Takashi; Mori, Takahide; Woltjen, Knut; Nakagawa, Masato; Yamamoto, Takuya; Takahashi, Kazutoshi; Yamanaka, Shinya; Saitou, Mitinori

    2015-08-06

    Mechanisms underlying human germ cell development are unclear, partly due to difficulties in studying human embryos and lack of suitable experimental systems. Here, we show that human induced pluripotent stem cells (hiPSCs) differentiate into incipient mesoderm-like cells (iMeLCs), which robustly generate human primordial germ cell-like cells (hPGCLCs) that can be purified using the surface markers EpCAM and INTEGRINα6. The transcriptomes of hPGCLCs and primordial germ cells (PGCs) isolated from non-human primates are similar, and although specification of hPGCLCs and mouse PGCs rely on similar signaling pathways, hPGCLC specification transcriptionally activates germline fate without transiently inducing eminent somatic programs. This includes genes important for naive pluripotency and repression of key epigenetic modifiers, concomitant with epigenetic reprogramming. Accordingly, BLIMP1, which represses somatic programs in mice, activates and stabilizes a germline transcriptional circuit and represses a default neuronal differentiation program. Together, these findings provide a foundation for understanding and reconstituting human germ cell development in vitro.

  10. Loss of Dnd1 facilitates the cultivation of genital ridge-derived rat embryonic germ cells.

    PubMed

    Northrup, Emily; Eisenblätter, Regina; Glage, Silke; Rudolph, Cornelia; Dorsch, Martina; Schlegelberger, Brigitte; Hedrich, Hans-Jürgen; Zschemisch, Nils-Holger

    2011-08-01

    Pluripotent cells referred to as embryonic germ cells (EGCs) can be derived from the embryonic precursors of the mature gametes: the primordial germ cells (PGCs). A homozygous mutation (ter) of the dead-end homolog 1 gene (Dnd1) in the rat causes gonadal teratocarcinogenesis and sterility due to neoplastic transformation and loss of germ cells. We mated heterozygous ter/+ WKY-Dnd1(ter)/Ztm rats and were able to cultivate the first genital ridge-derived EGCs of the rat embryo at day 14.5 post coitum (pc). Genotyping revealed that ten EGC lines were Dnd1 deficient, while only one wild type cell line had survived in culture. This suggests that the inactivation of the putative tumor suppressor gene Dnd1 facilitates the immortalization of late EGCs in vitro. Injection of the wild type EGCs into blastocysts resulted in the first germ-line competent chimeras. These new pluripotent rat EGCs offer an innovative approach for studies on germ cell tumor development as well as a new tool for genetic manipulations in rats.

  11. LIN28 is selectively expressed by primordial and pre-meiotic germ cells in the human fetal ovary.

    PubMed

    Childs, Andrew J; Kinnell, Hazel L; He, Jing; Anderson, Richard A

    2012-09-01

    Germ cell development requires timely transition from primordial germ cell (PGC) self-renewal to meiotic differentiation. This is associated with widespread changes in gene expression, including downregulation of stem cell-associated genes, such as OCT4 and KIT, and upregulation of markers of germ cell differentiation and meiosis, such as VASA, STRA8, and SYCP3. The stem cell-expressed RNA-binding protein Lin28 has recently been demonstrated to be essential for PGC specification in mice, and LIN28 is expressed in human germ cell tumors with phenotypic similarities to human fetal germ cells. We have therefore examined the expression of LIN28 during normal germ cell development in the human fetal ovary, from the PGC stage, through meiosis to the initiation of follicle formation. LIN28 transcript levels were highest when the gonad contained only PGCs, and decreased significantly with increasing gestation, coincident with the onset of germ cell differentiation. Immunohistochemistry revealed LIN28 protein expression to be germ cell-specific at all stages examined. All PGCs expressed LIN28, but at later gestations expression was restricted to a subpopulation of germ cells, which we demonstrate to be primordial and premeiotic germ cells based on immunofluorescent colocalization of LIN28 and OCT4, and absence of overlap with the meiosis marker SYCP3. We also demonstrate the expression of the LIN28 target precursor pri-microRNA transcripts pri-LET7a/f/d and pri-LET-7g in the human fetal ovary, and that expression of these is highest at the PGC stage, mirroring that of LIN28. The spatial and temporal restriction of LIN28 expression and coincident peaks of expression of LIN28 and target pri-microRNAs suggest important roles for this protein in the maintenance of the germline stem cell state and the regulation of microRNA activity in the developing human ovary.

  12. RNA-binding protein LIN28 is a marker for testicular germ cell tumors.

    PubMed

    Cao, Dengfeng; Allan, Robert W; Cheng, Liang; Peng, Yan; Guo, Charles C; Dahiya, Neha; Akhi, Shirin; Li, Jianping

    2011-05-01

    LIN28 is an RNA-binding protein involved in maintaining the pluripotency of embryonic stem cells. Using formalin-fixed, paraffin-embedded tissue blocks, we performed immunohistochemical staining of LIN28 in 103 primary and 81 metastatic testicular germ cell tumors (54 intratubular germ cell neoplasias, unclassified type; 49 primary and 20 metastatic classic seminomas; 35 primary and 24 metastatic embryonal carcinomas; 35 primary and 15 metastatic yolk sac tumors; 23 primary and 12 metastatic teratomas; 6 primary and 10 metastatic choriocarcinomas; and 5 spermatocytic seminomas). The percentage of tumor cell stained was scored as 0 (0%), 1+ (≤30%), 2+ (31%-60%), 3+ (61%-90%), and 4+ (>90%). We stained LIN28 in 327 non-germ cell tumors to determine its specificity. We also compared LIN28 with SALL4 (Sal-like 4) and OCT4 (octamer-binding transcription factor 4) in all germ cell tumors. The staining was cytoplasmic for LIN28 and nuclear for SALL4 and OCT4. Strong 4+ LIN28 staining was seen in all 54 intratubular germ cell neoplasias, 59 embryonal carcinomas, and 50 yolk sac tumors. Positive LIN28 staining was seen in all 69 classic seminomas (1+ in 3, 3+ in 3, and 4+ in 63) (63, strong). Variable staining of LIN28 was seen in 10 of 35 teratomas (1+ to 3+, weak to strong intensity), 12 of 16 choriocarcinomas (1+ to 4+, weak to strong intensity), and 1 of 5 spermatocytic seminomas (2+, weak). Only 10 of 327 non-germ cell tumors showed 1+ weak LIN28 staining. Therefore, LIN28 is a highly sensitive marker for testicular intratubular germ cell neoplasias, classic seminomas, embryonal carcinomas, and yolk sac tumors with relatively high specificity. LIN28 can be used as a diagnostic marker for these tumors and has demonstrated a similar level of diagnostic utility as SALL4 (except for a few classic seminomas), although it does not show an advantage over SALL4. The major advantage of LIN28 over OCT4 is in diagnosing yolk sac tumors (yolk sac tumors negative for OCT4

  13. In vitro generation and characterization of chicken long-term germ cells from different embryonic origins.

    PubMed

    Raucci, Franca; Fuet, Aurelie; Pain, Bertrand

    2015-09-15

    Primordial germ cells (PGCs) are the precursors of differentiated germ cells. Located in the epiblast of a stage X (EG&K) embryo, the PGCs translocate anteriorly to the germinal crescent and migrate, within 48 to 56 hours of development, through the blood vascular system to the germinal ridges where they become the gonadal germ cells (GGCs). We aim to generate, compare, and determine the basic characters of the in vitro long-term cultured PGCs derived from (1) the chicken blastodermal cells (at stages IX-XII); (2) the chicken blood of a 2-day old embryo (stages 14-17 Hamburger Hamilton [HH]); and (3) the long-term cultured gonocytes taken from male gonads of a 5- to 6-day-old embryo (stages 29-30 HH). In presence of fibroblast growth factor, chicken blastodermal cells are able to long-term proliferate and generate small, round, alkaline phosphatase-positive cell clusters. Molecular characterization shows that these selected and amplified clusters show a PGC-like cell profile, as they express cPOUV (a pluripotent-associated marker), NR6A1/GCNF and DDX4/CVH (germ cell-specific genes). Both chicken PGCs and GGCs, obtained from embryonic blood and gonads, at 14 to 17 HH and 29 to 30 HH, respectively, generate long-term germ cell cultures and positively react in vitro to periodic acid-Schiff. Immunochemical analyses reveal that these cell lines are specifically recognized by anti-SSEA-1, anti-EMA-1, anti-CVH, anti-β1-integrin, and anti-CEACAM antibodies. The presence of surrounding cells may suggest a stronger dependency toward the niche process for the GGCs. The reactivity of chicken embryonic germ cells obtained from the two different sources to the specific markers used in this study was not altered through the culture. In conclusion, the morphologic analysis specific for chicken PGCs and GGCs will further contribute to quick and reliable characterization of long-term cultured in vitro chicken germ cells. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Separation of somatic and germ cells is required to establish primate spermatogonial cultures.

    PubMed

    Langenstroth, Daniel; Kossack, Nina; Westernströer, Birgit; Wistuba, Joachim; Behr, Rüdiger; Gromoll, Jörg; Schlatt, Stefan

    2014-09-01

    Can primate spermatogonial cultures be optimized by application of separation steps and well defined culture conditions? We identified the cell fraction which provides the best source for primate spermatogonia when prolonged culture is desired. Man and marmoset show similar characteristics in regard to germ cell development and function. Several protocols for isolation and culture of human testis-derived germline stem cells have been described. Subsequent analysis revealed doubts on the germline origin of these cells and characterized them as mesenchymal stem cells or fibroblasts. Studies using marmosets as preclinical model confirmed that the published isolation protocols did not lead to propagation of germline cells. Testicular cells derived from nine adult marmoset monkeys (Callithrix jacchus) were cultured for 1, 3, 6 and 11 days and consecutively analyzed for the presence of spermatogonia, differentiating germ cells and testicular somatic cells. Testicular tissue of nine adult marmoset monkeys was enzymatically dissociated and subjected to two different cell culture approaches. In the first approach all cells were kept in the same dish (non-separate culture, n = 5). In the second approach the supernatant cells were transferred into a new dish 24 h after seeding and subsequently supernatant and attached cells were cultured separately (separate culture, n = 4). Real-time quantitative PCR and immunofluorescence were used to analyze the expression of reliable germ cell and somatic markers throughout the culture period. Germ cell transplantation assays and subsequent wholemount analyses were performed to functionally evaluate the colonization of spermatogonial cells. This is the first report revealing an efficient isolation and culture of putative marmoset spermatogonial stem cells with colonization ability. Our results indicate that a separation of spermatogonia from testicular somatic cells is a crucial step during cell preparation. We identified the overgrowth

  15. Why do primordial germ cells migrate through an embryo and what does it mean for biological evolution?

    PubMed

    Olovnikov, A M

    2013-10-01

    An explanation of the role of primordial germ cell (PGC) migration during embryogenesis is proposed. According to the hypothesis, various PGCs during their migrations through an early embryo are contacting with anlagen of organs and acquiring nonidentical organ specificities. An individual PGC gets such an organ specificity, which corresponds to specificity of the first anlage with which this PGC has the first contact. As a result, the cellular descendants of PGCs (oocytes or spermatocytes) will express nonidentical organ-specific receptors, hence becoming functionally heterogeneous. Therefore, each clone of germ cells becomes capable of recognizing specifically the molecular signals that correspond only to "its" organ of the body. Such signals are produced by the body's organ when it functions in an extreme mode. Signals from the "exercising" organ of the body are delivered to the gonad only via the brain retransmitter, which is composed of neurons grouped as virtual organs of a homunculus. Homunculi are so-called somatotopic maps of the skeletomotor and other parts of the body represented in the brain. Signals, as complexes of regulatory RNAs and proteins, are transported from the "exercising" organ of the body to the corresponding virtual organ of the homunculus where they are processed and then forwarded to the gonad. The organ-specific signal will be selectively recognized by certain gametocytes according to their organ specificity, and then it will initiate the directed epimutation in the gametocyte genome. The nonrandomness of the gene order in chromosomes, that is the synteny and genetic map, is controlled by the so-called creatron that consolidates the soma and germline into a united system, providing the possibility of evolutionary responses of an organism to environmental influences.

  16. Compartmentalization and regulation of iron metabolism proteins protect male germ cells from iron overload.

    PubMed

    Leichtmann-Bardoogo, Yael; Cohen, Lyora A; Weiss, Avital; Marohn, Britta; Schubert, Stephanie; Meinhardt, Andreas; Meyron-Holtz, Esther G

    2012-06-15

    The universal importance of iron, its high toxicity, and complex chemistry present a challenge to biological systems in general and to protected compartments in particular. The high mitotic rate and avid mitochondriogenesis of developing male germ cells imply high iron requirements. Yet access to germ cells is tightly regulated by the blood-testis barrier that protects the meiotic and postmeiotic germ cells. To elucidate how iron is supplied to developing male germ cells, we analyzed iron deposition and iron transport proteins in testes of mice with iron overload and with genetic ablation of the iron regulators Hfe and iron regulatory protein 2. Iron accumulated mainly around seminiferous tubules, and only small amounts localized within the seminiferous tubules. The localization and regulation of proteins involved in iron import, storage, and export such as transferrin, transferrin receptor, the divalent metal transporter-1, cytosolic ferritin, and ferroportin strongly support a model of a largely autonomous iron cycle within seminiferous tubules. We show evidence that ferritin secretion from Sertoli cells may play an important role in iron acquisition of primary spermatocytes. During spermatogenic development iron is carried along from primary spermatocytes to spermatids, and from spermatids iron is recycled to the apical compartment of Sertoli cells, which traffic it back to a new generation of spermatocytes. Losses are replenished by the peripheral circulation. Such an internal iron cycle essentially detaches the iron homeostasis within the seminiferous tubule from the periphery and protects developing germ cells from iron fluctuations. This model explains how compartmentalization can optimize cellular and systemic nutrient homeostasis.

  17. Deleted in Azoospermia-Like Enhances In Vitro Derived Porcine Germ Cell Formation and Meiosis

    PubMed Central

    Park, Bong-Wook; Shen, Wei; Linher-Melville, Katja

    2013-01-01

    Evidence supporting that deleted in azoospermia-like (DAZL) plays a key role during gametogenesis and meiosis continues to emerge. Our study aimed to determine whether overexpression of DAZL using a lentiviral approach in a somatic stem cell to germ cell in vitro differentiation culture could enhance the formation of primordial germ cell-like cells (PLCs) and oocyte-like cells (OLCs). Introduction of DAZL at the beginning of induced differentiation significantly increased the formation of Fragilis-positive PLCs, which was independent of mitotic proliferation. In addition, mRNA levels of the germ cell markers Oct4, Stella, and Vasa were also higher in the DAZL-transduced group and suppressed when DAZL was knocked down using small interference RNA. At later stages of differentiation, the expression of several genes associated with meiosis, including Scp3, Dmc1, Rec8, and Stra8, was determined to be significantly higher when DAZL was overexpressed, which was abrogated by its knockdown. Exogenous introduction of DAZL also increased the protein levels of SCP3 and VASA, which again was reversed by its knockdown. Although not a common phenomenon in the in vitro differentiation system, the percentage of SCP3-positive cells displaying meiotic chromosome patterns in the DAZL-transduced group was higher than in the control, as was the overall percentage of OLCs that were generated. The introduction of factors such as DAZL into a stem cell-to-germ cell differentiation culture may provide an opportunity to better understand the key genes and their interactions during gametogenesis, also providing a means to enhance the generation of germ cells in vitro. PMID:23259838

  18. Analysis of treatment results in primary germ cell tumours with mediastinal location: own experience.

    PubMed

    Kowalski, Dariusz M; Knetki-Wróblewska, Magdalena; Winiarczyk, Kinga; Jaśkiewicz, Piotr; Orłowski, Tadeusz; Langfort, Renata; Krzakowski, Maciej; Olszewski, Michał

    2014-01-01

    Primary germ cell tumours with mediastinal location comprise 1-6% of mediastinal tumours and 2-5% of all germ cell tumours occurring in adults. They are identified mostly in the 3rd decade of life, in 90% of cases in men. The most common symptoms are dyspnea, chest pain, cough, fever and weight loss. The aim of the present study was the analysis of our own results of treatment of primary germ cell tumours with mediastinal location, and a review of the literature concerning this subject. Five patients (4 males, 1 female) median age 27.8 years (range 23-30 years) treated in the period from 1999 to 2009 in Maria Sklodowska-Curie Memorial Cancer Centre and Institute of Oncology, Department of Lung Cancer and Chest Tumours in Warsaw, due to germinal tumours with primary mediastinal location, entered the study. All patients received chemotherapy according to the BEP regimen. All patients achieved an objective response to treatment. Two patients died due to disease progression in spite of II- and III-line treatment. Three patients are still in follow-up. The median survival time was 55.8 months (range 8.0-120.0 months). Primary mediastinal germ cell tumours have worse prognosis than do those with gonadal location. Based on our observations and review of the literature, it can be concluded that the results of treatment of non-seminoma type germ cell tumours with primary mediastinal location remain poor. Patients who develop early recurrence or progression during first-line chemotherapy are particularly at risk of unfavourable outcome. Identification of new standards of treatment in tumours resistant to cisplatin require further studies evaluating the effectiveness of new generation cytostatic drugs.

  19. Low dose carboplatin combined with angiostatic agents prevents metastasis in human testicular germ cell tumor xenografts.

    PubMed

    Abraham, Dietmar; Abri, Samad; Hofmann, Michael; Höltl, Wolfgang; Aharinejad, Seyedhossein

    2003-10-01

    Low dose chemotherapy combined with angiogenesis inhibitors has been shown to be more effective for experimental tumor treatment than chemotherapy alone. To our knowledge whether germ cell tumors could benefit from this treatment strategy remains to be evaluated. We examined the efficacy of angiostatic thrombospondin-1 (TSP-1), endostatin and combined angiostatic/low dose carboplatin in mice xenografted with human nonseminomatous germ cell tumor. We monitored tumor progression and angiogenesis in the established model of human nonseminomatous germ cell tumor xenograft in 120 SCID mice using intravital video microscopy, immunocytochemistry and real-time polymerase chain reaction. Mice received TSP-1 (20 mg/kg daily) or endostatin (10 mg/kg daily) subcutaneously (via osmotic mini pumps) for 2 weeks starting 15 days after cancer cell grafting, carboplatin cycled twice (30 mg/kg intraperitoneally days 14 and 21 after cancer cell grafting), or a combination of carboplatin with TSP-1 or endostatin. Untreated, sham and tumor bearing mice treated with Ringer's solution served as controls. Primary tumor development was not affected in mice treated with TSP-1, endostatin or carboplatin alone. All animals had metastases at 6 months, while metastasis did not develop following the combination of carboplatin with TSP-1 or endostatin. This combined therapy suppressed tumor angiogenesis, enhanced apoptosis in tumor cells and decreased vascular endothelial growth factor-A tissue mRNA expression vs controls (p <0.05). These data indicate that angiostatic agents added to low dose carboplatin have the ability to suppress the progression of human germ cell tumor xenografts toward a metastatic phenotype. Therefore, this treatment strategy might be beneficial to prevent metastasis in germ cell tumors.

  20. Efficient carboplatin single therapy in a mouse model of human testicular nonseminomatous germ cell tumor.

    PubMed

    Aharinejad, Seyedhossein; Fink, Melanie; Abri, Hojatollah; Nedwed, Stephan; Schlag, Michael G; Macfelda, Karin; Abraham, Dietmar; Miksovsky, Aurelia; Höltl, Eva; Höltl, Wolfgang

    2002-01-01

    Cisplatin based combination therapy has shown excellent clinical results in patients with testicular nonseminomatous germ cell tumor but chemotherapy induced morbidity and reduced patient compliance are limiting factors in this regimen. To decrease cisplatin based combination therapy induced morbidity we examined carboplatin versus etoposide single therapy in an animal model. A total of 180 SCID mice bearing testicular nonseminomatous germ cell tumor xenografts received 120 mg./kg. carboplatin as a single cycle, 60 or 30 mg./kg. carboplatin cycled twice, 80, 50 or 30 mg./kg. etoposide cycled twice, or Ringer solution as the control. An additional 20 sham treated and 20 untreated mice also served as controls. Histological and immunocytochemical testing, in vivo microscopy, vascular corrosion casting, serum tumor markers, complete blood count and real-time polymerase chain reaction were used to monitor therapy efficacy. Carboplatin at 60 mg./kg. cycled twice eradicated the tumor and significantly reduced vascular density and vascular endothelial growth factor-A messenger RNA (p <0.05). Elevated tumor markers returned to baseline after carboplatin administration. Therapy was well tolerated, resulting thrombocytopenia disappeared 6 weeks after therapy and the animals were tumor-free 6 months after treatment. Although 120 mg./kg. carboplatin eradicated the tumor, it resulted in extensive mortality and morbidity. Single treatment 30, 50 and 80 mg./kg. etoposide failed. Carboplatin single therapy was highly effective in our nonseminomatous germ cell tumor model and it may be examined in future clinical trials in patients with high risk stage I nonseminomatous germ cell cancer for reducing cisplatin based combination therapy induced morbidity. Vascular density and vascular endothelial growth factor messenger RNA were elevated in our animal model and deserve further study in nonseminomatous germ cell tumor cases as potential risk factors.

  1. Transport of germ plasm on astral microtubules directs germ cell development in Drosophila

    PubMed Central

    Lerit, Dorothy A.; Gavis, Elizabeth R.

    2011-01-01

    Summary Background In many organisms, germ cells are segregated from the soma through the inheritance of the specialized germ plasm, which contains mRNAs and proteins that specify germ cell fate and promote germline development. Whereas germ plasm assembly has been well characterized, mechanisms mediating germ plasm inheritance are poorly understood. In the Drosophila embryo, germ plasm is anchored to the posterior cortex and nuclei that migrate into this region give rise to the germ cell progenitors, or pole cells. How the germ plasm interacts with these nuclei for pole cell induction and is selectively incorporated into the forming pole cells is not known. Results Live imaging of two conserved germ plasm components, nanos mRNA and Vasa protein, revealed that germ plasm segregation is a dynamic process involving active transport of germ plasm RNA-protein complexes coordinated with nuclear migration. We show that centrosomes accompanying posterior nuclei induce release of germ plasm from the cortex and recruit these components by dynein-dependent transport on centrosome-nucleated microtubules. As nuclei divide, continued transport on astral microtubules partitions germ plasm to daughter nuclei, leading to its segregation into pole cells. Disruption of these transport events prevents incorporation of germ plasm into pole cells and impairs germ cell development. Conclusions Our results indicate that active transport of germ plasm is essential for its inheritance and ensures the production of a discrete population of germ cell progenitors endowed with requisite factors for germline development. Transport on astral microtubules may provide a general mechanism for the effective segregation of cell fate determinants. PMID:21376599

  2. 2004 Mutagenesis Gordon Conference

    SciTech Connect

    Dr. Sue Jinks-Robertson

    2005-09-16

    Mutations are genetic alterations that drive biological evolution and cause many, if not all, human diseases. Mutation originates via two distinct mechanisms: ''vertical'' variation is de novo change of one or few bases, whereas ''horizontal'' variation occurs by genetic recombination, which creates new mosaics of pre-existing sequences. The Mutagenesis Conference has traditionally focused on the generation of mutagenic intermediates during normal DNA synthesis or in response to environmental insults, as well as the diverse repair mechanisms that prevent the fixation of such intermediates as permanent mutations. While the 2004 Conference will continue to focus on the molecular mechanisms of mutagenesis, there will be increased emphasis on the biological consequences of mutations, both in terms of evolutionary processes and in terms of human disease. The meeting will open with two historical accounts of mutation research that recapitulate the intellectual framework of this field and thereby place the current research paradigms into perspective. The two introductory keynote lectures will be followed by sessions on: (1) mutagenic systems, (2) hypermutable sequences, (3) mechanisms of mutation, (4) mutation avoidance systems, (5) mutation in human hereditary and infectious diseases, (6) mutation rates in evolution and genotype-phenotype relationships, (7) ecology, mutagenesis and the modeling of evolution and (8) genetic diversity of the human population and models for human mutagenesis. The Conference will end with a synthesis of the meeting as the keynote closing lecture.

  3. European consensus on diagnosis and treatment of germ cell cancer: a report of the European Germ Cell Cancer Consensus Group (EGCCCG).

    PubMed

    Schmoll, H J; Souchon, R; Krege, S; Albers, P; Beyer, J; Kollmannsberger, C; Fossa, S D; Skakkebaek, N E; de Wit, R; Fizazi, K; Droz, J P; Pizzocaro, G; Daugaard, G; de Mulder, P H M; Horwich, A; Oliver, T; Huddart, R; Rosti, G; Paz Ares, L; Pont, O; Hartmann, J T; Aass, N; Algaba, F; Bamberg, M; Bodrogi, I; Bokemeyer, C; Classen, J; Clemm, S; Culine, S; de Wit, M; Derigs, H G; Dieckmann, K P; Flasshove, M; Garcia del Muro, X; Gerl, A; Germa-Lluch, J R; Hartmann, M; Heidenreich, A; Hoeltl, W; Joffe, J; Jones, W; Kaiser, G; Klepp, O; Kliesch, S; Kisbenedek, L; Koehrmann, K U; Kuczyk, M; Laguna, M P; Leiva, O; Loy, V; Mason, M D; Mead, G M; Mueller, R P; Nicolai, N; Oosterhof, G O N; Pottek, T; Rick, O; Schmidberger, H; Sedlmayer, F; Siegert, W; Studer, U; Tjulandin, S; von der Maase, H; Walz, P; Weinknecht, S; Weissbach, L; Winter, E; Wittekind, C

    2004-09-01

    Germ cell tumour is the most frequent malignant tumour type in young men with a 100% rise in the incidence every 20 years. Despite this, the high sensitivity of germ cell tumours to platinum-based chemotherapy, together with radiation and surgical measures, leads to the high cure rate of > or = 99% in early stages and 90%, 75-80% and 50% in advanced disease with 'good', 'intermediate' and 'poor' prognostic criteria (IGCCCG classification), respectively. The high cure rate in patients with limited metastatic disease allows the reduction of overall treatment load, and therefore less acute and long-term toxicity, e.g. organ sparing surgery for specific cases, reduced dose and treatment volume of irradiation or substitution of node dissection by surveillance or adjuvant chemotherapy according to the presence or absence of vascular invasion. Thus, different treatment options according to prognostic factors including histology, stage and patient factors and possibilities of the treating centre as well may be used to define the treatment strategy which is definitively chosen for an individual patient. However, this strategy of reduction of treatment load as well as the treatment itself require very high expertise of the treating physician with careful management and follow-up and thorough cooperation by the patient as well to maintain the high rate for cure. Treatment decisions must be based on the available evidence which has been the basis for this consensus guideline delivering a clear proposal for diagnostic and treatment measures in each stage of gonadal and extragonadal germ cell tumour and individual clinical situations. Since this guideline is based on the highest evidence level available today, a deviation from these proposals should be a rare and justified exception.

  4. Activation of the germ-cell potential of human bone marrow-derived cells by a chemical carcinogen.

    PubMed

    Liu, Chunfang; Ma, Zhan; Xu, Songtao; Hou, Jun; Hu, Yao; Yu, Yinglu; Liu, Ruilai; Chen, Zhihong; Lu, Yuan

    2014-07-07

    Embryonic/germ cell traits are common in malignant tumors and are thought to be involved in malignant tumor behaviors. The reasons why tumors show strong embryonic/germline traits (displaced germ cells or gametogenic programming reactivation) are controversial. Here, we show that a chemical carcinogen, 3-methyl-cholanthrene (3-MCA), can trigger the germ-cell potential of human bone marrow-derived cells (hBMDCs). 3-MCA promoted the generation of germ cell-like cells from induced hBMDCs that had undergone malignant transformation, whereas similar results were not observed in the parallel hBMDC culture at the same time point. The malignant transformed hBMDCs spontaneously and more efficiently generated into germ cell-like cells even at the single-cell level. The germ cell-like cells from induced hBMDCs were similar to natural germ cells in many aspects, including morphology, gene expression, proliferation, migration, further development, and teratocarcinoma formation. Therefore, our results demonstrate that a chemical carcinogen can reactivate the germline phenotypes of human somatic tissue-derived cells, which might provide a novel idea to tumor biology and therapy.

  5. Germ cell-specific sustained activation of Wnt signalling perturbs spermatogenesis in aged mice, possibly through non-coding RNAs

    PubMed Central

    Kumar, Manish; Atkins, Joshua; Cairns, Murray; Ali, Ayesha; Tanwar, Pradeep S.

    2016-01-01

    Dysregulated Wnt signalling is associated with human infertility and testicular cancer. However, the role of Wnt signalling in male germ cells remains poorly understood. In this study, we first confirmed the activity of Wnt signalling in mouse, dog and human testes. To determine the physiological importance of the Wnt pathway, we developed a mouse model with germ cell-specific constitutive activation of βcatenin. In young mutants, similar to controls, germ cell development was normal. However, with age, mutant testes showed defective spermatogenesis, progressive germ cell loss, and flawed meiotic entry of spermatogonial cells. Flow sorting confirmed reduced germ cell populations at the leptotene/zygotene stages of meiosis in mutant group. Using thymidine analogues-based DNA double labelling technique, we further established decline in germ cell proliferation and differentiation. Overactivation of Wnt/βcatenin signalling in a spermatogonial cell line resulted in reduced cell proliferation, viability and colony formation. RNA sequencing analysis of testes revealed significant alterations in the non-coding regions of mutant mouse genome. One of the novel non-coding RNAs was switched on in mutant testes compared to controls. QPCR analysis confirmed upregulation of this unique non-coding RNA in mutant testis. In summary, our results highlight the significance of Wnt signalling in male germ cells. PMID:27992363

  6. Male Rat Germ Cells Display Age-Dependent and Cell-Specific Susceptibility in Response to Oxidative Stress Challenges.

    PubMed

    Selvaratnam, Johanna; Paul, Catriona; Robaire, Bernard

    2015-09-01

    For decades male germ cells were considered unaffected by aging, due to the fact that males continue to generate sperm into old age; however, evidence indicates that germ cells from aged males are of lower quality than those of young males. The current study examines the effects of aging on pachytene spermatocytes and round spermatids, and is the first study to culture these cells in isolation for an extended period. Our objective is to determine the cell-specific responses germ cells have to aging and oxidative insult. Culturing isolated germ cells from young and aged Brown Norway rats revealed that germ cells from aged males displayed an earlier decline in viability, elevated levels of reactive oxygen species (ROS), and increased spermatocyte DNA damage, compared to young males. Furthermore, oxidative insult by prooxidant 3-morpholinosydnonimine provides insight into how spermatocytes and spermatids manage excess ROS. Genome-wide microarray analyses revealed that several transcripts for antioxidants, Sod1, Cat, and Prdxs, were up-regulated in response to ROS in germ cells from young males while being expressed at lower levels in the aged. In contrast, the expression of DNA damage repair genes Rad50 and Atm were increased in the germ cells from aged animals. Our data indicate that as germ cells undergo spermatogenesis, they adapt and respond to oxidative stress differently, depending on their phase of development, and the process of aging results in redox dysfunction. Thus, even at early stages of spermatogenesis, germ cells from aged males are unable to mount an appropriate response to manage oxidative stress. © 2015 by the Society for the Study of Reproduction, Inc.

  7. Selection of the Inducer for the Differentiation of Chicken Embryonic Stem Cells into Male Germ Cells In Vitro.

    PubMed

    Zhang, Yani; Wang, Yingjie; Zuo, Qisheng; Wang, Xiaoyan; Li, Dong; Tang, Beibei; Li, Bichun

    2016-01-01

    Several inducers have been used to differentiate embryonic stem cells (ESCs) into male germ cells but the induction process has been inefficient. To solve the problem of low efficiency of inducer for ESCs differentiation into male germ cells, all-trans retinoic acid (ATRA), Am80(the retinoic acid receptor agonist), and estradiol (E2) was used to induce ESCs to differentiate into male germ cells in vitro. ESCs were cultured in media containing ATRA, Am80, or E2 respectively which can differentiate ESCs into a germ cell lineage. In process of ATRA and Am80 induction Group, germ cell-like cells can be observed in 10 days; but have no in E2 induction Group. The marker genes of germ cell: Dazl, Stra8, C-kit, Cvh, integrinα6, and integrinβ1 all showed a significant up-regulation in the expression level. The ATRA-induction group showed high expression of C-kit and Cvh around 4 days, and integrinα6 and integrinβ1 were activated on day 10, respectively, while the E2-,Am80- induction group showed a high expression of C-kit as early as 4 days immunocytochemistry results shown that, integrinα6 and integrinβ1 could be detected in the ATRA-, Am80-, and E2-induction group, Positive clones in the ATRA group were greater in number than those in the other two groups. we conclued that ATRA, Am80, and E2 can promote the expression of the corresponding genes of germ cells, and had different effect on the differentiation of ESCs into male germ cells. ATRA was the most effective inducer of germ cell differentiation.

  8. Selection of the Inducer for the Differentiation of Chicken Embryonic Stem Cells into Male Germ Cells In Vitro

    PubMed Central

    Zhang, Yani; Wang, Yingjie; Zuo, Qisheng; Wang, Xiaoyan; Li, Dong; Tang, Beibei; Li, Bichun

    2016-01-01

    Several inducers have been used to differentiate embryonic stem cells (ESCs) into male germ cells but the induction process has been inefficient. To solve the problem of low efficiency of inducer for ESCs differentiation into male germ cells, all-trans retinoic acid (ATRA), Am80(the retinoic acid receptor agonist), and estradiol (E2) was used to induce ESCs to differentiate into male germ cells in vitro. ESCs were cultured in media containing ATRA, Am80, or E2 respectively which can differentiate ESCs into a germ cell lineage. In process of ATRA and Am80 induction Group, germ cell-like cells can be observed in 10 days; but have no in E2 induction Group. The marker genes of germ cell: Dazl, Stra8, C-kit, Cvh, integrinα6, and integrinβ1 all showed a significant up-regulation in the expression level. The ATRA-induction group showed high expression of C-kit and Cvh around 4 days, and integrinα6 and integrinβ1 were activated on day 10, respectively, while the E2-,Am80- induction group showed a high expression of C-kit as early as 4 days immunocytochemistry results shown that, integrinα6 and integrinβ1 could be detected in the ATRA-, Am80-, and E2-induction group, Positive clones in the ATRA group were greater in number than those in the other two groups. we conclued that ATRA, Am80, and E2 can promote the expression of the corresponding genes of germ cells, and had different effect on the differentiation of ESCs into male germ cells. ATRA was the most effective inducer of germ cell differentiation. PMID:27741318

  9. Prognostic Significance of Venous Thromboembolic Events in Disseminated Germ Cell Cancer Patients.

    PubMed

    Gonzalez-Billalabeitia, Enrique; Castellano, Daniel; Sobrevilla, Nora; Guma, Josep; Hervas, David; Luengo, Maria I; Aparicio, Jorge; Sanchez-Muñoz, Alfonso; Mellado, Begoña; Saenz, Alberto; Valverde, Claudia; Fernandez, Antonio; Margeli, Mireia; Duran, Ignacio; Fernandez, Sara; Sastre, Javier; Ros, Silverio; Maroto, Pablo; Manneh, Ray; Cerezuela, Pablo; Carmona-Bayonas, Alberto; Ayala de la Peña, Francisco; Aguilar, Jose Luis; Rivera, Samuel; García del Muro, Xavier; Germà-Lluch, Jose R

    2017-01-01

    Disseminated germ cell cancers are at high risk of developing thromboembolic complications. We evaluated the prognostic value of venous thromboembolic events (VTE) in disseminated germ cell cancer. Patients with germ cell cancer receiving upfront platinum-containing chemotherapy between 2004 and 2014 were pooled from the Spanish Germ Cell Cancer Group (SGCCG) registry and reviewed for the presence of VTE. Results were validated in an independent international group of patients. We used a penalized Cox proportional hazards model including VTE as a time-varying covariate to identify and validate prognostic factors. All statistical tests were two-sided. The SGCCG registry identified 416 patients from 14 referral institutions. With a median follow-up of 49 months, VTEs were observed in 9% of patients (n = 38). Events occurred at diagnosis, during chemotherapy, and after chemotherapy in 2.6%, 5.0%, and 1.4% of patients, respectively. VTE was associated with shorter progression-free survival (PFS; hazard ratio [HR] = 2.29, 95% confidence interval [CI] = 1.18 to 4.47, P = .02) and overall survival (OS; HR = 5.14, 95% CI = 2.22 to 11.88, P < .001). In multivariable analysis, the effect was consistent in the intermediate-risk group, both for PFS (HR = 9.52 95% CI = 2.48 to 36.58, P < .001) and OS (HR = 12.84, 95% CI = 2.01 to 82.02, P = .007). VTE at diagnosis is also an adverse prognostic variable for progression-free survival (HR = 4.64, 95% CI = 2.04 to 10.54, P < .001) and for overall survival (HR = 6.28, 95% CI = 1.68 to 17.10, P = .01). These results were validated in an independent international cohort that included 241 patients from four hospitals. VTE is an independent adverse prognostic factor in disseminated germ cell cancers, in particular for the intermediate prognostic group of the International Germ Cell Cancer Collaborative Group classification. The presence of VTE at diagnosis has also prognostic significance and

  10. Impact of Non-Pulmonary Visceral Metastases in the Prognosis and Practice of Metastatic Testicular Germ Cell Tumors

    PubMed Central

    Rossi, Lorena; Martignano, Filippo; Gallà, Valentina; Maugeri, Antonio; Schepisi, Giuseppe

    2016-01-01

    Non-pulmonary visceral metastases, in bones, brain and liver, represent nearly the 10% of metastatic sites of advanced germ cell tumors and are associated with poor prognosis. This review article summarizes major evidences on the impact of different visceral sites on the prognosis, treatment and clinical outcome of patients with germ cell tumors. The clinic-biological mechanisms by which these metastatic sites are associated with poor clinical outcome remain unclear. The multimodality treatment showed a potential better survival, in particular in patients with relapsed disease. Patients with advanced germ cell tumors with visceral metastases should be referred to centers with high expertise in the clinical management of such disease. PMID:27471579

  11. Melphalan, Carboplatin, Mannitol, and Sodium Thiosulfate in Treating Patients With Recurrent or Progressive CNS Embryonal or Germ Cell Tumors

    ClinicalTrials.gov

    2017-06-19

    Adult Central Nervous System Germ Cell Tumor; Adult Embryonal Tumor With Multilayered Rosettes, C19MC-Altered; Adult Medulloblastoma; Adult Pineoblastoma; Adult Supratentorial Embryonal Tumor, Not Otherwise Specified; Atypical Teratoid/Rhabdoid Tumor; Childhood Atypical Teratoid/Rhabdoid Tumor; Childhood Central Nervous System Germ Cell Tumor; Childhood Embryonal Tumor With Multilayered Rosettes, C19MC-Altered; Medulloepithelioma; Ototoxicity; Recurrent Adult Brain Neoplasm; Recurrent Childhood Central Nervous System Embryonal Neoplasm; Recurrent Childhood Malignant Germ Cell Tumor; Recurrent Childhood Medulloblastoma; Recurrent Childhood Pineoblastoma; Recurrent Childhood Supratentorial Embryonal Tumor, Not Otherwise Specified

  12. Prenatal exposure to chromium induces early reproductive senescence by increasing germ cell apoptosis and advancing germ cell cyst breakdown in the F1 offspring.

    PubMed

    Sivakumar, Kirthiram K; Stanley, Jone A; Arosh, Joe A; Pepling, Melissa E; Burghardt, Robert C; Banu, Sakhila K

    2014-04-01

    Hexavalent chromium (CrVI), one of the more toxic heavy metals, is widely used in more than 50 industries such as chrome plating, welding, wood processing and tanneries. As one of the world's leading producers of chromium compounds, the U.S. is facing growing challenges in protecting human health against multiple adverse effects of CrVI. CrVI is rapidly converted to CrIII intracellularly, and can induce apoptosis through different mechanisms. Our previous studies demonstrated postnatal exposure to CrVI results in a delay or arrest in follicle development and puberty. Pregnant rats were treated with 25 ppm potassium dichromate (CrVI) from gestational day (GD) 9.5 to 14.5 through drinking water, placentae were removed on GD 20, and total Cr was estimated in the placentae; ovaries were removed from the F1 offspring on postnatal day (PND)-1 and various analyses were performed. Our results show that gestational exposure to CrVI resulted in (i) increased Cr concentration in the placenta, (ii) increased germ cell apoptosis by up-regulating p53/p27-Bax-caspase-3 proteins and by increasing p53-SOD-2 co-localization; (iii) accelerated germ cell cyst (GCC) breakdown; (iv) advanced primordial follicle assembly and primary follicle transition and (v) down regulation of p-AKT, p-ERK and XIAP. As a result of the above events, CrVI induced early reproductive senescence and decrease in litter size in F1 female progeny.

  13. A non-surgical approach for male germ cell mediated gene transmission through transgenesis

    PubMed Central

    Usmani, Abul; Ganguli, Nirmalya; Sarkar, Hironmoy; Dhup, Suveera; Batta, Suryaprakash R.; Vimal, Manoj; Ganguli, Nilanjana; Basu, Sayon; Nagarajan, P.; Majumdar, Subeer S.

    2013-01-01

    Microinjection of foreign DNA in male pronucleus by in-vitro embryo manipulation is difficult but remains the method of choice for generating transgenic animals. Other procedures, including retroviral and embryonic stem cell mediated transgenesis are equally complicated and have limitations. Although our previously reported technique of testicular transgenesis circumvented several limitations, it involved many steps, including surgery and hemicastration, which carried risk of infection and impotency. We improved this technique further, into a two step non-surgical electroporation procedure, for making transgenic mice. In this approach, transgene was delivered inside both testes by injection and modified parameters of electroporation were used for in-vivo gene integration in germ cells. Using variety of constructs, germ cell integration of the gene and its transmission in progeny was confirmed by PCR, slot blot and immunohistochemical analysis. This improved technique is efficient, requires substantially less time and can be easily adopted by various biomedical researchers. PMID:24305437

  14. Teratocarcinoma in a non seminomatous, mixed germ cell tumour of the testis-a rare entity.

    PubMed

    Malavalli, Gayathri; Karra, Shilpa; Muniyappa, Bharathi

    2013-07-01

    Mixed Germ Cell Tumours (MGCTs) of the testis are the second most common testicular tumours. In the 10 years retrospective study which was done on testicular neoplasms at our institute, this reported case accounted for 0.4%. We are presenting the case of a 30 year old male with a painless testicular swelling. Abdominal ultrasonography disclosed it as a seminoma and the FNAC report was Mixed Germ Cell tumour of the testis. Histopathology concurred the cytological diagnosis and it additionally revealed the concomitant presence of a Yolk Sac Tumour (YST) and a Teratocarcinoma in a Non-Seminomatous Tumour of the testis. This case attains uniqueness with the very rare presence of the yolk sac tumour with the teratocarcinoma component in Non-Seminomatous Testicular Tumours. The reason behind the reporting of the case was its poor therapeutic response.

  15. Improvement of transfection efficiency in cultured chicken primordial germ cells by percoll density gradient centrifugation.

    PubMed

    Oishi, Isao

    2010-01-01

    Chicken primordial germ cells (PGCs) differentiate into germ cells in gonads. Because PGCs can be cloned and cultured maintaining germline competency, they are a good means of modifying the chicken genome, but the efficiency of plasmid transfection into PGCs is very low. In this study, I attempted to improve the efficiency of PGC transfection. Cultured PGCs were purified by Percoll density gradient centrifugation, and were then transfected with plasmid DNA. For transient transfection, the transfection efficiency increased more than 7-fold by the Percoll method. The efficiency of stable transfection of PGCs also increased significantly. The stable transfectants that were isolated by this method accumulated in the developing gonads after microinjection into bloodstream of chick embryos, indicating that gene transfection by Percoll purification did not alter the function of PGCs in vivo.

  16. Male germ cell-specific expression of a novel Patched-domain containing gene Ptchd3

    SciTech Connect

    Fan Jun; Akabane, Hiroto; Zheng Xuehai; Zhou Xuan; Zhang Li; Liu Qiang; Zhang Yonglian; Yang Jing; Zhu Guozhang

    2007-11-23

    The Hedgehog (Hh) signaling pathway plays an important role in various biological processes, including pattern formation, cell fate determination, proliferation, and differentiation. Hh function is mediated through its membrane receptor Patched. Herein, we have characterized a novel Patched-domain containing gene Ptchd3 in mouse. Messenger RNA of Ptchd3 was exclusively detected in the testis, and existed in two isoforms Ptchd3a and Ptchd3b. The expression of these two mRNA isoforms was shown to be developmentally regulated in testes, and specifically found in male germ cells. Further analysis revealed that the Ptchd3 protein was located on the midpiece of mouse, rat and human sperm. Collectively, these results indicate that Ptchd3 is a novel male germ cell-specific gene and may be involved in the Hh signaling to regulate sperm development and/or sperm function.

  17. A suprasellar germ cell tumor in a 16-month-old Wagyu heifer calf.

    PubMed

    Brooks, Aimee N; Brooks, Kelly N; Oglesbee, Michael J

    2012-05-01

    A 16-month-old Wagyu heifer calf presented for depression, inappetence, and polyuria/polydipsia. Physical examination revealed that the heifer calf was mentally dull, subjectively small for her age, bradycardic, and hypothermic and had bilateral nasal discharge. Laboratory tests revealed marked serum and cerebrospinal fluid hypernatremia and hyperchloremia with increased cerebrospinal fluid protein. The heifer calf was treated with Ringer solution intravenously for dehydration and electrolyte abnormalities, and with 1 dose each of thiamine and penicillin. Clinical deterioration prompted the owner to elect humane euthanasia. Necropsy revealed a mass lesion in the suprasellar region. Histopathology was consistent with a suprasellar germ cell tumor; the mass stained positive on immunohistochemistry for cytokeratin, vimentin, and c-kit. Suprasellar germ cell tumors have previously been reported in human beings and dogs.

  18. Modifications of wheat germ cell-free system for functional proteomics of plant membrane proteins.

    PubMed

    Nozawa, Akira; Tozawa, Yuzuru

    2014-01-01

    Functional proteomics of plant membrane proteins is an important approach to understand the comprehensive architecture of each metabolic pathway in plants. One bottleneck in the characterization of membrane proteins is the difficulty in producing sufficient quantities of functional protein for analysis. Here, we describe three methods for membrane protein production utilizing a wheat germ cell-free protein expression system. Owing to the open nature of cell-free synthesis reaction, protein synthesis can be modified with components necessary to produce functional protein. In this way we have developed modifications to a wheat germ cell-free system for the production of functional membrane proteins. Supplementation of liposomes or detergents allows the synthesis of functional integral membrane proteins. Furthermore, supplementation of myristic acid enables synthesis of N-myristylated peripheral membrane proteins. These modified cell-free synthesis methods facilitate the preparation and subsequent functional analyses of a wide variety of membrane proteins.

  19. Molecular targets, DNA breakage, DNA repair: Their roles in mutation induction in mammalian germ cells

    SciTech Connect

    Sega, G.A.

    1989-01-01

    Variability in genetic sensitivity among different germ-cell stages in the mammal to various mutagens could be the result of how much chemical reaches the different stages, what molecular targets may be affected in the different stages and whether or not repair of lesions occurs. Several chemicals have been found to bind very strongly to protamine in late-spermatid and early-spermatozoa stages in the mouse. The chemicals also produce their greatest genetic damage in these same germ-cell stages. While chemical binding to DNA has not been correlated with the level of induced genetic damage, DNA breakage in the sensitive stages has been shown to increase. This DNA breakage is believed to indirectly result from chemical binding to sulfhydryl groups in protamine which prevents normal chromatin condensation within the sperm nucleus. 22 refs., 5 figs.

  20. Metastable primordial germ cell-like state induced from mouse embryonic stem cells by Akt activation

    SciTech Connect

    Yamano, Noriko; Kimura, Tohru; Watanabe-Kushima, Shoko; Shinohara, Takashi; Nakano, Toru

    2010-02-12

    Specification to primordial germ cells (PGCs) is mediated by mesoderm-induction signals during gastrulation. We found that Akt activation during in vitro mesodermal differentiation of embryonic stem cells (ESCs) generated self-renewing spheres with differentiation states between those of ESCs and PGCs. Essential regulators for PGC specification and their downstream germ cell-specific genes were expressed in the spheres, indicating that the sphere cells had commenced differentiation to the germ lineage. However, the spheres did not proceed to spermatogenesis after transplantation into testes. Sphere cell transfer to the original feeder-free ESC cultures resulted in chaotic differentiation. In contrast, when the spheres were cultured on mouse embryonic fibroblasts or in the presence of ERK-cascade and GSK3 inhibitors, reversion to the ESC-like state was observed. These results indicate that Akt signaling promotes a novel metastable and pluripotent state that is intermediate to those of ESCs and PGCs.

  1. Murine somatic cell nuclear transfer using reprogrammed donor cells expressing male germ cell-specific genes.

    PubMed

    Kang, Hoin; Park, Jong Im; Roh, Sangho

    2016-01-01

    In vivo-matured mouse oocytes were enucleated, and a single murine embryonic fibroblast (control or reprogrammed by introducing extracts from murine testis tissue, which showed expression of male germ cell-specific genes) was injected into the cytoplasm of the oocytes. The rate of blastocyst development and expression levels of Oct-4, Eomes and Cdx-2 were not significantly different in both experimental groups. However, the expression levels of Nanog, Sox9 and Glut-1 were significantly increased when reprogrammed cells were used as donor nuclei. Increased expression of Nanog can be supportive of complete reprogramming of somatic cell nuclear transfer murine embryos. The present study suggested that donor cells expressing male germ cell-specific genes can be reconstructed and can develop into embryos with normal high expression of developmentally essential genes.

  2. Giant adrenal germ cell tumour in a 59-year-old woman

    PubMed Central

    Chen, Lei; Fang, Lu; Liu, Zhiqi; Yu, Dexin; Wang, Daming; Wang, Yi; Xie, Dongdong; Min, Jie; Ding, Demao; Zhang, Tao; Zou, Ci; Zhang, Zhiqiang

    2016-01-01

    Adrenal germ cell tumour is very rare. We report a case of a 59-year-old woman who presented with right flank discomfort. The laboratory examinations were normal and the chest computed tomography (CT) showed right pleural effusion. The abdominal CT scan revealed a large mass on the right adrenal gland. The patient underwent an adrenalectomy. Histopathologic examination and immunohistochemical findings were consistent with mixed germ cell tumour. Three months later following the operation, the patient was admitted to our hospital again with chest tightness and shortness of breath. The chest CT showed right pleural effusion recurrence and enlargement of mediastinal lymph nodes and right hilar lymph nodes. The patient had right supraclavicular lymphadenectasis on physical examination. Fine needle aspiration cytology from the supraclavicular lymph nodes showed groups of malignant tumour cells. The patient died within 6 months postoperatively. In this case, the lymph node pathway played an important role in the metastatic procedure. PMID:27790306

  3. Treatment of a primary intracranial germ cell tumor with systemic chemotherapy

    SciTech Connect

    Kirshner, J.J.; Ginsberg, S.J.; Fitzpatrick, A.V.; Comis, R.L.

    1981-01-01

    Primary germ cell neoplasms of the central nervous system (CNS) are rare tumors which generally respond to radiotherapy. Experience is limited in managing the refractory patient. We report a patient whose suprasellar dysgerminoma responded completely to 5,000 rad. Seven years later, disease recurrence was refractory to an additional 4,000 rad. Theorizing that the ''blood-brain barrier'' was no longer intact after extensive radiotherapy and tumor involvement of the ventricular system, the patient was treated with systemic bleomycin, cisplatin, and vinblastine. Pharmacokinetic studies revealed that the bleomycin and cisplatin entered the cerebrospinal fluid. Serial CT scans and CSF levels of beta-HCG confirmed the clinical impression of a partial remission. Subsequent tumor progression was refractory to therapy with intraventricular bleomycin. It is concluded that systemic chemotherapy may be beneficial in certain cases of CNS germ cell neoplasms.

  4. Acrylamide: dermal exposure produces genetic damage in male mouse germ cells.

    PubMed

    Gutierrez-Espeleta, G A; Hughes, L A; Piegorsch, W W; Shelby, M D; Generoso, W M

    1992-02-01

    Acrylamide is used extensively in sewage and wastewater treatment plants, in the paper and pulp industry, in treatment of potable water, and in research laboratories for chromatography, electrophoresis, and electron microscopy. Dermal contact is a major route of human exposure. It has been shown that acrylamide is highly effective in breaking chromosomes of germ cells of male mice and rats when administered intraperitoneally or orally, resulting both in the early death of conceptuses and in the transmission of reciprocal translocations to live-born progeny. It is now reported that acrylamide is absorbed through the skin of male mice, reaches the germ cells, and induces chromosomal damage. The magnitude of genetic damage appears to be proportional to the dose administered topically.

  5. Caenorhabditis Nematodes as a Model for the Adaptive Evolution of Germ Cells

    PubMed Central

    Haag, Eric S.

    2010-01-01

    A number of major adaptations in animals have been mediated by alteration of germ cells and their immediate derivatives, the gametes. Here, several such cases are discussed, including examples from echinoderms, vertebrates, insects, and nematodes. A feature of germ cells that make their development (and hence evolution) distinct from the soma is the prominent role played by post-transcriptional controls of mRNA translation in the regulation of proliferation and differentiation. This presents a number of special challenges for investigation of the evolution of germline development. Caenorhabditis nematodes represent a particularly favorable system for addressing these challenges, both because of technical advantages and (most importantly) because of natural variation in mating system that is rooted in alterations of germline sex determination. Recent studies that employ comparative genetic methods in this rapidly maturing system are discussed, and likely areas for future progress are identified. PMID:19361689

  6. A spindle-independent cleavage pathway controls germ cell formation in Drosophila

    PubMed Central

    Cinalli, Ryan M.; Lehmann, Ruth

    2013-01-01

    The primordial germ cells (PGCs) are the first cells to form during Drosophila melanogaster embryogenesis. While the process of somatic cell formation has been studied in detail, the mechanics of PGC formation are poorly understood. Here, using 4D multi-photon imaging combined with genetic and pharmacological manipulations, we find that PGC formation requires an anaphase spindle-independent cleavage pathway. In addition to utilizing core regulators of cleavage, including the small GTPase RhoA (Drosophila Rho) and the Rho associated kinase, ROCK (Drosophila Rok), we show that this pathway requires Germ cell-less (Gcl), a conserved BTB-domain protein not previously implicated in cleavage mechanics. This alternate form of cell formation suggests that organisms have evolved multiple molecular strategies for regulating the cytoskeleton during cleavage. PMID:23728423

  7. [Role of GAGA Factor in Drosophila Primordial Germ Cell Migration and Gonad Development].

    PubMed

    Dorogova, N V; Khrushcheva, A S; Fedorova, E V; Ogienko, A A; Baricheva, E M

    2016-01-01

    The GAGA protein of drosophila is a factor involved in epigenetic transcription regulation of a large gene group controlling developmental processes. In this paper, the role of GAGA factor in germ cell migration is demonstrated as well as its effect on the gonad development in drosophila embryogenesis. Mutations in the Trl gene, encoding GAGA factor, prematurely induces the active migration program and relocation of the primordial cells inward the embryo before the beginning of gastrulation. The germ cells that prematurely separated from the main group migrate ectopically, lose orientation, and stay out of gonad development. Expression pattern of the Trl gene suggests its activity in epithelial cells of the embryonic blastoderm, part of which contact primordial cells. Thus, GAGA factor influences migration of these cells in an indirect manner via their somatic environment.

  8. Follistatin288 Regulates Germ Cell Cyst Breakdown and Primordial Follicle Assembly in the Mouse Ovary.

    PubMed

    Wang, Zhengpin; Niu, Wanbao; Wang, Yijing; Teng, Zhen; Wen, Jia; Xia, Guoliang; Wang, Chao

    2015-01-01

    In mammals, the primordial follicle pool represents the entire reproductive potential of a female. The transforming growth factor-β (TGF-β) family member activin (ACT) contributes to folliculogenesis, although the exact mechanism is not known. The role of FST288, the strongest ACT-neutralizing isoform of follistatin (FST), during cyst breakdown and primordial follicle formation in the fetal mice ovary was assessed using an in vitro culture system. FST was continuously expressed in the oocytes as well as the cuboidal granulosa cells of growing follicles in perinatal mouse ovaries. Treatment with FST288 delayed germ cell nest breakdown, particularly near the periphery of the ovary, and dramatically decreased the percentage of primordial follicles. In addition, there was a dramatic decrease in proliferation of granulosa cells and somatic cell expression of Notch signaling was impaired. In conclusion, FST288 impacts germ cell nest breakdown and primordial follicle assembly by inhibiting somatic cell proliferation.

  9. Follistatin288 Regulates Germ Cell Cyst Breakdown and Primordial Follicle Assembly in the Mouse Ovary

    PubMed Central

    Wang, Zhengpin; Niu, Wanbao; Wang, Yijing; Teng, Zhen; Wen, Jia; Xia, Guoliang; Wang, Chao

    2015-01-01

    In mammals, the primordial follicle pool represents the entire reproductive potential of a female. The transforming growth factor-β (TGF-β) family member activin (ACT) contributes to folliculogenesis, although the exact mechanism is not known. The role of FST288, the strongest ACT-neutralizing isoform of follistatin (FST), during cyst breakdown and primordial follicle formation in the fetal mice ovary was assessed using an in vitro culture system. FST was continuously expressed in the oocytes as well as the cuboidal granulosa cells of growing follicles in perinatal mouse ovaries. Treatment with FST288 delayed germ cell nest breakdown, particularly near the periphery of the ovary, and dramatically decreased the percentage of primordial follicles. In addition, there was a dramatic decrease in proliferation of granulosa cells and somatic cell expression of Notch signaling was impaired. In conclusion, FST288 impacts germ cell nest breakdown and primordial follicle assembly by inhibiting somatic cell proliferation. PMID:26076381

  10. In vitro expansion of mouse primordial germ cell-like cells recapitulates an epigenetic blank slate.

    PubMed

    Ohta, Hiroshi; Kurimoto, Kazuki; Okamoto, Ikuhiro; Nakamura, Tomonori; Yabuta, Yukihiro; Miyauchi, Hidetaka; Yamamoto, Takuya; Okuno, Yukiko; Hagiwara, Masatoshi; Shirane, Kenjiro; Sasaki, Hiroyuki; Saitou, Mitinori

    2017-07-03

    The expansion of primordial germ cells (PGCs), the precursors for the oocytes and spermatozoa, is a key challenge in reproductive biology/medicine. Using a chemical screening exploiting PGC-like cells (PGCLCs) induced from mouse embryonic stem cells (ESCs), we here identify key signaling pathways critical for PGCLC proliferation. We show that the combinatorial application of Forskolin and Rolipram, which stimulate cAMP signaling via different mechanisms, expands PGCLCs up to ~50-fold in culture. The expanded PGCLCs maintain robust capacity for spermatogenesis, rescuing the fertility of infertile mice. Strikingly, during expansion, PGCLCs comprehensively erase their DNA methylome, including parental imprints, in a manner that precisely recapitulates genome-wide DNA demethylation in gonadal germ cells, while essentially maintaining their identity as sexually uncommitted PGCs, apparently through appropriate histone modifications. By establishing a paradigm for PGCLC expansion, our system reconstitutes the epigenetic "blank slate" of the germ line, an immediate precursory state for sexually dimorphic differentiation. © 2017 The Authors.

  11. Survival of glucose phosphate isomerase null somatic cells and germ cells in adult mouse chimaeras.

    PubMed

    Keighren, Margaret A; Flockhart, Jean H; West, John D

    2016-05-15

    The mouse Gpi1 gene encodes the glycolytic enzyme glucose phosphate isomerase. Homozygous Gpi1(-/-) null mouse embryos die but a previous study showed that some homozygous Gpi1(-/-) null cells survived when combined with wild-type cells in fetal chimaeras. One adult female Gpi1(-/-)↔Gpi1(c/c) chimaera with functional Gpi1(-/-) null oocytes was also identified in a preliminary study. The aims were to characterise the survival of Gpi1(-/-) null cells in adult Gpi1(-/-)↔Gpi1(c/c) chimaeras and determine if Gpi1(-/-) null germ cells are functional. Analysis of adult Gpi1(-/-)↔Gpi1(c/c) chimaeras with pigment and a reiterated transgenic lineage marker showed that low numbers of homozygous Gpi1(-/-) null cells could survive in many tissues of adult chimaeras, including oocytes. Breeding experiments confirmed that Gpi1(-/-) null oocytes in one female Gpi1(-/-)↔Gpi1(c/c) chimaera were functional and provided preliminary evidence that one male putative Gpi1(-/-)↔Gpi1(c/c) chimaera produced functional spermatozoa from homozygous Gpi1(-/-) null germ cells. Although the male chimaera was almost certainly Gpi1(-/-)↔Gpi1(c/c), this part of the study is considered preliminary because only blood was typed for GPI. Gpi1(-/-) null germ cells should survive in a chimaeric testis if they are supported by wild-type Sertoli cells. It is also feasible that spermatozoa could bypass a block at GPI, but not blocks at some later steps in glycolysis, by using fructose, rather than glucose, as the substrate for glycolysis. Although chimaera analysis proved inefficient for studying the fate of Gpi1(-/-) null germ cells, it successfully identified functional Gpi1(-/-) null oocytes and revealed that some Gpi1(-/-) null cells could survive in many adult tissues.

  12. Upregulation of the BRCA1 gene in human germ cells and in preimplantation embryos.

    PubMed

    Giscard d'Estaing, Sandrine; Perrin, Delphine; Lenoir, Gilbert M; Guérin, Jean François; Dante, Robert

    2005-09-01

    The quantification of BRCA1 messenger RNA molecules by a quantitative competitive one-step reverse transcriptase polymerase chain reaction method indicates that BRCA1 is upregulated both in human male and female germ cells and in preimplantation embryos. Because BRCA1 is involved in several pathways that participate in preserving intact chromosome and genome integrity, these data suggest that BRCA1 dysfunction might alter human embryogenesis or fertility.

  13. Differentiation of murine male germ cells to spermatozoa in a soft agar culture system

    PubMed Central

    Abu Elhija, Mahmoud; Lunenfeld, Eitan; Schlatt, Stefan; Huleihel, Mahmoud

    2012-01-01

    Establishment of an in vitro system that allows the development of testicular germ cells to sperm will be valuable for studies of spermatogenesis and future treatments for male infertility. In the present study, we developed in vitro culture conditions using three-dimensional agar culture system (SACS), which has the capacity to induce testicular germ cells to reach the final stages of spermatogenesis, including spermatozoa generation. Seminiferous tubules from testes of 7-day-old mice were enzymatically dissociated, and intratubular cells were cultured in the upper layer of the SACS in RPMI medium supplemented with fetal calf serum (FCS). The lower layer of the SACS contained only RPMI medium supplemented with FCS. Colonies in the upper layer were isolated after 14 and 28 days of culture and were classified according to their size. Immunofluorescence and real-time PCR were used to analyse specific markers expressed in undifferentiated and differentiated spermatogonia (Vasa, Dazl, OCT-4, C-Kit, GFR-α-1, CD9 and α-6-integrin), meiotic cells (LDH, Crem-1 and Boule) and post-meiotic cells (Protamine-1, Acrosin and SP-10). Our results reveal that it is possible to induce mouse testicular pre-meiotic germ cell expansion and induce their differentiation to spermatozoa in SACS. The spermatozoa showed normal morphology and contained acrosomes. Thus, our results demonstrate that SACS could be used as a novel in vitro system for the maturation of pre-meiotic mouse germ cells to post-meiotic stages and morphologically-normal spermatozoa. PMID:22057383

  14. A novel somatic MAPK1 mutation in primary ovarian mixed germ cell tumors.

    PubMed

    Zou, Yang; Deng, Wei; Wang, Feng; Yu, Xiao-Hong; Liu, Fa-Ying; Yang, Bi-Cheng; Huang, Mei-Zhen; Guo, Jiu-Bai; Xie, Qiu-Hua; He, Ming; Huang, Ou-Ping

    2016-02-01

    A recent exome-sequencing study revealed prevalent mitogen-activated protein kinase 1 (MAPK1) p.E322K mutation in cervical carcinoma. It remains largely unknown whether ovarian carcinomas also harbor MAPK1 mutations. As paralogous gene mutations co‑occur frequently in human malignancies, we analyzed here a total of 263 ovarian carcinomas for the presence of MAPK1 and paralogous MAPK3 mutations by DNA sequencing. A previously unreported MAPK1 p.D321N somatic mutation was identified in 2 out of 18 (11.1%) ovarian mixed germ cell tumors, while no other MAPK1 or MAPK3 mutation was detected in our samples. Of note, OCC‑115, the MAPK1‑mutated sample with bilateral cancerous ovaries affected, harbored MAPK1 mutation in the right ovary while retained the left ovary intact, implicating that the genetic alterations underlying ovarian mixed germ cell tumor may be different, even in patients with similar genetic backgrounds and tumor microenvironments. The results of evolutionary conservation and protein structure modeling analysis implicated that MAPK1 p.D321N mutation may be pathogenic. Additionally, mutations in protein phosphatase 2 regulatory subunit α (PPP2R1A), ring finger protein 43 (RNF43), DNA directed polymerase ε (POLE1), ribonuclease type III (DICER1), CCCTC‑binding factor (CTCF), ribosomal protein L22 (RPL22), DNA methyltransferase 3α (DNMT3A), transformation/transcription domain‑associated protein (TRRAP), isocitrate dehydrogenase (IDH)1 and IDH2 were not detected in ovarian mixed germ cell tumors, implicating these genetic alterations may be not associated with MAPK1 mutation in the development of this malignancy. The present study identified a previously unreported MAPK1 mutation in ovarian mixed germ cell tumors for the first time, and this mutation may be actively involved in the tumorigenesis of this disease.

  15. Hormonal factors and risk of ovarian germ cell cancer in young women.

    PubMed Central

    Walker, A. H.; Ross, R. K.; Haile, R. W.; Henderson, B. E.

    1988-01-01

    No previous controlled studies of ovarian germ cell tumours have been reported; however the tumour is similar to germ cell testicular cancer in terms of histology, age-specific incidence rates (i.e. highest rates in young adulthood), and secular trends of increasing incidence. The investigation was designed to determine if maternal hormonal factors which have been found to increase the risk of testis cancer in male offspring are also risk factors for the ovarian tumour. The analysis is based on 73 cases diagnosed before age 35 and 138 age-race matched controls. The cases were identified by tumour registries in Los Angeles (1972-84) and Seattle (1974-84) and controls were selected from friends and/or neighbourhood residents. Interviews were conducted on the telephone with mothers of cases and controls. The primary finding was that mother's use of exogenous hormones (including the hormonal pregnancy test, DES or other supportive hormones, and inadvertant use of oral contraceptives after conception) increased risk (Odds ratio, OR = 3.60, 95% CL = 1.2-13.1). Other maternal factors associated with elevated risk were high pre-pregnancy body mass (OR = 2.7, 95% CL = 1.0-7.6), more rapid achievement of regular menstruation after menarche (OR = 1.8, 95% CL = 0.9-3.8), and age at index pregnancy under 20 (OR = 2.8, 95% CL = 1.0-10.7). In conclusion, these results support findings from testis cancer studies regarding a hormonal aetiology for germ cell tumours, and a mechanism by which oestrogen may affect the germ cells is proposed. PMID:3390378

  16. The Formation and Migration of Primordial Germ Cells in Mouse and Man.

    PubMed

    De Felici, Massimo

    In most multicellular organisms, including mammals, germ cells are at the origin of new organisms and ensure the continuation of the genetic and epigenetic information across the generations.In the mammalian germ line, the primordial germ cells (PGCs) are the precursors of the primary oocytes and prospermatogonia of fetal ovaries and testes, respectively. In mammals such as the primates, in which the formation of the primary oocytes is largely asynchronous and occurs during a relatively long period, PGCs after the arrival into the XX gonadal ridges are termed oogonia which then become primary oocytes when entering into meiotic prophase I. In the fetal testes, germ cells derived from the PGCs after gonad colonization are termed prospermatogonia or gonocytes.One of the most fascinating aspect of the mammalian germline development is that it is probably the first cell lineage to be established in the embryo by epigenetic mechanisms and that these inductive events happen in extraembryonic tissues much earlier that gonad develop inside the embryo proper. Moreover, such events prepare the germ cells for totipotency through genetic and epigenetic regulations of their genome function. How this occurs remained a mystery until short time ago.In this chapter, I will report and discuss the most recent advances in the cellular and molecular mechanisms underlying the formation in extraembryonic tissues and migration of PGCs toward the gonadal ridges made primarily by studies carried out in the mouse with some perspective in the human. Established concepts about these processes will be only summarized when necessary since they are widely described and discussed in many excellent reviews; most of them are cited in the text below.

  17. Human testicular (non)seminomatous germ cell tumours: the clinical implications of recent pathobiological insights.

    PubMed

    Looijenga, Leendert H J

    2009-06-01

    Human germ cell tumours (GCTs) comprise several types of neoplasias with different pathogeneses and clinical behaviours. A classification into five subtypes has been proposed. Here, the so-called type II testicular GCTs (TGCTs), ie the seminomas and non-seminomas, will be reviewed with emphasis on pathogenesis and clinical implications. Various risk factors have been identified that define subpopulations of men who are amenable to early diagnosis. TGCTs are omnipotent, able to generate all differentiation lineages, both embryonic and extra-embryonic, as well as the germ cell lineage itself. The precursor lesion, composed of primordial germ cells/gonocytes, is referred to as carcinoma in situ of the testis (CIS) and gonadoblastoma of the dysgenetic gonad. These pre-malignant cells retain embryonic characteristics, which probably explains the unique responsiveness of the derived tumours to DNA-damaging agents. Development of CIS and gonadoblastoma is crucially dependent on the micro-environment created by Sertoli cells in the testis, and granulosa cells in the dysgenetic gonad. OCT3/4 has high sensitivity and specificity for CIS/gonadoblastoma, seminoma, and embryonal carcinoma, and is useful for the detection of CIS cells in semen, thus a promising tool for non-invasive screening. Overdiagnosis of CIS due to germ cell maturation delay can be avoided using immunohistochemical detection of stem cell factor (SCF). Immunohistochemistry is helpful in making the distinction between seminoma and embryonal carcinoma, especially SOX17 and SOX2. The different non-seminomatous histological elements can be recognized using various markers, such as AFP and hCG, while others need confirmation. The value of micro-satellite instability as well as BRAF mutations in predicting treatment resistance needs validation in prospective trials. The availability of representative cell lines, both for seminoma and for embryonal carcinoma, allows mechanistic studies into the initiation and

  18. Deregulated Sex Chromosome Gene Expression with Male Germ Cell-Specific Loss of Dicer1

    PubMed Central

    Snyder, Elizabeth; Buaas, F. William; Gu, Tongjun; Stearns, Timothy M.; Sharma, Manju; Murchison, Elizabeth P.; Puente, Gabriella C.; Braun, Robert E.

    2012-01-01

    MicroRNAs (miRNAs) are a class of endogenous, non-coding RNAs that mediate post-transcriptional gene silencing by inhibiting mRNA translation and promoting mRNA decay. DICER1, an RNase III endonuclease encoded by Dicer1, is required for processing short 21–22 nucleotide miRNAs from longer double-stranded RNA precursors. Here, we investigate the loss of Dicer1 in mouse postnatal male germ cells to determine how disruptions in the miRNA biogenesis pathway may contribute to infertility. Reduced levels of Dicer1 transcripts and DICER1 were confirmed in germ cell knock-out (GCKO) testes by postnatal day 18 (P18). Compared to wild-type (WT) at 8 weeks, GCKO males had no change in body weight; yet showed significant reductions in testis mass and sperm number. Histology and fertility tests confirmed spermatogenic failure in GCKO males. Array analyses at P18 showed that in comparison to WT testes, 75% of miRNA genes and 37% of protein coding genes were differentially expressed in GCKO testes. Among these, 96% of miRNA genes were significantly down-regulated, while 4% miRNA genes were overexpressed. Interestingly, we observed preferential overexpression of genes encoded on the sex chromosomes in GCKO testes, including more than 80% of previously identified targets of meiotic sex chromosome inactivation (MSCI). Compared to WT, GCKO mice showed higher percentages of germ cells at early meiotic stages (leptotene and zygotene) but lower percentages at later stages (pachytene, diplotene and metaphase I) providing evidence that deletion of Dicer1 leads to disruptions in meiotic progression. Therefore, deleting Dicer1 in early postnatal germ cells resulted in deregulation of transcripts encoded by genes on the sex chromosomes, impaired meiotic progression and led to spermatogenic failure and infertility. PMID:23056286

  19. A rare cause in etiology of left atrial mass: metastatic testicular germ cell tumor

    PubMed Central

    Huseyin, Serhat; Okyay, Ahmet; Hacıbekiroğlu, İlhan; Tastekin, Ebru; Yılmaztepe, Mustafa; Taylan, Gökay; Canbaz, Suat; Çiçin, İrfan

    2016-01-01

    Although intracardiac metastasis of germ cell tumors is rare, it can be localized in the right or left heart by disseminating spread and give their cardiac symptoms depending on the location of metastatic mass. We present a 38-year-old male patient with a preliminary diagnosis of testicular tumor who was followed by the medical oncology clinic with cerebrovascular event and heart failure symptoms. PMID:27212979

  20. PUF-8 negatively regulates RAS/MAPK signalling to promote differentiation of C. elegans germ cells

    PubMed Central

    Vaid, Samir; Ariz, Mohd; Chaturbedi, Amaresh; Kumar, Ganga Anil; Subramaniam, Kuppuswamy

    2013-01-01

    Signals that promote germ cell self-renewal by preventing premature meiotic entry are well understood. However, signals that control mitotic proliferation to promote meiotic differentiation have not been well characterized. In Caenorhabditis elegans, GLP-1 Notch signalling promotes the proliferative fate by preventing premature meiotic entry. The germline niche cell, which is the source of the ligand for GLP-1, spatially restricts GLP-1 signalling and thus enables the germ cells that have moved away from the niche to enter meiosis. Here, we show that the suppression of RAS/MAP kinase signalling in the mitotic and meiotic-entry regions is essential for the regulation of the mitosis-meiosis switch by niche signalling. We provide evidence that the conserved PUF family RNA-binding protein PUF-8 and the RAS GAP protein GAP-3 function redundantly to suppress the LET-60 RAS in the mitotic and meiotic entry regions. Germ cells missing both PUF-8 and GAP-3 proliferate in an uncontrolled fashion and fail to undergo meiotic development. MPK-1, the MAP kinase downstream of the LET-60 RAS, is prematurely activated in these cells; downregulation of MPK-1 activation eliminates tumours and restores differentiation. Our results further reveal that PUF-8 negatively regulates LET-60 expression at a post-transcriptional step. LET-60 is misexpressed in the puf-8(-) mutant germlines and PUF-8 physically interacts with the let-60 3′ UTR. Furthermore, PUF-8 suppresses let-60 3′ UTR-mediated expression in the germ cells that are transitioning from the mitotic to meiotic fate. These results reveal that PUF-8-mediated inhibition of the RAS/MAPK pathway is essential for mitotic-to-meiotic fate transition. PMID:23487310

  1. PUF-8 negatively regulates RAS/MAPK signalling to promote differentiation of C. elegans germ cells.

    PubMed

    Vaid, Samir; Ariz, Mohd; Chaturbedi, Amaresh; Kumar, Ganga Anil; Subramaniam, Kuppuswamy

    2013-04-01

    Signals that promote germ cell self-renewal by preventing premature meiotic entry are well understood. However, signals that control mitotic proliferation to promote meiotic differentiation have not been well characterized. In Caenorhabditis elegans, GLP-1 Notch signalling promotes the proliferative fate by preventing premature meiotic entry. The germline niche cell, which is the source of the ligand for GLP-1, spatially restricts GLP-1 signalling and thus enables the germ cells that have moved away from the niche to enter meiosis. Here, we show that the suppression of RAS/MAP kinase signalling in the mitotic and meiotic-entry regions is essential for the regulation of the mitosis-meiosis switch by niche signalling. We provide evidence that the conserved PUF family RNA-binding protein PUF-8 and the RAS GAP protein GAP-3 function redundantly to suppress the LET-60 RAS in the mitotic and meiotic entry regions. Germ cells missing both PUF-8 and GAP-3 proliferate in an uncontrolled fashion and fail to undergo meiotic development. MPK-1, the MAP kinase downstream of the LET-60 RAS, is prematurely activated in these cells; downregulation of MPK-1 activation eliminates tumours and restores differentiation. Our results further reveal that PUF-8 negatively regulates LET-60 expression at a post-transcriptional step. LET-60 is misexpressed in the puf-8(-) mutant germlines and PUF-8 physically interacts with the let-60 3' UTR. Furthermore, PUF-8 suppresses let-60 3' UTR-mediated expression in the germ cells that are transitioning from the mitotic to meiotic fate. These results reveal that PUF-8-mediated inhibition of the RAS/MAPK pathway is essential for mitotic-to-meiotic fate transition.

  2. Germ cell dynamics in the testis of the postnatal common marmoset monkey (Callithrix jacchus).

    PubMed

    Albert, S; Ehmcke, J; Wistuba, J; Eildermann, K; Behr, R; Schlatt, S; Gromoll, J

    2010-11-01</